
Deep Learning of Representations:

Looking Forward

Yoshua Bengio

Department of Computer Science and Operations Research
Université de Montréal, Canada

Abstract. Deep learning research aims at discovering learning algo-
rithms that discover multiple levels of distributed representations, with
higher levels representing more abstract concepts. Although the study of
deep learning has already led to impressive theoretical results, learning
algorithms and breakthrough experiments, several challenges lie ahead.
This paper proposes to examine some of these challenges, centering on
the questions of scaling deep learning algorithms to much larger models
and datasets, reducing optimization difficulties due to ill-conditioning or
local minima, designing more efficient and powerful inference and sam-
pling procedures, and learning to disentangle the factors of variation
underlying the observed data. It also proposes a few forward-looking
research directions aimed at overcoming these challenges.

1 Background on Deep Learning

Deep learning is an emerging approach within the machine learning research
community. Deep learning algorithms have been proposed in recent years to
move machine learning systems towards the discovery of multiple levels of rep-
resentation. They have had important empirical successes in a number of tradi-
tional AI applications such as computer vision and natural language processing.
See [10,17] for reviews and [14] and the other chapters of the book [95] for
practical guidelines. Deep learning is attracting much attention both from the
academic and industrial communities. Companies like Google, Microsoft, Apple,
IBM and Baidu are investing in deep learning, with the first widely distributed
products being used by consumers aimed at speech recognition. Deep learning is
also used for object recognition (Google Goggles), image and music information
retrieval (Google Image Search, Google Music), as well as computational adver-
tising [36]. A deep learning building block (the restricted Boltzmann machine, or
RBM) was used as a crucial part of the winning entry of a million-dollar machine
learning competition (the Netflix competition) [115,134]. The New York Times
covered the subject twice in 2012, with front-page articles.1 Another series of
articles (including a third New York Times article) covered a more recent event
showing off the application of deep learning in a major Kaggle competition for

1 http://www.nytimes.com/2012/11/24/science/scientists-see-advances-

in-deep-learning-a-part-of-artificial-intelligence.html

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 1–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.nytimes.com/2012/11/24/science/scientists-see-advances- in-deep-learning-a-part-of-artificial-intelligence.html
http://www.nytimes.com/2012/11/24/science/scientists-see-advances- in-deep-learning-a-part-of-artificial-intelligence.html

2 Y. Bengio

drug discovery (for example see “Deep Learning - The Biggest Data Science
Breakthrough of the Decade”2. Much more recently, Google bought out (“acqui-
hired”) a company (DNNresearch) created by University of Toronto professor
Geoffrey Hinton (the founder and leading researcher of deep learning) and two
of his PhD students, Ilya Sutskever and Alex Krizhevsky, with the press writing
titles such as “Google Hires Brains that Helped Supercharge Machine Learning”
(Robert McMillan for Wired, March 13th, 2013).

The performance of many machine learning methods is heavily dependent on
the choice of data representation (or features) on which they are applied. For
that reason, much of the actual effort in deploying machine learning algorithms
goes into the design of preprocessing pipelines that result in a hand-crafted
representation of the data that can support effective machine learning. Such
feature engineering is important but labor-intensive and highlights the weakness
of many traditional learning algorithms: their inability to extract and organize
the discriminative information from the data. Feature engineering is a way to
take advantage of human ingenuity and prior knowledge to compensate for that
weakness. In order to expand the scope and ease of applicability of machine
learning, it would be highly desirable to make learning algorithms less dependent
on feature engineering, so that novel applications could be constructed faster, and
more importantly for the author, to make progress towards artificial intelligence
(AI).

A representation learning algorithm discovers explanatory factors or features.
A deep learning algorithm is a particular kind of representation learning proce-
dure that discovers multiple levels of representation, with higher-level features
representing more abstract aspects of the data. This area of research was kick-
started in 2006 by a few research groups, starting with Geoff Hinton’s group, who
initially focused on stacking unsupervised representation learning algorithms to
obtain deeper representations [62,7,106,86]. Since then, this area has seen rapid
growth, with an increasing number of workshops (now one every year at the
NIPS and ICML conferences, the two major conferences in machine learning)
and even a new specialized conference just created in 2013 (ICLR – the Interna-
tional Conference on Learning Representations).

Transfer learning is the ability of a learning algorithm to exploit commonal-
ities between different learning tasks in order to share statistical strength, and
transfer knowledge across tasks. Among the achievements of unsupervised rep-
resentation learning algorithms are the impressive successes they obtained at
the two transfer learning challenges held in 2011. First, the Transfer Learning
Challenge, presented at an ICML 2011 workshop of the same name, was won
using unsupervised layer-wise pre-training [11,92]. A second Transfer Learning
Challenge was held the same year and won by [48] using unsupervised represen-
tation learning. Results were presented at NIPS 2011’s Challenges in Learning
Hierarchical Models Workshop.

2 http://oreillynet.com/pub/e/2538

http://oreillynet.com/pub/e/2538

Deep Learning of Representations: Looking Forward 3

2 Quick Overview of Deep Learning Algorithms

The central concept behind all deep learning methodology is the automated dis-
covery of abstraction, with the belief that more abstract representations of data
such as images, video and audio signals tend to be more useful: they represent
the semantic content of the data, divorced from the low-level features of the raw
data (e.g., pixels, voxels, or waveforms). Deep architectures lead to abstract rep-
resentations because more abstract concepts can often be constructed in terms
of less abstract ones.

Deep learning algorithms are special cases of representation learning with
the property that they learn multiple levels of representation. Deep learning al-
gorithms often employ shallow (single-layer) representation learning algorithms
as subroutines. Before covering the unsupervised representation learning algo-
rithms, we quickly review the basic principles behind supervised representation
learning algorithms such as the good old multi-layer neural networks. Supervised
and unsupervised objectives can of course be combined (simply added, with a
hyper-parameter as coefficient), like in [79]’s discriminative RBM.

2.1 Deep Supervised Nets, Convolutional Nets, Dropout

Before 2006, it was believed that training deep supervised neural networks [114]
was too difficult (and indeed did not work). The first breakthrough in train-
ing them happened in Geoff Hinton’s lab with unsupervised pre-training by
RBMs [62], as discussed in the next subsection. However, more recently, it was
discovered that one could train deep supervised nets by proper initialization,
just large enough for gradients to flow well and activations to convey useful in-
formation [46,127].3 Another interesting ingredient in the success of training the
deep supervised networks of [46] (and later of [77]) is the presence of rectifying
non-linearities (such as max(0, x)) instead of sigmoidal non-linearities (such as
1/(1 + exp(−x)) or tanh(x)). See [71,97] for earlier work on rectifier-like non-
linearities. We return to this topic in Section 4. These good results with purely
supervised training of deep nets seem to be especially clear when large quanti-
ties of labeled data are available, and it was demonstrated with great success for
speech recognition [123,59,40] and object recognition [77] with breakthroughs
reducing the previous state-of-the-art error rates by 30% to 50% on difficult to
beat benchmarks.

One of the key ingredients for success in the applications of deep learning
to speech, images, and natural language processing [9,35] is the use of convolu-
tional architectures [83], which alternate convolutional layers and pooling layers.
Units on hidden layers of a convolutional network are associated with a spatial
or temporal position and only depend on (or generate) the values in a particular
window of the raw input. Furthermore, units on convolutional layers share pa-
rameters with other units of the same “type” located at different positions, while
at each location one finds all the different types of units. Units on pooling layers
aggregate the outputs of units at a lower layer, either aggregating over different

3 And potentially with the use of momentum [127].

4 Y. Bengio

nearby spatial positions (to achieve a form of local spatial invariance) or over
different unit types. For example, a max-pooling unit outputs the maximum over
some lower level units, which can therefore be seen to compete towards sending
their signal forward.

Another key ingredient in the success of many recent breakthrough results
in the area of object recognition is the idea of dropouts [64,77,52]. Interestingly,
it consists in injecting noise (randomly dropping out units with probability 1/2
from the neural network during training, and correspondingly multiplying by 1/2
the weights magnitude at test time) that prevents a too strong co-adaptation
of hidden units: hidden units must compute a feature that will be useful even
when half of the other hidden units are stochastically turned off (masked). This
acts like a powerful regularizer that is similar to bagging aggregation but over
an exponentially large number of models (corresponding to different masking
patterns, i.e., subsets of the overall network) that share parameters.

2.2 Unsupervised or Supervised Layer-Wise Pre-training

One of the key results of recent years of research in deep learning is that deep
compositions of non-linearities – such as found in deep feedforward networks
or in recurrent networks applied over long sequences – can be very sensitive to
initialization (some initializations can lead much better or much worse results
after training). The first type of approaches that were found useful to reduce
that sensitivity is based on greedy layer-wise pre-training [62,7]. The idea is to
train one layer at a time, starting from lower layers (on top of the input), so that
there is a clear training objective for the currently added layer (which typically
avoids the need for back-propagating error gradients through many layers of non-
linearities). With unsupervised pre-training, each layer is trained to model the
distribution of values produced as output of the previous layer. As a side-effect
of this training, a new representation is produced, which can be used as input
for deeper layers. With the less common supervised pre-training [7,141,124], each
additional layer is trained with a supervised objective (as part of a one hidden
layer network). Again, we obtain a new representation (e.g., the hidden or output
layer of the newly trained supervised model) that can be re-used as input for
deeper layers. The effect of unsupervised pre-training is apparently most drastic
in the context of training deep auto-encoders [63], unsupervised learners that
learn to reconstruct their input: unsupervised pre-training allows to find much
lower training and test reconstruction error.

2.3 Directed and Undirected Graphical Models with Anonymous
Latent Variables

Anonymous latent variables are latent variables that do not have a predefined
semantics in terms of predefined human-interpretable concepts. Instead they
are meant as a means for the computer to discover underlying explanatory fac-
tors present in the data. We believe that although non-anonymous latent vari-
ables can be very useful when there is sufficient prior knowledge to define them,

Deep Learning of Representations: Looking Forward 5

anonymous latent variables are very useful to let the machine discover complex
probabilistic structure: they lend flexibility to the model, allowing an otherwise
parametric model to non-parametrically adapt to the amount of data when more
anonymous variables are introduced in the model.

Principal components analysis (PCA), independent components analysis (ICA),
and sparse coding all correspond to a directed graphical model in which the ob-
served vector x is generated by first independently sampling some underlying
factors (put in vector h) and then obtaining x by Wh plus some noise. They
only differ in the type of prior put on h, and the corresponding inference pro-
cedures to recover h (its posterior P (h | x) or expected value E[h | x]) when
x is observed. Sparse coding tends to yield many zeros in the estimated vector
h that could have generated the observed x. See section 3 of [17] for a review
of representation learning procedures based on directed or undirected graphical
models.4 Section 2.5 describes sparse coding in more detail.

An important thing to keep in mind is that directed graphical models tend to
enjoy the property that in computing the posterior, the different factors compete
with each other, through the celebrated explaining away effect. Unfortunately,
except in very special cases (e.g., when the columns of W are orthogonal, which
eliminates explaining away and its need), this results in computationally ex-
pensive inference. Although maximum a posteriori (MAP) inference5 remains
polynomial-time in the case of sparse coding, this is still very expensive, and
unnecessary in other types of models (such as the stacked auto-encoders dis-
cussed below). In fact, exact inference becomes intractable for deeper models, as
discussed in section 5.

Although RBMs enjoy tractable inference, this is obtained at the cost of a
lack of explaining away between the hidden units, which could potentially limit
the representational power of E[h | x] as a good representation for the factors
that could have generated x. However, RBMs are often used as building blocks
for training deeper graphical models such as the deep belief network (DBN) [62]
and the deep Boltzmann machine (DBM) [118], which can compensate for the
lack of explaining away in the RBM hidden units via a rich prior (provided
by the upper layers) which can introduce potentially complex interactions and
competition between the hidden units. Note that there is explaining away (and
intractable exact inference) in DBNs and something analogous in DBMs.

2.4 Regularized Auto-Encoders

Auto-encoders include in their training criterion a form of reconstruction error,
such as ||r(x) − x||2, where r(·) is the learned reconstruction function, often
decomposed as r(x) = g(f(x)) where f(·) is an encoding function and g(·) a de-
coding function. The idea is that auto-encoders should have low reconstruction

4 Directed and undirected: just two different views on the semantics of probabilistic
models, not mutually exclusive, but views that are more convenient for some models
than others.

