
Computing Interpolants without Proofs�

Hana Chockler, Alexander Ivrii, and Arie Matsliah

IBM Research – Haifa

Abstract. We describe an incremental algorithm for computing inter-
polants for a pair ϕA, ϕB of formulas in propositional logic. In contrast
with the common approaches, our method does not require a proof of
unsatisfiability of ϕA ∧ϕB , and can be realized using any SAT solver as
a black box. We achieve this by combining model enumeration with the
ability to easily generate interpolants in the special case that one of the
formulas is a cube.

1 Introduction

Craig’s interpolation theorem [Cra57] states that for any pair of propositional
formulas ϕA, ϕB , if ϕA implies ¬ϕB (ϕA ⇒ ¬ϕB) then there exists a formula
ϕI , so that ϕA ⇒ ϕI ⇒ ¬ϕB , and in addition Vars(ϕI) ⊆ Vars(ϕA)∩Vars(ϕB).
The formula ϕI is called a Craig interpolant of ϕA and ϕB .

Starting with the seminal work of McMillan [McM03], interpolants have a
central role in formal verification (and beyond) – various application include
hardware model checking [McM03, McM05], detection of functional dependency
[LJHM07], Boolean function decomposition [LJH08], and model checking of se-
quential programs [McM10].

The most common technique for computing an interpolant for a pair of formu-
las ϕA, ϕB in propositional logic is based on a resolution refutation for (ϕA∧ϕB)
produced by a DPLL-like SAT solver [ZM03, ANORC10]. Once obtained, the
proof can be transformed into an interpolant in the form of a Boolean circuit
having the same structure as the proof itself [Kra97, Pud97, McM03, KW10].1

Even though this scheme is generally very successful in practice, its main
limitation is the need for a refutation (proof of unsatisfiability) that is of man-
ageable size. Since modern SAT solvers are not specifically aimed to produce
short refutations, even for simple problems the interpolants produced are of-
ten too big to handle. In addition, the interpolants constructed in this way are
usually highly redundant, and for practical applications it is often beneficial to
minimize/simplify them. However, such minimization can be very costly – and
thus in practice one might not succeed to construct a small interpolant even if

� This work is partially supported by the European Community under the call FP7-
ICT-2009-5 – project PINCETTE 257647.

1 There are efficient algorithms known to compute interpolants based on refutations
in proof systems other than resolution (e.g., in Cutting Planes [Kra97]), but the one
based on resolution is the canonical one from practical perspective.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 72–85, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Computing Interpolants without Proofs 73

one exists. In the worst case, the input formula (ϕA ∧ ϕB) might not have a
resolution refutation of polynomial (in the number of variables) size at all.

The problem boils down to the dependency of the method on a particular
type of SAT solving algorithm. In other words, even if the ultimate SAT solver
was given to us as an oracle that answers any satisfiability query instantly, we
would not know how to use it to produce interpolants efficiently.

1.1 Our Contribution

In this paper we present a SAT-based incremental algorithm for computing in-
terpolants. Our algorithm can be easily implemented on top of any complete
SAT-solver with the minimal interface to return SAT / UNSAT and a satis-
fying assignment in case of SAT, and in particular the solver does not need to
produce proofs or be DPLL-based. Even though this minimal interface in prin-
ciple suffices, for practical reasons we will want from the solver a bit more: the
(now standard) incremental interface that allows adding clauses between calls
and solving under assumptions (see Section 3).

The core idea of our algorithm is to compute an interpolant ϕI incrementally
by taking the disjunction of “point” interpolants ϕp for all p ∈ A (where A de-
notes the set of models of ϕA). Each point interpolant ϕp contains p, is disjoint
from B, and is defined in terms of common variables of ϕA and ϕB . It follows
that the union of these interpolants for all p ∈ A contains all of A and is still
disjoint from B – thus constituting a valid interpolant for (ϕA, ϕB). An impor-
tant observation here is that computing a point interpolant, or more generally
an interpolant between a cube c = �1 ∧ · · · ∧ �k (containing up to 2−k fraction
of the points in A) and any propositional formula ϕB is trivial: one can simply
remove from c the literals referring to variables local to A. From the practical
viewpoint, it is crucial to further generalize these cubes to cover as many points
of A as possible while still being disjoint from B. The difference between our
approach and the traditional (monolithic) interpolation is depicted graphically
in Figure 1.

A more general method of computing an interpolant for (ϕA, ϕB) is the fol-
lowing two-stage process. First, we show that ϕA ∧ϕB is unsatisfiable by means
of a certain partition-based algorithm (by this we mean an algorithm in which
one solver is run on ϕA, another solver is run on ϕB , and the two solvers are
allowed to exchange constraints consisting only of common variables). Second,
we show how to construct an interpolant based on these exchanged constraints
(see Section 3.3 for details).

