Leveraging Accelerated Simulation
for Floating-Point Regression

John Paul!, Elena Guralnik?, Anatoly Koyfman?, Amir Nahir?, and Subrat K. Panda’

1 IBM Systems & Technology Group in Bangalore, India
{john.paul, subratpanda}@in.ibm.com
2 IBM Research in Haifa, Israel
{elenag, anatoly,nahir}@il.ibm.com

Abstract. Accelerated simulation (acceleration) platforms play a pivotal role
in the verification of today’s complex designs. Currently, acceleration is used
with either adapted pre-silicon tools or post-silicon tools. We present a novel
acceleration-only tool, which enables a fast and efficient methodology for floating-
point regression. We overcome the lack of test-bench in this environment through
self-checking.

1 Introduction

Functional verification is widely acknowledged as one of the main challenges of the
hardware design cycle [12]]. The growing size and complexity of modern hardware sys-
tems have turned the functional verification of these systems into a mammoth task [20].
Verifying such systems involves tens or hundreds of person years and requires the com-
pute power of thousands of workstations. But even with all this effort, it is virtually
impossible to eliminate all bugs in the design before it tapes-out. Despite advances
in formal verification technologies [7l], dynamic verification (a.k.a. simulation-based
verification) remains the primary vehicle for the functional verification of hardware
systems [20]. Today’s state of the art verification methodologies include a highly auto-
mated process that incorporates stimuli generation, checking, and coverage collection—
combined with islands of manual labor [20].

In the past, software simulation was (almost) the exclusive vehicle for executing the
verified designs. But, the increasing complexity of designs, combined with shorter time-
to-market requirements, raised the need for performing parts of the verification tasks on
other platforms. Today, functional verification is performed on a variety of platforms,
ranging from transaction-level modeling, via software simulation, acceleration, and em-
ulation, to the silicon itself [18l4]. In some cases, verification is done in a heteroge-
neous environment involving a variety of platforms, as in the case of Hardware-Software
Co-Simulation [6]].

Acceleration and emulation platforms are somewhere in between software simulation
and silicon. They are much faster than software simulation, but not as fast as silicon. Sim-
ilarly, they provide better observability than silicon, but not the free and total observabil-
ity provided by software simulators. Therefore, verification solutions, and specifically
stimuli generators, for such platforms should combine requirements from both worlds.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 118-[[31] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

Leveraging Accelerated Simulation for Floating-Point Regression 119

The acceleration platform is especially attractive because it can be leveraged very
early in the process. It can serve to strengthen the pre-silicon verification effort and
enable the early detection of bugs. In addition, acceleration products offer a simulation-
like interface and are thus relatively easy to use. Some products go as far as offering
live, seamless, migration between acceleration and simulation [[1]].

The high cost of developing unique verification solutions for acceleration platforms
causes most of these solutions to be adaptations of existing solutions for software simu-
lation or post-silicon tools. In this paper, we demonstrate how the acceleration platform
can be utilized to address one of the more common use-cases in the development life
cycle: regressing a change in the design logic.

As part of the logic development process, designers make frequent changes to the
logic. These changes may originate from the need to fix a bug, improve timing, or
simply implement a change in the specifications. One common concern is that making
a change to the logic, as small as it may be, can introduce new bugs. It would greatly
improve productivity if such bugs were detected shortly after their introduction. To
validate that no new bugs were introduced in the process, the verification engineer, or
the logic designer, runs a regression suite [[§]]. The regression suite is a large set of test-
cases that provide high confidence regarding the functional correctness of the design.
For complex units, running regression in software simulation can take days

Using our solution, the verification engineer can choose a large set of ready-made
test-cases, such as the regression suite mentioned above, and convert them into a single,
fully-contained, self-checking, program. Using an accelerator can speed up the execution
time for the test case by several orders of magnitude. This not only leads to finding bugs
faster but also has a significant effect on the time required to reach coverage closure.

We demonstrate the proposed solution on floating point (FP) data verification. Ver-
ifying the hardware implementation of the floating point unit (FPU) is known as an
intricate problem. The numerous corner cases of the vast test space, coupled with the
complexity of the implementation of floating point operations, turn the FPU verification
effort into a unique challenge in the field of processor verification. It is not surprising
that the most well known hardware bug is Intel’s FDIV bug [2].

