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Abstract. We present a novel preprocessing technique to automatically
reduce the size of Boolean formulas. This technique, called Bounded Vari-
able Addition (BVA), exchanges clauses for variables. Similar to other
preprocessing techniques, BVA greedily lowers the sum of variables and
clauses, a rough measure for the hardness to solve a formula. We show
that cardinality constraints (CCs) can efficiently be reencoded: from a
naive CC encoding, BVA automatically generates a compact encoding,
which is smaller than sophisticated encodings. Experimental results show
that applying BVA can improve SAT solving performance.

1 Introduction

SAT solvers are used in many applications in electronic design automation
(EDA), including combinational [1,2] and sequential equivalence checking [3,4],
bounded [5] and unbounded model checking [6], and debugging [7]. State-of-the-
art solvers commonly expect their input to be a Boolean formula in conjunctive
normal form (CNF), which also serves as data structure for storing the formula
internally and maintaining a cache of learned facts in form of clauses [8]. This
restriction is on one hand a strength: it allows fast algorithms and compact data
structures [9]. On the other hand being forced to use CNF instead of high-level
constraints is also a weakness of current SAT solvers: it requires complex syn-
thesis [10] and encoding algorithms [11,12] in order to take full advantage of
the raw speed of CNF level solving. There have been several attempts to pro-
duce hybrid solvers [13,14], which combine CNF and circuit reasoning. These
approaches typically involve a considerable overhead at least from the software
engineering perspective. An alternative is to use CNF level preprocessing tech-
niques [15,16,17] to efficiently and effectively simulate certain constraint encod-
ing and reasoning techniques. As example, consider the combination of variable
elimination [16] and blocked clause elimination [17], which is able to achieve the
same effect as sophisticated encoding algorithms [12].

Starting from a problem to solve, the first step is to encode it into CNF.
Next, preprocessing techniques are used to simplify the formula, before search is
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started. Recently, inprocessing was introduced [18,19] that applies preprocessing
on a partially solved formula (i.e., during search), linking back in the tool chain.
Here, we investigate another link back by reencoding clauses. This technique
can be applied on the original set of clauses, but also on partially solved and
inprocessed formulas. Thus, this paper adds to this discussion of which way to
go another argument in favor of CNF level preprocessing. We show that it is
possible to simulate sophisticated constraint encoding techniques with a rather
simple CNF level technique, and thus create the missing link in the picture.

The basic idea is to reencode parts of the CNF by introducing new variables,
if the size of the CNF decreases. The size of the CNF is measured by the sum
of the number of variables and clauses. This is in essence a reverse applica-
tion of variable elimination. Bounded variable elimination (BVE), as proposed
in [16,20,21], essentially eliminates a variable in a CNF by clause distribution, if
the size of the CNF does not increase. In many applications, BVE is currently
one of the most effective CNF level preprocessing techniques.

We show improvements in SAT solving time after using our preprocessing on
various application benchmarks and recent SAT competitions. We also show,
that our technique theoretically and empirically simulates optimized encodings
of cardinality constraints starting from a naive standard encoding. These con-
straints occur frequently in many applications [22,23,24] and have been studied
by the CP and SAT communities [25,26,27,28,29,16,30,31]. Furthermore, our pre-
processing technique is not restricted to cardinality constraints, but it is also able
to factor out common logic in arbitrary formulas without cardinality constraints.

The closest related work is an attempt [32] to speed-up SAT solving by allow-
ing extension steps of extended resolution. The idea is to factor out a common
prefix of (learned) clauses by replacing it with a new variable. These extension
steps never decrease the number of clauses. If applied to original clauses, BVE
would eliminate the extensions again, which renders this technique [32] useless
in combination with BVE. In contrast, BVE cannot undo our new method. An-
other rewriting technique [33] partitions the formula and removes gate definition
clauses. The other clauses are clustered based on shared variables. Each cluster
is then transformed into a Gröbner basis, reduced and finally transformed back
into CNF. Combined with BVE, this transformation can lead to a faster solving
process. However, the rewriting itself can be quite expensive [33].

We do not claim that high-level reasoning is useless in general. Clearly, there
are situations where such reasoning should be combined with CNF level reason-
ing. This paper adds to the arsenal of preprocessing techniques a new algorithm,
which allows to simulate additional sophisticated encoding and reasoning tech-
niques on the CNF level. This is particularly useful for inprocessing, as used in
PrecoSAT and Lingeling [18], so new learned facts can be taken into account.
As future work, we want to extend these ideas to capture even more high-level
techniques such as AIG rewriting [10], compact encoding techniques based on
technology mapping [11], and Gaussian elimination of XOR constraints [34].

