
A Novel Approach for Implementing

Microarchitectural Verification Plans
in Processor Designs

Yoav Katz1, Michal Rimon2, and Avi Ziv1

1 IBM Research - Haifa, Israel
{katz,aziv}@il.ibm.com

2 IBM Server and Technology Group, Haifa, Israel
michalr@il.ibm.com

Abstract. The ever-growing microarchitecture complexity of processors
creates a widening gap between the verification plan and the test gener-
ation technologies used in its implementation. This gap impacts the cost
and quality of the verification process. To overcome this, we introduce a
novel test generation platform for processor verification. This approach
is based on a scenario description language that is close to the microar-
chitecture verification plan, and uses new test generation algorithms and
a microarchitectural model to support this higher level of abstraction.
Initial results on a high end industrial design show our approach reduces
the effort of implementing a microarchitectural verification plan and im-
proves the quality of verification.

1 Introduction

The goal of functional verification of processors is to establish the conformance
of a processor design to its specification. Today’s state of the art verification
methodologies is based on a highly automated process that includes stimuli
generation, checking, and coverage collection—combined with islands of manual
labor [1]. Verification begins with the creation of a verification plan. The plan
defines the aspects of the architecture and microarchitecture to be verified and
the methods that will perform the verification. Test-case generators play a central
role in such automated verification environments. The stimuli generated by these
tools need to trigger architecture and microarchitecture events defined by the
verification plan and ensure that all the dark corners of the verified design are
exercised and the bugs hidden in them are exposed.

The input to a test-case generator is a test-template, which describes at a
high level the desired characteristics of the generated test-cases. Given a test-
template as input, the test-case generator generates a large set of architecturally
valid test-cases that satisfy the template request and fill in the remaining details
in a pseudo-random way.

Existing processor-level test-case generators (such as [2,3]) provide a rich lan-
guage for specifying requests at the instruction-level and a powerful instruction-
based solving scheme for generating test-cases that satisfy the instruction level

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 148–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Novel Approach for Implementing Microarchitectural Verification Plans 149

requests. This generation scheme calls for generation of instructions in execution
order, one instruction at a time. The generation is interleaved with execution
on a software reference model (ISS). This generation scheme has many advan-
tages. First, it breaks the generation problem into a set of smaller, manageable
sub-problems. In addition, it allows the generation engine to use the current
processor state when generating the next instruction. Many tools formulate the
generation of each instruction as a Constraint Satisfaction Problem (CSP) and
thus achieve a high level of randomness and user controllability [4].

Advanced microarchitecture techniques such as out-of-order execution, on-
chip caching and multi-threading, exploit the growth of available transistor count
to deliver improved performance. As processor microarchitecture complexity in-
creases, there is a growing need to thoroughly exercise the microarchitecture and
reach all its corner cases. Advances in the verification methodologies and test-
generation tools led to new features that target the microarchitecture. For exam-
ple, tools embed testing knowledge [2] to increase the probability of generating
interesting microarchitectural events (e.g., creating register dependency between
instructions to trigger pipeline forwarding). The tools also include elaborate user
control in the test-template to help the test-case reach specific microarchitec-
tural events, and address the challenges of multithreaded and multiprocessing
designs [5, 6].

Nevertheless, we observe a growing gap between the goals of the verification
plan, which now targets events deep inside the processor, and the available test
generation tools. This impacts both the resulting verification quality and the
effort required to complete the verification process. One cause of this gap is the
limited support for specifying and generating interactions between instructions.
Specifically, users have to invest significant effort in creating the test-templates
to generate the required intra-instruction dependencies and adapt them to the
specific microarchitecture.

Another outcome of this methodology is that verification know-how as to the
best ways to address microarchitecture verification is embedded in the
test-templates, but not in the tools. Therefore, applying this knowledge in new
test-templates requires significant effort. Moreover, less experienced verification
engineers may be unaware of this knowledge and will not apply it in subsequent
verification efforts.