We present a tool that takes a large set of FP test-cases (pre-generated by FPgen
[SU11]) and converts them into a single program that is then simulated at the core-level
environment. This program is a concatenation of the original test-cases, where each
test-case is preceded by a prolog and followed by an epilogue. The prolog mimics the
required initializations specified in the original test-case. These initialization are typi-
cally handled in software simulation by the environment, which forces the initial values
into the specified resources. We convert these initializations into a set of reloading in-
structions, which bring the required resources to the desired state. The epilog runs in
two different modes: simulator mode and hardware mode. When running in simulator
mode, we run the program to collect the expected results. Following that, we run the
test-case on the accelerator in hardware mode. In this mode, the epilog is in charge of

! While an industrial simulation farm holds thousands of servers, the regression task is so com-
mon that it is impractical to expect to be assigned with sufficient machines to complete the
regression task quickly

120 J. Paul et al.

comparing the actual state of the design with the expected values obtained from the
reference model, and flagging any discrepancies that may indicate a bug.

We show that using this tool, thousands of test-cases can be compressed into a single
test-case and executed on an accelerator in a short amount of time, and report results of
a field trial.

The rest of this paper is organized as follows. In Section 2] we provide background
about floating point verification and test-generation, as well as on the accelerated simu-
lation platform. Section Bl provides an in-depth review of our solution for floating point
regression on the acceleration platform. Our results are described in Section[dl Section[3]
concludes this paper.

2 Background

2.1 Acceleration

Accelerated simulation platforms (more commonly known as accelerators) are an im-
portant component in today’s simulation-based verification [9]. Accelerators are special
purpose massively-parallel machines, developed for the sole purpose of accelerating
the simulation of hardware models. The accelerator is constructed of a large number
of tightly synchronized parallel logic processors. To simulate a hardware model on
an accelerator, the model must first be compiled in a process that converts the hard-
ware model to a set of instructions for each of the accelerator’s processors, schedules
the instructions for the processors, and determines the synchronization points between
them [[16]. State of the art accelerators run over three orders of magnitude faster than
software simulation (i.e., over 1000 times faster).

While accelerators offer much faster simulation, there are several challenges related
to their use. First, any interaction between the accelerator and an external computer
(termed host) requires stopping the acceleration engine. This means that using a tra-
ditional environment in which the test-bench runs on the host and the accelerator runs
the hardware model severely under utilizes the accelerator due to the frequent commu-
nication. The transaction-based acceleration (TBA) [14]] methodology overcomes this
problem by having part of the test-bench compiled into the hardware model and reduc-
ing the interaction between the host and the accelerator.

However, the TBA approach encounters the second challenge in using accelerators.
The speed of the accelerator, as well as the duration of the compilation process, heavily
depend on the size of the hardware model. That is, the more logic is added to the hard-
ware model, the slower the accelerator runs. This limits the ability to use techniques
such as TBA or checker synthesis [10].

We note that for the case of floating point data path verification presented in this
paper, neither TBA nor checker synthesis is applicable. Moving input data operands
from the host to the accelerator and output values in the other direction is unreasonable
due to the extensive amount of data. The complexity of the floating point algorithms
and the required accuracy needed to verify the results prohibit the creation of hardware
realizable checkers.

Leveraging Accelerated Simulation for Floating-Point Regression 121

2.2 Floating Point Test Generation

The complexity of the floating point data path implementation and the numerous corner
cases that should be addressed not only call for a dedicated test generator, but also
demand a comprehensive test plan. The FPgen [3]] verification solution provides these
two components.

FPgen generation capabilities are primarily based on constraint satisfaction technol-
ogy [L7]. As part of the verification process, FPgen produces a large set of test-cases
in the form of input data operands for floating point instructions, targeting the areas
outlined by the test plan.