5 Finding h that approximately maximizes P (h | x).

6 Y. Bengio

error at the training examples, but high reconstruction error in most other con-
figurations of the input. In the case of auto-encoders, good generalization means
that test examples (sampled from the same distribution as training examples)
also get low reconstruction error. Auto-encoders have to be regularized to pre-
vent them from simply learning the identity function r(x) = x, which would
be useless. Regularized auto-encoders include the old bottleneck auto-encoders
(like in PCA) with less hidden units than input, as well as the denoising auto-
encoders [136] and contractive auto-encoders [112]. The denoising auto-encoder
takes a noisy version N(x) of original input x and tries to reconstruct x, e.g.,
it minimizes ||r(N(x))− x||2. The contractive auto-encoder has a regularization
penalty in addition to the reconstruction error, trying to make hidden units f(x)
as constant as possible with respect to x (minimizing the contractive penalty

||∂f(x)∂x ||2F). A Taylor expansion of the denoising error shows that it is also approx-
imately equivalent to minimizing reconstruction error plus a contractive penalty
on r(·) [1]. As explained in [17], the tug-of-war between minimization of recon-
struction error and the regularizer means that the intermediate representation
must mostly capture the variations necessary to distinguish training examples,
i.e., the directions of variations on the manifold (a lower dimensional region)
near which the data generating distribution concentrates. Score matching [67] is
an inductive principle that can be an interesting alternative to maximum likeli-
hood, and several connections have been drawn between reconstruction error in
auto-encoders and score matching [128]. It has also been shown that denoising
auto-encoders and some forms of contractive auto-encoders estimate the score6

of the underlying data generating distribution [135,1]. This can be used to en-
dow regularized auto-encoders with a probabilistic interpretation and to sample
from the implicitly learned density models [110,15,1] through some variant of
Langevin or Metropolis-Hastings Monte-Carlo Markov chains (MCMC).

Even though there is a probabilistic interpretation to regularized auto-
encoders, this interpretation does not involve the definition of intermediate
anonymous latent variables. Instead, they are based on the construction of a di-
rect parametrization of an encoding function which immediately maps an input
x to its representation f(x), and they are motivated by geometrical considera-
tions in the spirit of manifold learning algorithms [17]. Consequently, there is
no issue of tractability of inference, even with deep auto-encoders obtained by
stacking single-layer ones.

It was previously believed [107], including by the author himself, that recon-
struction error should only be small where the estimated density has a peak,
e.g., near the data. However, recent theoretical and empirical results [1] show
that the reconstruction error will be small where the estimated density has a
peak (a mode) but also where it has a trough (a minimum). This is because
the reconstruction error vector (reconstruction minus input) estimates the score
∂ log p(x)

∂x , i.e., the reconstruction error is small where ||∂ log p(x)
∂x || is small. This

can happen at a local maximum but also at a local minimum (or saddle point)

6 Derivative of the log-density with respect to the data; this is different from the usual
definition of score in statistics, where the derivative is with respect to the parameters.

Deep Learning of Representations: Looking Forward 7

of the estimated density. This argues against using reconstruction error itself as
an energy function,7 which should only be low near high probability points.

2.5 Sparse Coding and PSD

Sparse coding [100] is a particular kind of directed graphical model with a linear
relationship between visible and latent variables (like in PCA), but in which
the latent variables have a prior (e.g., Laplace density) that encourages sparsity
(many zeros) in the MAP posterior. Sparse coding is not actually very good
as a generative model, but has been very successful for unsupervised feature
learning [104,31,142,55,72,2]. See [17] for a brief overview in the context of deep
learning, along with connections to other unsupervised representation learning
algorithms. Like other directed graphical models, it requires somewhat expen-
sive inference, but the good news is that for sparse coding, MAP inference is a
convex optimization problem for which several fast approximations have been
proposed [89,53]. It is interesting to note the results obtained by [31] which sug-
gest that sparse coding is a better encoder but not a better learning algorithm
than RBMs and sparse auto-encoders (none of which has explaining away). Note
also that sparse coding can be generalized into the spike-and-slab sparse coding
algorithm [49], in which MAP inference is replaced by variational inference, and
that was used to win the NIPS 2011 transfer learning challenge [48].

Another interesting variant on sparse coding is the predictive sparse coding
(PSD) algorithm [73] and its variants, which combine properties of sparse coding
and of auto-encoders. Sparse coding can be seen as having only a parametric
“generative” decoder (which maps latent variable values to visible variable values)
and a non-parametric encoder (find the latent variables value that minimizes
reconstruction error and minus the log-prior on the latent variable). PSD adds
a parametric encoder (just an affine transformation followed by a non-linearity)
and learns it jointly with the generative model, such that the output of the
parametric encoder is close to the latent variable values that reconstructs well
the input.

3 Scaling Computations

From a computation point of view, how do we scale the recent successes of deep
learning to much larger models and huge datasets, such that the models are
actually richer and capture a very large amount of information?

3.1 Scaling Computations: The Challenge

The beginnings of deep learning in 2006 have focused on the MNIST digit image
classification problem [62,7], breaking the supremacy of SVMs (1.4% error) on

7 To define energy, we write probability as the normalized exponential of minus the
energy.

8 Y. Bengio

this dataset.8 The latest records are still held by deep networks: [29] currently
claim the title of state-of-the-art for the unconstrained version of the task (e.g.,
using a convolutional architecture and stochastically deformed data), with 0.27%
error.

In the last few years, deep learning has moved from digits to object recognition
in natural images, and the latest breakthrough has been achieved on the Ima-
geNet dataset.9 bringing down the state-of-the-art error rate (out of 5 guesses)
from 26.1% to 15.3% [77]

To achieve the above scaling from 28×28 grey-level MNIST images to 256×256
RGB images, researchers have taken advantage of convolutional architectures
(meaning that hidden units do not need to be connected to all units at the
previous layer but only to those in the same spatial area, and that pooling units
reduce the spatial resolution as we move from lower to higher layers). They have
also taken advantage of GPU technology to speed-up computation by one or two
orders of magnitude [105,23,21,77].

We can expect computational power to continue to increase, mostly through
increased parallelism such as seen in GPUs, multicore machines, and clusters.
In addition, computer memory has become much more affordable, allowing (at
least on CPUs) to handle potentially huge models (in terms of capacity).

However, whereas the task of recognizing handwritten digits is solved to the
point of achieving roughly human-level performance, this is far from true for
tasks such as general object recognition, scene understanding, speech recognition,
or natural language understanding. What is needed to nail those tasks and scale
to even more ambitious ones?

As we approach AI-scale tasks, it should become clear that our trained models
will need to be much larger in terms of number of parameters. This is suggested
by two observations. First, AI means understanding the world around us at
roughly the same level of competence as humans. Extrapolating from the current
state of machine learning, the amount of knowledge this represents is bound
to be large, many times more than what current models can capture. Second,
more and more empirical results with deep learning suggest that larger models
systematically work better [30,64,77,52], provided appropriate regularization is
used, such as the dropouts technique described above.

Part of the challenge is that the current capabilities of a single computer are
not sufficient to achieve these goals, even if we assume that training complex-
ity would scale linearly with the complexity of the task. This has for example
motivated the work of the Google Brain team [81,39] to parallelize training of
deep nets over a very large number of nodes. As we will see in Section 4, we
hypothesize that as the size of the models increases, our current ways of training
deep networks become less and less efficient, so that the computation required

8 For the knowledge-free version of the task, where no image-specific prior is used, such
as image deformations or convolutions, where the current state-of-the-art is around
0.8% and involves deep learning [111,64].

9 The 1000-class ImageNet benchmark, whose results are detailed here:
http://www.image-net.org/challenges/LSVRC/2012/~results.html

http://www.image-net.org/challenges/LSVRC/2012/~results.html

Deep Learning of Representations: Looking Forward 9

to train larger models (to capture correspondingly more information) is likely to
scale much worse than linearly [38].

Another part of the challenge is that the increase in computational power
has been mostly coming (and will continue to come) from parallel computing.
Unfortunately, when considering very large datasets, our most efficient training
algorithms for deep learning (such as variations on stochastic gradient descent or
SGD) are inherently sequential (each update of the parameters requires having
completed the previous update, so they cannot be trivially parallelized). Fur-
thermore, for some tasks, the amount of available data available is becoming so
large that it does not fit on a disk or even on a file server, so that it is not clear
how a single CPU core could even scan all that data (which seems necessary in
order to learn from it and exploit all of it, if training is inherently sequential).

3.2 Scaling Computations: Solution Paths

Parallel Updates: Asynchronous SGD. One idea that we explored in [6] is
that of asynchronous SGD: train multiple versions of the model in parallel, each
running on a different node and seeing different subsets of the data (on different
disks), but with an asynchronous lock-free sharing mechanism which keeps the
different versions of the model not too far from each other. If the sharing were
synchronous, it would be too inefficient because most nodes would spend their
time waiting for the sharing to be completed and would be waiting for the slowest
of the nodes. This idea has been analyzed theoretically [108] and successfully
engineered on a grand scale recently at Google [81,39]. However, current large-
scale implementations (with thousands of nodes) are still very inefficient (in
terms of use of the parallel resources), mostly because of the communication
bottleneck requiring to regularly exchange parameter values between nodes. The
above papers also take advantage of a way to train deep networks which has
been very successful for GPU implementations, namely the use of rather large
minibatches (blocks of examples after which an update is performed), making
some parallelization (across the examples in the minibatch) easier. One option,
explored by [32] is to use as building blocks for learning features algorithms
such as k-means that can be run efficiently over large minibatches (or the whole
data) and thus parallelized easily on a cluster (they learned 150,000 features on
a cluster with only 30 machines).

Another interesting consideration is the optimization of trade-off between com-
munication cost and computation cost in distributed optimization algorithms,
e.g., as discussed in [132].

Sparse Updates. One idea that we propose here is to change the learning algo-
rithms so as to obtain sparse updates, i.e., for any particular minibatch there is
only a small fraction of parameters that are updated. If the amount of sparsity
in the update is large, this would mean that a much smaller fraction of the pa-
rameters need to be exchanged between nodes when performing an asynchronous

10 Y. Bengio

SGD10. Sparse updates could be obtained simply if the gradient is very sparse.
This gradient sparsity can arise with approaches that select paths in the neural
network. We already know methods which produce slightly sparse updates, such
as dropouts [64],11 maxout [52]12 and other hard-pooling mechanisms, such as
the recently proposed and very successful stochastic pooling [143]. These meth-
ods do not provide enough sparsity, but this could be achieved in two ways. First
of all, we could choose to only pay attention to the largest elements of the gra-
dient vector. Second, we could change the architecture along the lines proposed
next.

Conditional Computation. A central idea (that applies whether one paral-
lelizes or not) that we put forward is that of conditional computation: instead of
dropping out paths independently and at random, drop them in a learned and
optimized way. Decision trees remain some of the most appealing machine learn-
ing algorithms because prediction time can be on the order of the logarithm
of the number of parameters. Instead, in most other machine learning predic-
tors, scaling is linear (i.e., much worse). This is because decision trees exploit
conditional computation: for a given example, as additional computations are
performed, one can discard a gradually larger set of parameters (and avoid per-
forming the associated computation). In deep learning, this could be achieved
by combining truly sparse activations (values not near zero like in sparse auto-
encoders, but actual zeros) and multiplicative connections whereby some hidden
units gate other hidden units (when the gater output is zero it turns off the out-
put of the gated unit). When a group A of hidden units has a sparse activation
pattern (with many actual zeros) and it multiplicatively gates other hidden units
B, then only a small fraction of the hidden units in B may need to be actually
computed, because we know that these values will not be used. Such gating is
similar to what happens when a decision node of a decision tree selects a subtree
and turns off another subtree. More savings can thus be achieved if units in B
themselves gate other units, etc. The crucial difference with decision trees (and
e.g., the hard mixture of experts we introduced a decade ago [33]) is that the gat-
ing units should not be mutually exclusive and should instead form a distributed
pattern. Indeed, we want to keep the advantages of distributed representations
and avoid the limited local generalization suffered by decision trees [18]. With a
high level of conditional computation, some parameters are used often (and are
well tuned) whereas other parameters are used very rarely, requiring more data
to estimate. A trade-off and appropriate regularization therefore needs to be

10 Although the gain would be reduced considerably in a minibatch mode, roughly by
the size of the minibatch.

11 Where half of the hidden units are turned off, although clearly, this is not enough
sparsity for reaching our objective; unfortunately, we observed that randomly and
independently dropping a lot more than half of the units yielded substantially worse
results.