There are other approaches for addressing the complexity of modern microar-
chitectures. One approach calls for a test generator that is fully aware of all
the microarchitectural implementation details. Armed with this knowledge and
a strong solution engine, the test generator can generate test-cases that reach
complex microarchitectural events [7,8]. The main problem with this approach is
that creating and maintaining an accurate description of the microarchitecture
can be impractical.

Coverage Driven Generation (CDG) is another way to addressing the diffi-
culty of generating stimuli that targets complex microarchitectural events [9].
In this paradigm, machine learning techniques, such as Genetic Algorithms [10],
Bayesian networks [9], Markov models [11] and inductive logic programming

150 Y. Katz, M. Rimon, and A. Ziv

(ILP) [12], are used to learn the relation between test-templates and coverage
points and modify the test-templates to improve coverage. While there is much
research in this area [13], there are few successful applications of CDG in real
industrial designs.

Automatic ways to embed microarchitectural testing knowledge into existing
test generators were explored by Katz et al. [14]. In this approach, information
is collected from simulation traces and automatically converted into instruction-
level testing knowledge using machine learning classification algorithms.

In this paper we introduce Test Plan Automation (TPA), a novel test genera-
tion approach for processor verification. The approach is based on formulating a
scenario description language that is close to the microarchitecture verification
plan and using new test generation algorithms and a microarchitectural model to
support this higher level of abstraction. Initial results show our approach reduces
the effort of implementing a microarchitectural verification plan and improves
the quality of verification.

The rest of this paper is organized as follows: In Section 2 , we present the
concept and main components of our proposed method. We then describe each of
these components in-depth in Sections 3-6. Section 7 describes the experimental
results and we conclude in Section 8.

2 Solution Concept

The main goal of TPA is to improve the stimuli generation aspects of the im-
plementation of the microarchitectural verification plan. This goal is achieved in
two ways. First, TPA raises the level of abstraction of the test-template language
and brings it closer to the verification plan while relying on a microarchitectural
model to provide specific details on microarchitecture behavior. In addition, TPA
closes the gap between the test-template and the generated test-cases using new
stream solving generation algorithms and scenario-level testing knowledge. These
are depicted in Figure 1.

The test-template language used in TPA is designed to support the main
ingredient of the verification plan, namely scenarios. The basic building blocks
of the language are basic scenarios that target simple events that involve a
single microarchitectural mechanism. A basic scenario is expressed as a set of
instructions and the required constraints between them. An example of such
scenario is two instructions that access the same cache line to create a cache hit.
The language provides means, such as scenario combinations, to create more
complex scenarios from the basic scenarios. For example, a cache hit and a
cache miss scenarios can be combined to create a scenario that that hits on the
L1 cache and misses on the L2 cache.

Many of the parameters in the scenarios TPA needs to generate come from
the microarchitectural mechanisms they operate on and many of the events TPA
targets are relevant to several mechanisms. For example, cache hit events are
relevant to all the caches in the system. To allow reuse of the scenarios between
mechanisms, TPA uses a microarchitectural model that contains the important

A Novel Approach for Implementing Microarchitectural Verification Plans 151

Solver

Plan

Microarchitectural
Model

Verification

Scenario Level
Testing Knowledge

(Test−template)
Language
Definition
Scenario

Solver

Instruction

Stream
Test Cases

Fig. 1. TPA main components

parameters of these mechanisms. When a scenario is generated, this information
is used for filling in scenario details to create a specific scenario that targets the
requested event in a specific mechanism.

TPA includes a new test-case generation scheme that is able to effectively
satisfy constraints between instructions [15]. It formulates an abstract constraint
satisfaction problem (CSP) that captures the essence of the requested scenario.
This abstract CSP is solved incrementally and the abstract CSP solution is
interleaved with single instruction generation.

To improve the quality of the test-cases it generates, TPA extends the notion
of testing knowledge from the instruction-level to the scenario-level. Testing
knowledge is the embodiment of expert verification knowledge in the tool such
that the tool biases the stimuli toward interesting verification events without
the need for explicit direction by the verification engineer. Scenario level testing
knowledge automatically elaborates and modifies the original scenario to reach
variants of the targeted event or other related events.

