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Preface

This volume contains the papers presented at the First International Conference
on Statistical Language and Speech Processing (SLSP 2013), held in Tarragona,
Spain, during July 29–31, 2013.

SLSP 2013 was the first event in a series to host and promote research on the
wide spectrum of statistical methods that are currently in use in computational
language or speech processing. SLSP aims to attract contributions from both
fields. The conference encourages discussion on the employment of statistical
methods (including machine learning) within language and speech processing.
The scope of the SLSP series is rather broad, and includes the following areas:
phonology, morphology; syntax, semantics; discourse, dialog, pragmatics; sta-
tistical models for natural language processing; supervised, unsupervised and
semi-supervised machine learning methods applied to natural language, includ-
ing speech; statistical methods, including biologically inspired methods; simi-
larity; alignment; language resources; part-of-speech tagging; parsing; semantic
role labeling; natural language generation; anaphora and coreference resolution;
speech recognition; speaker identification/verification; speech transcription; text-
to-speech synthesis; machine translation; translation technology; text summa-
rization; information retrieval; text categorization; information extraction; term
extraction; spelling correction; text and Web mining; opinion mining and senti-
ment analysis; spoken dialog systems; author identification, plagiarism and spam
filtering.

SLSP 2013 received 61 submissions. Each submission was reviewed by three
Program Committee members, some of them consulting with external reviewers
as well. After a thorough and lively discussion, the committee decided to ac-
cept 24 papers (representing an acceptance rate of 39.34%). The program also
included three invited talks.

Part of the success in the management of such a large number of submissions
is due to the excellent facilities provided by the EasyChair conference manage-
ment system. We would like to thank all invited speakers and authors for their
contributions, the Program Committee and the reviewers for their cooperation,
and Springer for its very professional publishing work.

May 2013 Adrian-Horia Dediu
Carlos Mart́ın-Vide

Ruslan Mitkov
Bianca Truthe
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Fandong Meng
Fernando Sánchez-Vega
Zhaopeng Tu
Weibin Zhang
Daqi Zheng

Organizing Committee

Adrian-Horia Dediu, Tarragona
Carlos Mart́ın-Vide, Tarragona (Co-chair)
Ruslan Mitkov, Wolverhampton (Co-chair)
Bianca Truthe, Magdeburg
Florentina-Lilica Voicu, Tarragona



Table of Contents

Invited Talks

Deep Learning of Representations: Looking Forward . . . . . . . . . . . . . . . . . . 1
Yoshua Bengio

Challenges and Opportunities of Multilingual Information Access . . . . . . 38
Christof Monz

Regular Papers

Unsupervised Rhyme Scheme Identification in Hip Hop Lyrics Using
Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Karteek Addanki and Dekai Wu

Complementarity of Lexical Cohesion and Speaker Role Information
for Story Segmentation of French TV Broadcast News . . . . . . . . . . . . . . . . 51
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Predicting Part-of-Speech Tags and Morpho-Syntactic Relations Using
Similarity-Based Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Samuel W.K. Chan and Mickey M.C. Chong

Statistical Error Correction Methods for Domain-Specific ASR
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Horia Cucu, Andi Buzo, Laurent Besacier, and Corneliu Burileanu

Reward Shaping for Statistical Optimisation of Dialogue
Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Layla El Asri, Romain Laroche, and Olivier Pietquin

Discriminative Framework for Spoken Tunisian Dialect
Understanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Marwa Graja, Maher Jaoua, and Lamia Hadrich Belguith

Finding the Most Likely Upper Level State Sequence for Hierarchical
HMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Akira Hayashi, Kazunori Iwata, and Nobuo Suematsu



X Table of Contents

Generalization of Discriminative Approaches for Speech Language
Understanding in a Multilingual Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bassam Jabaian, Fabrice Lefèvre, and Laurent Besacier
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Deep Learning of Representations:

Looking Forward

Yoshua Bengio

Department of Computer Science and Operations Research
Université de Montréal, Canada

Abstract. Deep learning research aims at discovering learning algo-
rithms that discover multiple levels of distributed representations, with
higher levels representing more abstract concepts. Although the study of
deep learning has already led to impressive theoretical results, learning
algorithms and breakthrough experiments, several challenges lie ahead.
This paper proposes to examine some of these challenges, centering on
the questions of scaling deep learning algorithms to much larger models
and datasets, reducing optimization difficulties due to ill-conditioning or
local minima, designing more efficient and powerful inference and sam-
pling procedures, and learning to disentangle the factors of variation
underlying the observed data. It also proposes a few forward-looking
research directions aimed at overcoming these challenges.

1 Background on Deep Learning

Deep learning is an emerging approach within the machine learning research
community. Deep learning algorithms have been proposed in recent years to
move machine learning systems towards the discovery of multiple levels of rep-
resentation. They have had important empirical successes in a number of tradi-
tional AI applications such as computer vision and natural language processing.
See [10,17] for reviews and [14] and the other chapters of the book [95] for
practical guidelines. Deep learning is attracting much attention both from the
academic and industrial communities. Companies like Google, Microsoft, Apple,
IBM and Baidu are investing in deep learning, with the first widely distributed
products being used by consumers aimed at speech recognition. Deep learning is
also used for object recognition (Google Goggles), image and music information
retrieval (Google Image Search, Google Music), as well as computational adver-
tising [36]. A deep learning building block (the restricted Boltzmann machine, or
RBM) was used as a crucial part of the winning entry of a million-dollar machine
learning competition (the Netflix competition) [115,134]. The New York Times
covered the subject twice in 2012, with front-page articles.1 Another series of
articles (including a third New York Times article) covered a more recent event
showing off the application of deep learning in a major Kaggle competition for

1 http://www.nytimes.com/2012/11/24/science/scientists-see-advances-

in-deep-learning-a-part-of-artificial-intelligence.html

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 1–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 Y. Bengio

drug discovery (for example see “Deep Learning - The Biggest Data Science
Breakthrough of the Decade”2. Much more recently, Google bought out (“acqui-
hired”) a company (DNNresearch) created by University of Toronto professor
Geoffrey Hinton (the founder and leading researcher of deep learning) and two
of his PhD students, Ilya Sutskever and Alex Krizhevsky, with the press writing
titles such as “Google Hires Brains that Helped Supercharge Machine Learning”
(Robert McMillan for Wired, March 13th, 2013).

The performance of many machine learning methods is heavily dependent on
the choice of data representation (or features) on which they are applied. For
that reason, much of the actual effort in deploying machine learning algorithms
goes into the design of preprocessing pipelines that result in a hand-crafted
representation of the data that can support effective machine learning. Such
feature engineering is important but labor-intensive and highlights the weakness
of many traditional learning algorithms: their inability to extract and organize
the discriminative information from the data. Feature engineering is a way to
take advantage of human ingenuity and prior knowledge to compensate for that
weakness. In order to expand the scope and ease of applicability of machine
learning, it would be highly desirable to make learning algorithms less dependent
on feature engineering, so that novel applications could be constructed faster, and
more importantly for the author, to make progress towards artificial intelligence
(AI).

A representation learning algorithm discovers explanatory factors or features.
A deep learning algorithm is a particular kind of representation learning proce-
dure that discovers multiple levels of representation, with higher-level features
representing more abstract aspects of the data. This area of research was kick-
started in 2006 by a few research groups, starting with Geoff Hinton’s group, who
initially focused on stacking unsupervised representation learning algorithms to
obtain deeper representations [62,7,106,86]. Since then, this area has seen rapid
growth, with an increasing number of workshops (now one every year at the
NIPS and ICML conferences, the two major conferences in machine learning)
and even a new specialized conference just created in 2013 (ICLR – the Interna-
tional Conference on Learning Representations).

Transfer learning is the ability of a learning algorithm to exploit commonal-
ities between different learning tasks in order to share statistical strength, and
transfer knowledge across tasks. Among the achievements of unsupervised rep-
resentation learning algorithms are the impressive successes they obtained at
the two transfer learning challenges held in 2011. First, the Transfer Learning
Challenge, presented at an ICML 2011 workshop of the same name, was won
using unsupervised layer-wise pre-training [11,92]. A second Transfer Learning
Challenge was held the same year and won by [48] using unsupervised represen-
tation learning. Results were presented at NIPS 2011’s Challenges in Learning
Hierarchical Models Workshop.

2 http://oreillynet.com/pub/e/2538

http://oreillynet.com/pub/e/2538
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2 Quick Overview of Deep Learning Algorithms

The central concept behind all deep learning methodology is the automated dis-
covery of abstraction, with the belief that more abstract representations of data
such as images, video and audio signals tend to be more useful: they represent
the semantic content of the data, divorced from the low-level features of the raw
data (e.g., pixels, voxels, or waveforms). Deep architectures lead to abstract rep-
resentations because more abstract concepts can often be constructed in terms
of less abstract ones.

Deep learning algorithms are special cases of representation learning with
the property that they learn multiple levels of representation. Deep learning al-
gorithms often employ shallow (single-layer) representation learning algorithms
as subroutines. Before covering the unsupervised representation learning algo-
rithms, we quickly review the basic principles behind supervised representation
learning algorithms such as the good old multi-layer neural networks. Supervised
and unsupervised objectives can of course be combined (simply added, with a
hyper-parameter as coefficient), like in [79]’s discriminative RBM.

2.1 Deep Supervised Nets, Convolutional Nets, Dropout

Before 2006, it was believed that training deep supervised neural networks [114]
was too difficult (and indeed did not work). The first breakthrough in train-
ing them happened in Geoff Hinton’s lab with unsupervised pre-training by
RBMs [62], as discussed in the next subsection. However, more recently, it was
discovered that one could train deep supervised nets by proper initialization,
just large enough for gradients to flow well and activations to convey useful in-
formation [46,127].3 Another interesting ingredient in the success of training the
deep supervised networks of [46] (and later of [77]) is the presence of rectifying
non-linearities (such as max(0, x)) instead of sigmoidal non-linearities (such as
1/(1 + exp(−x)) or tanh(x)). See [71,97] for earlier work on rectifier-like non-
linearities. We return to this topic in Section 4. These good results with purely
supervised training of deep nets seem to be especially clear when large quanti-
ties of labeled data are available, and it was demonstrated with great success for
speech recognition [123,59,40] and object recognition [77] with breakthroughs
reducing the previous state-of-the-art error rates by 30% to 50% on difficult to
beat benchmarks.

One of the key ingredients for success in the applications of deep learning
to speech, images, and natural language processing [9,35] is the use of convolu-
tional architectures [83], which alternate convolutional layers and pooling layers.
Units on hidden layers of a convolutional network are associated with a spatial
or temporal position and only depend on (or generate) the values in a particular
window of the raw input. Furthermore, units on convolutional layers share pa-
rameters with other units of the same “type” located at different positions, while
at each location one finds all the different types of units. Units on pooling layers
aggregate the outputs of units at a lower layer, either aggregating over different

3 And potentially with the use of momentum [127].
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nearby spatial positions (to achieve a form of local spatial invariance) or over
different unit types. For example, a max-pooling unit outputs the maximum over
some lower level units, which can therefore be seen to compete towards sending
their signal forward.

Another key ingredient in the success of many recent breakthrough results
in the area of object recognition is the idea of dropouts [64,77,52]. Interestingly,
it consists in injecting noise (randomly dropping out units with probability 1/2
from the neural network during training, and correspondingly multiplying by 1/2
the weights magnitude at test time) that prevents a too strong co-adaptation
of hidden units: hidden units must compute a feature that will be useful even
when half of the other hidden units are stochastically turned off (masked). This
acts like a powerful regularizer that is similar to bagging aggregation but over
an exponentially large number of models (corresponding to different masking
patterns, i.e., subsets of the overall network) that share parameters.

2.2 Unsupervised or Supervised Layer-Wise Pre-training

One of the key results of recent years of research in deep learning is that deep
compositions of non-linearities – such as found in deep feedforward networks
or in recurrent networks applied over long sequences – can be very sensitive to
initialization (some initializations can lead much better or much worse results
after training). The first type of approaches that were found useful to reduce
that sensitivity is based on greedy layer-wise pre-training [62,7]. The idea is to
train one layer at a time, starting from lower layers (on top of the input), so that
there is a clear training objective for the currently added layer (which typically
avoids the need for back-propagating error gradients through many layers of non-
linearities). With unsupervised pre-training, each layer is trained to model the
distribution of values produced as output of the previous layer. As a side-effect
of this training, a new representation is produced, which can be used as input
for deeper layers. With the less common supervised pre-training [7,141,124], each
additional layer is trained with a supervised objective (as part of a one hidden
layer network). Again, we obtain a new representation (e.g., the hidden or output
layer of the newly trained supervised model) that can be re-used as input for
deeper layers. The effect of unsupervised pre-training is apparently most drastic
in the context of training deep auto-encoders [63], unsupervised learners that
learn to reconstruct their input: unsupervised pre-training allows to find much
lower training and test reconstruction error.

2.3 Directed and Undirected Graphical Models with Anonymous
Latent Variables

Anonymous latent variables are latent variables that do not have a predefined
semantics in terms of predefined human-interpretable concepts. Instead they
are meant as a means for the computer to discover underlying explanatory fac-
tors present in the data. We believe that although non-anonymous latent vari-
ables can be very useful when there is sufficient prior knowledge to define them,
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anonymous latent variables are very useful to let the machine discover complex
probabilistic structure: they lend flexibility to the model, allowing an otherwise
parametric model to non-parametrically adapt to the amount of data when more
anonymous variables are introduced in the model.

Principal components analysis (PCA), independent components analysis (ICA),
and sparse coding all correspond to a directed graphical model in which the ob-
served vector x is generated by first independently sampling some underlying
factors (put in vector h) and then obtaining x by Wh plus some noise. They
only differ in the type of prior put on h, and the corresponding inference pro-
cedures to recover h (its posterior P (h | x) or expected value E[h | x]) when
x is observed. Sparse coding tends to yield many zeros in the estimated vector
h that could have generated the observed x. See section 3 of [17] for a review
of representation learning procedures based on directed or undirected graphical
models.4 Section 2.5 describes sparse coding in more detail.

An important thing to keep in mind is that directed graphical models tend to
enjoy the property that in computing the posterior, the different factors compete
with each other, through the celebrated explaining away effect. Unfortunately,
except in very special cases (e.g., when the columns of W are orthogonal, which
eliminates explaining away and its need), this results in computationally ex-
pensive inference. Although maximum a posteriori (MAP) inference5 remains
polynomial-time in the case of sparse coding, this is still very expensive, and
unnecessary in other types of models (such as the stacked auto-encoders dis-
cussed below). In fact, exact inference becomes intractable for deeper models, as
discussed in section 5.

Although RBMs enjoy tractable inference, this is obtained at the cost of a
lack of explaining away between the hidden units, which could potentially limit
the representational power of E[h | x] as a good representation for the factors
that could have generated x. However, RBMs are often used as building blocks
for training deeper graphical models such as the deep belief network (DBN) [62]
and the deep Boltzmann machine (DBM) [118], which can compensate for the
lack of explaining away in the RBM hidden units via a rich prior (provided
by the upper layers) which can introduce potentially complex interactions and
competition between the hidden units. Note that there is explaining away (and
intractable exact inference) in DBNs and something analogous in DBMs.

2.4 Regularized Auto-Encoders

Auto-encoders include in their training criterion a form of reconstruction error,
such as ||r(x) − x||2, where r(·) is the learned reconstruction function, often
decomposed as r(x) = g(f(x)) where f(·) is an encoding function and g(·) a de-
coding function. The idea is that auto-encoders should have low reconstruction

4 Directed and undirected: just two different views on the semantics of probabilistic
models, not mutually exclusive, but views that are more convenient for some models
than others.

5 Finding h that approximately maximizes P (h | x).
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error at the training examples, but high reconstruction error in most other con-
figurations of the input. In the case of auto-encoders, good generalization means
that test examples (sampled from the same distribution as training examples)
also get low reconstruction error. Auto-encoders have to be regularized to pre-
vent them from simply learning the identity function r(x) = x, which would
be useless. Regularized auto-encoders include the old bottleneck auto-encoders
(like in PCA) with less hidden units than input, as well as the denoising auto-
encoders [136] and contractive auto-encoders [112]. The denoising auto-encoder
takes a noisy version N(x) of original input x and tries to reconstruct x, e.g.,
it minimizes ||r(N(x))− x||2. The contractive auto-encoder has a regularization
penalty in addition to the reconstruction error, trying to make hidden units f(x)
as constant as possible with respect to x (minimizing the contractive penalty

||∂f(x)∂x ||2F ). A Taylor expansion of the denoising error shows that it is also approx-
imately equivalent to minimizing reconstruction error plus a contractive penalty
on r(·) [1]. As explained in [17], the tug-of-war between minimization of recon-
struction error and the regularizer means that the intermediate representation
must mostly capture the variations necessary to distinguish training examples,
i.e., the directions of variations on the manifold (a lower dimensional region)
near which the data generating distribution concentrates. Score matching [67] is
an inductive principle that can be an interesting alternative to maximum likeli-
hood, and several connections have been drawn between reconstruction error in
auto-encoders and score matching [128]. It has also been shown that denoising
auto-encoders and some forms of contractive auto-encoders estimate the score6

of the underlying data generating distribution [135,1]. This can be used to en-
dow regularized auto-encoders with a probabilistic interpretation and to sample
from the implicitly learned density models [110,15,1] through some variant of
Langevin or Metropolis-Hastings Monte-Carlo Markov chains (MCMC).

Even though there is a probabilistic interpretation to regularized auto-
encoders, this interpretation does not involve the definition of intermediate
anonymous latent variables. Instead, they are based on the construction of a di-
rect parametrization of an encoding function which immediately maps an input
x to its representation f(x), and they are motivated by geometrical considera-
tions in the spirit of manifold learning algorithms [17]. Consequently, there is
no issue of tractability of inference, even with deep auto-encoders obtained by
stacking single-layer ones.