The primary focus of the FPgen generator is to solve data constraints on operands of
individual floating point instructions. A data constraint on an operand is defined as the
set of values that can be selected for this operand. An individual instruction may have
independent data constraints for each one of its operands. Solving all the instruction
constraints is equivalent to selecting a value from each given set, such that the instruc-
tion semantics are satisfied. FPgen provides engines that solve these constraints within
a reasonable amount of time. Moreover, when multiple solutions exist for a constraint,
one should be selected at random, with uniform probability where possible. This ran-
domness is important because the constraints only reflect a suspected area. One instance
in this area might reveal a problem, while another might not.

Constructing an appropriate set of such constraints is of utmost importance to ensure
successful verification. Exhaustive checking implies testing an enormous, practically
unbounded, number of different calculation cases; practical computational resources
suffice only to simulate a meager fraction of these. We need to choose these cases very
carefully in order to obtain a representative sample of the state space. In particular, a
proper focus on the corner cases is a crucial factor in providing a sufficiently compre-
hensive set of test-cases. Continued analysis of the instructions themselves, and of the
various bugs appearing in their implementations, has provided us with valuable knowl-
edge, reflected as an integral part of FPgen’s test plan template.

3 FP Regression Tool

We apply the concept of converting a set of pre-generated test-cases into a self-executing
self-checking program for the floating-point data path regression problem. In this sec-
tion we describe the tool’s execution flow, the structure of the generated program, and
the accompanying debug aids.

3.1 Execution Flow

The high level execution flow of the tool is described in Figure[Il

We start with a set of test-cases pre-generated by FPgenl[5]], as depicted in the left-
most section of the Figure[Il FPgen is a test-generation framework that provides a con-
venient platform for biasing and generating operand data for floating-point instructions.
The verification engineer can choose the set of test-cases so they focus on a specific
instruction or event (for example, sqrt) or opt for a set that provides broad coverage of

122

J. Paul et al.

Data from FPGen

|

Testcase Generator

Generates the binary
using data from FPGen

Execute on simulator
to get expected data

—

y

Mode : Simulator

Expected Result:

v

A

Mode : Simulator

Expected Result:

Run on Accelerator with
I updated hardware model

to identify bugs

Operands : Operands : Operands :
0x1343453fafcb121 0x1343453fafcb121 0x1343453fafcb121
0x23232987763ffc 0x23232987763ffc 0x23232987763ffc

v

i

Mode : Simulator

Expected Result:

Space is reserved 0x23423529fffcab 0x23423529fffcab
--------------------------- 0x123123144caff 0x123123144caff
Result: | (... 1 ...
Spaceisreserved | = | e || el
Result: Result:
Space is reserved 0x23423529fffcab
0x123123144caff

Fig. 1. Execution Flow

the entire floating point spectrum. Our tool outputs a single program that includes all
the desired test-cases.

Next, our tool generates the initial program and then executes it on a software ref-
erence model that is instruction accuratﬁ, as depicted in the middle section of the
Figure[Il

The purpose of this stage is to collect and store the expected results from the ex-
ecution of the different test-cases. We assume the software reference model correctly
implements the specification and provides accurate results]. After every test-case, epi-
log instructions are executed to store the results into empty arrays. This is done using
instructions that are part of the generated program and does not require any involvement
of the environment.

Once the program completes execution on the software reference model, our tool
dumps the data from the arrays and modifies the program image. The program is mod-
ified in two ways: the expected results of the test-case execution are now stored in
an array designated for storing expected results. In addition, we modify the execution
mode to hardware mode so the subsequent execution of the program can also check the
results.

2 An instruction accurate reference model calculates the values that will appear in the registers
and memory after each executed instruction, as specified in the architecture book.

3 In reality, this may not be the case, and errors in the software reference model are often found.
This makes the debugging of the failure a little more challenging, but does not significantly
change anything that interferes with our solution.