3 Microarchitectural Model

TPA is a tool for generating microarchitectural scenarios and thus, information
about the microarchitecture is required to reach the needed events. To facilitate
maximal reuse of scenarios, we separate the scenario description from the mi-
croarchitectural information and use a microarchitectural model that contains
all the needed microarchitectural information. TPA does not attempt to pro-
vide a fully accurate model that guarantees that microarchitectural events are
reached by the scenarios. Instead, TPA aims to significantly increase the proba-
bility of reaching these events while minimizing the cost of model development
and maintenance.

TPA captures the commonalities between microarchitecture mechanisms
both within the design and among different designs by forming an ontology of

152 Y. Katz, M. Rimon, and A. Ziv

microarchitectural mechanisms. It defines an inheritance hierarchy of mechanism
types, the properties that exist for each type and the basic behaviors that per-
tain to it. Figure 2 shows a graphic representation of part of this model that
describes microarchitectural buffers. The type Buffer defines a set of properties
which are shared among all microarchitectural buffers, this includes common
properties such as numEntries, and a special set of properties that denote the
type of instructions that read, write, and remove entries in the buffer. Inher-
iting from Buffer is RandomAccessBuffer, in which entries can be accessed in
any order. This type specifies the conditions for four basic collision scenarios
that apply to it: read-after-write (RAW), write-after-read (WAR), read-after-
read (RAR) and write-after-write (WAW). A MemoryRandomAccessBuffer is
a random access buffer that keeps memory data. It inherits from RandomAc-
cessBuffer and adds an additional property inputAddress to specify whether
access to this memory buffer is calculated based on virtual or real address val-
ues. Cache mechanisms are special cases of MemoryRandomAccessBuffer, and
therefore they are defined as a subtype of it. The figure uses a lighter color for
the actual design mechanisms that are defined as instances in the model. For ex-
ample, the L1DataCache, L2Cache are defined as instances of CacheMechanism
whereas the Load-Miss-Queue and StoreReorderQueue are defined as instances
of MemoryRandomAccessBuffer.

The ontology helps maximize the reuse of scenarios. For example, scenarios
that target a ’buffer full’ event can be applied to any mechanism derived from

L1dataCache

associativity = 8
tag = address[32:45]

inputAddress: ...

L2Cache

associativity = 16
...

writer = {store−byte, store−word}

numEntries = 16
inputAddress = RealAddress

entrySize: integer

reader = {load−byte, load−word}

CacheMechamism

BasicScenario
 RAW = (same_address &&
 fully_contained)
 ...

tag: ...

GPRMapper

numEntries = 12
entrySize = 8 rowIndex: ...

LoadMissQueue

writer: instruction−set

numEntries: integer
reader: instruction−set

BasicScenario
 RAW: ...
 WAR: ...

associativity: integer

ReplacePolicy: ...

numEntries = 144

StoreReorderQueue
Buffer

RndAccessBuffer

MemRndAccBuffer RegRenameBuffer

Fig. 2. Microarchitectural model ontology

A Novel Approach for Implementing Microarchitectural Verification Plans 153

Buffer, ranging from the store reorder queue (SRQ) to caches to register rename
buffers. Localizing all the mechanism properties in a single location simplifies the
overall maintenance effort of the verification process and encourages structure
and rigor.

4 Scenario Input Language

TPA provides a high-level scenario description language. It has constructs for
defining scenarios as a set of instructions and the constraints between them. In
addition, given a collection of predefined scenarios the language has constructs
for defining new scenarios that instantiate them in several combination options.

4.1 Scenario Definition

A scenario definition starts with a declaration of the instructions that partic-
ipate in the scenario and the mechanisms to which the scenario applies. Each
instruction declaration statement may specify a single instruction or a set of in-
structions. In the latter case, the user needs to specify lower and upper bounds
on the number of instructions in the set. In addition, the declaration can restrict
the instructions to a specified type. A mechanism declaration statement specifies
a mechanism type or a specific mechanism instance. If the declaration specifies a
mechanism type, each scenario instantiation can be restricted to a derived type
or a particular instance of the specified mechanism type.

