
Armin Biere
Amir Nahir
Tanja Vos (Eds.)

 123

LN
CS

 7
85

7

8th International Haifa Verification Conference, HVC 2012
Haifa, Israel, November 2012
Revised Selected Papers

Hardware and Software:
Verification and Testing

Lecture Notes in Computer Science 7857
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Armin Biere Amir Nahir Tanja Vos (Eds.)

Hardware and Software:
Verification and Testing

8th International
Haifa Verification Conference, HVC 2012
Haifa, Israel, November 6-8, 2012
Revised Selected Papers

13

Volume Editors

Armin Biere
Johannes Kepler University, 4040 Linz, Austria
E-mail: biere@jku.at

Amir Nahir
IBM Research Laboratory, 31905 Haifa, Israel
E-mail: nahir@il.ibm.com

Tanja Vos
Universidad Politecnica de Valencia, 46022 Valencia, Spain
E-mail: tvos@dsic.upv.es

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39610-6 e-ISBN 978-3-642-39611-3
DOI 10.1007/978-3-642-39611-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013943016

CR Subject Classification (1998): D.2.4-5, D.3.1, F.3.1-2, D.2.11, I.2.2-3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the Haifa Verification Conference (HVC
2012). The conference was hosted by IBM Research Haifa and took place during
November 6–8, in 2012. It was the eighth event in this series of annual conferences
dedicated to advancing the state of the art and state of practice in verification
and testing.

The conference provided a forum for researchers and practitioners from
academia and industry to share their work, exchange ideas, and discuss the
future directions of testing and verification for hardware, software, and complex
hybrid systems. In 2012, HVC extended the traditional focus on hardware and
software verification to include verification, validation, and testing (VVT) of
complex hybrid systems as a part of the systems-engineering paradigm.

The Intel DTS Symposium and a meeting of the COST Action IC0901 Rich-
Model Toolkit were co-located events. The conference itself started with a tutorial
day including “Idiom-Based Verification of Highly Concurrent Data Structures
Using Temporal SeparationLogic”by Noam Rinetzky,“Three-ValuedAbstraction-
Refinement”by Sharon Shoham Buchbinder,“Simulating Cyber-Physical Systems
Using SysML and Numerical Simulation Tools” by Eldad Palachi, and on “Im-
proving Verification Productivity with the Dynamic Load and Reseed Method-
ology” by Marat Teplitsky.

The Program Committee accepted 18 regular papers out of 36 submissions,
whose post-conference versions are published in this volume. The conference
chairs further selected three poster presentations out of four poster submissions
submitted after the notification for regular papers.

The conference featured a keynote with the title “On Behavioral Program-
ming” by David Harel and another keynote talk on “Verifying Real-Time Soft-
ware Is Not Reasonable (Today)” by Edward Lee. There were two invited talks
on “Reducing Costs While Increasing Quality” by Orna Raz and on “SMT in
Verification, Modeling, and Testing at Microsoft” by Nikolaj Bjorner. The last
day contained a session on security verification with talks on “A Vulnerability or
a Bug? What’s the Difference Anyway? Security Software Verification as Part
of the Development Lifecycle” by Ofer Maor, another talk on “Formal Analysis
of Security Data Paths in RTL Design” by Jamil Mazzawi, and a third presen-
tation on “Simultaneous Information Flow Security and Circuit Redundancy in
Boolean Gates” by Ryan Kastner.

The HVC Award, granted since 2007, recognizes the most promising academic
and industrial contribution to the fields of testing and software and hardware
verification from the last five years. The HVC 2012 Award Committee, chaired
by Daniel Kroening, decided to give the 2012 award to Aaron R. Bradley of CU
Boulder for the invention of the IC3 algorithm. Aaron Bradley gave the award
talk on the last day of the conference.

VI Preface

The Best Paper was selected by the Conference Chairs and awarded to Vasco
Pessanha, Ricardo Dias, and João Lourenço for their paper with entitled“Precise
Detection of Atomicity Violations.”

The Conference Chairs would like to thank the members of the Program
Committee for their hard work reading the papers and writing reviews under a
very tight schedule during essentially one month in July and August 2012.

We are very grateful to IBM Research – Haifa for hosting and sponsoring
HVC 2012.

April 2013 Armin Biere
Amir Nahir
Tanja Vos

Organization

Program Committee

Cyrille Valentin Artho AIST, Japan
Armin Biere Johannes Kepler University Linz, Austria
Roderick Bloem Graz University of Technology, Austria
Radu Calinescu Aston University, UK
Hana Chockler IBM Research - Haifa, Israel
Kerstin Eder University of Bristol, UK
Maria Jose Escalona University of Seville, Spain
Eitan Farchi IBM Research - Haifa, Israel
Harry Foster Mentor Graphics, USA
Franco Fummi University of Verona, Italy
Alex Goryachev IBM Research - Haifa, Israel
Ziyad Hanna University of Oxford, UK
Mark Harman University College London, UK
Ian Harris University of California Irvine, USA
Klaus Havelund Jet Propulsion Laboratory, USA
Michael Hsiao Virginia Tech, USA
Alan Hu University of British Columbia, Canada
Zurab Khasidashvili Intel, Israel
Mark Last Ben-Gurion University, Israel
João Lourenço CITI - Universidade Nova de Lisboa, Portugal
Ken Mcmillan Cadence Berkeley Labs, USA
Thomas Melham Oxford University, UK
Amir Nahir IBM Research - Haifa, Israel
Martina Seidl Johannes Kepler University Linz, Austria
Onn Shehory IBM Research - Haifa, Israel
Armando Tacchella Università di Genova, Italy
Helen Treharne University of Surrey, UK
Shmuel Ur Consultant, Israel
Helmut Veith Vienna University of Technology, Austria
Tanja Vos Researcher, Spain
Li-C Wang University of California Santa Barbara, USA
Joachim Wegener Berner & Mattner, Germany
Heike Wehrheim University of Paderborn, Germany

VIII Organization

Additional Reviewers

Baars, Arthur
Bustan, Doron
Chen, Wen
Egly, Uwe
Finkbeiner, Bernd
Heljanko, Keijo
Heule, Marijn
Hjort, Hakan
Hofferek, Georg
Ivrii, Alexander
Jacobs, Swen
Johnson, Kenneth

Kikuchi, Shinji
Koenighofer, Bettina
Koenighofer, Robert
Korchemny, Dmitry
Nadel, Alexander
Ryvchin, Vadim
Schremmer, Alexander
Sinn, Moritz
Steenken, Dominik
Timm, Nils
Vizel, Yakir
Wolfovitz, Guy

Table of Contents

On Behavioral Programming . 1
David Harel

Verifying Real-Time Software Is Not Reasonable (Today) 2
Edward A. Lee

SMT in Verification, Modeling, and Testing at Microsoft 3
Nikolaj Bjørner

Reducing Costs While Increasing Quality . 4
Orna Raz

Special Session on Security Verification . 5
Alex Goryachev

Circuit Primitives for Monitoring Information Flow and Enabling
Redundancy . 6

Ryan Kastner

Formal Analysis of Security Data Paths in RTL Design 7
Jamil Mazzawi and Ziyad Hanna

Precise Detection of Atomicity Violations . 8
Ricardo J. Dias, Vasco Pessanha, and João M. Lourenço

Proving Mutual Termination of Programs . 24
Dima Elenbogen, Shmuel Katz, and Ofer Strichman

Knowledge Based Transactional Behavior . 40
Saddek Bensalem, Marius Bozga, Doron Peled, and Jean Quilbeuf

Repair with On-The-Fly Program Analysis . 56
Robert Könighofer and Roderick Bloem

Computing Interpolants without Proofs . 72
Hana Chockler, Alexander Ivrii, and Arie Matsliah

MaxSAT-Based MCS Enumeration . 86
Antonio Morgado, Mark Liffiton, and Joao Marques-Silva

Automated Reencoding of Boolean Formulas . 102
Norbert Manthey, Marijn J.H. Heule, and Armin Biere

X Table of Contents

Leveraging Accelerated Simulation for Floating-Point Regression 118
John Paul, Elena Guralnik, Anatoly Koyfman, Amir Nahir, and
Subrat K. Panda

Coverage-Based Trace Signal Selection for Fault Localisation in
Post-silicon Validation . 132

Charlie Shucheng Zhu, Georg Weissenbacher, and Sharad Malik

A Novel Approach for Implementing Microarchitectural Verification
Plans in Processor Designs . 148

Yoav Katz, Michal Rimon, and Avi Ziv

Statistical Model Checking for Safety Critical Hybrid Systems:
An Empirical Evaluation . 162

Youngjoo Kim, Moonzoo Kim, and Tai-Hyo Kim

A New Test-Generation Methodology for System-Level Verification
of Production Processes . 178

Allon Adir, Alex Goryachev, Lev Greenberg, Tamer Salman, and
Gil Shurek

Defining and Model Checking Abstractions of Complex Railway Models
Using CSP||B . 193

Faron Moller, Hoang Nga Nguyen, Markus Roggenbach,
Steve Schneider, and Helen Treharne

Word Equations with Length Constraints: What’s Decidable? 209
Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and
Martin Rinard

Environment-Friendly Safety . 227
Orna Kupferman and Sigal Weiner

Deterministic Compilation of Temporal Safety Properties in Explicit
State Model Checking . 243

Kristin Yvonne Rozier and Moshe Y. Vardi

FoREnSiC– An Automatic Debugging Environment for C Programs 260
Roderick Bloem, Rolf Drechsler, Görschwin Fey, Alexander Finder,
Georg Hofferek, Robert Könighofer, Jaan Raik, Urmas Repinski,
and André Sülflow

Towards Beneficial Hardware Acceleration in HAVEN: Evaluation
of Testbed Architectures . 266

Marcela Šimková and Ondřej Lengál

Using Domain Specific Languages to Support Verification in the
Railway Domain . 274

Phillip James, Arnold Beckmann, and Markus Roggenbach

Table of Contents XI

From Fault Injection to Mutant Injection: The Next Step for Safety
Analysis? . 276

Guillermo Rodriguez-Navas, Patrick Graydon, and Iain Bate

Test Case Generation by Grammar-Based Fuzzing for Model-Driven
Engineering . 278

Magdalena Widl

Author Index . 281

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, p. 1, 2013.
© Springer-Verlag Berlin Heidelberg 2013

On Behavioral Programming

David Harel

The Weizmann Institute

The talk starts from a dream/vision paper I published in 2008, whose
title, “Can Programming be Liberated, Period?”, is a play on that of
John Backus' famous Turing Award Lecture (and paper). I will propose
that --- or rather ask whether --- programming can be made a lot closer
to the way we humans think about dynamics, and the way we somehow
manage to get others (e.g., our children, our employees, etc.) to do what
we have in mind. Technically, the question is whether we can liberate
programming from its three main straightjackets: (1) having to directly
produce a precise artifact in some language; (2) having actually to
produce two separate artifacts (the program and the requirements) and
having then to pit one against the other; (3) having to program each
piece/part/object of the system separately. The talk will then get a little
more technical, providing some evidence of feasibility of the dream, via
LSCs and the play-in/play-out approach to scenario-based
programming, and its more recent Java variant. The entire body of
work around these ideas can be framed as a paradigm, which we call
behavioral programming.

Verifying Real-Time Software
Is Not Reasonable (Today)�

Abstract of Invited Talk

Edward A. Lee

UC Berkeley

Abstract. Verification is about demonstrating that a formal system holds certain
properties. It is particularly important to verify safety-critical real-time control
software, such as aircraft or automotive control systems. Unfortunately, many of
the properties that need to be verified for such systems are not actually part of the
formal system defined by the software. It therefore makes no sense to verify the
software. So what should be verified? It is glib to say that ”the system” must be
verified, because ”the system” is not a formal system. It is a bundle of silicon and
wires. Only a model of the system can be verified. What model?

If the semantics of software is extended to include temporal properties, then
verifying real-time software becomes possible. In this talk, I will argue that such
extensions are practical and effective, but that they require rethinking software
abstractions at a rather fundamental level. Moreover, they require reengineering
of many performance optimizations that computer architects, compiler designers,
and operating system designers have instituted. I will show for some of these
that such reengineering yields designs that have competitive performance and
verifiable timing.

� The work reported in this talk was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley (supported by the National Science Foundation,
NSF awards #0720882 (CSR-EHS: PRET) and #0931843 (ActionWebs), the Naval Research
Laboratory (NRL #N0013-12-1-G015), and the following companies: Bosch, National Instru-
ments, and Toyota).

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, p. 2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

SMT in Verification, Modeling,

and Testing at Microsoft

Nikolaj Bjørner

Microsoft Research
nbjorner@microsoft.com

The Satisfiability Modulo Theories (SMT) solver, Z3 [1], from Microsoft Re-
search is a state-of-the art theorem prover that integrates specialized solvers for
domains that are of relevance for program analysis, testing and verification. Z3
has been used within and outside of Microsoft for the past few years including
the Windows 7 static driver verifier, the SAGE white-box fuzzer for finding secu-
rity vulnerabilities, Pex, in a Verifying C Compiler, the Verve verified operating
system kernel and the Dafny safe programming language. This talk delves into
some of the more recent efforts around Z3, in particular using Z3 in a firewall
analysis engine, and adventures in using Z3 for points-to analysis in JavaScript
malware detection, and finally emerging support for reachability queries by solv-
ing Satisfiability Modulo Theories for Horn clauses.

Z3 is joint work with Leonardo de Moura and Christoph Wintersteiger.

Reference

1. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, p. 3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Reducing Costs While Increasing Quality

Orna Raz

IBM Research – Haifa

Abstract. Non mission critical software systems have been challenged with con-
flicting requirements. On the one hand, these systems are becoming more and
more complex and their quality is of paramount importance. On the other hand,
to maintain competitiveness, there is a constant pressure to reduce the cost asso-
ciated with developing such systems.

In this talk, I will raise some of the research questions stemming from these
conflicting requirements. I will also present promising approaches to addressing
the challenges of reduced costs while increasing quality that were explored at
IBM Research.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, p. 4, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Special Session on Security Verification

Alex Goryachev

IBM Research – Haifa

Abstract. Alongside functionality, performance, and power, security is a critical
aspect of any system. All software or hardware systems, web applications, and
engineered systems built today must comply with stringent requirements in each
of these aspects. Security requirements might include that a server must with-
stand malicious attacks such as stealing or damaging the data or even denial of
service. Each of these attacks can have disastrous effects. During the last year
alone we saw several examples of such attacks in the media, including: steal-
ing money from bank accounts and ATM machines, bringing down websites, and
even breaking into a car computer system while it is driving.

In this session we address the challenges of verifying and validating that a
system being built fulfills its security requirements.

This year is the centennial year for Alan Turing. There are many events taking
place throughout the world to celebrate Turing’s life and his scientific impact.
HVC, and this session in particular, is part of these world-wide events.

During his relatively brief life, Turing had an enormous impact on many differ-
ent fields within computer science: theory of computability, artificial intelligence,
and of course cryptography and security. During World War II, Turing worked at
the British codebreaking center at Bletchley Park. He stood at the head of the
section responsible for decoding German naval ciphers. He also invented several
methods for breaking codes, with the most famous associated with deciphering
the Enigma machine.

We devote this session to honoring Alan Turing’s leadership in breaking Ger-
man ciphers during World War II and his contribution to cryptography in general.

We would like to thank several people who made this session possible: Hana
Chockler, Ronny Morad, and Amir Nahir.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, p. 5, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Circuit Primitives for Monitoring Information Flow
and Enabling Redundancy

Ryan Kastner

University of California, San Diego

Abstract. Critical systems require strict guarantees on information flow security
and fault tolerance. We present a novel Boolean circuit methodology that can
both monitor information flow throughout the hardware and simultaneously act
as a triple modular redundant circuit. This is done by modifying the encoding
technique for gate level information flow tracking (GLIFT). This new encoding
not only has the added benefit of allowing for redundancy, it also reduces the
size of the logic required for information flow tracking compared to the previous
GLIFT encodings. This enables the development of high assurance systems on
top of hardware with provable integrity and confidentiality properties. The new
encoding also allows for these systems to be created with smaller area, lower
power, and faster design time.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, p. 6, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Formal Analysis of Security Data Paths in RTL Design

Jamil Mazzawi and Ziyad Hanna

Consulting Services Manager, Jasper Design Automation
PhD, Chief Architect, VP of Research, Jasper Design Automation

Abstract. Recently we have seen an increasing demand to have industrial hard-
ware design verify security information. Complex systems-on-chip such as smart
phones, game consoles, and advanced CPUs contain secure information. This
likely leads to vulnerabilities and possibly unauthorized access to secure data.
The potential for damage, whether direct or indirect, is huge. Checking if the
secure information can be leaked is hard to achieve with conventional RTL vali-
dation methods. In this talk we present how formal methods can be used to detect
unauthorized access to secure data, using a method called security path verifica-
tion and analysis.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, p. 7, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Precise Detection of Atomicity Violations

Ricardo J. Dias, Vasco Pessanha, and João M. Lourenço�

Departamento de Informática and CITI
Universidade Nova de Lisboa, Portugal

{ricardo.dias,v.pessanha}@campus.fct.unl.pt, joao.lourenco@fct.unl.pt

Abstract. Concurrent programs that are free of unsynchronized ac-
cesses to shared data may still exhibit unpredictable concurrency errors,
called atomicity violations, which include both high-level data races and
stale-value errors. Atomicity violations occur when programmers make
wrong assumptions about the atomicity scope of a code block, incor-
rectly splitting it in two or more atomic blocks and allowing them to be
interleaved with other atomic blocks. In this paper we propose a novel
static analysis algorithm that works on a dependency graph of program
variables and detects both high-level data races and stale-value errors.
The algorithm was implemented for a Java Bytecode analyzer and its
effectiveness was evaluated with well known faulty programs. The re-
sults obtained show that our algorithm performs better than previous
approaches, achieving higher precision for small and medium sized pro-
grams, making it a good basis for a practical tool.

1 Introduction

The absence or misspecification of the scope of atomic blocks in a concurrent
program may trigger atomicity violations and lead to runtime misbehaviors.

Low-level data races occur when the program includes unsynchronized ac-
cesses to a shared variable, and at least one of those accesses is a write, i.e.,
it changes the value of the variable. Although low-level data races are still a
common source of errors and malfunctions in concurrent programs, they have
been addressed by others in the past and are out of the scope of this paper. We
will consider herein that the concurrent programs under analysis are free from
low-level data races.

High-level data races results from the misspecification of the scope of an
atomic block, by splitting it in two or more atomic blocks with other (possi-
bly empty) non-atomic block between them. This anomaly is often referred as
a high-level data race, and is illustrated in Fig. 1(a). A thread uses the method
areEqual() to check if the fields ‘a’ and ‘b’ are equal. This method reads both
fields in separate atomic blocks, storing their values in local variables, which are
then compared. However, due to an interleaving with another thread running

� This work was partially supported by the Euro-TM EU COST Action IC1001, and by
the Portuguese National Science Foundation (FCT) in the research project Synergy-
VM (PTDC/EIA-EIA/113613/2009) and the research grant SFRH/BD/41765/2007.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 8–23, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Precise Detection of Atomicity Violations 9

the method setPair (), between lines 12 and 13 the value of the pair may have
changed. In this scenario the first thread observes an inconsistent pair, composed
by the old value of ‘a’ and the new value of ‘b’.

1 atomic vo id getA () {
2 r e tu r n p a i r . a ;
3 }
4 atomic vo id getB () {
5 r e tu r n p a i r . b ;
6 }
7 atomic vo id s e t P a i r (i n t a , i n t b){
8 p a i r . a = a ;
9 p a i r . b = b ;
10 }
11 boo lean a r eEqua l (){
12 i n t a = getA () ;
13 i n t b = getB () ;
14 r e tu r n a == b ;
15 }

(a) A high-level data race.

1 atomic i n t getX () {
2 r e tu r n x ;
3 }
4 atomic vo id setX (i n t p0) {
5 x = p0 ;
6 }
7 vo id i ncX (i n t v a l) {
8 i n t tmp = getX () ;
9 tmp = tmp + va l ;
10 setX (tmp) ;
11 }

(b) A stale value error.

Fig. 1. Example of atomicity violations

Figure 1(b) illustrates a stale value error, another source of atomicity viola-
tions in concurrent programs. The non-atomic method incX() is implemented by
resorting to two atomic methods, getX() (at line 1) and setX() (at line 4). During
the execution of line 9, if the current thread is suspended and another thread is
scheduled to execute setX(), the value of ‘x’ changes, and when the execution of
the initial thread is resumed it overwrites the value in ‘x’ at line 10, causing a
lost update. This program fails due to a stale-value error, as at line 8 the value
of ‘x’ escapes the scope of the atomic method getX() and is reused indirectly (by
way of its private copy ‘tmp’) at line 10, when updating the value of ‘x’ in setX().

In this paper we propose a novel approach for the detection of high-level data
races and stale-value errors in concurrent programs. As our proposal only de-
pends on the concept of atomic regions and is neutral concerning the mechanisms
used for their identification, the atomic regions are not delimited using locks but
rather using an @Atomic annotation. Our approach is based on a novel notion
of variable dependencies, which we designate as causal dependencies. There is a
causal dependency between two variables if the value of one of them influences
the writing of the other. We also extended previous work from Artho et al. [2]
by reflecting the read/write nature of accesses to shared variables inside atomic
regions and additionally use the dependencies information to detect both high-
level data races and stale-value errors. We formally describe the static analysis
algorithms to compute the set of causal dependencies of a program and define
safety conditions for both high-level data races and stale-value errors.

Our approach can yield both false positives and false negatives. However, the
experimental results demonstrate that it still achieves high precision when de-
tecting atomicity violations in well know examples from the literature, suggesting
its usefulness for software development tools.

10 R.J. Dias, V. Pessanha, and J.M. Lourenço

In the next Section of this paper we introduce the previous relevant work on
detections of high-level data races and stale-value errors; in Section 3 we de-
fine a core language and introduce some definitions that support the remainder
of the paper, namely Sections 4 and 5, where we propose algorithms for defin-
ing causal dependencies between variables and for detecting atomicity violations
(data races). In Section 6 we briefly describe a tool that applies the proposed
algorithms with static analysis techniques for Java Bytecode programs, and com-
pare and discuss the results obtained. We terminate in Section 7 with some final
concluding remarks.

2 Background and Related Work

Several past works have addressed the detection of the same class of atomicity
violations in concurrent programs as addressed in this paper.

The work from Artho et al. [2] introduces the concept of view consistency, to
detect high-level data races. A view of an atomic block is a set containing all
the shared variables accessed (both for reading and writing) within that block.
The maximal views of a process are those views that are not a subset of any
other view. Intuitively, a maximal view defines a set of variables that should
always be accessed atomically (inside the same atomic block). A program is free
from high-level data races if all the views of one thread that are a subset of the
maximal views from another thread form an inclusion chain among themselves.

Our work builds on the proposal from Artho et al. [2], but we extend it by in-
corporating the type of memory access (read or write) into the views, and refine
the rules for detecting high-level data races to consider this additional informa-
tion and the information given by the causal dependencies, with considerable
positive impact in the precision of the algorithm, as demonstrated in Section 6.

Praun and Gross [9] introduce method consistency as an extension of view
consistency. Based on the intuition that the variables that should be accessed
atomically in a given method are all the variables accessed inside a synchronized
block, the authors define the concept ofmethod views that relates to Artho et al’s
maximal views, which aggregates all the shared variables accessed in a method
and also differentiates between read and write memory accesses. Similarly to
ours, this approach is more precise than Artho et al’s because it also detects
stale-value errors. Our algorithm however has higher precision than Praun’s and
give less false positives, as we use maximal views rather than method views.

Wang and Stoller [10] use the concept of thread atomicity to detect and prevent
data races, where thread atomicity guarantees that all concurrent executions of
a set of threads is equivalent to a sequential execution of those threads. In an
attempt to reduce the number of false positives yield by [10], Teixeira et al. [7]
proposed a variant of this algorithm based in the intuition that the majority of
the atomicity violations come from two consecutive atomic blocks that should
be merged into a single one. The authors detect data races by defining and
detecting some anomalous memory access patterns for both high-level data races
and stale-value errors. Our approach may be seen as a generalization of this

Precise Detection of Atomicity Violations 11

e ::= (expression)
x (variables)

| null (null value)

A ::= (assignments)
x := e (local)

| x := y.f (heap read)
| x := meth(�y) (method call)
| x.f := e (heap write)
| x := new id ∈ C (allocation)

S ::= (statements)
S ;S (sequence)

| A (assignment)
| if e thenS elseS (conditional)
| while e doS (loop)
| return e (return)
| skip (Skip)

M ::= meth(�x) {S} (methods decl)

C ::= class id {field∗ (M | atomicM)∗} (class decl) P ::= C+ (program)

Fig. 2. Core language syntax

concept of memory access patterns, but in our case supported by the notion of
causal dependencies between variables, which allow to reduce considerably the
number of both false negatives and false positives.

3 Core Language

We start by defining a core language that captures essential features of a subset
of the Java programming language, namely class declaration (class id{...}), ob-
ject creation (new), field dereferencing (x.f), assignment (x := e), and method
invocation (meth(�x)). The syntax of the language is defined by the grammar in
Fig. 2.

A program in this language is composed by a set of class declarations. Atomic
blocks correspond to methods that are declared using the atomic keyword. We
require the restriction of not allowing nesting of atomic blocks i.e., we do not
allow to call an atomic method inside another atomic method. Variables can
hold integers or object references and boolean values are encoded as integers
using the value 1 for true and value 0 for false. We also do not support exception
handling as normally found in typical object-oriented languages.

We now define some sets that are necessary to the understanding of the fol-
lowing sections:

– Classes: is the set of all class identifiers of all classes declared in the program.
– Fields: is the set of all class fields defined in the program.
– Methods: is the the set of all methods defined in the program.
– Atomics ⊆ Methods: is the subset of methods that were declared as atomic.

We define a local (stack) variable as a pair of the form (x,m) where x is the
variable identifier andm ∈ Methods is the method where this variable is declared.
For the sake of simplicity we write the pair (x,m) as only x whenever is not

12 R.J. Dias, V. Pessanha, and J.M. Lourenço

ambiguous to do so. The set of all local variables of a program is denoted as
LocalVars.

We define a global variable as an object field and we represent it as the pair
(c, f) where c ∈ Classes represents the class where field f ∈ Fields is declared.
The set of all global variables is denoted as GlobalVars. These global variables
appear in the code when dereferencing an object reference. For instance, in the
statement x.f := 4, the expression x.f represents a global variable of the form
(c, f) where c is the class of the object reference pointed by local variable x.
We define a function typeof : LocalVars→ Classes, which given a local variable
returns the class of the object reference that it holds. So, in the example above
c = typeof(x).

Please note that by deciding to represent an access to a field of an object as
a pair with the class of the object reference and the field accessed, we are not
able to differentiate between different object instances of the same class, and
hence we may consider that there is always at most one object instance of each
declared class in the program. This allows us to avoid pointer analysis at the
cost of losing precision and becoming unsound in some cases but, as the results
in Section 6 show, this design choice has proven to be very effective.

Finally we define the set Vars ≡ LocalVars+GlobalVars, which corresponds to
all variables used in the program, both local and global variables.

4 Causal Dependencies

There is a Causal dependency, which we will designate herein only as depen-
dency, between two program variables (local or global) if the value read from
one variable influences the value written into the other. For instance, the follow-
ing expression

y := x

generates a dependency between variable x and y because the value that is
written into variable y was read from variable x. As another example, consider
the following code:

i f (x == 0) { y := 4 }
In this example, the variable y is written only if the condition x = 0 is true,
thus it depends on the current value of variable x and therefore there is also a
dependency between variables x and y. We represent a dependency between two
variables x and y as x ↪→ y where x ∈ Vars is the variable read and y ∈ Vars is
the variable written.

For each program we can compute a directed graph of causal dependencies.
The information provided by this graph plays an important role in finding corre-
lations between variables, which can be used to detect atomicity violations. We
can define two kinds of correlations between variables.

Definition 1 (Direct Correlation). There is a direct correlation between a
read variable x and a written variable y if there is a path from x to y, in a
dependency graph D.

Precise Detection of Atomicity Violations 13

valgetX.ret

0setX.p3h tmp,2h tmp,

Fig. 3. Dependency graph example

Definition 2 (Common Correlation). There is a common correlation be-
tween a read variable x and a read variable y if there is a written variable z,
where z �= x and z �= y, for which there is a path from x to z and another path
from y to z, in a dependency graph D.

In the following section we describe how to compute the graph of dependencies
using symbolic execution.

4.1 Dependency Analysis

The construction of the dependency graph is done in two steps. In the first step
we only detect data dependencies between variables. In the second step we detect
control dependencies between variables. In the end we merge all dependencies
in a single graph.

Data Dependencies. The accurate detection of data dependencies relies on
the precise localisation of where the variables are defined. SSA (Single Static
Assignment) [1] could be used, because each variable would only have one def-
inition site, but this only works for local variables, and we still need to track
each definition site for global variables. Therefore we did not use SSA as inter-
nal representation and we solve the problem by defining a new variable version
whenever the variable is updated.

A variable version is defined as a triple of the form (x, h,m) where x ∈ Vars
is a variable (local or global), h is a unique identifier, and m ∈ Atomics ∪ {⊥}
indicates if this variable is used inside an atomic method or not (⊥). The set of
all variable versions is denoted as Versions.

The unique identifier h is a hash value based on the line of code of the re-
spective definition site. If the version of the variable is not known in the current
context, as in the case of method arguments, a special hash value is used. We
denote this special hash value as h?.

Figure 3 depicts the dependency graph for the method ‘incX()’ from Fig. 1(b).
For the sake of simplicity, we omitted the method (m) part of the version repre-
sentation. We denote getX . ret as the return value of method getX(), and setX . p0
as the parameter of method setX(int p0). Both the return value and the param-
eter do not need to have an hash value associated, and thus we omitted it from
their representation.

14 R.J. Dias, V. Pessanha, and J.M. Lourenço

In method incX(int val), the value returned by the method getX() is written
into a temporary variable tmp, which is then incremented using parameter val
and is then used as a parameter on the invocation of method setX(int p0).

While analyzing this method, we first start by creating the dependency
getX . ret ↪→ (tmp, h2) between the return value of getX() method and variable
tmp with an hash value h2. In the next statement variable tmp is redefined
with a value resulting from the sum of the previous tmp variable and the val
parameter, and hence we create two dependencies (tmp, h2) ↪→ (tmp, h3) and
val ↪→ (tmp, h3), where the new version of tmp variable has the hash value h3.
Finally, we invoke method setX(int p0) with the value of tmp as parameter and
therefore we create the dependency (tmp, h3) ↪→ setX . p0 .

The symbolic execution rules are defined as a transition system (〈D,H, S〉 =⇒
〈D′,H′〉) over a state composed by a dependency graph D and a set of versions,
denoted has H ⊆ Versions, which holds the current versions of each program
variable. In a single program point, we may find different versions of the same
variable because our analysis over-approximates the run-time state of a program.
The rules can be depicted in Figure 4, and we always omit the method (m)
parameter from the representation of a variable version.

Function verH is used to retrieve the set of current versions of a variable, and
is defined as follows:

Definition 3 (Version Retrieval). Given a set of versions H and a variable
v ∈ Vars:

ver : P(Versions)× Vars→ P(Versions)

verH(v) �
�
{(v, h,m) | (v, h,m) ∈ H} if ∃(v, h,m) ∈ H
{(v, h?,m)} otherwise

If a variable version cannot be found in H, a version with the special hash value
h? is returned.

Every time that a variable is written, it is created a new version for such
variable and all other existing current versions are replaced by the new one. We
define an helper function subsH for this purpose as:

Definition 4 (Version Substitution). Given a set of versions H and a vari-
able version (v, h,m) ∈ Versions:

subs : P(Versions)× Versions→ P(Versions)

subsH((v, h,m)) � (H \ {(v, h′,m′) | (v, h′,m′) ∈ H}) ∪ {(v, h,m)}

Each hash value is generated using the function nhash, which given a statement
S generates a new and unique hash value based in the line number of that
statement. This function is deterministic in the sense that for any statement S
the same hash value is always returned.

At the beginning of the analysis, the sets D andH are empty. We represent the
parameters of methods asmeth. pi, and the return value of a method asmeth. ret .

Precise Detection of Atomicity Violations 15

〈D,H, S1〉 =⇒ 〈D′,H′〉 〈D′,H′, S2〉 =⇒ 〈D′′,H′′〉
〈D,H, S1;S2〉 =⇒ 〈D′′,H′′〉 (Seq)

h = nhash(x := y)
H′ = subsH((x, h)) D′ = D ∪ {v ↪→ (x, h) | v ∈ verH(y)}

〈D,H, x := y〉 =⇒ 〈D′,H′〉 (Assign)

c = typeof(y) h = nhash(x := y.f) H′ = subsH((x, h))
D′ = D ∪ {v ↪→ (x, h) | v ∈ verH((c, f))}

〈D,H, x := y.f〉 =⇒ 〈D′,H′〉 (Heap Read)

c = typeof(x) h = nhash(x.f := y) H′ = subsH(((c, f), h))
D′ = D ∪ {v ↪→ ((c, f), h) | v ∈ verH(y)}

〈D,H, x.f := y〉 =⇒ 〈D′,H′〉 (Heap Write)

h = nhash(x := newC()) H′ = subsH((x, h))

〈D,H, x := newC()〉 =⇒ 〈D,H′〉 (Allocation)

h = nhash(x := meth(�y)) spec(meth) = 〈Df ,Hf 〉 D′ = Df ∪ D
D′′ = D′ ∪ {vi ↪→ meth. pi | yi ∈ �y ∧ vi ∈ verH(yi)} ∪ {meth. ret ↪→ (x, h)}

H′ = {(v, h) | (v, h) ∈ H ∧ ((v, h?) ∈ Hf ∨ (v, h) /∈ Hf)}
H′′ = {(v, h) | (v, h) ∈ Hf ∧ h
= h?}

〈D,H, x := meth(�y)〉 =⇒ 〈D′′,H′ ∪H′′〉 (Meth Call)

〈D,H, S1〉 =⇒ 〈D′,H′〉 〈D,H, S2〉 =⇒ 〈D′′,H′′〉
H′′′ = H′ ∪H′′ ∪ {(v, h?) | (v, h1) ∈ H′ ∧ (v, h2) /∈ H′′}

∪{(v, h?) | (v, h1) ∈ H′′ ∧ (v, h2) /∈ H′}
〈D,H, if b thenS1 elseS2〉 =⇒ 〈D′ ∪ D′′,H′′′〉 (Conditional)

〈D,H, S〉 =⇒ 〈D′,H′〉 H′′ = H∪H′ ∪ {(v, h?) | (v, h1) ∈ H ∧ (v, h2) /∈ H′}
∪ {(v, h?) | (v, h1) ∈ H′ ∧ (v, h2) /∈ H}
〈D,H,while b doS〉 =⇒ 〈D ∪ D′,H′′〉 (Loop)

D′ = D ∪ {v ↪→ retVar | v ∈ verH(x)}
〈D,H, returnx〉 =⇒ 〈D′,H〉 (Return) 〈D,H, skip〉 =⇒ 〈D,H〉 (Skip)

Fig. 4. Symbolic execution rules of data dependencies analysis

When evaluating the Return statement, the return value of the method is
denoted as retVar.

All assignment operations, namely Assign, Heap Read, and Heap Write,
create dependencies between all versions of the variables used in the right side of
the assignment and the new version of the assigned variable. The newly generated
version is then used to replace all existing versions of that same variable.

In the rule Meth Call, the function spec returns the result, denoted as
〈Dp,Hp〉, of the analysis of method meth. The dependencies in Dp are merged
with the current dependencies and we create a dependency between each value
that is passed as an argument to meth and the respective declared parameter
meth. pi. We also need to update the variables’ versions that are generated inside
the method. If a variable was redefined (h �= h?) inside meth then we replace the

16 R.J. Dias, V. Pessanha, and J.M. Lourenço

existing versions with the new version, otherwise we keep the current versions.
Finally, we add one more dependency between the return value of method meth
and the assigned value.

In the rule Conditional, the dependencies are generated in both branches
and are merged with the initial D. We also generate the versions for each branch,
and if a variable x has a version h �= h? in one branch but there is no version
for the same variable in the other branch, then we generate a special version
h? for variable x and we join it to all the other versions. The intuition behind
this operation is that if a variable is written only in one of the branches then we
also need to add the case that the variable might not have been written. The
rule Loop is similar to the Conditional rule. The remaining rules should be
self-explanatory.

After analyzing all methods of the program we get a dependency graph for
the whole program, based on data-flow information. Next, we have to add the
remaining dependencies based on the control flow information.

Control Dependencies. If an assignment or return statement is guarded by
some condition then that assignment or return statement depends on the vari-
ables used in the condition. This situation may occur with every conditional
statement such as an if then else, or a while loop.

The analysis of control dependencies traverses the control flow graph and
keeps the set of variables that the assignments may depend on. When an assign-
ment or return statement is found we create a dependency between the current
variables, that it may depend on, and the respective assigned variable.

The symbolic execution rules are shown in Figure 5 as a transition system
(〈IS,D, S〉 =⇒ 〈IS ′,D′〉). The state is composed by a set of conditional vari-
ables IS ⊆ Versions, which correspond to the variable versions that the current
statement depends on, and a dependency graph D. In the beginning of the anal-
ysis the dependency graph is empty, and the set of conditional variables has the
union of all conditional variables that are present at all calling contexts of the
method that is going to be analyzed. For instance, given the program methods
m1, m2 and m3 where method m1 calls method m2 with the current conditional
variables set IS = {c1, c2}, and m3 calls method m2 with the current condi-
tional variables set IS = {c3, c4}, then the initial set of conditional variables
when analyzing method m2 is IS = {c1, c2, c3, c4}.

In the end of this analysis the resulting graph of dependencies is merged
with the one that resulted from the data dependencies analysis, described in the
previous section, thus forming the complete graph of causal dependencies.

For every kind of assignment we create a dependency between the current
conditional variables and the assigned variable. This situation may occur in the
rules Assign, Heap Read, Heap Write, Allocation and Meth Call. In
the case of a return statement, as in rule Return, we create a dependency with
the special variable retVar.

In the rules Conditional and Loop, we analyze each branch with a new
set of conditional variables, which include the current conditional variables plus
the variable of the condition. Each variable is actually a variable version with

Precise Detection of Atomicity Violations 17

〈IS,D, S1〉 =⇒ 〈IS ′,D′〉 〈IS ′,D′, S2〉 =⇒ 〈IS ′′,D′′〉
〈IS ,D, S1;S2〉 =⇒ 〈IS ′′,D′′〉 (Seq)

h = nhash(x := y) D′ = D ∪ {v ↪→ (x, h) | v ∈ IS}
〈IS,D, x := y〉 =⇒ 〈IS,D′〉 (Assign)

h = nhash(x := y.f) D′ = D ∪ {v ↪→ (x, h) | v ∈ IS}
〈IS,D, x := y.f〉 =⇒ 〈IS ,D′〉 (Heap Read)

c = typeof(x)
h = nhash(x.f := y) D′ = D ∪ {v ↪→ ((c, f), h) | v ∈ IS}

〈IS,D, x.f := y〉 =⇒ 〈IS,D′〉 (Heap Write)

h = nhash(x := newC()) D′ = D ∪ {v ↪→ (x, h) | v ∈ IS}
〈IS,D, x := newC()〉 =⇒ 〈IS,D′〉 (Allocation)

h = nhash(x := meth(�y))
spec(meth) = 〈ISf ,Df 〉 D′ = D ∪Df ∪ {v ↪→ (x, h) | v ∈ IS}

〈IS,D, x := meth(�y)〉 =⇒ 〈IS,D′〉 (Meth Call)

IS ′ = IS ∪ {b}
〈IS ′,D, S1〉 =⇒ 〈IS ′,D′〉 〈IS ′,D, S2〉 =⇒ 〈IS ′,D′′〉

〈IS ,D, if b thenS1 elseS2〉 =⇒ 〈IS,D′ ∪ D′′〉 (Conditional)

IS ′ = IS ∪ {b} 〈IS ′,D, S〉 =⇒ 〈IS ′,D′〉
〈IS,D,while b doS〉 =⇒ 〈IS,D ∪ D′〉 (Loop)

D′ = D ∪ {v ↪→ retVar | v ∈ IS}
〈IS,D, returnx〉 =⇒ 〈IS,D′〉 (Return) 〈IS,D, skip〉 =⇒ 〈IS,D〉 (Skip)

Fig. 5. Symbolic execution rules of control dependencies analysis

an unique hash value. When we exit the scope of the condition we remove the
condition variable and proceed with the analysis. The remaining rules are self-
explanatory.

The result of these two analysis generate the graph of causal dependencies that
is used to detect the existence of atomicity violations in a concurrent program,
as we will show in the following sections.

5 Atomicity Violations

The purpose of our work is to detect two kinds of atomicity errors, the high-
level data race and the stale-value error, that may occur during the execution
of concurrent programs that use atomic blocks to guarantee mutual exclusion in
the access to shared data.

The definition of both errors assume that the concurrent program has no low-
level data races, meaning that all accesses to shared variables are done inside
atomic blocks.

18 R.J. Dias, V. Pessanha, and J.M. Lourenço

5.1 High Level Data Races

A view, as described by Artho et al. in [2], expresses what variables are accessed
inside a given atomic code block. We extend this definition by also keeping the
kind of access (read or write) that was made for each variable in the view.

Please note that a view only stores global variables. Local variables are not
shared between threads and thus do not require synchronized accesses.

We denote as Accesses the set of memory accesses made inside an atomic
block. An access a ∈ Accesses is a pair of the form (α, v) where α ∈ {r, w}
represents the kind of access (r-read or w-write) and v ∈ GlobalVars is a global
variable1. A view is a subset of Accesses and the set of all views in a program is
denoted as Views. A view is always associated with one atomic method, and we
define the bijective function Γ that given a view returns the associated atomic
method as:

Γ : Views→ Atomics

The inverse function, denoted as Γ−1, returns the view associated with a given
atomic method. The set of generated views of a process p, denoted as V (p),
corresponds to the atomic blocks executed by one process, and is defined as:

v ∈ V (p)⇔ m = Γ (v) ∧ executes(p,m)

The predicate executes asserts if a method m may be executed by process p, and
is defined by an auxiliary static analysis that computes the set of processes and
the atomic methods that are called in each process.

We can refine the previous definition of V (p) with a parameter α, where
α ∈ {r, w}, to get only the views of a process with read (Vr) or write accesses
(Vw).

Definition 5 (Procedure Views)

Vα(p) = {v2 | v1 ∈ V (p) ∧ v2 = {(α, x) | (α, x) ∈ v1}} where α ∈ {r, w}

We defined a static analysis to compute a view of an atomic method. Every time
a global variable is read or written, the corresponding read or write access is
created and added to the view. The view resulting from a method call is merged
with the current view that is being computed. In the case of conditional and
loop statements we perform an over-approximation union of the views of each
branch. In the end of the analysis we have the set of views corresponding to the
atomic methods present in the program code.

The maximal views of a process, denoted as Mα, are all the views of the
process that are not a subset of any other view in that same process. A maximal
view is defined as follows:

1 Please remember that global variables are represented as a pair with a class identifier
and the field accessed.

Precise Detection of Atomicity Violations 19

Definition 6 (Maximal Views). Given a process p, a maximal view vm is
defined as:

vm ∈ Mα(p) ⇔ vm ∈ Vα(p) ∧ (∀v ∈ Vα(p) : vm ⊆ v ⇒ v = vm) where α ∈ {r, w}

Each maximal view represent the set of variables that should be accessed atom-
ically, i.e., should always be accessed in the same atomic block.

Given a set of views of a process p and a maximal view vm of another process,
we define the read or write overlapping views of process p with view vm as all
the non empty intersection views between vm and the views of process p.

Definition 7 (Overlapping Views). Given a process p and maximal view
vm:

overlapα(p, vm) � {vm ∩ v | v ∈ Vα(p) ∧ vm ∩ v �= ∅} where α ∈ {r, w}

The notion of compatibility between a process p and a view vm, defined in [2],
states that a process p and a view vm are compatible if all their overlapping
views form a chain. We extended this definition with the information given by
the causal dependencies graph, and we additionally require that, even if the
read overlapping views do not form a chain, there may not exist a common
correlation (Definition 2) between the variables in the read overlapping views.

Definition 8 (Process Compatibility). Given a process p and maximal view
vm:

compw(p, vm)⇔ ∀v1, v2 ∈ overlapw(p, vm) : v1 ⊆ v2 ∨ v2 ⊆ v1

compr(p, vm)⇔ ∀v1, v2 ∈ overlapr(p, vm) : v1 ⊆ v2 ∨ v2 ⊆ v1

∨ ¬CommonCorrelation(v1, v2)

The intuition behind this additional condition is that, even if two shared variables
that belong to a maximal view were read in different atomic blocks, we will only
consider that there is an incompatibility if both variables are used in a common
write operation.

We can now define the view consistency safety property in terms of the com-
patibility between all pairs of processes of a program. A process may only have
views that are compatible with all maximal views of another process. A program
is free from high-level data races if the following condition holds:

Definition 9 (View Consistency)

∀p1, p2 ∈ PS ,mr ∈Mr(p1),mw ∈Mw(p1) : compw(p2,mr) ∧ compr(p2,mw)

where PS is the set of processes.

5.2 Stale-Value Error

Stale-value errors are a class of atomicity violations that are not detected by the
view consistency property. Our approach to detect this kind of errors uses the

20 R.J. Dias, V. Pessanha, and J.M. Lourenço

graph of causal dependencies to detect values that escape the scope of an atomic
block (e.g., by assigning a shared variable to a local variable) and are later used
inside another atomic block (e.g., by assigning the previous local variable to a
shared variable).

First we define the set IVersions ⊆ Versions, which stores all global variable
versions that were accessed inside an atomic block. Each variable version has a
parameter m that indicates in which atomic method it was defined, or has the
value ⊥ if it was not used inside an atomic method.

Definition 10 (Atomic Variable Version). A global variable version (x, h,m)
is an atomic variable if:

(x, h,m) ∈ IVersions⇔ (x, h,m) ∈ Versions ∧ x ∈ GlobalVars ∧ m �= ⊥

Now we define a new graph, denoted as DV , which represent the dependencies
between views. A labeled edge of this graph DV is represented as (m1, x,m2)
where m1,m2 ∈ Atomics and x ∈ GlobalVars, and can be interpreted as atomic
method m2 depends on atomic method m1 through global variable x. Intuitively,
this means that the value of variable x exited the scope of methodm1 and entered
the scope of method m2, and while it was out of the atomic scopes it might have
become outdated.

Each edge (m1, x1,m2) of a view dependency graph DV , is created when,
given two version variables a1 = (x1, h1,m1) ∈ IVersions and a2 = (x2, h2,m2) ∈
IVersions, and a causal dependency graph D, the following conditions hold:

(DirectCorrelation(D, a1, a2) ∧m1 �= m2) ∨ (m1 = m2

∧ DirectCorrelation(D, a1,m1 . ret) ∧ DirectCorrelation(D,m1 . ret ,m1 . pi)

∧ DirectCorrelation(D,m1 . pi, a2))

The predicate DirectCorrelation asserts if two variables are directly correlated
according to Definition 1. These conditions state that there is a dependency
between m1 and m2 through variable x1, if the variable version a1 is directly
correlated with a2 when m1 and m2 are two different atomic methods, or if the
two methods m1 and m2 are the same, then we must be sure that the value of
x1 left out the scope of the method and then entered it again.

A process p writes in a variable x ∈ Vars if there is a write access on variable
x in one of the views of process p:

writes(x, p)⇔ ∃v ∈ Vw(p) : (w, x) ∈ v

The safety property for stale-value errors can be defined as the case where no
process writes to a global variable that leaves, and then enters, the scope of an
atomic method of another process.

Definition 11 (Stale-Value Safety)

∀p ∈ PS , (m1, x,m2) ∈ DV : ¬writes(x, p) where PS is the set of processes

If there is a view dependency for variable x and there is a process p that writes
on that variable then a stale-value error is detected.

Precise Detection of Atomicity Violations 21

Table 1. Results for benchmarks — Set 1

AV False Negatives False Positives Acc. LOC Time
Tests MoTH Artho Teix. MoTH Artho Teix. Vars (sec.)

Connection [4] 2 0 1 1 0 0 1 34 112 45

Coord03 [2] 1 0 0 0 0 0 3 13 170 43
Local [2] 1 0 1 0 0 0 1 3 33 42
NASA [2] 1 0 0 0 0 0 0 7 121 43

Coord04 [3] 1 0 0 0 0 0 3 7 47 40
Buffer [3] 0 0 0 0 1 0 7 8 64 41
DoubleCheck [3] 0 0 0 0 1 0 2 7 51 41

StringBuffer [5] 1 0 1 1 0 0 0 12 52 44

Account [9] 1 0 1 0 0 0 0 3 65 40
Jigsaw [9] 1 0 0 0 0 0 1 33 145 40
OverReporting [9] 0 0 0 0 0 0 2 6 52 42
UnderReporting [9] 1 0 1 0 0 0 0 3 31 39

Allocate Vector [6] 1 0 1 0 0 0 1 24 304 41

Knight [7] 1 0 1 0 0 0 2 10 223 41
Arithmetic Database [7] 3 0 3 1 1 0 0 24 416 54

Total 15 0 10 3 3 0 23 – – –

6 Evaluation

To evaluate the accuracy of our algorithms and techniques, we adapted and
implemented the theoretical framework described in the previous sections to
the Java Bytecode language, where the atomic methods are defined using the
@Atomic method annotation. We used the data-flow analysis infrastructure of
the Soot framework [8] to implement all the described analysis.

Our tool starts by parsing a Java bytecode program and computing a set
of analysis, namely: process analysis to identify which threads may exist when
executing the program; instance type analysis to handle Java interfaces and dy-
namic dispatching; views analysis, to compute the views of each atomic method;
inter-procedural causal dependency analysis, to compute dependencies between
variables used in assignments and conditional code blocks. Once all these analy-
sis are concluded, the tool creates the causal dependency graph. Another analysis
is then ran over this dependency graph to identify atomic blocks that break the
atomicity violation safety properties.

Besides comparing our results with those reported on the literature for indi-
vidual benchmarks, we did an exhaustive comparison with two other approaches:
the work of Artho et al [2], because our approach is an extension of this work;
and the work of Teixeira et al [7], because their results are currently a reference
for the field. The results presented were obtained by running our tool with the
algorithms described in this paper; by using Artho et al’s algorithm implemented
with static analysis techniques (rather than the dynamic analysis reported in [2]);
and by running Teixeira’s tool on the Java source (instead of the Bytecode).

Tables 1 and 2 summarize the results achieved by applying our tool to a set
of benchmarking programs, most of them well known from related works and
compares them with the two works cited above. Teixeira’s tool was unable to

22 R.J. Dias, V. Pessanha, and J.M. Lourenço

Table 2. Results for benchmarks — Set 2

AV False Negatives False Positives Acc. LOC Time
Tests MoTH Artho MoTH Artho Vars (sec.)

Elevator [9] 16 0 16 6 4 39 558 46
Philo [9] 0 0 0 2 0 9/594 96 45/612
Tsp [9] 0 0 0 2 0 635 795 869
Store 2 0 1 0 1 44/608 901 149/1763

Total 18 0 17 10 5 – – –

process some of the benchmarks, so they are reported in a separate second set.
Columns AV indicate the number of known atomicity violations, false negatives
indicate the number of known program atomicity violations that were missed by
the approach2, false positives indicate the number of reported but non-existing
atomicity violations, Acc. Vars indicate the number of variables accessed inside
atomic regions and is an indication of the problem size, together with the number
of LOC, and how long it took for our analysis to run.

In the case of Table 2, the benchmarks Philo and Store have two different
values for accessed variables and time. The second values report on the original
benchmarks, which includes some (non-essential) calls to I/O methods in the
JDK library. The first values report on a tailored version of the benchmarks
where those calls to the JDK library were commented.

For the benchmarks listed in Table 1, our approach revealed a very high
accuracy by reporting no false negatives and only three false positives. The
false positive in the Buffer benchmark is due to an assumption claim from its
authors that is not implemented in the actual code. The information collected
by the Causal Dependency Analysis is incomplete and imprecise and originates
false positives in the Double Check and Arithmetic Database benchmarks while
checking for stale-value errors, which are not detected by Artho et al’s approach.

For the benchmarks listed in Table 2, our appropriate again reveled very high
accuracy, as although it reported 10 false positives (vs. only 5 from Artho et al’s),
it reported zero false negatives (vs. 17 from Artho et al’s). These benchmarks
also indicate that our algorithms scale well with the the size of the problem, both
in the number of accessed variables inside the atomic blocks and the number of
lines of code.

7 Conclusions

In this paper we presented a novel approach to detect high-level data races and
stale-value errors in concurrent programs. The proposed approach relies on the
notion of causal dependencies to improve the precision of previous detection
techniques. The high-level data races are detected using an algorithm based on

2 The identification of false negative is only possible because the sets of atomicity
violations in the benchmarking programs are well known.

Precise Detection of Atomicity Violations 23

a previous work by Artho et al. refined to distinguish between read and write
accesses and extended with the information given by the causal dependencies.
The stale-value errors are detected using the information given by the causal
dependencies, which exposes the values of variables that escaped an atomic block
and entered into another atomic block.

Our detection analysis still remains unsound mainly due to the absence of
pointer analysis and to the way that views are computed. But these design
decisions allowed us to maintain the scalability of our approach without incurring
in a strong precision loss, as our experimental results confirm.

We evaluated our analysis techniques with well known examples from the
literature and compared them to previous works. Our results show that we are
able to detect all atomicity violations present in the examples, while reporting
a low number of false positives.

References

1. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-
grams. In: Proc. of the 15th ACM SIGPLAN-SIGACT Symp. on Principles of
Programming Languages, POPL 1988, pp. 1–11. ACM, San Diego (1988)

2. Artho, C., Havelund, K., Biere, A.: High-level data races. Software Testing, Veri-
fication and Reliability 13(4), 207–227 (2003)

3. Artho, C., Havelund, K., Biere, A.: Using block-local atomicity to detect stale-value
concurrency errors. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 150–164.
Springer, Heidelberg (2004)

4. Beckman, N.E., Bierhoff, K., Aldrich, J.: Verifying correct usage of atomic blocks
and typestate. SIGPLAN Not. 43(10), 227–244 (2008)

5. Flanagan, C., Freund, S.N.: Atomizer: a dynamic atomicity checker for multi-
threaded programs. In: Proc. of the 31st ACM SIGPLAN-SIGACT Symp. on Prin-
ciples of Programming Languages, POPL 2004, Venice, Italy, pp. 256–267 (2004)

6. IBM HRL — Concurrency Testing Repository
7. Teixeira, B., Lourenço, J.M., Farchi, E., Dias, R.J., Sousa, D.G.: Detection of trans-

actional memory anomalies using static analysis. In: Proc. of the 8th Workshop
on Parallel and Distributed Systems: Testing, Analysis, and Debugging, PADTAD
2010, pp. 26–36. ACM, New York (2010)

8. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot
- a Java bytecode optimization framework. In: Proc. of the 1999 Conference of
the Centre for Advanced Studies on Collaborative Research, CASCON 1999, pp.
125–135. IBM Press (1999)

9. von Praun, C., Gross, T.R.: Static detection of atomicity violations in object-
oriented programs. Journal of Object Technology, 2004 (2003)

10. Wang, L., Stoller, S.: Run-Time Analysis for Atomicity. Electronic Notes in The-
oretical Computer Science 89(2), 191–209 (2003)

Proving Mutual Termination of Programs

Dima Elenbogen1, Shmuel Katz1, and Ofer Strichman2

1 CS, Technion, Haifa, Israel
{katz,edima}@cs.technion.ac.il

2 Information Systems Engineering, IE, Technion, Haifa, Israel
ofers@ie.technion.ac.il

Abstract. Two programs are said to be mutually terminating if they
terminate on exactly the same inputs. We suggest a proof rule that uses
a mapping between the functions of the two programs for proving mu-
tual termination of functions f , f ′. The rule’s premise requires proving
that given the same arbitrary input in, f(in) and f ′(in) call mapped
functions with the same arguments. A variant of this rule with a weaker
premise allows to prove termination of one of the programs if the other
is known to terminate for all inputs. We present an algorithm for de-
composing the verification problem of whole programs to that of proving
mutual termination of individual functions, based on our suggested rules.

1 Introduction

Whereas termination of a single program has been widely studied (e.g., [9,6,4,7])
for several decades by now, with the focus being, especially in the last few years,
on automating such proofs, little attention has been paid to the related problem
of proving that two similar programs (e.g., two consecutive versions of the same
program) terminate on exactly the same inputs. Ideally one should focus on the
former problem, but this is not always possible either because the automatic
techniques are inherently incomplete, or because by design the program does
not terminate on all inputs. In such cases there is value in solving the latter
problem, because developers may wish to know that none of their changes affect
the termination behavior of their program. Moreover, the problem and solution
thereof can be defined in the granularity of functions rather than whole programs;
in this case the developer may benefit even more from a detailed list of pairs of
functions that terminate on exactly the same set of inputs. Those pairs that are
not on the list can help detecting termination errors.

Our focus is on successive, closely related versions of a program because it both
reflects a realistic problem of developers, and offers opportunities for decompo-
sition and abstraction that are not possible with the single-program termination
problem. This problem, which was initially proposed in [11] and coined mutual
termination, can easily be proven undecidable as can be seen via a simple re-
duction from the halting problem. We argue, however, that in many cases it
is easier to solve automatically, because unlike termination proofs for a single
program, it does not rely on proving that the sequence of states in the programs’

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 24–39, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Proving Mutual Termination of Programs 25

computations can be mapped into a well-founded set. Rather it can be proven
by showing that the loops and recursive functions have the same set of function
calls given the same inputs, which is relatively easier to prove automatically. In
Sec. 3, for example, we show how to prove mutual termination of two versions
of the famous Collatz’s 3x+1 problem [10]; whereas proving termination of this
program is open for many decades, proving mutual termination with respect to
another version is simple.

Our suggested method for decomposing the proof is most valuable when the
two input programs P and P ′ are relatively similar in structure. In fact, its com-
plexity is dominated by the difference between the programs, rather than by
their absolute size. It begins by heuristically building a (possibly partial) map
between the functions of P and P ′. It then progresses bottom-up on the two
call graphs, and each time proves the mutual termination of a pair of functions
in the map, while abstracting their callees. The generated verification condi-
tions are in the form of assertions about ‘flat’ programs (i.e., without loops and
recursive calls), which are proportional in size to the two compared functions.
It then discharges these verification conditions with a bounded model-checker
(CBMC [5] in our case). Each such program has the same structure: it calls
the two compared functions sequentially with the same nondeterministic in-
put, records all subsequent function calls and their arguments, and asserts in
the end that they have an equivalent set of function calls. According to our
proof rule, the validity of this assertion is sufficient for establishing their mutual
termination.

The algorithm is rather involved because it has to deal with cases in which the
call graphs of P and P ′ are not isomorphic (this leads to unmapped functions),
with mutually recursive functions, and with cases in which the proof of mutual
termination for the callees has failed. It also improves completeness by utilizing
extra knowledge that we may give to it on the partial equivalence of the callees,
where two functions are said to be partially equivalent if given the same inputs
they terminate with the same outputs, or at least one of them does not terminate.
Partial equivalence was studied in [11,13] and is implemented in rvt [13] and
Microsoft’s SymDiff [14]. We also implemented our algorithm in rvt, which
enables us to gain this information in a preprocessing step.

To summarize our contributions in this paper, we present a) a proof rule for
inferring mutual termination of recursive (and mutually-recursive) functions at
the leaves of their respective call graphs, b) an extension of the first rule that
applies also to internal nodes in the call graphs, and c) a proof rule for inferring
termination (not mutual termination) in case the other function is known to be
terminating. More importantly, d) we show how these rules can be applied to
whole programs via a bottom-up decomposition algorithm, and e) report on a
prototype implementation of this algorithm – the first to deal with the mutual
termination problem.

26 D. Elenbogen, S. Katz, and O. Strichman

2 Preliminaries

Our goal is to prove mutual termination of pairs of functions in programs that
are assumed to be deterministic (i.e., single threaded and no internal nondeter-
minism). Formally:

Definition 1 (Mutual termination of functions). Two functions f and f ′

are mutually terminating if and only if they terminate upon exactly the same
inputs.

By input we mean both the function parameters and the global data it accesses,
including the heap. Denote by m-term(f, f ′) the fact that f and f ′ mutually
terminate.

Preprocessing and Mapping. As a preprocessing step, all loops are extracted
to external recursive functions. After this step nontermination can only arise
from recursion. In addition, all global variables that are read by a function are
added to the end of its formal parameter list, and the calling sites are changed
accordingly. This is not essential for the proof, but simplifies the presentation.
It should be noted that this step in itself is impossible in general programs
that access the heap, because it is undecidable whether there exists an input
to a function that causes the function to read a particular variable. Our only
way out of this problem is to point out that it is easy to overapproximate this
information (in the worst case just take the whole list of global variables) and to
state that, based on our experience with a multitude of real programs, it is rather
easy to compute this information precisely or slightly overapproximate it with
static analysis techniques such as alias analysis. Indeed, the same exact problem
exists in rvt and SymDiff for the case of partial equivalence, and there, as
in our case, overapproximation can only hinder completeness, not soundness. In
general we will not elaborate on issues arising from aliasing because these are
not unique to mutual termination, and are dealt with in [13,14].

As a second step, a bijective map mapF between the functions of P and P ′ is
derived. For functions f ∈ P and f ′ ∈ P ′ it is possible that 〈f, f ′〉 ∈ mapF only
if f and f ′ have the same prototype, i.e., the same list of formal input parameter
types. We emphasize that the output of the two functions need not be compatible
(e.g., f can update more global variables than f ′). The restriction to bijective
maps seems detrimental for completeness, because the two compared programs
are not likely to have such a map. In practice with inlining such a mapping is
usually possible, as we describe later in Sect. 3.

Definitions and Notations

– Function isolation. With each function g, we associate an uninterpreted func-
tion UFg such that g and UFg have the same prototype and return type1.

1 This definition generalized naturally to cases in which g has multiple outputs owing
to global data and arguments passed by reference.

Proving Mutual Termination of Programs 27

The following definition will be used for specifying which functions are as-
sociated with the same uninterpreted function:

Definition 2 (Partial equivalence of functions). Two functions f and
f ′ are partially equivalent if any two terminating executions of f and f ′

starting from the same inputs, return the same value.

Denote by p-equiv(f, f ′) the fact that f and f ′ are partially equivalent. We
enforce that

UFg = UFg′ ⇒ (〈g, g′〉 ∈ mapF ∧ p-equiv(g, g′)) (enforce) (1)

i.e., we associate g and g′ with the same uninterpreted function only if
〈g, g′〉 ∈ mapF , and g, g′ were proven to be partially equivalent. The list
of pairs of functions that are proven to be partially equivalent is assumed to
be an input to the mutual termination algorithm. We now define:

fUF .
= f [g(exprin)← UFg(exprin) | g is called in f] , (2)

where exprin is the expression(s) denoting actual parameter(s) with which
g is called. fUF is called the isolated version of f . By construction it has no
loops or function calls, except for calls to uninterpreted functions.
The definition of fUF requires all function calls to be replaced with unin-
terpreted functions. A useful relaxation of this requirement, which we will
later use, is that it can inline non-recursive functions. Clearly, the result is
still nonrecursive. Therefore, we still refer to this as an isolated version of f .

– Call equivalence.
Let calls(f(in)), where in is a vector of actual values, denote the set of
function call instructions (i.e., a function name and the actual parameter
values) invoked in the body of f() during the execution of f(in). Note that
calls(f(in)) does not include calls from descendant functions and hence also
not from recursive calls.
We can now define:

Definition 3 (Call-equivalence of functions). f and f ′ are call-
equivalent if and only if

∀〈g, g′〉 ∈ mapF , inf , ing. g
′(ing) ∈ calls(f ′(inf))⇔ g(ing) ∈ calls(f(inf)) .

Denote by call-equiv(f, f ′) the fact that f and f ′ are call-equivalent. Recall
that this rule is applied in a context in which mapF is bijective. Note that
it is decidable whether fUF and f ′UF are call-equivalent, because these are
functions without loops and function calls, as explained above.

3 Proof Rules

In an earlier publication by the 3rd author [11], there appears a rule for proving
mutual termination of individual ‘leaf’ functions (i.e., that do not call functions

28 D. Elenbogen, S. Katz, and O. Strichman

other than themselves). Here we strengthen that rule by making its premise
weaker, and consider the more general problem of proving mutual termination of
any pair of functions (including mutually recursive), which enable us to consider
whole programs.

Given a call graph of a general program, a corresponding DAG may be built
by collapsing each maximal strongly connected component (MSCC) into a single
node. Nodes that are not part of any cycle in the call graph (corresponding to
non-recursive functions) are called trivial MSCCs in the DAG. Other MSCCs
correspond to either simple or mutually recursive function(s).

Given the two compared programs P, P ′, let mapm be a map between the
nodes of their respective MSCC DAGs, which is consistent with mapf . Namely,
if 〈m,m′〉 ∈ mapm, f is a function in m, and 〈f, f ′〉 ∈ mapF , then f ′ is a function
in m′ (and vice-versa).

Consider, then, a pair 〈m,m′〉 ∈ mapm of leaves in their respective MSCC
DAGs. Denote by

mapF(m) = {〈f, f ′〉 | 〈f, f ′〉 ∈ mapF , f ∈ m, f ′ ∈ m′} .

Our goal is to prove mutual termination of each of the pairs in mapF(m). The
following proof rule gives us a way to do it by proving call-equivalence of each
of these pairs:

∀〈f, f ′〉 ∈ mapF(m). call-equiv(fUF , f ′UF
)

∀〈f, f ′〉 ∈ mapF (m). m-term(f, f ′)
(m-term) (3)

The premise of (3) is weaker than (hence the rule itself is stronger than) the
one suggested in [11], because the latter required the compared functions to be
partially equivalent. Furthermore, whereas [11] refers to leaf MSCCs only, later
on in this section we generalize (3) so it also applies to non-leaf MSCCs, and
hence tackles the general case.

Incompleteness. The abstraction of calls with uninterpreted functions is the
source of incompleteness. Two examples of incompleteness are:

– call-equiv(fUF , f ′UF) fails, but the counterexample relies on values returned
by an uninterpreted function that are different than what the corresponding
concrete function would have returned if called with the same parameters.

– The concrete function and its counterpart on the other side do not terminate,
but their abstractions terminate and are followed by different function calls
on the two sides, which leads to call equivalence not being true.

3.1 Checking the Premise

We check the premise of (3) by building a loop- and recursion-free program for
each pair of functions that we want to prove call equivalent. Here we describe

Proving Mutual Termination of Programs 29

the construction informally, and only for the case of simple recursion at the leaf
functions. We will consider the general case in a more formal way in Sec. 4.

Let f, f ′ be simple recursive functions that only call themselves. We associate a
set of call instructions with each called function (this set represents calls(f(in)).
For example, in f only f itself is called, and hence we maintain a set of call
instructions to f . We then build a program with the following structure: main
assigns equal nondeterministic values to the inputs of f and f ′. It then calls
an implementation of fUF and f ′UF

, and finally asserts that the sets of call
instructions are equal. The example below (hopefully) clarifies this construction.

function f(int a)
int even := 0, ret := 0;
if a > 1 then

if ¬(a % 2) then � even
a := a/2;
even = 1;

else a := 3a+ 1;

ret := even+ f(a);
return ret;

function f ′(int a’)
int t′, odd′ := 0, ret′ := 0;
if a′ ≤ 1 then return ret′;
t′ := a′/2;
if a′%2 then � odd

a′ := 6t′ + 4;
odd′ := 1;

else a′ := t′;
ret′ := odd′ + f ′(a′);
return ret′;

Fig. 1. Two variations on the Collatz (“3x+1”) function that are mutually terminating.
f (f ′) returns the total number of times the function was called with an even (odd)
number. Note than when a′ is odd, a′/2 = (a′ − 1)/2, and hence 6(a′/2) + 4 = 3a′ +1.

Example 1. Consider the two variants of the Collatz (“3x + 1”) program [10]
in Fig. 12, which return different values (see explanation in the caption of the
figure). The Collatz program is a famous open problem in termination: no one
knows whether it terminates for all (unbounded) integers. On the other hand
proving mutual termination of the two variants given here is easy. The compar-
ison is not fair, however, because our decision procedure assumes finite types:
we target C programs. But as we show in the full version of this article [1],
it is solvable even when the input parameter is an unbounded integer, using a
decision procedure for linear arithmetic.

The definitions of fUF , f ′UF appear at the top part of Fig. 2. The middle part
of the same figure shows an implementation UF of the uninterpreted functions. It
receives a function index (abusing notation for simplicity, we assume here that a
function name represents also a unique index) and the actual parameters. Note
that it records the set of call instructions in the array params.

In this case f, f ′ are not partially equivalent, and therefore according to (1)
we replace the recursive calls with different uninterpreted functions. Indeed, we
call uf above with two different function indices (f and f ′), which means that

2 In the pseudocode we use the convention by which % is the modulo operator.

30 D. Elenbogen, S. Katz, and O. Strichman

function fUF (int a)
int even := 0, ret := 0;
if a > 1 then

if ¬(a % 2) then � even
a := a/2;
even = 1;

else a := 3a+ 1;

ret := even + UF(f, a);
return ret;

function f ′UF (int a′)
int t′, odd′ := 0, ret′ := 0;
if a′ ≤ 1 then return ret′;
t′ := a′/2;
if a′%2 then � odd

a′ := 6t′ + 4;
odd′ := 1;

else a′ := t′;
ret′ := odd′ + UF(f ′, a′);
return ret′;

function uf(function index g, input parameters in)
if in ∈ params[g] then return the output of the earlier call uf(g, in);

params[g] := params[g]
⋃

in;
return a nondeterministic value;

function main
in = nondet(); fUF (in); f ′UF (in);
assert(params[f] = params[f ′]); � checks call equivalence

Fig. 2. The flat program that we generate and then verify its assertion, given the two
functions of Fig. 1

on equal inputs they do not necessarily return the same nondeterministic value.
We defer the presentation of the case in which the functions are known to be
partially equivalent to Sec. 4. ��

What if there is no bijective mapmapF , or if some of the pairs of functions cannot
be proven to be mutually terminating? It is not hard to see that it is sufficient to
prove mutual termination of pairs of functions that together intersect all cycles
in m, m′, whereas the other functions are inlined. The same observation was
made with regard to proving partial equivalence in a technical report [12]. This
observation can be used to improve completeness: even when there is no bijective
mapping or when it is impossible to prove mutual termination for all pairs in m,
m′, it is still sometimes possible to prove it for some of the pairs. The algorithm
that we describe in Sec. 4 uses this observation.

3.2 Generalization

We now generalize (m-term) to the case that m, m′ are not leaf MSCCs. This
means that there is a set of functions C(m) outside of m that are called by
functions in m. C(m′) is defined similarly with respect to m′. The premise now
requires that these functions are mutually-terminating:

Proving Mutual Termination of Programs 31

(∀〈g, g′〉 ∈ mapF . (g ∈ C(m) ∧ g′ ∈ C(m′))→ m-term(g, g′))∧
(∀〈f, f ′〉 ∈ mapF(m). call-equiv(fUF , f ′UF

))

∀〈f, f ′〉 ∈ mapF (m). m-term(f, f ′)
(m-term+) .

(4)

Recall that (2) prescribes that calls to functions in C(m) and C(m′) are replaced
with uninterpreted functions in fUF , f ′UF

.
A full soundness proof of the generalized rule appears in Appendix A of the

full version of this article [1], whereas here we only sketch its steps. The proof
begins by showing that the premise implies ∀〈f, f ′〉 ∈ mapF(m). call-equiv(f, f ′).
Now, falsely assume that there is a pair 〈f , f ′〉∈ mapF(m) that is not mutually
terminating whereas the premise holds. For some value in, suppose that it is
f(in) that terminates, while f ′(in) does not. The infinite call stack of f ′(in)
must contain a call, say from h′(in1) to g′(in2), whereas h(in1) does not call
g(in2) in the call stack of f(in) (assuming {〈g, g′〉, 〈h, h′〉} ⊆ mapF). This
contradicts our premise that 〈h, h′〉 are call-equivalent. The argument is a little
more involved when there are multiple calls to the same function, and when there
are calls to functions in C(m), C(m′), but we leave such subtleties to Appendix
A in [1].

4 A Decomposition Algorithm

In this section we present an algorithm for proving mutual termination of full
programs. As mentioned in Sec. 3, the call graph of a program can be viewed
as a DAG where the nodes correspond to MSCCs. After building a mapping
between the MSCCs of the two call graphs, the algorithm traverses the DAG
bottom-up. For each mapped pair of MSCCs m,m′, it attempts to prove the
mutual termination of their mapped functions, based on (m-term+).

The algorithm is inspired by a similar algorithm for verification of partial
equivalence, which is described in a technical report [12]. The algorithm here is
more involved, however, because it handles differently cases in which the checked
functions are also partially equivalent (recall that this information, i.e., which
functions are known to be partially equivalent, is part of the input to the algo-
rithm). Furthermore, the algorithm in [12] is described with a non-deterministic
step, and here we suggest a method for determinizing it.

The preprocessing and mapping is as in Sec. 2. Hence the program is loop-free,
globals accessed by a function are sent instead as additional inputs, and there is
a (possibly partial) mapping mapF between the functions of P and P ′.

4.1 The Algorithm

The input to Alg. 1 is P , P ′, a (possibly partial) mapping mapF between their
functions, and (implicitly) those paired functions that are known to be partially
equivalent. Its output is a set of function pairs that are marked as m term,

32 D. Elenbogen, S. Katz, and O. Strichman

indicating it succeeded to prove their mutual termination based on (m-term+).
We now describe the three functions used by this algorithm.

ProveMT. This entry function traverses the call graphs of P, P ′ bottom-up,
each time focusing on a pair of MSCCs. In line 2 it inlines all nonrecursive
functions that are not mapped in mapF . In line 3 it uses renaming to resolve
possible name collisions between the globals of the two input programs. The next
line builds the MSCC DAGs MD and MD′ from the call graphs, as explained in
Sec.3. Line 5 attempts to build mapm (as defined in Sect. 3), only that it must be
bijective. If such a bijective map does not exist, the algorithm aborts. In practice
one may run the algorithm bottom-up until reaching nonmapped MSCCs, but
we omit this option here for brevity.

The bottom-up traversal starts in line 6. Initially all MSCCs are unmarked.
The algorithm searches for a next unmarked pair 〈m, m′〉 of MSCCs such that
all its children pairs are marked. If m, m′ are trivial (see Sec. 3 for a definition),
then line 10 simply checks the call-equivalence of the function pair 〈f , f ′〉 that
constitutes 〈m, m′〉, and marks them accordingly in line 10. Note that even if
the descendants of m, m′ are mutually-terminating, m, m′ are not necessarily
so, because they may call their descendants with different parameters. Also note
that if this check fails, we continue to check their ancestors (in contrast to the
case of non-trivial MSCCs listed next). The reason is that even if 〈f , f ′〉 are not
mutually terminating for every input, their callers may still be, because they
can be mutually terminating in the context of their callers. We can check this
by inlining them, which is only possible because they are not recursive.

Next, consider the case that the selected m, m′ in line 7 are not trivial. In
line 11 the algorithm chooses non-deterministically a subset S of pairs from
mapF(m) that intersects all the cycles in m and m′. This guarantees that we
can always inline the functions in m, m′ that are not in S. Determinization of
this step will be considered in subsection 4.3. If CallEquiv returns true for
all the function pairs in S, then all those pairs are labeled as m term in line 13.
Otherwise it abandons the attempt to prove their ancestors in line 14: it cannot
prove that mapped functions in 〈m,m′〉 are mutually terminating, nor can it
inline these functions in their callers, so we cannot check all its ancestors.

Regardless of whether 〈m, m′〉 are trivial, they get marked as mscc covered
in line 7, and the loop in ProveMT continues to another pair.

isolate. The function isolate receives as input a pair 〈f, f ′〉 ∈ mapF and
a set S of paired functions which, by construction (see line 11), contains only
pairs from the same MSCCs as f, f ′, i.e., if f ∈ m and f ′ ∈ m′, then (g, g′) ∈ S

implies that g ∈ m and g′ ∈ m′. As output, it generates fUF and f ′UF
, or

rather a relaxation thereof as explained after Eq. (2). We will occasionally refer
to them as side 0 and side 1. These functions do not have function calls (other
than to uninterpreted functions), but may include inlined (nonrecursive) callees
that were not proven to be mutually terminating. isolate should be thought of
as working on a new copy of the original programs in each invocation.

Proving Mutual Termination of Programs 33

Algorithm 1. Pseudo-code for a bottom-up decomposition algorithm for prov-
ing that pairs of functions mutually terminate

1: function ProveMT(Programs P , P ′, map between functions mapF)
2: Inline non-recursive non-mapped functions;
3: Solve name collisions in global identifiers of P, P ′ by renaming.
4: Generate MSCC DAGs MD, MD′ from the call graphs of P, P ′;
5: If possible, generate a bijective map mapm between the nodes of MD

and MD′ that is consistent with mapF ; Otherwise abort.
6: while ∃〈m,m′〉 ∈ mapm not marked covered but its children are, do
7: Choose such a pair 〈m,m′〉 ∈ mapm and mark it covered
8: if m,m′ are trivial then
9: Let f, f ′ be the functions in m,m′, respectively;
10: if CallEquiv (isolate(f, f ′, ∅)) then mark f, f ′ as m term;

11: else Select non-deterministically S ⊆ {〈f, f ′〉 | 〈f, f ′〉 ∈ mapF(m)}
that intersect every cycle in m and m′;

12: if ∀〈f, f ′〉 ∈ S. CallEquiv (isolate(f, f ′, S)) then
13: for each 〈f, f ′〉 ∈ S do mark f, f ′ as m term;

14: else mark ancestors of m, m′ as covered ;

15: function isolate(functions f , f ′, function pairs S) � Builds fUF , f ′UF

16: for each {〈g, g′〉 ∈ mapF | g, g′ are reachable from f, f ′} do
17: if 〈g, g′〉 ∈ S or 〈g, g′〉 is marked m term then
18: Replace calls to g(in), g′(in′) with calls to uf(g, in), uf’(g’, in′), resp.;
19: else inline g, g′ in their callers;

20: return 〈f, f ′〉;

21: function CallEquiv(A pair of isolated functions 〈fUF , f ′UF 〉)
22: Let δ denote the program:

� here add the definitions of uf() and uf’() (see Fig. 3).

in := nondet(); fUF (in); f ′UF
(in);

∀〈g, g′〉 ∈ mapF . if g (or g′) is calleda in f (orf ′) assert(params[g] ⊆ params[g′]);

23: return CBMC(δ);

a By ‘called’ we mean that a call appears in the function. It does not mean that there
is necessarily an input that invokes this call.

The implementations of uf and uf’ appear in Fig. 3, and are rather self-
explanatory. Their main role is to check call-equivalence. This is done by check-
ing that they are called with the same set of inputs. When 〈g, g′〉 is marked
partially equiv, uf and uf’ emulate the same uninterpreted function, i.e.,

∀in. uf(g, in) = uf’(g′, in) .

When 〈g, g′〉 is not marked partially equiv, uf and uf’ emulate two different
uninterpreted functions.

34 D. Elenbogen, S. Katz, and O. Strichman

1: function uf(function index g, input parameters in) � Called in side 0
2: if in ∈ params[g] then return the output of the earlier call uf(g, in);

3: params[g] := params[g]
⋃

in;
4: return a non-deterministic output;

5: function uf’(function index g′, input parameters in′) � Called in side 1
6: if in′ ∈ params[g′] then return the output of the earlier call uf’(g′, in′);

7: params[g′] := params[g′]
⋃

in′;
8: if in′ ∈ params[g] then � 〈g, g′〉 ∈ mapF
9: if 〈g, g′〉 is marked partially equiv then
10: return the output of the earlier call uf(g, in′);

11: return a non-deterministic output;

12: assert(0); � Not call-equivalent: params[g′]
⊆ params[g]

Fig. 3. Functions uf and uf’ emulate uninterpreted functions if instantiated with func-
tions that are mapped to one another. They are part of the generated program δ, as
shown in CallEquiv of Alg. 1. These functions also contain code for recording the
parameters with which they are called.

CallEquiv. Our implementation is based on the C model checker CBMC [5],
which enables us to fully automate the check for call-equivalence. CBMC is
complete for bounded programs (i.e., loops and recursions are bounded), and,
indeed, the program δ we build in CallEquiv is of that nature. It simply calls
fUF , f ′UF

(which, recall, have no loops or function calls by construction), with
the same nondeterministic value, and asserts in the end that the set of calls in
f is included in the set of calls in f ′ (the other direction is checked in lines 8, 12
of uf’). Examples of such generated programs that we checked with CBMC are
available online in [2].

4.2 An Example

The following example demonstrates Alg. 1. Consider the call graphs in Fig. 4.
Assume that 〈fi, f ′

i〉 ∈ mapF for i = 1, . . . , 5, and that the functions rep-
resented by gray nodes are known to be partially equivalent to their counter-
parts. Line 4 generates the following nodes of the MSCC DAGs: MD = {{f5},

f1

f2 f4f3f5

f ′
1

f ′
2 f ′

4f ′
3f ′

5

f ′
6

Fig. 4. Call graphs of the input programs P, P ′. Partially equivalent functions are gray.

Proving Mutual Termination of Programs 35

Table 1. Applying Alg. 1 to the call graphs in Fig. 4. ‘�’ means that the pair is marked
m term, ‘�c’ that it is marked conditionally (it becomes unconditional once all other
pairs in S are marked as well), and ‘✗’ that it is not marked. (=) and (�=) denote that
uf, uf’ emulate the same, or, respectively, different, uninterpreted functions.

MSCCs Pair Description Res.

{f5}, {f ′
5} 〈f5, f ′

5〉 In line 11 the only possible S is 〈f5, f ′
5〉. isolate replaces

the recursive call to f5, f
′
5 with uf, uf’, respectively (=). As-

sume CallEquiv returns true. 〈f5, f ′
5〉 is marked m term

in line 13.

�

{f3}, {f ′
3} 〈f3, f ′

3〉 This is a case of trivial MSCCs, which is handled in lines 8–10.
isolate replaces the calls to f5, f

′
5 with uf, uf’, respectively

(=). Assume CallEquiv returns false.

✗

{f2, f4}, In line 11 let S = {〈f2, f ′
2〉, 〈f4, f ′

4〉}.
{f ′

2, f
′
4, f

′
6} 〈f2, f ′

2〉 In f2 calls to f3 are inlined, and calls to f4, f5 are replaced
with calls to uf. In f ′

2 calls to f ′
3, f

′
6 are inlined, and calls to

f ′
4, f

′
5 are replaced with calls to uf’ (=). Assume CallEquiv

returns true.

�c

〈f4, f ′
4〉 In f4, f

′
4 calls to f2, f

′
2 are respectively replaced with calls to

uf, uf’ (�=). Assume CallEquiv returns true. Now 〈f2, f ′
2〉

and 〈f4, f ′
4〉 are marked m term in line 13.

�

{f1}, {f ′
1} 〈f1, f ′

1〉 Again, a case of a trivial MSCC. Calls to f2, f
′
2 are respec-

tively replaced with uf, uf’ (�=), while calls to f4, f ′
4 are

replaced with uf, uf’, respectively (=). Assume CallEquiv
returns true. 〈{f1}, {f ′

1}〉 is marked m term.

�

{f3},{f2, f4}, {f1}};MD′ = {{f ′
5}, {f ′

3},{f ′
2, f

′
4, f

′
6},{f ′

1}}. The MSCC mapping
mapm in line 5 is naturally derived from mapF .

The progress of the algorithm is listed in Table 1. The output in this case,
based on assumptions about the results of the checks for call-equivalence that
are mentioned in the table, is that the following pairs of functions are marked
as m term: 〈f1, f ′

1〉, 〈f2, f ′
2〉, 〈f4, f ′

4〉, and 〈f5, f ′
5〉.

4.3 Choosing a Vertex Feedback Set Deterministically

In line 7 the choice of the set S is nondeterministic. Our implementation deter-
minizes it by solving a series of optimization problems. In the worst case this
amounts to trying all sets, which is exponential in the size of the MSCC. Ob-
serve, however, that large MSCCs are rare in real programs and, indeed, this
has never posed a computational problem in our experiments.

Our objective is to find a maximal set S of function pairs, because the larger
the set is, the more functions are declared to be mutually terminating in case
of success. Further, larger sets imply fewer functions to inline, and hence the
burden on CallEquiv is expected to be smaller. Our implementation solves
this optimization problem via a reduction to a pseudo-Boolean formula, which is
then solved by minisat+ [8]. Each function node g in m (and m′) is associated
with a Boolean variable vg, indicating whether it is part of S. The objective is

36 D. Elenbogen, S. Katz, and O. Strichman

thus to maximize the sum of these variables that are mapped (those that are
unmapped cannot be in S anyway). In addition, there is a variable eij for each
edge (i, j), which is set to true iff neither i nor j is in S. By enforcing a transitive
closure, we guarantee that if there is a cycle of edges set to true (i.e., a cycle in
which none of the nodes is in S), then the self edges (e.g., ei,i) are set to true
as well. We then prevent such cycles by setting them to false. Let mapped(m)
denote the set of functions in m that are mapped. The problem formulation
appears in Fig. 5, and is rather self-explanatory. In case the chosen set S fails
(i.e., one of the pairs in S cannot be proven to be mutually terminating), we add
its negation (see constraint #6) and repeat.

maximize S:
max

∑
g∈mapped(m)

vg

subject to the following constraints, for M ∈ {m,m′}:
1. Unmapped nodes are not in S: ∀g ∈ (M \mapped(M)). ¬vg
2. Defining the edges: ∀{i, j | (i, j) is an edge in M}. ¬vi ∧ ¬vj → eij
3. Transitive closure: ∀0 < i, j, k ≤ |M |. eij ∧ ejk → eik
4. Self loops are not allowed: ∀0 < i ≤ |M |. ¬eii
5. Enforce mapping: ∀〈g, g′〉 ∈ mapF , g ∈ m. vg ↔ v′g
6. For each failed solution Sl:

∨
〈g,g′〉∈Sl ¬vg

Fig. 5. A pseudo-Boolean formulation of the optimization problem of finding the largest
set of function pairs from m,m′ that intersect all cycles in both m and m′

5 An Inference Rule for Proving Termination

We now consider a different variant of the mutual termination problem: Given
that a program P terminates, does P ′ terminate as well? Clearly this problem
can be reduced to that of mutual termination, but in fact it can also be solved
with a weaker premise. We first define term(f) to denote that f terminates and

call-contains(f, f ′) .
=

∀〈g, g′〉 ∈ mapF , inf , ing. g
′(ing) ∈ calls(f ′(inf))⇒ g(ing) ∈ calls(f(inf)) .