The remainder of this paper is structured as follows: the next section provides
background information. In Section 3 we present our novel technique Bounded
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Variable Addition (BVA). Automated reencoding of cardinality constraints is one
of the possible applications of BVA, which is discussed in Section 4. Experimental
results are described in Section 5. Finally, we draw conclusions in Section 6.

2 Preliminaries

In this section we review necessary background concepts: conjunctive normal
form level Boolean satisfiability (SAT), resolution and variable elimination.

2.1 Conjunctive Normal Form

For a Boolean variable x, there are two literals, the positive literal, denoted by
x, and the negative literal, denoted by x̄. A clause is a disjunction of literals and
a CNF formula a conjunction of clauses. A clause can be seen as a finite set of
literals and a CNF formula as a finite set of clauses. A clause is a tautology if it
contains both x and x̄ for some x. The set of literals occurring in a CNF formula
F is denoted by LIT(F ). Formulas are logically equivalent if they have the same
set of satisfying assignments over the common variables.

2.2 Resolution and Variable Elimination

The resolution rule states that, given two clauses C1 = {x, a1, . . . , an} and
C2 = {x̄, b1, . . . , bm}, the implied clause C = {a1, . . . , an, b1, . . . , bm}, called
the resolvent of C1 and C2, can be inferred by resolving on the variable x. We
write C = C1 ⊗ C2. This notion can be lifted to sets of clauses: for two sets Sx

and Sx̄ of clauses which all contain x and x̄, respectively, we define

Sx ⊗ Sx̄ = {C1 ⊗ C2 | C1 ∈ Sx, C2 ∈ Sx̄, and C1 ⊗ C2 is not a tautology}.
The Davis-Putnam procedure [35] (DP) can be used as a basic simplification
technique, referred to as variable elimination by clause distribution [20,21,36].
The elimination of a variable x in the whole CNF formula can be computed
by pair-wise resolving each clause in Sx with every clause in Sx̄. Replacing the
original clauses in Sx∪Sx̄ with the set of non-tautological resolvents S = Sx⊗Sx̄

gives the formula (F \ (Sx ∪ Sx̄)) ∪ S that is logically equivalent to F .
Notice that DP is a complete proof procedure for CNF formulas, with expo-

nential space complexity. Hence for practical applications of variable elimination
by clause distribution as a simplification technique for CNF formulas, variable
elimination needs to be bounded [20,21,36].

3 Bounded Variable Addition

Closely following the heuristics applied in the SatElite preprocessor [36] for ap-
plying variable elimination, in this paper we study the bounded variant of vari-
able elimination (VE) by clause distribution (BVE) as a simplification technique.
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In BVE, a variable x can be eliminated only if |S| ≤ |Sx ∪ Sx̄|, i.e., when the
resulting CNF formula (F \(Sx∪Sx̄))∪S will not contain more than |F | clauses,
where F is the formula before the elimination step.

Example 1. Consider a CNF formula F with

Sx = (x ∨ c) ∧ (x ∨ d̄) ∧ (x ∨ ā ∨ b̄) and Sx̄ = (x̄ ∨ a) ∧ (x̄ ∨ b) ∧ (x̄ ∨ ē ∨ f)

for the variable x. Applying VE to eliminate x, we have

S = Sx ⊗ Sx̄ = (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ d̄) ∧ (b ∨ d̄) ∧
(ā ∨ b̄ ∨ ē ∨ f) ∧ (c ∨ ē ∨ f) ∧ (d̄ ∨ ē ∨ f).

Since |Sx| + |Sx̄| = 6 and |S| = 7, BVE cannot eliminate the variable x. Notice
that the clauses (x∨ ā∨ b̄), (x̄∨a), and (x̄∨ b) in F are equivalent to the Tseitin
encoding of the gate x = and(a, b). This is why resolving (x∨ ā∨ b̄) with (x̄∨a)
and (x̄ ∨ b) on x produces only tautological clauses that are not in S [36].

The global heuristic used for bounding VE –substitute only if the sum of variables
and clauses decreases– appears to be a powerful metric to simplify a Boolean
formula. This heuristic inspired us to develop the technique Bounded Variable
Addition (BVA). As the name suggests, BVA is complementary to BVE: instead
of exchanging variables for clauses BVA exchanges clauses for variables. Yet the
same bounding heuristic is used: substitute to decrease the size of the CNF.