Our approach is somewhat similar in spirit to the classic algorithm that ex-
tracts a satisfying assignment from a SAT decision procedure, viewing the pro-
cedure as an oracle. In this algorithm, the variables are ordered, and then the
first one is assigned at random. The algorithm then queries the SAT oracle for
the existence of a satisfying assignment for the rest of the formula; it continues
in this way until all variables are assigned.

74 H. Chockler, A. Ivrii, and A. Matsliah

Fig. 1. Comparison between monolithic and incremental interpolants

1.2 Related Work

This work is tightly related to various methods for finding all models (satisfying
assignments) of a given formula, or more specifically finding all assignments to
the common variables of ϕA and ϕB possessing extensions satisfying ϕA. We refer
to the papers [McM02, JS05, BKK11, GM12] containing efficient algorithms for
this task and references to earlier work. In particular we also follow the widely
used blocking clause approach to prevent the algorithm from discovering the
same point again and again, and we try to generalize cubes as much as possible
to get quick coverage of A (the set of models of ϕA). However, our setting allows
an additional twist on the generalization process which makes convergence of
interpolant computation quicker than that of computing all satisfying assign-
ments: we can additionally generalize each cube as long as it remains disjoint
from B, allowing wider coverage of points in A.

An alternative partition-based algorithm for detecting whether ϕA ∧ ϕB is
unsatisfiable appears in [PG00]. In the cited work, all the assignments to the
common variables are checked, and ϕA ∧ ϕB is unsatisfiable if and only if for
every such assignment c either c ∧ ϕA or c ∧ ϕB is unsatisfiable. In contrast,
our algorithm only considers those assignments to the common variables which
admit a satisfiable extension for ϕA (and in practice this number is much smaller
due to generalization).

Last but not least, an important source of inspiration for this work are the
papers [BKK11, Bra11] which demonstrate the general power of an incremen-
tal approach for solving difficult problems. Note that in the context of model
checking, IC3 (the recent breakthrough model-checking technique by Bradley
[Bra11]) can be also viewed as a method which generates interpolants without
proofs. However our setting is more general, allowing to compute an interpolant
for any pair of propositional formulas.

Computing Interpolants without Proofs 75

2 Preliminaries

As usual, a literal is either a variable or its negation, a clause is a disjunction
of literals, and a cube is a conjunction of literals. A CNF is a conjunction of
clauses and a DNF is a disjunction of cubes.

Given a (propositional) formula ϕA, we denote by VA the set of all variables
that occur in ϕA. Given two formulas ϕA and ϕB, we denote by VA∩B � VA∩VB

the set of common variables of ϕA and ϕB , and by VA\B = VA \ VB the set of
all variables local to ϕA.

With each formula ϕA we associate a subset of {0, 1}VA containing all as-
signments to VA satisfying ϕA (models of ϕA). Slightly abusing notation, we
sometimes refer to formulas as subsets and vice versa; in particular, ϕA = ∅
means that ϕA is unsatisfiable.

Definition 1 (Interpolant). 2 Let ϕA, ϕB be a pair of formulas that cannot
be simultaneously satisfied (ϕA ∧ ϕB = ∅). An interpolant ϕI = Itp(ϕA, ϕB)
of (ϕA, ϕB) is a formula satisfying: 1) ϕA ⇒ ϕI ; 2) ϕI ∧ ϕB = ∅; and 3)
VI ⊆ VA∩B.

Our algorithm makes use of a SAT solver to decide satisfiability of a propositional
formula. For most of the paper this solver is viewed as a black box; the only
requirements are that it should output SAT or UNSAT depending on the status
of the formula, and in the case of SAT the solver should also return an assignment
(model) satisfying the formula. Note that a model is a conjunction of unit clauses,
or simply a cube.

We denote by PA
A∩B the projection of the set (of all assignments satisfying)

ϕA to VA∩B. P
B
A∩B is defined similarly. Clearly, ϕA ∧ ϕB = ∅ if and only if

PA
A∩B ∩ PB

A∩B = ∅.

3 Algorithm

In this section we present the main contribution of this paper – an incremental
algorithm for computing an interpolant ϕI of (ϕA, ϕB). In the following subsec-
tions we describe a basic version of the algorithm, an efficient implementation
of this algorithm on top of a modern CDCL solver (e.g. MiniSat), and various
extensions and optimizations which seem crucial for real-life instances.

3.1 Basic Algorithm

The algorithm (described in Algorithm 1) accepts a pair (ϕA, ϕB) of proposi-
tional formulas, and, in the case under consideration that ϕA∧ϕB is unsatisfiable,
returns an interpolant ϕI (in DNF). The algorithm also detects the case that
ϕA ∧ ϕB is satisfiable, and can in principle return a satisfying assignment to
ϕA ∧ ϕB.

2 This definition slightly deviates from the original definition of Craig, but is now
standard in the context of formal methods.