Leveraging Accelerated Simulation for Floating-Point Regression 123

Table 1. Program usage of registers

Register Usage

GPR1, GPR2 base and offset pointers to
input data table

GPR3, GPR4 base and offset pointers to
input state table

GPRS5, GPR6 base and offset pointers to
actual/expected results data table

GPR7, GPR8 base and offset pointers to
actual/expected state table

GPRY, GPR10 base and offset pointers to
expected results data table

GPR11, GPR12 base and offset pointers to
expected state table

GPR13 mode of operation
(simulation/hardware)

GPR14, GPR15, GPR16 used for comparisons

GPR17, GPR18 base and offset pointers to

comparison results table

Finally, we take the modified program and run it on an accelerator with an updated
(potentially buggy) design model, as depicted in the rightmost section of the Figure [l
During this run, the program executes the test-cases and compares their results to the
expected values. Any data related to results that are incorrect is saved to a debug report
at the end of the run.

3.2 Program Structure

The generated program is constructed of three major parts: kernel, data tables, and the
test program itself. Figure 2] depicts this structure.

Kernel. The program is designed to run on bare-metal [19], that is, we do not rely
on an operating system (OS). This is important for two reasons. First, it significantly
reduces all OS-related overheads and thus enables us to maximize the utilization of
the accelerator (i.e., we spend minimum cycles executing “irrelevant” instructions). In
addition, it enables us to have complete control of the system and switch freely between
running modes (e.g., from hypervisor to user mode).

The kernel is in charge of initializing the relevant resources once the execution of

the program begins. We demonstrate the concept on a real PowerT]vI design, and thus,
we make extensive use of General Purpose Registers (GPRs). We assign most of the
processor’s general purpose registers with fixed roles for managing the test program.
Table [l lists these roles. For example, we use GPR9 and GPR10 as base pointer and
offset register, respectively, to the expected results table. After values are saved to the
expected results table, GPR10 is incremented to point to the next available entry in
the table. Note that GPRS5, GPR6, GPR7 and GPRS point to different tables in the two

124 J. Paul et al.

Kernel: Test Case:

0x100: # Initialize registers # load FPSCR settings for each group
0x200: Ifdx FPR31, GPR3, GPR4

0x3000: Mode of Operation #clear Exception status bits

mtmsf OxFF,FPR31

Compare: #Routine to match expected

data with actual result. Ifdx FPR1, GPR1, GPR2

addi GPR2, GRP2, 8
Ifdx FPR2, GPR1, GPR2

Operands: .
0xflda9cd6d6421ff1 addi GPR2, GRP2, 8
0xe3d69cd6d6421fe9

OXFFTFFfff fadd FPR8, FPR1, FPR2

0xf7ffdff3fcffffe597e5250f91925a64

#Save expected result
stfdpx FPR8, GPR3, GPR4

Expected Result: addi GPR4, GPR4, 16

0x736aabbc047223420000000000000000
0xf3adbc14722342abef18ff834311ff

#save FPSCR
mffs FPR30
stfdx FPR30, GPR7, GPR8

Result:

0x736aabbc047223420000000000000000| .

0xf3adbc14722342abef18ff834311ff #if mode == Hardware call Compare
cmpdi GPR13,0.

.............. ——— Ny

ComparissonResult:

0x0000000000000000 mtir GPR23

0x0000000000000000 birl

Fig. 2. Program structure

different modes of operation. When the tool runs in simulation mode, these registers
point to the expected values tables and when it runs in hardware mode, they point to the
actual values.

We chose to use load/store instructions that rely on two registers, as opposed to a
single register and a value-base offset. This guarantees that the program can cope with
very large tables. Because our program focuses on floating point verification, there’s no
harm in assigning program management roles to the GPRs, which are not needed for
the test program itself. Furthermore, assigning fixed roles prevents us from having to
re-initialize the registers as part of the programs’ execution. We only need to increment
the offset registers. This further increases the accelerator’s utilization.

In addition to register initializations, the kernel also includes interrupt handlers for
cases in which we expect the instructions to take exception.

A symbol in the kernel is allocated to hold the value of the mode of operation (sim-
ulation or hardware). We place this symbol in a pre-determined place (023000 in Fig-
ure2) so we can modify its value in the program image without re-compiling.

Data Tables. The program includes four types of tables: input data and state tables,
expected results data and state tables, actual results data and state tables, and a com-
parison results table. For simplicity, we chose to place data and state values in different
tables.