Using these predicates, we can now define the rule for leaf MSCCs m, m′:

∀ 〈f, f ′〉 ∈ mapF (m).
(
term(f) ∧ call-contains(fUF , f ′UF

)
∀ 〈f, f ′〉 ∈ mapF(m). term(f ′)

(term) . (5)

Proving Mutual Termination of Programs 37

Theorem 1. (term) is sound.

Proof. The proof follows similar lines to that of (m-term+). We give a proof
sketch. Falsely assume that there is a function f ′ in m′ that does not terminate,
whereas for all 〈g, g′〉 ∈ mapF (m), call-contains(g, g′). There exists a value in
such that f ′(in) does not terminate. The infinite call stack of f ′(in) must contain
a call, say from h′(in1) to g′(in2), whereas h(in1) does not call g(in2) in the call
stack of f(in) (assuming {〈g, g′〉, 〈h, h′〉} ⊆ mapF). This contradicts our premise
that call-contains(h, h′) is true. ��

Note that call-equivalence (Def. 3) is simply bi-directional call-containment. A
generalization to non-leaf MSCCs can be done in a similar way to (4):

(∀〈g, g′〉 ∈ mapF . (g ∈ C(m) ∧ g′ ∈ C(m′))→ m-term(g, g′))∧
∀ 〈f, f ′〉 ∈ mapF(m).

(
term(f) ∧ call-contains(fUF , f ′UF

)
)

∀ 〈f, f ′〉 ∈ mapF(m). term(f ′)
(term+) ,

(6)

where, recall, C(m) denotes the functions that are outside of m and are called
by functions in m. A proof appears in [1].

The decomposition algorithm of the previous section (Alg. 1) applies with the
following change: the last statement of line 22 (asserting params[g] ⊆ params[g′])
should be removed. The only assertion that should be verified is thus inside uf
(line 12 in Fig. 3), which checks that every call on side 0 is matched by a call on
side 1.

6 Experience and Conclusions

We implemented Alg. 1 in RVT [13,2], and tested it with many small programs
and one real software project. Here we describe the latter.

We tested our tool on the open source project Betik [3], which is an inter-
preter for a scripting language. The code has 2 – 2.5 KLOC (depending on the
version). It has many loops and recursive functions, including mutual recursion
forming an MSCC of size 14. We compared eight consecutive versions of this pro-
gram from the code repository, i.e., seven comparisons. The amount of changes
between the versions varied with an average of 3–4 (related) functions. Some-
what to our surprise, many of the changes do not preserve termination behavior
in a free context, mostly because these functions traverse global data structures
on the heap.

In five out of the seven comparisons, RVT discovered correctly, in less than 2
minutes each, that the programs contained mapped functions that do not mutu-
ally terminate. An example is a function called int value(), which receives a
pointer to a node in a syntax tree. The old version compared the type of the node
to several values, and if none of them matched it simply returned the input node.

38 D. Elenbogen, S. Katz, and O. Strichman

In the new code, a ‘default’ branch was added, that called int value() with the
node’s subtype. In an arbitrary context, it is possible that the syntax ‘tree’ is
not actually a tree, rather a cyclic graph, e.g., owing to data aliasing. Hence,
there is a context in which the old function terminates whereas the new one is
trapped in infinite recursion. The full version of this article [1] includes the code
of this function as well as an additional example in which mutual termination is
not preserved.

In the remaining two comparisons RVT marked correctly, in less than a minute
each, that all mapped functions are mutually terminating.

Conclusion and Future Research. Listing the functions that changed their
termination behavior owing to code updates may be valuble to programers. In
this article we made several steps towards achieving this goal. We showed a
proof rule for mutual termination, and a bottom-up decomposition algorithm for
handling whole programs. This algorithm calls a model-checker for discharging
the premise of the rule. Our prototype implementation of this algorithm in RVT
is the first to give an automated (inherently incomplete) solution to the mutual
termination problem.

An urgent conclusion from our experiments is that checking mutual termi-
nation under free context is possibly insufficient, especially when it comes to
programs that manipulate a global structure on the heap. Developers would also
want to know whether their programs mutually terminate under the context of
their specific program. Another direction is to interface RVT with an external
tool that checks termination: in those cases that they can prove termination of
one side but not of the other, we can use the results of Sec. 5 to prove termina-
tion in the other side. We can also benefit from knowing that a pair of functions
terminate (not just mutually terminate) because in such a case they should be
excluded from the call-equivalence check of their callers. Finally, it seems plau-
sible to develop methods for proving termination by using the rule (m-term+).
One needs to find a variant of the input program that on the one hand is easier
to prove terminating, and on the other hand is still call-equivalent to the original
program.

References

1. Full version available from http://ie.technion.ac.il/~ofers/hvc-full.pdf

2. http://ie.technion.ac.il/~ofers/rvt.html

3. http://code.google.com/p/betik

4. Bradley, A.R., Manna, Z., Sipma, H.B.: Linear ranking with reachability. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer,
Heidelberg (2005)

5. Clarke, E., Kroening, D.: Hardware verification using ANSI-C programs as a ref-
erence. In: Proceedings of ASP-DAC 2003, pp. 308–311. IEEE Computer Society
Press (January 2003)

6. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,
Heidelberg (2005)

http://ie.technion.ac.il/~ofers/hvc-full.pdf
http://ie.technion.ac.il/~ofers/rvt.html
http://code.google.com/p/betik

Proving Mutual Termination of Programs 39

7. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5), 88–98 (2011)

8. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. JSAT 2(1-
4), 1–26 (2006)

9. Floyd, R.: Assigning meanings to programs. Proc. Symposia in Applied Mathe-
matics 19, 19–32 (1967)

10. Garner, L.E.: On the Collatz 3n + 1 algorithm. Proceedings of the American
Mathematical Society 82(1), 19–22 (1981)

11. Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive
procedures. Acta Informatica 45(6), 403–439 (2008)

12. Godlin, B., Strichman, O.: Regression verification. Technical Report IE/IS-2011-02,
Technion (2011), http://ie.technion.ac.il/tech_reports/1306207119_j.pdf

13. Godlin, B., Strichman, O.: Regression verification. In: 46th Design Automation
Conference, DAC (2009)

14. Kawaguchi, M., Lahiri, S.K., Rebelo, H.: Conditional equivalence. Technical Report
MSR-TR-2010-119, Microsoft Research (2010)

http://ie.technion.ac.il/tech_reports/1306207119_j.pdf

Knowledge Based Transactional Behavior�

Saddek Bensalem1, Marius Bozga1, Doron Peled2, and Jean Quilbeuf1

1 UJF-Grenoble 1 / CNRS, VERIMAG UMR 5104, Grenoble, F-38041, France
2 Department of Computer Science, Bar Ilan University, Ramat Gan 52900, Israel

Abstract. Component-based systems (including distributed programs and mul-
tiagent systems) involve a lot of coordination. This coordination is done in the
background, and is transparent to the operation of the system. The reason for
this overhead is the interplay between concurrency and non-deterministic choice:
processes alternate between progressing independently and coordinating with
other processes, where coordination can involve multiple choices of the partic-
ipating components. This kind of interactions appeared as early as some of the
main communication-based programming languages, where overhead effort of-
ten causes a restriction on the possible coordination. With the goal of enhancing
the efficiency of coordination for component-based systems, we propose here a
method for coordination-based on the precalculation of the knowledge of pro-
cesses and coordination agents. This knowledge can be used to lift part of the
communication or synchronization that appears in the background of the execu-
tion to support the interaction. Our knowledge-based method is orthogonal to the
actual algorithms or primitives that are used to guarantee the synchronization: it
only removes messages conveying information that knowledge can infer.

1 Introduction

Component-based systems are a generalization of distributed systems. In concurrent
languages like CSP and ADA processes allow binary interactions between processes,
often with the choice between outgoing communication restricted to be deterministic.
Modern distributed systems may involve more general multi-party coordination, e.g.,
robots that need to coordinate temporarily on a certain task. While such a system may
reveal a behavioral model that is based on interaction primitives, often in the back, there
are algorithms that are based on more basic primitives such as asynchronous message
passing or shared variables. Algorithms for obtaining synchronization primitives are
complicated and require nontrivial overhead. Theoretical results also show some in-
herent restrictions: a well known result on the dinning philosophers [12] shows that a
completely symmetric nonprobabilistic solution cannot exist.

We present here a method for improving the behavior of synchronous interactions by
removing some of the overhead for guaranteeing the correct synchronization of compo-
nents based on knowledge calculation. The main principle is based on the observation
that such algorithms need to allow for a very general interaction, but can provide a much

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme [FP7] under grant agreements no 248776 (PRO3D) and no
257414 (ASCENS) and from ARTEMIS JU grant agreement 2009-1-100230 (SMECY).

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 40–55, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Knowledge Based Transactional Behavior 41

more efficient behavior for more limited cases. Analyzing the system before its execu-
tion based on model checking of knowledge properties allows us to utilize the particular
behavior that is actually needed for the implementation of the synchronization. Knowl-
edge, basically, refers to the facts that hold in all the global states that are consistent
with the current local state of some process. A precalculated knowledge, embedded in
the processes, allows exploiting the easier cases of behavior, when relevant.

Our method is general, independent of the actual synchronization algorithm or prim-
itives used to obtain it. However, the actual implementation of the method depends on
the specific details of the algorithm. We present its implementation on a well known
generic synchronization algorithm called α-core [14].

The paper is organized as follows. Section 2 recalls cellular automata, as the un-
derlying semantic model for synchronizing systems, and the α-core protocol, as one
possible solution for distributed implementation of such systems. Section 3 presents
the key results on exploiting knowledge to reduce the communication overhead for dis-
tributed implementation. We provide techniques for using knowledge independently for
components and coordinators as well as for combining them. Section 4 reports exper-
imental results obtained using a prototype implementation realized on top of the BIP
framework [3]. Finally, Section 5 provides conclusions and future work directions.

2 Preliminaries

2.1 Cellular Automata

The model of execution that we want to obtain is that of synchronizing systems. To
describe such systems we are using cellular automata. This model involves several pro-
cesses, represented as automata with transitions labeled by action names, where the
execution of all the actions that share the same name has to be synchronized by all
processes. Formally, the cellular automata model is defined as follows:

Definition 1. An automaton is a tuple 〈S,A,δ,s0〉 where S is the set of states, A is the set
of actions, δ : S×A→ S is the transition relation, s0 ∈ S is the initial state. An execution
of an automaton is a maximal sequence of states s0 s1 s2 . . . such that for each i ≥ 0,
there exists a ∈ A such that δ(si,a) = si+1.

Definition 2. A cellular automaton is a set of n automata A i = 〈Si, Ai,δi, si
0〉, i ∈

{1, . . . ,n}, such that the sets of states are mutually disjoint, and the sets of actions
may have common occurrences (corresponding to interactions).

Example 1. Figure 1 shows a cellular automaton made of three automata. Each automa-
ton A i represents the ith bit of a binary counter (here modulo 8). The most significant
bit is represented by the rightmost automaton. Interactions are named after the higher
bit that changes during the interaction (e.g., s1 corresponds to the setting of bit 1 and
synchronizes A1 and A0, r2 corresponds to the reset of bit 2 and synchronizes A2, A1

and A0). Each interaction involves either one (s0), two (s1) or three (s2,r2) automata.

We denote by S = S1× . . .×Sn the set of global states of a cellular automaton. A global
state g ∈ S is defined by the state of each automaton A i from the cellular automaton.
The state of the automaton A i at global state g is denoted g[i].

42 S. Bensalem et al.

10

00

s0s1s2r2

A0

11

01

s1s2r2

A1

12

02

s2r2

A2

Fig. 1. Example of Cellular Automaton

0

1s0

2

s1

3

s04
s25 s0

6

s1

7

s0

r2

Fig. 2. Global Behavior

Definition 3. An execution of a cellular automaton is a maximal sequence of global
states g0 g1 . . . such that:

– g0 is the tuple made of initial states: ∀i ∈ {1..n},g0[i] = si
0 .

– For adjacent tuples g j and g j+1 there is an action a∈ ∪i∈{1..n}A
i such that for each

i ∈ {1..n}, either g j+1[i] = δi(g j[i],a) or a �∈ Ai and g j+1[i] = g j[i].

It is easy to see that the projection of an execution into a single automaton is a prefix of
an execution of that automaton.

We denote by g
a−→ g′ if the action a can be executed from global state g and leads

to global state g′. This notation is trivially extended to sequences of interactions, that is
for σ = a1a2 · · ·ak we denote by g

σ−→ g′ if there exists global states g1,g2, · · ·gk−1 such
that g

a1−→ g1
a2−→ g2 · · ·gk−1

ak−→ g′. We denote by σ|Ai , the sequence of interactions
obtained by removing from σ all occurrences of interactions that are not in Ai.

The set of executions, i.e. global behavior, of the cellular automaton can be rep-
resented as a labeled transition system A = (S,A,T,g0), where S is the set of global
states, A =

⋃
i∈{1..n}Ai is the set of actions (or labels), T ⊆ S×A× S is the set of valid

transitions (as defined by Definition 3) and g0 is the initial global state.

Example 2. The global behavior of the cellular automaton depicted in Figure 1 is shown
in Figure 2. Any global state g∈ {0, ...,7} denotes the tuple of local states (g[2]g[1]g[0])
obtained from the representation of g as a binary number.

Cellular automata are perhaps the simplest model to describe synchronizing systems.
Nonetheless, this model is expressive enough to underlie higher-level frameworks with
similar synchronization-based communication. In particular, we focus hereafter on the
relation between cellular automata and the BIP framework [3], which will be used
later in section 4 for concrete experiments. BIP (Behavior-Interaction-Priority) is a
component-based framework which allows the construction of hierarchically structured
component-based systems. In BIP, atomic components are characterized by their in-
terface, that is, a set of ports (similar to action names) and their behavior, that is, an
automaton with transitions labeled by ports. Components are composed by layered ap-
plication of interactions and priorities. Interactions express synchronization constraints
between ports of the composed components. An interaction is a set of ports, every one
belonging to a different component, that has to be jointly executed. BIP provides (hier-
archical) connectors as a mean to structure and express sets of interactions in a compact
manner. Finally, priorities are used in BIP to filter amongst the set of enabled inter-
actions. Priorities provide an additional coordination mechanism to control the system

Knowledge Based Transactional Behavior 43

evolution. A significant part of BIP systems can be structurally represented as cellu-
lar automata. That is, any BIP system without priorities can be equally represented as
a cellular automaton by mapping BIP interactions into cellular automata interactions.
Since a port may be involved in several interactions, BIP atomic components can be
transformed into automata by duplicating transitions labeled by a port into a set of tran-
sitions labeled by the corresponding interactions.

2.2 The α-Core Protocol

The α-core protocol [14] was developed to schedule multiprocess interaction. It gen-
eralizes protocols for handshake communication between pairs of processes. For each
multiprocess interaction, there is a dedicated coordinator on a separate process. To ap-
preciate the difficulty of designing such a protocol, recall for example the fact that the
language CSP of Hoare [8] included initially an asymmetric construct for synchronous
communication; a process could choose between various incoming messages, but had
to commit on a particular send. This constraint was useful for achieving a simple im-
plementation. Otherwise, one needs to consider the situation in which a communica-
tion is possible between processes, but one of them may have performed an alternative
choice. Later Hoare removed this constraint from CSP. The same constraint appears
in the asymmetric communication construct of the programming language ADA. The
Buckley and Silberschatz protocol [5] solves this problem for the case of synchronous
communication between pairs of processes, where both sends and receives may have
choices. Their protocol uses asynchronous message passing between the processes to
implement the synchronous message passing construct. The α-core protocol solves the
more general problem of synchronizing any number of processes, using only asyn-
chronous message passing. Alternative solutions for this problem have been proposed,
using managers [6,1], a circulating token [11], or a randomized algorithm without man-
agers [9]. Contrarily to other manager-based solutions, α-core does not need unbounded
counters. The version presented below includes corrections from [10].

In α-core, the following messages are sent from a participant to a coordinator:

PARTICIPATE A participant is interested in a single particular interaction (hence it
can commit on it), and notifies the related coordinator.

OFFER A participant is interested in one out of several potentially available interac-
tions (a non-deterministic choice).

OK Sent as a response to a LOCK message from a coordinator (described below) to
notify that the participant is willing to commit on the interaction.

REFUSE Notify the coordinator that the previous OFFER is not valid anymore. This
message can respond to a LOCK message from the coordinator.

Messages from coordinators are as follows:

LOCK A message sent from a coordinator to a participant that has sent an OFFER,
requesting the participant to commit on the interaction.

UNLOCK A message sent from a coordinator to a locked participant, indicating that
the current interaction is canceled.

START Notifying a participant that it can start the interaction.
ACKREF Acknowledging a participant about the receipt of a REFUSE message.

44 S. Bensalem et al.

waiting

active

1

locked
2

3
6

4,5

sync

11 7

8,9,10

12

(a) Participant

accepting 1,2,3,4,9

locking

5 7,8

6

(b) Coordinator

Fig. 3. State machines

Fig. 3(a) describes the extended state machine of a participant. Each participant process
keeps some local variables and constants:

IS: a set of coordinators for the interactions the participant is interested in.
locks: a set of coordinators that have sent a pending LOCK message.
unlocks: a set of coordinators from which a pending UNLOCK message was received.
locker: the coordinator that is currently considered.
n: the number of ACKREF messages required to be received from coordinators until a

new coordination can start.
α: the coordinators that asked for interactions and subsequently refused.

The actions according to the transitions are written as a pair en→ action, where en is
the condition to execute the transition, which may include a test of the local variables,
a message that arrives, or both of them (then the test should hold and the message must
arrive). We denote the reception of a message MSG from process p by p?MSG. The
action is a sequence of statements, executed when the condition holds. The statement
p!MSG means “send message MSG to process p”. In addition, each transition is en-
abled from some state, and upon execution changes the state according to the related
extended finite state machine. The participant’s transitions, according to the numbering
of Fig. 3(a) are:

1. |IS > 1| → { foreach p ∈ IS do p!OFFER}
2. |IS = 1| → { locker:=p, where IS = {p}; locker!PARTICIPATE; locks, unlocks:= /0}
3. p?LOCK→{locker:=p; locks, unlocks:= /0; p!OK }
4. p?LOCK→{locks:=locks∪{p}}
5. locks �= /0 ∧ p?UNLOCK → {locker:=q for some q ∈ locks; q!OK; locks:=locks \ {q};

unlocks:=unlocks∪{p}}
6. locks = /0∧ p?UNLOCK→{ foreach q ∈ unlocks∪{p} do q!OFFER}
7. p?START→ {α:=IS \ (unlocks∪ {locker}); foreach q ∈ α do q!REFUSE; n := |α|; start

participating in the joint action managed by locker}
8. p?LOCK→{} 9. p?UNLOCK→ {} 10. p?ACKREF→{n:=n−1}

11. n = 0→{ Let IS be the new set of interactions required from the current state. }

For a coordinator, whose extended finite state machine appears in Fig. 3(b), we have
the variables waiting, locked, shared and α, holding each a set of processes, and n is a
counter for the number of processes that indicated their wish to participate in the in-
teraction. The constant C holds the number of processes that need to participate in the

Knowledge Based Transactional Behavior 45

interaction (called, the cardinality of the interaction), and the variable current is the par-
ticipant the coordinator is trying to lock. The transitions, according to their numbering
from Fig. 3(b) are as follows:

1. n <C∧ p?OFFER→{n:=n+1; shared:= shared∪{p} }
2. n <C∧ p?PARTICIPATE→ {n:=n+1; locked:= locked∪{p} }
3. p?REFUSE→ { if p ∈ shared then n:=n−1; p!ACKREF; shared:=shared \{p}}
4. n =C∧ shared = /0→{ foreach q ∈ locked do q!START; locked, shared:= /0; n:=0}
5. n = C ∧ shared �= /0 → {current:= min(shared); waiting:=shared \ {current};

current!LOCK}
6. waiting �= /0 ∧ p?OK → {locked:=locked ∪ {current}; current:=min(waiting);

waiting:=waiting\{current }; current!LOCK}
7. waiting = /0∧ p?OK → {locked:=locked ∪ {current}; foreach q in locked do q!START;

locked, waiting, shared:= /0; n:=0}
8. p?REFUSE→{α:=(locked∩ shared)∪{current, p}; foreach q ∈ α\{p} do q!UNLOCK;

p!ACKREF; shared:=shared \α; locked:=locked \α; n:=n−|α|}
9. p?OK→{}

We propose to characterize the correctness of the implementation by using execution
trace equivalence. We assume that the network is reliable and that there is no message
loss. We say that the interaction a occurs in a distributed execution of α-core whenever
the transition 7 in the coordinator for a is executed. The correctness of α-core guar-
antees that the executions of the original cellular automaton and the executions of its
implementation are the same.

3 Knowledge-Based Optimization

Synchronization algorithms such as α-core impose a lot of overhead in order to guaran-
tee correct interaction. We want to utilize knowledge in order to reduce the overhead in
coordination messages. Knowledge appears naturally in distributed systems, as it repre-
sents what a process knows from its obseravtions. Halpern and Moses [7] defined a logic
to reason about knowledge. Van der Meyden [13] introduced knowledge with perfect re-
call. Knowledge has been applied to control distributed discrete event systems [15] and
to implement priorities between multiparty interactions [2,4]. However, the previous
works assume a conflict resolution mechanism. We propose here a knowledge-based
optimization of such a mechanism, which has not been done, at least to our knowl-
edge. Based on [2], we construct a support automaton, which is a controller that either
supports or blocks actions, based on precalculated knowledge. There are two kinds of
controllers here. The first type is for each process of the system, and the second is per
each α-core synchronizing process. The support automaton for a system automaton can
reduce overhead by calculating when a component can actually commit to an interac-
tion (offer a PARTICIPATE call to α-core), which requires less confirmation messages
than simply declaring its participation (by the alternative OFFER call). In this case, the
knowledge gathered in the precalculated stage can distinguish between the cases when
one has an alternative possibility of coordination or does not. While we could benefit
from syntactically distinguishing between these cases based on the code of the system,

46 S. Bensalem et al.

the use of knowledge, and in particular, knowledge of perfect recall [13], can distin-
guish the cases where syntactically there can be alternative collaborations, but at this
stage of the executions, the alternatives are not available.

Let 〈A1,A2, ...,An〉 be a cellular automaton and A = (S,A,T,g0) its associated
global behavior as defined in section 2.1.

3.1 Knowledge for Participants

Let A i = 〈Si,Ai,δi,si
0〉 be a participant. As in [13,2], we define the knowledge with

perfect recall of this participant as the facts it can infer based on its local history. Recall
that we denote by σ|Ai the sequence of interactions obtained by removing from the
sequence σ all occurrences of interactions that are not in Ai.

Definition 4 (Indistinguishability of execution sequences for A i). Two sequences of
interactions σ and σ′ are indistinguishable by A i, denoted σ≡i σ′, iff σ|Ai = σ′|Ai .

Definition 5 (Knowledge with perfect recall). Let σ be a sequence of interactions ,
A i be a participant and ϕ be a predicate. After executing σ, A i knows ϕ if ϕ holds after
any execution σ′ that is indistinguishable by A i from σ. Formally, A i knows ϕ after

executing σ if ϕ(g) holds for every state g in {g ∈ S|∃σ′, σ′ ≡i σ∧g0
σ′−→ g}.

In order to compute the knowledge with perfect recall of the participant A i, we build its
support automaton Ki as in [2]. The support automaton Ki will follow the execution of
observable interactions for A i, that is, all interactions in Ai. The remaining interactions
in Ui = A \Ai are not observable by Ki. Informally, the state reached in Ki after any
sequence σ ∈ A∗ summarizes all the global states that can be reached in A after any
sequence σ′ ∈ A∗ such that σ and σ′ are indistinguishable by A i. Formally, Ki is defined
as the deterministic automaton 〈Si,Ai,δi,s0 i〉 where:

– The set of states Si = 2S correspond to subsets of the global states S.

– The transition function δi is defined as δi(s,a) = {g′ | ∃g ∈ s, ∃σ ∈ A∗, g
σ−→

g′ and σ|Ai = a}. Informally, for any state s, its successor s′ through interaction a
contains the set of global states g′ that are reached in A from global states g in s by
executing any sequence of unobservable interactions and exactly one a.

– The initial state s0 i = {g ∈ S|∃σ ∈ (Ui)∗, g0
σ−→ g}. Informally, s0i contains all

global states reachable in A by executing any sequence of unobservable interactions
starting from the initial global state g0.

Example 3. We illustrate the construction above on each automaton of the binary
counter example from Figure 1. For A0, we have K0 = A , since A0 observes all in-
teractions. The support automata obtained for A1 and A2 are depicted in Figure 4. Even
if by construction, the state /0 might be reachable, we do not consider it. Note that K2 is
the same as A2 up to the name of the states.

Knowledge Based Transactional Behavior 47

{0, 1} {2, 3}s1

{4, 5}
s2

{6, 7} s1
r2

K1

{0, 1, 2, 3}

{4, 5, 6, 7}
s2r2

K2

Fig. 4. Support automata for participants A1 and A2

of Figure 1

The support automaton is used to
reduce coordination overhead in α-
core as follows. For every A i, the sup-
port automaton Ki = 〈Si,Ai,δi,s0i〉 is
embedded in the corresponding par-
ticipant behavior. For our application,
there is no need to explicitly keep
track of the set of global states cor-
responding to the states of Ki. There-
fore, once the automaton Ki is constructed, states in Si can be replaced by elements of
any arbitrary finite domain. The participant uses one extra local variable s to record the
state of the support automaton. This variable is initialized as s0i. Then, this variable is
updated when the participant executes an interaction (transition 7) and is used to filter
the set IS before entering the active state (transition 11). The original transitions 7 and
11 are therefore modified into transition 7′ and 11′ as follows:

7′. p?START→ {α:=IS\unlocks \{locker}; foreach q ∈ α do q!REFUSE; n := |α|; start par-

ticipating in the joint action a managed by locker; s := δi(s,a) }

11′. n = 0→ { Let IS be the required interactions; IS := IS∩{a ∈ A|δi(s,a) �= /0} }

That is, the optimization restricts the sending of offer messages for interactions that
are enabled according to the support automaton. Clearly, this restricts the number of
exchanged messages. Moreover, in cases where no conflict exists in the filtered behavior
(such as in the binary counter example, the size of the IS set is always reduced to 1),
OFFER messages are replaced by PARTICIPATE messages, thus removing the need for
further locking by coordinators.

Example 4. As an example, from the state 1 in A1, two interactions (s2 and r2) are
possible. In K1 this state is split in two states that separate the case where s2 is possible
from the case where r2 is possible.

Proposition 1. The executions of the distributed implementation with knowledge-
optimized participants are the same as the executions of the original automaton.

3.2 Knowledge for Coordinators

Coordinators of the α-core can also gain information about the global context by record-
ing the offers received from different components. That is, new offers are issued by
participants only at the initial state and after every successful participation in an inter-
action. Therefore, offer reception provides to coordinators some (indirect and definitely
incomplete) information about the evolution of the system. Nonetheless, this informa-
tion can be exploited in order to avoid some useless coordination of the α-core protocol.
For example, a coordinator may detect that some offers are obsolete (their locking will
always be refused) or stable (on the contrary, their locking will always be accepted by
the corresponding participant).

The construction of the support automata for coordinators is a bit more intricate
than for participants. We want to benefit from the same approach by constructing a

48 S. Bensalem et al.

controller that is based on the precalculation of knowledge. However, such calculation
can be quite intricate if it takes into account the structure of the α-core algorithm. The
complication is due to the above mentioned difference in observation, that is, offers vs.
interactions. The starting point of the construction is the global behavior A . Clearly, A
does not mention explicitly the sending/reception of offers by participants/coordinators.
But, communication of offers can still be inferred from A knowing the behavior of
the α-core protocol. We present hereafter a systematic construction that allows to pro-
gressively refine A such that to make visible (relevant) offers communication for any
selected coordinator. The construction involves (1) offer generation, as response to exe-
cution of (conflicting) interaction, (2) asynchronous offer reception by the coordinator,
(3) determinization into a support automaton to be used by the coordinator.

Let a be a fixed interaction. We construct the support automaton Ka by applying a
sequence of transformations on the global behavior A = (S,A,T,g0) as follows:

Offer generation: We construct the labelled transition system A ′ =
(S,2{a,1..n},T ′,g0) by replacing labels of each transition, so that they contain in-
formation about the offers concerning a. For an interaction a′ and a global state g′, we
denote by I(a′,g′) = {i | a,a′ ∈ Ai ∧∃s′′ ∈ Si, δi(g′[i],a) = s′′} the set of indices of
automata that can participate in a after executing a′. Intuitively, this corresponds to set
of offers that the coordinator for a will receive after execution of a′. We relabel the

transition g
a′−→ g′ by g

{a}∪I(a,g′)−→ g′ if a′ = a and by g
I(a′,g′)−→ g′ otherwise. It might be

the case that some transitions have /0 as label after this step, which means that they have
no observable effect on the a-coordinator and thus are unobservable.

Asynchronous offer reception: We construct the labelled transition system A ′′ =
(S′′,{a, /0,1, ...,n},T ′′,g′′0) obtained by breaking transitions in A ′ such that there is
at most one action (either a or offer reception i) per transition. Formally, we take
S′′ = S×{0,1,2}n, that is, a state of A ′′ is defined by a global state g of the cellu-
lar automaton and a vector v of n integers in {0,1,2}. For any participant i, the value vi

gives the number of pending offers, that is, potentially sent by i and not yet received by
the coordinator. Given the specific behavior of the α-core, the number of pending offers
is always between 0 and 2. For a given set of indices I ⊆ {1, ...,n}, we denote by �I

the characteristic vector of I that is 1 if i ∈ I and 0 otherwise. We define the initial state
g′′0 = (g0,�I(a,g0)). Transitions in T ′′ are constructed from the following rules, where I
denotes an arbitrary index set:

g
{a}∪I−→ g′ ∈ T ′

(g,0)
a−→ (g′,�I)

g
I−→ g′ ∈ T ′ ∀i ∈ I, vi ≤ 1

(g,v)
/0−→ (g′,v+�I)

vi > 0

(g,v)
i−→ (g,v−�{i})

Projection and determinization: Finally, we construct the support automaton Ka =
(Sa,{a,1, ...,n},δa,ga0) as the deterministic automaton constructed from A ′′ by elimi-
nating /0 actions which are unobservable. The construction is essentially the same as the
one introduced in section 3.1 for participants and is not repeated here.

The previous construction guarantees that whenever an offer from participant A i is
received by the coordinator, the action i is possible from the current state of the support
automata. This is stated in Lemma 1.

Lemma 1. For any distributed execution σ, its restriction σ|{a,1,..,n} to actions observ-
able by Ka is the trace of an execution of Ka.

Knowledge Based Transactional Behavior 49

Example 5. In Figure 5, we present the different steps leading to the construction of
Ks1 . To obtain the automaton A ′, we relabel the transitions in A . For instance, the

transition 0
s0−→ 1 in A brings A0 in a state where it can take part in s1. From the

s1-coordinator point of view, this corresponds to receiving an offer from A0. Thus,
the transition is relabelled by {0} in A ′. In the non-deterministic automaton A ′′, each
state is labelled by a couple (g,v), where g is a global state from A , and v = v0v1

is a vector where vi is the number of offers to receive from A i. The dotted transitions
correspond to unobservable actions. Note that we depicted only the half of A ′′, the other
half (corresponding to states 3,4,5,6) shows the same pattern between states (3,10) to
(6,00) as between states (7,10) and (2,00). Finally, the determinized and minimized
version of A ′′ is the automaton Ks1 . It states that between two executions of s1, two
offers from A0 and one offer from A1 are to be received, in any order.

The coordinator for interaction a observes the offers sent from all participants in a
and computes the set of known stable and obsolete components (or offers). We say
that a component (offer) A i is stable at state s in Ka iff for all paths starting at s, a
transition labelled by i cannot be reached without going through a transition labelled by
a. Whenever an offer from A i is stable, the coordinator knows that A i can not send a
new offer until the interaction a takes place. More precisely, A i can only participate in
a and the information received from A i is up to date. If stable, A i can be considered as
if it were locked. In a dual manner, we say that a component (offer) A i is obsolete at
state s in Ka iff for all paths starting at s, a transition labelled by a cannot by reached
without going through a transition labelled by i. In this case, the coordinator knows that
it has to receive a new offer from A i before starting the interaction. This information
can be used to avoid tentative executions based on obsolete offers.

Example 6. Let us consider the support automaton for the coordinator of s1 in the bi-
nary counter. At state C, the coordinator may have received two offers from A0 and A1

and the default behavior is to attempt execution for interaction s1. However, the offer
from A0 is obsolete. Using the support automaton, the coordinator can therefore detect
this situation and silently remove that offer, which avoids the execution attempt. At state
D, both A0 and A1 are stable and there is no need to lock them before executing s1.

0

1{0}

2

{s1}

3

{0}4

{1}5 {0}

6

{s1}

7

{0}
{1}

A′

0,01

1,11

0,00

1

0,11 0

0,10

1

0

1,10

1

1,21
0

1,20

1

0

1,01
0

1,00
0

1

7,007,10 0

2,00
s1

A′′ (part of)

A B0

C

1

F 0

E

1
0 D

1
0

s1 Ks1

Fig. 5. Construction of the support automaton for the coordinator of s1

50 S. Bensalem et al.

The above optimizations are implemented as follows. The coordinator for a follows the
automaton Ka when receiving offers1 (transitions 1 and 2) and executing a (transitions
4 or 7, from Figure 3(b)). Formally, the coordinator uses an extra variable s tracking
the state of the support automaton. The transitions 1,2,4 and 7 of the coordinator are
modified into transitions 1’,2’,4’ and 7’ as follows:

1′. n <C∧ p?OFFER→{n:=n+1; shared:= shared∪{p}; s := δa(s, p); update() }

2′. n <C∧ p?PARTICIPATE→{n:=n+1; locked:= locked∪{p}; s := δa(s, p); update() }
4′. n = C ∧ shared = /0 → { foreach q ∈ locked do q!START; locked, shared:= /0; n:=0;

s := δa(s,a) }
7′. waiting = /0∧ p?OK → {locked:=locked ∪ {current}; foreach q in locked do q!START;

locked, waiting, shared:= /0; n:=0; s := δa(s,a); }

The update function above is used to modify the shared and locked sets, given the
current support automaton state s as follows:
foreach p ∈ shared

if p ∈ stablea(s) { shared := shared \ {p }; locked := locked ∪ { p } }
if p ∈ obsoletea(s) { shared := shared \ {p}; n = n -1; p!LOCK; p!UNLOCK }

Since a component can now be considered as locked even if it sent an OFFER message,
it may receive a START message while waiting to be locked. Therefore, we add a tran-
sition 12 from the waiting to the sync state, as depicted in Figure 3(a). We also modify
transition 7 into transition 7′ as follows:

7′. p?START→{α:=IS \unlocks\{ p }; foreach q ∈ α do q!REFUSE; n := |α|; start partici-

pating in the joint action managed by p }
12. p?START→ {α:=IS \ unlocks \ {p}; foreach q ∈ α do q!REFUSE; n := |α|; start partici-

pating in the joint action managed by p}

Proposition 2. The executions of the distributed implementation with knowledge-
optimized coordinators are included in the executions of the original automaton.

3.3 Combining Knowledge for Participants and Coordinators

Optimization for participants and coordinator can be combined. In this case, the con-
struction of the support automata for coordinators has to be done on the system obtained
using the support automata for participants. In particular, the relabelling step depends
on the actual offers sent by participants and thus on their support automata.

4 Experimental Results

We present experimental results for computing and using the support automata for par-
ticipants as presented in Section 3.1.

1 Here we consider only new offers that we need to distinguish from offers sent when participant
executes transition 6. This can be done by using a new message name for offers that are re-sent.

Knowledge Based Transactional Behavior 51

thinking

eating

eat1

cleaning
clnL1

clnR1

Philo1

free

used

clnL1,
clnRN

eatN ,
eat1

Fork1

free

used

clnL2,
clnR1

eat1,
eat2

Fork2

Fig. 6. A fragment of the dining philosophers example

0

1

clnR1

eat1 2

clnL2

eat2

Fig. 7. Support automaton
for participant Fork2

Examples. The first example presented in Figure 6 is a variation of the classical dining
philosophers problem. Each philosopher Philoi may eat during the interaction eati in-
volving its two neighbor forks. Then Philoi clean first its left fork, then its right fork
through interactions clnLi and clnRi respectively. We denote philoN an instance with N
philosophers.

The second example is called Master/Slave. We assume a set of N masters and M
slaves. Each master wants to perform a task for which it needs two slaves that it can
chose amongst a pool of size K. We denote msNMK such an instance. If the slave j is
in the pool of the master i, then the interaction acqi

j allows master i to acquire slave j,
which brings the slave in state i so that it remembers that i acquired it. On completion on
the task, the master i releases simultaneously the two acquired slaves j1 and j2 through
the reli

j1, j2
interaction. Figure 8 shows respectively, the behavior of masters and slaves.

The third example models a transmission protocol that propagates values amongst a
chain of memories. At every time, each memory node stores a single value. A fragment
of this example is shown in Figure 9. The rule is to propagate (copy) the new value
(from the left) only if the memory on the right has already copied the local value.
Propagation steps are implemented as ternary interactions denoted by mvi,v1,v2 , which
correspond to the case where memory i changes its value from v1 to v2. As an example,
the interaction mvi,1,0 in the Figure 9 changes the value in Nodei from 1 to 0 if Nodei+1

already changed its value to 1 and the next value (in Nodei−1) is 0. For our experiment,
the memories form a ring, thus the sequence of values seen by each memory depends
only on the initial state of the system. Note that propagation is enabled at places where
the ring contains two consecutive nodes holding the same value. We denote by tpN
(resp. tpN′) an example with N nodes and one (resp. two) enabled propagations.

0 1
acqi∗

2

a
cq

i ∗

rel i∗
,∗

Masteri

0

i1

ac
q
i 1

j
re
l
i 1∗,j

ik

acq i
kj

rel i
k∗,j

. . .

Slavej

Fig. 8. Master Slave example

0

1

mvi,1,0

2

Nodei

0

mvi,1,0

12

Nodei−1

0

1
mvi,1,0

2

Nodei+1

Fig. 9. Three consecutive nodes of the transmission protocol

52 S. Bensalem et al.

 0

 2

 4

 6

 8

 10

 12

3 4 5 6 7

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

ne
ed

ed

 fo
r

ex
ec

ut
in

g
on

e
in

te
ra

ct
io

n.

Number of philosophers

Fig. 10. Dining philosophers: messages
per interaction, standard version

 0

 2

 4

 6

 8

 10

 12

3 4 5 6 7

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

ne
ed

ed

 fo
r

ex
ec

ut
in

g
on

e
in

te
ra

ct
io

n.

Number of philosophers

OFFER
LOCK
UNLOCK
START
ACKREF
REFUSE
PARTICIPATE
OK

Fig. 11. Dining philosophers: messages per interac-
tion, optimized version

Building support automata for participants. We implemented the support automaton
computation for each participant by using analysis tools of the BIP framework. In Table
1, we present the results of this analysis by giving the average number of states in the
original automata and in the support automata. This gives an indication on the size
needed to store the knowledge, and the memory needed for execution of the support
automata. For the philoN instances, the support automaton of philosophers is the same
as the original automaton. For the forks, there is only one additional state, as shown in
Figure 7. The added state allows to distinguish who acquired the fork (left or right)
and to send only one offer accordingly, thus avoiding unneeded conflict resolution.

Table 1. Results: average size of original and support au-
tomaton and performance of the obtained implementation,
for each test instance

Average number of
states

Number of interactions
during 60s

Name Components in A i in Ki Standard Optimized
philo3 6 2.5 3 1129 2251
philo4 8 2.5 3 1811 2499
philo5 10 2.5 3 2261 4448
philo6 12 2.5 3 2624 4542
philo7 14 2.5 3 3093 4603
ms232 5 2.6 3 1491 1504
ms233 5 3 4.6 1128 1129
ms342 7 2.7 3.1 642 1885
ms343 7 3.1 4.9 1278 1265
ms344 7 3.6 7 1256 1251

tp3 3 3 6 750 1499
tp6 6 3 15 750 1500
tp6’ 6 3 16 1498 1557
tp9 9 3 24 750 1509
tp9’ 9 3 28 1497 3725
tp12 12 3 33 749 1513

In the Master/Slave ex-
ample, the automaton describ-
ing a master is very generic.
The corresponding support au-
tomaton contains all the pos-
sible sequences for acquiring
two slaves and then releasing
them. In particular, after hav-
ing acquired two slaves, there
is only one possible release in-
teraction, thus only one offer is
sent. Finally, in the transmis-
sion protocol example, the size
of each support automaton is
much larger since it depends
on the number of nodes in the
chain, that is on the sequence
of values seen by each node. If
two propagations are possible,

then the size of the support automaton is slightly increased, since the two propagations
may conflict.

Knowledge Based Transactional Behavior 53

Performance of distributed implementation. Using the BIP component framework, we
built a transformation that replaces multiparty interactions by the α-core protocol. We
obtain a distributed BIP model representing participants and coordinators communi-
cating through asynchronous message passing. From this model, we generate a set of
C++ programs communicating through Unix sockets. We ran the obtained code for both
standard α-core and knowledge-optimized α-core on a UltraSparcT1 allowing parallel
execution of 24 processes. In Table 1, we provide the number of interactions executed
during 60 seconds of execution (not including initialization) for both standard and opti-
mized version of each test instance. On the dining philosopher instances, the optimized
version is up to twice faster than the standard version. On the Master/Slave instances,
except for one, the performance is the same for both versions. On the transmission
protocol instances, we have a speedup of at least two, except for the tp6′ example.

In order to evaluate the distributed execution of standard vs. optimized versions, we
compare the average number of messages needed to perform an interaction for the three
examples. For the dining philosophers, these average numbers are shown in Figures
10 and 11. We can observe a reduction of approximatively 25%, mainly because some
OFFER messages from the fork participants are transformed in PARTICIPATE mes-
sages. In turn, this reduces the number of participants to lock, and thus the number
of messages. For the Master/Slave, the average number of messages needed to com-
plete one interaction for standard and optimized α-core are shown in Figures 12 and
13. Here the number of conflicts depends on the size of the pool of slaves assigned to
each master. Since there are many conflicts, the number of offers sent to execute an
interaction is quite big. Recall that on this example, performance of both versions is
comparable. However, the number of exchanged message is smaller in the optimized
version, because less offers are sent. For the transmission protocol, the average number
of messages exchanged to execute one interaction for standard and optimized execu-
tions is shown in Figures 14 and 15. For the non-primed versions, since there is no
dynamic conflict, each participant sends only PARTICIPATE messages and each co-
ordinator can directly answer a START message. This reduces drastically the number
of exchanged messages (6 per interaction, since they are ternary interactions). For the
primed version, in some cases a node may participate in two interactions and thus send
two OFFER messages, which is still much less than in the original version.

 0

 5

 10

 15

 20

 25

 30

 35

ms232 ms233 ms342 ms343 ms344

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

ne
ed

ed

 fo
r

ex
ec

ut
in

g
on

e
in

te
ra

ct
io

n.

Model

Fig. 12. Master/Slave: messages per in-
teraction, standard version

 0

 5

 10

 15

 20

 25

 30

 35

ms232 ms233 ms342 ms343 ms344

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

ne
ed

ed

 fo
r

ex
ec

ut
in

g
on

e
in

te
ra

ct
io

n.

Model

OFFER
LOCK
UNLOCK
START
ACKREF
REFUSE
PARTICIPATE
OK

Fig. 13. Master/Slave: messages per interaction, opti-
mized version

54 S. Bensalem et al.

 0

 10

 20

 30

 40

 50

 60

tp3 tp6 tp6’ tp9 tp9’ tp12

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

ne
ed

ed

 fo
r

ex
ec

ut
in

g
on

e
in

te
ra

ct
io

n.

Model

Fig. 14. Transmission protocol: mes-
sages per interaction, standard version

 0

 10

 20

 30

 40

 50

 60

tp3 tp6 tp6’ tp9 tp9’ tp12

A
ve

ra
ge

 n
um

be
r

of
 m

es
sa

ge
s

ne
ed

ed

 fo
r

ex
ec

ut
in

g
on

e
in

te
ra

ct
io

n.

Model

OFFER
LOCK
UNLOCK
START
ACKREF
REFUSE
PARTICIPATE
OK

Fig. 15. Transmission protocol: messages per interac-
tion, optimized version

5 Discussion

An architecture for component-based system can provide a very powerful tool for dis-
tributed software development. It assumes some underlying mechanism that provides
support for the components to interact and to choose from several alternative actions. It
is highly beneficial to develop code at this level, rather than to consider the lower level
architecture that uses message passing, or shared variables. On the other hand, obtain-
ing this level of abstraction is expensive: the overhead needed to allow both multiparty
interaction and non-deterministic choice requires some nontrivial amount of lower level
message exchange.

In this paper we looked at a technique to reduce the overhead needed for supporting
high level architecture for component-based systems, such as the BIP systems. Observ-
ing a popular algorithm for interaction coordination, the α-core protocol, we remarked
that additional information about the amount of overhead makes a lot of difference.
The coordination protocol distinguishes the case where there is no non-deterministic
choice; then, there are fewer messages sent, as an intent to participate in an interaction
is a committed intention. It is often not known in advance how many conflicting choices
there are: syntactically, there can be several, but at runtime, there are quite fewer cases
available (enabled) at each particular instance. Our method is based on performing a
preliminary model checking analysis of the system for detecting such situations. When
we find that the local situation admits no non-deterministic choice at any possible global
situation, we can employ the more efficient case of committing to an interaction.

This analysis is based on the knowledge of a process, regarding all the possible global
states consistent with its local situation. We apply this optimization in two cases: locally
at the process level, where the knowledge of the process may be used to transfer a seam-
ingly non-deterministic case into a committing case, and at the level of a process of the
coordination algorithm. The latter case is very powerful, as a coordinator process has, to
some extent, a more global view, having received requests from different processes. Ex-
periments show that rather than using simple memoryless knowledge, we are required
to use history-based knowledge. The reason is that it is the cases where different in-
stances of non-deterministic choice during runtime, rather than a history independent
case, are the interesting ones. This can be explained intuitively by the fact that the history

Knowledge Based Transactional Behavior 55

independent case actually hides a coding error, where not committing to an interaction
although there are no alternatives should have been replaced by a commitment to the
single possible interaction.

We performed experiments on three different examples. Our experiments show a
considerable improvement in the number of messages needed to be exchanged. It is
important to note that due to the use of history-based knowledge, additional memory is
needed to encode the possible histories. In the worst case, the amount of added memory
is quite nontrivial, exponential in the size of the system, for each process. However,
our experiments show a much better and balanced memory consumption. We intend to
conduct further experiments and to apply the knowledge-based technique for reducing
message passing in a more aggressive way.

References

1. Bagrodia, R.: Process synchronization: Design and performance evaluation of distributed
algorithms. IEEE Transactions on Software Engineering (TSE) 15(9), 1053–1065 (1989)

2. Basu, A., Bensalem, S., Peled, D., Sifakis, J.: Priority scheduling of distributed systems based
on model checking. Formal Methods in System Design 39, 229–245 (2011)

3. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In:
Software Engineering and Formal Methods (SEFM), pp. 3–12 (2006)

4. Bensalem, S., Bozga, M., Quilbeuf, J., Sifakis, J.: Knowledge-based distributed con-
flict resolution for multiparty interactions and priorities. In: Giese, H., Rosu, G. (eds.)
FMOODS/FORTE 2012. LNCS, vol. 7273, pp. 118–134. Springer, Heidelberg (2012)

5. Buckley, G.N., Silberschatz, A.: An effective implementation for the generalized input-
output construct of CSP. ACM Trans. Program. Lang. Syst. 5, 223–235 (1983)

6. Chandy, K.M., Misra, J.: Parallel program design: a foundation. Addison-Wesley Longman
Publishing Co., Inc., Boston (1988)

7. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed environment.
J. ACM 37, 549–587 (1990)

8. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21, 666–677 (1978)
9. Joung, Y.-J., Smolka, S.A.: Strong interaction fairness via randomization. IEEE Trans. Par-

allel Distrib. Syst. 9(2), 137–149 (1998)
10. Katz, G., Peled, D.: Code mutation in verification and automatic code correction. In: Esparza,

J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 435–450. Springer, Heidelberg
(2010)

11. Kumar, D.: An implementation of n-party synchronization using tokens. In: International
Conference on Distributed Computing Systems (ICDCS), pp. 320–327. IEEE (1990)

12. Lehmann, D., Rabin, M.O.: On the advantages of free choice: a symmetric and fully dis-
tributed solution to the dining philosophers problem. In: Principles of Programming Lan-
guages, POPL (1981)

13. Der Meyden, R.V.: Common knowledge and update in finite environments. Information and
Computation 140, 115–157 (1997)

14. Pérez, J.A., Corchuelo, R., Toro, M.: An order-based algorithm for implementing multiparty
synchronization. Concurrency and Computation: Practice and Experience 16(12), 1173–
1206 (2004)

15. Ricker, S.L., Rudie, K.: Know means no: Incorporating knowledge into discrete-event control
systems. IEEE Trans. on Automatic Control 45(9), 1656–1668 (2000)

Repair with On-The-Fly Program Analysis�

Robert Könighofer and Roderick Bloem

Institute for Applied Information Processing and Communications (IAIK),
Graz University of Technology, Austria

Abstract. This paper presents a novel automatic repair approach for
incorrect programs. It applies formal methods and analyzes program be-
havior only on demand. We argue that this is beneficial, especially if
exhaustive program analysis is infeasible. Our approach computes repair
candidates and refines them based on counterexamples. It can be used
with various verification techniques and specification formats to check a
candidate’s correctness. This includes test suites, model checkers verify-
ing assertions, or even the user checking candidates manually, in which
case no explicit specification is needed at all. We use concolic execution
to analyze programs and SMT-solving to compute repair candidates. We
implemented our approach in the open-source debugging environment
FoREnSiC and present first experimental results.

Keywords: Program Repair, Formal Methods, Abstraction-Refinement,
Concolic Execution, SMT-Solving.

1 Introduction

Debugging is a labor-intensive and costly activity in every software and hard-
ware development process. Errors must be detected, located and fixed. Clearly,
automation can reduce effort and costs dramatically. Automatic error detection
is already widely used (e.g., model checking or test case generation). Also, au-
tomatic error localization is increasingly applied. The actual correction of the
error, however, is usually done manually. Yet, fixing an error is often difficult,
even if its location is known. This is especially true in other people’s code, and
if the error has not been tracked down manually. As an illustration, consider the
algorithm to compute the greatest common divisor in Section 6.2. There is a bug
in line 35, now try to think of a fix. Other difficulties in fixing bugs manually are
the danger of eliminating only (some but not all) symptoms, or even introducing
new errors. Automatic error correction methods aim to improve this situation.

Formal methods for automatic error correction typically suffer from limited
scalability. They often model the correctness of the entire program with respect
to a given specification in a logic formula [15,19] or game structure [12,13] to
compute repairs. More scalable approaches are usually less systematic. They are

� This work was supported in part by the European Commission through project
DIAMOND (FP7-2009-IST-4-248613), and by the Austrian Science Fund (FWF)
through the national research network RiSE (S11406-N23).

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 56–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Repair with On-The-Fly Program Analysis 57

often based on brute-force search guided by genetic mechanisms [1,8] or other
heuristics [7,16]. In this work, we attempt to close this gap a little further.

We present a new formal program repair method that addresses the scalability
issue by not transforming the entire program into a formula at once. Instead,
program analysis is done on-the-fly whenever information about program be-
havior is missing. We compute repairs by refining a candidate as long as it is
still incorrect. If incorrect, we extract a counterexample, i.e., inputs for which
the specification is violated, and analyze only program behavior that is possible
under this counterexample. This information is then used to refine the repair
candidate such that the counterexample is resolved. Our experience shows that,
often, a few counterexamples (and corresponding refinements) suffice. This im-
plies that the program needs to be analyzed for a few inputs only.

The main advantage of our new approach is that program analysis focuses on
the information needed for repair. For complex programs, exhaustive analysis is
usually infeasible or at least inefficient. When setting a bound on the analysis
depth (e.g., by limiting the number of loop unrollings) one runs the risk of
abstracting away the wrong information. In contrast, the on-the-fly approach
is aware of which program behavior can safely be ignored until further notice.
Another advantage is the flexibility regarding the verification technique used to
check repair candidates and extract counterexamples. It can be a model checker,
a test suite, or even a human checking candidates manually. Consequently, there
is also flexibility in the specification format. Possibilities are assertions in the
code or test vectors together with expected outputs. Assertions can also be
used to check a program against a reference implementation. In case of the user
checking candidates manually, no explicit specification is needed at all.

We do not expect a complete specification right from the beginning, nor do
we suggest to replace humans in the debugging process. We rather strive to
assist the user and keep her in the loop. If only incorrect repairs are found due
to an incomplete specification, the user needs to refine the specification with
additional properties or test cases. This has the nice side-effect that the quality
of the specification is improved at the same time.

From a technical perspective, our new program repair method builds on the
template-based method introduced in [15], from which we inherit many features.
The input is an incorrect program, a specification, and a set of potentially faulty
components. The output is a set of replacements of the components such that
the specification is satisfied. We assume that the faulty components are identi-
fied in a preceding automatic error localization phase. In our implementation we
use model-based diagnosis [15], but other diagnosis methods are also possible. Not
only single-faults but also multiple faulty components can be handled. Replace-
ments follow templates, which ensures the understandability and maintainability
of the repaired program. This is important for keeping the user in the loop. Pro-
gram analysis is done with concolic execution, repair candidates are computed
using a Satisfiability Modulo Theories (SMT) solver. We see the main application
of our method in debugging simple software programs, e.g., first software models
of hardware designs. Our implementation works on C programs. It is integrated

58 R. Könighofer and R. Bloem

in the open-source debugging environment FoREnSiC [2] and can be downloaded1.
We also present first experimental results.

This paper is structured as follows. Section 2 discusses related work, and Sec-
tion 3 briefly explains existing techniques underlying our approach. Our new
repair method is presented Section 4. The sections 5 and 6 describe our imple-
mentation and present first experimental results. Section 7 concludes the paper.

2 Related Work

The repair method presented in [15] uses templates to synthesize new expres-
sions, symbolic or concolic execution for program analysis, and counterexample-
guided refinements for repair. We adopt these strategies and their benefits. How-
ever, in [15], program analysis transforms the entire program (and specification)
into one large correctness constraint before the repair starts. If complete analysis
is infeasible, the number of examined program paths can be limited. Depend-
ing on what was omitted, the approach may then find incorrect repairs or no
repair at all. Nothing ensures that only irrelevant program behavior is omitted.
The novelty of our new approach is that program analysis is done on-the-fly
during the repair process, focused towards the required information. Moreover,
while [15] only allows assert statements in the code, our new approach is flexible
regarding the specification and verification technique.

The repair method in [12,13] transforms a finite-state program into a finite-
state game and computes repairs as strategies for this game. In [11], this idea
is extended to programs with virtually infinite state space using predicate ab-
straction. To the best of our knowledge, this is the only existing formal error
correction method which does not consider the entire program, but uses ab-
straction instead. Its main shortcoming is that it only considers the predicates
found during the preceding verification phase; there is no mechanism to refine
the abstraction if it is too coarse for finding a repair. Our method of performing
program analysis on-the-fly for one counterexample after the other can also be
seen as an abstraction mechanism. The abstraction captures the program behav-
ior for certain inputs only. Our method can also refine an abstraction, simply
by analyzing more inputs. Besides the different way of abstracting, we also use
a different repair computation method (SMT-based instead of game-based).

Program repair is also related to program sketching [19,18], where a program
with missing parts has to be completed in such a way that a given specification
is satisfied. In [19], this problem is solved using counterexample-guided refine-
ments, just like in our approach. But also here, program correctness is encoded
into one large formula before synthesis starts. The counterexamples are applied
to this formula and not to the program to refine candidates. The repair method
of [4] also uses counterexample-guided refinements, but for combinational cir-
cuits. Less formal repair approaches include methods of repeatedly mutating the
incorrect program and checking if it becomes correct [7,16]. Genetic program-
ming methods typically combine mutation with crossing and selection according

1 http://www.informatik.uni-bremen.de/agra/eng/forensic.php

Repair with On-The-Fly Program Analysis 59

to some notion of fitness [1,8,10]. The work in [6] infers preconditions of meth-
ods from passing test cases, and fixes errors by deleting or inserting method calls
such that precondition violations are resolved. An extension [21] uses contracts,
Boolean query abstraction, and various heuristics.

3 Preliminaries

3.1 Symbolic and Concolic Execution

Symbolic execution [5,14] is a program analysis technique which executes a pro-
gram using symbols instead of concrete values as inputs. Symbols are placehold-
ers for any concrete value from a given domain. Symbolic execution tracks the
symbolic values of all program variables. If a branching point is encountered, a
constraint solver is used to check if both branches are feasible. If so, the execu-
tion forks. For each execution path, a path condition is computed. It evaluates to
true iff the respective path is activated. For a path that results in a specification
violation, the corresponding path condition states when the problem occurs.

Concolic execution [9,17] is a variant of symbolic execution where the program
is simultaneously executed on concrete and symbolic input values. The execution
path is determined by the concrete values. In parallel, the symbolic values of all
program variables are tracked and a symbolic path condition is computed. After
one execution run, one conjunct of the path condition is negated and all succeed-
ing conjuncts are discarded. Solving this constraint with a constraint solver gives
inputs that trigger a different execution path. A systematic method to negate
the different conjuncts of the path condition makes sure that all execution paths
are analyzed, or at least a high coverage is obtained [3].

Fig. 1. Illustration of the concept of symbolic execution

Example 1. Fig. 1 illustrates symbolic execution on a simple program. This pro-
gram will be used as a running example. It is a simple calculator which can only
add and subtract. Boxes contain the state of the symbolic execution, upper-case
letters are input symbols, and “PC” indicates the path condition. Concolic ex-
ecution of this program could start with the concrete values op = 0, a = 0,
and b = 0. It would execute the path that skips line 4 and compute the path
condition OP = 0. Negating the only conjunct in this path condition and solving
the constraints could give the next concrete input values op = 1, a = 0, and
b = 0. This triggers the other path with the path condition OP �= 0.

60 R. Könighofer and R. Bloem

3.2 Template-Based Repair

We briefly summarize the repair approach of [15], since our current work builds
on it. The approach targets simple software, the implementation works on C2.
assert-statements serve as specification. The error is assumed to be an incorrect
expression. That is, bugs like missing code or incorrect control flow (like having
an if instead of a while) cannot be handled. The main reason is efficiency.

In a first step, the program is executed symbolically. If an assertion violation
is encountered, model-based diagnosis is used to compute sets of potentially
faulty expressions. For every set of expressions, error correction then attempts
to synthesize replacements. This is reduced to the search for integer constants
using repair templates. A repair template is an expression involving program
variables and template parameters, which are the unknown constants.

Example 2. Assume that the program in Fig. 1 is supposed to compute a+b if
op=0, and a-b otherwise. This specification can be formalized with the assertion
assert(op==0 ? r==a+b : r==a-b). Assume further that model-based diagno-
sis identifies the expression b-a in line 4 as potentially faulty. This expression
is now replaced with a template like k0 + op*k1 + a*k2 + b*k3 + r*k4. Fi-
nally, the approach computes constant values for the template parameters k0 to
k4 such that the program satisfies its specification.

Template parameter value computation works as follows. Let i be a vector of
program inputs, and let k be the vector of template parameters. The program
and its specification are first transformed into a formula correct(i, k) which eval-
uates to true iff the program satisfies the specification when executed on input i
and repaired with the expression induced by k. The formula is computed us-
ing symbolic or concolic execution. To obtain a repair, one needs to find values
for k such that for all values of i, correct(i, k) holds true. This corresponds to
solving ∃k . ∀i . correct(i, k). To avoid solving this quantifier alternation directly,
counterexample-guided repair refinement is performed as illustrated in Fig.2.

Fig. 2. Counterexample-guided repair refinement, as done in [15]

There is a database I of concrete input vectors vi, which is initially empty. In
a loop, the following steps are performed. First, a repair candidate is computed
as a satisfying assignment vk for the variables k in

∧
vi∈I correct(vi, k). This

candidate is correct for the inputs vi ∈ I. Next, the method checks whether the

2 The implementation handles certain features like pointer arithmetic only approxi-
matively and does not guarantee the repair to be correct in this case.

Repair with On-The-Fly Program Analysis 61

candidate is correct for all inputs by computing a satisfying assignment vi for i
in ¬ correct(i, vk). If no such vi exists, a correct repair has been found. Otherwise,
the vector vi is a counterexample for the correctness of the repair candidate vk.
It is added to I to render the next candidate correct also for this input.

Example 3. For the specification and template from Example 2 we have i =
(OP, A,B), k = (k0, k1, k2, k3, k4), and correct(i, k) = (OP = 0) ∨ (k0 + k1 ·
OP+k2 ·A+ k3 ·B+ k4 · (A+B) = A−B). The first candidate is arbitrary and
could be vk = (0, 0, 0, 0, 0), which corresponds to replacing b-a in line 4 by 0.
This is not correct and a counterexample is vi = (1, 3, 2). The next candidate
must satisfy (k0+k1 ·1+k2 ·3+k3 ·2+k4 ·5 = 1). A solution, and hence a refined
repair candidate, is vk = (0, 0, 0,−2, 1). Since ¬(OP = 0∨−2·B+A+B = A−B)
is unsatisfiable, no counterexample exists for this candidate. Hence, the method
would suggest to replace b-a in line 4 by r-2*b.

A limit to the number of iterations and a time-out for all constraint solving
steps ensures termination within reasonable time. If no repair is found using a
particular template, the approach switches to a more expressive one. The current
implementation includes the linear template of Example 2 and also templates
involving bitwise operations and bit shifts. Templates for conditions are currently
of the form te OP 0 where te is a template for a non-Boolean expression and
OP ∈ {<,≤, >,≥,=, �=}. The template-based approach ensures that the repairs
are understandable, which is crucial for keeping the user in the loop and for
the maintainability of the corrected program. Our new approach with on-the-fly
program analysis inherits these advantages.

4 Repair with On-The-Fly Program Analysis

The repair method outlined in the previous section first analyzes the entire pro-
gram and computes one large correctness condition covering the program behav-
ior for all possible inputs and for all possible implementations of the expressions
to be synthesized. However, for non-trivial programs, complete program analysis
is typically not feasible. Even if feasible, it may take long and produce an un-
necessarily large condition. When limiting the program analysis depth (e.g., the
maximum number of loop unrollings or execution paths) information needed for
finding a correct repair may be missing. Yet, for computing a repair candidate
with iterative refinements, the correctness condition needs to be accurate for
some inputs only. Only for candidate verification, all inputs need to be covered.
However, candidate verification need not be performed on the same formula as
candidate computation. A completely different method can be used instead.

We remedy these shortcomings by doing program analysis on-the-fly, analyz-
ing the program only for the counterexamples that have been encountered. Fur-
thermore, we decouple the repair candidate computation from the verification.
This allows us to use various verification techniques and specification formats.

62 R. Könighofer and R. Bloem

4.1 Overview

Fig. 3 outlines our approach. As input, it takes a specification and an incorrect
program. The output are repairs in form of expression replacements such that
the specification is satisfied. First, potentially faulty expressions are inferred
using existing techniques like [15] or [16]. In this work, we focus on repair, i.e.,
computing replacements. This is sketched in the dashed box of Fig. 3.

Fig. 3. Overview of our new error correction method

We maintain a database of correctness constraints that must be satisfied by
any repair. This database is initially empty. In a loop, we first compute a repair
candidate that satisfies these constraints using an SMT-solver. Next, we verify
if this candidate satisfies the specification. If not, the verification step returns a
counterexample. We analyze the program behavior on this counterexample using
concolic execution and add constraints ensuring correctness for this input to the
database. In this way, our method keeps analyzing the program for more and
more inputs, and improving the repair candidates until a correct one is found.
Our experience shows that often a few iterations are enough (see also Section 6).

The next subsections explain the different steps of our method in more detail.
Then, we give an example and discuss benefits and limitations of our approach.

4.2 Repair Candidate Computation

Our database contains correctness constraints ϕ(k) over the template parameter
values k in some logic (our implementation supports linear integer arithmetic
and bitvector arithmetic). We use an SMT-solver with appropriate theory to
find a satisfying assignment for these constraints. The concrete values of the
template parameters k can be mapped back to concrete expressions using the
repair templates. This gives a candidate program that can be checked.

4.3 Repair Candidate Verification

The verification of repair candidates can be performed in many ways. The pre-
requisite is that the verification method is able to produce a counterexample in

Repair with On-The-Fly Program Analysis 63

case of incorrectness. One possibility is to execute a test suite. In our setting, a
test suite is a set of input vectors together with corresponding expected output
vectors. In addition to the expected outputs, assertions in the code can be used.
A counterexample is an input vector together with the corresponding expected
output vector such that the actual output does not match the expected one, or
an assertion is violated. In case of assertions in the code, the test suite can also
consist of input vectors only. A counterexample is then an input vector (together
with an empty vector of expected outputs) that triggers an assertion violation.

Another possibility is a model checker taking assertions in the code as specifi-
cation. Model checkers typically prove incorrectness by giving a counterexample.
In our case, this is an input vector for which an assertion is violated. The can-
didate verification can even be performed by a human. Here, a counterexample
could be an input vector together with the expected output. In this case, no
explicit specification is needed at all. The repair engine simply learns a fix using
the input-output examples given by the user in response to the candidates.

The flexibility in the verification comes with flexibility in the specification.
Test cases and assertions have already been mentioned. Assertions can also be
used to compare a program with a reference implementation. One simply ex-
ecutes the program and the reference implementation on the same inputs and
compares the outcome using suitable assertions. This allows the user to flexibly
define what equivalence between the programs means.

4.4 Program Analysis

The crucial step of our approach is program analysis, which is incomplete in
our case. We only look at behavior that is possible under one particular input
assignment, namely the counterexample found in the preceding verification step.

We take the program where incorrect expressions have already been replaced
by templates for new ones, and infer correctness constraints using concolic exe-
cution. The inputs are fixed to the concrete values given by the counterexample.
Only the template parameters k are left open. Symbols represent their yet un-
known values. The idea is to execute all feasible paths in this program, and to
compute the respective path conditions, which are predicates over k. Assertions
in the code are handled just like other branching points: If an encountered as-
sertion holds for the concrete values of the concolic execution run, the symbolic
condition under which it holds is added to the path condition and concolic execu-
tion continues. If the assertion is violated, the condition under which this is the
case is added and the execution run terminates. Program outputs are handled
similarly. Whenever the program outputs a value (which can be modeled by a
call to a special function output(x)), a conjunct is added to the path condition.
If the concrete output matches the expected value, the conjunct states when this
is the case. Otherwise, the conjunct expresses when the output does not match
and the execution run terminates. If no expected output values are included in
the counterexample (see Section 4.3), the output of the program is ignored.

The concolic execution runs are now divided into failing and passing runs.
A failing run is one that either terminates in an assertion violation or with a

64 R. Könighofer and R. Bloem

mismatch between the actual and expected output. The corresponding path con-
dition states when this happens. A passing run terminates without violating the
specification. Let F be the set of failing runs and PCr(k) be the path condition
of run r. We compute a necessary condition for program correctness as

ϕ(k) = ¬
∨
r∈F

PCr(k).

This condition is added to the database of correctness constraints. It will exclude
candidates that fail on the input vector for which the program has been analyzed.

Since the inputs to the program are fixed, typically many execution paths
become infeasible. Nevertheless, the set of execution paths may still be very large
or even infinite. One reason for an infinite number of paths can be a loop where
the termination condition depends on the implementation of the components to
be synthesized, i.e., on the template parameter values. This problem arises also
in [15], with the open inputs making the situation even worse. Just like [15], we
address this problem by limiting the program analysis depth with a user-given
bound on the number and length of execution paths to consider. A consequence
of these limits can be that the repair refinement loop does not converge. However,
since there is also a bound on the number of refinement iterations, the program
will terminate and the user can try again with higher limits. In general, our
approach is tailored towards finding repairs efficiently for many cases instead of
having a sound and complete method that does not scale.

4.5 Example

Example 4. Assume that the program from Example 1 is specified with the test
cases (op=0, a=3, b=5 → r=8), (1, 5, 3 → 2), and (1, 6, 1 → 5). We use the tem-
plate from Example 2. Initially, the database of correctness constraints is empty,
so the first repair candidate is arbitrary. It could be vk = (0, 0, 0, 0, 0), which
means that b-a in line 4 of the program is replaced by 0. Verifying this candidate
with the test cases, we get (1, 5, 3→ 2) as counterexample. We now use concolic
execution to analyze the program behavior for the input vector (1, 5, 3). Only the
execution path including line 4 is feasible. After line 4, r has the symbolic value
k0+k1 ·1+k2 ·5+k3 ·3+k4 ·8, because b-a has been replaced by the template. Tak-
ing r as the output and 2 as expected value, concolic execution distinguishes two
cases, which are activated with two concolic execution runs r1 and r2. The run r1
is passing and has the path condition PCr1(k) = k0+k1 ·1+k2 ·5+k3 ·3+k4 ·8 = 2.
The run r2 is failing and has PCr2(k) = k0 + k1 · 1 + k2 · 5 + k3 · 3 + k4 · 8 �= 2.
Since F = {r2}, we add ϕ1(k) = k0 + k1 + k2 · 5 + k3 · 3 + k4 · 8 = 2 to the
database of correctness constraints. The next iteration starts. Now, the candi-
date has to satisfy ϕ1(k). A solution is vk = (2, 0, 0, 0, 0), which corresponds to
replacing b-a in line 4 by 2. This candidate fails on the test case (1, 6, 1 → 5).
For this counterexample, concolic execution produces the correctness constraint
ϕ2(k) = k0 + k1 + k2 · 6 + k3 · 1 + k4 · 7 = 5. It is added to the database and
another iteration starts. The next repair candidate must fulfill ϕ1(k) and ϕ2(k).

Repair with On-The-Fly Program Analysis 65

A solution is vk = (0, 0, 1,−1, 0), which means that b-a is replaced by a-b. This
candidate passes all tests and is presented to the user.

4.6 Discussion

This section discusses the main benefits and limitations of our new repair method.

More Focused Program Analysis: The main advantage of our new repair
method is that program analysis is very focused towards the information needed
for computing repair candidates. Complete analysis is infeasible for complex pro-
grams. In [15], this issue is addresses by setting a limit on the number and length
of the execution paths to consider. However, since there is no guidance on what
to analyze, this limit can render the probability of obtaining the information rel-
evant for finding a repair very low. In contrast, our new repair method analyzes
the program only for the counterexamples that are relevant for the repair finding
process. There is also a bound on the number and length of the execution paths.
However, since these limits apply locally for each invocation, our new approach
learns at least something about the behavior under each counterexample.

Simpler Program Analysis: Compared to [15], our new method renders pro-
gram analysis with concolic execution simpler because the inputs are always
fixed to one counterexample at a time. This does not only drastically reduce the
number of feasible execution paths, it also simplifies the analysis per concolic ex-
ecution run. We can start to track the symbolic values of the program variables
only after a repair template with unknown parameters has been executed for
the first time. In particular, if a reference implementation is used as a specifica-
tion, our new approach needs to execute the entire reference code with concrete
variable values only (see Section 6.2 for such a scenario). The approach without
on-the-fly analysis needs to track the symbolic values right from the beginning
because the inputs are not fixed but have a symbolic value.

Flexibility in the Specification: From the user’s perspective, the most impor-
tant benefit is probably the flexibility in the specification of the desired behavior.
Existing formal correction approaches often support assertions only. However,
writing assertions which accurately reflect the desired behavior and do not only
check for basic properties is difficult. Test cases (possibly together with some
assertions) are often more natural. This flexibility is also important for keeping
the user in the loop. Writing additional test cases if only incorrect repairs are
produced is often simpler than coming up with better assertions.

Better Scalability: Our method addresses the scalability issue, which is com-
mon for all formal error correction approaches, from several sides. Doing program
analysis for typically only a few concrete counterexamples has already been men-
tioned. The flexibility in the technique for verifying repair candidates is another
factor. Where formal approaches like model checking or symbolic execution fail,
test case execution can still produce meaningful results.

Limitations: A drawback of the separation of concerns is that little infor-
mation (only the counterexample) is passed from the verification phase to the

66 R. Könighofer and R. Bloem

program analysis phase. Furthermore, certain program paths may be feasible
under several counterexamples, and may thus be analyzed multiple times using
concolic execution. The limitation of the approach to incorrect expressions can
be easily weakened in principle, but at the cost of efficiency. Whenever there are
finitely many (and not too many) options to replace a certain construct in the
program, we can analyze all of them. This way, we could handle bugs like having
an if instead of a while, or bugs in the left-hand side of an assignment.

5 Implementation

We implemented our new repair method as a proof-of-concept in the open-source
debugging environment FoREnSiC [2], re-using the provided infrastructure and
parts of the implementation of [15]. Our new repair engine is integrated with
the existing error localization engine. So far, we implemented two mechanisms
to verify the correctness of repair candidates. The fist one is test case execution,
operating on a given set of input vectors together with corresponding expected
output values. Assertions in the code can be used in addition or as alternative to
the expected outputs. The second verification mechanism uses concolic execution
to compute one large correctness condition, just like [15], and uses this condition
to verify correctness with an SMT-solver query. This second mechanism was
implemented mainly to have a fair comparison with the existing technique. In
the future, we also plan to implement verification engines using software model
checkers such as CBMC or SATABS. We also want to implement an interface
which asks the user to verify correctness. It would be interesting to see whether
this way of doing semi-automatic program repair is useful and not too laborious.

Our implementation is able to use the SMT-solvers Yices and Z3, either via
their C-API or via the SMT-LIBv2 format. We support linear integer arithmetic
as well as bitvector arithmetic. The concolic execution engine we use for pro-
gram analysis is an extension of CREST [3]. Our repair method also implements
the heuristics of [15] for preferring simple repairs using Maximum Satisfiability
(MAX-SAT) solving. Besides the source code, the FoREnSiC archive also contains
the scripts to reproduce our experimental results.

6 Experimental Results

In this section, we experimentally compare our new repair method with the
method of [15] to support the following informal claim.

Claim. If program analysis is done before repair starts, the analysis needs to
be fairly detailed to deliver the information required for finding a repair with
counterexample-guided refinements. Repair with on-the-fly program analysis re-
quires only a fractional amount of this information about the program behavior.

This property is important because complex programs cannot be analyzed ex-
haustively. Section 6.2 shows an example were the method of [15] even fails

Repair with On-The-Fly Program Analysis 67

because upfront program analysis does not produce the required information
within reasonable time.

One could expect that our new repair method is also significantly faster be-
cause the constraints that are used for computing repair candidates are typi-
cally much smaller, and should hence be easier to solve. Unfortunately, if the
constraints do not lack information that is needed for repair, this does not hold
true. The reason is that modern constraint solvers, especially SMT-solvers, are
good in ignoring information that is not needed. The additional time they require
for parsing and simplifying the large formula is usually not so significant.

6.1 Performance Results

Table 1 summarizes performance results for repairing different faulty versions of
the tcas program from the Siemens suite [20]. The tcas program implements
a traffic collision avoidance system for aircrafts. It has about 180 lines of code,
12 integer inputs and one output. It comes in 41 faulty versions, together with a
reference implementation and 1608 test cases. Table 1 only contains those faulty
versions for which our fault model (incorrect expressions) applies. Versions with
missing code or incorrect control flow are not considered. An exception are the
versions tcas21, tcas22, and tcas23. They feature a missing function call, but
this can be compensated by modifying an expression. Table 1 only compares the
error correction step, assuming perfect information about the error location.

The columns 1 to 4 contain results for our on-the-fly repair method using
test case execution to verify repair candidates. Column 1 indicates whether a
repair could be found. Column 2 gives the number of execution paths that had
to be analyzed using concolic execution to find a correct repair candidate. The
number of iterations of the repair refinement loop is listed in Column 3. Col-
umn 4 shows the overall repair time (including program analysis and candidate
verification). The columns 5 to 8 contain exactly the same information for the
on-the-fly method that verifies candidates using a correctness formula express-
ing equivalence with the reference implementation (see Section 5). Finally, the
columns 9 to 12 show results of the method without on-the-fly analysis. The
specification is the same, namely an assertion requiring equivalence with the
reference implementation. Column 10 gives the minimum number of execution
paths that need to be analyzed for the method to find a repair. For this number
of analyzed execution paths, the last two columns list the number of iterations
of the repair refinement loop and the overall repair time, respectively.

All experiments were performed on an Intel P7350 processor with 2 × 2.0
GHz and 3 GB RAM, running 32-bit Linux. As SMT-solver we used Z3 version
3.1 with linear integer arithmetic, interfaced via its SMT-LIBv2 interface. A
time-out of 60 seconds was set for all SMT-solver calls.

Discussion

What stands out in Table 1 is that repair with on-the-fly program analysis
and test cases is able to fix all benchmarks, and is significantly faster than the

68 R. Könighofer and R. Bloem

Table 1. Performance results

Col. 1 2 3 4 5 6 7 8 9 10 11 12

On-the-fly
with testing

On-the-fly with
equivalence checking

Method of [15]
re
p
a
ir

fo
u
n
d

#
p
a
th
s

a
n
a
ly
ze
d

#
it
er
a
ti
o
n
s

re
p
a
ir

ti
m
e

re
p
a
ir

fo
u
n
d

#
p
a
th
s

a
n
a
ly
ze
d

#
it
er
a
ti
o
n
s

re
p
a
ir

ti
m
e

re
p
a
ir

fo
u
n
d

m
in
.
#

p
a
th
s

#
it
er
a
ti
o
n
s

re
p
a
ir

ti
m
e

[-] [-] [-] [sec] [-] [-] [-] [sec] [-] [-] [-] [sec]

tcas01 yes 16 9 23 no - - - yes 337 8 65
tcas02 yes 40 11 30 yes 8 3 12 yes 753 5 26
tcas06 yes 32 5 12 yes 60 8 79 yes 1393 7 55
tcas07 yes 4 3 10 yes 2 2 6 yes 305 3 11
tcas08 yes 12 7 18 yes 32 17 38 yes 305 5 17
tcas09 yes 6 4 13 yes 8 5 28 yes 593 6 41
tcas10 yes 104 10 32 no - - - no - - -
tcas13 yes 14 8 33 no - - - no - - -
tcas14 yes 24 13 71 no - - - no - - -
tcas16 yes 2 2 9 yes 2 2 6 yes 305 2 9
tcas17 yes 4 3 10 yes 2 2 6 yes 305 3 12
tcas18 yes 2 2 8 yes 34 18 40 yes 305 4 14
tcas19 yes 12 7 18 yes 32 17 37 yes 305 5 18
tcas20 yes 10 6 15 yes 8 5 26 yes 593 9 85
tcas21 yes 32 17 206 no - - - no - - -
tcas22 yes 32 17 206 no - - - no - - -
tcas23 yes 22 12 113 no - - - no - - -
tcas24 yes 22 12 112 no - - - no - - -
tcas25 yes 10 6 17 yes 14 8 100 yes 337 7 82
tcas28 yes 8 3 10 yes 20 6 35 yes 1329 4 34
tcas35 yes 8 3 9 yes 20 6 46 yes 1329 5 41
tcas36 yes 2 2 7 yes 2 2 6 yes 305 2 8
tcas39 yes 10 6 17 yes 14 8 101 yes 337 7 82

avg. 100% 18.6 7.3 43 65% 17.2 4.7 38 70% 397 5.1 38

other methods. Of course, the 1608 test cases form a less restrictive specification
than equivalence with the reference implementation. However, manual analysis
of the computed repairs showed that they are reasonable – they do not just
exhibit “holes” in the test suite. This illustrates that repair with test cases as
specification can be useful and has the potential to scale better.

The columns 3, 7, and 11 show that a few iterations of the repair refinement
loop are often enough to find a repair. Our new repair method with on-the-fly
program analysis exploits this circumstance by doing program analysis only for
the few counterexamples that show up. On average, it analyzes only 18 execution
paths (see Column 2 and 6). Without on-the-fly analysis, at least 397 execution
paths need to be analyzed on average (Column 10). These observations confirm
the Claim about analysis depth postulated earlier. With the same mechanism to

Repair with On-The-Fly Program Analysis 69

verify the correctness of repair candidates, the running times are almost the same
(Column 8 vs. 12). The scalability benefits of our new method become more evi-
dent when exhaustive program analysis is not feasible anymore, as illustrated in
the next section.

6.2 Greatest Common Divisor Example

The tcas example in the previous section fits the repair method with upfront
program analysis well because it has only a finite (and small) number of execu-
tion paths. Let us now increase the level of difficulty. Consider the following C
code implementing a sophisticated algorithm to compute the Greatest Common
Divisor of two integers in the function gcd. The code also contains the Euclidean
algorithm as reference implementation (gcdR), and an equivalence assertion in
line 19. The gcd implementation contains a bug which is not easy to see and
even more difficult to fix: line 35 should read u - v instead of u >> 1.

1 #include <a s s e r t . h>
2 #include < f o r e n s i c . h>
3 #define UI unsigned int
4

5 //<ASSUME CORRECT>
6 UI gcd (UI u , UI v) ;
7 UI gcdR (UI a , UI b) {
8 i f (a == 0) return b ;
9 while (b != 0) {

10 i f (a > b) a = a − b ;
11 else b = b − a ;
12 }
13 return a ;
14 }
15 void main () {
16 UI a , b ;
17 FORENSIC_input_UI (a) ;
18 FORENSIC_input_UI (b) ;
19 assert (gcdR (a , b) ==

gcd (a , b)) ;
20 } //</ASSUME CORRECT>

21 UI gcd (UI u , UI v) {
22 UI s = 0 ;
23 i f (u == 0 | | v == 0)
24 return u | v ;
25 for (; ((u | v)&1)==0;++s) {
26 u >>= 1 ; v >>= 1 ;
27 }
28 while ((u & 1) == 0)
29 u >>= 1 ;
30 do {
31 while ((v & 1) == 0)
32 v >>= 1 ;
33 i f (u <= v) { v −= u ;
34 } else {
35 UI tmp = u >> 1 ;
36 u = v ; v = tmp ;
37 }
38 v >>= 1 ;
39 } while (v != 0) ;
40 return u << s ;
41 }

We first apply our new repair method with on-the-fly program analysis and
test-based repair candidate verification. As test inputs, we simply take all pairs
a, b with 0 ≤ a, b < 100. The number 100 was chosen arbitrarily, the correct
repair is also found with lower numbers like 15. For program analysis, we do
not limit the number of execution paths to analyze, but rather their length.
With two or three invocations of our method, we found out that a length of 55
is enough.3 Using these parameters and Z3 with bitvector arithmetic, our new

3 This number roughly corresponds to the number of executed statements.

70 R. Könighofer and R. Bloem

method found the sequence of repair candidates “873”, “85”, “u - 2”, and “u
- v” in 101 seconds. The last one, “u - v”, was found to be correct. Only 1570
program paths had to be analyzed. With a more careful choice of the parameters,
a correct repair can also be found with less than 1000 paths analyzed.

We failed in applying themethodwith upfront programanalysis to find a repair.
Again, we experimented with an increasing maximum execution path length dur-
ing program analysis. With a maximum length of 75, the faulty statement was not
even executed in such a way that a wrong result was produced. With a maximum
length of 80, we were already analyzing 10 402 execution paths, which took more
than half an hour. Still, the program analysis was so inaccurate that only incorrect
repairs (usually replacing the faulty expression with some constant) were found.4

Discussion

This example nicely demonstrates the scalability benefits of our new approach.
Complete program analysis is simply infeasible for the gcd program. The many
loops and branching points lead to huge numbers of possible execution paths,
even if one considers only paths of relatively short length. Hence, one can only
analyze small parts of the program behavior. When doing random program anal-
ysis before repair starts, it is very unlikely that the information needed for repair
is obtained. With on-the-fly program analysis one cannot completely analyze the
program either, not even for the counterexamples of interest. However, focusing
on these counterexamples helps to extract enough information to find repairs.

7 Conclusion

In this work, we presented a novel method for automatic error correction in sim-
ple software programs using on-the-fly program analysis. In contrast to existing
repair methods which perform program analysis before the repair process starts,
our approach analyzes only those parts of the behavior of the program that are
relevant for finding a repair. This is important if exhaustive program analysis
is infeasible. Not looking at the entire program right from the beginning can be
seen as an abstraction method. Unlike existing methods that use abstraction for
repair [11], our method can also refine the abstraction. Compared to existing
formal methods, our new approach is also more flexible regarding the form of
specification and the correctness verification method. Assertions and test cases
can be used as well as on-line feedback from the user. All this contributes towards
making automatic error correction more practicable.

In the future, we plan to address limitations of the approach and its implemen-
tation by experimenting with fault models that go beyond incorrect expressions,

4 The reader may wonder why no repair is found although the path length is already
higher than with on-the-fly analysis. The reason is that we only consider symbolic
operations for the path length, so the absolute values cannot be compared. In the
on-the-fly approach, the symbolic computation begins only when the repair template
(i.e., line 35) is executed for the first time. See also Section 4.6.

Repair with On-The-Fly Program Analysis 71

interfacing additional verification engines, and implementing memory models to
accurately reason about array operations and pointer arithmetic.

