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Preface

The 12th International Conference on Software Composition (SC 2013) provided
researchers and practitioners with a unique platform to present and discuss chal-
lenges of how composition of software parts may be used to build and maintain
large software systems. Co-located with the STAF 2013 Federated Conferences
in Budapest, SC 2013 built upon a history of a successful series of conferences
on software composition held since 2002 in cities across Europe.

We received 21 full submissions co-authored by researchers, practitioners, and
academics from 14 countries. One paper was desk rejected for obviously being
out of scope. All other papers were peer-reviewed by at least three reviewers,
and discussed by the Program Committee. Based on the recommendations and
discussions, we accepted 9 papers, leading to an acceptance rate of 43%.

Besides these technical papers, we are excited to have won Sven Apel as
keynote speaker for SC 2013, who shared his insights on managing and analyzing
software product lines with the combined SC 2013 and STAF 2013 audience.

We are grateful to the members of the Program Committee and the external
reviewers for helping us to seek submissions and provide valuable and timely
reviews. Their efforts enabled us to put together a high-quality technical pro-
gram for SC 2013. We are indebted to the local arrangements team of STAF
2013 for the successful organization of all conference and social events. The
SC 2013 submission, review, and proceedings process was extensively supported
by the EasyChair Conference Management System. We also acknowledge the
prompt and professional support from Springer, who published these proceed-
ings in printed and electronic volumes as part of the Lecture Notes in Computer
Science series.

Most importantly, we would like to thank all authors and participants of SC
2013 for their insightful works and discussions!

March 2013 Walter Binder
Eric Bodden

Welf Löwe
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Reusable Components for Lightweight

Mechanisation of Programming Languages

Seyed H. Haeri (Hossein) and Sibylle Schupp

Institute for Software Systems, Hamburg University of Technology, Germany
{hossein,schupp}@tu-harburg.de

Abstract. Implementing Programming Languages (PLs) has always
been a challenge for various reasons. One reason is the excess of rou-
tine tasks to be redone on every implementation cycle. This is despite
the remarkable fraction of syntax and semantics usually shared between
successive cycles. In this paper, we present a component-based approach
to avoid reimplementation of shared PL fractions. We provide two sets
of reusable components; one for syntax implementation and another for
semantics. Our syntax and semantics components correspond to syntac-
tic categories and semantics rules of a PL specification, respectively. We
show how, in addition to their service to reusability in syntax and seman-
tics, our components can cater reusable implementation of PL analyses.
Our current level of experimentation suggests that this approach is ap-
plicable wherever the following two features are available or can be sim-
ulated: Type Constraints and Multiple Inheritance. Implementing a PL
using our approach, however, requires some modest programming disci-
pline that we will explain throughout the text.

1 Introduction

Mechanisation of a PL is implementing it for the purpose of experimentally
studying its characteristics and conduct. One interacts with the mechanisation
to discover otherwise inapparent facts or flaws in action. PL mechanisation,
however, can become very involved using traditional formal proof systems. Vari-
ous other frameworks have, therefore, been crafted to help lightweight mechani-
sation. Different frameworks focus on facilitating different mechanisation tasks.

Mechanisation often enjoys cycles. Repeating implementation upon each cy-
cle can form a considerable burden against mechanisation, especially because
consecutive cycles often share a sizeable fraction of their syntax, only differ in
few semantic rules, and, rarely add new analyses. Modularity becomes vital in
that, upon extension, existing modules ought to be readily reusable.

As such, component-based mechanisation can provide even more reusability
by facilitating implementation sharing for individual PL constructs. For exam-
ple, it is not uncommon for different PLs to be extended using similar con-
structs (in the syntax or semantics). Component-based mechanisation cancels
the need for reimplementing such constructs. In addition, our above interpreta-
tion of modularity comes as a side product in that PL modules already composed
of components need not to be touched upon the addition of new components.

W. Binder, E. Bodden, and W. Löwe (Eds.): SC 2013, LNCS 8088, pp. 1–16, 2013.
c© IFIP International Federation for Information Processing 2013



2 S.H. Haeri and S. Schupp

In this paper, we implement language-independent components for syntactic
categories to obtain syntax code reuse. We also offer a collection of semantics-
lenient derivation rules that are individually executable. These form our highly
flexible components that cater various sorts of semantics code reuse upon compo-
sition. A particularly interesting consequence of the flexibility in our syntax and
semantics components is analysis code reuse. These components elevate the pro-
gramming level of mechanisation; they encourage coding in terms of themselves
(as opposed to exact type constructors), viz. , addition of new type constructors
imposes no recompilation on existing code. (C.f. Expression Problem [29].)

Whilst our use of multiple inheritance caters easy extension of mechanisation,
type constraints help the compiler outlaw reuse of mechanisation when conceptu-
ally inapplicable. Our approach is applicable independent of the formalism used
for specification. Yet, a modest programming discipline is required for enjoying
our reusability. Most of the burden is, however, on the Language Definitional
Framework (LDF). Our approach indeed minimises the PL implementer’s effort
when an extensive set of our components is available through the LDF.

We choose to embed our approach in Scala for its unique combination of
built-in features that suit mechanisation [23]. Both multiple inheritance and
type constraints have special flavours in Scala that are not shared universally
amongst languages. However, we do not make use of those specialities. Hence,
the applicability of our approach is deemed to only be subject to the availability
of multiple inheritance and type constraints.

We start by reviewing the related literature in Section 2. In Section 3, we
provide a minimal explanation of the Scala features we use. We exemplify our
approach using five systems for lazy evaluation that we briefly present in Sec-
tion 4. Next, in Section 5, we demonstrate our components for both syntax and
semantics mechanisation. As an interesting extra consequence of our particu-
lar design of components, Section 6 shows how analysis mechanisation reuse is
gained. Concluding remarks and discussion on future work come in Section 7.1

2 Related Work

Funcons of PLanCompS [13] are composable components for PL mechanisation
each of which with a universally unique semantics. Funcons are similar to our
syntax components except that, due to our decoupling of syntax and semantics,
our components can have multiple pieces of semantics. On the other hand, a
funcon’s semantics is provided using Modular SOS [21] and Action Semantics
[20], whilst we do not demand any particular formalism. The GLoo mini parsers
enable scope-controlled extensions to its language by desugaring the extended
syntax into core GLoo [19]. SugarHaskell [9] provides similar facilities, but in
a layout-sensitive fashion and for Haskell. Polyglot [22] users can extend a PL
compiler (including that of Polyglot itself) by providing (one or more) compiler
passes that rewrite the original AST into a Java one. The difference between the

1 online source code available at http://www.sts.tuhh.de/~hossein/compatibility.

http://www.sts.tuhh.de/~hossein/compatibility


Lightweight Mechanisation of Programming Languages 3

last three works and ours is that we do not specifically target PL specification
through syntactic desugaring. Our semantics components can be used with or
without a core semantics, and, are not restricted to any particular formalism.

Two important ingredients of our approach are type constraints and multiple
inheritance. Kiama [25] is an LDF that is embedded in Scala. Hence, Kiama does
already have all the language support required by our approach. Maude [5], K
[11], MMT [4], Redex [10], Liga [14], Silver [28], Rascal [16], UUAG [7], JastAdd
[8], and Spoofax [15] are LDFs that ship with their own DSL as the meta-level
PL. Maude is the only such LDF with support for both multiple inheritance
and type constraints. JastAdd, UUAG, and Rascal each only provide built-in
support for half the language features that our approach requires. Only a runtime
simulation of our approach is possible in K, Redex, Liga, Spoofax, and Silver.

Finally, Axelsson [2] and Bahr [3] provide Haskell libraries to improve dif-
ferent aspects of embedded DSL mechanisation. They both build on Swierstra’s
data types à la carte [26] and proceed by offering a new abstract syntax model.

3 Scala Syntax

This section introduces the parts of Scala syntax that we use in this paper.

1 object O {def apply(n: Int) = ...}

2 class C0 {type NT1 = Int; type NT2}

3 class C1[T] {

4 def m[U]: Int -> Int = ...

5 }

6 class C2[T1 <: T2]

7 class C3[T1 <: T2{type NT}]

8 class C4[+T]

9 class C5[T <: C2[_]]

10 class C6[T <: C0 with C2[T]]

The method apply (line 1) tells Scala to expand calls like O(1) to O.apply(1).
The nested types NT1 and NT2 of the class C0 (line 2) can be referred to as
C0#NT1 and C0#NT2, respectively. This contrasts with Scala’s dot notation for
referring to members of a package. We say that C0 binds NT1 to Int. The nested
type NT2 is abstract in that C0 itself does not bind it. Class C1 is parametrised
over type T (line 3). Likewise, method m is parametrised over type U (line 4).
The type parameter T1 of C2 is constrained by an upper bound type T2 (line 6).
As a result, one can only instantiate C2 with types which inherit from T2. The
types to instantiate C3 with need to also have a nested type NT (line 7). One can
also place constraints on nested types of type parameters. The plus used before
type parameter T in line 8 implies that when T1 is a subtype of T2, C4[T1] is
considered a subtype of C4[T2]. Use of underscore in line 9 indicates that one
can instantiate C5 with any type that inherits from C2[T’], for some type T’.
Type parameters can be more than one, in which case they are separated using
commas. Multiple nested types demanded by an upper bound are to be put on
separate lines, or, separated using semicolons. Class C6 places two upper bound
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constraints on its type parameter T (line 10). Namely, the type parameter T has
to inherit from both C0 and C2[T]. (Note that T itself is used in its own latter
upper bound.) Traits are like abstract classes, but can be multiply inherited.

4 The Implemented Family of Operational Semantics

Five systems in the family of lazy evaluation are: Abramsky and Ong [1], Launch-
bury [17], Sinot [24], van Eekelen and de Mol [27], and Haeri [12]. We will be
referring to these as L0, L1, L2, S1, and S2, respectively. 2 Moreover, we will
refer to the syntax of a family member as a member syntax, and, to its semantics
as a member semantics. Section 4.1 provides an overview of the family syntax.
Section 4.2 exhibits only the parts of family semantics that we refer to in this
paper. The reader may refer to the original papers for more explanation. The aim
of this section is to give the reader enough understanding from the family so that
they can follow our discussions. We chose these particular five systems because
their good proximity makes demonstration easy. However, given the flexibility
in our components, our approach is well applicable beyond just these five.

4.1 Syntax

Here, we briefly present the syntax of the implemented family. Notationally, our
presentation is not exactly the same as the original ones. We unify the original
notations and neglect the minor differences.

L0 L1 S1 S2 b ::= x | Z(−→x )
e ::= x � � � � e ::= b | λx.b | e b | let {bi=ei}n

i=1 in e
λx.e � � � � v ::= λx.b | x b1 . . . bn

e x � � � �
let {xi=ei}n

i=1 in e � � � v ::= λx.e L0,L1,S1

e1 seq e2 � � v ::= let {xi=ei}n
i=1 in λx.e (n ≥ 0) S2

L0= Abramsky and Ong, L1= Launchbury, S1= van Eekelen and de Mol, S2= Haeri

Fig. 1. Syntax for All the Family Members

Figure 1 shows the family syntax where e ranges over expressions, v ranges over
values, and, x ranges over variables. The left half of the figure demonstrates the
syntax common betweenL0, L1, S1, and S2. With the great degree of common-
ality between the four, we demonstrate them altogether in a single compact form
to avoid repetition. Ticks show the constructors in each member syntax.

To the right, the top half shows complete L2 syntax, which is a bit different
from the previous four. Here, −→x is a short form for x1 x2 · · ·xn where n ≥ 2. In
L2, the generalised identifier b ranges over ordinary variables and metavariables

2 L for lazy evaluation and S for selective strictness
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(Z(−→x )). Function applications are likewise generalised. That is, application of
functions is allowed to metavariables as well as variables. λ-abstractions are the
only values at L0, L1, and S1. Whereas, in S2, let-surrounded λ-abstractions
are also considered values, where let {xi=ei}n

i=1 inλx.e is a syntactic sugar for
λx.e when n = 0. In the L2 syntax, successive applications of a variable to
generalised identifiers (x b1 · · · bn) is also considered a value. We refer to this
syntactic category as the variable-to-identifier-applications. In the entire family,
subscripts do not impact the syntactic category, and, are allowed to be arbitrary.

4.2 Semantics

Figure 2 shows selected parts of the family semantics. Here, rule labels are of the
form (r)� where r is the rule name and � is the list of family members containing
r in their semantics. Rules are of the form Γ : e ⇓ Δ : v where capital Greek
letters denote heaps. This rule form reads: Evaluation of e in Γ results in v and
updates the bindings to Δ. We write Γ : e ⇓Π Δ : v to emphasise that Π is the
derivation tree for Γ : e ⇓ Δ : v. In L1’s terminology, heaps are partial functions
from variables to expressions. S1 as well as S2 inherit the same terminology. In
the semantics of L2, however, the domain of heaps consists of the set of variables
and metavariables. e[x/y] denotes capture-avoiding substitution of variable x in
e by variable y. All the family members have a distinct-name convention, i.e.,
variable names are supposed to be distinct.

(lam)L1,S1,L2
Γ : λx.e ⇓ Γ : λx.e

Γ : e ⇓ Δ : v
(var)L1,S1,S2,L2

(Γ, x �→ e) : x ⇓ (Δ, x �→ v) : v

Γ : e ⇓ Δ : λy.e′ Δ : e′[x/y] ⇓ Θ : v
(app)L1,S1

Γ : e x ⇓ Θ : v

(Γ, xi �→ ei)
n
i=1 : e ⇓ Δ : v

(let)L1,S1,L2
Γ : let {xi=ei}n

i=1 in e ⇓ Δ : v

Γ : e1 ⇓ Θ : v1 Θ : e2 ⇓ Δ : v2

(seq)S1,S2
Γ : e1 seq e2 ⇓ Δ : v2

L1= Launchbury, S1= van Eekelen and de Mol, S2= Haeri, L2= Sinot

Fig. 2. Selected Parts of the Family Semantics

5 Components

Figure 3 gives a UML overview of our approach. At the top, elements of our
approach for syntax mechanisation are illustrated, and, at the bottom, those of
semantics. The left portions are class diagrams. The right portions are use cases
for the left portion of the same row. We use a number of non-standard UML
notations: The type Exp with which a LazyExp (top left portion) is instantiated
has to inherit from LazyExp itself. There are similar constraints on the type pa-
rameter Exp of OpSem as well as Exp and OS of the apply method of Executable
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Rule (all in the bottom left portion). Abusing the UML notation, we draw gener-
alisation arrows that extend from the right portions (use cases) to the respective
left (class diagrams). For instance, L1OpSem inherits from OpSem. Finally, in the
top row, we use a non-standard dashed arrow “ntb” to specify that an Expression
Trait binds nested types to its type constructors. As an example, L1Exp binds
its nested type Val to its type constructor Lam. (See the top right portion.)

Fig. 3. Architecture of Our Approach

Ideally, of the elements depicted in Figure 3, certain ones ought to be shipped by
the LDFs. The PL implementer, then, uses these shipped elements for mechanisa-
tion of the desired PL. The Intermediate Class instances, LazyExp, the Executable
Rule instances, and OpSem are of the former sort. (In Figure 3, BaseLam, Ba-
seVar, BaseApp, and BaseLet are intermediate classes, whilst LamRule, VarRule,
AppRuleLam, and LetRuleLam are executable rules.) The top right portion sum-
marises how to mechanise the L1 syntax using shipped elements of the left half
of the same row. The bottom right portion does the same for the L1 semantics.

For reasons of improved correctness and reusability that we explain later,
we need to check whether a PL syntax contains a certain syntactic category or
not. Implementing a syntax using a typical algebraic datatype will, hence, not
suffice. This is mainly because an ordinary algebraic datatype does not provide a
mechanism for programmatically querying its type constructors. In Section 5.1
where our syntax components are presented, we employ nested types as an extra
storage that make such programmatic queries possible. Our approach enjoys a
design-by-contract flavour in that the names and duties of these nested types are
dictated by the intermediate classes – at their design time. This flavour will also
be available in Section 5.2, where our semantics components are introduced.
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5.1 Syntax Components

In an embedded setting, mechanisation of a PL syntax typically involves embed-
ding its abstract and concrete syntax, pretty-printing and the rest of debugging
cosmetics, and sanity checks. One can of course perform the same task repeatedly
for each member syntax. This entails a total of at least 24 type constructors for
Figure 1 with a great amount of reimplementation in the above syntax mechani-
sation tasks. We instead mechanise a PL syntax in terms of our reusable compo-
nents that serve as syntactic building blocks. Each of these components – called
“intermediate classes” – corresponds to one and only one syntactic category. (See
Intermediate Class in the top left portion of Figure 3.) An intermediate class im-
plements its own part of an abstract syntax, pretty-printing, and sanity checks.
This one-off implementation, then, is readily available to whatever PL syntax
that contains the respective syntactic category, and, can be used off-the-shelf.
For example, for Figure 1, we have implemented a total of 9 intermediate classes
that correspond to variables (BaseVar), λ-abstractions (BaseLam), function ap-
plications (BaseApp), let-expressions (BaseLet), selective strictness (BaseSeq),
metavariables (BaseMVar), generalised identifiers (BaseGenIdn), let-surrounded
λ-abstractions (BaseVal), and variable-to-identifier-applications (BaseVarApp).
On the other hand, we embed concrete syntax in terms of LazyExp – once and
for all. LazyExp is our root of expressions for the entire family. (Compare with
LazyExp in the top left portion of Figure 3.)

In Section 5.1.1, we first explain how to put our syntax components together
to gain a complete syntax mechanisation. We, then, take a deeper look into some
internals of our code which made this possible in Section 5.1.2.

5.1.1 Syntax Mechanisation When appropriate intermediate classes and
LazyExp are at hand, a simple discipline needs to be followed:

– A member syntax is mechanised using its own (algebraic data-) type. Such
a type provides its extra storage using binding nested types to its respective
type constructors. When a syntax is mechanised in such a fashion, we refer
to its implementing datatype as an “expression trait.” Furthermore, when a
type constructor is bound in such a fashion, we say it is registered (at the
expression trait). To inherit the concrete syntax embedding, and to be of use
to our semantics mechanisation utilities, an expression trait T always derives
from LazyExp[T].

– Type constructors themselves need as well to specify which syntactic cate-
gory they belong to. With their type parameters that will be explained later,
we consider our intermediate classes only half-baked. We say that an interme-
diate class gets fully-baked for an expression trait T when a type constructor
of T inherits from their instantiation for T.

Figure 4 exemplifies our discipline for L1. Scala uses normal inheritance as a sim-
ple facility for extensible algebraic datatypes. Accordingly, Var, Lam, App, and
Let (lines 11-14) are type constructors of L1Exp. They are fully-baked for L1’s
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1 package l1

2

3 sealed trait L1Exp extends LazyExp[L1Exp] {

4 type Val = l1.Lam

5 type App = l1.App

6 type Var = l1.Var

7 type Let = l1.Let

8 ...

9 }

10

11 final case class Var(...) extends BaseVar(...) with L1Exp

12 final case class Lam(...) extends BaseLam[L1Exp](...) with L1Exp

13 final case class App(...) extends BaseApp[L1Exp](...) with L1Exp

14 final case class Let(...) extends BaseLet[L1Exp](...) with L1Exp

Fig. 4. Mechanisation of the L1 Syntax Using our Programming Discipline

expression trait (L1Exp) because they inherit from BaseVar, BaseLam[L1Exp],
BaseApp[L1Exp], and BaseLet[L1Exp], respectively. (See Figure 1 for the syn-
tactic categories of L1.) These four type constructors are registered in lines 4-7
where they get bound to the nested types Val, App, Var, and Let of L1Exp,
respectively. (C.f. Figure 4 with the top right portion of Figure 3.)

5.1.2 Technicality In order for an intermediate class not to be exclusively
suitable to a single PL, it has to be parameterised over the PL syntax. However,
not every syntactic category is suitable to every PL syntax. An intermediate
class has to act accordingly. Consider BaseLet, for example:

1 class BaseLet[+Exp <: LazyExp[_]{type Let <: BaseLet[_]}]

2 (val bs: Map[Idn, Exp], val e: Exp) {

3 if(...) //value type == λ-abstractions
4 require(!bs.isEmpty)

5 override def toString() = ...

6 }

Lines 3 and 4 above perform a sanity check pertaining to let-expressions. (It is
only in S2 – where let-surrounded λ-abstractions are value types – that empty
let-bindings are allowed.) Line 5 handles the pretty-printing. The constructor
parameters bs and e (line 2) embed the abstract syntax part of this intermediate
class. Note that the type of the latter parameter is not fixed. Instead, it is typed
using the type parameter Exp (line 1). The upper bound on Exp makes BaseLet
invariably available to every member syntax so long as Exp registers its BaseLet-
derived type constructor under the name Let. (Namely, L0 is excluded.) Similar
type constraints selectively determine the appropriate classes of syntax.

It remains to further expand on the role of LazyExp. In this section, we focus
only on the syntactic parts of its role. Section 5.2 explains its role for semantics
mechanisation. We implement all our concrete syntax embedding for LazyExp –
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once and for all. When applicable, a member syntax reuses the same embedding
through inheritance of its expression trait from LazyExp. The following table
summarises our concrete syntax embedding: In each row, the code on the left
gets automatically desugared into a piece of abstract syntax that represents the
mathematical expression on the right. (T in line 2 is the corresponding expression
trait of e.)

code math
1 e("x1")...("xn") ((e x1) · · · xn)
2 \[T]("x1",...,"xn")(e) λx1 · · ·xn.e
3 let ("x1" -> e1,...,"xn" -> en) in e let {xi=ei}n

i=1 in e
4 e1 seq e2 e1 seq e2

Note that the code in line 2 embeds a let-surrounded λ-abstraction in S2’s syntax
and ordinary λ-abstractions in other family members. Likewise, when e is a λ-
abstraction, the code in line 3 embeds another λ-abstraction for S2’s syntax,
and, let-expressions otherwise. On the other hand, the embedding in line 4 is
only applicable when a syntactic category is available for selective strictness.
Again, the selectivity on the classes of syntax is enabled by type constraints.

As also explained further above, our convention is that an expression trait
T must derive from LazyExp[T]. (See line 3 in Figure 4 for L1Exp, for exam-
ple.) Given that T’s type constructors inherit from it, they also inherit from
LazyExp by transitivity of inheritance. Note how following our convention for
expression traits makes them distinguishable from type constructors. The partic-
ular wiring used below for the type parameter Exp of LazyExp enforces the above
convention. Section 5.2 contains an example where this convention comes handy.

1 trait LazyExp[+Exp <: LazyExp[Exp]] {...}

5.2 Semantics Components

Similar to the case for syntax, it is perfectly possible to program each member
semantics separately. That is a total of 23 rules for the entire family, and, with a
great deal of code repetition. Instead, we implement a collection of 14 reusable
and executable rules, which can be plugged into a PL semantics mechanisa-
tion. Our design ships another artefact as well: OpSem is our root operational
semantics class. This is an abstract base class with a method for distributing
the semantics evaluation between executable rules. Yet, OpSem is flexible on its
input/output to the extent that it allows several semantics mechanisations for
a single syntax. In this paper, we only demonstrate the idea for rules which
document the entire semantics evaluation, if successful. However, one can easily
configure OpSem for rules which, for instance, merely work with the PL objects
involved in the semantics specification. Although we only demonstrate mechani-
sation for operational semantics, we have no evidence to doubt the applicability
of our approach to other formalisms. After all, it only amounts for the semantic
rules to be implemented like our executable rules.

In Section 5.2.1, we first explain how to combine our components to mech-
anise a PL semantics. A closer look into our components themselves is then
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provided in Section 5.2.2. Whilst the latter section targets LDF implementers
more, the former one is more useful to the LDF users.

5.2.1 Semantics Mechanisation Assuming the availability of our compo-
nents, the following programming discipline needs to be followed for semantics
mechanisation: A member semantics is implemented as a stand-alone object
that derives from OpSem[T], where T is the expression trait of the corresponding
member syntax. This object needs to implement a method proofsearch which
distributes evaluation between pertaining executable rules. In such a case, we
say the member semantics plugs its appropriate executable rules.

1 object opsem extends OpSem[LExp] {

2 type Conf = HBConf[LExp]

3 type Node = HBNode[LExp]

4

5 def proofsearch(g: LHeap, e: LExp): HBNode[LExp] = e match {

6 case l: Lam => HBLamRule[LExp, opsem.type](g, l)

7 case a: App => HBAppRuleLam[LExp, opsem.type](g, a)

8 case v: Var => HBVarRule[LExp, opsem.type](g, v)

9 case l: Let => HBLetRuleLam[LExp, opsem.type](g, l)

10 }

11 override def proofsearch(c: Conf): HBNode[LExp] =

12 proofsearch(c._1, c._2)

13 }

Fig. 5. Implementing the L1 Operational Semantics in Isolation

For example, for L1’s semantics, the method proofsearch in Figure 5 takes a
heap along with an expression (line 5), and, produces a derivation tree, when
successful: Here, the plugged executable rules are HBLamRule, HBAppRuleLam,
HBVarRule, and HBLetRuleLam (lines 6 to 9, respectively) that we schematically
depicted in Figure 3. (In our naming convention, prefix HB indicates a heap-based
system. That includes all the family members in this paper except L0.) What
comes after the executable rule names in square brackets is to guide Scala’s type
deduction. HBNode is the root of our hierarchy for nodes in the heap-based deriva-
tion trees. Each node class encapsulates relevant compile time/runtime sanity
checks that make it easier to enforce correctness of the executable rules. Armed
with such correctness enforcement mechanisms, the compiler would have stopped
us, for any of the four cases, had we plugged in a rule which is incompatible with
the respective characteristics of either L1’s syntax or semantics.

5.2.2 Technicality Implementing a rule in a way that is not exclusively use-
ful to a particular PL entails parameterising it over both the syntax and se-
mantics. And, indeed the type parameters of our executable rules characterise
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both the syntax and semantics they expect. Our rules can be plugged into any
semantics so long as their characteristic expectations hold. A compile error will
be emitted otherwise. For example, below is our (let)L1,S1,L2 implementation:

1 object HBLetRuleLam {

2 def apply[Exp <: LazyExp[Exp]{type Val <: BaseLam[Exp]

3 type Let <: BaseLet[Exp]},

4 OS <: OpSem[Exp]{type Conf = HBConf[Exp]

5 type Node = HBNode[Exp]}]

6 (g: Heap[Exp], lexp: Exp#Let with Exp)

7 (implicit opsem: OS): HBNode[Exp] = {

8 val (e, bs) = (lexp.e, lexp.bs)

9 val pi = opsem.proofsearch(g ++ bs, e)

10 val (d, z) = (pi.g2, pi.e2)

11 new HBLetNodeLam[Exp](pi, g, lexp, d, z)

12 }

13 }

The type parameters Exp and OS above (lines 2 and 4) signify the expression trait
and the operational semantics, respectively. However, not every rule in Figure 2
is a part of every member semantics. For example, this (let) rule is only a part of
the L1, S1, and L2 semantics. The constraint type Val <: BaseLam[Exp] (line
2) rules out S2. This constraint enforces on Exp the availability of a nested type
Val that binds to a class derived from BaseLam, i.e., that λ-abstractions is a
value type of the syntax. (See Figure 1.) OS <: OpSem[Exp] states that OS must
be an operational semantics type over the expression type Exp. (More on OpSem
shortly.) The constraint type Conf = HBConf[Exp] (line 4) on OS states that it
inputs a pair of heap and expression. Similarly, type Node = HBNode[Exp] (line
5) specifies that OS outputs a heap-based derivation tree. These constraints rule
out the semantics of L0 too, making HBLetRuleLam only applicable to the right
family members. Lastly, note how the treatment of type parameters enables
opsem to take a continuation-passing style role for handling “the rest of the
evaluation” – again, only for the correct family members.

Here is a recap on the remaining points: The constraint type Let <:
BaseLet[Exp] (line 3) ensures that Exp registers its BaseLet-derived constructor
under the name Let. Furthermore, lexp (in line 6) is required to be an instance of
both Exp and this registered type. In other words, lexp needs to be constructed
using a type constructor of Exp that corresponds to let-expressions. Recall also
that, as seen at the end of Section 5.1, the constraint Exp <: LazyExp[Exp] (line
1) ensures that Exp is an expression trait. HBLetNodeLam inherits from HBNode
to be the node for let-expressions where λ-abstractions are a value type.

It remains to consider our OpSem trait:

1 trait OpSem[Exp <: LazyExp[_]] {

2 type Conf

3 type Node <: ProofTree

4 def proofsearch(c: Conf): Node

5 }
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For each operational semantics, proofsearch inputs the initial configuration,
and, produces the derivation tree according to the rules of the semantics. The
abstract type Conf represents the type signature of the input (line 2). Like-
wise, the abstract type Node is the derivation tree type an operational semantics
outputs (line 3). The type ProofTree is our generic ADT for derivation trees.

6 Case Study: Analysis Code Reuse

Like the case of syntax and semantics, one should be able to reuse the code for
analyses implemented over previous mechanisation cycles – but, only when they
are still conceptually applicable. We address that need based on two facts:

Fact 1. Old code that is implemented in terms of the root of a hierarchy works
for new classes that derive from the root.

Fact 2. Code that constraints its type parameters can employ the compiler to
prevent its use for wrong types.

Information gathering over derivation tree traversals is the essence of many anal-
yses. A crude idea can, thus, be implementing all the analyses over a single
generic tree type. However, such a tree is unaware of the types its nodes contain.
One would rather make all the derivation tree types inherit from such a generic
type. This way, old code which operates on the generic type can remain intact
over the addition of new derivation types. (C.f. Fact 1.) More precision can also
be gained by giving this hierarchy extra intermediate nodes. On the other hand,
by constraining the type parameters of analysis implementations, one can avoid
their wrong application. Constraints can enforce applicability of an analysis to
all derivation trees that say derive from a certain base. (C.f. Fact 2.) We call
the process of organising derivation tree types in a hierarchy and implementing
analyses in terms of the suitable hierarchy node “multi-levelling analyses.”

Our hierarchy of derivation trees is rooted in ProofTree (seen first in Sec-
tion 5.2). ProofTree has a minimal understanding of what it contains. All it
knows is that a set of premisses leads to a conclusion using a rule label. HBNode
and HLNode extend ProofTree for heap-based nodes and the heap-less ones,
respectively. Nodes which represent derivation in the L0 operational semantics
are instances of HLNode. All other nodes are of type HBNode. Both HBNode and
HLNode provide more specific information. For example, the former also knows
that its conclusion is always a 4-tuple for the Γ : e ⇓ Δ : v scheme. Further down
in the hierarchy come nodes that correspond to semantics rules, and hence, ex-
ecutable rules. These latter nodes know the syntactic category of their e in
the above scheme. For instance, HBVarNode that corresponds to (var)L1,S1,S2,L2

knows that it works on variables. At the same level are types for the derivation
trees of the individual family members. L1Node, for instance, is that of L1. Ob-
viously, L1Node has more specific information at hand, e.g., the exact type of
expressions/heaps it works with.

Generally, analyses remain invariably useful over several mechanisation cycles
so long as they are implemented in terms of the right level at the derivation
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tree hierarchy. Most of what makes such a hierarchical craft of derivation trees
helpful stems from the high degree of flexibility in executable rules. The apply
methods of the executable rules presented in this paper all have HBNode return
types. However, it is trivial to configure executable rules otherwise and still enjoy
them as reusable components for semantics mechanisation. We also gain other
sorts of analysis reusability from the high degree of reusability in intermediate
classes. For example, an analysis which deals with evaluation of a particular
syntactic category can remain intact over consecutive mechanisation cycles even
though the actual type constructors involved vary across the cycles. We will not
demonstrate reusability of this latter sort in this paper.

As a first example, consider an analysis the right level for in our hierarchy is
ProofTree: Counting the number of rules used over a derivation.

1 def rulecount(p: ProofTree): Int = if (p.prems.isEmpty) 1

2 else (0 /: p.prems) (_ + rulecount(_))

This analysis does not need any knowledge about the types involved over the
proof search. It is a simple folding action over the premisses (line 2) with axioms
as the basis of induction (line 1). An occasion where this counting might be use-
ful is comparing the cost of designated computations across different semantics
which are known to be observationally equivalent.

Our second example is on the analyses in Definition 1, which play a central
role in the observational equivalence theorems on S2 [12]:

Definition 1. Suppose Γ : e ⇓Π Δ : v. Define diff (Π) = {x ∈ dom(Γ ) |
Γ (x) �= Δ(x)}. Call x atomic in Γ when there exist Δx, vx, and Πx such that
Γ : x ⇓Πx Δx : vx and diff (Πx) = {x}.

In fact, as opposed to only S2, diff and atomic are analyses applicable to any
heap-based semantics. Here is how we employ that observation:3

1 object diff {

2 def apply[Exp <: LazyExp[Exp]](pi: HBNode[Exp]): Set[Idn] =

3 for(x <- pi.g.dom; if(pi.g(x) != pi.d(x))) yield x

4 }//diff(pi) = {x ∈ dom(pi.g) | pi.g(x) != pi.d(x)}

5 object atomic {

6 def apply[Exp <: LazyExp[Exp]{type Var <: BaseVar},

7 OS <: OpSem[Exp]{type Conf = HBConf[Exp]

8 type Node = HBNode[Exp]}]

9 (g: Heap[Exp], x: Idn)//x is atomic in g when...

10 (implicit opsem: OS, variabliser: Idn => Exp with Exp#Var): Boolean =

11 diff(opsem.proofsearch(g, x)) == Set(x)//... diff(pix) == {x},

12 }//where pix = opsem.proofsearch(g, x).

Notice that atomic characterises the syntax and semantics it is applicable to
through the constraints on the type parameters (lines 6-8). Consequently, it re-
mains applicable upon extensions of mechanisation so long as the characteristics
remain intact. Thanks to our multi-levelling, in the implementation of diff,
3 variabliser is our implementation detail in charge of reifying an identifier into an

expression of the right type (i.e., a variable).
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types are all correctly identified by the compiler. We would have not had such a
pleasure, had we implemented it on ProofTree, which is oblivious of the types
inside it. This static safety becomes clearer in the next example where we exam-
ine order of evaluation of variables for any heap-based semantics:

1 object EvalList {

2 def apply[Exp <: LazyExp[Exp]{type Var <: BaseVar}]

3 (hbn: HBNode[Exp]): List[Idn] = hbn match {

4 case HBVarNode(pi, g, xvar, d, _) => {//(var)L1,S1,S2,L2 in Fig. 2:

5 val prev = EvalList(pi)//what gets evaluated in the premisses...

6 val x = xvar.name

7 if(g(x) != d(x)) (prev:::List(x)) else prev

8 }//... plus x itself when g(x) != d(x).

9 case _ => //Otherwise: union what is evaluated in the premisses.

10 (for(p <- hbn.ps) yield EvalList(p)).toList.flatten

11 }//Note: hbn.ps == premisses of hbn

12 }

EvalList produces the list of evaluated variables in order. Due to space re-
strictions, we only report how the above single implementation of EvalList
remains applicable upon extending mechanisation of L1 to S2. Let heap Γ =
{id �→ λt.t, y �→ (λt1t2.t1) id x, x �→ (λt1t2.t2) id} be represented by g. For L1,
EvalList(g <::> "y") produces List(y), whilst List(x, y) is produced by
EvalList(g <::> ("x" seq "y")) for S2. 4

Due to multi-levelling, Scala precisely infers the types for pi, xvar, g, and d.
There is no need for runtime casting. To get multi-levelling, we identified that
this analysis is applicable to any heap-based derivation tree on expression traits
with a syntactic category for variables. We enforced that by making EvalList
applicable to any such tree through placing the type constraints at line 2. It is
exactly this constraint that creates a flow of type information that automates
type inference of the above variables. In the absence of that type information
in scope, one has to manually set variable types and/or even resort to runtime
casting to calm the type system.

7 Conclusion and Future Work

In this paper, we present our components for syntax and semantics mechani-
sation. As a driving example, we use five systems for lazy evaluation to show
how these components can serve reusability in the mechanisation of PL syntax,
semantics, and analysis. We also discuss the internals of our components and
how, using type constraints and multiple inheritance, they are engineered for
this particular sort of code reuse.

Using our components imposes some modest programming discipline. A PL
implementer’s part of this discipline is indeed minimal. And, yet, the effort to
suit the reusability is incomparably smaller than reimplementation: For syntax,
this effort amounts to simply deriving from an extra base class (i.e., intermedi-
ate classes for each type constructor) and binding the type constructors under
4 g <::> e abbreviates os.proofsearch(g, e) when os is an implicit in scope.
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some fixed nested type of the expression trait (Figure 4). For semantics, it takes
deriving from an abstract base class (e.g., OpSem) and implementing a method
(like proofsearch) that merely distributes the evaluation task between the ap-
propriate executable rules (Figure 5).

Shipping our components is certainly a new burden on LDFs. Implementing
our components can sometimes become clunky. This is mainly because, working
with constrained type parameters as opposed to exact types makes some extra
indirection inevitable. The burden on LDFs magnifies are they to ship an exhaus-
tive set of our components which the PL implementer can freely mix-and-match;
that is, after all, likely to take several rounds of refactoring on its way.

Whether or not our approach will scale is a topic for further research. One
might also study the classes of extensions in terms of the refactoring they dictate.
For example, having had implemented our approach for the other four family
members, addition of L2 dictated some refactoring to our codebase. Regarding
further extensions, the effort might vary: For example, adding integer arithmetic
as sketched in the L1’s original paper [17] is routine. Addition of Eden’s strict
function application [18] would also be relatively easy. However, we anticipate
that adding the lazy evaluation material of Danvy et al. [6] needs refactoring.

Our components enjoy composability, but, are not atomic. That is, whilst it is
trivial to compose our components to acquire new ones, not every semantic rule
can be composed out of existing ones. For example, the subtle difference between
(app)L1,S1,L2 and the function application rule of S2 means that neither can be
implemented in terms of another. The study of atomic support for implementing
our components is yet another future work.
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Abstract. Traditional compiler development is non-modular. Although syntax
extension and DSL embedding is making its way back in modern language design
and implementation, componentisation in compiler construction is still an over-
looked matter. Neverlang is a language development framework that emphasises
modularity and code reuse. Neverlang makes extension, restriction and feature
sharing easier, by letting developers define language components in distinct, in-
dependent units, that can be compiled independently and shared across different
language implementations, even in their compiled form. The semantics of the im-
plemented languages can be specified using any JVM-supported language. In this
paper we will present the architecture and implementation of Neverlang 2, by the
help of an example inspired by mobile devices and context-dependent behaviour.
The Neverlang framework is already being employed successfully in real-world
environments.