Leveraging Accelerated Simulation for Floating-Point Regression 125

When the program is first created, we populate its input data and state tables with
the data collected from the FPgen pre-generated test-cases. The other tables are empty
at this stage. Since we know the number of test-cases included in the program, we can
determine the required size for each table.

When the program executes on the software reference model (in simulation mode),
the kernel initializes the required registers to point to the expected results tables; the
epilog instructions save the values into those tables. Once the program completes ex-
ecution, we dump these values from the memory of the software reference model into
the program image, populating the expected results tables there. At this stage, we also
change the value of the mode of operation symbol.

When the program runs on the acceleration platform, the epilog instructions save the
actual values into the actual results tables and the compare routine checks whether these
values match the expected results. We do not really need to store these values, as we
can do the comparison based on the test instruction’s target register. However, we chose
to store them into a table for later use in building a debug report.

Test Program. The test-program is in fact a concatenation of the FPgen pre-generated
test-cases. Each FPgen test-case, typically consisting of one or two floating point in-
structions, is preceded by instructions that load the data inputs into the instruction
source registers and set the required state. In addition, the pointer-offset registers are
incremented to point to the entries of the next test-case.

Every test-case is followed by a set of instructions that save the target register and
the new state to the relevant tables. In simulation mode these are the expected results
tables, while in hardware mode these are the actual results tables. In hardware mode,
we also branch from this part of the test-program to the compare routine in order to
validate the accuracy of the results and mark any discrepancies in the comparison table.

At first glance, it may seem like our program has a significant overhead. For ev-
ery test-case we have about 20 instructions required to set the input, save the output,
and compare the results. However, this is not the case. First, not all instructions “are
born equal.” Although the addi (add immediate) instruction used to increment the off-
set pointer requires one cycle for execution, the actual floating point instruction requires
a much longer execution time.

Furthermore, the placement of the input tables in memory, along with the test pro-
gram’s deterministic access pattern to these tables, enables the processor to activate its
prefetching mechanisms, reducing the time required to reload the source registers.

Finally, we order the test-cases within the test program according to their required
input state. This reduces the rate of state changes within the test program, increasing
the test program’s effectiveness.

3.3 Debugging

As stated above, when running in hardware mode on the accelerator, we compare the
actual results with the expected ones. When the results of the test-case do not match
the expected values, we store an error code into the comparison table. We use different
error codes to designate different types of mismatches. Following that, the execution of
the test program continues, allowing the detection of multiple errors in a single run.

126 J. Paul et al.

Comparissorn Result:

0x0000_0000_0000_0000
0x0000_0000_0000_0000
0x0000_0000_0000_0001 #Result miscompare
0x0000_0000_0000_0000
0x0000_0000_0000_0000
0x0000_0001_0000_0000 #Exception miscompare

Error Report

L3: fsub FPR8, FPR1, FPR2
Error: Result Miscompare
Expected: 0x00000001, Actual: 0x00000000

L6: fadd FPR8, FPR1, FPR2
Error: Exception Status Miscompare
Expected: 0x00002091, Actual: 0x00000091

Fig. 3. Debug report

After the program completes execution, we analyze the comparison table. By provid-
ing the location of the error code in the table, we are able to cross-reference it with the
expected and actual results tables, in order to provide a detailed report pinpointing the
failure. This process is depicted in Figure[3l The bottom of the figure displays a snippet
of the report. As can be seen, the report holds the ID of the failed instruction within the
test program, the type of error, as well as the expected result and actual result.

In some cases, where debugging the failure with the accelerator proves difficult, the
generated report is sufficient to find the original FPgen test-case and run it in simulation,
where the environment eases the debugging work (either due to the better observability,
or because of the presence of better checkers).