References

1. Arcuri, A.: On the automation of fixing software bugs. In: ICSE, pp. 1003–1006.
ACM (2008)

2. Bloem, R., Drechsler, R., Fey, G., Finder, A., Hofferek, G., Könighofer, R., Raik,
J., Repinski, U., Sülflow, A.: FoREnSiC – An automatic debugging environment for
C programs. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857,
pp. 260–265. Springer, Heidelberg (2013)

3. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: ASE, pp.
443–446. IEEE (2008)

4. Chang, K.-H., Markov, I.L., Bertacco, V.: Fixing design errors with counterexam-
ples and resynthesis. In: ASP-DAC, pp. 944–949. IEEE (2007)

5. Clarke, L.A.: A system to generate test data and symbolically execute programs.
IEEE Trans. Software Eng. 2(3), 215–222 (1976)

6. Dallmeier, V., Zeller, A., Meyer, B.: Generating fixes from object behavior anoma-
lies. In: ASE, pp. 550–554. IEEE (2009)

7. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes for faulty
programs. In: ICST, pp. 65–74. IEEE (2010)

8. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming ap-
proach to automated software repair. In: GECCO, pp. 947–954. ACM (2009)

9. Godefroid, P., Klarlund, N., Sen, K.: DART: Directed automated random testing.
In: PLDI, pp. 213–223. ACM (2005)

10. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: A generic method
for automatic software repair. IEEE Trans. Software Eng. 38(1), 54–72 (2012)

11. Griesmayer, A., Bloem, R., Cook, B.: Repair of Boolean programs with an applica-
tion to C. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 358–371.
Springer, Heidelberg (2006)

12. Jobstmann, B., Griesmayer, A., Bloem, R.: Program repair as a game. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 226–238. Springer,
Heidelberg (2005)

13. Jobstmann, B., Staber, S., Griesmayer, A., Bloem, R.: Finding and fixing faults.
Journal of Computer and System Sciences 78(2), 441–460 (2012)

14. King, J.C.: Symbolic execution and program testing. Communications of the
ACM 19(7), 385–394 (1976)

15. Koenighofer, R., Bloem, R.: Automated error localization and correction for im-
perative programs. In: FMCAD, pp. 91–100. IEEE (2011)

16. Raik, J., Repinski, U., Hantson, H., Jenihhin, M., Di Guglielmo, G., Pravadelli, G.,
Fummi, F.: Combining dynamic slicing and mutation operators for ESL correction.
In: ETS, pp. 1–6. IEEE (2012)

17. Sen, K., Marinov, D., Agha, G.: CUTE: A concolic unit testing engine for C. In:
ESEC/FSE, pp. 263–272. ACM (2005)

18. Solar-Lezama, A.: The sketching approach to program synthesis. In: Hu, Z. (ed.)
APLAS 2009. LNCS, vol. 5904, pp. 4–13. Springer, Heidelberg (2009)

19. Solar-Lezama, A., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.A.: Combinatorial
sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006)

20. Siemens suite, http://pleuma.cc.gatech.edu/aristotle/Tools/subjects
21. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Au-

tomated fixing of programs with contracts. In: ISSTA, pp. 61–72. ACM (2010)

http://pleuma.cc.gatech.edu/aristotle/Tools/subjects

Computing Interpolants without Proofs�

Hana Chockler, Alexander Ivrii, and Arie Matsliah

IBM Research – Haifa

Abstract. We describe an incremental algorithm for computing inter-
polants for a pair ϕA, ϕB of formulas in propositional logic. In contrast
with the common approaches, our method does not require a proof of
unsatisfiability of ϕA ∧ϕB , and can be realized using any SAT solver as
a black box. We achieve this by combining model enumeration with the
ability to easily generate interpolants in the special case that one of the
formulas is a cube.

1 Introduction

Craig’s interpolation theorem [Cra57] states that for any pair of propositional
formulas ϕA, ϕB , if ϕA implies ¬ϕB (ϕA ⇒ ¬ϕB) then there exists a formula
ϕI , so that ϕA ⇒ ϕI ⇒ ¬ϕB , and in addition Vars(ϕI) ⊆ Vars(ϕA)∩Vars(ϕB).
The formula ϕI is called a Craig interpolant of ϕA and ϕB .

Starting with the seminal work of McMillan [McM03], interpolants have a
central role in formal verification (and beyond) – various application include
hardware model checking [McM03, McM05], detection of functional dependency
[LJHM07], Boolean function decomposition [LJH08], and model checking of se-
quential programs [McM10].

The most common technique for computing an interpolant for a pair of formu-
las ϕA, ϕB in propositional logic is based on a resolution refutation for (ϕA∧ϕB)
produced by a DPLL-like SAT solver [ZM03, ANORC10]. Once obtained, the
proof can be transformed into an interpolant in the form of a Boolean circuit
having the same structure as the proof itself [Kra97, Pud97, McM03, KW10].1

Even though this scheme is generally very successful in practice, its main
limitation is the need for a refutation (proof of unsatisfiability) that is of man-
ageable size. Since modern SAT solvers are not specifically aimed to produce
short refutations, even for simple problems the interpolants produced are of-
ten too big to handle. In addition, the interpolants constructed in this way are
usually highly redundant, and for practical applications it is often beneficial to
minimize/simplify them. However, such minimization can be very costly – and
thus in practice one might not succeed to construct a small interpolant even if

� This work is partially supported by the European Community under the call FP7-
ICT-2009-5 – project PINCETTE 257647.

1 There are efficient algorithms known to compute interpolants based on refutations
in proof systems other than resolution (e.g., in Cutting Planes [Kra97]), but the one
based on resolution is the canonical one from practical perspective.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 72–85, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Computing Interpolants without Proofs 73

one exists. In the worst case, the input formula (ϕA ∧ ϕB) might not have a
resolution refutation of polynomial (in the number of variables) size at all.

The problem boils down to the dependency of the method on a particular
type of SAT solving algorithm. In other words, even if the ultimate SAT solver
was given to us as an oracle that answers any satisfiability query instantly, we
would not know how to use it to produce interpolants efficiently.

1.1 Our Contribution

In this paper we present a SAT-based incremental algorithm for computing in-
terpolants. Our algorithm can be easily implemented on top of any complete
SAT-solver with the minimal interface to return SAT / UNSAT and a satis-
fying assignment in case of SAT, and in particular the solver does not need to
produce proofs or be DPLL-based. Even though this minimal interface in prin-
ciple suffices, for practical reasons we will want from the solver a bit more: the
(now standard) incremental interface that allows adding clauses between calls
and solving under assumptions (see Section 3).

The core idea of our algorithm is to compute an interpolant ϕI incrementally
by taking the disjunction of “point” interpolants ϕp for all p ∈ A (where A de-
notes the set of models of ϕA). Each point interpolant ϕp contains p, is disjoint
from B, and is defined in terms of common variables of ϕA and ϕB . It follows
that the union of these interpolants for all p ∈ A contains all of A and is still
disjoint from B – thus constituting a valid interpolant for (ϕA, ϕB). An impor-
tant observation here is that computing a point interpolant, or more generally
an interpolant between a cube c = 	1 ∧ · · · ∧ 	k (containing up to 2−k fraction
of the points in A) and any propositional formula ϕB is trivial: one can simply
remove from c the literals referring to variables local to A. From the practical
viewpoint, it is crucial to further generalize these cubes to cover as many points
of A as possible while still being disjoint from B. The difference between our
approach and the traditional (monolithic) interpolation is depicted graphically
in Figure 1.

A more general method of computing an interpolant for (ϕA, ϕB) is the fol-
lowing two-stage process. First, we show that ϕA ∧ϕB is unsatisfiable by means
of a certain partition-based algorithm (by this we mean an algorithm in which
one solver is run on ϕA, another solver is run on ϕB , and the two solvers are
allowed to exchange constraints consisting only of common variables). Second,
we show how to construct an interpolant based on these exchanged constraints
(see Section 3.3 for details).

Our approach is somewhat similar in spirit to the classic algorithm that ex-
tracts a satisfying assignment from a SAT decision procedure, viewing the pro-
cedure as an oracle. In this algorithm, the variables are ordered, and then the
first one is assigned at random. The algorithm then queries the SAT oracle for
the existence of a satisfying assignment for the rest of the formula; it continues
in this way until all variables are assigned.

74 H. Chockler, A. Ivrii, and A. Matsliah

Fig. 1. Comparison between monolithic and incremental interpolants

1.2 Related Work

This work is tightly related to various methods for finding all models (satisfying
assignments) of a given formula, or more specifically finding all assignments to
the common variables of ϕA and ϕB possessing extensions satisfying ϕA. We refer
to the papers [McM02, JS05, BKK11, GM12] containing efficient algorithms for
this task and references to earlier work. In particular we also follow the widely
used blocking clause approach to prevent the algorithm from discovering the
same point again and again, and we try to generalize cubes as much as possible
to get quick coverage of A (the set of models of ϕA). However, our setting allows
an additional twist on the generalization process which makes convergence of
interpolant computation quicker than that of computing all satisfying assign-
ments: we can additionally generalize each cube as long as it remains disjoint
from B, allowing wider coverage of points in A.

An alternative partition-based algorithm for detecting whether ϕA ∧ ϕB is
unsatisfiable appears in [PG00]. In the cited work, all the assignments to the
common variables are checked, and ϕA ∧ ϕB is unsatisfiable if and only if for
every such assignment c either c ∧ ϕA or c ∧ ϕB is unsatisfiable. In contrast,
our algorithm only considers those assignments to the common variables which
admit a satisfiable extension for ϕA (and in practice this number is much smaller
due to generalization).

Last but not least, an important source of inspiration for this work are the
papers [BKK11, Bra11] which demonstrate the general power of an incremen-
tal approach for solving difficult problems. Note that in the context of model
checking, IC3 (the recent breakthrough model-checking technique by Bradley
[Bra11]) can be also viewed as a method which generates interpolants without
proofs. However our setting is more general, allowing to compute an interpolant
for any pair of propositional formulas.

Computing Interpolants without Proofs 75

2 Preliminaries

As usual, a literal is either a variable or its negation, a clause is a disjunction
of literals, and a cube is a conjunction of literals. A CNF is a conjunction of
clauses and a DNF is a disjunction of cubes.

Given a (propositional) formula ϕA, we denote by VA the set of all variables
that occur in ϕA. Given two formulas ϕA and ϕB, we denote by VA∩B � VA∩VB

the set of common variables of ϕA and ϕB , and by VA\B = VA \ VB the set of
all variables local to ϕA.

With each formula ϕA we associate a subset of {0, 1}VA containing all as-
signments to VA satisfying ϕA (models of ϕA). Slightly abusing notation, we
sometimes refer to formulas as subsets and vice versa; in particular, ϕA = ∅
means that ϕA is unsatisfiable.

Definition 1 (Interpolant). 2 Let ϕA, ϕB be a pair of formulas that cannot
be simultaneously satisfied (ϕA ∧ ϕB = ∅). An interpolant ϕI = Itp(ϕA, ϕB)
of (ϕA, ϕB) is a formula satisfying: 1) ϕA ⇒ ϕI ; 2) ϕI ∧ ϕB = ∅; and 3)
VI ⊆ VA∩B.

Our algorithm makes use of a SAT solver to decide satisfiability of a propositional
formula. For most of the paper this solver is viewed as a black box; the only
requirements are that it should output SAT or UNSAT depending on the status
of the formula, and in the case of SAT the solver should also return an assignment
(model) satisfying the formula. Note that a model is a conjunction of unit clauses,
or simply a cube.

We denote by PA
A∩B the projection of the set (of all assignments satisfying)

ϕA to VA∩B. P
B
A∩B is defined similarly. Clearly, ϕA ∧ ϕB = ∅ if and only if

PA
A∩B ∩ PB

A∩B = ∅.

3 Algorithm

In this section we present the main contribution of this paper – an incremental
algorithm for computing an interpolant ϕI of (ϕA, ϕB). In the following subsec-
tions we describe a basic version of the algorithm, an efficient implementation
of this algorithm on top of a modern CDCL solver (e.g. MiniSat), and various
extensions and optimizations which seem crucial for real-life instances.

3.1 Basic Algorithm

The algorithm (described in Algorithm 1) accepts a pair (ϕA, ϕB) of proposi-
tional formulas, and, in the case under consideration that ϕA∧ϕB is unsatisfiable,
returns an interpolant ϕI (in DNF). The algorithm also detects the case that
ϕA ∧ ϕB is satisfiable, and can in principle return a satisfying assignment to
ϕA ∧ ϕB.

2 This definition slightly deviates from the original definition of Craig, but is now
standard in the context of formal methods.

76 H. Chockler, A. Ivrii, and A. Matsliah

The interpolant ϕI is constructed incrementally; initially it is empty. Roughly
speaking, the algorithm searches for points p ∈ ϕA not yet covered by ϕI and
then generalizes these points to cubes by omitting assignments to all variables
local to ϕA and to as many common variables as possible, while still keeping these
cubes disjoint from ϕB. Each such generalized cube represents a new incremental
knowledge and is added to ϕI . For convenience we introduce the set ϕ′

A =
ϕA ∧ ¬ϕI corresponding to the set of assignments in ϕA not yet covered by ϕI ;
the algorithm terminates when ϕ′

A becomes empty.

Algorithm 1. Iterative computation of the interpolant

Input: A pair (ϕA, ϕB) of propositional formulas
Output: An interpolant ϕI for (ϕA, ϕB) (in DNF) if ϕA ∧ ϕB = ∅, or a satisfying
assignment otherwise

1: ϕI ← ∅
2: ϕ′

A ← ϕA

3: while TRUE do
4: if ϕ′

A is unsatisfiable then
5: return ϕI

6: else
7: Let p be a model of ϕ′

A

8: p′ ← projection of p to VA∩B

9: p′′ ← generalization of p′ w.r.t. ϕA

10: if (p′′ ∧ ϕB) is satisfiable then
11: return SAT + model
12: else
13: p′′′ ← generalization of p′′ w.r.t. ϕB

14: ϕI ← ϕI ∨ p′′′

15: ϕ′
A ← ϕ′

A ∧ ¬p′′′
16: end if
17: end if
18: end while

We now describe a single iteration of the main loop (lines 4-17) in detail. On
line 4 we call a SAT solver to check whether ϕ′

A is empty. If so, then ϕA ⊆ ϕI and
the algorithm terminates providing ϕI as the final interpolant. Otherwise (line 7),
the SAT solver returns a model p for ϕ′

A, that is an assignment to variables in
VA. First we project this assignment to VA∩B by omitting the variables local to
ϕA (line 8); this projection corresponds to the cube p′.

We can (on line 9) further generalize the cube p′ to p′′ as long as it satisfies the
following property: for any extension p̃′ of p′′ to VA∩B there is a further extension
p̃ of p̃′ to VA which satisfies ϕA. In other words, consider the projection PA

A∩B

of all assignments satisfying ϕA to VA∩B. By construction, p′ ∈ PA
A∩B, and we

seek to generalize it to p′′ so that as sets of assignments p′ ∈ p′′ ⊆ PA
A∩B , thus

enumerating more than one (projection of a) satisfying assignment to ϕA to
VA∩B at once. We describe the existing methods for such a generalization in

Computing Interpolants without Proofs 77

Section 3.3. Also note that this generalization is performed with respect to the
original set ϕA.

Next (on line 10), we make another call to a SAT solver to check whether
ϕB ∧ p′′ is satisfiable (note that the cube p′′ can be passed to the solver as a set
of unit assumptions). If this is the case, then ϕA ∧ ϕB is satisfiable, and in fact
we can obtain an explicit satisfying assignment to ϕA ∧ ϕB by extending the
assignment satisfying p′′ ∧ ϕB to VA\B which satisfies ϕA (which is possible by
the property above). If the generalization step on line 9 is omitted, a satisfying
assignment to ϕA∧ϕB can be obtained immediately by unifying the assignment
to p′′∧ϕB and the assignment p (since the two assignments match on the common
variables).

In the main case under consideration, p′′ ∧ ϕB is unsatisfiable, and we seek
(on line 13) to generalize p′′ even further to p′′′ by dropping the assignments to
some of the variables in VA∩B while keeping p′′′ disjoint from ϕB. The difference
between this generalization and the one on line 9 is that now we can let p′′′

represent non-PA
A∩B points provided that they are also non-PB

A∩B points (see
definitions above). In particular, p′′′ can also describe additional PA

A∩B-points,
not previously described by p′′. From the practical viewpoint, this is a very
important optimization (details follow).

Note that we can view p′′′ as an interpolant of p and ϕB. We update ϕI ←
ϕI ∨ p′′′ (thus keeping ϕI in DNF) and prevent the solver from rediscovering
points in p′′′ ∧ ϕA (and in particular p) by adding the blocking clause ¬p′′′ to
ϕ′
A.

Claim 1. (1) Algorithm 1 always terminates. (2) If ϕA ∧ ϕB = ∅ it outputs a
valid interpolant ϕI for (ϕA, ϕB).

Proof. (1) Initially ϕ′
A = ϕA, and in each iteration its size (as set of assignments)

shrinks by ≥ 1. (2) By construction, VI ⊆ VA∩B. In addition, ϕI is a disjunction
of cubes that are disjoint from ϕB, hence ϕI ∧ B = ∅. To see that ϕA ⇒ ϕI ,
observe that the algorithm terminates only when ϕ′

A � ϕI \ϕA becomes empty.

3.2 Implementation Details

Now we describe how the algorithm proposed in the last section can be efficiently
implemented on top of MiniSat or any other SAT solver that provides an interface
to incrementally add new clauses into the solver, and to solve under a set of
additional unit assumptions [ES03]. In the case of a satisfiable result, such a
solver should return a model satisfying all of the clauses in the solver as well as
all of the unit assumption literals. In the case of an unsatisfiable result, the solver
should return a subset of the assumptions used in the proof of unsatisfiability.

We keep two instances of the SAT solver: A-solver holding the CNF for ϕ′
A

and B-solver holding the CNF for ϕB. Thus the SAT call on line 4 corresponds
to A.Solve() and the SAT call on line 10 corresponds to B.Solve(p′′) with the
cube p′′ passed as the set of unit assumptions. In the simplest version of the
algorithm we can skip the generalization on line 9, and the generalization on

78 H. Chockler, A. Ivrii, and A. Matsliah

line 13 of p′′ to p′′′ is obtained for free by taking p′′′ to be the subset of the
assumptions in p′′ used for unsatisfiability. Finally, the strengthening of ϕ′

A on
line 15 corresponds to A.add(¬p′′′).

We found that this (somewhat primitive) implementation already performs
quite well on many instances.

3.3 Extensions

For some real-life instances originating from hardware model checking prob-
lems, the basic algorithm described above often takes too many iterations to
converge in reasonable time. By experimentation, we found that the following
heuristics/optimizations work well for those hard cases.

Exhaustive Generalization of p′′ to p′′′. Even though the MiniSat-like
“solve under assumption” mechanism is highly successful at detecting which
subset of the assumptions is important for unsatisfiability, this subset is very
often far from minimal. Thus, after obtaining a reduced set from the solver’s
“final” conflict analysis, one can try to shrink this set further. It is natural to
look for minimal3 or even minimum-sized subsets.

We implemented the following greedy approach for finding a minimal subset
of the conflicting assumptions, similar to a basic destructive algorithm for MUS
computations [DGHP09, Nad10, SL11]. Remove one of the assumptions – if the
remaining formula is satisfiable then this assumption is deemed as necessary and
must be present in all minimal assumption subsets from this point on. If the re-
maining formula is unsatisfiable, then the assumption is redundant and is deleted
from the set of assumptions under consideration. Also note that in the case of
an unsatisfiable answer, one can immediately trim the set of non-processed as-
sumptions further (when this functionality is supported by the solver). After all
of the assumptions are processed, we end up with a minimal subset as required.
We refer to this approach as exhaustive B-generalization.

In general this optimization has a significant overhead on the running time of
a single iteration of the loop since in the worst case it resorts to one additional
SAT call for each of the assumptions in the initial set. However as we will see
in the experimental section, the smaller clauses produced by this minimization
are of better quality and the algorithm takes significantly fewer iterations to
converge (in the same spirit as generalization of counterexamples and inductive
clauses in IC3).

Forall-Exists Generalization of p′ to p′′. Turning to generalization of p′

with respect to ϕA (on line 9), several methods have been proposed in earlier
works in the context of finding all satisfying assignments to a formula (see for
example [JS05]) or existential quantification (e.g. [BKK11] and [GM12]).

We implemented several variations, based on [BKK11]. We apply the following
“dual-rail” construction. For each of the common variables v ∈ VA∩B, we intro-
duce two additional fresh variables v+ and v−, and we replace each occurrence

3 I.e. the formula would become satisfiable if any of the assumptions were dropped.

Computing Interpolants without Proofs 79

of v in ϕA by v+, and each occurrence of ¬v in ϕA by v−. In addition, we add
the binary clause (¬v+,¬v−) to prevent the solver from assigning both v+ and
v− to true. In the simpler variant to which we refer as trivial A-generalization
we create the cube p′′ from the model p of ϕ′

A by including the literals v for
which v+ is set to true, and the literals ¬v for which v− is set to true. In the
more complicated variants, we seek the shortest possible cubes p′′. To this end,
we create additional variables v± = v+ ∧ v− for v ∈ VA∩B, and put a sequen-
tial counter construction [Sin05] on top of v±. This allows (passing additional
assumptions to the A-solver) to look for cubes in A which are of size at most
k, for any given k, and one can find a shortest cube by setting increasing values
to k = 1, 2, By experimenting with various parameter settings, we limit the
maximum value of the counter to min(15, |VA∩B|) and we do a binary search
to find the minimal k ∈ [1..15] if it exists. In other words we are guaranteed to
end up with a shortest cube whenever it has length at most 15, and otherwise
we resort to the trivial A-generalization from above. We refer to this version as
counter-based A-generalization.

In general, the dual-rail construction has a negligible overhead, but searching
for a shortest cube is expensive, both due to the extra logic pertaining to the
sequential counter construction and the increased number of SAT-calls.

Exchanging Roles of the Two Solvers. In certain cases ϕB has fewer satis-
fying assignments than ϕA or it is easier to enumerate them. Then it might be
easier to solve the “dual” problem first: compute ϕJ – interpolant for (ϕB , ϕA),
and then set ϕI ← ¬ϕJ . This way the final interpolant is in CNF, but in most
applications the precise form of the interpolant is not important (in case it is,
see [BKK11] for an efficient method to convert between the two forms).

Exchanging Clauses of Common Variables. One can consider a general
algorithm which uses the partitioning of ϕA ∧ ϕB into (ϕA, ϕB) and allows to
exchange learned clauses between the two solvers as long as they consist of
common variables only. In particular, such an algorithm might use a scenario
when the roles of the two solvers are switched periodically, or a scenario with
the two solvers running in parallel, each producing satisfying assignments and/or
blocking the satisfying assignments found by the other solver.

Of course, if the clauses are passed from ϕA to ϕB and back freely, more care
should be taken when assembling the final interpolant. Luckily this is not too
hard due to the following (here ϕG and ϕH correspond to (sets of) clauses learnt
from ϕA and ϕB respectively).

Claim 2. Suppose that ϕA ⇒ ϕG and Vars(ϕG) ⊆ VA∩B. Then an interpolant
ϕI = Itp(ϕA, ϕB) can be computed as ϕI = Itp(ϕA, ϕB ∧ ϕG) ∧ ϕG.

Proof. Let ϕJ = Itp(ϕA, ϕB ∧ ϕG). By definition, ϕA ⇒ ϕJ and ϕA ⇒ ϕG,
hence ϕA ⇒ ϕI . Also, ϕJ is disjoint from ϕB ∧ ϕG, hence ϕJ ∧ ϕG is disjoint
from ϕB .

80 H. Chockler, A. Ivrii, and A. Matsliah

Claim 3. Suppose that ϕB ⇒ ϕH and Vars(ϕH) ⊆ VA∩B. Then an interpolant
ϕI = Itp(ϕA, ϕB) can be computed as ϕI = Itp(ϕA ∧ ϕH , ϕB) ∨ ¬ϕH .

Proof. Let ϕJ = Itp(ϕA∧ϕH , ϕB). ϕA∧ϕH ⇒ ϕJ , hence ϕA ⇒ ϕJ ∨¬ϕH = ϕI .
Also, since both ϕJ and ¬ϕH are disjoint from ϕB , so is ϕI .

We can keep track of the sets of clauses passed from ϕA to ϕB and vice versa
and to reconstruct the interpolant by following the two rules above. This proce-
dure leads to more general definitions of interpolants (not only CNF or DNF).
However, if the only clauses passed from ϕA to ϕB are unit clauses, then the
interpolant can be still computed in DNF as (∨Ci) ∧ (x) = ∨(Ci ∧ x) by dis-
tributivity.

Remark 1. Note that the blocking clauses ¬p′′′ of Algorithm 1 are implied by
ϕB, and thus can be viewed as clauses passed from ϕB to ϕA. In other words,
Algorithm 1 can be seen as employing the incremental interpolant computation
dictated by Claim 3 only.

We implemented a variant of this technique which periodically instructs the A-
solver to look for unit clauses of common variables (by running the A-solver
with a small time-limit and a small backtrack-limit) and passing these clauses
to the B-solver. In many cases we saw a big reduction in the total number of
iterations (in several cases passing unit clauses from ϕA to ϕB made ϕB directly
unsatisfiable). The cons of this technique is that not all of the units passed from
ϕA to ϕB are really required for unsatisfiability, while our construction adds all
of these units into the interpolant. We refer to this optimization as flp (since it
is reminiscent of failed literal probing in SAT-solving).

Interpolant Strength. We make a theoretical digression. In the discussion
above we strove to generalize p′ as much as possible, that is to describe the
largest set in the projection. The motivation for this is clear – a smaller blocking
clause can potentially block more points of ϕ′

A, thus allowing the algorithm to
converge faster. However for various applications the loosest possible interpolant
might not be good, and it could be helpful to compute the largest blocking clause
which blocks the same points in ϕ′

A as ¬p′′′. In other words, we can seek for a
subcube q with p′ ⊆ q ⊆ p′′′ and ϕ′

A ∧ ¬q = ϕ′
A ∧ ¬p′′′. After such subcube q is

found, we can modify the line 14 of the algorithm to include q instead.
We illustrate this on an example. Suppose {x1, x2, x3, x4, x5} ⊂ VA∩B is a

subset of common variables, p′′ = x1∧x2∧x3∧x4∧x5, and p′′′ = x1∧x2. Suppose
further that p′′′∧PA′

A∩B consists of the three points (1, 1, 1, 1, 1, ·), (1, 1, 1, 0, 1, ·),
(1, 1, 0, 1, 1, ·), where · represents the remaining variables in VA∩B . Note that the
variable x5 takes the same value on PA′

A∩B and thus we can use q = x1 ∧ x2 ∧ x5

instead of x1 ∧ x2 in the interpolant.
Finding the maximal set of variables which are constant on p′′′ ∧ ϕ′

A can be
done in at most |p′′|−|p′′′| SAT calls. We illustrate this procedure on our example.
We ask the SAT solver whether ϕ′

A∧x1∧x2 ∧¬(x3 ∧ x4 ∧ x5) is satisfiable, that

is we are looking for a point in p′′′∧PA′
A∩B with at least one different value out of

Computing Interpolants without Proofs 81

{x3 = 1, x4 = 1, x5 = 1}. Let’s say that the solver returns the point (1, 1, 1, 0, 1, ·)
which means that the variable x4 is not constant on p′′′ ∧ PA′

A∩B. We refine the
query asking whether ϕA ∧ x1 ∧ x2 ∧ ¬(x3 ∧ x5) is satisfiable. Now the solver
returns the point (1, 1, 0, 1, 1, ·) which means that the variable x3 is also not
constant on p′′′ ∧ PA′

A∩B. Finally the query ϕA ∧ x1 ∧ x2 ∧ ¬x5 is unsatisfiable,

and the remaining set of variables are constant on p′′′ ∧ PA′
A∩B.

4 Experiments

Before discussing concrete experimental results, let us think when we expect
the suggested approach to succeed. As mentioned before, Algorithm 1 and its
variations might perform well if enumerating all satisfying assignments of ϕA

(or ϕB) is not too hard, or whenever there exists a successful partition-based
algorithm for solving ϕA ∧ ϕB. In particular we expect our algorithm to be
successful for simple formulas with a small number |VA∩B | of common variables4.

We have evaluated our algorithm on the 465 single-property benchmarks used
in the 2011 Hardware Model Checking Competition. For each of these bench-
marks we unrolled the design for 11 cycles to represent the bounded model
checking formula J(x0) ∧ T (x0, x1) ∧

∧10
i=1 T (xi, xi+1) ∧

∨11
i=1 ¬P (xi), where J ,

T , and P denote respectively the initial states of the design, the transition re-
lation and the property being verified (see [McM03] for details). We define5

ϕA =
∧10

i=1 T (xi, xi+1)∧
∨11

i=1 ¬P (xi), ϕB = J(x0)∧T (x0, x1), and cnf-ize these
propositional formulas using a variant of the approach described in [CMV09].
As the underlying SAT solver we use Mage, an IBM SAT solver which supports
both the incremental interface of MiniSat and the ability to compute interpolants
from proofs. In all of the experiments, the time-limit was set to 1800 seconds.

In the following tables we compare the performance of standard interpolation
(building an interpolant from the proof of unsatisfiability of ϕA ∧ ϕB , in this
and only in this case the proof generation capabilities of the solver are turned
on) and various schemes based on Algorithm 1. We distinguish between three
versions of generalization with respect to ϕA: no generalization at all (no A-
gen), trivial A-generalization (triv A-gen) and counter-based A-generalization
(cntr A-gen). The latter two versions are described in Section 3.3 and require
dual-rail encoding. We also consider three versions of generalization with re-
spect to ϕB: no generalization at all (no B-gen), the generalization based on
the conflicting assumptions returned by the solver (std B-gen) and exhaustive
B-generalization from Section 3.3 (exh B-gen). The results are summarized in
Table 1. The second, third and fourth columns respectively denote the numbers
of satisfied, unsatisfied and time-out instances, and the last column denotes the
total time of the run. First of all, we see that generalizing with respect to B
is crucial and that counter-based A-generalization is mostly unhelpful (in fact,

4 In the worst case, all interpolants (expressed in terms of VA∩B) might be of size expo-
nential in |VA∩B|: consider formulas ϕA, ϕB which enforce the parity of assignments
to VA∩B to be even and odd, respectively.

5 The benefits of this “opposite” splitting are discussed later.

82 H. Chockler, A. Ivrii, and A. Matsliah

even the version of A-generalization with the unrestricted counter size on aver-
age only removes at most 5% - 10% of the literals of p′, while the exhaustive
B-generalization usually removes 90% of the literals and more). We also note
that the standard interpolation performs best in terms of time (however, there
was in fact one testcase where the version (no A-gen, std B-gen) finished in 1184
seconds, while the standard interpolation timed out). It should be noted that
in this and subsequent experiments all the observed phenomena are consistent
across individual instances (and not only in the bulk).

Table 1. Comparison of runtimes on 465 single property benchmarks from HWMCC11

Variant SAT UNSAT TO Total Running Time (s)

standard interpolation 14 429 22 49,153
no A-gen, no B-gen 1 22 442 767,678
no A-gen, std B-gen 14 420 31 79,686
no A-gen, exh B-gen 14 421 30 79,754
triv A-gen, no B-gen 1 25 439 762,135
triv A-gen, std B-gen 13 419 33 83,759
triv A-gen, exh B-gen 14 420 31 79,599
cntr A-gen, no B-gen 1 17 447 783,311
cntr A-gen, std B-gen 10 393 62 124,170
cntr A-gen, exh B-gen 10 399 56 115,312

We omit the inferior configurations and restrict to the test cases on which
each configuration returned with a SAT or UNSAT answer - there are 430 such
configurations. The comparison of the total number of iterations (column 2),
the total interpolant size (column 3) and the total running time (column 4) are
provided in Table 2. For the standard interpolation the number of iterations is
meaningless and the size represents the number of gates in the non-optimized
circuits (i.e. no structural hashing, etc. has been performed). For the remaining
configurations the size represents the total number of literals in the computed
interpolants (in CNF). Even though it is clear that the 4 schemes based on
Algorithm 1 are on average 7 times slower than standard interpolation, it is
interesting to note that they produce interpolants of much smaller size (up to
900 times). In particular, they require no need for further minimization. Next,
it seems that on our test cases the extra time spent by a round of exhaustive
generalization is compensated by fewer iterations required for the algorithm to
converge. Finally, the dual-rail encoding and the trivial version A-generalizations
seem to have a small positive impact on the size of the interpolant.

We have performed an additional experiment to see the value of periodically
passing unit clauses from ϕA to ϕB (the flp technique described in Section 3.3).
To this end we compare the (no A-gen, exh B-gen) configuration with a version
of itself, where at the start and every 100 iterations the A-solver is instructed to
look for unit clauses of common variables and to pass them to the B-solver. The
results are summarized in Table 3. As usual, we restrict only to the benchmarks

Computing Interpolants without Proofs 83

Table 2. Comparison of numbers of iterations and interpolant sizes on 430 benchmarks

Variant Total #iters Total itp size Total Running Time (s)

standard interpolation 0 90,922,242 3,842
no A-gen, std B-gen 129,506 837,273 19,138
no A-gen, exh B-gen 80,764 119,975 22,603
triv A-gen, std B-gen 133,903 857,081 22,286
triv A-gen, exh B-gen 77,752 117,105 22,637

where both versions complete – there are 407 such test cases. The interpolant
size now measures the total number of literals in all the passed clauses (this cor-
responds to the previous definition when flp is disabled, and includes the number
of unit clauses when flp is enabled). Activation of flp increases the running times
(and the number of time-outs), but reduces the total number of iterations by
about 4 times. On the other hand, most of the unit clauses detected during flp
are irrelevant for the algorithm, and they increase the interpolant size.

Table 3. Measuring the effect of flp on 407 benchmarks

Variant Total #iters Total itp size Total Running Time (s)

no A-gen, exh B-gen 73,071 147,358 15,532
no A-gen, exh B-gen, flp 18,685 184,619 43,374

A couple of additional remarks are in order. First, the size of the final in-
terpolant can serve as a rough estimate for the total memory consumption of
an algorithm. Second, in our experience enabling proof-logging techniques for
the standard interpolation takes a very small overhead (around 5%), while the
overhead of recording blocking (or more generally exchanged) clauses is abso-
lutely negligible. Thus, the running times really represent a comparison between
showing unsatisfiability of ϕA ∧ ϕB using a single call to a SAT-solver and us-
ing various variants of a partition-based algorithm. Finally, these experiments
should be taken only as a proof of concept of the methods presented. In fact,
the current setup benefits our approach in two ways: 1) ϕB is a more restricted
formula and so potentially has less satisfying assignments than ϕA, and 2) ϕA is
a much simpler formula and so potentially allows for shorter explanation of the
inconsistency between a satisfying assignment to ϕB and ϕA, that is for shorter
cubes p′′′. Indeed, the experiments with roles of ϕA and ϕB reversed resulted in
inferior performance (nearly on all instances).

5 Conclusions and Future Work

We described an incremental algorithm for computing Craig interpolants for a
pair of mutually unsatisfiable formulas. The most significant advantage of this
algorithm is its simplicity – it does not depend on the underlying solver’s ability

84 H. Chockler, A. Ivrii, and A. Matsliah

to produce refutations and thus can be quickly implemented on top of any SAT-
solver. In particular, it has the advantage of immediately benefiting from rapid
improvements of modern SAT solvers which do not produce proofs.

At this stage, the main contribution of this work is theoretical, rather than
practical. We have observed the need for better partition-based algorithms. We
have suggested several heuristics towards this goal, but the experimental results
show inferior performance (in terms of runtime) compared to a single monolithic
call. If more efficient partition-based algorithms are discovered, this work shows
how an interpolant may be easily and efficiently reconstructed afterwards. We
have also described a technique to vary the strength of the computed interpolant.

On ther other hand, our algorithms are much lighter in terms of memory
consumption (even though the size of a proof is linear in the running time of
the solver, such proofs are usually huge), and as seen in experiments, the sizes
of the interpolants produced are several orders of magnitude smaller than the
sizes of the interpolants constructed from proofs. With this in mind (and in the
spirit of [PG00]), we can view the algorithm as the last resort for computing
interpolants, when all of the conventional techniques have failed.

One especially interesting direction for further study is to see how much the
proposed technique for computing interpolants can be used inside the original in-
terpolation algorithm for model checking [McM03]. The source of inspiration for
this is the success of the IC3 technique [Bra11], which shows that it is often pos-
sible to efficiently characterize an over-approximation to states reachable within
a certain number of cycles as a conjunction of clauses defined on state-variables
only. Note that by splitting the bounded model checking formula as we described
– with ϕA =

∧k
i=1 T (xi, xi+1) ∧

∨k+1
i=1 ¬P (xi), and ϕB = J(x0) ∧ T (x0, x1), the

interpolant ϕI for (ϕA, ϕB) is computed as a DNF, and hence ¬ϕA representing
an over-approximation of states reachable in one step is precisely in CNF form.

References

[ANORC10] Achá, R.J.A., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.:
Practical algorithms for unsatisfiability proof and core generation in SAT
solvers. AI Commun. 23(2-3), 145–157 (2010)

[BKK11] Brauer, J., King, A., Kriener, J.: Existential quantification as incremen-
tal SAT. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 191–207. Springer, Heidelberg (2011)

[Bra11] Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer,
Heidelberg (2011)

[CMV09] Chambers, B., Manolios, P., Vroon, D.: Faster SAT solving with better
CNF generation. In: DATE, pp. 1590–1595 (2009)

[Cra57] Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theo-
rem. J. Symb. Log. 22(3), 250–268 (1957)

[DGHP09] Desrosiers, C., Galinier, P., Hertz, A., Paroz, S.: Using heuristics to find
minimal unsatisfiable subformulas in satisfiability problems. J. Comb.
Optim. 18(2), 124–150 (2009)

Computing Interpolants without Proofs 85

[ES03] Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer,
Heidelberg (2004)

[GM12] Goldberg, E., Manolios, P.: Quantifier elimination by dependency se-
quents. CoRR, abs/1201.5653 (2012)

[JS05] Jin, H., Somenzi, F.: Prime clauses for fast enumeration of satisfying
assignments to Boolean circuits. In: DAC, pp. 750–753 (2005)

[Kra97] Kraj́ıcek, J.: Interpolation theorems, lower bounds for proof systems, and
independence results for bounded arithmetic. J. Symb. Log. 62(2), 457–
486 (1997)

[KW10] Kroening, D., Weissenbacher, G.: Verification and falsification of pro-
grams with loops using predicate abstraction. Formal Asp. Com-
put. 22(2), 105–128 (2010)

[LJH08] Lee, R.-R., Jiang, J.-H.R., Hung, W.-L.: Bi-decomposing large Boolean
functions via interpolation and satisfiability solving. In: DAC, pp. 636–
641 (2008)

[LJHM07] Lee, C.-C., Jiang, J.-H.R., Huang, C.-Y., Mishchenko, A.: Scalable explo-
ration of functional dependency by interpolation and incremental SAT
solving. In: ICCAD, pp. 227–233 (2007)

[McM02] McMillan, K.L.: Applying SAT methods in unbounded symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 250–264. Springer, Heidelberg (2002)

[McM03] McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt
Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13.
Springer, Heidelberg (2003)

[McM05] McMillan, K.L.: Applications of Craig interpolants in model checking.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp.
1–12. Springer, Heidelberg (2005)

[McM10] McMillan, K.L.: Lazy annotation for program testing and verification. In:
Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
104–118. Springer, Heidelberg (2010)

[Nad10] Nadel, A.: Boosting minimal unsatisfiable core extraction. In: FMCAD,
pp. 221–229 (2010)

[PG00] Park, T.J., Van Gelder, A.: Partitioning methods for satisfiability testing
on large formulas. Inf. Comput. 162(1-2), 179–184 (2000)

[Pud97] Pudlák, P.: Lower bounds for resolution and cutting plane proofs and
monotone computations. J. Symb. Log. 62(3), 981–998 (1997)

[Sin05] Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality con-
straints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831.
Springer, Heidelberg (2005)

[SL11] Marques-Silva, J., Lynce, I.: On improving MUS extraction algorithms.
In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 159–
173. Springer, Heidelberg (2011)

[ZM03] Zhang, L., Malik, S.: Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applica-
tions. In: DATE, pp. 10880–10885 (2003)

MaxSAT-Based MCS Enumeration

Antonio Morgado1, Mark Liffiton2, and Joao Marques-Silva1,3,�

1 CASL/CSI, University College Dublin, Dublin, Ireland
ajrm@ucd.ie

2 Illinois Wesleyan University, Bloomington, IL, USA
mliffito@iwu.edu

3 INESC-ID/IST, Lisbon, Portugal
jpms@ucd.ie

Abstract. Enumeration ofMinimal Correction Sets (MCS) finds a wide
range of practical applications, including the identification of Minimal
Unsatisfiable Subsets (MUS) used in verifying the complex control logic
of microprocessor designs (e.g. in the CEGAR loop of RevealTM [1,2]).
Current state of the art MCS enumeration exploits core-guided MaxSAT
algorithms, namely the so-called MSU3 [16] MaxSAT algorithm. Observe
that a MaxSAT solution corresponds to a minimum sized MCS, but a
formula may contain MCSes larger than those reported by a MaxSAT
solution. These are obtained by enumerating all MaxSAT solutions. This
paper proposes novel approaches for MCS enumeration, in the context of
SMT, that exploit MaxSAT algorithms other than the MSU3 algorithm.
Among other contributions, the paper proposes new blocking techniques
that can be applied to different MCS enumeration algorithms. In ad-
dition, the paper conducts a comprehensive experimental evaluation of
MCS enumeration algorithms, including both the existing and the novel
algorithms. Problem instances from hardware verification, the SMT-LIB,
and the MaxSAT Evaluation are considered in the experiments.

Keywords: AllMaxSAT, AllMaxSMT, MCS.

1 Introduction

A Minimal Correction Subset (MCS) of an unsatisfiable CNF formula is an
irreducible set of clauses whose removal causes the formula to become satisfiable
(thus “correcting” it). MCSes can be naturally extended for Satisfiability Modulo
Theories (SMT) formulas expressed in clausal form.

The connection between all MCSes of a formula and its MUSes was first high-
lighted in the context of model-based diagnosis [10,23]. Namely, the enumeration
of all MCSes of an unsatisfiable formula finds practical application in MUS enu-
meration [11]. One concrete example is the verification of hardware designs [2],
for which enumeration of MCSes has been used in an industrial setting. Another

� This work is partially supported by SFI grant BEACON (09/IN.1/I2618), and by
FCT grants ATTEST (CMU-PT/ELE/0009/2009) and POLARIS (PTDC/EIA-
CCO/123051/2010).

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 86–101, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Enumeration of MCSs 87

example of application of MCS enumeration is in the context of design debug-
ging [24]. A related problem is the enumeration of all minimal MCSes, those with
the smallest cardinality. An example application is solving Boolean Multilevel
Optimization by minimal MCS enumeration [3].

State of the art algorithms for MCS enumeration [12] are based on model enu-
meration of Maximum Satisfiability (MaxSAT) solvers, and the most effective
approaches are based on core-guided algorithms, more concretely the so-called
MSU3 algorithm [15,16]. Nevertheless, in practical MaxSAT solving, the MSU3
algorithm is not as effective as other core-guided MaxSAT algorithms. Therefore,
it is natural to ask how MCS enumeration can be extended to other MaxSAT
algorithms. This question further motivates the investigation of different ap-
proaches for implementing model enumeration in MaxSAT algorithms.

This paper proposes improvements to MSU3-like MCS enumeration algo-
rithms, and it shows how to implement MCS enumeration with other well-known
MaxSAT algorithms, namely (W)MSU1 [9,13]. Experimental results, obtained
on a representative set of benchmarks, show that the proposed improvements
are effective. The remainder of the paper is organized as follows. Section 2 in-
troduces the definitions and notation used throughout the paper. Afterwards,
section 3 summarizes the application of MCS enumeration in verification with
counterexample-guided abstraction refinement (CEGAR). Section 4 investigates
improvements to existing MCS enumeration algorithms, and shows how other
core-guided MaxSAT algorithms can be used for MCS enumeration. Experimen-
tal results are presented in Section 5, and the paper concludes in Section 6.

2 Preliminaries

This section provides basic definitions on SMT and MCSes and surveys some of
the existing work on MaxSMT.

The problem of determining the satisfiability of a formula with respect to a
background theory T is called the Satisfiability Modulo Theory (SMT) problem.
Current SMT solvers are able to handle a variety of different theories and even
conjunctions of theories. One example SMT theory is the theory of Equality with
Uninterpreted Functions (Tε), in which no restriction is imposed on the way the
formulas or the predicates of a signature are interpreted.

Another example of a theory often seen in SMT instances is the theory of
Linear Integer Arithmetic (TZ), also know as the quantifier free Presburger arith-
metic. Given the signature (0, 1,+,−,≤), TZ is the theory of models that in-
terprets these symbols in the usual way over the integers [5]. Further details on
SMT, theories and SMT solving can be obtained in [20,25,5].

This paper addresses the problems of finding all Minimal Correction Sets
(MCSes) in SMT. Despite focusing on SMT, all the algorithms and techniques
described in the paper can be applied in the SAT domain. Before presenting the
definition of the enumeration problems, some notation is introduced.

Given an unsatisfiable constraint system ϕ, a minimal correction set M of ϕ
is a set of constraints whose removal yields a satisfiable formula ϕ′ = ϕ −M

88 A. Morgado, M. Liffiton, and J. Marques-Silva

(“correcting” the infeasibility) and that is minimal in the sense that adding any
constraint from M back into ϕ′ will make it unsatisfiable.

In the paper we refer to the MaxSMT problem [18]. The input of the MaxSMT
problem is a CNF SMT formula ϕ, which is a conjunction of clauses. A clause is
a disjunction of literals, where the literals are either atomic formulas or the nega-
tion of atomic formulas. The output of MaxSMT is an assignment A (consistent
with T) that minimize the number of falsified clauses of ϕ.

Generalizations of MaxSMT, include Partial MaxSMT, Weighted MaxSMT
and Weighted Partial MaxSMT. In Partial MaxSMT the set of clauses in ϕ
is divided in two separated sets: hard clauses and soft clauses. The goal is to
minimize the number of soft clauses that are falsified while still satisfying all the
hard clauses. Weighted MaxSMT allow weights on the clauses, with the objective
of minimizing the sum of the weights of the falsified clauses, andWeighted Partial
MaxSMT combines the previous two.

Two different enumeration problems are addressed in the paper and are de-
fined as in Definition 1.

Definition 1. Given a constraint system ϕ, the AllMinMCS problem consists
of finding all the minimum size MCSes of ϕ. The AllMCS problem consists of
finding all the MCSes of ϕ (independent of their size).

Both AllMinMCS and AllMCS can be generalized to partial or/and weighted
variants, analogous to MaxSMT. Observe that any MaxSMT solution indicates
an MCS, in that the constraints not satisfied by that solution must be an MCS,
and any such solution is a smallest MCS. The definition of an MCS requires
minimality (not minimum cardinality), however, an instance can contain MCSes
larger than those indicated by a MaxSMT solution, as well. Therefore, one can
consider the problem of AllMinMCS to be similar to “AllMaxSMT”, finding all
MaxSMT solutions, and AllMCS is a somewhat broader problem.

The algorithms proposed in Section 4 are based on unsatisfiable cores. In
SMT, as in the SAT domain, a core of an unsatisfiable CNF SMT formula ϕ is
an unsatisfiable subset of clauses of ϕ. The SMT solver used in the experiments
(Yices [8]) is capable of extracting cores from unsatisfiable instances.

2.1 MaxSMT

To the best of our knowledge, the first attempt to solve optimization problems
using SMT (and in particular MaxSMT) was due to Nieuwenhuis & Oliveras [18].
This work extends the Abstract DPLL Modulo Theories [19] framework in order
to be able to strengthen the theory. The strengthening of the theory allows
the inclusion of new information (for example the improvement of a bound).
Nieuwenhuis & Oliveras [18] applied their framework for the case of weighted
MaxSMT. Initially, each clause Ci (with a weight wi) receives a new Boolean
variable pi, and the constraints (pi → (ki = wi)), and (¬pi → (ki = 0)) are
added to the theory. Also the constraint (k1 + . . . + km ≤ B) is added to the
theory together with the relation (B < B0) (where B0 is an estimation of the

Enumeration of MCSs 89

Algorithm 1. The MSU3-SMT Algorithm (based on [16,15])

MSU3-SMT(ϕ)

1 ϕW ← ϕ � ϕW is the working formula
2 RV ← ∅ � Set of relaxation variables
3 λ ← 0 � Lower bound on true relaxation variables
4 while true
5 do (st, ϕC ,A) ← SMT(ϕW ∪ Enc(

∑
r∈RV r ≤ λ))

6 � “ϕC” is an unsat core if st is false
7 � “A” is satisfying assignment if st is true
8 � “Enc” encodes cardinality constraint
9 if st = true then return A � Solution to MaxSMT problem

10 if |RV | < |soft(ϕ)|
11 then for each ω ∈ ϕC ∩ soft(ϕ)
12 do RV ← RV ∪ {r} � r is new relax. var. created
13 ωR ← ω ∪ {r}
14 ϕW ← ϕW \ {ω} ∪ {ωR}
15 λ ← λ+ 1
16 � [[Additional code for enumeration of MCS inserted here]]

initial cost). Each time a new cost Bj is found, the theory is strengthened by
adding the relation (B < Bj) to the theory.

In 2010, Cimatti et al. [6] proposed a new theory called the theory of Costs
C that allows modeling multiple cost functions, and they developed a decision
procedure for C. Using the theory C, Cimatti et al. [6] showed how to address the
problem of minimizing the value of one cost function subject to the satisfaction of
a SMT(T) formula, which they called the Boolean Optimization Modulo Theory
(BOMT) problem. The optimization itself is obtained by linear search or binary
search, asserting atoms of C that bound the cost, and using an incremental SMT
solver. Cimatti et al. [6] encoded the weighted partial MaxSMT into BOMT by
adding a new Boolean variable Ai

j to each soft clause. Then, the cost function is

the sum of the weights of the soft clauses, whose variable Ai
j is assigned true.

Other work on MaxSMT algorithms includes [17,26]. The work in [17] ad-
dresses the concrete problem of Maximum Quartet Consistency, where an SMT
solver is used as a black box, and optimizes a cost function either using linear or
binary search binary. The work in [26] addresses optimization in SMT formulas
when the variables in the cost function are rational.

An early MCS enumeration algorithm by Liffiton & Sakallah [11] followed an
iterative approach, checking for MCSes of size 1, 2, etc. and blocking solutions
as they were found. This algorithm was later extended to exploit unsatisfiable
cores [12], closely following the approach of the MSU3 MaxSAT algorithm of
Marques-Silva & Planes [16,15] but extending it to enumerate MCSes. The core-
guided enumeration algorithm, generalized to SMT, is reviewed in detail in Sec-
tion 4, while the SMT version of the MSU3 MaxSAT algorithm on which it is
based is presented briefly here.

90 A. Morgado, M. Liffiton, and J. Marques-Silva

Algorithm 2. The FM-SMT Algorithm [9]

FM-SMT(ϕ)

1 ϕW ← ϕ � ϕW is the working formula
2 λ ← 0 � Bound on the number of iterations
3 while true
4 do (st, ϕC ,A) ← SMT(ϕW)
5 � “ϕC” is an unsat core if st is false
6 � “A” is a satisfying assignment if st is true
7 if st = true then return A � Solution to MaxSMT problem
8 if λ = |soft(ϕ)| then return false � No MaxSMT solution
9 λ ← λ+ 1

10 RV ← ∅
11 for each ω ∈ ϕC , ω tagged as soft
12 do RV ← RV ∪ {r} � r is a new relax. var. created
13 ωR ← ω ∪ {r} � ωR is tagged soft
14 ϕW ← ϕW \ {ω} ∪ {ωR}
15 if RV = ∅ then false � No MaxSMT solution
16 ϕW ← ϕW ∪ Enc(

∑
r∈RV r = 1) � Encodes card. const. tagged hard

Algorithm 1 presents the pseudo-code of the MSU3-SMT algorithm for
MaxSMT. MSU3-SMT iteratively expands the set of relaxable clauses to en-
compass each extracted core while constraining the number of clauses that are
allowed to be relaxed. The advantage of MSU3-SMT over other core-guided ap-
proaches is that it only adds a maximum of one relaxation variable per clause
and one additional constraint to restrict the number of clauses relaxed.

Other MaxSAT algorithms can be extended to compute MaxSMT solutions
as well. In particular, this paper considers the FM-SMT algorithm, based on
the MaxSAT algorithm of Fu&Malik [9]. The approach taken by FM-SMT is to
iteratively neutralize cores as they are found by adding fresh relaxation variables
to the soft clauses of each core. Because the objective is to minimize the number
of falsified clauses, the algorithm adds a constraint to allow relaxing exactly one
clause in each core per iteration, thus allowing one of the clauses in the core to
be falsified. The pseudo-code of FM-SMT is depicted in Algorithm 2.

This paper also considers a variation of the FM-SMT algorithm that uses an
atMost1 constraint instead of the exactly1 cardinality constraint on line 16 of
Algorithm 2. This algorithm is referred to as MSU1-SMT (similarly to the MSU1
MaxSAT algorithm [15,14]).

3 AllMCS in CEGAR

One direct application of the AllMCS problem, and one for which Section 5
contains empirical results, is verification via counterexample-guided abstraction
refinement (CEGAR). RevealTM[1] is one such formal verification system that

Enumeration of MCSs 91

Algorithm 3. The ALLMCS-MSU3-SMT Algorithm

ALLMCS-MSU3-SMT(ϕ)

1 ϕW ← ϕ
2 RV ← ∅
3 λ ← 0
4 while true
5 do (st,A) ← MSU3-SMT (ϕ, ϕW , RV , λ)
6 if st = true
7 then ReportMCS(ϕ, A)
8 BlockMCSbyRV(ϕW , RV , A)
9 else exit

employs AllMCS in the process of verifying digital logic designs. Reveal performs
datapath abstraction on a design and relies heavily on refinement, the dual of
abstraction, to dynamically bridge between the abstract model and the original
design throughout the verification process. Specifically, when a violation is found
in the abstract model, the flow produces a conjunction of bit-vector constraints
representing the violation that indicate either a potential bug in the design or
a ”false alarm” resulting from the abstraction. Each violation must be checked
against the original design to determine whether it is spurious, and this is done
by checking the satisfiability of the violation’s constraints V conjoined with the
constraints of the original design C. If V ∧ C is satisfiable, then the violation
indicates a potential bug, and the flow exits with that result, but if V ∧ C is
UNSAT, then the violation is spurious and the abstraction must be refined. Each
minimal subset of the violation V ′ ⊆ V such that V ′ ∧ C is UNSAT provides a
concise reason for the contradiction in the form of a refinement core or lemma
that can be used to refine the abstract model (by blocking it).

It is here that AllMCS is applied. Every minimal unsatisfiable subset (MUS)
of V ∧C indicates a minimal V ′ that can be used for refinement, and AllMCS is
used in the first phase of the CAMUS algorithm for computing all MUSes of an
unsatisfiable constraint system [11]. Extracting all MUSes is a core component
of Reveal’s algorithm during refinement, providing 1 to 4 orders of magnitude
speedup in run-time compared with other refinement techniques as observed in
academic benchmarks [2]. Efficient all-MUS extraction, and thus efficiently solv-
ing AllMCS is expected to be essential in practical abstraction/refinement-based
implementations of formal verification on real-life designs. An open research topic
corresponds to investigate the use of union of MUSes as in [21].

4 All(Min)MCS Algorithms

This section develops new algorithms for AllMinMCS/AllMCS. The MaxSAT-
based approach proposed in [11,12] is briefly reviewed first. Then, the new
algorithms are detailed.

92 A. Morgado, M. Liffiton, and J. Marques-Silva

Algorithm 4. Additional code to include in Algorithm 1 for AllMCS

1 (st, ϕC) ← SMT(ϕW) � ϕC is an unsat core if ϕW is unsat
2 if st = UNSAT
3 then if |RV | = |soft(ϕ)|
4 � if all soft clauses are relaxed and ϕW is UNSAT,
5 � then all MCSes have been found
6 then return false
7 if ϕC ∩ soft(ϕ) = ∅
8 then return false � nothing to relax; thus, no more solutions

The current state of the art approach for enumerating MCSes is due to Lif-
fiton & Sakallah [12]. The algorithm enumerates MCSes in increasing order of
size, essentially by solving MaxSAT iteratively, blocking each solution as it is
found. The most recent, core-guided version is an extension of the MSU3 al-
gorithm that follows this procedure. As with MaxSAT algorithms, this MCS
enumeration algorithm is easily extended to SMT, and the pseudo-code for the
ALLMCS-MSU3-SMT algorithm is presented in Algorithm 3. In the pseudo-
code, the input of the algorithm has been extended with extra arguments to
initialize the variables of the algorithm with the additional input arguments
(between calls to the algorithm). The function ReportMCS () reports the MCS
found, and the function BlocksMCSbyRV () blocks the current MCS from reap-
pearing by adding a blocking constraint to the working formula:

ϕW ← ϕW ∪
∨

A(r)=1, r∈RV

¬r (1)

Blocking MCSes in this way, creating a clause with the negation of the satisfiable
relaxation variables, is referred to in the paper as blocking by using relaxation
variables. One requirement for the extension of MSU3-SMT to enumerating MC-
Ses is a guarantee that the algorithm stops once it has found and blocked all the
MCSes. This is done by adding the code shown in Algorithm 4 to line 16 in Al-
gorithm 1, The motivation is that once all MCSes have been blocked, calling the
SMT solver without cardinality constraints will return false. Observe that, the
ALLMCS-MSU3-SMT algorithm always reports the MCSes in increasing size,
because it iteratively asks for a MaxSMT solution on the current ϕW . As such,
the same algorithm can be used to solve AllMinMCS by additionally stopping if
the size of a newly found MCS is larger than the previous.

MSU3-SMT is based on the MSU3 MaxSAT algorithm of Marques-Silva &
Planes [16,15]. MSU3 is a core-guided MaxSAT algorithm (once that it relies
on unsatisfiable cores) that iteratively improves a lower bound. In the MaxSAT
domain, another core-guided algorithm that also improve a lower bound is the
FM MaxSAT algorithm of Fu & Malik [9]. For MaxSAT, and for some industrial
applications, the FM algorithm performs better than MSU3. Indeed, in recent

Enumeration of MCSs 93

MaxSAT Evaluations1, the algorithms that follow the approach of Fu & Malik [9]
abort on fewer instances than MSU3 in the MS-Industrial and in the WPMS-
Industrial categories. Moreover, section 2 describes how to use the FM MaxSAT
algorithm to create the FM-SMT algorithm.

Following the approach of Liffiton & Sakallah for MCS enumeration, enu-
merating MCSes using the FM-SMT algorithm corresponds to iteratively asking
the FM-SMT solver for a MaxSMT solution and blocking each until no more
solutions can be found. Since FM-SMT also uses relaxation variables, then the
blocking of MCSes by using relaxation variables can be considered. The algo-
rithm would be similar to ALLMCS-MSU3-SMT but using FM-SMT instead of
MSU3-SMT. Nevertheless, using FM-SMT to enumerate MCSes presents some
additional complications. One problem that arises with this approach is the
termination of the algorithm. The original FM MaxSAT algorithm does not
include the check done in line 8 of Algorithm 2. Suppose that FM-SMT does not
make the check in line 8 and that the underlying SMT solver always returns as
a core the full formula (that is ϕC = ϕW). Then after blocking all the MCSes,
the FM-SMT algorithm should be able to report that the formula does not have
any MaxSMT solution and exit on line 15 of the FM-SMT algorithm. Never-
theless, since the core obtained is the full formula, then the algorithm is always
able to add new relaxation variables (line 12), and it enters a new loop where it
continues with new relaxation variables.

Thus, in order to guarantee that enumerating MCSes with FM-SMT always
terminates, the check done in line 8 of Algorithm 2 has to be performed. In the
original FM MaxSAT algorithm (or also for solving MaxSMT with FM-SMT),
this problem does not arise, since in MaxSAT (MaxSMT) the algorithm returns
after finding the first solution (and not blocking it as in enumeration).

Another problem that arises with the FM-SMT algorithm for enumeration is
the presence of duplicates and supersets of MCSes (which are not themselves
MCSes) as shown in Example 1.

Example 1. Consider for example the CNF SMT formula with 5 soft clauses
ϕ = {(x ≥ 1), (x < 1), ((x < 1) ∨ (y < 1)), (y < 1), (y ≥ 1)}. On the first call
to the FM-SMT algorithm, the solver finds two cores before returning a solution.
Suppose the cores founds are ϕ1

C = {(x ≥ 1), (x < 1)} and ϕ2
C = {(y ≥ 1), (y <

1)}. The algorithm updates λ twice (that is λ = 2) and the working formula to:

ϕW = {((x ≥ 1) ∨ r1), ((x < 1) ∨ r2), ((x < 1) ∨ (y < 1)),
((y < 1) ∨ r3), ((y ≥ 1) ∨ r4)} ∪

Enc(r1 + r2 = 1) ∪
Enc(r3 + r4 = 1)

Suppose the solution reported is such that A(r1) = A(r4) = 1 and A(r2) =
A(r3) = 0, then the enumerating algorithm will report the MCS {(x ≥ 1), (y ≥
1)} and add the blocking constraint (¬r1 ∨ ¬r4) to the working formula.

1 MaxSAT Evaluations, http://www.maxsat.udl.cat

http://www.maxsat.udl.cat

94 A. Morgado, M. Liffiton, and J. Marques-Silva

Algorithm 5. The ALLMCS-FM-SMT Algorithm

ALLMCS-FM-SMT(ϕ)

1 ϕW ← ϕ
2 λ ← 0
3 while true
4 do (st,A) ← FM-SMT (ϕ, ϕW , λ)
5 if st = true
6 then if (!isSuperSet(ϕ, A))
7 then ReportMCS(ϕ, A)
8 BlockMCSbyRV(ϕW , A)
9 else exit

In the next two iterations of the enumerating algorithm, the FM-SMT algo-
rithm will always report a MaxSMT solution without adding any relaxation vari-
able, and the enumerating algorithm will report the two MCSes {(x ≥ 1), (y <
1)} and {(x < 1), (y ≥ 1)}, which after blocking the MCSes the working formula
is as follows:

ϕW = {((x ≥ 1) ∨ r1), ((x < 1) ∨ r2), ((x < 1) ∨ (y < 1)),
((y < 1) ∨ r3), ((y ≥ 1) ∨ r4)} ∪

Enc(r1 + r2 = 1) ∪
Enc(r3 + r4 = 1) ∪
{(¬r1 ∨ ¬r4)} ∪ {(¬r1 ∨ ¬r3)} ∪ {(¬r2 ∨ ¬r4)}

Now ϕW is unsatisfiable and the core returned by the SMT solver contains all
the clauses. The FM-SMT algorithm adds fresh relaxation variables to each of
the soft clauses and a new constraint on the new relaxation variables. Also λ is
updated to 3. The resulting working formula is as follows:

ϕW = {((x ≥ 1) ∨ r1 ∨ r5), ((x < 1) ∨ r2 ∨ r6), ((x < 1) ∨ (y < 1) ∨ r7),
((y < 1) ∨ r3 ∨ r8), ((y ≥ 1) ∨ r4 ∨ r9)} ∪

Enc(r1 + r2 = 1) ∪
Enc(r3 + r4 = 1) ∪
Enc(r5 + r6 + r7 + r8 + r9 = 1) ∪
{(¬r1 ∨ ¬r4)} ∪ {(¬r1 ∨ ¬r3)} ∪ {(¬r2 ∨ ¬r4)}

The current working formula is satisfiable and one of the solutions of ϕW is
such that A(r2) = A(r3) = A(r9) = 1 and all the other relaxation variables are
assigned 0. This MaxSMT solution would make the enumeration algorithm to
report {(x < 1), (y < 1), (y ≥ 1)} as an MCS, which is wrong, because this set
corresponds to a superset of a previous MCS.

The previous example shows the necessity of removing supersets and duplicated
MCSes that may arise when enumerating MCSes with the FM-SMT algorithm.
The pseudo-code of ALLMCS-FM-SMT is shown in Algorithm 5. In the pseudo-
code, the input of the algorithm has been extended with extra arguments to

Enumeration of MCSs 95

initialize the variables of the algorithm with the additional input arguments
(between calls to the algorithm). The function isSuperSet() obtains the current
MCS and checks if it corresponds to a superset of a previous MCS, in which
case it returns true. As such, an MCS is only reported as an MCS if it is not a
superset of a previous MCS.

The problem of enumerating MCSes with the FM-SMT algorithm is that it
may add relaxation variables to the same clause more than once. When relaxing
a clause that has participated in an MCS that has been blocked, then it allows
for the clause to re-occur in a new MaxSMT solution using the new variable.

The next section presents two new blocking techniques that do not require
the enumeration of MCSes with FM-SMT to check for supersets or duplicates.

4.1 New Techniques for Blocking MCSes

This section proposes two new techniques for blocking MCSes. The motivation is
to eliminate the need to use relaxation variables for blocking MCSes, as is done
with Blocking by using Relaxation Variables. With these new techniques, MCSes
will remain “blocked” independently of the way the MaxSMT solver manipulates
the relaxation variables.

The first technique is inspired by the relaxation variables and is called Blocking
by using Auxiliary Variables. Blocking by using auxiliary variables consists of
initially transforming each soft clause into a hard clause after adding a fresh
Boolean variable called an auxiliary variable. Additionally, a set of unit soft
clauses is added that corresponds to the negation of each auxiliary variable.
Consider the previous formula of Example 1, and suppose that blocking by using
auxiliary variables is to be used. Then the formula given to the MaxSMT solver
is the formula containing the set of soft clauses:

ϕsoft = {(¬a1), (¬a2), (¬a3), (¬a4), (¬a5)}

and the set of hard clauses:

ϕhard = {((x ≥ 1) ∨ a1), ((x < 1) ∨ a2), ((x < 1) ∨ (y < 1) ∨ a3),
((y < 1) ∨ a4), ((y ≥ 1) ∨ a5)}

When the enumeration solver calls the function to block an MCS, then the block-
ing constraint to add to the working formula is as in the following Equation 2,
where ai are auxiliary variables.

ϕW ← ϕW ∪ {(
∨

A(ai)=1

¬ai)} (2)

The second technique proposed does not require the addition of extra Boolean
variables or the transformation of soft clauses into hard clauses. Instead, in
Blocking by using Original Literals, the original literals in the clauses are used
for blocking the MCSes. Consider once more the previous formula of Example 1
and suppose that blocking by using original literals is being used for blocking

96 A. Morgado, M. Liffiton, and J. Marques-Silva

MCSes. Suppose the algorithm has just found the MCS {(x < 1), ((x < 1)∨(y <
1)), (y < 1)}, then the blocking clause added to the working formula is the clause
((x < 1) ∨ (y < 1)). In the general case, when the enumeration solver calls the
function to block an MCS, then the blocking constraint to add to the working
formula is as in the following Equation 3, where (li1 ∨ . . . ∨ lij) is the original
literals in a clause that belongs to the current MCS found.

ϕW ← ϕW ∪ {(
∨

A(li1∨...∨lij)=0

li1 ∨ . . . ∨ lij)} (3)

Note that since these two techniques deal directly with the MCSes, and not with
the relaxation variables, then enumeration with the FM-SMT algorithm using
these techniques will not report supersets of previous MCSes and as such does
not require the check if the reported MCS is a superset of a previous MCS.

Observe that these two new blocking techniques can be applied not only in
enumeration with the FM-SMT algorithm (and the MSU1-SMT algorithm) but
also with the MSU3-SMT algorithm.

4.2 AllMCS with Costs

TheAllMCS problemcan be extended toweighted variants ofMaxSAT/MaxSMT.
Namely, each soft constraint can be associated with a weight. This weight repre-
sents the cost of adding the constraint to a MCS, i.e. of not satisfying the clause.

The goal is then to enumerate all of the MCSes taking into account the sums
of the weights of their clauses. Two approaches can be considered. The first
approach consists of extending the AllMCS algorithms to handle weights. For
example, this can be done by using a weighted MaxSMT solver with an AllMCS
algorithm. However, recent results from the MaxSAT Evaluations confirm that
weighted MaxSAT is in practice harder to solve than non-weighted MaxSAT,
and confirms the different complexity classes of these problems.

Nevertheless, a simpler solution exists. Observe that the MCSes of a CNF for-
mula are independent of the weights associated with the clauses. That is, an MCS
of a weighted CNF formula is also an MCS of the corresponding unweighted for-
mula and vice-versa. Thus, for the case of weighted formulas, it suffices to use one
of the unweighted AllMCS algorithms outlined in earlier sections. Afterwards,
one just needs to sort the MCSes by increasing (or decreasing) weight.

5 Experimental Results

This section presents a complete experimental evaluation of the enumeration
algorithms described in earlier sections. In what follows, the instances used in
the experiments are described, along with the experimental setup.

Three classes of instances have been used in this work. The Reveal instances
were generated in the Reveal digital logic verification flow as described in Sec-
tion 3. These instances are characterized by having a single hard clause, with

Enumeration of MCSs 97

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140

C
PU

 ti
m

e

instances

fm-rv-rd
msu1-av
msu1-ov
msu3-av
msu3-ov
msu3-rv

Fig. 1. Cactus plot for Reveal instances

Table 1. Statistics for Reveal in-
stances

#Sol. Sum NA Sum NA
(91) (143)

fm-rv-rd 92 2823.02 –

msu1-av 144 146.72 302.13

msu1-ov 144 285.35 1575.03

msu3-av 145 352 554.67

msu3-ov 144 410.48 455.79

msu3-rv 144 430.38 550.65

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

C
PU

 ti
m

e

instances

msu1-av
msu1-ov
msu3-av
msu3-ov
msu3-rv

Fig. 2. Cactus plot for non-weighted MaxSAT
instances

Table 2. Statistics for non-
weighted MaxSAT industrial in-
stances

#Sol. Sum NA
(183)

msu1-av 210 7495.95

msu1-ov 211 6981.32

msu3-av 335 8457.76

msu3-ov 335 7276.02

msu3-rv 332 7467.42

all other clauses being soft. A total of 145 unsatisfiable instances were obtained
from Reveal Design Automation, Inc. The second class of instances is referred to
as MaxSAT, and it consists of all industrial instances from the MaxSAT Eval-
uations from 2009 to 2011. Both weighted and unweighted industrial instances
are considered, making a total of 1323 instances, where 12 instances are satis-
fiable. The instances were considered in two sets, weighted and non-weighted,
giving 233 weighted instances (6 satisfiable) and 1090 non-weighted instances (6
satisfiable). The last class of instances considered, referred to as SMT-LIB, was
obtained from the SMT-LIB [4], a library of SMT benchmarks developed for
testing and validating SMT algorithms. The instances selected are in the SMT-
LIB 1.2 format and belong to one of the following logics: QF IDL, QF LIA,
QF LRA, QF RDL, QF UF, QF UFIDL, QF UFLIA, QF UFLRA, QF UF. All
clauses in this class of instances are considered soft.

Each instance (obtained from SMTLIB) was given to the MSU1-SMT algo-
rithm, and the instances for which MSU1-SMT reported a MaxSAT solution

98 A. Morgado, M. Liffiton, and J. Marques-Silva

 10

 100

 1000

 0 1 2 3 4 5

C
PU

 ti
m

e

instances

msu1-av
msu1-ov
msu3-av
msu3-ov
msu3-rv

Fig. 3. Cactus plot for weighted MaxSAT in-
stances

Table 3. Statistics for weighted
MaxSAT industrial instances

#Sol. Sum NA
(4)

msu1-av 4 281.52

msu1-ov 4 272.5

msu3-av 5 431.2

msu3-ov 5 415.84

msu3-rv 5 412.54

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250

C
PU

 ti
m

e

instances

msu1-av-all
msu1-ov-all
msu3-av-all
msu3-ov-all
msu3-rv-all

Fig. 4. Cactus plot of SMTLIB instances

Table 4. Statistics about the re-
sults with SMTLIB instances

#Sol. Sum NA
(257)

msu1-av 257 184.29

msu1-ov 257 171.2

msu3-av 260 214.78

msu3-ov 260 219.4

msu3-rv 260 208.83

were then ordered by CPU time used. The first 808 instances in that order were
selected for these experiments.

For the experimental results, both FM-SMT and MSU3-SMT have been im-
plemented on top of yices [8]. We have also implemented the variant of FM-SMT
that uses atMost1 constraints, referred to as MSU1-SMT.

In the experiments, all algorithms were configured to enumerate the com-
plete set of MCSes. The algorithms make use of cardinality constraints, and in
these experiments, the pairwise cardinality network encoding of Codish & Zazon-
Ivry [7] was used for encoding each of the cardinality constraints into Boolean
CNF. The only exception is for the FM-SMT algorithm, which uses the bitwise
encoding [22], as it provided better results for this algorithm.

All the three techniques described in Section 4) for blocking one MCS (block-
ing by using relaxation variables, blocking by using auxiliary variables and
blocking by using original literals), have been considered in the experiments,
depending on the underlying MaxSMT algorithm used. For the ALLMCS-FM-
SMT algorithm, only the blocking by using relaxation variables technique was

Enumeration of MCSs 99

used. Note that this is the only algorithm in the experiments which requires a
verification of duplicated MCSes. The resulting algorithm is referred to as fm-rv-
rd, and it was only tested with the Reveal instances. For the ALLMCS-MSU1-
SMT algorithm, both blocking by using auxiliary variables and blocking by using
original literals were considered for all instances. The resulting algorithms are
referred to as msu1-av and msu1-ov, respectively. For the ALLMCS-MSU3-SMT
algorithm, all the blocking techniques were tried, and the algorithms obtained
are referred to as msu3-av, msu3-ov and msu3-rv. Observe that msu3-rv corre-
sponds to the approach of Liffiton & Sakallah [12]. The algorithms were run on
a cluster of Intel Xeon E5450 (3 GHz) nodes running RedHat Linux v.5 x86-64
with a timeout of 3600 seconds and a memory limit of 4GB.

Figure 1 shows a cactus plot obtained from the Reveal instances, while Table 1
shows a summary of the results for each of the algorithms. In the table,#Sol. rep-
resents the number of instances solved by each of the algorithms, Sum NA (91)
represents the sum of cputimes taken by each algorithm on 91 instances for which
all of the algorithms finished within the timeout. Finally, SumNA (143) represents
the sum of cputimes taken by each algorithmon 143 instances whichwere solved by
all algorithms except for fm-rv-rd.As can be seen from the cactus plot and from the
number of solved instances in Table 1, the fm-rv-rd is the worst performing algo-
rithm, aborting in more instances and requiring more cputime to enumerate even
on the 91 instances solved by all the algorithms. This is due to the need to remove
duplicated MCSes and supersets of current MCSes. The algorithm that solves the
largest number of the Reveal instances is msu3-av, able to solve one more instance
than the other msu algorithms. Considering all the 143 instances where none of
the msu algorithms aborts, msu1-av is the fastest enumerating algorithm.

For the non-weighted industrial MaxSAT instances, Figure 2 shows the cactus
plot, while Table 2 summarizes the results for this class of instances. As before,
column #Sol. shows the number of instances solved by each of the algorithms,
and Sum NA (183) represents the sum of cputimes taken by each algorithm on
183 instances that were solved by all algorithms. From the cactus plot, it can be
seen that overall, the msu3 algorithms perform better than the msu1 algorithms
in this class of instances. Table 2 confirms that msu3 algorithms abort on fewer
instances, and among the msu3 algorithms, msu3-av and msu3-ov are able to
solve 3 more instances than msu3-rv. For the sum of cputimes on instances solved
by all the algorithms, the fastest algorithm for these instances is msu1-ov, as the
msu1 algorithms tend to be faster on the instances solved by all algorithms.

The results with weighted instances are presented in a the cactus plot of
Figure 3 and summarized in Table 3. Despite these instances being weighted,
the algorithms disregard the weights as suggested in Section 4.2. Column #Sol
show the same type of result as the in previous tables. Column Sum NA (4)
represents the sum of cputimes taken by each algorithm on 4 instances which
were solved by all algorithms. From the figure and table, it can be seen that
msu3 algorithms actually solve one more instance than msu1 algorithms but, for
the 4 instances solved by all, msu1 algorithms are faster than msu3 algorithms,
where msu1-ov is the fastest algorithm (over these 4 instances).

100 A. Morgado, M. Liffiton, and J. Marques-Silva

The last plot, Figure 4, shows the cactus plot with the results obtained from
the SMTLIB instances, while Table 4 summarizes. For these instances, the msu3
algorithms are able to solve 3 more instances than the msu1 algorithms. Nev-
ertheless, considering only the 257 instances solved by all the algorithms, the
fastest algorithm is msu1-ov.

Overall, it can be seen from the results that the msu3 algorithms solve the
greatest number of instances, and in particular, msu3-av is the only algorithm
that solved all of the Reveal instances. On the other hand, when considering only
instances that are solved by all algorithms, the results suggest that the fastest
algorithms are the msu1 algorithms, indicating that the easier instances are
solved more quickly by msu1 algorithms than msu3 variants. On these, msu1-av
is the fastest for the reveal instances, while for the other three classes, the fastest
algorithm is msu1-ov. There is no substantial difference between the different
blocking techniques when applied to a given algorithm (msu1 or msu3).

6 Conclusions and Future Work

State of the art algorithms for MCS enumeration of SAT and SMT instances
are based on one concrete instantiation of core-guided MaxSAT algorithms [12].
This paper proposes improvements to MCS enumeration algorithms, and shows
how these algorithms can integrate other core-guided MaxSAT algorithms. Ex-
perimental results, obtained on a wide range of practical instances of SAT and
SMT, show that the proposed improvements reduce overall running times and
allow solving more problem instances.

The proposed algorithms have been implemented on top of SMT solvers, using
available interfaces. Direct access to the internal state of the SMT solver is
expected to allow further performance improvements.

References

1. Andraus, Z.S.: Automatic Formal Verification of Control Logic in Hardware De-
signs. PhD Dissertation, University of Michigan (2009)

2. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Reveal: A formal verification tool for
verilog designs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 343–352. Springer, Heidelberg (2008)

3. Argelich, J., Lynce, I., Marques-Silva, J.: On solving Boolean multilevel optimiza-
tion problems. In: International Joint Conference on Artificial Intelligence, pp.
393–398 (2009)

4. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB) (2010), http://www.SMT-LIB.org

5. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability, pp. 825–885. IOS Press (2009)

6. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability
modulo the theory of costs: Foundations and applications. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg
(2010)

http://www.SMT-LIB.org

Enumeration of MCSs 101

7. Codish, M., Zazon-Ivry, M.: Pairwise cardinality networks. In: Clarke, E.M.,
Voronkov, A. (eds.) LPAR-16. LNCS (LNAI), vol. 6355, pp. 154–172. Springer,
Heidelberg (2010)

8. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

9. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

10. de Kleer, J., Williams, B.: Diagnosing multiple faults. Artificial Intelligence 32(1),
97–130 (1987)

11. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning 40(1), 1–33 (2008)

12. Liffiton, M.H., Sakallah, K.A.: Generalizing core-guided Max-SAT. In: Kullmann,
O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 481–494. Springer, Heidelberg (2009)

13. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted Boolean
optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508.
Springer, Heidelberg (2009)

14. Marques-Silva, J., Manquinho, V.: Towards more effective unsatisfiability-based
maximum satisfiability algorithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT
2008. LNCS, vol. 4996, pp. 225–230. Springer, Heidelberg (2008)

15. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satis-
fiability. Computing Research Repository abs/0712.0097 (2007)

16. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsat-
isfiable cores. In: Design, Automation and Test in Europe, pp. 408–413 (2008)

17. Morgado, A., Marques-Silva, J.: Combinatorial optimization solutions for the max-
imum quartet consistency problem. Fundam. Inform. 102(3-4), 363–389 (2010)

18. Nieuwenhuis, R., Oliveras, A.: On SATmodulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006)

19. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and abstract DPLL
modulo theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI),
vol. 3452, pp. 36–50. Springer, Heidelberg (2005)

20. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T).
Journal of the ACM 53(6), 937–977 (2006)

21. Nöhrer, A., Biere, A., Egyed, A.: Managing SAT inconsistencies with HUMUS.
In: Workshop on Variability Modelling of Software-Intensive Systems, pp. 83–91
(2012)

22. Prestwich, S.: Variable dependency in local search: Prevention is better than cure.
In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 107–
120. Springer, Heidelberg (2007)

23. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

24. Safarpour, S., Mangassarian, H., Veneris, A., Liffiton, M.H., Sakallah, K.A.: Im-
proved design debugging using maximum satisfiability. In: Formal Methods in
Computer-Aided Design (November 2007)

25. Sebastiani, R.: Lazy satisfiability modulo theories. Journal on Satisfiability,
Boolean Modeling and Computation 3(3), 141–224 (2007)

26. Sebastiani, R., Tomasi, S.: Optimization in SMT with LA(Q) cost functions. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp.
484–498. Springer, Heidelberg (2012)

Automated Reencoding of Boolean Formulas�

Norbert Manthey1, Marijn J.H. Heule2,3, and Armin Biere3

1 Institute of Artificial Intelligence, Technische Universität Dresden, Germany
2 Department of Computer Science, The University of Texas at Austin, United States
3 Institute for Formal Models and Verification, Johannes Kepler University, Austria

Abstract. We present a novel preprocessing technique to automatically
reduce the size of Boolean formulas. This technique, called Bounded Vari-
able Addition (BVA), exchanges clauses for variables. Similar to other
preprocessing techniques, BVA greedily lowers the sum of variables and
clauses, a rough measure for the hardness to solve a formula. We show
that cardinality constraints (CCs) can efficiently be reencoded: from a
naive CC encoding, BVA automatically generates a compact encoding,
which is smaller than sophisticated encodings. Experimental results show
that applying BVA can improve SAT solving performance.

1 Introduction

SAT solvers are used in many applications in electronic design automation
(EDA), including combinational [1,2] and sequential equivalence checking [3,4],
bounded [5] and unbounded model checking [6], and debugging [7]. State-of-the-
art solvers commonly expect their input to be a Boolean formula in conjunctive
normal form (CNF), which also serves as data structure for storing the formula
internally and maintaining a cache of learned facts in form of clauses [8]. This
restriction is on one hand a strength: it allows fast algorithms and compact data
structures [9]. On the other hand being forced to use CNF instead of high-level
constraints is also a weakness of current SAT solvers: it requires complex syn-
thesis [10] and encoding algorithms [11,12] in order to take full advantage of
the raw speed of CNF level solving. There have been several attempts to pro-
duce hybrid solvers [13,14], which combine CNF and circuit reasoning. These
approaches typically involve a considerable overhead at least from the software
engineering perspective. An alternative is to use CNF level preprocessing tech-
niques [15,16,17] to efficiently and effectively simulate certain constraint encod-
ing and reasoning techniques. As example, consider the combination of variable
elimination [16] and blocked clause elimination [17], which is able to achieve the
same effect as sophisticated encoding algorithms [12].

Starting from a problem to solve, the first step is to encode it into CNF.
Next, preprocessing techniques are used to simplify the formula, before search is

� The second and the third author are supported by the Austrian Science Foundation
(FWF) NFN Grant S11408-N23 (RiSE). The second author is supported by DARPA
contract number N66001-10-2-4087.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 102–117, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automated Reencoding of Boolean Formulas 103

started. Recently, inprocessing was introduced [18,19] that applies preprocessing
on a partially solved formula (i.e., during search), linking back in the tool chain.
Here, we investigate another link back by reencoding clauses. This technique
can be applied on the original set of clauses, but also on partially solved and
inprocessed formulas. Thus, this paper adds to this discussion of which way to
go another argument in favor of CNF level preprocessing. We show that it is
possible to simulate sophisticated constraint encoding techniques with a rather
simple CNF level technique, and thus create the missing link in the picture.

The basic idea is to reencode parts of the CNF by introducing new variables,
if the size of the CNF decreases. The size of the CNF is measured by the sum
of the number of variables and clauses. This is in essence a reverse applica-
tion of variable elimination. Bounded variable elimination (BVE), as proposed
in [16,20,21], essentially eliminates a variable in a CNF by clause distribution, if
the size of the CNF does not increase. In many applications, BVE is currently
one of the most effective CNF level preprocessing techniques.

We show improvements in SAT solving time after using our preprocessing on
various application benchmarks and recent SAT competitions. We also show,
that our technique theoretically and empirically simulates optimized encodings
of cardinality constraints starting from a naive standard encoding. These con-
straints occur frequently in many applications [22,23,24] and have been studied
by the CP and SAT communities [25,26,27,28,29,16,30,31]. Furthermore, our pre-
processing technique is not restricted to cardinality constraints, but it is also able
to factor out common logic in arbitrary formulas without cardinality constraints.

The closest related work is an attempt [32] to speed-up SAT solving by allow-
ing extension steps of extended resolution. The idea is to factor out a common
prefix of (learned) clauses by replacing it with a new variable. These extension
steps never decrease the number of clauses. If applied to original clauses, BVE
would eliminate the extensions again, which renders this technique [32] useless
in combination with BVE. In contrast, BVE cannot undo our new method. An-
other rewriting technique [33] partitions the formula and removes gate definition
clauses. The other clauses are clustered based on shared variables. Each cluster
is then transformed into a Gröbner basis, reduced and finally transformed back
into CNF. Combined with BVE, this transformation can lead to a faster solving
process. However, the rewriting itself can be quite expensive [33].

We do not claim that high-level reasoning is useless in general. Clearly, there
are situations where such reasoning should be combined with CNF level reason-
ing. This paper adds to the arsenal of preprocessing techniques a new algorithm,
which allows to simulate additional sophisticated encoding and reasoning tech-
niques on the CNF level. This is particularly useful for inprocessing, as used in
PrecoSAT and Lingeling [18], so new learned facts can be taken into account.
As future work, we want to extend these ideas to capture even more high-level
techniques such as AIG rewriting [10], compact encoding techniques based on
technology mapping [11], and Gaussian elimination of XOR constraints [34].

The remainder of this paper is structured as follows: the next section provides
background information. In Section 3 we present our novel technique Bounded

104 N. Manthey, M.J.H. Heule, and A. Biere

Variable Addition (BVA). Automated reencoding of cardinality constraints is one
of the possible applications of BVA, which is discussed in Section 4. Experimental
results are described in Section 5. Finally, we draw conclusions in Section 6.

2 Preliminaries

In this section we review necessary background concepts: conjunctive normal
form level Boolean satisfiability (SAT), resolution and variable elimination.

2.1 Conjunctive Normal Form

For a Boolean variable x, there are two literals, the positive literal, denoted by
x, and the negative literal, denoted by x̄. A clause is a disjunction of literals and
a CNF formula a conjunction of clauses. A clause can be seen as a finite set of
literals and a CNF formula as a finite set of clauses. A clause is a tautology if it
contains both x and x̄ for some x. The set of literals occurring in a CNF formula
F is denoted by LIT(F). Formulas are logically equivalent if they have the same
set of satisfying assignments over the common variables.