Consider a cache-replace event; caches are arranged into rows, where each row
can contain multiple cache lines, depending on the cache associativity. Each mem-
ory address is mapped to a specific row which is calculated based on some bits in
the address. Within the row, cache lines are identified by tags, which are formed
by other bits in the address. A cache-replace event occurs when all the entries in
the row are used, and a new address with a new tag is mapped to the same row.
In this case, one of the existing cache lines needs to be evicted. The following is a
high level description of a scenario that targets a cache-replace event:

1. Generate at least n+1 instructions that access memory, where n is the cache
associativity

2. All instructions should access the same row in the cache
3. At least n+ 1 instructions should have a different tag

Figure 3 shows the TPA definition of the cache-replace scenario. The scenario
can be applied to any mechanism M1 of type CacheMechanism. The instruction
declaration of the scenario states that the scenario requires a set of instructions,
with a size larger than the associativity of the cache. The scenario puts an
upper limit on the number of instructions. Each instantiation of the scenario
will generate a random number of instructions within the specified limits. All
the instructions are of type M1.Writer. This type is defined in the mechanism,
and includes all the instructions that can write to the cache (e,g., loads and
stores).

154 Y. Katz, M. Rimon, and A. Ziv

ScenarioDefinition Cache-Replace
Mechanisms:

M1 type=CacheMechanism;
Instructions:

accessors type=M1.Writer
size=[M1.associativity+1,2*M1.associativity]

Constraints:
SomeDiff

mechanism=M1
instructions=accessors
lowerLimit=M1.associativity+1
property=tag

AllSame
mechanism=M1
instructions=accessors
property=row

Fig. 3. Cache-replace scenario description

In addition, each scenario definition has to include a declarative description
of the constraints between its instructions. We distinguish between two types of
constraints: constraints that control the interactions between instructions and
constraints that control the placement of instructions in the test.

Constraints that control the interaction between instructions are divided into
two groups: Property constraints request that a property value be the same/
different for all the instructions in the specified set and Mechanism behavior
constraints target a basic mechanism behavior and are parameterized according
to properties of the mechanism.

Constraints that control the placement of instructions in the test are divided
into three groups. Order constraints specify a required partial order between two
specific instructions in the generated test-case. Unlike traditional test generators,
TPA does not assume that the order of appearance in the scenario implies any
order in the resulting test. Distance constraints specify how many instructions
are allowed between any two specified instructions. TPA fills the space between
two instructions with ”non-scenario” instructions. These instructions may be-
long to a different scenario or may be selected by testing knowledge. Thread
constraints specify for any set of instructions whether they should be generated
on the same or on different threads.

In the cache-replace example, two property constraints enforce the scenario
restrictions on the instructions’ cache row and tag properties. When the scenario
is instantiated on a specific cache mechanism, the mechanism is accessed to
obtain the row and tag calculation methods that apply to it.

Figure 4 shows a scenario for targeting a read-after-write collision event in a
buffer using the MemoryCollision constraint. The constraint operates on pairs of
instructions and a mechanism of type MemoryRandomAccessBuffer. It enforces
collision conditions on the memory accesses of the instructions according to a

A Novel Approach for Implementing Microarchitectural Verification Plans 155

set of parameters provided by the mechanism. For example, when this scenario
is applied to the StoreReorderQueue shown at the bottom left of Figure 2, the
mechanism parameters specify that instr1 that writes to the buffer is a store
instruction and instr2 that reads from the buffer is a load instruction. In addi-
tion, the mechanism provides the MemoryCollison constraints the exact nature
of the collision: same address and fully contained, meaning that the load and
store instructions access the same memory location and the data of the load is
contained in the data of the store.

ScenarioDefinition Read-After-Write
Mechanisms:

M1 type=MemoryRandomAccessBuffer;
Instructions:

instr1 type=M1.writer
instr2 type=M1.reader

Constraints:
Order(instr1, instr2)
SameThread(instr1, instr2)
MemoryCollision

mechanism=M1
instructions=(instr1 instr2)
collisionType=RAW

Fig. 4. Read-After-Write scenario description

Note that the scenario can be applied as is to any other instance of Memo-
ryRandomAccessBuffer such as the LoadMissQueue, resulting in a totally differ-
ent sequence of instructions.