12 Where in addition to dropouts, only one out of k filters wins the competition in max-
pooling units, and only one half of those survives the dropouts masking, making the
sparsity factor 2k.

Deep Learning of Representations: Looking Forward 11

established which will depend on the amount of training signals going into each
parameter. Interestingly, conditional computation also helps to achieve sparse
gradients, and the fast convergence of hard mixtures of experts [33] provides
positive evidence that a side benefit of conditional computation will be easier
and faster optimization.

Another existing example of conditional computation and sparse gradients
is with the first layer of neural language models, deep learning models for text
data [6,9]. In that case, there is one parameter vector per word in the vocabulary,
but each sentence only “touches” the parameters associated with the words in
the sentence. It works because the input can be seen as extremely sparse. The
question is how to perform conditional computation in the rest of the model.

One issue with the other example we mentioned, hard mixtures of experts [33],
is that its training mechanism only make sense when the gater operates at the
output layer. In that case, it is easy to get a strong and clean training signal
for the gater output: one can just evaluate what the error would have been if a
different expert had been chosen, and train the gater to produce a higher output
for the expert that would have produced the smallest error (or to reduce compu-
tation and only interrogate two experts, require that the gater correctly ranks
their probability of being the best one). The challenge is how to produce train-
ing signals for gating units that operate in the middle of the model. One cannot
just enumerate all the gating configurations, because in a distributed setting
with many gating units, there will be an exponential number of configurations.
Interestingly, this suggests introducing randomness in the gating process itself,
e.g., stochastically choosing one or two choices out of the many that a group of
gating units could take. This is interesting because this is the second motivation
(after the success of dropouts as a regularizer) for re-introducing randomness in
the middle of deep networks. This randomness would allow configurations that
would otherwise not be selected (if only a kind of “max” dictated the gating
decision) to be sometimes selected, thus allowing to accumulate a training signal
about the value of this configuration, i.e., a training signal for the gater. The
general question of estimating or propagating gradients through stochastic neu-
rons is treated in another exploratory article [12], where it is shown that one can
obtain an unbiased (but noisy) estimator of the gradient of a loss through a dis-
crete stochastic decision. Another interesting idea explored in that paper is that
of adding noise just before the non-linearity (max-pooling (maxi xi) or rectifier
(max(0, x))). Hence the winner is not always the same, and when a choice wins
it has a smooth influence on the result, and that allows a gradient signal to be
provided, pushing that winner closer or farther from winning the competition
on another example.

4 Optimization

4.1 Optimization: The Challenge

As we consider larger and larger datasets (growing faster than the size of the
models), training error and generalization error converge. Furthermore many

12 Y. Bengio

pieces of evidence in the results of experiments on deep learning suggest that
training deep networks (including recurrent networks) involves a difficult opti-
mization [13,56,16]. It is not yet clear how much of the difficulty is due to local
minima and how much is due to ill-conditioning (the two main types of optimiza-
tion difficulties in continuous optimization problems). It is therefore interesting
to study the optimization methods and difficulties involved in deep learning, for
the sake of obtaining better generalization. Furthermore, better optimization
could also have an impact on scaling computations, discussed above.

One important thing to keep in mind, though, is that in a deep supervised
network, the top two layers (the output layer and the top hidden layer) can
rather easily be made to overfit, simply by making the top hidden layer large
enough. However, to get good generalization, what we have found is that one
needs to optimize the lower layers, those that are far removed from the immediate
supervised training signal [7]. These observations mean that only looking at the
training criterion is not sufficient to assess that a training procedure is doing
a good job at optimizing the lower layers well. However, under constraints on
the top hidden layer size, training error can be a good guide to the quality of
the optimization of lower layers. Note that supervised deep nets are very similar
(in terms of the optimization problem involved) to deep auto-encoders and to
recurrent or recursive networks, and that properly optimizing RBMs (and more
so deep Boltzmann machines) seems more difficult: progress on training deep
nets is therefore likely to be a key to training the other types of deep learning
models.

One of the early hypotheses drawn from experiments with layer-wise pre-
training as well as of other experiments (semi-supervised embeddings [138] and
slow feature analysis [140,22]) is that the training signal provided by backprop-
agated gradients is sometimes too weak to properly train intermediate layers
of a deep network. This is supported by the observation that all of these suc-
cessful techniques somehow inject a training signal into the intermediate layers,
helping them to figure out what they should do. However, the more recent suc-
cessful results with supervised learning on very large labeled datasets suggest
that with some tweaks in the optimization procedure (including initialization),
it is sometimes possible to achieve as good results with or without unsupervised
pre-training or semi-supervised embedding intermediate training signals.

4.2 Optimization: Solution Paths

In spite of these recent encouraging results, several more recent experimental re-
sults again point to a fundamental difficulty in training intermediate and lower
layers.

Diminishing Returns with Larger Networks. First, [38] show that with
well-optimized SGD training, as the size of a neural net increases, the “return
on investment” (number of training errors removed per added hidden unit) de-
creases, given a fixed number of training iterations, until the point where it goes
below 1 (which is the return on investment that would be obtained by a brain-
dead memory-based learning mechanism – such as Parzen Windows – which

Deep Learning of Representations: Looking Forward 13

just copies an incorrectly labeled example into the weights of the added hidden
unit so as to produce just the right answer for that example only). This sug-
gests that larger models may be fundamentally more difficult to train, probably
because there are now more second-order interactions between the parameters,
increasing the condition number of the Hessian matrix (of second derivatives of
model parameters with respect to the training criterion). This notion of return
on investment may provide a useful metric by which to measure the effect of
different methods to improve the scaling behavior of training and optimization
procedures for deep learning.

Intermediate Concepts Guidance and Curriculum. Second, [56] show that
there are apparently simple tasks on which standard black-box machine learning
algorithms completely fail. Even supervised and pre-trained deep networks were
tested and failed at these tasks. These tasks have in common the characteristic
that the correct labels are obtained by the composition of at least two levels of
non-linearity and abstraction: e.g., the first level involves the detection of objects
in a scene and the second level involves a non-linear logical operation on top of
these (such as the detecting presence of multiple objects of the same category).
On the other hand, the task becomes easily solvable by a deep network whose in-
termediate layer is first pre-trained to solve the first-level sub-task. This raises
the question of how humans might learn even more abstract tasks, and [13] stud-
ies the hypothesis that the use of language and the evolution of culture could have
helped humans reduce that difficulty (and gain a serious advantage over other less
cultured animals). It would be interesting to explore multi-agent learning mecha-
nisms inspired by the the mathematical principles behind the evolution of culture
in order to bypass this optimization difficulty. The basic idea is that humans (and
current learning algorithms) are limited to “local descent” optimization methods,
that make small changes in the parameter values with the effect of reducing the ex-
pected loss in average. This is clearly prone to the presence of local minima, while
a more global search (in the spirit of both genetic and cultural evolution) could po-
tentially reduce this difficulty. One hypothesis is that more abstract learning tasks
involve more challenging optimization difficulties, which would make such global
optimization algorithms necessary if we want computers to learn such abstractions
from scratch. Another option, following the idea of curriculum learning [19], is to
provide guidance ourselves to learning machines (as exemplified in the toy exam-
ple of [56]), by “teaching them” gradually more complex concepts to help them
understand the world around us (keeping in mind that we also have to do that for
humans and that it takes 20 years to complete).

Changing the Learning Procedure and the Architecture. Regarding the
basic optimization difficulty of a single deep network, three types of solutions
should be considered. First, there are solutions based on improved general-
purpose optimization algorithms, such as for example the recent work on adap-
tive learning rates [121], online natural gradient [82,102] or large-minibatch
second order methods [90].

14 Y. Bengio

Another class of attacks on the optimization problem is based on changing the
architecture (family of functions and its parametrization) or the way that the out-
puts are produced (for example by adding noise). As already introduced in [84],
changes in the preprocessing, training objective and architecture can change the
difficulty of optimization, and in particularly improve the conditioning of the
Hessian matrix (of second derivatives of the loss with respect to parameters).
With gradient descent, training time into a quadratic bowl is roughly propor-
tional to the condition number of the Hessian matrix (ratio of largest to smallest
eigenvalue). For example [84] recommends centering and normalizing the inputs,
an idea recently extended to hidden layers of Boltzmann machines with suc-
cess [95]. A related idea that may have an impact on ill-conditioning is the idea
of skip-connections, which forces both the mean output and the mean slope of
each hidden unit of a deep multilayer network to be zero [103], a centering idea
which originates from [122].

There has also been very successful recent work exploiting rectifier non-
linearities for deep supervised networks [45,77]. Interestingly, such non-linearities
can produce rather sparse unit outputs, which could be exploited, if the amount
of sparsity is sufficiently large, to considerably reduce the necessary computa-
tion (because when a unit output is 0, there is no need to actually multiply it
with its outgoing weights). Very recently, we have discovered a variant on the
rectifier non-linearity called maxout [52] which appears to open a very promising
door towards more efficient training of deep networks. As confirmed experimen-
tally [52], maxout networks can train deeper networks and allow lower layers to
undergo more training. The more general principle at stake here may be that
when the gradient is sparse, i.e., only a small subset of the hidden units and
parameters is touched by the gradient, the optimization problem may become
easier. We hypothesize that sparse gradient vectors have a positive effect on re-
ducing the ill-conditioning difficulty involved in training deep nets. The intuition
is that by making many terms of the gradient vector 0, one also knocks off many
off-diagonal terms of the Hessian matrix, making this matrix more diagonal-
looking, which would reduce many of the ill-conditioning effects involved, as
explained below. Indeed, gradient descent relies on an invalid assumption: that
one can modify a parameter θi (in the direction of the gradient ∂C

∂θi
) without

taking into account the changes in ∂C
∂θi

that will take place when also modifying
other parameters θj . Indeed, this is precisely the information that is captured

(e.g. with second-order methods) by the off-diagonal entries ∂2C
∂θi∂θj

= ∂
∂θj

∂C
∂θi

,

i.e., how changing θj changes the gradient on θi. Whereas second-order methods
may have their own limitations13 it would be interesting if substantially reduced
ill-conditioning could be achieved by modifying the architecture and training
procedure. Sparse gradients would be just one weapon in this line of attack.

As we have argued above, adding noise in an appropriate way can be useful
as a powerful regularizer (as in dropouts), and it can also be used to make the

13 First, practical implementations never come close to actually inverting the Hessian,
and second, they often require line searches that may be computationally inefficient
if the optimal trajectory is highly curved.

Deep Learning of Representations: Looking Forward 15

gradient vector sparser, which would reinforce the above positive effect on the op-
timization difficulty. If some of the activations are also sparse (as our suggestions
for conditional computation would require), then more entries of the gradient
vector will be zeroed out, also reinforcing that beneficial optimization effect. In
addition, it is plausible that the masking noise found in dropouts (as well as in
denoising auto-encoders) encourages a faster symmetry-breaking: quickly moving
away from the condition where all hidden units of a neural network or a Boltz-
mann machine do the same thing (due to a form of symmetry in the signals they
receive), which is a non-attractive fixed point with a flat (up to several orders)
likelihood function. This means that gradient descent can take a lot of time to
pull apart hidden units which are behaving in a very similar way. Furthermore,
when starting from small weights, these symmetry conditions (where many hid-
den units do something similar) are actually attractive from far away, because
initially all the hidden units are trying to grab the easiest and most salient job
(explain the gradients on the units at the layer above). By randomly turning off
hidden units we obtain a faster specialization which helps training convergence.