Example 2. The smallest formula for which adding a variable can decrease the
size of the CNF consists of six clauses. Such a formula contains the pattern

E = (a ∨ c) ∧ (a ∨ d) ∧ (a ∨ e) ∧ (b ∨ c) ∧ (b ∨ d) ∧ (b ∨ e)

By adding a new variable x, E can be reencoded to the logically equivalent
formula E′ which has one clause less:

E′ = (a ∨ x) ∧ (b ∨ x) ∧ (c ∨ x̄) ∧ (d ∨ x̄) ∧ (e ∨ x̄)

However, it is not always easy to find patterns that reduce the number of clauses.
Consider for instance the resulting S consisting of seven clauses in Example 1.
Based on the global heuristic, one would like to replace S by Sx ∪ Sx̄ because
the size of the latter is smaller. Given S, however, how can we compute that
there exists a Sx ∪ Sx̄ such that S = Sx ⊗ Sx̄ and |Sx| + |Sx̄| < |S| ? Even for
this small set of clauses, this question is far from trivial. Since practical SAT
instances are huge, say 100, 000 clauses, the number of possibilities for Sx and
Sx̄ are enormous. Hence, general BVA until fixpoint will be very costly.

3.1 The SimpleBoundedVariableAddition Algorithm

The number of patterns to add a Boolean variable in order to decrease the size of
the CNF is very large. To reduce the computational cost, we limited the search
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to detect only some specific patterns. We focus on those patterns for which the
new variable x occurs positively in binary clauses only, while the occurrences of
the complement are unrestricted.

Two sets will be used during the detection: a set of literals Mlit and a set
of clauses Mcls. A pair 〈Mlit,Mcls〉 is called a replaceable matching w.r.t. F if
for all l ∈ Mlit and C ∈ Mcls the clauses (C \ {Mlit}) ∪ {l} are either in F
or tautological. Given a replaceable matching 〈Mlit,Mcls〉, we can apply the
matching-to-clauses construction method which creates the sets Sx and Sx̄ as
follows: Sx = {(l ∨ x) | l ∈ Mlit} and Sx̄ = {(C \Mlit) ∪ {x̄} | C ∈ Mcls}. The
final step is to remove all clauses (C \ {Mlit}) ∪ {l} with l ∈ Mlit and C ∈ Mcls

and replace them with Sx ∪ Sx̄.
Consider Example 2 again: For the formula E there exists a replaceable match-

ing: Mlit = {a, b} and Mcls = {(a ∨ c), (a ∨ d), (a ∨ e)}. Applying the matching-
to-clauses construction method of Sx and Sx̄ gives E′ = Sx ∪ Sx̄.

Theorem 1. Given a replaceable matching 〈Mlit,Mcls〉 w.r.t. a CNF formula F ,
a formula F ′ can be constructed by adding a Boolean variable such that (1) F ′ is
logically equivalent to F and (2) F ′ contains |F |+ |Mlit|+ |Mcls| − |Mlit| · |Mcls|
clauses if none of the resolvents is a tautology.

Proof. Given a replaceable matching 〈Mlit,Mcls〉, we can construct F ′ as follows:
remove from F all clauses (C \ {Mlit}) ∪ {l} with l ∈ Mlit and C ∈ Mcls and
replace them with Sx ∪ Sx̄ which are obtained using the matching-to-clauses
construction method. The number of removed clauses is |Mlit| · |Mcls|, while the
number of added clauses is |Mlit|+ |Mcls| showing (2). Applying VE on x in F ′

produces F . (1) holds because VE preserves logical equivalence.

We refer to the reduction of a replaceable matching 〈Mlit,Mcls〉 with respect
to the number of clauses as |Mlit| · |Mcls| − |Mlit| − |Mcls|. Notice that for each
l ∈ LIT(F ) holds that Mlit := {l} and Mcls := Fl is a replaceable matching.
However, it is not useful because the reduction is -1. Heuristically the most
interesting replaceable matching is the one with the largest reduction.

We developed the SimpleBoundedVariableAddition algorithm, see Fig. 1, to find
and replace matchings with a positive reduction. In order to find matchings with
large reductions first, a priority queue Q is used that sorts literals l ∈ LIT(F ) in
descending order of the number of occurrences of l in F (line 1). While Q is not
empty (line 2), the top element l is used to initialize Mlit := {l} and Mcls := Fl

(line 3).
In the next seven lines a sequence P of literal-clause pairs 〈l′, C〉 is created

such that C ∈ Mcls and C \ {l} ∪ {l′} ∈ F . After initialization (line 4), we loop
through the clauses C ∈ Mcls and select in each of them the literal lmin that
occurs least frequently in F to reduce the computational cost (line 5). Now we
try to extend P by looping through the clauses D ∈ Flmin (line 7) and check
whether C and D differ in exactly one literal (line 8). Let the different literal be
l′ (line 9), so we extend P with 〈l′, C〉 (line 10).