Keywords: Domain-Specific Languages, Language Design and Implementation,
Composability and Modularity

1 Introduction and Motivations

Compilers are traditionally complex and monolithic entities that only experts can main-
tain and extend [4]. Even though parsers and compilers for existing programming lan-
guages are nowadays often available as source code, they are usually not meant for a
developer to adapt or build upon. For instance, even today, the javac compiler still
relies on a hand-coded LALR parser that, for any developer trying to experiment, rep-
resents a high barrier to entry. Although there is an effort to implement the javac parser
using ANTLR [26], in the context of the OpenJDK project1, purely generative tools such
as ANTLR and the time-honoured lex and yacc do not really account for modularity
and decomposability, making code reuse in compiler development still a challenge.
This in turn often translates to duplicate efforts, such as re-implementing the parser for
a whole language even when the change is relatively small. Because of this problem,
language extensibility is an interesting problem that is currently under research. Mi-
crosoft has recently released Roslyn [24], a technology preview of a platform-level API
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to control and extend (by way of AST manipulations) the compiler of C#, and in gen-
eral any language compiled for the .NET platform. Scala is moving in a similar direc-
tion, bringing compiler structures and features at the API level to support reflection and
meta-programming [25]. Still, enabling extensibility does not automatically make a lan-
guage implementation modular, in that extending a language is not the same as sharing
a feature across different language implementations. It is not infrequent for languages
to have features in common: in recent years, functional programming languages have
been cross-pollinating the object-oriented world, and lazy evaluation and higher-order
functions are now available in traditionally object-oriented languages such as C#, Scala
and Python. Development of new languages often implies to put together the same old
concepts and constructs with a different syntax; a typical example of this are condition-
als and loops. It follows that development of new languages could benefit from being
able to reuse portions of existing compilers; even more if these portions could be shared
in a precompiled form. Sharing tested, precompiled components across language imple-
mentations, could help minimising the effort and timing required for the development
of a new DSL. Moreover, precompiled, runtime loadable components could enable new
possibilities, such as hot deployment of new features on running programs.

Our proposed solution is Neverlang [8], a framework designed to assists developers
in the implementation of domain-specific languages in a modular way. The last Never-
lang implementation we presented had some limitations: the parser generator rebuilt the
parse table from scratch for any change in the code base; semantic actions were woven
into the AST using the AspectJ compiler, so they had to be rewoven most of the time. In
our experience this process took a perceivable amount of time for each rebuilding pro-
cess. Our older implementation also imposed the choice of the Java language to express
semantic actions. Finally, many people brought to our attention that our implementation
of the Neverlang compiler had not been written using Neverlang itself.

In this paper we are introducing Neverlang 2. In this new version, we integrated our
own compiler generator, which generates and updates LALR parser on-the-fly. Other
components can be compiled independently and shared in their pre-compiled form,
and, once these components have been finalised, they do not need to be recompiled
any more. Pre-compiled semantic actions can be expressed using any language that the
JVM supports, and the AspectJ dependency has been completely dropped, favouring
instead a manual method dispatching mechanism. The new Neverlang compiler has also
been completely rewritten on top of the new runtime library, and thus it is completely
self-hosted. We will describe in detail the architecture of Neverlang 2 by the help of a
running example inspired by modern sensor-rich mobile devices. The new version of
the framework is already successfully solving real-world problems:

1. a Neverlang-generated DSL is now being integrated in TheMatrix [16], a Java
framework to query and manipulate Italian administrative databases to produce in-
formation on the prevalence of chronic disease and on standards of care across the
country;

2. Neverlang is being employed in the implementation of a DSL for ERP software
development;

3. the Neverlang compiler has been boostrapped, i.e., it has been developed using
Neverlang itself.
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Set ringer mode to silent between 11:00 PM and 7:00 AM

Listing 1: on{X} recipe adapted from http://onx.ms/recipes/silentAtNight

when time is between 11:00pm and 7:00am : turn ringer off.

Listing 2: A DSL using the Recipe DSL

Paper Outline. In Sect. 2 we will describe the running example that we will employ to
show Neverlang’s features. In Sect. 3 we will describe Neverlang and its architecture,
including the incremental parser generator DEXTER [10]. In Sect. 4 we describe the
implementation of our running example. In Sect. 5 we discuss the related work and in
Sect. 6 we draw our conclusions and describe future work.

2 Running Example

In recent years, mobile devices such as smartphones or tablets have become more and
more accessible to the masses. Applications can interact with the great number of sen-
sors of these devices to infer information about the user, and trigger specific actions
depending on them. In particular, there are applications that enable users to define cus-
tom actions to take when a particular condition occurs. On the Android platform, for
instance, there are Tasker2 and Llama3. Some of these applications provide the end-user
with a graphical user interface to specify the actions and the conditions. Microsoft’s
on{X}4 enable users to share real code snippets written in JavaScript through a web ap-
plication. Selected actions can then be synced and deployed to the device. Snippets are
made available to programming-illiterate users using a natural-language description (a
recipe) that can be partially customized. In Listing 1 there is one such recipe (simpli-
fied from one really available on the on{X} web site), to put a smartphone in silent mode
when time happens to be between a particular, customizable range (in red).

Although the idea is nice, (a) it requires users to know JavaScript to define new
actions and (b) code snippets cannot be written directly on the device, but only through
the provided web interface. One might want to put the idea further by enabling users
to write their own code snippets using a simplified, natural language-like DSL. In this
case, users would be writing real code, except it would look similar to a recipe. In
Listing 2 we show how the Recipe DSL might look like.

3 Neverlang 2 Architecture

Neverlang [8] is the framework that we developed to implement DSLs using a com-
positional approach. Our current implementation introduces a number of new features.
The previous version of Neverlang employed AspectJ to weave executable code for

2 http://tasker.dinglisch.net
3 http://kebabapps.blogspot.com
4 http://onx.ms

http://onx.ms/recipes/silentAtNight
http://tasker.dinglisch.net
http://kebabapps.blogspot.com
http://onx.ms
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module recipe.lang.MainModule {
import { neverlang.runtime.utils.* }
role(syntax) {
Program � RuleList ;
RuleList � Rule RuleList ; RuleList � Rule ;
Rule � "when" ConditionList ":" Action "." ;
ConditionList � Condition ;
ConditionList � Condition "and" ConditionList ;
}
role(evaluation) {
0 .{ $0.rules = AttributeList.collectFrom($1, "ruleObj"); }.
7 .{
List<Condition> conditions = AttributeList.collectFrom($8, "condition")
$7.ruleObj = new RuleObj(conditions, $9.action);

}.
}

}

Listing 3: A Recipe program is a list of rules.

semantic actions inside an AST made of several Java class files. In fact, a typical im-
plementation of the visitor pattern in an OOP context is to subclass each node of the
AST and then invoke some visit() method on that node. However, this approach had
two main drawbacks: (a) many source files had to be rewoven each time the smallest
change affected the code base and (b) involving AspectJ in the building process of the
generated compiler took a perceivable amount of time. In Neverlang 2 the AspectJ de-
pendency has been dropped, the AST is generated on-the-fly using the DEXTER LALR
parser generator [10] and a component manager now loads and dispatches the seman-
tic actions, which now can be also written in any JVM-supported language. The added
bonus is that now components can be compiled and possibly distributed separately. Fi-
nally the new Neverlang compiler nlgc has been bootstrapped. In this section we will
briefly describe the concepts that Neverlang 2 has retained from the older version of the
framework (for instance, the concepts of module and slice), and we will then detail the
new architecture in depth.

3.1 Neverlang Components

In Neverlang, a single language component is defined in a module. Each module en-
codes a syntactic feature along with its semantics. For instance, in a C-like program-
ming language a module can define the for looping construct or the if branch. C-like
languages such as Java, JavaScript, PHP, etc. share most of their syntactic definitions.
Writing a compiler or an interpreter using Neverlang, makes possible to share modules
between implementations. Each module contains one or more of roles.

Modules and Roles. A syntax role is a portion of the language’s formal grammar. For
instance, Listing 3 shows part of the grammar for a Recipe program. Nonterminals are
capitalised, and terminals (keywords) are between double quotes5. A Recipe program
is a list of Rules, and each Rule is in the form:

Rule� "when" ConditionList ":" Action "." (1)
5 Terminals can also be defined using regular expressions. In that case, literals are delimited

by slashes; e.g., /[a-z]+/ captures any non-zero-length word of lowercase alphabetic char-
acters.
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slice foo.bar.MySlice {
module foo.bar.SomeModule with role syntax
module baz.qux.AnotherModule with role evaluation type_check

}

Listing 4: A slice for a fictional programming language

that is, the when keyword, some condition to evaluate, a colon symbol, and some action
to take when the condition evaluates to true. Conventionally, the module containing the
Program nonterminal is considered the main module, and Program is always considered
the start symbol of the grammar.

Any other role in the module is a semantic role, that is, a compilation phase. Every
module can contain as many roles as needed. The order of evaluation is specified in
a separate configuration file. Each role contains several code sections, introduced by
a number. A code section introduced by a number N, binds the corresponding code
section to the evaluation of the N-th nonterminal in the syntactic role6. Nonterminals
are numbered from left to right and from top to bottom. For instance, in Listing 3, 0
would be the first nonterminal in the first production (Program), and 7 would be the
first nonterminal in the third production (Rule). Thus, 0 binds the Java code between
the delimiters “.{” and “}.” to be evaluated when visiting the the 0-th nonterminal in
the syntax role, and 7 binds code to the Rule nonterminal. Code sections can also refer
to nonterminals using the $N notation and associate custom attributes to them using a
familiar dot-notation. For example, the code

$7.rule = new RuleObj(conditions, act);

creates an attribute for nonterminal $7 called rule, which contains an instance of the
class Rule. We will see what this code does in more detail in Sect. 4.

Slices and Languages. Once the language has been broken into separate modules, it
can be composed together using the slice and the language constructs. The language
construct composes together the modules that the developer selects using slices. A
slice imports roles from (possibly) different modules, and it encapsulates a feature of
the language. Listing 4 shows an example of the syntax: the slice is importing the syn-
tax role for one module, and two semantic roles from a different module. For instance,
with respect to our running example, the Recipe language needs at least one slice to
define the time condition and one slice to define the action of turning the ringer on or
off. Slices can be used to bind semantic roles from one module to the syntax defined
in another, so they constitute a powerful mechanism to reuse code in compiler develop-
ment. We will demonstrate this feature further by supporting a form of localisation in
our Recipe language (Sect. 4).

3.2 The Neverlang Compiler

An important part of Neverlang, beside its own DSL, is obviously the Neverlang com-
piler. The new Neverlang compiler nlgc has been developed using the Neverlang run-
time (Sect. 3.3) to bootstrap the system. As a result, Neverlang today is completely
self-hosted.
6 It follows that syntactic roles are mandatory for semantic rules to make sense.
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The nlgc tool acts like a translator from the Neverlang DSL into JVM-supported
languages. Each slice and each language component is translated into a separate Java
file. Modules are broken into several files: one Java class that explicitly declares every
role in the module, one Java class containing the translation of the syntax role, and then
one compile unit for each semantic action binding in each semantic role. For instance,
the module recipe.lang.MainModule in Listing 3 is translated into 4 independent but
logically related classes:

1. recipe.lang.MainModule, which lists each sub-component
2. recipe.lang.MainModule$role$syntax, which describe the syntactic part of the

module
3. recipe.lang.MainModule$role$evaluation$0, because a semantic action has been

bound to the 0-th nonterminal in the evaluation role
4. recipe.lang.MainModule$role$evaluation$7, because a semantic action has been

bound to the 7-th nonterminal in the evaluation role

As we will see in Sect. 3.3 most of the class loading and method dispatching is per-
formed automatically by the Neverlang runtime. Modules and slices have very few
interdependencies and thus, they can be compiled separately. A change in one mod-
ule requires to recompile only that module from source. Compare this to conventional
compiler generation techniques, that, being usually based on source generation, often
require a large part (if not all) of the source code to be recompiled anew. This approach
streamlines the compiler-generation process by making possible to compile only those
components that really need to be rebuilt. Of course, this possibility becomes partic-
ularly useful when the compiler becomes large and complex. Moreover, pre-compiled
Neverlang components can be bundled together in jars for convenience of distribution,
and they can also be shared and imported by different languages independently.

Full JVM Support. We said that nlgc translates the Neverlang DSL into JVM-sup-
ported languages. In most cases, this means that it generates Java source files. One core
goal for the Neverlang 2 runtime was to have very few system requirements. Thus, the
Neverlang 2 runtime has been written in Java, and the default language for semantic
actions is Java as well. But semantic actions can be implemented using any language
supported by the Java Virtual Machine, provided that a translator plug-in is available.
The developer can then hint at the system that semantic actions are being written in a
different language. Listing 5 shows an example of the syntax.

The new Neverlang compiler translates each semantic action into a class that imple-
ments the simple SemanticAction interface:

public interface SemanticAction { public void apply(ASTNode n); }

As mandated by the syntax-directed translation technique, a semantic action can attach
arbitrary attributes to any nonterminal, that Neverlang refers with the dollar notation.
This really translates to attaching attributes to the node of an AST: in Listing 3 the
condition attribute will be attached to the root of any subtree of the AST which has
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Rule at its root and the nodes "when", ConditionList, ":", Action, "." as its chil-
dren (more on this in Sect. 3.3)7.

A translator plug-in describes how the occurrences of a nonterminal reference (in
dollar notation) in a semantic action should be translated into the internal representation
(a call to n.nchild(int)). Currently we have implemented support for Java and Scala.
Listing 6 shows how this is done for Java. Code for Scala is similar. The plugin itself
can be written in any JVM-supported language.

<jruby> // switch to jruby in global scope
module foo.bar.Multilang {
role(syntax) { ... }
role(role1) { 0 <scala> .{ ... }. } // scala for this action only
role(role2) <jython> { ... } // jython is default for this role

}

Listing 5: Any language running on the JVM can be supported.

public class JavaTranslatorPlugin extends TranslatorPlugin {
public JavaTranslatorPlugin() {
language = "java";
fileExtension = "java";
fileTemplate = "public class {0} implements SemanticAction ’{’\n"+

" public void apply(ASTNode n) ’{’\n{1}\n ’}’\n’}’";

// when $N is the root of the subtree
rootAttributeWrite = "n.setValue(\"{1}\", {2});";
rootAttributeRead = "n.getValue(\"{1}\")";
// when $N refers to a child node
childAttributeWrite = "n.ntchild({0}).setValue(\"{1}\", {2});";
childAttributeWrite = "n.ntchild({0}).getValue(\"{1}\")";

}
}

Listing 6: Translator Plug-in for Java

3.3 The Neverlang 2 Runtime

The Neverlang 2 runtime is made of two main parts: the DEXTER [10] incremen-
tal parser generator and the component manager. A compiler written using Never-
lang implements the well-known syntax directed translation mechanism [1], and im-
plements an adaptive visitor pattern [8]. The component manager is responsible for
loading languages, slices and modules, and for dispatching the correct semantic ac-
tion to the node of the syntax tree that is being visited in the correct phase (described in
a role).

The Component Manager. When a Neverlang-generated compiler or interpreter is
started, the Neverlang 2 component manager kicks in. To ensure quick loading and in-
terpreting of the directives contained inside the language, slice and module constructs,

7 Attributes are implemented as a map attribute → value attached to each node. Setting or
getting is implemented as a method call. See Listing 6.
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Fig. 1. The Component Manager and the method dispatching procedure

all these components need to be pre-compiled into JVM class files. Compilable source
files are translated from Neverlang source files using the nlgc tool. These compilable
source files can then be given as input to their corresponding native compilers (i.e.,
.java files will be sent to javac, .scala source files might be compiled using scalac,
and so on) to generate their own class files.

The compiled language component implements the main interpreter class (a sub-
class of Language), and includes the public API to interact with the interpreter. Using
a Neverlang-generated compiler is usually as easy as instantiating this class and then
invoking the method Language.eval(String source) on a source string, which returns
an evaluated AST. The Language subclass then loads every declared slice-related class,
which in turn causes every module-related class to be loaded. Each semantic action is
then loaded on-demand, only when the AST visiting procedure requires them to become
available (in other words, if certain syntax is never used in an input file, the correspond-
ing semantic action will never be loaded into memory).

Internally, when an input file is given to the generated compiler, the parser con-
structs an AST. Then, for each role that has been defined in the language construct,
the tree is visited. For each node, if a semantic action has been defined, it should be
executed. The component manager is responsible for this form of method dispatching:
it executes the correct semantic action by invoking its apply() method on that node.
For instance, if current role is evaluation, then, each time a node n containing a non-
terminal N, pertaining to a production p is being evaluated, the component manager
queries an inverted index to retrieve the slice s from which p has been imported. Then,
the corresponding semantic action sa of the evaluation role imported from s (if any)
is applied to the node (sa.apply(n)). In the process, new modules and new semantic
actions might be caused to be loaded from disk. For instance, consider rule (1): the cor-
responding AST (if we ignore terminals) is like the one in Fig. 1. When the component
manager visits the root node of this subtree (labeled with Rule), it queries the inverted
index for the corresponding semantic action for the evaluation role. In this case there
is one binding to nonterminal 7. The inverted index returns the right semantic action
object, possibly loading the class file from disk, and it then invokes the apply()method
on the root node.

Incremental Generation of LALR Parsers: DEXTER. In order to support compo-
nentisation and runtime composability, we developed DEXTER: the Dynamically EX-
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TEnsible Recognizer. DEXTER builds a LALR parser from the production in the mod-
ules, parses the input that is given to the compiler and it constructs the AST that the
component manager visits. DEXTER implements an in-memory LALR parser gener-
ator that can be incrementally extended (grown) or restricted (shrunk) by adding and
removing grammar productions on-the-fly8 In fact, the syntax role of a module is a
straight translation from the Neverlang DSL to a series of Java API calls to the DEX-
TER component. For instance, the production in (1) becomes where p is a method that

p(nt("Rule"), /* � */ "when", nt("Condition"), ":", nt("Action"))

takes a nonterminal (the left-hand side of a production rule), and then a list of symbols
(the right hand side of a rule), and it returns a Production instance; nt is a method that
returns a nonterminal symbol object instance, and string literals are converted to ter-
minal symbol instances. The DEXTER parser generator implements an algorithm that
bears some resemblance to those described in [20] and [19]. The algorithm updates the
LR(0) DFA, which is the basis for many interesting parsers of the LR family, such as
GLR and of course LALR, the one adopted in DEXTER. The DEXTER component
includes an extensible regex-based lexer that allows to define lexemes at runtime. This
subcomponent is called LEXTER. Lexemes are defined inline in a production, whether
they are keywords or patterns. Patterns are delimited by slashes, while keywords are
delimited by quotes. See Listing 9 for an example of both.

4 Neverlang 2 in Action

In this section we describe the implementation of (part of) the Recipe DSL. We will
first show how to support the example in Listing 2, then we will see how Neverlang
2 makes easier to extend the DSL. We will also show that it is possible to change its
syntax while still leaving the semantic code unaffected.

4.1 Implementing the Recipe DSL

In Sect. 2, we showed a short snippet from our DSL Recipe. The interpreter for our
language will obviously need an internal engine to execute actions when the specified
conditions are met. We will not discuss the implementation details of this engine, since
they would anyway depend on the particular software platform in use. We will con-
centrate on the development of the actual language interpreter. In Sect. 3 we described
how Neverlang puts together the separate components that make up an interpreter (or a
compiler). Our language needs at least three slices. One slice should define the general
look of the DSL. A Recipe program is a list of rules, so we expect the first slice to
describe this. A rule is supposed to express some truth condition, and then some action
to take when the condition holds. As conditions and actions describe single features of
our language, it will make sense to write one slice for each one of them. The main step
will be to define three modules; then we will write one slice for each one of them, so
that the component manager will be able to put them together.

8 The result of the computation can be still cached to disk for performance, though.
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slice recipe.lang.MainSlice {
module recipe.lang.MainModule with role syntax evaluation

}

Listing 7: The MainSlice slice for Recipe

language recipe.lang.Recipe {
slices recipe.lang.MainSlice recipe.lang.TimeRangeConditionSlice

recipe.lang.RingerActionSlice
roles evaluation

}

Listing 8: The language definition for Recipe

Main Module. In Listing 3 we defined that a Rule in our language will be always
in the form specified in (1). That is, the keyword when, a single condition or a list of
conditions separated by the and keyword, a colon symbol, and then the action to execute.
You may notice that no action has been attached to nonterminals 2, 4, 10, 12. Action 0
contains a reference to RuleList ($1). Because collecting a list of attributes is a common
usage pattern, Neverlang 2 makes available a library method for this purpose. In this
case, the built-in library method AttributeList.collectFrom($1,"ruleObj") visits
the AST subtree rooted at RuleList and collects the values attached to the attribute
ruleObj of each Rule node, which is set in action 7. The same method call appears in
the action 7, where it collects "condition" attributes in a ConditionList. It follows that
modules that specify conditions shall fill this attribute. In fact, were this attribute not
found, the system would raise an exception. For the sake of simplicity, in our example,
conditions can be only connected by and.

Conditions and Actions. Conditions could be encapsulated into Condition object in-
stances that would provide a boolean check() method that evaluates to true when the
specified condition holds. The “time range” condition has been implemented in List-
ing 9. In this module, the condition is encapsulated into a TimeRangeCondition object
(that would be a subclass of Condition). The starting and ending times are captured
using a terminal pattern (described in Sect. 3.3): the hash notation #N references N-th
pattern. In this case, numbering is per-rule, starting from 0. Therefore #0 references the
pattern in the second rule9. The predefined property #N.text contains the matched text.

module recipe.lang.TimeRangeConditionModule {
role(syntax) {
Condition � "time" "is" "between" Time "and" Time ;
Time � /[0-9]{1,2}:[0-9]{2}(am|pm)/ ;

}
role(evaluation) {
0 .{ $0.condition = new TimeRangeCondition($1.time, $2.time); }.
3 .{ $3.time = #0.text; }.

}
}

Listing 9: Time condition

9 The pattern captures any possible date in the form HH:MMam/pm. Of course it might match
malformed times such as 27:99pm; in that case the TimeRangeCondition constructor
could raise an exception
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module recipe.lang.RingerActionModule {
role(syntax) {
Action � "turn" "ringer" OnOff ;
OnOff � "on" ; OnOff � "off" ;

}
role(evaluation) {
0 .{ $0.action = new RingerAction($1.ringerIsOn); }.
2 .{ $2.ringerIsOn = true; }.
3 .{ $3.ringerIsOn = false; }.

}
}

Listing 10: Ringer action

String script = "when time is between 11:00pm and 7:00am : turn ringer off.";
ASTNode tree = new Recipe().eval(script);
List<RuleObj> rules = tree.getValue("rules");
RecipeSys.registerRules(rules);

Listing 11: Retrieving the result of the evaluation of the input string

The “toggle ringer” action could be encapsulated into a subclass of a generic Action
object that could provide a method perform() implementing the logic (in this case, in-
terfacing with the system ringer and turning it on or off). In Listing 10 a RingerAction
object is instantiated with a boolean representing the ringer status.

Slices and Language. We can now define three slices (one for each module) like that
in Listing 7, and then add all of them to the language definition for Recipe (Listing 8).
Once everything has been passed through nlgc and compiled using javac, we can al-
ready use the Recipe object. When the Recipe.eval(source) method is invoked on
the input string in Listing 2, it puts on the root node of the AST (Program) an attribute
ruleList, which contains a one-element list of RuleObj instances (Listing 3). Then
each rule can be passed on to the system that will put them into effect at the right time
(Listing 11).

4.2 Extending the DSL

The Recipe interpreter can be wrapped up in a package and possibly deployed on the
target device. Now, suppose that we want to extend the DSL to support location-based
conditions. For instance, mobile devices may allow users to indicate a particular lo-
cation as home. Our original recipe turned off the phone ringer when time was in a
customizable range. However, during this time frame the phone user might be away
from home, maybe even in a noisy place: in this case, the action should not be trig-
gered, because we would prefer the ringer to be on. We would like to add a new feature:
a location-dependent condition, “my position is <location-name>”, that should be
evaluated together with the time range condition. We want our Recipe script to turn
the ringer off not only when time is in the given range, but when we are also at home
(Listing 12). In Listing 13 is the Neverlang code that implements the new feature. Ex-
tending the DSL will be as easy as defining a simple slice (similar to that in Listing 7)
and adding it to the language construct (Listing 8).
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when my position is home
and time is between 11:00pm and 7:00am : turn ringer off.

Listing 12: Extended Recipe DSL with location support

module recipe.lang.LocationModule {
role(syntax) {
Condition � "my" "location" "is" PredefinedLocation ;
PredefinedLocation � "home" ;

}
role(evaluation) {
0 .{ $0.condition = new LocationCondition($1.location); }.
2 .{ $2.location = RecipeSys.getHomeLocation(); }.

}
}

Listing 13: Location condition

4.3 Localisation

Slices are not just a way to advertise a feature to the component manager. Their real
power is to allow to pick features from different modules and mix them together. In this
example, we will pick the evaluation role defined in the previous modules, and apply
it to a different (although similar) syntax definition. In particular, we will show that we
can localise our DSL into another language, with very little effort. In Listing 14 we are
showing a Recipe script that has the same meaning as the one in Listing 2 but written
in Italian. In Listing 15 we are showing two modules with only one syntax definition
each: the first redefines the syntax for the time range condition, and the second rede-
fines the ringer action. As you can see, in both cases no semantic action is specified.
In fact, we can reuse the semantic actions we defined in the English modules, because
the syntax did not change the order of the nonterminals. Therefore, the action that will
be performed when visiting a certain nonterminal will be the same as if the script were
written in English. The change does not require the developer to recompile any of the
older modules, which are unaffected by the change. In this case, the only components
which need compiling are the affected slices and the new modules. Of course, this ex-
ample is only meant to show that slices give great flexibility to language developers,
and not to provide a compelling example for localisation, which is an entirely different
matter. In this case, the syntax of the Italian language does not affect the way nonter-
minals are ordered, but this could very well happen, even in non-natural languages: we
are currently working on a solution to this kind of problem (more in Sect. 6). A deeper
discussion on how Neverlang supports DSL evolution can be found in [9].

5 Related Work and Discussion

MontiCore [22] is a framework for language composition and extension that provides
grammar inheritance and rewriting mechanisms additionally to modularisation features.
However the underlying parser generator is still traditional (ANTLR [26]), in the sense
that parser-related code has to be recompiled from scratch most of the time the user up-
dates the grammar. The Rats! [17] packrat parser generator makes possible to share and
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quando l’orario è tra 11:00pm e 7:00am : spegni la suoneria.

Listing 14: Localised Recipe DSL

reuse parser components by organising grammar fragments into modules. The Rats!
module system makes possible to extend and programmatically rewrite existing gram-
mar fragments in a way that resembles a grammar-tailored inheritance system. For in-
stance, a Rats! module can import rules from another module, substitute symbols, and
add new productions. However, Rats! is a traditional parser generator that generates
Java code. We employed Rats! in the earlier versions of Neverlang, but, of course, the
code-generation approach makes impossible separate compilations and sharing precom-
piled components. Neverlang 2’s DEXTER dynamic LALR parser generator does not
yet support the same variety of operations on a grammar, but we are currently investigat-
ing in this direction. Given the dynamic and in-memory nature of DEXTER-generated
parsers, we are confident that implementing features such as namespacing and symbol
substitution would require only little effort, while adding rules is already possible.

As seen in [8], the JastAdd [18] compiler construction system was similar to Nev-
erlang’s first implementation in that it separates compilation aspects and implemented
the AST using the traditional OOP style, generating all the required Java classes that
were injected with methods and fields using AOP. The newest Neverlang architecture
presents a runtime-generated AST; code is no more injected by way of weaving: in-
stead, the component manager (Sect. 3.3) performs method dispatching depending on
the AST node contents. This choice dispenses Neverlang 2 from needing a weaver,
and greatly reduced the time to generate and compile the resulting compiler. Moreover,
now Neverlang 2 components can be compiled independently and only when needed,
and semantic actions can be expressed in any language supported by the JVM. On the
other hand JastAdd does not focus on code reuse, it does not separates components nor
optimises for pre-compiled code reuse, and it only supports Java.

Several tools deal with the problem of DSL embedding [11], where a host lan-
guage embeds another language for specific purposes (e.g., SQL or XML literals). For
instance, Metafront [5] and Metaborg [6] (part of the Stratego/XT toolset) are tools de-
signed to perform syntactic transformation between programming languages typically
to extend a host programming language with an embedded DSL. However, because the
problem they are trying to solve is rather different than achieving modularity in the de-
velopment of one programming language, as in Neverlang, these tools do not really take
into account feature or component sharing. Their related literature made still for an in-
teresting read during the development of the DEXTER extensible parser; in particular,
in [7] the authors discuss an algorithm for LR parser extension, which is different from
DEXTER’s, though. In fact, [7] updates the LR(0) ε-DFA, while DEXTER, more sim-
ilarly to [20,19], applies the updating procedure on the actual LR(0) DFA. This direct
updating approach makes possible to avoid an otherwise required additional transforma-
tion step, that is, from ε-DFA to LR(0) DFA. This in turn cuts down on the requirement
of keeping the intermediate representation available for any subsequent update. Sug-
arJ [15] uses Stratego to provide syntactic transformation to Java programs in the form
of library bundles.
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module recipe.lang.TimeRangeConditionIt {
role(syntax) {
Condition � "l’orario" "è" "tra" Time "e" Time ;
Time � /[0-9]{2}:[0-9]{2}(am|pm)/ ;

}
}
slice recipe.lang.TimeRageConditionSlice {
module recipe.lang.TimeRangeConditionIt with role syntax
module recipe.lang.TimeRangeConditionModule with role evaluation

}
module recipe.lang.RingerActionIt {
role(syntax) {
Action � OnOff "la" "suoneria";
OnOff � "spegni" ; OnOff � "accendi" ;

}
}
slice recipe.lang.RingerActionSlice {
module recipe.lang.RingerActionIt with role syntax
module recipe.lang.RingerActionModule with role evaluation

}

Listing 15: Localising the Recipe DSL using Neverlang 2

The xText [14] project is a framework and language workbench for the model-based
development of DSLs that tightly integrates with EMF [28]. The framework makes
possible to reuse existing grammars and existing meta-models to implement other lan-
guages, but it is really meant for model-driven development and therefore is concep-
tually different from Neverlang. It uses ANTLR to generate the parser. The framework
includes xBase [13] a «partial programming language» that can be used as a base for
other DSLs, and xSemantics, a DSL for writing «type systems, reduction rules and in
general relation rules for languages implemented in xText» [3]. MPS [29] is another
language workbench with similar objectives as xText, but it is backed and developed by
the JetBrains software company.

LISA [23] is a language workbench and compiler generator that uses inheritance
to compose grammars. Similarly to Neverlang it uses attribute grammars to express
a language, but it bases on the concept of inheritance to extend and compose syntax
and semantics attached the rules. It even includes AOP-like constructs to hook into
nonterminals add possibly inject cross-cutting behaviour. Even though inheritance and
this kind of AOP construct enable to both layer new semantic actions on top of the
others and to override a behaviour altogether, they do not really make possible to define
distinct compilation phases. Moreover, LISA is a more traditional compiler generator, in
the sense that it outputs Java code using a traditional parser generator; semantic actions
are expressed in a Java dialect.

The SPARK toolkit [2] for DSL implementation has similar goals to Neverlang,
but it is Python-based. The most interesting part of SPARK is the somewhat curious
choice for the parser generator, Earley [12], which is justified by the target audience for
the project, that includes users that do not have a background in parser and compiler
definition: Earley parsers can handle any context-free grammar, even ambiguous ones.
Nevertheless, this comes at the cost of a higher computational complexity than, for
instance, LALR. Beside this, SPARK takes a more traditional approach in the definition
of the components of a compiler, it does not really account for modularisation or feature
sharing and, of course, it is limited to Python.
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For completeness, we want to mention π [21], an experimental programming lan-
guage where the only construct is the pattern, i.e., a mapping between a syntax definition
and its intended semantic interpretation. Programs written using this language can extend
their own syntax and express the new semantics inline. From that point on, the program-
mer can employ the new constructs anywhere in a program. Something similar can be
found, from a more parsing-related perspective, in [27]; in fact, they both employ Ear-
ley parsing as well. These proposals differ from Neverlang in that they are more close to
metaprogramming techniques and reflective systems; on the other hand, Neverlang is not
really a programming language in itself, but rather a framework to define new languages.

6 Conclusions and Future Work

In this paper we described Neverlang 2 and its architecture. The strengths of this new
versions are the modular implementation system, which makes possible feature sharing,
even when components have been pre-compiled, and the full JVM support, that makes
possible to implement the DSL semantics using any language supported by the Java
platform.

We are currently working on extending our implementation to make it more ro-
bust, with respect to composition. For instance, namespacing and symbol importing
may be useful to avoid name clashes when composing grammar fragments. Similarly,
symbol renaming could be supported to compose syntax roles while carefully avoiding
unexpected behaviour. Programmatic symbol renumbering could be also a way to reuse
semantic actions in modules even when keywords in the syntax role occur in a different
order (cf. Sect. 4.3). We are currently working on a way to carry on this kind of trans-
formation in a semi-automatic way, by providing a mapping between abstract syntax
trees in the composition phase. We are also planning to support layering of roles, that
is, not only evaluating distinct roles as distinct phases, but also being able to group roles
as part of the same phase (e.g., decorating the evaluation role with a logging role).

Nevertheless, we believe that Neverlang’s current feature set is already promising.
In order to stress-test the Neverlang framework, our lab has already implemented a
reusable exception handling mechanism, and we are currently developing a modularised
Java compiler. The project is already being employed to develop real-world DSLs both
in the research and in the industry area: the development of a query DSL for TheMa-
trix [16] which is in the final testing phase at the time of writing, and the development
of a new DSL for ERP software implementation.
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Abstract. The preservation of any security property for the composition of com-
ponents in software engineering is typically regarded a non-trivial issue. Amongst
the different possible properties, confidentiality however poses the most challeng-
ing one. The naive approach of assuming that confidentiality of a composition is
satisfied if it is provided by the individual components may lead to insecure sys-
tems as specific aspects of one component may have undesired effects on others.
In this paper we investigate the composition of components that each on its own
provide confidentiality of their data. We carve out that the complete behaviour
between components needs to be considered, rather than focussing only on the
single interaction points or the set of actions containing the confidential data. Our
formal investigation reveals different possibilities for testing of correct compo-
sitions of components, for the coordinated distributed creation of composable
components, and for the design of generally composable interfaces, ensuring the
confidentiality of the composition.

1 Introduction

Software design and engineering makes strong use of composition in many ways. From
the orchestration of web services in a Business Process Engines to the integration of
libraries or object files compilers and linkers the principles of composition apply on
any of these layers of abstraction.

Beyond the general problems of feature interaction, there exist many specific secu-
rity related challenges that can introduce serious flaws in a software product. A promi-
nent example for such a flaw is the integration of TLS libraries into the German eID
Application [1] that caused the acceptance of update packages by any server with a
valid certificate, as the name within the certificate was not checked. In other cases, inte-
grators of TLS libraries do not provide enough entropy for key generation which leads
to a series of servers on the Internet with similar private key values [2].

Practical solutions for composition include the provisioning of verbal best-practice
catalogues [3], tool-based solution databases [4,5,6] or guides, tutorials and code exam-
ples in general. However, there does not exist much research that targets the challenges
imposed by composition on a more general and broader scope.

In this contribution we present an approach based on the formal semantics of our Se-
curity Modelling Framework SeMF (see e.g. [7,8,9]) that targets the investigation and
validation of general component composition regarding the property of data confiden-
tiality. SeMF has available a comprehensive vocabulary for statements of confidentiality
that provides the necessary expressiveness to reason about conditions of general com-
posability decoupled from any specific scenario.

W. Binder, E. Bodden, and W. Löwe (Eds.): SC 2013, LNCS 8088, pp. 33–48, 2013.
c© IFIP International Federation for Information Processing 2013
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In the following Section we introduce a scenario that serves as test case for our
approach. It is composed of two components that (each on its own) provide a certain
confidentiality property, but fail to do so when composed into a joined system. Section 3
gives a brief introduction to the SeMF framework. In Section 4 we introduce our formal-
ization of system composition and demonstrate it using the example scenario. We then
explain and formalize the conditions for confidentiality composition in Section 5 and
illustrate them by means of the example scenario in Section 6. Section 7 provides an
overview of related work on composition of security and Section 8 finalizes the paper
and provides an outlook to ongoing and future work.

2 Example Scenario

The provisioning and quality of entropy is a central aspect for many security functionali-
ties. However, the generation of entropy and randomness in computers is a hard problem
on its own [10] and at the same time programmers are usually not introduced to its chal-
lenges in a correct way. Many code examples and explanations for randomness today
advice to use the current time or uptime as seed for a random number generator. This ap-
proach may be adequate for desktop applications started by the user at an unforeseeable
as well as undetectable point in time. Whenever these conditions do not hold however
– as is the case especially in e.g. system service applications or embedded platforms
[11] – such date/uptime values do not provide enough entropy. These scenarios rather
require specialized entropy sources in CPU through a TPM or a SmartCard.

In our example scenario, we investigate such a case, i.e. a system which is com-
posed of a security library for key generation that targets desktop applications whilst
being utilized by an embedded platform system service. The KeyGenerator compo-
nent hereby uses the current time of the system when being called in order to initialize
its random number generator and to create the corresponding key. The Application
component of the system represents a system service that is started during boot and
calls the KeyGenerator for a key to be generated. Both components have the property
of confidentiality for the key that is generated / further used. However, their composition
introduces side effects that make the key calculable for a third party.

3 Formal Semantics of SeMF

In our Security modelling Framework SeMF, the specification of any kind of cooperat-
ing system is composed of (i) a set P of agents (e.g. an application and a key generator),
(ii) a set Σ of actions, (iii) the system’s behaviour B ⊆ Σ∗ (Σ∗ denoting the set of all
words composed of elements in Σ), (iv) the local views λP : Σ∗ → Σ∗

P , and (v) initial
knowledge WP ⊆ Σ∗ of agents P ∈ P. The behaviour B of a discrete system S can be
formally described by the set of its possible sequences of actions (which is always prefix
closed). An agent P ’s initial knowledge WP about the system consists of all traces the
agent initially considers possible. This includes a representation of conclusions that an
agent may be able to derive; i.e. that the reception of a message implies the sending of
this message to have happened before. Finally, an agent’s local view essentially captures
what an agent can see from the system. Together, the local view and initial knowledge
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represent what an agent may know about the system at a given point in time based on
what he/she knows in general, has seen and has concluded from this. Different formal
models of the same system are partially ordered with respect to the level of abstraction.
Formally, abstractions are described by alphabetic language homomorphisms that map
action sequences of a finer abstraction level to action sequences of a more abstract level
while respecting concatenation of actions. In fact, the agents’ local views are expressed
by homomorphisms. Note that homomorphisms are in general neither injective nor sur-
jective. For Σ1 ⊆ Σ2, the homomorphism h : Σ2 −→ Σ1 that keeps all actions of Σ1

and maps those in Σ2 \Σ1 onto the empty word is called projection homomorphism.
In SeMF, security properties are defined in terms of such a system specification.

Note that system specification does not require a particular level of abstraction. The
underlying formal semantics then allows formal validation, i.e. allows to prove that a
specific formal model of a system provides specific security properties.