2.2 Resolution and Variable Elimination

The resolution rule states that, given two clauses C1 = {x, a1, . . . , an} and
C2 = {x̄, b1, . . . , bm}, the implied clause C = {a1, . . . , an, b1, . . . , bm}, called
the resolvent of C1 and C2, can be inferred by resolving on the variable x. We
write C = C1 ⊗ C2. This notion can be lifted to sets of clauses: for two sets Sx

and Sx̄ of clauses which all contain x and x̄, respectively, we define

Sx ⊗ Sx̄ = {C1 ⊗ C2 | C1 ∈ Sx, C2 ∈ Sx̄, and C1 ⊗ C2 is not a tautology}.

The Davis-Putnam procedure [35] (DP) can be used as a basic simplification
technique, referred to as variable elimination by clause distribution [20,21,36].
The elimination of a variable x in the whole CNF formula can be computed
by pair-wise resolving each clause in Sx with every clause in Sx̄. Replacing the
original clauses in Sx∪Sx̄ with the set of non-tautological resolvents S = Sx⊗Sx̄

gives the formula (F \ (Sx ∪ Sx̄)) ∪ S that is logically equivalent to F .
Notice that DP is a complete proof procedure for CNF formulas, with expo-

nential space complexity. Hence for practical applications of variable elimination
by clause distribution as a simplification technique for CNF formulas, variable
elimination needs to be bounded [20,21,36].

3 Bounded Variable Addition

Closely following the heuristics applied in the SatElite preprocessor [36] for ap-
plying variable elimination, in this paper we study the bounded variant of vari-
able elimination (VE) by clause distribution (BVE) as a simplification technique.

Automated Reencoding of Boolean Formulas 105

In BVE, a variable x can be eliminated only if |S| ≤ |Sx ∪ Sx̄|, i.e., when the
resulting CNF formula (F \(Sx∪Sx̄))∪S will not contain more than |F | clauses,
where F is the formula before the elimination step.

Example 1. Consider a CNF formula F with

Sx = (x ∨ c) ∧ (x ∨ d̄) ∧ (x ∨ ā ∨ b̄) and Sx̄ = (x̄ ∨ a) ∧ (x̄ ∨ b) ∧ (x̄ ∨ ē ∨ f)

for the variable x. Applying VE to eliminate x, we have

S = Sx ⊗ Sx̄ = (a ∨ c) ∧ (b ∨ c) ∧ (a ∨ d̄) ∧ (b ∨ d̄) ∧
(ā ∨ b̄ ∨ ē ∨ f) ∧ (c ∨ ē ∨ f) ∧ (d̄ ∨ ē ∨ f).

Since |Sx| + |Sx̄| = 6 and |S| = 7, BVE cannot eliminate the variable x. Notice
that the clauses (x∨ ā∨ b̄), (x̄∨a), and (x̄∨ b) in F are equivalent to the Tseitin
encoding of the gate x = and(a, b). This is why resolving (x∨ ā∨ b̄) with (x̄∨a)
and (x̄ ∨ b) on x produces only tautological clauses that are not in S [36].

The global heuristic used for bounding VE –substitute only if the sum of variables
and clauses decreases– appears to be a powerful metric to simplify a Boolean
formula. This heuristic inspired us to develop the technique Bounded Variable
Addition (BVA). As the name suggests, BVA is complementary to BVE: instead
of exchanging variables for clauses BVA exchanges clauses for variables. Yet the
same bounding heuristic is used: substitute to decrease the size of the CNF.

Example 2. The smallest formula for which adding a variable can decrease the
size of the CNF consists of six clauses. Such a formula contains the pattern

E = (a ∨ c) ∧ (a ∨ d) ∧ (a ∨ e) ∧ (b ∨ c) ∧ (b ∨ d) ∧ (b ∨ e)

By adding a new variable x, E can be reencoded to the logically equivalent
formula E′ which has one clause less:

E′ = (a ∨ x) ∧ (b ∨ x) ∧ (c ∨ x̄) ∧ (d ∨ x̄) ∧ (e ∨ x̄)

However, it is not always easy to find patterns that reduce the number of clauses.
Consider for instance the resulting S consisting of seven clauses in Example 1.
Based on the global heuristic, one would like to replace S by Sx ∪ Sx̄ because
the size of the latter is smaller. Given S, however, how can we compute that
there exists a Sx ∪ Sx̄ such that S = Sx ⊗ Sx̄ and |Sx| + |Sx̄| < |S| ? Even for
this small set of clauses, this question is far from trivial. Since practical SAT
instances are huge, say 100, 000 clauses, the number of possibilities for Sx and
Sx̄ are enormous. Hence, general BVA until fixpoint will be very costly.

3.1 The SimpleBoundedVariableAddition Algorithm

The number of patterns to add a Boolean variable in order to decrease the size of
the CNF is very large. To reduce the computational cost, we limited the search

106 N. Manthey, M.J.H. Heule, and A. Biere

to detect only some specific patterns. We focus on those patterns for which the
new variable x occurs positively in binary clauses only, while the occurrences of
the complement are unrestricted.

Two sets will be used during the detection: a set of literals Mlit and a set
of clauses Mcls. A pair 〈Mlit,Mcls〉 is called a replaceable matching w.r.t. F if
for all l ∈ Mlit and C ∈ Mcls the clauses (C \ {Mlit}) ∪ {l} are either in F
or tautological. Given a replaceable matching 〈Mlit,Mcls〉, we can apply the
matching-to-clauses construction method which creates the sets Sx and Sx̄ as
follows: Sx = {(l ∨ x) | l ∈ Mlit} and Sx̄ = {(C \Mlit) ∪ {x̄} | C ∈ Mcls}. The
final step is to remove all clauses (C \ {Mlit}) ∪ {l} with l ∈ Mlit and C ∈Mcls

and replace them with Sx ∪ Sx̄.
Consider Example 2 again: For the formula E there exists a replaceable match-

ing: Mlit = {a, b} and Mcls = {(a ∨ c), (a ∨ d), (a ∨ e)}. Applying the matching-
to-clauses construction method of Sx and Sx̄ gives E′ = Sx ∪ Sx̄.

Theorem 1. Given a replaceable matching 〈Mlit,Mcls〉 w.r.t. a CNF formula F ,
a formula F ′ can be constructed by adding a Boolean variable such that (1) F ′ is
logically equivalent to F and (2) F ′ contains |F |+ |Mlit|+ |Mcls| − |Mlit| · |Mcls|
clauses if none of the resolvents is a tautology.

Proof. Given a replaceable matching 〈Mlit,Mcls〉, we can construct F ′ as follows:
remove from F all clauses (C \ {Mlit}) ∪ {l} with l ∈ Mlit and C ∈ Mcls and
replace them with Sx ∪ Sx̄ which are obtained using the matching-to-clauses
construction method. The number of removed clauses is |Mlit| · |Mcls|, while the
number of added clauses is |Mlit|+ |Mcls| showing (2). Applying VE on x in F ′

produces F . (1) holds because VE preserves logical equivalence.

We refer to the reduction of a replaceable matching 〈Mlit,Mcls〉 with respect
to the number of clauses as |Mlit| · |Mcls| − |Mlit| − |Mcls|. Notice that for each
l ∈ LIT(F) holds that Mlit := {l} and Mcls := Fl is a replaceable matching.
However, it is not useful because the reduction is -1. Heuristically the most
interesting replaceable matching is the one with the largest reduction.

We developed the SimpleBoundedVariableAddition algorithm, see Fig. 1, to find
and replace matchings with a positive reduction. In order to find matchings with
large reductions first, a priority queue Q is used that sorts literals l ∈ LIT(F) in
descending order of the number of occurrences of l in F (line 1). While Q is not
empty (line 2), the top element l is used to initialize Mlit := {l} and Mcls := Fl

(line 3).
In the next seven lines a sequence P of literal-clause pairs 〈l′, C〉 is created

such that C ∈Mcls and C \ {l} ∪ {l′} ∈ F . After initialization (line 4), we loop
through the clauses C ∈ Mcls and select in each of them the literal lmin that
occurs least frequently in F to reduce the computational cost (line 5). Now we
try to extend P by looping through the clauses D ∈ Flmin (line 7) and check
whether C and D differ in exactly one literal (line 8). Let the different literal be
l′ (line 9), so we extend P with 〈l′, C〉 (line 10).

Now, we try to add a literal to the matching such that the reduction would
increase. The best candidate for this addition is lmax the literal occurring most

Automated Reencoding of Boolean Formulas 107

SimpleBoundedVariableAddition (CNF formula F)

1 let Q be a priority queue of l ∈ LIT(F) sorted by |Fl|
2 while Q
= ∅ do

3 l := Q.top(), Q.pop(), Mlit := {l}, Mcls := Fl

4 P := ∅
5 foreach C ∈ Mcls do

6 let lmin ∈ C \ {l} be least occurring in F

7 foreach D ∈ Flmin do

8 if |C| = |D| and C \D = l then

9 l′ := D \ C
10 P := P ∪ 〈l′, C〉
11 let lmax be occurring most frequently in P

12 if adding lmax to Mlit further reduces |F | then
13 Mlit := Mlit ∪ {lmax},Mcls := ∅
14 foreach 〈lmax, C〉 ∈ P do

15 Mcls := Mcls ∪ {C}
16 goto 4

17 if |Mlit| = 1 then continue

18 let x be a new variable not occurring in F

19 foreach l′ ∈ Mlit do

20 F := F ∪ {l′, x}
21 foreach C ∈ Mcls do

22 F := F \ {(C \ {l}) ∪ {l′}}
23 foreach C ∈ Mcls do

24 F := F ∪ {(C \ {l}) ∪ {x̄}}
25 Q.push(l), Q.push(x), Q.push(x̄)

26 return F

Fig. 1. Pseudo code of the SimpleBoundedVariableAddition algorithm

frequently in P (line 11). If adding lmax increases the reduction (line 12), then
lmax is added to Mlit (line 13) and Mcls is updated s.t. Mlit and Mcls is a
replaceable matching (line 14–15). Afterwards, we try to further increase the
matching by rebuilding P (line 16).

The last part of the algorithm implements the replacement, if Mlit contains
multiple literals (line 17). Variable x is added (line 18) and all clauses (C \
{Mlit}) ∪ {l} with l ∈ Mlit and C ∈ Mcls are removed from F and replaced by
(l′ ∨ x) with l′ ∈Mlit and (C \ {l})∪ {x̄} with C ∈Mcls (lines 19–24). Last, but
not least, l, x and x̄ are inserted in Q for possible future replacements.

3.2 Extensions

Several extensions of the BVA algorithm as shown in Fig. 1 are possible. In this
subsection we discuss four of them. First, we observed that for some problems it

108 N. Manthey, M.J.H. Heule, and A. Biere

occurs that l = l̄max. In this special case, the resolvent between the clauses C ∈ Fl

and D ∈ Flmax such that |C| = |D| and C \ D = l subsume the antecedents.
This is also known as self-subsumption [36]. We can simply remove l from the
corresponding clause in C ∈ Fl, and remove the clause D ∈ Flmax . So even if l̄
occurs only once in P , it can be selected as lmax to reduce the number of clauses
without adding a new variable. Since this check is straight forward, it has been
added to the algorithm for the experimental evaluation.

The most natural extension is to search for more (less limited) patterns. For
instance consider the following formula:

H = (a ∨ d) ∧ (a ∨ e) ∧ (a ∨ f) ∧ (b ∨ c ∨ d) ∧ (b ∨ c ∨ e) ∧ (b ∨ c ∨ f)

The BVA algorithm as presented in Fig. 1 cannot reduce the number of clauses.
However, if one would allow to have pairs of literals (or even more) in Mlit,
then substitution is possible. Now consider Mlit = {{a}, {b, c}} and Mcls =
{(a∨ d), (a ∨ e), (a ∨ f)}, applying the replacement code (lines 19–24) results in
the following formula:

H ′ = (a ∨ x) ∧ (b ∨ c ∨ x) ∧ (x̄ ∨ d) ∧ (x̄ ∨ e) ∧ (x̄ ∨ f)

Enhancing SimpleBoundedVariableAddition with these and other patterns will be
part of future research.

The third extension is exploring how to reduce the cost to detect patterns.
For instance, all literals l ∈ Q which occur less than three times in F can be
removed because the check on line 12 would fail for those literals. Also, all
clauses in Mcls must have at least one literal occurring in Q. These observations
can be used to speed-up detection which would be important for more complex
patterns in particular. The first part of this extension is also used in the evaluated
implementation, because of its simplicity. We simply do not add variables back
into Q if they occur less than three times.

The fourth extension deals with taking into account tautological clauses.

Example 3. Consider the following CNF formula G

G = (a ∨ b̄ ∨ c̄) ∧ (ā ∨ b ∨ c̄) ∧ (ā ∨ b̄ ∨ c) ∧ (b̄ ∨ c̄ ∨ d) ∧
(ā ∨ c̄ ∨ d) ∧ (ā ∨ b̄ ∨ d) ∧ (a ∨ d̄) ∧ (b ∨ d̄) ∧ (c ∨ d̄)

The SimpleBoundedVariableAddition algorithm as described above cannot reduce
the size of G. However, BVA can be applied using Mlit = {{a}, {b}, {c}, {d}}
and Mcls = {(b̄ ∨ c̄ ∨ d), (ā ∨ c̄ ∨ d), (ā ∨ b̄ ∨ d), (d̄ ∨ d)} resulting in G′:

G′ = (a ∨ x) ∧ (b ∨ x) ∧ (c ∨ x) ∧ (d ∨ x) ∧
(b̄ ∨ c̄ ∨ x̄) ∧ (ā ∨ c̄ ∨ x̄) ∧ (ā ∨ b̄ ∨ x̄) ∧ (d̄ ∨ x̄)

Our current algorithm cannot reduce G because it cannot match tautological
clauses such as (d̄∨d). In order to find these more complex patterns, one should
assume that all tautological clauses are implicitly in a formula. Patterns that
include tautological clauses also require a different equation to count the reduc-
tion of the number of clauses. For instance, with |Mlit| = 4 and Mcls = 4, one
would expect a reduction of 8, while the actual reduction is only 1.

Automated Reencoding of Boolean Formulas 109

4 Cardinality Constraints

For encoding applications, e.g. routing, scheduling, verification or code-generation
[22,23], as well as for encoding instances from product configuration or radio fre-
quency assignment or the domain of a CSP variable [37,38], it is necessary to
encode numerical bounds. These numerical bounds can be notated as follows: ≤
k(x1, . . . , xn) where n is the number of variables and k is the number of variables
that are allowed to be assigned true. A naive encoding into propositional logic of
this constraint is ∧

M⊆{1,...,n}
|M|=k+1

(
∨
i∈M

x̄i).

Many encodings for cardinality constraints have been proposed [29,31,16]. In
the following two subsections we will show that BVA can be used to reencode
cardinality constraints that are encoded naively efficiently. The comparison to
sophisticated encodings is based on applying BVA to the naive encoding of cardi-
nality constraints. To the best of our knowledge we name all proposed encodings
for this constraint and then focus on the most promising encodings that main-
tain arc consistency, since reencoding with BVA also preserves arc consistency.
Arc consistency means that if k variables are already assigned to true, than all
the other variables will be mapped to false by Boolean constraint propagation.

There exist SAT solvers that handle cardinality constraints within the solver,
for example Sat4J [39] or clasp [40]. This feature is used for solving MaxSAT
and PB problems. However, these solvers do not extract cardinality constraints
from the formula and exploit their special mechanisms. In general it is hard
to judge whether handling cardinality constraints natively or encoding them to
SAT results in the higher performance. Yet the strongest SAT solvers tend to
not support native cardinality constraints. MiniSAT [41] for instance supported
native cardinality constraints up to version 1.12, but dropped support in all
later versions. Recent approaches to incorporate cardinality constraint reasoning
into the solver again are in an early stage [42]. For example, this solver cannot
compete with a SAT solver that performs preprocessing and inprocessing.

Encoding cardinality constraints into SAT and then using BVA has the ad-
vantage that any SAT solver can be applied. Due to recent portfolio systems [43]
the most promising solver can be picked, whereas the set of candidate solvers is
much smaller for solvers that handle these constraints natively.

4.1 The At-Most-1 Constraint

A special case of cardinality constraints is k = 1 that is applied whenever a
finite domain is encoded, for example when CSP is translated into SAT. Several
encodings have been proposed with lower number of clauses, for example the log
encoding (LE) [44] or the 2-product encoding (PE) [45]. Furthermore, for k = 1
the sequential counter encoding (SE) [29] can be adopted. The naive encoding
for k = 1 is referred to as the direct encoding (DE). For each encoding the lower

110 N. Manthey, M.J.H. Heule, and A. Biere

Table 1. Encoding the at-most-one constraint

Encoding Clauses Variables

DE n·(n−1)
2

n
LE [44] n · �log n� n+ log n
PE [45] 2n+ 4 · √n+O(4

√
n) n+

√
n+O(4

√
n)

SE [29] 3n− 4 2n− 1
DE+ BVA 3n− 6 ∼ 2n
LE + BVA ∼ 3n ∼ 1.5n

bound on the number of clauses and variables for a given value for n are given
in Table 1. The values have been taken from the corresponding publications.

Neither of the encodings PE and SE can be processed by BVA. However,
applying BVA to the naive encoding yields major benefit with respect to the
number of clauses and variables. Although PE has the best asymptotic number
of clauses, DE + BVA produce less clauses until the value for n reaches 47. The
same effect can be seen for the number of variables as long as n < 45. Note, that
for cardinality constraints in real instances the value of n usually is smaller than
45. Applying BVA to LE does not give better results than using PE. Table 1
also shows that using a naive encoding and applying BVA results in a very good
encoding for the at-most-1 constraint.

Example 4. Consider the DE of ≤ 1(a, b, c, d, e, f) :

D = (ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (ā ∨ d̄) ∧ (ā ∨ ē) ∧ (ā ∨ f̄) ∧ (b̄ ∨ c̄) ∧ (b̄ ∨ d̄) ∧
(b̄ ∨ ē) ∧ (b̄ ∨ f̄) ∧ (c̄ ∨ d̄) ∧ (c̄ ∨ ē) ∧ (c̄ ∨ f̄) ∧ (d̄ ∨ ē) ∧ (d̄ ∨ f̄) ∧ (ē ∨ f̄)

Applying BVA on D replaces nine clauses by six using Mlit = {ā, b̄, c̄} and
Mcls = {(ā ∨ d̄), (ā ∨ ē), (ā ∨ f̄)}:

(ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (b̄ ∨ c̄) ∧ (d̄ ∨ ē) ∧ (d̄ ∨ f̄) ∧ (ē ∨ f̄) ∧
(ā ∨ x) ∧ (b̄ ∨ x) ∧ (c̄ ∨ x) ∧ (d̄ ∨ x̄) ∧ (ē ∨ x̄) ∧ (f̄ ∨ x̄)

Fig. 2 shows the number of clauses that are needed to encode the at-most-1 con-
straint with the mentioned encodings. The value on the x-axis gives the number
of Boolean variables where a single one has to be set to true. It can be seen
clearly that both DE and LE use more clauses than any of the special encod-
ings. Applying BVA to the naive encoding results in almost the same number
of clauses as if a special encoding is used. Until the number of elements reaches
47, using DE +BVA results in the smallest number of clauses for the at-most-1
constraint.

4.2 The At-Most-K Constraint

The more generic case of the cardinality constraint does not bind k to a specific
value. Thus, it is not possible to easily adopt a special encoding as for the

Automated Reencoding of Boolean Formulas 111

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

cl
au

se
s

at-most-1

DE
LE
PE
SE

DE+BVA
LE+BVA

Fig. 2. Clauses needed to encode the at-most-1 constraint

case k = 1. In general, for the mentioned applications a value of k that is
larger than 1 is required. Still, special encodings have been proposed to encode
general cardinality constraints efficiently. Again, we consider only encodings that
preserve arc consistency.

Encoding cardinality constraints based on a unary number representation
and a binary tree with comparators has been proposed [30] which we refer to as
TREE. Sinz introduced a sequential counter encoding and a parallel counter en-
coding, where the latter one does not preserve arc consistency. Eén and Sörrensen
[16] introduced three possibilities to encode a cardinality constraint, namely by
using (i) binary decision diagrams, (ii) networks of sorters or (iii) networks of
adders [16], where only the first two encoding preserve arc consistency. Encoding
the BDD into CNF has been done by the Tseitin transformation. There are two
small sized encodings for cardinality constraints that do not provide arc con-
sistency: the parallel counter [29] and the hybrid perfect hashing function based
encoding [46]. Although the properties of the latter are very nice, it cannot guar-
antee arc consistency for all possible cardinality constraints. The arc consistent
variant of perfect hashing function based encoding [46] uses slightly more clauses
than the sequential counter, but needs less auxiliary variables. Since we focus
on the number of clauses, we do not consider this encoding. Table 2 shows the
asymptotic number of clauses and variables that are needed by using the differ-
ent encodings. Notice that the number of clauses that are required by the naive
encoding is significantly higher than for the other encodings.

Discussing the effect of BVA on the naive encoding of at-most-k constraints
is not as simple as for the special case k = 1, because non-binary clauses are
involved in these encodings.

112 N. Manthey, M.J.H. Heule, and A. Biere

Table 2. Encoding the at-most-k constraint

Encoding Clauses Variables

naive
(

n
k+1

)
n

TREE [30] O(n2) Θ(n log n+ 1)
SE [29] 2nk + n− 3k − 1 (n− 1) · k

BDD [16] 2nk + n− k2 (n− k + 1) · k + n

Due to the limit of BVA to detect only matchings where Mlit is restricted
to a set of single literals, many potential matchings cannot be recognized and
replaced. The following example illustrates this statement. Although matchings
with a reduction of 3 are part of formula K, only reductions of size 2 can be
recognized. By increasing the number of matching literals in BVA, this limit can
be overcome. Still, applying BVA to the naive at-most-k encoding reduces the
number of clauses significantly. The smaller the value k, the closer the number
of clauses after BVA gets to the number of clauses of the special encodings.
We present some exemplary values for the number of clauses and variables after
applying BVA to the naive encoding in Table 3 to support this statement. The
formulas for SE and BDD have been generated by using the tools that have been
provided with the corresponding publications. For n = 10 using BVA results in
the smallest formula. For n = 20 the special encodings are almost always more
effective than BVA.

Example 5. Consider the encoding of ≤ 3(a, b, c, d, e, f) :

K = (ā ∨ b̄ ∨ c̄ ∨ d̄) ∧ (ā ∨ b̄ ∨ c̄ ∨ ē) ∧ (ā ∨ b̄ ∨ c̄ ∨ f̄) ∧ (ā ∨ b̄ ∨ d̄ ∨ ē) ∧
(ā ∨ b̄ ∨ d̄ ∨ f̄) ∧ (ā ∨ b̄ ∨ ē ∨ f̄) ∧ (ā ∨ c̄ ∨ d̄ ∨ ē) ∧ (ā ∨ c̄ ∨ d̄ ∨ f̄) ∧
(ā ∨ c̄ ∨ ē ∨ f̄) ∧ (ā ∨ d̄ ∨ ē ∨ f̄) ∧ (b̄ ∨ c̄ ∨ d̄ ∨ ē) ∧ (b̄ ∨ c̄ ∨ d̄ ∨ f̄) ∧
(b̄ ∨ c̄ ∨ ē ∨ f̄) ∧ (b̄ ∨ d̄ ∨ ē ∨ f̄) ∧ (c̄ ∨ d̄ ∨ ē ∨ f̄)

Applying BVA on the formula K will find the matching Mlit = {ā, b̄} and Mcls =
{(ā ∨ d̄ ∨ ē ∨ f̄), (ā ∨ c̄ ∨ d̄ ∨ ē), (ā ∨ c̄ ∨ ē ∨ f̄), (ā ∨ c̄ ∨ d̄ ∨ f̄)} with a reduction
of 2 clauses. Yet the more interesting case is to use Mlit = {{ā, b̄}, {ā, c̄}, {b̄, c̄}}
and Mcls = {(ā∨ b̄∨ d̄∨ ē), (ā∨ b̄∨ d̄∨ f̄), (ā∨ b̄∨ ē∨ f̄)} which has reduction 3.

5 Experiments

We implemented the algorithm of Fig. 1 in a new tool1. Although applying
SimpleBoundedVariableAddition until fixpoint requires less than a second on most
benchmarks, we observed that BVA was sometimes very expensive – even in case
no replaceable matching can be found. Therefore, we limited the execution of
BVA as follows: when the check on line 8 of Fig. 1 is executed 10,000,000 times,

1 The sources of the tool are available at http://fmv.jku.at/bva

http://fmv.jku.at/bva

Automated Reencoding of Boolean Formulas 113

Table 3. Encoding the at-most-k constraint

naive naive + BVA SE [29] BDD [16]

k n #var #cls #var #cls #var #cls #var #cls

2 10 10 120 18 32 28 43 33 59
3 10 10 210 18 47 37 60 37 70
4 10 10 252 19 51 46 77 39 75
5 10 10 210 17 53 55 94 39 74
2 20 20 1140 40 80 58 93 73 139
3 20 20 4845 44 209 77 130 87 180
4 20 20 15504 66 326 96 167 99 215
5 20 20 38760 60 768 115 204 109 244
6 20 20 77520 130 1104 134 241 117 267
7 20 20 125970 113 2051 153 278 123 284
8 20 20 167960 227 2247 172 315 127 295
9 20 20 184756 104 3175 191 352 129 300
10 20 20 167960 191 2892 210 389 129 299

the algorithm is aborted. Then, the formula is returned with all substitutions
until that point. This limit ensures that the preprocessing runtime is only a few
seconds for the more costly formulas. Note, that all the experiments use the first
and third extension that have been mentioned in Section 3.2. For the experiments
we selected the SAT solver Lingeling (version SAT11 Competition2) because of
its strong performance during SAT10 Race and SAT11 Competition.

5.1 Bio-informatics

One family of benchmarks for which we observed that BVA could significantly
decrease the size of the instances originates from bio-informatics. These formulas
encode computing evolutionary tree measures into SAT [47]. The results of these
instances are shown in Table 4. The selected benchmarks are very hard and no
solver was able to tackle any of the 09 or 10 instances (within the CPU timeout
of 40,000 seconds). After applying our BVA tool –which on average reduces the
size of a factor ten– Lingeling could solve all instances. Of the original instances
only rpoc 08 could be solved, yet 36 times slower.

5.2 FPGA Routing

As discussed in prior sections, several benchmarks arising from EDA consist of
cardinality constraints. A family of this type used in recent SAT competitions
encodes FPGA routing problems [22]. This family consists of six routing config-
urations (chnlXX YY) in which one tries to route (a) 11, 12 or 13 connections
through 10 tracks, and (b) 12, 13 or 20 connections through 11 track. Table 5

2 http://www.satcompetition.org

http://www.satcompetition.org

114 N. Manthey, M.J.H. Heule, and A. Biere

Table 4. Results on bio-informatics benchmarks. TO is 20,000 seconds

original BVA preprocessed

instance #var #cls solve #var #cls pre solve

ndhf 09 1910 167476 TO 3098 14588 1.47 187
ndhf 10 2112 191333 TO 3418 16756 1.70 1272
rbcl 08 1278 67720 TO 1981 8669 0.29 16
rbcl 09 1430 79118 TO 2192 10157 0.39 101
rbcl 10 1584 91311 TO 2443 11811 0.43 604
rpoc 08 1278 74454 8628 2011 8494 0.39 237
rpoc 09 1430 86709 TO 2252 10063 0.47 3590
rpoc 10 1584 99781 TO 2474 11667 0.66 11945

shows the results. BVA decreases the size of the CNF by more than a factor
two. The preprocessed formulas are easier to solve. FPGA routing can also be
solved with special purpose solvers that perform well on these instances. Tech-
niques that are used in these solvers are for example symmetry breaking [22].
Since symmetry breaking and BVA are orthogonal, it is a reasonable choice to
measure the effect of BVA also on this instance family. Furthermore, it would
be possible to combine symmetry breaking and BVA.

Table 5. Results on FPGA routing problems. TO is 20,000 seconds

original BVA preprocessed

instance #var #cls solve #var #cls pre solve

chnl10 11 220 1122 9372 302 562 0.00 69.3
chnl10 12 240 1344 7279 340 624 0.00 15.0
chnl10 13 260 1586 2682 380 686 0.00 26.0
chnl11 12 264 1476 TO 374 684 0.00 41.6
chnl11 13 286 1742 TO 418 752 0.00 17.1
chnl11 20 440 4220 TO 667 1228 0.00 12.1

5.3 Recent SAT Competitions

We observed that applying variable elimination (BVE) creates many patterns for
variable addition (BVA). Therefore we preprocessed, using SatElite of MiniSAT
2.2 [36], the formulas of recent SAT competitions with BVE –which is default
in the strongest SAT solvers– and applied our SimpleBoundedVariableAddition
algorithm afterwards.

On the application benchmarks of SAT09, Lingeling solved 196 instances (75
SAT and 121 UNSAT) within 900 seconds (including all preprocessing time),
while without BVA 190 instances (74 SAT, 116 UNSAT) were solved. The same
experiment on the application benchmarks of SAT11 resulted in a similar picture:

Automated Reencoding of Boolean Formulas 115

with BVA 169 (79 SAT, 90 UNSAT) were solved, while without BVA, Lingeling
solves 162 instances (80 SAT, 82 UNSAT).

On the crafted instances we noticed that BVA works particularly well on
benchmarks from the Satisfiable Random High Degree Subgraph Isomorphism
(SRHD) family [48]. Using BVA, Lingeling is able to solve several more instances
of this family. However, even with the improved performance Lingeling requires
minutes to solve these benchmarks, while local search SAT algorithms can find
a solution in seconds.

6 Conclusions

We presented the preprocessing technique BVA that automatically reduces the
size of CNF formulas by introducing new variables. BVA can shrink formu-
las containing for instance cardinality constraints. Experiments show that the
smaller CNFs are generally solved faster, making BVA a useful technique. Also
interestingly, the presented algorithm is orthogonal to BVE, which is one of the
most powerful preprocessing techniques.

Future work in this direction will focus on enhancing BVA with more replace-
ment patterns. Additionally, BVA will be studied in the context of inprocessing
to observe the interaction with other techniques such as BVE and BCE.

We finally would like to thank the anonymous reviewers for detailed sugges-
tions on how to improve the paper.

References

1. Goldberg, E.I., Prasad, M.R., Brayton, R.K.: Using SAT for combinational equiv-
alence checking. In: DATE, pp. 114–121 (2001)

2. Mishchenko, A., Chatterjee, S., Brayton, R.K., Eén, N.: Improvements to combi-
national equivalence checking. In: Hassoun, S. (ed.) ICCAD, pp. 836–843. ACM
(2006)

3. Baumgartner, J., Mony, H., Paruthi, V., Kanzelman, R., Janssen, G.: Scalable
sequential equivalence checking across arbitrary design transformations. In: ICCD.
IEEE (2006)

4. Kaiss, D., Skaba, M., Hanna, Z., Khasidashvili, Z.: Industrial strength SAT-based
alignability algorithm for hardware equivalence verification. In: FMCAD, pp. 20–
26. IEEE Computer Society (2007)

5. Biere, A., Cimatti, A., Clarke, E.M., Fujita, M., Zhu, Y.: Symbolic model checking
using SAT procedures instead of bdds. In: DAC, pp. 317–320 (1999)

6. Sheeran, M., Singh, S., St̊almarck, G.: Checking safety properties using induction
and a SAT-solver. In: Hunt Jr., W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS,
vol. 1954, pp. 108–125. Springer, Heidelberg (2000)

7. Chen, Y., Safarpour, S., Marques-Silva, J.P., Veneris, A.G.: Automated design
debugging with maximum satisfiability. IEEE Trans. on CAD of Integrated Circuits
and Systems 29(11), 1804–1817 (2010)

8. Marques Silva, J.P., Sakallah, K.A.: Grasp: A search algorithm for propositional
satisfiability. IEEE Trans. Computers 48(5), 506–521 (1999)

9. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: DAC, pp. 530–535. ACM (2001)

116 N. Manthey, M.J.H. Heule, and A. Biere

10. Mishchenko, A., Chatterjee, S., Brayton, R.K.: Dag-aware aig rewriting a fresh
look at combinational logic synthesis. In: DAC, pp. 532–535 (2006)

11. Eén, N., Mishchenko, A., Sörensson, N.: Applying logic synthesis for speeding up
SAT. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
272–286. Springer, Heidelberg (2007)

12. Chambers, B., Manolios, P., Vroon, D.: Faster SAT solving with better CNF gen-
eration. In: DATE, pp. 1590–1595. IEEE (2009)

13. Guerra e Silva, L., Miguel Silveira, L., Marques Silva, J.P.: Algorithms for solv-
ing boolean satisfiability in combinational circuits. In: DATE, pp. 526–530. IEEE
Computer Society (1999)

14. Ganai, M.K., Ashar, P., Gupta, A., Zhang, L., Malik, S.: Combining strengths of
circuit-based and CNF-based algorithms for a high-performance SAT solver. In:
DAC, pp. 747–750. ACM (2002)

15. Bacchus, F., Winter, J.: Effective preprocessing with hyper-resolution and equality
reduction. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp.
341–355. Springer, Heidelberg (2004)

16. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT.
JSAT 2(1-4), 1–26 (2006)

17. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Ma-
jumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg
(2010)

18. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT Race 2010. FMV
Report Series Technical Report 10/1, Johannes Kepler University, Linz, Austria
(2010)

19. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Hei-
delberg (2012)

20. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)

21. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination reso-
lution for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT
2004. LNCS, vol. 3542, pp. 276–291. Springer, Heidelberg (2005)

22. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT in-
stances in the presence of symmetry. In: DAC 2002, pp. 731–736. ACM, New York
(2002)

23. Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver. IEEE Trans.
on CAD of Integrated Circuits and Systems 24(3), 305–317 (2005)

24. Marques-Silva, J.P., Planes, J.: Algorithms for maximum satisfiability using un-
satisfiable cores. In: DATE, pp. 408–413. IEEE (2008)

25. Quimper, C.-G., López-Ortiz, A., van Beek, P., Golynski, A.: Improved algo-
rithms for the global cardinality constraint. In: Wallace, M. (ed.) CP 2004. LNCS,
vol. 3258, pp. 542–556. Springer, Heidelberg (2004)

26. Quimper, C.-G., Walsh, T.: Beyond finite domains: The all different and global
cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 812–
816. Springer, Heidelberg (2005)

27. Zanarini, A., Pesant, G.: Generalizations of the global cardinality constraint for
hierarchical resources. In: Van Hentenryck, P., Wolsey, L.A. (eds.) CPAIOR 2007.
LNCS, vol. 4510, pp. 361–375. Springer, Heidelberg (2007)

28. Régin, J.-C.: Combination of among and cardinality constraints. In: Barták, R.,
Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 288–303. Springer, Heidel-
berg (2005)

Automated Reencoding of Boolean Formulas 117

29. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In:
van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg
(2005)

30. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality con-
straints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer,
Heidelberg (2003)

31. Aśın, R., Nieuwenhuis, R., Oliveras, A., Rodŕıguez-Carbonell, E.: Cardinality net-
works and their applications. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584,
pp. 167–180. Springer, Heidelberg (2009)

32. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for
clause learning SAT solvers. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press (2010)

33. Condrat, C., Kalla, P.: A gröbner basis approach to CNF-formulae preprocessing.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 618–631.
Springer, Heidelberg (2007)

34. Warners, J.P., van Maaren, H.: A two-phase algorithm for solving a class of hard
satisfiability problems. Operations Research Letters 23(3-5), 81–88 (1998)

35. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3), 201–215 (1960)

36. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

37. Küchlin, W., Sinz, C.: Proving consistency assertions for automotive product data
management. J. Autom. Reasoning 24(1/2), 145–163 (2000)

38. Cabon, B., de Givry, S., Lobjois, L., Schiex, T., Warners, J.P.: Radio link frequency
assignment. Constraints 4(1), 79–89 (1999)

39. Le Berre, D., Parrain, A.: The sat4j library, release 2.2, system description. Journal
on Satisfiability, Boolean Modeling and Computation (JSAT) 7, 59–64 (2010)

40. Gebser, M., Kaufmann, B., Schaub, T.: The conflict-driven answer set solver clasp:
Progress report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS,
vol. 5753, pp. 509–514. Springer, Heidelberg (2009)

41. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

42. Liffiton, M.H., Maglalang, J.C.: A cardinality solver: More expressive constraints
for free - (poster presentation). In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 485–486. Springer, Heidelberg (2012)

43. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Satzilla: portfolio-based algo-
rithm selection for sat. J. Artif. Int. Res. 32(1), 565–606 (2008)

44. Prestwich, S.D.: Variable Dependency in Local Search: Prevention Is Better Than
Cure. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
107–120. Springer, Heidelberg (2007)

45. Chen, J.: A New SAT Encoding of the At-Most-One Constraint. In: Proceedings
of ModRef 2011 (2011)

46. Ben-Haim, Y., Ivrii, A., Margalit, O., Matsliah, A.: Perfect hashing and CNF
encodings of cardinality constraints. In: Cimatti, A., Sebastiani, R. (eds.) SAT
2012. LNCS, vol. 7317, pp. 397–409. Springer, Heidelberg (2012)

47. Bonet, M.L., John, K.S.: Efficiently calculating evolutionary tree measures using
SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 4–17. Springer, Hei-
delberg (2009)

48. Anton, C.: An improved satisfiable SAT generator based on random subgraph
isomorphism. In: Butz, C., Lingras, P. (eds.) Canadian AI 2011. LNCS (LNAI),
vol. 6657, pp. 44–49. Springer, Heidelberg (2011)

Leveraging Accelerated Simulation
for Floating-Point Regression

John Paul1, Elena Guralnik2, Anatoly Koyfman2, Amir Nahir2, and Subrat K. Panda1

1 IBM Systems & Technology Group in Bangalore, India
{john.paul,subratpanda}@in.ibm.com

2 IBM Research in Haifa, Israel
{elenag,anatoly,nahir}@il.ibm.com

Abstract. Accelerated simulation (acceleration) platforms play a pivotal role
in the verification of today’s complex designs. Currently, acceleration is used
with either adapted pre-silicon tools or post-silicon tools. We present a novel
acceleration-only tool, which enables a fast and efficient methodology for floating-
point regression. We overcome the lack of test-bench in this environment through
self-checking.

1 Introduction

Functional verification is widely acknowledged as one of the main challenges of the
hardware design cycle [12]. The growing size and complexity of modern hardware sys-
tems have turned the functional verification of these systems into a mammoth task [20].
Verifying such systems involves tens or hundreds of person years and requires the com-
pute power of thousands of workstations. But even with all this effort, it is virtually
impossible to eliminate all bugs in the design before it tapes-out. Despite advances
in formal verification technologies [7], dynamic verification (a.k.a. simulation-based
verification) remains the primary vehicle for the functional verification of hardware
systems [20]. Today’s state of the art verification methodologies include a highly auto-
mated process that incorporates stimuli generation, checking, and coverage collection—
combined with islands of manual labor [20].

In the past, software simulation was (almost) the exclusive vehicle for executing the
verified designs. But, the increasing complexity of designs, combined with shorter time-
to-market requirements, raised the need for performing parts of the verification tasks on
other platforms. Today, functional verification is performed on a variety of platforms,
ranging from transaction-level modeling, via software simulation, acceleration, and em-
ulation, to the silicon itself [18,4]. In some cases, verification is done in a heteroge-
neous environment involving a variety of platforms, as in the case of Hardware-Software
Co-Simulation [6].

Acceleration and emulation platforms are somewhere in between software simulation
and silicon. They are much faster than software simulation, but not as fast as silicon. Sim-
ilarly, they provide better observability than silicon, but not the free and total observabil-
ity provided by software simulators. Therefore, verification solutions, and specifically
stimuli generators, for such platforms should combine requirements from both worlds.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 118–131, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Leveraging Accelerated Simulation for Floating-Point Regression 119

The acceleration platform is especially attractive because it can be leveraged very
early in the process. It can serve to strengthen the pre-silicon verification effort and
enable the early detection of bugs. In addition, acceleration products offer a simulation-
like interface and are thus relatively easy to use. Some products go as far as offering
live, seamless, migration between acceleration and simulation [1].

The high cost of developing unique verification solutions for acceleration platforms
causes most of these solutions to be adaptations of existing solutions for software simu-
lation or post-silicon tools. In this paper, we demonstrate how the acceleration platform
can be utilized to address one of the more common use-cases in the development life
cycle: regressing a change in the design logic.

As part of the logic development process, designers make frequent changes to the
logic. These changes may originate from the need to fix a bug, improve timing, or
simply implement a change in the specifications. One common concern is that making
a change to the logic, as small as it may be, can introduce new bugs. It would greatly
improve productivity if such bugs were detected shortly after their introduction. To
validate that no new bugs were introduced in the process, the verification engineer, or
the logic designer, runs a regression suite [8]. The regression suite is a large set of test-
cases that provide high confidence regarding the functional correctness of the design.
For complex units, running regression in software simulation can take days.1

Using our solution, the verification engineer can choose a large set of ready-made
test-cases, such as the regression suite mentioned above, and convert them into a single,
fully-contained, self-checking, program. Using an accelerator can speed up the execution
time for the test case by several orders of magnitude. This not only leads to finding bugs
faster but also has a significant effect on the time required to reach coverage closure.

We demonstrate the proposed solution on floating point (FP) data verification. Ver-
ifying the hardware implementation of the floating point unit (FPU) is known as an
intricate problem. The numerous corner cases of the vast test space, coupled with the
complexity of the implementation of floating point operations, turn the FPU verification
effort into a unique challenge in the field of processor verification. It is not surprising
that the most well known hardware bug is Intel’s FDIV bug [2].

We present a tool that takes a large set of FP test-cases (pre-generated by FPgen
[5,11]) and converts them into a single program that is then simulated at the core-level
environment. This program is a concatenation of the original test-cases, where each
test-case is preceded by a prolog and followed by an epilogue. The prolog mimics the
required initializations specified in the original test-case. These initialization are typi-
cally handled in software simulation by the environment, which forces the initial values
into the specified resources. We convert these initializations into a set of reloading in-
structions, which bring the required resources to the desired state. The epilog runs in
two different modes: simulator mode and hardware mode. When running in simulator
mode, we run the program to collect the expected results. Following that, we run the
test-case on the accelerator in hardware mode. In this mode, the epilog is in charge of

1 While an industrial simulation farm holds thousands of servers, the regression task is so com-
mon that it is impractical to expect to be assigned with sufficient machines to complete the
regression task quickly

120 J. Paul et al.

comparing the actual state of the design with the expected values obtained from the
reference model, and flagging any discrepancies that may indicate a bug.

We show that using this tool, thousands of test-cases can be compressed into a single
test-case and executed on an accelerator in a short amount of time, and report results of
a field trial.

The rest of this paper is organized as follows. In Section 2 we provide background
about floating point verification and test-generation, as well as on the accelerated simu-
lation platform. Section 3 provides an in-depth review of our solution for floating point
regression on the acceleration platform. Our results are described in Section 4. Section 5
concludes this paper.

2 Background

2.1 Acceleration

Accelerated simulation platforms (more commonly known as accelerators) are an im-
portant component in today’s simulation-based verification [9]. Accelerators are special
purpose massively-parallel machines, developed for the sole purpose of accelerating
the simulation of hardware models. The accelerator is constructed of a large number
of tightly synchronized parallel logic processors. To simulate a hardware model on
an accelerator, the model must first be compiled in a process that converts the hard-
ware model to a set of instructions for each of the accelerator’s processors, schedules
the instructions for the processors, and determines the synchronization points between
them [16]. State of the art accelerators run over three orders of magnitude faster than
software simulation (i.e., over 1000 times faster).

While accelerators offer much faster simulation, there are several challenges related
to their use. First, any interaction between the accelerator and an external computer
(termed host) requires stopping the acceleration engine. This means that using a tra-
ditional environment in which the test-bench runs on the host and the accelerator runs
the hardware model severely under utilizes the accelerator due to the frequent commu-
nication. The transaction-based acceleration (TBA) [14] methodology overcomes this
problem by having part of the test-bench compiled into the hardware model and reduc-
ing the interaction between the host and the accelerator.

However, the TBA approach encounters the second challenge in using accelerators.
The speed of the accelerator, as well as the duration of the compilation process, heavily
depend on the size of the hardware model. That is, the more logic is added to the hard-
ware model, the slower the accelerator runs. This limits the ability to use techniques
such as TBA or checker synthesis [10].

We note that for the case of floating point data path verification presented in this
paper, neither TBA nor checker synthesis is applicable. Moving input data operands
from the host to the accelerator and output values in the other direction is unreasonable
due to the extensive amount of data. The complexity of the floating point algorithms
and the required accuracy needed to verify the results prohibit the creation of hardware
realizable checkers.

Leveraging Accelerated Simulation for Floating-Point Regression 121

2.2 Floating Point Test Generation

The complexity of the floating point data path implementation and the numerous corner
cases that should be addressed not only call for a dedicated test generator, but also
demand a comprehensive test plan. The FPgen [5] verification solution provides these
two components.

FPgen generation capabilities are primarily based on constraint satisfaction technol-
ogy [17]. As part of the verification process, FPgen produces a large set of test-cases
in the form of input data operands for floating point instructions, targeting the areas
outlined by the test plan.

The primary focus of the FPgen generator is to solve data constraints on operands of
individual floating point instructions. A data constraint on an operand is defined as the
set of values that can be selected for this operand. An individual instruction may have
independent data constraints for each one of its operands. Solving all the instruction
constraints is equivalent to selecting a value from each given set, such that the instruc-
tion semantics are satisfied. FPgen provides engines that solve these constraints within
a reasonable amount of time. Moreover, when multiple solutions exist for a constraint,
one should be selected at random, with uniform probability where possible. This ran-
domness is important because the constraints only reflect a suspected area. One instance
in this area might reveal a problem, while another might not.

Constructing an appropriate set of such constraints is of utmost importance to ensure
successful verification. Exhaustive checking implies testing an enormous, practically
unbounded, number of different calculation cases; practical computational resources
suffice only to simulate a meager fraction of these. We need to choose these cases very
carefully in order to obtain a representative sample of the state space. In particular, a
proper focus on the corner cases is a crucial factor in providing a sufficiently compre-
hensive set of test-cases. Continued analysis of the instructions themselves, and of the
various bugs appearing in their implementations, has provided us with valuable knowl-
edge, reflected as an integral part of FPgen’s test plan template.

3 FP Regression Tool

We apply the concept of converting a set of pre-generated test-cases into a self-executing
self-checking program for the floating-point data path regression problem. In this sec-
tion we describe the tool’s execution flow, the structure of the generated program, and
the accompanying debug aids.

3.1 Execution Flow

The high level execution flow of the tool is described in Figure 1.
We start with a set of test-cases pre-generated by FPgen[5], as depicted in the left-

most section of the Figure 1. FPgen is a test-generation framework that provides a con-
venient platform for biasing and generating operand data for floating-point instructions.
The verification engineer can choose the set of test-cases so they focus on a specific
instruction or event (for example, sqrt) or opt for a set that provides broad coverage of

122 J. Paul et al.

���������	�
������
���������	�
�	�����	
�����	����	����	�����

�������	��	���������	
��	���	��������	����

���	��	�����������	���

�������	
�������	�����

��	�������	����

���������������
�����
����
��� ! !" ������#�
��# # #$%&&' (�
)))))

����������������
+����	��	�����,��

�������
+����	��	�����,��

���������������
�����
����
��� ! !" ������#�
��# # #$%&&' (�
)))))

����������������
��# !# "#$(����
���# �# �!!��(
)))))

�������
+����	��	�����,��

���������������
�����
����
��� ! !" ������#�
��# # #$%&&' (�
)))))

����������������
��# !# "#$(����
���# �# �!!��(
)))))

�������
��# !# "#$(����
���# �# �!!��(
)))))

-���	����	�����

Fig. 1. Execution Flow

the entire floating point spectrum. Our tool outputs a single program that includes all
the desired test-cases.

Next, our tool generates the initial program and then executes it on a software ref-
erence model that is instruction accurate2, as depicted in the middle section of the
Figure 1.

The purpose of this stage is to collect and store the expected results from the ex-
ecution of the different test-cases. We assume the software reference model correctly
implements the specification and provides accurate results3. After every test-case, epi-
log instructions are executed to store the results into empty arrays. This is done using
instructions that are part of the generated program and does not require any involvement
of the environment.

Once the program completes execution on the software reference model, our tool
dumps the data from the arrays and modifies the program image. The program is mod-
ified in two ways: the expected results of the test-case execution are now stored in
an array designated for storing expected results. In addition, we modify the execution
mode to hardware mode so the subsequent execution of the program can also check the
results.

2 An instruction accurate reference model calculates the values that will appear in the registers
and memory after each executed instruction, as specified in the architecture book.

3 In reality, this may not be the case, and errors in the software reference model are often found.
This makes the debugging of the failure a little more challenging, but does not significantly
change anything that interferes with our solution.

Leveraging Accelerated Simulation for Floating-Point Regression 123

Table 1. Program usage of registers

Register Usage
GPR1, GPR2 base and offset pointers to

input data table
GPR3, GPR4 base and offset pointers to

input state table
GPR5, GPR6 base and offset pointers to

actual/expected results data table
GPR7, GPR8 base and offset pointers to

actual/expected state table
GPR9, GPR10 base and offset pointers to

expected results data table
GPR11, GPR12 base and offset pointers to

expected state table
GPR13 mode of operation

(simulation/hardware)
GPR14, GPR15, GPR16 used for comparisons
GPR17, GPR18 base and offset pointers to

comparison results table

Finally, we take the modified program and run it on an accelerator with an updated
(potentially buggy) design model, as depicted in the rightmost section of the Figure 1.
During this run, the program executes the test-cases and compares their results to the
expected values. Any data related to results that are incorrect is saved to a debug report
at the end of the run.

3.2 Program Structure

The generated program is constructed of three major parts: kernel, data tables, and the
test program itself. Figure 2 depicts this structure.

Kernel. The program is designed to run on bare-metal [19], that is, we do not rely
on an operating system (OS). This is important for two reasons. First, it significantly
reduces all OS-related overheads and thus enables us to maximize the utilization of
the accelerator (i.e., we spend minimum cycles executing “irrelevant” instructions). In
addition, it enables us to have complete control of the system and switch freely between
running modes (e.g., from hypervisor to user mode).

The kernel is in charge of initializing the relevant resources once the execution of

the program begins. We demonstrate the concept on a real Power
TM

design, and thus,
we make extensive use of General Purpose Registers (GPRs). We assign most of the
processor’s general purpose registers with fixed roles for managing the test program.
Table 1 lists these roles. For example, we use GPR9 and GPR10 as base pointer and
offset register, respectively, to the expected results table. After values are saved to the
expected results table, GPR10 is incremented to point to the next available entry in
the table. Note that GPR5, GPR6, GPR7 and GPR8 point to different tables in the two

124 J. Paul et al.

Fig. 2. Program structure

different modes of operation. When the tool runs in simulation mode, these registers
point to the expected values tables and when it runs in hardware mode, they point to the
actual values.

We chose to use load/store instructions that rely on two registers, as opposed to a
single register and a value-base offset. This guarantees that the program can cope with
very large tables. Because our program focuses on floating point verification, there’s no
harm in assigning program management roles to the GPRs, which are not needed for
the test program itself. Furthermore, assigning fixed roles prevents us from having to
re-initialize the registers as part of the programs’ execution. We only need to increment
the offset registers. This further increases the accelerator’s utilization.

In addition to register initializations, the kernel also includes interrupt handlers for
cases in which we expect the instructions to take exception.

A symbol in the kernel is allocated to hold the value of the mode of operation (sim-
ulation or hardware). We place this symbol in a pre-determined place (0x3000 in Fig-
ure 2) so we can modify its value in the program image without re-compiling.

Data Tables. The program includes four types of tables: input data and state tables,
expected results data and state tables, actual results data and state tables, and a com-
parison results table. For simplicity, we chose to place data and state values in different
tables.

Leveraging Accelerated Simulation for Floating-Point Regression 125

When the program is first created, we populate its input data and state tables with
the data collected from the FPgen pre-generated test-cases. The other tables are empty
at this stage. Since we know the number of test-cases included in the program, we can
determine the required size for each table.

When the program executes on the software reference model (in simulation mode),
the kernel initializes the required registers to point to the expected results tables; the
epilog instructions save the values into those tables. Once the program completes ex-
ecution, we dump these values from the memory of the software reference model into
the program image, populating the expected results tables there. At this stage, we also
change the value of the mode of operation symbol.

When the program runs on the acceleration platform, the epilog instructions save the
actual values into the actual results tables and the compare routine checks whether these
values match the expected results. We do not really need to store these values, as we
can do the comparison based on the test instruction’s target register. However, we chose
to store them into a table for later use in building a debug report.

Test Program. The test-program is in fact a concatenation of the FPgen pre-generated
test-cases. Each FPgen test-case, typically consisting of one or two floating point in-
structions, is preceded by instructions that load the data inputs into the instruction
source registers and set the required state. In addition, the pointer-offset registers are
incremented to point to the entries of the next test-case.

Every test-case is followed by a set of instructions that save the target register and
the new state to the relevant tables. In simulation mode these are the expected results
tables, while in hardware mode these are the actual results tables. In hardware mode,
we also branch from this part of the test-program to the compare routine in order to
validate the accuracy of the results and mark any discrepancies in the comparison table.

At first glance, it may seem like our program has a significant overhead. For ev-
ery test-case we have about 20 instructions required to set the input, save the output,
and compare the results. However, this is not the case. First, not all instructions “are
born equal.” Although the addi (add immediate) instruction used to increment the off-
set pointer requires one cycle for execution, the actual floating point instruction requires
a much longer execution time.

Furthermore, the placement of the input tables in memory, along with the test pro-
gram’s deterministic access pattern to these tables, enables the processor to activate its
prefetching mechanisms, reducing the time required to reload the source registers.

Finally, we order the test-cases within the test program according to their required
input state. This reduces the rate of state changes within the test program, increasing
the test program’s effectiveness.

3.3 Debugging

As stated above, when running in hardware mode on the accelerator, we compare the
actual results with the expected ones. When the results of the test-case do not match
the expected values, we store an error code into the comparison table. We use different
error codes to designate different types of mismatches. Following that, the execution of
the test program continues, allowing the detection of multiple errors in a single run.

126 J. Paul et al.

Fig. 3. Debug report

After the program completes execution, we analyze the comparison table. By provid-
ing the location of the error code in the table, we are able to cross-reference it with the
expected and actual results tables, in order to provide a detailed report pinpointing the
failure. This process is depicted in Figure 3. The bottom of the figure displays a snippet
of the report. As can be seen, the report holds the ID of the failed instruction within the
test program, the type of error, as well as the expected result and actual result.

In some cases, where debugging the failure with the accelerator proves difficult, the
generated report is sufficient to find the original FPgen test-case and run it in simulation,
where the environment eases the debugging work (either due to the better observability,
or because of the presence of better checkers).

4 Results

The Power
TM

architecture [15] supports various types of floating point data and instruc-
tions – binary floating point, decimal floating point and vector computation. In addition,
the architecture also supports single/double precision values, normalized/denormalized

Leveraging Accelerated Simulation for Floating-Point Regression 127

Table 2. Experimental setups

Experiment Content Program Size (KB)
Config- Instr- Instr. Models Total Binary Operand
uration uction per-model instr. Size Array
FADD50 fadd 50 56 2085 312 25
FADD100 fadd 100 56 3921 572 47
FADD500 fadd 500 56 16893 2400 210
FADD1000 fadd 1000 56 27663 3916 340
FADD2000 fadd 2000 56 47035 6648 581
FADD3000 fadd 3000 56 65889 9328 834

MIX10 All 10 134 1080 184 21
MIX50 All 50 134 5330 824 108

MIX100 All 100 134 10364 1520 209
MIX200 All 200 134 20648 3128 418

values and various kinds of rounding modes, all making the input space huge. Further-
more, a wide variety of exceptions such as overflow, underflow, and zero-divide are
supported. In the Power7 Processor core [13] the decimal floating-point (DFP) facility
shares the 32 floating-point registers (FPRs) and status registers with the floating point
units; the vector unit supports data with 128 bits. FPgen can generate input operand
values for all instructions that execute on these units given any constraints on the input,
output, and intermediate values, as explained in Section 2.2.

To validate the value of our tool, we’ve conducted a wide set of experimental results.
In this section we report these results, as well as results of a field trial of this tool.

4.1 Experimental Results

For the purpose of experimentation and verifying the capability and usability of the
tool, we performed experiments on a variety of cases. We divide our experiments into
two extreme types: single instruction and instruction mix, where the former adheres to
a case where a designer makes a localized change (relevant to a single instruction –
fadd in our case, both in single-precision and double-precision forms), and is seeking
to validate this fix. The latter type is of relevance when the designer makes a broader
change, and thus must validate a large set of instructions. In reality, there is a wide range
of cases in between these two extremes. We further refine our experiments to consider
different numbers of instructions required to validate the change.

Table 2 and Table 3 describe the results of our experiments. Each row in these tables
describes one setup.

Table 2 has two sections of columns. The leftmost part, titled Content, describes
the contents put into the program as part of the experiments. It is combined of three
values: the number of desired generation solutions requested of FPgen for each model,
the number of models, and the total number of the generated floating point instructions.
FPgen sometimes fails to find a solution, and so the total number of instructions is
always less than the product of the former two fields. A model is a set of constraints
used for FPgen’s activation. For example, one model may call for generating fadd such

128 J. Paul et al.

Table 3. Experimental results

Experiment Run Time
Config- Instr- FPGen Binary Ref Accel
uration uction Run (min) Gen (sec) Gen (sec) Run (sec)
FADD50 fadd 12 0.4 0.35 1150

FADD100 fadd 18 0.7 0.4 1122
FADD500 fadd 50 2.8 0.8 1233
FADD1000 fadd 93 4.4 1.2 1211
FADD2000 fadd 93 7.4 1.8 1284
FADD3000 fadd 248 10.2 2.4 1352

MIX10 All 29 0.4 0.5 1112
MIX50 All 122 1.8 0.5 1115

MIX100 All 258 3.5 0.6 1176
MIX200 All 493 6.8 1 1206

that the output triggers an overflow, while a different model may constrain both of fadd’s
operands to be denormalized numbers.

The second column section, titled Program Size, provides details about the size
of the generated program. We distinguish between the size of the generated program
(Binary Size in the table) and the size of the input operands table. The total size of
the program (the sum of these two values) is important because it impacts the time
required to load the program into the memory of the accelerator. Note that we have a
very efficient loader that is capable of loading data into the memory of the accelerator
at a rate of over 100MB per minute.

Table 3 holds the data regarding the time required to run each of the phases of the
tool’s execution. Note that we provide the time required to run FPgen to generate the
test-cases, while in reality it is very common to store these test-cases, so that in future
executions, this phase is redundant. The columns show, from left to right, the time
required by FPgen to generate the test-cases, the time required to parse the resulting test-
cases and covert them to the initial program, the time required to executed the program
on the software reference model to gather expected results, and the time required to run
the program on the accelerator.

Our results indicate that, as expected, the program size grows linearly with the num-
ber of floating point instructions put into the program.

Interestingly, the accelerator run time is barely affected by the number of floating
point instructions in the program. This is because this time is governed by overheads
- the time required to reset the accelerator, upload the hardware model, and write the
program to memory. This indicates that in order to properly utilize the accelerator, the
verification engineer should strive to run as big a regression as possible.

Overall, our tool enables the verification engineer to run over 65, 000 test-cases, in
under half an hour.

Fault Injection and Debugging. In order to demonstrate the tool’s ability to dis-
cover bugs, we introduced random faults to different places in the program and ob-
served whether they were detected by the tool and, if detected, whether the final report

Leveraging Accelerated Simulation for Floating-Point Regression 129

generated by our tool pointed to the source of the fault/error. We introduced the faults
into the program after its execution on the software reference model (i.e., just before we
ran it on the accelerator). We distinguish between three types of faults: input, output,
and exception.

We introduced input faults by modifying the value of one of the input operands. This
may represent a bug in one of the reloading instructions. In some rare cases, our tool
fails to detects such faults. One example of this is the case of division by zero. In this
case, a faulty value in the numerator may go undetected, since the data of the target FP
register is not affected. We still consider this to be a problem, as this may cause inter-
mediate events in the computation of the result to remain out of reach. Fortunately, our
accelerators supported the collection of coverage data [4] and we were able to validate
that the required events were indeed hit.

Output faults represent problems in computing the output values. We injected these
by modifying the value of the expected results. Exception faults represent wrongful
behavior, such as taking an exception when it should not have been taken or vice versa.
For both of these types, our tool invariably detected all faults and was able to pin-point
the problematic instruction.

Software bugs are an important issue that is a major concern in validation. Software
bugs may trigger false positives and false negatives, resulting in a lot of menace in
comparison to the real bugs. Our tool’s framework has a certain degree of robustness
against software bugs because of two important reasons: (i) We are able to run the
program, when in hardware mode, on a software reference model to verify it and (ii)
The program is rather generic, and the main changes between different runs are the data
tables. In other words, once we verify that the reloading sequence is fully functional, it
works regardless of the subsequent floating point instruction; same goes for the compare
routine.

4.2 Field Trial

As part of the signoff process for one of the next IBM Power designs the need arised
to run roughly 85 million test-cases in simulation. The verification team decided to, in
order to meet the deadline, make use of our tool to run roughly 35 million of these test-
cases on a single accelerator that was allocated to them (the same type of accelerator
we used to gather the experimental results).

The test-cases were divided to 700 sets of 50, 000 test-cases. Each set was converted
to a single program using our tool, and then simulated using the acceleraor. The simula-
tion time of each set was roughly 20 minutes. Overall, three weeks work were required
to simulated all 35 million test-cases (we note that the net time required for this is 10
days, but the floating-point verification team shared the accelerator with other teams as
well).

The verification team estimates that running the same set of test-cases in simulation
would have required two and a half months4. Thus we clearly see the benefits of the
suggested approach in the field.

4 Since all design units have to go through the signoff process, allocating more simulation re-
sources to this team was not an option.

130 J. Paul et al.

5 Conclusions and Future Work

We introduced a method that enables the verification engineer to convert a large set
of pre-generated test-cases into a self-contained self-checking program. Running this
program on an accelerator provides the ability to quickly verify that modifications made
to the hardware logic did not introduce new bugs. We demonstrated this technique on
floating point data path verification.

Our solution focuses on the data path. We intend to augment it with irritator threads
[3] to increase the quality of the test-cases.

References

1. Incisive simulation acceleration deployment,
http://www.cadence.com/rl/Resources/application notes/
CDN Incisive Simulation Acceleration Deployment.pdf

2. FDIV replacement program (statistical analysis of floating point flaw). Technical report
(1994), http://www.intel.com/support/processors/pentium/sb/
CS-013007.htm

3. Ludden, J.M., Rimon, M., Hickerson, B.G., Adir, A.: Advances in simultaneous multithread-
ing testcase generation methods. In: Barner, S., Kroening, D., Raz, O. (eds.) HVC 2010.
LNCS, vol. 6504, pp. 146–160. Springer, Heidelberg (2011)

4. Adir, A., Nahir, A., Ziv, A., Meissner, C., Schumann, J.: Reaching coverage closure in post-
silicon validation. In: Barner, S., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504,
pp. 60–75. Springer, Heidelberg (2011)

5. Aharoni, M., Asaf, S., Fournier, L., Koyfman, A., Nagel, R.: FPgen - a deep-knowledge
test generator for floating point verification. In: Proceedings of the 8th High-Level Design
Validation and Test Workshop, pp. 17–22 (2003)

6. Chen, S.-H., et al.: Hardware/software co-designed accelerator for vector graphics applica-
tions. In: 2011 IEEE 9th Symposium on Application Specific Processors (SASP), pp. 108–
114 (June 2011)

7. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT-Press (1999)
8. Copty, S., Fine, S., Ur, S., Yom-Tov, E., Ziv, A.: A probabilistic alternative to regression

suites. Theor. Comput. Sci. 404(3), 219–234 (2008)
9. Darringer, J., Davidson, E., Hathaway, D., Koenemann, B., Lavin, M., Morrell, J., Rahmat,

K., Roesner, W., Schanzenbach, E., Tellez, G., Trevillyan, L.: EDA in IBM: past, present,
and future. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 19(12), 1476–1497 (2000)

10. Das, S., Mohanty, R., Dasgupta, P., Chakrabarti, P.P.: Synthesis of system verilog assertions.
In: Proceedings of the Conference on Design, Automation and Test in Europe: Designers’
Forum, DATE 2006, Leuven, Belgium, pp. 70–75. European Design and Automation Asso-
ciation (2006)

11. Guralnik, E., Aharoni, M., Birnbaum, A.J., Koyfman, A.: Simulation-based verification of
floating-point division. IEEE Trans. Computers 60(2), 176–188 (2011)

12. International technology roadmap for semiconductors 2009 edition - design. Website,
http://www.itrs.net/Links/2009ITRS/2009Chapters 2009Tables/
2009 Design.pdf

13. Kalla, R., Sinharoy, B.: POWER7: IBM’s next generation balanced POWER server chip. In:
Hot Chips 21 (2009)

http://www.cadence.com/rl/Resources/application_notes/CDN_Incisive_Simulation_Acceleration_Deployment.pdf
http://www.cadence.com/rl/Resources/application_notes/CDN_Incisive_Simulation_Acceleration_Deployment.pdf
http://www.intel.com/support/processors/pentium/sb/CS-013007.htm
http://www.intel.com/support/processors/pentium/sb/CS-013007.htm
http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Design.pdf
http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Design.pdf

Leveraging Accelerated Simulation for Floating-Point Regression 131

14. Matalon, S., et al.: Building transaction-based acceleration regression environment using
plan-driven verification approach,
http://www.cdnusers.org/community/incisive/Vtp dvcon2007
tbaregression.pdf

15. May, C., Silha, E., Simpson, R., Warren, H. (eds.): The PowerPC Architecture. Morgan Kauf-
mann (1994)

16. Moffitt, M.D., Günther, G.E.: Scalable scheduling for hardware-accelerated functional veri-
fication. In: ICAPS (2011)

17. Naveh, Y., et al.: Constraint-based random stimuli generation for hardware verification. In:
AAAI (2006)

18. Singerman, E., et al.: Transaction based pre-to-post silicon validation. In: DAC, pp. 564–568
(2011)

19. Storm, J.: Random test generators for microprocessor design validation (2006),
http://www.inf.ufrgs.br/emicro

20. Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification - The Complete
Industry Cycle. Elsevier (2005)

http://www.cdnusers.org/community/incisive/Vtp_dvcon2007_tbaregression.pdf
http://www.cdnusers.org/community/incisive/Vtp_dvcon2007_tbaregression.pdf
http://www.inf.ufrgs.br/emicro

Coverage-Based Trace Signal Selection

for Fault Localisation in Post-silicon Validation

Charlie Shucheng Zhu1,�, Georg Weissenbacher2,��, and Sharad Malik1

1 Princeton University
2 Vienna University of Technology, Austria

Abstract. Post-silicon validation is the time-consuming process of de-
tecting and diagnosing defects in prototype silicon. It targets electrical
and functional defects that escaped detection during pre-silicon verifica-
tion. While the at-speed execution of test scenarios facilitates a higher
test coverage than pre-silicon simulation, this comes at the cost of limited
observability of signals in the integrated circuit. This limitation compli-
cates the localisation of the cause underlying a defect. Trace buffers,
designed to store a limited execution history, partially alleviate but do
not entirely remedy the problem. Since trace buffers typically record only
a small fraction of the system state over at most a few thousand cycles,
their utility is contingent on the cautious selection of traced signals.

This paper presents a technique for the automated selection of trace
signals. While the aim of existing selection strategies is typically to en-
able the (early) detection of defects or to maximise the recoverable state
information, our objective is to facilitate the subsequent automated lo-
calisation of faults using consistency-based diagnosis. To this end, we
use integer linear programming and automated test pattern generation
to identify a subset of state signals through which potential failures are
likely to propagate. We demonstrate that our technique complements our
previous work on SAT-based fault localisation using backbones. In that
context, we evaluate the utility of our results on two OpenCores designs.
We show that for this purpose, our technique generates a better selection
of trace signals than a related approach recently presented by Yang and
Touba.

1 Introduction

Post-Silicon validation deals with debugging early silicon prototypes with the
goal of detecting and diagnosing design faults. These faults may be functional,
i.e. logical bugs, or electrical, i.e. faults in the circuit design. Electrical faults tend
to be trickier to detect since these may be triggered only under very specific con-
ditions and thus this behaviour may not be easily repeatable. In comparison to

� The author acknowledge the support of the Gigascale Systems Research Center, one
of six research centers funded under the Focus Center Research Program (FCRP),
a Semiconductor Research Corporation entity.

�� Funded by the Vienna Science and Technology Fund (WWTF) through project
VRG11-005.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 132–147, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Coverage-Based Trace Signal Selection for Fault Localisation 133

pre-silicon validation using simulation and formal verification, post-silicon vali-
dation is no longer limited by slow software models, but rather can run substan-
tially large traces at speed. However, unlike these software models, there is very
limited signal observability. The observability at the chip outputs is typically
enhanced by adding additional state to the chip, referred to as trace buffers,
which buffer the values of a small set of carefully selected signals, referred to
as trace signals, typically for a few thousand cycles. These buffered values are
then used to both detect and diagnose/localise faults. Since the number of trace
signals needs to be small to keep the trace buffer overhead low, these need to
be carefully selected. This is generally done manually using key designer insight.
While this may be justified for high volume parts such as processors, automation
of this step is highly desirable for application to a broad range of designs. This
paper addresses the problem of automatically selecting the set of trace signals for
their application in aiding fault diagnosis in post-silicon validation. We present
a coverage-based algorithm for this. The algorithm takes as input the design,
the set of possible faults, the set of candidate trace signals and a set of test vec-
tors. In this paper we limit the candidate set of trace signals to be the existing
state bits in the design, though that is not a requirement of our approach. The
algorithm first determines, for each fault and the set of test vectors, the set of
candidate signals that the fault-effect, i.e., error, propagates to. It then selects
a subset of candidates that maximally covers, i.e., detects, the fault set. This
coverage problem is naturally framed as an integer linear programming (ILP)
problem. This formulation is related to recent work done in trace signal selec-
tion by Yang and Touba [19]. However, the formulation in that paper is geared
towards error detection and not fault diagnosis. For a given erroneous trace, the
problem of fault diagnosis or localisation deals with identifying which gate had
the fault and which cycle the fault was activated. In our recent work [21] we
presented an algorithm for fault diagnosis that uses trace buffers. However, the
focus of that paper was not on the trace signals, and thus these were arbitrarily
selected in that work. The work in this paper is complementary in that it pro-
vides a systematic way to select trace signals. In our experimental evaluation in
this paper we show that this coverage based trace selection compares favorably
with the arbitrary selection in fault diagnosis. We also show that it compares
favourably with the error detection based selection [19] by Yang and Touba ap-
plied to fault diagnosis. This evaluation is done using two microcontroller designs
from OpenCores.

This paper is organized as follows. § 2 covers the background and related work.
The technical contributions are presented in § 3 and the experimental evaluation
in § 4. Finally § 5 provides some concluding remarks.

2 Background and Related Work

2.1 Automatic Test Pattern Generation

Automatic test pattern generation (ATPG) is concerned with the construction
of test scenarios that make manufacturing faults surface if present (for a tutorial,

134 C.S. Zhu, G. Weissenbacher, and S. Malik

DQ

R
C

DQ

R
B

DQ

R
A

n2

n1

i0

n3

i1

(a) A sequential circuit

t︷︸︸︷ t+1︷︸︸︷

DQ

R
C

DQ

R
B

DQ

R
A

n2

n1

i0

n3

i1

DQ

R
C

DQ

R
B

DQ

R
A

(b) Execution of one cycle

DQ

R
C

DQ

R
B

DQ

R
A

v : i0 �→ 0, i1 �→ 0

(c) Error propagation

Fig. 1. Error propagation in a simple sequential circuit

see [5]). The approach is typically based on simple gate-level fault models, the
most popular of which is the single stuck-at fault model, in which the output of
a single gate is permanently stuck at a fixed logic value (0 or 1). For such a fault
to become observable, its effect (i.e., the incorrect output signal of the gate) has
to propagate through the circuit (along a sensitised path) to one of the primary
outputs or to an observable latch. This may not happen with each trace, since
the erroneous signal might be masked by other signals.

Example 1. Consider the propagation of errors in the sequential circuit in Fig-
ure 1a. The simple circuit comprises three latches (labelled A, B, and C) and
a combinational part with two input signals i0 and i1. For the sake of simplic-
ity, we omit the primary output signals and assume that latch C is observable.
Assume that the output of the AND gate in Figure 1a is permanently stuck-at
1, leading to an erroneous result in case the values stored in the latches B and
C are 0 and 1, respectively. For this error to propagate to the latch C in the
current execution cycle, the input signal i1 needs to be 0.

The aim of ATPG is to automatically generate input patterns that result in the
activation and propagation of faults. In order to trigger the stuck-at 1 fault in
Example 1, one of the latches B or C must hold the value 0. For the fault to
propagate to latch C through the subsequent OR gate, it is necessary that i1 is
0. Accordingly, we require input signals that result in different logic values for
at least one of the observable signals of the original and the faulty circuit.

Test pattern generation for digital circuits can be formulated as a Boolean
satisfiability problem (c.f. [5, §22.2.3]), which can be solved using efficient satis-
fiability checkers (e.g., [14,9]). For combinational circuits, this approach is illus-
trated in Figure 2. By using an XOR gate (or miter) to combine the outputs of
the original circuit and a duplicate circuit into which a stuck-at fault has been
injected, we obtain a new circuit whose output is one if and only if the values of
the latches and input signals are chosen such that the fault is activated and prop-
agates to an observable output. Using a satisfiability checker and a propositional
encoding of the resulting circuit, we can derive appropriate logic values.

Coverage-Based Trace Signal Selection for Fault Localisation 135

DQ

R
C

DQ

R
B

i1

1

1

Faulty circuit

Fig. 2. ATPG as Boolean satisfiability problem

t︷︸︸︷ t+1︷︸︸︷ t+2︷︸︸︷

DQ

R
C

DQ

R
B

DQ

R
A

it0

it1

DQ

R
C

DQ

R
B

DQ

R
A

it+1
0

it+1
1

DQ

R
C

DQ

R
B

DQ

R
A

Fig. 3. Execution of two cycles

A similar technique can be applied for sequential circuits. In this setting,
it is sufficient if the error propagates to an observable output or latch after
several execution cycles. While the error in Example 1 may not propagate to
latch C immediately, it does propagate to latch A, from where (in a favourable
test scenario) it may propagate to latch B and eventually latch C in subsequent
execution cycles. In Boolean satisfiability-based ATPG, this is taken into account
by unwinding the circuit into an iterative logic array (ILA) [1], as shown in
Figure 3 for two execution cycles. By encoding a sequence of execution cycles
into a propositional formula, it is possible to obtain a multi-cycle test scenario
in which the fault is activated and propagates. We refer to this approach as
sequential ATPG.

Related Work. Mutation testing is a technique related to ATPG that is applied
in software testing. The test-case generation technique for Simulink programs
presented in [2], for instance, resembles the ATPG approach described above in
that it uses fault models (such as stuck-at faults). The aim of mutation testing,
however, is typically to evaluate or increase the coverage of a test suite. More-
over, unlike ATPG, mutation testing for software programs is typically based on
syntactic modifications (mutations, respectively) of the source code rather than
on fault models.

2.2 Trace Signal Selection Using Integer Linear Programming

In an integrated circuit of realistic dimensions only a fraction the system state
(stored the in latches) can be recorded in a trace buffer. In Example 1, for

136 C.S. Zhu, G. Weissenbacher, and S. Malik

Table 1. Fault-free and erroneous executions of the circuit in Figure 1

Fault-free Fault in A Fault in B Fault in C

t t+ 1 t t+ 1 t t+ 1 t t+ 1

A 0 0 1 0 0 1 0 0
B 0 0 0 1 1 0 0 0
C 1 0 1 0 1 1 0 0

Functional vector v : i0 �→ 0, i1 �→ 0

instance, we assume that the trace buffer maintains a (limited) history of the
logic values of latch C. The remaining latches are effectively unobservable. Con-
sequently, only errors that eventually propagate to an observable output (or
latch) can be detected. Accordingly, whether (and when) an error is caught is
contingent on the selection of the trace signals (as well as on the test scenario).

Yang and Touba [19] propose a technique to automatically select trace signals
based on the propagation of errors between latches. The approach is based on
the following insight: an error that propagates from the faulty gate to a latch
may keep propagating over multiple cycles (depending on the test pattern that
is applied) until it eventually corrupts an observable signal.

The authors of [19] construct an error transmission matrix which holds, for
a fixed set of single-cycle test patterns, the information between which latches
errors may propagate. The matrix is then transformed into an integer linear
programming (ILP) problem whose optimal solution identifies a set of latches
which capture as many errors propagated from latches in as many test scenarios
as possible.

Example 2. We continue working in the setting of Example 1. Figure 1b illus-
trates one execution cycle in form of an ILA. The latches on the left side rep-
resent the state of the circuit in time-frame t, the latches to the right represent
the subsequent time-frame t+ 1.

Table 1 shows four single-cycle executions of the circuit in Figure 1a, starting
from a state in which the latchesA andB hold the value 0, and latch C holds the
value 1. The input test vector is the same in all executions (i0 �→ 0, i1 �→ 0). The
first execution is fault-free, whereas we introduced transient errors by flipping
the values of the latches A, B, and C, respectively, in the remaining three
executions. Each of these errors represents a gate-level fault that propagated
to the respective latch, whose bits are highlighted in bold in the table. Table 1
illustrates that in the given scenario, an error in A propagates to B, and an
error in B propagates to A as well as to C. The error introduced in C does not
propagate, since it is masked by the value of B. The error propagation between
the three latches in this situation is indicated in Figure 1c.

Following the methodology presented by Yang and Touba [19], we obtain
the error transmission matrix in Figure 4a. Additional test patterns can be
encoded in the transmission matrix by adding more rows. For clarity, we omit
the optimisation step described in [19] which reduces the size of the matrix by
grouping together independent latches whose information can be compressed.

Coverage-Based Trace Signal Selection for Fault Localisation 137

AB C

(A, v)
(B, v)
(C, v)

⎡
⎣ 0 1 0
1 0 1
0 0 0

⎤
⎦

(a) Transmission matrix

max:
∑2

i=0 Ri

SB ≥ R0

SA + SC ≥ R1

0 ≥ R2

R0, R1, R2 ∈ {0, 1}
SA, SB, SC ∈ {0, 1}

SA + SB + SC = 1

(b) ILP problem

Fig. 4. Selecting trace signals using integer linear programming

The ILP problem obtained from the transmission matrix in Figure 4a in order
to select one signal to trace is shown in Figure 4b. Each Ri (i ∈ {0, 1, 2}) repre-
sents a row, and a value of 1 indicates that the corresponding error propagates to
a selected latch in the respective test scenario. Consequently, the objective is to
maximise the sum R0+R1+R2. Whether an error is captured in a latch depends
on the latches that are traced. In our example, we restrict the trace buffer to only
one latch; accordingly, SA +SB +SC = 1. Finally, each row in the transmission
matrix determines which errors can be captured. The line SA + SC ≥ R1, for
instance, encodes that an error in latch B can be captured by either latch A or
latch C in the test scenario v.

Note that this ILP problem does not have a unique optimal solution: assigning
1 to either SA, SB, or SC maximises the objective. A solution SA = 1, SB = 0,
and SC = 0 returned by the ILP solver indicates that we should trace the value
in latch A. No matter which latch we choose, according to Table 1 we will only
be able to track either the error in A, or the error in B (since faults of C do not
propagate in this setting).

Related Work. Hung and Wilton [11] base their signal selection algorithm on
the expected number of reachable system states that can be “ruled out” by
observing these signals. This approach relies on a computationally expensive
approximation of the reachable state space.

Yang et al. [20] propose to use unsatisfiable cores obtained from a test scenario
that results in a failure and a propositional encoding of the circuit to identify
signals that are relevant to the analysis of the failure. Moreover, they propose
a SAT-based technique to select trace signals from which relevant signals that
cannot be observed can be reconstructed.

Prabhakar and Hsiao [15] use a multiplexed trace signal scheme which enables
them to effectively double the number of signals that can be traced. Moreover,
the paper proposes a technique to identify signals that can be inferred from
traced signals using logical implication and therefore need not be recorded.

Paula et al. [7] proposes to compute signatures of states to narrow down the
set of predecessor states of the crash state, effectively enabling backwards state

138 C.S. Zhu, G. Weissenbacher, and S. Malik

stepping. This allows them to identify the error in an earlier cycle in a subsequent
test run. A follow-up paper [8] describes how repeated test runs can be used to
arbitrarily increase the number of execution cycles which can be recorded by
a trace buffer. Both techniques require that the erroneous behaviour can be
reproduced repeatedly.

A detailed discussion of techniques that use compression techniques to increase
observability is provided by [19].

2.3 SAT-Based Fault Localisation

The objective of the trace signal selection algorithm in [19] is to detect as many
errors as early as possible. Detecting an error, however, is often the easy part
of the post-silicon validation phase. Due to the observability limitations in inte-
grated circuits, locating the cause of the error can be a formidable challenge.

Consistency-based diagnosis [16] is a technique that aims at locating the cause
of an observed error by identifying fault candidates based on the golden model of
a system and observations of its actual implementation. It relies on automated
reasoning to identify the smallest set of components that explains the inconsis-
tency between the hardware design and the behaviour of the manufactured pro-
totype. The technique has seen a recent spike in popularity (e.g., [17,18,4,3,21])
due to the improved scalability of satisfiability solvers. The following example
illustrates the idea underlying consistency-based diagnosis.

Example 3. Recall the setting from Example 1, in which we postulated a stuck-at
1 fault for the AND-gate in the circuit in Figure 1a. The ILA in Figure 1b which
represents one execution cycle of this circuit can be encoded as a propositional
formula in which At, Bt, Ct and At+1, Bt+1, Ct+1 refer to the values held by
the latches in time-frames t and t+ 1, respectively:

(At+1 = Bt ·Ct) · (Bt+1 = At + i0) · (Ct+1 = At+1 + i1) (1)

As a result of the faulty AND gate, the logic values in At+1 and Ct+1 are
corrupted during the execution of the manufactured chip. This fact as well as
the initial state and the input values are encoded in the following propositional
formula: (

(At = 0) · (Bt = 0) · (Ct = 1) ·
(At+1 = 1) · (Bt+1 = 0) · (Ct+1 = 1)

)
· (i0 = 0) · (i1 = 0) (2)

Due to the discrepancy between the golden model in Figure 1a and the be-
haviour of the manufactured prototype the conjunction of the formulae 1 and
2 is unsatisfiable. In order to determine the cause of the discrepancy, we can
use a partial maximum-satisfiability (Max-Sat) solver (see [10], for instance)
to identify a minimal set of conjuncts of Formula 1 that are responsible for the
inconsistency of Formula 1 and Formula 2. In our example, dropping the con-
straint (At+1 = Bt · Ct) makes the formula satisfiable, which indicates that a
faulty AND gate in Figure 1b is a possible explanation for the inconsistency.

Coverage-Based Trace Signal Selection for Fault Localisation 139

In Example 3 we assume that all latches are observable. While this is a valid
assumption in the context of pre-silicon debugging, where all signal values can be
determined by means of simulation, this information is typically not available in
the post-silicon setting. In this setting, the approach described in Example 3 may
fail: eliminating the information about Bt, Ct, Bt+1, and Ct+1 from Formula 2
makes the conjunction of the formulae 1 and 2 satisfiable.

This problem can be addressed by means of unwinding the sequential cir-
cuit sufficiently often and constraining the resulting ILA with the information
collected in the trace buffer.

Example 4. The two-cycle ILA in Figure 3 can be translated into the following
propositional formula:

(At+1 = Bt ·Ct) · (Bt+1 = At + it0) · (Ct+1 = At+1 + it1)·
(At+2 = Bt+1 ·Ct+1) · (Bt+2 = At+1 + it+1

0) · (Ct+2 = At+2 + it+1
1)

(3)

Assume that the trace buffer recorded the information (At = 0), (At+1 = 1),
and (At+2 = 1). Constraining Formula 3 with the information obtained from the
trace buffer and the test pattern it0 = 0, it1 = 0, it+1

0 = 0, and it+1
1 = 0 results in

an unsatisfiable SAT instance. A subsequent analysis yields that dropping either
(Bt+1 = At + it0) or (At+2 = Bt+1 · Ct+1) makes the instance satisfiable and
identifies either the OR gate in time-frame t or the AND gate in time-frame t+1
as potential culprits.

Example 4 shows that a consistency-based diagnosis may report more than one
fault candidate. In general, this problem cannot be avoided (even if all latches
are observable), since both gates are valid fault candidates. Note, however, that
the approach identified an exact time-frame in which the respective components
may have failed, making it suitable for the analysis of intermittent or transient
faults.

For large circuits, the number of execution cycles that can be analysed is lim-
ited by the scalability of the underlying logic solver. While in theory it is always
sufficient to analyse the entire execution, in practice the size of the resulting
propositional formula would likely be prohibitive. This problem is addressed
in [12] and [21] by sliding a window of fixed size (backwards) along the exe-
cution trace, thus partitioning the execution trace into ILAs of fixed size. The
technique presented in [12] targets design debugging and requires full observabil-
ity to compute Craig interpolants [6], which are used to propagate information
across windows. Zhu et al. [21] is aimed at post-silicon validation and relies on
backbones (see, e.g., [13]) to propagate state information across windows. The
backbone of a satisfiable propositional formula comprises all literals which take
the same value in all satisfying assignments of the formula.

Example 5. We continue working in the setting of Example 4. Assume that
the scalability of the solver limits the consistency-based analysis technique to
windows of size one. As previously established, the information (At+1 = 1),
(At+2 = 1) and it+1

0 = 0, it+1
1 = 0 is insufficient to yield an inconsistency in

140 C.S. Zhu, G. Weissenbacher, and S. Malik

Table 2. Fault-free and erroneous 2-cycle executions of the circuit in Figure 1

Fault-free Fault in A

t t+ 1 t+ 2 t t+ 1 t+ 2

A 0 0 0 1 0 1
B 0 0 0 0 1 0
C 1 1 0 1 1 1

it0 = 0, it1 = 1, it+1
0 = 0, it+1

1 = 0

time-frame t+1 of Figure 3. However, from (At+2 = 1) and (At+2 = Bt+1 ·Ct+1)
(c.f. Formula 3) we can derive the backbone Bt+1 = 1 and Ct+1 = 1, which is
inconsistent with (At = 0), it0 = 0, and time-frame t in Figure 3, resulting in
the fault candidate (Bt+1 = At + it0).