Now, we try to add a literal to the matching such that the reduction would
increase. The best candidate for this addition is lmax the literal occurring most
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SimpleBoundedVariableAddition (CNF formula F )

1 let Q be a priority queue of l ∈ LIT(F ) sorted by |Fl|
2 while Q �= ∅ do

3 l := Q.top(), Q.pop(), Mlit := {l}, Mcls := Fl

4 P := ∅
5 foreach C ∈ Mcls do

6 let lmin ∈ C \ {l} be least occurring in F

7 foreach D ∈ Flmin do

8 if |C| = |D| and C \D = l then

9 l′ := D \ C
10 P := P ∪ 〈l′, C〉
11 let lmax be occurring most frequently in P

12 if adding lmax to Mlit further reduces |F | then
13 Mlit := Mlit ∪ {lmax},Mcls := ∅
14 foreach 〈lmax, C〉 ∈ P do

15 Mcls := Mcls ∪ {C}
16 goto 4

17 if |Mlit| = 1 then continue

18 let x be a new variable not occurring in F

19 foreach l′ ∈ Mlit do

20 F := F ∪ {l′, x}
21 foreach C ∈ Mcls do

22 F := F \ {(C \ {l}) ∪ {l′}}
23 foreach C ∈ Mcls do

24 F := F ∪ {(C \ {l}) ∪ {x̄}}
25 Q.push(l), Q.push(x), Q.push(x̄)

26 return F

Fig. 1. Pseudo code of the SimpleBoundedVariableAddition algorithm

frequently in P (line 11). If adding lmax increases the reduction (line 12), then
lmax is added to Mlit (line 13) and Mcls is updated s.t. Mlit and Mcls is a
replaceable matching (line 14–15). Afterwards, we try to further increase the
matching by rebuilding P (line 16).

The last part of the algorithm implements the replacement, if Mlit contains
multiple literals (line 17). Variable x is added (line 18) and all clauses (C \
{Mlit}) ∪ {l} with l ∈ Mlit and C ∈ Mcls are removed from F and replaced by
(l′ ∨ x) with l′ ∈ Mlit and (C \ {l})∪ {x̄} with C ∈ Mcls (lines 19–24). Last, but
not least, l, x and x̄ are inserted in Q for possible future replacements.

3.2 Extensions

Several extensions of the BVA algorithm as shown in Fig. 1 are possible. In this
subsection we discuss four of them. First, we observed that for some problems it
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occurs that l = l̄max. In this special case, the resolvent between the clauses C ∈ Fl

and D ∈ Flmax such that |C| = |D| and C \ D = l subsume the antecedents.
This is also known as self-subsumption [36]. We can simply remove l from the
corresponding clause in C ∈ Fl, and remove the clause D ∈ Flmax . So even if l̄
occurs only once in P , it can be selected as lmax to reduce the number of clauses
without adding a new variable. Since this check is straight forward, it has been
added to the algorithm for the experimental evaluation.

The most natural extension is to search for more (less limited) patterns. For
instance consider the following formula:

H = (a ∨ d) ∧ (a ∨ e) ∧ (a ∨ f) ∧ (b ∨ c ∨ d) ∧ (b ∨ c ∨ e) ∧ (b ∨ c ∨ f)

The BVA algorithm as presented in Fig. 1 cannot reduce the number of clauses.
However, if one would allow to have pairs of literals (or even more) in Mlit,
then substitution is possible. Now consider Mlit = {{a}, {b, c}} and Mcls =
{(a∨ d), (a ∨ e), (a ∨ f)}, applying the replacement code (lines 19–24) results in
the following formula:

H ′ = (a ∨ x) ∧ (b ∨ c ∨ x) ∧ (x̄ ∨ d) ∧ (x̄ ∨ e) ∧ (x̄ ∨ f)

Enhancing SimpleBoundedVariableAddition with these and other patterns will be
part of future research.

The third extension is exploring how to reduce the cost to detect patterns.
For instance, all literals l ∈ Q which occur less than three times in F can be
removed because the check on line 12 would fail for those literals. Also, all
clauses in Mcls must have at least one literal occurring in Q. These observations
can be used to speed-up detection which would be important for more complex
patterns in particular. The first part of this extension is also used in the evaluated
implementation, because of its simplicity. We simply do not add variables back
into Q if they occur less than three times.