76 H. Chockler, A. Ivrii, and A. Matsliah

The interpolant ϕI is constructed incrementally; initially it is empty. Roughly
speaking, the algorithm searches for points p ∈ ϕA not yet covered by ϕI and
then generalizes these points to cubes by omitting assignments to all variables
local to ϕA and to as many common variables as possible, while still keeping these
cubes disjoint from ϕB. Each such generalized cube represents a new incremental
knowledge and is added to ϕI . For convenience we introduce the set ϕ′

A =
ϕA ∧ ¬ϕI corresponding to the set of assignments in ϕA not yet covered by ϕI ;
the algorithm terminates when ϕ′

A becomes empty.

Algorithm 1. Iterative computation of the interpolant

Input: A pair (ϕA, ϕB) of propositional formulas
Output: An interpolant ϕI for (ϕA, ϕB) (in DNF) if ϕA ∧ ϕB = ∅, or a satisfying
assignment otherwise

1: ϕI ← ∅
2: ϕ′

A ← ϕA

3: while TRUE do
4: if ϕ′

A is unsatisfiable then
5: return ϕI

6: else
7: Let p be a model of ϕ′

A

8: p′ ← projection of p to VA∩B

9: p′′ ← generalization of p′ w.r.t. ϕA

10: if (p′′ ∧ ϕB) is satisfiable then
11: return SAT + model
12: else
13: p′′′ ← generalization of p′′ w.r.t. ϕB

14: ϕI ← ϕI ∨ p′′′

15: ϕ′
A ← ϕ′

A ∧ ¬p′′′
16: end if
17: end if
18: end while

We now describe a single iteration of the main loop (lines 4-17) in detail. On
line 4 we call a SAT solver to check whether ϕ′

A is empty. If so, then ϕA ⊆ ϕI and
the algorithm terminates providing ϕI as the final interpolant. Otherwise (line 7),
the SAT solver returns a model p for ϕ′

A, that is an assignment to variables in
VA. First we project this assignment to VA∩B by omitting the variables local to
ϕA (line 8); this projection corresponds to the cube p′.

We can (on line 9) further generalize the cube p′ to p′′ as long as it satisfies the
following property: for any extension p̃′ of p′′ to VA∩B there is a further extension
p̃ of p̃′ to VA which satisfies ϕA. In other words, consider the projection PA

A∩B

of all assignments satisfying ϕA to VA∩B. By construction, p′ ∈ PA
A∩B, and we

seek to generalize it to p′′ so that as sets of assignments p′ ∈ p′′ ⊆ PA
A∩B , thus

enumerating more than one (projection of a) satisfying assignment to ϕA to
VA∩B at once. We describe the existing methods for such a generalization in

Computing Interpolants without Proofs 77

Section 3.3. Also note that this generalization is performed with respect to the
original set ϕA.

Next (on line 10), we make another call to a SAT solver to check whether
ϕB ∧ p′′ is satisfiable (note that the cube p′′ can be passed to the solver as a set
of unit assumptions). If this is the case, then ϕA ∧ ϕB is satisfiable, and in fact
we can obtain an explicit satisfying assignment to ϕA ∧ ϕB by extending the
assignment satisfying p′′ ∧ ϕB to VA\B which satisfies ϕA (which is possible by
the property above). If the generalization step on line 9 is omitted, a satisfying
assignment to ϕA∧ϕB can be obtained immediately by unifying the assignment
to p′′∧ϕB and the assignment p (since the two assignments match on the common
variables).

In the main case under consideration, p′′ ∧ ϕB is unsatisfiable, and we seek
(on line 13) to generalize p′′ even further to p′′′ by dropping the assignments to
some of the variables in VA∩B while keeping p′′′ disjoint from ϕB. The difference
between this generalization and the one on line 9 is that now we can let p′′′

represent non-PA
A∩B points provided that they are also non-PB

A∩B points (see
definitions above). In particular, p′′′ can also describe additional PA

A∩B-points,
not previously described by p′′. From the practical viewpoint, this is a very
important optimization (details follow).

Note that we can view p′′′ as an interpolant of p and ϕB. We update ϕI ←
ϕI ∨ p′′′ (thus keeping ϕI in DNF) and prevent the solver from rediscovering
points in p′′′ ∧ ϕA (and in particular p) by adding the blocking clause ¬p′′′ to
ϕ′
A.

Claim 1. (1) Algorithm 1 always terminates. (2) If ϕA ∧ ϕB = ∅ it outputs a
valid interpolant ϕI for (ϕA, ϕB).

Proof. (1) Initially ϕ′
A = ϕA, and in each iteration its size (as set of assignments)

shrinks by ≥ 1. (2) By construction, VI ⊆ VA∩B. In addition, ϕI is a disjunction
of cubes that are disjoint from ϕB, hence ϕI ∧ B = ∅. To see that ϕA ⇒ ϕI ,
observe that the algorithm terminates only when ϕ′

A � ϕI \ϕA becomes empty.