It was previously believed [107], including by the author himself, that recon-
struction error should only be small where the estimated density has a peak,
e.g., near the data. However, recent theoretical and empirical results [1] show
that the reconstruction error will be small where the estimated density has a
peak (a mode) but also where it has a trough (a minimum). This is because
the reconstruction error vector (reconstruction minus input) estimates the score
∂ log p(x)

∂x , i.e., the reconstruction error is small where ||∂ log p(x)
∂x || is small. This

can happen at a local maximum but also at a local minimum (or saddle point)

6 Derivative of the log-density with respect to the data; this is different from the usual
definition of score in statistics, where the derivative is with respect to the parameters.
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of the estimated density. This argues against using reconstruction error itself as
an energy function,7 which should only be low near high probability points.

2.5 Sparse Coding and PSD

Sparse coding [100] is a particular kind of directed graphical model with a linear
relationship between visible and latent variables (like in PCA), but in which
the latent variables have a prior (e.g., Laplace density) that encourages sparsity
(many zeros) in the MAP posterior. Sparse coding is not actually very good
as a generative model, but has been very successful for unsupervised feature
learning [104,31,142,55,72,2]. See [17] for a brief overview in the context of deep
learning, along with connections to other unsupervised representation learning
algorithms. Like other directed graphical models, it requires somewhat expen-
sive inference, but the good news is that for sparse coding, MAP inference is a
convex optimization problem for which several fast approximations have been
proposed [89,53]. It is interesting to note the results obtained by [31] which sug-
gest that sparse coding is a better encoder but not a better learning algorithm
than RBMs and sparse auto-encoders (none of which has explaining away). Note
also that sparse coding can be generalized into the spike-and-slab sparse coding
algorithm [49], in which MAP inference is replaced by variational inference, and
that was used to win the NIPS 2011 transfer learning challenge [48].

Another interesting variant on sparse coding is the predictive sparse coding
(PSD) algorithm [73] and its variants, which combine properties of sparse coding
and of auto-encoders. Sparse coding can be seen as having only a parametric
“generative” decoder (which maps latent variable values to visible variable values)
and a non-parametric encoder (find the latent variables value that minimizes
reconstruction error and minus the log-prior on the latent variable). PSD adds
a parametric encoder (just an affine transformation followed by a non-linearity)
and learns it jointly with the generative model, such that the output of the
parametric encoder is close to the latent variable values that reconstructs well
the input.

3 Scaling Computations

From a computation point of view, how do we scale the recent successes of deep
learning to much larger models and huge datasets, such that the models are
actually richer and capture a very large amount of information?

3.1 Scaling Computations: The Challenge

The beginnings of deep learning in 2006 have focused on the MNIST digit image
classification problem [62,7], breaking the supremacy of SVMs (1.4% error) on

7 To define energy, we write probability as the normalized exponential of minus the
energy.
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this dataset.8 The latest records are still held by deep networks: [29] currently
claim the title of state-of-the-art for the unconstrained version of the task (e.g.,
using a convolutional architecture and stochastically deformed data), with 0.27%
error.

In the last few years, deep learning has moved from digits to object recognition
in natural images, and the latest breakthrough has been achieved on the Ima-
geNet dataset.9 bringing down the state-of-the-art error rate (out of 5 guesses)
from 26.1% to 15.3% [77]

To achieve the above scaling from 28×28 grey-level MNIST images to 256×256
RGB images, researchers have taken advantage of convolutional architectures
(meaning that hidden units do not need to be connected to all units at the
previous layer but only to those in the same spatial area, and that pooling units
reduce the spatial resolution as we move from lower to higher layers). They have
also taken advantage of GPU technology to speed-up computation by one or two
orders of magnitude [105,23,21,77].

We can expect computational power to continue to increase, mostly through
increased parallelism such as seen in GPUs, multicore machines, and clusters.
In addition, computer memory has become much more affordable, allowing (at
least on CPUs) to handle potentially huge models (in terms of capacity).

However, whereas the task of recognizing handwritten digits is solved to the
point of achieving roughly human-level performance, this is far from true for
tasks such as general object recognition, scene understanding, speech recognition,
or natural language understanding. What is needed to nail those tasks and scale
to even more ambitious ones?

As we approach AI-scale tasks, it should become clear that our trained models
will need to be much larger in terms of number of parameters. This is suggested
by two observations. First, AI means understanding the world around us at
roughly the same level of competence as humans. Extrapolating from the current
state of machine learning, the amount of knowledge this represents is bound
to be large, many times more than what current models can capture. Second,
more and more empirical results with deep learning suggest that larger models
systematically work better [30,64,77,52], provided appropriate regularization is
used, such as the dropouts technique described above.

Part of the challenge is that the current capabilities of a single computer are
not sufficient to achieve these goals, even if we assume that training complex-
ity would scale linearly with the complexity of the task. This has for example
motivated the work of the Google Brain team [81,39] to parallelize training of
deep nets over a very large number of nodes. As we will see in Section 4, we
hypothesize that as the size of the models increases, our current ways of training
deep networks become less and less efficient, so that the computation required

8 For the knowledge-free version of the task, where no image-specific prior is used, such
as image deformations or convolutions, where the current state-of-the-art is around
0.8% and involves deep learning [111,64].

9 The 1000-class ImageNet benchmark, whose results are detailed here:
http://www.image-net.org/challenges/LSVRC/2012/~results.html

http://www.image-net.org/challenges/LSVRC/2012/~results.html
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to train larger models (to capture correspondingly more information) is likely to
scale much worse than linearly [38].

Another part of the challenge is that the increase in computational power
has been mostly coming (and will continue to come) from parallel computing.
Unfortunately, when considering very large datasets, our most efficient training
algorithms for deep learning (such as variations on stochastic gradient descent or
SGD) are inherently sequential (each update of the parameters requires having
completed the previous update, so they cannot be trivially parallelized). Fur-
thermore, for some tasks, the amount of available data available is becoming so
large that it does not fit on a disk or even on a file server, so that it is not clear
how a single CPU core could even scan all that data (which seems necessary in
order to learn from it and exploit all of it, if training is inherently sequential).

3.2 Scaling Computations: Solution Paths

Parallel Updates: Asynchronous SGD. One idea that we explored in [6] is
that of asynchronous SGD: train multiple versions of the model in parallel, each
running on a different node and seeing different subsets of the data (on different
disks), but with an asynchronous lock-free sharing mechanism which keeps the
different versions of the model not too far from each other. If the sharing were
synchronous, it would be too inefficient because most nodes would spend their
time waiting for the sharing to be completed and would be waiting for the slowest
of the nodes. This idea has been analyzed theoretically [108] and successfully
engineered on a grand scale recently at Google [81,39]. However, current large-
scale implementations (with thousands of nodes) are still very inefficient (in
terms of use of the parallel resources), mostly because of the communication
bottleneck requiring to regularly exchange parameter values between nodes. The
above papers also take advantage of a way to train deep networks which has
been very successful for GPU implementations, namely the use of rather large
minibatches (blocks of examples after which an update is performed), making
some parallelization (across the examples in the minibatch) easier. One option,
explored by [32] is to use as building blocks for learning features algorithms
such as k-means that can be run efficiently over large minibatches (or the whole
data) and thus parallelized easily on a cluster (they learned 150,000 features on
a cluster with only 30 machines).

Another interesting consideration is the optimization of trade-off between com-
munication cost and computation cost in distributed optimization algorithms,
e.g., as discussed in [132].

Sparse Updates. One idea that we propose here is to change the learning algo-
rithms so as to obtain sparse updates, i.e., for any particular minibatch there is
only a small fraction of parameters that are updated. If the amount of sparsity
in the update is large, this would mean that a much smaller fraction of the pa-
rameters need to be exchanged between nodes when performing an asynchronous
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SGD10. Sparse updates could be obtained simply if the gradient is very sparse.
This gradient sparsity can arise with approaches that select paths in the neural
network. We already know methods which produce slightly sparse updates, such
as dropouts [64],11 maxout [52]12 and other hard-pooling mechanisms, such as
the recently proposed and very successful stochastic pooling [143]. These meth-
ods do not provide enough sparsity, but this could be achieved in two ways. First
of all, we could choose to only pay attention to the largest elements of the gra-
dient vector. Second, we could change the architecture along the lines proposed
next.

Conditional Computation. A central idea (that applies whether one paral-
lelizes or not) that we put forward is that of conditional computation: instead of
dropping out paths independently and at random, drop them in a learned and
optimized way. Decision trees remain some of the most appealing machine learn-
ing algorithms because prediction time can be on the order of the logarithm
of the number of parameters. Instead, in most other machine learning predic-
tors, scaling is linear (i.e., much worse). This is because decision trees exploit
conditional computation: for a given example, as additional computations are
performed, one can discard a gradually larger set of parameters (and avoid per-
forming the associated computation). In deep learning, this could be achieved
by combining truly sparse activations (values not near zero like in sparse auto-
encoders, but actual zeros) and multiplicative connections whereby some hidden
units gate other hidden units (when the gater output is zero it turns off the out-
put of the gated unit). When a group A of hidden units has a sparse activation
pattern (with many actual zeros) and it multiplicatively gates other hidden units
B, then only a small fraction of the hidden units in B may need to be actually
computed, because we know that these values will not be used. Such gating is
similar to what happens when a decision node of a decision tree selects a subtree
and turns off another subtree. More savings can thus be achieved if units in B
themselves gate other units, etc. The crucial difference with decision trees (and
e.g., the hard mixture of experts we introduced a decade ago [33]) is that the gat-
ing units should not be mutually exclusive and should instead form a distributed
pattern. Indeed, we want to keep the advantages of distributed representations
and avoid the limited local generalization suffered by decision trees [18]. With a
high level of conditional computation, some parameters are used often (and are
well tuned) whereas other parameters are used very rarely, requiring more data
to estimate. A trade-off and appropriate regularization therefore needs to be

10 Although the gain would be reduced considerably in a minibatch mode, roughly by
the size of the minibatch.

11 Where half of the hidden units are turned off, although clearly, this is not enough
sparsity for reaching our objective; unfortunately, we observed that randomly and
independently dropping a lot more than half of the units yielded substantially worse
results.

12 Where in addition to dropouts, only one out of k filters wins the competition in max-
pooling units, and only one half of those survives the dropouts masking, making the
sparsity factor 2k.
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established which will depend on the amount of training signals going into each
parameter. Interestingly, conditional computation also helps to achieve sparse
gradients, and the fast convergence of hard mixtures of experts [33] provides
positive evidence that a side benefit of conditional computation will be easier
and faster optimization.

Another existing example of conditional computation and sparse gradients
is with the first layer of neural language models, deep learning models for text
data [6,9]. In that case, there is one parameter vector per word in the vocabulary,
but each sentence only “touches” the parameters associated with the words in
the sentence. It works because the input can be seen as extremely sparse. The
question is how to perform conditional computation in the rest of the model.

One issue with the other example we mentioned, hard mixtures of experts [33],
is that its training mechanism only make sense when the gater operates at the
output layer. In that case, it is easy to get a strong and clean training signal
for the gater output: one can just evaluate what the error would have been if a
different expert had been chosen, and train the gater to produce a higher output
for the expert that would have produced the smallest error (or to reduce compu-
tation and only interrogate two experts, require that the gater correctly ranks
their probability of being the best one). The challenge is how to produce train-
ing signals for gating units that operate in the middle of the model. One cannot
just enumerate all the gating configurations, because in a distributed setting
with many gating units, there will be an exponential number of configurations.
Interestingly, this suggests introducing randomness in the gating process itself,
e.g., stochastically choosing one or two choices out of the many that a group of
gating units could take. This is interesting because this is the second motivation
(after the success of dropouts as a regularizer) for re-introducing randomness in
the middle of deep networks. This randomness would allow configurations that
would otherwise not be selected (if only a kind of “max” dictated the gating
decision) to be sometimes selected, thus allowing to accumulate a training signal
about the value of this configuration, i.e., a training signal for the gater. The
general question of estimating or propagating gradients through stochastic neu-
rons is treated in another exploratory article [12], where it is shown that one can
obtain an unbiased (but noisy) estimator of the gradient of a loss through a dis-
crete stochastic decision. Another interesting idea explored in that paper is that
of adding noise just before the non-linearity (max-pooling (maxi xi) or rectifier
(max(0, x))). Hence the winner is not always the same, and when a choice wins
it has a smooth influence on the result, and that allows a gradient signal to be
provided, pushing that winner closer or farther from winning the competition
on another example.

4 Optimization

4.1 Optimization: The Challenge

As we consider larger and larger datasets (growing faster than the size of the
models), training error and generalization error converge. Furthermore many
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pieces of evidence in the results of experiments on deep learning suggest that
training deep networks (including recurrent networks) involves a difficult opti-
mization [13,56,16]. It is not yet clear how much of the difficulty is due to local
minima and how much is due to ill-conditioning (the two main types of optimiza-
tion difficulties in continuous optimization problems). It is therefore interesting
to study the optimization methods and difficulties involved in deep learning, for
the sake of obtaining better generalization. Furthermore, better optimization
could also have an impact on scaling computations, discussed above.

One important thing to keep in mind, though, is that in a deep supervised
network, the top two layers (the output layer and the top hidden layer) can
rather easily be made to overfit, simply by making the top hidden layer large
enough. However, to get good generalization, what we have found is that one
needs to optimize the lower layers, those that are far removed from the immediate
supervised training signal [7]. These observations mean that only looking at the
training criterion is not sufficient to assess that a training procedure is doing
a good job at optimizing the lower layers well. However, under constraints on
the top hidden layer size, training error can be a good guide to the quality of
the optimization of lower layers. Note that supervised deep nets are very similar
(in terms of the optimization problem involved) to deep auto-encoders and to
recurrent or recursive networks, and that properly optimizing RBMs (and more
so deep Boltzmann machines) seems more difficult: progress on training deep
nets is therefore likely to be a key to training the other types of deep learning
models.

One of the early hypotheses drawn from experiments with layer-wise pre-
training as well as of other experiments (semi-supervised embeddings [138] and
slow feature analysis [140,22]) is that the training signal provided by backprop-
agated gradients is sometimes too weak to properly train intermediate layers
of a deep network. This is supported by the observation that all of these suc-
cessful techniques somehow inject a training signal into the intermediate layers,
helping them to figure out what they should do. However, the more recent suc-
cessful results with supervised learning on very large labeled datasets suggest
that with some tweaks in the optimization procedure (including initialization),
it is sometimes possible to achieve as good results with or without unsupervised
pre-training or semi-supervised embedding intermediate training signals.

4.2 Optimization: Solution Paths

In spite of these recent encouraging results, several more recent experimental re-
sults again point to a fundamental difficulty in training intermediate and lower
layers.

Diminishing Returns with Larger Networks. First, [38] show that with
well-optimized SGD training, as the size of a neural net increases, the “return
on investment” (number of training errors removed per added hidden unit) de-
creases, given a fixed number of training iterations, until the point where it goes
below 1 (which is the return on investment that would be obtained by a brain-
dead memory-based learning mechanism – such as Parzen Windows – which
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just copies an incorrectly labeled example into the weights of the added hidden
unit so as to produce just the right answer for that example only). This sug-
gests that larger models may be fundamentally more difficult to train, probably
because there are now more second-order interactions between the parameters,
increasing the condition number of the Hessian matrix (of second derivatives of
model parameters with respect to the training criterion). This notion of return
on investment may provide a useful metric by which to measure the effect of
different methods to improve the scaling behavior of training and optimization
procedures for deep learning.

Intermediate Concepts Guidance and Curriculum. Second, [56] show that
there are apparently simple tasks on which standard black-box machine learning
algorithms completely fail. Even supervised and pre-trained deep networks were
tested and failed at these tasks. These tasks have in common the characteristic
that the correct labels are obtained by the composition of at least two levels of
non-linearity and abstraction: e.g., the first level involves the detection of objects
in a scene and the second level involves a non-linear logical operation on top of
these (such as the detecting presence of multiple objects of the same category).
On the other hand, the task becomes easily solvable by a deep network whose in-
termediate layer is first pre-trained to solve the first-level sub-task. This raises
the question of how humans might learn even more abstract tasks, and [13] stud-
ies the hypothesis that the use of language and the evolution of culture could have
helped humans reduce that difficulty (and gain a serious advantage over other less
cultured animals). It would be interesting to explore multi-agent learning mecha-
nisms inspired by the the mathematical principles behind the evolution of culture
in order to bypass this optimization difficulty. The basic idea is that humans (and
current learning algorithms) are limited to “local descent” optimization methods,
that make small changes in the parameter values with the effect of reducing the ex-
pected loss in average. This is clearly prone to the presence of local minima, while
a more global search (in the spirit of both genetic and cultural evolution) could po-
tentially reduce this difficulty. One hypothesis is that more abstract learning tasks
involve more challenging optimization difficulties, which would make such global
optimization algorithms necessary if we want computers to learn such abstractions
from scratch. Another option, following the idea of curriculum learning [19], is to
provide guidance ourselves to learning machines (as exemplified in the toy exam-
ple of [56]), by “teaching them” gradually more complex concepts to help them
understand the world around us (keeping in mind that we also have to do that for
humans and that it takes 20 years to complete).

Changing the Learning Procedure and the Architecture. Regarding the
basic optimization difficulty of a single deep network, three types of solutions
should be considered. First, there are solutions based on improved general-
purpose optimization algorithms, such as for example the recent work on adap-
tive learning rates [121], online natural gradient [82,102] or large-minibatch
second order methods [90].
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Another class of attacks on the optimization problem is based on changing the
architecture (family of functions and its parametrization) or the way that the out-
puts are produced (for example by adding noise). As already introduced in [84],
changes in the preprocessing, training objective and architecture can change the
difficulty of optimization, and in particularly improve the conditioning of the
Hessian matrix (of second derivatives of the loss with respect to parameters).
With gradient descent, training time into a quadratic bowl is roughly propor-
tional to the condition number of the Hessian matrix (ratio of largest to smallest
eigenvalue). For example [84] recommends centering and normalizing the inputs,
an idea recently extended to hidden layers of Boltzmann machines with suc-
cess [95]. A related idea that may have an impact on ill-conditioning is the idea
of skip-connections, which forces both the mean output and the mean slope of
each hidden unit of a deep multilayer network to be zero [103], a centering idea
which originates from [122].