4.2 Scenario Instantiation

Given a scenario definition, each instantiation of the scenario can request that
the scenario be applied to a desired subtype of the declared mechanism type or to
a specific instance. Figure 5 shows several possible invocations of the Read-After-
Write scenario. In the first invocation the user requests an instantiation of the
Read-After-Write scenario to any arbitrary design mechanism. In this case, the
user request is combined with the restrictions specified in the scenario definition
and the generated test-cases will target any mechanism that is defined in the
microarchitectural model as an instance of MemoryRandomAccessBuffer. In the
subsequent invocations, the user requests that the Read-After-Write collision
occur on one of the cache mechanisms, or specifically on the store reorder queue.

4.3 Scenario Combinations

Scenario combinations are important because they can cause several events to oc-
cur in a small time window by having the same instructions take part in multiple

156 Y. Katz, M. Rimon, and A. Ziv

Read-After-Write ()
Read-After-Write (CacheMechansim)
Read-After-Write (StoreReorderQueue)

Fig. 5. Possible Read-After-Write scenario instantiations

scenarios, or stress a specific mechanism by instantiating multiple scenarios for
that mechanism. TPA supports the definition of scenarios that instantiate pre-
viously defined scenarios. When a scenario is instantiated by another scenario,
the selection of instructions and mechanisms to use has to satisfy restrictions
expressed by both scenarios.

Consider the combined scenario depicted in Figure 6, which creates two differ-
ent types of events on two mechanisms in a small time window: a cache replace
on some cache and a read-after-write collision on some internal buffer. Here, the
cache-replace scenario determines the set of instructions for the scenario and the
read-after-write scenario operates on two random instructions that participate
in the cache scenario.

ScenarioDefinition LSU Stress
Mechanisms:

cache type=CacheMechanism
buffer type=MemoryRandomAccessBuffer

Instructions:
instrSet

Constraints:
Cache-Replace(M1=cache, accessors=instrSet)
Read-After-Write(M1=buffer,

instr1=instrSet[random],
instr2=instrSet[random])

Fig. 6. Combining scenarios

5 Generation Scheme

TPA generates a scenario in two main steps. First, the scenario definitions are
parsed and several high level decisions are made. These decisions include the
selection of mechanism instances that were not completely specified and the
selection of instruction set sizes. Once these decisions are made, the number
of the instructions and the relevant constraints are known and TPA creates
a constraint graph that represents this particular scenario instantiation. The
nodes in the graph are instructions and the arcs represent scenario constraints
between sets of instructions. In the second part of the generation process, the
constraint graph is passed to a scenario solver for generating instruction streams
that satisfy the user request. The challenge lies in having the test generator

A Novel Approach for Implementing Microarchitectural Verification Plans 157

effectively generate test-cases that consist of sequences of instructions satisfying
these constraints.

A test generation approach that generates instruction by instruction is not
suitable for this problem because of its inability to consider constraints ema-
nating from instructions later in the sequence when the current instruction is
solved. This would cause the generator to make early decisions that may lead to
generation failure of dependent instructions later in the stream. Trying to for-
mulate and solve the entire scenario as a single CSP is not a feasible approach
as the size of the resulting CSP would make this problem intractable.

To address this, TPA implements an abstraction-refinement approach to sce-
nario generation [15]. It formulates an abstract constraint satisfaction prob-
lem that captures the essence of the requested scenario and interacts with an
instruction-based test generator for single instruction generation.

The abstract CSP contains CSP variables that determine for each instruction
its identity (mnemonic), identity of the thread for which it will be generated,
and the location in the program order of that thread (timestamp). In addition
the stream constraints add the relevant CSP variables to all the participating
instructions. For example, in the CSP that is generated by the combined scenario
in Figure 6, the MemoryCollision constraint which implements the read-after-
write scenario adds variables to represent the real address and length of the
memory access of each instruction, while the property constraints that implement
the cache replace scenario add variables that represent the cache tag and row of
the address.