3.2 Implementation Details

Now we describe how the algorithm proposed in the last section can be efficiently
implemented on top of MiniSat or any other SAT solver that provides an interface
to incrementally add new clauses into the solver, and to solve under a set of
additional unit assumptions [ES03]. In the case of a satisfiable result, such a
solver should return a model satisfying all of the clauses in the solver as well as
all of the unit assumption literals. In the case of an unsatisfiable result, the solver
should return a subset of the assumptions used in the proof of unsatisfiability.

We keep two instances of the SAT solver: A-solver holding the CNF for ϕ′
A

and B-solver holding the CNF for ϕB. Thus the SAT call on line 4 corresponds
to A.Solve() and the SAT call on line 10 corresponds to B.Solve(p′′) with the
cube p′′ passed as the set of unit assumptions. In the simplest version of the
algorithm we can skip the generalization on line 9, and the generalization on

78 H. Chockler, A. Ivrii, and A. Matsliah

line 13 of p′′ to p′′′ is obtained for free by taking p′′′ to be the subset of the
assumptions in p′′ used for unsatisfiability. Finally, the strengthening of ϕ′

A on
line 15 corresponds to A.add(¬p′′′).

We found that this (somewhat primitive) implementation already performs
quite well on many instances.

3.3 Extensions

For some real-life instances originating from hardware model checking prob-
lems, the basic algorithm described above often takes too many iterations to
converge in reasonable time. By experimentation, we found that the following
heuristics/optimizations work well for those hard cases.

Exhaustive Generalization of p′′ to p′′′. Even though the MiniSat-like
“solve under assumption” mechanism is highly successful at detecting which
subset of the assumptions is important for unsatisfiability, this subset is very
often far from minimal. Thus, after obtaining a reduced set from the solver’s
“final” conflict analysis, one can try to shrink this set further. It is natural to
look for minimal3 or even minimum-sized subsets.

We implemented the following greedy approach for finding a minimal subset
of the conflicting assumptions, similar to a basic destructive algorithm for MUS
computations [DGHP09, Nad10, SL11]. Remove one of the assumptions – if the
remaining formula is satisfiable then this assumption is deemed as necessary and
must be present in all minimal assumption subsets from this point on. If the re-
maining formula is unsatisfiable, then the assumption is redundant and is deleted
from the set of assumptions under consideration. Also note that in the case of
an unsatisfiable answer, one can immediately trim the set of non-processed as-
sumptions further (when this functionality is supported by the solver). After all
of the assumptions are processed, we end up with a minimal subset as required.
We refer to this approach as exhaustive B-generalization.

In general this optimization has a significant overhead on the running time of
a single iteration of the loop since in the worst case it resorts to one additional
SAT call for each of the assumptions in the initial set. However as we will see
in the experimental section, the smaller clauses produced by this minimization
are of better quality and the algorithm takes significantly fewer iterations to
converge (in the same spirit as generalization of counterexamples and inductive
clauses in IC3).

Forall-Exists Generalization of p′ to p′′. Turning to generalization of p′

with respect to ϕA (on line 9), several methods have been proposed in earlier
works in the context of finding all satisfying assignments to a formula (see for
example [JS05]) or existential quantification (e.g. [BKK11] and [GM12]).

We implemented several variations, based on [BKK11]. We apply the following
“dual-rail” construction. For each of the common variables v ∈ VA∩B, we intro-
duce two additional fresh variables v+ and v−, and we replace each occurrence

3 I.e. the formula would become satisfiable if any of the assumptions were dropped.

Computing Interpolants without Proofs 79

of v in ϕA by v+, and each occurrence of ¬v in ϕA by v−. In addition, we add
the binary clause (¬v+,¬v−) to prevent the solver from assigning both v+ and
v− to true. In the simpler variant to which we refer as trivial A-generalization
we create the cube p′′ from the model p of ϕ′

A by including the literals v for
which v+ is set to true, and the literals ¬v for which v− is set to true. In the
more complicated variants, we seek the shortest possible cubes p′′. To this end,
we create additional variables v± = v+ ∧ v− for v ∈ VA∩B, and put a sequen-
tial counter construction [Sin05] on top of v±. This allows (passing additional
assumptions to the A-solver) to look for cubes in A which are of size at most
k, for any given k, and one can find a shortest cube by setting increasing values
to k = 1, 2, By experimenting with various parameter settings, we limit the
maximum value of the counter to min(15, |VA∩B|) and we do a binary search
to find the minimal k ∈ [1..15] if it exists. In other words we are guaranteed to
end up with a shortest cube whenever it has length at most 15, and otherwise
we resort to the trivial A-generalization from above. We refer to this version as
counter-based A-generalization.