3.1 Confidentiality in SeMF

Based on the SeMF semantics, we have specified various instantiations of security
properties such as precedence, integrity, authenticity and trust (see e.g. [7,12,13]). In
this paper however we focus on our notion of parameter confidentiality [8,9]. Various
aspects are included in this concept. First, we have to consider an attacker Eve’s lo-
cal view λEve of the sequence ω she has monitored and thus the set of sequences
λ−1

Eve(λEve(ω)) that are, from Eve’s view, identical to ω. Second, Eve can discard
some of the sequences from this set, depending on her knowledge of the system and the
system assumptions, all formalized in WEve. For example, there may exist interdepen-
dencies between the parameter p to be confidential in different actions, such as a credit
card number remaining the same for a long time, in which case Eve considers only
those sequences of actions possible in which an agent always uses the same credit card
number. The set of sequences Eve considers possible after ω is λ−1

Eve(λEve(ω))∩WEve .
Third, we need to identify the actions in which the respective parameter(s) shall be con-
fidential. Many actions are independent from these and do not influence confidentiality,
thus need not be considered. For this we use a homomorphism μ : Σ∗ −→ (Στ ×M)∗

that maps actions to be considered onto a tuple (actiontype, parameter).
Essentially, parameter confidentiality is captured by requiring that for the actions

that shall be confidential for Eve with respect to some parameter p, all possible (combi-
nations of) values for p occur in the set of actions that Eve considers possible. What are
the possible combinations of parameters is the fourth aspect that needs to be specified,
as we may want to allow Eve to know some of the interdependencies between param-
eters (e.g. in some cases Eve may be allowed to know that the credit card number
remains the same, in others we may want to require Eve not to know this). The notion
of (L, M)–Completeness captures which are the dependencies allowed to be known
within a set of sequences of actions. For the formal definition of (L, M)–completeness,
some additional notations are needed: For f : M −→M ′ and g : N −→ N ′ we define
(f, g) : M × N −→ M ′ × N ′ by (f, g)(x, y) := (f(x), g(y)). The identity on M is
denoted by iM : M −→ M , while M IN denotes the set of all mappings from IN to M ,
and pτ : (Σt ×M) −→ Σt is a mapping that removes the parameters.
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Definition 1 ((L,M)-completeness) Let L ⊆ (Σt × IN)∗ and let M be a set of param-
eters. A language K ⊆ (Σt ×M)∗ is called (L, M)–complete if

K =
⋃

f∈MIN
(iΣt , f)(L)

The definition of parameter confidentiality captures all the different aspects described
above:
Definition 2 (Parameter Confidentiality) Let M be a parameter set, Σ a set of ac-
tions, Σt a set of types, μ : Σ∗ → (Σt × M)∗ a homomorphism, and L ⊆ (Σt ×
IN)∗. Then M is parameter-confidential for agent R ∈ P with respect to (L, M)-
completeness if there exists an (L, M)–complete language K ⊆ (Σt × M)∗ with
K ⊇ μ(WR) such that for each ω ∈ B holds

μ(λ−1
R (λR(ω)) ∩WR) ⊇ p−1

τ (pτ (μ(λ−1
R (λR(ω)) ∩WR))) ∩K

Here p−1
τ ◦pτ first removes and then adds again all values of the parameter that shall be

confidential, i.e. constructs all possible value combinations. (L, M)–completeness of
K captures that R is required to consider all combinations of parameter values possible
except for those that it is allowed to disregard (i.e. those that are not in K). Hence the
right hand side of the inequality specifies all sequences of actions agent R shall consider
as the ones that have possibly happened after ω has happened. In contrast, the left hand
side represents those sequences that R actually does consider as those that have possibly
happened. For further explanations we refer the reader to [8,9].
Notation: We will use ΛR(ω, WR) = λ−1

R (λR(ω)) ∩WR) as an abbreviation.

4 Modelling Composition

Based on SeMF we now introduce the definition of the composition of two systems with
the same set of agents and a shared interface. Applying this definition, we then specify
the composition of the scenario application and key generator.

4.1 Formalizing Composition

The idea of our formalization is to interpret the individual components S1 and S2 as
homomorphic images of the composed system and to express this system in terms of
the inverses of the components with respect to the homomorphisms. Figure 1 illustrates
the relationship between the systems: Both components S1 and S2 are abstractions (i.e.
images of homomorphisms h1 and h2, respectively) of their composition S0, while S1

and S2 in turn are abstracted (by homomorphisms hIF
1 and hIF

2 , respectively) onto their
joined interface. Agent P ’s initial knowledge about the composition does only contain
those sequences that P considers possible for both S1 and S2, hence it is given by the
intersection of the inverses of the two homomorphisms. Further, agents’ local views
for the composed system need to capture what agents can see in both S1 and S2. The
projections of S1 and S2 into the interface system will be of interest for a theorem to be
introduced in Section 6.2. In the following we formalize this composition approach.



Preserving Confidentiality in Component Compositions 37

SIF

S1 S2
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1 h2

h
IF
1

h IF2

Fig. 1. System relations

Definition 3 (System Composition) Let S1 and S2 be two systems with Σi their re-
spective sets of actions, P1 = P2 their set of agents, λi

P their agents’ local views, and
W i

P their agents’ initial knowledge, respectively (i = 1, 2). Let further Σ0 := Σ1 ∪Σ2,
and hi : Σ∗

0 → Σ∗
i the projection homomorphisms into Σi (i = 1, 2). Then the compo-

sition S0 of S1 and S2 is constructed as follows:

– P0 := P1 = P2,
– B0 := h−1

1 (B1) ∩ h−1
2 (B2)

– W 0
P := h−1

1 (W 1
P ) ∩ h−1

2 (W 2
P )

– In order to define the local view of agents in S0, we define for i = 1, 2: λi′

P : Σ0 →
ΣP,i

λi′

P (a) =
{

λi
P (a) if a ∈ Σi

ε else
Then the local view of S0 can be defined as follows:
λ0

P (a) := (λ1′

P (a), λ2′

P (a))

Further, for ΣIF := Σ1 ∩Σ2, the projection homomorphisms into Σ∗
IF are denoted by

hIF
i : Σ∗

i → Σ∗
IF (i = 1, 2).

Note, the above definition is equivalent to λ1′

P (a) = λ1
P (h1(a)), λ2′

P (a) = λ2
P (h2(a)).

Also from the above definition it follows Σ0,P = (Σ1,P ×Σ2,P ) with Σi,P being the
image of λi

P (i = 1, 2), and (λ0
P )−1((x, y)) = (λ1′

P )−1(x) ∩ (λ2′

P )−1(y).

4.2 Composing the Scenario Systems

We now model the interface composition of an application (S1) and a key generation
module (S2) following the above definition. We assume that the application generates a
key directly after each system boot. The model for the application is independant from
any key generation modul that is actually being used, and abstracts from the actual key
generation (this is not part of the application model and happens magically).
The application model S1 can be specified as follows:

– Agents of this model (and of S2) are the application, the key genration module, and
a third agent that is not allowed to know the key:
P1 = {App, KGen, Eve}
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– The system is booted, the application calls the key generation module, and the key
generation module returns a key key ∈ K, all actions happening at time t ∈ T :
Σ1 =

⋃
t∈T,key∈K{boot(t), callGenKey(App, t), returnKey(KGen, key, t)}

– We assume that Eve can see the time of system boot but can neither see the key
generation request nor the key that is returned:
λ1

Eve(boot(t)) = boot(t); ∀a ∈ Σ1 \ {boot(t)|t ∈ T } : λ1
Eve(a) = ε

– Eve knows that before a key generation request, the system has been booted. For
simplicity we assume the period of time between these two actions to be equal to δ1.
Eve may further know that the time of actions in a sequence is strictly monotonic
increasing. This is however not relevant for the given scenario. Hence sequences
of actions that contradict this fact are not included in Eve’s initial knowledge. For-
mally:
W 1

Eve = Σ∗
1 \

⋃
tj−ti=δ1

(Σ1 \ {boot(ti)})∗{callGenKey(App, tj)}Σ∗
1

– We focus on the confidentiality of the key returned to the application, hence μ1

maps returnKey(KGen, key, tj) onto (returnKey(KGen), key) and all other
actions onto the empty word.

According to this system model, it is easy to see that the returned key is parameter
confidential for Eve regarding μ1 and (L,M)-completeness regarding an adequate L
and the set of possible keys M .

We now model a concrete key generation module. This module is not able to retrieve
a seed for key generation other than the system clock.

– P2 = {App, KGen, Eve}
– The key generation module is called by the application, generates a key, and returns

this key, all actions occurring at a specific time t ∈ T :
Σ2 =

⋃
t∈T,key∈K{callGenKey(App, t), genKey(KGen, key, t),

returnKey(KGen, key, t)}
– We assume that Eve cannot see any of the actions of the key generation module,

hence λ2
Eve(Σ2) = ε

– Eve knows that before a key can be generated, the respective key generation call
must have happened, and that the time passing between these two actions is at most
δ2. Eve also knows that the key generator only returns keys it has generated before.
Eve finally knows that the system time is used as seed for key generation. Formally:
W 2

Eve = Σ∗
2 \

⋃
tj−ti=δ2

(Σ2 \ {callGenKey(App, ti)})∗

{genKey(App, key, tj)}Σ∗
2

\
⋃

keym=keyn

(Σ2 \ {genKey(KGen, keym, tj})∗

{returnKey(KGen, keyn, tk)}Σ∗
2

\
⋃

key=k(tj )

(Σ2 \ {genKey(KGen, key, tj})∗

– As above, we focus on the confidentiality of the key returned to the application,
hence μ2 maps returnKey(KGen, key, tj) onto (returnKey(KGen), key) and
all other actions onto the empty word.
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Also in this system model, it is easy to see that the returned key is parameter confidential
for Eve regarding μ2 and (L,M)-completeness regarding the same L and set of possible
keys M .
Following Definition 3 we can now construct the composed system S0 with
ΣIF =

⋃
t∈T,key∈K{callGenKey(App, t), returnKey(KGen, key, t)}:

– P0 = {App, KGen, Eve}
– Σ0 =

⋃
t∈T,key∈K{ boot(t), callGenKey(App, t),

genKey(KGen, key, t), returnKey(KGen, key, t)}
– λ0

Eve(boot(t)) = (boot(t), ε), ∀a ∈ Σ0 \
⋃

t∈T {boot(t)} : λ0
Eve(a) = (ε, ε)

– W 0
Eve = Σ∗

0 \
⋃

tj−ti=δ1

(Σ0 \ {boot(ti)})∗{callGenKey(App, tj)}Σ∗
0

\
⋃

tk−tj=δ2

(Σ0 \ {callGenKey(App, tj)})∗

{genKey(App, key, tk)}Σ∗
0

\
⋃

keym=keyn

(Σ0 \ {genKey(KGen, keym, tk})∗

{returnKey(KGen, keyn, tl)}Σ∗
0

\
⋃

key=k(tj )

(Σ0 \ {genKey(KGen, key, tk})∗

The question that now needs to be answered is whether or not confidentiality is pre-
served in this system composition. In the following section, we will introduce theorems
that can be used to answer this question.

5 Investigating the Composition of Confidentiality

In this section we provide sufficient conditions under which a composition of two sys-
tems preserves the confidentiality properties of each of its components. We start with a
very generic approach that is most broadly applicable – however depends on concrete in-
quiry regarding the satisfaction of the sufficient conditions. Then we provide two more
specialized conditions that are less broadly applicable but easier testable.

For each of these cases we first provide a verbal explanation of the concept and then
its formal representation. Readers not interested in these formalizations may skip the
latter parts. The formalizations all refer to the representation of composition as described
in the previous section. An application to the example scenario will be given in Section 6.

For the proofs in this Section we utilize the following lemmata and considerations:
The first lemma provides a relation between the local view in the composed system
based on the local views from each of the component systems within the integration.
This directly reflects the construction rules from Definition 3:

Lemma 1. (λ0
P )−1(λ0

P (ω)) = h−1
1 ((λ1

P )−1(λ1
P (h1(ω))))∩

h−1
2 ((λ2

P )−1(λ2
P (h2(ω))))

Proof. (λ0
P )−1(λ0

P (ω)) = (λ0
P )−1((λ1′

P (ω), λ2′

P (ω))
= (λ1′

P )−1(λ1′

P (ω)) ∩ (λ2′

P )−1(λ2′

P (ω))
= h−1

1 ((λ1
P )−1(λ1

P (h1(ω)))) ∩ h−1
2 ((λ2

P )−1(λ2
P (h2(ω))))
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Given a composition we need to find the traces of actions in Component 1 that cor-
respond to those traces in Component 2 – and vice versa. The construction of these
relations can be performed via the interface system Si as well as via the composed
system Sc as expressed by the following lemma:

Lemma 2. Given a system composition as in Definition 3, h1 ◦ h−1
2 = (hIF

1 )−1 ◦ hIF
2 .

Proof. For x ∈ Σ∗
2 always holds hIF

2 (x) = h1(x). For ♦ denoting the shuffle product,
h1(h−1

2 (x)) = h1(x♦(Σ1 \ Σ2)∗) = h1(x♦(Σ1 \ ΣIF )∗) = h1(x)♦(Σ1 \ ΣIF )∗

= hIF
2 (x)♦(Σ1 \ΣIF )∗ = (hIF

1 )−1(hIF
2 (x)).

For arbitrary sets X and Y and A, C ⊆ X , B, D ⊆ Y and a mapping f : X −→ Y
we always have the equality f−1(B) ∩ f−1(D) = f−1(B ∩D), but only the inclusion
f(A ∩ C) ⊆ f(A) ∩ f(C). However, for particular intersections we have equality:

Lemma 3. Let X, Y be arbitrary sets, f : X −→ Y a mapping, and A ⊆ X, B ⊆ Y .
Then f(A ∩ f−1(B)) = f(A) ∩B.

For the proof of this lemma we refer the reader to [9].

5.1 General Conditions for Confidentiality Composition

The definition of confidentiality in SeMF relies on the extraction and testing of those
actions and data that are identified as being confidential. This extraction is applied to ev-
ery state that the system may take and bases on what an attacker has observed up to this
point and what she can deduce from these observations through her initial knowledge.

When two systems that both provide confidentiality are composed into a new sys-
tem (w.r.t. to some common interface), the conclusion about some data that an attacker
may derive at any given state in the composed system is the combination of conclusions
she has derived with regards to each of the components. If this combination results in
what the attacker is allowed to know in the system composition, then obviously confi-
dentiality is satisfied in the composition.

Within the semantics for confidentiality of SeMF this combination of conclusions
about the sequences that may have happened in the individual systems and the value
of data used in these sequences is represented as the intersection of these sets – i.e. the
smaller a set becomes the more conclusions an attacker can draw, because she considers
less values as possible candidates for the confidential data.

It should be noted though that these considerations have to be executed for every
state – i.e. every possible sequence of actions – that the system may take. Further, they
require a level of detail that would allow for the direct assessment of confidentiality of
the composed system instead. However, while these conditions are of less practical rele-
vance, they form the basis for the more restricted conditions presented in the subsequent
sections. Formally this approach can be expressed as follows:
Definition 4 Given a composition as defined in Definition 3, we call h1 confidentiality
composable with h2 for R with respect to μ0, μ1 and μ2, if for all ω ∈ B0 holds:

μ0[ΛR0(ω, W 0
R)] = μ1[ΛR1(h1(ω), W 1

R)] ∩ μ2[ΛR2(h2(ω), W 2
R)]
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Theorem 1 Given a confidentiality composable composition as defined in Definition 4,
if S1 and S2 both are parameter confidential for agent R with respect to some μ1 and
μ2 with μ1 ◦ h1 = μ2 ◦ h2, then S0 is parameter confidential for R with respect to
μ0 := μ1 ◦ h1 = μ2 ◦ h2 and L0 := L1 = L2, M0 := M1 = M2.

Proof. S1, S2 parameter confidential, h1(B0) ⊆ B1, h2(B0) ⊆ B2 implies ∀ω ∈ B0 :
μ1[ΛR1(h1(ω), W 1

R)] ⊇ p−1
t (pt(μ1[ΛR1(h1(ω), W 1

R)])) ∩K and
μ2[ΛR2(h2(ω), W 2

R)] ⊇ p−1
t (pt(μ2[ΛR2(h2(ω), W 2

R)])) ∩K .
Taking the intersection of these equations leads to
μ1[ΛR1(h1(ω), W 1

R)] ∩ μ2[ΛR2(h2(ω), W 2
R)]

⊇ p−1
t (pt(μ1[ΛR1(h1(ω), W 1

R)])) ∩ p−1
t (pt(μ2[ΛR2(h2(ω), W 2

R)])) ∩K
= p−1

t [pt(μ1[ΛR1(h1(ω), W 1
R)]) ∩ pt(μ2[ΛR2(h2(ω), W 2

R)]) ∩K]
⊇ p−1

t (pt(μ1[ΛR1(h1(ω), W 1
R)] ∩ μ2[ΛR2(h2(ω), W 2

R)])) ∩K .
By assumption of h1 and h2 being confidentiality composable it follows that
μ0[ΛR0(ω, W 0

R)] = p−1
t (pt(μ0[ΛR0(ω, W 0

R)])) ∩K .

5.2 Independantly Testable Conditions for Confidentiality Composition

Testing for the confidentiality of data by analysing data values considered possible by
the attacker, as presented in the previous approach, is performed on the same level
of detail as the direct assessment of confidentiality. In the approach presented in this
section, we instead perform an assessment of the usage of the interface by the composed
components regarding observations and knowledge that can be gained by an attacker.

Following this approach it is possible for two component designers to agree about
the information regarding the components’ interface that an attacker may get and there-
by allows for a more distributed development of each of the components.

For a given state (i.e. sequence of actions) in the composed system, the conclusions
regarding the interface behaviour that an attacker can draw from her observations and
initial knowledge from each of the components must be equal. Consequently, during the
design of the interface the component designers must agree on the interface behaviour
that shall be considered possible by the attacker when observing the behaviour of the
individual components.

The interaction of designers can be further decoupled by overestimating the set
of possible states: Instead of considering all possible states / sequences of actions of
the composed system, the designers may only define the set of possible sequences of
actions at the interface (interface behaviour). This set can then be associated with the
sequences considered possible by the attacker in each of the components, which leads
to an agreement over the attacker’s deductive capabilities.

The component designers can then independently assess if their component fulfils
this requirement (equality of interface behaviour concluded from the individual compo-
nents) by focussing on all sequences of actions that their component can take that will
result in one of the agreed interface behaviour sequences.
Definition 5 A composition following Definition 3 is called confidentiality preserving
if the following assumption holds for all P ∈ P0, ω ∈ B0:

a) hIF
1 ((λ1

P )−1(λ1
P (h1(ω))) ∩W 1

P ) = hIF
2 ((λ2

P )−1(λ2
P (h2(ω))) ∩W 2

P )
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Alternatively, for all P ∈ P0, ω ∈ BIF , ω1 ∈ (hIF
1 )−1(ω), ω2 ∈ (hIF

2 )−1(ω):

b) hIF
1 ((λ1

P )−1(λ1
P (ω1)) ∩W 1

P ) = hIF
2 ((λ2

P )−1(λ2
P (ω2)) ∩W 2

P )

which implies condition a) by overestimation of possible component state combinations.
Theorem 2 Given a confidentiality preserving composition according to Definition 5
and given that system S1 has a confidentiality property w.r.t. some μ1 and K then S0

has the confidentiality property regarding μ0 = μ1 ◦ h1 and the same K .

Proof. μ0[λ−1
0 (λ1(ω)) ∩W0] = μ1(h1[λ−1

0 (λ1(ω)) ∩W0])
= μ1(h1[λ−1

0 (λ1(ω)) ∩ h−1
1 (W 1

P ) ∩ h−1
2 (W 2

P )])
Using Lemma 3 leads to equality with
μ1[W 1

P ∩ h1(λ−1
0 (λ1(ω)) ∩ h−1

2 (W 2
P ))]

= μ1W
1
P ∩ [h1(h−1

1 ((λ1
P )−1(λ1

P (h1(ω))))∩ h−1
2 ((λ2

P )−1(λ2
P (h2(ω))))∩h−1

2 (W 2
P ))]

Again applying Lemma 3 implies equality with
μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩W 1

P ∩ h1(h−1
2 ((λ2

P )−1(λ2
P (h2(ω)))) ∩ h−1

2 (W 2
P ))]

= μ1[(λ1
P )−1(λ1

P (h1(ω))) ∩W 1
P ∩ h1(h−1

2 ((λ2
P )−1(λ2

P (h2(ω)))) ∩W 2
P )]

Applying Lemma 2 leads to equality with
= μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩W 1

P ∩ hIF
1

−1(hIF
2 ((λ2

P )−1(λ2
P (h2(ω)))) ∩W 2

P )]
which by Assumption equals
μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩W 1

P ∩ hIF
1

−1(hIF
1 ((λ1

P )−1(λ1
P (h1(ω)))) ∩W 1

P )]
which is finally equal to
μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩W 1

P ] which concludes our proof.

5.3 Design of Generally Composable Component Interfaces

This final approach for composition targets the design of interfaces between components.
The goal is to design the interface between two components in such a way that no addi-
tional considerations have to be made when composing confidentiality properties.

This is for example possible if an interface handles only the single transfer of confi-
dential data. Obviously, if this data is handled in a confidential way by both components,
there cannot be any side effects within the interface that may destroy the confidential-
ity property. This is expressed by testing that for any two combinations of sequences
of actions within the interface, the extraction of confidential data from their combina-
tion will equal those candidates that result from the combinations of candidates derived
independently from each of the sequences.

Most notably in this approach, it is not necessary to assess the capabilities (in terms
of local view and initial knowledge) of a possible attacker. The design of the interface
will make it impossible for any attacker to gain advantage by the composition of the
components as long as they each provide confidentiality of the data. Formally, this is
expressed as:
Definition 6 A composition following Definition 3 has a generally composable inter-
face with respect to some μIF if

∀A ⊆ hIF
1 (W 1

P ), B ⊆ hIF
2 (W 2

P ) : μIF (A ∩B) = μIF (A) ∩ μIF (B)

Trivially, if μIF is an isomorphism, the above property is implied.
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Theorem 3 Given a generally composable interface composition as defined in Defini-
tion 6, if S1 and S2 both are parameter confidential for agent R with respect to some
μ1 and μ2 , then S0 is parameter confidential for R with respect to μ0 = μ1 ◦ h1 =
μ2 ◦ h2 = μIF ◦ h′

1 ◦ h1 = μIF ◦ h′
2 ◦ h2.

Proof. μ0[λ−1
0 (λ1(ω)) ∩W0] = μ1(h1[λ−1

0 (λ1(ω)) ∩W0])
= μ1(h1[λ−1

0 (λ1(ω)) ∩ h−1
1 (W 1

P ) ∩ h−1
2 (W 2

P )]).
Using Lemma 3 leads to equality to
μ1[W 1

P ∩ h1(λ−1
0 (λ1(ω)) ∩ h−1

2 (W 2
P ))]

= μ1W
1
P ∩ [h1(h−1

1 ((λ1
P )−1(λ1

P (h1(ω))))∩ h−1
2 ((λ2

P )−1(λ2
P (h2(ω))))∩h−1

2 (W 2
P ))]

By Lemma 3 this is equal to
μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩W 1

P ∩ h1(h−1
2 ((λ2

P )−1(λ2
P (h2(ω)))) ∩ h−1

2 (W 2
P ))]

= μ1[(λ1
P )−1(λ1

P (h1(ω))) ∩W 1
P ∩ h1(h−1

2 ((λ2
P )−1(λ2

P (h2(ω))) ∩W 2
P ))]

By Lemma 2 this is equal to
μ1[(λ1

P )−1(λ1
P (h1(ω))) ∩W 1

P ∩ hIF
1

−1(hIF
2 ((λ2

P )−1(λ2
P (h2(ω))) ∩W 2

P ))]
As μ1 = μIF ◦ hIF

1 and using Lemma 3 leads to equality with
μIF [hIF

1 ((λ1
P )−1(λ1

P (h1(ω))) ∩W 1
P ) ∩ hIF

2 ((λ2
P )−1(λ2

P (h2(ω))) ∩W 2
P )].

By assumption, this equals
μIF [hIF

1 ((λ1
P )−1(λ1

P (h1(ω))) ∩W 1
P )] ∩ μIF [hIF

2 ((λ2
P )−1(λ2

P (h2(ω))) ∩W 2
P )]

= μ1[(λ1
P )−1(λ1

P (h1(ω))) ∩W 1
P ] ∩ μ2[(λ2

P )−1(λ2
P (h2(ω))) ∩W 2

P ]
which satisfies Definition 4.

6 Revisiting the Scenarios

In this section, we revisit the scenario composition introduced in Section 4.2 and demon-
strate where and how this composition fails with regards to the formal considerations
presented in Section 5. From the description in Section 2 it is already known that the ex-
ample scenario does not preserve confidentiality during composition. In this section we
demonstrate how our sufficient conditions, if not met, give hints regarding the possible
reasons of confidentiality being violated in the composition, and how the components
can be changed in order to preserve confidentiality.

For the following illustrations, we do not require the point in time at which a
key is returned for assessing the confidentiality of the key; hence we define Σt :=
{returnKey(KGen)}. For the ease of reading we further simplify the system by re-
stricting it to one single run; i.e. ∀a ∈ Σ, ω ∈ B : card(a, alph(ω)) = 1. This results
in a considerable reduction of complexity but does not affect the applicability of our
methods. Analogous results can be obtained for the full system behaviour.

6.1 General Conditions for Confidentiality Composition

Following the system definitions in Section 4.2 we investigate the preservation of confi-
dentiality in the example composition. We demonstrate that Theorem 1 is not applicable
and show how this fact can be used to identify the side effects that violate the confiden-
tiality in the composed system. We use the following sequence of actions:

ω0 =boot(t1) callGenKey(App, t2) genKey(KGen, key0, t3)
returnKey(KGen, key0, t4) with t2 = t1 + δ1 and t3 = t2 + δ2
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We start by assessing the left hand side of the equation of Definition 4, followed by the
two sets for the right hand side.

Given ω0, we can assess the sequences that Eve considers possible in S0 (with
pre(ω) denoting the set of prefixes of ω):

Λ0
Eve(ω0, W

0
Eve) =

pre[
⋃

tx∈T
{boot(t1) (callGenKey(App, t1 + δ1)

genKey(KGen, key0, t1 + δ1 + δ2) returnKey(KGen, key0, tx)}]
\{ε}

Since Eve knows δ1 and δ2, and since the key is completely determined by its time of
generation, she only considers one value possible for the returned key

μ0[Λ0
Eve(ω0, W

0
Eve)] ={(returnKey(KGen), key0)} with key0 = k(t1 + δ1 + δ2)

Regarding the conception of Eve with respect to each of the component systems, we
again assess all those sequences that Eve considers possible for the respective images
of ω0 in these systems:

Λ1
Eve(h1(ω0),W 1

Eve) = pre[
⋃

tx∈T ,keyi∈K
{boot(t1)

callGenKey(App, t1 + δ1) returnKey(KGen, keyi, tx)] \ {ε}

Λ2
Eve(h2(ω0),W 2

Eve) = pre[
⋃

tx,ty∈T
{callGenKey(App, tx)

genKey(KGen, keyj, tx + δ2) returnKey(KGen, keyj, ty)}]
with keyj = k(tx + δ2)

This leads to the following sets of values that Eve considers as candidates for the con-
fidential data (as tx originates from all of T , every keyi ∈ K is possible):

μ1[Λ1
Eve(h1(ω0), W 1

Eve)] =
⋃

keyi∈K
{(returnKey(KGen), keyi)}

μ2[Λ2
Eve(h2(ω0), W 2

Eve)] =
⋃

keyj∈K
{(returnKey(KGen), keyj)} ∪ {ε}

Coming back to Definition 4 we can see that the values considered possible by Eve in
the composition do not equal the combined (i.e. intersected) knowledge from each of
the component systems:

{(returnKey(KGen), key0} �=
( ⋃

keyi∈K
{(returnKey(KGen), keyi)}

)

∩
( ⋃

keyj∈K
{(returnKey(KGen), keyj)} ∪ {ε}

)

implies μ0[Λ0
Eve(ω0, W

0
Eve)] �=μ1[Λ1

Eve(h1(ω0), W 1
Eve)] ∩ μ2[Λ2

Eve(h2(ω0), W 2
Eve)]
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It can be seen however, that if t1 or δ1 were unknown to Eve, the confidentiality would
be preserved. This relates to the use case as Desktop Application where an attacker
does not know at which point in time a user initiates a key generation. It can further be
seen that if key was not derived from these values but for example from a non-pseudo
random number generator, Eve would also not be able to derive the key’s value in the
composition.

6.2 Independantly Testable Conditions for Confidentiality Composition

Similarly, Definition 5 can be used to illustrate that the condition of Theorem 2 suffi-
cient for preserving confidentiality does not hold. Using the same ω0 as in the previous
section results in the same sets Λ1

Eve(h1( ω0), W 1
Eve) and Λ2

Eve(h2(ω0), W 2
Eve). We

now investigate the projections of these sets into the interface system in order to com-
pare the interface expectations of both components.

hIF
1 [Λ1

Eve(h1(ω0),W 1
Eve)] = pre[

⋃

tx∈T ,keyi∈K
{

callGenKey(App, t1 + δ1) returnKey(KGen, keyi, tx)] \ {ε}

hIF
2 [Λ2

Eve(h2(ω0),W 2
Eve)] = pre[

⋃

ty,tz∈T
{

callGenKey(App, ty) returnKey(KGen, keyi, tz)}]
with keyi = k(ty + δ2)

As we can see, these sets are not equal. The dependence of keyi on the point in time of
callGenKey being performed is not expected by the App component, which hints to
the confidentiality preservation error.

In order to avoid such a situation, the developers of the components could have
agreed a priory to a common assumed interface behaviour when they agreed on the
interface design. Following option b) of Definition 5 this could have been

BIF = pre[
⋃

tx<ty−δ∈T ,keyi∈K
callGenKey(App, tx) returnKey(KGen, keyi, ty)]

In this case the developer of the key generator would have needed to alter his/her imple-
mentation to reflect the functional independence of tx and keyi, leading to a confiden-
tiality preserving composition.

6.3 Design of Generally Composable Component Interfaces

Finally, we demonstrate that our example scenario does not satisfy the sufficient condi-
tion specified in Definition 6 and show how in particular scenarios the system specifica-
tion can be corrected in order for the condition to hold and thus confidentiality to hold
as well in the composition. We choose the following two sequences of actions from the
respective sets:
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– hIF
1 (W 1

Eve) � A = {callGenKey(App, t1) returnKey(KGen, keyA, ty)}
with keyA ∈ K (keyA can be chosen independently of t1).

– hIF
2 (W 2

Eve) � B = {callGenKey(App, t2) returnKey(KGen, keyB, ty)}
with keyB = k(t2 + δ2) according to S2.

Obviously, as for t1 �= t2 A and B are distinct sets, μIF (A ∩ B) = ∅. However, for
keyA = k(t2 + δ2) = keyB, it follows μ(A) = μ(B) = {(returnKey(KGen),
keyA)} = μIF (A) ∩ μIF (B).

In order to construct a system that fulfills the condition for a generally composable
interface, SIF must be designed in such a way that μIF is an isomorphism. This is the
case e.g. if the interface only consists of a stream of generated keys that are handed over
from the key generator to the application with ΣIF = {provideKey(KGen, keyi)}.
As there exists no functional relation from App to KeyGen there cannot be side-effects
that destroy the confidentiality property on the key generator’s side during composition.

7 Related Work

The model based composition of systems is a field of growing research activity in the last
decade. Tout et al. [14] have developed a methodology for the composition of web ser-
vices with security. They use the Business Process Execution Language (BPEL) for the
specification of web services composition and expand it in order to specify the security
properties independently from the business logic based on policy languages using a UML
Profile for specifying the required security properties. Their approach focusses on how
to specify security requirements of web service compositions and does not address veri-
fication of security properties in such compositions. Sun et al. propose in [15] a service
decomposition-based approach for service composition in which the utility of a compos-
ite service can be computed from the utilities of component services, and the constraints
of components services can be derived from the constraints of the composite service.
Their approach manages the selection of each component service, leading to more scala-
bility and more flexibility for service composition in a dynamic environment. However,
this approach focusses on maximizing the utility of the composition and does not ad-
dress security properties. A method for composing a system from service components
with anonymous dependencies is presented by Sora et al. in [16]. They specify com-
ponent descriptions by means of semantic-unaware properties, an application-domain
independent formalism for describing the client-specific configuration requests in terms
of desired properties, and propose a composition algorithm. Using a different approach,
Lei Zhang and Jun Wu [17] analyse the relationship between trustworthiness attributes
and propose models of these attributes and their relationship. They use a Trustworthy
Software Composition Architecture (TSCA) software as evaluation method.

Rossi presents in [18] a logic-based technique for verifying both security and correct-
ness properties of multilevel service compositions. Service compositions are specified in
terms of behavioural contracts which provide abstract descriptions of system behaviours
by means of terms of a process algebra. Multi-party service compositions are modelled
as the parallel composition of such contracts. Modal mu-calculus formulae are used to
characterize non-interference and compliance (i.e. deadlock and livelock free) proper-
ties. The well-known concepts of non-interference or information flow control address
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confidentiality with respect to actions. In the above approach, these concepts are used
to specify that public synchronizations (i.e. actions concerned with the communication
between services) are unchanged as confidential communications are varied. Hence it
is not clear how this approach can be extended to cover cases in which satisfaction of
confidentiality depends solely on whether specific parameters of an action are visible.

Universal Composability is another prominent branch of research addressing the
composition of cryptographic protocols while preserving certain security properties (see
for example [19,20,21]). A common paradigm in this area of research is that a proto-
col that “securely realizes” its task is equivalent to running an idealized computational
process (also called “ideal functionality”) where security is guaranteed. A main disad-
vantage of the Universal Composability approach seems to be that for every property
that shall be proven, a new ideal process has to be constructed whose interactions with
the parties result in providing this property.

Pino et al. present in [22] an approach for constructing secure service compositions,
making use of composition patterns and security rules. They prove integrity and confi-
dentiality of service compositions based on specific security properties provided by the
individual components of such a composition. While the proofs are based on the same
formal framework as the one presented in this paper, their approach uses an interme-
diate orchestration component. We in contrast focus on the direct composition of any
type of components, deriving security proofs from specific conditions concerning the
component interfaces.

8 Conclusions & Future Work

In this paper we presented the formalization of the composition of two systems that al-
lows to formally reason about the preservation of confidentiality properties. The central
idea is to view each of the systems as an abstraction of their composition, and to de-
scribe each aspect of the composition (e.g. its behaviour, agents’ local views and initial
knowledge) in terms of these abstractions. We then introduced conditions that allow to
prove that a specific confidentiality property holds for the composition if it holds for
the individual components. Using the composition of an application with a key gener-
ation module as scenario, we then demonstrated that the fact that these conditions do
not hold reveals side effects with non-trivial implications regarding confidentiality. In
particular, we presented a general sufficient condition for preservation of confidential-
ity that is of more theoretical interest, and derived two more specific conditions that are
applicable in distributed system engineering and point to particular aspects of the two
components that need to be taken into consideration by the developers. The first con-
cerns additional agreements on interface level between component developers that can
be independently tested for each component, the second provides sufficient conditions
regarding the interface itself that rules out side effects during composition and thereby
guarantees the preservation during composition of any two components that implement
these interfaces.

Currently we are working on other types of conditions sufficient for proving confi-
dentiality of a system. Finding relations of these conditions to the ones presented in this
paper may broaden their scope of application. Future work includes the application of
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the foundations layed out in this paper to general software engineering by projecting the
semantic knowledge onto rules and guidelines for composition of software components.
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Abstract. We propose method shells, which is a module system for
avoiding conflicts on customization by language mechanisms such as as-
pects in AspectJ and open classes in Ruby. These mechanisms allow pro-
grammers to customize a library without rewriting original source code
but by only describing differences in a separate file. We call these mech-
anisms destructive class extensions. A problem with destructive class
extensions is conflicts on customization. Different customizations may
differently modify the same class. To address this problem, we propose
a new module system named method shells. With this system, program-
mers can avoid conflicts since the module system automatically switches
a set of customizations that has to be applied together according to the
contexts declared by programmers. We present the idea of this module
system and then its formal semantics. We also present an extension of
Java that supports method shells.

1 Introduction

Aspect-oriented programming (AOP) [1] is a programming paradigm where
crosscutting concerns can be separated into different modules called aspects.
Aspects can modify the behavior of the code contained in a different module so
that they will implement their concerns. This mechanism, however, can be used
for not only implementing a crosscutting concern but also customizing an exist-
ing class library or framework to fit an application program. A class library (or
framework) can be extended by subclassing but subclassing does not enable all
kinds of customization. Some kinds of customization need to directly modify a
class contained in the library. To modify such a class, aspects are useful language
constructs from the viewpoint of software maintenance.

Aspects are not only the mechanism for customizing a class library with-
out directly changing the library source code. For this purpose, several other
mechanisms have been proposed such as open classes in Ruby [2] and refines in
AHEAD [3]. In this paper, we call this category of mechanisms destructive class
extensions [4] since they directly modify the behavior of existing classes.

A problem with destructive class extensions is that extensions often conflict
with each other. This problem has been actively studied in the context of AOP

W. Binder, E. Bodden, and W. Löwe (Eds.): SC 2013, LNCS 8088, pp. 49–64, 2013.
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but these studies have focused on conflicts observed when the implementations
of different crosscutting concerns are woven at the same join point [5, 6]. On
the other hand, in the context of library customization, an important issue is
to deal with a library customized by destructive class extensions (or aspects) as
a black box. This is non-trivial if two libraries require the same sub-library but
differently customize it by destructive class extensions. An application program
using the two libraries together will cause conflicts on the customization of the
sub-library and thus the programmer has to be aware of the customization by
the libraries; the libraries cannot be considered as black boxes.

To avoid conflicts on the customization in this scenario, we propose a new
module system named method shells and present an extension of Java that sup-
ports this module system.1 As a mechanism for destructive class extension, we
use a reviser [4]. A method shell is a module that can contain classes and re-
visers. It can include other method shells to extend and customize their classes.
Furthermore, it can link to other method shells. The linked method shells are
dealt with as black boxes. A method shell can invoke the code in the method
shells linked to it but the invoked code is executed in a separate context so that
it will not be affected by the customization effective in the method shell invoking
the code. No unexpected conflicts happen between method shells linking to each
other.

In the rest of this paper, we first show a motivating example and then present
method shells. We also present the formal semantics of the method shells and
a brief sketch of their implementation. Finally, we mention related work and
conclude this paper.

2 Destructive Class Extensions

When programmers need to customize a class library, the customization would
be convenient if they can modify it without directly modifying the original source
code by only describing differences in a separate file. Such customization is mod-
ular and easy to maintain. Even if the customization includes a bug, they can
easily obtain the prior code by deleting the file describing the customization.

Although subclassing is often used to describe such customization, it does
not perfectly fit the aim. Suppose that the library contains a class C and she
wants to modify a method in that class. Describing a subclass of C that overrides
the method is not sufficient to make a customized library. All the classes in the
library that create an instance of C must be modified to create an instance of
that subclass. Subclassing is, therefore, not the perfect approach for customizing
an existing library in a modular fashion.

For modular customization of existing libraries, several language mechanisms
have been proposed in languages like Ruby [2], AspectJ [7], AHEAD [3], Multi-
1 The first author submitted a summary of this work to ACM Student Research

Competition (SRC) held in March at AOSD 2013. The submission will be reviewed
and oral and poster presentations will be scheduled in March. Submitting a full
paper to another conference is permitted by the SRC moderators.
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1 // in the browser library
2 revise WebPage {
3 void popup(HTML text) {
4 warning("disabled");
5 }
6 }

Fig. 1. A reviser for the WebPage class

1 // in the HTML-renderer library
2 class WebPage {
3 void popup(HTML text) {
4 // show a popup window.
5 }
6 void onClick(Mouse m) {
7 URL url = m.getURL();
8 if (isPopup())
9 popup(url);

10 ...
11 }
12 ...
13 }

Fig. 2. WebPage class

Java [8], Jiazzi [9], and GluonJ [4]. In this paper, we call these mechanisms
destructive class extensions since they are mechanisms for directly modifying
existing implementation. They allow programmers to append new methods to
an existing class and substitute a new implementation of an existing method.
The new implementation is described in a separate source file and thus the orig-
inal source files are not modified. Describing customization in a separate module
is not sufficient for scalable modular customization. It also has to enable modu-
lar reasoning; the customization must change the original implementation only
through a public interface or well-designed extension points. Some languages
such as AspectJ provide a powerful mechanism like pointcuts and thus their
ability for modular reasoning is controversial [10,11]. Since they enable changes
of any parts of module, preserving modularity in large scale software is not
straightforward. On the other hand, in other languages like GluonJ, the cus-
tomization changes the implementation by redefining public methods and hence
they enable as modular reasoning as normal object-oriented programming.