A related concept that has been found useful in understanding and reduc-
ing the training difficulty of deep or recurrent nets is the importance of letting
the training signals (back-propagated gradients) flow, in a focused way. It is im-
portant that error signals flow so that credit and blame is clearly assigned to
different components of the model, those that could change slightly to improve
the training loss. The problem of vanishing and exploding gradients in recurrent
nets [65,8] arises because the effect of a long series of non-linear composition
tends to produce gradients that can either be very small (and the error signal
is lost) or very large (and the gradient steps diverge temporarily). This idea has
been exploited to propose successful initialization procedures for deep nets [46].
A composition of non-linearities is associated with a product of Jacobian matri-
ces, and a way to reduce the vanishing problem would be to make sure that they
have a spectral radius (largest eigenvalue) close to 1, like what is done in the
weight initialization for Echo State Networks [70] or in the carousel self-loop of
LSTM [66] to help propagation of influences over longer paths. A more generic
way to avoid gradient vanishing is to incorporate a training penalty that encour-
ages the propagated gradient vectors to maintain their magnitude [101]. When
combined with a gradient clipping14 heuristic [93] to avoid the detrimental effect
of overly large gradients, it allows to train recurrent nets on tasks on which it
was not possible to train them before [101].

5 Inference and Sampling

All of the graphical models studied for deep learning except the humble RBM
require a non-trivial form of inference, i.e., guessing values of the latent variables
h that are appropriate for the given visible input x. Several forms of inference
have been investigated in the past: MAP inference is formulated like an optimiza-
tion problem (looking for h that approximately maximizes P (h | x)); MCMC

14 When the norm of the gradient is above a threshold τ , reduce it to τ .

16 Y. Bengio

inference attempts to sample a sequence of h’s from P (h | x); variational infer-
ence looks for a simple (typically factorial) approximate posterior qx(h) that is
close to P (h | x), and usually involves an iterative optimization procedure. See
a recent machine learning textbook for more details [24,4,96].

In addition, a challenge related to inference is sampling (not just from P (h | x)
but also from P (h, x) or P (x)), which like inference is often needed in the inner
loop of learning algorithms for probabilistic models with latent variables, energy-
based models [85] or Markov Random Fields [74] (also known as undirected
graphical models), where P (x) or P (h, x) is defined in terms of a parametrized
energy function whose normalized exponential gives probabilities.

Deep Boltzmann machines [118] combine the challenge of inference (for the
“positive phase” where one tries to push the energies associated with the ob-
served x down) and the challenge of sampling (for the “negative phase” where
one tries to push up the energies associated with x’s sampled from P (x)). Sam-
pling for the negative phase is usually done by MCMC, although some learning
algorithms [34,57,25] involve “negative examples” that are sampled through sim-
pler procedures (like perturbations of the observed input). In [118], inference for
the positive phase is achieved with a mean-field variational approximation.15

5.1 Inference and Sampling: The Challenge

There are several challenges involved with all of the these inference and sampling
techniques.

The first challenge is practical and computational: these are all iterative pro-
cedures that can considerably slow down training (because inference and/or sam-
pling is often in the inner loop of learning).

Potential Huge Number of Modes. The second challenge is more fundamen-
tal and has to do with the potential existence of highly multi-modal posteriors:
all of the currently known approaches to inference and sampling are making
very strong explicit or implicit assumptions on the form the distribution of in-
terest (P (h | x) or P (h, x)). As we argue below, these approaches make sense if
this target distribution is either approximately unimodal (MAP), (conditionally)
factorizes (variational approximations, i.e., the different factors hi are approxi-
mately independent16 of each other given x), or has only a few modes between
which it is easy to mix (MCMC). However, approximate inference can be poten-
tially hurtful, not just at test time but for training, because it is often in the
inner loop of the learning procedure [78].

15 In the mean-field approximation, computation proceeds like in Gibbs sampling, but
with stochastic binary values replaced by their conditional expected value (probabil-
ity of being 1), given the outputs of the other units. This deterministic computation
is iterated like in a recurrent network until convergence is approached, to obtain a
marginal (factorized probability) approximation over all the units.

16 This can be relaxed by considering tree-structured conditional dependencies [120]
and mixtures thereof.

Deep Learning of Representations: Looking Forward 17

Imagine for example that h represents many explanatory variables of a rich
audio-visual scene with a highly ambiguous raw input x, including the presence
of several objects with ambiguous attributes or categories, such that one cannot
really disambiguate one of the objects independently of the others (the so-called
“structured output” scenario, but at the level of latent explanatory variables).
Clearly, a factorized or unimodal representation would be inadequate (because
these variables are not at all independent, given x) while the number of modes
could grow exponentially with the number of ambiguous factors present in the
scene. For example, consider a visual scene x through a haze hiding most de-
tails, yielding a lot of uncertainty. Say it involves 10 objects (e.g., people), each
having 5 ambiguous binary attributes (out of 20) (e.g., how they are dressed)
and uncertainty between 100 categorical choices for each element (e.g., out of
10000 persons in the database, the marginal evidence allows to reduce the uncer-
tainty for each person to about 100 choices). Furthermore, suppose that these
uncertainties cannot be factorized (e.g., people tend to be in the same room
with other people involved in the same activity, and friends tend to stand phys-
ically close to each other, and people choose to dress in a way that socially
coherent). To make life hard on mean-field and other factorized approximations,
this means that only a small fraction (say 1%) of these configurations are really
compatible. So one really has to consider 1% × (25 × 100)10 ≈ 1033 plausible
configurations of the latent variables. If one has to take a decision y based on x,
e.g., P (y | x) = ∑

h P (y | h)P (h | x) involves summing over a huge number of
non-negligible terms of the posterior P (h | x), which we can consider as modes
(the actual dimension of h is much larger, so we have reduced the problem from
(220×10000)10 ≈ 10100 to about 1033, but that is still huge. One way or another,
summing explicitly over that many modes seems implausible, and assuming sin-
gle mode (MAP) or a factorized distribution (mean-field) would yield very poor
results. Under some assumptions on the underlying data-generating process, it
might well be possible to do inference that is exact or a provably good approxima-
tions, and searching for graphical models with these properties is an interesting
avenue to deal with this problem. Basically, these assumptions work because we
assume a specific structure in the form of the underlying distribution. Also, if we
are lucky, a few Monte-Carlo samples from P (h | x) might suffice to obtain an
acceptable approximation for our y, because somehow, as far as y is concerned,
many probable values of h yield the same answer y and a Monte-Carlo sam-
ple will well represent these different “types” of values of h. That is one form
of regularity that could be exploited (if it exists) to approximately solve that
problem. What if these assumptions are not appropriate to solve challenging AI
problems? Another, more general assumption (and thus one more likely to be
appropriate for these problems) is similar to what we usually do with machine
learning: although the space of functions is combinatorially large, we are able
to generalize by postulating a rather large and flexible family of functions (such
as a deep neural net). Thus an interesting avenue is to assume that there exists
a computationally tractable function that can compute P (y | x) in spite of the

18 Y. Bengio

apparent complexity of going through the intermediate steps involving h, and
that we may learn P (y | x) through (x, y) examples. This idea will be developed
further in Section 5.2.

Mixing between Modes. What about MCMC methods? They are hurt by
the problem of mode mixing, discussed at greater length in [20], and summa-
rized here. To make the mental picture simpler, imagine that there are only two
kinds of probabilities: tiny and high. MCMC transitions try to stay in configura-
tions that have a high probability (because they should occur in the chain much
more often than the tiny probability configurations). Modes can be thought of
as islands of high probability, but they may be separated by vast seas of tiny
probability configurations. Hence, it is difficult for the Markov chain of MCMC
methods to jump from one mode of the distribution to another, when these are
separated by large low-density regions embedded in a high-dimensional space, a
common situation in real-world data, and under the manifold hypothesis [27,98].
This hypothesis states that natural classes present in the data (e.g., visual ob-
ject categories) are associated with low-dimensional regions17 (i.e., manifolds)
near which the distribution concentrates, and that different class manifolds are
well-separated by regions of very low density. Here, what we consider a mode
may be more than a single point, it could be a whole (low-dimensional) man-
ifold. Slow mixing between modes means that consecutive samples tend to be
correlated (belong to the same mode) and that it takes a very large number of
consecutive sampling steps to go from one mode to another and even more to
cover all of them, i.e., to obtain a large enough representative set of samples
(e.g. to compute an expected value under the sampled variables distribution).
This happens because these jumps through the low-density void between modes
are unlikely and rare events. When a learner has a poor model of the data, e.g.,
in the initial stages of learning, the model tends to correspond to a smoother
and higher-entropy (closer to uniform) distribution, putting mass in larger vol-
umes of input space, and in particular, between the modes (or manifolds). This
can be visualized in generated samples of images, that look more blurred and
noisy18. Since MCMCs tend to make moves to nearby probable configurations,
mixing between modes is therefore initially easy for such poor models. However,
as the model improves and its corresponding distribution sharpens near where
the data concentrate, mixing between modes becomes considerably slower. Mak-
ing one unlikely move (i.e., to a low-probability configuration) may be possible,
but making N such moves becomes exponentially unlikely in N . Making moves
that are far and probable is fundamentally difficult in a high-dimensional space
associated with a peaky distribution (because the exponentially large fraction
of the far moves would be to an unlikely configuration), unless using additional
(possibly learned) knowledge about the structure of the distribution.

17 E.g. they can be charted with a few coordinates.
18 See examples of generated images with some of the current state-of-the-art in learned

generative models of images [37,88].

Deep Learning of Representations: Looking Forward 19

5.2 Inference and Sampling: Solution Paths

Going into a Space Where Mixing Is Easier. The idea of tempering [69]
for MCMCs is analogous to the idea of simulated annealing [75] for optimization,
and it is designed for and looks very appealing to solve the mode mixing problem:
consider a smooth version (higher temperature, obtained by just dividing the en-
ergy by a temperature greater than 1) of the distribution of interest; it therefore
spreads probability mass more uniformly so one can mix between modes at that
high temperature version of the model, and then gradually cool to the target
distribution while continuing to make MCMC moves, to make sure we end up
in one of the “islands” of high probability. [42,28,117,116] have all considered
various forms of tempering to address the failure of Gibbs chain mixing in RBMs.
Unfortunately, convincing solutions (in the sense of making a practical impact
on training efficiency) have not yet been clearly demonstrated. It is not clear why
this is so, but it may be due to the need to spend much time at some specific
(critical) temperatures in order to succeed. More work is certainly warranted in
that direction.

An interesting observation [20] which could turn out to be helpful is that after
we train a deep model such as a DBN or a stack of regularized auto-encoders,
we can observe that mixing between modes is much easier at higher levels of the
hierarchy (e.g. in the top-level RBM or top-level auto-encoder): mixing between
modes is easier at deeper levels of representation. This is achieved by running the
MCMC in a high-level representation space and then projecting back in raw input
space to obtain samples at that level. The hypothesis proposed [20] to explain
this observation is that unsupervised representation learning procedures (such
as for the RBM and contractive or denoising auto-encoders) tend to discover a
representation whose distribution has more entropy (the distribution of vectors
in higher layers is more uniform) and that better “disentangles” or separates out
the underlying factors of variation (see next section for a longer discussion of the
concept of disentangling). For example, suppose that a perfect disentangling had
been achieved that extracted the factors out of images of objects, such as object
category, position, foreground color, etc. A single Gibbs step could thus switch
a single top-level variable (like object category) when that variable is resampled
given the others, a very local move in that top-level disentangled representation
but a very far move (going to a very different place) in pixel space. Note that
maximizing mutual information between inputs and their learned deterministic
representation, which is what auto-encoders basically do [136], is equivalent to
maximizing the entropy of the learned representation,19 which supports this
hypothesis. An interesting idea20 would therefore be to use higher levels of a deep
model to help the lower layers mix better, by using them in a way analogous to
parallel tempering, i.e., to suggest configurations sampled from a different mode.

Another interesting potential avenue for solving the problem of sampling from
a complex and rough (non-smooth) distribution would be to take advantage of

19 Salah Rifai, personal communication.
20 Guillaume Desjardins, personal communication.

20 Y. Bengio

quantum annealing effects [113] and analog computing hardware (such as pro-
duced by D-Wave). NP-hard problems (such as sampling or optimizing exactly
in an Ising model) still require exponential time but experimental evidence has
shown that for some problems, quantum annealing is far superior to standard
digital computation [26]. Since quantum annealing is performed by essentially
implementing a Boltzmann machine in analog hardware, it might be the case
that drawing samples from a Boltzmann machine is one problem where quantum
annealing would be dramatically superior to classical digital computing.