In general, the dual-rail construction has a negligible overhead, but searching
for a shortest cube is expensive, both due to the extra logic pertaining to the
sequential counter construction and the increased number of SAT-calls.

Exchanging Roles of the Two Solvers. In certain cases ϕB has fewer satis-
fying assignments than ϕA or it is easier to enumerate them. Then it might be
easier to solve the “dual” problem first: compute ϕJ – interpolant for (ϕB , ϕA),
and then set ϕI ← ¬ϕJ . This way the final interpolant is in CNF, but in most
applications the precise form of the interpolant is not important (in case it is,
see [BKK11] for an efficient method to convert between the two forms).

Exchanging Clauses of Common Variables. One can consider a general
algorithm which uses the partitioning of ϕA ∧ ϕB into (ϕA, ϕB) and allows to
exchange learned clauses between the two solvers as long as they consist of
common variables only. In particular, such an algorithm might use a scenario
when the roles of the two solvers are switched periodically, or a scenario with
the two solvers running in parallel, each producing satisfying assignments and/or
blocking the satisfying assignments found by the other solver.

Of course, if the clauses are passed from ϕA to ϕB and back freely, more care
should be taken when assembling the final interpolant. Luckily this is not too
hard due to the following (here ϕG and ϕH correspond to (sets of) clauses learnt
from ϕA and ϕB respectively).

Claim 2. Suppose that ϕA ⇒ ϕG and Vars(ϕG) ⊆ VA∩B. Then an interpolant
ϕI = Itp(ϕA, ϕB) can be computed as ϕI = Itp(ϕA, ϕB ∧ ϕG) ∧ ϕG.

Proof. Let ϕJ = Itp(ϕA, ϕB ∧ ϕG). By definition, ϕA ⇒ ϕJ and ϕA ⇒ ϕG,
hence ϕA ⇒ ϕI . Also, ϕJ is disjoint from ϕB ∧ ϕG, hence ϕJ ∧ ϕG is disjoint
from ϕB .

80 H. Chockler, A. Ivrii, and A. Matsliah

Claim 3. Suppose that ϕB ⇒ ϕH and Vars(ϕH) ⊆ VA∩B. Then an interpolant
ϕI = Itp(ϕA, ϕB) can be computed as ϕI = Itp(ϕA ∧ ϕH , ϕB) ∨ ¬ϕH .

Proof. Let ϕJ = Itp(ϕA∧ϕH , ϕB). ϕA∧ϕH ⇒ ϕJ , hence ϕA ⇒ ϕJ ∨¬ϕH = ϕI .
Also, since both ϕJ and ¬ϕH are disjoint from ϕB , so is ϕI .

We can keep track of the sets of clauses passed from ϕA to ϕB and vice versa
and to reconstruct the interpolant by following the two rules above. This proce-
dure leads to more general definitions of interpolants (not only CNF or DNF).
However, if the only clauses passed from ϕA to ϕB are unit clauses, then the
interpolant can be still computed in DNF as (∨Ci) ∧ (x) = ∨(Ci ∧ x) by dis-
tributivity.

Remark 1. Note that the blocking clauses ¬p′′′ of Algorithm 1 are implied by
ϕB, and thus can be viewed as clauses passed from ϕB to ϕA. In other words,
Algorithm 1 can be seen as employing the incremental interpolant computation
dictated by Claim 3 only.

We implemented a variant of this technique which periodically instructs the A-
solver to look for unit clauses of common variables (by running the A-solver
with a small time-limit and a small backtrack-limit) and passing these clauses
to the B-solver. In many cases we saw a big reduction in the total number of
iterations (in several cases passing unit clauses from ϕA to ϕB made ϕB directly
unsatisfiable). The cons of this technique is that not all of the units passed from
ϕA to ϕB are really required for unsatisfiability, while our construction adds all
of these units into the interpolant. We refer to this optimization as flp (since it
is reminiscent of failed literal probing in SAT-solving).

Interpolant Strength. We make a theoretical digression. In the discussion
above we strove to generalize p′ as much as possible, that is to describe the
largest set in the projection. The motivation for this is clear – a smaller blocking
clause can potentially block more points of ϕ′

A, thus allowing the algorithm to
converge faster. However for various applications the loosest possible interpolant
might not be good, and it could be helpful to compute the largest blocking clause
which blocks the same points in ϕ′

A as ¬p′′′. In other words, we can seek for a
subcube q with p′ ⊆ q ⊆ p′′′ and ϕ′

A ∧ ¬q = ϕ′
A ∧ ¬p′′′. After such subcube q is

found, we can modify the line 14 of the algorithm to include q instead.
We illustrate this on an example. Suppose {x1, x2, x3, x4, x5} ⊂ VA∩B is a

subset of common variables, p′′ = x1∧x2∧x3∧x4∧x5, and p′′′ = x1∧x2. Suppose
further that p′′′∧PA′