Similarly, from (At = 0), it0 = 0, and time-frame t in Figure 3 we can derive
the backbone Bt+1 = 0, which is inconsistent with At+2 = 1 and time-frame
t + 1. Accordingly, the analysis yields the AND gate corresponding to At+2 =
Bt+1 ·Ct+1 as a fault candidate.

Related Work. As previously mentioned, there are a number of papers that
apply consistency-based diagnosis to address pre-silicon debugging (with full
observability) by constraining a faulty RTL model with correct input/output
pairs (given as a specification) [17,18,4,3].

3 Improving Coverage-Based Trace Signal Selection

In this section, we propose two improvements over the ILP-based signal selection
approach of Yang and Touba [19]. Our modifications to the algorithm address
the following limitations:

– The approach outlined in §2.2 does not directly take advantage of the tran-
sitivity of error propagation. As pointed out at the end of §2.1, an error may
propagate through non-observable latches for several execution cycles until
it corrupts a latch monitored by the trace buffer.

– The fault model of [19] is applied exclusively to latches. Depending on the
structure of the circuit, however, some latches may have a higher probability
of being corrupted/propagated by gate-level faults than others and thus also
may be more useful for fault localisation.

3.1 Multi-cycle Coverage

The following example illustrates the limitation of a trace signal selection algo-
rithm that is based on a propagation depth of one.

Example 6. Table 2 shows a correct and an erroneous execution of the sequential
circuit in Figure 1a. As in Example 2, we introduce a transient error by flipping

Coverage-Based Trace Signal Selection for Fault Localisation 141

the value of one latch in the execution. Unlike in Example 2, however, the ex-
ecutions in Table 2 have two cycles. As mentioned previously, an error in latch
A propagates to latch B within one cycle. After an additional execution cycle,
however, the error corrupts both latch A and latch C. If we add this information
to the error transmission matrix and the ILP encoding in Figure 4, we are able
to derive that observing latch A or latch C, but not latch B, is the optimal
solution.

3.2 Injecting Faults in Combinational Logic

The starting point of the analysis in [19] is that a gate-level fault has already
propagated to a latch. Depending on the structure of the circuit, however, certain
latches might be more susceptible to capturing an erroneous signal originating
in the combinational logic and thus also have greater value in fault localisation.

Example 7. In the sequential circuit in Figure 1a, a fault in the AND gate may
propagate to latches A and C. A fault in the OR gates may propagate to latch
B and latch C, respectively. Accordingly, if all gates are equally likely to fail,
then latch C has a higher probability of being corrupted.

Motivated by the concerns discussed in § 3.1 and § 3.2, the following section
describes our modifications to the approach of [19].

3.3 Integer Linear Programming Encoding

To take the structure of the circuit into account (see §3.2), we inject faults in the
gates of the combinational part of the circuit as well as in the latches. A set of
fault simulations are applied on each injected fault repeatedly. Unlike the method
proposed in [19], the test patterns used for fault simulation are multi-cycle and
generated by sequential ATPG (as described in §2.1). ATPG helps to provide
tests which result in the activation and the propagation of the fault to a latch
(or primary output). From the fault simulations, we determine the set of latches
to which the fault can propagate and add a row to the error transmission matrix
accordingly. The corresponding ILP problem can then be built as described in
§2.2.

Example 8. We continue working on the setting from Example 7. Suppose we
have obtained a 2-cycle test pattern from ATPG. The same test pattern as
in Example 6 are adopted. Transient faults are injected in both latches and
gates. Table 3 shows the correct and erroneous execution of all injected faults.
With the same approach as §2.2, we can obtain the equivalent ILP problem in
Figure 5. For simplicity, we assume that trace signals can be observed with equal
costs on all latches in this paper. In general, the cost for tracing certain signals
depends on the structure of circuit. To favor certain latches, we can intentionally
duplicate their corresponding rows in the transmission matrix. Duplicating rows
in a transmission matrix is acceptable, because the ILP is not the bottleneck of
scalability in our work. Additional details are provided at the end of §4.2.

142 C.S. Zhu, G. Weissenbacher, and S. Malik

Table 3. 2-cycle execution of faults in both latches and internal gates

Fault-free Fault in A Fault in B Fault in C

t t+ 1 t+ 2 t t+ 1 t+ 2 t t+ 1 t+ 2 t t+ 1 t+ 2

A 0 0 0 1 0 1 0 1 0 0 0 0
B 0 0 0 0 1 0 1 0 1 0 0 0
C 1 1 0 1 1 1 1 1 0 0 1 0

it0 = 0, it1 = 1, it+1
0 = 0, it+1

1 = 0

Fault-free Fault in n1 Fault in n2 Fault in n3

t t+ 1 t+ 2 t t+ 1 t+ 2 t t+ 1 t+ 2 t t+ 1 t+ 2

A 0 0 0 0 0 1 0 1 0 0 0 0
B 0 0 0 0 1 0 0 0 1 0 0 0
C 1 1 0 1 1 1 1 1 0 1 0 0

it0 = 0, it1 = 1, it+1
0 = 0, it+1

1 = 0

AB C

(A, v)
(B, v)
(C, v)
(n1, v)
(n2, v)
(n3, v)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 0
0 0 0
1 1 1
1 1 1
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(a) Transmission matrix

max:
∑5

i=0 Ri

SA + SB + SC ≥ R0

SA + SB ≥ R1

0 ≥ R2

SA + SB + SC ≥ R3

SA + SB + SC ≥ R4

SC ≥ R5

R0, R1, R2, R3, R4, R5 ∈ {0, 1}
SA, SB, SC ∈ {0, 1}

SA + SB + SC = 1

(b) ILP problem

Fig. 5. ILP problem with coverage on faults of internal gates

The fact that we use sequential ATPG to determine a set of latches to which a
fault may propagate addresses the concerns described in §3.1. By injecting faults
not only in latches but also in internal gates, we effectively obtain a larger set of
latches that are potentially corrupted, which increases the intersection of latches
that capture several faults. We use a fixed number of cycles for the generation
of the test scenarios; details are provided in § 4.

4 Experimental Evaluation

4.1 Trace Signal Selection

In our experiments, we evaluated our methodology using the single stuck-at-
fault model on two benchmarks from Opencores.org: the 68HC05 (127 latches)

Coverage-Based Trace Signal Selection for Fault Localisation 143

n1
n2

Fig. 6. Nodes with different fanout degrees

and 8051 (2794 latches) microcontrollers1. This fault model is chosen for its
convenience as it is well understood. This is not a limitation of our approach.
Faults are injected in both latches and internal gates and fault simulation is used
to build an error transmission matrix. Two issues need careful consideration in
constructing the error transmission matrix.

First, each row in the error transmission matrix represents the detection of a
fault in the circuit. Including all possible faults, whose number is proportional
to the size of the circuit, can result in very large matrices. To reduce the number
of faults that need to be considered, we limit the fault sites to the outputs of
fanout-free regions and take advantage of well-known results on fault equivalence.
As shown in Figure 6, node n1 has a fanout-degree of two, while the fanout-
degrees for node n2 is one. A stuck-at-1 fault occurs at node n2. If this fault
is activated by a vector and propagates to node n1, it is equivalent to a stuck-
at-1 fault at n1. If the fault on node n2 is not propagated to node n1 for a
vector, it is masked. Thus, the two rows corresponding to these two stuck-at-1
faults at n1 and n2 in the error transmission matrix are exactly the same. We
refer to those nodes with fanout-degree larger than 1 as fanout-points. As a
result, it is sufficient to consider faults on fanout-points without losing any error
transmission information.

Second, to build the error transmission matrix, we need to know where each
fault can propagate to. This is achieved by using fault simulation. Unlike the
proposed method from [19], we use multi-cycle test patterns obtained from se-
quential ATPG for fault simulation. The test patterns were limited to 6-cycle
tests to manage test generation time. A test generated for a fault is used in fault
simulation for all the faults.

In our experiments, we limited the number of trace signals to be 5% of the total
number of latches which is the candidate set of trace signals. We used the CPLEX
ILP solver and AMPL modeling language2. For the 68HC05 benchmark, the ILP
solver returns 6 optimized trace signalswhich can capture 63.75%of stuck-at faults.
For the 8051 benchmark, 140 trace signals are identified that capture 31.70% of
stuck-at faults. This coverage is strongly related to the length of the test vectors
since some of the faults may not be covered at all using the 6-cycle tests.

1 OpenCores projects available online at http://opencores.org/project
2 CPLEX for AMPL available online at http://www.ampl.com/CPLEX

144 C.S. Zhu, G. Weissenbacher, and S. Malik

4.2 Evaluation Method

To evaluate the trace signals selected by our methodology, 30 single stuck-at
faults are injected to both the 68HC05 and 8051 benchmarks to generate 60
faulty circuits. To mimic the post-silicon debug process, instead of running a
real chip prototype, each faulty circuit is simulated by a tailored test vector.
The aim of this tailored test vector is to cause the specific fault to be activated
and observed at some latch or circuit output, just as an erroneous trace would.
The rationale for this is as follows. As our experimentation is based on simulation
rather than at-speed post-silicon validation, it is much slower and thus is limited
to a length of a few thousand cycles. The likelihood of a bug being detected by a
random trace of this length is quite low. As a result, we tailored one test vector
for each faulty circuit. Each of these vectors are 3000 cycles long and the bug
in the circuit is guaranteed to be activated roughly every 100 cycles. However,
there is no guarantee the error will be observed at the outputs or in the trace
buffers, and it is exactly this aspect of the fault propagation that we wish to
observe. For this purpose, during simulation, the execution trace is recorded on
the selected trace buffers and output pins. This is then used as constraints for
the offline SAT-based analysis described in §2.3. By using the sliding window
analysis along this execution trace, we can determine whether the bug can be
localised. Our metric for the quality of the trace signals is the size of the window
required to localise the fault. A smaller window indicates a higher quality of
selection as it results in a more scalable localisation algorithm. This is because
a smaller window means that a smaller number of circuit unfoldings need to be
considered in the analysis. Thus with limited capacity of analysis engines such
as SAT solvers, the size of the circuit that can be accommodated is much larger.

Compared to trace signal selection, the evaluation phase is more time-
consuming. Selecting trace signals only involves one call to the ILP solver, which
can easily handle our test cases. However, in the evaluation phase, the SAT solver
is called repeatedly for each window and each call is potentially expensive.

4.3 Experimental Results

Three different sets of trace signals are compared in this evaluation process. The
first set of trace signals are derived using random selection. The second set of
trace signals are selected using the approach of Yang and Touba [19] (latch-fault
propagation), i.e., the error transmission matrix is built based on bugs injected
only on latches and single-cycle fault propagation. The last set of trace signals are
selected based on our approach (all-fault propagation) described above. Further,
as described in § 2.3, each set of trace signals is evaluated by sliding windows
with backbones.

In Figure 7 and Figure 8, each graph represents one of the two sliding window
analyses on different benchmarks. On the x axis, there are 30 randomly injected
single faults for both benchmarks. The y axis represents the minimum window
size required to detect the corresponding fault by the SAT-based fault localisa-
tion approach described in §2.3. We used a limit of 15 time-frames for the size
of the sliding window to manage experimental run times.

Coverage-Based Trace Signal Selection for Fault Localisation 145

0

2

4

6

8

10

12

14

16

m
in

im
um

 e
ffe

ct
iv

e
w

in
do

w
 si

ze

w
/ b

ac
kb

on
e

30 random single stuck-at faults in 68HC05

random

latch-fault
propagation

all-fault
propagation

Fig. 7. Minimum window sizes to detect bugs randomly injected in 68HC05 with three
different sets of selected trace signals

0

2

4

6

8

10

12

14

16

m
in

im
um

 e
ffe

ct
iv

e
w

in
do

w
 si

ze

w
/ b

ac
kb

on
e

30 random single stuck-at faults in 8051

random

latch-fault
propagation

all-fault
propagation

Fig. 8. Minimum window sizes to detect bugs randomly injected in 8051 with three
different sets of selected trace signals

The 69hc05 benchmark was the easier case. 28 of the 30 faults could be lo-
calised with either random or latch-fault propagation based selection. Only the
all-fault propagation method could localise all 30 of them. The 8051 bench-
mark was the harder case. Random selection allowed localisation for only 8
faults. Latch-fault propagation performed better, succeeding for 16 faults. All-
fault propagation did much better by succeeding for 23 faults. Further, for most
cases, all-fault propagation was able to localise a fault with a smaller window
size compared to the other methods.

5 Conclusions

This paper considers the problem of selecting trace signals in post-silicon vali-
dation for use in fault-localisation. It uses a coverage based problem formulation

146 C.S. Zhu, G. Weissenbacher, and S. Malik

that maximizes the number of faults that can be detected at the trace signals
using a limited number of trace signals. In contrast to a the coverage based for-
mulation of Yang and Touba, our formulation considers faults at all circuit sites,
and not just latches. This increases the likelihood of fault localisation being able
to isolate faults to these sites. Further, in our formulation we consider multi-cycle
fault propagation, which more accurately captures real fault propagation com-
pared to the single cycle propagation of Yang and Touba’s method. The value
of these differences is reflected in the experimental results where we compare
various trace signal selection algorithms in terms of their ability to reduce the
window size needed in sliding window consistency based fault-localisation. This
metric is a proxy for scalability, as a smaller window size indicates that fewer
time frames are needed and thus a larger circuit can be accommodated in each
time frame. Our method performs much better than both random selection, as
well as the Yang and Touba method. Specifically it can detect and localize 14
more faults of a total of 60 faults than the Yang and Touba method.

References

1. Abramovici, M., Breuer, M.A., Friedman, A.D.: Digital systems testing and
testable design. Computer Science Press (1990)

2. Brillout, A., He, N., Mazzucchi, M., Kroening, D., Purandare, M., Rümmer, P.,
Weissenbacher, G.: Mutation-based test case generation for simulink models. In:
de Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 208–227. Springer, Heidelberg (2010)

3. Chen, Y., Safarpour, S., Marques-Silva, J., Veneris, A.: Automated design debug-
ging with maximum satisfiability. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD) 29, 1804–1817 (2010)

4. Chen, Y., Safarpour, S., Veneris, A., Marques-Silva, J.: Spatial and temporal design
debug using partial MaxSAT. In: Great Lakes Symposium on VLSI, pp. 345–350.
ACM (2009)

5. Cheng, K.-T., Wang, L.-C.: Automatic test pattern generation. In: EDA for IC
System Design, Verification, and Testing. CRC Press (2006)

6. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem 22(3),
250–268 (1957)

7. De Paula, F.M., Gort, M., Hu, A.J., Wilton, S.J.E., Yang, J.: Backspace: formal
analysis for post-silicon debug. In: Formal Methods in Computer-Aided Design
(FMCAD), pp. 5:1–5:10. IEEE (2008)

8. de Paula, F.M., Nahir, A., Nevo, Z., Orni, A., Hu, A.J.: TAB-Backspace: unlimited-
length trace buffers with zero additional on-chip overhead. In: Proceedings of the
48th Design Automation Conference (DAC), pp. 411–416. ACM (2011)

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

10. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes,
C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)

11. Hung, E., Wilton, S.: On evaluating signal selection algorithms for post-silicon
debug. In: Quality Electronic Design, ISQED (March 2011)

12. Keng, B., Safarpour, S., Veneris, A.G.: Bounded model debugging. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD) 29(11), 1790–1803 (2010)

Coverage-Based Trace Signal Selection for Fault Localisation 147

13. Marques-Silva, J., Janota, M., Lynce, I.: On computing backbones of propositional
theories. In: European Conference on Artificial Intelligence (ECAI), pp. 15–20. IOS
Press (2010)

14. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-
ing an efficient SAT solver. In: Design Automation Conference (DAC), pp. 530–535.
ACM (2001)

15. Prabhakar, S., Hsiao, M.: Multiplexed trace signal selection using non-trivial
implication-based correlation. In: Quality Electronic Design (ISQED), pp. 697–704
(2010)

16. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

17. Safarpour, S., Mangassarian, H., Veneris, A.G., Liffiton, M.H., Sakallah, K.A.:
Improved design debugging using maximum satisfiability. In: Formal Methods in
Computer-Aided Design (FMCAD), pp. 13–19. IEEE (2007)

18. Sülflow, A., Fey, G., Bloem, R., Drechsler, R.: Using unsatisfiable cores to debug
multiple design errors. In: Great Lakes Symposium on VLSI, pp. 77–82. ACM
(2008)

19. Yang, J.-S., Touba, N.A.: Efficient trace signal selection for silicon debug by er-
ror transmission analysis. IEEE Transactions on CAD of Integrated Circuits and
Systems 31(3), 442–446 (2012)

20. Yang, Y.-S., Keng, B., Nicolici, N., Veneris, A.G., Safarpour, S.: Automated silicon
debug data analysis techniques for a hardware data acquisition environment. In:
International Symposium on Quality of Electronic Design. IEEE (2010)

21. Zhu, C.S., Weissenbacher, G., Malik, S.: Post-silicon fault localisation using maxi-
mum satisfiability and backbones. In: Formal Methods in Computer-Aided Design
(FMCAD). IEEE (2011)

A Novel Approach for Implementing

Microarchitectural Verification Plans
in Processor Designs

Yoav Katz1, Michal Rimon2, and Avi Ziv1

1 IBM Research - Haifa, Israel
{katz,aziv}@il.ibm.com

2 IBM Server and Technology Group, Haifa, Israel
michalr@il.ibm.com

Abstract. The ever-growing microarchitecture complexity of processors
creates a widening gap between the verification plan and the test gener-
ation technologies used in its implementation. This gap impacts the cost
and quality of the verification process. To overcome this, we introduce a
novel test generation platform for processor verification. This approach
is based on a scenario description language that is close to the microar-
chitecture verification plan, and uses new test generation algorithms and
a microarchitectural model to support this higher level of abstraction.
Initial results on a high end industrial design show our approach reduces
the effort of implementing a microarchitectural verification plan and im-
proves the quality of verification.

1 Introduction

The goal of functional verification of processors is to establish the conformance
of a processor design to its specification. Today’s state of the art verification
methodologies is based on a highly automated process that includes stimuli
generation, checking, and coverage collection—combined with islands of manual
labor [1]. Verification begins with the creation of a verification plan. The plan
defines the aspects of the architecture and microarchitecture to be verified and
the methods that will perform the verification. Test-case generators play a central
role in such automated verification environments. The stimuli generated by these
tools need to trigger architecture and microarchitecture events defined by the
verification plan and ensure that all the dark corners of the verified design are
exercised and the bugs hidden in them are exposed.

The input to a test-case generator is a test-template, which describes at a
high level the desired characteristics of the generated test-cases. Given a test-
template as input, the test-case generator generates a large set of architecturally
valid test-cases that satisfy the template request and fill in the remaining details
in a pseudo-random way.

Existing processor-level test-case generators (such as [2,3]) provide a rich lan-
guage for specifying requests at the instruction-level and a powerful instruction-
based solving scheme for generating test-cases that satisfy the instruction level

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 148–161, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Novel Approach for Implementing Microarchitectural Verification Plans 149

requests. This generation scheme calls for generation of instructions in execution
order, one instruction at a time. The generation is interleaved with execution
on a software reference model (ISS). This generation scheme has many advan-
tages. First, it breaks the generation problem into a set of smaller, manageable
sub-problems. In addition, it allows the generation engine to use the current
processor state when generating the next instruction. Many tools formulate the
generation of each instruction as a Constraint Satisfaction Problem (CSP) and
thus achieve a high level of randomness and user controllability [4].

Advanced microarchitecture techniques such as out-of-order execution, on-
chip caching and multi-threading, exploit the growth of available transistor count
to deliver improved performance. As processor microarchitecture complexity in-
creases, there is a growing need to thoroughly exercise the microarchitecture and
reach all its corner cases. Advances in the verification methodologies and test-
generation tools led to new features that target the microarchitecture. For exam-
ple, tools embed testing knowledge [2] to increase the probability of generating
interesting microarchitectural events (e.g., creating register dependency between
instructions to trigger pipeline forwarding). The tools also include elaborate user
control in the test-template to help the test-case reach specific microarchitec-
tural events, and address the challenges of multithreaded and multiprocessing
designs [5, 6].

Nevertheless, we observe a growing gap between the goals of the verification
plan, which now targets events deep inside the processor, and the available test
generation tools. This impacts both the resulting verification quality and the
effort required to complete the verification process. One cause of this gap is the
limited support for specifying and generating interactions between instructions.
Specifically, users have to invest significant effort in creating the test-templates
to generate the required intra-instruction dependencies and adapt them to the
specific microarchitecture.

Another outcome of this methodology is that verification know-how as to the
best ways to address microarchitecture verification is embedded in the
test-templates, but not in the tools. Therefore, applying this knowledge in new
test-templates requires significant effort. Moreover, less experienced verification
engineers may be unaware of this knowledge and will not apply it in subsequent
verification efforts.

There are other approaches for addressing the complexity of modern microar-
chitectures. One approach calls for a test generator that is fully aware of all
the microarchitectural implementation details. Armed with this knowledge and
a strong solution engine, the test generator can generate test-cases that reach
complex microarchitectural events [7,8]. The main problem with this approach is
that creating and maintaining an accurate description of the microarchitecture
can be impractical.

Coverage Driven Generation (CDG) is another way to addressing the diffi-
culty of generating stimuli that targets complex microarchitectural events [9].
In this paradigm, machine learning techniques, such as Genetic Algorithms [10],
Bayesian networks [9], Markov models [11] and inductive logic programming

150 Y. Katz, M. Rimon, and A. Ziv

(ILP) [12], are used to learn the relation between test-templates and coverage
points and modify the test-templates to improve coverage. While there is much
research in this area [13], there are few successful applications of CDG in real
industrial designs.

Automatic ways to embed microarchitectural testing knowledge into existing
test generators were explored by Katz et al. [14]. In this approach, information
is collected from simulation traces and automatically converted into instruction-
level testing knowledge using machine learning classification algorithms.

In this paper we introduce Test Plan Automation (TPA), a novel test genera-
tion approach for processor verification. The approach is based on formulating a
scenario description language that is close to the microarchitecture verification
plan and using new test generation algorithms and a microarchitectural model to
support this higher level of abstraction. Initial results show our approach reduces
the effort of implementing a microarchitectural verification plan and improves
the quality of verification.

The rest of this paper is organized as follows: In Section 2 , we present the
concept and main components of our proposed method. We then describe each of
these components in-depth in Sections 3-6. Section 7 describes the experimental
results and we conclude in Section 8.

2 Solution Concept

The main goal of TPA is to improve the stimuli generation aspects of the im-
plementation of the microarchitectural verification plan. This goal is achieved in
two ways. First, TPA raises the level of abstraction of the test-template language
and brings it closer to the verification plan while relying on a microarchitectural
model to provide specific details on microarchitecture behavior. In addition, TPA
closes the gap between the test-template and the generated test-cases using new
stream solving generation algorithms and scenario-level testing knowledge. These
are depicted in Figure 1.

The test-template language used in TPA is designed to support the main
ingredient of the verification plan, namely scenarios. The basic building blocks
of the language are basic scenarios that target simple events that involve a
single microarchitectural mechanism. A basic scenario is expressed as a set of
instructions and the required constraints between them. An example of such
scenario is two instructions that access the same cache line to create a cache hit.
The language provides means, such as scenario combinations, to create more
complex scenarios from the basic scenarios. For example, a cache hit and a
cache miss scenarios can be combined to create a scenario that that hits on the
L1 cache and misses on the L2 cache.

Many of the parameters in the scenarios TPA needs to generate come from
the microarchitectural mechanisms they operate on and many of the events TPA
targets are relevant to several mechanisms. For example, cache hit events are
relevant to all the caches in the system. To allow reuse of the scenarios between
mechanisms, TPA uses a microarchitectural model that contains the important

A Novel Approach for Implementing Microarchitectural Verification Plans 151

Solver

Plan

Microarchitectural
Model

Verification

Scenario Level
Testing Knowledge

(Test−template)
Language
Definition
Scenario

Solver

Instruction

Stream
Test Cases

Fig. 1. TPA main components

parameters of these mechanisms. When a scenario is generated, this information
is used for filling in scenario details to create a specific scenario that targets the
requested event in a specific mechanism.

TPA includes a new test-case generation scheme that is able to effectively
satisfy constraints between instructions [15]. It formulates an abstract constraint
satisfaction problem (CSP) that captures the essence of the requested scenario.
This abstract CSP is solved incrementally and the abstract CSP solution is
interleaved with single instruction generation.

To improve the quality of the test-cases it generates, TPA extends the notion
of testing knowledge from the instruction-level to the scenario-level. Testing
knowledge is the embodiment of expert verification knowledge in the tool such
that the tool biases the stimuli toward interesting verification events without
the need for explicit direction by the verification engineer. Scenario level testing
knowledge automatically elaborates and modifies the original scenario to reach
variants of the targeted event or other related events.

3 Microarchitectural Model

TPA is a tool for generating microarchitectural scenarios and thus, information
about the microarchitecture is required to reach the needed events. To facilitate
maximal reuse of scenarios, we separate the scenario description from the mi-
croarchitectural information and use a microarchitectural model that contains
all the needed microarchitectural information. TPA does not attempt to pro-
vide a fully accurate model that guarantees that microarchitectural events are
reached by the scenarios. Instead, TPA aims to significantly increase the proba-
bility of reaching these events while minimizing the cost of model development
and maintenance.

TPA captures the commonalities between microarchitecture mechanisms
both within the design and among different designs by forming an ontology of

152 Y. Katz, M. Rimon, and A. Ziv

microarchitectural mechanisms. It defines an inheritance hierarchy of mechanism
types, the properties that exist for each type and the basic behaviors that per-
tain to it. Figure 2 shows a graphic representation of part of this model that
describes microarchitectural buffers. The type Buffer defines a set of properties
which are shared among all microarchitectural buffers, this includes common
properties such as numEntries, and a special set of properties that denote the
type of instructions that read, write, and remove entries in the buffer. Inher-
iting from Buffer is RandomAccessBuffer, in which entries can be accessed in
any order. This type specifies the conditions for four basic collision scenarios
that apply to it: read-after-write (RAW), write-after-read (WAR), read-after-
read (RAR) and write-after-write (WAW). A MemoryRandomAccessBuffer is
a random access buffer that keeps memory data. It inherits from RandomAc-
cessBuffer and adds an additional property inputAddress to specify whether
access to this memory buffer is calculated based on virtual or real address val-
ues. Cache mechanisms are special cases of MemoryRandomAccessBuffer, and
therefore they are defined as a subtype of it. The figure uses a lighter color for
the actual design mechanisms that are defined as instances in the model. For ex-
ample, the L1DataCache, L2Cache are defined as instances of CacheMechanism
whereas the Load-Miss-Queue and StoreReorderQueue are defined as instances
of MemoryRandomAccessBuffer.

The ontology helps maximize the reuse of scenarios. For example, scenarios
that target a ’buffer full’ event can be applied to any mechanism derived from

L1dataCache

associativity = 8
tag = address[32:45]

inputAddress: ...

L2Cache

associativity = 16
...

writer = {store−byte, store−word}

numEntries = 16
inputAddress = RealAddress

entrySize: integer

reader = {load−byte, load−word}

CacheMechamism

BasicScenario
 RAW = (same_address &&
 fully_contained)
 ...

tag: ...

GPRMapper

numEntries = 12
entrySize = 8 rowIndex: ...

LoadMissQueue

writer: instruction−set

numEntries: integer
reader: instruction−set

BasicScenario
 RAW: ...
 WAR: ...

associativity: integer

ReplacePolicy: ...

numEntries = 144

StoreReorderQueue
Buffer

RndAccessBuffer

MemRndAccBuffer RegRenameBuffer

Fig. 2. Microarchitectural model ontology

A Novel Approach for Implementing Microarchitectural Verification Plans 153

Buffer, ranging from the store reorder queue (SRQ) to caches to register rename
buffers. Localizing all the mechanism properties in a single location simplifies the
overall maintenance effort of the verification process and encourages structure
and rigor.

4 Scenario Input Language

TPA provides a high-level scenario description language. It has constructs for
defining scenarios as a set of instructions and the constraints between them. In
addition, given a collection of predefined scenarios the language has constructs
for defining new scenarios that instantiate them in several combination options.

4.1 Scenario Definition

A scenario definition starts with a declaration of the instructions that partic-
ipate in the scenario and the mechanisms to which the scenario applies. Each
instruction declaration statement may specify a single instruction or a set of in-
structions. In the latter case, the user needs to specify lower and upper bounds
on the number of instructions in the set. In addition, the declaration can restrict
the instructions to a specified type. A mechanism declaration statement specifies
a mechanism type or a specific mechanism instance. If the declaration specifies a
mechanism type, each scenario instantiation can be restricted to a derived type
or a particular instance of the specified mechanism type.

Consider a cache-replace event; caches are arranged into rows, where each row
can contain multiple cache lines, depending on the cache associativity. Each mem-
ory address is mapped to a specific row which is calculated based on some bits in
the address. Within the row, cache lines are identified by tags, which are formed
by other bits in the address. A cache-replace event occurs when all the entries in
the row are used, and a new address with a new tag is mapped to the same row.
In this case, one of the existing cache lines needs to be evicted. The following is a
high level description of a scenario that targets a cache-replace event:

1. Generate at least n+1 instructions that access memory, where n is the cache
associativity

2. All instructions should access the same row in the cache
3. At least n+ 1 instructions should have a different tag

Figure 3 shows the TPA definition of the cache-replace scenario. The scenario
can be applied to any mechanism M1 of type CacheMechanism. The instruction
declaration of the scenario states that the scenario requires a set of instructions,
with a size larger than the associativity of the cache. The scenario puts an
upper limit on the number of instructions. Each instantiation of the scenario
will generate a random number of instructions within the specified limits. All
the instructions are of type M1.Writer. This type is defined in the mechanism,
and includes all the instructions that can write to the cache (e,g., loads and
stores).

154 Y. Katz, M. Rimon, and A. Ziv

ScenarioDefinition Cache-Replace
Mechanisms:

M1 type=CacheMechanism;
Instructions:

accessors type=M1.Writer
size=[M1.associativity+1,2*M1.associativity]

Constraints:
SomeDiff

mechanism=M1
instructions=accessors
lowerLimit=M1.associativity+1
property=tag

AllSame
mechanism=M1
instructions=accessors
property=row

Fig. 3. Cache-replace scenario description

In addition, each scenario definition has to include a declarative description
of the constraints between its instructions. We distinguish between two types of
constraints: constraints that control the interactions between instructions and
constraints that control the placement of instructions in the test.

Constraints that control the interaction between instructions are divided into
two groups: Property constraints request that a property value be the same/
different for all the instructions in the specified set and Mechanism behavior
constraints target a basic mechanism behavior and are parameterized according
to properties of the mechanism.

Constraints that control the placement of instructions in the test are divided
into three groups. Order constraints specify a required partial order between two
specific instructions in the generated test-case. Unlike traditional test generators,
TPA does not assume that the order of appearance in the scenario implies any
order in the resulting test. Distance constraints specify how many instructions
are allowed between any two specified instructions. TPA fills the space between
two instructions with ”non-scenario” instructions. These instructions may be-
long to a different scenario or may be selected by testing knowledge. Thread
constraints specify for any set of instructions whether they should be generated
on the same or on different threads.

In the cache-replace example, two property constraints enforce the scenario
restrictions on the instructions’ cache row and tag properties. When the scenario
is instantiated on a specific cache mechanism, the mechanism is accessed to
obtain the row and tag calculation methods that apply to it.

Figure 4 shows a scenario for targeting a read-after-write collision event in a
buffer using the MemoryCollision constraint. The constraint operates on pairs of
instructions and a mechanism of type MemoryRandomAccessBuffer. It enforces
collision conditions on the memory accesses of the instructions according to a

A Novel Approach for Implementing Microarchitectural Verification Plans 155

set of parameters provided by the mechanism. For example, when this scenario
is applied to the StoreReorderQueue shown at the bottom left of Figure 2, the
mechanism parameters specify that instr1 that writes to the buffer is a store
instruction and instr2 that reads from the buffer is a load instruction. In addi-
tion, the mechanism provides the MemoryCollison constraints the exact nature
of the collision: same address and fully contained, meaning that the load and
store instructions access the same memory location and the data of the load is
contained in the data of the store.

ScenarioDefinition Read-After-Write
Mechanisms:

M1 type=MemoryRandomAccessBuffer;
Instructions:

instr1 type=M1.writer
instr2 type=M1.reader

Constraints:
Order(instr1, instr2)
SameThread(instr1, instr2)
MemoryCollision

mechanism=M1
instructions=(instr1 instr2)
collisionType=RAW

Fig. 4. Read-After-Write scenario description

Note that the scenario can be applied as is to any other instance of Memo-
ryRandomAccessBuffer such as the LoadMissQueue, resulting in a totally differ-
ent sequence of instructions.

4.2 Scenario Instantiation

Given a scenario definition, each instantiation of the scenario can request that
the scenario be applied to a desired subtype of the declared mechanism type or to
a specific instance. Figure 5 shows several possible invocations of the Read-After-
Write scenario. In the first invocation the user requests an instantiation of the
Read-After-Write scenario to any arbitrary design mechanism. In this case, the
user request is combined with the restrictions specified in the scenario definition
and the generated test-cases will target any mechanism that is defined in the
microarchitectural model as an instance of MemoryRandomAccessBuffer. In the
subsequent invocations, the user requests that the Read-After-Write collision
occur on one of the cache mechanisms, or specifically on the store reorder queue.

4.3 Scenario Combinations

Scenario combinations are important because they can cause several events to oc-
cur in a small time window by having the same instructions take part in multiple

156 Y. Katz, M. Rimon, and A. Ziv

Read-After-Write ()
Read-After-Write (CacheMechansim)
Read-After-Write (StoreReorderQueue)

Fig. 5. Possible Read-After-Write scenario instantiations

scenarios, or stress a specific mechanism by instantiating multiple scenarios for
that mechanism. TPA supports the definition of scenarios that instantiate pre-
viously defined scenarios. When a scenario is instantiated by another scenario,
the selection of instructions and mechanisms to use has to satisfy restrictions
expressed by both scenarios.

Consider the combined scenario depicted in Figure 6, which creates two differ-
ent types of events on two mechanisms in a small time window: a cache replace
on some cache and a read-after-write collision on some internal buffer. Here, the
cache-replace scenario determines the set of instructions for the scenario and the
read-after-write scenario operates on two random instructions that participate
in the cache scenario.

ScenarioDefinition LSU Stress
Mechanisms:

cache type=CacheMechanism
buffer type=MemoryRandomAccessBuffer

Instructions:
instrSet

Constraints:
Cache-Replace(M1=cache, accessors=instrSet)
Read-After-Write(M1=buffer,

instr1=instrSet[random],
instr2=instrSet[random])

Fig. 6. Combining scenarios

5 Generation Scheme

TPA generates a scenario in two main steps. First, the scenario definitions are
parsed and several high level decisions are made. These decisions include the
selection of mechanism instances that were not completely specified and the
selection of instruction set sizes. Once these decisions are made, the number
of the instructions and the relevant constraints are known and TPA creates
a constraint graph that represents this particular scenario instantiation. The
nodes in the graph are instructions and the arcs represent scenario constraints
between sets of instructions. In the second part of the generation process, the
constraint graph is passed to a scenario solver for generating instruction streams
that satisfy the user request. The challenge lies in having the test generator

A Novel Approach for Implementing Microarchitectural Verification Plans 157

effectively generate test-cases that consist of sequences of instructions satisfying
these constraints.

A test generation approach that generates instruction by instruction is not
suitable for this problem because of its inability to consider constraints ema-
nating from instructions later in the sequence when the current instruction is
solved. This would cause the generator to make early decisions that may lead to
generation failure of dependent instructions later in the stream. Trying to for-
mulate and solve the entire scenario as a single CSP is not a feasible approach
as the size of the resulting CSP would make this problem intractable.

To address this, TPA implements an abstraction-refinement approach to sce-
nario generation [15]. It formulates an abstract constraint satisfaction prob-
lem that captures the essence of the requested scenario and interacts with an
instruction-based test generator for single instruction generation.

The abstract CSP contains CSP variables that determine for each instruction
its identity (mnemonic), identity of the thread for which it will be generated,
and the location in the program order of that thread (timestamp). In addition
the stream constraints add the relevant CSP variables to all the participating
instructions. For example, in the CSP that is generated by the combined scenario
in Figure 6, the MemoryCollision constraint which implements the read-after-
write scenario adds variables to represent the real address and length of the
memory access of each instruction, while the property constraints that implement
the cache replace scenario add variables that represent the cache tag and row of
the address.

The abstract CSP propagates constraints between all instructions, including
constraints that influence earlier instructions based on restrictions from later
instructions. When constraint propagation subsides, the instruction with low-
est timestamp value is selected as the next instruction to be generated. The
restrictions imposed by the stream constraints on the instruction are provided
as input to a single instruction generator. This generator generates the specific
instruction, taking into account all the instruction-level constraints necessary for
generating an architecturally valid instruction. Once the first instruction is gen-
erated, all decisions that were made and are relevant to the rest of the scenario
are propagated back to the abstract problem and the process continues.

Since the thread and location of the each instruction in program order are CSP
variables they can be randomly selected. Hence instructions can be generated
in many orders and interleavings in the final test-case. These instructions could
have originated from the same scenario or from different scenarios that were
combined.

6 Scenario Testing Knowledge

Testing knowledge is a way of embedding the knowledge and expertise of the
verification engineer in a random stimuli generator that utilizes it to bias the
generator towards interesting events. The raised level of abstraction in TPA
opens the door for new, scenario-level, testing knowledge that can be used to
improve the quality of the generated test-cases.

158 Y. Katz, M. Rimon, and A. Ziv

One area in which testing knowledge plays a major role is creating an inter-
esting microarchitectural state for the requested scenario to operate in. This is
done in TPA in two main ways: selecting an interesting order and placement for
the instructions in the scenario and adding background instructions to vary the
microarchitectural state. For example, TPA may choose to place two instruc-
tions involved in a collision close to each other to increase the probability of
them fetching together. In addition, it may insert a background instruction that
causes the first instruction in the collision to stall, so that the instructions are
executed out-of-order.

Another important type of scenario level testing knowledge used in TPA is
scenario mutations. The goal of mutations is to reach simulation events that are
not the original intent of the scenario but are related to it. The tool supports sev-
eral types of mutations such as microarchitectural model mutations that change
the behavior of the mechanisms that the scenario applies to and mutations that
execute parts of the scenario in a speculative path.

In addition to the scenario-level testing knowledge, TPA also takes advantage
of instruction level testing knowledge provided to it by the single instruction gen-
erator. Users can control the application of both instruction-level and scenario-
level testing knowledge as part of the scenario description and thus convey their
own judgment as to what testing knowledge is more relevant to a given scenario
at a given stage of the verification process.

7 Experimental Results

TPA implements the scenario-based generation approach described in the previ-
ous sections. TPA utilizes the instruction solving capabilities of Genesys-Pro, a
leading commercial instruction-based test generator. We demonstrate the advan-
tages of scenario-based generations of TPA over the instruction-based Genesys-
Pro by comparing the two tools in their ability to cover the Store Reorder Queue
(SRQ) microarchitectural feature of a high-end Power processor. The SRQ is a
buffer found in the Load Store Unit (LSU) of processors. It keeps the data of
each store instruction internally in the processor until the store instruction com-
pletes. This prevents wrong updates to the caches (and the rest of the system)
when the store instruction does not complete for any reason and helps maintain
the ordering rules between stores. One of the roles of the SRQ is to provide data
to newer load instructions, thus avoiding stalling the processor until the store
instruction completes. Therefore, read-after-write (RAW) collisions in the SRQ
(also called load-hits-store and abbreviated to LHS in the rest of the section)
are an important item in the verification plan of the processor.

The verification plan for LHS calls for test-cases that create all interesting
read-after-write collisions in the SRQ, such as out-of-order collisions, simultane-
ous accesses to the buffer, and more. The implementation of the verification plan
is monitored using a coverage model defined by the design team, whose goal is
to ensure that all interesting events in the SRQ occur.

We compare the ease of creating test-templates for TPA and Genesys-Pro
that implement the LHS item in the verification plan and the quality of the

A Novel Approach for Implementing Microarchitectural Verification Plans 159

Table 1. Comparison of ease in creating test-templates

Genesys-Pro TPA

Number of test-template 13 3

Encoding SRQ behavior Test-templates Model

Reusability across designs Needs effort Easy

Reusability across architectures Impossible Easy

Combinations with other scenarios Hard Easy

test-cases generated from these test-templates by both tools. Table 1 summarizes
the first part of the comparison. In Genesys-Pro, each requested type of collision
needs to be encoded specifically in the test-template. This encoding includes
properties of the collision that originate from the SRQ mechanism. As a result,
13 test-templates, each handling a different type of collision or near collision of
interest, are needed to cover this single item in the verification plan. While these
test-templates are carried over between generations of the same architecture,
adapting them to each generation takes effort because the test-templates need to
be adapted to the microarchitecture in many places. The reliance on architectural
and microarchitectural features of the design makes it virtually impossible to
reuse these test-templates in different architectures.

In TPA, on the other hand, it is easy to stipulate specific collisions in a test-
template and fit it to a specific mechanism in the microarchitectural model. As a
result, only a small number of test-templates are needed to implement the LHS
item in the verification plan. In this comparison, we used three test-templates: 1)
a simple test-template, shown in Figure 4, that creates many instances of basic
RAW collisions in the SRQ; 2) a test-template that combines these collisions
with other scenarios, such as group formation and cache scenarios (similar to
the test-template in Figure 6); and 3) a test-templates that includes mutations
of the basic scenario and the mechanism to create interesting near-collisions. It
is important to note that the three test-templates are needed only to illustrate
the benefits of various features of TPA. For actual verification purposes, the last
template suffices.

The simplicity of the TPA test-templates and the fact that most of the relevant
information for the collisions comes from the architectural and microarchitec-
tural models, makes reuse of this test-templates across design and architectures
easy. In fact, we used the same test-templates to generate test-cases for several
Power and zArchitecture designs.

The second part of the comparison evaluates the quality of the tests generated
by both tools. Here we compared the ability of the tools to hit the LHS coverage
events defined by the design team. A summary of the results is shown in Table 2.

The first two lines in the table provide information on the number of test-cases
and simulation cycles used. We believe that the simulation cycles count, and not
the number of test-cases, is a fairer base for comparison, so our goal was to have
twice as many cycles for all the Genesys-Pro test-cases combined than cycles for
test-cases from each of TPA test-templates.

160 Y. Katz, M. Rimon, and A. Ziv

Table 2. Comparison of the quality of generated tests

Genesys- TPA
Pro Simple Comb Mutation Total

Test-cases 769 295 475 511 1281

Cycles 20M 11M 10M 10M 31M

LHS events covered 46 41 49 50 51

Other LSU events covered 1519 1063 1587 1523 1715

Generation time per instruction 1.50 1.28 1.45 1.52 1.43

Comparison of the LHS coverage results shows that the simple TPA test-
template reaches lower coverage than Genesys-Pro. This can be explained by the
fact that the simple test-template does not try to create near-collisions. Each of
the two other TPA test-templates, which combine the basic LHS scenario with
other scenarios and use mutations to create near-collisions, achieve better cover-
age than the 13 Genesys-Pro templates. This indicates better test-case quality.
Another evidence for the superior quality of TPA test-cases is the coverage of
other LSU events (that are not targeted by any of the templates) by the TPA
test-cases. To show that the higher quality of the generated test-cases is not
caused by increased generation time, the last row in Table 2 compares the aver-
age generation time per instruction for the compared test-templates. This time
is calculated by dividing the total generation time of a test-case by the number
of scenario instructions it contains. Therefore, for the TPA test-templates, this
time includes the time needed to construct and solve the stream CSP as well
as the time needed to generate each of the instructions. The row shows that
despite using a more sophisticated generation scheme, the generation time per
instruction in TPA is similar or lower. This can be explained by the planning
done in the TPA generation scheme, which reduces the number of instruction
generation failures.

8 Conclusions

The growing complexity of microarchitectures creates a widening gap between
the verification plan and test generator input languages used to implement it.
This impacts the cost and quality of the verification process. In this paper, we
proposed a novel method of test generation. Our method is based on a high-level
scenario description language that is close to the microarchitecture verification
plan, and a new test generation algorithm and microarchitectural model to sup-
port this higher level of abstraction. Experimental results show that the proposed
method is indeed capable of achieving test-cases with higher coverage, lower test-
template development costs, and comparable generation time, when evaluated
against the existing state-of-the-art test generation solution.

Future development directions of the technology include extension of the
scenario-based testing knowledge to other areas such as multithreading, inte-
gration of automatic methods for populating the microarchitecture model, and
full scale deployment in the verification of current high-end processor designs.

A Novel Approach for Implementing Microarchitectural Verification Plans 161

References

1. Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification - The
Complete Industry Cycle. Elsevier (2005)

2. Adir, A., Almog, E., Fournier, L., Marcus, E., Rimon, M., Vinov, M., Ziv, A.:
Genesys-Pro: Innovations in test program generation for functional processor ver-
ification. IEEE Design and Test of Computers 21(2), 84–93 (2004)

3. Hennenhoefer, E., Typaldos, M.: The evolution of processor test generation tech-
nology, http://www.obsidiansoft.com/pdf/evolution.pdf

4. Naveh, Y., Rimon, M., Jaeger, I., Katz, Y., Vinov, M., Marcus, E., Shurek, G.:
Constraint-based random stimuli generation for hardware verification. AI Maga-
zine 28(3), 13–30 (2007)

5. Ludden, J.M., Rimon, M., Hickerson, B.G., Adir, A.: Advances in simultaneous
multithreading testcase generation methods. In: Barner, S., Kroening, D., Raz, O.
(eds.) HVC 2010. LNCS, vol. 6504, pp. 146–160. Springer, Heidelberg (2011)

6. Burns, D.: Pre-silicon validation of hyper-threading technology. Intel Technology
Journal 6(1) (2002)

7. Adir, A., Bin, E., Ziv, A.: Piparazzi: A test generator for micro-architecture flow
verification. In: Proceedings of the High-Level Design Validation and Test Work-
shop, pp. 23–28 (2003)

8. Mishra, P., Dutt, N.: Specification-driven directed test generation for validation of
pipelined processors. ACM Trans. Design Autom. Electr. Syst. 13(3) (2008)

9. Fine, S., Ziv, A.: Coverage directed test generation for functional verification using
Bayesian networks. In: Proceedings of the 40th Design Automation Conference,
pp. 286–291 (2003)

10. Squillero, G.: MicroGP—an evolutionary assembly program generator. Genetic
Programming and Evolvable Machines 6(3), 247–263 (2005)

11. Wagner, I., Bertacco, V., Austin, T.: Microprocessor verification via feedback-
adjusted Markov models. IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 26(6), 1126–1138 (2007)

12. Eder, K., Flach, P., Hsueh, H.-W.: Towards automating simulation-based design
verification using ILP. In: Muggleton, S., Otero, R., Tamaddoni-Nezhad, A. (eds.)
ILP 2006. LNCS (LNAI), vol. 4455, pp. 154–168. Springer, Heidelberg (2007)

13. Ioannides, C., Barrett, G., Eder, K.: Feedback-based coverage directed test gener-
ation: An industrial evaluation. In: Barner, S., Kroening, D., Raz, O. (eds.) HVC
2010. LNCS, vol. 6504, pp. 112–128. Springer, Heidelberg (2011)

14. Katz, Y., Rimon, M., Ziv, A., Shaked, G.: Learning microarchitectural behaviors to
improve stimuli generation quality. In: Proceedings of the 48th Design Automation
Conference, pp. 848–853 (2011)

15. Katz, Y., Rimon, M., Ziv, A.: Generating instruction streams using abstract CSP.
In: Proceedings of the 2012 Design, Automation and Test in Europe Conference,
pp. 15–20 (2012)

http://www.obsidiansoft.com/pdf/evolution.pdf

Statistical Model Checking for Safety Critical Hybrid
Systems: An Empirical Evaluation

Youngjoo Kim1, Moonzoo Kim1, and Tai-Hyo Kim2

1 CS Dept. KAIST
Daejeon, South Korea

{jerry88,moonzoo}@cs.kaist.ac.kr
2 Formal Works Inc.
Seoul, South Korea

taihyo.kim@formalworks.com
http://www.formalworks.co.kr

Abstract. As more computing systems are utilized in various areas of our soci-
ety, the reliability of computing systems becomes a significant issue. However,
as the complexity of computing systems increases, conventional verification and
validation techniques such as testing and model checking have limitations to as-
sess reliability of complex safety critical systems. Such systems often control
highly complex continuous dynamics to interact with physical environments. To
assure the reliability of safety critical hybrid systems, statistical model checking
(SMC) techniques have been proposed. SMC techniques approximately compute
probabilities for a target system to satisfy given requirements based on randomly
sampled execution traces. In this paper, we empirically evaluated four state-of-
the-art SMC techniques on a fault-tolerant fuel control system in the automobile
domain. Through the experiments, we could demonstrate that SMC is practically
useful to assure the reliability of a safety critical hybrid system and we compared
pros and cons of the four different SMC techniques.

1 Introduction

With the rapid advance of computing hardware, more computing systems are utilized
in various areas of our society including avionics and automobiles. Consequently, the
reliability of computing systems becomes a significant issue to our society. However,
as computing power increases, the complexity of computing systems increases rapidly,
which causes many challenges to assure reliability of computing systems. Conventional
verification and validation (V&V) techniques such as testing and model checking have
limitations to assess the reliability of complex safety critical computing systems, since
such systems often control highly complex continuous dynamics to interact with phys-
ical environments.

To assure the reliability of safety critical hybrid systems, statistical model checking
(SMC) techniques have been proposed [19,17,18,8,4,21,20,2]. SMC techniques approx-
imately compute probabilities for a target system to satisfy given requirements based on
randomly sampled execution traces. Thus, SMC techniques can check the reliability of
a safety critical hybrid system without analyzing the complex internal logic of the target
system.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 162–177, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.formalworks.co.kr

Statistical Model Checking for Safety Critical Hybrid Systems 163

However, most literature on the SMC techniques focuses on theoretical aspects of
suggested techniques, not their practical applicability to real-world safety critical sys-
tems.

In this paper, we empirically evaluated the effectiveness (in terms of the precision of
the verification result) and efficiency (in terms of the verification time) of the following
four representative state-of-the-art SMC techniques: single sampling plan (SSP), sta-
tistical probability ratio test (SPRT), Bayesian hypothesis testing (BHT), and Bayesian
interval estimation testing (BIET).1 We applied these four SMC techniques to a fault-
tolerant fuel control system (FFCS), which is a safety critical system for automobiles.

Contributions of this paper are as follows:

– We demonstrated that SMC techniques can assess the reliability of a complex safety
critical system.

– We made empirical evaluation of the four state-of-the-art SMC techniques system-
atically with carefully controlled experiment environments.

– We identified and compared characteristics of the four SMC techniques, based on
which precise results can be obtained faster by applying multiple SMC techniques
together.

The organization of the paper is as follows. Section 2 overviews the four SMC tech-
niques. Section 3 explains the target FFCS system. Section 4 describes the verification
results by using the four SMC techniques on a Matlab/Simulink model of FFCS. Sec-
tion 5 discusses issues from the empirical study. Section 6 concludes this paper with
future work.

2 Background

In general, a model checking technique [1] checks whether a given modelM satisfies
a given requirement property φ (M |= φ) or not. A statistical model checking (SMC)
technique checks whether a probability forM to satisfy φ is greater than or equal to
a given threshold parameter θ (M |= P≥θ(φ)) or not. We specify φ in bounded linear
temporal logic (BLTL) [20] and that a probability forM to satisfy φ is greater than or
equal to a given threshold θ in probabilistic bounded linear temporal logic (PBLTL) [21]
(see Section 2.1). To compute the probability, SMC techniques utilize random sampling
of execution traces/paths ofM based on statistical techniques.

Figure 1 illustrates the overview of SMC. SMC receives a target modelM which
is an executable simulation model and PBLTL formula φ with θ. In addition, SMC
receives precision parameters based on which the accuracy of the calculated probability
is decided. SMC consists of three components: simulator, BLTL model checker, and
statistical analyzer. Simulator executesM and generates a sample execution trace σi.
BLTL model checker determines if σi satisfies φ and passes the result (i.e., success if
σi satisfies φ; failure, otherwise) to statistical analyzer. Statistical analyzer calculates
a probability p that M satisfies φ by collecting the result regarding if σi satisfies φ.

1 In this study, we did not evaluate Chernoff-Hoeffding bound SMC technique [4] due to exces-
sive time cost.

164 Y. Kim, M. Kim, and T.-H. Kim

Fig. 1. SMC overview

Statistical analyzer requests simulator to generate σi+1 repeatedly until the number of
successful results of σs over the total number of σs is distributed within given precision
boundary. Note that SMC does not analyze an internal logic of a target system, and thus
SMC can validate complex safety critical systems without the state explosion problem.

More specifically, suppose that X1, ..., Xn are Bernoulli random variables (i.e., Xi

can be either 0 or 1) of the model checking result of φ over an execution path σ ofM
and p indicates a probability of Xi to become 1 (i.e., P (Xi = 1) = p). Since we do
not know p exactly, we should estimate p using random sampling techniques with user-
given precision parameters. We pick a sample path σi from M by executingM and
test whether σi satisfies φ or not. If σi satisfies φ, xi = 1; xi = 0 otherwise. Note that,
for estimating p, we should determine a number of sample paths n to check φ using
statistical techniques. We may obtain n statically by using heuristics or dynamically
through iterative sampling.

There are two classes of statistical techniques: hypothesis testing (Section 2.2) and
estimation testing (Section 2.3).

2.1 Probabilistic Bounded Linear Temporal Logic (PBLTL)

To define PBLTL, we first define a syntax and semantics of bounded linear temporal
logic(BLTL) [20], and then extend BLTL to PBLTL [21].

For a target modelM, SV is a finite set of real-valued state variables. A Boolean
predicate over SV is a constraint of the form y ∼ v, where y ∈ SV , ∼∈ {≥,≤,=},
and v ∈ R. The syntax of the BLTL logic formula φ is given by the following grammar:

φ ::= y ∼ v | (φ1 ∨ φ2) | (φ1 ∧ φ2) | ¬φ1 | (φ1U
tφ2),

where y ∈ SV , ∼∈ {≥,≤,=}, v ∈ R, and t ∈ R≥0.
For other temporal operators, we can define Ftφ as True Utφ and Gtφ as ¬Ft¬φ.

We denote a fact that an execution σ satisfies a property φ as σ |= φ. We use σk to
denote a suffix trace of σ starting at step k (σ0 denotes the original execution σ). We

Statistical Model Checking for Safety Critical Hybrid Systems 165

denote the value of a state variable y in σ at step k by V (σ, k, y). We define tk as a
time at step k and t as a time bound. The semantics of BLTL on a trace σk is defined as
follows:

– σk |= y ∼ v iff V (σ, k, y) ∼ v
– σk |= φ1 ∨ φ2 iff σk |= φ1 or σk |= φ2

– σk |= φ1 ∧ φ2 iff σk |= φ1 and σk |= φ2

– σk |= ¬φ1 iff σk
� φ1

– σk |= φ1U
tφ2 iff there exists i ∈ N such that

1.
∑

0≤l<i tk+l ≤ t,

2. σk+i |= φ2, and
3. for each 0 ≤ j < i, σk+j |= φ1

A probabilistic bounded linear temporal logic (PBLTL) formula is a formula of the
form P≥θ(φ), where φ is a BLTL formula and θ ∈ (0, 1) is a probability threshold.
We denote that a modelM satisfies PBLTL property P≥θ(φ) asM |= P≥θ(φ), which
means that a probability for M to satisfy φ is greater than equal to θ (see [21] for
detailed description).

2.2 Hypothesis Testing

For hypothesis testing, we build a hypothesis H : p ≥ θ against an alternative hypoth-
esis K : p < θ where θ is a threshold over (0,1) and p is a true probability that M
satisfies φ. Hypothesis testing checks whether H is accepted or not based on the ran-
domly sampled paths. In this paper, we utilize the following three hypothesis testing
techniques - single sampling plan (SSP), sequential probability ratio test (SPRT), and
Baysian hypothesis testing (BHT).

Single Sampling Plan (SSP). SMC techniques cannot compute a true probability p ex-
actly, but can estimate p within given error bounds. Precision parameters for SSP [17]
are error bounds α and β, and a half size of indifference region δ. For testing a hy-
pothesis H , there are two types of errors such as false negative (also known as a type
I error) which rejects a true hypothesis H and false positive (also known as a type II
error) which accepts a false hypothesis H . We can bound an error probability of a false
negative error within α. Similarly, we can bound an error probability of a false positive
error within β. The left side of Figure 2 presents the function of probability Lp of ac-
cepting the hypothesis H as a function of p with the probability of a type I error and
type II error as exactly α and β. However, we want to give similar probability Lp with
p = θ to p = θ − ε for arbitrarily small ε > 0 for reality. To solve this problem, we
introduce indifference region (p1, p0) around θ where p0 = θ + δ, p1 = θ − δ, and
δ is a half size of indifference region (see right side function in Figure 2). Therefore,
instead of testing H against K , we use the modified hypothesis H0 : p ≥ p0 against
the alternative hypothesis H1 : p < p1. If the probability p is in (p1, p0), then since we
cannot guarantee the error bounds α and β in (p1, p0), we do not care which hypothesis
is accepted.

166 Y. Kim, M. Kim, and T.-H. Kim

Fig. 2. Function of probability Lp of accepting the hypothesis H : p ≥ θ (left side) and function
of probability Lp of accepting the hypothesis H0 : p ≥ p0 with indifference region (right side)

For SSP, a user can determine a maximum number of sample paths n and a threshold
number of success sample paths c statically. After determining n and c, SSP executes a
target program multiple times. If the number of success sample paths that satisfy φ are
greater than c, then H is accepted; K is accepted otherwise. Then, we can express the
probability that the number of success sample paths among n samples are less than c
with the cumulative distribution function for binomial distribution B(n, p):

F (c;n, p) =

c∑
i=0

(
n

i

)
pi(1− p)n−i.

Therefore, we accept H with 1−F (c;n, p) using n and c, and accept K with F (c;n, p)
using n and c. We can obtain minimal value for n and c using binary search based
algorithm with given p0, p1, α, and β. Note that SSP is the only SMC technique that
computes the number of required sample paths statically among the SMC techniques
utilized in this study.

Sequential Probability Ratio Test (SPRT). SPRT [19,17,18,15] determines a num-
ber of required sample paths dynamically at runtime. If another sample path is needed,
SPRT generates one more sample path by executing a target system. If the information
from generated sample paths are enough to determine hypothesis H0, SPRT stops ex-
ecuting a target program and outputs the result that H0 is accepted or not. SPRT uses
precision parameter inputs α, β, and δ which are same in SSP.

SPRT operates as follows. After generatingmth sample paths of the test, we calculate
the quantity

p1m
p0m

=

m∏
i=1

Pr[Xi = xi|p = p1]

Pr[Xi = xi|p = p0]
=

pdm
1 (1− p1)

m−dm

pdm
0 (1− p0)m−dm

where dm =
∑m

i=1 xi and xi is ith observation of σi |= φ. pjm is the probability
of the sequence x1, ..., xm with Pr[Xi = 1] = pj for j=0,1. Therefore, the above

Statistical Model Checking for Safety Critical Hybrid Systems 167

quantity makes the ratio of two probabilities, the probability ratio. The hypothesis H0

is accepted if
p1m
p0m

≤ B,

and the hypothesis H1 is accepted if

p1m
p0m

≥ A.

Otherwise, we should generate m + 1th sample path of the test. A and B are selected
to bound error probability α and β, with A > B. In practice, we choose A = 1−β

α and
B = β

1−α (detailed description is found in [15,17]).

Bayesian Hypothesis Testing (BHT). BHT [8] dynamically determines the number
of sample paths during simulation as same in SPRT. BHT uses two precision parameter
inputs such as threshold T of determining H0 and prior density g for p, the actual
probability of satisfying φ. In Bayes’ theorem, we get prior probability using current
information first. After obtaining new information, we can obtain posterior probability
refining prior probability. BHT uses Bayes’ theorem to determine the number of sample
paths of the test.

Let P (H0) and P (H1) be the strictly positive prior probabilities of accepting H0

and H1 and satisfying P (H0) + P (H1) = 1. Let d = (x1, ..., xn) be a sequence of
n sample paths of the test. Bayes’ theorem states that the posterior probabilities of
accepting H0 and H1 based on observations of d are

P (H0|d) =
P (d|H0)P (H0)

P (d)
P (H1|d) =

P (d|H1)P (H1)

P (d)

for every d with P (d) = P (d|H0)P (H0) + P (d|H1)P (H1) > 0.
BHT operates as follows. After generating mth sample paths of the test, we can

calculate the quantity
P (H0|d)
P (H1|d)

=
P (d|H0)

P (d|H1)
· P (H0)

P (H1)

where d = (x1, ..., xm). We call the above quantity as the ratio of the posterior proba-
bilities. Here, we define the Bayes factor B of d and hypotheses H0 and H1 as follows:

B =
P (d|H0)

P (d|H1)

The Bayes factor B can be interpreted as a measure of the evidence in favor of H0 and
also 1

B can be the evidence in favor of H1. We introduce a Bayes factor threshold T to
test H0 against H1 such that T ≥ 1. The hypothesis H0 is accepted if B > T , and the
hypothesis H1 is accepted if B < 1

T . Otherwise, BHT generates m + 1th sample path
using simulation 2 (detailed description is found in [8]).

2 T corresponds to the inverse number of error bounds α and β for SSP and SPRT [21].

168 Y. Kim, M. Kim, and T.-H. Kim

2.3 Estimation Testing

Estimation testing can approximately compute p, the probability that the model M
satisfies the given property φ expressed by bounded linear temporal logic (BLTL). With
p, we can determine whether the probabilistic bounded linear temporal logic (PBLTL)
is satisfied or not. For that purpose, we use a following statistical estimation testing
technique.

Bayesian Interval Estimation Testing (BIET). BIET [21] dynamically determines
the number of sample paths for checking the satisfiability of the model M with the
property φ during simulation as SPRT and BHT do. BIET also uses the Bayes’ theorem.
BIET uses four precision parameter inputs such as a half-size δ′ of an estimation interval
which will contain p with high probability, the coverage goal c of the estimation interval,
and the parameters α′, β′ of the Beta prior. In fact, BIET estimates interval around the
probability p instead of estimating p, but we regard the mean of the estimated interval
as p̂, the estimated value of true probability p, i.e., the estimated interval is (p̂− δ′, p̂+
δ′). We call the estimated interval as (t0, t1). We have a coverage goal such that the
probability that the probability satisfying M |= φ is in (t0, t1) should be over the
coverage c ∈ (12 , 1). The exact description of the coverage goal is as follows:

∫ t1

t0

f(u|x1, ..., xn)du = c

where xi is ith observation of σi |= φ for i = 1, ..., n and n is the number of sample
paths. We call the coverage goal as a 100c percent Bayesian interval estimate of p.
Since BIET uses the Bayes’ theorem, we need prior information, i.e., prior density of p
to obtain prior probability. For simplicity, we focus on the Beta prior with parameters
α′, β′(See [21] for details).

At mth stage of the test, by Beta prior with α′, β′, we can calculate the quantity

p̂ =
x+ α′

m+ α′ + β′

where x =
∑m

i=1 xi is the number of success sample paths during m number of sample
paths. Next, using t0 = p̂− δ′, t1 = p̂+ δ′, we can calculate the quantity

γ =

∫ t1

t0

f(u|x1, ..., xm)du

where γ is the coverage of m number of sample paths for checkingM |= φ. If γ ≥ c,
then BIET stops the simulation and outputs t0, t1, and p̂. Otherwise, BIET generates
m+ 1th sample path and repeats.

3 Fault-Tolerant Fuel Control System

This section overviews a fault-tolerant fuel control system (FFCS) [12] in an automobile
domain. We selected FFCS as a target system to apply the SMC techniques for the
following reasons:

Statistical Model Checking for Safety Critical Hybrid Systems 169

Table 1. Size and complexity of the FFCS Simulink/stateflow model in Halstead metrics

N1: # of N2:# of n1:# of n2:# of N :program n: program V : program D: program E: program

operators operands distinct distinct length vocabulary volume difficulty effort

operators operands (= N1 +N2) (=n1 + n2) (N × logn) (=n1/2×N2/n2) (= D × V)

65 111 35 94 176 129 1234.0 20.7 25500.0

Fig. 3. Block diagram of FFCS

– FFCS is a safety critical system whose reliability is very important.
– FFCS is a complex real-world application, not a toy example such as ones in proba-

bilistic symbolic model checker (PRISM) [11] benchmarks. Most SMC papers use
PRISM benchmarks as their target examples.

– A Simulink/stateflow model of FFCS is publicly available. Thus, it is convenient
to build prototypes of the SMC techniques for FFCS based on a Simulink/stateflow
simulator.

Figure 3 is an overall diagram of FFCS. FFCS [12] controls a fuel rate to inject fuel
based on sensor data for best performance, detects a sensor fault, and shuts down an
engine for safety in the presence of multiple sensor failures. FFCS has the following
four sensors: throttle angle sensor, speed sensor, exhaust gas oxygen (EGO) sensor, and
manifold absolute pressure (MAP) sensor. FFCS receives these four sensor inputs and
generates a proper fuel rate and an air-fuel ratio. FFCS consists of the following three
components: fuel rate controller, air-fuel ratio calculator, and sensor failure detector.
Fuel rate controller receives the four sensor data and calculates a proper fuel rate to
make an air-fuel ratio optimal (i.e., 14.6). Air-fuel ratio calculator receives EGO sensor
data and a fuel rate and calculates the air-fuel ratio. Sensor failure detector receives all
four sensor data and controls the fuel rate controller to increase/decrease the fuel rate
in the presence of a single sensor fault or shuts down the engine if multiple sensors fail,
since the air-fuel ratio cannot be controlled with failures of multiple sensors.

The size and complexity of the Simulink/stateflow FFCS model in terms of Hal-
stead [3] metrics are described in Table 1. We counted each atomic block (i.e., a mod-
ule of a mathematical function or control logic) as an operator and each input of an

170 Y. Kim, M. Kim, and T.-H. Kim

atomic block as an operand of the Simulink/stateflow FFCS model. The automatically
generated C code from the model has 8266 LOC in 222 functions.

A requirement property for FFCS is that a probability that the fuel rate does not
become zero for one second in 100 seconds should be greater than equal to threshold θ.
The property is crucial in a real world, because if the fuel rate is zero for one second,
then the engine stops and can cause a serious accident. This property can be expressed
by PBLTL as follows [21]:

P≥θ(¬(F 100G1(fuelrate = 0)))

4 Experimental Study

We have applied the four SMC techniques to FFCS with precision parameters as inde-
pendent variables and checked whether FFCS satisfies the given requirement property
in PBLTL or not.

4.1 Experiment Setup

We set a stochastic environment for FFCS as follows. The environment of FFCS gener-
ates random faults at the EGO, MAP, and speed sensors as [21] does. The random faults
are modeled by three independent Poisson processes with different arrival rates [16]. We
assume one fault event remains for one second. When a fault event occurs in a sensor,
FFCS remains in a failure mode for one second and returns to a normal mode. We uti-
lize the following four inter-arrival fault rates (i.e., mean inter-arrival times of sensor
fault) to the three sensors: (3,7,8), (10,8,9), (20,10,20) and (30,30,30).

For the SMC techniques, we use the following precision parameters:

– Hypothesis testing techniques
• SSP:
∗ threshold θ ∈ {0.5, 0.7, 0.9, 0.99}
∗ a half-size of indifference region δ ∈ {0.01, 0.03, 0.05}
∗ error bounds α, β ∈ {0.1, 0.01, 0.001}

• SPRT:
∗ threshold θ ∈ {0.5, 0.7, 0.9, 0.99}
∗ a half-size of indifference region δ ∈ {0.01, 0.03, 0.05}
∗ error bounds α, β ∈ {0.1, 0.01, 0.001}

• BHT:
∗ threshold θ ∈ {0.5, 0.7, 0.9, 0.99}
∗ Bayes factor threshold T ∈ {10, 100, 1000}
∗ prior density g = uniform density over (0,1)

– Estimation testing technique
• BIET:
∗ interval coverage c = {0.9, 0.99, 0.999}
∗ a half-size of estimation interval δ′ = {0.01, 0.03, 0.05}
∗ parameters of Beta prior α′ = β′ = 1 3

3 α′ = β′ = 1, since we assume the prior density to be a uniform density over (0, 1).

Statistical Model Checking for Safety Critical Hybrid Systems 171

Table 2. Experiment result of SSP with fault rate (3, 7, 8) and δ = 0.03

α, β

threshold θ

0.5 0.7 0.9 0.99

n m acpt time n m acpt time n m acpt time n m acpt time

0.1 455 255.3 1.0 688.3 386 307.0 1.0 821.5 161 141.5 0.0 381.3 57 5.8 0.0 17.1

0.01 1501 857.8 1.0 2308.1 1261 1001.5 1.0 2686.7 531 468.8 0.0 1256.4 113 5.0 0.0 14.8

0.001 2649 1487.8 1.0 4013.2 2226 1764.3 1.0 4760.8 932 806.8 0.0 2172.5 170 6.0 0.0 20.3

We performed each experiment five times to obtain average verification result over
[0, 1] regarding whether the hypothesis H is accepted or not where H : a probability to
satisfy φ(= ¬(F 100G1(fuelrate = 0))) is greater than or equal to θ. In addition, we
measured the average verification time for each experiment.

We built a statistical model checker as a Matlab module which runs together with
a FFCS model. We use a Matlab simulator as a simulator component to generate an
execution trace σ of a Matlab/Simulink FFCS model. Then, the BLTL model checker
analyzes if σ satisfies the requirement property φ. After the BLTL model checker eval-
uates σ, the statistical analyzer calculates a required number of sample traces dynam-
ically based on the precision parameters and the number of success/fail sample traces
generated so far. If a number of the generated samples reaches the required number, the
statistical model checker generates a verification result and terminates the SMC pro-
cess. Note that all sub-components of SMC are independent from each other and can be
re-used for other target systems without modification. Thus, it will not be difficult for
practitioners to apply SMC techniques to their safety critical systems.4

We used Matlab R2010a for the experiments. All experiments were performed on 64
bit Windows 7 Professional K equipped with a 3 GHz Intel processor and 16 gigabytes
of memory.

4.2 Experimental Results

Tables 2-4 describe the experiment results of applying the hypothesis testing techniques
to FFCS with fault inter-arrival rate (3,7,8) and δ = 0.03.5 In these three tables,

– θ is a threshold of the hypothesis H for SSP, SPRT, and BHT
– n is a maximum number of required sample paths and m means an average number

of sample paths generated for SSP. For SPRT and BHT, n is an average number of
sample paths generated for SPRT and BHT.

– acpt is an average result over [0, 1] regarding the hypothesis H where 0 is ‘reject’
and 1 is ‘accept’

– time is an average verification time for each experiment in seconds

4 We have released the statistical analyzers using SSP, SPRT, BHT, and BIET techniques pub-
licly at http://pswlab.kaist.ac.kr/tools/SMC/

5 Full experiment data with the other three fault inter-arrival rates and δ ∈ {0.01, 0.05} is avail-
able at http://pswlab.kaist.ac.kr/data/hvc2012-expr-results.zip

http://pswlab.kaist.ac.kr/tools/SMC/
http://pswlab.kaist.ac.kr/data/hvc2012-expr-results.zip

172 Y. Kim, M. Kim, and T.-H. Kim

Table 3. Experiment result of SPRT with fault rate (3, 7, 8) and δ = 0.03

α, β

threshold θ

0.5 0.7 0.9 0.99

n acpt time n acpt time n acpt time n acpt time

0.1 26.6 1.0 17.6 34.0 1.0 22.4 108.4 0.0 71.5 5.6 1.0 3.7

0.01 49.0 1.0 32.3 93.4 1.0 61.6 484.0 0.0 319.4 5.6 1.0 3.7

0.001 72.8 1.0 48.0 127.6 1.0 84.2 786.6 0.0 519.2 11.6 1.0 7.7

Table 4. Experiment result of BHT with fault rate (3, 7, 8)

T

threshold θ

0.5 0.7 0.9 0.99

n acpt time n acpt time n acpt time n acpt time

10 3.6 1.0 2.4 5.0 1.0 3.3 42.2 0.8 27.9 21.0 0.2 13.9

100 7.6 1.0 5.0 26.0 1.0 17.2 3917.2 0.2 2585.4 27.0 0.0 17.8

1000 13.6 1.0 9.0 48.4 1.0 31.9 4013.2 0.2 2648.7 35.2 0.0 23.2

Table 5. Experiment result of BIET with fault rate (3, 7, 8)

δ′
interval coverage c

0.9 0.99 0.999

n p̂ time n p̂ time n p̂ time

0.05 104.8 0.8835 69.2 273.0 0.8849 180.2 475.5 0.8830 313.8

0.03 276.6 0.8944 182.6 729.4 0.8889 481.4 1191.5 0.8924 786.4

0.01 2733.8 0.8856 1804.3 6696.5 0.8861 4419.7 10924.2 0.8865 7210.0

Table 5 describes the experiment result of applying the estimation technique BIET to
FFCS with fault inter-arrival rate (3,7,8), where n is an average number of sample paths,
p̂ is an estimated probability to satisfy φ, and time indicates an average verification time
in seconds. Tables 2-5 show that n (m for SSP) increases as the precision parameters
becomes smaller. For example, for SSP, when α and β decrease from 0.1 to 0.001 with
threshold θ = 0.5, m increases from 255.3 to 1487.8 (Table 2). Similar tendencies are
observed for SPRT, BHT, and BIET.

Regarding Effectiveness (Precision of the Verification Results). All four techniques
produce similar results. For hypothesis testing techniques SPRT, SSP, and BHT, the
probability for FFCS with the fault inter-arrival rate of sensors (3,7,8) and δ = 0.03

Statistical Model Checking for Safety Critical Hybrid Systems 173

to satisfy the requirement property φ is between 0.7 and 0.9. This is because acpts are
1.0 when θ ≤ 0.7 while acpts are close to 0 when θ ≥ 0.9 in Tables 2-4.6 Also, note
that n of SPRT and BHT increases exponentially as θ increases from 0.5 to 0.9, and
decreases sharply from 0.9 to 0.99. For example, for SPRT with α=β=0.1 (Table 3), n
becomes 26.6, 34.0, 108.4 and 5.6 as θ becomes 0.5, 0.7, 0.9 and 0.99, respectively. In
general, for the hypothesis testing techniques that generates sample paths dynamically
(i.e., SPRT and BHT), if a true probability is close to the threshold θ, a large number
of sample paths is required to determine whether a given hypothesis H is accepted
or not. By the above results, we can conclude that a true probability that FFCS with
the fault rate (3,7,8) satisfies the requirement property is close to 0.9. Furthermore,
BIET computes the probability between 0.8830 (with c = 0.999 and δ′ = 0.05) and
0.8944 (with c = 0.9 and δ′ = 0.03) (Table 5), which is included in the estimated
probability interval (0.7,0.9) of the hypothesis testing techniques. Therefore, based on
the above analysis of the results, we can conclude that the verification results of the
SMC techniques are precise.

Regarding Efficiency (Verification Time). The time taken for each experiment was
moderate. The longest experiment took 7210.0 seconds (i.e., around 2 hours) to gener-
ate 10924.2 sample paths on average for BIET with c = 0.999 and δ′ = 0.01 (Table 5).
Note that most other experiments took much less time. For example, the longest exper-
iments in SSP, SPRT, and BHT took 4760.8 (α=β=0.001 and θ=0.7) (Table 2), 519.2
(α=β=0.001 and θ=0.9) (Table 3), and 2648.7 (T=1000 and θ=0.9) (Table 4) seconds,
respectively. Therefore, we can conclude that statistical model checking can assure re-
liability of a complex target system at modest cost.7

5 Discussion

5.1 Practicality of Statistical Model Checking

Through the empirical evaluation of the SMC techniques on FFCS, we believe that
statistical model checking is practically useful for the following reasons:

– SMC can check a probability for a complex hybrid system to satisfy a given re-
quirement property φ. In this project, we could statistically check the probability
for FFCS to satisfy φ, since we just generated random sample execution paths with-
out analyzing the internal structure of FFCS, which is a great advantage of SMC.

– SMC allows a user to select proper trade-off between verification precision and
time cost by selecting appropriate precision parameter values (Section 4.2). In some
cases, due to limited project time, it may be more valuable to obtain less precise
verification in short time than more precise verification result in much longer time.

6 The result of SPRT with θ = 0.99 is not reliable, since the precision of SPRT is low when θ is
close to 1. Also, note that n becomes very small (i.e., less than 12) with θ=0.99 in Table 3.

7 SSP takes much more time to generate one sample than the other techniques, since the heuris-
tics of SSP to determine a maximum number of sample paths is very complex.

174 Y. Kim, M. Kim, and T.-H. Kim

Table 6. Comparison of the four statistical model checking techniques

Technique Precision Speed # of sample Applicability
decision

Hypothesis
testing

SSP Low when θ is Slow except when Static Low
close to 1 θ is close to 1

SPRT Low when θ is Fast Dynamic Middle
close to 1

BHT Middle Slow when θ is close Dynamic High
to true probability

Estimation BIET High Slow Dynamic High
testing

– The SMC techniques can obtain precise verification results in a moderate amount of
verification time (i.e., less than two hours for the most experiments in Section 4.2).8

5.2 Necessity of Proper Precision Parameter Values

We found that, for SSP and SPRT to produce precise verification results, δ should be
very small when θ is close to 1. For example, the verification result of SPRT was ‘ac-
cept’ for θ = 0.99 with δ=0.03 (see Table 3), which is considered as an incorrect result,
since the other SMC techniques conclude that the estimated probability is between 0.7
and 0.9 (Section 4.2). The reason for these imprecise results of SSP and SPRT is due
to the limited size of indifference region. For example, if the threshold θ is 0.99 and
δ ≥ 0.01, then p0 becomes 1, which causes the denominator of the probability ratio
p1m

p0m
to be 0 when one false sample occurs for SPRT, which can cause imprecise result.

For SSP, when n=170 with α = β = 0.001 and δ= 0.03, a number of success samples
should be larger than 169 to accept H . In other words, if one sample path violates φ,
then the verification finishes immediately with ‘reject’ result. Therefore, SSP and SPRT
should be applied with very small δ when θ is close to 1.

In addition, BHT with threshold θ = 0.9 produced different verification results with
different T . With T=10, the verification result was 0.8 (i.e., almost ‘accept’) on average.
However, with T=100 or 1000, the verification results were 0.2 (i.e., almost ‘reject’) on
average. From the results of the other techniques which indicate the true probability
p ∈ (0.7, 0.9) (Section 4.2), we can conclude that the verification result with T=10
was imprecise. This is because T was not sufficiently small enough to obtain a precise
verification result. Therefore, proper precision parameter values are important to obtain
precise verification results.

5.3 Comparison of the SMC techniques

Table 6 summarizes characteristics of the four SMC techniques. The precision of SSP
and SPRT is lower than the other techniques when θ is close to 1 because of the size

8 If the required reliability goal is very high (i.e., from 1−10−4 to 1−10−5 for SIL 4 level [6]),
SMC may take multiple weeks.

Statistical Model Checking for Safety Critical Hybrid Systems 175

restriction of the indifference region (Section 5.2). The precision of BIET is higher
than the other techniques by the law of large numbers [14], because BIET utilizes more
samples than the other techniques. BHT achieves a middle level of precision compared
to SSP/SPRT and BIET. Regarding verification speed, SSP is slow except when θ is
close to 1; when θ is close to 1, SSP is fast (but imprecise) since a number of samples
is small. BHT is slow by generating a large number of samples when θ is close to a true
probability. BIET is relatively slow due to a large number of samples utilized. SPRT is
relatively fast, since it does not have weaknesses of the other techniques in terms of the
verification speed. By considering these aspects, the applicability of BHT and BIET is
relatively higher than that of SPRT and SSP.

As shown in Table 6, there is no single best SMC technique for all aspects. Thus, a
combination of different SMC techniques can achieve precise result faster. For exam-
ple, many safety critical systems should satisfy requirement property φ with very high
probability for reliable operations (i.e., θ should be larger than 0.9999). We know that
SPRT is faster than BIET, but its precision is low when θ is close to 1. In such cases,
we can first apply SPRT to a target system with low θ for fast verification speed. If
the verification results for low θ values (i.e., θ ∈ [0.5, 0.7]) are ‘reject’, then we do
not need to verify a target system further. Otherwise, we use BIET for higher θ (i.e.,
θ ∈ [0.9, 0.99]), which is more precise but slower than SPRT, since SPRT is imprecise
for θ close to 1. Consequently, this combined method can achieve precise result faster
than BIET only.9

6 Conclusion and Future Work

From our empirical study, we demonstrated that SMC techniques can assess the reliabil-
ity of a complex safety critical system such as FFCS. Based on the statistical techniques,
SMC techniques can estimate the reliability of a complex safety critical hybrid system,
to which conventional V&V techniques often fail to apply due to high complexity of a
target system.

Therefore, we believe that industries on safety critical system domain can benefit
from the SMC techniques much. As market competition becomes severe, many compa-
nies try hard to improve the quality of their products and to obtain safety certificate such
as ISO 26262 [7] for automobiles and DO178B/C [13] for avionics by validating the re-
liability of the products. However, it has been very difficult to validate the reliability of
complex hybrid systems due to aforementioned reasons. SMC can be used to validate
the reliability goal assigned to a target system/component effectively and efficiently.
In [9], we have demonstrated that SMC can be a solution for validating software relia-
bility at an early development stage to reduce the defect correction cost of conventional
software reliability assessment procedures such as IEEE Std.1633 [5].

As future work, to improve the practicality of the SMC techniques further, we plan
to collaborate with automobile companies like Hyundai or Kia on the application of

9 From this observation, we have developed a hybrid SMC technique which combines SPRT,
the fastest SMC technique and BIET, the most accurate SMC technique. We have showed that
this hybrid SMC technique improves effectiveness and efficiency compared to a single SMC
technique [10].

176 Y. Kim, M. Kim, and T.-H. Kim

the SMC techniques on automobile controllers. In addition, we will develop a safety
engineering process to validate software reliability based on the SMC techniques, which
is essential to obtain safety certificate.

Acknowledgment. This work was supported by the Excellent Research Center (ERC)
of Excellence Program of Korea MEST/NRF of Korea (Grant 2012-0000473), the IT
R&D program of MKE/KEIT [10041752, Research and Development of Dual Oper-
ating System Architecture with High-Reliable RTOS and High-Performance OS], and
Dual Use Technology Program in Korea.

References

1. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solv-
ing. Formal Methods System Design (FMSD) 19(1), 7–34 (2001)

2. Clarke, E., Donzé, A., Legay, A.: Statistical model checking of mixed-analog circuits with an
application to a third order Δ − Σ modulator. In: Chockler, H., Hu, A.J. (eds.) HVC 2008.
LNCS, vol. 5394, pp. 149–163. Springer, Heidelberg (2009)

3. Halstead, M.H.: Elements of Software Science. Elsevier Science Ltd. (1977)
4. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model

checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84.
Springer, Heidelberg (2004)

5. IEEE Computer Society. IEEE Std 1633: IEEE Recommend Practice on Software Reliability
(2008)

6. International Electrotechnical Commission (IEC). IEC 61508: Functional safety of electri-
cal/electronic/programmable electronic (E/E/PE) safety related systems (2005)

7. International Organization for Standardization (ISO). ISO 26262: Road vehicles – functional
safety (2011),
http://www.iso.org/iso/catalogue_detail?csnumber=43464

8. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A bayesian ap-
proach to model checking biological systems. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009.
LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

9. Kim, Y., Choi, O., Kim, M., Baik, J., Kim, T.: Validating software reliability through statis-
tical model checking: Safer, cheaper, and faster. IEEE Software (under review)

10. Kim, Y., Kim, M., Kim, T.: Hybrid statistical model checking technique for reliable safety
critical systems. In: IEEE International Symposium on Software Reliability Engineering,
ISSRE (2012)

11. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011)

12. Lauber, J., Guerra, T.M., Dambrine, M.: Air-fuel ratio control in a gasoline engine. Interna-
tional Journal of Systems Science (IJSySc) 42(2), 277–286 (2011)

13. Radio Technical Commission for Aeronautics (RTCA). Do-178c: Software considerations in
airborne systems and equipment certification (2012)

14. Sen, P.K., Singer, J.M.: Large sample methods in statistics: An Introduction with Applica-
tions. Chapman & Hall, New York (1993)

15. Wald, A.: Sequential tests of statistical hypotheses. Annals of Mathematical Statistics 16(2),
117–186 (1945)

http://www.iso.org/iso/catalogue_detail?csnumber=43464

Statistical Model Checking for Safety Critical Hybrid Systems 177

16. Yi, S., Heo, J., Cho, Y., Hong, J.: Adaptive mobile checkpointing facility for wireless sensor
networks. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A.,
Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3981, pp. 701–709. Springer, Heidelberg
(2006)

17. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asynchronous
Events. PhD thesis, CMU (January 2005)

18. Younes, H.L.S., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical prob-
abilistic model checking. Software Tools for Technology Transfer (STTT) 8(3), 216–228
(2006)

19. Younes, H.L.S., Musliner, D.J.: Probabilistic plan verification through acceptance sampling.
In: AIPS Workshop on Planning via Model Checking (2002)

20. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on
time-bounded properties. Journal Information and Computation (JIC) 204(9), 1368–1409
(2006)

21. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to
stateflow/simulink verification. In: Hybrid Systems: Computation and Control, HSCC (2010)

A New Test-Generation Methodology

for System-Level Verification of Production
Processes�

Allon Adir, Alex Goryachev, Lev Greenberg, Tamer Salman, and Gil Shurek

IBM Research - Haifa, Haifa, Israel
{adir,gory,levg,tamers,shurek}@il.ibm.com

Abstract. The continuing growth in the complexity of production pro-
cesses is driven mainly by the integration of smart and cheap devices,
such as sensors and custom hardware or software components. This nat-
urally leads to higher complexity in fault detection and management,
and, therefore to a higher demand for sophisticated quality control tools.
A production process is commonly modeled prior to its physical con-
struction to enable early testing. Many simulation platforms were de-
veloped to assess the widely varying aspects of the production process,
including physical behavior, hardware-software functionality, and perfor-
mance. However, the efficacy of simulation for the verification of modeled
processes is still largely limited by manual operation and observation.
We propose a massive random-biased, ontology-based, test-generation
methodology for system-level verification of production processes. The
methodology has been successfully applied for simulation-based proces-
sor hardware verification and proved to be a cost-effective solution. We
show that it can be similarly beneficial in the verification of production
processes and control.