Learned Approximate Inference and Predicting a Rich Posterior. If we
stick to the idea of obtaining actual values of the latent variables (either through
MAP, factorized variational inference or MCMC), then a promising path is based
on learning approximate inference, i.e., optimizing a learned approximate infer-
ence mechanism so that it performs a better inference faster. This idea is not new
and has been shown to work well in many settings. This idea was actually already
present in the wake-sleep algorithm [61,44,62] in the context of variational infer-
ence for Sigmoidal Belief Networks and DBNs. Learned approximate inference is
also crucial in the predictive sparse coding (PSD) algorithm [73]. This approach
is pushed further with [54] in which the parametric encoder has the same struc-
tural form as a fast iterative sparse coding approximate inference algorithm. The
important consideration in both cases is not just that we have fast approximate
inference, but that (a) it is learned, and (b) the model is learned jointly with the
learned approximate inference procedure. See also [119] for learned fast approx-
imate variational inference in DBMs, or [3,126] for learning fast approximate
inference (with fewer steps than would otherwise be required by standard general
purpose inference) based on loopy belief propagation.

The traditional view of probabilistic graphical models is based on the clean sep-
aration between modeling (defining the model), optimization (tuning the param-
eters), inference (over the latent variables) and sampling (over all the variables,
and possibly over the parameters as well in the Bayesian scenario). This mod-
ularization has clear advantages but may be suboptimal. By bringing learning
into inference and jointly learning the approximate inference and the “generative
model” itself, one can hope to obtain “specialized” inference mechanisms that
could be much more efficient and accurate than generic purpose ones; this was
the subject of a recent ICML workshop [43]. The idea of learned approximate
inference may help deal with the first (purely computational) challenge raised
above regarding inference, i.e., it may help to speed up inference to some extent,
but it generally keeps the approximate inference parameters separate from the
model parameters.

But what about the challenge from a huge number of modes? What if the
number of modes is too large and/or these are too well-separated for MCMC to
visit efficiently or for variational/MAP inference to approximate satisfactorily?
If we stick to the objective of computing actual values of the latent variables,
the logical conclusion is that we should learn to approximate a posterior that is
represented by a rich multi-modal distribution. To make things concrete, imagine
that we learn (or identify) a function f(x) of the visible variable x that computes

Deep Learning of Representations: Looking Forward 21

the parameters θ = f(x) of an approximate posterior distribution Qθ=f(x)(h)
but where Qθ=f(x)(h) ≈ P (h | x) can be highly multi-modal, e.g., an RBM with
visible variables h (coupled with additional latent variables used only to represent
the richness of the posterior over h itself). Since the parameters of the RBM are
obtained through a parametric computation taking x as input,21 this is really a
conditional RBM [130,129]. Whereas variational inference is usually limited to
a non-parametric approximation of the posterior, Q(h) (one that is analytically
and iteratively optimized for each given x) one could consider a parametric
approximate posterior that is learned (or derived analytically) while allowing for
a rich multi-modal representation (such as what an RBM can capture, i.e., up
to an exponential number of modes).

Avoiding Inference Altogether by Learning to Perform the Required
Marginalization. We now propose to consider an even more radical departure
from traditional thinking regarding probabilistic models with latent variables. It
is motivated by the observation that even with the last proposal, something like
a conditional RBM to capture the posterior P (h | x), when one has to actually
make a decision or a prediction, it is necessary for optimal decision-making to
marginalize over the latent variables. For example, if we want to predict y given
x, we want to compute something like

∑
h P (y | h)P (h | x). If P (h | x) is

complex and highly multi-modal (with a huge number of modes), then even if
we can represent the posterior, performing this sum exactly is out of the question,
and even an MCMC approximation may be either very poor (we can only visit
at most N modes with N MCMC steps, and that is very optimistic because of
the mode mixing issue) or very slow (requiring an exponential number of terms
being computed or a very very long MCMC chain). It seems that we have not
really addressed the original “fundamental challenge with highly multi-modal
posteriors” raised above.

To address this challenge, we propose to avoid explicit inference altogether by
avoiding to sample, enumerate, or represent actual values of the latent variables
h. Instead, one can just directly learn to predict P (y | x), in the example of the
previous paragraph. Hence the only approximation error we are left with is due to
to function approximation. This might be important because the compounding
of approximate inference with function approximation could be very hurtful [78].

To get there, one may wish to mentally go through an intermediate step.
Imagine we had a good approximate posterior Qθ=f(x)(h) as proposed above,
with parameters θ = f(x). Then we could imagine learning an approximate
decision model that approximates and skips the intractable sum over h, instead
directly going from θ = f(x) to a prediction of y, i.e., we would estimate P (y | x)
by g(f(x)). Now since we are already learning f(x), why learn g(θ) separately?
We could simply directly learn to estimate π(x) = g(f(x)) ≈ P (y | x).

21 For many models, such as deep Boltzmann machines, or bipartite discrete Markov
random fields [91], f does not even need to be learned, it can be derived analytically
from the form of P (h | x).

22 Y. Bengio

Now that may look trivial, because this is already what we do in discriminant
training of deep networks or recurrent networks, for example. And don’t we
lose all the advantages of probabilistic models, such as, handling different forms
of uncertainty, missing inputs, and being able to answer any “question” of the
form “predict any variables given any subset of the others”? Yes, if we stick to the
traditional deep (or shallow) neural networks like those discussed in Section 2.1.22

But there are other options.
We propose to get the advantages of probabilistic models without the need

for explicitly going through many configurations of the latent variables. Let xc

be a subset of elements of x that are clamped, x−c the rest and xv a subset
of x−c for which we have a prediction to make and “target” observation. We
want to be able to sample from P (xv | xc). We want train a model such that, in
average over the examples, with their observed subset s of variables, we maximize
logP (xs). For example, we could do this by generalized pseudo-likelihood and
maximize logP (xv | xc) for randomly chosen partitions (v, c) of s. The important
requirement is that the same parameters be used to model all the predictions
P (xv | xc) for any choice of (v, c). Another possible way to train such a model is
to generalize the training criterion for regularized (possibly deep) auto-encoders
in order to accomodate missing inputs (which is straightforward in the case of
denoising auto-encoders with masking noise).

In the case of the generalized pseudo-likelihood approach, we would specify a
computation that maps the model parameters to a training criterion equivalent
to maximizing logP (xv | xc). The form of this computation could be inspired by
existing or novel inference mechanisms, as has been done for learned approximate
inference. However, because the training criterion would be expressed in terms
of the observed x, the interpretation of the latent variables as latent variables
in P (x, h) becomes superfluous. In fact, because we start from an approximate
inference scheme, if we train the parameters with respect to some form of input
reconstruction (like generalized pseudo-likelihood), there is no guarantee that
the original interpretation of the estimated posterior P (h | x) continues to be
meaningful. What is meaningful, though, is the interpretation of the parameter-
ized computational graph that produces P (xv | xc) for any (v, c) pair as a formal
definition of the learned model of the data.

The approximate inference is not anymore an approximation of something
else, it is the definition of the model itself. This is actually good news because
we thus eliminate the issue that the approximate inference may be poor. The
only thing we need to worry about is whether the parameterized computational
graph that produces P (xv | xc) is rich enough (or may overfit) to capture the
unknown data generating distribution, and whether it makes it easy or difficult to
optimize the parameters. This would be similar to dependency networks [58], but
re-using the same parameters for every possible question-answer partition and
training the system to answer for any subset of variables rather than singletons

22 Although, using something like these deep nets would be appealing because they are
currently beating benchmarks in speech recognition, language modeling and object
recognition.

Deep Learning of Representations: Looking Forward 23

like in pseudo-likelihood. For the same reason, it raises the question of whether
the different estimated conditionals are coherent with a global joint distribution.
In the case where the computational graph is obtained from the template of an
inference mechanism for a joint distribution (such as variational inference), then
clearly, we keep the property that these conditionals are coherent with a global
joint distribution. With the mean-field variational inference, the computational
graph looks like a recurrent neural network converging to a fixed point, and
where we stop the iterations after a fixed number of steps or according to a
convergence criterion. Such a trained parametrized computational graph is used
in the iterative variational approach introduced in [51] for training and missing
value inference in deep Boltzmann machines, with an inpainting-like criterion in
which arbitrary subsets of pixels are predicted given the others (a generalized
pseudo-likelihood criterion). It has also been used in a recursion that follows the
template of loopy belief propagation to fill-in the missing inputs and produce
outputs [126]. Although in these cases there are latent variables (e.g. the latent
variables of the deep Boltzmann machine) that motivate the “template” used
for the learned approximate inference, what we propose here is to stop thinking
about them as actual latent factors, but rather just as a way to parametrize
this template for a question answering mechanism regarding missing inputs, i.e.,
the “generic conditional prediction mechanism” implemented by the recurrent
computational graph that is trained to predict any subset of variables given any
other subset. Although [51] assume a factorial distribution across the predicted
variables, we propose to investigate non-factorial posterior distributions over the
observed variables, i.e., in the spirit of the recent flurry of work on structured
output machine learning [133].

We can think of this parametrized computational graph as a family of func-
tions, each corresponding to answering a different question (predict a specific set
of variables given some others), but all sharing the same parameters. We already
have examples of such families in machine learning, e.g., with recurrent neural
networks or dynamic Bayes nets (where the functions in the family are indexed
by the length of the sequence). This is also analogous to what happens with
dropouts, where we have an exponential number of neural networks correspond-
ing to different sub-graphs from input to output (indexed by which hidden units
are turned on or off). For the same reason as in these examples, we obtain a
form of generalization across subsets. Following the idea of learned approximate
inference, the parameters of the question-answering inference mechanism would
be taking advantage of the specific underlying structure in the data generating
distribution. Instead of trying to do inference on the anonymous latent variables,
it would be trained to do good inference only over observed variables or over high-
level features learned by a deep architecture, obtained deterministically from the
observed input.

The idea that we should train with the approximate inference as part of the
computational graph for producing a decision (and a loss) was first introduced
by [126], and we simply push it further here, by proposing to allow the computa-
tional graph to depart in any way we care to explore from the template provided

24 Y. Bengio

by existing inference mechanism, i.e., potentially losing the connection and the
reference to probabilistic latent variables. Once we free ourselves from the con-
straint of interpreting this parametrized question answering computational graph
as corresponding to approximate inference involving latent variables, all kinds
of architectures and parametrizations are possible, where current approximate
inference mechanisms can serve as inspiration and starting points. It is quite
possible that this new freedom could give rise to much better models. The im-
portant point is that this mechanism is trained to do well at question answering
on the provided data, and that it is really a family of functions indexed by all the
possible question/answer subsets, but sharing their parameters. If the resulting
family of computational graphs does not correspond to a form of inference in a
globally coherent joint distribution (like in the case of dependency networks [58]),
what do we lose? Re-using the arguments from [126], we could argue that what
matters is to optimize the expected loss. If our loss function regards the ability
to answer any question about the variables, then a generalized pseudo-likelihood
criterion would better much the ultimate objective.

To go farther than [51] and [126] it would be good to go beyond the kind of fac-
torized prediction common in variational and loopy belief propagation inference.
One idea is to represent the estimated joint distribution of the predicted variables
(given the clamped variables) by a powerful model such as an RBM or a regular-
ized auto-encoder, e.g., as has been done for structured output predictions when
there is complex probabilistic structure between the output variables [94,87].

Although conditional RBMs have been already explored, conditional distribu-
tions provided by regularized auto-encoders remain to be studied. Alternatively,
a denoising auto-encoder (whether it is shallow or deep) with masking noise23 is
trained to perform something very similar to generalized pseudo-likelihood. Note
that sampling algorithms based on Langevin or Metropolis-Hastings MCMC
have already been proposed [110,1,15], for regularized auto-encoders24 and they
could easily be adapted to conditional sampling by clamping the fixed inputs and
(optionally, to increase representational capacity) by making the hidden unit bi-
ases an arbitrarily complex (but deterministic) functions of the observed inputs.
These theoretical analyses and sampling methods for regularized auto-encoders
have been performed for the case of continuous inputs with squared error, and
remain to be generalized to discrete inputs.