A∩B consists of the three points (1, 1, 1, 1, 1, ·), (1, 1, 1, 0, 1, ·),
(1, 1, 0, 1, 1, ·), where · represents the remaining variables in VA∩B . Note that the
variable x5 takes the same value on PA′

A∩B and thus we can use q = x1 ∧ x2 ∧ x5

instead of x1 ∧ x2 in the interpolant.
Finding the maximal set of variables which are constant on p′′′ ∧ ϕ′

A can be
done in at most |p′′|−|p′′′| SAT calls. We illustrate this procedure on our example.
We ask the SAT solver whether ϕ′

A∧x1∧x2 ∧¬(x3 ∧ x4 ∧ x5) is satisfiable, that

is we are looking for a point in p′′′∧PA′
A∩B with at least one different value out of

Computing Interpolants without Proofs 81

{x3 = 1, x4 = 1, x5 = 1}. Let’s say that the solver returns the point (1, 1, 1, 0, 1, ·)
which means that the variable x4 is not constant on p′′′ ∧ PA′

A∩B. We refine the
query asking whether ϕA ∧ x1 ∧ x2 ∧ ¬(x3 ∧ x5) is satisfiable. Now the solver
returns the point (1, 1, 0, 1, 1, ·) which means that the variable x3 is also not
constant on p′′′ ∧ PA′

A∩B. Finally the query ϕA ∧ x1 ∧ x2 ∧ ¬x5 is unsatisfiable,

and the remaining set of variables are constant on p′′′ ∧ PA′
A∩B.

4 Experiments

Before discussing concrete experimental results, let us think when we expect
the suggested approach to succeed. As mentioned before, Algorithm 1 and its
variations might perform well if enumerating all satisfying assignments of ϕA

(or ϕB) is not too hard, or whenever there exists a successful partition-based
algorithm for solving ϕA ∧ ϕB. In particular we expect our algorithm to be
successful for simple formulas with a small number |VA∩B | of common variables4.

We have evaluated our algorithm on the 465 single-property benchmarks used
in the 2011 Hardware Model Checking Competition. For each of these bench-
marks we unrolled the design for 11 cycles to represent the bounded model
checking formula J(x0) ∧ T (x0, x1) ∧

∧10
i=1 T (xi, xi+1) ∧

∨11
i=1 ¬P (xi), where J ,

T , and P denote respectively the initial states of the design, the transition re-
lation and the property being verified (see [McM03] for details). We define5

ϕA =
∧10

i=1 T (xi, xi+1)∧
∨11

i=1 ¬P (xi), ϕB = J(x0)∧T (x0, x1), and cnf-ize these
propositional formulas using a variant of the approach described in [CMV09].
As the underlying SAT solver we use Mage, an IBM SAT solver which supports
both the incremental interface of MiniSat and the ability to compute interpolants
from proofs. In all of the experiments, the time-limit was set to 1800 seconds.

In the following tables we compare the performance of standard interpolation
(building an interpolant from the proof of unsatisfiability of ϕA ∧ ϕB , in this
and only in this case the proof generation capabilities of the solver are turned
on) and various schemes based on Algorithm 1. We distinguish between three
versions of generalization with respect to ϕA: no generalization at all (no A-
gen), trivial A-generalization (triv A-gen) and counter-based A-generalization
(cntr A-gen). The latter two versions are described in Section 3.3 and require
dual-rail encoding. We also consider three versions of generalization with re-
spect to ϕB: no generalization at all (no B-gen), the generalization based on
the conflicting assumptions returned by the solver (std B-gen) and exhaustive
B-generalization from Section 3.3 (exh B-gen). The results are summarized in
Table 1. The second, third and fourth columns respectively denote the numbers
of satisfied, unsatisfied and time-out instances, and the last column denotes the
total time of the run. First of all, we see that generalizing with respect to B
is crucial and that counter-based A-generalization is mostly unhelpful (in fact,

4 In the worst case, all interpolants (expressed in terms of VA∩B) might be of size expo-
nential in |VA∩B|: consider formulas ϕA, ϕB which enforce the parity of assignments
to VA∩B to be even and odd, respectively.

5 The benefits of this “opposite” splitting are discussed later.

82 H. Chockler, A. Ivrii, and A. Matsliah

even the version of A-generalization with the unrestricted counter size on aver-
age only removes at most 5% - 10% of the literals of p′, while the exhaustive
B-generalization usually removes 90% of the literals and more). We also note
that the standard interpolation performs best in terms of time (however, there
was in fact one testcase where the version (no A-gen, std B-gen) finished in 1184
seconds, while the standard interpolation timed out). It should be noted that
in this and subsequent experiments all the observed phenomena are consistent
across individual instances (and not only in the bulk).