However, even in the latter languages, enabling modular customization is not
easy. The customization through public methods will not scale as the number of
methods increase. Different customizations may conflict on the same method. For
better scalability, a scoping mechanism must be introduced so that the customiza-
tion will be effective only within a limited space. This is the aim of this paper.

Suppose that we have a library l1 for rendering an HTML text and we write
another library l2 for constructing a web browser that will be embedded in an
application software. For code reuse, the library l2 should be implemented on
top of the former library l1. Since an embedded web browser should not show a
popup window, which will surprise application users, we have to customize the
library l1 so that a popup window will be blocked.

A mechanism of destructive class extension allows this customization without
modifying the source code of the library l1. Figure 1 shows the code for that
modification. In this paper, we use the syntax of GluonJ [4]. The code modifies
the original implementation of the WebPage class shown in Figure 2, which is
contained in the library l1. It directly replaces the original implementation of
the popup method with a new one in Figure 1. If the library l2 contains the code
in Figure 1, which is called a reviser, the behavior of the library l1 is revised
and no popup window will not be displayed when l2 uses l1. The original source
code of popup does not have to be modified.
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We next write the third library l3, which provides an audited viewer of local
files written in HTML. The viewer shows a popup dialog for an alert when a
confidential file is opened. To show a popup dialog, we use the popup method
in the WebPage class supplied by the library l1 for rendering an HTML text.
Furthermore, we modify several methods by revisers, for example, the getBorder
method in the WebPage method so that the rendered HTML text will be shown
in a specially decorated window.

An application using either the library l2 or l3 will work well. However, since
both l2 and l3 commonly use the library l1 but differently modify the classes in
l1, an application using both of them will not work. The revisers in l2 and l3
will conflict. For example, the reviser in l2 disables to show a popup window by
the popup method whereas the library l3 needs that the popup method shows a
popup window as its original implementation does.

This conflict is a well-known problem with destructive class extensions [6,
12, 13] but it is more crucial than usual when destructive class extensions are
used for customizing a library. A library is usually dealt with as a black-box;
library users should be unaware of which other libraries are internally used by
that library and how those other libraries are customized. It should be hidden
that both the libraries l2 and l3 internally use l1 and they differently customize
l1. Thus, a conflict on l1 between l2 and l3 will be a surprise to their user
programmers. This is a similar problem happening when an application requires
two libraries and the two require other libraries that are different versions of
the same library. A library providing basic functionality is often included by
other third-party libraries but, if it is popular and being actively developed,
these third-party libraries often require different versions of it. Such third-party
libraries are difficult or impossible to use together. Our scenario of conflicts on
customization can be regarded as a conflict between two versions of the library
l1, each of that is implemented by revisers describing differences from the base
version.

3 Method Shells

To address the problem presented in the previous section, we propose a new
module system named method shells. With this module system, a set of revisers
that must be applied together is implicitly switched to fit execution contexts
during runtime. As a prototype of method shells, we have developed an extension
of Java. In this extended Java, a new language construct called a method shell
is available. It is a construct similar to package and it specifies a module that
classes and revisers in the source file belong to. Figure 3 presents a renderer
method-shell. The first line is a methodshell declaration, which declares that the
following WebPage class is contained in the method shell named renderer. This
method shell represents the HTML-renderer library l1 shown in the previous
section.
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1 methodshell renderer;
2
3 class WebPage {
4 void popup(HTML text) {
5 // show a popup window.
6 }
7 void onClick(Mouse m) {
8 URL url = m.getURL();
9 if (isPopup())

10 popup(url);
11 ...
12 }
13 ...
14 }

Fig. 3. The renderer method shell

1 methodshell browser;
2 include renderer;
3
4 revise WebPage {
5 void popup(HTML text) {
6 warning("disabled");
7 }
8 }
9

10 public static void main(String[] args){
11 WebPage w = new WebPage();
12 w.popup("Available?"); // not shown
13 }

Fig. 4. The browser method-shell

Include Declarations and Revisers

In the previous section, the HTML-renderer library l1 was used by the web-
browser library l2. With the method shells, this relation is represented by an
include declaration. Figure 4 presents a reviser in the browser library l2 reimple-
mented with method shells. The second line is an include declaration. It repre-
sents that the browser method-shell includes the renderer method-shell. All the
classes and revisers contained in the renderer method-shell are also contained in
the browser method-shell. This relation by include declarations is transitive.

The reviser in Figure 4 belongs to the browser method-shell and it modifies
the implementation of the WebPage class. The WebPage class is called a target
class and it must be in the same method shell that the reviser belongs to. Since
include declarations constructs transitive relations, the WebPage class could be
in a method shell included by the method shell that the reviser belongs to.
A method shell is a scope of the visibility of classes and revisers. Classes and
revisers can refer to only the class names contained in the same method shell.

The implementations of the methods declared in a reviser substitute the
original ones in the target class or they are appended to the target class if they
are new methods. The reviser in Figure 4 substitutes the implementation of
the popup method in the WebPage class. Although the source code of the orig-
inal implementation is not modified, the modification by the reviser is directly
applied to the target class. This is a difference from subclassing. The modifi-
cation by a subclass of WebPage will not affect the instances of WebPage but
the modification by a reviser for WebPage affects the instance of the target class
WebPage.

A method shell can contain a special function main. It is a main method where
the whole program starts. In Figure 4, the main method makes an instance of
WebPage and calls the popup method on it. Since this method shell contains a
reviser for WebPage, the implementation of popup in the reviser is selected and
executed. A popup window is not displayed.

When the program starts from the main method in a method shell S, it
runs with the modifications by the revisers contained in S unless the program
contains link declarations mentioned later. For clarity, if a program is running
with the modifications by a method shell S, we call S the current context. Note
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1 methodshell viewer; include renderer;
2
3 class Viewer {
4 void check(File f) {
5 if (isConfidential(f))
6 new WebPage().popup("<b>Confidential</b>");
7 }
8 ...
9 }

10 revise WebPage {
11 Border getBorder() {
12 // return a decorated window border
13 }
14 }

Fig. 5. The viewer method shell

that all revisers contained in the same method shell are applied together to
classes in that method shell. If multiple revisers share the same target, they
are applied in the precedence order given by the programmer. For backward
compatibility, our extended Java language allows classes in a source file without
a methodshell declaration. Such classes belong to a special method shell that are
implicitly included by any method shell. We call this special method shell the
global context.

Link Declarations

In the previous section, the library l1 was also used by the audited-viewer li-
brary l3. Figure 5 shows one of the source files of the library l3 after being
reimplemented with method shells. It contains a class and a reviser as well as
the include declaration for including the renderer method-shell. This reimplemen-
tation of l3 will work correctly if it is used independently. However, if we define
a new method shell that naively includes both l2 and l3, the customizations of
l1 by the revisers in the two libraries l2 and l3 will conflict as we already saw in
the previous section.

To address this conflict, the method shells provide a link declaration so that
programmers can deal with a method shell as a black box. Here, being a black
box means that the mere users of a method shell are not aware of its internals:
which sub method-shells are included and how they are customized. For the
developers who customize a method shell, it is still a gray-box; its internals
are partly visible and customizable through a public interface. In large-scale
applications, we believe that this sense of being a black box and/or a gray box
would be necessary. It would be error-prone to construct such a large application
by combining only gray-box libraries while manually avoiding conflicts.

The method shell linked by a link declaration is not included but the classes
and the revisers in that method shell become visible. See Figure 6. This source
file belongs to the application method-shell and it includes the browser method-
shell by the include declaration. Since the third line is a link declaration, the
application method-shell does not include the viewer method shell. However, the
main method in the application method-shell can refer to the Viewer class, which
belongs to the viewer method-shell.
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1 methodshell application;
2 include browser;
3 link viewer;
4
5 public static void main(String[] args) {
6 new WebPage().popup();
7 new Viewer().check(new File("secret.txt");
8 }

Fig. 6. The application method-shell and the link declaration

l2

l1

l3

Fig. 7. The method shell commonly shared

A unique feature of link declarations is the current context during the execu-
tion of the code in the linked method-shell. While a method implementation
contained in the linked method-shell is executed, the current context is set to
that linked method-shell. For example, when the main method in Figure 6 calls
the check method, since the implementation of check is in the viewer method-
shell, the current context is changed from the application method-shell to the
viewer method-shell. During the execution of the check method, therefore, only
the revisers in the viewer method-shell are effective. The revisers in the appli-
cation method-shell are not effective. The reviser for the WebPage class in the
browser method-shell, which is included by application, is not effective and thus
the check method can execute the original implementation of the popup method.
The current context is switched back to the application method-shell when the
execution of the check method finishes.

A link declaration allows a program to execute a method in a space separated
from other modules’. In our example scenario, the original implementation of
popup method is in the l1 library, or the renderer method-shell. It is included in
the application method-shell through the library l2 and l3, or the browser method-
shell and the viewer method-shell, respectively. The problem is that popup is
modified differently by the paths through l2 and l3 and our solution is to make
two versions of popup for each path. One is for the path from application to
l2 and l1 while the other is for the path from l3 to l1. The former version is
modified by using the application method-shell as the current context while the
latter is by using the viewer method-shell. The two versions are switched when a
method implementation in the linked method shell is invoked. This problem and
the solution are similar to the diamond inheritance problem [14] and its solution.
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4 Semantics and Implementation

This section presents the formal semantics of method shells. It also presents the
sketch of the implementation technique of method shells. This technique was used
to develop a prototype compiler of our extended Java, which supports method
shells. This compiler was developed by using the JastAddJ framework [15].

4.1 Syntax

We first present a simple calculus for the formalization. It is an extension of
Featherweight Java (FJ) [16] and GluonFJ [4]. The syntax is given as follows:

SL ::= methodshell S; IL LL (CL || RV) ∗ MF method-shell declaration
IL ::= include S; include declaration
LL ::= link S; link declaration
CL ::= class C extends C{C f; K M} class declaration
RV ::= revise C{M} reviser declaration
M ::= C m(C x){return e; } method declaration

MF ::= void main(){return e; } main function declaration
e ::= x | e.f | e.m(e) | new C(e) | e in S; SC expressions
v ::= new C(v) values

The metavariables S and T range over method shell names; B, C, and D range
over class names; f range over field names; m ranges over method names; x ranges
over parameter names; K ranges over constructor declarations; v and w range
over values. The syntax of K and body is not shown here but it conforms to FJ.
In this syntax, we use an overline to represent a sequence. For example x equals
to “x1, x2, ..., xn” and C f equals to “C1 f1, C2 f2, ..., Cn fn”.

SL is a method shell. It consists of its name, include declarations, link decla-
rations, class declarations CLs and reviser declarations RVs, and a main-function
declaration MF. A class declaration CL consists of its name, its super class, fields,
a constructor, and methods. A reviser declaration RV consists of its name and
methods. A reviser cannot have a field. An expression e may take a new form e
in S;SC, which is used to mark which method shell e originates from and the
current contexts in the operational semantics.

We denote the class and reviser table by CRT. It is a mapping from a pair
of a method shell S and a class name C to a class declaration CL or a reviser
declaration RV. A program is a pair of CRT and a method-shell name. The
program execution starts from the main function included in the method shell
with that name.

4.2 Lookup Semantics

The reduction relation is of the form S; SC � e → e′, reading “expression e
reduces to expression e′ in one step in a method shell S and the current context
SC. If a program starts from the main function in a method shell S, then the
program execution is to reduce its expression e in the method shell S and the



Method Shells 57

current context S. Most reduction rules are given in a straightforward manner
from FJ’s and GluonFJ’s. Interesting rules are the followings:

T;TC�e0−→e0
′

S;SC�e0 in T,TC−→e0′ in T;TC
(R-In)

mbody(m,C,S,SC)= x̄.e0 in T;TC
S;SC�new C(v̄).m(w̄)−→([w̄/x̄,new C(v̄)/this]e0) in T;TC

(R-Invk)

The first rule is straightforward. e0 is reduced in T; TC although S; SC are given.
The second rule is for method invocation. Unlike FJ’s, a function to look up a
method body, named mbody, takes four parameters. It looks up a method body
by referring to the method name m, the class of the target object C, the method
shell S that the expression originates from, and the current context SC. Both S
and SC are ones at the caller-side. If a method body e with parameters x̄ is found
in a method shell T and the new current context is set to TC, then the method
body is executed with the arguments w̄ in T and TC.

The definition of mbody is presented in Figure 8. mbody(m, C, S, SC) returns
the body of m called on the C class from the method shell S with the current
context SC, written x̄.e in T; TC, where x̄ are parameters, e is the method body,
T stands for the method shell where the body is found, and TC stands for the
current context used to execute the body.

mbody uses a few auxiliary functions. includings(S) returns a set of method
shells directly included by S. linked-shells(S) returns a set of method shells
linked by S. mbodyshell(m, C, S) is a function to search the method shell S.
It returns the body of method m in class C found in S. It first searches the
method bodies directly contained in S and then recursively searches ones in
method shells included by S. Finally, mbodyglobal(m, C, S, SC) searches the global
context, which contains classes in source files without methodshell declarations.
The global context is a special method shell implicitly included by any method
shell. In Figure 8, Global stands for the global context. Note that, if the body
of m in the class C is not found in the global context, mbodyglobal searches the
method bodies declared in a super class of C by recursively calling mbody.

mbody(m, C, S, SC) searches in the following order. First, it searches the
method shells linked by S. If a method body m is found, the new current context
is set to the linked method shell where the body is found. Otherwise, mbody
searches the current context SC. Note that it does not search the method shell
S, which the method-call expression originates from. S is used only for obtaining
the linked method shells searched at the first step. If a method body is not found
in either the linked method shells or the current context, then mbody searches
the global context. Finally, if a method body directly declared in the class C is
not found in any method shells, mbody looks up a method body declared in a
super class of C. The current context does not change except the first step.

4.3 Implementation

Our prototype compiler transforms a program using method shells into plain
Java program, which is then compiled into Java bytecode. During the trans-
formation, the methods in revisers are copied into the declaration of the target
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Methodbody lookup mbody(m,C,S,SC)=x.e in T;TC

Tc=linked-shells(S)

∃Tci∈Tc mbodyshell(m,C,Tci)=x.e in T

∀Tcj∈Tc(i�=j) mbodyshell(m,C,Tcj)=null

mbody(m,C,S,Sc)=x.e in T;Tci

Tc=linked-shells(S)

∀Tci∈Tc mbodyshell(m,C,Tci)=null

mbodyshell(m,C,Sc)=x.e in T

mbody(m,C,S,Sc)=x.e in T;Sc

Tci=linked-shells(S)

∀Tci∈Tc mbodyshell(m,C,Tci)=null

mbodyshell(m,C,Sc)=null

mbody(m,C,S,Sc)=mbodyglobal(m,C,S,Sc)

mbody(m,C,null,null)=mbodyglobal(m,C,null,null)

CRT(S,C)=(revise C{M})||(class C···{···M})
B m(B x){return e;}∈M

mbodyshell(m,C,S)=x.e in S

CRT(S,C)=(revise C{M})||(class C···{···M})
m is not defined in M

S=includings(S)

∃Si∈S mbodyshell(m,C,Si)=x.e in T

∀Sj∈S(i�=j) mbodyshell(m,C,Sj)=null

mbodyshell(m,C,S)=x.e in T

CRT(S,C)=(revise C{M})||(class C···{···M})
m is not defined in M

includings(S)=null

mbodyshell(m,C,S)=null

CRT(Global,C)=class C extends D{C f;K M}
B m(B x){return e;}∈M

mbodyglobal(m,C,S,Sc)=x.e in null;null

CRT(Global,C)=class C extends D{C f;K M}
m is not defined in M

mbodyglobal(m,C,S,Sc)=mbody(m,D,S,Sc)

Fig. 8. A function to look up a method body

class. If the method already exists in the target class, the method copied from the
reviser substitutes the original one. Our prototype compiler/language has not
supported a mechanism to invoke the overridden implementation of a method
by a call on super.

However, if multiple revisers in different method shells modify the same
method, the naive approach above will not work. Our compiler hence copies
a method implementation after renaming the method into the name mangled
from the original method name and the method-shell name. A method m de-
clared in a reviser for a class C is copied into the declaration of C after the
method name is changed into the name mS mangled from the method name m
and the method shell S, which the reviser is contained in.

When a method m is called on an instance of a class C, the appropriate
implementation is selected among the available versions mS1, mS2, mS3, ... for each
method shell Si. According to the semantics we showed above, the selection
depends on the method shell that the method-call expression originates from
and the current context. The former one is statically determined but the latter
one is not. Thus, a naive implementation will have to check the latter one at
runtime for method dispatch. This will cause a runtime penalty.
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To minimize runtime penalties due to method shells, our prototype compiler
duplicates a method implementation for different current contexts and trans-
forms the method body to customize. Therefore, a method mSi is duplicated into
mSi·T1, mSi·T2, mSi·T3, ..., where Ti is a current context. The body of the method
mSi·Tj is transformed for Si and Tj. The transformation for a method shell S and
a current context SC under type environment Γ is written S; SC;Γ � e =⇒ e′.
For most expressions, the transformation is trivial. Only method calls must be
changed:

S;SC;Γ�e0=⇒e0
′ S;SC;Γ�ē=⇒ē′ S;SC;Γ�e0:C mname(m,C,S,SC)=m′

S;SC;Γ�e0.m(ē)=⇒e0′.m′(ē′)

Here, S; SC;Γ � e0 : C is read “expression e0 is given type C under type environ-
ment Γ .” In other words, the static type of e0 is C. mname is a function to look
up a method like mbody. It is defined as following:

mbody(m,C,S,SC)=x̄.e in null;null
mname(m,C,S,SC)=m

mbody(m,C,S,SC)=x̄.e in T;TC
mname(m,C,S,SC)=mT·TC

If the method implementation is selected from the global context, the method
name is not changed during transformation.

Finally, the body of the main function is transformed so that the appropriate
version of methods will be called. If the program starts with the main function
in a method shell S, then the body is transformed for S and S.

5 Related Work

In the context of AOP, a number of researchers have been studying conflicts of
advices, or aspect interference. Aksit et al. proposed a mechanism for detecting
aspect interference by using graph transformation [6]. Several linguistic con-
structs have been proposed to resolve the interference. Douence et al. proposed
a new composition operator of aspects [12,13]. It allows programmers to describe
a safely-composable aspect. Airia provided a new kind of around advise called
resolvers for resolving the interference [17]. A uniqueness of our work is that we
have designed a language construct specialized for a specific use-case scenario
where aspects are used for building a custom library to be used as a black box.

AOP and destructive class extensions can be regarded as a special case of vir-
tual classes [18,19], where all base-level classes are implicitly contained as virtual
classes in a single enclosing class and all aspects (or corresponding constructs
like revisers) are in a subclass of that enclosing class, if the differences in how to
specify the target base-level classes are ignored (the targets in AOP are speci-
fied by pointcuts while ones in virtual classes are by the super-class names). Our
method shells are an approach to introduce a scope mechanism into destructive
class extensions. In the analogy above, this approach allows programmers to use
more than one enclosing classes in programming with destructive class exten-
sions (i.e. AOP) as they can do in programming with virtual classes. Therefore,
the resulting language mechanism is similar to ones for virtual classes but it still
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has some unique features since it is originated from destructive class extensions.
For example, in method shells, programmers are less aware of the existence of
enclosing classes. When a program refers to a class contained in a different en-
closing class, it does not have to explicitly specify the name of that different
enclosing class. That class is implicitly selected by the link declaration so that
the obliviousness property [20] is somewhat preserved. Another example is that,
in method shells, the method selected for a method call on the same target
object changes depending on the caller’s contexts. Furthermore, method shells
allow multiple shells to be included at the same time like mixing.

In Newspeak [21], all class names are virtual and a subclass can override them.
This overriding mechanism corresponds to the include declaration in method
shells. On the other hand, Newspeak does not provide a mechanism correspond-
ing to the link declaration, with which the method-lookup context is changed
after a method in the linked method-shell is selected. Although Newspeak is dy-
namically typed, method shells are statically typed and we present a technique
for reducing their method-lookup overhead.

The idea of method lookup depending on runtime contexts is found not
only in our method shells but also other languages such as JPred [22]. JPred
supports predicate dispatch, with which a method is selected by referring to
calling contexts such as method arguments and caller objects.

Us [23] allows programmers subjectivity-based programming. In Us, every
method call explicitly takes a method-lookup context called a perspective. In
method shells, every call does not take such a context, which is declared by a
include or link declaration at the beginning of the source file.

Context-oriented programming (COP) [24] is a paradigm where a class defi-
nition can be changed depending on the contexts during runtime. A class decla-
ration is divided into multiple parts, which are called layers, and different layers
may contain different implementations of the same method. Layers are dynami-
cally switched by with and without clauses. Within the with clause, the specified
layer is effective while in the without clause it is ineffective. A layer provides the
same ability for destructive class extension as our revisers but a layer must be
contained in the declaration of the target class although a reviser is described
separately from the target class. Despite this difference, method shells and COP
share the idea of changing class definition to fit the current context.

However, the with and without clauses are not adequate for addressing the
problem mentioned in this paper. Programmers in COP languages cannot deal
with a layer as a black box. They have to understand the dependency among
all layers and classes used in their programs. Figure 9 shows a program that
is equivalent to the program in Figure 6 but is written in ContextJ, a COP
extension of Java [25]. This program starts from the main method in the App
class. Since it uses the renderer, the browser, and the viewer, it first activates all
the three by with (line 10 to 12). However, while the check method in Viewer is
executed, the browser layer must be deactivated since it needs a popup window.
In Figure 9, the browser layer is deactivated within the body of the check method
by without (line 23) but this requires the programmer of Viewer to be aware of the
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1 class WebPage{
2 layer(renderer){
3 void popup(HTML text){
4 // show a popup window
5 }
6 void onClick(Mouse m){
7 URL url = m.getURL();
8 if(isPopup()) popup(url);
9 ...

10 }
11 }
12 }
13 layer(browser){
14 void popup(HTML text){
15 warning("disabled");
16 }
17 }
18 }
19 class Viewer{
20 layer(viewer){
21 void check(File f){
22 if(isCirfidential(f)){
23 without(browser){
24 new WebPage.popup
25 ("<b>Confidencial</b>");
26 }
27 }
28 }
29 }
30 }
31 }

1 class App{
2 void run(){
3 new WebPage().popup();
4 // a popup is disabled
5 new Viewer().check
6 (new File("secret.txt");
7 // a popup is needed
8 }
9 public void main(String[] args){

10 with(renderer){
11 with(browser){
12 with(viewer){
13 new App.run();
14 }
15 }
16 }
17 }
18 }

Fig. 9. A program in ContextJ

browser layer, which might be independently developed from the Viewer. Another
approach is to deactivate the browser layer within the body of the run method
in App, for example, just before calling the check method at line 5. However,
this requires the programmer of App to be aware that the browser layer must
be deactivated while a Viewer is running. The programmer cannot deal with
Viewer as a black box. A recent version of ContextJ supports Reflection API [26]
and hence the problem above is fairly overcome. In this language, a program
can obtain all the layers currently activated and then deactivate them. However,
unlike method shells, the programmer still has to be aware of unnecessary layers
and explicitly deactivate them.

Classboxes [27,28] are a module system that also provides a scoping mecha-
nism for destructive class extensions. In Classbox/J, related classes are modular-
ized into a module called a classbox. It can include other classboxes and partly
modify them by refine, which corresponds to a reviser in our language. However,
Classboxes do not provide a mechanism corresponding to our link declarations
and thus they cannot handle the scenario shown in this paper. If the library
l1 is included through multiple paths, all the refines on the paths are applied
together.

In Java, every class loader has its own name space. Hence, distinct imple-
mentations of the same class can coexist in one program if they are loaded into
different class loaders. This is useful to partly address the problem discussed
in this paper but moving an object beyond the boundary between class loaders
is significantly restricted. In method shells, such restriction known as the ver-
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sion barrier is not applied. To enable such movement between class loaders, the
Java virtual machine has to be modified and support a mechanism like sister
namespaces [29].

We have already proposed method shelters, which is a mechanism similar
to method shells [30]. Although the two mechanisms share the same approach,
method shelters are for a dynamically typed language Ruby. The destructive
class extension in Ruby is performed by open classes, which is different from
revisers we used in this paper. Furthermore, the design of method shelters is
more complicated than that of method shells. A method shelter, which is a unit
of module, is divided into an exposed chamber and a hidden chamber. Pro-
grammers have to carefully choose which chamber a reviser should be placed to
control its visibility. On the other hand, a method shell is simpler but equiva-
lently expressive; it is not divided into smaller containers but a single container.
Programmers can intuitively control the visibility of revisers by choosing either
an include declaration or a link declaration.

6 Conclusion

We proposed method shells, which are a module system for avoiding conflicts
on destructive class extensions. The destructive class extensions are mechanisms
for modifying class definitions from a separate module, which include aspects
in AspectJ, open classes in Ruby, and revisers in GluonJ. A method shell is a
module consisting of classes and revisers. It can include other method shells and
the revisers in the included method shells are applied together as well as the
revisers in the method shells including them. A unique feature is that a method
shell can link to other method shells. The code included in the linked method
shells can be invoked but it is executed in a context where only the revisers in
the linked method shell are effective. Thus, a linked method shell is dealt with
as a black box.

Our contribution is to propose a mechanism for avoiding conflicts on destruc-
tive class extensions when we use the extensions for customizing a class library
or a framework. The resulting library or framework after customization can be
dealt with a black box. The main idea is link declarations. The language auto-
matically switches effective revisers when the thread of control crosses over to a
linked method shell. Showing the formal semantics and implementation strategy
of method shells is also contribution.
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Abstract. Implicit invocation languages, like aspect-oriented languages, auto-
mate the Observer pattern, which decouples subjects (base code) from handlers
(advice), and then compound them together in the final system. For such lan-
guages, event types have been proposed as a way of further decoupling subjects
from handlers. In Ptolemy, subjects explicitly announce events at certain program
points, and pass the announced piece of code to the handlers for its eventual ex-
ecution. This implies a mutual dependency between subjects and handlers that
should be considered in verification; i.e., verification of subject code should con-
sider the handlers and vice versa.
However, in Ptolemy the event type defines only one obligation that both the han-
dlers and the announced piece of code must satisfy. This limits the flexibility and
completeness of verification in Ptolemy. That is, some correct programs cannot
be verified due to specification mismatches between the announced code and the
handlers’ code. For example, when the announced code does not satisfy the speci-
fication of the entire event and handlers must make up the difference, or when the
announced code has no effect, imposing a monotonic behavior on the handlers.
In this paper we propose an extension to the specification features of Ptolemy that
explicitly separates the specification of the handlers from the specification of the
announced code. This makes verification in our new language PtolemyRely more
flexible and more complete, while preserving modularity.

Keywords: Event type, specification, verification, Ptolemy language

1 Introduction

Event types [12], and other similar approaches like XPIs [16], AAI [10], Open Mod-
ules [1,11], IIIA with Join Point Types [15] and Joint Point Interfaces (JPI) [8,5,4], have
been proposed as a way to further decouple subjects from handlers in implicit invoca-
tion and aspect-oriented languages. The verification systems for such languages should,
as usual, strive to be as complete as possible while staying sound. In this work we pro-
pose some enhancements to the Ptolemy language and its specification and verification
system for making it more complete while keeping it sound.

1.1 Completeness as a Measure of Usefulness

We work in the framework of a partial-correctness Hoare logic [7]. A judgement of the
form Γ � {P}S{Q} means that the Hoare-triple {P}S{Q} is provable using the type
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environment Γ . The judgement Γ � {P}S{Q} is valid iff for every state σ that agrees
with the type environment Γ , if P is true in σ (written σ |= P ) and if the execution of
S terminates in a state σ′, then σ′ |= Q. Such a logic is sound if whenever a judgment
Γ � {P}S{Q} is provable, then it is valid. Conversely, such a logic is complete if
whenever such a judgment is valid, then it is provable in the logic.

To compare two logics, one can ask if both are sound, and if so one can compare
how complete they are. Logic A is strictly more complete than logic B if there is some
valid judgment that is provable in A but not in B, but every judgment that is provable
in B is provable in A. Given that both logics are sound, then a more complete logic is
potentially more useful for users, as they will be able to prove more programs correct.

1.2 A Brief on Ptolemy Language

Ptolemy’s [12] event type concept decouples subjects (base code), which explicitly an-
nounce events, from the handlers that process these events. The event type establishes
the contract every handler must satisfy. In this way the base (or announcing) code can
be modularly reasoned about using the contract, instead of using each handler’s code.
The contract not only defines the precondition and postcondition every handler method
should satisfy, but also the abstract algorithm they must refine, called a translucid con-
tract [3]. In the body of a translucid contract, specification expressions can abstract
away details of particular implementation expressions, by only specifying their effects.
Invoke expressions in the contract’s body show where a handler triggers the execution
of the next handler in the execution chain (until eventually reaching the originally an-
nounced code that stands at the end). In the base code, announce expressions are used
to explicitly announce occurrences of events, starting the execution chain and passing
the announced code to it. All this is schematized in Figure 1.

Fig. 1. Event, handlers and announced code
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The invoke expressions in the contract make visible the control effects of the han-
dlers. Active handlers are registered as such using register expressions and handlers are
bound to the corresponding event by when expressions.

In Ptolemy, every handler method must be verified to satisfy the contract’s pre- and
postconditions and also to structurally refine (see section 2) the translucid contract’s
body, providing conforming implementations for every specification expression.1 The
announced code is also verified to satisfy the same contract’s pre- and postconditions.

1.3 The Billing Example

The billing system example in Figure 2 illustrates the basic concepts of Ptolemy and
motivates our proposed extension. In this system, each bill includes the amount (a) to
be paid and the extra charges (c) like taxes. When the base code totals a bill, adding the
charges to the principal amount (line 7), the corresponding event is announced (lines 6-
8). This gives registered handlers (maybe PaymentHandler or ShippingHandler)
the chance to do some adjustments, like adding some extra charges. In this case we
register just one handler at random (line 5) to emphasize the fact that the reasoning is
based on the event definition, instead of the particular implementation of any specific
handler. The TotalingEvent definition specifies the behavior and abstract algorithm of
every admissible handler. The requires (line 14) and ensures (line 21)2 clauses
specifies the behavior: every handler requires (line 14) that the existing charges are not
negative and ensures (line 21) that the resulting amount of the bill is greater than or
equal to the sum of the original amount plus the original charges. The excess, if any,
is due to the extra charges added by the handlers. The translucid contract (lines 16-19,
inside assumes{. . .}) forces the handlers to make the charges greater than or equal
to their current value, but allows charges to be added by each handler in any consistent
way. The specification expression (lines 17-18) must be refined by each conforming
handler, with code that satisfies the stated pre-post conditions. Also any invoke ex-
pression must be made explicit in the translucid contract (as on line 19). This allows
modular verification of control effects, using the specification of the announced event.

This example is verified by Ptolemy’s proof system. Both handlers refine the event’s
translucid contract. The specification expression in this contract (lines 17-18) is re-
fined by PaymentHandler by increasing the charges (c′ = c + 1, line 27), and by
ShippingHandler by leaving the charges the same (c′ = c + 0, line 38). Considering
the above and the effect of the invoke expression, it can be seen that both handlers
satisfy the event specification ( a′ ≥ a + c, line 21), and so both are proven valid. The
announced code (a′ = a + c, line 7) also satisfies the event specification ( a′ ≥ a + c,
line 21), as required by Ptolemy’s proof system, so the complete announce expression
(lines 6-8 ) is proven valid. With the handlers and the announce expressions proven
valid, the entire program is proven valid in Ptolemy.

1 Ptolemy is an expression language.
2 When summarizing assertions, we adopt the Z [14] convention of denoting the new value

of a variable with a prime (like a′), and use unprimed variables to stand for their pre-state
values.
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1 public class Base {
2 public void run(){
3 Bill bill=new Bill(100,8);
4 Bill old=new Bill(bill.a(),bill.c());
5 registerHandler();// Randomly register one handler
6 announce TotalingEvent(bill) { // event Qe : a′ ≥ a+ c
7 bill.setA(bill.a()+bill.c());// code Qs : a′ = a+ c
8 }
9 //assert bill.a()>old.a()+old.c(); //a′ > a+ c ??

10 } }
11

12 public void event TotalingEvent { // handlers: a′ ≥ a+ c
13 Bill bill;
14 requires (bill.c()>=0) // Pe: c ≥ 0
15 assumes{
16 // specification expr.: requires c ≥ 0 ensures c′ ≥ c
17 requires (next.bill().c()>=0)
18 ensures (next.bill().c()>=old(next.bill().c()));
19 next.invoke(); // control flow: proceed with next handler
20 }
21 ensures (bill.a()>=old(bill.a())+old(bill.c())) //Qe: a′ ≥ a+ c
22 }
23 public class PaymentHandler { // Payment Processing Fee Handler
24 public void handleTotaling(TotalingEvent next)throws Throwable{
25 refining requires (next.bill().c()>=0)
26 ensures (next.bill().c()>=old(next.bill().c())){
27 next.bill().setC(next.bill().c()+1); // c′ = c+ 1
28 }
29 next.invoke();
30 }
31 when TotalingEvent do handleTotaling;
32 public PaymentHandler(){ register(this); }
33 }
34 public class ShippingHandler { // Shipping Fee Handler
35 public void handleTotaling(TotalingEvent next)throws Throwable{
36 refining requires (next.bill().c()>=0)
37 ensures (next.bill().c()>=old(next.bill().c())){
38 next.bill().setC(next.bill().c()+0); //c′ = c+ 0 NO FEE NOW
39 }
40 next.invoke();
41 }
42 when TotalingEvent do handleTotaling;
43 public ShippingHandler(){ register(this); }
44 }

Fig. 2. Billing example in Ptolemy
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1.4 Completeness Issues: Enforcing the Billing “Increasing” Property

Now we consider a variation on the billing system. A new “business rule” requires us to
enforce the “increasing” property: that all the handlers for TotalingEvent must strictly
increase the total amount, by adding to the charges. Currently PaymentHandler sat-
isfies this condition (line 27) but ShippingHandler does not (line 38). If this property
were met, the assertion on line 9 could be proven true, since no matter which handler
were registered (line 5) the charges would have been incremented.

We have to guarantee that any handler H bound to the event TotalingEvent, satisfies
the required property, while keeping the program valid.3 For doing that we can adjust
the event specification and the handlers.

Definition 1. An implementation of the billing program satisfies the “increasing”
property if for each binding clause of the form when TotalingEvent dom appearing
in a class C: if H = bodyOf (C ,m) then Γ ′ |= {c ≥ 0}H{a′ > a + c}.
The current TotalingEvent specification does not guarantee the above property, as its
postcondition (a′ ≥ a+ c) does not imply (a′ > a+ c). The way for the billing system
to satisfy this property is by having an event postcondition Qe such that Qe ⇒ (a′ >
a + c). However in Ptolemy this Qe must be such that (a′ = a + c) ⇒ Qe, to meet
the requirement of Ptolemy’s proof system that the announced code (line 7) satisfies the
event specification. The fact that these two implications result in a contradiction shows
that the above property cannot be proved in Ptolemy. This shows the incompleteness of
Ptolemy’s proof system, that is incapable of modularly proving the assertion in line 9.

In section 3 we propose an extension to Ptolemy that makes verification more flexi-
ble and complete, and in particular able to enforce the “increasing” property and verify
the aforementioned assertion. First, we explain Ptolemy verification in more detail.

2 Verification in Ptolemy

In Ptolemy, event types state the obligations that handlers should satisfy. In the gen-
eral case that was presented in Figure 1, the event Evt’s declaration specifies the pre-
condition (Pe) and postcondition (Qe) that handlers should conform to, and also the
translucid contract (assumes clause) that they should refine.

Verification in Ptolemy is straightforward [3]. Every handler body H for an event
and every piece of announced code S for that event must satisfy the same pre-post obli-
gations [3, Figure 11], declared in the event’s requires and ensures clauses. Be-
sides that, the handlers must also refine the event’s translucid contract. This is expressed
in the requirement that a program is conformal, meaning that each handler conforms to
the corresponding event declaration’s specification.

Definition 2. A Ptolemy program Prog is conformal if and only if for each declaration
of an event type, Evt, in Prog, and for each binding clause of the form whenEvt dom
appearing in a class C of Prog: if (Pe, A, Qe) = ptolemySpec(Evt) and
H = bodyOf (C ,m), then there is some type environment Γ ′ such that
Γ ′(next) = closure Evt, Γ ′ � A � H and Γ ′ |= {Pe}H{Qe}.
3 The auxiliary function bodyOf (C ,m) returns the body of method m in class C.
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In the above, the formula Pe is the event’s precondition, Qe is its postcondition,
and A is the body of the assumes clause (the “translucid contract” [3]), which in
our notation is written (Pe, A, Qe) = ptolemySpec(Evt). Similarly, bodyOf (C ,m)
returns the code that is the body of method m in class C.4 The structural refinement
relation � is explained below. Furthermore, we say that a Hoare-triple {P}S{Q} is
valid, written Γ |= {P}S{Q}, if in every state (typable by Γ ) such that P holds,
whenever S terminates normally, then Q holds in the resulting state.

In Ptolemy, the verification of handlers is done modularly and separately from the
announcements. The body of each handler must structurally refine the translucid con-
tract from the event specification. A handler body, H , structurally refines a translucid
contract A, written A � H , if one can match each expression in H to an expression in
A [13]. The matching of most expressions are exact (only the same expression matches)
with the exception of specification expressions of the form requires P ensures
Q, which can occur in A and must each be matched by expressions in H of the form
refining requires P ensures Q { S }, where S is the code implementing
the specification expression. In Ptolemy structural refinement is checked by the type
checking phase of the compiler [3].

To summarize, according to the work on translucid contracts for Ptolemy [3], the
way that one proves that a program is conformal is by proving, for each handler body
H for an event Evt such that (Pe, A, Qe) = ptolemySpec(Evt): Γ ′ � A � H and
Γ ′ � {Pe}H{Qe}. In order to guarantee soundness, the body of each refining
expression must satisfy the given specification, as in the (REFINING) rule of Figure 3.

For every announce expression in a valid program, the announced code S should
satisfy the event specification (Pe, Qe). Then, if the base code guarantees Pe before the

(SPECIFICATION-EXPR)

Γ � {P}requires P ensures Q{Q}

(REFINING)
Γ � {P}S{Q}

Γ � {P}(refining requires P ensures Q { S }){Q}

(ANNOUNCE)
(Pe, A,Qe) = ptolemySpec(Evt),x : T = formals(Evt),

Γ � {Pe[y/x]}S{Qe[y/x]}
Γ � {Pe[y/x]} announceEvt(y) S {Qe[y/x]}

(INVOKE)
closure Evt = Γ (next), (Pe, A, Qe) = ptolemySpec(Evt)

Γ � {Pe} next.invoke() {Qe}

Fig. 3. Hoare Logic axioms and inference rules for the interesting constructs of Ptolemy

4 These auxiliary functions query the program, which is treated as a fixed context.
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announce expression it can assume Qe holds afterwards. This constitutes Ptolemy’s
(ANNOUNCE) rule in Figure 3. In that rule Pe[y/x] means Pe with the actual parameter
variables yi

5 simultaneously substituted for the free occurrences of the xi, which are the
event’s formal parameters. Note that the body of the announcement, S, cannot use the
event’s formal parameters, but only has access to the original type environment, Γ . In
the (ANNOUNCE) rule, there is no distinction made regarding the presence or absence
of any registered handlers, because the same reasoning applies in either case.