The abstract CSP propagates constraints between all instructions, including
constraints that influence earlier instructions based on restrictions from later
instructions. When constraint propagation subsides, the instruction with low-
est timestamp value is selected as the next instruction to be generated. The
restrictions imposed by the stream constraints on the instruction are provided
as input to a single instruction generator. This generator generates the specific
instruction, taking into account all the instruction-level constraints necessary for
generating an architecturally valid instruction. Once the first instruction is gen-
erated, all decisions that were made and are relevant to the rest of the scenario
are propagated back to the abstract problem and the process continues.

Since the thread and location of the each instruction in program order are CSP
variables they can be randomly selected. Hence instructions can be generated
in many orders and interleavings in the final test-case. These instructions could
have originated from the same scenario or from different scenarios that were
combined.

6 Scenario Testing Knowledge

Testing knowledge is a way of embedding the knowledge and expertise of the
verification engineer in a random stimuli generator that utilizes it to bias the
generator towards interesting events. The raised level of abstraction in TPA
opens the door for new, scenario-level, testing knowledge that can be used to
improve the quality of the generated test-cases.

158 Y. Katz, M. Rimon, and A. Ziv

One area in which testing knowledge plays a major role is creating an inter-
esting microarchitectural state for the requested scenario to operate in. This is
done in TPA in two main ways: selecting an interesting order and placement for
the instructions in the scenario and adding background instructions to vary the
microarchitectural state. For example, TPA may choose to place two instruc-
tions involved in a collision close to each other to increase the probability of
them fetching together. In addition, it may insert a background instruction that
causes the first instruction in the collision to stall, so that the instructions are
executed out-of-order.

Another important type of scenario level testing knowledge used in TPA is
scenario mutations. The goal of mutations is to reach simulation events that are
not the original intent of the scenario but are related to it. The tool supports sev-
eral types of mutations such as microarchitectural model mutations that change
the behavior of the mechanisms that the scenario applies to and mutations that
execute parts of the scenario in a speculative path.

In addition to the scenario-level testing knowledge, TPA also takes advantage
of instruction level testing knowledge provided to it by the single instruction gen-
erator. Users can control the application of both instruction-level and scenario-
level testing knowledge as part of the scenario description and thus convey their
own judgment as to what testing knowledge is more relevant to a given scenario
at a given stage of the verification process.

7 Experimental Results

TPA implements the scenario-based generation approach described in the previ-
ous sections. TPA utilizes the instruction solving capabilities of Genesys-Pro, a
leading commercial instruction-based test generator. We demonstrate the advan-
tages of scenario-based generations of TPA over the instruction-based Genesys-
Pro by comparing the two tools in their ability to cover the Store Reorder Queue
(SRQ) microarchitectural feature of a high-end Power processor. The SRQ is a
buffer found in the Load Store Unit (LSU) of processors. It keeps the data of
each store instruction internally in the processor until the store instruction com-
pletes. This prevents wrong updates to the caches (and the rest of the system)
when the store instruction does not complete for any reason and helps maintain
the ordering rules between stores. One of the roles of the SRQ is to provide data
to newer load instructions, thus avoiding stalling the processor until the store
instruction completes. Therefore, read-after-write (RAW) collisions in the SRQ
(also called load-hits-store and abbreviated to LHS in the rest of the section)
are an important item in the verification plan of the processor.

The verification plan for LHS calls for test-cases that create all interesting
read-after-write collisions in the SRQ, such as out-of-order collisions, simultane-
ous accesses to the buffer, and more. The implementation of the verification plan
is monitored using a coverage model defined by the design team, whose goal is
to ensure that all interesting events in the SRQ occur.