Keywords: Production processes / Manufacturing processes, Test gen-
eration, Transaction-based modeling, UML/SysML.

1 Introduction

Modern production processes are becoming smarter and more complex. Cheaper,
smarter sensors allow for more informative control of production systems [1]. The
traditional end-of-line quality control can filter out defective products for recy-
cling. On the other hand, in-process quality control provides the ability to take
action on defective workpieces within the production process [2]. In-process con-
trol is largely based on the incorporation of various sensors in the various stages
of the manufacturing chain. This leads to more complex possible production
”paths” that include the possibility of fixing or adjusting a defective workpiece,
repeated application of one or more stages, possible in-process product sorting
based on observed features, and more.

� The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n◦ 285075.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 178–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Test Generation for System-Level Verification of Production Processes 179

The growth in complexity poses a challenge to the design and construction
of robust and error-free production processes. Smart and automated verification
activities are required to ensure the correctness of process designs. In general,
behavioral models are useful for pre-construction simulation and testing as well
as for post-construction adaptation. Finding design errors in simulation envi-
ronments before creating the actual system is easier and cheaper than looking
for them in the system itself, due to better observability and controllability of
the system. In addition, the actual construction of a production system can be
very costly, making it highly desirable to correct as many faults as possible in
a design before it is implemented. Some existing modeling environments of pro-
duction processes [3–11] were devised to enable visualization [4, 7], while others
produce executable behavioral models for simulation purposes [3, 6, 8, 10, 11].
However, testing in these environments focuses on structural coverage and time-
related verification.

Nevertheless, such simulation platforms can help assess the system behavior
and performance in different ”situations” for functional verification purposes.
These situations (i.e., tests) are the key to effective deployment of the simulator.
The common approach of manually operating the simulator suffers both from the
relatively small number of tests that are eventually used and from the difficulty
of directing the system to situations that may be worthy of testing. For example,
creation of scenarios that involve events occurring far from the system inputs
may require complex analysis of the system operation. Automatic test generators
exist for simulation, but these focus mainly on simulating the expected typical
behavior of the system and lack controls to direct the testing toward the rare
functional corner cases that may be required in the test plan.

In this paper, we focus on automatic and directed massive test generation
for simulation environments that allow for functional and performance testing.
A good test generator produces tests that exercise the possible paths of the
system under various performance- and stress-related conditions. In addition,
using verification testing-knowledge can enhance the coverage achieved by the
generated tests and bring the simulated system to corner cases or stress scenarios
according to a given test plan.

Our approach uses two separate models of the system. The first model is an
executable behavioral model that is used for simulation. The second model, on
which our test-generation expert system is based, serves as a repository for accu-
mulating knowledge on how to generate tests. This knowledge includes informa-
tion about the system structure and properties, which is required for generating
valid tests and also knowledge as to how to best test the production system.
This is typically a derivation and extension of the knowledge accumulated for
past verification efforts [12].

Our proposed methodology of test generation for simulation environments of
production processes is drawn from the field of processor hardware verification.
The great advancements in processor hardware verification technologies were
made possible due to the high cost of bugs in hardware, which brought large
investments to the field. It is also due to the increasing use of formal languages in

180 A. Adir et al.

the hardware design process, which enabled increased automation in verification.
Specifically, our test generation expert system uses the X-Gen test generator [13],
originally developed and successfully used for testing IBM’s processor hardware
systems.

Our work is being conducted as part of the MuProD project [2] funded by
the European Commission within the Seventh Framework Programme. MuProD
is advancing solutions that avoid end-of-line (EOL) failures in production pro-
cesses via intelligent and integrated in-process measurement techniques. These
measurement techniques are immediately followed by reactions to generated de-
fects, as they are detected. This novel type of production system can benefit much
from our proposed test-generation methodology because of the large number of
possible different paths and behaviors induced by the multiplicity of sensors,
reworking stages, and in-process fault types.

Our proposed verification methodology also uses simulation monitors to track
test coverage and identify possible problematic system behavior during the sim-
ulation of a test. The experiment reported in Sec. 6 used simulation-monitoring
techniques to monitor the coverage of system simulations. These monitoring
techniques were developed for the DANSE project [14], also funded by the Eu-
ropean Commission within the Seventh Framework Programme. DANSE deals
with the development of new methodology to support the evolving, adaptive,
and iterative system-of-systems (SoS) life cycle models, including analysis and
simulation support.

Our approach offers the following contributions to the verification method-
ologies of production processes: 1) Defining a testing ontology for production
processes using (UML) [15] or (SysML) [16], following the concept described in
[17]; 2) Performing functional and performance verification by massive random-
biased testing; 3) Demonstrating how transaction-based testing can be applied
to production processes; and 4) Enabling capture and accumulation of testing
knowledge for functional and performance verification of production processes.

2 Methodology of Simulation-Based System-Level
Verification of Production Processes

This section begins with a description of a working example of a production
process design. We then describe our proposed methodology for system-level
verification and show how it can be applied to the working example.

2.1 Working Example

The working example that accompanies this paper is a production process com-
posed of 35 components. Most of these are generic components, including oper-
ators, buffers, sensors, tracks and track junctions (track joiners and splitters),
a scrap heap, and product stocks. Some components are processing stages spe-
cific to our example production process (e.g., one shifter and one injector). The
objects passing through the production process are packets. A packet contains

Test Generation for System-Level Verification of Production Processes 181

three attributes: an ID for unique identification purposes of the packet and
two attributes with integer values named X and Y (which may represent some
dynamic physical attributes of the manipulated packet). The topology of the
production process is depicted in Fig. 1, where the solid lines portray possible
paths for the flow of packets and the dashed lines portray the flow of sensory
information.

Fig. 1. A working example of a production process topology

In this working example, two operators, called Robot 1 and Robot 2, put
packets on tracks toward processing by a shifter stage, which shifts some con-
stant amount from the Y attribute of a packet to the X attribute. However,
during shifting some amount could be lost (i.e., leakage). A sensor identifies
the leakage during shifting and sends the information to corresponding split-
ters designed so that three different continuations are possible for the packet.
A path (through Track 5) for successfully shifted packets for which the leakage
is tolerated (according to some tolerance threshold parameter), a second path
(through Tracks 4 then 6) for packets that are ruined by excessive leakage, and
a third path (through Tracks 4 then 7) for packets for which the leakage is not
tolerated, but may be corrected by a re-work. The re-work for the latter path
is performed by another processing stage called the injector. The injector adds

182 A. Adir et al.

some constant amount to the X attribute of the packet. However, the injected
amount might also suffer from leakage. Another sensor computes whether the
leakage is small enough and whether or not it was able to bring the total leakage
to a tolerated amount or not. If the re-work was successful, the packet is joined
to the path leading to the product stocks (through Track 11). Otherwise, the
packet is joined to the path leading to the scrap heap (through Track 9). Packets
designated for the product stocks are sorted by another splitter according to the
relation between their X and Y attributes. If X is larger than Y they arrive at
the first product stock, otherwise they arrive at the second product stock.

2.2 Simulation-Based System-Level Verification Platform

The methodology under which our test generation solution operates is borrowed
from the field of processor hardware verification (specifically verification of com-
puter systems and SoCs) [13] and is described in Fig. 2. In this methodology,
the verification engineer writes test templates according to a test plan. These
test templates serve as the main input to the test generator. The test templates
aim to generate tests that will drive the simulation towards desired states or sce-
narios in the design. The test generator is an expert system that includes both
system-oblivious parts and system-specific parts. The test generator is based
on a domain-specific ontology, in which an application engineer defines the ter-
minology for specifying production systems and testing knowledge. Using this
terminology, the application engineer then models a specific production process
and its testing knowledge. The result of the test generation is a set of random-
biased tests. These tests are fed into a simulator that simulates the design. The
design’s behavior while the test is running can be verified by various means. For
example, verification could be done by using a reference model, or alternatively,
by embedding simulation checking monitors to detect the occurrence of viola-
tions of system requirements. Such checking monitors give appropriate failure
and pass reports. Another set of monitors, known as coverage monitors, can be
used to detect the occurrence of the events targeted by the test plan. The cov-
erage monitors produce coverage reports that are analyzed by the verification
engineer. The verification engineer can be either satisfied with the testing results
according to the test plan or can update the test templates to produce additional
tests.

3 Modeling for Simulation and the Simulation Platform

Three types of components can be distinguished in the simulation platform that
executes the tests (Fig. 3): designed components, behavioral components, and
physical components.

The designed components are executable models that are direct representa-
tions of a designed element of the production system. These designs will later
serve as the basis for implementation and, hence, finding problems in them is
one of the main goals of the simulation-based testing.

Test Generation for System-Level Verification of Production Processes 183

Fig. 2. High level description of the testing methodology for simulation based design
verification

The behavioral components are behavioral representations of some element of
the production system. These components behave like the real system element,
but are designed differently. Typically, they involve a much simpler software
implementation that has the same behavior as the real element. These behavioral
models are needed for full-system simulation but are not the object of the testing
procedure. A bug found in a behavioral model merely reflects a problem in the
simulation and not in the system to be implemented. The behavioral models can
represent components that have not yet been designed; components that cannot
be designed, such as users or human operators; or alternatively, components that
have already been thoroughly tested. A simulation environment can start with a
few designed components and many behavioral components (Fig. 3(a)) that get
replaced with their respective designed substitutes as the system design matures
(Fig. 3(b)).

The physical components can be integrated in the simulation using classic
system-integration-lab [18], or hardware-in-the-loop (HIL) platforms. Some of
the designed components can be progressively replaced by the corresponding
implemented physical components (Fig. 3(c)).

A production process can be modeled using any existing modeling platform
that supports model simulation [3, 6, 8, 10]. For this work we chose SysML for
modeling production processes. SysML is a general-purpose modeling language
for systems engineering applications. It is an extension of a subset of UML,
which originally targeted software or software-intensive systems. These modeling
languages are object-oriented in nature and can be translated into executable
languages using code generators. The executable models can then be run for
simulation purposes.

184 A. Adir et al.

Fig. 3. High level description of the evolution of a simulation environment, where be-
havioral components are replaced with corresponding designed components and then
by physical components as the production process model matures. (a) A production
process model described using designed and behavioral components. (b) A produc-
tion process described using designed components. (c) A production process described
using designed components and integrating physical components. The remaining be-
havioral components after the model matures are input/output components and human
operators.

We model components in a production process using SysML blocks. We model
the behavior of components using statecharts and the interaction among compo-
nent types using flowports and events. The topology of the production process
is modeled in a SysML internal block diagram.

In addition to being able to transform the model into an executable program,
the model should also be able to consume our generated tests. This means the
behavioral components should be able to read the instructions given in a test
and operate accordingly.

The software components of the simulated system are instantiated from a
production-process ontology, which is basically an extendable and reusable li-
brary of component types. The component types are chosen either from an ex-
isting set of component types—such as tracks, track-junctions (splitters and
joiners), buffers—or especially modeled for the specific production system such
as models of in-line machining and sensors. The configuration of the model con-
sists of configured instances of the component types and the topology of their
connections. For example, a track can be configured to have a certain length and
speed. In our working example, all tracks are configured to have a length with
room for ten slots of packets, and they advance one slot every half a second.

Test Generation for System-Level Verification of Production Processes 185

4 Test Generation

We used X-Gen [13] to generate tests for production processes, such as the work-
ing example process shown in Fig. 1. X-Gen is a test-case generator originally
developed and applied to computer systems and system on chip (SoCs). X-Gen
adheres to the ontology-based paradigm [12]. The generator is partitioned into
two separate layers. At the core of X-Gen is a system-oblivious test generation
engine, which is capable of generating tests for a variety of systems. This generic
engine, with the addition of the domain-specific ontology, is a system-specific
test generator as shown in Fig. 2.

The abstract systemmodel, which is a part of the domain-specific ontology, de-
scribes the system’s components and its interactions (i.e., system scenarios that
involve multiple components that collaborate to achieve some target). Testing
knowledge is the verification expertise that biases the random test generation
toward interesting areas for verification. Incorporating testing knowledge does
not require explicit input from the user. An example of the testing-knowledge
building blocks provided by X-Gen is its collision mechanism that biases tests
toward the (possibly concurrent) reuse of certain system resources.

The topology of the system under test is described in a configuration file, while
the verification scenario is defined in a test template file. The scenario definition
is done using a proprietary special-purpose programming language developed for
this task. The language allows verification engineers to define scenarios ranging
from fully deterministic to totally random.

Once the test template is consumed by the test generator, a set of tests is
created. These tests can be fed into the simulation to practice the different
scenarios they represent in the model of the production process.

4.1 Test Template Definition Language

A test template describes the test characteristics required for specific verification
goals. Through test templates, verification engineers can provide a full or partial
specification of a required scenario and leave unspecified all the aspects that
are not crucial to the scenario. This enables X-Gen to hit a targeted event in a
large number of different ways. Thus, when a targeted scenario is defined by the
verification engineer in loose terms, X-Gen, through its randomness and testing
knowledge, can generate an interesting test around the loosely-defined scenario.

System interactions are the basic building blocks of the test template lan-
guage. Verification engineers can constrain different interaction attributes, in-
cluding the identity of the initiator and target(s) that participate in the inter-
action and their properties.

An interesting interaction in the context of production processes is one con-
cerning a packet released by an operator and ending up in a sink, where a sink is
either a scrap heap or a product stock. We call this interaction a FullPath inter-
action. When the operator or the sink are not specified as part of the interaction
in the test template, then the decision is left for the random-biased generation
engine to determine appropriate specific components.

186 A. Adir et al.

The test template language contains several high-level statements used to
group interactions or other high-level statements: AllOf statement generating all
of its sub-statements; OneOf statement providing a weighted choice between its
sub-statements; and Repeat statement generating multiple instances of its sub-
statements. These high-level statements can be used to group single interactions
or to group other high-level statements. Hence, a test template can be viewed as
a tree with interactions as its leaves and high-level statements as its intermediate
nodes.

In addition to the concepts described above, X-Gen’s test-template language
provides programming-language-like constructs that enables verification engi-
neers to depict specific scenarios. These constructs include a rich expression
language and support for variables with typed declarations, assignments, and
constraining the selection of values for actors and properties. This enables the
verification engineer to form practically any type of complex relationship among
a set of interactions.

Consider the topology design of the working example shown in Fig. 1. Among
the interesting behaviors to be tested in the production process are synchronized
packets, i.e., packets that are released by the two different operators at the same
time or a workload of packets arriving at the two different product stocks with
some given ratio. A test template requesting tests that include both of the above-
mentioned behaviors is shown in Fig. 4.

Integer: T

ComponentId: targetSink

AllOf

Repeat(400)

AllOf

FullPath: {Robot1}; (T <- time); (targetSink <- target)

FullPath: {Robot2}; (time <- T); (target <- targetSink)

Repeat(200)

OneOf

FullPath: (target <- ProductStock1) weight=10

FullPath: {target <- ProductStock2} weight=90

Fig. 4. Example test template

The test template in Fig. 4, when consumed by a test generator, should be
able to yield many random tests. In each such test, 800 packets will be released
by the 2 operators, Robot 1 and Robot 2. Each operator will release 400 pack-
ets synchronized with the packets of the other operator and reaching the same
destination sink. Note that X-Gen generates the interactions in the same order
they appear in the test template. The resolution of variables follows the order
of the interactions’ generation.

Following that, the test will include the release of 200 packets from random
operators, such that 10% of the packets will end up in Product Stock 1 and the
remaining 90% in Product Stock 2.

Test Generation for System-Level Verification of Production Processes 187

4.2 X-Gen Generation Scheme for Production Processes

For a given test template, X-Gen’s generation process can be divided into two
layers: traversing the high-level statement tree and generating the interactions
at its leaves. Statement tree traversal is done in a hierarchical manner, in which
each statement is responsible for the generation of all of its sub-statements.
An AllOf statement, for example, would generate all its sub-statements, while
a OneOf statement would randomly pick one of its sub-statements and then
generate it.

X-Gen generates an interaction by constructing and solving a constraint net-
work, also known as a constraint satisfaction problem (CSP). Testing knowledge
is incorporated into the CSP as soft constraints that are activated with some
preset probability. The network is solved using a variant of the well-known main-
taining arc consistency (MAC) algorithm [19, 20].

An interaction is generated in two stages. In the first stage called path se-
lection, X-Gen randomly chooses an interaction initiator and target(s). This is
done by forming a CSP to choose the path used by the interaction. We create
a CSP variable representing the path. The domain of the CSP variable is the
set of all paths that initiate from one of the allowed initiators and terminate at
one of the allowed targets. Additional constraints may be used to enforce path
restrictions; soft constraints may be added to bias toward interesting paths (e.g.,
always going ”left” from a certain Splitter).

Once the path is chosen, a second stage, referred to as property selection,
constructs a second CSP network. The variables in the CSP are the properties
of the interaction, including the properties of a packet. Some components along
the chosen path impose restrictions on the properties of the packet and some
modify them. The restrictions and modifications are naturally modeled through
constraints on respective components. Soft constraints are added to bias random
choices to interesting corner cases.

4.3 Tests

A test for the design of a production process is a collection of interactions between
component types. The generated test is refined by creating a text file containing
specific configurations and instructions to the simulator.

When refined into a text file, a test includes a configuration of the system,
its initial state, and sets of instructions for the behavioral components in the
system. The configuration of the system is the assignment of values to the various
parameters of the different components. The initial state describes the state of
the system when the test starts running, e.g., the packets that already exist
in-flight in the different stages in the system. The sets of instructions for the
initiating and behavioral components are directions for how these components
should generate activity in the production process. Each instruction includes a
time stamp in which it is to be performed, a command specifying what activity
is to be generated, and a set of arguments for that activity.

Consider the topology design in Fig. 1 of the working example and the test
template in Fig. 4. A partial snapshot of a possible test that could be produced

188 A. Adir et al.

from the given test template is shown in Fig. 5. The configuration of the shifter
is given in the parameter defining the shifted amount, which is set to 10, while
the configuration of the first sensor is given in the parameter defining the tol-
erance threshold, which is set to 3. The synchronized interactions are specified
in the template to cause the two operators to put two different packets in the
production line at the same time and so that they end up in the same sink. This
may yield the first instructions in Robot 1 and Robot 2 in the test. Both packets
are released to their corresponding tracks 20 seconds (TS = 20) into the test,
and both will arrive at the scrap heap due to untolerated and unfixable leakage.

INITIALIZATIONS: Operator:Robot1

B Put Packet=<ID=3,X=48,Y=67> TS=20
...
INITIALIZATIONS: Operator:Robot2

B Put Packet=<ID=5,X=77,Y=11> TS=20
...
INITIALIZATIONS: Stage:Shifter

C ShiftAmount 10

B Leak Leakage=<ID=3,amount=6>

B Leak Leakage=<ID=5,amount=7>
...
INITIALIZATIONS: Stage:Sensor1

C Tolerance 3
...

Fig. 5. An example test

5 Checking and Coverage Analysis

In simulation-based verification, the simulation of the generated tests aims to
reveal errors in the design under test. The occurrence of an error during a test
simulation can be detected in various ways. One method is to generate tests
that include their corresponding expected results (intermediate and final). This
method requires some reference model that is able to ”run” the test and predict
the expected results. When the test is simulated on the design simulator, the
actual results are compared with the expected results from the reference model.

Another approach is to use simulation monitors. A simulation monitor is a
software module that observes the progress of simulation and can detect and
report specified behaviors of the simulated model. Simulation monitors have
diverse uses such as:

Test Generation for System-Level Verification of Production Processes 189

– Checking monitors: These monitors check for violations of system require-
ments as exhibited during simulation. These can originate from the system
stakeholder requirements, from the designer, or from the verification engi-
neer. They can include monitors to check for requirements relating to speed,
power, heat, and more. They can also check for requirements relating to
the functionality of the production system (e.g., that a production stage is
performing its designated task correctly).

– Coverage monitors: These monitors check for the occurrence of scenarios
targeted by the test plan. Coverage monitors are the main vehicle for assess-
ing the progress or completeness of the testing phase. The coverage reports
can help the verification engineer focus on uncovered areas or can lead to a
managerial decision that enough testing has been done.

– Monitors that gather statistics for post-simulation analysis, such as an anal-
ysis of system performance, power consumption, scrap rates, and more.

In the following section, we compare the performance of different test generation
approaches using simulation coverage monitors.

We show that our test generation method is able to reach significantly higher
functional coverage than a random test generator with a smaller number of tests.

6 Experiments

A SysML model of a production process, as described in Section 2.1 and Fig. 1,
was constructed to demonstrate the application of the proposed test-generation
technology. The modeled production process topology includes 12 different end-
to-end production paths. In addition, for demonstration purposes, we defined the
following set of verification events for the production process as testing knowl-
edge in the ontology:

A. name: Almost total shift
definition: Y ∈ {0, 1} after the shifter stage.

B. name: Near-equilibrium at start
definition: |X − Y | ≤ 2 when released by a robot.

C. name: Near-equilibrium at end
definition: |X − Y | ≤ 2 when entering a scrap or a product stock.

D. name: Shifter tolerance leakage
definition: Leakage of the shifter is exactly the tolerance threshold.

E. name: Injector tolerance leakage
definition: Leakage of the injector is exactly the tolerance threshold.

We set the verification goal to cover all the above five verification events for
each of the 12 end-to-end production paths. This defines a coverage model with
12× 5 = 60 coverage objectives. However, only 36 of the 60 coverage objectives
are in fact possible in the defined production process. For example, event E can
occur only for paths that go through the injector, and only 6 such paths exist.
Next, given this coverage model, the following test templates were created. Each

190 A. Adir et al.

template was set to generate a test with 3000 packets. The total number of
covered objectives as a function of the simulated packets is shown in Fig. 6 for
the 4 test templates. The templates are ordered from the most constrained to
the least constrained. As expected, the less constrained test templates, though
easier to specify, resulted in a slower coverage rate.

1. The first test template explicitly specifies a test for each of the 60 cover-
age objectives. The 12 paths were precisely specified and the 5 verification
events were requested by invoking the corresponding controls from the test-
ing knowledge database. The activation of the testing knowledge was a non-
mandatory specification, which means that the event will occur in the test
only if it is possible when considering the mandatory constraints, such as
the test validity and the path specifications.

2. The second template specifies only the five verification events from the test-
ing knowledge, while the end-to-end production paths were left to be selected
randomly by the test generator.

3. The third template merely directs the generator to generate tests with ran-
dom packets, while activating the default settings of the testing knowledge.

4. The fourth template is purely random, i.e., un-biased tests will be generated,
constrained only to be valid production paths with no application of any
testing knowledge.

Fig. 6. Coverage progress for the four different test-generation approaches. (1) Directed
towards all coverage goals. (2) Directed towards the verification events with random
paths. (3) Random tests with default testing knowledge. (4) Random tests with no
testing knowledge.

Test Generation for System-Level Verification of Production Processes 191

As shown in Fig. 6, the tests generated for the first template were the quickest to
reach full coverage of the 36 coverage objectives. The second and third test tem-
plates took much longer to reach full coverage than the first. However, these less
specific test templates have the advantage of giving more ”room” for the test
generator to apply its random testing knowledge and thus generate a greater
variety of tests. X-Gen’s test template specification language allows verifica-
tion engineers to define templates ranging from fully deterministic to completely
random. Yet even the completely random templates will be generated with the
default random application of testing knowledge, which biases the random gen-
eration toward areas worthy of testing. In addition, Fig. 6 shows that the fourth
template, which did not use any testing knowledge, made the slowest progress in
coverage, as expected. In fact, some of the events were never covered, even after
3000 packets. These events have a naturally low probability of occurring but
may still be important to test. An alternative to our approach would be to fill in
these coverage holes by manually writing the missing test cases. However, this
is obviously time-consuming and sometimes difficult to achieve. The events may
refer to behaviors of the packet flow somewhere in mid-production, and therefore
the test creation would require a detailed analysis of the manipulations carried
out at the relevant processing stages.

7 Conclusions and Future Work

We presented a new test-generation methodology for system-level verification
of production processes. Our methodology offers an alternative to manual and
random test generation for functional and performance verification, by producing
massive random-biased tests. The tests are generated from test templates stated
in a rich high-level template language. The test generator uses a generic system-
oblivious engine in addition to a domain-specific ontology and testing knowledge.
We described an ontology of a production system using SysML, an industrial-
standard modeling language. We built a simulator for this ontology, also using
SysML, to run the generated tests. We presented an example of how to model
a production process for the purpose of functional and performance testing. We
demonstrated our methodology for generating tests that achieve coverage of a
set of verification objectives and compared it to the coverage of a random test
generator. We showed that our approach can achieve better coverage with a
smaller number of tests than random test generation.

In the future, we plan to apply our methodology for test generation on a
variety of types of production processes used by the industrial partners of the
MuProd project. We expect that this methodology will prove beneficial to the
field of production processes’ design and verification.

References

1. Teti, R., Jemielniak, K., O’Donnell, G., Dornfeld, D.: Advanced monitoring of ma-
chining operations. CIRP Annals - Manufacturing Technology 59, 717–739 (2010)

2. MuProD, http://www.muprod.eu/

http://www.muprod.eu/

192 A. Adir et al.

3. Köhler, H., Nickel, U., Niere, J., Zündorf, A.: Integrating UML Diagrams in Pro-
duction Control Systems. In: International Conference on Software Engineering,
pp. 241–251 (2000)

4. Rother, M., Shook, J.: Learning to See: Value-Stream Mapping to Create Value
and Eliminate MUDA, Lean Enterprise Inst., Version 1.3, Cambridge, Mass. (2003)

5. Nickel, U., Niere, J., Zündorf, A.: The FUJABA Environment. In: International
Conference on Software Engineering, pp. 742–745 (2000)

6. Specht, T., Drawehn, J., Thränert, M., Kühne, S.: Modeling Cooperative Business
Processes and Transformation to a Service Oriented Architecture. In: 7th IEEE
International Conference on ECommerce Technology, pp. 249–256 (2005)

7. Wen-xian, T., Yuan-yuan, X.: A Production Process Mixed Modeling for Marine
Diesel Engine Based on IDEF0 and Petri Net. In: International Symposium on
Information Science and Engineering, ISISE 2008, vol. 2, pp. 773–777 (2008)

8. Zor, S., Görlach, K., Leymann, F.: Using Modeling Manufacturing Processes. In:
Sihn, W., Kuhlang, P. (eds.) Sustainable Production and Logistics in Global Net-
works - Proceedings of 43rd CIRP International Conference on Manufacturing
Systems, pp. 515–522 (2010)

9. Campagna, D., Formisano, A.: ProdProc - Product and Production Process Mod-
eling and Configuration. In: 26th Italian Conference on Computational Logic, pp.
261–279 (2011)

10. Organization for the Advancement of Structured Information Standards (OASIS),
Web Services Business Process Execution Language Version 2.0 - OASIS Standard
(2007)

11. Colledani, M., Terkaj, W., Tolio, T.: Product-Process-System Information Formal-
ization. In: Tolio, T. (ed.) Design of Flexible Production Systems: Methodologies
and Tools. Springer (2009)

12. Aharon, A., Lichtenstein, Y., Malka, Y.: Model-Based Test Generator for Processor
Design Verification. In: Innovative Applications of Artificial Intelligence (IAAI)
(1994)

13. Emek, R., Jaeger, I., Naveh, Y., Bergman, G., Aloni, G., Katz, Y., Farkash, M.,
Dozoretz, I., Goldin, A.: X-Gen: A Random Test-Case Generator for Systems and
SoCs. In: 7th IEEE International High-Level Design Validation and Test Workshop
(HLDVT), pp. 145–150 (2002)

14. DANSE, http://danse-ip.eu/home
15. http://www.omg.org/spec/UML/2.4.1/

16. http://www.omg.org/spec/SysML/1.3/

17. Bin, E., Ghanayim, A., Holtz, K., Marcus, E., Morad, R., Peled, O., Rimon, M.,
Shurek, G., Tsanko, E.: Ontology-Based Tools in the Service of Hardware Verifi-
cation. In: 22nd International Conference on Software Engineering & Knowledge
Engineering, pp. 303–308. Knowledge Systems Institute Graduate School (2010)

18. Brahme, D.S., Cox, S., Gallo, J., Glasser, M., Grundmann, W., Norris Ip, C.,
Paulsen, W., Pierce, J.L., Rose, J., Shea, D., Whiting, K.: The Transaction-Based
Verification Methodology. Cadence Berkeley Labs (2000)

19. Bin, E., Emek, R., Shurek, G., Ziv, A.: Using constraint satisfaction formulations
and solution techniques for random test program generation. IBM Systems Jour-
nal 41(3), 386–402 (2002)

20. Mackworth, A.: Consistency in Networks of Relations. Artificial Intelligence 8(1),
99–118 (1977)

http://danse-ip.eu/home
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/SysML/1.3/

Defining and Model Checking Abstractions

of Complex Railway Models Using CSP||B

Faron Moller1, Hoang Nga Nguyen1, Markus Roggenbach1,
Steve Schneider2, and Helen Treharne2

1 Swansea University, Wales, UK
2 University of Surrey, England, UK

Abstract. The safety analysis of interlocking railway systems involves
verifying collision and derailment freedom. In this paper we propose a
structured way of refining track plans, in order to expand track segments
so that they form collections of track segments. We show how the abstract
model can be model checked to ensure the safety properties, which must
also hold in the corresponding concrete track plan, so that we will never
need to model check the concrete track plan directly. We also identify
the minimal number of trains that needs to be considered as part of the
model checking, and we demonstrate the practicality of the approach on
various scenarios.

1 Introduction

Formal verification of railway control software has been identified as one of
the “Grand Challenges” of Computer Science [11]. As is typical with Formal
Methods, this challenge comes in two parts: the first addresses the question
of whether the mathematical models considered are legitimate representations
of the physical systems of concern. The modelling of the systems, as well as of
proof obligations, needs to be faithful. The second part is the question of how
to utilize available technologies, for example model checking or theorem prov-
ing. Whichever verification process is adopted, it needs to be both effective and
efficient.

In [13,12] we proposed a new modelling approach for railway interlockings. We
use CSP||B [15], which combines event-based with state-based modelling. This
reflects the double nature of railway systems, which involves events such as train
movements and, in the interlocking, state based reasoning. In this sense, CSP||B
offers the means for the natural modelling approach we strive for: the formal
models are close to the domain models. To the domain expert, this provides
traceability and ease of understanding. This addresses the first of the above
stated challenges: faithful modelling.

In this paper, we address the question of how to effectively and efficiently ver-
ify various safety properties within our CSP||B models. To this end we develop
a set of abstraction techniques for railway verification that allow the transfor-
mation of complex CSP||B models into less involved ones, prove that they are

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 193–208, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

194 F. Moller et al.

correct, and demonstrate that they allow one to verify a variety of railway sys-
tems via model checking. The first set of abstractions reduces the number of
trains that need to be considered in order to prove safety for an unbounded
number of trains. Their correctness proof involves slicing of event traces. Essen-
tially, these abstractions provide us with finite state models. The second set of
abstractions simplifies the underlying track topology. Here, the correctness proof
utilizes event abstraction specific to our application domain similar to the ones
suggested by Winter in [17]. These abstractions make model checking faster.

Outline. We first introduce our modelling language CSP||B. In Section 3 we
summarise our generic railway modelling approach using CSP||B, as described
in [13,12]. In Section 4, we present our first set of abstraction techniques based on
event traces. Then in Section 5 we present our data abstraction techniques. The
application of the abstraction results is presented via a set of example scenarios
in Section 6. In Section 7 we put our work in the context of related approaches.

2 Background to CSP||B
The CSP||B approach allows us to specify communicating systems using a com-
bination of the B-Method [4] and the process algebra CSP (Communicating
Sequential Processes) [9]. The overall specification of a combined communicat-
ing system comprises two separate specifications: one given by a number of CSP
process descriptions and the other by a collection of B machines. Our aim when
using B and CSP is to factor out as much of the “data-rich” aspects of a sys-
tem as possible into B machines. The B machines in our CSP||B approach are
classical B machines, which are components containing state and operations on
that state. The CSP||B theory [15] allows us to combine a number of CSP pro-
cesses Ps in parallel with machines Ms to produce Ps ‖ Ms which is the parallel
combination of all the controllers and all the underlying machines. Such a par-
allel composition is meaningful because a B machine is itself interpretable as a
CSP process whose event-traces are the possible execution sequences of its op-
erations. The invoking of an operation of a B machine outside its precondition
within such a trace is defined as divergence [14]. Therefore, our notion of consis-
tency is that a combined communicating system Ps ‖ Ms is divergence-free and
also deadlock-free.

A B machine clause declares a machine and gives it a name. The variables
of a B machine define its state. The invariant of a B machine gives the type
of the variables, and more generally it also contains any other constraints on
the allowable machine states. There is an initialisation which determines the
initial state of the machine. The machine consists of a collection of operations
that query and modify the state. Besides this kind of machine we also define
static B machines that provide only sets, constants and properties that do not
change during the execution of the system.

Model Checking Abstractions of Complex Railway Models 195

The language we use to describe the CSP processes for B machines is as
follows:

P ::= e?x !y → P(x) | P1 � P2 | P1 � P2 | if b then P1 else P2 end |
N (exp) | P1 ‖ P2 | P1 A‖B P2 | P1 ||| P2

The process e?x !y → P(x) defines a channel communication where x represents
all data variables on a channel, and y represents values being passed along a
channel. Channel e is referred to as amachine channel as there is a corresponding
operation in the controlled B machine with the signature x ←− e(y). Therefore
the input of the B operation y corresponds to the output from the CSP, and
the output x of the B operation to the CSP input. Here we have simplified the
communication to have one output and one input but in general there can be
any number of inputs and outputs. The other CSP operators have the usual CSP
semantics.

For reasoning of CSP||B models we require the following notation.

– Since a B machine is interpretable as a CSP process, the various CSP refine-
ments also apply to CSP||B. In this paper we focus on trace refinement where
P �T Q if traces(Q) ⊆ traces(P). This refinement preserves safety proper-
ties, such as collision freedom or derailment freedom as we shall discuss in
Section 3.

– Furthermore, we apply CSP renaming f (P) and CSP hiding P \ A to CSP
processes, B machines and to CSP||B models, which all semantically repre-
sent sets of traces. Given a set of traces T , f (T) represents the set of all
traces tr ∈ T where the events are replaced point-wise by the function f ;
T \ A to represent the set of all traces tr ∈ T where the events from the set
A are removed from tr .

– A system run σ (of a CSP||B model) of length n ≥ 0 is a finite sequence

σ = 〈s0, e0, s1, e1, . . . , en−1, sn〉

where the si , i = 0 . . .n, are states of the B machine, and the ei , 1 ≤ i ≤
n − 1, are events – either controlled by CSP and enabled in B when called,
or B events. Here we assume that s0 is a state after initialisation. Given a
system run σ, we can extract its trace of events:

events(σ) = 〈e0, . . . , en−1〉.

3 Modelling and Safety Verification of Railway Systems
Using CSP||B

Together with railway engineers we developed a common view on the information
flow in railways. In physical terms a railway consists of, at least, four different
components. These components are shown in Figure 1. The Controller selects
and releases routes for trains. The Interlocking serves as a safety mechanism

196 F. Moller et al.

with regards to the Controller and, in addition, controls and monitors the Track
equipment. The Track equipment consists of elements such as signals, points,
and track circuits (logical names for tracks and points from the track plan as
discussed above; in the railway domain, tracks and track circuits are often con-
fused): signals can show the aspects green or red; points can be in normal position
(leading trains straight ahead) or in reverse position (leading trains to a different
line) and track circuits detect if there is a train on a track. Finally, Trains have a
driver who determines their behaviour. For the purposes of modelling, we make
the assumption that track equipment reacts instantly and is free of defects. The
information flow shown in Figure 1 is as follows: the controller sends a request
message to the interlocking to which the interlocking responds; the interlocking
sends signalling information to the trains; and the trains inform the interlocking
about their movements. The interlocking serves as the system’s clock: messages
can be exchanged once per cycle.

����������

	������
���

�����
��
���������

������

�������������� �����������������

���������������
������� ���
���

�������

����������
� ����������������

������������� ����������������

Fig. 1. Information flow

In this paper, we study vari-
ous track plans, one of which is a
station illustrated in Figure 2(b).
It depicts the scheme plan for
the station, which comprises a
track plan, a control table, and re-
lease tables. (We will discuss Fig-
ure 2(a) in Section 6).

The track plan provides the
topological information of the sta-
tion which consists of 16 tracks
(e.g., the track c TAA), three sig-
nals (e.g., S1), and two points
(e.g., P1). Note that the tracks
include entry and exit tracks on
which trains can “appear” and
“disappear”. These two kinds of
tracks are specially treated during
verification.

An interlocking system gathers train locations, and sends out commands to
control signal aspects and point positions. The control table determines how the
station interlocking system sets signals and points. For each signal, there is one
row describing the condition under which the signal can show proceed. There
are two rows for signal S1: one for the main line (Route A1) and one for the side
line (Route B1). A route comprises tracks and points between two signals. For
example, signal S1 for the main line can only show proceed when point P1 is in
normal (straight) position and tracks c TAA, c TAB , c TAC , c TAD , c TAE ,
c TAF , c TAG are all clear. Here we assume that trains are equipped with an
Automatic Train Protection system which prevents trains from moving over a
red light and therefore, overlaps are not needed, e.g., the overlap for Route A1
would be c TAH . For further discussion on this see [10].

Model Checking Abstractions of Complex Railway Models 197

Control table

Route Normal Reverse Clear

A1 P1 c TAA, c TAB , c TAC , c TAD ,
c TAE , c TAF , c TAG

B1 P1 c TAA, c TAB , c TAC , c TBA,
c TBB , c TBC , c TBD

A2 P2 c TAH , c TAI , c TAJ

B2 P2 c TAH , c TAI , c TAJ

Release tables

P1 Occupied

A1 c TAD

B1 c TBA

P2 Occupied

A2 c TAI

B2 c TAI

Fig. 2. One Station - Abstract (a) and Concrete (b) Track Plan (Scenario 3 from Fig. 4)

The interlocking also allocates locks on points to particular route requests to
keep them locked in position, and releases such locks when trains have passed.
For example, the setting of Route A1 obtains a lock on point P1, and sets it to
normal. The lock is released after the train has passed the point. Release tables
store the relevant track.

In this setting, we consider two safety properties: collision-freedom excludes
two trains occupying the same track; and no-derailment says that whenever a
train enters a point, the point is set to cater for this; e.g., when a train travels
from track c TAG to track c TAH , point P2 is set so that it connects c TAG
and c TAH (and not c TBD and c TAH). The correct design for the con-
trol table and release tables is safety-critical: mistakes can lead to collision or
derailment.

3.1 CSP||B Modelling of Railways

In previous work [12,13] we have demonstrated that CSP||B caters for railways.
It is possible to read the actual models together with railway engineers in or-
der to validate them. This review demonstrates that the models can be clearly

198 F. Moller et al.

understood by railway engineers. Here, we refrain from elaborating on the mod-
elling approach and refer the interested reader to [13] for the details. However,
the concepts from the models central for verification (in Section 4 and Section 5),
namely static and dynamic state representation and also train movements, are
discussed below.

The static state information of a CSP||B model is defined in context machines,
i.e., machines that contain set and function definitions. For example, the names
of all the track circuits is defined in a set called ALLTRACKS. The topology
of the track plan is captured using a collection of relations that capture how
the elements of the track plan are related. For example, next : TRACK ↔
TRACK is a relation between tracks and possible successor tracks. Therefore,
(c TAC , a TAD) and (c TAC , c TBA) are elements of the next relation within
the one-station example in Figure 2.

The Interlocking machine models the dynamics of the system. Its state evolves
over time. It consists of the following variables: pos representing the position of
all trains, nextd representing the current position of all points (and thus the
dynamic relation between tracks and their successors), signalStatus represent-
ing the aspect of each signal, normalPoints representing the points which are
in normal position, reversePoints representing the points which are in reverse
position, and currentLocks representing the current semaphores on points.

In the CSP||B models, a train a can perform one of the following events:
move.a.currp.newp represents a moving from track currp to track newp, nextSig-
nal.a.aspect represents a seeing the particular aspect (red or green) at the next
signal, enter.a.p represents placing a on an entry track p, and exit.a.p represents
a leaving the system. Trains that have left the system can be placed again on an
entry track; we call this behaviour recurring trains. Note that in the situation
where currp and newp are separated by a signal the event move.a.currp.newp is
possible only if this signal shows green.

4 Providing Finite State Models

Our railway models are infinite state in nature. The reason for this is that we
consider train identifiers explicitly. Therefore, it is essential to find bounds for
the number of trains that we need to consider when analysing our models for
safety. In this section we provide two methods: one tailored towards collision
freedom, one designed for derailment freedom.

4.1 Minimum Number of Trains for Verifying Collision

The following theorem turns the question of whether a railway scheme plan is col-
lision free into a finite state problem by reducing the – in principle – unbounded
number of trains to be considered into a finite number:

Theorem 1. Let S be a railway scheme plan with r routes. S is collision free
iff all systems runs with r + 1 recurring trains are collision free.

Model Checking Abstractions of Complex Railway Models 199

Proof. We prove the “if” direction only, as the other direction trivially holds.
We first note that if there are two trains on a route then a collision can occur

(as these two trains are not separated by a signal). Therefore, as long as there is
no collision there will be at most r trains on S . Assuming we have r + 1 trains
there will always be one train available to move onto an entry track. Thus, r +1
recurring trains are sufficient. ��

4.2 Minimum Number of Trains for Verifying Derailment

Regarding derailment, we obtain an even stronger result. The reduction argu-
ment, however, holds only for “reasonable” scheme-plans where the various tables
are free of trivial mistakes with respect to the railway topology. Concretely, we
say that a scheme plan is well-formed if the following conditions hold:

1. Release-Table condition. Locks of a route can only be released by a train
movement on this route (e.g., in Figure 2, there is the lock c TAD on P1 for
route A1; c TAD appears in the clear column of the control table for the
route A1).

2. Clear-Table condition. The clear table of a route contains at least the
tracks of this route (e.g., in Figure 2 route A1 topologically goes from signal
S1 to signal S3 and all tracks from c TAA to c TAG are in the clear column
of the control table for the route A1).

3. Normal/Reverse-Table condition. The normal table or the reverse table
of a route contain at least the points on this route (e.g., in Figure 2 route
A1 topologically goes from signal S1 to signal S3, it includes the only point
P1, and P1 is in the normal column of the control table for the route A1).

4. Route condition. Topologically different routes are distinguishable by point
positions in the control table (e.g., in Figure 2 route A1 and route B1 are
topologically different, point P1 is in the normal column of the control table
for route A1, point P1 is in the reverse column of the control table for route
B1).

5. Lock-Table condition. Routes with different lock tables are distinguish-
able by point positions in the control table (e.g., in Figure 2 route A1 and
route B1 have different lock table entries, namely, c TAD and c TBA re-
spectively, in the control table the position of P1 distinguishes them as seen
above).

The scheme plan of Figure 2 is well-formed.
Note that there is exactly one condition per table (release table, clear table,

normal/reverse table, lock table) plus one condition which links routes as defined
topologically with the route definition in the tables. All five conditions are static
and can easily be decided for a given scheme-plan. It is worthwhile to point out
that well-formedness does not imply the property “no-derailment”:

Observation 1. There exist well-formed scheme-plans with derailment.

For example, altering the scheme plan of Figure 2 by exchanging the position of
point P2 for route A2 and route B2 leads to derailment as explained in Section 3.
This exchange, however, preserves well-formedness.

200 F. Moller et al.

Our modelling characterizes only implicitly, which routes which are set. There-
fore, we the following theorem is helpful:

Theorem 2. For all system runs of a well-formed scheme-plans it holds: If a
signal s shows green, then there exists a route r with signal(r) = s which is set.

Then, we establish the following theorem which allows the reduction of the num-
ber of trains for proving derailment freedom:

Theorem 3. For any collision free system run on a well-formed scheme plan
involving k ≥ 1 trains Trains = {a1, . . . , ak} and a train b which does not derail
in this run, there exists a system run involving only the trains {a1, . . . , ak} with
identical movements.

Proof. (Sketch) Let σ be the system with trains in {a1, . . . , ak , b} where b does
not derail. We shall construct another run σ′ which

– does not speak about b, which,
– however, preserves the movement of all trains ai ∈ Trains.

First, we define the set of all events E (b) that are related with the train b:

E (b) := {e ∈ σ | e = move.b.currp.newp
e = nextSignal.b.aspect
e = enter.b.p
e = exit.b.p}

Intuitively, σ′ is obtained from σ by either discarding or replacing events in E (b).
In order to determine how to treat these events, it is necessary to understand
how the train b can influence the trains ai ∈ Trains: (i) b might prevent a train
a ∈ Trains from moving (because a signal in front of a shows red because b uses
a resource); (ii) b might allow a train in Trains to move (a move from b releases
a lock, so that the signal in front of a can change to green). When “taking away”
b from σ our only concern is (ii): we wish to preserve moves. This insight leads to
the definition of the following replacement function replaceb concerning events
(where ε stands for the empty word, i.e., for deletion of the event):

1. replaceb(e) = e if e /∈ E (b)
2. replaceb(move.b.currp.newp) = release.r.bb if there exists a signal s with

currp = homeSignal(s). As move is only enabled if signal s shows green, The-
orem 2 guarantees that there exists a route r which is set. Well-formedness
of the scheme-plan guarantees uniqueness.

3. replaceb(e) = ε if e is any ofmove.b.currp.newp, where currp �= homeSignal(s)
for any signal s , or nextSignal.b.aspect, or enter.b.p, or exit.b.p.

replaceb keeps all events not related to b (1.), releases all locks related to b at
the earliest possible opportunity (2.), and deletes all other events related to b.

In order to show that the constructed σ′ is a system run, we relate states in σ
with those in σ′. Informally, a state S in σ is related to a state T in σ′, written

Model Checking Abstractions of Complex Railway Models 201

as S ≥b T , if (1) for all trains ai it holds that in S and in T (i) their positions
are the same and (ii) they are offerred the same possibilities to move; and (2)
T does not speak about the train b. To capture these ideas formally, we define
that S ≥b T if

1. Compared to S , T just deletes the information regarding b.
T (pos) = S (pos) \ {b �→ track | track ∈ TRACK}

2. Track equipment is in the same state.

S (nextd) = T (nextd) S (signalStatus) = T (signalStatus)
S (normalPoints) = T (normalPoints) S (reversePoints) = T (reversePoints)

3. A route r causes locks in T only if it does so in S :
S (currentLocks [{r}]) = ∅ ⇒ T (currentLocks [{r}]) = ∅ and
T (currentLocks [{r}]) �= ∅ ⇒ S (currentLocks [{r}]) = T (currentLocks [{r}])

Let σ = 〈S0, e0, S1, e1, . . . , en−1, Sn〉, we obtain σ′ in two steps. First, we define
the sequence of events:

events(σ′) = 〈replaceb(e0), . . . , replaceb(en−1)〉

Then, we replace in each step 〈Si , ei , Si+1〉 of σ the result state:

In case of “deletion”, there is
no state change in σ′, e.g.,:
T ε T

≥
b

≥
b

S move.b.currp.newp S ′

In case of “replacement”, states
can change in σ and σ′, e.g.,
T release.R.bb T ′

≥
b

≥
b

S move.b.currp.newp S ′

Finally, we prove that the so constructed σ′ is indeed a system run by induction
on the length of the system run σ. The base case is given by S0 ≥b S0 where
S0 is the initial state which has no trains in and there are no locks for points.
In the induction step we show: (i) if an event e is enabled in S then replaceb(e)
is enabled in the corresponding state; (ii) ≥b is preserved under the execution
under an event e and its corresponding event replaceb(e). Both arguments rely
on the fact that σ is a system run, i.e., is a control flow allowed by the CSP
processes. ��

The condition “collision free” on the system run σ is required, as we “simulate”
the movement of the train b by a route release request. Routes can only be
released if there is no train on the track t directly in front of the corresponding
signal. In the corresponding run σ′, b will not be on track t , as b has been
removed. There might, however, be another train a. We exclude this by the
condition “collision freedom”: if there was a train a on the same track t as train
b, there would be a collision in σ.

Corollary 1. For collision free and well-formed scheme plans holds: if they are
derailment free for one train, then they are derailment free for any number of
trains.

202 F. Moller et al.

5 Simplifying Scheme Plans

In this section we prove, by topological argument, that it is sufficient to check a
simple scheme plan for safety in order to establish safety for a complex scheme
plan. The technical means for this is to establish a B refinement.

Fig. 3. Linear Scenario

Let us consider an ex-
ample in order to demon-
strate the effect that
the number of tracks
per route has on model
checking. Figure 3 shows
three track plans. Track
plan (a) has one track
per route, track plan (b)
has two tracks per route,
and track plan (c) has
four tracks per route. Be-
low, we show how the
state space grows in the
number of tracks per
route (illustrated using 3
trains):

number of tracks per abstract track 1 2 4 8 16
number of states 596 806 1472 3483 9615

In the following, we develop and formalise an abstraction mechanism which
reduces the number of tracks per route and thus gives an advantage in model
checking. Figure 2 illustrates our abstraction: part (b) shows a concrete track
plan to which part (a) is the abstract counterpart.

As discussed in Section 3.1, a track plan is essentially given by the set
ALLTRACK of its track circuits and a relation next between them. We use
the prefix a for abstract, and c for concrete when considering two track plans
and the relationship between them. Thus, a ALLTRACK is the abstract set of
track circuits (of tracks and points). Similarly, c ALLTRACK is the concrete
set of track circuits. We assume that these are disjoint, apart from the special
element nullTrack . The relations a next and c next define how track circuits
are connected. Each concrete track circuit is associated with one abstract track
circuit, defined by the following total surjective function:

abs : c ALLTRACK →→ a ALLTRACK

such that abs(nullTrack) = nullTrack .

Model Checking Abstractions of Complex Railway Models 203

The definition of abs for the one-station example is as follows in terms of
relational image:

abs [{c TAA, c TAB , c TAC}] = {a TAA}
abs [{c TBA, c TBB , c TBC , c TBD}] = {a TBA}
abs [{c TAD , c TAE , c TAF , c TAG}] = {a TAB}

abs [{c TAH }] = {a TAC}
abs [{c TAI , c TAJ}] = {a TAD}

There are a number of necessary conditions on the abstraction function abs .
These include prominently:

– Points are preserved under abstraction, i.e., a track circuit belonging to a
point in the concrete topology is mapped to a point in the abstract topology.

– Routes are preserved under abstraction, e.g.,
abs [{c TAD , c TAE , c TAF , c TAG, c TAH }] cannot be {a TBA} since
the set of concrete track circuits is not within one route.

– Any concrete c next pair of track circuits should either both be related to
the same abstract track circuit, or should reflect the relation between an
abstract a next pair, i.e.,

∀ c t1, c t2 • (c t1 �→ c t2) ∈ c next)⇒
abs(c t1) = abs(c t2) ∨ (abs(c t1) �→ abs(c t2)) ∈ a next

For example, a move within the same abstract track circuit is given by
(c TAB �→ c TAC) ∈ c next ⇒ abs(c TAB) = abs(c TAC).

Beside the abs function, there are further functions needed in order to describe
the full abstraction between track plans. They allow to formulate further condi-
tions upon the relations defined in a track plan also on the tables, e.g.,

a clearTable o
9 abs

−1 = c clearTable

Our modelling approach works generically for all scheme plans. Thus, given a
concrete and an abstract one, we have two formal models to compare. This
comparison is performed using B refinement and CSP trace refinement. In the
following, we focus on the B refinement.

We establish the refinement relationship between the Interlocking B machines
by relating states with a linking invariant. To this end, we prove that each
operation preserves the linking invariant. The linking invariant consists of three
parts: the relationship between the positions of the trains a pos = c pos o

9abs , the
relationship between the current positions of the points (which follows directly
due to the static relationships), and the relationship between the track equipment
which remains unchanged.

We illustrate the proof by comparing abstract and concrete versions of the
move operation. For example, the concrete move.c TAC .c TAD corresponds to
the abstract move.a.a TAA.a TAB ; here, both have an effect on the B state.

204 F. Moller et al.

In contrast to this, the concrete move.a.c TAB .c TAC corresponds to the ab-
stract move.a.a TAA.a TAA; the latter has no effect on the B state. Therefore,
we can consider the abstract event move.a.a TAA.a TAA as the B operation
skip. In a B refinement, a new concrete event can refine skip. This can be ex-
pressed in the following two lemmas:

Lemma 1 (Renamed move). If (abs(c t1) �→ abs(c t2)) ∈ a next then

abs(c t1), abs(c t2)←− a move(t) � c t1, c t2←− c move(t)

Lemma 2 (New move). If abs(c t1) = abs(c t2) then

c t1, c t2←− skip(t) � c t1, c t2←− c move(t)

As a consequence of the above lemmas (and similar lemmas for all other opera-
tions) the relationship between the abstract machine MA and the concrete one
MC is given by MA �T f (MC \ N), where f and N are defined by:

f (move.a.currp.newp) = move.a.abs(currp).abs(newp)

N = {move.a.currp.newp | abs(currp) = abs(newp)}
for all trains a in the abstract and the concrete model.

Hence we can now consider the combination of the B machines MA and CSP
processes PA to obtain:

Theorem 4. Let abs be an abstraction function from a concrete topology to an
abstract topology. Let PA ‖ MA be the CSP||B model wrt the abstract topology, let
PC ‖ MC be the CSP||B model wrt the concrete topology, such that both models
are defined over the same set of trains. Let

1. MA �T f (MC \ N) and
2. PA �T f (PC \ N).

Then collision (derailment) freedom of PA ‖ MA implies collision (derailment)
freedom of PC ‖ MC .

Proof. We compute:

PA ‖ MA �T f (PC \ N) ‖ f (MC \ N) (by conditions 1 and 2)

�T f (PC \ N ‖ MC \ N) (by distributivity of renaming)

�T f ((PC ‖ MC) \ N) (by distributivity of hiding)

With regards to collision freedom, we obtain:

PA ‖ MA is collision free⇒ f ((PC ‖ MC) \ N) is collision free

(by trace refinement)

⇔ PC ‖ MC \ N is collision free

(as f (collision) = collision)

⇔ PC ‖ MC is collision free (as collision /∈ N)

Similarly for derailment freedom. ��

Model Checking Abstractions of Complex Railway Models 205

Note that Theorem 4 decomposes the proof obligation into a B proof and a CSP
proof respectively. In order to establish condition 1, we sketched above a general
construction based upon techniques related to B refinement. Condition 2 can be
verified using the model checker FDR on CSP processes only.

6 Example Scenarios of CSP||B Railway Models

In order to demonstrate the effectiveness of our techniques outlined in Section 4
and Section 5 we conducted experiments on five scenarios. The experiments were
carried out using ProB 1.3.5 beta 15 [3] to verify the collision and derailment
freedom of the abstract and concrete track plans using CTL model checking over
the CSP||B models. The number of trains involved is chosen according to the
results of Section 4: collision freedom is checked with number of routes plus one
train, derailment freedom is checked with one train. If the verification is success-
ful then we conclude that the model is right and has the right properties. The
CSP||B models were also required to be divergence- and deadlock-free. Figure 4
summarises that all our scenarios are collision- and derailment-free.

To give an indication of the size of the track plans: scenario 1 has 6 tracks, 0
points, 2 signals and 2 routes; scenario 2 has 10 tracks, 0 points, 2 signals and 2
routes; scenario 3 has 16 tracks, 2 points, 3 signals and 4 routes; scenario 4 has
15 tracks, 1 point, 5 signals and 6 routes, and finally scenario 5 has 22 tracks, 2
points, 9 signals and 10 routes.

Notice that in all scenarios there is a significant reduction in the number of
states being explored, comparing the abstract scenarios with the concrete sce-
narios. In order to achieve the desired verification results, however, abstraction
is necessary only in scenario 4(b).

We gain full verification for the first four scenarios thanks to our two reduction
techniques. Scenario 5 can be checked for derailment freedom, however, it cannot
be checked for collision freedom. Thus, verification is only partial. However, we
make the conjecture that it is possible to strengthen Theorem 1: rather than
establishing collision freedom for number of routes plus one trains, it is sufficient
to verify collision-freedom with two trains only. Figure 4 shows that verification
of the double junction with two trains is possible. The double junction scenario is
one which we have referred to in our previous work [13], it provides an interesting
example of abstraction since the abstraction surrounding one of the points is a
biased one, i.e., the normal position of one of the points remains unchanged in
the abstraction, whereas the reverse position of the point is an abstraction of its
track circuit and another track circuit. We will revisit the topic of abstractions
when, in future work, we come to models which deal with bi-directional track
circuits.

7 Related Work

Several industrial studies have been done on using model checking to verify rail-
way applications, e.g., for example SNCF [2], and it is clear that their formal

206 F. Moller et al.

Scenario Model � Abstract Concrete
Trains States Checked States Checked

1(a) derailment Linear with 2 tracks
per route

1 27 31

1(b) collisions Linear with 2 tracks
per route

3 596 806

2(a) derailment Linear with 4 tracks
per route

1 27 39

2(b) collisions Linear with 4 tracks
per route

3 596 1472

3(a) derailment Station 1 70 203

3(b) collisions Station 5 151,508 968,700

4(a) derailment Single Junction 1 600 756

4(b) collisions Single Junction 7 326,405 Not completed

5(a) derailment Double Junction 1 103,598 158,190

5(b) collisions Double Junction 2 173,846 379,404

5(c) collisions Double Junction 3 Not completed Not completed

Fig. 4. Variations of Five Example Scenarios checked

analysis is industrially important. To put our work into context we must first
clarify that railway verification falls into two categories: the verification of rail-
way designs prior to their implementation and the verification of the implemen-
tation descriptions themselves. Our work is in the first area. A comparison using
different model checkers in the analysis of control tables has been conducted by
Ferrari et al. [6] and falls into the first category. Winter in a recent paper [16]
considers different optimising strategies for model checking using NuSMV and
demonstrates the efficiency of their approach on very large models. These analy-
ses also fall into the first category but the models are flat in structure compared
to our models as they are defined in terms of boolean equations and do not focus
on providing behavioural models. The analysis of interlocking tables (cf. control
tables) by Haxthausen [7] also falls into the first category and is supported by
automated tools that generate the models. The results achieved are comparable
in size to our Single Junction scenario. Cimatti et al. [5] also have had consider-
able success using NuSMV but their analysis is focussed on the implementation
descriptions.

Others have applied theorem proving in the verification of railway interlocking
systems, for example, the Advance FP7 project [1] is developing Event-B models
of such systems and verifying comparable safety properties. Indeed it would be
interesting for us to investigate further the relationship between the combination
of generic proofs and model cecking. In this paper, we have demonstrated that
the data abstraction on the B part of the CSP||B models is generic but more
work will be needed on this when we enrich the models to contain trains which
extend over more than one track circuit and can move in more than one direction.

Model Checking Abstractions of Complex Railway Models 207

The research most closely related to ours is Winter [17]. The way in which the
ASM models are defined closely relates to ours since they have the same concept
of routes, which contain tracks and points, between two signals, and contain a
static and a behavioural definition. Their models are more advanced than ours
since we currently restrict ourselves to have signals in one direction and we do not
include shunting. The simplifications to the Winter models includes combining
multiple track circuits into one provided they are always grouped together in
the control table; this again resonates with the data abstraction we defined in
Section 5, but we formalise the abstraction more explicitly.

8 Conclusion

We have successfully complemented our faithful modelling approach of railway
interlockings as presented in [13,12] by defining abstraction techniques that yield
effective and efficient verification process based on model checking. We illus-
trated this process in terms of various scenarios. The correctness arguments in
Sections 4 provides a new proof technique for event- and state-based reasoning.
Section 5 demonstrates an interesting data abstraction using decomposition.

Heitmeyer in [8] discusses the importance of complete abstractions. Our ab-
stractions are sound. It is future work to investigate if completeness can be
established. In Section 6 we identified that the reduction of Theorem 1 is not
sufficient for complex scheme plans. Here we hope to prove our conjecture that
two trains are sufficient to verify collision freedom. Our current models lack cer-
tain details as discussed in Section 7. Adding these features will allow us to study
more fine grained data abstractions. Following recent discussions with Winter,
we also agree that another obvious optimisation to consider is the decomposition
of track schemes.

Acknowledgement. The authors would like to thank S. Chadwick and D. Tay-
lor from the company Invensys Rail for their support and encouraging feedback.

References

1. Advance FP7 project, http://www.advance-ict.eu/ (accessed: July 23, 2012)
2. Practical formal validation method for interlocking or automated sys-

tems, http://www.dcds11.uni-saarland.de/plenaries/practical-formal-

validation-method-for-interlocking-or-automated-systems.html (accessed:
July 23, 2012)

3. ProB 1.3.5 beta15, http://www.stups.uni-duesseldorf.de/ProB (accessed: July
23, 2012)

4. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. CUP (1996)

5. Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri, M., San-
seviero, A., Tchaltsev, A.: Formal verification and validation of ERTMS industrial
railway train spacing system. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012.
LNCS, vol. 7358, pp. 378–393. Springer, Heidelberg (2012)

http://www.advance-ict.eu/
http://www.dcds11.uni-saarland.de/plenaries/practical-formal-validation-method-for-interlocking-or-automated-systems.html
http://www.dcds11.uni-saarland.de/plenaries/practical-formal-validation-method-for-interlocking-or-automated-systems.html
http://www.stups.uni-duesseldorf.de/ProB

208 F. Moller et al.

6. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: FORMS/FORMAT, pp. 107–115 (2010)

7. Haxthausen, A.E.: Automated generation of safety requirements from railway in-
terlocking tables. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS,
vol. 7610, pp. 261–275. Springer, Heidelberg (2012)

8. Heitmeyer, C.L., Kirby, J., Labaw, B.G., Archer, M., Bharadwaj, R.: Using abstrac-
tion and model checking to detect safety violations in requirements specifications.
IEEE Trans. Software Eng. 24(11), 927–948 (1998)

9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
10. Isobe, Y., Moller, F., Nguyen, H.N., Roggenbach, M.: Safety and line capacity

in railways – an approach in Timed CSP. In: Derrick, J., Gnesi, S., Latella, D.,
Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 54–68. Springer, Heidelberg
(2012)

11. Bjørner, D.: TRain: The Railway domain - A “Grand Challenge” for Computing Sci-
ence & Transportation Engineering. In: Jacquart, R. (ed.) Building the Information
Society, IFIP 18th World Computer Congress, Topical Sessions, Toulouse, France,
August 22-27, pp. 604–612. Kluwer (2004)

12. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Combining
event-based and state-based modelling for railway verification. Technical Report
CS-12-02, University of Surrey (2012)

13. Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.: Railway
modelling in CSP‖B: the double junction case study. In: AVOCS (2012)

14. Morgan, C.C.: Of wp and CSP. In: Beauty Is Our Business: A Birthday Salute to
Edsger J. Dijkstra. Springer (1990)

15. Schneider, S., Treharne, H.: CSP theorems for communicating B machines. Formal
Asp. Comput. 17(4), 390–422 (2005)

16. Winter, K.: Optimising ordering strategies for symbolic model checking of rail-
way interlockings. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS,
vol. 7610, pp. 246–260. Springer, Heidelberg (2012)

17. Winter, K., Robinson, N.J.: Modelling large railway interlockings and model check-
ing small ones. In: ACSC, pp. 309–316 (2003)

Word Equations with Length Constraints:
What’s Decidable?

Vijay Ganesh1, Mia Minnes2, Armando Solar-Lezama1 and Martin Rinard1

1 Massachusetts Institute of Technology
{vganesh,asolar,rinard}@csail.mit.edu

2 University of California, San Diego
minnes@math.ucsd.edu

Abstract. We prove several decidability and undecidability results for the satis-
fiability and validity problems for languages that can express solutions to word
equations with length constraints. The atomic formulas over this language are
equality over string terms (word equations), linear inequality over the length
function (length constraints), and membership in regular sets. These questions
are important in logic, program analysis, and formal verification. Variants of
these questions have been studied for many decades by mathematicians. More
recently, practical satisfiability procedures (aka SMT solvers) for these formulas
have become increasingly important in the context of security analysis for string-
manipulating programs such as web applications.

We prove three main theorems. First, we give a new proof of undecidability
for the validity problem for the set of sentences written as a ∀∃ quantifier alterna-
tion applied to positive word equations. A corollary of this undecidability result
is that this set is undecidable even with sentences with at most two occurrences
of a string variable. Second, we consider Boolean combinations of quantifier-free
formulas constructed out of word equations and length constraints. We show that
if word equations can be converted to a solved form, a form relevant in practice,
then the satisfiability problem for Boolean combinations of word equations and
length constraints is decidable. Third, we show that the satisfiability problem for
quantifier-free formulas over word equations in regular solved form, length con-
straints, and the membership predicate over regular expressions is also decidable.

1 Introduction

The complexity of the satisfiability problem for formulas over finite-length strings (the-
ories of strings) has long been studied, including by Quine [23], Post, Markov and
Matiyasevich [17], Makanin [15], and Plandowski [12, 20, 21]. While much progress
has been made, many questions remain open especially when the language is enriched
with new predicates.

Formulas over strings have become important in the context of automated bugfind-
ing [8,25], and analysis of database/web applications [7,14,27]. These program analysis
and bugfinding tools read string-manipulation programs and generate formulas express-
ing their results. These formulas contain equations over string constants and variables,
membership queries over regular expressions, and inequalities between string lengths.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 209–226, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

210 V. Ganesh et al.

In practice, formulas of this form have been solved by off-the-shelf satisfiability pro-
cedures such as HAMPI [8, 13] or Kaluza [25]. In this context, a deeper understanding
of the theoretical aspects of the satisfiability problem for this class of formulas may be
useful in practice.

Problem Statement: We address three problems. First, what is a boundary for decid-
ability for fragments of the theory of word equations? Namely, is the ∀∃-fragment of the
theory of word equations decidable? Second, is the satisfiability problem for quantifier-
free formulas over word equations and the length function decidable under some mini-
mal practical conditions? Third, is the satisfiability problem for quantifier-free formulas
over word equations, the length function, and regular expressions decidable under some
minimal practical conditions?

The question of whether the satisfiability problem for the quantifier-free theory of
word equations and length constraints is decidable has remained open for several decades.
Our decidability results are a partial and conditional solution. Matiyasevich [18] ob-
served the relevance of this question to a novel resolution of Hilbert’s Tenth Problem.
In particular, he showed that if the satisfiability problem for the quantifier-free theory of
word equations and length constraints is undecidable, then it gives us a new way to prove
Matiyasevich’s Theorem (which resolved the famous problem) [17, 18].

Summary of Contributions

1. We show that the validity problem (decision problem) for the set of sentences writ-
ten as a ∀∃ quantifier alternation applied to positive word equations (i.e., AND-OR
combination of word equations without any negation) is undecidable. (Section 3)

2. We show that if word equations can be converted to a solved form then the satisfia-
bility problem for Boolean combinations of word equations and length constraints
is decidable. (Section 4)

3. The above-mentioned decidability result has immediate practical impact for ap-
plications such as bug-finding in JavaScript and PHP programs. We empirically
studied the word equations in the formulas generated by the Kudzu JavaScript
bugfinding tool [25] and verified that most word equations in such formulas are
either already in solved form or can be automatically and easily converted into one.
(Section 4)

4. We further show that the satisfiability problem for quantifier-free formulas con-
structed out of Boolean combinations of word equations in regular solved form
with length constraints and the membership predicate for regular sets is also decid-
able. This is the first such decidability result for this set of formulas. (Section 5)

We now outline the layout of the rest of the paper. In Section 2 we define a theory of
word equations, length constraints, and regular expressions. In Section 3 we prove the
undecidability of the theory of ∀∃ sentences over positive word equations. In Section 4
(resp. Section 5) we give a conditional decidability result for the satisfiability prob-
lem for the quantifier-free theory of word equations and length constraints (resp. word
equations, length constraints, and regular expressions). Finally, in Section 6 we pro-
vide a comprehensive overview of the decidability/undecidability results for theories of
strings over the last several decades.

Word Equations with Length Constraints: What’s Decidable? 211

2 Preliminaries

2.1 Syntax

Variables: We fix a disjoint two-sorted set of variables var = varstr ∪ varint; varstr

consists of string variables, denoted X, Y, S , . . . and varint consists of integer variables,
denoted m, n,

Constants: We also fix a two-sorted set of constants Con = Constr ∪ Conint. More-
over, Constr ⊂ Σ∗ for some finite alphabet, Σ, whose elements are denoted f , g,
Elements of Constr will be referred to as string constants or strings. Elements of Conint

are nonnegative integers. The empty string is represented by ε.

Terms: Terms may be string terms or length terms. A string term (tstr in Figure 1)
is either an element of varstr, an element of Constr, or a concatenation of string terms
(denoted by the function concat or interchangeably by ·). A length term (tlen in Figure 1)
is an element of varint, an element of Conint, the length function applied to a string term,
a constant integer multiple of a length term, or a sum of length terms.

Atomic Formulas: There are three types of atomic formulas: (1) word equations (Awordeqn),
(2) length constraints (Alength), or (3) membership in a set defined by a regular expression
(Aregexp). Regular expressions are defined inductively, where constants and the empty
string form the base case, and the operations of concatenation, alternation, and Kleene
star are used to build up more complicated expressions (see details in [10]). Regular ex-
pressions may not contain variables.

Formulas: Formulas are defined inductively over atomic formulas (see Figure 1). We
include quantifiers of two kinds: over string variables and over integer variables.

Formula Nomenclature: We now establish notation for the classes of formulas we
will analyze. Define L1

e,l,r to be the first-order two-sorted language over which the for-
mulas described above (Figure 1) are constructed. This language contains word equa-
tions, length constraints, and membership in given regular sets. The superscript 1 in
L1

e,l,r denotes that this language allows quantifiers, and the subscripts l, e, r stand for
“length”, “equation”, and “regular expressions” (respectively). Let L1

e,l be the analo-
gous set of first-order formulas restricted to word equations and length constraints as
the only atomic formulas, and let L1

e be the collection of formulas whose only atomic
formulas are word equations. DefineL0

e,l,r to be the set of quantifier-freeL1
e,l,r formulas.

Similarly, L0
e,l and L0

e are the quantifier-free versions of L1
e,l and L1

e , respectively.
Recall that a formula is in prenex normal form if all quantifiers appear at the front

of the expression: that is, the formula has a string of quantifiers and then a Boolean
combination of atomic formulas. It is a standard result (see, for example [6]) that any
first-order formula can be translated into prenex normal form. We therefore assume that
all formulas are given in this form. Intuitively, a variable is free in a formula if it is
not quantified. For example, in the formula ∀yφ(y, x), the variable y is bound while x is
free. For a full inductive definition, see [6]. A formula with no free variables is called a
sentence.

212 V. Ganesh et al.

F � Atomic | F ∧ F | F ∨ F | ¬F
| ∃x.F(x) | ∀x.F(x)

Atomic � Awordeqn | Alength | Aregexp

Awordeqn � tstr = tstr

Alength � tlen ≤ c where c ∈ Conint

Aregexp � tstr ∈ RE where RE is a regular expression
tstr � a | X | concat(tstr , ..., tstr) where a ∈ Constr & X ∈ varstr

tlen � m | v | len(tstr) | Σn
i=1ci ∗ ti

len where m, n, ci ∈ Conint & v ∈ varint

Fig. 1. The syntax of L1
e,l,r-formulas

2.2 Semantics and Definitions

For a word, w, len(w) denotes the length of w. For a word equation of the form t1 = t2,
we refer to t1 as the left hand side (LHS), and t2 as the right hand side (RHS).

We fix a string alphabet, Σ. Given an L1
e,l,r formula θ, an assignment for θ (with

respect to Σ) is a map from the set of free variables in θ to Σ∗∪N (where string variables
are mapped to strings and integer variables are mapped to numbers). Given such an
assignment, θ can be interpreted as an assertion about Σ∗ and N. If this assertion is true,
then we say that θ itself is true under the assignment. If there is some assignment which
makes θ true, then θ is called satisfiable. AnL1

e,l,r-formula with no satisfying assignment
is called an unsatisfiable formula. We say two formulas θ, φ are equisatisfiable if θ is
satisfiable iff φ is satisfiable. Note that this is a broad definition: equisatisfiable formulas
may have different numbers of assignments and, in fact, need not even be from the same
language.

The satisfiability problem for a set S of formulas is the problem of deciding whether
any given formula in S is satisfiable or not. We say that the satisfiability problem for a
set S of formulas is decidable if there exists an algorithm (or satisfiability procedure)
that solves its satisfiability problem. Satisfiability procedures must have three proper-
ties: soundness, completeness, and termination. Soundness and completeness guarantee
that the procedure returns “satisfiable” if and only if the input formula is indeed satis-
fiable. Termination means that the procedure halts on all inputs. In a practical imple-
mentation, some of these requirements may be relaxed for the sake of improved typical
performance.

Analogous to the definition of the satisfiability problem for formulas, we can define
the notion of the validity problem (aka decision problem) for a set Q of sentences in a
language L. The validity problem for a set Q of sentences is the problem of determining
whether a given sentence in Q is true under all assignments.

2.3 Representation of Solutions to String Formulas

It will be useful to have compact representations of sets of solutions to string formulas.
For this, we use Plandowski’s terminology of unfixed parts [21]. Namely, fix a set of
new variables V disjoint from all of Σ, Con, and var. For θ an L1

e,l,r formula, an assign-
ment with unfixed parts is a mapping from the free variables of θ to string elements of

Word Equations with Length Constraints: What’s Decidable? 213

the domain or V . Such an assignment represents the family of solutions to θ where each
element of V is consistently replaced by a string element in the domain. (See example
1 below.)

Another tool for compactly encoding many solutions to a formula is the use of integer
parameters. If i is a non-negative integer, we write ui to denote the i-fold concatenation
of the string u with itself. An assignment with integer parameters to the formula θ is a
map from the free variables of θ to string elements of the domain, perhaps with integer
parameters occurring in the exponents. (See example 2 below.)

Combining these two representations, we also consider assignments with unfixed
parts and integer parameters. These assignments will provide the general framework
for representing solution sets to L1

e,l,r formulas compactly.

2.4 Examples

We consider some sample formulas and their solution sets. The string alphabet is Σ =
{a, b}. (Many of the examples in this paper are from existing literature by Plandowski
et al. [21].)

Example 1. Consider the L0
e formula which is a word equation X = aYbZa with three

variables (X, Y, Z) and two string constants (a, b). The set of all solutions to this equa-
tion is described by the assignment X �→ aybza, Y �→ y, Z �→ z, where V = {y, z} is the
set of unfixed parts. Any choice of y, z ∈ Σ∗ yields a solution to the equation.

Example 2. Consider the equation abX = Xba with one variable X. This is a formula
in L0

e . The map X �→ aba is a solution. The map X �→ (ab)ia with i ≥ 0 is also an
assignment which gives a solution. In fact, this assignment (with integer parameters)
exactly describes all possible solutions of the word equation.

Example 3. Consider the L0
e,l,r formula

abX = Xba ∧ X ∈ (ab | ba)(ab)∗a ∧ len(X) ≤ 5.

The two solutions to this formula are X = aba and X = ababa.

3 The Undecidability Theorem

In this section we prove that the validity problem for the set of L1
e sentences over posi-

tive word equations (AND-OR combinations of word equations) whose prenex normal
form has ∀∃ as its quantifier prefix is undecidable.

3.1 Proof Idea

We do a reduction from the halting problem for two-counter machines, which is known
to be undecidable [10], to the problem in question. To do so, we encode computation
histories as strings. The choice of two-counter machine makes this proof cleaner than
other undecidability proofs for this set of formulas (see Section 6 for a comparison with

214 V. Ganesh et al.

earlier work). The basic proof strategy is as follows: given a two-counter machine M
and a finite string w, we construct an L1

e sentence ∀S∃S 1, . . . , S 4θ(S , S 1, . . . , S 4) such
that M does not halt on w iff this L1

e sentence is valid. By the construction of θ, this
will happen exactly when all assignments to the string variable S are not codes for
halting computation histories of M over w. The variables S 1, . . . , S 4 are used to refer to
substrings of S and the quantifier-free formula θ expresses the property of S not coding
a halting computation history.

3.2 Recalling Two-Counter Machines

A two-counter machine is a deterministic machine which has a finite-state control, two
semi-infinite storage tapes, and a separate read-only semi-infinite input tape. All tapes
have a left endpoint and no right endpoint. All tapes are composed of cells, each of
which may store a symbol from the appropriate alphabet (the alphabet of the storage
tapes is {Z, blank}; the alphabet of the input alphabet is some fixed finite set). The input
to the machine is a finite string written on the input tape, starting at the leftmost cell. A
special character follows the input string on the tape to mark the end of the input. Each
tape has a corresponding tape-head that may move left, move right, or stay put. The
input tape-head cannot move past the right end of the input string. The initial position
of all the tape-heads is the leftmost cell of their respective tapes. At each point in the
computation, the cell being scanned by each tape-head is called that tape’s current cell.

The symbol Z serves as a bottom of stack marker on the storage tapes. Hence, it
appears initially on the cell scanned by the tape head and may never appear on any
other cells. A non-negative integer i can be represented on the storage tape by moving
the tape head i cells to the right of Z. A number stored on the storage tape can be
incremented or decremented by moving the tape-head to the right or to the left. We can
test whether the number stored in one of the storage tapes is zero by checking if the
contents of the current cell of that tape is Z. But, the equality of two numbers stored
on the storage tapes cannot be directly tested. It is well known that the two-counter
machine can simulate an arbitrary Turing machine. Consequently, the halting problem
for two-counter machines is undecidable [10].

More formally, a two-counter machine M is a tuple 〈Q, Δ, {Z, b, c}, δ, q0, F〉 where,

– Q is the finite set of control states of M, q0 ∈ Q is the initial control state, and
F ⊆ Q is the set of final control states.

– Δ is the finite alphabet of the input tape, {Z, b} and {Z, c} are the storage tape alpha-
bets for the first and second tapes, respectively. (The distinct blank symbols for the
two tapes are a notational convenience.)

– δ is the transition function for the control of M. This function maps the domain,
Q × Δ × {Z, b} × {Z, c} into Q × {in, stor1, stor2} × {L,R}. In words, given a control
state and the contents of the current cell of each tape, the transition function speci-
fies the next state of the machine, a tape-head (input or one of the storage tapes) to
move, and whether this tape-head moves left (L) or right (R).

Word Equations with Length Constraints: What’s Decidable? 215

3.3 Instantaneous Description of Two-counter Machines as Strings

We define instantaneous descriptions (ID) of two-counter machines in terms of strings.
Informally, the ID of a machine represents its entire configuration at any instant in
terms of machine parameters such as the current control state, current input-tape letter
being read by the machine, and current storage-tape contents. The set of IDs will be
determined both by the machine and the given input to the machine.

Definition of ID: An instantaneous description (ID) of a computation step of a two-
counter machine M running on input w is the concatenation of the following compo-
nents.

– Current control state of M: represented by a character over the finite alphabet Q.
– The input w and an encoding of the current input tape cell. The encoding uses string

constants to represent the integers between 0 and |w| − 1; let Ni denote the string
constant encoding the number i.

– The finite distances of the two storage heads from the symbol Z, represented as
a string of blanks (i.e., in unary representation). For convenience, we will use the
symbol b to denote the blanks on storage tape 1, and c on storage tape 2.

Each component of an ID is separated from the others by an appropriate special char-
acter. In what follows, we will suppress discussion of this separator and we will assume
that it is appropriately located inside each ID. A lengthy but technically trivial modifi-
cation of our reduction formula could be used to allow for the case where this separator
is missing.

Definition of Initial ID: For any two-counter machine M and each input w, there is
exactly one initial ID, denoted InitM,w. This ID is the result of concatenating the string
representations of the following data: Initial state q0 of M, w, 0, ε, ε. The “0” says that
the current cell of the input tape contains the 0th letter of w. The two “ε”s represent the
contents of the two storage tape: both are empty at this point.

Definition of Final ID: We use the standard convention that a two-counter machine
halts only after the storage tapes contain the unary representation of the number 0 and
the input tape-head has moved to the leftmost position of its tape. The ID of the ma-
chine at the end of a computation is therefore the concatenation of representations of
q f ,w, 0, ε, ε, where q f is one of the finitely many final control states q f ∈ F of M.
Observe that there are only finitely many Final IDs.

3.4 Computation History of a Two-Counter Machine as a String

A well-formed computation history of a two-counter machine M as it processes a given
input w is the concatenation of a sequence of IDs separated by the special symbol #. The
first ID in the sequence is the initial ID of M on w, and for each i, IDi+1 is the result of
transforming IDi according to the transition function of M. A well-formed computation
history of the machine M on the string w is called accepting if it is a finite string whose
last ID is a Final ID of M on w. The last ID of a string is defined to be the rightmost
substring following a separator #. If a finite computation history is not accepting, it is
either not well-formed or rejecting.

216 V. Ganesh et al.

3.5 Alphabet for String Formulas and the Universe of Strings

Given a two-counter machine M and an input string w, we define the associated finite
alphabet

Σ0 = {#qiNjw : qi ∈ Q, 0 ≤ j < |w|}.
This alphabet includes all possible initial segments of IDs, not including the data about
the contents of the storage tapes. We also define Σ1 = b and Σ2 = c. We define the
alphabet of strings as Σ ≡ {Σ0 ∪ Σ1 ∪ Σ2}, and the universe of strings as Σ∗. Thus, each
valid ID will be in the regular set Σ0Σ

∗
1Σ
∗
2 .

3.6 The Undecidability Theorem

Theorem 4. The validity problem for the set of L1
e sentences over positive word equa-

tions with ∀∃ quantifier alternation is undecidable.

Proof. By Reduction: We reduce the halting problem for two-counter machines to the
decision problem in question. Given a pair 〈M,w〉 of a two-counter machine M and
an arbitrary input w to M, we construct an L1

e-formula θM,w(S , S 1, . . . , S 4,U,V) which
describes the conditions for S 1, . . . , S 4 to be substrings of S and S to fail to code an
accepting computation history of M over w. Thus,

∀S∃S 1, S 2, S 3, S 4,U,V
(
θM,w(S , S 1, · · · , S 4,U,V)

)

is valid if and only if it is not the case that M halts and accepts on w. For brevity, we
write θ for θM,w.

Structure of θ: We will define θ as the disjunction of ways in which S could fail to
encode an accepting computation history: either S does not start with the Initial ID, or
S does not end with any of the Final IDs, or S is not a well-formed sequence of IDs, or
it does not follow the transition function of M over w.

θ =(
∨

E∈NotInit

S = E · S 1) ∨ (
∨

E∈NotFinal

S = S 1 · E)∨

NotWellFormedSequence(S , S 1, · · · , S 4)∨
((S = S 1 · S 2 · S 3 · S 4) ∧ (Ub = bU) ∧ (Vc = cV) ∧ ¬Next(S , S 1, S 2, S 3, S 4,U,V))

Note that the variables S i (i = 1, . . . , 4) represent substrings of S .

– NotInit and NotFinal: The set NotInit is a finite set of string constants for strings
with length at most that of the Initial ID InitM,w which are not equal to InitM,w.
Similarly, NotFinal is a set of string constants for strings that that are not equal to
any of the Final IDs, but have the same or smaller length.

– NotWellFormedSequence: This subformula asserts that S is not a sequence of IDs.
Recall that, by definition, the set of well-formed IDs is described by the regular
expression Σ0Σ

∗
1Σ
∗
2 = Σ0b∗c∗, where strings in Σ0 (as defined above) include the ID

separator # as well as codes for the control state, w, and letter of w being scanned.

Word Equations with Length Constraints: What’s Decidable? 217

A well-formed sequence of IDs is a string of the form (Σ0b∗c∗)∗ − ε. Thus, the
set described by NotWellFormedSequence should be Σ∗ − (Σ0b∗c∗)∗. In fact, we
can characterize this regular set entirely in terms of word equations: a string over
Σ = Σ0 ∪ {b, c} is not a well-formed sequence of IDs if and only if it starts with
b or c, or contains cb. The fact that a non well-formed sequence may start with b
or c is already captured by the NotInit formula above. The fact that a non well-
formed sequence contains cb or is an ε is guaranteed by the following formula
NotWellFormedSequence():

(S = ε) ∨ (S = S 1 · c · b · S 4).

– Next:
Next() asserts that the pair of variables S 2, S 3 form a legal transition. It is a disjunc-
tion over all (finitely many) possible pairs of IDs defined by the transition function:

∨

(q2 ,d,g1,g2,q3,t,m)∈δ;0≤n2,n3<|w|
S 2 = #q2Nn2 wUV ∧ S 3 = #q3Nn3 w f (U)g(V)

where d = w(n2); g1 = Z if U = ε and g1 = b otherwise; g2 = Z if V = ε
and g2 = c otherwise; and f (U), g(V),Nn3 are the results of modifying the stack
contents represented by U,V and input tape-head position according to whether the
value of t is in, stor1, or stor2 and whether m is L or R. Note that the disjunction
is finite and is determined by the transition function and w. Also note that each of
#q2Nn2 w and #q3Nn3 w is a single letter in Σ0.

Simplifying the Formula: The formula θ contains negated equalities in the subformula
¬Next. However, each of these may be replaced by a disjunction of equalities because
Q, |w|, δ are each finite. Hence, we can translate θ to a formula containing only conjunc-
tions and disjunctions of positive word equations. We also observe that the formula we
constructed in the proof can be easily converted to a formula which has at most two
occurrences of any variable 1. Thus, we get the final theorem.

Theorem 5. The validity problem for the set of L1
e sentences with ∀∃ quantifier alter-

nation over positive word equations, and with at most two occurrences of any variable,
is undecidable.

Bounding the Inner Existential Quantifiers: Observe that in θ all the inner quanti-
fiers S 1, · · · , S 4,U,V are bounded since they are substrings of S . The length function,
len(S i) ≤ len(S), can be used to bound these quantifiers.

Corollary 6. The set of L1
e,l sentences with a single universal quantifier followed by a

block of inner bounded existential quantifiers is undecidable.

4 Decidability Theorem

In this section we demonstrate the existence of an algorithm deciding whether any L0
e,l

formula has a satisfying assignment, under a minimal and practical condition.