There has also been very successful recent work exploiting rectifier non-
linearities for deep supervised networks [45,77]. Interestingly, such non-linearities
can produce rather sparse unit outputs, which could be exploited, if the amount
of sparsity is sufficiently large, to considerably reduce the necessary computa-
tion (because when a unit output is 0, there is no need to actually multiply it
with its outgoing weights). Very recently, we have discovered a variant on the
rectifier non-linearity called maxout [52] which appears to open a very promising
door towards more efficient training of deep networks. As confirmed experimen-
tally [52], maxout networks can train deeper networks and allow lower layers to
undergo more training. The more general principle at stake here may be that
when the gradient is sparse, i.e., only a small subset of the hidden units and
parameters is touched by the gradient, the optimization problem may become
easier. We hypothesize that sparse gradient vectors have a positive effect on re-
ducing the ill-conditioning difficulty involved in training deep nets. The intuition
is that by making many terms of the gradient vector 0, one also knocks off many
off-diagonal terms of the Hessian matrix, making this matrix more diagonal-
looking, which would reduce many of the ill-conditioning effects involved, as
explained below. Indeed, gradient descent relies on an invalid assumption: that
one can modify a parameter θi (in the direction of the gradient ∂C

∂θi
) without

taking into account the changes in ∂C
∂θi

that will take place when also modifying
other parameters θj . Indeed, this is precisely the information that is captured

(e.g. with second-order methods) by the off-diagonal entries ∂2C
∂θi∂θj

= ∂
∂θj

∂C
∂θi

,

i.e., how changing θj changes the gradient on θi. Whereas second-order methods
may have their own limitations13 it would be interesting if substantially reduced
ill-conditioning could be achieved by modifying the architecture and training
procedure. Sparse gradients would be just one weapon in this line of attack.

As we have argued above, adding noise in an appropriate way can be useful
as a powerful regularizer (as in dropouts), and it can also be used to make the

13 First, practical implementations never come close to actually inverting the Hessian,
and second, they often require line searches that may be computationally inefficient
if the optimal trajectory is highly curved.
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gradient vector sparser, which would reinforce the above positive effect on the op-
timization difficulty. If some of the activations are also sparse (as our suggestions
for conditional computation would require), then more entries of the gradient
vector will be zeroed out, also reinforcing that beneficial optimization effect. In
addition, it is plausible that the masking noise found in dropouts (as well as in
denoising auto-encoders) encourages a faster symmetry-breaking: quickly moving
away from the condition where all hidden units of a neural network or a Boltz-
mann machine do the same thing (due to a form of symmetry in the signals they
receive), which is a non-attractive fixed point with a flat (up to several orders)
likelihood function. This means that gradient descent can take a lot of time to
pull apart hidden units which are behaving in a very similar way. Furthermore,
when starting from small weights, these symmetry conditions (where many hid-
den units do something similar) are actually attractive from far away, because
initially all the hidden units are trying to grab the easiest and most salient job
(explain the gradients on the units at the layer above). By randomly turning off
hidden units we obtain a faster specialization which helps training convergence.

A related concept that has been found useful in understanding and reduc-
ing the training difficulty of deep or recurrent nets is the importance of letting
the training signals (back-propagated gradients) flow, in a focused way. It is im-
portant that error signals flow so that credit and blame is clearly assigned to
different components of the model, those that could change slightly to improve
the training loss. The problem of vanishing and exploding gradients in recurrent
nets [65,8] arises because the effect of a long series of non-linear composition
tends to produce gradients that can either be very small (and the error signal
is lost) or very large (and the gradient steps diverge temporarily). This idea has
been exploited to propose successful initialization procedures for deep nets [46].
A composition of non-linearities is associated with a product of Jacobian matri-
ces, and a way to reduce the vanishing problem would be to make sure that they
have a spectral radius (largest eigenvalue) close to 1, like what is done in the
weight initialization for Echo State Networks [70] or in the carousel self-loop of
LSTM [66] to help propagation of influences over longer paths. A more generic
way to avoid gradient vanishing is to incorporate a training penalty that encour-
ages the propagated gradient vectors to maintain their magnitude [101]. When
combined with a gradient clipping14 heuristic [93] to avoid the detrimental effect
of overly large gradients, it allows to train recurrent nets on tasks on which it
was not possible to train them before [101].

5 Inference and Sampling

All of the graphical models studied for deep learning except the humble RBM
require a non-trivial form of inference, i.e., guessing values of the latent variables
h that are appropriate for the given visible input x. Several forms of inference
have been investigated in the past: MAP inference is formulated like an optimiza-
tion problem (looking for h that approximately maximizes P (h | x)); MCMC

14 When the norm of the gradient is above a threshold τ , reduce it to τ .
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inference attempts to sample a sequence of h’s from P (h | x); variational infer-
ence looks for a simple (typically factorial) approximate posterior qx(h) that is
close to P (h | x), and usually involves an iterative optimization procedure. See
a recent machine learning textbook for more details [24,4,96].

In addition, a challenge related to inference is sampling (not just from P (h | x)
but also from P (h, x) or P (x)), which like inference is often needed in the inner
loop of learning algorithms for probabilistic models with latent variables, energy-
based models [85] or Markov Random Fields [74] (also known as undirected
graphical models), where P (x) or P (h, x) is defined in terms of a parametrized
energy function whose normalized exponential gives probabilities.

Deep Boltzmann machines [118] combine the challenge of inference (for the
“positive phase” where one tries to push the energies associated with the ob-
served x down) and the challenge of sampling (for the “negative phase” where
one tries to push up the energies associated with x’s sampled from P (x)). Sam-
pling for the negative phase is usually done by MCMC, although some learning
algorithms [34,57,25] involve “negative examples” that are sampled through sim-
pler procedures (like perturbations of the observed input). In [118], inference for
the positive phase is achieved with a mean-field variational approximation.15

5.1 Inference and Sampling: The Challenge

There are several challenges involved with all of the these inference and sampling
techniques.

The first challenge is practical and computational: these are all iterative pro-
cedures that can considerably slow down training (because inference and/or sam-
pling is often in the inner loop of learning).

Potential Huge Number of Modes. The second challenge is more fundamen-
tal and has to do with the potential existence of highly multi-modal posteriors:
all of the currently known approaches to inference and sampling are making
very strong explicit or implicit assumptions on the form the distribution of in-
terest (P (h | x) or P (h, x)). As we argue below, these approaches make sense if
this target distribution is either approximately unimodal (MAP), (conditionally)
factorizes (variational approximations, i.e., the different factors hi are approxi-
mately independent16 of each other given x), or has only a few modes between
which it is easy to mix (MCMC). However, approximate inference can be poten-
tially hurtful, not just at test time but for training, because it is often in the
inner loop of the learning procedure [78].

15 In the mean-field approximation, computation proceeds like in Gibbs sampling, but
with stochastic binary values replaced by their conditional expected value (probabil-
ity of being 1), given the outputs of the other units. This deterministic computation
is iterated like in a recurrent network until convergence is approached, to obtain a
marginal (factorized probability) approximation over all the units.

16 This can be relaxed by considering tree-structured conditional dependencies [120]
and mixtures thereof.
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Imagine for example that h represents many explanatory variables of a rich
audio-visual scene with a highly ambiguous raw input x, including the presence
of several objects with ambiguous attributes or categories, such that one cannot
really disambiguate one of the objects independently of the others (the so-called
“structured output” scenario, but at the level of latent explanatory variables).
Clearly, a factorized or unimodal representation would be inadequate (because
these variables are not at all independent, given x) while the number of modes
could grow exponentially with the number of ambiguous factors present in the
scene. For example, consider a visual scene x through a haze hiding most de-
tails, yielding a lot of uncertainty. Say it involves 10 objects (e.g., people), each
having 5 ambiguous binary attributes (out of 20) (e.g., how they are dressed)
and uncertainty between 100 categorical choices for each element (e.g., out of
10000 persons in the database, the marginal evidence allows to reduce the uncer-
tainty for each person to about 100 choices). Furthermore, suppose that these
uncertainties cannot be factorized (e.g., people tend to be in the same room
with other people involved in the same activity, and friends tend to stand phys-
ically close to each other, and people choose to dress in a way that socially
coherent). To make life hard on mean-field and other factorized approximations,
this means that only a small fraction (say 1%) of these configurations are really
compatible. So one really has to consider 1% × (25 × 100)10 ≈ 1033 plausible
configurations of the latent variables. If one has to take a decision y based on x,
e.g., P (y | x) = ∑

h P (y | h)P (h | x) involves summing over a huge number of
non-negligible terms of the posterior P (h | x), which we can consider as modes
(the actual dimension of h is much larger, so we have reduced the problem from
(220×10000)10 ≈ 10100 to about 1033, but that is still huge. One way or another,
summing explicitly over that many modes seems implausible, and assuming sin-
gle mode (MAP) or a factorized distribution (mean-field) would yield very poor
results. Under some assumptions on the underlying data-generating process, it
might well be possible to do inference that is exact or a provably good approxima-
tions, and searching for graphical models with these properties is an interesting
avenue to deal with this problem. Basically, these assumptions work because we
assume a specific structure in the form of the underlying distribution. Also, if we
are lucky, a few Monte-Carlo samples from P (h | x) might suffice to obtain an
acceptable approximation for our y, because somehow, as far as y is concerned,
many probable values of h yield the same answer y and a Monte-Carlo sam-
ple will well represent these different “types” of values of h. That is one form
of regularity that could be exploited (if it exists) to approximately solve that
problem. What if these assumptions are not appropriate to solve challenging AI
problems? Another, more general assumption (and thus one more likely to be
appropriate for these problems) is similar to what we usually do with machine
learning: although the space of functions is combinatorially large, we are able
to generalize by postulating a rather large and flexible family of functions (such
as a deep neural net). Thus an interesting avenue is to assume that there exists
a computationally tractable function that can compute P (y | x) in spite of the
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apparent complexity of going through the intermediate steps involving h, and
that we may learn P (y | x) through (x, y) examples. This idea will be developed
further in Section 5.2.

Mixing between Modes. What about MCMC methods? They are hurt by
the problem of mode mixing, discussed at greater length in [20], and summa-
rized here. To make the mental picture simpler, imagine that there are only two
kinds of probabilities: tiny and high. MCMC transitions try to stay in configura-
tions that have a high probability (because they should occur in the chain much
more often than the tiny probability configurations). Modes can be thought of
as islands of high probability, but they may be separated by vast seas of tiny
probability configurations. Hence, it is difficult for the Markov chain of MCMC
methods to jump from one mode of the distribution to another, when these are
separated by large low-density regions embedded in a high-dimensional space, a
common situation in real-world data, and under the manifold hypothesis [27,98].
This hypothesis states that natural classes present in the data (e.g., visual ob-
ject categories) are associated with low-dimensional regions17 (i.e., manifolds)
near which the distribution concentrates, and that different class manifolds are
well-separated by regions of very low density. Here, what we consider a mode
may be more than a single point, it could be a whole (low-dimensional) man-
ifold. Slow mixing between modes means that consecutive samples tend to be
correlated (belong to the same mode) and that it takes a very large number of
consecutive sampling steps to go from one mode to another and even more to
cover all of them, i.e., to obtain a large enough representative set of samples
(e.g. to compute an expected value under the sampled variables distribution).
This happens because these jumps through the low-density void between modes
are unlikely and rare events. When a learner has a poor model of the data, e.g.,
in the initial stages of learning, the model tends to correspond to a smoother
and higher-entropy (closer to uniform) distribution, putting mass in larger vol-
umes of input space, and in particular, between the modes (or manifolds). This
can be visualized in generated samples of images, that look more blurred and
noisy18. Since MCMCs tend to make moves to nearby probable configurations,
mixing between modes is therefore initially easy for such poor models. However,
as the model improves and its corresponding distribution sharpens near where
the data concentrate, mixing between modes becomes considerably slower. Mak-
ing one unlikely move (i.e., to a low-probability configuration) may be possible,
but making N such moves becomes exponentially unlikely in N . Making moves
that are far and probable is fundamentally difficult in a high-dimensional space
associated with a peaky distribution (because the exponentially large fraction
of the far moves would be to an unlikely configuration), unless using additional
(possibly learned) knowledge about the structure of the distribution.

17 E.g. they can be charted with a few coordinates.
18 See examples of generated images with some of the current state-of-the-art in learned

generative models of images [37,88].
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5.2 Inference and Sampling: Solution Paths

Going into a Space Where Mixing Is Easier. The idea of tempering [69]
for MCMCs is analogous to the idea of simulated annealing [75] for optimization,
and it is designed for and looks very appealing to solve the mode mixing problem:
consider a smooth version (higher temperature, obtained by just dividing the en-
ergy by a temperature greater than 1) of the distribution of interest; it therefore
spreads probability mass more uniformly so one can mix between modes at that
high temperature version of the model, and then gradually cool to the target
distribution while continuing to make MCMC moves, to make sure we end up
in one of the “islands” of high probability. [42,28,117,116] have all considered
various forms of tempering to address the failure of Gibbs chain mixing in RBMs.
Unfortunately, convincing solutions (in the sense of making a practical impact
on training efficiency) have not yet been clearly demonstrated. It is not clear why
this is so, but it may be due to the need to spend much time at some specific
(critical) temperatures in order to succeed. More work is certainly warranted in
that direction.

An interesting observation [20] which could turn out to be helpful is that after
we train a deep model such as a DBN or a stack of regularized auto-encoders,
we can observe that mixing between modes is much easier at higher levels of the
hierarchy (e.g. in the top-level RBM or top-level auto-encoder): mixing between
modes is easier at deeper levels of representation. This is achieved by running the
MCMC in a high-level representation space and then projecting back in raw input
space to obtain samples at that level. The hypothesis proposed [20] to explain
this observation is that unsupervised representation learning procedures (such
as for the RBM and contractive or denoising auto-encoders) tend to discover a
representation whose distribution has more entropy (the distribution of vectors
in higher layers is more uniform) and that better “disentangles” or separates out
the underlying factors of variation (see next section for a longer discussion of the
concept of disentangling). For example, suppose that a perfect disentangling had
been achieved that extracted the factors out of images of objects, such as object
category, position, foreground color, etc. A single Gibbs step could thus switch
a single top-level variable (like object category) when that variable is resampled
given the others, a very local move in that top-level disentangled representation
but a very far move (going to a very different place) in pixel space. Note that
maximizing mutual information between inputs and their learned deterministic
representation, which is what auto-encoders basically do [136], is equivalent to
maximizing the entropy of the learned representation,19 which supports this
hypothesis. An interesting idea20 would therefore be to use higher levels of a deep
model to help the lower layers mix better, by using them in a way analogous to
parallel tempering, i.e., to suggest configurations sampled from a different mode.

Another interesting potential avenue for solving the problem of sampling from
a complex and rough (non-smooth) distribution would be to take advantage of

19 Salah Rifai, personal communication.
20 Guillaume Desjardins, personal communication.
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quantum annealing effects [113] and analog computing hardware (such as pro-
duced by D-Wave). NP-hard problems (such as sampling or optimizing exactly
in an Ising model) still require exponential time but experimental evidence has
shown that for some problems, quantum annealing is far superior to standard
digital computation [26]. Since quantum annealing is performed by essentially
implementing a Boltzmann machine in analog hardware, it might be the case
that drawing samples from a Boltzmann machine is one problem where quantum
annealing would be dramatically superior to classical digital computing.

Learned Approximate Inference and Predicting a Rich Posterior. If we
stick to the idea of obtaining actual values of the latent variables (either through
MAP, factorized variational inference or MCMC), then a promising path is based
on learning approximate inference, i.e., optimizing a learned approximate infer-
ence mechanism so that it performs a better inference faster. This idea is not new
and has been shown to work well in many settings. This idea was actually already
present in the wake-sleep algorithm [61,44,62] in the context of variational infer-
ence for Sigmoidal Belief Networks and DBNs. Learned approximate inference is
also crucial in the predictive sparse coding (PSD) algorithm [73]. This approach
is pushed further with [54] in which the parametric encoder has the same struc-
tural form as a fast iterative sparse coding approximate inference algorithm. The
important consideration in both cases is not just that we have fast approximate
inference, but that (a) it is learned, and (b) the model is learned jointly with the
learned approximate inference procedure. See also [119] for learned fast approx-
imate variational inference in DBMs, or [3,126] for learning fast approximate
inference (with fewer steps than would otherwise be required by standard general
purpose inference) based on loopy belief propagation.

The traditional view of probabilistic graphical models is based on the clean sep-
aration between modeling (defining the model), optimization (tuning the param-
eters), inference (over the latent variables) and sampling (over all the variables,
and possibly over the parameters as well in the Bayesian scenario). This mod-
ularization has clear advantages but may be suboptimal. By bringing learning
into inference and jointly learning the approximate inference and the “generative
model” itself, one can hope to obtain “specialized” inference mechanisms that
could be much more efficient and accurate than generic purpose ones; this was
the subject of a recent ICML workshop [43]. The idea of learned approximate
inference may help deal with the first (purely computational) challenge raised
above regarding inference, i.e., it may help to speed up inference to some extent,
but it generally keeps the approximate inference parameters separate from the
model parameters.

But what about the challenge from a huge number of modes? What if the
number of modes is too large and/or these are too well-separated for MCMC to
visit efficiently or for variational/MAP inference to approximate satisfactorily?
If we stick to the objective of computing actual values of the latent variables,
the logical conclusion is that we should learn to approximate a posterior that is
represented by a rich multi-modal distribution. To make things concrete, imagine
that we learn (or identify) a function f(x) of the visible variable x that computes
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the parameters θ = f(x) of an approximate posterior distribution Qθ=f(x)(h)
but where Qθ=f(x)(h) ≈ P (h | x) can be highly multi-modal, e.g., an RBM with
visible variables h (coupled with additional latent variables used only to represent
the richness of the posterior over h itself). Since the parameters of the RBM are
obtained through a parametric computation taking x as input,21 this is really a
conditional RBM [130,129]. Whereas variational inference is usually limited to
a non-parametric approximation of the posterior, Q(h) (one that is analytically
and iteratively optimized for each given x) one could consider a parametric
approximate posterior that is learned (or derived analytically) while allowing for
a rich multi-modal representation (such as what an RBM can capture, i.e., up
to an exponential number of modes).