We compare the ease of creating test-templates for TPA and Genesys-Pro
that implement the LHS item in the verification plan and the quality of the

A Novel Approach for Implementing Microarchitectural Verification Plans 159

Table 1. Comparison of ease in creating test-templates

Genesys-Pro TPA

Number of test-template 13 3

Encoding SRQ behavior Test-templates Model

Reusability across designs Needs effort Easy

Reusability across architectures Impossible Easy

Combinations with other scenarios Hard Easy

test-cases generated from these test-templates by both tools. Table 1 summarizes
the first part of the comparison. In Genesys-Pro, each requested type of collision
needs to be encoded specifically in the test-template. This encoding includes
properties of the collision that originate from the SRQ mechanism. As a result,
13 test-templates, each handling a different type of collision or near collision of
interest, are needed to cover this single item in the verification plan. While these
test-templates are carried over between generations of the same architecture,
adapting them to each generation takes effort because the test-templates need to
be adapted to the microarchitecture in many places. The reliance on architectural
and microarchitectural features of the design makes it virtually impossible to
reuse these test-templates in different architectures.

In TPA, on the other hand, it is easy to stipulate specific collisions in a test-
template and fit it to a specific mechanism in the microarchitectural model. As a
result, only a small number of test-templates are needed to implement the LHS
item in the verification plan. In this comparison, we used three test-templates: 1)
a simple test-template, shown in Figure 4, that creates many instances of basic
RAW collisions in the SRQ; 2) a test-template that combines these collisions
with other scenarios, such as group formation and cache scenarios (similar to
the test-template in Figure 6); and 3) a test-templates that includes mutations
of the basic scenario and the mechanism to create interesting near-collisions. It
is important to note that the three test-templates are needed only to illustrate
the benefits of various features of TPA. For actual verification purposes, the last
template suffices.

The simplicity of the TPA test-templates and the fact that most of the relevant
information for the collisions comes from the architectural and microarchitec-
tural models, makes reuse of this test-templates across design and architectures
easy. In fact, we used the same test-templates to generate test-cases for several
Power and zArchitecture designs.

The second part of the comparison evaluates the quality of the tests generated
by both tools. Here we compared the ability of the tools to hit the LHS coverage
events defined by the design team. A summary of the results is shown in Table 2.

The first two lines in the table provide information on the number of test-cases
and simulation cycles used. We believe that the simulation cycles count, and not
the number of test-cases, is a fairer base for comparison, so our goal was to have
twice as many cycles for all the Genesys-Pro test-cases combined than cycles for
test-cases from each of TPA test-templates.

160 Y. Katz, M. Rimon, and A. Ziv

Table 2. Comparison of the quality of generated tests

Genesys- TPA
Pro Simple Comb Mutation Total

Test-cases 769 295 475 511 1281

Cycles 20M 11M 10M 10M 31M

LHS events covered 46 41 49 50 51

Other LSU events covered 1519 1063 1587 1523 1715

Generation time per instruction 1.50 1.28 1.45 1.52 1.43

Comparison of the LHS coverage results shows that the simple TPA test-
template reaches lower coverage than Genesys-Pro. This can be explained by the
fact that the simple test-template does not try to create near-collisions. Each of
the two other TPA test-templates, which combine the basic LHS scenario with
other scenarios and use mutations to create near-collisions, achieve better cover-
age than the 13 Genesys-Pro templates. This indicates better test-case quality.
Another evidence for the superior quality of TPA test-cases is the coverage of
other LSU events (that are not targeted by any of the templates) by the TPA
test-cases. To show that the higher quality of the generated test-cases is not
caused by increased generation time, the last row in Table 2 compares the aver-
age generation time per instruction for the compared test-templates. This time
is calculated by dividing the total generation time of a test-case by the number
of scenario instructions it contains. Therefore, for the TPA test-templates, this
time includes the time needed to construct and solve the stream CSP as well
as the time needed to generate each of the instructions. The row shows that
despite using a more sophisticated generation scheme, the generation time per
instruction in TPA is similar or lower. This can be explained by the planning
done in the TPA generation scheme, which reduces the number of instruction
generation failures.