As as refinement, and in the spirit of a long tradition of discriminatively ori-
ented machine learning, when some of the observed variables y are of particular
interest (because we often want to predict them), one would naturally present
examples of the prediction of y given x more often to the learning algorithm
than random subsets of observed variables. Hybrids of generative and discrim-
inant training criteria have been very successful for RBMs [79,80] and would
make practical sense here as well.

23 In which some of the inputs are set to 0 and the auto-encoder is trying to predict
them, as well as the rest, in its reconstruction.

24 These methods iterate between encoding, decoding, and injecting noise, with the
possibility of rejecting poor configurations.

Deep Learning of Representations: Looking Forward 25

All these ideas lead to the question: what is the interpretation of hidden lay-
ers, if not directly of the underlying generative latent factors? The answer may
simply be that they provide a better representation of these factors, a subject
discussed in the next section. But what about the representation of uncertainty
about these factors? The author believes that humans and other animals carry
in their head an internal representation that implicitly captures both the most
likely interpretation of any of these factors (in case a hard decision about some
of them has to be taken) and uncertainty about their joint assignment. This is
of course a speculation. Somehow, our brain would be operating on implicit rep-
resentations of the joint distribution between these explanatory factors, generally
without having to commit until a decision is required or somehow provoked by
our attention mechanisms (which seem related to our tendancy to verbalize a
discrete interpretation). A good example is foreign language understanding for
a person who does not master that foreign language. Until we consciously think
about it, we generally don’t commit to a particular meaning for ambiguous word
(which would be required by MAP inference), or even to the segmentation of the
speech in words, but we can take a hard decision that depends on the interpreta-
tion of these words if we have to, without having to go through this intermediate
step of discrete interpretation, instead treating the ambiguous information as soft
cues that may inform our decision. In that example, a factorized posterior is also
inadequate because some word interpretations are more compatible with each
other.

To summarize, what we propose here, unlike in previous work on approximate
inference, is to drop the pretense that the learned approximate inference mecha-
nism actually approximates the latent variables distribution, mode, or expected
value. Instead, we only consider the approximate inference over observed vari-
ables (or of values of features computed from the observed variables at a higher
level of a deep architecture) and we consider that this mechanism is itself the
model, rather than some approximation, and we train it with a training criterion
that is consistent with that interpretation. By removing the interpretation of ap-
proximately marginalizing over latent variables, we free ourselves from a strong
constraint and open the door to any parametrized computation which has the
requirement that its parameters can be shared across any question/answer sub-
set.

This discussion is of course orthogonal to the use of Bayesian averaging meth-
ods in order to produce better-generalizing predictions, i.e., handling uncertainty
due to a small number of training examples. The proposed methods can be made
Bayesian just like neural networks have their Bayesian variants [99], by somehow
maintaining an implicit or explicit distribution over parameters. A promising
step in this direction was proposed by [137], making such Bayesian computation
tractable by exploiting the randomness introduced with stochastic gradient de-
scent to also produce the Bayesian samples over the uncertain parameter values.

26 Y. Bengio

6 Disentangling

6.1 Disentangling: The Challenge

What are “underlying factors” explaining the data? The answer is not obvious.
One answer could be that these are factors that can be separately controlled
(one could set up way to change one but not the others). This can actually be
observed by looking at sequential real-world data, where only a small proportion
of the factors typically change from t to t+1. Complex data arise from the rich
interaction of many sources. These factors interact in a complex web that can
complicate AI-related tasks such as object classification. If we could identity and
separate out these factors (i.e., disentangle them), we would have almost solved
the learning problem. For example, an image is composed of the interaction be-
tween one or more light sources, the object shapes and the material properties
of the various surfaces present in the image. It is important to distinguish be-
tween the related but distinct goals of learning invariant features and learning
to disentangle explanatory factors. The central difference is the preservation of
information. Invariant features, by definition, have reduced sensitivity in the di-
rections of invariance. This is the goal of building features that are insensitive to
variation in the data that are uninformative to the task at hand. Unfortunately,
it is often difficult to determine a priori which set of features and variations
will ultimately be relevant to the task at hand. Further, as is often the case
in the context of deep learning methods, the feature set being trained may be
destined to be used in multiple tasks that may have distinct subsets of relevant
features. Considerations such as these lead us to the conclusion that the most
robust approach to feature learning is to disentangle as many factors as possible,
discarding as little information about the data as is practical.

Deep learning algorithms that can do a much better job of disentangling
the underlying factors of variation would have tremendous impact. For exam-
ple, suppose that the underlying factors can be “guessed” (predicted) from a
simple (e.g. linear) transformation of the learned representation, ideally a trans-
formation that only depends on a few elements of the representation. That is
what we mean by a representation that disentangles the underlying factors. It
would clearly make learning a new supervised task (which may be related to one
or a few of them) much easier, because the supervised learning could quickly
learn those linear factors, zooming in on the parts of the representation that are
relevant.

Of all the challenges discussed in this paper, this is probably the most ambi-
tious, and success in solving it the most likely to have far-reaching impact. In
addition to the obvious observation that disentangling the underlying factors is
almost like pre-solving any possible task relevant to the observed data, having
disentangled representations would also solve other issues, such as the issue of
mixing between modes. We believe that it would also considerably reduce the
optimization problems involved when new information arrives and has to be rec-
onciled with the world model implicit in the current parameter setting. Indeed,
it would allow only changing the parts of the model that involve the factors that

Deep Learning of Representations: Looking Forward 27

are relevant to the new observation, in the spirit of sparse updates and reduced
ill-conditioning discussed above.

6.2 Disentangling: Solution Paths

Deeper Representations Disentangle Better. There are some encouraging
signs that our current unsupervised representation-learning algorithms are re-
ducing the “entanglement” of the underlying factors25 when we apply them to
raw data (or to the output of a previous representation learning procedure, like
when we stack RBMs or regularized auto-encoders).

First, there are experimental observations suggesting that sparse convolutional
RBMs and sparse denoising auto-encoders achieve in their hidden units a greater
degree of disentangling than in their inputs [50,47]. What these authors found
is that some hidden units were particularly sensitive to a known factor of varia-
tion while being rather insensitive (i.e., invariant) to others. For example, in a
sentiment analysis model that sees unlabeled paragraphs of customer comments
from the Amazon web site, some hidden units specialized on the topic of the
paragraph (the type of product being evaluated, e.g., book, video, music) while
other units specialized on the sentiment (positive vs negative). The disentan-
glement was never perfect, so the authors made quantitative measurements of
sensitivity and invariance and compared these quantities on the input and the
output (learned representation) of the unsupervised learners.

Another encouraging observation (already mentioned in the section on mixing)
is that deeper representations were empirically found to be more amenable to
quickly mixing between modes [20]. Two (compatible) hypotheses were proposed
to explain this observation: (1) RBMs and regularized auto-encoders determinis-
tically transform26 their input distribution into one that is more uniform-looking,
that better fills the space (thus creating easier paths between modes), and
(2) these algorithms tend to discover representations that are more disentan-
gled. The advantage of a higher-level disentangled representation is that a small
MCMC step (e.g. Gibbs) in that space (e.g. flipping one high-level variable) can
move in one step from one input-level mode to a distant one, e.g., going from one
shape / object to another one, adding or removing glasses on the face of a person
(which requires a very sharp coordination of pixels far from each other because
glasses occupy a very thin image area), or replacing foreground and background
colors (such as going into a “reverse video” mode).

Although these observations are encouraging, we do not yet have a clear under-
standing as to why some representation algorithms tend to move towards more
disentangled representations, and there are other experimental observations sug-
gesting that this is far from sufficient. In particular, [56] show an example of a
task on which deep supervised nets (and every other black-box machine learning
algorithm tried) fail, on which a completely disentangled input representation
makes the task feasible (with a maxout network [52]). Unfortunately, unsuper-
vised pre-training applied on the raw input images failed to produce enough

25 As measured by how predictive some individual features are of known factors.
26 When considering the features learned, e.g., the P (hi = 1 | x), for RBMs.

28 Y. Bengio

disentangling to solve the task, even with the appropriate convolutional struc-
ture. What is interesting is that we now have a simple artificial task on which we
can evaluate new unsupervised representation learning methods for their disen-
tangling ability. It may be that a variant of the current algorithms will eventually
succeed at this task, or it may be that altogether different unsupervised repre-
sentation learning algorithms are needed.

Generic Priors for Disentangling Factors of Variation. A general strategy
was outlined in [17] to enhance the discovery of representations which disentan-
gle the underlying and unknown factors of variation: it relies on exploiting priors
about these factors. We are most interested in broad generic priors that can be
useful for a large class of learning problems of interest in AI. We list these priors
here:

• Smoothness: assumes the function f to be learned is s.t. x ≈ y generally
implies f(x) ≈ f(y). This most basic prior is present in most machine learning,
but is insufficient to get around the curse of dimensionality.

• Multiple Explanatory Factors: the data generating distribution is gener-
ated by different underlying factors, and for the most part what one learns about
one factor generalizes in many configurations of the other factors. The objective
is to recover or at least disentangle these underlying factors of variation. This
assumption is behind the idea of distributed representations. More specific
priors on the form of the model can be used to enhance disentangling, such
as multiplicative interactions between the factors [131,41] or orthogonality of
the features derivative with respect to the input [111,109,125]. The parametriza-
tion and training procedure may also be used to disentangle discrete factors
(e.g., detecting a shape) from associated continuous-valued factors (e.g., pose
parameters), as in transforming auto-encoders [60], spike-and-slab RBMs with
pooled slab variables [37] and other pooling-based models that learn a feature
subspace [76,68].

• A Hierarchical Organization of Explanatory Factors: the concepts that
are useful for describing the world around us can be defined in terms of other
concepts, in a hierarchy, with more abstract concepts higher in the hierarchy,
defined in terms of less abstract ones. This assumption is exploited with deep
representations. Although stacking single-layer models has been rather successful,
much remains to be done regarding the joint training of all the layers of a deep
unsupervised model.

• Semi-supervised Learning: with inputs X and target Y to predict, given
X , a subset of the factors explaining X ’s distribution explain much of Y , given
X . Hence representations that are useful for spelling out P (X) tend to be useful
when learning P (Y | X), allowing sharing of statistical strength between the
unsupervised and supervised learning tasks. However, many of the factors that
explain X may dominate those that also explain Y , which can make it useful
to incorporate observations of Y in training the learned representations, i.e., by
semi-supervised representation learning.

Deep Learning of Representations: Looking Forward 29

• Shared Factors across Tasks: with many Y ’s of interest or many learning
tasks in general, tasks (e.g., the corresponding P (Y | X, task)) are explained by
factors that are shared with other tasks, allowing sharing of statistical strength
across tasks, e.g. for multi-task and transfer learning or domain adaptation.
This can be achieved by sharing embeddings or representation functions across
tasks [34,25].

• Manifolds: probability mass concentrates near regions that have a much
smaller dimensionality than the original space where the data lives. This is
exploited with regularized auto-encoder algorithms, but training criteria that
would explicitly take into account that we are looking for a concentration of
mass in an integral number directions remain to be developed.

• Natural Clustering: different values of categorical variables such as object
classes are associated with separate manifolds. More precisely, the local varia-
tions on the manifold tend to preserve the value of a category, and a linear inter-
polation between examples of different classes in general involves going through
a low density region, i.e., P (X | Y = i) for different i tend to be well separated
and not overlap much. For example, this is exploited in the Manifold Tangent
Classifier [111]. This hypothesis is consistent with the idea that humans have
named categories and classes because of such statistical structure (discovered by
their brain and propagated by their culture), and machine learning tasks often
involves predicting such categorical variables.

• Temporal and Spatial Coherence: this prior introduced in [5] is similar
to the natural clustering assumption but concerns sequences of observations:
consecutive (from a sequence) or spatially nearby observations tend to be easily
predictable from each other. In the special case typically studied, e.g., slow feature
analysis [139], one assumes that consecutive values are close to each other, or that
categorical concepts remain either present or absent for most of the transitions.
More generally, different underlying factors change at different temporal and
spatial scales, and this could be exploited to sift different factors into different
categories based on their temporal scale.