1 We thank Professor Rupak Majumdar for observing this and other improvements.

218 V. Ganesh et al.

4.1 Word Equations and Length Constraints

Word equations by themselves are decidable [21]. Also, systems of inequalities over
integer variables are decidable because these are expressible as quantifier-free formu-
las in the language of Presburger arithmetic and Presburger arithmetic is known to be
decidable [22]. In this section, we show that if word equations can be converted into
solved form, the satisfiability problem for quantifier-free formulas over word equations
and length constraints (i.e., L0

e,l formulas) is decidable. Furthermore, we describe our
observations of word equations in formulas generated by the Kudzu JavaScript bugfind-
ing tool [25]. In particular, we saw that these equations either already appeared in solved
form or could be algorithmically converted into one.

4.2 What Is Hard about Deciding Word Equations and Length Constraints?

The crux of the difficulty in establishing an unconditional decidability result is that it
is not known whether the length constraints implied by a set of word equations have
a finite representation [21]. In the case when the implied constraints do have a finite
representation, we look for a satisfying assignment to both the implied and explicit
constraints. Such a solution can be translated into a satisfying assignment of the word
equations when the implied constraints of the system of equations is equisatisfiable with
the system itself.

4.3 Definition of Solved Form

A word equation w has a solved form if there is a finite set S of formulas (possibly
with integer parameters) that is logically equivalent to w and satisfies the following
conditions.2

– Every formula in S is of the form X = t, where X is a variable occurring in w
and t is the result of finitely many concatenations of constants in w (with possible
integer parameters) and possible unfixed parts. (Recall the definitions for integer
parameters and unfixed parts from Section 2.) All integer parameters i in S are
linear, of the form ci where c is an integer constant.

– Every variable in w occurs exactly once on the LHS of an equation in S and never
on the RHS of an equation in S.

The solved form corresponding to w is the conjunction of all the formulas in S, denoted
∧S. If there is an algorithm which converts any given word equation to solved form (if
one exists, and halts in finite time otherwise), and if ∧S is the output of this algorithm
when given w, we say that the effective solved form of w is ∧S. Solved form equations
can have integer parameters, whereas L0

e,l formulas cannot. The solved form is used to
extract all necessary and sufficient length information implied by w.

2 The idea of solved form is well known in equational reasoning, theorem proving, and satisfia-
bility procedures for rich logics (aka SMT solvers).

Word Equations with Length Constraints: What’s Decidable? 219

Example 7. Satisfiable Solved Form Example: Consider the system of word equa-
tions

Xa = aY ∧ Ya = Xa.

This formula can be converted into solved form as follows:

X = ai ∧ Y = ai (i ≥ 0).

Example 8. Unsatisfiable Solved Form Example: Consider the formula

abX = Xba ∧ X = abY ∧ len(X) < 2

with variables X, Y. The set of solutions to the equation abX = Xba is described by the
map X �→ (ab)ia with i ≥ 0 (recall Example 2). Hence the solved form for the system of
two equations is:

X = (ab)ia ∧ Y = (ab)i−1a (i > 0)

The length constraints implied by this system are

len(X) = 2c + 1 ∧ len(Y) = 2c − 1 ∧ len(X) < 2 (c > 0).

This is unsatisfiable. Hence, the original formula is also unsatisfiable.

Example 9. Word Equations Without a Solved Form: Not all word equations can
be written in solved form. Consider the equation

XabY = YbaX.

The map X �→ a, Y �→ aa is a solution, as is X �→ bb, Y �→ b. However, it is known that
the solutions to this equation cannot be expressed using linear integer parameters [21].
Thus, not all satisfiable systems of equations can be expressed in solved form.

4.4 Why Solved Form?

For word equations with an equivalent solved form, all length information implied by
the word equations can be represented in a finite and complete (defined below) man-
ner. The completeness property enables a satisfiability procedure to decouple the word
equations from the (implied and given) length constraints, because it guarantees that
the word equation is equisatisfiable with the implied length constraints. Furthermore,
solved form guarantees that the implied length constraints are linear inequalities, and
hence their satisfiability problem is decidable [22]. This insight forms the basis of our
decidability results. It is noteworthy that most word equations that we have encountered
in practice [25] are either in solved form or can be automatically converted into one.

4.5 Proof Idea for Decidability

Without loss of generality, we consider formulas that are the conjunction of word equa-
tions and length constraints. (The result can be easily extended to arbitrary Boolean
combination of such formulas.) Let φ ∧ θ be an L0

e,l-formula, where φ is a conjunction
of word equations and θ is a conjunction of length constraints. Observe that φ implies a
certain set of length constraints.

220 V. Ganesh et al.

Example 10. Consider the equation X = abY. We have the following set R of implied
length constraints:

{len(X) = 2 + len(Y), len(Y) ≥ 0}.
The set R is finite but exhaustive. That is, any other length constraint implied by the
equation X = abY is either in R or is implied by R . Consider the L0

e,l formula

X = abY ∧ len(Y) > 1,

Note that X = abY is satisfiable, say by the assignment with unfixed parts X �→
aby, Y �→ y. It remains to check whether there is a solution (represented by some choice
of the unfixed part) which satisfies the length constraints R∪{len(Y) > 1}. A solution to
the set of integer inequalities is len(X) = 4, len(Y) = 2. Translating this to a solution of
the original formulas amount to “back-solving” for the exponent of unfixed parts in the
solution to the word equation. That is, since X �→ aby, Y �→ y is a satisfying assignment,
we can pick any string of length 2 for y: say, X �→ abab, Y �→ ab.

Taking this example further, consider the L0
e,l formula

X = abY ∧ len(Y) > 1 ∧ len(X) ≤ 2.

The set of length constraints is now: {len(X) = 2 + len(Y), len(Y) ≥ 0, len(Y) >
1, len(X) ≤ 2}. This is not satisfiable, so neither is the original formula.

The set of implied length constraints for word equations that have a solved form is
also finite and exhaustive. We prove this fact below, and use it to prove that a sound,
complete and terminating satisfiability procedure exists for L0

e,l formulas with word
equations in solved form.

Definitions: We say that a set R of length constraints is implied by a word equation φ
if the lengths of the strings in any solution of φ satisfy all constraints in R. And, R is
complete for φ if any length constraint implied by φ is either in R or is implied by a
subset of R. These definitions can be suitably extended to a Boolean combination of
word equations.

4.6 Decidability Theorem

We prove a set of lemmas culminating in the decidability theorem.

Lemma 1. If a word equation w has a solved form S, then there exists a set R of
linear length constraints implied by w that is finite and complete. Moreover, there is an
algorithm which, given w, computes this set R of constraints.

Proof. Since a word equation w is logically equivalent to its solved form S, every solu-
tion to w is a solution to S and vice-versa. Hence, the set of length constraints implied
by w is equivalent to the set of length constraints implied by S. In R, we will have
integer variables associated with each string variable in w, integer variables associated
with each unfixed part appearing in the RHS of an equation in S, and integer variables
associated with each integer parameter appearing in the RHS of an equation in S. For

Word Equations with Length Constraints: What’s Decidable? 221

each X appearing in w, consider the equation in S whose LHS is X: X = t1 · · · tn, where
each ti is either (1) a constant from w, (2) a constant from w raised to some integer
parameter, or (3) an unfixed part. This equation implies a length equation of the form:
len(X) = C + i1c1 + · · · + ikck + len(y1) + · · · len(y j), where C is the sum of the lengths
of constants in w that appear on the RHS without an integer parameter; the ci terms are
the lengths of constants with integer parameters; and there are terms for each unfixed
part appearing in the equation. The only other length constraints associated with this
equation say that the unfixed parts and the integer parameters may be arbitrarily cho-
sen: ir ≥ 0, len(ys) ≥ 0 for each 1 ≤ r ≤ k and 1 ≤ 1 ≤ s ≤ j. Note that the minimum
length of X is the expression above where we choose each ir = 0 and each len(ys) = 0.
Let R be the union over X in w of the (finitely many) length constraints associated with
X discussed above. Since S is finite, so is R.

It remains to prove that R is complete. By definition of solved form, all length con-
straints implied by S are of the form included in R. Thus, R is complete for S. Since
S is logically equivalent with w, they imply the same length constraints. Hence, R is
complete for w as well.

Lemma 2. If a word equation w has a solved form S, then w is equi-satisfiable with
the length constraints R derived from S.

Proof. Since R is finite, the conjunction of all its elements is a formula of L0
e,l

(⇒) If w is satisfiable, then so is R: Suppose w is satisfiable and consider some
satisfying assignment w. Then since R is implied by w, the lengths of the strings in
this assignment satisfy all the constraints in R. Thus, this set of lengths witnesses the
satisfiability of R.

(⇐) If R is satisfiable, then so is w: Suppose R is satisfiable. Any solution of R gives
a collection of lengths for the variables in w. An assignment that satisfies w is given by
choosing arbitrary strings of the prescribed length for the unfixed parts and choosing
values of the integer parameters prescribed by the solution of R.

Theorem 11. The satisifiability problem for L0
e,l formulas is decidable, provided that

there is an algorithm to obtain the solved forms of word equations for which they exist.

Proof. We assume without loss of generality that the givenL0
e,l formula is the conjunc-

tion of a single word equation with some number of length constraints. (Generalizing to
arbitrary L0

e,l formulas is straightforward.) Let the input to the algorithm be a formula
φ ∧ θ, where φ is the word equation and θ is a conjunction of length constraints. The
output of the algorithm is satisfiable (SAT) or unsatisfiable (UNSAT).

Plandowski’s algorithm [21] decides satisfiability of word equations; known algo-
rithms for formulas of Presburger arithmetic can decide the satisfiability of systems of
linear length constraints. Thus, begin by running these algorithms (in parallel) to de-
cide if (separately) φ and θ are satisfiable. If either of these return UNSAT, we return
UNSAT.

Using the assumption that the word equation φ has an effective solved form, compute
this form S and the associated (complete and finite) implied set R of linear length
constraints (as in Lemma 1). By Lemma 2, it is now sufficient to check the satisfiability
of (∧R) ∧ θ. This can be done by a second application of an algorithm for formulas in

222 V. Ganesh et al.

Presburger arithmetic, because the length constraints implied by φ are all linear. If this
system of linear inequalities is satisfiable, return SAT, otherwise, we return UNSAT.

This procedure is a sound, complete and terminating procedure for L0
e,l-formulas

whose word equations have effective solved forms.

4.7 Practical Value of Solved Form and the Decidability Result

JavaScript programs often process strings. These strings are entered into input forms
on web-pages or are substrings used by JavaScript programs to dynamically generate
web-pages or SQL queries. During the processing of these strings, JavaScript programs
often concatenate these strings to form larger strings, use strings in assignments, com-
pare string lengths, construct equalities between strings as part of if-conditionals or use
regular expressions as basic “sanity-checks” of the strings being processed. Hence, any
program analysis of such JavaScript programs results in formulas that contain string
constants and variables, the concatenation operation, regular expressions, word equa-
tions, and uses of the length function.

In their paper on an automatic JavaScript testing program (Kudzu) and a practical sat-
isfiability procedure for strings [25], Saxena et al. mention generating more than 50,000
L0

e,l,r formulas where the length of the string variables is bounded (i.e., the string vari-
ables range over a finite universe of strings). Kudzu takes as input a JavaScript program
and (implicit) specification, and does some automatic analysis (a form of concrete and
symbolic execution [2, 9]) on the input program. The result of the analysis is a string
formula that captures the behavior of the program-under-test in terms of the symbolic
input to this program. A solution of such a formula is a test input to the program-under-
test. Kudzu uses the Kaluza string solver to solve these formulas and generate program
inputs for program testing.

We obtained more than 50,000 string constraints (word equations + length con-
straints) from the Kaluza team (http://webblaze.cs.berkeley.edu/2010/kaluza/). Kaluza
is a solver for string constraints, where these constraints are obtained from bug-finding
and string analysis of web applications. The constraints are divided into satisfiable and
unsatisfiable constraints. We wrote a simple Perl script to count the number of equations
per file and the number of equations already in solved form (identifier = expression).
We then computed the ratio to see how many examples from this actual data set are
already in solved form.

Experimental Results. The results are divided into groups based on whether the con-
straints were satisfiable or not. For satisfiable small equations (approximately 30-50
constraints per file), about 80% were already in solved form. For satisfiable large equa-
tions (around 200 constraints per file), this number rose to approximately 87%. Among
the unsatisfiable and small equations (less than 20 constraints per file), again about
80% were already in solved form. Large (greater than 4000 constraints) unsatisfiable
equations were in solved form a slightly smaller percentage of the time: 75%.

5 Word Equations, Length, and Regular Expressions

We now consider whether the previous result can be extended to show that the satisfi-
ability problem for L0

e,l,r formulas is decidable, provided that there is an algorithm to

Word Equations with Length Constraints: What’s Decidable? 223

obtain the solved forms of given word equations. A generalization of the proof strategy
from above looks promising. That is, given a membership test in a regular set X ∈ RE,
we can extract from the structure of the regular expression a constraint on the length of
X that is expressible as a linear inequality. Thus, it may seem that the same machinery
as in the L0

e,l theorem may be applied to the broader context of L0
e,l,r. However, there

remain some subtleties to resolve.

Example 12. Consider the L0
e,l,r formula

abX = Xba ∧ X ∈ (ab)∗b ∧ len(X) ≤ 3.

A naı̈ve translation of each component into length constraints gives us the following:
⎧
⎪⎪⎨
⎪⎪⎩

len(X) = 2i + 1, i ≥ 0 implied by the word equation and regular expression

len(X) ≤ 3.

This system of length constraints is easily seen to be simultaneously satisfiable: let i = 0
or 1 and hence len(X) = 1 or 3. However, the formula is not satisfiable since solutions
of the word equation are X ∈ (ab)∗a and the regular expression requires any solution to
end in a b.

Thus, in order to address L0
e,l,r formulas, we must take into account more information

than is encapsulated by the length constraints imposed by regular expressions. In par-
ticular, if we impose the additional restriction that the word equations must have solved
form (without unfixed parts) that are also regular expressions, then we can get a decid-
ability result for L0

e,l,r formulas.

Lemma 3. If a word equation has a solved form without unfixed parts that is also a
regular expression, then there is a finite set of linear length constraints that can be
effectively computed from this solved form and which are equisatisfiable with the equa-
tion.

Proof. It is sufficient to recall the fact, from [1], that given a regular set R, the set of
lengths of strings in R is a finite union of arithmetic progressions. Moreover, there is
an algorithm to extract the parameters of these arithmetic progressions from the regular
expression defining R.

Using the above Lemma, the set of length constraints implied by an arbitrary regular
expression can be expressed as a finite system of linear inequalities.

Theorem 13. The satisifiability problem for L0
e,l,r formulas is decidable, provided that

there is an algorithm to obtain the solved forms of the given word equations, and the
solved form equations do not contain unfixed parts and are regular expressions.

Proof. Let θ(X)∧φ∧ (X ∈ RE) be aL0
e,l,r formula, where θ(X) is a word equation, φ is a

conjunction of length constraints, and X ∈ RE asserts membership in a specified regular
set. The proof can be easily extended to a Boolean combination of atomic formulas.
Consider the following satisfiability procedure:

224 V. Ganesh et al.

– If any of θ(X), φ, or X ∈ RE is UNSAT, return UNSAT.
– Convert θ(X) into a solved form where it is a regular expression. That is, write it as

X ∈ RE1. Compute the intersection of the two regular expressions, X ∈ RE ∩ RE1.
If RE ∩ RE1 is empty, return UNSAT.

– Extract equisatisfiable length constraints ψ from X ∈ RE ∩ RE1 using Lemma 3. If
ψ ∧ φ is UNSAT, return UNSAT. Else return SAT.

The first step is effective by the same arguments as in Theorem 11 and the observa-
tion that membership in regular sets is decidable. The second step is effective since all
Boolean operations may be performed effectively on regular sets. Using Lemma 3, it is
easy to establish that this satisfiability procedure is sound, complete and terminating.

6 Related Work

In his original 1946 paper, Quine [23] showed that the first-order theory of string equa-
tions (i.e., quantified sentences over Boolean combination of word equations) is un-
decidable. Due to the expressibility of many key reliability and verification questions
within this theory, this work has been extended in many ways.

One line of research studies fragments and modifications of this base theory which
are decidable. Notably, in 1977, Makanin proved that the satisfiability problem for the
quantifier-free theory of word equations is decidable [15]. In a sequence of papers,
Plandowski and co-authors showed that the complexity of this problem is in PSPACE
[21]. Stronger results have been found where equations are restricted to those where
each variable occurs at most twice [24] or in which there are at most two variables [3,
4, 11]. In the first case, satisfiability is shown to be NP-hard; in the second, polynomial
(which was improved further in the case of single variable word equations).

Concurrently, many researchers have looked for the exact boundary between decid-
ability and undecidability. Durnev [5] and Marchenkov [16] both showed that the ∀∃
sentences over word equations is undecidable. Note that Durnev’s result is closest to
our undecidability result. The main difference is that our proof is considerably simpler
because of the use of two-counter machines, as opposed to certain non-standard ma-
chines used by Durnev. We also note corollaries regarding number of occurences of a
variable, and L1

e,l sentences with a single universal followed by bounded existentials.
On the other hand, Durnev uses only 4 string variables to prove his result, while we
use 7. We believe that we can reduce the number of variables, at the expense of a more
complicated proof.

Word equations augmented with additional predicates yield richer structures which
are relevant to many applications. In the 1970s, Matiyasevich formulated a connection
between string equations augmented with integer coefficients whose integers are taken
from the Fibonacci sequence and Diophantine equations [17]. In particular, he showed
that proving undecidability for the satisfiability problem of this theory would suffice
to solve Hilbert’s 10th Problem in a novel way. Schulz [26] extended Makanin’s sat-
isfiability algorithm to the class of formulas where each variable in the equations is
specified to lie in a given regular set. This is a strict generalization of the solution sets
of word equations. [12] shows that the class of sets expressible through word equations
is incomparable to that of regular sets.

Word Equations with Length Constraints: What’s Decidable? 225

Möller [19] studies word equations and related theories as motivated by questions
from hardware verification. More specifically, Möller proves the undecidability of the
existential fragment of a theory of fixed-length bit-vectors, with a special finite but
possibly arbitrary concatenation operation, the extraction of substrings and the equality
predicate. Although this theory is related to the word equations that we study, it is more
powerful because of the finite but possibly arbitrary concatenation.

References

1. Blumensath, A.: Automatic structures. Diploma thesis, RWTH-Aachen (1999)
2. Cadar, C., Ganesh, V., Pawlowski, P., Dill, D., Engler, D.: EXE: automatically generating

inputs of death. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM Con-
ference on Computer and Communications Security, pp. 322–335. ACM (2006)

3. Charatonik, W., Pacholski, L.: Word equations with two variables. In: Abdulrab, H.,
Pécuchet, J.-P. (eds.) IWWERT 1991. LNCS, vol. 677, pp. 43–56. Springer, Heidelberg
(1993)

4. Dabrowski, R., Plandowski, W.: On word equations in one variable. Algorithmica 60(4),
819–828 (2011)

5. Durnev, V.: Undecidability of the positive ∀∃3-theory of a free semigroup. Siberian Mathe-
matical Journal 36(5), 1067–1080 (1995)

6. Ebbinghaus, H.-D., Flum, J., Thomas, W.: Mathematical Logic. Undergraduate Texts in
Mathematics. Springer (1994)

7. Emmi, M., Majumdar, R., Sen, K.: Dynamic test input generation for database applications.
In: Rosenblum, D., Elbaum, S. (eds.) ISSTA, pp. 151–162. ACM (2007)

8. Ganesh, V., Kieżun, A., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.: HAMPI: A string
solver for testing, analysis and vulnerability detection. In: Gopalakrishnan, G., Qadeer, S.
(eds.) CAV 2011. LNCS, vol. 6806, pp. 1–19. Springer, Heidelberg (2011)

9. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing. In: Sarkar,
V., Hall, M. (eds.) PLDI, pp. 213–223. ACM (2005)

10. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to automata theory, languages, and com-
putation. Pearson/Addison Wesley (2007)

11. Ilie, L., Plandowski, W.: Two-variable word equations. ITA 34(6), 467–501 (2000)
12. Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and relations by

word equations. J. ACM 47(3), 483–505 (2000)
13. Kiezun, A., Ganesh, V., Guo, P., Hooimeijer, P., Ernst, M.: HAMPI: a solver for string con-

straints. In: Rothermel, G., Dillon, L. (eds.) ISSTA, pp. 105–116. ACM (2009)
14. Majumdar, R.: Private correspondence. SWS, MPI, Kaiserslautern, Germany (2010)
15. Makanin, G.: The problem of solvability of equations in a free semigroup. Math.

Sbornik 103, 147–236 (1977); English transl. in Math USSR Sbornik 32 (1977)
16. Marchenkov, S.S.: Unsolvability of positive ∀∃-theory of free semi-group. Sibirsky Math-

matichesky Jurnal 23(1), 196–198 (1982)
17. Matiyasevich, Y.: Word equations, Fibonacci numbers, and Hilbert’s tenth problem (2006)

(unpublished), http://logic.pdmi.ras.ru/?yumat/Journal/jcontord.htm
18. Matiyasevich, Y.: Computation paradigms in light of Hilbert’s Tenth Problem. In: Cooper, S.,

Löwe, B., Sorbi, A. (eds.) New Computational Paradigms, pp. 59–85. Springer, New York
(2008)

19. Möller, O.: ∃BV[n] solvability. SRI International, Menlo Park, CA, USA (October 1996) (un-
published manuscript)

http://logic.pdmi.ras.ru/?yumat/Journal/jcontord.htm

226 V. Ganesh et al.

20. Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. In: FOCS, pp.
495–500. IEEE Computer Society (1999)

21. Plandowski, W.: An efficient algorithm for solving word equations. In: Kleinberg, J. (ed.)
STOC, pp. 467–476. ACM (2006)

22. Presburger, M.: Über de vollständigkeit eines gewissen systems der arithmetik ganzer zahlen,
in welchen, die addition als einzige operation hervortritt. In: Comptes Rendus du Premier
Congrès des Mathématicienes des Pays Slaves, Warsaw, pp. 92–101, 395 (1927)

23. Quine, W.V.: Concatenation as a basis for arithmetic. The Journal of Symbolic Logic 11(4),
105–114 (1946)

24. Robson, J.M., Diekert, V.: On quadratic word equations. In: Meinel, C., Tison, S. (eds.)
STACS 1999. LNCS, vol. 1563, pp. 217–226. Springer, Heidelberg (1999)

25. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A symbolic execution
framework for JavaScript. In: IEEE Symposium on Security and Privacy, pp. 513–528. IEEE
Computer Society (2010)

26. Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a generaliza-
tion. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85–150. Springer, Heidel-
berg (1992)

27. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injection vulner-
abilities. In: Ferrante, J., McKinley, K. (eds.) PLDI, pp. 32–41. ACM (2007)

Environment-Friendly Safety

Orna Kupferman and Sigal Weiner

School of Computer Science and Engineering, Hebrew University, Israel

Abstract. Of special interest in verification are safety properties, which assert
that the system always stays within some allowed region. For closed systems,
the theoretical properties of safety properties as well as their practical advantages
with respect to general properties are well understood. For open (a.k.a. reactive)
systems, whose behavior depends on their on-going interaction with the environ-
ment, the common practice is to use the definition and algorithms of safety for
closed systems, ignoring the distinction between input and output signals. In a
recent work, Ehlers and Finkbeiner introduced reactive safety – a definition of
safety for the setting of open systems. Essentially, reactive safety properties re-
quire the system to stay in a region of states that is both allowed and from which
the environment cannot force it out. In this paper we continue their study and ex-
tend it to other families of properties. In the setting of closed systems, each safety
property induces a set of finite bad prefixes – ones after which the property must
be violated. The notion of bad prefixes enables a reduction of reasoning about
safety properties to reasoning about properties of finite computations. We study
reactive bad prefixes, their detection in theory and in practice, and their approxi-
mation by either a non-reactive safety property or by reasoning about the syntax
of the formula. We study the dual notion, of reactive co-safety properties, and
the corresponding theory of reactive good prefixes. For both safety and co-safety
properties, we relate the definitions in the closed and open settings, and argue
that our approach strictly extends the range of properties for which we can apply
algorithms that are based on finite computations. Since the reactive setting is par-
ticularly challenging for general properties, such an application is significant in
practice.

1 Introduction

In formal verification, we verify that a system meets a desired property by checking
that a mathematical model of the system meets a formal specification that describes
the property. Of special interest are properties asserting that the observed behavior of
the system always stays within some allowed set of finite behaviors, in which nothing
“bad” happens. For example, we may want to assert that every message received was
previously sent. Such properties of systems are called safety properties. Intuitively, a
property ψ is a safety property if every violation of ψ occurs after a finite execution
of the system. In our example, if in a computation of the system a message is received
without previously being sent, this occurs after some finite execution of the system.1

1 Note that the adjective safety describes the properties and not the system. One may say that a
system is safe if it satisfies safety specifications, but our use here refers to the specifications.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 227–242, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

228 O. Kupferman and S. Weiner

In order to formally define what safety properties are, we refer to computations of
a nonterminating system as infinite words over an alphabet Σ. Typically, Σ = 2AP ,
where AP is the set of the system’s atomic propositions. Consider a language L of
infinite words over Σ. A finite word u over Σ is a bad prefix for L iff for all infinite
words v over Σ, the concatenation u · v of u and v is not in L. Thus, a bad prefix for
L is a finite word that cannot be extended to an infinite word in L. A language L is a
safety language if every word not in L has a finite bad prefix.

Safety has been widely studied in the formal-verification community; c.f., [1,8,14].
The theoretical properties of safety properties as well as their practical advantages with
respect to general properties are well understood. The definition and studies of safety,
however, treat all the atomic propositions as equal. Thus, they do not distinguish be-
tween input and output signals and are suited for closed systems – ones that do not
maintain an interaction with their environment. In open (also called reactive) systems
[6,12], the system interacts with the environment, and a correct system should satisfy
the specification with respect to all environments. A good way to think about the open
setting is to consider the situation as a game between the system and the environment.
The interaction between the players in this game generates a computation, and the goal
of the system is that only computations that satisfy the specification will be generated.

Technically, one has to partition the set AP of atomic propositions to a set I of input
signals, which the environment controls, and a set O of output signals, which the system
controls. An open system is then an I/O-transducer – a deterministic automaton over
the alphabet 2I in which each state is labeled by an output in 2O. Given a sequence
of assignments to the input signals (each assignment is a letter in 2I), the run of the
transducer on it induces a sequence of assignments to the output signals (that is, letters
in 2O). Together these sequences form a computation, and the transducer realizes a
specification ψ if all its computations satisfy ψ [12].

The transition from the closed to the open setting modifies the questions we typically
ask about systems. Most notably, the synthesis challenge, of generating a system that
satisfies the specification, corresponds to the satisfiability problem in the closed setting
and to the realizability problem in the open setting. As another example, the equivalence
problem between LTL specifications is different in the closed and open settings [5]. That
is, two specifications may not be equivalent when compared with respect to arbitrary
systems on I∪O, but be open equivalent; that is, equivalent when compared with respect
to I/O-transducers. To see this, note for example that a satisfiable yet non-realizable
specification is equivalent to false in the open but not in the closed setting.

As mentioned above, the classical definition of safety does not distinguish between
input and output signals. The definition can still be applied to open systems, as a special
case of closed systems with Σ = 2I∪O. In [2], the authors introduced reactive safety –
a definition of safety for the setting of open systems. The definition in [2] is by means
of sets of trees with directions in 2I and labels in 2O. The use of trees naturally locate
reactive safety between linear and branching safety. Here, we suggest an equivalent yet
differently presented definition, which explicitly use realizability. In our definition, a
prefix u ∈ (2I∪O)∗ is bad with respect to a property ψ if the system cannot realize ψ
after the generation of u. Thus, reactive safety properties require the system to stay in a
region of states that is both allowed and from which the environment cannot force it out.

Environment-Friendly Safety 229

In order to indicate that in the open setting we take the environment into an account,
we use the term green safety to refer to safety in the open setting, and refer to classical
safety as black safety, or, when clear from the context, safety. To see the difference
between the green and black definitions, consider the specification ψ = G(err →
Ffix), with I = {fix} and O = {err}. Thus, the system controls the generation of
errors, the environment controls the fixes, and the specification is satisfied if every error
is eventually fixed. Note that ψ is realizable using the system strategy “never err”. Also,
ψ is clearly not a safety property, as every prefix can be extended to one that satisfies
ψ. On the other hand, ψ is green safe. Indeed, every computation that violates ψ has a
green bad prefix – a prefix that ends when the system errs. Once this prefix has been
generated, the system has no way to realize the specification, as it is the environment
that controls the fixes.

We continue the study of green safety in [2]. We first give further examples to speci-
fications that are green safe but not safe and study their properties. We study green bad
prefixes and show that, unlike the closed setting, they are not closed under extensions,
and we relate their closure under extension to black safety. We show how one can take
advantage of green safety when the specification is not safe (but is green safe) and lift
the algorithmic advantages of safety properties to green safety properties. We do so by
mapping green safety properties to open-equivalent black safety properties. The map-
ping is the same as a mapping suggested in [2] by means of nodes in the tree in which
a violation starts. In addition to the fact that our definition uses realizability explicitly,
which we find simpler, our definition and results apply to general languages, and not
only to green or black safety languages. We further formalize the connection between
green and black safety by showing that a property is green safe iff it is open equivalent
to a black safe property.

We extend the green approach to other families of properties. In the setting of closed
systems, the fragment of co-safety properties dualizes the one of safety properties: a
property is co-safe if its complement is safe. Equivalently, a property is co-safe if every
computation that satisfies it has a good prefix – one after which the property aught to
hold. In the open setting, dualization is more involved, as one has not only to comple-
ment the property but to also to dualize the roles of the system and the environment.
Since the game between the system and the environment is determined [4], in the sense
that either there is an I/O-transducer that realizes ψ (that is, the system wins) or there
is an O/I-transducer that realizes¬ψ (that is, the environment wins), such a dualization
is possible, and we actually have four fragments of languages that are induced by du-
alization of the green safety definition. The different fragments correspond to whether
we talk about safety or co-safety, and whether it is the system or the environment that
we consider. We study the theoretical properties of the fragments and the connections
among them.

In the closed setting, the intersection of safe and co-safe properties induces the frag-
ment of bounded properties – there is an integer k ≥ 0 such that every word of length
k is either a good or a bad prefix [9]. We study boundedness in the open setting and
show that the fact green bad and good prefixes are not closed under extension makes
the boundedness issue more complicated, as a computation may have both infinitely
many good and infinitely many bad prefixes.

230 O. Kupferman and S. Weiner

In the closed setting, detection of special (bad or good) prefixes has the flavor of
validity checking. Accordingly, the problem of deciding whether an LTL specification
is safe or co-safe is PSPACE-complete [14]. In the setting of open systems, detection of
special prefixes has the flavor of realizability. Thus, reasoning about special prefixes is
more complicated. In particular, it is shown in [2] that the problem of deciding whether
an LTL formula is reactive safe is 2EXPTIME-complete. Similar bounds hold for the
problem of detecting special prefixes. Thus, especially in the open setting, it is inter-
esting to find efficient ways to approximate the language of special prefixes and their
detection. We suggest such an approximation by means of informative green prefixes.
The notion of informative prefixes was introduced for the closed setting in [8]. Essen-
tially, a prefix is informative for a safety property ψ if the syntax of ψ explains why
it is a bad prefix. Lifting the notion to open systems involves an approximation that is
based both on examining the syntax, rather than the semantics of the property, and an
approximation of realizability by satisfiability. We argue that for natural specifications,
the approximations are accurate.

Finally, our ability to replace green safe properties by simpler safe properties as well
as the fact that our syntactic-based approximation is accurate for natural specifications
are useful not only for easier reasoning about but also in order to assess the quality of
specifications. This later point is very important in the context of property-based design
[13]. The setting of open systems is particularly challenging for property assurance:
solving the synthesis problem, decomposition of specifications is not always possible,
making the detection of dependencies among different components of the specification
much more difficult.

Due to the lack of space, some proofs are omitted from this version and can be found
in the full version, in the authors’ URLs.

2 Preliminaries

2.1 Linear Temporal Logic

The logic LTL is a linear temporal logic. Formulas of LTL are constructed from a set AP
of atomic proposition using the usual Boolean operators and the temporal operators G
(“always”),F (“eventually”),X (“next time”), and U (“until”). We define the semantics
of LTL with respect to a computation π = σ0, σ1, σ2, . . ., where for every j ≥ 0, we
have that σj is a subset of AP , denoting the set of atomic propositions that hold in
the j-th position of π. We use π |= ψ to indicate that an LTL formula ψ holds in the
computation π. We use ‖ψ‖ to denote the set of computations in (2AP)ω that satisfy ψ.
A full definition of the syntax and semantics of LTL can be found in [11].

2.2 Safety Languages and Formulas

Consider a language L ⊆ Σω of infinite words over the alphabet Σ. A finite word
u ∈ Σ∗ is a bad prefix for L if for all v ∈ Σω, we have u · v �∈ L. Thus, a bad prefix
is a finite word that cannot be extended to an infinite word in L. Note that if u is a bad
prefix, then all the finite extensions of u are also bad prefixes. A language L is a safety

Environment-Friendly Safety 231

language if every word not in L has a finite bad prefix [1,8,14]. For a language L, we
denote by bp(L) the set of all bad prefixes for L. We say that an LTL formula ψ is a
safety formula iff ‖ψ‖ is a safety language.

2.3 Open Systems

We model open systems by transducers. Let I and O be finite sets of input and output
signals, respectively. Given x = i0 · i1 · i2 · · · ∈ (2I)ω and y = o0 · o1 · o2 · · · ∈ (2O)ω,
we denote their composition by x⊕ y = (i0, o0) · (i1, o1) · (i2, o2) · · · ∈ (2I∪O)ω. An
I/O-transducer is a tuple T = 〈I, O, S, s0, η, L〉, where S is a set of states, s0 ∈ S is
an initial state, η : S × 2I → S is a transition function, and L : S → 2O is a labeling
function. The run of T on a (finite or infinite) input sequence x = i0 · i1 · i2 · · ·, with
ij ∈ 2I , is the sequence s0, s1, s2, . . . of states such that sj+1 = η(sj , ij+1) for all
j ≥ 0. The computation of T on x is then x⊕ y, for y = L(s0) ·L(s1) ·L(s2) · · · Note
that T is responsive and deterministic (that is, it suggests exactly one successor state for
each input letter), and thus T has a single run, generating a single computation, on each
input sequence. We extend η to finite words over 2I in the expected way. In particular,
η(s0, x), for x ∈ (2I)∗ is the |x|-th state in the run on x. A transducer T induces a
strategy f : (2I)∗ → 2O such that for all x ∈ (2I)∗, we have that f(x) = L(η(s0, x)).
Given an LTL formula ψ over I ∪O, we say that ψ is I/O-realizable if there is a finite-
state I/O-transducer T such that all the computations of T satisfy ψ [12]. We then say
that T realizes ψ. When it is clear from the context, we refer to I/O-realizability as
realizability, or talk about realizability of languages over the alphabet 2I∪O.

Since the realizability problem corresponds to deciding a game between the system
and the environment, and the game is determined [4], realizability is determined too, in
the sense that either there is an I/O-transducer that realizes ψ (that is, the system wins)
or there is an O/I-transducer that realizes ¬ψ (that is, the environment wins). Note that
in an O/I-transducer the system and the environment “switch roles” and the system is
the one that provides the inputs to the transducer. A technical detail is that in order for
the setting of O/I-realizability to be dual to the one in I/O-realizability we need, in
addition to switching the roles and negating the specification, to switch the player that
moves first and consider transducers in which the environment initiates the interaction
and moves first. Since we are not going to delve into constructions, we ignore this point,
which is easy to handle.

3 Green Safety

Let I and O be sets of input and output signals, respectively. Consider a language L ⊆
(2I∪O)ω. For a finite word u ∈ (2I∪O)∗, let Lu = {s : u · s ∈ L} be the set of all
infinite words s such that u · s ∈ L. Thus, if L describes a set of allowed computations,
then Lu describes the set of allowed suffixes of computations starting with u.

We say that a finite word u ∈ (2I∪O)∗ is a system bad prefix for L iff Lu is not
realizable. Thus, a system bad prefix is a finite word u such that after traversing u,
the system does not have a strategy to ensure that the interaction with the environment
would generate a computation in L. We use sbp(L) to denote the set of system bad

232 O. Kupferman and S. Weiner

prefixes for L. Note that by determinacy of games, whenever Lu is not realizable by the
system, then its complement is realizable by the environment. Thus, once a bad prefix
has been generated, the environment has a strategy to ensure that the entire generated
behavior is not in L.

A language L ⊆ (2I∪O)
ω

is a green safety language if every word not in L has a
system bad prefix.

Example 1. Let I = {q}, O = {p}, ψ = Gp ∨ FGq, and L = ‖ψ‖. Note that ψ
is realizable using the system strategy “always output p”. We show L is green safe.
Consider a word w /∈ L. Since w does not satisfy Gp, there must be a prefix u of w
such that u contains a position satisfying ¬p. Since words with prefix u do not satisfy
Gp, we have that Lu = ‖FGq‖. Since q ∈ I , the specification FGq is not realizable.
Thus, u is a system bad prefix and L is green safe.

On the other hand, L is not safe. Consider for example the word w = ∅ω. While
w is not in L, for every finite computation u of w, the suffix s = {q}ω is such that
u · s |= FGq, implying that u · s ∈ L. Thus, w has no bad prefix, implying that L is not
safe.

Example 2. Let I = {q}, O = {p}, ψ = G(p → Fq), and L = ‖ψ‖. Note that ψ
is realizable using the system strategy “never output p”. Also, ψ is clearly not a safety
property, as every prefix can be extended to one that satisfies it. On the other hand, L is
green safe. Indeed, every word not in L must have a prefix u that ends with {p}. Since
Lu = ‖Fq‖ and q ∈ I , so the specification Fq is not realizable, we have that u is a
system bad prefix and L is green safe.

Note that when I = ∅, which corresponds to the case of closed systems, we have that
Lu is not realizable iff Lu is empty. Thus, when I = ∅, safety coincides with green
safety.

Explaining the intuition behind green safety, we are going to use the following ter-
minology. We say that the system errs when it generates a system bad prefix. The envi-
ronment, however, may forgive these errors and not follow a winning strategy after it.
In Example 1, the system errs whenever it outputs ¬p. In Example 2, the system errs
whenever it outputs p. In both cases, when this happens, the environment may follow
a strategy with which the generated computations do not satisfy ψ, say by always in-
putting ∅, but it may also forgive the errors by following a strategy with which ψ still
holds, say by always inputting {q}.

Remark 1. While presented differently, our definition of green safety is equivalent to
the definition of reactive safety in [2]. The definition there is by means of sets of trees
with directions in 2I and labels in 2O. The use of trees naturally locate reactive safety
between linear and branching safety. On the other hand, we find the explicit use of
realizability in our definition much simpler and easier to work with, as it naturally
conveys the intuition of safety in the open setting.

3.1 Properties of Green Safety

We start by checking some theoretical properties of green safety.

Environment-Friendly Safety 233

Proposition 1. Every non-realizable language is green safe, with ε being a system bad
prefix.

Proof: Since Lε = L, we have that L is not realizable iff Lε is not realizable, which
holds iff ε is a system bad prefix. Therefore, if L is not realizable, every word not in L
has ε as a system bad prefix, and so L is green safe.

As pointed out in [2], green safety is strictly weaker than safety. We present here the
proof using our alternative definition of green safety.

Proposition 2. Every safe language is green safe, but the other direction is not neces-
sarily true.

Proof: Let L be a safe language. Consider a word w /∈ L and a bad prefix u ∈ (2I∪O)∗

of w. Since u is a bad prefix, the set Lu is empty, and is therefore unrealizable, so u is
also a system bad prefix. Thus, every word not in L has a system bad prefix, implying
that L is green safe. Strictness is demonstrated in Example 1.

In the closed settings, the set bp(L) is closed under finite extensions for all languages
L ⊆ Σω. That is, for every finite word u ∈ bp(L) and finite extension v ∈ Σ∗, we have
that u · v ∈ bp(L). As we shall see now, the set of system bad prefixes is not closed
under finite extensions. The reason is that the environment need not take advantage of
errors made by the system, possibly giving the system another chance to win. Below
we give two such examples.

Example 3. Let I = {fix}, O = {err}, and ψ = G(err → Xfix) ∧ FG¬err . Thus,
ψ states that every error the system makes is fixed by the environment in the following
step, and that there is a finite number of errors. Let L = ‖ψ‖. Clearly, L is realizable,
as the strategy “make no errors” is a winning strategy for the system.

We first show that L is green safe. Consider a word w /∈ L. Since w �|= ψ, there
must be a prefix u of w such that u ends in a position satisfying err . We claim that u
is a system bad prefix. Indeed, an environment strategy starting with ¬fix guarantees
that the condition G(err → Xfix) is not satisfied, and hence is a winning strategy for
the environment after u was generated. Hence, Lu is not realizable, implying that L is
green safe.

We now show that sbp(L) is not closed under finite extensions. Consider the word
w = ({err , fix} · {fix})ω. That is, the system makes an error on every odd position,
and the environment always fixes errors. Since there are infinitely many errors in w, it
does not satisfy ψ. The prefix u = {err , fix} of w is a system bad prefix. Indeed, an
environment strategy that starts with ¬fix is a winning strategy. On the other hand, u’s
extension v = {err , fix} · {fix} is not a system bad prefix. Indeed, Lv is realizable
using the winning system strategy “make no errors”.

Note that w has infinitely many system bad prefixes and infinitely many undeter-
mined prefixes. For the same language, we can also point to a word with only one
system bad prefix. Consider the word w′ = {err , fix} · {fix}ω. Note that w′ is in L.
Here, the system makes only one error, which is fixed, and then makes no more errors.
While {err , fix} is a system bad prefix, every longer prefix of w′ contains the fix for

234 O. Kupferman and S. Weiner

the first error, and does not contain further errors by the system, Therefore, it is not a
system bad prefix.

Example 4. In the previous example, we saw a word w′ with only one system bad
prefix, but w′ was in L. Let I = {fix}, O = {err , ack}, and ψ = G(err → X (fix ∧
Fack)). Thus, ψ states that after the system makes an error, the environment must fix
it, and the system must also eventually acknowledge the error. Let L = ‖ψ‖. In the full
version we show that L is green safe and not safe and that here is a word not in L that
has only one system bad prefix.

We can conclude with the following:

Proposition 3. The set of system bad prefixes is not closed under extension.

3.2 From Green to Black Safety

As studied in [8], reasoning about safety properties is easier than reasoning about gen-
eral properties. In particular, rather than working with automata on infinite words, one
can model check safety properties using automata (on finite words) for bad prefixes.
In the open setting, when the specification we reason about is safe, we can use algo-
rithms developed for safety languages. The question is whether and how we can take
advantage of green safety when the specification is not safe (but is green safe). In this
section we answer this question positively and lift the algorithmic advantages of safety
properties to green safety properties. We do so by mapping green safety properties to
open-equivalent black safety properties.

For a language L ⊆ (2I∪O)ω, we define black (L) = L∩{w : w has no system bad
prefix for L}. Equivalently, black (L) = L \ {w : w has a system bad prefix for L}.
Intuitively, we obtain black (L) by defining all the finite extensions of sbp(L) as bad
prefixes. Accordingly, it is easy to see that sbp(L) ⊆ bp(black (L)). We sometimes
apply black on LTL formulas, mapping formulas to formulas.

Example 5. Consider the specification ψ = G(err → Xfix) ∧ FG¬err , with I =
{fix}, O = {err}. In Example 3 we saw that ψ is green safe. Moreover, an infinite
word contains a system bad prefix for ψ iff it has a position that satisfies err . Ac-
cordingly, black (ψ) = G¬err . The specification ψ is a basis to similar specifications.
For example, in a thread-management context, if we replace err by Zero x and fix
by Interrupt , where interrupt stands for the operating system interrupting the system
thread, then the formula ψ = G(Zero x → XInterrupt)∧FG¬Zero x states that the
value of x, which the system controls, can be 0 only finitely often and that whenever
it is 0, the environment must not interrupt the system in the next transition. For this
formula, we get that black(ψ) = G¬Zero x. This matches our intuition: If an interrupt
can occur at any time, and we want to avoid an interrupt when x is 0, we must never set
x to 0.

Example 6. Consider the specification ψ = G(err → X (fix∧Fack)), with I = {fix},
O = {err , ack}. In Example 4 we saw that ψ is green safe. Moreover, an infinite word
contains a system bad prefix for ψ iff it has a position that satisfies err . Accordingly,

Environment-Friendly Safety 235

black (ψ) = G¬err . Here too, the structure of ψ is a basis to similar specifications. For
example, in a network with packet loss, replacing err with¬legal (for sending an illegal
packet), fix with drop (for packet dropped by the network), and ack with resend, we
get the specification “illegal packets are eventually resent, and no illegal packet reaches
its destination”. For this formula, we get that black(ψ) = Glegal. This matches our
intuition: the only way to avoid an arrival of an illegal packet to its destination is to
never send one.

Remark 2. A similar transition from green to black safety is described in [2], by means
of nodes in the tree in which a violation starts, which are analogous to our system bad
prefixes. In addition to the fact that our definition uses realizability explicitly, which we
find simpler, our definition and results apply to general languages, and not only to green
or black safety languages.

Theorem 1. Consider a language L ⊆ (2I∪O)ω . The following are equivalent:

1. L is green safe.
2. {w : w has no system bad prefix} ⊆ L; that is, black (L) = {w : w has no

system bad prefix}.
3. black (L) is black safe.

Proof: We first prove if L is green safe then {w : w has no system bad prefix} ⊆ L.
Assume that L is green safe. Consider a word w ∈ {w : w has no system bad prefix},
and assume by way of contradiction that w /∈ L. Since L is green safe and w /∈ L, we
have that w has a system bad prefix for L, contradicting the fact that w ∈ {w : w has
no system bad prefix}.

We now prove that if {w : w has no system bad prefix} ⊆ L then black (L) is
black safe. Consider a word w /∈ black (L). By definition, black(L) = L ∩ {w : w
has no system bad prefix}, and since {w : w has no system bad prefix} ⊆ L, we have
that black (L) = {w : w has no system bad prefix}. Therefore, w has a system bad
prefix u. For every suffix s ∈ (2I∪O)ω , the word w′ = u · s contains the system bad
prefix u and therefore w′ /∈ black (L). Thus, u is a bad prefix in black (L), implying
that black (L) is black safe.

Finally, we prove that if black (L) is black safe then L is green safe. Assume that
black (L) is black safe, and consider a word w /∈ L. Since black (L) ⊆ L, we have that
w /∈ black (L). Therefore,w has a bad prefix u in black (L). If u ∈ sbp(L), we are done
since w indeed has a system bad prefix. Otherwise, we claim that u has a prefix v such
that v ∈ sbp(L). Since u is not a system bad prefix, the system has a winning strategy
from u, and that strategy generates a suffix s ∈ (2I∪O)ω such that w′ = u ·s ∈ L. Since
u ∈ bp(black (L)), we have that w′ /∈ black (L), so w′ has a prefix v ∈ sbp(L). We
claim that |v| ≤ |u|. Indeed, every prefix of w′ that is not a prefix of u was generated
by a winning strategy for the system. Therefore, it cannot be a system bad prefix. Now,
if |v| ≤ |u| then v is also a prefix of w, so w has a system bad prefix. Therefore, L is
green safe.

While L and black (L) are not equivalent, they are open equivalent, in the sense of [5].
Formally, we have the following.

236 O. Kupferman and S. Weiner

Theorem 2. For every language L ⊆ (2I∪O)ω and I/O-transducer T , we have that
T realizes L iff T realizes black (L).

Proof: Since black (L) ⊆ L, then clearly every transducer that realizes black (L)
also realizes L. For the other direction, let L be some language and consider an I/O-
transducer T that realizes L. Assume by contradiction that T does not realize black (L).
Then, there is a computation w of T such that w ∈ L \ black (L). Since black(L) =
L ∩ {w : w has a system bad prefix for L} and w ∈ L \ black(L), it must be that
w /∈ {w : w has a system bad prefix for L}. Thus, w has a system bad prefix u. Since u
is a system bad prefix, we have that Lu is not realizable, which means that after u was
generated, the environment has a winning strategy. Since L is ω-regular, there is also
an O/I-transducer that implements such a winning strategy. Let T ′ be such an O/I-
transducer. Consider the word w′ = u ·(x⊕y), where x ∈ (2I)ω and y ∈ (2O)ω are the
input and output sequences generated when the environment follows T ′, and the sys-
tem follows T u (that is, T after u has been generated). So, x = T ′(y) and y = T u(x).
Since y = T u(x), we have that w′ = u · (x ⊕ T u(x)) is a computation of T . Since T ′

is a winning strategy for the environment, we have that w′ = u · (T ′(y)⊕ y) /∈ L. On
the one hand, since T realizes L, all the traces of T are in L. On the other hand, w′ is a
trace of T , so we have reached a contradiction. Therefore, T also realizes black (L).

Note that Theorem 2 applies to arbitrary languages and not only for green safe ones.
Theorem 2 suggests that we can reason about ψ, and in particular solve its model-

checking (with respect to transducers) and synthesis problems by reasoning about
black (ψ). Consider for example the green safety property ψ = G(p → Fq), where
black (ψ) = G¬p (recall that p is an output signal, see Example 2). Our ability to replace
ψ by the much simpler formula black (ψ) is similar to our ability to simplify specifi-
cations with inherent vacuity [3]. Indeed, green-but-not-black safety typically indicates
that the specifier is not fully aware of the many aspects of the specification. Thus, green
safety is useful not only for reasoning about simpler specifications but also in order to
assess the quality of specifications, which is very important in the context of property-
based design [13], especially in the setting of open systems. The setting of open systems
is indeed particularly challenging for property assurance: solving the synthesis problem,
decomposing of specifications is not always possible, making the detection of depen-
dencies among different components of the specification much more difficult.

It is shown in [2], that given an LTL formula ψ, it is possible to construct a determin-
istic looping word automaton for black (ψ) with doubly-exponential number of states.2

In fact, as suggested in [8], it is then possible to generate also a deterministic automa-
ton for the bad prefixes of black (ψ). Note that when L is not realizable, we have that
ε ∈ sbp(L), implying that black (L) = ∅. It follows that we cannot expect to construct
small automata for black (L), even nondeterministic ones, as the realizability problem
for LTL can be reduced to easy questions about them.

Theorem 2 implies that a green safety language L is open equivalent to a safe lan-
guage, namely black (L). We complete the picture by showing that open equivalence to
a safe language implies green safety.

2 A looping automaton is a Büchi automaton in which all states are accepting. It is known [8,14]
that safety properties can be translated to looping automata.

Environment-Friendly Safety 237

Theorem 3. A language L is green safe iff L is open equivalent to a safe language.

Proof: First, if L is green safe, then, by Theorem 1, we have that black(L), which is
open equivalent to L, is safe.

For the other direction, assume that L is open equivalent to a safe language L′. We
show thatL is green safe. Assume by way of contradiction that L is not green safe. Then,
there is a word w /∈ L with no system bad prefix. In the full version we show that the
above implies that the word w also has no system bad prefix in L′, which implies, as L′

is a safe language, that w ∈ L′. Consider the following (infinite) transducer T : As long
as T gets inputs that agree with w, it generates outputs that agree with w and continues.
Once the input does not agree with w, the prefix generated so far is a prefix of w. Since
w has no system bad prefix in L′, there is a system winning strategy in L′ from this
prefix, and T plays that strategy. Since T either generates w ∈ L′, or reaches a position
from which it plays a system winning strategy in L′, it follows that T realizes L′. Since,
however, T generates w, which is not in L, it does not realize L, contradicting the fact
that L and L′ are open equivalent. We note that, by [5], the existence of an infinite
transducer that distinguishes between L and L′ implies the existence of such a finite
transducer.

4 Green Co-safety

For a languageL⊆ Σω, we use comp(L) to denote the complement ofL; i.e., comp(L) =
Σω \L. In the closed setting, we say that a language L ⊆ Σω is a co-safety language if
comp(L) is a safety language. (The term used in [10] is guarantee language.) Equiva-
lently, L is co-safety iff every w ∈ L has a good prefix x ∈ Σ∗ such that for all y ∈ Σω,
we havex·y ∈ L. For a co-safety languageL, we denote by gp(L) the set of good prefixes
for L. Note that gp(L) = bp(comp(L)) [8]. Finally, an LTL formula ψ is a co-safety
formula iff ‖ψ‖ is a co-safety language or, equivalently, ‖¬ψ‖ is a safety language.

In the setting of open systems, dualization of specifications is more involved, as one
has not only to complement the language but to also dualizes the roles of the system
and the environment. Accordingly, we actually have four fragments of languages that
are induced by dualization of the green safety definition. We define them by means of
bad and good prefixes.

Consider a language L ⊆ (2I∪O)ω and a prefix u ∈ (2I∪O)∗. We say that

– u is a system bad prefix if Lu is not I/O-realizable.
– u is a system good prefix if Lu is I/O-realizable.
– u is an environment bad prefix if Lu is not O/I-realizable.
– u is an environment good prefix if Lu is O/I-realizable.

Now, a language L ⊆ (2I∪O)ω is a system (environment) safety language if every
word not in L has a system (environment, respectively) bad prefix. The language L is a
system (environment) co-safety language if every word in L has a system (environment,
respectively) good prefix. Note that system safety coincides with green safety. Here,
that we parametrize safety with either a system or an environment, we simplify the
notation and omit “green”.

238 O. Kupferman and S. Weiner

Since each language Lu is either I/O-realizable or not I/O-realizable, and the same
for O/I-realizability, all finite words are determined, in the following sense.

Proposition 4. Consider a language L ⊆ (2I∪O)ω. All finite words in (2I∪O)∗ are
determined with respect to L. That is, every prefix is either system good or system bad,
and either environment good or environment bad, with respect to L.

Note that while every prefix is determined, a word may have both system bad and sys-
tem good prefixes, and similarly for the environment, which is not the case in the setting
of closed systems. For example, recall the languageL = ‖G(err → Xfix)∧FG¬err‖,
for I = {fix} andO = {err}. In Example 3 we saw that the word ({err, fix}·{fix})ω
has both a system bad prefix {err, fix}, and a system good prefix {err, fix} · {fix}.

In a dual manner to Proposition 1, every realizable language is system co-safe with ε
being a system good prefix for every word in L. Accordingly, our goal in studying co-
safety is two fold. First, since a system good prefix u is such that Lu is I/O-realizable,
then the set of system good prefixes describe the “hopeful scenarios” for the system –
ones after which it would be able to realize a non-realizable specification. Second, the
story of safety and co-safety is told about both the system and the environment. As we
shall now see, system safety and environment co-safety dualize each other.

Proposition 5. For every language L ⊆ (2I∪O)ω, we have that L is system safe iff
comp(L) is environment co-safe.

By switching the roles of the system and the environment, we get that L is system
co-safe iff comp(L) is environment safe.

It is interesting to consider the special case when I = ∅. There, O/I-realizability
coincides with validity. Therefore, given a language L ⊆ (2O)ω , a prefix u is an envi-
ronment good prefix iff Lu = Σω, which coincides with the definition of a good prefix
in the closed settings. Therefore, when I = ∅, environment co-safety coincides with
co-safety.

4.1 Boundness

We say a property ψ is bounded if there is an integer k ≥ 0 such that every word of
length k is either a good or a bad prefix for ψ. In the closed settings, a language that is
both safe and co-safe is bounded [9]. In the open setting, we can talk about two relevant
intersections. The first is languages that are both system safe and system co-safe (or
dually, both environment safe and environment co-safe). The second is languages that
are both system safe and environment co-safe (or dually, both environment safe and
system co-safe). In this section we consider the fragments corresponding to both types
of intersection.

We start with the first fragment. We denote by �P � the set of languages that have
the property P . As we have previously seen, every unrealizable language is sys-
tem safe, and every realizable language is system co-safe. Therefore, �system safe� ∩
�system co-safe� = (�realizable�∩�system safe�)∪(�unrealizable�∩�system co-safe�).
As we have seen in Section 3, system safety is of interest in the case of realizable lan-
guages, and the realizable languages that are system safe are not bounded. Likewise,

Environment-Friendly Safety 239

unrelizability does not impose boundedness on specifications that are system co-safe.
Thus, there is no reason to expect a language that is both system safe and system co-
safe to be bounded. We are going to confirm this intuition in Example 7 below. Thus,
interestingly, the intersection system safe and system co-safe properties is not related
to boundedness and instead suggests a characterization of realizable and non-realizable
specifications.

We continue to the second fragment. Let L be a language that is both system safe
and environment co-safe. Consider a word w ∈ (2I∪O)ω. If w ∈ L, then, as L is
environment co-safe, w has a good environment prefix. If w �∈ L, then, as L is system
safe, w has a bad system prefix. As in the closed setting, it follows that w must have a
“special” – either environment co-safe or system safe prefix. In the closed setting, it was
possible to use this information in order to bound the length of the shortest such prefix.
As we shall see now, this strongly depends on the fact the bad and good prefixes in the
closed setting are closed under extensions, and is no longer valid in the open setting.

Example 7. Consider the formula ψ = G(err → Gfix), for I = {fix} and O =
{err}. Let L = ‖ψ‖. It is easy to see that L is I/O-realizable with the system strategy
“make no errors”. Thus, L is system co-safe. For every word w /∈ L, we have that
w |= F (err ∧ F¬fix). Therefore, every word w /∈ L has a prefix that contains a
position satisfying err, and ends in a position satisfying ¬fix. Such a prefix is a black
bad prefix, and is thus both a system bad and an environment bad prefix. Therefore, L
is both environment safe and system safe. Finally, L is also O/I-realizable, with the
environment environment strategy “always fix”. It follows that L is also co-safe.

Hence,L belongs to the four green safety and co-safety fragments. On the other hand,
L is not bounded. To see this, consider the word w = ∅ω. For every prefix u of w, the
suffix s = {err}ω is such that u · s /∈ L, and the suffix s′ = ∅ω is such that u · s′ ∈ L.
Thus, w has undetermined prefixes of unbounded length, and so L is not bounded.

Since in this example we show a language that has all four green safety properties, but
is not bounded, we can conclude with the following.

Proposition 6. A language in an intersection of system safety, system co-safety, envi-
ronment safety, and environment co-safety, need not be bounded.

In the full version, we consider a dualization of black (L), namely the set white(L)
obtained by adding all the infinite extensions of environment good prefixes to L. An
environment good prefix in L is thus a good prefix in white(L).

We show that for every language L ⊆ (2I∪O)ω, we have comp(white(L)) =
black (comp(L)). By dualizing our results on green and black safety, we thus have
that L is environment co-safe iff white(L) is co-safe, and that L and white(L) are
co-open-equivalent.

5 Green Informative Prefixes

In the closed setting, detection of special (bad or good) prefixes has the flavor of va-
lidity checking. Accordingly, the problem of deciding whether an LTL specification is
safe or co-safe is PSPACE-complete [14], and the size of an automaton for the spe-
cial prefixes is doubly-exponential in the LTL formula that describes the specification

240 O. Kupferman and S. Weiner

[8]. The doubly-exponential blow up is present even when the automaton is nondeter-
ministic. Intuitively, the need to accept all the special prefixes requires the construction
to have the flavor of determinization, as one has to relate different components of the
specification. In the setting of open systems, detection of special prefixes has the flavor
of realizability. Thus, reasoning about special prefixes is more complicated. In particu-
lar, it is shown in [2] that the problem of deciding whether an LTL formula is reactive
safe is 2EXPTIME-complete. In fact, as we show in the full version, the problem is
2EXPTIME-hard even for specifications that are known to be realizable. Similarly, as
showed in [2], automata that recognize the system bad prefixes of a reactive safety
property are of size doubly-exponential in the LTL formula.

In [8], the authors introduced the notion of informative prefixes in the context of
closed systems. Given an LTL formulaψ, the set of informative prefixes forψ is a subset
of bp(ψ) that is easier to detect. Essentially, a prefix is informative for ψ if the syntax
of ψ explains why it is a bad prefix. In this section we lift the notation of informative
prefixes and their applications to the open setting. We first need the following definition
and notations. We assume that LTL formulas are written in a positive normal form,
where negation is pushed inward and is applied only to atomic propositions. For this,
we have to introduce the dual R (“release”) of U (“until”). We use cl(ψ) to denote the
set of subformulas of ψ (after transferring ψ to a positive normal form).

For an LTL formula ψ over AP = I ∪O and a finite computation π = σ1 ·σ2 · · ·σn,
with σi ∈ 2I∪O, we say that π is green informative for ψ if there exists a mapping
L : {1, . . . , n+ 1} → 2cl(¬ψ) such that the following hold.

1. ¬ψ ∈ L(1).
2. L(n+1) contains only formulas over I , and the formula

∧
ϕ∈L(n+1) ϕ is satisfiable.

3. For all 1 ≤ j ≤ n and ϕ ∈ L(j), the following hold:
– If ϕ is a propositional assertion, it is satisfied by σj .
– If ϕ = ϕ1 ∨ ϕ2 then ϕ1 ∈ L(j) or ϕ2 ∈ L(j).
– If ϕ = ϕ1 ∧ ϕ2 then ϕ1 ∈ L(j) and ϕ2 ∈ L(j).
– If ϕ = Xϕ1, then ϕ1 ∈ L(i+ 1).
– If ϕ = ϕ1Uϕ2, then ϕ2 ∈ L(j) or [ϕ1 ∈ L(i) and ϕ1Uϕ2 ∈ L(j + 1)].
– If ϕ = ϕ1Rϕ2, then ϕ2 ∈ L(j) and [ϕ1 ∈ L(i) or ϕ1V ϕ2 ∈ L(j + 1)].

If π is informative for ψ, then the mapping L is called the green witness for ¬ψ in
π. Intuitively, L(j), for j ≥ 0, is the set of subformulas in cl(¬ψ) that are yet to be
satisfied in order for ¬ψ to be satisfied in a computation that has σ1 · σ2 · · ·σj−1 as a
prefix. In the closed setting, the requirement on L(n+1) is to be empty, corresponding
to the requirement that no more obligations have to be satisfied in order for ¬ψ to hold
in all possible suffixes. In the open setting, the corresponding requirement would have
been that L(n+ 1) is such that the conjunction of the formulas in it is O/I-realizable.
We refer to prefixes that satisfy the above as strong green informative prefixes. As we
shall see below, while such prefixes are more precise, they are harder to detect. In the
other extreme, we could have require the formulas in L(n + 1) to only refer to I and
give up the satisfiability checking. We call such prefixes weak informative green pre-
fixes. While checking for weak prefixes is easier, they do not guarantee that the prefix
is system bad.

Environment-Friendly Safety 241

In the definition above, the requirements left to be checked in L(n+1) are on I and
their conjunction has to be satisfiable. Since all the requirements are on I , satisfiability
and realizability coincide, which guarantees that a green informative prefix is indeed a
system bad prefix.

Note that when I = ∅, the requirement above for L(n + 1) is equivalent to the
requirement L(n + 1) = ∅, thus the definition of a green informative prefix coincides
with the definition of informative prefix.

Example 8. Let I = {q}, O = {p} and let ψ1 = G(p → Fq). Using the positive
normal form, we have that ¬ψ1 = F (p ∧ G¬q), where we use Fϕ as an abbreviation
for trueUϕ, and Gϕ as an abbreviation for falseRϕ. The finite computation π = ∅·{p}
is a green informative prefix for ψ1, as witnessed by the mappingL with L(1) = {F (p∧
G¬q)}, L(2) = {F (p∧G¬q), p∧G¬q, p,G¬q,¬q}, L(3) = {G¬q}. Indeed, |π| = 2
and L(2 + 1) contains a satisfiable formula over I .

We now consider two variants of the previous example. The first is ψ2 = G(p →
(Fq ∨ (Xr ∧ X¬r)), where I = {q}, O = {p, r}. Note that since Xr ∧ X¬r is
not satisfiable, the specifications ψ1 and ψ2 are equivalent. Still, informative prefixes
consider the syntax of the formula. To see that the syntax may be crucial, let us examine
π again, now with respect to ¬ψ2 = F (p ∧ (G¬q ∧ ((X¬r) ∨ Xr))). We can see π
is not a green informative prefix for ψ2, as such a prefix must contain at least one state
after the first state in which p holds, to syntactically verify that (X¬r)∨Xr holds. Note
that if r had been an input, then π would have been a green informative prefix.

The second variant is ψ3 = G(p → ((X¬q) ∧Xq)), where I = {q} and O = {p}.
Now, ¬ψ3 = F (p ∧ (Xq ∨X¬q)). We can see that π is a green informative prefix, as
((X¬q)∨Xq) is over I and is satisfiable. Formally, the mappingL with L(1) = {¬ψ3},
L(2) = {¬ψ3, p∧ (Xq∨X¬q), p,Xq∨X¬q,Xq}, and L(3) = {q} is a green witness
for ¬ψ3. On the other hand, in the closed setting π is not an informative prefix for ψ3,
as such a prefix must contain at least one state after the first state in which p holds, to
syntactically verify that ((X¬q) ∨Xq) holds.

The fact that the requirement about L(n+ 1) is easier to satisfy in the open rather than
in the closed setting, together with the example of ψ3 above, imply the following.

Theorem 4. Green information is weaker than black information. That is, every infor-
mative prefix is also a green informative prefix, but the other direction is not necessarily
true.

The syntax-based definition leads to an easier detection of bad prefixes:

Theorem 5. Given an LTL formula ψ and a finite computation π, the problem of de-
ciding whether π is green informative for ψ is PSPACE-complete.

Proof: We start with the upper bound. Consider a prefix π = σ1, . . . , σn and an LTL
formula ψ. As shown in [8], it is possible to construct in time O(n · |ψ|) a mapping
Lmax : {1, . . . , n+ 1} → 2cl(¬ψ) such that Lmax(j) contains exactly all the formulas
¬ϕ such that the suffix σj , . . . , σn is informative for ϕ. Extending this construction to
the open setting requires a guess of the formulas in L(n+1), making the guess and the
check that the conjunction of the formulas is satisfiable the computational bottleneck.

242 O. Kupferman and S. Weiner

Since satisfiability, as well as going over all possible guesses, can be done in PSPACE,
we are done.

For the lower bound, we show a reduction from LTL satisfiability problem, which
is PSPACE-complete. Given an LTL formula ψ over AP , we consider the specification
θ = ¬ψ, with I = AP and O = ∅. It is easy to see ε is a green informative prefix for θ
iff ψ is satisfiable.

Remark 3. Since the generation of L(n + 1) is the computational bottleneck, work-
ing with the strong and weak green informative prefix definition results in detection
problems that are 2EXPTIME-complete and linear-time, respectively.

Finally, as in the closed setting, it is possible to define an automaton that recognizes
exactly all the informative green prefixes of a given safety formula. It is also possible
to use the notion of informative green prefixes in order to classify green safety formu-
las according to the level in which informative prefixes approximate the set of all bad
prefixes. The technical details are similar to these in [8], with the different conditions
on L(n+1) imposing the expected changes, in both the algorithms and the complexity.
We describe the full details in the full version.

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Computing 2, 117–
126 (1987)

2. Ehlers, R., Finkbeiner, B.: Reactive safety. In: Proc. 2nd GANDALF. EPTCS, vol. 54, pp.
178–191 (2011)

3. Fisman, D., Kupferman, O., Sheinvald-Faragy, S., Vardi, M.Y.: A framework for inherent
vacuity. In: Chockler, H., Hu, A.J. (eds.) HVC 2008. LNCS, vol. 5394, pp. 7–22. Springer,
Heidelberg (2009)

4. Gale, D., Stewart, F.M.: Infinite games of perfect information. Ann. Math. Studies 28, 245–
266 (1953)

5. Greimel, K., Bloem, R., Jobstmann, B., Vardi, M.: Open implication. In: Aceto, L., Damgård,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part II. LNCS, vol. 5126, pp. 361–372. Springer, Heidelberg (2008)

6. Harel, D., Pnueli, A.: On the development of reactive systems. In: Logics and Models of
Concurrent Systems, NATO Advanced Summer Institutes, vol. F-13, pp. 477–498 (1985)

7. Kress-Gazit, H., Fainekos, G.E., Pappa, G.J.: Temporal-logic-based reactive mission and mo-
tion planning. IEEE Trans. on Robotics 25(6), 1370–1381 (2009)

8. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods in System
Design 19(3), 291–314 (2001)

9. Kupferman, O., Vardi, M.Y.: On bounded specifications. In: Nieuwenhuis, R., Voronkov, A.
(eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 24–38. Springer, Heidelberg (2001)

10. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer (1992)

11. Pnueli, A.: The temporal logic of programs. In: Proc. 18th FOCS, pp. 46–57 (1977)
12. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proc. 16th POPL, pp. 179–

190 (1989)
13. PROSYD. The Prosyd project on property-based system design (2007),

http://www.prosyd.org
14. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects of Computing 6,

495–511 (1994)

http://www.prosyd.org

Deterministic Compilation of Temporal Safety
Properties in Explicit State Model Checking

Kristin Yvonne Rozier and Moshe Y. Vardi�,��

Rice University, Houston, Texas 77005
{kyrozier,vardi}@cs.rice.edu

Abstract. The translation of temporal logic specifications constitutes an essen-
tial step in model checking and a major influence on the efficiency of formal
verification via model checking. We devise a new explicit-state translation of Lin-
ear Temporal Logic to automata for the class of LTL specifications that describe
safety properties, arguably the most used formal specifications in real-world sys-
tems. By exploiting the inherent determinism in safety specifications, we can
build deterministic Promela never claims that accept only the bad prefixes of
the safety specification. In contrast to previous works, we focus on compilation
to never claims rather than simply automata and measure Spin model-checking
time separately from compilation time and automata size. An extensive experi-
mental evaluation over a space of configurations demonstrates that our new trans-
lation consistently results in better model-checking performance, for a large array
of benchmarks, over the best current translation.

1 Introduction

In linear-time model checking, the negation of the temporal specification is translated
into a nondeterministic Büchi automaton, combined with the system model, and then
checked for nonemptiness [33]. The model checker searches for a lasso-shaped coun-
terexample trace in this combined model, a trace that starts at an initial system state
and reaches a cycle that contains an accepting state. The explicit-state translation of
Linear Temporal Logic (LTL) formulas to Büchi automata constitutes an essential step
in explicit-state linear-time model checking and has a major influence on the efficiency
of model checking [10]. Consequently, this topic has received a significant level of at-
tention over the past two decades and there are many available tools; see [27] for an
extensive survey. Most of that research has focused on minimizing the size of the gen-
erated automata. The rationale was that minimizing the size of the automaton would
minimize the size of the space in the product of the system model and the automaton

� A version of this paper with appendices included is available at http://ti.arc.nasa.gov/
m/profile/kyrozier/papers/RozierVardiHVC2012.pdf, but the paper can be read with-
out appendices.

�� This research was supported in part by NSF grants CNS 1049862 and CCF-1139011, by NSF
Expeditions in Computing project ”ExCAPE: Expeditions in Computer Augmented Program
Engineering”, by BSF grant 9800096, by a gift from Intel, and by the Shared University Grid
at Rice funded by NSF under Grant EIA-0216467 and a partnership between Rice, Sun Mi-
crosystems, and Sigma Solutions, Inc.

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 243–259, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://ti.arc.nasa.gov/m/ profile/kyrozier/papers/RozierVardiHVC2012.pdf
http://ti.arc.nasa.gov/m/profile/kyrozier/papers/RozierVardiHVC2012.pdf

244 K.Y. Rozier and M.Y. Vardi

that the model checker must search. Yet this heuristic approach has no experimental
evidence that would demonstrate its efficacy [32]. In fact, the extensive experimental
investigation reported on in [27], which focused on satisfiability checking, a special
case of model checking, shows little correlation between automaton size and model-
checking time. It is argued in [9] that larger automata may result in less work for LTL
model checking. In this paper we revisit the translation of LTL formulas to automata,
which we call LTL compilation, specifically focusing on model-checking performance.

We concentrate on model checking safety properties, which assert “something bad
never happens” [1]. Safety properties are the most often used formal properties in prac-
tice, capturing the desired behaviors of a wide variety of real-world systems, such as of
fault tolerance [11] and hardware resets [7]. Safety properties can also describe most
intended properties of real-time systems, since responses are usually required within
bounded intervals [15].

Intuitively, “something bad” only needs to happen once in a computation for the prop-
erty to be violated. Thus, a violation of a safety property can always be witnessed by
a finite prefix of a violating infinite trace. Rather than search the system model for a
violating infinite trace, we can search the system model for this bad prefix. This insight
forms the basis for an alternative automata-theoretic approach for model checking safety
properties, proposed in [20]: construct a deterministic automaton for the language of bad
prefixes, take its product with the system model, and then search for an accepting finite
trace. A disadvantage of this approach is that while the translation from LTL to nonde-
terministic Büchi automata is, in the worst case, exponential [34], the translation from
safety LTL formulas to deterministic automata for bad prefixes is, in the worst case, dou-
bly exponential [20]. Perhaps because of this additional blow-up, this approach, which
we refer to as deterministic compilation, has yet to be seriously explored.

There has been recent evidence that deterministic compilation may be a viable ap-
proach in spite of the possible additional exponential blow-up. Deterministic com-
pilation proved to be effective for SAT-based model checking [2] and explicit-state
hybrid-systems analysis [26]. Determinizing finite automata representing safety for-
mulas has been correlated with smaller system model/automaton products even without
minimizing the formula automaton [21]. Intuitively the product–system model times
automaton–is simpler when the automaton is deterministic, as nondeterminism in the
product stems solely from nondeterminism in the system. In the standard approach the
search algorithm has to find both a counterexample trace in the system and an accepting
run of the specification automaton. This second search is not needed when the speci-
fication automaton is deterministic, as it has a unique run on a given input word. (It
has been argued in [30], though without evidence, that “more deterministic” compi-
lation may be an advantageous approach.) Recent work on deterministic compilation
in the context of run-time verification demonstrated both that the doubly exponential
blow-up rarely appears in practice, and that the resulting deterministic automata are
often actually smaller than their nondeterministic counterparts since we can minimize
deterministic automata efficiently [31,11].

The main result of this paper is that deterministic compilation is indeed an effective
approach to explicit-state model checking of safety properties. To demonstrate this, we
build on the theoretical foundations developed in [4,20]. We show how to use SPOT [6],

Deterministic Compilation of Temporal Safety Properties 245

the best LTL-to-automaton translator (see [27]), and BRICS Automaton [23], a tool for
determinizing and minimizing finite-word automata, in order to go from a nondetermin-
istic Büchi automaton Aϕ representing a safety property ϕ to a deterministic automaton
Ad that accepts the bad prefixes of ϕ. This construction uses the fact that determiniza-
tion of finite-word automata is much simpler than determinization of ω-automata; while
nondeterministic finite automata can be determinized with a simple subset construction
[14], determinization of nondeterministic ω-automata requires a complex subset-tree-
based construction [28].

To use Ad for model checking, we apply Spin, the canonical explicit-state model
checker [12]. We introduce 26 novel encodings of LTL safety properties as deterministic
automata in the form of Promela (PROcess MEta LAnguage) never claims, describing
behaviors that should not occur in the system model. We implement these encodings as
an extension of the open-source CHIMP tool1 [31] that creates SystemC monitors for
LTL formulas; our extension, CHIMP-Spin,2 creates Spin never claims. Our system-
atic empirical investigation of the effectiveness of these automata as never claims also
constitutes a novel contribution since earlier works focused on translation to automata
without considering their encodings as never claims. We show over a large array of
benchmarks that our deterministic encodings for model checking of safety properties
consistently result in significantly reduced model-checking times over the SPOT encod-
ing. We also demonstrate that the encoding used to represent deterministic automata as
never claims has a significant impact on performance and we identify a single encoding
that dominates all other encodings.

A key point of our approach is that we concentrate on reducing model-checking time,
while typical experimental work in LTL model checking measures total time–compile
plus model-checking time, e.g., [9]. Since in real-world applications of model checking,
properties are written once and then checked against a changing system design multiple
times, we find it worthwhile to reduce model-checking time even at the cost of increased
property-compilation time. This choice is particularly pertinent for regression testing:
when the system is changed to fix a bug or add a new feature it is necessary to re-
check all properties checked earlier to ensure that previous checks produce the same
results. To streamline regression testing future versions of Spin should not require a
recompilation of never claims for each run of the model checker, even when they have
not changed. Such an adjustment would more accurately reflect industrial applications
of model checking and, combined with our reduced model-checking times, reduce the
amortized cost of model checking.

The structure of this paper is as follows. We detail the theory underlying our
construction of deterministic encodings of LTL safety specifications in Section 2 and
describe our 26 novel constructions of Promela never claims in Section 3. We then
describe our experimental methodology in Section 4, and present our experimental re-
sults, which demonstrate that we can consistently outperform SPOT, the current best
LTL-compilation tool, in Section 5. We conclude with a discussion in Section 6.

1 http://sourceforge.net/projects/chimp-rice/
2 Our tool extension is released under an open-source license; contact us for a copy.

http://sourceforge.net/projects/chimp-rice/

246 K.Y. Rozier and M.Y. Vardi

2 Theoretical Background

We interpret LTL formulas over infinite computations of the form π : ω→ 2Prop, where
ω is the set non-negative integers and Prop is a set of atomic propositions. We define
π, i � ϕ (computation π at time instant i ∈ ω satisfies LTL formula ϕ) as follows [8]:

– π, i � p for p ∈ Prop if p ∈ π(i),
– π, i � g1∧g2 if π, i � g1 and π, i � g2,
– π, i � ¬g if π, i � g,
– π, i � X g if π, i+ 1 � g,
– π, i � g1Ug2 if ∃ j ≥ i, such that π, j � g2 and ∀k, i≤ k < j, we have π,k � g1,
– π, i � g1R g2 if ∀ j ≥ i, if π, j � g2, then ∃k, i≤ k < j, such that π,k � g1,
– π, i � ♦g if ∃ j ≥ i, such that π, j � g,
– π, i � �g if ∀ j ≥ i, π, j � g.

We take models(ϕ) to be the set of computations that satisfy ϕ at time 0: {π : π,0 � ϕ}.
In automata-theoretic model checking, we represent LTL formulas using Büchi au-

tomata. A Nondeterministic Büchi Word Automaton (NBW) is a quintuple A = (Q,Σ,δ,
Q0,F), where Q is a finite set of states, Σ is a finite alphabet, δ : Q×Σ→ 2Q is a tran-
sition function, Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of accepting states.
If q′ ∈ δ(q,σ) then we say that we have a transition from q to q′ labeled by σ. A run of
a Büchi automaton A over an infinite computation π = π0,π1,π2, . . . ∈ Σ is a sequence
q0,q1,q2, . . . of states such that q0 ∈ Q0, and 〈qi,πi,qi+1〉 ∈ δ for all i≥ 0. A accepts π
if the run over π visits states in F infinitely often. We denote the set of infinite words
accepted by A by Lω(A). Computations are infinite words over the alphabet Σ = 2Prop.

Theorem 1. [34] Given an LTL formula ϕ, we can construct an NBW Aϕ = (Q,Σ,δ,q0,

F) such that |Q| is in 2O(|ϕ|), Σ = 2Prop, and Lω(Aϕ) is exactly models(ϕ).

In the automata-theoretic approach to model checking [33], to check that a model M un-
der verification satisfies an LTL formula ϕ, we translate ¬ϕ into the automaton A¬ϕ and
compose A¬ϕ with M, forming the automaton AM, ¬ϕ, which the model checker checks
for emptiness. If there is no accepting run of AM, ¬ϕ (i.e. the language L (AM, ¬ϕ) = /0),
we have proven that M |= ϕ.

The automata-theoretic approach can be refined when dealing with safety properties.
A formula ϕ is a safety formula if its failure can always be witnessed by a finite prefix
[1]; that is, if π �|= ϕ then there there is a finite word w ∈ Σ∗ such that w ·π �|= ϕ for every
infinite computation π ∈ Σω. Here w is called a bad prefix for ϕ. The set of bad prefixes
for ϕ is pre f (ϕ). It is argued in [19] that pre f (ϕ) is a regular language; consequently,
we can use automata on finite words for model checking safety properties.

A Nondeterministic Finite Word Automaton (NFW) is a quintuple A = (Q,Σ,δ,Q0,
F), where Q is a finite set of states, Σ is a finite alphabet, δ : Q×Σ→ 2Q is a transition
function, Q0 ⊆ Q is the set of initial states, and F ⊆ Q is a set of accepting states. If
Q0 is a singleton, and δ(q,a) contains at most one state for every state q and letter a,
then we say that A is a Deterministic Finite Word Automaton (DFW). A run of A over
a finite word w ∈ Σ∗ is accepting if it terminates in an accepting state.

Theorem 2. [19] Given a safety LTL formula ϕ, we can construct a DFW Ad =(Q,Σ,δ,
q0,F) such that |Q| is in 22O(|ϕ|)

, Σ = 2Prop, and L (Ad) is exactly pre f (ϕ).

Deterministic Compilation of Temporal Safety Properties 247

Therefore, when ϕ is a safety property, we can opt to form an NFW or a DFW corre-
sponding to ¬ϕ instead of an NBW, since we only need to construct an automaton that
accepts the set of finite prefixes that witness violations of ϕ.

A concrete algorithm to construct automata for bad prefixes was given in [4]. Given
a safety formula ϕ, we first form the NBW Aϕ. Here we use SPOT [6] for this trans-
lation; we showed earlier that SPOT is the best LTL-to-automata translator [27]. Let
empty(Aϕ) be the set of states in Aϕ that cannot appear on an accepting run. SPOT can
compute this set of states and remove them from Aϕ. We now turn this NBW into an

NFW A f
ϕ by re-labeling all remaining states to be accepting. We now have the NFW

A f
ϕ defined by the quintuple (Q′,Σ,δ′,q0∩Q′,F ∩Q′), where Q′ = Q− empty(Aϕ) and

δ′ is restricted to Q′ ×Σ. Note that this approach is not sound for liveness formulas.

Theorem 3. [4] A f
ϕ rejects precisely pre f (ϕ).

To model check a safety formula, we need an automaton that accepts pre f (ϕ) [31]. If
we apply the subset construction to A f

ϕ we obtain a DFW Ad
ϕ , where all nonempty sets

of states of A f
ϕ are accepting states, that rejects pre f (ϕ). Its complement Ad

¬ϕ, where
only the empty set of states is accepting, accepts pre f (ϕ).

3 Never Claim Generation

A never claim is a Promela code sequence that defines a system behavior that should
never happen. Since we use never claims to specify properties that should never hap-
pen, that is, bad properties we wish to assert the system does not have, we create a
never claim corresponding to the negation of the property we wish to hold. In other
words, when we create a never claim that accepts exactly L (¬ϕ) we are stating that it
would be a correctness violation of the system if there exists an execution sequence in
which ¬ϕ holds. For the system to be considered correct, ϕ must always hold.

To generate a Promela never claim for LTL formula ϕ, Spin translates ¬ϕ into the
NBW A¬ϕ = (Q,Σ,δ,q0,F), enumerates and creates labels for the states in Q, labels q0

with ’init’ to designate the state in which the never claim starts, labels accepting states
with ’accept,’ and implements δ by a nondeterministic choice: for each state, nondeter-
ministically choose from among enabled transitions given the set of propositions true in
the current state. Currently, all LTL-to-Promela translators follow this high-level con-
struction. (They vary widely in the details of the formation of A¬ϕ as described in [27].)

In this paper, we construct Promela never claims corresponding to the DFW Ad
ϕ for

bad prefixes of safety formulas. We now describe several novel alternatives for con-
structing never claims for safety properties.

To prove that a system model M satisfies the LTL property ϕ = (�good), we create
a never claim that accepts the negation of this property. Spin can do this automatically
using the command spin -f ’![] good’. Intuitively, the never claim generated by
the formula would restrict system behavior to those states where (♦!good) holds. If any
such execution of the system is found, Spin reports a violation.

In addition to the infinite-behavior never claims produced by Spin, SPOT, and other
tools, never claims can be also be used to specify finite automata; the distinction is

248 K.Y. Rozier and M.Y. Vardi

implicit in the structure of the claim rather than explicitly stated. Finite behavior is
matched if the claim can reach its closing curly brace while executing in lockstep with
the system model [13]. Spin automatically checks for this type of never claim termi-
nation. A never claim corresponding to the NFW that accepts pre f (ϕ) simply needs
to reach its closing curly brace, for example, when the formula is �good, if !good is
ever true, thus accepting the finite prefix indicating a correctness violation of the system.
Note that we check the finite-behavior never claim using different Spin commands than
the infinite-behavior version, where the run-time flag -a explicitly tells Spin to check
for acceptance cycles. Specifically, we check for finite acceptance using the following
commands:

cat Model > pan_in
cat finite_never_claim >> pan_in
spin -a pan_in
gcc -w -o pan -D_POSIX_SOURCE -DMEMLIM=1550 -DSAFETY -DXUSAFE -DNOFAIR

-DNXT pan.c
./pan -v -X -m10000 -w19 -A -E -c1

3.1 Determinization and Minimization

As in [31], there are two approaches to constructing the DFW Ad
ϕ . First, we can explicitly

determinize the NFW A f
ϕ using an NFW-to-DFW translator (BRICS Automaton[23]),

which we refer to as the det construction. Second, we can construct a never claim
directly from A f

ϕ , essentially performing the subset construction on-the-fly. For consis-
tancy with previous work [31], we refer to this as the nondet construction, because de-
terminism is delayed. The advantage of pre-compilation determinization is the ability to
minimize Ad

ϕ before constructing the never claim; we use BRICS Automaton to produce
a minimal equivalent DFW. We refer to this as the min construction. The additional steps
of determinization and minimization may incur a nontrivial computational cost during
the construction of the never claim. The trade-off between property-compilation time
and model-checking time is a key issue in this paper.

To use BRICS Automaton, we have to find a way to represent the alphabet of the au-
tomata [31]. SPOT labels transitions with Boolean formulas over the set Prop of atomic
propositions, while BRICS Automaton represents the alphabet of the automaton as Uni-
code characters. Therefore, we adapt the techniques of [31] for describing the alphabet
in terms of 16-bit integers. We have two alphabet representations: OBDD-based and
assignment-based.

We can represent Boolean formulas using Ordered Binary Decision Diagrams (OB-
DDs) [3]. We implement this approach as follows. First, we obtain references to all
Boolean formulas that appear as transition labels in the automaton using SPOT’s spot::
tgba reachable iterator breadth first::process link() function. Second, we
assign a unique integer label to the OBDD representation of each Boolean formula (up
to 2|ϕ| in the worst case) using SPOT’s spot::tgba succ iterator::current cond
ition() function. The formulas labeling automaton transitions can now be replaced by
the corresponding integers.