Table 1. Comparison of runtimes on 465 single property benchmarks from HWMCC11

Variant SAT UNSAT TO Total Running Time (s)

standard interpolation 14 429 22 49,153
no A-gen, no B-gen 1 22 442 767,678
no A-gen, std B-gen 14 420 31 79,686
no A-gen, exh B-gen 14 421 30 79,754
triv A-gen, no B-gen 1 25 439 762,135
triv A-gen, std B-gen 13 419 33 83,759
triv A-gen, exh B-gen 14 420 31 79,599
cntr A-gen, no B-gen 1 17 447 783,311
cntr A-gen, std B-gen 10 393 62 124,170
cntr A-gen, exh B-gen 10 399 56 115,312

We omit the inferior configurations and restrict to the test cases on which
each configuration returned with a SAT or UNSAT answer - there are 430 such
configurations. The comparison of the total number of iterations (column 2),
the total interpolant size (column 3) and the total running time (column 4) are
provided in Table 2. For the standard interpolation the number of iterations is
meaningless and the size represents the number of gates in the non-optimized
circuits (i.e. no structural hashing, etc. has been performed). For the remaining
configurations the size represents the total number of literals in the computed
interpolants (in CNF). Even though it is clear that the 4 schemes based on
Algorithm 1 are on average 7 times slower than standard interpolation, it is
interesting to note that they produce interpolants of much smaller size (up to
900 times). In particular, they require no need for further minimization. Next,
it seems that on our test cases the extra time spent by a round of exhaustive
generalization is compensated by fewer iterations required for the algorithm to
converge. Finally, the dual-rail encoding and the trivial version A-generalizations
seem to have a small positive impact on the size of the interpolant.

We have performed an additional experiment to see the value of periodically
passing unit clauses from ϕA to ϕB (the flp technique described in Section 3.3).
To this end we compare the (no A-gen, exh B-gen) configuration with a version
of itself, where at the start and every 100 iterations the A-solver is instructed to
look for unit clauses of common variables and to pass them to the B-solver. The
results are summarized in Table 3. As usual, we restrict only to the benchmarks

Computing Interpolants without Proofs 83

Table 2. Comparison of numbers of iterations and interpolant sizes on 430 benchmarks

Variant Total #iters Total itp size Total Running Time (s)

standard interpolation 0 90,922,242 3,842
no A-gen, std B-gen 129,506 837,273 19,138
no A-gen, exh B-gen 80,764 119,975 22,603
triv A-gen, std B-gen 133,903 857,081 22,286
triv A-gen, exh B-gen 77,752 117,105 22,637

where both versions complete – there are 407 such test cases. The interpolant
size now measures the total number of literals in all the passed clauses (this cor-
responds to the previous definition when flp is disabled, and includes the number
of unit clauses when flp is enabled). Activation of flp increases the running times
(and the number of time-outs), but reduces the total number of iterations by
about 4 times. On the other hand, most of the unit clauses detected during flp
are irrelevant for the algorithm, and they increase the interpolant size.

Table 3. Measuring the effect of flp on 407 benchmarks

Variant Total #iters Total itp size Total Running Time (s)

no A-gen, exh B-gen 73,071 147,358 15,532
no A-gen, exh B-gen, flp 18,685 184,619 43,374

A couple of additional remarks are in order. First, the size of the final in-
terpolant can serve as a rough estimate for the total memory consumption of
an algorithm. Second, in our experience enabling proof-logging techniques for
the standard interpolation takes a very small overhead (around 5%), while the
overhead of recording blocking (or more generally exchanged) clauses is abso-
lutely negligible. Thus, the running times really represent a comparison between
showing unsatisfiability of ϕA ∧ ϕB using a single call to a SAT-solver and us-
ing various variants of a partition-based algorithm. Finally, these experiments
should be taken only as a proof of concept of the methods presented. In fact,
the current setup benefits our approach in two ways: 1) ϕB is a more restricted
formula and so potentially has less satisfying assignments than ϕA, and 2) ϕA is
a much simpler formula and so potentially allows for shorter explanation of the
inconsistency between a satisfying assignment to ϕB and ϕA, that is for shorter
cubes p′′′. Indeed, the experiments with roles of ϕA and ϕB reversed resulted in
inferior performance (nearly on all instances).

5 Conclusions and Future Work

We described an incremental algorithm for computing Craig interpolants for a
pair of mutually unsatisfiable formulas. The most significant advantage of this
algorithm is its simplicity – it does not depend on the underlying solver’s ability

84 H. Chockler, A. Ivrii, and A. Matsliah

to produce refutations and thus can be quickly implemented on top of any SAT-
solver. In particular, it has the advantage of immediately benefiting from rapid
improvements of modern SAT solvers which do not produce proofs.

At this stage, the main contribution of this work is theoretical, rather than
practical. We have observed the need for better partition-based algorithms. We
have suggested several heuristics towards this goal, but the experimental results
show inferior performance (in terms of runtime) compared to a single monolithic
call. If more efficient partition-based algorithms are discovered, this work shows
how an interpolant may be easily and efficiently reconstructed afterwards. We
have also described a technique to vary the strength of the computed interpolant.