• Sparsity: for any given observation x, only a small fraction of the possible
factors are relevant. In terms of representation, this could be represented by
features that are often zero (as initially proposed by [100]), or more generally by
the fact that most of the extracted features are insensitive to small variations of
x. This can be achieved with certain forms of priors on latent variables (peaked
at 0), or by using a non-linearity whose value is often flat at 0 (i.e., 0 and with
a 0 derivative), or simply by penalizing the magnitude of the derivatives of the
function mapping input to representation. A variant on that hypothesis is that
for any given input, only a small part of the model is relevant and only a small
subset of the parameters need to be updated.

30 Y. Bengio

• Simplicity of Factor Dependencies: in good high-level representations, the
factors are related to each other through simple, typically linear, dependencies.
This can be seen in many laws of physics, and is assumed when plugging a linear
predictor on top of a learned representation.

7 Conclusion

Deep learning and more generally representation learning are recent areas of
investigation in machine learning and recent years of research have allowed to
clearly identify several major challenges for approaching the performance of these
algorithms from that of humans. We have broken down these challenges into four
major areas: scaling computations, reducing the difficulties in optimizing param-
eters, designing (or avoiding) expensive inference and sampling, and helping to
learn representations that better disentangle the unknown underlying factors
of variation. There is room for exploring many paths towards addressing all of
these issues, and we have presented here a few appealing directions of research
towards these challenges.

Acknowledgments. The author is extremely grateful for the feedback and
discussions he enjoyed with collaborators Ian Goodfellow, Guillaume Desjardins,
Aaron Courville, Pascal Vincent, RolandMemisevic and Nicolas Chapados, which
greatly contributed to help form the ideas presented here and fine-tune this
manuscript. He is also grateful for the funding support from NSERC, CIFAR,
the Canada Research Chairs, and Compute Canada.

References

1. Alain, G., Bengio, Y.: What regularized auto-encoders learn from the data gen-
erating distribution. Tech. Rep. Arxiv report 1211.4246, Université de Montréal
(2012)

2. Bach, F., Jenatton, R., Mairal, J., Obozinski, G.: Structured sparsity through
convex optimization. Tech. rep., arXiv.1109.2397 (2011)

3. Bagnell, J.A., Bradley, D.M.: Differentiable sparse coding. In: NIPS 2009,
pp. 113–120 (2009)

4. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University
Press (2011)

5. Becker, S., Hinton, G.: A self-organizing neural network that discovers surfaces
in random-dot stereograms. Nature 355, 161–163 (1992)

6. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. JMLR 3, 1137–1155 (2003)

7. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training
of deep networks. In: NIPS 2006 (2007)

8. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gra-
dient descent is difficult. IEEE Transactions on Neural Networks 5(2), 157–166
(1994), http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf

http://www.iro.umontreal.ca/~lisa/pointeurs/ieeetrnn94.pdf

Deep Learning of Representations: Looking Forward 31

9. Bengio, Y.: Neural net language models. Scholarpedia 3(1) (2008)
10. Bengio, Y.: Learning deep architectures for AI. Now Publishers (2009)
11. Bengio, Y.: Deep learning of representations for unsupervised and transfer learn-

ing. In: JMLR W&CP: Proc. Unsupervised and Transfer Learning (2011)
12. Bengio, Y.: Estimating or propagating gradients through stochastic neurons. Tech.

Rep. arXiv, Universite de Montreal (to appear, 2013)
13. Bengio, Y.: Evolving culture vs local minima. In: Kowaliw, T., Bredeche, N.,

Doursat, R. (eds.) Growing Adaptive Machines: Integrating Development and
Learning in Artificial Neural Networks, No. also as ArXiv 1203.2990v1. Springer
(2013), http://arxiv.org/abs/1203.2990

14. Bengio, Y.: Practical recommendations for gradient-based training of deep ar-
chitectures. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks:
Tricks of the Trade, 2nd edn. LNCS, vol. 7700, pp. 437–478. Springer, Heidelberg
(2012)

15. Bengio, Y., Alain, G., Rifai, S.: Implicit density estimation by local moment
matching to sample from auto-encoders. Tech. rep., arXiv:1207.0057 (2012)

16. Bengio, Y., Boulanger-Lewandowski, N., Pascanu, R.: Advances in optimizing
recurrent networks. In: ICASSP 2013 (2013)

17. Bengio, Y., Courville, A., Vincent, P.: Unsupervised feature learning and deep
learning: A review and new perspectives. IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, PAMI (2013)

18. Bengio, Y., Delalleau, O., Simard, C.: Decision trees do not generalize to new
variations. Computational Intelligence 26(4), 449–467 (2010)

19. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In:
ICML 2009 (2009)

20. Bengio, Y., Mesnil, G., Dauphin, Y., Rifai, S.: Better mixing via deep representa-
tions. In: ICML 2013 (2013)

21. Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau,
O., Desjardins, G., Warde-Farley, D., Goodfellow, I., Bergeron, A., Bengio, Y.:
Theano: Deep learning on gpus with python. In: Big Learn Workshop, NIPS
(2011)

22. Bergstra, J., Bengio, Y.: Slow, decorrelated features for pretraining complex cell-
like networks. In: NIPS 2009 (December 2009)

23. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expres-
sion compiler. In: Proceedings of the Python for Scientific Computing Conference,
SciPy (2010)

24. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
25. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy func-

tion for learning with multi-relational data. Machine Learning: Special Issue on
Learning Semantics (2013)

26. Brooke, J.J., Bitko, D., Rosenbaum, T.F., Aeppli, G.: Quantum annealing of a
disordered magnet. Tech. Rep. cond-mat/0105238 (May 2001)

27. Cayton, L.: Algorithms for manifold learning. Tech. Rep. CS2008-0923, UCSD
(2005)

28. Cho, K., Raiko, T., Ilin, A.: Parallel tempering is efficient for learning restricted
Boltzmann machines. In: IJCNN 2010 (2010)

29. Ciresan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for
image classification. Tech. rep., arXiv:1202.2745 (2012)

http://arxiv.org/abs/1203.2990

32 Y. Bengio

30. Coates, A., Lee, H., Ng, A.Y.: An analysis of single-layer networks in unsupervised
feature learning. In: AISTATS 2011 (2011)

31. Coates, A., Ng, A.Y.: The importance of encoding versus training with sparse
coding and vector quantization. In: ICML 2011 (2011)

32. Coates, A., Karpathy, A., Ng, A.: Emergence of object-selective features in unsu-
pervised feature learning. In: NIPS 2012 (2012)

33. Collobert, R., Bengio, Y., Bengio, S.: Scaling large learning problems with hard
parallel mixtures. International Journal of Pattern Recognition and Artificial In-
telligence 17(3), 349–365 (2003)

34. Collobert, R., Weston, J.: A unified architecture for natural language processing:
Deep neural networks with multitask learning. In: ICML 2008 (2008)

35. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. Journal of Machine Learning
Research 12, 2493–2537 (2011)

36. Corrado, G.: Deep networks for predicting ad click through rates. In: ICML 2012
Online Advertising Workshop (2012)

37. Courville, A., Bergstra, J., Bengio, Y.: Unsupervised models of images by spike-
and-slab RBMs. In: ICML 2011 (2011)

38. Dauphin, Y., Bengio, Y.: Big neural networks waste capacity. Tech. Rep.
arXiv:1301.3583, Universite de Montreal (2013)

39. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q., Mao, M., Ran-
zato, M., Senior, A., Tucker, P., Yang, K., Ng, A.Y.: Large scale distributed deep
networks. In: NIPS 2012 (2012)

40. Deng, L., Li, J., Huang, J.T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G.,
He, X., Williams, J., Gong, Y., Acero, A.: Recent advances in deep learning for
speech research at Microsoft. In: ICASSP 2013 (2013)

41. Desjardins, G., Courville, A., Bengio, Y.: Disentangling factors of variation via
generative entangling (2012)

42. Desjardins, G., Courville, A., Bengio, Y., Vincent, P., Delalleau, O.: Tempered
Markov chain Monte Carlo for training of restricted Boltzmann machine. In: AIS-
TATS, vol. 9, pp. 145–152 (2010)

43. Eisner, J.: Learning approximate inference policies for fast prediction. Keynote
Talk at ICML Workshop on Inferning: Interactions Between Search and Learning
(June 2012)

44. Frey, B.J., Hinton, G.E., Dayan, P.: Does the wake-sleep algorithm learn good
density estimators? In: NIPS 1995, pp. 661–670. MIT Press, Cambridge (1996)

45. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In:
AISTATS (2011)

46. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: AISTATS 2010 (2010)

47. Glorot, X., Bordes, A., Bengio, Y.: Domain adaptation for large-scale sentiment
classification: A deep learning approach. In: ICML 2011 (2011)

48. Goodfellow, I., Courville, A., Bengio, Y.: Spike-and-slab sparse coding for unsuper-
vised feature discovery. In: NIPSWorkshop on Challenges in Learning Hierarchical
Models (2011)

49. Goodfellow, I., Courville, A., Bengio, Y.: Large-scale feature learning with spike-
and-slab sparse coding. In: ICML 2012(2012)

50. Goodfellow, I., Le, Q., Saxe, A., Ng, A.: Measuring invariances in deep networks.
In: NIPS 2009, pp. 646–654 (2009)

Deep Learning of Representations: Looking Forward 33

51. Goodfellow, I.J., Courville, A., Bengio, Y.: Joint training of deep Boltzmann ma-
chines for classification. Tech. rep., arXiv:1301.3568 (2013)

52. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout
networks. In: ICML 2013 (2013)

53. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In:
Bottou, L., Littman, M. (eds.) Proceedings of the Twenty-seventh International
Conference on Machine Learning (ICML 2010). ACM (2010)

54. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In:
ICML 2010 (2010)

55. Grosse, R., Raina, R., Kwong, H., Ng, A.Y.: Shift-invariant sparse coding for
audio classification. In: UAI 2007 (2007)

56. Gulcehre, C., Bengio, Y.: Knowledge matters: Importance of prior information
for optimization. Tech. Rep. arXiv:1301.4083, Universite de Montreal (2013)

57. Gutmann, M., Hyvarinen, A.: Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In: AISTATS 2010 (2010)

58. Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C.: De-
pendency networks for inference, collaborative filtering, and data visualization.
Journal of Machine Learning Research 1, 49–75 (2000)

59. Hinton, G., Deng, L., Dahl, G.E., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke,
V., Nguyen, P., Sainath, T., Kingsbury, B.: Deep neural networks for acoustic
modeling in speech recognition. IEEE Signal Processing Magazine 29(6), 82–97
(2012)

60. Hinton,G., Krizhevsky,A.,Wang, S.: Transforming auto-encoders. In: ICANN2011
(2011)

61. Hinton, G.E., Dayan, P., Frey, B.J., Neal, R.M.: The wake-sleep algorithm for
unsupervised neural networks. Science 268, 1158–1161 (1995)

62. Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets.
Neural Computation 18, 1527–1554 (2006)

63. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural
networks. Science 313(5786), 504–507 (2006)

64. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Improving neural networks by preventing co-adaptation of feature detectors. Tech.
rep., arXiv:1207.0580 (2012)

65. Hochreiter, S.: Untersuchungen zu dynamischen neuronalen Netzen. Diploma
thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität
München (1991), http://www7.informatik.tu-muenchen.de/~Ehochreit

66. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computa-
tion 9(8), 1735–1780 (1997)

67. Hyvärinen, A.: Estimation of non-normalized statistical models using score match-
ing. J. Machine Learning Res. 6 (2005)

68. Hyvärinen, A., Hoyer, P.: Emergence of phase and shift invariant features by de-
composition of natural images into independent feature subspaces. Neural Com-
putation 12(7), 1705–1720 (2000)

69. Iba, Y.: Extended ensemble monte carlo. International Journal of Modern
Physics C12, 623–656 (2001)

70. Jaeger, H.: Echo state network. Scholarpedia 2(9), 2330 (2007)
71. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the best multi-

stage architecture for object recognition? In: ICCV 2009 (2009)

http://www7.informatik.tu-muenchen.de/~Ehochreit

34 Y. Bengio

72. Jenatton, R., Audibert, J.Y., Bach, F.: Structured variable selection with sparsity-
inducing norms. Tech. rep., arXiv:0904.3523 (2009)