Avoiding Inference Altogether by Learning to Perform the Required
Marginalization. We now propose to consider an even more radical departure
from traditional thinking regarding probabilistic models with latent variables. It
is motivated by the observation that even with the last proposal, something like
a conditional RBM to capture the posterior P (h | x), when one has to actually
make a decision or a prediction, it is necessary for optimal decision-making to
marginalize over the latent variables. For example, if we want to predict y given
x, we want to compute something like

∑
h P (y | h)P (h | x). If P (h | x) is

complex and highly multi-modal (with a huge number of modes), then even if
we can represent the posterior, performing this sum exactly is out of the question,
and even an MCMC approximation may be either very poor (we can only visit
at most N modes with N MCMC steps, and that is very optimistic because of
the mode mixing issue) or very slow (requiring an exponential number of terms
being computed or a very very long MCMC chain). It seems that we have not
really addressed the original “fundamental challenge with highly multi-modal
posteriors” raised above.

To address this challenge, we propose to avoid explicit inference altogether by
avoiding to sample, enumerate, or represent actual values of the latent variables
h. Instead, one can just directly learn to predict P (y | x), in the example of the
previous paragraph. Hence the only approximation error we are left with is due to
to function approximation. This might be important because the compounding
of approximate inference with function approximation could be very hurtful [78].

To get there, one may wish to mentally go through an intermediate step.
Imagine we had a good approximate posterior Qθ=f(x)(h) as proposed above,
with parameters θ = f(x). Then we could imagine learning an approximate
decision model that approximates and skips the intractable sum over h, instead
directly going from θ = f(x) to a prediction of y, i.e., we would estimate P (y | x)
by g(f(x)). Now since we are already learning f(x), why learn g(θ) separately?
We could simply directly learn to estimate π(x) = g(f(x)) ≈ P (y | x).

21 For many models, such as deep Boltzmann machines, or bipartite discrete Markov
random fields [91], f does not even need to be learned, it can be derived analytically
from the form of P (h | x).
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Now that may look trivial, because this is already what we do in discriminant
training of deep networks or recurrent networks, for example. And don’t we
lose all the advantages of probabilistic models, such as, handling different forms
of uncertainty, missing inputs, and being able to answer any “question” of the
form “predict any variables given any subset of the others”? Yes, if we stick to the
traditional deep (or shallow) neural networks like those discussed in Section 2.1.22

But there are other options.
We propose to get the advantages of probabilistic models without the need

for explicitly going through many configurations of the latent variables. Let xc

be a subset of elements of x that are clamped, x−c the rest and xv a subset
of x−c for which we have a prediction to make and “target” observation. We
want to be able to sample from P (xv | xc). We want train a model such that, in
average over the examples, with their observed subset s of variables, we maximize
logP (xs). For example, we could do this by generalized pseudo-likelihood and
maximize logP (xv | xc) for randomly chosen partitions (v, c) of s. The important
requirement is that the same parameters be used to model all the predictions
P (xv | xc) for any choice of (v, c). Another possible way to train such a model is
to generalize the training criterion for regularized (possibly deep) auto-encoders
in order to accomodate missing inputs (which is straightforward in the case of
denoising auto-encoders with masking noise).

In the case of the generalized pseudo-likelihood approach, we would specify a
computation that maps the model parameters to a training criterion equivalent
to maximizing logP (xv | xc). The form of this computation could be inspired by
existing or novel inference mechanisms, as has been done for learned approximate
inference. However, because the training criterion would be expressed in terms
of the observed x, the interpretation of the latent variables as latent variables
in P (x, h) becomes superfluous. In fact, because we start from an approximate
inference scheme, if we train the parameters with respect to some form of input
reconstruction (like generalized pseudo-likelihood), there is no guarantee that
the original interpretation of the estimated posterior P (h | x) continues to be
meaningful. What is meaningful, though, is the interpretation of the parameter-
ized computational graph that produces P (xv | xc) for any (v, c) pair as a formal
definition of the learned model of the data.

The approximate inference is not anymore an approximation of something
else, it is the definition of the model itself. This is actually good news because
we thus eliminate the issue that the approximate inference may be poor. The
only thing we need to worry about is whether the parameterized computational
graph that produces P (xv | xc) is rich enough (or may overfit) to capture the
unknown data generating distribution, and whether it makes it easy or difficult to
optimize the parameters. This would be similar to dependency networks [58], but
re-using the same parameters for every possible question-answer partition and
training the system to answer for any subset of variables rather than singletons

22 Although, using something like these deep nets would be appealing because they are
currently beating benchmarks in speech recognition, language modeling and object
recognition.
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like in pseudo-likelihood. For the same reason, it raises the question of whether
the different estimated conditionals are coherent with a global joint distribution.
In the case where the computational graph is obtained from the template of an
inference mechanism for a joint distribution (such as variational inference), then
clearly, we keep the property that these conditionals are coherent with a global
joint distribution. With the mean-field variational inference, the computational
graph looks like a recurrent neural network converging to a fixed point, and
where we stop the iterations after a fixed number of steps or according to a
convergence criterion. Such a trained parametrized computational graph is used
in the iterative variational approach introduced in [51] for training and missing
value inference in deep Boltzmann machines, with an inpainting-like criterion in
which arbitrary subsets of pixels are predicted given the others (a generalized
pseudo-likelihood criterion). It has also been used in a recursion that follows the
template of loopy belief propagation to fill-in the missing inputs and produce
outputs [126]. Although in these cases there are latent variables (e.g. the latent
variables of the deep Boltzmann machine) that motivate the “template” used
for the learned approximate inference, what we propose here is to stop thinking
about them as actual latent factors, but rather just as a way to parametrize
this template for a question answering mechanism regarding missing inputs, i.e.,
the “generic conditional prediction mechanism” implemented by the recurrent
computational graph that is trained to predict any subset of variables given any
other subset. Although [51] assume a factorial distribution across the predicted
variables, we propose to investigate non-factorial posterior distributions over the
observed variables, i.e., in the spirit of the recent flurry of work on structured
output machine learning [133].

We can think of this parametrized computational graph as a family of func-
tions, each corresponding to answering a different question (predict a specific set
of variables given some others), but all sharing the same parameters. We already
have examples of such families in machine learning, e.g., with recurrent neural
networks or dynamic Bayes nets (where the functions in the family are indexed
by the length of the sequence). This is also analogous to what happens with
dropouts, where we have an exponential number of neural networks correspond-
ing to different sub-graphs from input to output (indexed by which hidden units
are turned on or off). For the same reason as in these examples, we obtain a
form of generalization across subsets. Following the idea of learned approximate
inference, the parameters of the question-answering inference mechanism would
be taking advantage of the specific underlying structure in the data generating
distribution. Instead of trying to do inference on the anonymous latent variables,
it would be trained to do good inference only over observed variables or over high-
level features learned by a deep architecture, obtained deterministically from the
observed input.

The idea that we should train with the approximate inference as part of the
computational graph for producing a decision (and a loss) was first introduced
by [126], and we simply push it further here, by proposing to allow the computa-
tional graph to depart in any way we care to explore from the template provided
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by existing inference mechanism, i.e., potentially losing the connection and the
reference to probabilistic latent variables. Once we free ourselves from the con-
straint of interpreting this parametrized question answering computational graph
as corresponding to approximate inference involving latent variables, all kinds
of architectures and parametrizations are possible, where current approximate
inference mechanisms can serve as inspiration and starting points. It is quite
possible that this new freedom could give rise to much better models. The im-
portant point is that this mechanism is trained to do well at question answering
on the provided data, and that it is really a family of functions indexed by all the
possible question/answer subsets, but sharing their parameters. If the resulting
family of computational graphs does not correspond to a form of inference in a
globally coherent joint distribution (like in the case of dependency networks [58]),
what do we lose? Re-using the arguments from [126], we could argue that what
matters is to optimize the expected loss. If our loss function regards the ability
to answer any question about the variables, then a generalized pseudo-likelihood
criterion would better much the ultimate objective.

To go farther than [51] and [126] it would be good to go beyond the kind of fac-
torized prediction common in variational and loopy belief propagation inference.
One idea is to represent the estimated joint distribution of the predicted variables
(given the clamped variables) by a powerful model such as an RBM or a regular-
ized auto-encoder, e.g., as has been done for structured output predictions when
there is complex probabilistic structure between the output variables [94,87].

Although conditional RBMs have been already explored, conditional distribu-
tions provided by regularized auto-encoders remain to be studied. Alternatively,
a denoising auto-encoder (whether it is shallow or deep) with masking noise23 is
trained to perform something very similar to generalized pseudo-likelihood. Note
that sampling algorithms based on Langevin or Metropolis-Hastings MCMC
have already been proposed [110,1,15], for regularized auto-encoders24 and they
could easily be adapted to conditional sampling by clamping the fixed inputs and
(optionally, to increase representational capacity) by making the hidden unit bi-
ases an arbitrarily complex (but deterministic) functions of the observed inputs.
These theoretical analyses and sampling methods for regularized auto-encoders
have been performed for the case of continuous inputs with squared error, and
remain to be generalized to discrete inputs.

As as refinement, and in the spirit of a long tradition of discriminatively ori-
ented machine learning, when some of the observed variables y are of particular
interest (because we often want to predict them), one would naturally present
examples of the prediction of y given x more often to the learning algorithm
than random subsets of observed variables. Hybrids of generative and discrim-
inant training criteria have been very successful for RBMs [79,80] and would
make practical sense here as well.

23 In which some of the inputs are set to 0 and the auto-encoder is trying to predict
them, as well as the rest, in its reconstruction.

24 These methods iterate between encoding, decoding, and injecting noise, with the
possibility of rejecting poor configurations.
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All these ideas lead to the question: what is the interpretation of hidden lay-
ers, if not directly of the underlying generative latent factors? The answer may
simply be that they provide a better representation of these factors, a subject
discussed in the next section. But what about the representation of uncertainty
about these factors? The author believes that humans and other animals carry
in their head an internal representation that implicitly captures both the most
likely interpretation of any of these factors (in case a hard decision about some
of them has to be taken) and uncertainty about their joint assignment. This is
of course a speculation. Somehow, our brain would be operating on implicit rep-
resentations of the joint distribution between these explanatory factors, generally
without having to commit until a decision is required or somehow provoked by
our attention mechanisms (which seem related to our tendancy to verbalize a
discrete interpretation). A good example is foreign language understanding for
a person who does not master that foreign language. Until we consciously think
about it, we generally don’t commit to a particular meaning for ambiguous word
(which would be required by MAP inference), or even to the segmentation of the
speech in words, but we can take a hard decision that depends on the interpreta-
tion of these words if we have to, without having to go through this intermediate
step of discrete interpretation, instead treating the ambiguous information as soft
cues that may inform our decision. In that example, a factorized posterior is also
inadequate because some word interpretations are more compatible with each
other.

To summarize, what we propose here, unlike in previous work on approximate
inference, is to drop the pretense that the learned approximate inference mecha-
nism actually approximates the latent variables distribution, mode, or expected
value. Instead, we only consider the approximate inference over observed vari-
ables (or of values of features computed from the observed variables at a higher
level of a deep architecture) and we consider that this mechanism is itself the
model, rather than some approximation, and we train it with a training criterion
that is consistent with that interpretation. By removing the interpretation of ap-
proximately marginalizing over latent variables, we free ourselves from a strong
constraint and open the door to any parametrized computation which has the
requirement that its parameters can be shared across any question/answer sub-
set.

This discussion is of course orthogonal to the use of Bayesian averaging meth-
ods in order to produce better-generalizing predictions, i.e., handling uncertainty
due to a small number of training examples. The proposed methods can be made
Bayesian just like neural networks have their Bayesian variants [99], by somehow
maintaining an implicit or explicit distribution over parameters. A promising
step in this direction was proposed by [137], making such Bayesian computation
tractable by exploiting the randomness introduced with stochastic gradient de-
scent to also produce the Bayesian samples over the uncertain parameter values.
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6 Disentangling

6.1 Disentangling: The Challenge

What are “underlying factors” explaining the data? The answer is not obvious.
One answer could be that these are factors that can be separately controlled
(one could set up way to change one but not the others). This can actually be
observed by looking at sequential real-world data, where only a small proportion
of the factors typically change from t to t+1. Complex data arise from the rich
interaction of many sources. These factors interact in a complex web that can
complicate AI-related tasks such as object classification. If we could identity and
separate out these factors (i.e., disentangle them), we would have almost solved
the learning problem. For example, an image is composed of the interaction be-
tween one or more light sources, the object shapes and the material properties
of the various surfaces present in the image. It is important to distinguish be-
tween the related but distinct goals of learning invariant features and learning
to disentangle explanatory factors. The central difference is the preservation of
information. Invariant features, by definition, have reduced sensitivity in the di-
rections of invariance. This is the goal of building features that are insensitive to
variation in the data that are uninformative to the task at hand. Unfortunately,
it is often difficult to determine a priori which set of features and variations
will ultimately be relevant to the task at hand. Further, as is often the case
in the context of deep learning methods, the feature set being trained may be
destined to be used in multiple tasks that may have distinct subsets of relevant
features. Considerations such as these lead us to the conclusion that the most
robust approach to feature learning is to disentangle as many factors as possible,
discarding as little information about the data as is practical.

Deep learning algorithms that can do a much better job of disentangling
the underlying factors of variation would have tremendous impact. For exam-
ple, suppose that the underlying factors can be “guessed” (predicted) from a
simple (e.g. linear) transformation of the learned representation, ideally a trans-
formation that only depends on a few elements of the representation. That is
what we mean by a representation that disentangles the underlying factors. It
would clearly make learning a new supervised task (which may be related to one
or a few of them) much easier, because the supervised learning could quickly
learn those linear factors, zooming in on the parts of the representation that are
relevant.

Of all the challenges discussed in this paper, this is probably the most ambi-
tious, and success in solving it the most likely to have far-reaching impact. In
addition to the obvious observation that disentangling the underlying factors is
almost like pre-solving any possible task relevant to the observed data, having
disentangled representations would also solve other issues, such as the issue of
mixing between modes. We believe that it would also considerably reduce the
optimization problems involved when new information arrives and has to be rec-
onciled with the world model implicit in the current parameter setting. Indeed,
it would allow only changing the parts of the model that involve the factors that
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are relevant to the new observation, in the spirit of sparse updates and reduced
ill-conditioning discussed above.

6.2 Disentangling: Solution Paths

Deeper Representations Disentangle Better. There are some encouraging
signs that our current unsupervised representation-learning algorithms are re-
ducing the “entanglement” of the underlying factors25 when we apply them to
raw data (or to the output of a previous representation learning procedure, like
when we stack RBMs or regularized auto-encoders).

First, there are experimental observations suggesting that sparse convolutional
RBMs and sparse denoising auto-encoders achieve in their hidden units a greater
degree of disentangling than in their inputs [50,47]. What these authors found
is that some hidden units were particularly sensitive to a known factor of varia-
tion while being rather insensitive (i.e., invariant) to others. For example, in a
sentiment analysis model that sees unlabeled paragraphs of customer comments
from the Amazon web site, some hidden units specialized on the topic of the
paragraph (the type of product being evaluated, e.g., book, video, music) while
other units specialized on the sentiment (positive vs negative). The disentan-
glement was never perfect, so the authors made quantitative measurements of
sensitivity and invariance and compared these quantities on the input and the
output (learned representation) of the unsupervised learners.

Another encouraging observation (already mentioned in the section on mixing)
is that deeper representations were empirically found to be more amenable to
quickly mixing between modes [20]. Two (compatible) hypotheses were proposed
to explain this observation: (1) RBMs and regularized auto-encoders determinis-
tically transform26 their input distribution into one that is more uniform-looking,
that better fills the space (thus creating easier paths between modes), and
(2) these algorithms tend to discover representations that are more disentan-
gled. The advantage of a higher-level disentangled representation is that a small
MCMC step (e.g. Gibbs) in that space (e.g. flipping one high-level variable) can
move in one step from one input-level mode to a distant one, e.g., going from one
shape / object to another one, adding or removing glasses on the face of a person
(which requires a very sharp coordination of pixels far from each other because
glasses occupy a very thin image area), or replacing foreground and background
colors (such as going into a “reverse video” mode).

Although these observations are encouraging, we do not yet have a clear under-
standing as to why some representation algorithms tend to move towards more
disentangled representations, and there are other experimental observations sug-
gesting that this is far from sufficient. In particular, [56] show an example of a
task on which deep supervised nets (and every other black-box machine learning
algorithm tried) fail, on which a completely disentangled input representation
makes the task feasible (with a maxout network [52]). Unfortunately, unsuper-
vised pre-training applied on the raw input images failed to produce enough

25 As measured by how predictive some individual features are of known factors.
26 When considering the features learned, e.g., the P (hi = 1 | x), for RBMs.
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disentangling to solve the task, even with the appropriate convolutional struc-
ture. What is interesting is that we now have a simple artificial task on which we
can evaluate new unsupervised representation learning methods for their disen-
tangling ability. It may be that a variant of the current algorithms will eventually
succeed at this task, or it may be that altogether different unsupervised repre-
sentation learning algorithms are needed.

Generic Priors for Disentangling Factors of Variation. A general strategy
was outlined in [17] to enhance the discovery of representations which disentan-
gle the underlying and unknown factors of variation: it relies on exploiting priors
about these factors. We are most interested in broad generic priors that can be
useful for a large class of learning problems of interest in AI. We list these priors
here:

• Smoothness: assumes the function f to be learned is s.t. x ≈ y generally
implies f(x) ≈ f(y). This most basic prior is present in most machine learning,
but is insufficient to get around the curse of dimensionality.