On ther other hand, our algorithms are much lighter in terms of memory
consumption (even though the size of a proof is linear in the running time of
the solver, such proofs are usually huge), and as seen in experiments, the sizes
of the interpolants produced are several orders of magnitude smaller than the
sizes of the interpolants constructed from proofs. With this in mind (and in the
spirit of [PG00]), we can view the algorithm as the last resort for computing
interpolants, when all of the conventional techniques have failed.

One especially interesting direction for further study is to see how much the
proposed technique for computing interpolants can be used inside the original in-
terpolation algorithm for model checking [McM03]. The source of inspiration for
this is the success of the IC3 technique [Bra11], which shows that it is often pos-
sible to efficiently characterize an over-approximation to states reachable within
a certain number of cycles as a conjunction of clauses defined on state-variables
only. Note that by splitting the bounded model checking formula as we described
– with ϕA =

∧k
i=1 T (xi, xi+1) ∧

∨k+1
i=1 ¬P (xi), and ϕB = J(x0) ∧ T (x0, x1), the

interpolant ϕI for (ϕA, ϕB) is computed as a DNF, and hence ¬ϕA representing
an over-approximation of states reachable in one step is precisely in CNF form.

References

[ANORC10] Achá, R.J.A., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.:
Practical algorithms for unsatisfiability proof and core generation in SAT
solvers. AI Commun. 23(2-3), 145–157 (2010)

[BKK11] Brauer, J., King, A., Kriener, J.: Existential quantification as incremen-
tal SAT. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 191–207. Springer, Heidelberg (2011)

[Bra11] Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

[CMV09] Chambers, B., Manolios, P., Vroon, D.: Faster SAT solving with better
CNF generation. In: DATE, pp. 1590–1595 (2009)

[Cra57] Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theo-
rem. J. Symb. Log. 22(3), 250–268 (1957)

[DGHP09] Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find
minimal unsatisfiable subformulas in satisfiability problems. J. Comb.
Optim. 18(2), 124–150 (2009)

Computing Interpolants without Proofs 85

[ES03] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer,
Heidelberg (2004)

[GM12] Goldberg, E., Manolios, P.: Quantifier elimination by dependency se-
quents. CoRR, abs/1201.5653 (2012)

[JS05] Jin, H., Somenzi, F.: Prime clauses for fast enumeration of satisfying
assignments to Boolean circuits. In: DAC, pp. 750–753 (2005)

[Kra97] Kraj́ıcek, J.: Interpolation theorems, lower bounds for proof systems, and
independence results for bounded arithmetic. J. Symb. Log. 62(2), 457–
486 (1997)

[KW10] Kroening, D., Weissenbacher, G.: Verification and falsification of pro-
grams with loops using predicate abstraction. Formal Asp. Com-
put. 22(2), 105–128 (2010)

[LJH08] Lee, R.-R., Jiang, J.-H.R., Hung, W.-L.: Bi-decomposing large Boolean
functions via interpolation and satisfiability solving. In: DAC, pp. 636–
641 (2008)

[LJHM07] Lee, C.-C., Jiang, J.-H.R., Huang, C.-Y., Mishchenko, A.: Scalable explo-
ration of functional dependency by interpolation and incremental SAT
solving. In: ICCAD, pp. 227–233 (2007)

[McM02] McMillan, K.L.: Applying SAT methods in unbounded symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 250–264. Springer, Heidelberg (2002)

[McM03] McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13.
Springer, Heidelberg (2003)

[McM05] McMillan, K.L.: Applications of Craig interpolants in model checking.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
1–12. Springer, Heidelberg (2005)

[McM10] McMillan, K.L.: Lazy annotation for program testing and verification. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
104–118. Springer, Heidelberg (2010)

[Nad10] Nadel, A.: Boosting minimal unsatisfiable core extraction. In: FMCAD,
pp. 221–229 (2010)

[PG00] Park, T.J., Van Gelder, A.: Partitioning methods for satisfiability testing
on large formulas. Inf. Comput. 162(1-2), 179–184 (2000)

[Pud97] Pudlák, P.: Lower bounds for resolution and cutting plane proofs and
monotone computations. J. Symb. Log. 62(3), 981–998 (1997)

[Sin05] Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality con-
straints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831.
Springer, Heidelberg (2005)

[SL11] Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms.
In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–
173. Springer, Heidelberg (2011)

[ZM03] Zhang, L., Malik, S.: Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions. In: DATE, pp. 10880–10885 (2003)

	Computing Interpolants without Proofs
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 Algorithm
	3.1 Basic Algorithm
	3.2 Implementation Details
	3.3 Extensions

	4 Experiments
	5 Conclusions and Future Work
	References