The fourth extension deals with taking into account tautological clauses.

Example 3. Consider the following CNF formula G

G = (a ∨ b̄ ∨ c̄) ∧ (ā ∨ b ∨ c̄) ∧ (ā ∨ b̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d) ∧
(ā ∨ c̄ ∨ d) ∧ (ā ∨ b̄ ∨ d) ∧ (a ∨ d̄) ∧ (b ∨ d̄) ∧ (c ∨ d̄)

The SimpleBoundedVariableAddition algorithm as described above cannot reduce
the size of G. However, BVA can be applied using Mlit = {{a}, {b}, {c}, {d}}
and Mcls = {(b̄ ∨ c̄ ∨ d), (ā ∨ c̄ ∨ d), (ā ∨ b̄ ∨ d), (d̄ ∨ d)} resulting in G′:

G′ = (a ∨ x) ∧ (b ∨ x) ∧ (c ∨ x) ∧ (d ∨ x) ∧
(b̄ ∨ c̄ ∨ x̄) ∧ (ā ∨ c̄ ∨ x̄) ∧ (ā ∨ b̄ ∨ x̄) ∧ (d̄ ∨ x̄)

Our current algorithm cannot reduce G because it cannot match tautological
clauses such as (d̄∨d). In order to find these more complex patterns, one should
assume that all tautological clauses are implicitly in a formula. Patterns that
include tautological clauses also require a different equation to count the reduc-
tion of the number of clauses. For instance, with |Mlit| = 4 and Mcls = 4, one
would expect a reduction of 8, while the actual reduction is only 1.
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4 Cardinality Constraints

For encoding applications, e.g. routing, scheduling, verification or code-generation
[22,23], as well as for encoding instances from product configuration or radio fre-
quency assignment or the domain of a CSP variable [37,38], it is necessary to
encode numerical bounds. These numerical bounds can be notated as follows: ≤
k(x1, . . . , xn) where n is the number of variables and k is the number of variables
that are allowed to be assigned true. A naive encoding into propositional logic of
this constraint is ∧

M⊆{1,...,n}
|M|=k+1

(
∨

i∈M

x̄i).

Many encodings for cardinality constraints have been proposed [29,31,16]. In
the following two subsections we will show that BVA can be used to reencode
cardinality constraints that are encoded naively efficiently. The comparison to
sophisticated encodings is based on applying BVA to the naive encoding of cardi-
nality constraints. To the best of our knowledge we name all proposed encodings
for this constraint and then focus on the most promising encodings that main-
tain arc consistency, since reencoding with BVA also preserves arc consistency.
Arc consistency means that if k variables are already assigned to true, than all
the other variables will be mapped to false by Boolean constraint propagation.

There exist SAT solvers that handle cardinality constraints within the solver,
for example Sat4J [39] or clasp [40]. This feature is used for solving MaxSAT
and PB problems. However, these solvers do not extract cardinality constraints
from the formula and exploit their special mechanisms. In general it is hard
to judge whether handling cardinality constraints natively or encoding them to
SAT results in the higher performance. Yet the strongest SAT solvers tend to
not support native cardinality constraints. MiniSAT [41] for instance supported
native cardinality constraints up to version 1.12, but dropped support in all
later versions. Recent approaches to incorporate cardinality constraint reasoning
into the solver again are in an early stage [42]. For example, this solver cannot
compete with a SAT solver that performs preprocessing and inprocessing.

Encoding cardinality constraints into SAT and then using BVA has the ad-
vantage that any SAT solver can be applied. Due to recent portfolio systems [43]
the most promising solver can be picked, whereas the set of candidate solvers is
much smaller for solvers that handle these constraints natively.

4.1 The At-Most-1 Constraint

A special case of cardinality constraints is k = 1 that is applied whenever a
finite domain is encoded, for example when CSP is translated into SAT. Several
encodings have been proposed with lower number of clauses, for example the log
encoding (LE) [44] or the 2-product encoding (PE) [45]. Furthermore, for k = 1
the sequential counter encoding (SE) [29] can be adopted. The naive encoding
for k = 1 is referred to as the direct encoding (DE). For each encoding the lower
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Table 1. Encoding the at-most-one constraint

Encoding Clauses Variables

DE n·(n−1)
2

n
LE [44] n · �log n	 n+ log n
PE [45] 2n+ 4 · √n+O( 4

√
n) n+

√
n+O( 4

√
n)

SE [29] 3n− 4 2n− 1
DE+ BVA 3n− 6 ∼ 2n
LE + BVA ∼ 3n ∼ 1.5n

bound on the number of clauses and variables for a given value for n are given
in Table 1. The values have been taken from the corresponding publications.