4 Results

™

The Power architecture [[15] supports various types of floating point data and instruc-
tions — binary floating point, decimal floating point and vector computation. In addition,
the architecture also supports single/double precision values, normalized/denormalized

Leveraging Accelerated Simulation for Floating-Point Regression 127

Table 2. Experimental setups

Experiment Content Program Size (KB)
Config- Instr- Instr. Models Total Binary Operand
uration uction per-model instr. Size Array
FADD50 fadd 50 56 2085 312 25

FADDI00 fadd 100 56 3921 572 47
FADDS500 fadd 500 56 16893 2400 210

FADD1000 fadd 1000 56 27663 3916 340
FADD2000 fadd 2000 56 47035 6648 581
FADD3000 fadd 3000 56 65889 9328 834

MIX10 Al 10 134 1080 184 21
MIX50 Al 50 134 5330 824 108
MIX100 All 100 134 10364 1520 209
MIX200 All 200 134 20648 3128 418

values and various kinds of rounding modes, all making the input space huge. Further-
more, a wide variety of exceptions such as overflow, underflow, and zero-divide are
supported. In the Power7 Processor core [13] the decimal floating-point (DFP) facility
shares the 32 floating-point registers (FPRs) and status registers with the floating point
units; the vector unit supports data with 128 bits. FPgen can generate input operand
values for all instructions that execute on these units given any constraints on the input,
output, and intermediate values, as explained in Section[2.2

To validate the value of our tool, we’ve conducted a wide set of experimental results.
In this section we report these results, as well as results of a field trial of this tool.

4.1 Experimental Results

For the purpose of experimentation and verifying the capability and usability of the
tool, we performed experiments on a variety of cases. We divide our experiments into
two extreme types: single instruction and instruction mix, where the former adheres to
a case where a designer makes a localized change (relevant to a single instruction —
fadd in our case, both in single-precision and double-precision forms), and is seeking
to validate this fix. The latter type is of relevance when the designer makes a broader
change, and thus must validate a large set of instructions. In reality, there is a wide range
of cases in between these two extremes. We further refine our experiments to consider
different numbers of instructions required to validate the change.

Table[2]and Table 3l describe the results of our experiments. Each row in these tables
describes one setup.

Table [2] has two sections of columns. The leftmost part, titled Content, describes
the contents put into the program as part of the experiments. It is combined of three
values: the number of desired generation solutions requested of FPgen for each model,
the number of models, and the total number of the generated floating point instructions.
FPgen sometimes fails to find a solution, and so the total number of instructions is
always less than the product of the former two fields. A model is a set of constraints
used for FPgen’s activation. For example, one model may call for generating fadd such

128 J. Paul et al.

Table 3. Experimental results

Experiment Run Time
Config- Instr- FPGen Binary Ref Accel
uration uction Run (min) Gen (sec) Gen (sec) Run (sec)
FADD50 fadd 12 0.4 0.35 1150
FADDI100 fadd 18 0.7 0.4 1122
FADDS500 fadd 50 2.8 0.8 1233
FADD1000 fadd 93 4.4 1.2 1211
FADD2000 fadd 93 74 1.8 1284
FADD3000 fadd 248 10.2 2.4 1352
MIX10 All 29 0.4 0.5 1112
MIX50 All 122 1.8 0.5 1115
MIX100 All 258 35 0.6 1176
MIX200 All 493 6.8 1 1206

that the output triggers an overflow, while a different model may constrain both of fadd’s
operands to be denormalized numbers.

The second column section, titled Program Size, provides details about the size
of the generated program. We distinguish between the size of the generated program
(Binary Size in the table) and the size of the input operands table. The total size of
the program (the sum of these two values) is important because it impacts the time
required to load the program into the memory of the accelerator. Note that we have a
very efficient loader that is capable of loading data into the memory of the accelerator
at a rate of over 1000 B per minute.

Table B holds the data regarding the time required to run each of the phases of the
tool’s execution. Note that we provide the time required to run FPgen to generate the
test-cases, while in reality it is very common to store these test-cases, so that in future
executions, this phase is redundant. The columns show, from left to right, the time
required by FPgen to generate the test-cases, the time required to parse the resulting test-
cases and covert them to the initial program, the time required to executed the program
on the software reference model to gather expected results, and the time required to run
the program on the accelerator.

Our results indicate that, as expected, the program size grows linearly with the num-
ber of floating point instructions put into the program.

Interestingly, the accelerator run time is barely affected by the number of floating
point instructions in the program. This is because this time is governed by overheads
- the time required to reset the accelerator, upload the hardware model, and write the
program to memory. This indicates that in order to properly utilize the accelerator, the
verification engineer should strive to run as big a regression as possible.