An invoke expression in a handler is reasoned about in the same way. That is, the
code executing the invoke expression must establish Pe and can assume Qe afterwards.
This is (INVOKE) rule in Figure 3. In this rule, the event’s name is obtained from the
type of next, and this gives access to the specification (Pe, A, Qe) of that event.

A Hoare logic is sound if whenever Γ � {P}S{Q} is provable then every termi-
nating execution of S starting from a state in which P holds ends in a state in which Q
holds. Soundness for Ptolemy depends on the program being conformal.

Theorem 1. Suppose that the Hoare logic for Ptolemy, without using the rules in Fig-
ure 3, is sound. Then for conformal programs, the whole logic, including the rules in
Figure 3, is sound.

We omit the proof (which goes by induction on the structure of the proof in the entire
Hoare logic). However, the key argument is the same as that for greybox specifications,
that structural refinement implies refinement [13].

Ptolemy’s design makes both handlers and the announced code have the same pre-
post specifications (Pe, Qe).6 This design is convenient in some cases, but it limits
Ptolemy’s flexibility and completeness. For example, it is not possible to use Ptolemy’s
event type pre and postconditions to specify and verify the “increasing” property of our
billing system (section 1.4), because the announced code achieves the postcondition
a′ = a + c and not the event’s postcondition a′ > a + c. However, this property could
be considered correct with respect to a more flexible specification that gives different
postconditions to the announced code and handlers, which is what we do below. This
example shows that verification in Ptolemy is incomplete.

We have other similar examples that show incompleteness of Ptolemy’s verification
rules. The common theme, like in the billing example, is that the effect of the announced
code does not match the effect of the handlers.

Another situation that shows Ptolemy’s incompleteness occurs when the announced
code has no effect (e.g., skip). As Ptolemy imposes the event pre-post obligations on
the announced code, it requires that the triple {Pe}skip{Qe} holds, or, by Hoare logic,
that Pe ⇒ Qe. Since these same obligations are imposed on the handlers, thus they are
limited to monotonic behaviors; i.e. ones that preserve the precondition Pe. This is
a symptom of incompleteness, because in a program where there must be registered
handlers, one would not be able to verify an event announcement in which the handlers
achieve a postcondition Qe that is not implied by the event’s precondition (Pe).

In the next section we detail our proposed modification to solve these incomplete-
ness issues and analyse its impact regarding modular reasoning.
5 We use variables in these rules to avoid problems with side effects in expressions, although

Ptolemy allows general expressions to be passed as actual arguments to announcements.
6 We use the convention of denoting by (P, Q) the pre- and postconditions of some code.
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3 Explicit Separate Specification

A solution to the incompleteness problems can be found by recognizing that there is a
mutual dependency between base code, handlers and announced code, in the execution
chain. The base code depends on the behavior of the activated handlers that are triggered
by an announce expression. The handlers depend on the other activated handlers, and
on the behavior of the announced code at the end of the chain (Figure 4).

The first change from Ptolemy in our PtolemyRely language consists in separat-
ing the specification for the handlers (Pe,Qe) from the specification for the announced
code (Ps,Qs). As before, every handler H is reasoned about using the event requires-
ensures specification (Pe,Qe). But the announced code S is reasoned about using its
own specification (Ps,Qs). (Both cases are depicted in Figure 5). This new approach
allows different specifications for the handlers and for the announced code, as in our
billing example. This also allows announced code that has no effect to be verified with-
out limiting, in any way, the handlers’ specification.

Fig. 4. Mutual dependencies between base
code, handlers and announced code

Fig. 5. Reasoning about the base code

In PtolemyRely, the second change is that the verification of both announce and
invoke expressions is slightly modified. For announce expressions there are two
situations, as shown in Figure 5. If there are registered handlers then the base code in-
teracts with the first of them, which guarantees the event postcondition (Qe). If there are
no handlers then the announced code is executed, ensuring its postcondition (Qs). This
two cases are formalized by the rules (RANNOUNCEHAS) and (RANNOUNCENONE)
in Figure 8.

invoke expressions are only valid inside the body of a handler, and thus should
be analyzed in a context where there are registered handlers. Their effect, instead, de-
pend on the nondeterministic position of the containing handler in the execution chain.
If there are other handlers left in the execution chain, the event specification (Pe, Qe)
is used, as all handlers satisfy it. If only the announced code is left, its specification
(Ps, Qs) should be used. However, for modular verification, the problem is that the
event declaration, and consequently the handlers, do not know the announced code
and thus do not know (Ps, Qs). To avoid whole-program reasoning, we make a third
change, in this case to Ptolemy’s event type declarations. Now users also specify, in the
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event declaration, the pre-post obligations (Pr, Qr) for any announced code. Putting
this specification in the event type declaration in a new relies clause (see Figure 6)
allows the handlers to be verified based on that specification, instead of the actual an-
nounced code’s specification. It also allows one to avoid doing the verification that each
handler satisfies the event pre-post specification one handler at time. Instead, that can
be done in two separate steps: first, once and for all, verifying that the event’s translucid
contract satisfies the event’s pre-post specification, and then verifying that each han-
dler refines this translucid contract, which in turn guarantees every handler satisfies the
event’s specification.

To summarize, with our changes in PtolemyRely, the event type declares specifica-
tions for the handlers, (Pe, Qe), and for the announced code, (Pr , Qr). In the rest of
this section, we give the formal details of our approach.

3.1 Syntax

For PtolemyRely, we change the syntax of Ptolemy event declarations by introducing
a relies clause that establishes the specification for the announced code (Pr, Qr).
This is shown in the event syntax schema, Figure 6.

t event Evt {
t1 f1;. . .; tn fn;
relies requires Pr ensures Qr

requires Pe

assumes { . . . next.invoke(); . . .}
ensures Qe

}

Fig. 6. Event syntax schema

sp ::= . . . | handlers ( c )
contract ::= . . . |
relies requires sp ensures sp
requires sp
assumes { se }
ensures sp

Fig. 7. Formal syntax changes

We make two changes to the formal syntax of Ptolemy [3]. The first adds a predicate
handlers that returns the number of handlers currently registered for its event argu-
ment. The second changes contract definitions, as shown in Figure 7. The nonterminal
c stands for event names, sp stands for specification predicates, and se stands for speci-
fication expressions (the contract’s body in this case).

3.2 Semantics

In PtolemyRely, as stated in the definition of conformance, we check for structural
refinement of each handler to the translucid contract, and also check each handler to
satisfy the event requires-ensures specification.

Definition 3. A PtolemyRely program Prog is conformal if and only if for each decla-
ration of an event type, Evt, in Prog, and for each binding clause of the form whenEvt
do m appearing in a class C of Prog: if (Pr, Qr, Pe, A, Qe) = eventSpec(Evt)
and H = bodyOf (C ,m), then there is some type environment Γ ′ such that
Γ ′(next) = closure Evt, Γ ′ � A � H , and Γ ′ |= {Pe}H{Qe}.
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The function eventSpec(Evt) returns the specification information from the event
type’s declaration. The returned 5-tuple consists of the relies clause contract (Pr, Qr),
and the translucid contract: pre and post-conditions (Pe, Qe) and assumes body A.

The announce and invoke expressions are verified using the rules in Figure 8.
For announce expressions there are two rules, depending on whether one can prove
that there are registered handlers for the event. (RANNOUNCEHAS) applies when there
are registered handlers. In this case the announce expression is reasoned about using
the event’s specification (Pe, Qe). For this rule to be valid, the announced code, S,
must satisfy the specification (Pr, Qr) given in the event’s type. (RANNOUNCENONE)
applies when there are no registered handlers. In this case only the announced code is
executed, and thus the relied on specification (Pr, Qr) is used.

(RANNOUNCEHAS)
(Pr, Qr, Pe, A, Qe) = eventSpec(Evt),

x : T = formals(Evt), Γ � {Pr[y/x] ∧ handlers(Evt) > 0}S{Qr [y/x]}
Γ � {Pe[y/x]} (announceEvt(y) S) {Qe[y/x]}

(RANNOUNCENONE)
(Pr, Qr, Pe, A, Qe) = eventSpec(Evt),

x : T = formals(Evt), Γ � {Pr[y/x] ∧ handlers(Evt) = 0}S{Qr [y/x]}
Γ � {Pr[y/x]} (announceEvt(y) S) {Qr[y/x]}

(RINVOKE)
closure Evt = Γ (next), (Pr, Qr, Pe, A, Qe) = eventSpec(Evt)

Γ � {Pe ∧ Pr}next.invoke(){Qe ∨ Qr}

Fig. 8. Hoare Logic inference rules for those constructs of PtolemyRely that differ from Ptolemy

The soundness theorem for PtolemyRely states that if a program is conformal, then all
provable Hoare triples are valid.

Theorem 2 (Soundness). Suppose that the Hoare logic for Ptolemy, without using the
rules for invoke and announce, is sound. Then for conformal PtolemyRely pro-
grams, the whole logic, including the rules for those constructs in Figure 8, is sound.

Proof: Let Γ , P , S and Q be given such that Γ � {P}S{Q} is provable using Ptole-
myRely’s Hoare logic, including the rules in Figure 8. We prove that Γ |= {P}S{Q}
(i.e., that this Hoare triple is valid) by induction on the structure of the proof of that
triple. In the base case, there are no uses of the rules in Figure 8, so validity follows by
the hypothesis. For the inductive case, suppose that the proof has as its last step one of
the rules in Figure 8. We assume inductively that all subsidiary proofs are valid. There
are three cases. If the last step uses the (RANNOUNCENONE) rule, then the hypothesis
that the announced code satisfies the specification (Pr , Qr) makes the conclusion valid.
If the last step uses the (RANNOUNCEHAS) rule, then the hypothesis that the program
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is conformal means that, by definition 3, Γ ′ |= {Pe}H{Qe}where (Pe, Qe) is the spec-
ification of the handler’s from the event type. This again makes the conclusion valid.
If the last step uses the (RINVOKE) rule, then there are two sub-cases, and the proof is
similar to that given for the previous cases, using the definition of “conformal.”

We note that proving that a program is conformal can be done in a simple way, by
proving Γ ′ � {Pe}A{Qe}, where (Pe, Qe) is the event’s pre/post specification, and A
is the translucid contract for the event, and then checking that each handler’s body, H
structurally refines the translucid contract (Γ ′ � A � H). After that, it follows that
Γ ′ |= {Pe}H{Qe} using techniques from the work of Shaner et al. [13].

3.3 Billing Example Revisited (PtolemyRely)

In Figure 9 we show how our billing example could be written in PtolemyRely. Here we
show how it can be verified using PtolemyRely’s rules, how the “increasing” property
can be specified and verified and how the assertion in line 9 is now proved.

Contrary to Ptolemy, PtolemyRely allows us to have different specifications for
the handlers (Pe, Qe) and for the announced code (Ps, Qs). As mentioned before, the
specification for the handlers, (Pe, Qe), goes in the requires-ensures clauses of
the event declaration, meanwhile the minimum specification for any announced code,
(Pr, Qr), goes in the new relies clause. The specification of the announced code S
(line 7) is (Ps, Qs), that corresponds to (c ≥ 0, a′ = a + c). We take the expected
behavior for the announced code (Pr , Qr) (lines 13-14) to be the same as the actual
behavior for the announced-code (Ps, Qs). The specification for the handlers (Pe, Qe)
is declared in line 15 and line 22 as (c ≥ 0, a′ > a + c).

In PtolemyRely we can prove our “increasing” property: that all handlers should
strictly increase the total amount of the bill. If a handler H is verified, it means that it
satisfies the (Pe, Qe) specification. In this case: Γ � {c ≥ 0}H{a′ > a + c}, which is
exactly what the “increasing” property demands.

Since there are registered handlers (line 5) the (RANNOUNCEHAS) rule applies.
It requires {Pr}S{Qr}, which holds in the announce expression in lines 6-8. The
postcondition in the consequent of this rule, Qe, corresponds in this case to a′ > a + c,
this immediately proves the assertion in line 9. To reason about invoke expressions
one should use the (RINVOKE) rule, that considers (Pe, Qe) and (Pr, Qr). In this case
it corresponds to the following:

Γ � {(c ≥ 0) ∧ (c ≥ 0)}next.invoke(){(a′ > a + c) ∨ (a′ = a + c)}

and this is equivalent to Γ � {c ≥ 0}next.invoke(){a′ ≥ a + c}
In this revisited version we adjusted ShippingHandler to meet the “increasing”

property (line 38). Both handlers refine the translucid contract, providing code (line 28
and 38) that correctly refines the specification expression in the contract (lines 18-19).
Also both, PaymentHandler and ShippingHandler, satisfy the handlers specification
(c ≥ 0, a′ > a + c). This can be shown as follows. Both increment the charges, c′ > c,
(line 28 and line 38) and then invoke the next handler. Considering this increment, and
the indicated postcondition of the invoke expression, we have (c′ > c)∧(a′ ≥ a+c′),
and from that we get (a′ > a+c), that shows that both handlers satisfy the specification.
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1 public class Base {
2 public void run(){
3 Bill bill=new Bill(100,8);
4 Bill old=new Bill(bill.a(),bill.c());
5 registerHandler();// Randomly register one handler
6 announce TotalingEvent(bill) { // event Qe : a′ ≥ a+ c
7 bill.setA(bill.a()+bill.c());// code Qs : a′ = a+ c
8 }
9 //assert bill.a()>old.a()+old.c(); //a′ > a+ c ??

10 } }
11

12 public void event TotalingEvent { // handlers: a′ ≥ a+ c
13 Bill bill;
14 requires (bill.c()>=0) // Pe: c ≥ 0
15 assumes{
16 // specification expr.: requires c ≥ 0 ensures c′ ≥ c
17 requires (next.bill().c()>=0)
18 ensures (next.bill().c()>=old(next.bill().c()));
19 next.invoke(); // control flow: proceed with next handler
20 }
21 ensures (bill.a()>=old(bill.a())+old(bill.c())) //Qe: a′ ≥ a+ c
22 }
23 public class PaymentHandler { // Payment Processing Fee Handler
24 public void handleTotaling(TotalingEvent next)throws Throwable{
25 refining requires (next.bill().c()>=0)
26 ensures (next.bill().c()>=old(next.bill().c())){
27 next.bill().setC(next.bill().c()+1); // c′ = c+ 1
28 }
29 next.invoke();
30 }
31 when TotalingEvent do handleTotaling;
32 public PaymentHandler(){ register(this); }
33 }
34 public class ShippingHandler { // Shipping Fee Handler
35 public void handleTotaling(TotalingEvent next)throws Throwable{
36 refining requires (next.bill().c()>=0)
37 ensures (next.bill().c()>=old(next.bill().c())){
38 next.bill().setC(next.bill().c()+0); //c′ = c+ 0 NO FEE NOW
39 }
40 next.invoke();
41 }
42 when TotalingEvent do handleTotaling;
43 public ShippingHandler(){ register(this); }
44 }

Fig. 9. Billing example revisited (PtolemyRely)

We have showed that the whole program is verified (announce expression and handlers),
that the “increasing” property can also be verified and that the assertion in line 9 can be
proved in PtolemyRely.
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3.4 Extension of Ptolemy

Our new approach extends Ptolemy’s, as stated in the following lemma.

Lemma 1. Let Prog be a program in Ptolemy and S be an expression of Prog. Let Γ be
a type environment that types S. Suppose Γ � {P}S{Q} is provable in Ptolemy. Then
there is a PtolemyRely program Prog′ in which Γ � {P}S{Q} is provable by the rules
for PtolemyRely.

Proof: The new program Prog′ in PtolemyRely is constructed by taking each event
declaration E declared in Prog, and producing a new event declaration E′ which is just
like E, except that a relies clause is inserted of the form

relies requires Pe ensuresQe

where (Pe, A, Qe) = ptolemySpec(E ). Then the rest of the proof proceeds by induc-
tion on the structure of S.

If S is not an invoke or announce expression, then the proof rules for Ptole-
myRely are the same as for Ptolemy, so there are only two interesting cases.

When S is an invoke expression of the form next.invoke() then, by hypoth-
esis, we have in Ptolemy’s proof system Γ � {P}next.invoke(){Q}. Thus by
the Ptolemy (INVOKE) rule, we must have Γ (next) = closure Evt, for some event
name Evt, where (P, A, Q) = ptolemySpec(Evt). By construction of Prog′, we have
(P, Q, P, A, Q) = eventSpec(Evt), so P plays the role of both Pe and Pr in Ptole-
myRely’s (RINVOKE) rule, and Q plays the role of both Qe and Qr in that rule. So
we have Γ � {P ∧ P}next.invoke(){Q ∨Q}. To do this we use the rule of con-
sequence in Hoare logic, since (P ∧ P ) ≡ P and (Q ∨ Q) ≡ Q, to get the desired
conclusion in the proof system for PtolemyRely.

When S is an announce expression of the form announce Evt(y) {S0}, then
using Ptolemy’s (ANNOUNCE) rule we have: Γ � {PEvt[y/x]}S{QEvt[y/x]}, and so
we also have Γ � {PEvt[y/x]}S0{QEvt[y/x]}, where Γ is the type environment for
expression S, (PEvt, A, QEvt) = ptolemySpec(Evt) and x : T = formals(Evt). Us-
ing PtolemyRely’s (RANNOUNCEHAS) or (RANNOUNCENONE) rules, we must prove
that: Γ � {PEvt[y/x]}S{QEvt[y/x]}. Since by construction of Prog′ we have that
(PEvt, QEvt, PEvt, A, QEvt) = eventSpec(Evt), then PEvt plays the role of Pe and
Pr, and QEvt plays the role of Qe and Qr, and so both rules allows us to immediately
prove the desired conclusion. One can apply whichever rule is appropriate, or a derived
rule with precondition PEvt[y/x]∧Pr[y/x] and postcondition QEvt[y/x]∨Qr[y/x],
and then use the rule of consequence.

4 Related Work

The original work on Ptolemy [12] addressed the problem of modular reasoning of
implicit invocation systems, like AO systems. Many other solutions have also been pro-
posed: XPIs [16], AAI [10], Open Modules [1,11], Join Point Types (JPT) [15] and
Joint Point Interfaces (JPI) [8,5,4]. In this work we call attention to the mutual depen-
dency that exists between the base code (subject) and the advising code (handlers). We
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enhanced Ptolemy’s event type specifications by clearly separating the obligations im-
posed on the handlers from the obligations of the announced code, in such a way that
both can be reasoned about modularly. Here we review how, if at all, this problem is
addressed in the other approaches and if our strategy can be applied to them.

Previous work [2] has shown how the translucid contract concept of Ptolemy can
be adapted to other approaches like XPIs, AAI and Open Modules; adding specifica-
tion and verification capability to them. All these approaches would benefit from our
enhancement to the translucid contract concept, in case they adopted it, as they would
become more complete and more flexible.

Steimann et al. [15] proposed an approach for dealing with Implicit Invocation and
Implicit Announcement (IIIA) based on Join Point Types and polymorphic pointcuts.
Ptolemy’s approach [3], which we extended in this work, is similar to the work of
Steimann et al. One important difference, though, is that Ptolemy does not support
implicit announcement. On the other hand, Steimann et al. do not treat the issue of
specification and verification, suggesting that one can “resort to an informal description
of the nature of the join points” [15, p. 9]. Nevertheless, since the IIIA joinpointtype
concept is very close to the event concept of Ptolemy, the translucid contract approach,
including our contribution, could be partially applied to join point types.

Joint Point Interfaces (JPI) [8,5] and Closure Joint Points [4] extend and refine the
notion of join point types of Steimann et al. JPI decouples aspects from base code and
provides modular type-checking. Implicit announcement is supported through point-
cuts, and explicit announcement through closure join points. JPI, similarly to JPT, lacks
specification and verification features. Thus, it could also benefit from the specification
and verification approach in Ptolemy and PtolemyRely.

Khatchadourian and Soundarajan [9] proposed an adaptation of the rely-guarantee
approach used in concurrency, to be applied in aspect orientation. The base code rea-
soning relies on certain constraints imposed on any applicable advice. These constraints
are expressed as a rely relation between two states. A conforming piece of advice may
only make changes to the state in a way that satisfies the rely relation. In this way the
reasoning of the base code is stable even in the presence of advice. The event pre-
postconditions (Pe, Qe) that Ptolemy imposes on every handler can be thought as a re-
alization of the rely relation: rely(σ1, σ2) ≡ Pe(σ1)∧Qe(σ1, σ2). As observed by those
authors, the relation between the base code and the advice is not symmetric, as it is in
the case of peer parallel processing. In their approach the base code should just guaran-
tee the preconditions required by the advice. PtolemyRely follows a similar strategy, in
which the base code guarantees (to the handlers) only the preconditions of the handlers.
Thus in PtolemyRely: guar(σ1, σ2) ≡ Pe(σ1). Our key observation in PtolemyRely
is that the advice code might depend on the piece of base code announced at a given
join point, which may be eventually invoked from inside the advice. In PtolemyRely
we take ideas from both approaches, Ptolemy and rely-guarantee, and declare, as part
of the event type, the conditions the advice code relies on, which corresponds to what
the base code should guarantee to every applicable advice.
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5 Conclusions and Future Work

When reasoning about event announcement in AO systems, there exists a mutual depen-
dency between the base code (subject) and the advising code (handlers). The approach
followed in systems like Ptolemy [3], where the same requires-ensures obligation is
applied to both the handlers and the announced code, limits the flexibility and the com-
pleteness of the system.

In this paper we showed an extension to the event type concept in the Ptolemy
language that explicitly separates the specification and verification of these obligations.
We implemented our proposal as an extension to the Ptolemy compiler and showed that
the resulting methodology is more flexible and complete than the original.

We also showed how to make the verification of the handlers more concise. Instead
of verifying each handler to satisfy the event pre-post specification, one can verify, once
and for all, the translucid contract of the event to satisfy this pre-post specification. Then
each handler can be verified to structurally refine this translucid contract. This indirectly
guarantees the required behavior of the handlers.

Previous work [2] has shown how the translucid contract concept of Ptolemy can be
adapted to other approaches like XPI, AAI and Open Modules; adding specification and
verification capability to them. Our work suggests that these approaches, and others like
JPT and JPI, would benefit from our enhancement to the translucid contract concept.

Since event subtyping has been recently proposed for Ptolemy [6], a natural future
extension to our work would be to apply the added relies clause in the presence of event
polymorphism, and to analyse its impact regarding modular reasoning. We also plan to
apply our approach to more complex cases, and also to use static checking techniques
in the verification process.
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Abstract. The optional feature problem in feature-oriented program-
ming is that implementing the interaction among features is difficult.
Either of the modules for the interacting features cannot contain the
code for the interaction if those features are optional. A modular ap-
proach for implementing such interaction is separating it into a module
called derivative. However, as the number of derivatives increases, it does
not scale. This paper shows how derivatives for combinations of features
from each group are efficiently implemented. A group of features are
implemented by using the inheritance of feature modules. A super fea-
ture module works as a common interface to members of that group. It
thereby allows to describe a generic derivative applicable for the groups.
This paper also presents a feature-oriented programming language, Fea-
tureGluonJ, which provides language constructs for this approach.

1 Feature-Oriented Programming

Feature-oriented programming (FOP) [26] is a programming paradigm where
source code is decomposed for each feature. Although it was originally an ap-
proach for implementing similar classes, it now refers to an approach for imple-
menting similar software products; such a family of products is called a software
product line (SPL). This allows developers by just selecting the features for that
necessary product.

In FOP, the code for each feature is separately described in a module called
a feature module. A feature module is a collaboration of the classes needed for
the feature and/or extensions to the classes belonging to other features. The
extensions can be aspects in AspectJ; advices can attach code for the feature
to existing code; inter-type declarations can add new fields to an existing class.
Several product lines such as the feature-oriented version of Berkeley DB [18]
and MobileMedia [30] have been developed in AspectJ. AHEAD Tool Suite [5]
has a language construct called a refinement for the same purpose. It enables
overriding existing methods and add fields from outside.

A challenge in FOP is the optional feature problem [21]. If multiple optional
features interact with each other, any of feature modules for those features should
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Fig. 1. The feature model of MobileMedia

not contain the code for the interaction since the code must be effective only
when those interacting features are selected. Although a possible approach is
separating such code into independent modules called derivatives [21,22], the
number of derivatives tends to be large as the numbers of features increases.

This paper proposes a design principle to reduce the effort in implementing
derivatives. A group of features are implemented by inheriting their common
super feature module. This module works as an interface common to its sub-
features and allows implementing a derivative in a reusable manner for every
combination of sub-features. To demonstrate this principle, we developed a new
FOP language, FeatureGluonJ, which provides a language construct called a
generic feature module for reusable implementation of derivative as well as a
feature-oriented module system supporting inheritance.

2 The Optional Feature Problem

This section explains a difficulty in feature-oriented decomposition known as the
optional feature problem [21,22]. We can see this problem in the MobileMedia
SPL. MobileMedia is a family of multimedia-management application for mobile
devices and widely used in the research community of SPLs. This paper uses the
six features taken from MobileMedia: MediaType, Photo, Music, Video, Copy, and
SMS in Fig. 1. The representation in Fig. 1 is called a feature-model diagram
[17]. In this diagram, a node represents a feature, and an edge represents depen-
dence between features. A feature-model diagram also represents constraints on
selecting a feature when building a product. A feature indicated by an edge end-
ing with a white circle is called an optional feature. Developers select features
from optional features to customize a product. If a feature is not selected for
the product, that feature is not implemented in the resulting product. In Fig. 1,
Photo, Music, and Video are children of MediaType. The arc drawn among the
children represents a or -relation and developers must select at least one feature
from them if their parent is selected. This paper considers such features as being
optional features as well.

In FOP, a feature should be implemented as an independent feature module.
If a feature is selected, the corresponding module is compiled together with other
selected feature modules. In case of the original MobileMedia implemented in
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AspectJ if a feature is selected, aspects belonging to the feature are compiled
and linked. If a feature is not selected for a product, its aspects do not affect the
product.

However, a group of optional features may interact [9] with another group.
Which feature module should implement that interaction? For example, the
Photo feature interact with the Copy feature in MobileMedia. If both features
are selected for a product, then the command for copying a photo is displayed
in the pull-up menu of the screen, i.e., window, showing that photo. This com-
mand should not be implemented in a feature module for Photo or Copy since
the command is not activated unless Copy is selected. It should not be in a
feature module for Copy since Copy may be selected without Photo. If so, the
Copy feature module must not add the command to the menu. No matter where
the command is implemented, Photo or Copy, the resulting code would cause
undesirable dependence among optional features and lower the variability of a
product line.

A more modular approach is to implement such interaction into an indepen-
dent module called a derivative. A derivative is a specialized feature module for
interaction, which is selected only when all interacting features are selected.4 A
derivative is described as a normal feature module. We show a derivative for the
combination of Photo and Copy in List. 1. This code is a part of the MobileMedia
Lancaster5, a MobileMedia implementation in AspectJ [12]. The CopyAndPhoto
aspect implements the derivative. It has an advice executed after a constructor
call for the PhotoViewScreen in order to add the command for copying a photo.

The scalability of derivatives is, however, still under discussion in the research
community. Suppose that n optional features interact with each other. Naively,
each of the 2n − n− 1 combination of features requires its own derivatives. The
composability may reduce the number of derivatives. The paper [26] advocates
that if developers provide lifters, which can be regarded as derivatives, for every
pair of interacting features, then the lifters for any combination of the features
can be composed by those lifters; the number of necessary lifters are thereby
1
2 (n2 − n). In practical product lines, although all features do not interact with
each other, a number of derivatives are still required. For example, in Berke-
ley DB refactored in FOP [18], 38 features have 53 dependencies, which must
be separated into derivatives. The paper [20] concludes that the difficulty in
implementing features is mainly due to the interaction among the features.

Note that feature interaction is often observed between feature groups. Sup-
pose that two feature groups have n and m features. If a feature from one group
interact with one from the other, other pairs between the two groups will also
interact with each other due to the similarity of features. Such interaction will
require n×m derivatives in total. Furthermore, these derivatives will be similar

4 In the original definition in [22], a derivative is a refinement of a method introduced
by another feature module.

5 We show simplified code for explanation. The original code is available from:
http://mobilemedia.sourceforge.net/.

http://mobilemedia.sourceforge.net/
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public aspect CopyAndPhoto {
after(Image image) returning (PhotoViewScreen f):

call(PhotoViewScreen.new(Image)) && args(image); {
f.addCommand(new Command("Copy", Command.ITEM, 1));

}}
(a) CopyAndPhoto.aj

................................................................................................................
public aspect CopyAndMusic {

pointcut initForm(PlayMediaScreen mediaScreen):
execution(void PlayMediaScreen.initForm()) && this(mediaScreen);

before(PlayMediaScreen mediaScreen): initForm(mediaScreen) {
mediaScreen.form.addCommand(new Command("Copy", Command.ITEM, 1));

}}
(b) CopyAndMusic.aj

List. 1. The derivatives for Copy and Photo/Music written in AspectJ

to each other. They are redundant and should be merged into a single or only a
few derivatives.

A group is often represented by a parent-children relation in a feature-model
diagram. In Fig. 1, MobileMedia contains a group consisting of Photo, Music,
and Video. We call this group the MediaType group named after the parent
node. There is another group that the developers of the original MobileMedia
did not recognize. It is a group consisting of Copy and SMS, which enable the
users to send a photo shown on the screen by SMS. The two groups involve
close interaction. Copy interacts with Music as well as Photo. The derivative for
Copy and Music in List. 1 (b) is similar to CopyPhoto in List. 1 (a). SMS also
interacts with Photo, Music and Video6; if these features are selected, a command
to send each medium must be added to the menu. Thus, MobileMedia requires
6 derivatives for the two groups.

The MediaType group is an extension point of MobileMedia. One of the goal
of FOP is step-wise, i.e. incremental, development of large-scale software [5],
and hence one of realistic development scenarios is adding a new media type
as a new feature. Suppose that developers add plain-text documents as a new
medium. Then they will have to implement derivatives for the combination of
the plain-text feature and Copy and SMS. The effort to implement derivatives
will increase as the size of the product line grows up.

In this paper, the optional feature problem means not only the difficulty
in separating feature interaction but also the maintainability problem due to a
huge number of derivatives. This paper addresses this optional feature problem
by reducing redundancy of derivatives among feature groups. The interactions
discussed in this paper are intended ones. Although there are unintended in-
teractions caused by unanticipated advice conflicts, for example, at shared join
points [1], discussing unintended interactions is out of scope of this paper.

6 The original MobileMedia does not support to send a music or a video by SMS. It
is not clear that this limitation is caused by the optional feature problem.



Implementing Feature Interactions with Generic Feature Modules 85

Fig. 2. An overview of feature modules consisting MobileMedia in FeatureGluonJ

3 Implementing Feature Interactions in FeatureGluonJ

Our feature-oriented programming language named FeatureGluonJ 7 provides
language constructs to reduce redundancy of derivatives among feature groups.
FeatureGluonJ is an extension of GluonJ [10], which is a aspect-oriented lan-
guage based on Java. While GluonJ adds a new language construct called reviser
to Java as a construct like AspectJ’s advice. FeatureGluonJ also adds a generic
feature module as a feature-oriented module system.

First, FeatureGluonJ provides an inheritance mechanism for feature modules.
Features often make is-a relations [16]. In MobileMedia, the Photo feature is a
MediaType feature. Thus, in FeatureGluonJ, the Photo feature module, which is
the implementation of Photo, is a sub feature module of MediaType as shown in
Fig. 2. It can not only add new classes but also redefine the classes contained
in the MediaType feature module. The MediaType feature module works as a
common interface to this feature group including Photo and Music. The inter-
face represents which classes are commonly available in the feature group. This
inheritance mechanism is not novel; it is provided by Caesar [24,25], CaesarJ
[4], and Object Teams [14,16]. However, they are not studied in the context of
modularity of feature modules [20,29]; this paper focuses on how to use this
inheritance mechanism to efficiently implement derivatives.

Another unique mechanism in FeatureGluonJ is a generic feature module. It
is a feature module taking feature modules as parameters. Suppose that there are
two feature modules. Then the derivatives for combinations of their sub feature
modules are often almost identical. For example, in Fig. 2, the derivative for
Photo and Copy is almost identical to the derivative for Music and SMS since
they are for combinations between MediaType and MediaOperation. A generic
feature module enables to describe such derivatives in a generic manner by using
the interfaces specified by MediaType and MediaOperation. Note that the task
of a typical derivative is to modify the classes in the feature modules that the
7 The FeatureGluonJ compiler is available from:
http://www.csg.ci.i.u-tokyo.ac.jp/projects/fgj/

http://www.csg.ci.i.u-tokyo.ac.jp/projects/fgj/


86 F. Takeyama and S. Chiba

derivative works for. These classes are often ones specified by the interfaces of
the super feature modules such as MediaType and MediaOperation.

3.1 FeatureGluonJ

This section describes the overview of FeatureGluonJ to show how developers
can implement an SPL8. FeatureGluonJ provides a module system called fea-
ture modules. A feature module implements a feature and a derivative. It is
represented by two constructs, a feature definition and a feature declaration. A
feature definition is described in a separated file, and it defines a feature name
and its relation to other features. List. 2 (a) defines the MediaType feature, which
is an abstract feature for other features that are to support a media type. The
body of this feature is empty in this example, but it may contain import feature
declarations, as shown later.

A feature declaration is similar to a package declaration in Java. It is placed
at the beginning of a source file and specifies that the classes and revisers in
that source file belong to the feature modules. For example, the second lines of
the List. 2 (b)–(e) are feature declarations. They declare that those three classes
and a reviser belong to the MediaType feature. Note that each class declaration
is separated into an independent file.

An abstract feature may represent a group made by is-a relationships; a
sub feature module of that abstract module defines a feature belonging to that
group. Here, the Photo feature module is a sub-feature of MediaType, which
is specified in the extends clause in List. 3 (a). Photo reuses the model-view-
controller relation defined in MediaType.

After compilation of each feature, developers select feature modules needed
for a product. Only the selected feature modules are linked together and included
in the product. Which features are selected is given at link time. Note that they
cannot select abstract features. If an abstract feature module like MediaType
must be included in a product, the developers must select a sub-feature of that
abstract feature.

To implement feature modules, FeatureGluonJ provides three kinds of class-
extension mechanisms: subclasses, virtual classes, and revisers. The difference of
those mechanisms is the range of effects. The first one is a normal subclass in
Java and affects in the narrowest range. The extended behavior takes effect only
when that subclass is explicitly instantiated.

The next class extension mechanism is virtual class overriding [23,11]. Vir-
tual classes enable to reuse a family of classes that refer to each other through
their fields or new expressions. All classes in a feature module are virtualized in
FeatureGluonJ; a reference to a virtual class is late-bound. A sub feature mod-
ule can implement a virtual class extending a virtual class in its super-feature.
It overrides the virtual class in the super-feature with the new class, i.e., class

8 We cannot describe all of the semantics of our language in detail due to the space
limitation. Knowledge on virtual classes and other languages with inheritance for
feature module will help to read this section.
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abstract feature MediaType {
// MediaType has an empty body.

}
(a) MediaType.feature

................................................................................................................
package mobilemedia.controller;
feature MediaType;
import javax.microedition.lcdui.*;
import mobilemedia.ui.*;

public abstract class MediaController {
protected boolean handleCommand(Command command) {

if (command == OPEN) {
open(getSelected());
return true;

} else if (...) { ... }
}

protected void open(String s) {
MediaListScreen scr = new MediaViewScreenScreen(s)
scr.setCommandListener(this);
Display.setCurrent(scr);

}}
(b) MediaController.java

................................................................................................................
package mobilemedia.ui;
feature MediaType;
import javax.microedition.lcdui.*;

public abstract class MediaViewScreen extends Canvas {
protected void initScreen() {

this.add(new Command("Close"));
}}

(c) MediaViewScreen.java
................................................................................................................
package mobilemedia.ui;
feature MediaType;
import javax.microedition.lcdui.*;

public class MediaListScreen extends List {
// forward command to controller if an item is selected

}
(d) MediaListScreen.java

................................................................................................................
package mobilemedia.main;
feature MediaType;
import mobilemedia.ui.MediaListScreen;
import mobilemedia.controller.MediaController;

class MediaTypeInitializer revises Application {
private MediaListScreen screen;
private MediaController controller;
public void startApp() {

controller = new MediaController();
screen = new MediaListScreen(controller);
super.startApp();

}}
(e) MediaTypeInitializer.java

................................................................................................................
package mobilemedia.main;

public class Application {
public static void main() {

Application app = new Application();
app.startApp();

}

public void startApp() { // initializing this MobileMedia application }
}

(f) Application.java

List. 2. The MediaType feature module and the Application class, which has program
entry point
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feature Photo extends MediaType {}
(a) Photo.feature

................................................................................................................
feature Photo;
package mobilemedia.ui;
import javax.microedition.lcdui.*;

public class PhotoViewScreen overrides MediaViewScreen {
public PhotoViewScreen(String s) {

// : load selected image
}
protected void paint(Graphics g) {

// : draw the selected photo on this screen.
}}

(b) PhotoViewScreen.java

List. 3. The Photo feature in FeatureGluonJ

references to the overridden class is replaced with one to the new class. Virtual
class overriding is effective only within the enclosing feature module, which in-
cludes its super-feature module executed as a part of the sub-feature. It does
not affect new expressions in the siblings of the sub-feature.

The syntax of virtual classes in FeatureGluonJ is different from other lan-
guages. To override a virtual class, developers must give a unique name to the
new virtual class instead of the same name as the overridden class.9 List. 3 (b)
shows the PhotoViewScreen class that overrides MediaViewScreen of MediaType.
An overridden class is specified by an overrides clause, placed in the position of
an extends clause. Another difference in syntax is that virtual classes cannot be
syntactically nested, as separated into each class to a single file.

We adopt lightweight family polymorphism [27] to make the semantics and
the type system simple by avoiding dependent types. A feature module cannot
be instantiated dynamically. It can be regarded as a singleton object instantiated
when it is selected at link time.

The third mechanism is a reviser [10]. A reviser can extend any class in a
product; the extended behavior affects globally.10 A reviser plays a similar role
to the one of aspect in AspectJ; its code overrides classes appearing in any other
feature module. The class-like mechanism with a keyword revises in List. 2 (e) is
a reviser. The reviser has the startApp() method, which replaces the startApp()
method in the class specified in its revises clause, i.e., the Application class in
List. 2 (f). Whenever the startApp() method is called on an Application object,
the reviser’s startApp() method is first executed. By calling super.startApp(), the
replaced method is executed. A reviser can also add new fields to an existing
class. The reviser in List. 2 (e) adds the two fields, screen and controller, to the
Application class.