• Multiple Explanatory Factors: the data generating distribution is gener-
ated by different underlying factors, and for the most part what one learns about
one factor generalizes in many configurations of the other factors. The objective
is to recover or at least disentangle these underlying factors of variation. This
assumption is behind the idea of distributed representations. More specific
priors on the form of the model can be used to enhance disentangling, such
as multiplicative interactions between the factors [131,41] or orthogonality of
the features derivative with respect to the input [111,109,125]. The parametriza-
tion and training procedure may also be used to disentangle discrete factors
(e.g., detecting a shape) from associated continuous-valued factors (e.g., pose
parameters), as in transforming auto-encoders [60], spike-and-slab RBMs with
pooled slab variables [37] and other pooling-based models that learn a feature
subspace [76,68].

• A Hierarchical Organization of Explanatory Factors: the concepts that
are useful for describing the world around us can be defined in terms of other
concepts, in a hierarchy, with more abstract concepts higher in the hierarchy,
defined in terms of less abstract ones. This assumption is exploited with deep
representations. Although stacking single-layer models has been rather successful,
much remains to be done regarding the joint training of all the layers of a deep
unsupervised model.

• Semi-supervised Learning: with inputs X and target Y to predict, given
X , a subset of the factors explaining X ’s distribution explain much of Y , given
X . Hence representations that are useful for spelling out P (X) tend to be useful
when learning P (Y | X), allowing sharing of statistical strength between the
unsupervised and supervised learning tasks. However, many of the factors that
explain X may dominate those that also explain Y , which can make it useful
to incorporate observations of Y in training the learned representations, i.e., by
semi-supervised representation learning.
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• Shared Factors across Tasks: with many Y ’s of interest or many learning
tasks in general, tasks (e.g., the corresponding P (Y | X, task)) are explained by
factors that are shared with other tasks, allowing sharing of statistical strength
across tasks, e.g. for multi-task and transfer learning or domain adaptation.
This can be achieved by sharing embeddings or representation functions across
tasks [34,25].

• Manifolds: probability mass concentrates near regions that have a much
smaller dimensionality than the original space where the data lives. This is
exploited with regularized auto-encoder algorithms, but training criteria that
would explicitly take into account that we are looking for a concentration of
mass in an integral number directions remain to be developed.

• Natural Clustering: different values of categorical variables such as object
classes are associated with separate manifolds. More precisely, the local varia-
tions on the manifold tend to preserve the value of a category, and a linear inter-
polation between examples of different classes in general involves going through
a low density region, i.e., P (X | Y = i) for different i tend to be well separated
and not overlap much. For example, this is exploited in the Manifold Tangent
Classifier [111]. This hypothesis is consistent with the idea that humans have
named categories and classes because of such statistical structure (discovered by
their brain and propagated by their culture), and machine learning tasks often
involves predicting such categorical variables.

• Temporal and Spatial Coherence: this prior introduced in [5] is similar
to the natural clustering assumption but concerns sequences of observations:
consecutive (from a sequence) or spatially nearby observations tend to be easily
predictable from each other. In the special case typically studied, e.g., slow feature
analysis [139], one assumes that consecutive values are close to each other, or that
categorical concepts remain either present or absent for most of the transitions.
More generally, different underlying factors change at different temporal and
spatial scales, and this could be exploited to sift different factors into different
categories based on their temporal scale.

• Sparsity: for any given observation x, only a small fraction of the possible
factors are relevant. In terms of representation, this could be represented by
features that are often zero (as initially proposed by [100]), or more generally by
the fact that most of the extracted features are insensitive to small variations of
x. This can be achieved with certain forms of priors on latent variables (peaked
at 0), or by using a non-linearity whose value is often flat at 0 (i.e., 0 and with
a 0 derivative), or simply by penalizing the magnitude of the derivatives of the
function mapping input to representation. A variant on that hypothesis is that
for any given input, only a small part of the model is relevant and only a small
subset of the parameters need to be updated.
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• Simplicity of Factor Dependencies: in good high-level representations, the
factors are related to each other through simple, typically linear, dependencies.
This can be seen in many laws of physics, and is assumed when plugging a linear
predictor on top of a learned representation.

7 Conclusion

Deep learning and more generally representation learning are recent areas of
investigation in machine learning and recent years of research have allowed to
clearly identify several major challenges for approaching the performance of these
algorithms from that of humans. We have broken down these challenges into four
major areas: scaling computations, reducing the difficulties in optimizing param-
eters, designing (or avoiding) expensive inference and sampling, and helping to
learn representations that better disentangle the unknown underlying factors
of variation. There is room for exploring many paths towards addressing all of
these issues, and we have presented here a few appealing directions of research
towards these challenges.
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Abstract. The amount of digitally available information that is au-
thored in languages other than English has been rapidly increasing over
the last decade. This results in a distribution of information not only
across different sources but also different languages. While various areas
within natural language processing, such as machine translation, infor-
mation extraction, and cross-language information retrieval, have made
substantial advances over the last few years, they have done so mostly
by addressing challenges that lie within the confines of their respective
sub-area. Multilingual information access on the other hand spans the en-
tire spectrum of these areas, requiring approaches that combine insights
and methods that cross the boundaries of these individual research ar-
eas. In this talk, I will give an overview of a number of scenarios where
cross-language technologies from different areas within natural language
processing have benefited from each other in the past, but also discuss
some of the challenges and opportunities that lie ahead of us.

Keywords: machine translation, cross-language information retrieval.

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, p. 38, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.science.uva.nl/~christof


Unsupervised Rhyme Scheme Identification

in Hip Hop Lyrics Using Hidden Markov Models

Karteek Addanki and Dekai Wu

Human Language Technology Center
Dept. of Computer Science and Engineering

Hong Kong University of Science and Technology, Hong Kong
{vskaddanki,dekai}@cs.ust.hk

Abstract. We attack a woefully under-explored language genre—lyrics
in music—introducing a novel hidden Markov model based method for
completely unsupervised identifica-tion of rhyme schemes in hip hop
lyrics, which to the best of our knowledge, is the first such effort. Unlike
previous approaches that use supervised or semi-supervised approaches
for the task of rhyme scheme identification, our model does not assume
any prior phonetic or labeling information whatsoever. Also, unlike pre-
vious work on rhyme scheme identification, we attack the difficult task of
hip hop lyrics in which the data is more highly unstructured and noisy.
A novel feature of our approach comes from the fact that we do not man-
ually segment the verses in lyrics according to any pre-specified rhyme
scheme, but instead use a number of hidden states of varying rhyme
scheme lengths to automatically impose a soft segmentation. In spite of
the level of difficulty of the challenge, we nevertheless were able to obtain
a surprisingly high precision of 35.81% and recall of 57.25% on the task
of identifying the rhyming words, giving a total f-score of 44.06%. These
encouraging results were obtained in the face of highly noisy data, lack
of clear stanza segmentation, and a very wide variety of rhyme schemes
used in hip hop.

1 Introduction

Among the many genres of language that have been studied in computational
linguistics and spoken language processing, there has been an inexplicable dearth
of work on lyrics in music, despite the major impact that this form of language
has across almost all human cultures. We aim to spur research addressing this
gap, by bringing the statistical methods of language technologies to bear upon
modeling issues in song lyrics. An ideal starting point for this investigation is hip
hop, a genre of music that emphasizes rapping, spoken or chanted rhyming lyrics
against strong beats or simple melodies. This complex domain presents a fertile
range of challenges for learning since there is typically no obvious structure in
terms of rhyme scheme, meter, or overall meaning.

As a first challenge in learning hip hop lyrics, we attack the problem of rhyme
scheme identification. Rhyming is central to many genres of music, and is taken

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 39–50, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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to an extreme level of importance in hip hop. Although statistical methods have
been applied to identify rhyming patterns in poetry, most of the approaches
either restricted themselves to a narrow and structured domain such as sonnets.
Some of the approaches incorporated morphological and phonological features
that are language specific while some used supervised learning methods using
labeled data.

The domain of hip hop lyrics is very unstructured when compared to classical
poetry which makes it hard for the model to make any kind of assumptions
about the data. We use to the term unstructured to describe degree of permitted
variation in the meter of the lyrics and the large number of colloquial words and
slangs that are common in hip hop subculture. The variance in the permitted
meter makes it hard to make any assumptions about the stress patterns of verses
in order to identify the rhyming words. The broad range of terms used in hip
hop make it hard to use of off-the-shelf NLP tools for doing phonological and/or
morphological analysis. Problems discussed above are exacerbated by differences
in intonation of the same word and lack of robust transcription.1

However, hip hop lyrics do contain enough information to identify words that
rhyme as rhyming is one of the characteristic features of hip hop lyrics. This
high degree of rhyming enable us to learn the rhyme schemes in a completely un-
supervised manner without making any language dependent assumptions. Iden-
tification of rhyme schemes also provides useful information about the overall
structure of the songs and the variation of rhyme schemes within a single song.
Further, accurate identification of rhyming words will enable compilation of large
scale rhyming dictionaries which are currently manually compiled [1]

In this paper, we introduce a novel method for completely unsupervised iden-
tification of rhyme schemes in hip hop lyrics that utilizes an HMM model, which
to the best of our knowledge is first such effort. We discuss some of the previous
work that applies statistical methods to the problems similar to rhyme scheme
detection in various domains in section 2. In section 3 we discuss our algorithm
and provide motivation for our choice of the HMM structure. Sections 4 and
5 talk about our experimental setup and results respectively. Conclusions and
future research directions are proposed in section 6.

2 Related Work

Most of the work in the past involved automatic analysis of poetry to discover
word to word relationships, stress patterns [2] and rhyming words [3]. Results
were combined with language models to generate new poems [2,4,5].

The stress pattens of words in English rhythmic poetries were analyzed by [2].
Their task was to assign stress patterns to words where the meter of each line
is known. A meter is the beat that is heard when the poem is read aloud. For
example, Iambic is a common meter where the words sound like da-DUM da-
DUM da-DUM. The words were labeled S for light tones and S' for stressed tones,
e.g. beLIEVE would be labeled S S'. Finite state transducer was applied to all

1 http://languagelog.ldc.upenn.edu/nll/?p=2824

http://languagelog.ldc.upenn.edu/nll/?p=2824
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the words in Shakespeare’s sonnets to assign probable stress patterns. Combining
stress patterns with language models for fluency, a poem was generated.

Apart from stress patterns, the positions of the words in a line of Chinese
poems were also suitable to learn word associations. Researchers have used sta-
tistical machine translation (SMT) to generate lines in a Chinese couplet, duilian
[5]. Given a single line of a couplet, an n-best list of “translations” that were
potential candidates for the next line were generated. Subsequently, each of these
lines were analyzed and eliminated according by applying linguistic constrains
to obtain the most suitable option.

SMT algorithms were used in conjunction with stress patterns and rhymes
found in a pronunciation dictionary to produce translations of poems [4]. Al-
though many constraints were applied in translating full verses of poems, in
practice it was difficult to satisfy all the constraints. For example, some of the
translations contained rhyming words but did not give the same meter to the
line.

Graph theory had been applied to analyze the rhyming and therefore inferred
the pronunciation of words in old poetry for an English rhyming corpus [6].
Training data was obtained from poetries where the pronunciation of the words
could found in a pronunciation dictionary. The pronunciations were represented
by the International Phonetic Alphabet(IPA) symbols. A word was assumed to
rhyme with another when the IPA symbols ended similarly. The rhyming words
were organized into rhyme graphs where the nodes were words and edges were
rhymes. However, this method gave large clusters of words that had the same
IPA endings but did not fully rhyme, such as ‘bloom’ and ‘numb’.

Automatic lyric generation given melodies was also investigated [7]. The train-
ing data for the model included melodies and the associated lyrics, where the
lyrics were represented using the KNM system, where K, N and M represented
the long vowel, short vowels and consonants respectively. The trained model was
then used to label any input melody with the KNM system. Subsequently, words
were chosen to fit the KNM system of the lyrics and constraints were applied to
make sure that the lyrics were meaningful.

Most of the past work in this vein can be classified into two categories. The first
category uses some form of prior linguistic knowledge about the domain, such
as pronunciation dictionaries or phonological or morphological information. The
second category uses unsupervised learning methods to identify word association
probabilities but enforces harsher constraints warranted by the domain, such as
a set number of words in a line, or a set meter. Our current work differs in
the sense that we present a completely unsupervised model on a domain that
inherently has very few such constraints. For example, not all words in the lyrics
are a part of the lexicon. Hip hop does not require a set number of syllables in a
line, unlike poems (especially in classical poetry where, for example, an octave
has exactly 10 syllables per line and 8 lines per stanza). Also, surprising and
unlikely rhymes in hip hop are frequently achieved via intonation and assonance,
which makes it hard to apply prior phonological constraints.
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Our current work was inspired by the work done on unsupervised identification
of rhyming words in poems [3]. To learn the probabilities of rhyming words, a set
of chosen hidden rhyming patterns were applied by labeling the last word of each
line with a rhyme label, such as A in a ABAB rhyme scheme. However, unlike
the original model our model cannot afford to make any assumptions about the
meter of the lyrics and the length of each rhyming scheme. Hence we extend the
model to accommodate the more unstructured domain of hip hop lyrics. Further
details about our extension are provided in the following section.

3 Detection of Rhyming Words

A collection of hip hop lyrics typically contains repetition of rhyming pairs. For
example, the word y‘all rhymes with real across different songs by different
artists. This can be partly attributed to the scarcity of the rhymes and to the
similarity in the pronunciation caused by similarity in the music “beat” patterns.

In this section, we will describe an unsupervised algorithm that harnesses
this repetition, based on a verse generation model. This algorithm shares some
similarity to the one proposed in [3]. But their model was proposed for English
poetry which is much more structured than hip hop lyrics. In order to account
for the wide range of variations in the domain of hip hop lyrics, we generalize
their model to account for the varying lyric lengths and possible sequences of
rhyming patterns in hip hop lyrics. We also use the exhaustive set of all possible
rhyme schemes (up to length 4) instead of manually selecting rhyme schemes.
The states are selected so that it is possible to generate all the rhyme schemes
and can be represented using a minimum number of states.

In this section, we will describe our model to identify the rhyming schemes and
the experimental pipeline that was used to obtain and process the lyrics. A brief
description of the choice of the rhyme schemes and the underlying motivation is
also provided.

3.1 Generative Model of a Verse

We assume that our data is a set of independent and identically distributed verses.
We propose the following generative model for a verse given a HMM of rhyming
schemes. The rhyming schemes could be of varying length and the choice of the
appropriate rhyming schemes is discussed in the subsequent subsections.

1. We have a fully connected HMM with i+1 states, where each state represents
a different rhyme scheme such as AA, ABAB etc. The output of each state
has variable length and transitions are possible from one state to all other
states as shown in Figure 1. The start state is not shown for the sake of
brevity.

2. For each l ∈ [1, n], pick a word sequence x1...T , choosing the last words and
the words before commas in each line as follows2 :

2 Manual inspection of the data revealed that words before commas also rhyme in
addition to words at the end of the line.
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(a) Choose a rhyme scheme r corresponding to the state i, from the start
state with a probability of πi using the transition probability of the
HMM.

(b) If, according to r, the ith line does not rhyme with any previous line
in the verse, pick as word xi from a vocabulary of line-end words with
probability P (xi)

(c) If the ith line rhymes with some previous line(s) j according to r, choose a
word xi that rhymes with the last words of all such lines with probability∏

j<i:ri=rj
P (xi|xj).

(d) Choose a rhyme scheme r corresponding to the state j with a probability
of aij using the transition probability of the HMM.

(e) Goto step (b).

The probability of a verse P (x) is obtained by summing over all state sequences
S that generate the x as shown in 1, where ot is the output of state st, S is a
sequence of states s1, . . . , st and πst denotes the probability that st will be the
first state in the HMM.

P (x) =
∑
S∈S

P (x)P (x|S) =
∑
S∈S

(
∏

t∈[1,|S|]
p(ot|st)astst+1 + πs1 ) (1)

The probability of generating a sequence of tokens ot of length n given a state
st corresponding to a rhyme scheme r (similar to the emission probabilities in
traditional HMMs) is given by 2. Ii,r is the indicator variable for whether line i
rhymes with at least one previous line under r.

P (ot|st) = P (x|st) =
n∏

i=1

(1− Ii,r)P (xi) + Ii,r
∏

j<i:ri=rj

P (xi|xj) (2)

3.2 Learning

We denote our data by X , a set of verses. Each verse x is represented as a
sequence of the line-end tokens and words before commas, x1, . . . , xl. We also
have a fully connected HMM, with a finite number of states, that is capable
of producing all the partitions of up to length 4 (details are given the next
subsection) via different path sequences. If each verse in the data is generated
independently the log likelihood of the data is

∑
x∈X logP (x). We apply expec-

tation maximization learning algorithm to maximize this over all possible rhyme
sequences produced by the HMM. While doing so, we re-estimate the latent vari-
ables θ, which represents a pairwise rhyming strength, and πi,aij , the initial and
transition probabilities for each of the states in the HMM. The distribution of
rhyme schemes θv,w is defined for all words v and w as a non-negative real value
indicating how strongly the words v and w rhyme.

The formulation described above is slightly different from the traditional
parameter learning problem of HMMs in the sense that states do not have a
multinomial distribution in terms of the emitted variables (or alphabets in a
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FSA formulation). They do however, share the distribution of pairwise rhyming
strength parameter, θ that needs to be updated instead of the emission proba-
bilities in the maximization step. The θv,w reflect the co-occurrence of v and w
which in turn indicates the probability that they might be rhymes.