Alternatively, we can represent Boolean formulas in terms of their satisfying truth
assignments. By selecting an order for Prop = {p1, . . . , pn}, we can represent an as-
signment as an n-bit vector a = [a1,a2, . . . ,an]. Every such bit vector corresponds to an

Deterministic Compilation of Temporal Safety Properties 249

integer I(a) in the domain {0, . . . ,2n−1}; I(a) = a12n−1+a22n−2+ . . .+an20. We can
use this domain as a new alphabet, replacing a transition labeled by a Boolean formula
α by several transitions labeled by the integers corresponding to truth assignments sat-
isfying α. Once we have used BRICS Automaton to form a DFW, we convert transition
labels back to Boolean formulas that we use to construct Promela never claims.

The assignment-based approach sometimes creates a large number of transitions. For
example, the Boolean formula true corresponds to 2n assignments. We introduce an
edge-abbreviation technique to merge separate transitions. When we have several tran-
sitions with the same source and destination states, we can remove these transitions and
replace them by a single transition labeled by the disjunction of the labels of the removed
transitions. For each such disjunction, we utilize SPOT’s built-in formula to bdd()
function to create a BDD representing the disjunction, extract a simplified formula from
the BDD via the reverse bdd to formula() function, and then label the associated tran-
sition by this new formula. A related optimization is to replace all else branches in the
Promela never claims by explicit Boolean formulas corresponding to the negation of
the conjunction of the labels of all of the other transitions (reduced using SPOT’s built-
in BDD functions). This enables us to eliminate redundant trap states and reduce never
claim code size.

3.2 Never Claim Encodings

Inspired by the work in [31], we introduce 26 ways of encoding automata for safety prop-
erties as Promela never claims. We form these encodings by combining our never claim
adaptations of the constructions for transition direction (front vs back), determinism
(det vs nondet), state minimization (min vs nomin), and alphabet representation (bdd
vs abr) from [31] with the options to encode never claim states either using Promela
state labels or integer state numbers (state vs number), to employ either finite or infi-
nite acceptance conditions (fin vs inf), and to reduce the size of the generated never
claim via edge abbreviation and trap-state elimination (ea). We illustrate our encodings
in Appendix A for benchmark safety formula 4 from Table 2.

Nondeterministic Encodings. We introduce 12 novel Promela encodings that perform
determinization on-the-fly. In nondet never claims we maintain an array used to de-
scribe sets of states of A f

ϕ . An array that corresponds to an empty set indicates that A f
ϕ

got stuck, which means that we have discovered a violation of ϕ. We can encode the
transition relations either in a front fashion, where for any state q we enumerate the
outgoing transitions from q, or in a back fashion, where for any state q we enumerate
the incoming transitions that lead to q.

The front nondet encoding uses an if statement to check each outgoing transition
from each possible current state and marks all possible next states in the next state
array. If there is no possible next state, the automaton fails. For never claims with finite
acceptance conditions, this is accomplished by breaking from the do loop and coming
to the end } of the claim. The back nondet encoding works similarly, but the branching
is over incoming transitions rather than over outgoing transitions. See Appendix A.2 for
examples.

250 K.Y. Rozier and M.Y. Vardi

Deterministic Encodings. In contrast to nondet encodings, where we determinize on
the fly, in det encodings we already have the states of Ad

ϕ and we can encode them
directly. We introduce 14 novel deterministic Promela encodings that presume Ad has
been minimized and determinized using assignment-based encoding. We use two ways
to encode the states. First, we can encode states by using a Promela variable, whose
value refers to the current state (number). Second, we can use Spin’s standard state-label
format coupled with goto statements to transition between states. We illustrate each of
these two state representations in turn.

The back det encoding uses state numbers. The never claim first calculates the
system state index, the integer corresponding to the current valuation of the system
variables. Like its back nondet counterpart, it transitions by checking for an enabled
incoming transition to the current state. The front det switch number fin encoding
uses a series of if statements, the closest Promela construction to a C-like switch state-
ment, to check for enabled outgoing transitions from the current state. See Appendix A.3
for examples.

Alternatively, we can encode the never claim without using any state numbers, by
taking advantage of Promela’s constructs for representing automata states. The front
det switch state inf encoding transitions to program labels corresponding to the
names of the states in Ad

ϕ . The initial state is labeled “init” and appears first, the ac-
cepting state is labeled “accept,” and all other states are assigned unique names. See
Appendix A.3 for examples.

Table 1. The configuration space for generating never claims. Each row in the table represents
an encoding configuration. Components of the winning encoding are bolded.

State
Minimization

Alphabet
Representation

Automaton
Acceptance

Never Claim
Encoding

State
Representation

no
BDDs

finite

infinite

front nondet

number

yes

back nondet

assignments

front nondet

back nondet

back det

front det memory table

front det switch
state

assignments
with edge

abbreviation

number

back det number

Look-Up Tables. The above encodings represent automaton transition functions as if
statements. Alternatively, we can declare a state look-up table in memory storing the next
state as a function of the current state and the system state index. This forms very
compact never claims and the next state can be found in one operation. The
front det memory table encoding declares the table directly as a one-dimensional,
row-major array. See Appendix A.3 for an example.

Deterministic Compilation of Temporal Safety Properties 251

Configuration Space. The different options allow 26 possible combinations for gen-
erating never claims, summarized in Table 1.

4 Experimental Method

Platform We ran all tests on the Shared University Grid at Rice (SUG@R), an Intel Xeon
compute cluster.3 SUG@R is comprised of 134 SunFire x4150 nodes, each with two
quad-core Intel Xeon processors running at 2.83GHz and 16GB of RAM per processor.
The OS is Red Hat Enterprise 5 Linux, 2.6.18 kernel. Each test was run with exclusive
access to one node. Times were measured using the Unix time command.

Table 2. Industrial safety formulas used in model-scaling benchmarks

0 �¬bad “Something bad never happens.”
1 �(request → X grant) “Every request is immediately fol-

lowed by a grant”
2 �(¬(p∧q)) Mutual Exclusion: “p and q can

never happen at the same time.”
3 �(p→ (X X X q)) “Always, p implies q will happen 3

time steps from now.”
4∗ X ((p∧q)R r) “Condition r must stay on until but-

tons p and q are pressed at the same
time.”

5∗ X (�(p)) slightly modified intentionally safe
formula from [19]

6∗ X (�(q∨X�p)∧�(r∨X�¬p)) slightly modified accidentally safe
formula from [19]

7∗ X ([�(q∨♦�p)∧�(r∨♦�¬p)]∨�q∨�r) slightly modified pathologically
safe formula from [19]

8 �(p→ (q∧X q∧X X q)) safety specification from [31]
9 (((((p0R (¬p1))R (¬p2))R (¬p3))R (¬p4))R (¬p5)) Sieve of Erathostenes [13,21]

10 (�((p0∧¬p1)→ (�¬p1∨ (¬p1U(p10∧¬p1))))) G.L. Peterson’s algorithm for
mutual exclusion algorithm
[25,22,13,24,21]

11 (�(¬p0→ ((¬p1U p0)∨�¬p1))) CORBA General Inter-Orb Protocol
[17,21]

12 ((�(p1 → �(¬p1 → (¬p0 ∧ ¬p1)))) ∧ (�(p2 →
�(¬p2→ (¬p0∧¬p1))))∧ (�¬p2∨ (¬p2U p1)))

GNU i-protocol, also called iprot
[5,24,21]

13 ((�(p1 → �(¬p1 → (¬p0 ∧ ¬p1)))) ∧ (�(p2 →
�(¬p2→ (¬p0∧¬p1))))∧ (�¬p2∨ (¬p2U p1)))

Sliding Window protocol [16,21]

3 http://rcsg.rice.edu/sugar/

http://rcsg.rice.edu/sugar/

252 K.Y. Rozier and M.Y. Vardi

4.1 Model-Scaling Benchmarks

We chose a set of 14 typical safety formulas, taken from related literature, listed in Table
2. We model checked them against scaled linearly-sized Universal Models (UM) from
[27]. (See also Appendix B.) By scaling up the size of these UMs to dwarf the sizes of
the safety formulas, we create difficult model-checking benchmarks.

For each of the formulas in Table 2, we model checked against a series of linearly-sized
UMs, described in [27], starting with the 10-variable UM and scaling up the number
of variables in the model, thereby exponentially increasing its state space. We used two
configurations of UMs; starred formulas are checked against UMs that set all variables
to true first; see Appendix B.

4.2 Formula-Scaling Benchmarks

For our formula-scaling benchmarks, we model checked each formula against a uni-
versal model with 30 variables and 1,073,741,824 states. We employed two types of
formula-scaling benchmarks: random and syntactically safe random. We scaled each
of the formulas until model checking became unachievable within machine bounds of
timeout/spaceout.

We generated two sets each of 500 m-length safety specifications over n atomic propo-
sitions, for m in {5,10,15,20,25} and n in {2..6} (25,000 random formulas in these two
benchmark sets, combined). The probability of each temporal operator was P = 0.5.
For the first set, we generated syntactic safety formulas, allowing negation only di-
rectly before atomic propositions and limiting the temporal operators to {X ,G,R}. For
the second set, we generated each specification randomly over the full syntax of LTL.
We then checked if the generated specification represented a safety property using the
SPOT command ltl2tgba -O, adding the specification to our test set if so and rejecting
it if not.

Test Method. We encoded every benchmark LTL formula as a set of Promela never
claims using SPOT and our novel encodings. We experimented with scheck [21] en-
codings; that tool produced too many bugs to be included. However, it is reasonable to
assume that the results would not be comparable to our best encoding since the algo-
rithm implemented by scheck constructs a nondeterministic finite automaton from the
restricted closure of the formula that accepts precisely the informative prefixes of the
formula and then determinizes as a last step without employing optimizations that we
found particularly influential, such as minimization or edge abbreviation. Each never
claim, was model checked by Spin.4

We measured model-checking time separately from the times for various compilation
stages. This is important for two reasons. It is relevant for regression testing and sys-
tem debugging applications where the system is repeatedly changed but model checked
against the same specifications. It is also essential for demonstrating our claim that de-
terministic encoding of LTL safety formulas can reduce model-checking time; it is clear

4 We also investigated using the SPOT back-end; SPOT is unable to analyze Promela never
claims at the time of this writing.

Deterministic Compilation of Temporal Safety Properties 253

AM,¬f

Promela
never claim

A¬f

M

C → binaryPromela → C Model

Check
EMPTY?

¬f

Fig. 1. System Diagram illustrating the Spin model checking process. We present an improved
encoding for the LTL formula ¬ f to the Promela never claim A¬ f .

that we are not, for example, encoding LTL formulas in a manner that compiles more
quickly but requires the same or more time to model check than the equivalent SPOT-
encoding.

Figure 1 depicts the Spin model checking process. Unlike previous works, which re-
port only the total time required for analysis via Spin, we measure the time required for
compilation of LTL-to-never claim (by either SPOT or CHIMP-Spin), never claim-to-
C (via the spin command), and C-to-binary (via gcc) separately. In the following plots,
we refer to the sum of these three times as compile time and separate this sum from from
model-checking time, or the time required to run the pan executable produced by Spin.
Because we ran SPOT as a step in the creation of each of our new encodings, the spec-
ification automaton generation times incurred by our algorithm will always be greater
than running SPOT alone. (It is important to note that our automaton generation times
are consistently dwarfed by the corresponding model-checking times.) To streamline re-
gression testing, we argue that future versions of Spin should not require us to recompile
never claims for each run of the model checker, even when they have not changed. Such
an adjustment would more accurately reflect industrial applications of model checking
and, combined with our reduced model-checking times, reduce the amortized cost of
model checking.

5 Experimental Results

Our experiments demonstrate that the new Promela never claims we have introduced
significantly improve the translation of LTL safety formulas into explicit automata, as
measured by model-checking time. We found that one of our encodings is always best:
front det switch min abr ea state fin. Using this encoding, we can consistently
improve on the model-checking time required for SPOT encodings. We recommend us-
ing our front det switch min abr ea state fin encoding for safety formulas and
the standard SPOT encoding for non-safety formulas. (Recall that SPOT can test for
safety formulas.)

We found certain encoding aspects to be always better. This helps explain why the
front det switch min abr ea state fin encoding is always the fastest: it is the

254 K.Y. Rozier and M.Y. Vardi

encoding that combines all of the fastest never claim components. We found the follow-
ing trends to hold: deterministic (det) never claims are faster than determinized-on-
the-fly (nondet) never claims; finite acceptance (fin) is faster than infinite acceptance
(inf); state labels (state) are faster than state numbers (number); minimized automata
(min) are faster than not (nomin); edge abbreviation (ea) always equates to better per-
formance. Note that deterministic encoding (det) enables faster features such as state
minimization and edge abbreviation and that, all other encoding aspects being equal,
there seems to be a positive correlation between the code size of a given never claim
and the required model-checking time, explaining the efficiency of this encoding. Also
note that the (front det switch) encoding enables the faster state labels representa-
tion (state).

5.1 Model-Scaling Experimental Results

Figure 2 demonstrates empirically that our deterministic automata require less
time to model check than SPOT’s nondeterministic automata. For some bench-
marks, we found that all of our encodings, whether they determinized Ad up
front or on the fly, required less model-checking time than the equivalent non-
deterministic SPOT never claims.5 For example, for the iprot and sliding win-
dow benchmarks (formulas 12 and 13) pictured in Figures 2(a) and 2(b), all of
our new encodings performed better than SPOT, though our front det switch
min abr ea state fin encoding was best. In these figures, the SPOT encoding is
shown in red, our best encoding is shown in purple, and our 25 other encodings are
shown in magenta. Note also that these plots demonstrate the orthogonality of automata
size and model-checking time: all of our encodings represent the same automaton so
the differences in model-checking times in these graphs stem entirely from the type of
encoding and not the number of states in the automaton. Deterministic encodings can
result in significant improvements in model-checking performance by reducing calls to
the internal nested depth-first search algorithm in the model checker; see Appendix A.1.

Figure 3 shows a speedup of a factor of two when using our best CHIMP-Spin encod-
ing to model check our 14-formula workload against a 34-variable UM. Since we ter-
minated the plot when the first benchmark formula exceeded machine bounds, this plot
does not show instances where our encoding was able to scale to larger model-checking
benchmarks than the equivalent SPOT encoding. For example, Figure 2 demonstrates
that our encoding was more scalable than SPOT’s when model checking formulas 12
and 13.

Out of all of our benchmarks, the formula 4 benchmark displayed the smallest differ-
ence between our encoding and SPOT. For the 36-variable universal model, the SPOT
never claim took 4606.94 seconds, or roughly 77 minutes whereas our never claim
took 4281.22 seconds, or roughly 71 minutes Still, our front det switch min abr ea
state fin encoding encoding enabled Spin to scale to model check a 40-variable model
whereas model checking the SPOT never claim timed out at 39 variables.

Since we call SPOT as a step in our encoding, our automaton generation times
must always be higher than SPOT but compile times were consistently dwarfed by

5 Note that not all SPOT never claims are nondeterministic; for other benchmarks SPOT pro-
duced deterministic never claims.

Deterministic Compilation of Temporal Safety Properties 255

model-checking times. Our total compile times were comparable to SPOT for our model-
scaling benchmarks. For the set of 14 safety formulas in our workload, when model
checking against a 34-variable UM as shown in Figure 3, the sum of our compile times
was 6.01 seconds (that breaks down into a sum of LTL-to-never claim times of 1.74 sec-
onds, a sum of Promela-to-C times of 0.05 seconds, and a sum of C-to-binary times of
4.22 seconds), while the sum of our model-checking times was 122662.78 seconds. For
SPOT encodings, the sum of compile times was 4.53 seconds (including a sum of LTL-
to-never claim times of 0.14 seconds, a sum of Promela-to-C times of 0.06 seconds,
and a sum of C-to-binary times of 4.33 seconds) with a sum of model-checking times
of 225132.7 seconds. Note that the unix time command is not accurate to hundredths
of a second so there is a potential for some error contributions in these sums.

5.2 Formula-Scaling Experimental Results

Figures 4(a) and 4(b) show the sums of the model checking times of randomly-generated
safety formulas: completely randomly generated in Figure 4(a) and syntactically safe
in Figure 4(b). Model-checking times summed over all non-trivial randomly-generated
formulas for our best encoding were significantly lower than for SPOT encodings.

Since we call SPOT as a step in our encoding, our automaton generation times were
always higher than SPOT but were consistently dwarfed by model-checking times. This
trend holds for syntactically safe random formulas as well. See Figure 5.2.

BRICSAutomaton experienced some errors when encoding some randomly-generated
formulas. These were rare enough as to not significantly impact our timing results, i.e. for
the set of 500 5-variable, 15-length random formulas in Figure 4(a), BRICS Automaton
experienced nine errors. We summed data only for formulas where both the SPOT and
CHIMP-Spin model-checking runs completed without an error or timeout.

number of propositions in the UM

m
od

el
-c

h
ec

ki
ng

ex
ec

u
tio

n
tim

e
(s

ec
)

25 26 27 28 29 30 31 32 33 34 35 36 37
0

5000

10000

15000

20000

25000

30000

35000

40000 SPOT
front_det_switch_min_abr_ea_state_fin
Deterministic Encodings

iprot Formula

(a) Benchmarks for the iprot specification (for-
mula 12).

number of propositions in the UM

m
od

el
-c

h
ec

ki
ng

ex
ec

u
tio

n
tim

e
(s

ec
)

25 26 27 28 29 30 31 32 33 34 35 36 37
0

5000

10000

15000

20000

25000

30000

35000

40000 SPOT
front_det_switch_min_abr_ea_state_fin
Deterministic Encodings

sliding_window Formula

(b) Benchmarks for the sliding window specifi-
cation (formula 13).

Fig. 2. Model-scaling benchmarks, showing the model-checking times based on the number of
propositions in the UM

256 K.Y. Rozier and M.Y. Vardi

number of propositions in the UM

su
m

m
od

el
-c

he
ck

in
g

ex
ec

ut
io

n
tim

e
(s

ec
)

24 26 28 30 32 34
0

50000

100000

150000

200000

250000

SPOT
front_det_switch_min_abr_ea_state_fin

Model-Scaling Benchmark Workload

Fig. 3. Sums of the model-checking times for all model-scaling benchmark instances, based on
the number of propositions in the UM

Formula length

S
u

m
m

od
el

-c
he

ck
in

g
tim

e
(s

ec
)

5 10 15 20

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

70000

75000

80000

85000

90000

95000

100000
SPOT
front_det_switch_min_abr_ea_state_fin

5 Variable Random Formulas

(a) Sum of model-checking times for 5 variable
random formula benchmark.

Formula length

S
um

m
od

el
-c

h
ec

ki
ng

tim
e

(s
ec

)

5 10 15 20
0

10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000
130000
140000
150000
160000
170000
180000
190000
200000

SPOT
front_det_switch_min_abr_ea_state_fin

6 Variable Syntactically Safe Random Formulas

(b) Sum of model-checking times for 6 variable
syntactically safe benchmark.

Fig. 4. Graphs of sums of model-checking times for both categories of randomly-generated for-
mulas, showing that our model-checking times were consistently lower than SPOT

Deterministic Compilation of Temporal Safety Properties 257

Formula length

S
um

co
m

p
ila

tio
n

tim
e

(s
ec

)

5 10 15 20
0

5

10

15

20

25

30

35
SPOT
front_det_switch_min_abr_ea_state_fin

5 Variable Random Formulas

(a) Sum of compilation times for 5 variable ran-
dom formula benchmark.

Formula length

S
um

co
m

p
ila

tio
n

tim
e

(s
ec

)

5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

55

60
SPOT
front_det_switch_min_abr_ea_state_fin

6 Variable Syntactically Safe Random Formulas

(b) Sum of compilation times for 6 variable syn-
tactically safe benchmark.

Fig. 5. Sums of compilation times for both categories of randomly-generated formulas, showing
that compilation times were dwarfed by model-checking times. Note that the unix time command
is not accurate to hundredths of a second; the times presented here may contain substantial error
contributions. These graphs simply show that the sum of compile times over all formulas in a
test set was always under a minute, for both SPOT and the best CHIMP-Spin encoding.

The difference in model-checking time is not directly correlated with other statistics
we measured, such as the length of counterexamples returned for formula violations.
Across all of the randomly-generated formulas, we found that the number of states and
the lengths of counterexamples associated with our front det switch min abr ea
state fin never claims and with SPOT’s were usually very close, within a few states
of each other. In general, the number of transitions had a higher variance between these
two encodings; in the median cases, we ended up with less than or equal to the number
of transitions in the equivalent SPOT never claim.

6 Discussion
In this paper we brought attention to the benefit of deterministic compilation for safety
LTL properties. We defined novel encodings of safety LTL properties as deterministic
never claims and showed that one encoding consistently leads to faster model-checking
times than the state-of-the-art SPOT encoding or any of our other new encodings. There-
fore, we recommend a multiple-pronged property-compilation approach to the Spin
model checker: use SPOT for the compilation of non-safety properties and use determin-
istic compilation with our new front det switch min abr ea state fin encoding
for safety properties. This approach is extensible; different encodings of never claims
may be appropriate for different types of LTL formulas, see [29].

Determinizing never claims for safety properties up front, rather than on-the-fly,
seems to have a major effect on model-checking performance. While either method
of determinizing yields better performance due to the simpler structure of the product

258 K.Y. Rozier and M.Y. Vardi

search space, determinizing up front enables the use of other optimizations that improve
performance: state labels (rather than numbers), state minimization, edge abbreviation.
There is also a consistent time savings associated with model checking using finite ac-
ceptance conditions.

In general, deterministic compilation is more time consuming than nondeterminis-
tic compilation due to the need to determinize and minimize, though this overhead is
dwarfed by the improvements in model-checking time. Still, our experiment revealed the
BRICS Automaton tool to be a slow link in our tool chain; improving this link is a subject
for future research. In particular, we plan to investigate replacing the BRICS Automaton
tool by (currently undocumented) determinization functions provided by SPOT. Also,
for this paper we implemented our encoding as an extension of the CHIMP tool. How-
ever, in the future we would like to implement our best encoding more efficiently rather
than relying on a modification of a tool created for a different purpose.

Finally, Kupferman and Lampert [18] developed an alternative approach to model
checking of safety properties, which involves the construction of a nondeterministic
finite-word automaton for bad prefixes. That approach may yield longer counterexam-
ples, but it does not involve the theoretical additional exponential blow-up that is in-
volved in the approached pursued here. A comparison with that approach is another
subject for future research.

References

1. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Dist. Comp. 2, 117–126 (1987)
2. Armoni, R., Egorov, S., Fraer, R., Korchemny, D., Vardi, M.Y.: Efficient LTL compilation

for SAT-based model checking. In: ICCAD, pp. 877–884. IEEE (2005)
3. Bryant, R.E.: Symbolic Boolean manipulation with Ordered Binary-Decision Diagrams.

ACM Computing Surveys 24(3), 293–318 (1992)
4. d’Amorim, M., Roşu, G.: Efficient monitoring of ω-languages. In: Etessami, K., Rajamani,

S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidelberg (2005)
5. Dong, Y., Du, X., Holzmann, G.J., Smolka, S.A.: Fighting livelock in the GNU i-protocol:

a case study in explicit-state model checking. STTT 4(4), 505–528 (2003)
6. Duret-Lutz, A., Poitrenaud, D.: SPOT: An extensible model checking library using transition-

based generalized Büchi automata. In: MASCOTS, pp. 76–83. IEEE (2004)
7. Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Van Campenhout, D.: Reasoning

with temporal logic on truncated paths. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003)

8. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science,
vol. B, ch. 16, pp. 997–1072. Elsevier, MIT Press (1990)

9. Geldenhuys, J., Hansen, H.: Larger automata and less work for LTL model checking. In:
Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 53–70. Springer, Heidelberg (2006)

10. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of
Linear Temporal Logic. In: PSTV, pp. 3–18. Chapman & Hall (1995)

11. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002)

12. Holzmann, G.J.: The model checker Spin. IEEE TSE 23(5), 279–295 (1997)
13. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley

(2003)

Deterministic Compilation of Temporal Safety Properties 259

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley (1979)

15. Jategaonkar Jagadeesan, L., Puchol, C., Von Olnhausen, J.E.: Safety property verification of
ESTEREL programs and applications to telecommunications software. In: Wolper, P. (ed.)
CAV 1995. LNCS, vol. 939, pp. 127–140. Springer, Heidelberg (1995)

16. Kaivola, R.: Using compositional preorders in the verification of sliding window protocol.
In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 48–59. Springer, Heidelberg (1997)

17. Kamel, M., Leue, S.: Validation of a remote object invocation and object migration in
CORBA GIOP using Promela/Spin. In: SPIN (1998)

18. Kupferman, O., Lampert, R.: On the construction of fine automata for safety properties. In:
Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 110–124. Springer, Heidelberg
(2006)

19. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. FMSD 19(3), 291–314
(2001)

20. Kupferman, O., Vardi, M.Y.: Weak alternating automata are not that weak. ACM TOCL 2(2),
408–429 (2001)

21. Latvala, T.: Efficient model checking of safety properties. In: Ball, T., Rajamani, S.K. (eds.)
SPIN 2003. LNCS, vol. 2648, pp. 74–88. Springer, Heidelberg (2003)

22. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc. (1996)
23. Møller, A.: dk.brics.automaton (2004), http://www.brics.dk/automaton/
24. Pelánek, R.: BEEM: Benchmarks for explicit model checkers. In: Bošnački, D., Edelkamp,

S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007)
25. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3), 115–116

(1981)
26. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of LTL safety properties in hybrid sys-

tems. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 368–382.
Springer, Heidelberg (2009)

27. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. International Journal on Software
Tools for Technology Transfer (STTT) 12(2), 123–137 (2010)

28. Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327 (1988)
29. Schneider, K.: Improving automata generation for linear temporal logic by considering the

automaton hierarchy. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI),
vol. 2250, pp. 39–54. Springer, Heidelberg (2001)

30. Sebastiani, R., Tonetta, S.: “More deterministic” vs. “Smaller” Büchi automata for efficient
LTL model checking. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp.
126–140. Springer, Heidelberg (2003)

31. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal monitors for SystemC. Formal
Methods in System Design 41(3), 236–268 (2012)

32. Vardi, M.Y.: From monadic logic to PSL. In: Avron, A., Dershowitz, N., Rabinovich, A.
(eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 656–681. Springer, Heidelberg
(2008)

33. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification.
In: Proc. 1st Symp. on Logic in Comp. Sci., Cambridge, pp. 332–344 (June 1986)

34. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)

http://www.brics.dk/automaton/

FoREnSiC – An Automatic Debugging

Environment for C Programs�

Roderick Bloem1, Rolf Drechsler2, Görschwin Fey2, Alexander Finder2,
Georg Hofferek1, Robert Könighofer1, Jaan Raik3,

Urmas Repinski3, and André Sülflow2

1 Graz University of Technology, Austria
2 University of Bremen, Germany

3 Tallinn University of Technology, Estonia

Abstract. We present FoREnSiC, an open source environment for au-
tomatic error detection, localization and correction in C programs. The
framework implements different automated debugging methods in a uni-
fied way covering the whole design flow from ESL to RTL. Currently,
a scalable simulation-based back-end, a back-end based on symbolic ex-
ecution, and a formal back-end exploiting functional equivalences be-
tween a C program and a hardware design are available. FoREnSiC is
designed as an extensible framework. Its infrastructure, including a pow-
erful front-end and interfaces to logic problem solvers, can be reused for
implementing new program analysis or debugging methods. In addition
to the infrastructure, the back-ends, and a few experimental results, we
present an illustrative application scenario that shows FoREnSiC in use.

1 Introduction

Debugging incorrect programs is labor-intensive, frustrating, and costly, yet un-
avoidable in modern software and hardware development. Errors have to be de-
tected, located and corrected. Many methods and tools exist to automate error
detection, e.g., automatic test case generation or model checking. Error localiza-
tion and correction are mostly done manually. At the same time, these are the
most challenging steps. Understanding the program and tracking down errors is
time-consuming. Bug fixes often do not consider special cases, have side-effects,
or create new bugs. The need for further automation and tool support is obvious.

Existing tools and methods automate error localization and correction in dif-
ferent settings. An extension of the Tarantula fault localizer [10] with mutation-
based repair is presented in [8]. Model-based diagnosis [13] has been applied in
various settings already.A counterexample-based repairmethod is presented in [5].
Sketch [15] uses similar techniques for programsketching. Also, several approaches
have been proposed to check equivalence between system-level specifications and

� This work was supported in part by the European Commission through project
DIAMOND (FP7-2009-IST-4-248613), and by the Austrian Science Fund (FWF)
through the national research network RiSE (S11406-N23).

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 260–265, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

FoREnSiC - An Automatic Debugging Environment for C Programs 261

designs in Hardware Description Language (HDL), e.g. [6,16]. In contrast to our
framework, these existing tools implement only one specific method in isolation.
Refer to [11,12] for a more elaborate discussion of related work.

We present FoREnSiC, an automatic debugging environment for C programs.
FoREnSiC is short for “Formal Repair Environment for Simple C”, but it has
already outgrown its name: it also detects and locates errors, and it applies also
semi-formal and dynamic methods. FoREnSiC makes two main contributions.

First, it implements various debugging methods in different back-ends. They
can be accessed in a unified way and provide different trade-offs between scalabil-
ity and reasoning power. Currently, there are three back-ends. The simulation-
based back-end [12] locates and repairs errors by executing the program on given
test vectors, featuring good scalability. It is similar to [8], but uses techniques like
program slicing to obtain better results. The symbolic back-end is based on sym-
bolic execution and SMT-solving [11]. It uses model-based diagnosis [13] and
a repair method similar to [15] and [5] (but with templates [7]) to synthesize
repairing expressions. The cut-based back-end exploits functional equivalences
between a C program and any HDL design for error localization and correction.

Second, FoREnSiC also serves as a framework for implementing new program
analysis, verification, and debugging techniques. The infrastructure includes a
GCC-based front-end to transform C programs into a graph-based representation.
Moreover, FoREnSiC provides data structures to represent logic formulas and
interfaces to logic solvers for solving them. FoREnSiC is available as open-source
tool at http://www.informatik.uni-bremen.de/agra/eng/forensic.php.

This paper is organized as follows. Section 2 illustrates FoREnSiC on an exam-
ple. Section 3 explains FoREnSiC’s architecture, the internal model, the front-end,
and the back-ends. Section 4 shows experimental results and Section 5 concludes.

2 Application Scenario

We demonstrate the features of FoREnSiC on the following scenario. Assume
we want to implement an algorithm to compute the Greatest Common Divi-
sor (GCD) of two integers. We start with the following draft program in C.

1 unsigned gcd (unsigned u ,
2 unsigned v) {
3 unsigned sh = 0 , res ;
4 if (u == 0 | | v == 0) {
5 res = 0;
6 return res ;
7 }
8 while (((u | v) & 1) == 0) {
9 u >>= 1;

10 v >>= 1;
11 ++sh ;
12 }
13 while ((u & 1) == 0)
14 u >>= 1;
15 do {

16 while ((v & 1) == 0)
17 v >>= 1;
18 if (u <= v) {
19 v += u ;
20 } else {
21 unsigned diff = u − v ;
22 u = v ;
23 v = diff ;
24 }
25 v >>= 1;
26 } while (v != 0) ;
27 res = u << sh ;
28 return res ;
29 }

Now we want to verify the correctness of our program. We use FoREnSiC’s sym-
bolic back-end to compare it to the Euclidean algorithm, which serves as a

http://www.informatik.uni-bremen.de/agra/eng/forensic.php

262 R. Bloem et al.

reference. The back-end detects an error and automated debugging commences.
First, error localization reports the “0” in line 5 as potentially faulty. Next,
the back-end synthesizes the following expressions to substitute “0” with: u + v

and 4294967295 & u | 4294967295 & v. The reason is clear: our program com-
putes gcd(0,x) = gcd(x,0) = 0 for any x, but the result should be x instead.
Replacing “0” with “u + v” fixes this bug. Since 4294967295 is 0xFFFFFFFF,
the second suggestion is actually “u | v”, which is correct as well. We can now
decide which fix we prefer. The symbolic back-end took only 6 seconds to locate
and fix this bug. When analyzing the revised program in more detail, the back-
end detects another error but is unable to locate or fix it within reasonable time.
Therefore, we now switch to the simulation-based back-end.

The simulation-based back-end performs simulation-based verification, diag-
nosis, and mutation-based repair. For our example, verification fails if enough
test cases are provided. Thus, diagnosis starts by ranking statements according
to their suspiciousness. In case of a single fault assumption (see Section 3.1), the
fault candidates are those statements which occur in all failing test cases. Next,
mutation-based repair is applied to one fault candidate after the other. Each mu-
tated design is verified by simulation to check whether the mutation constitutes
a repair. For our example, the back-end finds a fix after 149 mutations. The
mutation that fixes the fault is the replacement of the assignment operator += in
line 19 by -=. The two back-ends complement each other: while the simulation-
based back-end had no difficulties debugging the second bug, it could not come
up with the suggestions produced by the symbolic back-end for the first bug.
The reason is that a mutation from 0 to u | v would be too far-fetched.

Assume that we now want to implement this algorithm in hardware. We use
the cut-based back-end to verify equivalence between the HDL implementation
and the C program serving as specification. The cut-based back-end implements
a new verification, localization and repair method based on functional equiv-
alences, so-called cutpoints, between two designs. For the equivalence check,
the cut-based back-end determines corresponding output values in the two de-
sign descriptions automatically. Mismatches lead to counterexamples which are
used to debug the HDL description or the C program respectively. The cut-
based back-end localizes components in the design under debug to be replaced
by corresponding ones from the reference to fix a bug. Alternatively, the coun-
terexamples may be used as inputs for the simulation-based back-end for further
debugging of the C program. The equivalence proof for the GCD example took
15 minutes, unrolling the hardware design for up to 78 time cycles.

3 Description of FoREnSiC

FoREnSiC consists of three functional parts: the front-end, the model, and the
back-ends. Fig. 1 illustrates the architecture in a simplified form. A C program is
the main input. The front-end parses it and builds an internal model in form of a
flow graph representing the program in Static Single Assignment (SSA) form [1].
Each graph node represents a statement and is linked with its abstract syntax

FoREnSiC - An Automatic Debugging Environment for C Programs 263

Fig. 1. The architecture of FoREnSiC

tree. All parts of the model have references to the original source code in terms
of line and column numbers for communicating results to the user. The front-
end is based on the GCC plug-in API, so that complete C/C++ is supported
and upward compatibility is ensured. FoREnSiC also includes classes to represent
logic formulas and interfaces to SMT-solvers. This yields an infrastructure such
that FoREnSiC can be easily extended with new back-ends and features.

FoREnSiC currently contains three back-ends operating on the model. They
implement different advanced debugging methods. The back-ends require dif-
ferent supplementary inputs such as test vectors or a reference model. Not all
back-ends fully support all language features. For instance, the symbolic back-
end cannot accurately reason about pointer arithmetic. However, our main focus
are programs modeling hardware designs, where these advanced features do not
play such an important role. Details can be found in the manual [3].

3.1 Simulation-Based Debugging

The simulation-based back-end [12] simulates the design to detect and fix faults.
The specification can be given as input vectors together with either expected
output responses or a reference program in C. In the latter case, both programs
are simulated on the same inputs while comparing the outputs.

The back-end performs three steps. First, simulation-based verification is per-
formed. Second, if an error is detected, statistical methods are used to determine
fault candidates. In case of a single fault assumption, nodes in the model of the
design are associated with the number of failing simulation runs in which they
occurred. The nodes with the maximum numbers are reported as fault candi-
dates. In case of a multiple fault assumption, candidates are selected using the
method presented in [8]. Dynamic slicing is applied to discard candidates that do
not influence the simulation result. Finally, mutation-based repair is applied to
fix the error by mutating (i.e., modifying) operators and numbers, and checking
if this renders the program correct. The types of mutations can be configured.

3.2 Symbolic Debugging

The symbolic back-end implements the debugging method of [11]. It uses assert
statements as specification. Assertions also allow flexible comparisons with refer-
ence implementations. Debugging is performed in three steps. First, symbolic or
concolic execution is used to compute a formula defining when the program satis-
fies the specification. The symbolic execution engine has been implemented from

264 R. Bloem et al.

scratch, the concolic engine is based on CREST [4]. Both provide many options
for configuring the thoroughness of the analysis. In the second step, the diagnosis
engine computes potentially faulty components using model-based diagnosis [13].
Finally, the repair engine synthesizes new implementations of the faulty compo-
nents using templates for expressions and iterative refinements which are guided
by counterexamples [11]. Diagnosis and repair rely on SMT-solving. Currently,
the solvers Yices and Z3 can be used with linear integer arithmetic and bit-vector
arithmetic, either via their C-APIs or via SMT-LIBv2 [2].

3.3 Cut-Based Debugging

This back-end formally verifies the equivalence between a C program, taken as
reference specification, and an implementation in HDL. In case of a mismatch,
a counterexample is returned, and input stimuli similar to the counterexam-
ple are generated for simulation of both designs. After simulation, a frontier
of functional equivalences within both designs is computed, i.e. parts of imple-
mentation and specification which are found to be equivalent. Starting at the
frontier, components within the implementation are replaced by components
from the specification. Each replacement is checked whether it leads to further
functional equivalences between implementation and specification. If this is the
case, the repair is verified formally. In case of inequivalence, the repair engine
suggests which parts of the implementation may be replaced by which parts of
the specification in order to achieve functionally equivalent designs. Diagnosis
and repair rely on SAT-solving using MiniSat2 [9].

4 Experimental Results

We briefly compare our back-ends on the tcas benchmarks of the Siemens
suite [14]. tcas implements a collision avoidance system for aircrafts, has 12
integer inputs, around 180 lines of code, and comes in 41 faulty variants. The
simulation-based back-end fixes 26 versions, including 5 that cannot be solved
with the symbolic back-end and 6 that cannot be solved with the cut-based
back-end. The symbolic back-end fixes 23 versions, including 2 that cannot be
solved with the simulation-based method and 5 that cannot be solved with the
cutpoint-based back-end. The cutpoint-based back-end solves 29 versions, in-
cluding 9 that cannot be solved with the simulation-based back-end and 11 that
cannot be solved with the symbolic back-end. This demonstrates that the back-
end complement each other. Due to space constraints, we refer to [11] and [12]
for more experimental data. The FoREnSiC archive contains additional data.

5 Summary and Conclusion

FoREnSiC is a novel environment for automating error detection, location, and
correction in C programs. The back-ends can be accessed in a unified way, and

FoREnSiC - An Automatic Debugging Environment for C Programs 265

complement each other in features and characteristics. This makes FoREnSiC a
powerful tool for reducing manual debugging effort. FoREnSiC is also interesting
for developers as an open-source framework for new program analysis and de-
bugging techniques. Using the existing infrastructure, the developer can focus on
the new methods rather than parsing or interfacing solvers. By this, FoREnSiC
can alleviate and stimulate further research and development in the challenging
fields of automated hardware and software verification and debugging.

Future work includes improving the back-ends regarding performance, the
subset of C that can be handled, and their fault models. Integrating back-ends
more tightly, or combining their methods in a hybrid back-end is also planned.

References

1. Alpern, B., Wegman, M.N., Zadeck, F.K.: Detecting equality of variables in pro-
grams. In: POPL, pp. 1–11. ACM (1988)

2. Barrett, C., Stump, A., Tinelli, C.: The Satisfiability Modulo Theories Library,
SMT-LIB (2010), http://www.SMT-LIB.org

3. Bloem, R., Drechsler, R., Fey, G., Finder, A., Hofferek, G., Könighofer, R., Raik,
J., Repinski, U., Sülflow, A.: FoREnSiC - A Formal Repair Environment for Simple
C (2011), http://www.informatik.uni-bremen.de/agra/eng/forensic.php

4. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: ASE, pp.
443–446. IEEE (2008)

5. Chang, K.-H., Markov, I.L., Bertacco, V.: Fixing design error with counterexamples
and resynthesis. In: ASP-DAC, pp. 944–949. IEEE (2007)

6. Clarke, E., Kroening, D., Yorav, K.: Behavioral consistency of C and Verilog pro-
grams using bounded model checking. In: DAC, pp. 368–371. ACM (2003)

7. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003.
LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)

8. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes for faulty
programs. In: ICST, pp. 65–74. IEEE (2010)

9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

10. Jones, J.A., Harrold, M.J.: Empirical evaluation of the Tarantula automatic fault-
localization technique. In: ASE, pp. 273–282. ACM (2005)

11. Könighofer, R., Bloem, R.: Automated error localization and correction for imper-
ative programs. In: FMCAD, pp. 91–100. FMCAD Inc. (2011)

12. Raik, J., Repinski, U., Hantson, H., Jenihhin, M., Di Guglielmo, G., Pravadelli, G.,
Fummi, F.: Combining dynamic slicing and mutation operators for ESL correction.
In: ETS, pp. 1–6. IEEE (2012)

13. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

14. Siemens Corporate Research. Siemens benchmark suite,
http://pleuma.cc.gatech.edu/aristotle/Tools/subjects

15. Solar-Lezama, A., Tancau, L., Bodik, R., Saraswat, V., Seshia, S.A.: Combinatorial
sketching for finite programs. In: ASPLOS, pp. 404–415. ACM (2006)

16. Vasudevan, S., Abraham, J.A., Viswanath, V., Tu, J.: Automatic decomposition
for sequential equivalence checking of system level and RTL descriptions. In: MEM-
OCODE, pp. 71–80. IEEE (2006)

http://www.SMT-LIB.org
http://www.informatik.uni-bremen.de/agra/eng/forensic.php
http://pleuma.cc.gatech.edu/aristotle/Tools/subjects

Towards Beneficial Hardware Acceleration in HAVEN:
Evaluation of Testbed Architectures�

Marcela Šimková and Ondřej Lengál

Faculty of Information Technology, Brno University of Technology, Czech Republic
{isimkova,ilengal}@fit.vutbr.cz

Abstract. Functional verification is a widespread technique to check whether
a hardware system satisfies a given correctness specification. As the complexity
of modern hardware systems rises rapidly, it is a challenging task to find ap-
propriate techniques for acceleration of this process. In our previous work, we
developed HAVEN, an open verification framework that enables hardware accel-
eration of functional verification runs by moving the design under test (DUT)
into a verification environment in a field-programmable gate array (FPGA). In
the original version of HAVEN, the generator of input stimuli, the scoreboard
and the transfer function still resided in a software simulator, and the peak accel-
eration ratio achieved was over 1,000. In the currently presented paper, we further
extend HAVEN with hardware acceleration of the remaining parts of the verifica-
tion environment. This enables the user to choose from several different testbed
architectures which are evaluated and compared. We show that each architecture
provides a different trade-off between the comfort of verification and the degree
of acceleration. Using the highest degree of acceleration, we were able to achieve
the speed-up in the order of hundreds of thousands while still being able to em-
ploy assertion and coverage analysis.

1 Introduction

Functional verification is a simulation-based technique which is typically used in the
pre-silicon phase of the development cycle to verify not only functional aspects but also
reliability and safety properties of hardware systems. Due to its ability to uncover the
vast majority of design errors in a reasonable time and thus decrease the time to market
of the developed product, functional verification has become the verification method of
choice for many successful projects.

The main idea of functional verification is to generate a set of constrained-random
test vectors and apply them to the verified system (called the design under test, or DUT)
in a simulator. The observed response is then compared to the expected one as speci-
fied by a provided transfer function. In order to have a strong confidence in the cor-
rectness of the verified system, a high level of coverage of the system’s state space
needs to be achieved. This issue can be addressed in the following two ways: (i) to find
a method how to generate test vectors that cover critical parts of the state space, and (ii)

� This work was supported by the Czech Science Foundation (project 102/09/H042), the Czech
Ministry of Education (projects LD12036 and MSM 0021630528) and the BUT FIT projects
FIT-S-11-1 and FIT-S-12-1. An extended version of this paper is available as the technical
report [1].

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 266–273, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Beneficial Hardware Acceleration in HAVEN 267

to maximise the number of the vectors tested. Simulation-based pre-silicon verification
approaches including functional verification provide verifiers and designers with great
comfort while debugging a failing component, checking formal assertions or perform-
ing coverage analysis.

Because of the limitation in the speed of software simulation, even with a high ef-
fort devoted to the pre-silicon verification, some previously uncovered functional errors
are recognised only after the system is manufactured. In order to eliminate as many
remaining bugs as possible before the target device is fabricated, verification is cur-
rently applied even in the post-silicon phase of the development cycle when a prototype
running at the frequency close to that of the target device is available [3].

In recent years, several approaches that addressed the issue of performance of pre-
silicon verification appeared. The first approach discussed in [4,5,6] translates VHDL
or Verilog testbenches, which contain not directly synthesisable behavioural constructs,
using advanced synthesis techniques into the synthesisable subset of the corresponding
language. Note that these techniques are limited since some of the non-synthesisable
constructs, such as reading from a file or evaluation of recursive functions, still can-
not be synthesised. With the advent of higher-level hardware verification languages
(HVLs) for writing testbenches, with SystemVerilog being the most prominent, auto-
matic synthesis of testbenches that use advanced features, such as constrained-random
stimulus generation, coverage-driven and assertion-based verification, has become even
more infeasible.

However, soon after the introduction of HVLs, several transaction-based methodolo-
gies emerged, e.g. SystemVerilog-based VMM, OVM, and UVM. These methodologies
use higher-level of abstraction and group sequences of stimuli applied to the DUT into
transactions that are delivered to drivers of the DUT. Then it is possible to acceler-
ate the performance of a testbench by dividing the testbench into the synthesised part
(including the drivers) that is placed in a hardware emulator, and the behavioural part
that runs on a CPU, such that the two parts communicate using simple channels. Solu-
tions that use emulators to accelerate functional verification has been provided by major
companies that focus on tools for hardware verification. Examples of these emulator-
based solutions are Mentor Graphics’ Veloce2 technology [7] and Cadence’s TBA [8]
that use emulators running on frequencies in the order of MHz. Synopsys [11] provide
solution for prototyping of ASICs based on field-programmable gate arrays (FPGAs).
A similar approach is taken by Huang et al [9]; their proposal is also to place the DUT
with necessary components in an FPGA, and in addition provide limited observability
of the DUT’s signals. Nevertheless, to the best of our knowledge, there is currently still
no available working implementation based on their proposal. Unfortunately, we could
not perform a detailed comparison of these solutions as they are not available to us.

The authors of [3] relate pre-silicon and post-silicon verification in terms of achiev-
ing coverage closure. Instead of observing values of internal signals, the approach pre-
sented for post-silicon verification observes the behaviour of a post-silicon exerciser
(which is not given by a set of test vectors but rather by a test template) in the pre-
silicon simulation environment and determines the probability of the exerciser hitting
certain cover points in a given number of clock cycles.

268 M. Šimková and O. Lengál

We focus our research on bridging the gap between pre- and post-silicon verification
using hardware acceleration with functional verification features. In [2], we introduced
HAVEN (Hardware-Accelerated Verification ENvironment), an open framework1 for
hardware-accelerated functional verification of hardware that tackles the bottleneck of
the simulation speed of a DUT by moving the DUT into a verification environment in
an FPGA. Using this solution, we were able to achieve the speed-up of over 1,000.

In the currently presented paper, we describe the new features added to HAVEN in
order to support seamless transition from pre- to post-silicon verification using sev-
eral architectures of the verification testbed. The user can start with the pure software
version of the functional verification environment to debug base system functions and
discover the main bulk of errors. Later, when the simulation cannot find any new bugs
in a reasonable time, the user can start to incrementally move some parts of the ver-
ification environment from software to hardware, with each step obtaining a different
trade-off between the acceleration ratio and the debugging comfort.

The rest of the paper is structured as follows. In Section 2, we give a detailed de-
scription of the main features of HAVEN. In Section 3 we propose several architectures
of the HAVEN testbed and in Section 4 we evaluate them using a set of experiments.
Section 5 concludes the paper and gives directions for future work.

2 The HAVEN Verification Framework

HAVEN [2] is a SystemVerilog verification framework that allows to speed up func-
tional verification runs using an FPGA-based accelerator. The DUT that is being veri-
fied is synthesised and placed into a testbed in the FPGA, and generated transactions are
passed to the accelerator instead of the model of the DUT in the software simulator. The
cycle accuracy is maintained in the accelerator so that a failed accelerated verification
run can be easily reproduced in the perfect debug environment of the simulator. In order
to be able to detect a violation of expected internal behaviour, protocols’ specifications,
etc., and debug a failing component directly in hardware, HAVEN enables to connect
assertion checkers and signal observers that check validity of assertions and observe
values of internal signals and display them as waveforms.

Using the solution presented in [2], we were able to achieve the acceleration ratio of
over 140 when we included the time for generation of test vectors in software and over
1,000 when we did not include it (for pre-generated test vectors). During the evaluation,
we observed that the main performance bottlenecks were generation of constrained-
random transactions, maintaining transactions in the scoreboard and comparing them to
the outputs of the DUT. In this paper, we address these issues and extend HAVEN with
even better support for hardware acceleration by providing hardware implementations
of the following components of the verification environment:

Hardware Generator. The Hardware Generator consists of a random number genera-
tor (we used the fast hardware implementation of the Mersenne Twister from [10]
which provides a random vector in each clock cycle) and an adapter to the desired
format with a constraint solver. The generator seed as well as parameters of trans-
actions can be set from the simulator using a configuration interface.

1 http://www.fit.vutbr.cz/˜isimkova/haven/

http://www.fit.vutbr.cz/~isimkova/haven/

Towards Beneficial Hardware Acceleration in HAVEN 269

Hardware Scoreboard. Compares data from the DUT and the Transfer Function unit.
Transfer Function. Hardware implementation of a transfer function depends on the

verified component and can be performed in several ways. For components with
an already existing reference hardware implementation, we can use this as the trans-
fer function. If only a software implementation of the transfer function is available,
it is possible to use a soft processor core and run the function on the processor.

Coverage Monitor. In order to be able to guarantee reaching coverage closure in larger
designs, the Coverage Monitor may be used to check whether given points of the
DUT’s state space have been covered. The component is connected to the wires
which are to be checked and periodically sends the information about triggered
cover points to the simulator. Since this component uses a register for every cover
point, it is recommended for monitoring coverage of so far not covered points only.

3 Architectures of HAVEN

In this section we show how the components presented in the previous section may be
(together with the components from [2]) assembled to create several different testbed
architectures, each suitable for a different use case and a different phase of the overall
verification process. We start our description with the non-accelerated version running
solely in the simulator and proceed by moving components of the verification environ-
ment into hardware in several steps.

Software Version (SW-FULL). All components of the verification environment are in
the software simulator (Fig. 1). The Software Generator produces input transac-
tions which are propagated to the Software Driver and further supplied on the input
interface of the DUT. Copies of transactions are sent to the Software Scoreboard
where the expected output is computed using a reference transfer function. The
Software Monitor drives the output interface of the DUT and sends received output
transactions also to the Software Scoreboard to be compared to the expected ones.

Hardware Generator Version (HW-GEN). The architecture is similar to the SW-FULL
version with the exception of the Hardware Generator and the Constraint Solver,
which are placed in the FPGA and send generated transactions to the simulator.

Hardware DUT Version (HW-DUT). In this architecture (Fig. 2), the Software Gener-
ator sends input transactions to the verification environment in hardware. In addi-
tion, a copy of every transaction is passed to the Software Scoreboard for further
comparison. The Hardware Driver and the Hardware Monitor fulfill the same func-
tions as their counterparts in the SW-FULL version, but they drive the input and out-
put interfaces of the DUT running in the FPGA. The output transactions produced
by the DUT are directed from the Hardware Monitor to the Software Scoreboard.

Software
Generator

Generator
Controller

Input
Controller

Software
Driver DUT Software

Monitor

Software
Scoreboard

Fig. 1. Software version (SW-FULL)

270 M. Šimková and O. Lengál

FPGA

Software
Generator

Generator
Controller

Input
Controller

Sender

Input
Wrapper

SorterSoftware
Scoreboard

Output
Controller

Assertion
Reporter

Signal
Reporter

Output
Wrapper

BinderHardware
Driver DUT Hardware

Monitor

Generator
Controller

Inpu
Contro

end

npu
rapp

derd SorteOutput
Controller

utp
rapp

Bind

Fig. 2. Hardware DUT version (HW-DUT)

FPGA

Generator
Controller Sorter

Assertion
Reporter

Signal
Reporter

Output
Wrapper

Hardware
Scoreboard

Hardware
Generator

Constraint
Solver

Hardware
Driver DUT Hardware

Monitor

Hardware
Driver

Transfer
Function

Hardware
Monitor

Constraint
Solverolveolve

Fig. 3. Hardware version (HW-FULL)

Hardware Generator and DUT Version (HW-GEN-DUT). This architecture is simi-
lar to the HW-DUT version but the generator is in hardware, as in HW-GEN.

Hardware Version (HW-FULL). All core components of the verification environment
in this architecture (Fig. 3) reside in the FPGA. The components in the software
only set constraints for the Constraint Solver and report assertion failures, coverage
statistics, or display waveforms of signals from hardware components.

For those architectures of the HAVEN testbed that place the DUT into the FPGA
(HW-DUT, HW-GEN-DUT, HW-FULL), it is possible to use the following optional com-
ponents in hardware:

Assertion Checkers. (illustrated by squares in figures) detect assertion violations of
the DUT in hardware and report them to Assertion Reporters in the simulator, which
in turn display them to the user.

Signal Observers. (illustrated by circles in figures) store values of signals in hardware
and send them to Signal Reporters in the simulator to be displayed as waveforms.

Towards Beneficial Hardware Acceleration in HAVEN 271

Coverage Monitors. check coverage as described in Section 2.

Table 1. Results of experiments: times for verifying 100,000 transactions (in seconds)

Component FIFO HGEN HGEN×2 HGEN×4 HGEN×8 HGEN×16

SW-FULL 199. 319. 1,126. 1,617. 2,539. 5,650.
HW-GEN 268. 308. 1,101. 1,984. 3,274. 7,534.
HW-DUT 65. 45. 48. 48. 48. 48.
HW-GEN-DUT 74. 22. 12. 12. 13. 13.
HW-FULL 0.0148 0.0205 0.0205 0.0239 0.0341 0.0410

Table 2. Results of experiments: acceleration ratios

Component FIFO HGEN HGEN×2 HGEN×4 HGEN×8 HGEN×16

HW-GEN 0.743 1.036 1.023 0.815 0.776 0.750
HW-DUT 3.062 7.089 23.458 33.688 52.896 117.708
HW-GEN-DUT 2.689 14.500 93.833 134.750 195.308 434.615
HW-FULL 13,429. 15,564. 54,925. 67,626. 74,347. 137,875.

4 Evaluation

We performed a set of experiments using an acceleration card with the Xilinx Virtex-5
FPGA supporting fast communication through the PCIe bus in a PC with two quad-core
Intel Xeon E5620@2.40 GHz processors and 24 GiB of RAM, and Mentor Graphics’
ModelSim SE-64 10.0c as the simulator. We evaluated the performance of the archi-
tectures of HAVEN presented in the previous section on several hardware components:
a simple FIFO buffer and several versions of a hash generator (HGEN) which computes
the hash value of input data, each version with a different level of parallelism (2, 4, 8,
and 16 units connected in parallel)2.

For each of the components, Table 1 gives the wall-clock time it took to verify
the component for 100,000 input transactions for each architecture of the HAVEN
testbed (because of issues with precise measurements of the time for the HW-FULL
architecture, for this case we measured the time it took to verify the component for
1,000,000,000 input transactions and computed the average time for 100,000 transac-
tions). Table 2 in turn shows the acceleration ratio of each of the architectures of the
HAVEN testbed against the SW-FULL architecture.

We can observe several facts from the experiments. First, they confirm that the time
of simulation (SW-FULL) increases with the complexity of the verified DUT, so it is not
feasible to simulate complex designs for large numbers of transactions. Second, we can
observe that it is not reasonable to use the simulator with hardware acceleration of the
transaction generator only (HW-GEN), at least for simple input protocols, which is the
case of our protocol. In this case, the overhead of communication with the accelerator
is too high. However, for the case when the DUT is also in hardware (HW-GEN-DUT),

2 Further details about the components and the experiments can be found in [1].

272 M. Šimková and O. Lengál

hardware generation of transactions is (with the exception of the FIFO unit) advan-
tageous compared to software generation (HW-DUT). Lastly, we can observe that the
major speed-up of the hardware version (HW-FULL) makes this version preferable to
use for very large amounts of transactions, e.g. when trying to reach coverage clo-
sure. Running verification of HGEN×16 for a billion transactions, which took less than
7 minutes in this version, would take more than 21 months in the SW-FULL version.

5 Conclusions and Future Research

In this paper, several extensions of the HAVEN verification framework were presented.
These extensions allow the user to incrementally move parts of a verification envi-
ronment into an FPGA-based accelerator and thus accelerate the verification process.
Several architectures of the HAVEN testbed allow the user to choose the most suitable
version for the preferred trade-off between acceleration ratio and debugging capabili-
ties. The best speed-up achieved in our experiments for the case that used the HW-FULL
testbed was over 100,000 while still performing assertion and coverage analysis.

In the future, we wish to extend HAVEN with a technique to automatically drive
generation of test vectors to target coverage holes given by continuously measured cov-
erage information. As a result, we expect to obtain a set of input test vectors or settings
of the software generator which would achieve a high level of coverage in regression
testing. These could also be used in the hardware generator, thus improving its ability
of reaching coverage closure. Such generators might also be useful in post-silicon val-
idation as they are closer to the speed of real hardware. A challenging direction is to
develop a technique for representation of triggered cover points that would be feasible
to be used in hardware Coverage Monitors for a large amount of cover points, as the
currently used technique does not scale well. In addition, our future effort will lead
also to the integration of HAVEN into various research areas, especially into diagnos-
tics, where we wish to explore the capability of functional verification to improve the
quality of fault-tolerant systems. Collaboration on any of these issues is welcome.

References

1. Šimková, M., Lengál, O.: Towards Beneficial Hardware Acceleration in HAVEN: Eval-
uation of Testbed Architectures. Technical Report FIT-TR-2012-03, FIT BUT (2012),
http://www.fit.vutbr.cz/˜ilengal/pub/FIT-TR-2012-03.pdf

2. Šimková, M., Lengál, O., Kajan, M.: HAVEN: An Open Framework for FPGA-Accelerated
Functional Verification of Hardware. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC
2011. LNCS, vol. 7261, pp. 247–253. Springer, Heidelberg (2012)

3. Adir, A., Nahir, A., Ziv, A., Meissner, C., Schumann, J.: Reaching Coverage Closure in Post-
silicon Validation. In: Barner, S., Kroening, D., Raz, O. (eds.) HVC 2010. LNCS, vol. 6504,
pp. 60–75. Springer, Heidelberg (2011)

4. Henftling, R., Zinn, A., Bauer, M., Zambaldi, M., Ecker, W.: Re-Use-Centric Architecture
for a Fully Accelerated Testbench Environment. In: Proc. of DAC 2003, pp. 372–375. ACM
(2003)

5. Kakoee, M.R., Riazati, M., Mohammadi, S.: Generating RTL Synthesizable Code from Be-
havioral Testbenches for Hardware-Accelerated Verification. In: Proc. of DSD 2008, pp.
714–720. IEEE (2008)

http://www.fit.vutbr.cz/~ilengal/pub/FIT-TR-2012-03.pdf

Towards Beneficial Hardware Acceleration in HAVEN 273

6. Kim, Y.-I., Kyung, C.-M.: Automatic Translation of Behavioral Testbench for Fully Accel-
erated Simulation. In: Proc. of ICCAD 2004, pp. 218–221. IEEE (2004)

7. Mentor Graphics. Veloce2 (2012),
http://www.mentor.com/products/fv/emulation-systems/veloce/

8. Cadence. Transaction-based Acceleration, TBA (2012),
http://www.cadence.com/products/sd/pages/transactionacc.aspx

9. Huang, C.-Y., Yin, Y.-F., Hsu, C.-J., Huang, T.B., Chang, T.M.: SoC HW/SW Verification
and Validation. In: Proc. of ASPDAC 2011. IEEE (2011)

10. HT-LAB. Mersenne Twister, MT32: Pseudo Random Number Generator for Xilinx FPGA
(2007), http://www.ht-lab.com/freecores/mt32/mersenne.html

11. Synopsys. FPGA-Based Prototyping (2012),
http://www.synopsys.com/Systems/FPGABasedPrototyping/Pages/default.aspx

http://www.mentor.com/products/fv/emulation-systems/veloce/
http://www.cadence.com/products/sd/pages/transactionacc.aspx
http://www.ht-lab.com/freecores/mt32/mersenne.html
http://www.synopsys.com/Systems/FPGABasedPrototyping/Pages/default.aspx

Using Domain Specific Languages

to Support Verification in the Railway Domain

Phillip James, Arnold Beckmann, and Markus Roggenbach

Swansea University, UK

Abstract. We explore the support of automatic verification via careful
design of a domain specific language (DSL) in the context of algebraic
specification. Formally a DSL is a loose specification the logical closure
of which we regard as implicitly encoded “domain knowledge”. We sys-
tematically exploit this “domain knowledge” for automatic verification.
We illustrate these ideas within the Railway Domain using the algebraic
specification language Casl and an existing DSL, designed by Bjørner,
for modelling railways. Empirical evidence to the benefit of our approach
is given in the form of the successful automatic verification of four railway
track plans of real world complexity.

1 Introduction

For many years, verification based on techniques such as model checking or inter-
active theorem proving has been successful in various industrial case studies, e.g.,
see [10,4,6]. However, the use of formal methods within industry is still limited
as it often requires verification experts. Domain specific languages [3] aim to ab-
stract away technical details from the user. Classically, DSLs allow non-experts
to create programs or specifications. In the context of programming, additional
motivation for using DSLs includes improved tool support, improved ease of use,
and increased productivity. Here we demonstrate, for algebraic specification, an
approach where DSLs within the railway domain aid verification.

We suggest the following approach: Given a DSL for a particular class of
systems and a set of decidable properties one is interested in, the DSL can be
systematically extended to allow for automatic verification. We claim that the
principles underlying this extension are universal, i.e., can be applied whenever
one designs or adapts a DSL for verification. The overall aim of our approach is
to develop a “push button” verification process for critical systems.

To illustrate this approach, we take an established DSL from Bjørner [1] and
formalize it in the algebraic specification language Casl [9]. This allows connec-
tions with modern theorem proving technology via the Heterogeneous Toolset
(HeTS) [8]. We then extend the DSL for automatic proof support. Finally, we
give strong empirical evidence that our approach works by modelling and veri-
fying four track plans provided by our industrial partner Invensys Rail.

Concretely, we demonstrate that we can exploit features of Bjørner’s DSL
to allow automatic verification of safety properties, e.g., routes that share rail-
way components can not be open at the same time. To gain these results, we

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 274–275, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Using Domain Specific Languages to Support Verification 275

show that Bjørner’s DSL (1) contains inherent structure allowing property spe-
cific abstraction and lifting of domain models and (2) is rich enough to prove
suitable domain specific lemmas over such property specific abstractions. This
demonstrates that domain specific languages can be designed to support auto-
matic verification. To the best of our knowledge, we are the first to consider and
formulate such a methodology for designing DSLs aimed at verification [7]. The
underlying general principles we present include domain specific abstraction, do-
main specific property lifting and systematic property support. The result of this
work is a step towards a platform for creating domain specific languages with
effective automatic verification support for domain engineers.

1.1 Related Work

Various formal methods have been applied to railway verification. These include
approaches using process algebraic modelling and verification in CSP [10], alge-
braic specification with ASF+SDF [4] and model-oriented specification using the
B method, where, for example in [2] several lines of the Paris Metro system were
verified. Finally, of close relevance to this work is the development environment
for verification of railway control systems created by Haxthausen and Peleska [5].
This environment includes a DSL allowing modelling of control systems, and an
automatic translation from models described in this DSL to executable control
programs. At each level of production, various safety checking steps are taken.

References

1. Bjørner, D.: Dynamics of Railway Nets: On an Interface between Automatic Con-
trol and Software Engineering. In: CTS 2003 (2003)

2. Boulanger, J., Gallardo, M.: Validation and verification of METEOR safety soft-
ware. In: Allen, J., Hill, R.J., Brebbia, C.A., Sciutto, G., Sone, S. (eds.) Computers
in Railways VII, vol. 7, pp. 189–200. WIT Press (2000)

3. Fowler, M.: Domain Specific Languages. Addison-Wesley (2010)
4. Groote, J.F., van Vlijmen, S., Koorn, J.: The Safety Guaranteeing System at Sta-

tion Hoorn-Kersenboogerd. Technical report. Utrecht University (1995)
5. Haxthausen, A., Peleska, J.: A domain-oriented, model-based approach for con-

struction and verification of railway control systems. In: Jones, C.B., Liu, Z., Wood-
cock, J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700,
pp. 320–348. Springer, Heidelberg (2007)

6. James, P., Roggenbach, M.: Automatically verifying railway interlockings using
SAT-based model checking. In: Bendisposto, J., Leuschel, M., Roggenbach, M.
(eds.) AVoCS 2010, vol. 35. ECEASST (2010)

7. James,P.,Roggenbach,M.:Designingdomain specific languages for verification:First
steps. In: Hofner, P., McIver, A., Struth, G. (eds.) ATE 2011, vol. 760. CEUR (2011)

8. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set, Hets.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522.
Springer, Heidelberg (2007)

9. Mosses, P.D. (ed.): Casl Reference Manual. LNCS, vol. 2960. Springer, Heidelberg
(2004)

10. Winter, K.: Model checking railway interlocking systems. Australian Computer
Science Communications 24, 303–310 (2002)

From Fault Injection to Mutant Injection:

The Next Step for Safety Analysis?

Guillermo Rodriguez-Navas1, Patrick Graydon1, and Iain Bate1,2

1 Dept. of Engineering, Design and Technology. Mälardalen University, Sweden
guillermo.rodriguez-navas@mdh.se, patrick.graydon@mdh.se

2 Dept. of Computer Science. University of York, UK
iain.bate@cs.york.ac.uk

Abstract. Mutation testing has been used to assess test suite cover-
age, and researchers have proposed adapting the idea for other uses.
Safety kernels allow the use of untrusted software components in safety-
critical applications: a trusted software safety kernel detects undesired
behavior and takes remedial action. We propose to use specification mu-
tation, model checking, and model-based testing to verify safety kernels
for component-based, safety-critical computer systems.

Keywords: Safety-critical systems, safety analysis, mutation testing,
component based design.

1 Introduction

Mutation testing has been used to assess test suites [1]. Test software applies
mutation operators to the software, creating mutant versions with known forms
of implementation faults. The more mutants a given test suite detects, the more
confidence we can have in the tested software. Researchers have applied mutation
to specifications, interfaces, and contracts to assess coverage of faults introduced
in the specification and design phases. Safety researchers have even suggested
mutations based on Hazard and Operability studies (HAZOP) [2].

Software components are frequently used out of context. However, it is not
possible to verify a component for adequately safe use in all possible contexts and
applications [3]. Thus, safety-critical, component-based software systems must
tolerate unexpected behavior from components re-used out of context.

Safety kernels permit using untrusted software components—such as COTS
or SOUP—in safety-critical applications [4]. The trusted safety kernel wraps the
untrusted component, detects undesired behavior, and takes remedial action as
appropriate. For example, a safety kernel might detect a postcondition violation,
restart the offending component, and flag its output as potentially erroneous.

Model checking allows the exploration of whether certain key properties of
the system hold, e.g. those enforced by the safety kernel. When combined with
mutation testing, we can ascertain whether the key safety properties hold in the
presence of failures which is important when assuring the safety and depend-
ability of critical systems. Despite the model being used being an abstract form

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 276–277, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

From Fault Injection to Mutant-Injection 277

of the final system, it allows the subsequent development steps to be de-risked
and provide invaluable evidence as to the ability of the safety kernel to prevent
hazards. Finally, model-based testing will validate the implementation.

2 Our Approach

Verifying the safety kernel specification. We assume: (a) a specification of each
component and its functional and temporal behavior, e.g. in EAST-ADL with
suitable extensions; (b) a specification of the safety kernel’s behavior; and (c) a
specification at the system level of the hazardous conditions to avoid. Our chal-
lenge is to verify that if the safety kernel behaves as specified, no plausible single
failure of a wrapped component will put the system into a hazardous state.

Validating the safety kernel implementation. It is possible that the safety kernel
will be faulty. This is true even if it is automatically generated from a correct
specification: compilers and other tools might be buggy. Our challenge here is to
automatically generate test cases to validate the implemented safety kernel. We
have identified three test mechanisms: (1) mutating the wrapped components’
code (if available); (2) modifying values passing through framework communi-
cation channels (where applicable); and (3) generating stub components.

Research challenges. First challenge is extending the nominal behavior of the
components with both a set of plausible failures and their corresponding repair
mechanisms. Second challenge is to automatically link these new potential be-
haviors with the specified safety kernel. Third challenge is introducing some kind
of behavioral propagation of failures into the models, not based on transforma-
tion rules but on the real evolution of the components. Our ambition is to be
able to introduce all these features directly into the timed automata models with
as little user intervention as possible. The challenges associated to the validation
of the implementation will be studied during a second phase of this work.

Acknowledgment. This work was partially supported by the Swedish Foun-
dation for Strategic Research (SSF), under grant number RIT10-0070 (SYNOP-
SIS).

References

1. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering 37(5), 649–678 (2011)

2. Araujo, R., Maldonado, J., Delamaro, M., Vincenzi, A., Delebecque, F.: Devising
mutant operators for dynamic systems models by applying the HAZOP study. In:
Proc. of the 6th Int’l Conference on Software Engineering Advances (2011)

3. Rushby, J.: Modular certification. Technical Report CR-2002-212130, National Aero-
nautics and Space Administration, Hampton, VA, USA (December 2002)

4. Wika, K.G., Knight, J.C.: On the enforcement of software safety policies. In: Systems
Integrity, Software Safety and Process Security: Proceedings of the 10th Annual
Conference on Computer Assurance (COMPASS), pp. 83–93 (June 1995)

Test Case Generation by Grammar-Based Fuzzing
for Model-Driven Engineering�

Magdalena Widl

Knowledge-based Systems Group, Vienna University of Technology, Austria
widl@kr.tuwien.ac.at

1 Introduction

Software models, traditionally used mainly for documentation and informal specifi-
cation purposes, are becoming first-class development artifacts in the area of Model-
driven Engineering (MDE). In MDE, code is generated automatically from multi-view
models described in languages like the Unified Modeling Language (UML).1 Maintain-
ing consistency between the different views of a model is crucial for the generation of
correct code. As software models undergo evolution, particularly in cooperative devel-
opment environments, tool support for evolution tasks like versioning and merging is
indispensable. It is important to thoroughly test such tools in order to avoid the introduc-
tion of inconsistent models. However, real-life test cases that cover sufficient evolution
scenarios are difficult to obtain. We therefore suggest a method to generate artificial
scenarios to facilitate fuzz testing of model evolution tools. In previous work [2] we
presented an approach to merge concurrently evolved sequence diagrams with respect
to the behavior modeled in their corresponding state machines view. We described the
sequence diagram merging (SDM) problem formally, suggested a method to solve this
problem, and implemented a prototype based on the EMF framework.2 As there were
no benchmarks available, we manually created a set of test cases. However, this is a
very cumbersome testing method particularly when a good coverage is needed. A set of
randomly generated instances solves this problem, as we show in the following.

2 Grammar-Based Fuzzing of Model Evolution Scenarios

Fuzz testing is a black-box software testing technique based on large amounts of ran-
domized input data and has been successfully applied in many areas, e.g. in error de-
tection for UNIX applications [1]. We propose to create randomly generated sequence
diagrams and state machines based on a language definition given as metamodel and on
a formal specification of the dependencies between the two views. Sequence diagrams
model possible communication scenarios between different instances of state machines.
A sequence diagram is correct if the messages are totally ordered and the sequence of

� This work was supported by by the Vienna Science and Technology Fund (WWTF) through
project ICT10-018.

1 http://www.omg.org/spec/UML/
2 http://www.eclipse.org/modeling/emf/

A. Biere, A. Nahir, and T. Vos (Eds.): HVC 2012, LNCS 7857, pp. 278–279, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.omg.org/spec/UML/
http://www.eclipse.org/modeling/emf/

Test Case Generation by Grammar-Based Fuzzing for Model-Driven Engineering 279

received message symbols on each lifeline occurs as path of triggers in the state machine
that models its behavior (cf. definitions given in [2]). Based on the Ecore implementation
of the multi-view metamodel presented in [2], we first create a state machine view as a
set of state machines. Using this view, we create a correct sequence diagram that instanti-
ates the state machines with its lifelines. The number of state machines, upper and lower
bounds for the number of both states and transitions, the number of messages, and the
number of lifelines are defined as input parameters. The generation of states, transitions,
transition labels and the assignment of state machines to lifelines is done at random.
When generating the message sequence of a sequence diagram, the following restriction
is required to ensure its correctness: the symbol of each message must continue a path
of triggers in the state machine modeling the behavior of the lifeline that receives the
message. Hence only symbols can be considered that occur on outgoing transitions of
states to which the previous message symbol has led. Out of these symbols, one is cho-
sen randomly. We can also generate evolutionary changes to the models: a versioning
scenario of a sequence diagram is created by copying the diagram and adding messages.

Using this approach, we generated 100 instances of the SDM problem with different
parameter settings to find errors in and to assess the scalability of our approach pre-
sented in [2]. These tests helped us to find some minor implementation errors and one
error in the algorithm solving the SDM problem. With the random instances being much
larger than the manual ones, we could also easily identify a performance bottleneck in
the first version of the implementation. The errors were not found by using the hand-
crafted instances because their detection required a certain combination of lifelines and
message sequences that does not occur often and is not naturally thought of by a human.
The detected errors resulted in merged sequence diagrams that were inconsistent with
the set of state machines.

3 Conclusion and Future Work

We proposed to use a grammar-based fuzzing approach for testing and evaluating MDE
tools. This has shown to be very effective in detecting errors in our implementation of
an algorithm for the SDM problem. While being specific to a metamodel in our imple-
mentation, our approach can be easily adapted to a different Ecore metamodel and thus
serve to test different MDE tools. Depending on particular test cases some adaptations
may be useful. For instance, to test the SDM problem, instances that actually have a so-
lution (a correctly merged sequence diagram) are desirable. This could be done by first
generating a sequence diagram that represents the solution, and then infer an instance
(an original and two modified diagrams) from it.

References

1. Miller, B., Koski, D., Pheow, C., Maganty, L.V., Murthy, R., Natarajan, A., Steidl, J.: Fuzz
revisited: A re-examination of the reliability of unix utilities and services. Technical Report
CS-TR-1995-1268, University of Wisconsin (1995)

2. Widl, M., Biere, A., Brosch, P., Egly, U., Heule, M., Kappel, G., Seidl, M., Tompits, H.:
Guided merging of sequence diagrams. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS,
vol. 7745, pp. 164–183. Springer, Heidelberg (2013),
http://modelevolution.org/publications/sle12.pdf

http://modelevolution.org/publications/sle12.pdf

Author Index

Adir, Allon 178

Bate, Iain 276
Beckmann, Arnold 274
Bensalem, Saddek 40
Biere, Armin 102
Bjørner, Nikolaj 3
Bloem, Roderick 56, 260
Bozga, Marius 40

Chockler, Hana 72

Dias, Ricardo J. 8
Drechsler, Rolf 260

Elenbogen, Dima 24

Fey, Görschwin 260
Finder, Alexander 260

Ganesh, Vijay 209
Goryachev, Alex 5, 178
Graydon, Patrick 276
Greenberg, Lev 178
Guralnik, Elena 118

Hanna, Ziyad 7
Harel, David 1
Heule, Marijn J.H. 102
Hofferek, Georg 260

Ivrii, Alexander 72

James, Phillip 274

Kastner, Ryan 6
Katz, Shmuel 24
Katz, Yoav 148
Kim, Moonzoo 162
Kim, Tai-Hyo 162
Kim, Youngjoo 162
Könighofer, Robert 56, 260
Koyfman, Anatoly 118
Kupferman, Orna 227

Lee, Edward A. 2
Lengál, Ondřej 266
Liffiton, Mark 86
Lourenço, João M. 8

Malik, Sharad 132
Manthey, Norbert 102
Marques-Silva, Joao 86
Matsliah, Arie 72
Mazzawi, Jamil 7
Minnes, Mia 209
Moller, Faron 193
Morgado, Antonio 86

Nahir, Amir 118
Nguyen, Hoang Nga 193

Panda, Subrat K. 118
Paul, John 118
Peled, Doron 40
Pessanha, Vasco 8

Quilbeuf, Jean 40

Raik, Jaan 260
Raz, Orna 4
Repinski, Urmas 260
Rimon, Michal 148
Rinard, Martin 209
Rodriguez-Navas, Guillermo 276
Roggenbach, Markus 193, 274
Rozier, Kristin Yvonne 243

Salman, Tamer 178
Schneider, Steve 193
Shurek, Gil 178
Šimková, Marcela 266
Solar-Lezama, Armando 209
Strichman, Ofer 24
Sülflow, André 260

Treharne, Helen 193

Vardi, Moshe Y. 243

Weiner, Sigal 227
Weissenbacher, Georg 132
Widl, Magdalena 278

Zhu, Charlie Shucheng 132
Ziv, Avi 148

	Preface
	Organization
	Table of Contents
	On Behavioral Programming
	Verifying Real-Time Software Is Not Reasonable (Today)
	SMT in Verification, Modeling, and Testing at Microsoft
	Reference

	Reducing Costs While Increasing Quality
	Special Session on Security Verification
	Circuit Primitives for Monitoring Information Flow and Enabling Redundancy
	Formal Analysis of Security Data Paths in RTL Design
	Precise Detection of Atomicity Violations
	1 Introduction
	2 Background and Related Work
	3 Core Language
	4 Causal Dependencies
	4.1 Dependency Analysis

	5 Atomicity Violations
	5.1 High Level Data Races
	5.2 Stale-Value Error

	6 Evaluation
	7 Conclusions
	References

	Proving Mutual Termination of Programs
	1 Introduction
	2 Preliminaries
	3 Proof Rules
	3.1 Checking the Premise
	3.2 Generalization

	4 A Decomposition Algorithm
	4.1 The Algorithm
	4.2 An Example
	4.3 Choosing a Vertex Feedback Set Deterministically

	5An Inference Rule for Proving Termination
	6 Experience and Conclusions
	References

	Knowledge Based Transactional Behavior
	1 Introduction
	2 Preliminaries
	2.1 Cellular Automata
	2.2 The -Core Protocol

	3 Knowledge-Based Optimization
	3.1 Knowledge for Participants
	3.2 Knowledge for Coordinators
	3.3 Combining Knowledge for Participants and Coordinators

	4 Experimental Results
	5 Discussion
	References

	Repair with On-The-Fly Program Analysis
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Symbolic and Concolic Execution
	3.2 Template-Based Repair

	4 Repair with On-The-Fly Program Analysis
	4.1 Overview
	4.2 Repair Candidate Computation
	4.3 Repair Candidate Verification
	4.4 Program Analysis
	4.5 Example
	4.6 Discussion

	5 Implementation
	6 Experimental Results
	6.1 Performance Results
	6.2 Greatest Common Divisor Example

	7 Conclusion
	References

	Computing Interpolants without Proofs
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 Algorithm
	3.1 Basic Algorithm
	3.2 Implementation Details
	3.3 Extensions

	4 Experiments
	5 Conclusions and Future Work
	References

	MaxSAT-Based MCS Enumeration
	1 Introduction
	2 Preliminaries
	2.1 MaxSMT

	3 AllMCS in CEGAR
	4 All(Min)MCS Algorithms
	4.1 New Techniques for Blocking MCSes
	4.2 AllMCS with Costs

	5 Experimental Results
	6 Conclusions and Future Work
	References

	Automated Reencoding of Boolean Formulas
	1 Introduction
	2 Preliminaries
	2.1 Conjunctive Normal Form
	2.2 Resolution and Variable Elimination

	3 Bounded Variable Addition
	3.1 The SimpleBoundedVariableAddition Algorithm
	3.2 Extensions

	4 Cardinality Constraints
	4.1 The At-Most-1 Constraint
	4.2 The At-Most-K Constraint

	5 Experiments
	5.1 Bio-informatics
	5.2 FPGA Routing
	5.3 Recent SAT Competitions

	6 Conclusions
	References

	Leveraging Accelerated Simulation for Floating-Point Regression
	1 Introduction
	2 Background
	2.1 Acceleration
	2.2 Floating Point Test Generation

	3 FP Regression Tool
	3.1 Execution Flow
	3.2 Program Structure
	3.3 Debugging

	4 Results
	4.1 Experimental Results
	Field Trial

	5 Conclusions and Future Work
	References

	Coverage-Based Trace Signal Selectionfor Fault Localisation in Post-silicon Validation
	1 Introduction
	2 Background and Related Work
	2.1 Automatic Test Pattern Generation
	2.2 Trace Signal Selection Using Integer Linear Programming
	2.3 SAT-Based Fault Localisation

	3 Improving Coverage-Based Trace Signal Selection
	3.1 Multi-cycle Coverage
	3.2 Injecting Faults in Combinational Logic
	3.3 Integer Linear Programming Encoding

	4 Experimental Evaluation
	4.1 Trace Signal Selection
	4.2 Evaluation Method
	4.3 Experimental Results

	5 Conclusions
	References

	A Novel Approach for Implementing Microarchitectural Verification Plans in Processor Designs
	1 Introduction
	2 Solution Concept
	3 Microarchitectural Model
	4 Scenario Input Language
	Scenario Definition
	Scenario Instantiation
	Scenario Combinations

	5 Generation Scheme
	6 Scenario Testing Knowledge
	7 Experimental Results
	8 Conclusions
	References

	Statistical Model Checking for Safety Critical Hybrid Systems: An Empirical Evaluation
	1 Introduction
	2 Background
	2.1 Probabilistic Bounded Linear Temporal Logic (PBLTL)
	2.2 Hypothesis Testing
	2.3 Estimation Testing

	3 Fault-Tolerant Fuel Control System
	4 Experimental Study
	4.1 Experiment Setup
	4.2 Experimental Results

	5 Discussion
	5.1 Practicality of Statistical Model Checking
	5.2 Necessity of Proper Precision Parameter Values
	5.3 Comparison of the SMC techniques

	6 Conclusion and Future Work
	References

	A New Test-Generation Methodology for System-Level Verification of Production Processes
	1 Introduction
	2 Methodology of Simulation-Based System-Level Verification of Production Processes
	2.1 Working Example
	2.2 Simulation-Based System-Level Verification Platform

	3 Modeling for Simulation and the Simulation Platform
	4 Test Generation
	4.1 Test Template Definition Language
	4.2 X-Gen Generation Scheme for Production Processes
	4.3 Tests

	5 Checking and Coverage Analysis
	6 Experiments
	7 Conclusions and Future Work
	References

	Defining and Model Checking Abstractions of Complex Railway Models Using CSP||B
	1 Introduction
	2 Background to CSP||B
	3 Modelling and Safety Verification of Railway Systems Using CSP||B
	3.1 CSP||B Modelling of Railways

	4 Providing Finite State Models
	4.1 Minimum Number of Trains for Verifying Collision
	4.2 Minimum Number of Trains for Verifying Derailment

	5 Simplifying Scheme Plans
	6 Example Scenarios of CSP||B Railway Models
	7 Related Work
	8 Conclusion
	References

	Word Equations with Length Constraints: What's Decidable?
	1 Introduction
	2 Preliminaries
	2.1 Syntax
	2.2 Semantics and Definitions
	2.3 Representation of Solutions to String Formulas
	2.4 Examples

	3 The Undecidability Theorem
	3.1 Proof Idea
	3.2 Recalling Two-Counter Machines
	3.3 Instantaneous Description of Two-counter Machines as Strings
	3.4 Computation History of a Two-Counter Machine as a String
	3.5 Alphabet for String Formulas and the Universe of Strings
	3.6 The Undecidability Theorem

	4 Decidability Theorem
	4.1 Word Equations and Length Constraints
	4.2 What Is Hard about Deciding Word Equations and Length Constraints?
	4.3 Definition of Solved Form
	4.4 Why Solved Form?
	4.5 Proof Idea for Decidability
	4.6 Decidability Theorem
	4.7 Practical Value of Solved Form and the Decidability Result

	5 Word Equations, Length, and Regular Expressions
	6 Related Work
	References

	Environment-Friendly Safety
	1 Introduction
	2 Preliminaries
	2.1 Linear Temporal Logic
	2.2 Safety Languages and Formulas
	2.3 Open Systems

	3 Green Safety
	3.1 Properties of Green Safety
	3.2 From Green to Black Safety

	4 Green Co-safety
	4.1 Boundness

	5 Green Informative Prefixes
	References

	Deterministic Compilation of Temporal Safety Properties in Explicit State Model Checking
	1 Introduction
	2 Theoretical Background
	3 Never Claim Generation
	3.1 Determinization and Minimization
	3.2 Never Claim Encodings

	4 Experimental Method
	4.1 Model-Scaling Benchmarks
	4.2 Formula-Scaling Benchmarks

	5 Experimental Results
	5.1 Model-Scaling Experimental Results
	5.2 Formula-Scaling Experimental Results

	6 Discussion
	References

	FoREnSiC – An Automatic Debugging Environment for C Programs
	1 Introduction
	2 Application Scenario
	3 Description of FoREnSiC
	3.1 Simulation-Based Debugging
	3.2 Symbolic Debugging
	3.3 Cut-Based Debugging

	4 Experimental Results
	5 Summary and Conclusion
	References

	Towards Beneficial Hardware Acceleration in HAVEN: Evaluation of Testbed Architectures*-3mm
	1 Introduction
	2 The HAVEN Verification Framework
	3 Architectures of HAVEN
	4 Evaluation
	5 Conclusions and Future Research
	References

	Using Domain Specific Languages to Support Verification in the Railway Domain
	1 Introduction
	1.1 Related Work

	References

	From Fault Injection to Mutant Injection:The Next Step for Safety Analysis?
	1 Introduction
	2 Our Approach
	References

	Test Case Generation by Grammar-Based Fuzzing for Model-Driven Engineering
	1 Introduction
	2 Grammar-Based Fuzzing of Model Evolution Scenarios
	3 Conclusion and Future Work
	References

	Author Index