Revisers in a feature module are also virtualized. A feature module derives
revisers as well as virtual classes from its super-feature to reuse structure made
by revisers and classes defined there. The Photo feature module in List. 3 does
not contain any classes and revisers except the PhotoViewScreen class, but it also

9 Programmers can give the same name by implementing them in a different package.
10 GluonJ does not support global modification defined in [3].
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feature Music extends MediaType {}
(a) Music.feature

................................................................................................................
feature Music;
package mobilemedia.ui;
import javax.microedition.lcdui.*;

public class PlayMediaScreen overrides MediaViewScreen {
public PlayMediaScreen(String s) {

// : load selected image
}
protected void paint(Graphics g) {

// : draw music player
}}

(b) PlayMediaScreen.java

List. 4. The Music feature module in FeatureGluonJ

derives virtual classes such as MediaController and the MediaTypeInitializer reviser
from MediaType (Fig. 2). A reviser will be executed only if a feature enclosing or
deriving that reviser is selected. If Photo is selected, MediaTypeInitializer derived
by the Photo is executed in the context of Photo. Within this MediaTypeInitializer,
new MediaListScreen(. . . ) will create an object of the class derived by Photo. The
expression new MediaViewScreen() in List. 2 (b) on that object will instantiate
PhotoViewScreen. The MediaTypeInitializer reviser might be derived by siblings
of Photo. Suppose the Music feature module in List. 4 is implemented in the
same way as the Photo. If both Photo and Music are selected, two copies of
MediaTypeInitializer will be executed in the startApp() method but in different
contexts.

These class extension mechanisms provided by FeatureGluonJ are an ab-
straction of the factory method pattern. For virtual-class overriding, each se-
lected feature has its own factory. It receives a name of virtual class and returns
an object of the class overriding the given class. Every new expression can be
considered as a factory method call. Each virtual class has a reference to such
factories. When a factory creates an object, it assigns itself to the object. A fac-
tory used in a reviser is given by the linker when its feature module is selected.
This factory is one used for virtual classes in the feature module containing or
deriving that reviser.

A reviser, on the other hand, can be emulated by a factory shared among all
the classes in a product. If a class given to a new expression is not a virtual class,
the global factory will create an object. This global factory is also used inside
of a factory for each feature. Note that it is unrealistic to manually implement
factory methods for every class. Moreover, a factory method pattern degrades
type safety.

3.2 Derivatives in FeatureGluonJ

FeatureGluonJ provides two other constructs for referring to virtual classes in
other modules. One is import feature declarations. To make coupling of other
features explicit, developers have to declare the features required in a derivative
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feature CopyPhoto {
import feature c: Copy;
import feature f: Photo;

}
(a) CopyPhoto.feature

................................................................................................................
package mobilemedia.copy;
feature CopyPhoto;
import mobilemedia.ui.*;

class AddCopyToPhoto revises f::PhotoViewScreen {
protected void initScreen() {

super.initScreen();
this.addCommand(new c::CopyCommand());

}}
(b) AddCopyToPhoto.java

List. 5. The derivative between Copy and Photo rewritten from List. 1

by import feature declarations. These declarations just open the visibility scope to
virtual classes of imported features. Note that when a feature module with import
feature is selected, the imported features are also selected. Since an abstract
feature module is never selected, it cannot be imported.

An import feature declaration is described in the body of a feature declara-
tion. List. 5 (a) contains two import feature declarations. An identifier after a
colon indicates a feature module used in this module. The left one before the
colon is an alias to the imported feature module. Then a feature-qualified ac-
cess is available as a reference to a virtual class of the imported feature module.
The access is represented by a :: operator. The left of :: must be an alias de-
clared in the feature module and the right of :: is the name of a virtual class
in the feature module expressed by the alias. For example, List. 5 implements
a derivative straightforwardly rewritten from List. 1. In the AddCopyToPhoto,
p::PhotoViewScreen refers to the PhotoViewScreen class in the Photo feature since
p is an alias of Photo. The reviser extends PhotoViewScreen and adds a command
for copying a medium, which is now represented by the CopyCommand class in
the Copy feature module shown in List. 6 (c) and (d).

The reason FeatureGluonJ enforces programmers to use feature-qualified ac-
cess is that multiple feature modules may contain virtual classes with the same
name if they extend the same module. For example, both of Photo and Music con-
tains the MediaController class derived from MediaType, which are distinguished
by aliases.

3.3 Generic Feature Modules

We found that if features are implemented by a feature module with an appropri-
ate interface, most derivatives can be implemented by a special feature module
that takes the name of required sub-features as parameters. FeatureGluonJ pro-
vides a generic feature module, which is a reusable feature module to implement
derivatives among features extending common feature modules. The Copy feature
and the SMS feature, which is not shown but implemented in the same way in
List. 6, are sub feature modules of MediaOperation in List. 6 (a) and (b). Now the
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abstract feature MediaOperation {}
(a) MediaOperation.java

................................................................................................................
package mobilemedia.ui;
feature MediaOperation;
import javax.microedition.lcdui.Command;

public abstract class MediaOperationCommand extends Command {
public MediaOperationCommand(String labelText) {

super(labelText, ...);
}}

(b) MediaOperationCommand.java
................................................................................................................
feature Copy extends MediaOperation {}

(c) Copy.feature
................................................................................................................
package mobilemedia.ui;
feature Copy;

public class CopyCommand overrides MediaOperationCommand {
public CopyCommand(String labelText) {

super(labelText);
}}

(d) CopyCommand.java
................................................................................................................
package mobilemedia.controller;
feature Copy;
import mobilemedia.ui.*;

public class CopyController revises MediaController {
protected boolean handleCommand(Command command) {

if (command instanceof CopyCommand) {
:

} else { return super.handleCommand(); }
}}

(e) CopyController.java

List. 6. The Copy feature module implemented by extending the MediaOperation

generic derivative among sub-features of MediaOperation and MediaType takes
sub-features of those modules as parameters and behaves for a derivative among
the given features.

A generic feature module is represented by an abstract feature module. It may
contains import feature declarations with an abstract keyword. An alias defined
by this abstract import feature works as a parameter; the alias is late-bound to
a concrete module, which must be a sub-feature of one apparently assigned to
the alias. An abstract import feature may import an abstract feature module.
List. 7 shows a generic feature modules for derivatives between sub-features
of MediaType and MediaOperation. The generic feature modules contains two
abstract import declarations that import FileOperation and MediaType with the
aliases, t and o, respectively.

The AddCommandToMediaType reviser in List. 7 (b) is almost the same to
AddCopyToPhoto expecting for the specific parts to Copy and Photo. The reviser
extends a class indicated by t::MediaViewScreen and adds command indicated
by o::MediaOperationCommand. Since t and o must be bound to sub-features of
the imported features, it is ensured that they provide virtual classes overriding
MediaOperationCommand and MediaViewScreen. If those aliases are bound to
Copy and Photo, this reviser is semantically the same as AddCopyToPhoto.
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feature MediaOperationMediaType {
abstract import feature o: MediaOperation;
abstract import feature t: MediaType;

}
(a) MediaOperationMediaType.java

................................................................................................................
package mobilemedia.mediaop;
feature MediaOperationMediaType;
import mobilemedia.ui.*;

class AddCommandToMediaType revises t::MediaViewScreen {
protected void initForm() {

super.initForm();
this.addCommand(new o::MediaOpCommand());

}}
(b) AddCommandToMediaType.java

List. 7. A generic derivative implementing common part of derivatives among Media-
Operation and MediaType

feature CopyPhoto extends MediaTypeFileOp {
import feature o: Copy;
import feature t: Photo;

}

List. 8. Another derivative for Copy and Photo extending the generic derivative

A feature module can extend a generic feature module and bound aliases declared
in its super-feature to concrete feature modules. If a feature module imports
another feature module with the same alias as one used in its super-feature, the
alias is bound to that feature module also in the super-feature. Suppose another
implementation of the CopyPhoto feature module, which is implemented by in
List. 8 by extending the generic feature module in List. 7. It assigns o and t to
Copy and Photo respectively.

3.4 A Composition Language for Trivial Feature Modules

If each interacting feature is properly implemented, a derivative may not contain
its own reviser nor class; we call such derivative is trivial. The derivatives among
MediaType and MediaOperation including CopyPhoto in List. 8 are trivial. This is
because operations such as copying a medium or sending it by SMS are reduced
to operations against streams of bytes.

FeatureGluonJ also provides a composition language to define such trivial
derivatives implicitly. It includes a construct defines forevery. If our linker in-
terprets a feature module with defines forevery, it defines sub-features of this
derivative automatically at linking time. defines forevery receives one or more
aliases to feature modules. If the given alias is declared in an abstract import
feature, it represents a set of its sub-features that are selected for the linker.
The linker will define and select sub feature modules for every combination
from each given set. Let a1, a2, .., an be aliases given to the defines forevery and
Si = {f |f ∈ Sub(ai) ∩ f is selected} where Sub(a) is a function returning the



Implementing Feature Interactions with Generic Feature Modules 93

feature MediaOperationMediaType defines forevery(o, t) {
abstract import feature o: MediaOperation;
abstract import feature t: MediaType;

}
(a) MediaTypeFileOp.java

................................................................................................................
package mobilemedia.mediaop;
feature MediaOperationMediaType;
import mobilemedia.ui.*;

class AddCommandToMediaType revises t::MediaViewScreen {
protected void initForm() {

super.initForm();
this.addCommand(new o::MediaOpCommand());

}}
(b) AddCommandToMediaType.java

List. 9. Our final version of derivatives among MediaOperation and MediaType by
defines forevery

set of the sub-features that might be bound to a. A sub-derivative is created for
each element of S1 × S2 × . . .× Sn. If a is an alias of a concrete feature, Sub(a)
returns the set containing the concrete feature only.

List. 9 shows derivatives for sub-features of MediaOperation and MediaType
including derivative between Copy and Photo. The defines forevery clause allows
programmers to omit concrete feature modules such as one in List. 8. Even when
developers add a new feature for a new media type, they would not implement
new derivatives if this generic derivative is applicable for the new feature. Other-
wise, programmers would implement extra behavior for the specific combinations
of feature modules as a new derivative.

3.5 Discussion

We discuss on the limitations of our language. Unfortunately, all derivatives do
not become trivial after refactoring. Some derivatives are essential, which must
be implemented manually. We can find essential derivatives in the expression
product line [20]. Derivatives among a feature for an operator and feature for
evaluating expressions is unique to each combination of features. If the feature
has redundant parts, FeatureGluonJ allows to reuse it with a generic-feature
module.

Although inheritance allow us to implement generic derivatives, it may cause
extra effort to implement an SPL. We introduced the common super class be-
tween PhotoViewScreen and PlayMediaScreen. As shown in List. 1 (a) and (b),
the original derivative uses different methods to add their commands to the
menus; in Photo, it is the constructor of PhotoViewScreen, but in Music, it is the
initForm() method. We add the common super class MediaViewScreen and its
initScreen() method in List. 2 (c) to unify those methods among both features.
We also defines Copy and SMS by extending MediaOperationCommand to make
the derivatives trivial. The implementations of these feature modules are in a
sense composition aware.
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Our observation is that whether or not we should implement each feature
considering composition is a design decision. The MediaType group and the Me-
diaOperation group are extension points; in other words, a new feature will be
added to these groups in the future. The cost of making these features compos-
able is much lower than a large number of derivatives.

4 Related Work

Most of feature-oriented approaches such as AHEAD Tool Suite [5] are based
on the idea that a feature is represented as a layer, and a product is linearly
stacked layers [7]. FeatureGluonJ and other language with inheritance of feature
modules allows to reuse a feature modules including a derivative multiple times
in different contexts. ClassBox/J [8] can emulate virtual-classes by refinement
and a scope mechanism to control the effects of refinements. Aspectual Mixin
Layers [2] provide refinements for modifying advices and pointcuts of aspects
defined in other feature modules. However, those languages also do not support
to execute such refinements or aspects in different contexts to reuse them.

Delta-oriented programming [28] is a language paradigm where a product is
composed of delta modules unique to it. A delta module can modify existing
classes as a reviser can. A delta module has a conditional expression specifying
when it is applied. Although a derivative is represented by a delta module applied
when several features are selected together, delta-oriented programming does not
provide mechanisms to reduce the number of delta modules for combinations
among groups. We believe that it cannot solve the optional feature problem in
this paper.

Caesar [24], CaesarJ [4] are Java-based language supporting both virtual
classes and advices from AspectJ. Object Teams [14] is also a language based on
Java and provides teams consisting of virtual classes. A virtual class in Object
Teams is called a role class and programmers can extend another class so that
it plays the role, i.e., behaves as the role class defines. Callin binding in Object
Teams allows to transfer method call on the extended class, to the role class. In
those languages, virtual classes with advices or role classes are also derived from
the super-feature like virtual revisers in FeatureGluonJ.

The difference from those languages is language support for generic deriva-
tives. Object Teams provides a dependent team, which behaves polymorphically
depending on a given instance of a team. The origin of the dependent team is a
dependent class [13]. Dependent revisers could be as expressive as our languages.
However current specification of Object Teams [15] does not allow teams depen-
dent to multiple teams. Dependent teams hence cannot be used for derivatives
among groups. Those languages may allow to demonstrate our design principle
by first class objects of features, but it requires boilerplate code for each product.

In annotation based approaches for SPLs, code regions implementing a fea-
ture is annotated with syntactical blocks, #ifdef and #endif, or a color in CIDE
[19]. An interaction is indicated by an intersection of these regions [6]. Although
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this representation of interactions is more intuitive than a derivative, reusability
of code for the interactions is not clear.

5 Conclusion

In this paper, we have shown how derivatives among feature groups are im-
plemented efficiently in FeatureGluonJ. Firstly, designing feature modules hi-
erarchically makes features modular and important for implementing deriva-
tives. FeatureGluonJ facilitates to implement generic derivatives among feature
groups represented by the inheritance. Such derivatives are written by using
super-features as interfaces.

Our future work includes formal definition of semantics of FeatureGluonJ.
FeatureGluonJ is based on GluonJ and light-weight family polymorphism which
have formal definitions to prove they are mostly modular and type safe, respec-
tively. The definition of our language will be valuable to show that it derives
those properties. Real evaluation of our language requires more SPLs described
in FeatureGluonJ.
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Abstract. Business Process Modelling Notation (BPMN) intends to
bridge the gap between business process design and implementation.
Previously we provided a process semantics to a subset of BPMN in the
language of Communicating Sequential Processes (CSP). This semantics
allows developers to formally analyse and compare BPMN diagrams us-
ing CSP’s traces and failures refinements. In this paper we introduce a
comprehensive set of operations for constructing BPMN diagrams, pro-
vide them a CSP semantics, and characterise the conditions under which
the operations are monotonic with respect to CSP refinements, thereby
allowing compositional development of business processes.

1 Introduction

Modelling of business processes and workflows is an important area in software
engineering. Business Process Modelling Notation (BPMN) [8] allows developers
to take a process-oriented approach to modelling of systems. There are currently
over seventy implementations of the notation, but the notation specification
does not have a formal behavioural semantics, which we believe to be crucial in
behavioural specification and verification activities. Previously a process seman-
tics [12] has been given for a large subset of BPMN in the language of Commu-
nicating Sequential Processes (CSP) [10]. This semantics maps BPMN diagrams
to finite state CSP processes. Using this semantics, the behaviour expressed
in BPMN can be formally verified and BPMN diagrams can be behaviourally
compared. Verification and comparison are expressed as CSP traces and failures
refinements. Refinements of finite state CSP processes can be automatically ver-
ified using a model checker like FDR [4].

1.1 Monotonicity and Refinement

One major problem of verifying concurrent systems by model checking is po-
tential state explosion. To alleviate this one can exploit compositionality. Our
constribution is to introduce a comprehensive set of operations to incrementally
construct BPMN diagrams. We provide these operations with a CSP semantics,
and characterise the conditions under which the operations are monotonic with
respect to CSP refinements. These operations are partitioned into the following
∗
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categories: sequential composition, split, join, iteration, exception and collabo-
ration.

The combination of monotonicity and refinement allows one to construct and
verify behavioural correctness of large complex systems compositionally. Infor-
mally, for any two BPMN diagrams C and D , D 
 C denotes C is a refinement
of D . We let f (.) be an operation over BPMN diagrams. If f (.) is monotonic
with respect to the refinement, then by construction f (D) 
 f (C ) ⇔ D 
 C for
all BPMN diagrams C and D . As a result we can incrementally increase the
complexity of C and D using the proposed operations without needing further
verification.

Moreover, monotonic operations preserve refinement-closed properties. A re-
lation ⊕ is refinement-closed if and only if for all BPMN diagrams P and Q such
that if P ⊕Q , then it is the case that P ′⊕Q ′ for all P 
 P ′ and Q 
 Q ′. One im-
portant refinement-closed property is the behavioural compatibility, compatible,
between BPMN pools [11,13]. Given two BPMN pools P and Q , compatible(P ,Q)

if and only if P and Q are deadlock free and that their collaboration is dead-
lock free. If we let f (.) be a monotonic operation over BPMN diagrams and
compatible(f (C ), f (D)), then by construction compatible(f (C ′), f (D ′)) for all C ′ and
D ′ such that C 
 C ′ and D 
 D ′. As a result we may use the proposed operations
to perform independent development while maintaining any refinement-closed
properties.

1.2 Structure

This paper begins with a brief introduction to Z and CSP in Section 2, and then
an overview of the abstract syntax of BPMN in Z and its behavioural semantics
in Section 3. Our contribution starts in Section 4: in this section we introduce
a set of operations to construct BPMN diagrams and provide them with a CSP
semantics. Using this semantics, we characterise the conditions under which
these operations are monotonic with respect to CSP refinements. We conclude
this paper with a discussion on related work and a summary.

2 Preliminaries

Z The Z notation [14] is a language for state-based specification. It is based
on typed set theory with a structuring mechanism: the schema. We write some
schema N to make declaration d that satisfies constraint p as N =̂ [d | p].
Z provides a syntax for set expressions, predicates and definitions. Types can
either be basic types, maximal sets within the specification, each defined by
simply declaring its name [Type], or be free types, introduced by identifying each
of the distinct members, introducing each element by name Type ::= E0 | ... | En .
By using an axiomatic definition we can introduce a new symbol x , an element
of S , satisfying constraint p.

x : S

p
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CSP In CSP [10], a process is a pattern of behaviour, denoted by events. Below
is the syntax of the subset of CSP used in this paper.

P ,Q ::= P ||| Q | P |[A ]|Q | P |[A |B ]|Q | P � Q | P  Q | P o
9 Q | e → P | Skip | Stop

Given processes P and Q , P ||| Q denotes the interleaving of P and Q ; P |[A ]| Q
denotes the partial interleaving of P and Q synchronising events in set A; P |[A |
B ]| Q denotes parallel composition, in which P and Q can evolve independently
performing events from A and B respectively but synchronise on events in their
intersection A ∩ B ; we write ‖ i : I • A(i) ◦ P(i) to denote an indexed parallel
combination of processes P(i) for i ranging over I . P � Q denotes the external
choice between P and Q ; P  Q denotes the internal choice between P or Q ;
P o

9 Q denotes the sequential composition of P and Q ; e → P denotes a process
that is capable of performing event e, and then behaves as P . The process Stop

is a deadlocked process and the process Skip is a successful termination. One
of CSP’s semantic models is the stable failures (F) The stable failures model
records the failures of processes. We write traces(P) and failures(P) to denote the
traces and the failures of process P . A failure is a pair (s,X ) ∈ failures(P) where
s ∈ traces(P) is the trace of P and X is the set of events of P refuses to do after s.
CSP semantics admit refinement orderings such as the stable failures refinement
P 
F Q ⇔ traces(P) ⊇ traces(Q) ∧ failures(P) ⊇ failures(Q). Refinement under
the stable failures model allows assertions about a system’s safety and availability
properties.

3 Formalising BPMN

A BPMN diagram is made up of a collection of BPMN elements. Elements can
either be events, tasks, subprocesses or control gateways. Elements are grouped
in pools. A pool represents a participant in a business process; a participant may
be an entity such as a company. Elements in a pool are connected by sequence
flows to depict their flow of control in the pool, A BPMN diagram is a collection
of pools in which elements between pools may be connected by message flows to
depict the flow of messages between pools.

As a running example we consider the BPMN diagram shown in Fig. 1.
The diagram describes the business process of an online shop promoting a sale.
Specifically, it is a business collaboration between an online shop and a customer,
depicted by two pools. The online shop business process begins by sending a
message to the customer about a sale offer. This is modelled as a message flow
from the task named Send Offer to the message event. The business process then
waits until it receives either a confirmation or a decline from the customer. This
decision waiting is modelled using the event-based exclusive-or gateway from
the Send Offer task to the tasks Receive Confirmation and Receive Decline. If
a decline is received, the online shop business process ends. If a confirmation is
received, the online shop receives payment from the customer, sends the invoice
and dispatches the goods to her. The customer’s business process begins by
receiving a message from the online shop about a certain promotion item. She
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Fig. 1. A running example of a BPMN diagram

may either accept or decline the offer. The decision is modelled using the data-
based exclusive-or gateway from the message event to the tasks Decline Offer and
Accept Offer. If she decides to accept the offer, she sends payment to the shop,
modelled by task Send Payment, then waits for her offer. This is modelled as a
subprocess Receive Offer consisting of two tasks: The task Receive Goods models
the receiving of goods, while Receive Invoice models the receiving of the invoice.
Note these activities may happen in either order and this is modelled using a
parallel gateway to both tasks. If she declines the offer, the business process ends.

We now give an overview of BPMN’s abstract syntax in Z and its semantics
in CSP. For brevity, we highlight only the most important aspects of the syntax
and semantics. The complete formalisation of the syntax and semantics can be
found in the author’s thesis [11, Chapters 4, 5].

In the abstract syntax we let basic types Sflow and Mflow be types of sequence
flows and message flows, and TaskName be the type of task names; we use the
free type Type ::= start | end | ... to record the type of an element. The free type
Element ::= atom〈〈Atom〉〉 | comp〈〈Atom × F1 Element〉〉 then records individual
BPMN elements, where schema Atom =̂ [t : Type; in, ou : F Sflow ; sn, re : FMflow |
in ∩ ou = ∅ ∧ sn ∩ re = ∅] records the type, the sequence flows and the message
flows of an element.

We define schema Pool =̂ [proc : F1 Element ] to record individual pools, it
defines component proc to record a non-empty finite set of BPMN elements con-
tained in a pool; note that for brevity we have omitted the specification of pred-
icate constraints on that component. We define InitPool =̂ [proc′ : F1 Element |
proc′ = {se, ee}] to be the initial state of Pool , where se is a start event and ee is an
end event such that (atom∼se).ou = (atom∼ee).in. We also specify the structure
of a BPMN diagram using the schema Diagram =̂ [pool : PoolId �� Pool | pool �= ∅].
It states that a diagram consists of one or more BPMN pools, with each pool
being uniquely identified by some PoolId value i such that pool(i) gives that
pool (where PoolId is a basic type). Similar to Pool , we define InitDiagram =̂

[pool ′ : PoolId �� Pool | pool ′ = {p1 �→ 〈proc � {se, ee}〉}] to be the initial state of
Diagram, where p1 is a PoolId .
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We define the semantic function bToc that takes a BPMN diagram and re-
turns a CSP process that models communications between elements in that
diagram. We present the semantic definition in a bottom up manner, starting
with individual BPMN elements.

We first define function aToc to model atomic elements, that is, events, tasks
and gateways. The function defines the behaviour of the elements by sequentially
composing the processes that model the element’s incoming sequence flows and
message flows, the element’s type and the element’s outgoing sequence flows and
message flows. Note that other than start and end events, aToc models other
atomic elements as recursive processes.

aToc : Element �→ CSP

Our semantics models the communications between elements as a parallel combi-
nation of processes, each modelling the behaviour of an element. Our semantics
ensures that upon an end event being triggered, the containing BPMN process
may terminate if its contained elements can also terminate. This is achieved by
insisting that each end event performs a completion event, and that all other
elements may synchronise on one of these completion events to terminate.

cp : (FElement × Element) → CSP

The function cp defines the execution of a BPMN element as follows: for an
atomic element, cp applies function aToc, and for a compound element, cp ap-
plies function mToc; function mToc defines the sequential composition of these
processes: the CSP process that models the incoming sequence flows of the com-
pound element; the parallel composition of processes, each modelling an element
contained in the compound element, and the CSP process that models the out-
going sequence flows of the element.

mToc : CSP × FElement × CSP → CSP

A BPMN diagram is modelled by semantic function bToc, which defines a parallel
composition of processes, each modelling a BPMN pool in the diagram. A pool
is modelled by function pToc, which defines a parallel composition of processes,
each modelling elements in the pool.

pToc : Pool → CSP

bToc : Diagram → CSP

This semantic function induces an equivalence relationship on the behaviour of
BPMN diagrams. Two BPMN diagrams are equivalent when each failures-refines
the other. The notion of equivalence is formally defined as follows:

Definition 1. Equivalence. Two BPMN diagrams P and Q are equivalent, de-
noted as P ≡BPMN Q if and only if bToc(Q) 
F bToc(P) ∧ bToc(P) 
F bToc(Q).

For example, we consider our online shop running example shown in Fig. 1. We
define CSP process CP in Equation 1 to model the behaviour of the Customer
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BPMN pool, where αP denotes the alphabet of process P . The start event is
identified by sCP while all other BPMN elements in the pool are identified by
their incoming sequence flows.

EP = c.s13 → Skip � c.s4 → Skip

P(sCP) = (m.m1 → s.s1 → EP) � EP

P(s1) = (s.s1 → (s.s2 → Skip  s.s3 → Skip) o
9 P(s1)) � EP

P(s2) = (s.s2 → w .DO → m.m3 → s.s4 → P(s2)) � EP

P(s3) = (s.s3 → w .AO → m.m2 → s.s5 → P(s3)) � EP

P(s4) = (s.s4 → c.s4 → Skip) � c.s13 → Skip

P(s5) = (s.s5 → w .SP → m.m4 → s.s6 → P(s4)) � EP

P(s6) = (s.s6 → RO o
9 s.s13 → P(s6)) � EP

P(s13) = (s.s13 → c.13 → Skip) � c.s4 → Skip

CP = ‖ i : {sCP , s1, s2, s3, s4, s5, s6, s13} • αP(i) ◦ P(i) (1)

For presentation purpose, we model sequence flows by prefixing ‘s.’, message
flows by ‘m.’ and completion events by ‘c.’. We abbreviate each task name using
the first letter of each word in its name. For example, the CSP event w .DO

represents the work done of task Decline Offer, the process P(s6) models the
behaviour of the Receive Offer subprocess; the definition of RO is defined in
Equation 2.

FP = c.s12 → Skip

P(sRO) = (s.s7 → FP) � FP

P(s7) = (s.s7 → (s.s8 → Skip ||| s.s9 → Skip) o
9 P(s7)) � FP

P(s8) = ((s.s8 → Skip ||| m.m5 → Skip) o
9 w .RI → s.s4 → P(s8)) � FP

P(s9) = ((s.s9 → Skip ||| m.m6 → Skip) o
9 w .RG → s.s11 → P(s9)) � FP

P(s10) = ((s.s10 → Skip ||| s.s11 → Skip) o
9 s.s12 → P(s10)) � FP

P(s12) = s.s12 → c.12 → Skip

RO = ‖ i : {sRO , s7, s8, s9, s10, 12} • αP(i) ◦ P(i) (2)

We may similarly define CSP process OS to model the behaviour of the Online-
Shop BPMN pool. The CSP process CP |[αCP | αOS ]|OS then models the inter-
action between the customer and the online shop business processes.

4 Constructing BPMN

Using Z we provide a comprehensive set of operations for constructing BPMN
processes. Specifically these are operation schemas on the state schemas Pool and
Diagram. These operations are partitioned into the following categories: sequen-
tial composition, split, join, iteration, exception and collaboration. Informally,
sequential composition adds to a BPMN process an activity (a task or a sub-
process); split adds a choice to two or more activities; join joins two or more
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activities via a join gateway; iteration adds a loop using a exclusive-or split and
join gateway; exception adds exception flows to a activity, and collaboration
connects two BPMN pools with a message flow.

While these operations are not part of BPMN, we did not need to extend
the existing syntax of BPMN for defining these operations. These operations are
designed to provide the following benefits:

1. To provide operations to construct business processes. We have chosen a
comprehensive set of operations for constructing business processes similar
to those in structured programming [1];

2. To ensure the syntactic consistency of business processes by calculating the
preconditions of the operations. Precondition calculations can be found in
the author’s thesis [11, Appendix B];

3. To allow the compositional development of business processes. We provide
a CSP semantics to these operations, and characterise the conditions under
which these operations are monotonic with respect to CSP traces and failures
refinements, and

4. To encourage formal tool support for constructing business processes. The
behavioural of BPMN diagrams constructed using the provided operations
admits verification such as automatic refinement checking. These operations
can be implemented in a BPMN development environment that supports
the semantic translation of BPMN to CSP1 and the automated refinement
checking via model checkers such as the FDR.

4.1 Syntax and Semantics

We describe four operations using the combination of Z and CSP; when describ-
ing operations, we refer to Fig. 2 for illustration purposes. Diagrams labelled
with a number depict an operation’s before state and diagrams with a letter de-
pict an operation’s after state. Operations whose after states are one of Digrams
A and B assume Diagram 1 to be the before state; the operation whose after
state is Diagram C assumes Diagram 2 to be the before state, and the opera-
tion whose after state is Diagram E assumes Diagram 3 to be the before state.
For reason of space, we mainly focus on semantic definitions of these operations
and present the syntactic definition of sequential composition (SeqComp), while
for the other operations, we present their type declaration. We also provide an
informal description of these operations.

We provide functions pf , ext, int and par to model prefixing, external choice,
internal choice and interleaving. We provide functions type, in, ou, re and sd on
BPMN elements to obtain their type, incoming and outgoing sequence flows,
and incoming and outgoing message flows respectively. We provide functions sf ,
mf and fn to model sequence flow, message flow and completion as CSP events.
Furthermore, we provide functions sflow , cnt, ends, eles and modify as follow:

1 A prototypical implementation of the semantic translation can be found at
http://sites.google.com/site/peteryhwong/bpmn

http://sites.google.com/site/peteryhwong/bpmn
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Fig. 2. Operations

sflow(es) takes a set of elements es and returns all sequence flows of the elements
in es; cnt(e) takes element e and recursively returns the set of elements contained
in element e; ends(ps) takes a set of elements ps and returns a partial function
that maps each incoming sequence flow of an end event to that event; nonsend(ps)

takes a set of elements ps and returns a partial function that maps each incoming
sequence flow of an element that is not a task or an intermediate event to that
element, and modify(ps,ns, os) takes three sets of elements ps, ns and os and
returns ps with elements of os contained in ps replaced with elements in ns.

SeqComp The schema SeqComp adds either a task, a subprocess, or an interme-
diate message event to a BPMN pool. It takes two elements new? and end?, and
sequence flow from? as inputs and replaces the end event in the component proc

that has incoming sequence flow from? with elements new? and end?.

SeqComp =̂ [ΔPool ; Commons; end? : Element |
#(in new?) = 1 ∧ #(ou new?) = 1 ∧ in(end?) = ou(new?) ∧
type(end?) ∈ {end} ∪ ran emsg ∧ #in(end?) = 1 ∧ #ou(end?) = 0 ∧
proc′ = modify(proc, {new?, end?}, {ends(proc) from?})]

Here SeqComp also declares the following schema Commons:

Commons =̂ [Pool ; new? : Element ; from? : Seqflow |
(ou(new?) ∪ sflow(cnt(new?))) ∩

⋃

{e : proc • sflow(cnt(e))} = ∅ ∧
from? ∈ in(new?) ∧ in(new?) ⊆ dom(ends proc)]

Schema SeqComp is illustrated by Diagrams 1 and A in Fig. 2, where the end
event labelled E is specified by the expression ((ends proc) from?). The illustration
shows how this operation replaces element E with element new? and end?. Specif-
ically, new? is either an intermediate message event (with no message flow) or an
activity. That is, new? has exactly one incoming and one outgoing sequence flow,
and end? is an end event. Furthermore, SeqComp includes Commons to ensure the
following constraints: 1) no outgoing sequence flow of news as well as of elements
contained in new? must also be a sequence flow of any element contained the
before state component proc; 2) from? is an incoming sequence flow of new?, and
3) from? is also an incoming sequence flow of an end event contained in proc.
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We let e denote the end event end(proc) from?. The semantics of new? and
end? are provided by the processes P(new?) = cp((proc \ {e})∪ {end?}, new?) and
P(end?) = cp(proc \ {e}, end?) respectively. In general, unless otherwise specified,
given a state Pool with component proc, we write P(i) to denote the process
cp(proc, i), and define as(es) =

⋃

{i : es • αP(i)} to return the alphabet of the
process semantics of elements in es. The semantics of SeqComp is given by the
following process,

OB |[AB | as({new?, end?}) ]| (P(new?) |[ αP(new?) | αP(end?) ]| P(end?))

where OB = ‖ i : proc \ {e} • ((αP(i) \ {fn(e)}) ∪ fn(end?)) ◦ cp(proc ∪ {end?}, i)
and AB = as(proc \ {e}) ∪ {fn(end?)}.

Split The schema Split adds either an exclusive or a parallel split gateway to a
BPMN pool.

Split =̂ [ΔPool ; Commons; outs? : F1 Element ]

The operation takes as inputs gateway new?, a set of end events outs?, and se-
quence flow from?. Schema Split is illustrated by Diagrams 1 and B in Fig. 2,
where the end event labelled E is specified by the expression ((ends proc) from?).
The illustration shows how the operation replaces E with element new? and
the set of elements outs?, which contains elements labelled F and G. We now
consider the constraints specified by this operation in detail. Split includes con-
straints specified by Commons about new?, from? and the before state Pool . It
also specifies the following constraints on all input components: 1) new? must
be either an exclusive or a parallel split gateway; 2) outs? must be a non-empty
set of end events, in which elements do not share incoming sequence flows; 3)
incoming sequence flows of elements in outs? are not sequence flows of elements
contained in proc of before state Pool , and 4) incoming sequence flows of elements
in outs? are exactly the outgoing sequence flows of new?.

We let e denote the end event end(proc) from?. The semantics of new? is then
defined as P(new?) = cp((proc \ {e}) ∪ outs?, new?), and the semantics of the
set of elements outs? can be modelled by the parallel composition of processes
QS = ‖ o : outs? • αQ(o) ◦ Q(o), where each process Q(o) is defined as cp((proc \
{e}) ∪ outs?, o). The semantics of Splits is then given by the following process,

OB |[AB | as(outs? ∪ {new?}) ]| (P(new?) |[ αP(new?) | as(outs?) ]| QS)

where OB = ‖ i : proc \ {e} • ((αP(i) \ {fn(e)}) ∪ fn(| outs? |)) ◦ cp(proc ∪ outs?, i)

and AB = as(proc \ {e}) ∪ fn(| outs? |).

Join The schema Join adds an exclusive join gateway to a BPMN pool.

Join =̂ [ΔPool ; gate?, end? : Element ]

The operation takes input components gateway gate? and end event end?. Schema
Join is illustrated by Diagrams 2 and C in Fig. 2, where the incoming sequence
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flows of E and F are the incoming sequence flows of gate?. The illustration
shows how the operation replaces elements E and F with elements gate? and
end?. Here end? is labelled G in the illustration. Specifically, Join defines the
following constraints: 1) gate? is either an exclusive or a parallel join gateway; 2)
end? is an end event; 3) gate?’s incoming sequence flows are incoming sequence
flows of some end events contained in either proc of the before state Pool , or
one of the subprocesses contained in proc of the before state Pool ; 4) outgoing
sequence flows of gate? are exactly the incoming sequence flows of end?, and 5)
incoming sequence flows of end? are not sequence flows of elements contained in
proc component of the before state Pool .

We let es = end(proc)(| in(gate?) |), and the semantics of gate? and end? are pro-
vided by P(gate?) = cp((proc \es)∪{end?}, gate?) and P(end?) = cp(proc \es, end?)

respectively. The semantics of Join is then given by the following process,

OB |[AB | as({gate?, end?}) ]| (P(gate?) |[ αP(gate?) | αP(end?) ]| P(end?))

where OB = ‖ i : proc \ es • ((αP(i) \ fn(| es |)) ∪ {fn(end?)}) ◦ cp(proc ∪ {end?}, i)
and AB = (as(proc \ es) \ fn(| es |)) ∪ {fn(end?)}.

Loop The schema Loop adds an exclusive split gateway and an exclusive join
gateway to a BPMN pool to construct a loop in the pool. The operation is
defined as the conjunction of schemas ConnectSplit, ConnectJoin and Connect,

Loop =̂ (ConnectSplit ∧ ConnectJoin ∧ Connect) \ (change, change ′)

where the declaration of these schemas are shown as follow.

ConnectSplit =̂ [Commons[split?/new?]; connect? : Seqflow ; end? : Element ]

ConnectJoin =̂ [Pool ; ch, ch ′, join? : Element ; connect?, f 2?, t2? : Sflow ]

Connect =̂ [ΔPool ; from?, f 2?, t2? : Sflow ; ch, ch ′, split?, join?, end? : Element ]

Briefly, ConnectSplit specifies the constraints on the input exclusive split gateway,
ConnectJoin specifies the constraints on the input exclusive join gateway, and
Connect specifies the interdependent constraints on the two gateways.

Schema Loop is illustrated by Diagrams 3 and D in Fig. 2. Specificially, Loop

performs a two-step operation: 1) replace the end event in the component proc

that has incoming sequence flow from? with gateway split? and the end event
end?. The constraints of Loop ensure connect? is one of split?’s outgoing sequence
flows, and 2) add a join gateway join? to the component proc. The constraints of
Loop ensure that connect? and f 2? are incoming sequence flows of join? and t2? is
the outgoing sequence flow of join?. The constraints also ensure that there is an
element contained in the before state of proc that has f 2? as one of its incoming
sequence flows and replaces this element’s f 2? incoming sequence flow with t2?.
This element is defined by the expression (μ p : proc | f 2? ∈ in(p) • p) and we let
m denote this element.

We let e = end(proc) from?, and ps = (proc \ {e}) ∪ {end?}. The semantics of
split?, join? and end? are provided by the processes P(split?) = cp(ps, split?),
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P(join?) = cp(ps, join?) and P(end?) = cp(ps, end?) respectively. We also let
P(m ′) = P(m)[fn(f 2?) ← fn(t2?)], which renames all occurrences of sf (f 2?) to
sf (t2?) in P(m). The semantics of Loop is then given by the following process,

OB |[ as(proc \ {e,m}) ∪ {fn(end?)} | as({split?, join?, end?,m ′})]|
(P(m ′) |[ αP(m ′) | as({split?, join?, end?})]|

(P(split?) |[ αP(split?) | as({join?, end?})]|
(P(join?) |[ αP(join?) | αP(end?) ]| P(end?))))

where OB = ‖ i : proc \ {e, m} • ((αP(i) \ {fn(e)}) ∪ {fn(end?)}) ◦ cp(proc ∪
{end?}, i).

Fig. 3. Construction of the customer business process

Example Here we describe how to construct the customer business process of
our online shop example in Fig. 1. A step-by-step illustration of the business
process construction is shown in Figure 3. The following describes the steps
shown in the figure.