Initialize: θ,π and a uniformly (giving θ the same positive value for all word
pairs that co-occur in a verse)

Expectation Step: Compute P (r|xu,...,v) = P (si|xu,...,v), where r is the rhyme
scheme of the state si. P (si|xu,...,v) = αi(u, . . . , v)βi(u, . . . , v) which indi-
cates the probability of being in the state i given the tokens in the sequence.
The likelihood of generating the sequence xu,...,v given a rhyme scheme r (or
a state si) is

P (x|r) =
n∏

i=1

(1− Ii,r)P (xi) + Ii,r
∏

j<i:ri=rj

θxi,xj∑
w θw,xj

(3)

P (xi) is simply the relative frequency of the word xi in the data.
Maximization Step: Update θ, a and π, where the state st has a rhyming

scheme r

θv,w =
∑

r,x:v rhymes with w

P (r|x) =
∑

r,x:v rhymes with w

γst(x) (4)

γx(st) =
αx(st)βx(st)

P (x)
(5)

where αx(st) and βx(st) are the forward and backward probabilities for the
state st outputting x. The update rules for the transition probabilities are
similar to that of a usual HMM formulation where u−w is the rhyme length
of state i.

ξu,v(i, j) =
αw,u(i)aijP (xu,...,v|j)

P (x)
(6)

aij =

∑
∀u,∀v ξu,v(i, j)∑
∀u,∀v γu,v(i, j)

(7)

where γu,v(i, j) is the same as the one mentioned in 5.
After convergence: Label each verse x with the best rhyme scheme,

argmaxS∈S P (S|x)

3.3 Choosing the HMM States

As mentioned earlier, the total number of rhyming patterns given a sequence
of length n is nth Bell number3 which is also equal to the total number of
partitions of size n. It is evident that the number of states grow exponentially

3 http://oeis.org/A000110

http://oeis.org/A000110
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Fig. 1. Fully connected Hidden Markov Model

as n becomes larger and exhaustively considering all the rhyme schemes for a
given verse could explode the size and therefore the computational complexity
of the training algorithm. In addition to that, considering most of these rhyming
schemes is not helpful for two reasons: (1) rhyme schemes that have rhyming
words seperated over long distances (such as ABCDA) are meaningless as the
listeners cannot keep track of more than previous four lines, and (2) it becomes
very hard to find rhyming word group that contain more than five or six words
that provide relevant meaning to the lyrics. Keeping these reasons in mind, we
have decided to place an upper bound of four on the length of the rhyme schemes.
This helps keep the computation tractable while providing enough flexibility and
co-occurrence counts.

The total number of partitions for all the sequences of length 4 are 23. However,
we do not need to exhaustively include all of them as most of the sequences can
be generated from sequences of smaller length. For example, a rhyme scheme of
length 3 AAB can be generated by a sequence of rhyme schemes of length 2
and 1, AA and B respectively. Therefore, for n = 1 to 4, we only choose those
sequences that cannot be generated from smaller sequences.

After the application of above constraints, we finally end up with the follow-
ing 9 states A, AA, ABA, AAA, ABAB, AABA, ABAA, BAAA, AAAA
which makes the HMM significantly compact compared to exhaustively consid-
ering all possible rhyme schemes. We hope that the transition probabilities will
help achieve the necessary bias towards states that are not explicitly represented
in the HMM.

4 Experiments

4.1 Dataset

We exploited the vast amount of user generated hip hop lyrics available on-
line. We implemented a web crawler to scrape websites that offer hip hop lyrics.
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We downloaded the lyrics of about 52,000 hip hop songs (about 800MB of raw
html content). The data was cleaned by stripping HTML tags, various metadata
(e.g., the artist, song, lines corresponding to a chorus, beats, etc.) Verses were
identified using simple heuristics and marked up. We also normalized for special
characters and case differences, and filtered out any malformed HTML tags left
in the data. We then extracted the end-of-line words and words before all the
commas from each verse. We obtained a corpus containing 260,000 verses with
4.2 Million tokens (with around 153,000 unique tokens).

4.2 Evaluation

The performance of our model was evaluated on the task of labeling a given
verse with the rhyme schemes. As there are currently no annotated gold stan-
dard corpora for the evaluation of performance on such a task we performed
manual evaluation. As our model is completely unsupervised, we chose a ran-
dom sample of 75 sentences from our training data as our test set. Two native
English speakers were asked to annotate the verse with a gold standard rhyme
scheme. They were asked to segment any rhyme schemes of length more than
four appropriately. Precision and recall were aggregated for the Viterbi parse [8]
of each verse against this gold standard and the f-score was calculated.

5 Results

In this section, we present the results of our experiment. Firstly, we report the
number of types and tokens in our corpus and make an empirical comparison of
the frequency of the types to that of a Zipfian distribution to establish that our
corpus is comparable with other naturally occurring natural language data [9].
In the next subsection, we present some examples of the identified rhyming pairs
and discuss some errors that the model is prone to making. Finally, we discuss
precision and recall scores on a randomly selected subset of the training data.

5.1 Cumulative Probability Distribution

The occurrences of each of the 153673 words in all the songs were counted, given
by the cumulative frequency. The words were organized into bins where each
bin represented a cumulative frequency interval of 100, i.e. the bin ranked 1 will
have words that appeared between 0-100 times. The total number of words in
each bin was counted to get the probability distribution over the range of fre-
quencies. Figure 2 showed a graphical illustrations of the cumulative probability
distribution of each bin against rank of the bin.

Results show that the cumulative probability of the words and the ranks
follow a distribution similar to the the Zipfian distribution to a certain extend.
The law states that many words appear only a few times in the language and a
few words appear many times, which can be roughly approximated by 1/Rank
where the most occurred word occurred approximately twice as much as the
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Fig. 2. Frequency density of word occurrence in the corpus

second and three times as much as the third. This relationship is said to hold
for any corpus in natural language utterance. The similarity suggests that the
data used here is a representative sample of naturally occurring data and our
method can be applied to other hip hop lyrics corpora with similar distribution
and expect similar performance.

5.2 Rhyme Scheme Variations

In this section, we briefly describe some observations regarding the occurence of
rhyme schemes as learned by our model. As is the model bias with HMMs, the
transitional probabilities are higher when the transitioning state covers a longer
span. Rhyme schemes typically begin with states ABAB, AABA and ABAA.
In fact, there is a strong bias against beginning with states that correspond to
smaller rhyme schemes, which is a weakness. We have observed that this strong
bias towards states with large rhyme schemes sometimes results in improper
segmentation i.e., the model chooses to assign a longer rhyme scheme to certain
lines in the verse where using a short rhyme scheme would improve the overall
score. Somewhat surprisingly, we noticed that the transition probability from the
state AAAA to the state AA is almost 1. Upon data inspection, we observed
that this was due to the presence of chorus lines in the data which contained
successive repeated lines thereby biasing the model towards transitioning to the
state AA. The presence of chorus lines also explained the very high transition
probabilities for transitions from states ABAB, AABA and ABAA to AA.

5.3 Preprocessing Errors Cause False Positive Rhyme Pairs

In order to determine whether or not our model identifies rhyming words cor-
rectly, we manually inspected the rhyming pairs with highest pairwise rhyming
strength. From Table 1, we can notice that the model does identify rhyming word
pairs fairly accurately. The model also identifies rhyming words that are not in
English such as “sonorisateur – l’heure”. Most of the pairs with high scores were
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Table 1. Samples from some of the top rhyming pairs

examples of rhyming pairs log probability

sonorisateur l’heure 0

seazin weezin 0

rieces telekineses 0

on longjohn -0.000608862

in homosapien -0.0018521

convenant parent -1.05447

convenant it -1.09564

convenant transparent -1.14791

convenant terminated -45.0261

convenant loot -48.0058

convenant incarcerated -102.884

fairly accurate although we found some pairs which were not really rhymes but
were semantically related such as “steppenwolf – wild”, “voldemort – horcruxes”
and “eenie-meenie – minie-mo”. This is due to the fact that these tokens oc-
curred very infrequently and were mislabeled as rhymes because there was no
other way to explain the data given our model. We also show an example of
the top pairwise rhyming strengths of the word “covenant” with other words in
Table 1. The rhyming words “parent” and “transparent” are identified correctly
and the pairwise rhyming strength is low for others. The rhyming pair “it” is
incorrect but has a high probability. Upon inspecting the data, we noticed that
this was due to the presence of a comma after “it” in the lyric which caused it
to be considered as a likely rhyming candidate. Such preprocessing errors were a
major source of errors in rhyme pair identification and most of the false positives
contained stop words before a comma. We believe better preprocessing heuristics
will help alleviate the problem and improve the accuracy of our model.

5.4 Measurement of Labeling Accuracy

We obtain a precision of 35.81% and a recall of 57.25% giving an f-score of
44.06%. We find these results to be very encouraging in the face of highly noisy
data, lack of clear stanza segmentation, and a very wide variety of rhyme schemes
used in hip hop. Table 2 shows an example verse labeled with the viterbi parse
using the model after the 10 iterations of EM. The stanzas “sicker—remenants—
liquor” and “radiation—head–ahead—instead” are labeled correctly, while the
stanza “are—these—leave—tv” has “these” incorrectly labeled as rhyming with
“leave” and “tv”. The model is prone towards committing such false positive
errors especially for tokens that do not belong to the rhyme scheme which also
explains the lower precision and higher recall. This is due to the inherent bias of
HMM models towards minimizing the number of transitions. Hence, the token
is incorrectly added to the rhyme scheme instead of creating a separate state for
the single token. A possible solution could be to introduce an appropriate bias in
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Table 2. Viterbi labeling of the example

The clock ticks, — A
— your name off the list B
Life moves quick so we gotta move quicker A
The world’s devilish, — B

— makin me sicker A
I smell the remanents, — B
— of drugs sex and liqour A

The kids are, — B
— immune to these A
Cos they leave, — A
— they get a fix on they new tv A

Parents dont need to talk to their kids no more B
They feed em videos, — A
— show em the internet A
Log on to the porn site, — A

— here we go B
Television, — A
— the drug of a nation A
Breeding ignorance, — A

— feeding radiation B
Frenzhal hit the nail on the head A
Wish we were sailing ahead A
But we’re shipwrecked and failing instead A

But the tests have changed, B
— we’re all passin A
So long as your a expert in arson A
I’m askin, — A

— which ways up, B
cos my compass has gone A
You know what? I’m a let my beatin heart be my guide through the eye of the A
storm A

the initial transition probabilities to counteract the model bias of choosing longer
rhyme schemes. Also, noisy transcription of lyrics such as incorrectly placing the
last token “storm” on a separate verse line, affect the performance of the model.

6 Conclusion and Future Work

We presented a novel unsupervised algorithm to identify the rhyme schemes
in hip hop lyrics. We presented the learning algorithm, discussed the nature
of the corpus and presented precision and recall against a manually annotated
gold standard. These results are very encouraging given that our task is highly
unstructured compared to similar tasks performed on other domains . Also, no
clear segmentation of rhyme schemes makes our task more challenging. In the
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future, we would like to experiment with different rhyme scheme selections and
weighting schemes for the transition probabilities. Also, the rhyme pairs learnt
in the model can be used in tandem with language models to generate fluent
and rhyming hip hop lyrics.
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Abstract. Topic boundary detection in French TV Broadcast News is
addressed in this paper with an approach based on the combination of
two views: lexical cohesion and speaker role analysis. We propose an im-
proved selection strategy from the classical lexical cohesion curve as well
as an integrated supervised classification approach that jointly exploits
the two views. The combination of these methods leads to significant im-
provements on a rich French database composed of shows from 7 different
channels.

Keywords: Topic boundary detection, lexical cohesion, speaker role.

1 Introduction

Story segmentation is the task of detecting topic boundaries in a given content.
It has received attention for TV Broadcast News (TVBN) segmentation through
several research programs (SDR,TDT, TRECVID), but still remains a problem
of interest. In particular, previous studies applied on a corpora of traditional
TVBN format while channels nowadays are trying to differentiate from this and
propose some more modern settings.

The most commonly adopted thematic structuration consists to use of pack-
ages: the anchor speaker in studio introduces a new topic, followed by a report or
an interview. However, some shows propose variations in this structure. For this
study, a corpus of TVBN shows from 7 different French channels has been con-
sidered. These channels can be separated in two categories. The first one corre-
sponds to the three main French generalist channels (TF1, France2, France3) and
can be grouped under the term Big Three, analogously to the American Broad-
cast network typology. They propose a more “classical” TVBN show, whether
at midday or at night. The other one corresponds to specialized News channels
(LCI, France24) or generalized channels but with more “modern” structuration
of their shows (Arte, M6). Some are fully composed of anchor voice-overs (a
video topic narrated by the anchor speaker) without any studio scene. In this
case (eg. for M6), the anchor is not visible. Some shows may also contain readers,
where the anchor reads a (usually short) topic without any additional illustra-
tion. Several short readers can occur one after the other. A topic may also not
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involve the anchor person at all. For instance, in the middle of the Arte shows,
a succession of short voice-overs narrated by a reporter is included among tradi-
tional packages. At the end of some France3 shows, series of local news package
extracts are added to the national News show, each of them being narrated by
their corresponding local reporter. Taking into account all this diversity, makes
it a difficult segmentation task.

Three categories of cues or features have been explored in BN: lexical (lexical
cohesion, chaining strength), acoustic (pause duration, speaker change, speech
type) and visual (new title caption, anchor face) cues. This latter can be very
efficient when designed for a specific show but not always generic. Indeed, Anchor
face isn’t guaranteed at all times (e.g channel M6). Title Captions can be a good
indicator of topic transitions, but approaches based on this cue fail if there
is no caption. Lexical cues [21] and audio evidence of the anchor speaker [19]
are turning out to more generic cues and we have chosen to focus on these
features. Many topic segmentation systems for BN are based on lexical cohesion
over automatic transcription of the spoken content. For example in [2], [22] and
[15] the authors focus on lexical Similarity Computation which reveals topic
boundaries via semantic variations across the transcription.

In this paper, we rely on the audio, not exploiting any information from the
video. We propose to exploit lexical cohesion and speaker role analysis in several
ways, whether through unsupervised boundary selection approaches or super-
vised classification approaches. We significantly improve the unsupervised selec-
tion approach by suitable use of speaker role information and further increase
performances by merging the unsupervised and supervised approaches.

The rest of this paper is divided into five sections. In Section 2, we describe
the lexical cohesion approach implemented in this study. In section 3, the inte-
gration of structural information is presented. The details of the properties of
our database and present experimental results are given in Section 4. Finally in
Section 5, we discuss the related works.

2 Lexical Cohesion Based Segmentation

In order to compute lexical cohesion in this study, we have implemented a vari-
ation of the TextTiling algorithm with slight adaptation to the context of pro-
cessing automatic transcriptions of speech. First, the segment units under con-
sideration are breath groups (BG): sequences of words between two pauses in
a speech turn. Thematic boundaries are searched among potential boundaries
between each adjacent BG pairs. Lexical units are lemmas obtained thanks to
the lia tagg1 probabilistic syntactic parser. For a given show, the set of lexical
units (or tokens) is the set of different lemmas obtained after discarding function
words and words whose confidence score is below a given threshold.

1 http://pageperso.lif.univ-mrs.fr/~frederic.bechet/download.html

http://pageperso.lif.univ-mrs.fr/~frederic.bechet/download.html


Story Segmentation of Broadcast News 53

2.1 TF − IDF Weighting

In Information Retrieval (IR), tf − idf weighting is widely used to translate the
capacity of a term t to discriminate the document d relatively to a collection of
documents. Usually, tf − idf coefficients are estimated on large corpora (e.g [9]).
Following [13] who propose a segmentation algorithm for spoken lectures, we
have chosen to be independent to any external data information and to estimate
tf − idf only from the content of the BN show which is being processed.

In [13], the authors splitted the show into N uniform chunks, each of them
representing the notion of document in the classical IR.

A term t in a breath group x will be associated to a weightw(c(x), t) depending
on the chunk c(x) in which it occurs. In the following equation, c(x) is the index
of the chunk containing the BG x.

w(c(x), t) = tfc(x),t × idft, where idft = log(
N

nt
) (1)

where tfc(x),t is the number of times the term t occurs in chunk cx and nt is the
number of chunks containing term t.

2.2 Similarity Computation

TextTiling considers a sliding window of size k and consists to compute the
lexical cohesion for each potential boundary between preceding and following
blocs of k BGs. The cosine similarity is adapted in order to integrate chunk
based on tf − idf weighting.

For a given potential boundary i between BGs xi and xi+1, the similarity (or
lexical cohesion) between the k preceding BGs (bi) and the k following BGs

(bi+1) is:

sim(i)=

∑
t

((∑
x∈bi

fx,t × w (c (x) , t)
)× (∑

y∈bi+1
fy,t × w (c (y) , t)

))
√∑

t

(∑
x∈bi

fx,t × w (c (x) , t)
)2×√∑

t

(∑
y∈bi+1

fy,t × w (c (y) , t)
)2

(2)where fx,t is the frequency of term t in BG x.
The number of chunks N is computed automatically for each show as a func-

tion of its overall duration and the average topic duration estimated on a held-out
set of shows.

The benefit of our Similarity Computation approach with the intra-show
scheme is that, it does not require a priori information unlike other approaches.
For example, [9] make use of a keyword extraction tool in [12] for the tf − idf
computation which is trained on a large news database. The authors of [2] use
pivot-documents in similarity computation. Blocs of breath groups are consid-
ered similar if they are similar to the same pivot-documents.

2.3 Boundary Selection in the Unsupervised Approach

Several strategies have been explored to select boundaries from the lexical cohe-
sion curve plotted along all the BGs of a show. The classical boundary selection
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approach [11] consists to detect valleys as the lowest point between two peaks
(local maxima), compute their depth as the sum of the differences between the
lowest point value and the left and right peaks values, and select xi as a bound-
ary if the valley depth d(i) is above a given threshold (thresholding approach).
Note that d(i) is equal to 0 when there is no valley at the ith position.

Similarity measures based on sparse matrices are prone to local phenomena
which make it difficult to exploit the lexical cohesion curve with the classical
threshold on valley depth method. Several deep valleys can occur in a very short
time interval or a thematic boundary may result in several successive valleys
with low depth value.

We introduce an iterative algorithm which directly exploits lexical cohesion,
and builds partition S of a show in segments.