Overall, our tool enables the verification engineer to run over 65, 000 test-cases, in
under half an hour.

Fault Injection and Debugging. In order to demonstrate the tool’s ability to dis-
cover bugs, we introduced random faults to different places in the program and ob-
served whether they were detected by the tool and, if detected, whether the final report

Leveraging Accelerated Simulation for Floating-Point Regression 129

generated by our tool pointed to the source of the fault/error. We introduced the faults
into the program after its execution on the software reference model (i.e., just before we
ran it on the accelerator). We distinguish between three types of faults: input, output,
and exception.

We introduced input faults by modifying the value of one of the input operands. This
may represent a bug in one of the reloading instructions. In some rare cases, our tool
fails to detects such faults. One example of this is the case of division by zero. In this
case, a faulty value in the numerator may go undetected, since the data of the target FP
register is not affected. We still consider this to be a problem, as this may cause inter-
mediate events in the computation of the result to remain out of reach. Fortunately, our
accelerators supported the collection of coverage data [4] and we were able to validate
that the required events were indeed hit.

Output faults represent problems in computing the output values. We injected these
by modifying the value of the expected results. Exception faults represent wrongful
behavior, such as taking an exception when it should not have been taken or vice versa.
For both of these types, our tool invariably detected all faults and was able to pin-point
the problematic instruction.

Software bugs are an important issue that is a major concern in validation. Software
bugs may trigger false positives and false negatives, resulting in a lot of menace in
comparison to the real bugs. Our tool’s framework has a certain degree of robustness
against software bugs because of two important reasons: (i) We are able to run the
program, when in hardware mode, on a software reference model to verify it and (ii)
The program is rather generic, and the main changes between different runs are the data
tables. In other words, once we verify that the reloading sequence is fully functional, it
works regardless of the subsequent floating point instruction; same goes for the compare
routine.

4.2 Field Trial

As part of the signoff process for one of the next IBM Power designs the need arised
to run roughly 85 million test-cases in simulation. The verification team decided to, in
order to meet the deadline, make use of our tool to run roughly 35 million of these test-
cases on a single accelerator that was allocated to them (the same type of accelerator
we used to gather the experimental results).

The test-cases were divided to 700 sets of 50, 000 test-cases. Each set was converted
to a single program using our tool, and then simulated using the acceleraor. The simula-
tion time of each set was roughly 20 minutes. Overall, three weeks work were required
to simulated all 35 million test-cases (we note that the net time required for this is 10
days, but the floating-point verification team shared the accelerator with other teams as
well).

The verification team estimates that running the same set of test-cases in simulation
would have required two and a half monthdl. Thus we clearly see the benefits of the
suggested approach in the field.

* Since all design units have to go through the signoff process, allocating more simulation re-
sources to this team was not an option.

130 J. Paul et al.

5 Conclusions and Future Work

We introduced a method that enables the verification engineer to convert a large set
of pre-generated test-cases into a self-contained self-checking program. Running this
program on an accelerator provides the ability to quickly verify that modifications made
to the hardware logic did not introduce new bugs. We demonstrated this technique on
floating point data path verification.

Our solution focuses on the data path. We intend to augment it with irritator threads
[3] to increase the quality of the test-cases.

References

1. Incisive simulation acceleration deployment,
http://www.cadence.com/rl/Resources/application notes/
CDN Incisive Simulation Acceleration Deployment.pdf

2. FDIV replacement program (statistical analysis of floating point flaw). Technical report
(1994), http://www.intel.com/support/processors/pentium/sb/
CS-013007.htm

3. Ludden, J.M., Rimon, M., Hickerson, B.G., Adir, A.: Advances in simultaneous multithread-
ing testcase generation methods. In: Barner, S., Kroening, D., Raz, O. (eds.) HVC 2010.
LNCS, vol. 6504, pp. 146-160. Springer, Heidelberg (2011)