1. Start with a subprocess’ initial state, containing a start and an end events
(Step 1);

2. Add an exclusive split gateway using Split (Step 2);
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3. Apply SeqComp four times to add three task elements and one subprocess
element. The subprocess element is in an initial state, again containing a
start and an end events (Steps 3, 4, 5, 6);

4. Apply Split to add an exclusive split gateway inside the subprocess element
that was added in the previous step (Step 7);

5. Add two task elements inside the subprocess element using SeqComp two
times (Steps 8, 9) and,

6. Join two end elements inside the subprocess element using Join (Step 10).

4.2 Analysis

The combination of monotonicity and refinements allows one to verify behav-
ioural correctness of large complex systems incrementally. We would like to show
that the operations considered in the previous section to be monotonic with
respect to failures refinement (
F). However, we observe that in general these
operations are not monotonic.

B

(1)

A

B

(2)

AC

B

A

(3)

B

A

(4)

C

Fig. 4. A non-monotonic scenario

Consider the BPMN processes in Fig. 4. They are constructed by a combination
of operations SeqComp, Split, Join and Loop. We let P1, P2, P3 and P4 denote the
BPMN processes shown in Figs. 4(1), (2), (3) and (4) respectively We observe
that both P1 and P2 deadlock, because in both cases not all of the parallel join
gateway’s incoming sequence flows can be triggered. Moreover, we observe that
P1 and P2 admit the same behaviour, that is, P1 ≡BPMN P2. We now consider
P3 and P4 that are constructed by applying the operation Loop to P1 and P2

respectively. We observe that unlike in P1 and P2, A can be triggered in both
P3 and P4. However, after performing A, P4 can trigger element C , while P3

cannot. As a result we have P3 �≡BPMN P4. This shows that in general not only
the operations are non-monotonic, but more importantly the equivalence ≡BPMN

is not congruent with respect to these operations. To ensure that the operations
can be applied monotonically, we assume the following conditions about BPMN
diagrams and processes and state that the operations are monotonic with respect
to the failures refinement; complete proofs of the following theorems can be found
in the author’s thesis [11, Appendix C].

(a) Given any two BPMN pools X ,Y : Pool , if we have pToc(X ) 
F pToc(Y ),
then the set of elements X .proc \ Y .proc can be partitioned into two sets A

and B :



Compositional Development of BPMN 109

(i) Each element e ∈ A is either an exclusive split gateway or a subprocess
such that there exists an element e′ ∈ Y .proc \ X .proc where P(e) 
F
P(e′).

(ii) For each element f ∈ B , there exists some exclusive split gateway e ∈ A,
such that there exists some element e′ ∈ Y .proc \X .proc where P(e) 
F
P(e′). Moreover, ou(e′) ⊂ ou(e) and either in(f ) ⊂ ou(e)\ou(e ′) or there
exists an element g ∈ B such that in(g) ⊂ ou(e)\ou(e ′) and there exists
a sequence of sequence flows connecting g to f .

Furthermore, Y .proc \ X .proc can be partitioned into two sets M and N :
(iii) For each element m ∈ M , there exists exactly one element e ∈ A such

that P(e) 
F P(m),
(iv) Each element e ∈ N is an exclusive join gateway such that there exists

an exclusive join gateway f ∈ B with the same outgoing sequence flow
and whose set of incoming sequence flows is a superset of e’s.

(b) Given any two BPMN diagrams X ,Y : Diagram. If we have bToc(X ) 
F
bToc(Y ), we have domX .pool = domY .pool and ∀ i : domX .pool •
pToc(X .pool(i)) 
F pToc(Y .pool(i)).

Theorem 1. Monotonicity. Assuming BPMN diagrams satisfy Conditions
(a) and (b), the composition operations are monotonic with respect to F.

Condition (a) is appropriate: according to our process semantics, only exclusive
split gateways and subprocesses have nondeterministic behaviour. This condi-
tion ensures that when comparing the behaviour of two BPMN processes, every
BPMN element from one BPMN process either is related to an element in the
other BPMN process via refinement or is only reachable due to nondeterministic
behaviour that is removed due to the refinement in the other BPMN process.
This condition ensures that there are no hidden behaviour such as element C

in Fig. 4 (2). Condition (b) is also appropriate: it is reasonable to compare
behaviour of business collaborations if they have the same participants during
compositional development. Participants in a business collaboration are typi-
cally decided a priori before designing and refining individual processes. These
conditions do not reduce the practical expressiveness of BPMN. In particular we
have validated the expressiveness via case studies in which we have constructed
and verified complex business processes compositionally [11, Chapter 8].

In general, for any subprocess s, the CSP process that models s’s behaviour
can be generalised as C [S ] where S is the CSP process that models elements
directly contained in s. Here C [.] is a CSP process context that models the
incoming, outgoing sequence flows and message flows of s. The following result
shows that refinements are preserved from S to C [S ].

Theorem 2. Given any subprocess s satisfying Conditions (a) and (b), and that
its behaviour is modelled by CSP process C [S ], where S is the CSP process that
models elements contained in s and C [.] is a CSP process context that models
s’s sequence flows and message flows. Let t be any subprocess whose behaviour
is modelled by CSP process C [T ] and T is the CSP process that models elements
contained in t. If we have both S 
F T and C [S ] 
F C [T ], then we have C [S ′] 
F
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C [T ′] where S ′ and T ′ are the results of applying any one of the composition
operations on S and T respectively.

A consequence of Theorems 1 and 2 is that refinement is preserved between a
subprocess and the BPMN subprocess or pool that contains it. The following
result lifts the composition operations to BPMN diagrams, and follows immedi-
ately from the fact that the CSP parallel operator ‖ is monotonic with respect
to refinements.

Corollary 1. Given a BPMN process X that directly contains some subprocess
s, such that X ’s behaviour is modelled by the CSP process P(s) |[ αP(s) | αD ]| D,
where D models the behaviour of other elements directly contained in X . For any
s′ such that P(s) 
F P(s′) we have P(s) |[αP(s) |αD ]|D 
F P(s′) |[αP(s′) |αD ]|D

Monotonic operations preserve refinement-closed properties. For example, we
previously formalized the notion of behavioural compatibility on BPMN
pools [11,13] as a binary relation compatible(P ,Q) on BPMN pools P and Q , such
that compatible(P , Q) if and only if P and Q are deadlock free and their collab-
oration is also deadlock free. We further showed that compatible is a refinement-
closed property. As a result, if we let G be one of the composition opera-
tions on Pools, if compatible(G(P),G(Q)), then for all pToc(P) 
F pToc(P ′) and
pToc(Q) 
F pToc(Q ′), compatible(G(P ′),G(Q ′)). Furthermore, due to monotonic-
ity, the equivalence ≡BPMN defined in Definition 1 is a congruence with respect
to the composition operations.

Corollary 2. Assuming BPMN processes satisfy Conditions (a) and (b), the
equivalence ≡BPMN is a congruence with respect to composition operations.

A congruence relationship allows one to substitute one part of a BPMN process
with another that is semantically equivalent and obtain the same BPMN process.

Back to the running example. Fig. 5(1) shows an optimistic version of the
customer business process. It is modelled by BPMN pool OpCustomer . After
receiving an offer from the online shop, the customer eventually always ac-
cepts the offer. Equation 3 defines process OCP that models pool OpCustomer ,
where for all i ∈ {sCP , s3, s5, s6, s13} process P(i) is defined in Equation 1.
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Fig. 5. Variants of the customer business process



Compositional Development of BPMN 111

P(s1) = (s.s1 → Skip o
9 (s.s2 → Skip  s.s3 → Skip) o

9 P(s1)) � c.s14 → Skip

OCP = ‖ i : {sCP , s1, s3, s5, s6, s13} • αP(i) \ {c.s4} ◦ P(i) (3)

In fact the optimistic customer process is a refinement of the customer process;
we verify this by checking the refinement CP 
F OCP using FDR. Suppose we
extend the customer’s business process with the following return policy: “After
receiving the goods and the invoice, the customer may decide to either keep the
goods or return them for repair. Depending on the policy of the online shop, if
the customer chooses to return her goods for repair, the shop may either provide
a full refund, or repair the goods and deliver them back to the customer. After
every repair, the customer has the choice to send the goods back again if further
repairs are required.”.

Fig. 5(2) shows the result of extending the optimistic customer business pro-
cess with the above return policy. Here we observe that this extension can be
constructed by a combination of operations SeqComp, Split and EventSplit, Join

and EventLoop. Note that the same combination of operations can be applied to
the original customer business process to model this return policy. If we let CP ′

be the resulting CSP process modelling the extended version of CP and OCP ′

be that of OCP , by Theorem 1, we have CP ′ 
F OCP ′.

5 Related Work

Beside the work described in this paper and our earlier work [12], CSP has been
applied to formalize other business process modelling languages. For example
Yeung [15] mapped the Web Service Business Process Execution Language (WS-
BPEL) and the Web Service Choreography Description Language (WS-CDL) to
CSP to verify the interaction of BPEL processes against the WS-CDL descrip-
tion; his approach considers traces refinement and hence only safety properties.
There have been attempts to formalize BPMN behaviour using existing for-
malisms (for example, Dijkman et al. [2]), which focus on the semantic definition
of BPMN diagrams rather than their construction. Morale et al. [6,7] designed
the Formal Composition Verification Approach (FVCA) framework based on an
extended timed version of CSP to specify and verify BPMN diagrams. Similar
to us, they achieve compositionality by considering the parallel combination of
individual business process participants. However, their approach does not con-
sider the semantics of constructing individual BPMN processes. To the best of
our knowledge, Istoan’s work [5] is the first attempt at defining composition
operations on BPMN. He provided the composition operations to construct a
BPMN process by composing two BPMN processes. He also provided these op-
erations with a semantics in terms of Petri Nets [9]. His notion of refinement is
that of functional extension while our work considered the reduction of nonde-
terminism [3]. Moreover, Istoan did not consider the semantic property of the
composition operations to allow compositional development.
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6 Summary

In this paper we introduced a set of composition operations to construct BPMN
diagrams. We provided these operations a CSP semantics, and characterised the
conditions under which these operations guarantee monotonicity with respect to
F . Refinement-closed properties, such as behavioural compatibility, are preserved
by monotonic operations and these operations enable compositional development
of business processes.
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Abstract. Application-level multi-tenancy is an increasingly prominent
architectural pattern in Software-as-a-Service (SaaS) applications that
enables multiple tenants (customers) to share common application func-
tionality and resources among each other. This has the disadvantage
that multi-tenant applications are often limited in terms of customiz-
ability: one application should fit the needs of all customers.
In this paper, we present our experiences with developing a multi-tenant
SaaS document processing system using current state-of-practice work-
flow technologies from the JBoss family. We specifically focus on the
customizability w.r.t. the different tenant-specific requirements, and the
manageability of the tenant-specific customizations.
Our main experiences are threefold: (i) we were insufficiently able to
modularize the activities and compositions that constitute the document
processing workflow, (ii) we lacked support for describing tenant-level
variations independently, and (iii) the workflow engine we employed is
too centralized in terms of control, which limits resilience and thereby
endangers scalability of the document processing application.

Keywords: Software-as-a-Service, Business Process, jBPM, Multi-tenancy,
Customization, Document Processing

1 Introduction

Application-level multi-tenancy is an increasingly prominent architectural pat-
tern in Software-as-a-Service (SaaS) applications. Different tenants are served
simultaneously from the same run-time instance of the application while fea-
tures of the application remain logically separated on a per-tenant basis. This
suits best for applications where all potential tenants have highly similar (non-
)functional requirements for the application. In case the tenant requirements
differ slightly (or even profoundly), customization is required as an architectural
feature to the SaaS application to facilitate efficient incorporation and manage-
ment of tenant-specific requirements.

In the context of an ongoing project [1], we analysed a multi-tenant SaaS ap-
plication for document processing of an industrial partner that currently serves a
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large amount of companies. Although their tenants differ in terms of specific re-
quirements, they do share the common requirement of processing large volumes
of documents and data through a multi-step processing scheme, e.g. after doc-
ument generation additional processing steps such as signing may be required.
In summary, the document processing represents a system for workflow-centric
processing of batch jobs.

The application that is currently in use follows an ad-hoc software manage-
ment approach: application functionality for document processing is available as
reusable library functions. For each tenant, an individual application is created
and executed. This approach suffers from being error-prone and not efficiently
manageable (e.g. in case of changes to the document processing system).

In this paper, we present our experiences with the development of a cus-
tomizable multi-tenant SaaS application that is configured by the tenant, whose
workflow is run on top of JBoss’ jBPM [2] and whose document processing fa-
cilities are modelled as Web services on top of JBoss AS7 [3]. As variability
modelling and service variability is out of scope of this paper, we focus on the
business process modelling (BPM) and execution aspects of our document pro-
cessing system.

By showing that batch-oriented business processes with custom requirements
(of a particular application domain) can be run as a SaaS application with man-
ageable efforts on state-of-practice tools, we encourage companies with similar
settings to migrate their workflow-driven application to a cloud platform. Re-
search has already been performed in adjacent fields, such as feature-oriented do-
main analysis [4] (variability analysis) and multi-tenant customization [5] (mid-
dleware to enable variability in services), but has not been focussing on (practi-
cal) studies enlightening the business process aspect of customizable SaaS appli-
cations. We believe that this is one reason for low usage of the Cloud paradigm for
companies of aforementioned types. Our concept envisions a set of pre-designed
workflows provided by the SaaS application developer from which a tenant can
simply select and configure the most suitable one and use the business processes
execution on-demand as a Service (BPaaS). Simultaneously, by tackling the effi-
cient manageability aspect of a workflow-driven, customizable multi-tenant SaaS
application, we also motivate to operate the provider-side of such an application.

This paper is organized as follows: Section 2 introduces the document process-
ing application and motivates the requirements of interest. Section 3 discusses
our implementation while Section 4 provides an in-depth discussion of our key
decisions and experiences from which we distil challenges and drawbacks that
are relevant beyond the scope of this single implementation project. Section 5
discusses related work, and we conclude this paper in Section 6.

2 Problem Illustration and Motivation

In this section we first describe the document processing system that is currently
in use by our industrial partner. Then, we highlight the drawbacks in terms
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of manageability and summerize requirements for our implementation of the
document processing system as a customizable multi-tenant SaaS application.

2.1 Document Processing System

The system of interest in this paper is that of a Belgian SaaS provider. This com-
pany, hereafter referred-to as Document Processor (DP), provides a platform for
generating, signing, printing, delivering, storing, and archiving documents, and
they offer these B2B facilities as a Software-as-a-Service (SaaS) application to
their customers (tenants). As a result of adhering to multi-tenancy at the SaaS
paradigm, the document processing system is difficult to customize: the benefits
of scale inherent to SaaS rely on the fact that the same application can be reused
by many different tenants. Nonetheless, as the processing facilities are of rele-
vance to a wide range of companies in very different application domains, several
tenant-level variabilities and customizations exist. To illustrate, we present two
such tenant companies and their document processing requirements.

TenantA is a temporary employment agency which requires printed payslips
to be delivered to its employees. It provides the raw data to DP, with meta-
data attached to each document. TenantB is in the financial business and uses
the document processing facilities for generating invoices and distributing them
to their customers (end users). TenantB provides only raw data as input and
requires its custom layout to be applied to the documents generated (for brand-
ing purposes) and the distribution of documents depending on the end-user’s
preference (email and printed paper).

2.2 Challenges

In their current document processing offering, the document processing provider
uses a set of functional libraries to realize the superset of document processing
activities. As each document is processed by a sequence of these activities, the
processing logic is realized in the form of Java code in which these libraries are
called sequentially. To realize a tenant-specific customization of the application,
a variation of this processing logic is created manually – by copy-pasting the
existing Java code and making the tenant variations manually.

This approach has several obvious drawbacks: (1) There is no systematic
reuse of customization knowledge, and techniques such as copy-paste are error-
prone. Moreover, the management complexity of these different variants grows
exponentially with the number of supported tenant variations. (2) Because the
workflow logic is currently written in a programming language (Java), appli-
cation administrators are required to be developers skilled in that language in
order to set-up new tenants. (3) Whenever the libraries change, these changes
ripple through to the different workflow definitions: they needs to be changed
manually which does not scale for large number of tenants.

In this paper, we report on our experiences of migrating the existing docu-
ment processing application to state-of-practice workflow processing techniques
(from the JBoss family), and this obviously in the context of multi-tenant SaaS



116 F. Gey et al.

applications. Specifically, we focused on addressing the key requirements listed
below:

– Manageability of Variations. In order to remain competitive, the time-to-
market of a specific tenant variant is of crucial importance. Therefore, adding
new tenants (tenant acquisition), changing tenant configurations, extending
tenant variabilities, or modifying the interfaces to the document processing
activities have to be more efficient, and the configuration process itself less
error-prone.
Furthermore, the tooling should be suitable to be used by business analysts
and domain experts, rather than by developers and programmers. As doc-
ument processing workflows consist of a set of pre-existing activities out of
which a particular sequence is defined, the tool is not required to nor should
provide the expressiveness of a general-purpose programming language.

– Resilience of Workflow Execution. It is especially important for SaaS
applications in a distributed setup, such as for our document processing
system, that the workflow execution is resilient against failures of remote
services, as failure of nodes is likely, and Service Level Agreements (SLAs)
in SaaS contexts tend to approach maximum utilization of resources so that
such failures may have severe impact on the fulfilment of SLAs.

Section 3 discusses the relevant implementation decisions. Subsequently, Sec-
tion 4 provides an in-depth discussion of our main experiences and findings.

3 Implementation

In this section, we describe the implementation of a customizable multi-tenant
SaaS application for document processing that we have built to address the
challenges discussed in Section 2.1. In line with the scope of this paper, we focus
on the business process modelling aspect that we have implemented using the
business modelling language Business Process Modelling and Notation (BPMN)
and its state-of-practice execution engine and modelling tool jBPM.

First we define – for the sake of clarity – the common terminology that is
used in the context of jBPM and that we use to describe our experience with
the implementation. We then give a short overview of the end-to-end application
before discussing its business processing modelling aspects.

3.1 Terminology

A workflow is a sequence of (business) activities. The persistent artifact in which
a workflow is defined, e.g. using BPMN, is a process definition. For each execution
of a workflow a run-time instance of the process definition, a so called process
instance is created. The implementation of an activity is called a task. Each
process instance can have process instance variables that may have been set at
process instance’s creation time and are accessible from within the tasks.
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3.2 Overview of the End-to-End Application

The application we illustrate in this section processes document (processing) jobs
which are uploaded to the system. Such a job contains a set of input files (either
ready-to-distribute documents or raw data for document generation), meta-data
for each input-file, and a tenant-ID.

Fig. 1. High-level architecture of the end-to-end application

Figure 1 shows the overall architecture of the document processing SaaS appli-
cation. A document job is received at the pre-processing component and passed
on to the workflow engine. The workflow engine uses the tenant-ID of that job
to fetch the corresponding workflow-related tenant-specific configuration from
the central configuration repository. For example, tenant A’s workflow is con-
figured such that no document generation is executed, but that the input docu-
ments should be printed and distributed via postal mail. For each activity of the
on-going workflow, e.g. document distribution for tenant A, the corresponding
service is called.

Each service fetches its configuration using the tenant-ID, e.g. the template
to use for printing tenant A’s documents.

3.3 Business Process Modelling

The main business logic of the document processing case is modelled in two
different workflows: the outer workflow is represented in Figure 2 and embeds
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the inner workflow represented in Figure 3. The outer workflow iterates over the
input files of the uploaded document job and invokes the inner workflow for each
individual document.

Starting with the Start Event (circle labelled with “S” at the left-top side
of Figure 3), the graph depicts the sequence of workflow activities that is run.
Activities that are optional have a parallel edge connecting their predecessor
with the successors of that activity. Alternative activities are placed as parallel
paths to the actual activity. For both variations, XOR-typed gateways are used
which will proceed the workflow by selecting one of the available outgoing edges
depending on dynamically-evaluated code, which we call switch code. A switch
code may be written in Java code or Drools Rules (a domain-specific language
of JBoss for workflows). In addition, gateways of type AND are used which result
in executing all out-going paths.

As mentioned in Section 3.2, each of the activities of this process defini-
tion, when triggered, executes a service call to the document processing services
passing the document that is currently being processed and its related data.

Fig. 2. Process Definition for Document Processing: Outer Workflow

Fig. 3. Process Definition for Document Processing: Inner Workflow
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Variability Modelling. As mentioned earlier, XOR gateways are used to express
optional or alternative activities in the document processing workflow. More
specifically, we use them to express tenant-specific variability in the sense that
the inner workflow, as shown in Figure 3, depicts the workflow with all tenant-
specific variants included. Hence, we call this type of artifact a multi-tenant
process definition.

At the instantiation of a workflow execution (process instance), the tenant-
specific parameters required to customize the workflow’s multi-tenant process
definition at run time are fetched. For tenant A, these parameters are no docu-
ment generation and delivery method is postal, and for tenant B the parameters
are document generation method using custom templates and delivery method is
postal (or delivery method is e-mail, respectively). Those parameters are set as
process instance variables which are accessible to all gateways and tasks within
the multi-tenant process definition. The aforementioned XOR gateways read these
parameters and select the tenant-specific options accordingly. For example, for
tenant A, the gateway selecting between the delivery methods will read instance
variable for tenant A and will select the postal option. As a result, workflow ex-
ecutions for each tenant follow only one path from start to finish of a workflow.
After a workflow for tenant A has been initialized, no other delivery method
than postal delivery is available for the duration of that process instance.

Passing Variables between Tasks and into an Iteration Activity. The BPMN
language provides two options for a task to retrieve data: (1) Process instance
variables which are variables in the scope of a process instance, i.e. each task can
access those, and (2) parameter mapping, a mechanism that can map process
instance variables to input parameters of a task or output data from a task to a
process instance variable.

Using option 1, all processes would be able to read and write to a scoped
global variable space which would limit modularity. In the current version of
BPMN, option 2 is limited to map a variable’s content to another variable or vice
versa, without providing the ability to map a member of a variable (assuming it
is an object) to another variable. As a result, using options 2, tasks are expected
to know which data are required their successor tasks in order to provide those
in separate variables. That is, in case the set of tasks changes, programmatic
changes on the tasks are becoming necessary in order to reflect on the changed
set of output variables that this task has to fill in.

Option 2 also causes another issue when considering a workflow with itera-
tions. As described earlier (cf. Section 3.3), the outer workflow of the document
processing system is triggered with a set of input documents (and per-document
meta-data) over which it iterates, calling the inner workflow for each document.
A consequence of that architecture is that the document processing system re-
quires the iteration activity of the outer workflow to pass multiple variables
(document and meta-data) to the inner workflow, which is not supported by the
current version of BPMN. Using option 2, the members of that single variable
that is passed into each iteration cannot be mapped to the according parameters
within the inner workflow.
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As a workaround, we decided to introduce a composite data structure that
provides (i) members to store the input document and meta-data, and (ii) read-
and write-access for additional information. The composite data structure is
stored as process instance variable and is accessible by each task (as in option
1). It is used to pass partial results, e.g. the document in question in its (poten-
tially intermediate) current state after each activity, among other book-keeping
information, such as a list of so-far completed activities, between tasks. For iter-
ations, it is used to reduce the amount of variables that are required within the
inner workflow to one.

4 Discussion

This section discusses our experience and main findings with our implementation
(presented in the previous sections) with regard to the requirements we set up
for our document processing application (cf. Section 2.2).

4.1 Manageability of Variations

Our findings related to manageability are twofold: (1) Using BPMN to model
the document processing workflows, we were forced to create a custom data-
structure per multi-tenant process definition and introduce a structural depen-
dency between that data structure and the tasks which decreases reusability of
said tasks across process definitions. (2) The Lack of explicit support for multi-
tenant customization in BPMN (a) increases the need to add or modify a tenant
configuration redundantly at multiple places, limiting the modularity of that
configuration, and (b) limits potential future tool support for tenant-specific
configuration management. Next, we will elaborate on these findings in detail.

Structural Dependency of Tasks. As discussed in Section 3.3, we have created
a composite data structure as a workaround, that is used to pass input docu-
ment and its meta-data between tasks, because we experienced that BPMN’s
techniques for passing parameters were not sufficient to realize the requirements
set by our document processing application. In order to enable all tenants to
read from and write to this data structure, additional structural dependen-
cies between all tasks in our document processing workflow and the common
data structure were introduced, i.e. all tasks use (the same) implied knowledge
about the common data structure. This workaround is the result of a trade-off
in reusability. On the one hand, by introducing this composite data structure
and the dependency to the tasks of the multi-tenant process definition, we en-
sure that the process definition can be efficiently and easily (re-)assembled using
existing tasks and graphical tools. On the other hand, in case an additional pro-
cess definition becomes necessary, tasks of the one process definition cannot be
used in the other, as they may rely on different composite data structures for
their inter-task communications. For example in the document processing sys-
tem, tenants with relatively similar requirements are clustered together (tenant
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A and tenant B belonging to the same cluster). If however, new tenants show
up with very different requirements (thus, belonging to a different cluster), the
overall management effort is effectively lower when separating the two clusters
in separate process definitions.

Ideally, this problem is addressed at the level of the BPMN language. By
supporting the operator to access member variables (in Java, that is the dot
operator), the parameter mapping feature, which is configurable using jBPM’s
graphical tools, could be used to pass parameters betweens tasks without the
need of additional data structures. Hence, the dependency between tasks in a
process definition could be easily managed using graphical tools (to configure
the parameter mapping feature) rather than changing the program code of task
to comply to the additional data structures.

Explicit Support in BPMN for Tenant-specific Variations. We have observed
that BPMN does not explicitly support tenant-specific variations. For the im-
plementation of the document processing application, we therefore borrowed
other features of that language to realize the desired level of variability, namely
gateways with Java as switch code.

This workaround has two drawbacks: (1) the knowledge about tenant-specific
variations for each activity in the document processing workflow is defined within
the tenant-specific configuration. As with our implementation, the same knowl-
edge is used when creating the multi-tenant process definition which is a man-
ual process. Thus, our current workaround limits modularity and requires an
error-prone manual process. (2) We use the BPMN language item gateway to
express tenant-specific rather than business-process-driven variability for which
it is meant to be used. Therefore, these two semantics become harder to distin-
guish. As a result, potential tool support for tenant-specific management may
be limited.

Note, however, that the lack of explicit support for tenant-specific variations
does not affect the manageability of workflow definitions. Placing all tenant-
specific variants into a single multi-tenant process definition, i.e. using branches,
increases its overall size, and may seem as a bottleneck for (change-)management
at first. But, as BPMN supports the partition of workflows into sub-workflows,
the size of process definition has no big impact on its practicality in management
per-se.

In order to tackle the aforementioned two issues, we envision an extension to
BPMN that provides explicit support for tenant-specific variations by introduc-
ing two elements. One, an activity that is subject to tenant-specific alternatives
should be modelled as variation point1. Two, the workflow engine should pro-
vide mechanisms to import knowledge about variation points, such as a feature
model, and variants from an external source. In our document processing sys-
tem, this would be the configuration repository. Similar suggestions have been
made for the BPEL language but have not been shown in a proof-of-concept
implementation, yet [7].

1 We use the terms Variation Point and Variant as it is defined in [6].
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4.2 Resilience of jBPM’s Workflow Execution

The workflow engine jBPM, which we used for our implementation, executes
workflows employing dedicated control over the process instance. That is, at
the time an execution is triggered, the process definition is loaded into memory.
Thereafter, programmatical access to a specific process instance from outside
the process instance is very limited, and especially an update of the process
definition is not possible.

In addition, for our case, no state during the entire workflow execution is
persisted2. Technical failures are not considered in the modelling concepts of
BPMN. Although jBPM offers technical exception handling3, it is intended to
only run additional procedures in case of exceptions and has no effect on the
execution sequence.

Potential Types of Failures. The described properties above lead to following
three potential failures of the workflow execution which we will discuss sub-
sequently: (1) A process instance may continue processing on the basis of an
out-dated process definition that may lead to task failures or, even worse, to in-
correct results of the process. (2) In case a task fails, the entire workflow has to
be executed all over. (3) In case the workflow engine crashes, the entire workflow
has to be re-run.

The first type of failure can occur when workflow tasks change their scope of
activity and, as a result, also the sequence in which the workflow requires to be
executed. Example: Assume that a task that was supposed to create and send an
e-mail is split into two tasks, one for creating an e-mail, i.e. HTML formatting,
BASE64 encoding, etc., and the other for sending the e-mail (talking SMTP
with a server). Obviously, process definitions that included this task need to
be updated accordingly. Without the ability to update process instances during
their execution, all process instances that include that task but have not executed
it yet will fail or produce incorrect results.

The second and the third behaviour basically refer to the same issue: In
case a task fails, the enclosing workflow is restarted from the beginning. As
a result, documents are reprocessed not because of a business process reason,
e.g. the document at hand is an exceptional case or contains errors, but purely
because of a technical reason. Because we modelled the workflow to process an

2 The jBPM workflow engine persists workflow state only at so called safe-points.
These are phases in which the workflow engine has no further immediate tasks to
execute and is waiting for workflow events to continue. For non-interactive work-
flows that contains only a sequence of subsequent activities, such as the document
processing application, no persistence of workflow state is applied during the entire
execution.

3 jBPM distinguishes between two kinds of exceptions: logic and technical exceptions.
While logical exceptions refer to exceptional cases in the business logic, e.g. when
escalation to the next business hierarchy level is required, technical exceptions can
be mapped the exception handling concept found in Java and other programming
languages.
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entire document processing job (multiple documents) at once, the overhead of a
service failure is even higher as already successfully processed documents would
be processed again.

This shortcoming is related to jBPM’s focus of failure-recovery. It is best
suited for situations in which the workflow-engine (or the underlying infrastruc-
ture) fails especially when waiting for a particular event to resume the according
process instance. This can be a long period when interactive tasks are involved.
These phases in which the workflow engine is waiting are called safe-points. For
our non-interactive and not event-driven workflow, the safe-points are located
before the workflow execution has started and after its completion. Thus, our
implementation using jBPM makes failures of single tasks expensive4, as the
entire workflow needs to be repeated.

Task Failures in the Context of Distributed SaaS Applications. In the presence
of failures with expensive consequences, attention should be paid to the fact that
a distributed multi-tenant SaaS application risks multiple natural error sources
that may lead activities to fail: First, every distributed system inherently lacks
control over the remote machine’s state and suffers from occasional data omis-
sions due to network failures. Second, the fact that the benefit from economies-
of-scale is a dominant motivation to operate an application on a cloud platform
implies that the application is intended to be operated under continuous load.
In our case, load refers to document processing jobs that have a SLA-committed
completion dates. Thus, large delays in workflow execution are not tolerable from
a business perspective.

Conclusion. Therefore, we identify the gap in our document processing SaaS ap-
plication that it lacks of support for inexpensive failures of tasks. In future work,
we plan to elaborate further on safe points that occur between each workflow-
step (activity) rendering a process definition to be executed as a set of tasks.
Moreover, by removing the centralized control that spans the entire workflow
execution and supporting the execution of individual tasks of a workflow from in-
dependent workflow engine instances, concurrent execution of semantically par-
allelizable tasks within a workflow could be enabled. Furthermore, in case a task
execution fails, the aforementioned safe points can depict process instance states
to resume at when restarting the process instance. In addition, updating the pro-
cess definition of a running process instance would become simpler, as after each
activity the process instance would be in a (persisted) quiescence [8] state and
before each activity the process definition is re-read.

Building up on these features, task failures would be less expensive (resume
instead of start over) and could therefore be accepted as a planned behaviour
of the system and incorporated into the SLA-targeting scheduling strategies.
As a result, changes to and failures of the system would be less harmful, and

4 Cost can have multiple dimensions: operational costs, duration (endangering SLA
fulfillment) or damage of brand (sending invoices twice and thereby communicating
technical error to customers)



124 F. Gey et al.

the scalability in performance and management overhead (i.e. for re-allocating
performance schedules) would benefit significantly.

5 Related Work

Manageability for Business Processes. Modularity is a key concept to support
manageability through reuse. Research has been executed to increase the modu-
larity in business process definitions. Geebelen et. al [9] proposed a pre-processing
layer for the BPEL standard, that uses a set of concrete parameters to trans-
form a parameterized process definition template into an actual BPEL process
definition that can be executed on ordinary BPEL engines. Charfi et. al [10] use
aspect orientation to modularize the definition of activities within and across
business processes, e.g. an activity that always has to precede another activity
can be defined in modularized way. Isotan et. al [11] propose to add composi-
tion operators to BPMN in order to facilitate the composition of smaller and
reusable definition units into full process definitions. In their work, they are
formally modelling operators based on Petri Nets.

In contrast, our document processing application is designed to be operated
as SaaS application and, thereby, has a different set of requirements for man-
ageability: We address one application domain at a time by creating a single
process definition including all anticipated variabilities. Not dealing with a large
amount of separate process definitions, our context benefits less from the kind
of modularity that is presented in the related work. We rather lack of reusability
of tasks across process definitions, as elaborated in Section 4.

Multi-Tenancy for Business Processes. Pathirage et. al [12] address multi-
tenancy mostly at the infrastructure level. They provide a platform on top of
which a BPEL engine can be run and that maintains a tenant context during
the entire workflow execution.

However, it does not take customization of workflows into account, i.e. all
tenants operate on the same workflow, while we focus on workflow customization
as well as multi-tenancy.

Variability for Business Processes. The work of Mietzner et. al [13] focus mainly
on modelling variability and providing deployment support in that it will choose
the set of required components optimizing for the lowest operational costs.

While they present rather generic concepts for modelling workflow variabil-
ity, our work is based on a practical experience with a concrete state-of-practice
framework from which we extract further challenges. We also focus on the busi-
ness process modelling aspect that is not enlightened in their work.

Geebelen et. al present in a later work [14] a framework for run-time adapta-
tion of workflow processes. They use an application-domain-dependent workflow
template at which concrete service calls are weaved in at run-time depending
on an external policy engine. Also rollbacks to previous workflow activities are
provided.
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Even though, they provide manageable flexibility, their scope of workflow
customization differs from ours. While they provide a fixed sequence of activities
and flexibility in choosing the service to execute an activity, we offer alternative
sequences based on tenant-specific requirements.

VxBPEL [7] is an extension to BPEL that explicitly adds alternative task
implementations to an activity in the process definition. It is motivated that the
knowledge about variations (1) should be obtained from an external source and
(2) should be injectable into on-going workflow executions. The implementation
of that work does not show those motivated proposals.

In their proposals, the authors argue similarly to us. Yet, we differ in the
fact that we use business process modelling for non-interactive batch-processing
and variability in the context of multi-tenancy, while they argue on basis of
interactive application and introduce variability to achieve higher Quality-of-
Service. Furthermore, we use the state-of-practice technology jBPM without
modifications in order to comply with cloud providers as well as with existing
applications and tools.

Resilience of Workflow Execution. In Section 4.2, we described the kind of re-
silience for workflow executions that is required for the document processing
application, i.e. a task execution failure should not cause the enclosing workflow
to be reset to the beginning.

Leymann et. al [15] describe a workflow management system that is based
on multiple message queues. They claim that their system, persisting state in-
formation about each invoked task, is ”forward recoverable”. While their system
is situated in a local environment with (remote) interactive clients, our context
is a non-interactive workflow as distributed SaaS application.

The work of Yu et. al [16] proposes to process BPEL workflows without a
central execution engine. One of its key goals is to enable dynamically composed
workflows which also addresses changes in the task execution sequence in the
presence of service failures. They make use of continuations which are persisted
after each task execution of the workflow and that can be picked-up by differ-
ent workflow engines for continuing execution, and extend the BPEL execution
engine. We, the other hand, use state-of-practice tools to model and execute
workflows.

6 Conclusion

We presented our experiences with the implementation of a customizable multi-
tenant SaaS application for document processing. We discussed the key require-
ments for this application: multi-tenancy and Software-as-a-Service on the one
hand, and customizability to tenant-specific requirements on the other hand. To
guarantee the practical relevance of our findings, we addressed these require-
ments in the context of state-of-practice technologies from the JBoss family.
Specifically, we employed Business Process Modelling and Notation (BPMN)
language to model tenant-specific customizable business processes of the docu-
ment processing system and jBPM for their execution.
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Our findings can be summarized as follows. First, because of the parameter-
passing mechanism that is currently provided in BPMN, it is hard to design
individual tasks in a modular manner so that they can be reused across busi-
ness process definitions. Our second finding is a consequence of the fact that
BPMN lacks explicit support for multi-tenancy and variability. We introduce
workflow branches to express tenant-specific instead of business-case variabilities
as a workaround. Ideally, the workflow modelling language should offer support
to describe these tenant-level variabilities explicitly. In our third finding, we have
argued that using a centralized run-time instance to control the entire workflow
may not provide the necessary resilience in execution, because of the high costs
related to recover from task failure. It may therefore only be partially suited for
SaaS environments where different kinds of faults are likely to occur regularly.
Their occurrence may endanger SLA commitments and thereby limit scalability
of the application.

Customization will gain importance in multi-tenant Software-as-a-Service ap-
plications as it enables the SaaS provider to fine-tune his offerings to specific
tenants without losing the benefits of scale inherent to SaaS. Not only appli-
cations and services, but also the composition of those, i.e. a workflow-driven
application, need to support customization to facilitate the migration of legacy
applications to the cloud.
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Abstract. We address the problem of verification of program terms pa-
rameterized by a data type X , such that the only operations involving X
a program can perform are to input, output, and assign values of type X ,
as well as to test for equality such values. Such terms are said to be data
independent with respect to X . Logical relations for game semantics of
terms are defined, and it is shown that the Basic Lemma holds for them.
This proves that terms are predicatively parametrically polymorphic,
and it provides threshold collections, i.e. sufficiently large finite interpre-
tations of X , for the problem of verification of observational-equivalence,
approximation, and safety of parameterized terms for all interpretations
of X . In this way we can verify terms with data independent infinite
integer types. The practicality of the approach is evaluated on several
examples.

1 Introduction

In this paper we study predicative parametric polymorphism in the setting of
game semantics, and its applications to parameterized verification. In order to
keep the presentation focussed, we work with Idealized Algol (IA) [1], an ex-
pressive programming language combining imperative features, locally-scoped
variables and (call-by-name) higher-order functions.

Parametric polymorphism is the notion of treating data from a range of
types in a uniform fashion. Its predicative version allows types to be formed
from type variables, while its impredicative version is more general and allows
universal quantification of type variables. We achieve predicative parametric
polymorphism by extending our language with free data type variables X on
which only the equality operation is available. Thus, any program term makes
sense if any data type is instantiated for X , i.e. terms become parameterized by
X . We will want to verify observational-equivalence, approximation, and safety
of predicatively parametrically polymorphic terms.

We obtain results which provide threshold collections, i.e. sufficient finite in-
terpretations of the data type variable X , such that if a property holds/fails
for those interpretations, then it holds/fails for all interpretations which assign
larger sets to the parameter X . Considering the case when an infinite integer
type is substituted for X , we obtain a procedure to perform verification of terms
which contain infinite integers completely automatically. This is done by replac-
ing integers with threshold collections, i.e. appropriate small finite data types.

W. Binder, E. Bodden, and W. Löwe (Eds.): SC 2013, LNCS 8088, pp. 128–143, 2013.
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A useful tool for enabling parameterized verification as above are logical re-
lations [13,14,16]. A logical relation of a language is an assignment of relations
to all types such that, the relation for any type is obtained from the relations as-
signed to data types and type variables, by induction on the structure of types.
We will define logical relations for game semantics by lifting the relations on
data values through all the constructs of game semantics, in such a way that the
Basic Lemma holds for them. It states that logical relations are preserved by
game semantics of terms. This proves that the language we consider is paramet-
rically polymorphic, i.e. any term behaves uniformly for different instances of
its parameter. The Basic Lemma will be applied to parameterized verification,
since it provides direct ways of relating various game semantics interpretations
of parameterized terms.