Iterative Splitting Algorithm

1. For initialisation, the entire show is placed in S as one coherent segment.
2. Each segment is split into two, the split point is the minimum value of score

(if below a fixed threshold).
3. BGs within a time interval around the selected split point are discarded for

the next iterations.
4. The resulting segments are submitted to step 2.
5. Algorithm should be discontinued if there is no possible partition.

Step 3 guarantees that local phenomena with several very close low values of
lexical cohesion will not lead to several consecutive topic boundary selections.

3 Integration of Lexical and Structural Information

3.1 Selection Criterion in the Unsupervised Approach

If the latter approach is more robust to local minima, it remains dependent
on a threshold which has to be set globally. Without any other information
source, it remains likely to generate too many false alarms if we want to achieve
a satisfactory level of recall. In order to alleviate this drawback, we propose
to add structural information in the boundary selection process. Speaker role
information has been integrated with two perspectives:

– Posterior validation of boundary hypotheses: apply detection on the whole
document, and select only those hypotheses that correspond to the anchor.

– Prior selection of candidate boundaries: apply boundary detection only in
anchor speaker turns.

These two paradigms can apply to both the thresholding approach and the split
approach. As valley detection is a local process, posterior validation and prior
selection are equivalent, which is not the case for the split approach. Notice that
these paradigms assume that all topic boundaries are associated to the anchor
speaker which is not always the case as mentioned in the introduction. This will
be commented in the experimental part.
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3.2 Features for Supervised Classification

In the previous section, we have proposed various selection strategies in order to
better exploit the lexical cohesion curve. In this section we propose to integrate
structural and lexical cohesion information through machine learning approaches.
Each BG xi has to be classified into boundary or non-boundary, thanks to a
statistical classifier that relies on the following set of features: lexical cohesion
value sim(i), valley depth d(i) and speaker role.

Two statistical classifiers have been used. First, a classifier based on Condi-
tional Random Fields (CRF) has been designed. If CRFs are more traditionally
used for sequence labeling tasks we have chosen to use them for this binary
classification task because of their ability to efficiently model contextual infor-
mation. Features associated to the preceding and following BG are considered,
as well as the combination between sim(i) and d(i). An overall bigram on BGs
is also implemented. In order to optimally convert numerical cohesion and depth
value into discrete features, the discretize4crf tool implementing the MDLPC
optimization method [5] is used2. On the other hand, the icsiboost classifier [4]
has been implemented for this binary classification task with a number of itera-
tions equal to 600. If CRFs are able to model contextual information, icsiboost
handles numerical values in a finer-grained way. For instance for our data, more
than half of the iterations choose as a weak classifier a threshold on sim(i), (with
around 100 different thresholds).

Due to this complementarity, we have chosen to use both classifiers and to
merge their hypothesis with the merging strategy described in the next section.

3.3 Merging Boundary Hypothesis

Multiple boundary hypotheses coming from various approaches (supervised and
unsupervised) can finally be fused according to the following process: first a new
set of hypothesis is considered by simply taking the union of the initial sets, then
close boundaries are merged. The merging step is performed iteratively: find the
2 closest boundaries, replace them by one boundary (e.g. the temporal average),
repeat iteratively while the temporal span between the 2 closest boundaries is
below a given threshold (e.g 10s).

4 Experimental Framework

4.1 A Multi-channel Database

Experiments are carried out on a set of 33 French TVBN shows from 7 different
channels. The first set (BigThree) corresponds to the three main French gener-
alist channels (TF1, France2, France3). The other set corresponds to specialized
News channels (LCI, France24) or generalist channels but with more modern
structuration of their shows (Arte, M6). As can be seen in Table 1, shows from

2 http://www.irisa.fr/texmex/people/raymond/Tools/tools.html

http://www.irisa.fr/texmex/people/raymond/Tools/tools.html
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Table 1. Corpus description

BigThree Other Total

Number of shows 18 15 33

Av. duration ≈ 30 min ≈ 15 min ≈ 33 min

Nb. of topic boundaries 366 113 379

Av. duration of topics 124s 91s 115s

these channels are shorter on average, with shorter thematic segments. Shows
from the Big Three propose twice as much topics in a show but last three times
as longer. TVBN shows from other channels have a steadier rhythm.

In all cases, TVBN shows are presented by one anchor speaker who is not
always visible but this is not a problem since our approach only relies on audio
information. A topic may not involve the anchor person at all: this is the case
for 5.8% of the topic boundaries in our corpus.

4.2 Experimental Framework

Automatic transcription is performed with an industrial Speech to Text (STT)
engine: the VoxSigma speech recognizer V3.5 from Vocapia Research, based on
LIMSI technology [6]. It achieves 16.1% word error rate on our corpus. Words
that have a confidence measure below 0.5 are discarded. The window size for lex-
ical cohesion has been optimized on a held-out corpus and set to 16. Speaker role
analysis is performed following the multi-stage process described in [3].The first
stage determines the anchor speaker through a specific speaker clustering sub-
task with temporal distribution information. The remaining speaker turns are
classified into reporter or other on the basis of lexical, structural and acoustical
information. This process achieves 90% accuracy at speaker turn level [3].

The speaker role classification system has been trained on automatic transcrip-
tions and automatic speaker turn segmentation. Hence our overall system only
needs training data labeled in terms of speaker role and topic boundaries. All ex-
periments dealing with supervised classification are achieved through the leaving-
one-out framework, each show being processed by a model trained on all the
remaining shows.As can be found in several other studies, the first and the last top-
ics of a show are discarded when they correspond respectively to the titles presen-
tation or summary. These segments should be processed with a different approach.
Performances are measured in terms of recall and precision by comparing time in-
formation associated to hypotheses and reference boundaries. The timestamp of a
boundary hypothesis is the beginning of the BG immediately following it, while a
reference timestamp corresponds to the beginning of the first speaker turn of the
topic segment. The assumption that boundaries are concomitant to breath groups
is reasonable: the average distance between our reference boundaries and the be-
ginning of the BG containing it is 1.1s (2.1s standard deviation). Following other
studies in the literature, an interval of 10s before and after a boundary hypothesis
is tolerated in order to decide if it is correct.
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5 Experimental Results

Fig. 1 illustrates unsupervised approaches performances. The Valley curve cor-
responds to the classical selection strategy associated to the original TextTiling
algorithm. For V alley posteriorvalid, only boundaries corresponding to the an-
chor speaker are kept. Both curves are plotted by varying the threshold on the
valley depth. Posterior validation increases the F-max by 15.6% absolute.
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Fig. 1. Recall and precision for the unsupervised approaches

The results obtained with the baseline TextTiling Valley approach (42.8% F-
measure) are slightly better than the ones presented in [7] (38.8% F-measure on
France2 shows), it can be explained by a more robust implementation of tf-idf
relying only on the current content. The Split strategy without any validation
already provides better performance than Valley with a 53.2% F-max. All Split
curves are plotted by varying the threshold on lexical cohesion. Both anchor
based selection approaches further improve performances, with an advantage for
prior selection with a 69.2% F-max.

This first set of experiments reflects that significant improvements can be
achieved on the basis of the same lexical cohesion curve with appropriate bound-
ary selection strategy and appropriate use of speaker role information, with a
61% relative improvement over the baseline thresholding approach. It is interest-
ing to note that anchor information itself is not sufficient. In fact, systematically



58 A. Bouchekif, G. Damnati, and D. Charlet

selecting the first BG of an anchor speaker turn as a topic boundary would yield
a 57.5% F-measure (58.6% recall and 56.5% precision).

Supervised classification approaches alone perform poorly (36.1% F-measure
for boost and 49.0% F-measure for CRF) but they both have a precision rate
above 80%. Actually, the binary classification process suffers from the unbal-
anced data issue as the proportion of topic boundaries among the total amount
of BGs is low. Merging the two supervised approaches (boost + crf) yields 53.9%
F-measure. Table 2 shows how merging hypotheses obtained with the best un-
supervised approach can further improve performances. 2.5% absolute improve-
ment in F-max is obtained when merging with boost + crf.

Table 2. Merging with supervised approaches

Split priorselect recall precision F-measure

alone 70.7% 67.7% 69.1%

with crf 72.9% 69.5% 71.2%

with boost 73.2% 68.6% 70.8%

with boost+crf 74.2% 69.1% 71.6%

It is important to notice that the tolerance value for evaluation has a signifi-
cant influence. For instance, for the last experiment with boost + crf, raising the
tolerance from 10s to 15s increases F-max from 71.6% to 78.4% (6.8% absolute
gain). 15s is presented as the TDT standard in [1] but we kept 10s in order to
be compliant with studies on French. Furthermore, 10s seems more reasonable
from an applicative point of view.

Another advantage of supervised approaches is their ability to easily integrate
new features. We have run a set of experiments simply adding the duration of
BGs with both classifiers. In fact, the average duration of BGs at topic bound-
aries is 9.8s compared to an overall 5.9s for all BGs. Simply adding this infor-
mation yielded 73.3% F-max.

We have performed separate evaluation on shows from the BigThree channels.
As show in table 3 the last system performing 73.3% F-measure, yields 75.4%
on the BigThree subset and 67.9% on the other subset.

The BigThree channels are easier to process. As mentioned in section 4.1,
thematic segments for the other channels are shorter which it can explain that
lexical cohesion doesn’t perform as well as for the BigThree. A separate tuning for
this type of shows could be achieved in future work. Furthermore, the proportion
of topic boundaries that are not related to anchor is lower for the BigThree (3.8%)
than for the others (11,8%).
Despite all this, our approach still yields improvement for all channels. Finally,
our best system achieves 77.2% recall for 69.7% precision. We have tried to
extend the paradigm of the unsupervised approach selection from anchor only
to anchor+ reporter, allowing boundaries to be searched in reporter turns, but
we were not able to improve the performance. Adding role information in the non-
anchor BGs for training supervised models didn’t improve performance either.
More training data would be necessary.
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Table 3. Performance of the best system on the different types of shows

recall precision F-measure

BigThree 79.1% 72.1% 75.4%

Other 72.4% 63.9% 67.9%

ALL 72.2% 69.7% 73.3%

6 Related Work

Story segmentation has been studied in the domain of Broadcast News and,
more recently for multi-party meeting segmentation (as in [17] with the CALO
Meeting Assistant System or in [10] for leader detection in multi-party meetings)
or lecture segmentation in [13]. In the domain of TVBN, most of the studies
have been carried out on English and Mandarin, as well as Arabic [14]. Some
works [7] [8] have focused on unsupervised approaches and proposed improved
estimation of lexical cohesion for processing automatic transcriptions. Lexical
cohesion has been used with the traditional Textiling approach [21] or exploited
with more sophisticated algorithms (eg. with adaptive language modeling in
[8], [18]). We have chosen to focus on lexical cohesion and to design efficient
strategies to exploit linear lexical cohesion curve. Several studies have proposed
to train supervised models to detect topic boundaries, exploiting lexical and
multimodal features. Lexical feature extraction in [16] and [1] consists to analyse
the transition words that are likely to introduce a new topic. We have not used
this type of features but have relied on lexical cohesion instead as in [21], [20].
Several non-lexical features have been explored in the literature: prosodic [16],
structural from audio [1] and multimodal [4] [20]. In this paper, we haven’t
included so far any multimodal information but we have focused on speaker role
information. The authors of [20] and [21] also exploit anchor speaker information,
but contrarily to our French TVBN shows, their shows are presented by two
anchors. It is the anchor speaker change that is used as an indicator for topic
boundary, which is more favorable situation compared to our situation with a
single anchor speaker. In this context, [20] report a 79.8% F-measure on Chinese
BN using CRFs with multimodal features, on a set of shows from two channels,
with a 15s tolerance. In this study we have used a diverse corpus composed of
7 different TV channels and have proposed a robust approach, with an overall
73.3% Fmeasure, with audio only features and a 10s tolerance.

7 Conclusion

We have proposed an integrated system that exploits lexical cohesion and speaker
role information. We have proposed both an improved boundary selection strat-
egy in the unsupervised framework, and a supervised approach that exploits
structural and lexical cohesion features. The system is robust to various TVBN
show formats. It performs better on “traditional” shows but also provides good
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performance on less classical types of TVBN shows. Only considering anchor de-
tection yields 57.5% F-measure, we were able to achieve an F-measure of 53.6%
with lexical cohesion only, and 71.6% through the integration of both informa-
tion sources. As a perspective to this work, several other structural features can
be added to the supervised approach and the detection of these particular topic
boundaries that are not linked with anchor speaker still need to be handled.
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Abstract. This paper studies the benefits provided by a single-pass
Automatic Speech Recognition (ASR) exchange-based combination ap-
proach for spoken dialog system. Three famous open-source ASR systems
are used to experiment this approach in the framework of Spoken Lan-
guage Understanding (SLU). On the ASR side, single-pass ASR systems
are used with an online acoustic model adaptation using the previous ut-
terances said by a speaker. On the SLU side, a competitive CRF-based
SLU system is applied on outputs of ASR system to obtain the seman-
tic concepts. The evaluation is done on the French PORT-MEDIA test
data in terms of both Word Error Rate (WER) and Concept Error Rate
(CER). While the best single pass system used alone shows a CER of
29.8% for a WER of 22.8%, single-pass ASR exchange-based combina-
tion reaches a CER of 27.3% for a WER of 26%. This CER is only
slightly higher than the one reached by a 5-passes ASR system which
obtained a CER of 26.8% for a WER of 22.8% in better conditions, i.e.
better acoustic model adaptation made on all the speech utterances said
by a speaker, advanced feature extraction techniques and search graph
rescoring using language model with higher order.

Keywords: Automatic speech recognition, spoken dialog understand-
ing, ASR system combination.

1 Introduction

Automatic Speech Recognition (ASR) systems are usually based on a multi-
passes framework. There is a consensus on the fact that a multi-passes archi-
tecture enables to recognize speech with a higher degree of accuracy than a
single-pass architecture. However, these multi-passes ASR systems require an
iterative decoding scheme which is time consuming and cannot be appropriate
for applications such as human-machine spoken dialog systems.
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In a previous work [2], we proposed a low latency ASR combination of par-
allelized single-pass systems based on a local ROVER and a driven decoding
algorithm using bags of n-grams. These bags of n-grams were extracted from
recognition hypotheses provided by auxiliary ASR systems and were used by a
primary ASR system to alter its linguistic scores. The major goal of such parallel
combination was to couple the advantages (recognition accuracy and system ro-
bustness) provided by system combination techniques with the speed of a single
pass system.

ASR combination was deeply studied these past 15 years, as summarized in the
overview of ASR combination presented in [17]. The most frequent combination
architecture is ROVER, introduced in [6], but other kinds of combination, based
on cross adaptation of acoustic models [19] or language models [16], are also
popular. Recently, in [11], a driven decoding algorithm was proposed to take
into account automatic transcriptions of different ASR systems to modify in-
the-fly n-gram scores of a ASR system. This permitted to significantly reduce
the word error rate and inspired the ASR exchange-based combination approach
presented in [2].

In this paper, we present a study which evaluates the benefits provided by a
single-pass ASR exchange-based combination approach for spoken dialog system.
Such application implies a fast system response while multi-passes ASR system
do not seems as well appropriate as a single-pass ASR in terms of speed. It is
known that a single-pass ASR system reaches significantly lower performances
than an multi-passes one in terms of accuracy. Three famous open source ASR
systems are used to experiment this approach in the framework of the French
PORT-MEDIA data. Section 2 discusses about the applicative context of study,
i.e. Spoken Language Understanding in the framework of the PORT-MEDIA
project presented in section 4.1. Section 3 describes an exchange-based decoding
paradigm, called BONG-EBD, for Bag Of N-Grams Exchange-Based Decod-
ing. Before concluding, section 4 presents the experiments with the comparison
of results obtained by the three state-of-the-art ASR systems: CMU Sphinx
project [21], RWTH ASR toolkit [22], Kaldi ASR system [20] and their combi-
nation.

2 Spoken Language Understanding

In most of today’s commercial applications based on speech recognition, the
quality of the human-machine interaction is still far from being enjoyable and
effective. To improve the usefulness and acceptability of automatic dialog sys-
tems, a good mean is to increase the level of intelligence of automatic systems
up to SLU, but also to accelerate the system response.

SLU is the interpretation of words automatically transcribed from a speech
signal: it aims to obtain a conceptual representation of natural language sen-
tences. The ASR component has to be precise enough to facilitate the semantic
interpretation process, and has to be fast in order to contribute to the speed
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of system response. Currently, SLU consists often in a slot sequence tagging
for spoken language, and such SLU module are usually based on Conditional
Random Fields (CRF) [4].

3 Exchange-Based ASR Combination

Exchange-based ASR combination is based on the Driven Decoding Algorithm
(DDA) [13] which was first introduced to help LVCSR systems to process audio
documents associated to imperfect manual transcripts (i.e. subtitles). Although
they are inexact, these transcriptions represent useful information exploited to
drive the search space pruning and allow system accuracy improvement. By
using DDA, a DTW (dynamic time warping) alignment is performed between
the system partial hypothesis and the imperfect transcription. This alignment is
used to compute a matching score α which is integrated in the computation of
the linguistic score L:

L(wi|wi−2, wi−1) = P (wi|wi−2, wi−1)
1−α(wi)

where P (wi|wi−2, wi−1) is the probability provided by the initial trigram model
for the word sequence wi−2wi−1wi and α(wi) is the estimated matching score.
The matching score depends on the similarity between the system hypothesis
wi and the imperfect transcription. The linguistic score L replaces the n-gram
probability as the linguistic part of the usual formula used in speech recognition.
By switching imperfect manual transcriptions by ASR outputs coming from
other systems (called auxiliary systems), DDA can be used to combine ASR
systems, as presented in [12]: when ASR decoders are used in parallel, we call
this approach an exchange-based ASR combination.