4. Adir, A., Nahir, A., Ziv, A., Meissner, C., Schumann, J.: Reaching coverage closure in post-
silicon validation. In: Barner, S., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504,
pp- 60-75. Springer, Heidelberg (2011)

5. Aharoni, M., Asaf, S., Fournier, L., Koyfman, A., Nagel, R.: FPgen - a deep-knowledge
test generator for floating point verification. In: Proceedings of the 8th High-Level Design
Validation and Test Workshop, pp. 17-22 (2003)

6. Chen, S.-H., et al.: Hardware/software co-designed accelerator for vector graphics applica-
tions. In: 2011 IEEE 9th Symposium on Application Specific Processors (SASP), pp. 108—
114 (June 2011)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT-Press (1999)

8. Copty, S., Fine, S., Ur, S., Yom-Tov, E., Ziv, A.: A probabilistic alternative to regression
suites. Theor. Comput. Sci. 404(3), 219-234 (2008)

9. Darringer, J., Davidson, E., Hathaway, D., Koenemann, B., Lavin, M., Morrell, J., Rahmat,
K., Roesner, W., Schanzenbach, E., Tellez, G., Trevillyan, L.: EDA in IBM: past, present,
and future. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 19(12), 1476-1497 (2000)

10. Das, S., Mohanty, R., Dasgupta, P., Chakrabarti, P.P.: Synthesis of system verilog assertions.
In: Proceedings of the Conference on Design, Automation and Test in Europe: Designers’
Forum, DATE 2006, Leuven, Belgium, pp. 70-75. European Design and Automation Asso-
ciation (2006)

11. Guralnik, E., Aharoni, M., Birnbaum, A.J., Koyfman, A.: Simulation-based verification of
floating-point division. IEEE Trans. Computers 60(2), 176-188 (2011)

12. International technology roadmap for semiconductors 2009 edition - design. Website,
http://www.1trs.net/Links/2009ITRS/2009Chapters 2009Tables/
2009 Design.pdf

13. Kalla, R., Sinharoy, B.: POWERT7: IBM’s next generation balanced POWER server chip. In:
Hot Chips 21 (2009)

http://www.cadence.com/rl/Resources/application_notes/CDN_Incisive_Simulation_Acceleration_Deployment.pdf
http://www.cadence.com/rl/Resources/application_notes/CDN_Incisive_Simulation_Acceleration_Deployment.pdf
http://www.intel.com/support/processors/pentium/sb/CS-013007.htm
http://www.intel.com/support/processors/pentium/sb/CS-013007.htm
http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Design.pdf
http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Design.pdf

Leveraging Accelerated Simulation for Floating-Point Regression 131

. Matalon, S., et al.: Building transaction-based acceleration regression environment using

plan-driven verification approach,
http://www.cdnusers.org/community/incisive/Vtp dvcon2007
tbaregression.pdf

. May, C., Silha, E., Simpson, R., Warren, H. (eds.): The PowerPC Architecture. Morgan Kauf-

mann (1994)

. Moffitt, M.D., Giinther, G.E.: Scalable scheduling for hardware-accelerated functional veri-

fication. In: ICAPS (2011)

. Naveh, Y., et al.: Constraint-based random stimuli generation for hardware verification. In:

AAAI (2006)

. Singerman, E., et al.: Transaction based pre-to-post silicon validation. In: DAC, pp. 564-568

2011)

. Storm, J.: Random test generators for microprocessor design validation (2006),

http://www.1inf.ufrgs.br/emicro

. Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification - The Complete

Industry Cycle. Elsevier (2005)

http://www.cdnusers.org/community/incisive/Vtp_dvcon2007_tbaregression.pdf
http://www.cdnusers.org/community/incisive/Vtp_dvcon2007_tbaregression.pdf
http://www.inf.ufrgs.br/emicro

	Leveraging Accelerated Simulation for Floating-Point Regression
	1 Introduction
	2 Background
	2.1 Acceleration
	2.2 Floating Point Test Generation

	3 FP Regression Tool
	3.1 Execution Flow
	3.2 Program Structure
	3.3 Debugging

	4 Results
	4.1 Experimental Results
	4.2 Field Trial

	5 Conclusions and Future Work
	References