Game semantics [1,2] is a method for compositional modeling of program-
ming languages, which constructs models of terms (open programs) by looking
at the ways in which a term can observably interact with its environment. Types
are interpreted by games (or arenas) between a Player, which represents the term
being modelled, and an Opponent, which represents the environment in which
the term is used, while terms are interpreted by strategies on games. Game se-
mantics is compositional, i.e. defined recursively on the syntax, therefore the
model of a larger term is constructed from the models of its constituting sub-
terms, using a notion of strategy composition. Another important feature of this
method, also known as external compositionality, is that there is a model for
any term-in-context (open program) with undefined identifiers, such as calls to
library functions. These two features are essential for achieving modular anal-
ysis of larger terms. The model obtained by game semantics is fully abstract,
which means that it is both sound and complete with respect to observational
equivalence of programs, and so it is the most accurate model we can use for a
programming language. Although this model is precise, it is complicated and so
equivalence and a range of properties are not decidable within it. However, it
has been shown that for several language fragments with finite data types, the
model can be given certain kinds of concrete automata-theoretic representations
[4,5,6,12]. This gives a decision procedure for a range of verification problems,
such as observational-equivalence, approximation, safety, and others, to be solved
algorithmically.

The paper is organised as follows. Section 2 introduces the language con-
sidered in this paper, and its game semantics is defined in Section 3. Logical
relations for game semantics are presented in Section 4. Several theorems which
provide support for parameterized verification are shown in Section 5. The prac-
ticality of this approach is demonstrated in Section 6. In Section 7, we conclude
and discuss possible extensions.

Related Work. Predicative parametric polymorphism is known as data inde-
pendence in the setting of concurrent reactive systems. Some practically impor-
tant examples of such systems are communication protocols, memory systems,
and security protocols. The literature contains efficient algorithms for deciding
the parameterized verification problem for data independent systems [10,11].
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System F is a typical example of impredicative parametric polymorphism. It is
also known as the polymorphic or second-order λ-calculus, and it works with
pure type theories, with no notion of ground data types. Game semantics for
System F are given in [8,9].

2 Programming Language

Idealized Algol (IA) [1,2] is a simply-typed call-by-name λ-calculus with the
fundamental imperative features and locally-scoped variables. We extend IA
with predicative parametric polymorphism by allowing data type variables X .

The data types D are finite integers (intn = {0, . . . ,n − 1}), booleans, and
a data type variable X (D ::= intn | bool | X ). The phrase types consists of
base types: expressions, commands, variables (B ::= expD | varD | com) and
function types (T ::= B | T → T ).

Terms of the language are the standard functional constructs for function
definition (λ x : T .M ) and application (MN ) as well as recursion (YM ). Expres-
sion constants are integers (n), booleans (tt ,ff ), and data values from the set
W which interprets X (w ∈ W ). The usual arithmetic-logic operations are em-
ployed (M opN ), but equality is the only operation available on X -expressions.
We have the usual imperative constructs: sequential composition (M ; N ), con-
ditional (if M thenN elseN ′), iteration (whileM doN ), assignment (M := N ),
de-referencing (!M ), “do nothing” command skip, and diverge which represents
an infinite loop (divergence). Block-allocated local variables are introduced by
a new construct (newD x := v inM ), which initializes a variable and makes it
local to a given block. The constructor mkvarDMN is used for creating “bad”
variables.

Well-typed terms are given by typing judgements of the form Γ �W M : T ,
where Γ is a type context consisting of a finite number of typed free identifiers,
and W is a set of data values used to interpret X , which are allowed to occur
in M as expression constants. When it does not cause ambiguity, we may write
only Γ � M : T . Typing rules of the language are those of IA (e.g. [1,2]), where
the rules for arithmetic-logic operations are:

Γ �W M : expD Γ �W N : expD
Γ �W M opN : expD ′

Γ �W M : expX Γ �W N : expX
Γ �W M = N : expbool

where D ,D ′ ∈ {intn, bool}, and op ∈ {+,−, ∗, /, =, �=, <, >,∧,∨,¬}. For such
terms we say that are data independent with respect to the data type X .

Any well-typed term can contain equality tests between values of X . We
define a condition on terms, which does not allow any equality tests between
values of X . A term Γ �W M : T satisfies (NoEqX ) condition if for any
equality operation Γ ′ �W N = N ′ within M , X does not occur in the types of
N and N ′, i.e. Γ ′ �W N ,N ′ : exp{intn, bool}.

The operational semantics of our language is given for terms Γ �W M : T ,
such that all identifiers in Γ are variables, i.e. Γ = x1 : varD1, . . . , xk : varDk .
It is defined by a big-step reduction relation: Γ �W M , s =⇒ V , s′, where s, s′
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represent Γ -states before and after reduction. A Γ -state s is a (partial) function
assigning data values to the variables {x1, . . . , xk}. We denote by V terms in
canonical form defined by V ::= x | v | λ x : T .M | skip | mkvarDMN .
Reduction rules are those of IA [1,2].

Given a term Γ �W M : com, where all identifiers in Γ are variables, we say
that M terminates in state s, if Γ �W M , s =⇒ skip, s′ for some state s′. Then,
we say that a term Γ �W M : T is an approximation of a term Γ �W N : T ,
denoted by Γ �W M �∼ N , if and only if for any term-with-hole 1 C [−] : com,
such that both C [M ] and C [N ] are well-typed terms of type com, if C [M ]
terminates then C [N ] terminates. If two terms approximate each other they are
considered observationally-equivalent, denoted by Γ �W M ∼= N .

3 Game Semantics

We now give a brief description of game semantics for IA extended with predica-
tive parametric polymorphism. A more detailed presentation of game semantics
for IA can be found in [1,2].

An arena A is a triple 〈MA, λA,�A〉, where MA is a countable set of moves,
λA : MA → {O, P} × {Q, A} is a labeling function which indicates whether a
move is by Opponent (O) or Player (P), and whether it is a question (Q) or an
answer (A). Then, �A is a binary relation between MA +{∗} (∗ �∈ MA) and MA,
called enabling (if m �A n we say that m enables move n), which satisfies the
following conditions: (i) Initial moves (a move enabled by ∗ is called initial) are
Opponent questions, and they are not enabled by any other moves besides ∗;
(ii) Answer moves can only be enabled by question moves; (iii) Two participants
always enable each others moves, never their own.

We denote the set of all initial moves in A as IA. The simplest arena is the
empty arena I = 〈∅, ∅, ∅〉. Given arenas A and B , we define new arenas A× B ,
A⇒ B as follows:

A× B = 〈MA + MB , [λA, λB ], �A + �B 〉
A⇒ B = 〈MA + MB , [λA, λB ],�B +

(
IB × IA

)
+

(
�A ∩ (MA ×MA)

)
〉

where + is a disjoint union, and λA is like λA except that it reverses O/P part
of moves while preserving their Q/A part.

Let W be an arbitrary set of data values, and w be a meta-variable ranging
over W . A parameterized arena AW = 〈MAW , λAW

,�AW 〉 is defined as follows.
The set of moves MAW is of the form CA∪(PA×W ), where CA is a set of constant
moves that do not depend on W , and PA is a set of parameterized move-tags
so that for any p ∈ PA and w ∈ W , (p,w) is a move. Moves of the form (p,w)
are called parameterized moves, and we will also denote them as p(w). Each
particular parameterized move-tag p ∈ PA will generate one partition of MAW ,

1 A term-with-hole C [−] : com is a term with with zero or more holes [−] in it, such
that if Γ � M : T is a term of the same type as the hole then C [M ] is a well-typed
closed term of type com, i.e. � C [M ] : com.
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denoted as [p] = {p(w) | w ∈ W }. The partition of MAW induced by a constant
move c ∈ CA is a singleton set [c] = {c}. The partitioning of MAW induced by
W is: {[c] | c ∈ CA} ∪ {[p] | p ∈ PA}.

All moves of MAW that belong to a single partition of the form [p] have the
same labellings and enablings, i.e. λAW

(p(w)) is the same for all w ∈ W , and
if (p(w),n) ∈�AW (resp., (n, p(w)) ∈�AW ) for some n ∈ MAW ,w ∈ W , then
[p]× {n} ⊆�AW (resp., {n} × [p] ⊆�AW ).

Now we are ready to give interpretations of the types of our language. The
data types are interpreted by sets of values they can contain:

[[intn ]]W = {0, . . .n − 1} [[bool ]]W = {tt ,ff } [[X ]]W = W

The base types are interpreted by parameterized arenas, where all questions are
initial and P-moves answer them.

[[expD]]W = 〈 {q, v | v ∈ [[D]]W }, {λ(q) = OQ, λ(v) = PA},
{(∗, q), (q, v) | v ∈ [[D]]W } 〉

[[com]]W=〈{run, done},{λ(run) = OQ,λ(done) = PA},{(∗, run), (run, done)}〉
[[varD]]W = 〈 {read , v ,write(v), ok | v ∈ [[D]]W }, {λ(read ,write(v)) = OQ,
λ(v , ok) = PA}, {(∗, read), (∗,write(v)), (read , v), (write(v), ok) | v ∈ [[D]]W }〉

In the arena for expressions, there is an initial move q to ask for the value of
the expression, and corresponding to it a value from [[D ]]W . Note that, the set
of moves of [[expX]]W has two partitions {q} and {v | v ∈ W }. For commands,
there is an initial move run to initiate a command, and an answer move done to
signal successful termination of a command. This arena does not depend on W .
In the arena for variables, we have moves for writing to the variable, write(v),
acknowledged by the move ok , and for reading from the variable, a move read,
and corresponding to it a value from [[D ]]W . M[[varX]]W has four partitions {read},
{ok}, {v | v ∈ W }, and {write(v) | v ∈W }.

A justified sequence sW in arena AW is a finite sequence of moves of AW

together with a pointer from each non-initial move n to an earlier move m such
that m �AW n. We say that n is (explicitly) justified by m, or when n is an
answer that n answers m. A legal play (or play) is a justified sequence with
some additional constraints: alternation (Opponent and Player moves strictly
alternate), well-bracketed condition (when an answer is given, it is always to the
most recent question which has not been answered), and visibility condition (a
move to be played is justified by a move from a certain subsequence of the play
so far, called view). The set of all legal plays in arena AW is denoted by LAW .

A strategy σW on an arena AW (written as σW : AW ) is a non-empty set of
even-length plays of AW satisfying: if sW · m · n ∈ σW then sW ∈ σW ; and if
sW ·m ·n, sW ·m ·n ′ ∈ σW then n = n ′. A strategy specifies what options Player
has at any given point of a play and it does not restrict the Opponent moves.
A play is complete if all questions occurring in it have been answered. Given
a strategy σW , we define the corresponding complete strategy σcomp

W as the set
of its non-empty complete plays. We write Strcomp

AW
for the set of all complete

strategies for the arena AW .
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Composition of strategies is interpreted as CSP-style “parallel composition
plus hiding”. Given strategies σW : AW ⇒ BW and τW : BW ⇒ CW , the
composition σW

o
9 τW : AW ⇒ CW consists of sequences generated by playing

σW and τW in parallel, making them synchronize on moves in the shared arena
BW . Moves in BW are subsequently hidden. We now formally define composition
of strategies. Let u be a sequence of moves from AW , BW , and CW . We define
u � BW ,CW to be the subsequence of u obtained by deleting all moves from
AW along with all associated pointers from/to moves of AW . Similarly define
u � AW ,BW . Define u � AW ,CW to be the subsequence of u consisting of all
moves from AW and CW , but where there was a pointer from a move mA ∈ MAW

to an initial move m ∈ IBW extend the pointer to the initial move in CW which
was pointed to from m. We say that u is an interaction of AW , BW , CW if u �
AW ,BW ∈ LAW ⇒BW , u � BW ,CW ∈ LBW ⇒CW , and u � AW ,CW ∈ LAW ⇒CW .
The set of all such sequences is written as int(AW ,BW ,CW ). We define:

σW
o
9 τW = {u � AW ,CW | u ∈ int(AW ,BW ,CW ) ∧ u � AW ,BW ∈ σW ∧

u � BW ,CW ∈ τW }

The identity strategy idAW : AW ⇒ AW , which is also called copy-cat, is de-
fined in such a way that a move by Opponent in either occurrence of AW is
immediately copied by Player to the other occurrence, i.e. we have

idAW = {s ∈ LAl
W ⇒Ar

W
| ∀ s ′ �even s . s ′ � Al

W = s ′ � Ar
W }

where the l and r tags are used to distinguish between the two occurrences of
A, s ′ �even s means that s ′ is an even-length prefix of s , and s ′ � Al

W is the
subsequence of s ′ consisting of all moves from Al

W .
Plays in a strategy may contain several occurrences of initial moves, which

define different threads inside plays in the following way: a thread is a subse-
quence of a play whose moves are connected via chains of pointers to the same
occurrence of an initial move. We consider the class of single-threaded strategies
whose behaviour depends only on one thread at a time, i.e. any Player move
depends solely on the current thread of the play. We say that a strategy is
well-opened if all its plays have exactly one initial move. It can be established
one-to-one correspondence between single-threaded and well-opened strategies.
The set of all strategies for an arena forms a complete partial order (cpo) under
the inclusion order (⊆). The least element is {ε}, and the least upper bound is
given by unions. It is shown in [1,2] that arenas as objects and single-threaded
(well-opened) strategies as arrows constitute a cpo-enriched cartesian closed cat-
egory. From now on, we proceed to work only with well-opened strategies.

A type T is interpreted as an arena [[T ]]W , and a term Γ �W M : T , where
Γ = x1 : T1, . . . , xn : Tn , is interpreted by a strategy [[Γ � M : T ]]W for the
arena [[Γ � T ]]W = [[T1]]W × . . . × [[Tn ]]W ⇒ [[T ]]W . Language constants and
constructs are interpreted by strategies and compound terms are modelled by
composition of the strategies that interpret their constituents. Identity strategies
are used to interpret free identifiers from Γ . Some of the strategies [1,2] are given
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below, where to simplify representation of plays, every move is tagged with the
index of type component where it occurs.

[[v : expD ]]comp
W = {q v} [[skip : com]]comp

W = {run done} [[diverge : com]]comp
W =∅

[[op : expD1 × expD2 → expD ]]comp
W = {q q1 v1 q2 v ′2 (v op v ′) | v , v ′ ∈ [[D ]]W }

[[; : com1 × com2 → com]]comp
W = {run run1 done1 run2 done2 done}

[[:=: varD1 × expD2 → com]]comp
W = {run q2 v2 write(v)1 ok1 done | v ∈ [[D ]]W }

Using standard game-semantic techniques, it can be shown as in [1,2] that this
model is fully abstract for observational-equivalence.

Theorem 1. Γ �W M �∼ N iff [[Γ � M ]]comp
W ⊆ [[Γ � N ]]comp

W .

Suppose that there is a special free identifier abort of type com in Γ . Let M [N /x ]
denote the capture-free substitution of N for x in M . We say that a term Γ �W

M is safe iff Γ\abort �W M [skip/abort]�∼ M [diverge/abort]; otherwise we say
that a term is unsafe. Since the game-semantics model is fully abstract, the
following can be shown (see also [3]).

Lemma 1. A term Γ �W M is safe if [[Γ � M ]]comp
W does not contain any play

with moves from M[[comabort ]].

For example, [[abort : comabort � skip ; abort : com]]comp is the set {run · runabort ·
doneabort · done}, so this term is unsafe.

4 Logical Relations

A binary relation between sets W0 and W1 is any subset R ⊆W0×W1. We will
use the notation R : W0 ←→ W1 to mean that R is a binary relation between
W0 and W1, and w0 R w1 to mean (w0,w1) ∈ R, in which case we say that w0 and
w1 are R-related. The domain of a relation R is the set of the first components
of all pairs in R. We say that R is a partial function iff ∀w0,w1,w ′

1.(w0Rw1 ∧
w0Rw ′

1)⇒ w1 = w ′
1, and R is injective iff ∀w0,w ′

0,w1.(w0Rw1 ∧ w ′
0Rw1) ⇒ w0 =

w ′
0. A special case of relation is the identity relation IW : W ←→ W , defined

by IW = {(w ,w) | w ∈ W }, i.e. w IW w ′ iff w = w ′. Next, we define relations
on sequences. For any R : W0 ←→W1, define R∗ : W ∗

0 ←→W ∗
1 as

t R∗ t ′ iff t1 R t ′1 ∧ . . . ∧ t|t| R t ′|t′|

where | t | denotes the length of t , and for any 1 ≤ k ≤| t |, tk denotes the k -th
element of t . That is, sequences are R-related if they have the same length and
corresponding elements are R-related.

Let R : W0 ←→ W1 be a relation. For any data type, we define the relation
[[D ]]R,W0,W1 : [[D ]]W0 ←→ [[D ]]W1 as follows.

[[intn ]]R,W0,W1 = I[[intn ]] [[bool ]]R,W0,W1 = I[[bool]] [[X ]]R,W0,W1 = R

Next we “lift” the definition of relations to arenas. We define a relational arena
AR,W0,W1 = 〈MAR,W0 ,W1

, λAR,W0,W1
,�AR,W0,W1

〉 : AW0 ←→ AW1 between two
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parameterized arenas induced by R. Let MAWi
= CA ∪ (PA ×Wi) for i = 0, 1.

Then, we have:

(m,m ′) ∈ MAR,W0 ,W1
iff

{
m = m ′, if m ∈ CA

w R w ′, ifm ∈ PA ×W0,m = p(w),m ′ = p(w ′)
λAR,W0,W1

(m,m ′) = λAW0
(m) = λAW1

(m ′)
∗ �AR,W0,W1

(m,m ′) iff (∗ �AW0
m ∧ ∗ �AW1

m ′)
(n,n ′) �AR,W0,W1

(m,m ′) iff (n �AW0
m ∧ n ′ �AW1

m ′)

Let define a relation LAR,W0,W1
: LAW0

←→ LAW1
between the sets of all legal

plays in AW0 and AW1 induced by R.

s LAR,W0,W1
s ′ iff (i)s (MAR,W0 ,W1

)∗ s ′

(ii)λAW0
(si) = λAW1

(s ′i), for 1 ≤ i ≤| s |
(iii)si justifies sj iff s ′i justifies s ′j , for 1 ≤ i < j ≤| s |

(1)

We define Domain(LAR,W0 ,W1
) as the set of all legal plays s from AW0 , such that

for any parameterized move p(w) in s we have that w is in the domain of R.
Finally, we define a relation Strcomp

AR,W0,W1
: Strcomp

AW0
←→ Strcomp

AW1
between

complete strategies on AW0 and AW1 induced by R.

σ Strcomp
AR,W0,W1

σ′ iff ∀ s ∈ σ.s ∈ Domain(LAR,W0 ,W1
)⇒ ∃S ′ ⊆ σ′.S ′ �= ∅ ∧

(∀ s ′ ∈ S ′.s LAR,W0,W1
s ′) ∧ Closed(A,R,W0,W1, s ,S ′)

(2)

Closed(A,R,W0,W1, s ,S ′) = ∀ s ′ ∈ S ′. ∀ k . ∀w ′ ∈ W1. λ
OP (sk ) = O ∧

sk = p(w) ∧ w R w ′ ⇒ ∃ s ′′ ∈ S ′.s ′′1 = s ′1 ∧ . . . ∧ s ′′k−1 = s ′k−1 ∧ s ′′k = p(w ′)
That is, two complete strategies σ and σ′ are R-related if and only if for any
complete play s from σ which is in the domain of the logical relation, there
exists a nonempty subset S ′ of σ′ such that s is R-related to any complete play
in S ′ and S ′ is closed under those choices of Opponent moves which preserve the
relation R. We say that S ′ is R-closed with respect to s .

Before we prove the Basic Lemma for logical relations, we first show several
useful technical lemmas.

Lemma 2. Let σW : AW ⇒ BW and τW : BW ⇒ CW be two strategies and
R : W0 ←→ W1 be a relation. If we have that σcomp

W0
(Strcomp

A⇒BR,W0,W1
)σcomp

W1
and

τcomp
W0

(Strcomp
B⇒CR,W0,W1

) τcomp
W1

, then

(σW0
o
9 τW0)

comp (Strcomp
A⇒CR,W0,W1

) (σW1
o
9 τW1)

comp

Proof. Let s ∈ (σW0
o
9 τW0)comp . Then there must be some witness to this, i.e.

some u ∈ int(AW0 ,BW0 ,CW0) such that s = u � AW0 ,CW0 . By definition of
composition, we have that u � BW0 ,CW0 ∈ τcomp

W0
, and for every BW -initial

move i ∈ u � BW0 ,CW0 we have (u � AW0 ,BW0) � i ∈ σcomp
W0

. We denote by
s � i the subsequence of s consisting of all those moves which are hereditarily
justified (via chains of pointers) by the same initial move i . Since σW0 is R-
related to σW1 , there is a set Ui ⊆ σcomp

W1
such that Ui is R-closed with respect
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to (u � AW0 ,BW0) � i for any BW -initial move i in u � AW0 ,BW0 . Since τW0

is R-related to τW1 , there is a set U ⊆ τcomp
W1

such that U is R-closed with
respect to u � BW0 ,CW0 . We can now generate a set U ′. For an arbitrary
u1 ∈ U we create a set of sequences in U ′ as follows. For any BW -initial move
i ∈ u1, we choose an arbitrary ui,1 ∈ Ui such that (u1 � B) � i = ui,1 � B .
Then we generate an interaction sequence u ′ ∈ int(AW1 ,BW1 ,CW1), such that
u ′ � BW1 ,CW1 = u1, and (u ′ � AW1 ,BW1) � i = ui,1. We repeat this process for
all possible u1 ∈ U and ui,1 ∈ Ui for any BW -initial move i ∈ u1. Finally, we
obtain S = {u ′ � AW1 ,CW1 | u ′ ∈ U ′}, which is R-closed with respect to s . ��

Lemma 3. Let idAW : AW ⇒ AW be an identity strategy and R : W0 ←→ W1

be a relation. Then idcomp
AW0

(Strcomp
A⇒AR,W0,W1

) idcomp
AW1

.

Proof. Let s ∈ idcomp
AW0

. We first generate a complete play t ∈ idcomp
AW1

, such that
s is R-related to t . This is done by choosing for any Opponent move sk of the
form p(w), where k is odd, a R-related move p(w ′) from MAW1

, and setting
tk = p(w ′), tk+1 = p(w ′). Then we obtain a set S ′ from t , such that for any odd
k and for any m ∈ MAW1

, where sk MR,AW0 ,AW1
m, we create a sequence in S ′:

s ′ = t1 . . . tk−1mmtk+2 . . . t|t|. Such S ′ is R-closed with respect to s . ��

Let R be a relation between two cpo (V ,≤) and (V ′,≤′), and let � be the
pointwise ordering on R. We say that R is complete iff (R,�) is cpo such that:

– the least element is (⊥,⊥′), where ⊥ (resp., ⊥′) is the least element of (V ,≤)
(resp., (V ′,≤′)).

– for any directed set D ⊆ R, its least upper bound consists of pointwise least
upper bounds of (V ,≤) and (V ′,≤′).

Lemma 4. For any parameterized arena AW and for any relation R : W0 ←→
W1, we have that Strcomp

AR,W0,W1
is complete.

Proof. The least elements of Strcomp
AW0

and Strcomp
AW1

are both ∅, and the least upper
bounds are unions. ��

We now present the Basic Lemma of logical relations for our language.

Theorem 2. Let Γ, z1 : expX , . . . , zk : expX � M : T be a term such that
M contains no data values of X , and R : W0 ←→ W1 be a relation such that
(w1,w ′

1), . . . , (wk ,w ′
k ) are some pairs in R. If either M satisfies (NoEqX ) or R

is a partial function and injective, then

[[Γ � M [w1/z1, . . . ,wk/zk ]]]comp
W0

(Strcomp
[[Γ�T ]]R,W0,W1

)[[Γ � M [w ′
1/z1, . . . ,w

′
k/zk ]]]comp

W1

Proof. The proof is by induction on the structure of terms.
The case of free identifiers holds due to the fact that logical relations are

preserved by identity strategies (see Lemma 3).
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Let Δ = z1 : expX , . . . , zk : expX . Consider the case Γ, Δ � M = N , where
Γ, Δ � M ,N : expX . By induction hypothesis, we have that:

[[Γ � M [−→w /Δ]]]comp
W0

(Strcomp
[[Γ�expX ]]R,W0,W1

) [[Γ � M [
−→
w ′/Δ]]]comp

W1
(∗)

[[Γ � N [−→w /Δ]]]comp
W0

(Strcomp
[[Γ�expX ]]R,W0,W1

) [[Γ � N [
−→
w ′/Δ]]]comp

W1
(∗∗)

where w1Rw ′
1, . . . ,wkRw ′

k , and we also use the following abbreviations: −→w =
(w1, . . . ,wk ),

−→
w ′ = (w ′

1, . . . ,w
′
k ), and M [−→w /Δ] = M [w1/z1, . . . ,wk/zk ]. Sup-

pose t ∈ [[Γ � M = N [−→w /Δ]]]comp
W0

. Then either t = q t1 t2 tt or t = q t1 t2 ff ,
where q t1 w1 ∈ [[Γ � M [−→w /Δ]]]comp

W0
and q t2 w2 ∈ [[Γ � N [−→w /Δ]]]comp

W0
. Let

w1 �= w2, and so t = q t1 t2 ff . Since R is a partial function and injective,
for any play q t ′1 w ′

1 ∈ [[Γ � M [
−→
w ′/Δ]]]comp

W1
related by R with q t1 w1, and for

any q t ′2 w ′
2 ∈ [[Γ � N [

−→
w ′/Δ]]]comp

W1
related by R with q t2 w2, it must be that

w ′
1 �= w ′

2. Then all plays of the form t ′ = q t ′1 t ′2 ff ∈ [[Γ � M = N [
−→
w ′/Δ]]]comp

W1

are R-related with t . The other case, when w1 = w2 is similar. So we have
[[Γ � M = N [−→w /Δ]]]comp

W0
(Strcomp

[[Γ�expbool]]R,W0,W1
) [[Γ � M = N [

−→
w ′/Δ]]]comp

W1
.

Recursion Γ � YM : T is handled by using the following facts:

– Strcomp
[[Γ�T ]]R,W0,W1

is complete by Lemma 4
– the inductive hypothesis [[Γ � M : T → T ]]comp

W0
(Strcomp

[[Γ�T→T ]]R,W0,W1
) [[Γ �

M : T → T ]]comp
W1

– and the definition of recursion [[Γ � YM : T ]] (see [1,2]).

The other cases for language constants and constructs are proved similarly, and
we also use the fact shown in Lemma 2 that logical relations are preserved by
composition of strategies. ��

Remark. In Theorem 2, we have made an assumption that data values of X
that occur as expression constants in M must be R-related in the two versions
of M with parameters W0 and W1. This is so because any complete play s and
any play in its R-closed set S ′ have to be R-related on their Player moves. For
example, let W0 = W1 = {0, 1}, and R = {(0, 1)}. Then [[� 0 : expX ]]W0 is not
R-related to [[� 0]]W1 , but is R-related to [[� 1]]W1 .

Example 1. Consider the term M1:

f : expX f ,1 → comf , x : expX x � f (x ) : com

The model representing this term, when [[X ]] = {0, 1}, is shown in Fig. 1. The
model illustrates only the possible behaviors of this term: f may evaluate its
argument, zero or more times, then the term terminates with a move done. The
model makes no assumption about the number of times that f uses its argument.
Note that moves tagged with f represent the actions of calling and returning from
the function, while moves tagged with f , 1 are the actions caused by evaluating
the first argument of f .
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run

done

runf q f,1

q x

1 x

0 x

0 f,1

1 f,1

f done

Fig. 1. The strategy for M1 as a finite automaton

Let W = {0, 1}, W ′ = Z (integers), and R = {(0,−n), (1,n) | n ∈ {0, 1, . . .}}.
This term satisfies (NoEqX ), so by Theorem 2 we have that [[M1]]

comp
W and

[[M1]]
comp
W ′ are related by R. For example, let s = run runf qf ,1 qx 1x 1f ,1 donef done

∈ [[M1]]
comp
W . Then, the corresponding R-closed subset of [[M1]]

comp
W ′ is:

S ′ = {run runf qf ,1 qx nx nf ,1 donef done | n ∈ {0, 1, . . .}}

Also note that, for s = run runf qf ,1 qx 1x 1f ,1 qf ,1 qx 1x 1f ,1 donef done, the cor-
responding R-closed set is:

S ′ = {run runf qf ,1 qx nx nf ,1 qf ,1 qx mx mf ,1 donef done | n,m ∈ {0, 1, . . .}}

This is so because two occurrences of 1x in s are Opponent moves, so S ′ needs
to be closed under all alternative choices of these moves which preserve R.

Let W = {0, 1, 2, 3}, W ′ = {0}, and R = {(0, 0)}. Then [[M1]]
comp
W and

[[M1]]
comp
W ′ are also related by R. ��

Example 2. Consider the term M2:

f : comf ,1 → comf , abort : comabort , x : expX x , y : expX y �
f
(
if ¬(x = y) then abort

)
: com

The model for this term with parameter {tt ,ff } is shown in Fig. 2. Let W =
{0, 1, 2, 3}, W ′ = {tt ,ff }, and R = {(0, tt), (1,ff )}. This term does not satisfy

run

done

runf runf,1

q x

f

q y

tt
y

done

donef,1

runabort

tt x

ff x

q y

ff
y

tt
y

ff
y

doneabort

Fig. 2. The strategy for M2
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(NoEqX ), so R is a partial function and injective. By Theorem 2, terms M2

with parameters W and W ′ are related by R. Let

s = run runf runf ,1 qx 1x qy 0y runabort doneabort donef ,1 donef done

be a complete play for M2 with parameter W . Then, the corresponding R-closed
subset of [[M2]]

comp
W ′ is:

S ′ = {run runf runf ,1 qx ff x qy tty runabort doneabort donef ,1 donef done} ��

5 Threshold Collections

In this section we present theorems which provide sufficient conditions for reduc-
ing the verification of properties for all interpretations of X , to the verification
of the same properties for finite interpretations of X .

Theorem 3. Let Γ � M ,N : T be terms which satisfy (NoEqX ), W0 = {0},
and all data values of X in M and N are from W0.
(i) If Γ �W0 M �∼/N then Γ �W M �∼/N for all W .
(ii) If Γ �W0 M is not safe then Γ �W M is not safe for all W .
(iii) If Γ �W0 M is safe then Γ �W M is safe for all W .

Proof. Let R : W ←→ W0 be the unique total function from W to W0. By
Theorem 2, we have that

[[Γ � N ]]comp
W (Strcomp

[[Γ�T ]]R,W ,W0
) [[Γ � N ]]comp

W0
(1)

[[Γ � M ]]comp
W0

(Strcomp
[[Γ�T ]]R−1,W0,W

) [[Γ � M ]]comp
W (2)

We will prove (i) by contraposition. Suppose that Γ �W M �∼ N for some
W . Let t ∈ [[Γ � M ]]comp

W0
. By (2), there exists t ′ ∈ [[Γ � M ]]comp

W such that
t(L[[Γ�T ]]R−1,W0,W

)t ′ (*). Since Γ �W M �∼ N , we have t ′ ∈ [[Γ � N ]]comp
W . Now by

(1), there exists t† ∈ [[Γ � N ]]comp
W0

such that t ′ L[[Γ�T ]]R,W ,W0
t† (**). By (*), (**),

the fact that W0 ×W0 is the identity relation, it follows that t = t†. Therefore,
[[Γ � M ]]comp

W0
⊆ [[Γ � N ]]comp

W0
, and so Γ �W0 M �∼ N . The cases (ii) and (iii) are

similar. ��

Theorem 4. Let Γ � M ,N : T be terms, κ be a nonzero integer such that
Wκ = {0, . . . , κ}, and all data values of X in M and N are from Wκ.
(i) If Γ �Wκ M �∼/N then Γ �Wκ′ M �∼/N for all κ′ ≥ κ.
(ii) If Γ �Wκ M is not safe then Γ �Wκ′ M is not safe for all κ′ ≥ κ.

Proof. Consider the case (i). The proof is by contraposition. Suppose that Γ �Wκ′

M �∼ N for some κ′ ≥ κ. Let R : Wκ ←→ Wκ′ be a total function and injective.
By Theorem 2,

[[Γ � M ]]comp
Wκ

(Strcomp
[[Γ�T ]]R,Wκ,W

κ′
) [[Γ � M ]]comp

Wκ′ (1)
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Let t ∈ [[Γ � M ]]comp
Wκ

. By (1), there exists t ′ ∈ [[Γ � M ]]comp
Wκ′ such that

t(L[[Γ�T ]]R,Wκ,W
κ′

)t ′ (*). By assumption, we have t ′ ∈ [[Γ � N ]]comp
Wκ′ . Let π :

Wκ′ ←→ Wκ be such that π : Wκ′\Range(R) → Wκ is a total function. Then
R−1 ∪ π : Wκ′ ←→ Wκ is a total function and surjective. But Wκ ⊆ Wκ′ ,
(R−1 ∪ π) � Wκ is injective, and t ′ ∈ Domain(L[[Γ�T ]](R−1∪π)�Wκ,W

κ′ ,Wκ
). In

a manner similar to the proof of Theorem 2, we can show that there exists
t† ∈ [[Γ � N ]]comp

Wκ
such that t ′(L[[Γ�T ]]R−1∪π,W

κ′ ,Wκ
)t† (**). It follows from (*),

(**), and the definition of R, that t = t†. Therefore, Γ �Wκ M �∼ N .
Consider the case (ii). Suppose that Γ �Wκ′ M is safe for some κ′ ≥ κ.

Let R : Wκ ←→ Wκ′ be a total function and injective. By Theorem 2, [[Γ �
M ]]comp

Wκ
(Strcomp

[[Γ�T ]]R,Wκ,W
κ′

) [[Γ � M ]]comp
Wκ′ (1). Let t ∈ [[Γ � M ]]comp

Wκ
. By (1),

there exists t ′ ∈ [[Γ � M ]]comp
Wκ′ such that t(L[[Γ�T ]]R,Wκ,W

κ′
)t ′ (*). But t ′ is safe

by assumption, i.e. it does not contain unsafe moves. So it must be that t is also
safe. ��

Example 3. The term M1 from Example 1 with parameter W0 = {0} is abort-
safe. By Theorem 3, we can conclude that M1 is abort-safe for all W . So M1

where X is replaced by int is also abort-safe.
The term M2 from Example 2 with parameter W1 = {0, 1} is abort-unsafe.

By Theorem 4, it follows that M2 is abort-unsafe for all Wκ′ , κ′ ≥ 1 (which also
includes int). ��

6 Application

From now on, we restrict the programming language to the 2nd-order recursion-
free fragment. More precisely, function types are restricted to T ::= B | B →
T . This restriction is made since the game semantic model for this language
fragment is decidable, i.e. the model can be given concrete automata-theoretic
representations using the regular languages as in [6] and the CSP process algebra
as in [4], and so a range of verification problems such as approximation and
safety can be solved algorithmically. We have extended the tool given in [4],
which supports only IA terms, such that it automatically converts a predicatively
parametrically polymorphic IA term into a parameterized CSP process [15] which
represents its game semantics. The resulting CSP process is defined by a script
in machine readable CSP which the tool outputs.

Let us consider an implementation of the linear search algorithm:

x [k ] : varX , y : expX , abort : com �
newX a[k ] in newintk+1 i := 0 in
while (i < k) do {a[i ] := x [i ]; i := i + 1; }
newX z := y in newbool present := false in
while (i < k) do { if (a[i] = z) then present := true; i := i + 1; }
if (¬ present) then abort : com

The code includes a meta variable k > 0, representing array size, which will be
replaced by several different values. The data stored in the arrays x , a, and the
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expression y is of type X , and the type of index i is intk+1, i.e. one more than
the size of the array. The program first copies the input array x into a local
array a, and the input expression y into a local variable z . Then, the local array
is searched for an occurrence of the value stored in z . If the search fails, then
abort is executed. The equality is the only operation on the data of type X (see
the bold in the code), so this term does not satisfy (NoEqX ).

done

run readx[0]
1 x[0]

0 x[0]

readx[1]

readx[1]

1 x[1]

0 x[1]

1 x[1]

0 x[1]

qy

qy

qy

1y

1y
0y

0y

1y

0y

runabort

doneabort

Fig. 3. Model for the linear search with k=2 and W1 = {0, 1}.

A model for the term with k = 2 and parameter W1 = {0, 1} is shown in Fig. 3.
If the value read from y has occurred in x then the term terminates successfully
without executing abort; otherwise the term runs abort.

If this term is tested for abort-safety, we obtain the following counter-example:

run readx [0] 1x [0] readx [1] 1x [1] qy 0y runabort doneabortdone

By Theorem 4, it follows that this term is abort-unsafe for all Wκ′ , κ′ ≥ 1. So
if X is replaced by int, the term is also abort-unsafe. We performed experiments
for the linear search term with different sizes of k and Wκ = {0, . . . , κ}, by
converting the term into a CSP process and then using FDR model checker 2 to
generate its model and test its abort-safety.

Experimental results are shown in Table 1. The execution time is given in
seconds, and the size of the final model in number of states. We ran FDR on a
Machine AMD Phenom II X4 940 with 4GB RAM. We can see that the model
and the time increase very fast as we increase the size of Wκ. Still by using
Theorem 4, it only suffices to check the term with parameter W1 in order to
infer its safety for all Wκ′ , κ′ ≥ 1.

6.1 Integration with Abstraction Refinement

We can combine our parameterized approach with an abstraction refinement
procedure (ARP) [3], since both approaches can be applied to terms which con-
tain infinite (integer) types. The former approach will be used to handle all

2 http://www.fsel.com
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Table 1. Verification of linear search

W1 W2 W3

k Time Model Time Model Time Model

5 2 36 2 68 2 124

10 7 66 8 138 10 274

15 18 96 20 208 39 424

20 40 126 47 278 160 574

data-independent integer types, which will be treated as parameters, while the
rest of infinite types will be handled by the latter approach.

In the ARP (see [3] for details), instead of finite integers we introduce a new
data type of abstracted integers intπ . We use the following finitary abstractions
π: [ ] = {Z}, [n,m] = {< n,n, . . . , 0, . . . ,m − 1,m, > m}, where Z , <n = {n ′ |
n ′ < n}, and >n = {n ′ | n ′ > n} are abstract values. Abstractions are refined by
splitting abstract values. We check safety of Γ �W M : T (with infinite integer
data types) by performing a sequence of iterations. The initial abstracted term
Γ0 �W M0 : T0 uses the coarsest abstraction [ ] for any integer identifier. In
every iteration, the game semantics model of the abstracted term is checked for
safety. If no counterexample or a genuine one is found, the procedure terminates.
Otherwise, if a spurious counter-example is found, it is used to generate a refined
abstracted term, which is passed to the next iteration.

For example, let us reconsider the linear search term. The ARP needs k +
2 iterations to automatically adjust the type of the local variable i from the
coarsest abstraction with a single abstract value [ ] to the abstraction [0, k ]. For
such abstraction of i (int[0,k ]), a genuine counter-example is found.

7 Conclusion

The paper presents how we can automatically verify parameterized terms for all
instances of the parameter X . We described here the case where there is one data
type variable X . If there is more than one such variable, the obtained results can
be applied to one at a time. The approach proposed here can be also extended
to terms with nondeterminism [5], concurrency [7], and other features.
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