73. Kavukcuoglu, K., Ranzato, M., LeCun, Y.: Fast inference in sparse coding al-
gorithms with applications to object recognition. CBLL-TR-2008-12-01, NYU
(2008)

74. Kindermann, R.: Markov Random Fields and Their Applications (Contemporary
Mathematics; V. 1). American Mathematical Society (1980)

75. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220, 671–680 (1983)

76. Kohonen, T.: Emergence of invariant-feature detectors in the adaptive-subspace
self-organizing map. Biological Cybernetics 75, 281–291 (1996),
http://dx.doi.org/10.1007/s004220050295 , doi:10.1007/s004220050295

77. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep con-
volutional neural networks. In: NIPS 2012 (2012)

78. Kulesza, A., Pereira, F.: Structured learning with approximate inference. In: NIPS
2007 (2008)

79. Larochelle, H., Bengio, Y.: Classification using discriminative restricted Boltz-
mann machines. In: ICML 2008 (2008)

80. Larochelle, H., Mandel, M., Pascanu, R., Bengio, Y.: Learning algorithms for the
classification restricted Boltzmann machine. JMLR 13, 643–669 (2012)

81. Le, Q., Ranzato, M., Monga, R., Devin, M., Corrado, G., Chen, K., Dean, J.,
Ng, A.: Building high-level features using large scale unsupervised learning. In:
ICML 2012 (2012)

82. Le Roux, N., Manzagol, P.A., Bengio, Y.: Topmoumoute online natural gradient
algorithm. In: NIPS 2007 (2008)

83. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient based learning applied
to document recognition. Proc. IEEE (1998)

84. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.: Efficient backprop. In: Neural Net-
works, Tricks of the Trade (1998)

85. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M.A., Huang, F.J.: A tutorial on
energy-based learning. In: Bakir, G., Hofman, T., Scholkopf, B., Smola, A., Taskar,
B. (eds.) Predicting Structured Data, pp. 191–246. MIT Press (2006)

86. Lee, H., Ekanadham, C., Ng, A.: Sparse deep belief net model for visual area V2.
In: NIPS 2007 (2008)

87. Li, Y., Tarlow, D., Zemel, R.: Exploring compositional high order pattern poten-
tials for structured output learning. In: CVPR 2013 (2013)

88. Luo, H., Carrier, P.L., Courville, A., Bengio, Y.: Texture modeling with convolu-
tional spike-and-slab RBMs and deep extensions. In: AISTATS 2013 (2013)

89. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse
coding. In: ICML 2009 (2009)

90. Martens, J.: Deep learning via Hessian-free optimization. In: Bottou, L., Littman,
M. (eds.) Proceedings of the Twenty-seventh International Conference on Machine
Learning (ICML 2010), pp. 735–742. ACM (June 2010)

91. Martens, J., Sutskever, I.: Parallelizable sampling of Markov random fields. In:
AISTATS 2010 (2010)

92. Mesnil, G., Dauphin, Y., Glorot, X., Rifai, S., Bengio, Y., Goodfellow, I., Lavoie,
E., Muller, X., Desjardins, G., Warde-Farley, D., Vincent, P., Courville, A.,
Bergstra, J.: Unsupervised and transfer learning challenge: a deep learning ap-
proach. In: JMLR W&CP: Proc. Unsupervised and Transfer Learning, vol. 7
(2011)

http://dx.doi.org/10.1007/s004220050295

Deep Learning of Representations: Looking Forward 35

93. Mikolov, T.: Statistical Language Models based on Neural Networks. Ph.D. thesis,
Brno University of Technology (2012)

94. Mnih, V., Larochelle, H., Hinton, G.: Conditional restricted Boltzmann machines
for structure output prediction. In: Proc. Conf. on Uncertainty in Artificial Intel-
ligence, UAI (2011)

95. Montavon, G., Müller, K.-R.: Deep Boltzmann machines and the centering trick.
In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the
Trade, 2nd edn. LNCS, vol. 7700, pp. 621–637. Springer, Heidelberg (2012)

96. Murphy, K.P.: Machine Learning: a Probabilistic Perspective. MIT Press,
Cambridge (2012)

97. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann ma-
chines. In: ICML 2010 (2010)

98. Narayanan, H., Mitter, S.: Sample complexity of testing the manifold hypothesis.
In: NIPS 2010 (2010)

99. Neal, R.M.: Bayesian Learning for Neural Networks. Ph.D. thesis, Dept. of Com-
puter Science, University of Toronto (1994)

100. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature 381, 607–609 (1996)

101. Pascanu, R., Bengio, Y.: On the difficulty of training recurrent neural networks.
Tech. Rep. arXiv:1211.5063, Universite de Montreal (2012)

102. Pascanu, R., Bengio, Y.: Revisiting natural gradient for deep networks. Tech. rep.,
arXiv:1301.3584 (2013)

103. Raiko, T., Valpola, H., LeCun, Y.: Deep learning made easier by linear transfor-
mations in perceptrons. In: AISTATS 2012 (2012)

104. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer
learning from unlabeled data. In: ICML 2007 (2007)

105. Raina, R., Madhavan, A., Ng, A.Y.: Large-scale deep unsupervised learning using
graphics processors. In: Bottou, L., Littman, M. (eds.) ICML 2009, pp. 873–880.
ACM, New York (2009)

106. Ranzato, M., Poultney, C., Chopra, S., LeCun, Y.: Efficient learning of sparse
representations with an energy-based model. In: NIPS 2006 (2007)

107. Ranzato, M., Boureau, Y.L., LeCun, Y.: Sparse feature learning for deep belief
networks. In: NIPS 2007, pp. 1185–1192. MIT Press, Cambridge (2008)

108. Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: A lock-free approach to paralleliz-
ing stochastic gradient descent. In: NIPS 2011 (2011)

109. Rifai, S., Bengio, Y., Courville, A., Vincent, P., Mirza, M.: Disentangling factors
of variation for facial expression recognition. In: Fitzgibbon, A., Lazebnik, S.,
Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577,
pp. 808–822. Springer, Heidelberg (2012)

110. Rifai, S., Bengio, Y., Dauphin, Y., Vincent, P.: A generative process for sampling
contractive auto-encoders. In: ICML 2012 (2012)

111. Rifai, S., Dauphin, Y., Vincent, P., Bengio, Y., Muller, X.: The manifold tangent
classifier. In: NIPS 2011 (2011)

112. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-
encoders: Explicit invariance during feature extraction. In: ICML 2011 (2011)

113. Rose, G., Macready, W.: An introduction to quantum annelaing. Tech. rep., D-
Wave Systems (2007)

114. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-
propagating errors. Nature 323, 533–536 (1986)

36 Y. Bengio

115. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for col-
laborative filtering. In: ICML 2007. pp. 791–798 (2007)

116. Salakhutdinov, R.: Learning deep Boltzmann machines using adaptive MCMC.
In: ICML 2010 (2010)

117. Salakhutdinov, R.: Learning in Markov random fields using tempered transitions.
In: NIPS 2010 (2010)

118. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: AISTATS 2009,
pp. 448–455 (2009)

119. Salakhutdinov, R., Larochelle, H.: Efficient learning of deep Boltzmann machines.
In: AISTATS 2010 (2010)

120. Saul, L.K., Jordan, M.I.: Exploiting tractable substructures in intractable net-
works. In: NIPS 1995. MIT Press, Cambridge (1996)

121. Schaul, T., Zhang, S., LeCun, Y.: No More Pesky Learning Rates. Tech. rep., New
York University, arxiv 1206.1106 (June 2012), http://arxiv.org/abs/1206.1106

122. Schraudolph, N.N.: Centering neural network gradient factors. In: Orr, G.B.,
Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524,
pp. 207–226. Springer, Heidelberg (1998)

123. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-
dependent deep neural networks. In: Interspeech 2011, pp. 437–440 (2011)

124. Seide, F., Li, G., Yu, D.: Feature engineering in context-dependent deep neural
networks for conversational speech transcription. In: ASRU 2011 (2011)

125. Sohn, K., Zhou, G., Lee, H.: Learning and selecting features jointly with point-
wise gated Boltzmann machines. In: ICML 2013 (2013)

126. Stoyanov, V., Ropson, A., Eisner, J.: Empirical risk minimization of graphical
model parameters given approximate inference, decoding, and model structure.
In: AISTATS 2011 (2011)

127. Sutskever, I.: Training Recurrent Neural Networks. Ph.D. thesis, CS Dept., U.
Toronto (2012)

128. Swersky, K., Ranzato, M., Buchman, D., Marlin, B., de Freitas, N.: On autoen-
coders and score matching for energy based models. In: ICML 2011. ACM (2011)

129. Taylor,G.,Hinton,G.:Factored conditional restrictedBoltzmannmachines formod-
eling motion style. In: Bottou, L., Littman, M. (eds.) ICML 2009, pp. 1025–1032.
ACM (2009)

130. Taylor, G., Hinton, G.E., Roweis, S.: Modeling human motion using binary latent
variables. In: NIPS 2006, pp. 1345–1352. MIT Press, Cambridge (2007)

131. Tenenbaum, J.B., Freeman, W.T.: Separating style and content with bilinear mod-
els. Neural Computation 12(6), 1247–1283 (2000)

132. Tsianos, K., Lawlor, S., Rabbat, M.: Communication/computation tradeoffs in
consensus-based distributed optimization. In: NIPS 2012 (2012)

133. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin meth-
ods for structured and interdependent output variables. J. Mach. Learn. Res. 6,
1453–1484 (2005)

134. Tscher, A., Jahrer, M., Bell, R.M.: The bigchaos solution to the netflix grand
prize (2009)

135. Vincent, P.: A connection between score matching and denoising autoencoders.
Neural Computation 23(7), 1661–1674 (2011)

136. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: ICML 2008 (2008)

http://arxiv.org/abs/1206.1106

Deep Learning of Representations: Looking Forward 37

137. Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient Langevin dy-
namics. In: ICML 2011, pp. 681–688 (2011)

138. Weston, J., Ratle, F., Collobert, R.: Deep learning via semi-supervised embedding.
In: ICML 2008 (2008)

139. Wiskott, L., Sejnowski, T.J.: Slow feature analysis: Unsupervised learning of in-
variances. Neural Computation 14(4), 715–770 (2002)

140. Wiskott, L., Sejnowski, T.: Slow feature analysis: Unsupervised learning of invari-
ances. Neural Computation 14(4), 715–770 (2002),
http://itb.biologie.hu-berlin.de/~wiskott/Publications/

WisSej2002-LearningInvariances-NC.ps.gz

141. Yu, D., Wang, S., Deng, L.: Sequential labeling using deep-structured condi-
tional random fields. IEEE Journal of Selected Topics in Signal Processing
(December 2010)

142. Yu, K., Lin, Y., Lafferty, J.: Learning image representations from the pixel level
via hierarchical sparse coding. In: CVPR 2011 (2011)

143. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolu-
tional neural networks. Tech. rep., New York University, arXiv 1301.3557 (2013)

http://itb.biologie.hu-berlin.de/~wiskott/Publications/WisSej2002-LearningInvariances-NC.ps.gz
http://itb.biologie.hu-berlin.de/~wiskott/Publications/WisSej2002-LearningInvariances-NC.ps.gz

	Deep Learning of Representations: Looking Forward
	1 Background on Deep Learning
	2 Quick Overview of Deep Learning Algorithms
	2.1 Deep Supervised Nets, Convolutional Nets, Dropout
	2.2 Unsupervised or Supervised Layer-Wise Pre-training
	2.3 Directed and Undirected Graphical Models with Anonymous Latent Variables
	2.4 Regularized Auto-Encoders
	2.5 Sparse Coding and PSD

	3 Scaling Computations
	3.1 Scaling Computations: The Challenge
	3.2 Scaling Computations: Solution Paths

	4 Optimization
	4.1 Optimization: The Challenge
	4.2 Optimization: Solution Paths

	5 Inference and Sampling
	5.1 Inference and Sampling: The Challenge
	5.2 Inference and Sampling: Solution Paths

	6 Disentangling
	6.1 Disentangling: The Challenge
	6.2 Disentangling: Solution Paths

	7 Conclusion
	References