Neither of the encodings PE and SE can be processed by BVA. However,
applying BVA to the naive encoding yields major benefit with respect to the
number of clauses and variables. Although PE has the best asymptotic number
of clauses, DE + BVA produce less clauses until the value for n reaches 47. The
same effect can be seen for the number of variables as long as n < 45. Note, that
for cardinality constraints in real instances the value of n usually is smaller than
45. Applying BVA to LE does not give better results than using PE. Table 1
also shows that using a naive encoding and applying BVA results in a very good
encoding for the at-most-1 constraint.

Example 4. Consider the DE of ≤ 1(a, b, c, d, e, f) :

D = (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄) ∧ (ā ∨ ē) ∧ (ā ∨ f̄) ∧ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄) ∧
(b̄ ∨ ē) ∧ (b̄ ∨ f̄) ∧ (c̄ ∨ d̄) ∧ (c̄ ∨ ē) ∧ (c̄ ∨ f̄) ∧ (d̄ ∨ ē) ∧ (d̄ ∨ f̄) ∧ (ē ∨ f̄)

Applying BVA on D replaces nine clauses by six using Mlit = {ā, b̄, c̄} and
Mcls = {(ā ∨ d̄), (ā ∨ ē), (ā ∨ f̄)}:

(ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (b̄ ∨ c̄) ∧ (d̄ ∨ ē) ∧ (d̄ ∨ f̄) ∧ (ē ∨ f̄) ∧
(ā ∨ x) ∧ (b̄ ∨ x) ∧ (c̄ ∨ x) ∧ (d̄ ∨ x̄) ∧ (ē ∨ x̄) ∧ (f̄ ∨ x̄)

Fig. 2 shows the number of clauses that are needed to encode the at-most-1 con-
straint with the mentioned encodings. The value on the x-axis gives the number
of Boolean variables where a single one has to be set to true. It can be seen
clearly that both DE and LE use more clauses than any of the special encod-
ings. Applying BVA to the naive encoding results in almost the same number
of clauses as if a special encoding is used. Until the number of elements reaches
47, using DE +BVA results in the smallest number of clauses for the at-most-1
constraint.

4.2 The At-Most-K Constraint

The more generic case of the cardinality constraint does not bind k to a specific
value. Thus, it is not possible to easily adopt a special encoding as for the
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Fig. 2. Clauses needed to encode the at-most-1 constraint

case k = 1. In general, for the mentioned applications a value of k that is
larger than 1 is required. Still, special encodings have been proposed to encode
general cardinality constraints efficiently. Again, we consider only encodings that
preserve arc consistency.

Encoding cardinality constraints based on a unary number representation
and a binary tree with comparators has been proposed [30] which we refer to as
TREE. Sinz introduced a sequential counter encoding and a parallel counter en-
coding, where the latter one does not preserve arc consistency. Eén and Sörrensen
[16] introduced three possibilities to encode a cardinality constraint, namely by
using (i) binary decision diagrams, (ii) networks of sorters or (iii) networks of
adders [16], where only the first two encoding preserve arc consistency. Encoding
the BDD into CNF has been done by the Tseitin transformation. There are two
small sized encodings for cardinality constraints that do not provide arc con-
sistency: the parallel counter [29] and the hybrid perfect hashing function based
encoding [46]. Although the properties of the latter are very nice, it cannot guar-
antee arc consistency for all possible cardinality constraints. The arc consistent
variant of perfect hashing function based encoding [46] uses slightly more clauses
than the sequential counter, but needs less auxiliary variables. Since we focus
on the number of clauses, we do not consider this encoding. Table 2 shows the
asymptotic number of clauses and variables that are needed by using the differ-
ent encodings. Notice that the number of clauses that are required by the naive
encoding is significantly higher than for the other encodings.