8 Conclusions

The growing complexity of microarchitectures creates a widening gap between
the verification plan and test generator input languages used to implement it.
This impacts the cost and quality of the verification process. In this paper, we
proposed a novel method of test generation. Our method is based on a high-level
scenario description language that is close to the microarchitecture verification
plan, and a new test generation algorithm and microarchitectural model to sup-
port this higher level of abstraction. Experimental results show that the proposed
method is indeed capable of achieving test-cases with higher coverage, lower test-
template development costs, and comparable generation time, when evaluated
against the existing state-of-the-art test generation solution.

Future development directions of the technology include extension of the
scenario-based testing knowledge to other areas such as multithreading, inte-
gration of automatic methods for populating the microarchitecture model, and
full scale deployment in the verification of current high-end processor designs.

A Novel Approach for Implementing Microarchitectural Verification Plans 161

References

1. Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification - The
Complete Industry Cycle. Elsevier (2005)

2. Adir, A., Almog, E., Fournier, L., Marcus, E., Rimon, M., Vinov, M., Ziv, A.:
Genesys-Pro: Innovations in test program generation for functional processor ver-
ification. IEEE Design and Test of Computers 21(2), 84–93 (2004)

3. Hennenhoefer, E., Typaldos, M.: The evolution of processor test generation tech-
nology, http://www.obsidiansoft.com/pdf/evolution.pdf

4. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:
Constraint-based random stimuli generation for hardware verification. AI Maga-
zine 28(3), 13–30 (2007)

5. Ludden, J.M., Rimon, M., Hickerson, B.G., Adir, A.: Advances in simultaneous
multithreading testcase generation methods. In: Barner, S., Kroening, D., Raz, O.
(eds.) HVC 2010. LNCS, vol. 6504, pp. 146–160. Springer, Heidelberg (2011)

6. Burns, D.: Pre-silicon validation of hyper-threading technology. Intel Technology
Journal 6(1) (2002)

7. Adir, A., Bin, E., Ziv, A.: Piparazzi: A test generator for micro-architecture flow
verification. In: Proceedings of the High-Level Design Validation and Test Work-
shop, pp. 23–28 (2003)

8. Mishra, P., Dutt, N.: Specification-driven directed test generation for validation of
pipelined processors. ACM Trans. Design Autom. Electr. Syst. 13(3) (2008)

9. Fine, S., Ziv, A.: Coverage directed test generation for functional verification using
Bayesian networks. In: Proceedings of the 40th Design Automation Conference,
pp. 286–291 (2003)

10. Squillero, G.: MicroGP—an evolutionary assembly program generator. Genetic
Programming and Evolvable Machines 6(3), 247–263 (2005)

11. Wagner, I., Bertacco, V., Austin, T.: Microprocessor verification via feedback-
adjusted Markov models. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 26(6), 1126–1138 (2007)

12. Eder, K., Flach, P., Hsueh, H.-W.: Towards automating simulation-based design
verification using ILP. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.)
ILP 2006. LNCS (LNAI), vol. 4455, pp. 154–168. Springer, Heidelberg (2007)

13. Ioannides, C., Barrett, G., Eder, K.: Feedback-based coverage directed test gener-
ation: An industrial evaluation. In: Barner, S., Kroening, D., Raz, O. (eds.) HVC
2010. LNCS, vol. 6504, pp. 112–128. Springer, Heidelberg (2011)

14. Katz, Y., Rimon, M., Ziv, A., Shaked, G.: Learning microarchitectural behaviors to
improve stimuli generation quality. In: Proceedings of the 48th Design Automation
Conference, pp. 848–853 (2011)

15. Katz, Y., Rimon, M., Ziv, A.: Generating instruction streams using abstract CSP.
In: Proceedings of the 2012 Design, Automation and Test in Europe Conference,
pp. 15–20 (2012)

http://www.obsidiansoft.com/pdf/evolution.pdf

	A Novel Approach for Implementing Microarchitectural Verification Plansin Processor Designs
	1 Introduction
	2 Solution Concept
	3 Microarchitectural Model
	4 Scenario Input Language
	4.1 Scenario Definition
	4.2 Scenario Instantiation
	4.3 Scenario Combinations

	5 Generation Scheme
	6 Scenario Testing Knowledge
	7 Experimental Results
	8 Conclusions
	References