Discussing the effect of BVA on the naive encoding of at-most-k constraints
is not as simple as for the special case k = 1, because non-binary clauses are
involved in these encodings.
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Table 2. Encoding the at-most-k constraint

Encoding Clauses Variables

naive
(

n
k+1

)
n

TREE [30] O(n2) Θ(n log n+ 1)
SE [29] 2nk + n− 3k − 1 (n− 1) · k

BDD [16] 2nk + n− k2 (n− k + 1) · k + n

Due to the limit of BVA to detect only matchings where Mlit is restricted
to a set of single literals, many potential matchings cannot be recognized and
replaced. The following example illustrates this statement. Although matchings
with a reduction of 3 are part of formula K, only reductions of size 2 can be
recognized. By increasing the number of matching literals in BVA, this limit can
be overcome. Still, applying BVA to the naive at-most-k encoding reduces the
number of clauses significantly. The smaller the value k, the closer the number
of clauses after BVA gets to the number of clauses of the special encodings.
We present some exemplary values for the number of clauses and variables after
applying BVA to the naive encoding in Table 3 to support this statement. The
formulas for SE and BDD have been generated by using the tools that have been
provided with the corresponding publications. For n = 10 using BVA results in
the smallest formula. For n = 20 the special encodings are almost always more
effective than BVA.

Example 5. Consider the encoding of ≤ 3(a, b, c, d, e, f) :

K = (ā ∨ b̄ ∨ c̄ ∨ d̄) ∧ (ā ∨ b̄ ∨ c̄ ∨ ē) ∧ (ā ∨ b̄ ∨ c̄ ∨ f̄) ∧ (ā ∨ b̄ ∨ d̄ ∨ ē) ∧
(ā ∨ b̄ ∨ d̄ ∨ f̄) ∧ (ā ∨ b̄ ∨ ē ∨ f̄) ∧ (ā ∨ c̄ ∨ d̄ ∨ ē) ∧ (ā ∨ c̄ ∨ d̄ ∨ f̄) ∧
(ā ∨ c̄ ∨ ē ∨ f̄) ∧ (ā ∨ d̄ ∨ ē ∨ f̄) ∧ (b̄ ∨ c̄ ∨ d̄ ∨ ē) ∧ (b̄ ∨ c̄ ∨ d̄ ∨ f̄) ∧
(b̄ ∨ c̄ ∨ ē ∨ f̄) ∧ (b̄ ∨ d̄ ∨ ē ∨ f̄) ∧ (c̄ ∨ d̄ ∨ ē ∨ f̄)

Applying BVA on the formula K will find the matching Mlit = {ā, b̄} and Mcls =
{(ā ∨ d̄ ∨ ē ∨ f̄), (ā ∨ c̄ ∨ d̄ ∨ ē), (ā ∨ c̄ ∨ ē ∨ f̄), (ā ∨ c̄ ∨ d̄ ∨ f̄)} with a reduction
of 2 clauses. Yet the more interesting case is to use Mlit = {{ā, b̄}, {ā, c̄}, {b̄, c̄}}
and Mcls = {(ā∨ b̄∨ d̄∨ ē), (ā∨ b̄∨ d̄∨ f̄), (ā∨ b̄∨ ē∨ f̄)} which has reduction 3.

5 Experiments

We implemented the algorithm of Fig. 1 in a new tool1. Although applying
SimpleBoundedVariableAddition until fixpoint requires less than a second on most
benchmarks, we observed that BVA was sometimes very expensive – even in case
no replaceable matching can be found. Therefore, we limited the execution of
BVA as follows: when the check on line 8 of Fig. 1 is executed 10,000,000 times,

1 The sources of the tool are available at http://fmv.jku.at/bva

http://fmv.jku.at/bva
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Table 3. Encoding the at-most-k constraint

naive naive + BVA SE [29] BDD [16]

k n #var #cls #var #cls #var #cls #var #cls

2 10 10 120 18 32 28 43 33 59
3 10 10 210 18 47 37 60 37 70
4 10 10 252 19 51 46 77 39 75
5 10 10 210 17 53 55 94 39 74
2 20 20 1140 40 80 58 93 73 139
3 20 20 4845 44 209 77 130 87 180
4 20 20 15504 66 326 96 167 99 215
5 20 20 38760 60 768 115 204 109 244
6 20 20 77520 130 1104 134 241 117 267
7 20 20 125970 113 2051 153 278 123 284
8 20 20 167960 227 2247 172 315 127 295
9 20 20 184756 104 3175 191 352 129 300
10 20 20 167960 191 2892 210 389 129 299

the algorithm is aborted. Then, the formula is returned with all substitutions
until that point. This limit ensures that the preprocessing runtime is only a few
seconds for the more costly formulas. Note, that all the experiments use the first
and third extension that have been mentioned in Section 3.2. For the experiments
we selected the SAT solver Lingeling (version SAT11 Competition2) because of
its strong performance during SAT10 Race and SAT11 Competition.

5.1 Bio-informatics

One family of benchmarks for which we observed that BVA could significantly
decrease the size of the instances originates from bio-informatics. These formulas
encode computing evolutionary tree measures into SAT [47]. The results of these
instances are shown in Table 4. The selected benchmarks are very hard and no
solver was able to tackle any of the 09 or 10 instances (within the CPU timeout
of 40,000 seconds). After applying our BVA tool –which on average reduces the
size of a factor ten– Lingeling could solve all instances. Of the original instances
only rpoc 08 could be solved, yet 36 times slower.

5.2 FPGA Routing

As discussed in prior sections, several benchmarks arising from EDA consist of
cardinality constraints. A family of this type used in recent SAT competitions
encodes FPGA routing problems [22]. This family consists of six routing config-
urations (chnlXX YY) in which one tries to route (a) 11, 12 or 13 connections
through 10 tracks, and (b) 12, 13 or 20 connections through 11 track. Table 5

2 http://www.satcompetition.org

http://www.satcompetition.org
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Table 4. Results on bio-informatics benchmarks. TO is 20,000 seconds

original BVA preprocessed

instance #var #cls solve #var #cls pre solve

ndhf 09 1910 167476 TO 3098 14588 1.47 187
ndhf 10 2112 191333 TO 3418 16756 1.70 1272
rbcl 08 1278 67720 TO 1981 8669 0.29 16
rbcl 09 1430 79118 TO 2192 10157 0.39 101
rbcl 10 1584 91311 TO 2443 11811 0.43 604
rpoc 08 1278 74454 8628 2011 8494 0.39 237
rpoc 09 1430 86709 TO 2252 10063 0.47 3590
rpoc 10 1584 99781 TO 2474 11667 0.66 11945

shows the results. BVA decreases the size of the CNF by more than a factor
two. The preprocessed formulas are easier to solve. FPGA routing can also be
solved with special purpose solvers that perform well on these instances. Tech-
niques that are used in these solvers are for example symmetry breaking [22].
Since symmetry breaking and BVA are orthogonal, it is a reasonable choice to
measure the effect of BVA also on this instance family. Furthermore, it would
be possible to combine symmetry breaking and BVA.

Table 5. Results on FPGA routing problems. TO is 20,000 seconds

original BVA preprocessed

instance #var #cls solve #var #cls pre solve

chnl10 11 220 1122 9372 302 562 0.00 69.3
chnl10 12 240 1344 7279 340 624 0.00 15.0
chnl10 13 260 1586 2682 380 686 0.00 26.0
chnl11 12 264 1476 TO 374 684 0.00 41.6
chnl11 13 286 1742 TO 418 752 0.00 17.1
chnl11 20 440 4220 TO 667 1228 0.00 12.1

5.3 Recent SAT Competitions

We observed that applying variable elimination (BVE) creates many patterns for
variable addition (BVA). Therefore we preprocessed, using SatElite of MiniSAT
2.2 [36], the formulas of recent SAT competitions with BVE –which is default
in the strongest SAT solvers– and applied our SimpleBoundedVariableAddition
algorithm afterwards.

On the application benchmarks of SAT09, Lingeling solved 196 instances (75
SAT and 121 UNSAT) within 900 seconds (including all preprocessing time),
while without BVA 190 instances (74 SAT, 116 UNSAT) were solved. The same
experiment on the application benchmarks of SAT11 resulted in a similar picture:
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with BVA 169 (79 SAT, 90 UNSAT) were solved, while without BVA, Lingeling
solves 162 instances (80 SAT, 82 UNSAT).

On the crafted instances we noticed that BVA works particularly well on
benchmarks from the Satisfiable Random High Degree Subgraph Isomorphism
(SRHD) family [48]. Using BVA, Lingeling is able to solve several more instances
of this family. However, even with the improved performance Lingeling requires
minutes to solve these benchmarks, while local search SAT algorithms can find
a solution in seconds.

6 Conclusions

We presented the preprocessing technique BVA that automatically reduces the
size of CNF formulas by introducing new variables. BVA can shrink formu-
las containing for instance cardinality constraints. Experiments show that the
smaller CNFs are generally solved faster, making BVA a useful technique. Also
interestingly, the presented algorithm is orthogonal to BVE, which is one of the
most powerful preprocessing techniques.

Future work in this direction will focus on enhancing BVA with more replace-
ment patterns. Additionally, BVA will be studied in the context of inprocessing
to observe the interaction with other techniques such as BVE and BCE.

We finally would like to thank the anonymous reviewers for detailed sugges-
tions on how to improve the paper.
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works and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584,
pp. 167–180. Springer, Heidelberg (2009)

32. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for
clause learning SAT solvers. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)
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