Improvements were recently introduced in [1]: for instance, to speedup the
combination process, auxiliary transcriptions are presented as a bag-of-n-grams
(BONG), and DTW alignment is replaced by a simple search in the correspond-
ing bag. Using these modifications, the driven decoding is straightforward effi-
ciently generalizable: integration of a new auxiliary system is simply done by
adding its recognition hypotheses to the corresponding bag. For a small number
of auxiliary systems (e.g. three), BONG-EBD combination outperforms ROVER
[6], even if the primary system is guided by less accurate auxiliary systems. In
this study, the BONG driven decoding is integrated in the primary system. De-
tails to compute the BONG matching score are described in [1].

4 Experiments

Experiments were made to evaluate the impact of an ASR exchange-based com-
bination approach for spoken dialog system. ASR systems are evaluated on the
French PORT-MEDIA corpus in terms of Word Error Rate (WER) and Concept
Error Rate (CER) reached by applying a competitive CRF-based SLU system
on outputs of recognition systems.
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4.1 PORT-MEDIA Corpus

PORT-MEDIA is a French corpus related to the domain of ticket reservation
within the 2010 Festival d’Avignon [14]. 700 dialogues were recorded with a
wizard of Oz technique (a human agent mimics an automatic system): these di-
alogues were conducted by telephone. The dataset contains 10k user utterances
and 65,775 words, for a total of 1,920 distinct words. The corpus has been man-
ually transcribed and semantically annotated. The semantic annotation uses 35
concepts (e.g. theatreName, nbTicket, answer, . . . ). Each concept is supported
by a sequence of words, the concept support. The null concept is used to anno-
tate every word segment that does not support any of the 34 other concepts. On
average, a concept support contains 2.6 words and 2.5 concepts are included in
a utterance. This corpus has been divided into three sub-corpora : the TRAIN
corpus is made up of 500 dialogues, the DEV is made up of 100 and the last 200
dialogues constitute the TEST.

4.2 ASR Systems

All the ASR systems used in the experiments share the same dictionary (about
5K words) and the same language model trained on the PORT-MEDIA train-
ing corpus and some articles from ”Le Monde” newspaper. In the following,
some precisions are presented about ASR singularities, especially at the acoustic
level. The three single-pass ASR systems are presented, in addition to a brief
description of the competitive 5-passes system used as contrastive.

Sphinx. In these experiments, the single-pass Sphinx ASR system is used with
a CMLLR [15] adaptation of acoustic models. For each user utterance, the CM-
LLR transformation matrix is computed on the automatic transcriptions of the
previous user utterances in the same dialog: we call this on-line adaptation.
This ASR system is trained using 39 dimensions acoustic features consisting
of 13 static MFCCs and their first- and second-order derivatives. Since PORT-
MEDIA task is phone calls for human-machine interaction, these features are
computed corresponding to narrowband analysis. Acoustic models are trained
using a set of data from distinct sources: ESTER-1, ESTER-2, EPAC [5] and
PORT-MEDIA training data. Acoustic SAT-CMLLR models are composed of
7500 tied states and 28 gaussians for each state. These models are then adapted
to speaker gender (male/female) using MAP [8] adaptation of means, covariances
and weights.

Kaldi. Kaldi is an open-source toolkit based on Finite State Transducers (FST)
framework. Experiments are carried out using version 1.0 of Kaldi toolkit [20].
Kaldi acoustic models are trained using all ESTER-1, ESTER-2, EPAC and
PORT-MEDIA corpora. Acoustic features are based on mel-frequency cepstral
coefficients, 13 MFCC-features coefficients are first extracted and then expanded
with delta and double delta features. Acoustic models are composed of 5000
context-dependent states and 210.000 Gaussians. The states tying is performed
using a decision tree based on automatically phonetic question. In addition, on-
line fMLLR linear transformation acoustic adaptation is performed.
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RASR. The RWTH ASR (short RASR) [22] system is an open-source speech
recognition toolkit based on a Beam search decoding algorithm developed by the
RWTH Aachen University. Acoustic models are trained using the same corpus
used for Kaldi system. Acoustic models were trained using MFCC coefficients:
first 16 MFCC static coefficients are extracted. A sliding window of size 9 frames
is applied to previous features and 144-dimensional vectors were obtained. These
feature vectors were then projected down to 45 components using LDA trans-
formation. Acoustic models are composed of 6500 context-dependent states and
703.980 gaussians. Unlike Kaldi systems, the states tying is performed using a
decision tree based on manual phonetic questions. The RASR on-line acoustic
adaptation is performed using CMLLR and MLLR [7] linear transformations.

LASR. LASR, the LIUM ASR system, is an expansion of the best open-source
ASR system participating in the ESTER 2 evaluation campaign [3]. The LASR
system is based on a multi-passes decoding scheme using two types of acoustic
features. The first set is composed by 39 dimensional PLP features (13 PLP
with energy, delta, and double-delta). The second type is composed by proba-
bilistic features produced by a Multi Layer Perceptron (MLP), trained using the
ICSI QuickNet libraries [23]. The input speech representation of our MLP is a
concatenation of nine frames of 39 MFCC coefficients (twelve MFCC features,
energies, Δ and ΔΔ). The topology of the MLP is the following: the first hidden
layer is composed of 4000 neurons, the second one, used as the decoding output,
of 40 neurons and the third one, used for training, of 102 neurons (34 phonemes,
3 states per phoneme). The MLP features were decorrelated by a PCA transfor-
mation which allows an additional dimensionality reduction. The second feature
vector has 79 parameters resulting from the concatenation of the MLP and PLP
(39 PLP + 40 MLP).

Acoustic models for 33 phonemes and 5 kinds of fillers are trained using a set
of data from distinct sources. The training corpus is composed of 511 hours of
wide band and 60 hours of narrow band training data.

The decoding strategy is close to that used in LIUM’08 system [3]. The in-
volved passes are as follows:

1. The first pass uses gender acoustic models and a 3-gram language model.
Only PLP features are used.

2. The word-graphs provided by the first pass are used to compute a CMLLR
transformation for each speaker on all the user utterances (off-line adapta-
tion). This second pass is performed using SAT and Minimum Phone Error
(MPE) acoustic models with CMLLR transformations. Only PLP features
are used.

3. In the third pass, the word-graphs of previous pass are used to drive a graph-
decoding with full 3-phone context with a better acoustic precision, particu-
larly in inter-word areas. This pass generates new word-graphs. PLP features
are used in association with MLP.
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4. The linguistic scores of the third pass word-graphs are updated using a 4-
gram language model.

5. The last pass generates a confusion network from the word-graphs and ap-
plies the consensus method to extract the final one-best hypothesis

4.3 SLU System

The PORT-MEDIA corpus is close to the MEDIA corpus [18]: they follow the
same paradigms and specifications and differ only on the domain application.
Therefore we developed a statistical semantic annotation system based on a
Conditional Random Field (CRF) tagger [10]. Actually, this method has shown
the best semantic annotation performance on the MEDIA corpus [9], on manual
and automatic transcriptions. We apply the CRF++ toolkit on the TRAIN
corpus to obtain a standard semantic model. Each word is represented on two
levels: the word itself and its pre-defined semantic categories1 (e.g.: TOWN for
avignon, SURNAME for anne, ANIMAL for cat, . . . ). The two previous words
and the two following ones are taken into account in a unigram or bigram to
take the semantic label decision on the word.

In the same way of the WER computation, the CER is computed between
the sequence of reference concepts (one per concept support) and the sequence
of hypothesis concepts (in both case the null concept is discarded). As a result,
we obtain a CER of 17.8% on the reference transcription of the TEST set. A
comparative result (CER equals to 18.9%) had been obtained on PORT-MEDIA
in [14].

4.4 Results

Table 1 presents the results obtained by each single-pass ASR system on the
development and the test corpora in terms of word error rate. While the Sphinx
decoder reached the best result on the development corpus with a WER of 28.1%,
the Kaldi decoder reaches the best WER on the test data with 29.5% of WER.

Table 1. WER for each single-pass ASR system applied to the PORT-MEDIA data
sets. Each ASR system uses an online acoustic model adaptation.

single-pass ASR systems

data Sphinx Kaldi RASR

dev 28.1% 28.9% 30.4%

test 31.5% 29.5% 33.0%

In table 2, the performances reached by the SLU system applied to the recog-
nition outputs from each single-pass ASR system is presented. The best results
are reached on the Kaldi outputs with a CER of 30.5% on the development
corpus, and 29.8% on the test corpus.

1 The list of the different semantic categories has been built by Christian Raymond
on the MEDIA Corpus.
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Table 2. Concept Error Rate reached by applying a CRF-based SLU system on recog-
nition outputs from the single-pass ASR systems

Automatic transcripts

data Manual transcripts Sphinx Kaldi RASR

dev 18.7% 31.3% 30.5% 35.2%

test 17.8% 31.4% 29.8% 34.2%

WER obtained by different combinations of single-pass ASR system are pre-
sented in table 3.

Table 3. Word Error Rate for each single-pass ASR system combination applied to
the PORT-MEDIA data sets. WER of the 5-passes LASR system are also presented.

Single-pass ASR systems 5-passes

data ROVER BONG BONG+ROVER LASR

dev 23.9% 25.7% 23.9% 21.5%

test 26.2% 29.8% 26.0% 22.8%

The ROVER combination includes the 3 single-pass decoders. The BONG-
EBD approach is performed by using the Sphinx system as the primary ASR
system. The primary system deals with the recognition hypotheses provided by
Kaldi and RASR considered as auxiliary systems, and uses them to modify some
n-gram scores. The ROVER+BONG combination consists in replacing in the
ROVER combination the outputs produced by the Sphinx decoder used alone
by the outputs produced by the Sphinx decoder used as a primary ASR system in
the BONG-EBD framework. On the development and the test corpora, ROVER
and ROVER+BONG single-pass ASR combinations have a WER greater than
the WER obtained by the 5-passes LASR system: the WER of 5-passes system
is 3.2 point lower than the ROVER+BONG on the test data. But table 4 shows
that this difference is almost insignificant in terms of CER: the ROVER+BONG
single-pass ASR combination allows to reach a CER of 27.3% while the 5-passes
ASR system allows a CER of 26.9%.

Table 4. Concept Error Rate for each single-pass ASR system combination applied to
the PORT-MEDIA data sets. CER for the 5-pass LASR system are also presented.

Single-pass ASR systems 5-pass

data ROVER BONG BONG+ROVER LASR

dev 28.3% 30.1% 28.3% 27.1%

test 27.6% 30.7% 27.3% 26.9%
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5 Conclusion

This study has evaluated the benefits provided by an ASR exchange-based com-
bination approach for spoken dialog system. Three open source ASR systems
were used to experiment this approach in the framework of SLU: on the French
PORT-MEDIA test data, while the best single pass system used alone reaches
a CER of 29.8%, single-pass ASR exchange-based combination permits to reach
a CER of 27.3%. This CER is only slightly higher than the one reached by a
5-passes ASR system which obtained a CER of 26.8% in better conditions: more
training data for acoustic models, a longer computing time and static acoustic
model adaptation made on all the speech utterances said by a speaker.

It is shown that combination of parallelized single-pass ASR systems seems to
be a competitive solution in the framework of SLU to accelerate the system re-
sponse in comparison to the use of a multi-pass ASR system. More, such combi-
nation of single-pass systems significantly reduces the word error rate in compari-
son to the best single-pass ASR system used alone. A such solution is particularly
relevant with the recent hardware evolution: multi-cores and multi-CPUs can fa-
cilitate and accelerate the parallelization of single-pass ASR systems. Last, this
paper presents the first experiments on automatic speech processing applied to the
PORT-MEDIA data, which will be soon easily available by contacting ELRA2.
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3. Deléglise, P., Estève, Y., Meignier, S., Merlin, T.: Improvements to the LIUM
French ASR system based on CMU Sphinx: what helps to significantly reduce the
word error rate?. In: Interspeech, Brighton, UK (September 2009)

4. Deoras, A., Sarikaya, R., Tür, G., Hakkani-Tür, D.: Joint decoding for speech
recognition and semantic tagging. In: Interspeech 2012, Portland, Oregon, USA
(September 2012)
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Abstract. This paper describes a similarity-based technique which produces a 
good estimate of part-of-speech tags and their morpho-syntactic relations of 
Chinese compound words before they are fed into a tagger. The technique relies 
on a set of features from Chinese morphemes as well as a set of collocation 
markers which provide hints on the syntactic categories of the compound 
words. The technique is trained with a compound words database with more 
than 53,500 disyllabic words. Experimental results show the tagger with the 
technique outperforms its counterpart.  

Keywords: Part-of-speech tagging, Chinese morphemes, Chinese word struc-
tures, Machine learning. 

1 Introduction 

The importance of lexical semantic resources in all domains of natural language 
processing (NLP), ranging from word segmentation, shallow parsing, semantic role 
labeling to question answering and text classification, is well recognized. However, 
even large lexical databases, such as WordNet (Fellbaum, 1998), do not include all 
the words encountered in broad-coverage NLP applications. The quality of these  
resources depends certainly, to a large degree, on the considerable efforts of lexico-
graphers, who must keep pace with both language evolution and knowledge develop-
ment in all relevant domains. In Chinese, the situation is even more taxing, as each 
Chinese morpheme carries meaning, new words can be simply constructed by the 
concatenation of morphemes, and there is no delimiter between words. As a result, the 
number of out-of-vocabulary (OOV) words in Chinese is huge, and identifying their 
part-of-speech (POS) tags is one of the challenging tasks in Chinese NLP.  

On the other hand, most Chinese words are compounds consisting of two or more 
morphemes. Most Chinese have a direct correspondence across syllable, character, 
and morpheme. That is, a Chinese character in print virtually always, with a few ex-
ceptional cases, represents one syllable which is most often a morpheme. The combi-
nations of the morphemes in Chinese compound words are certainly not random, but 
exhibit several different morpho-syntactic relations. The relations include mainly the 
endocentric, coordinative, subject-predicate, verb-object, verb/adjective complement 
and others. Except some exocentric nominal compound words which are semantically 
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opaque, such as 東西/dong1 xi5/(east west: thing), the canonical endocentric modifi-
er-noun/verb relation and the coordinative relation are constructed from morphemes 
which contribute to word meaning. Packard (2000) describes the intimate relationship 
between Chinese words and their components, including how the identities of Chinese 
morphemes are word-driven. He argues that the morphological relations are not only 
important in understanding Chinese, but can be used to pinpoint the semantic head 
morpheme in Chinese. A semantic head is a part of the word which is a more general 
instance of what the entire word means, often defined in terms of the is-a relation. For 
example, in endocentric compounds, say 綠葉/lv4 ye4/(green leaf: leaf), the second 
morpheme葉/ye4/(leaf) is the semantic head that expresses the main meaning of the 
word. The role of the first morpheme is to modify the second one. Similarly, mor-
phemes in the coordinative relation lean to have the same role in indicating the mean-
ing of a given word. The component morphemes in coordinative compounds have the 
same lexical properties, and have either similar or opposite meanings. For example, 
the morphemes跳 /tiao4/(jump), and 躍 /yue4/(jump) in the word 跳躍 /tiao4 
yue4/(jump jump: leap) share the same subject as well as the lexical properties. 

In this research, we have designed and implemented a means of predicting the POS 
of Chinese compound words. While it is considered that the notion of the head is 
posited to be knowledge that is intrinsic to a native speaker’s knowledge of words 
(Packard, 2000), another aspect of this research is to explore a means to have a good 
approximation of the morpho-syntactic relation MSyR(W) which is virtually the key to 
determine its head morpheme. A non-native speaker, who understands the right-
headedness of nouns and their relevant morpho-syntactic relations, knows that綠葉
/lv4 ye4/(green leaf: leaf) is some kind of leaf, even though he/she never comes across 
the word. This awareness may be particularly important in Chinese for, at least, three 
reasons. First, the same head morpheme often appears in a large number of Chinese 
words. For example, the morpheme 葉/ye4/(leaf) forms many compound words in-
cluding樹葉/shu4 ye4/ (tree leaf: leaf), and 嫩葉/nen4 rou4/(young leaf: leaf bud); 
Second, most Chinese compounds built hierarchically from other compounds, such as 
綠葉樹/lv4 ye4 shu4/(green leaf tree: tree with green leaves). The morpho-syntactic 
relation of the compound provides a good hint on the sense estimation of the word; 
Third, a noun, that is not in endocentric relation, does not necessarily follow the 
Right-Headedness Principle for noun as advocated by Packard (2000: 194), such as in 
the word 根葉/gen1 ye4/(root leaf: in all aspects). The morpho-syntactic relation in a 
word governs the compositionality of the morphemes and imposes constraints in its 
possible meaning. While the semantic category of a compound word could be re-
vealed by the head morpheme which, in turn, relies on its morpho-syntactic relation, it 
is imperative to explore an objective means to have a good approximation of their 
morpho-syntactic relation. In this research, all the predictions are based on two impor-
tant types of features: morpheme properties, indicating the major structure of the 
word, and the word neighbors in raw text. The paper is organized as follows. In Sec-
tion 2, we first provide a review of the related work. We then describe, in Section 3, a 
technique in predicting the POS tag of a word and its morpho-syntactic relation. The 
technique relies on a supervised ensemble machine learning technique which makes 
use of a set of linguistic features for the predictions. It shortlists the potential POS 
tags and morpho-syntactic relations by imposing necessary, even not sufficient,  
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constraints on their features. In order to demonstrate the capability of the technique, a 
POS tagger is devised to tag a test corpus used in an open evaluation. The detailed 
results are given in Section 4, followed by a conclusion. 

2 Related Work 

One of the major strategies in tagging out-of-vocabulary (OOV) words is based on 
Frege’s Principle of Compositionality, which states the sense of a complex can be 
compounded out of the senses of the constituents (Frege, 1948). The meaning of a 
complex, such as an OOV word, can be identified by combining or concatenating the 
meanings of the morphemes that make up the word. The study on the impact of Chi-
nese morphemes on OOV words is throughout the literature. Chen & Bai (1998) study 
the distribution of OOV in the Sinica corpus, and find that there are 14 different me-
thods of morpheme concatenation in Chinese. Other than proper nouns, composite 
and derived words constitute the majority of OOV words in the Chinese corpus. In-
spired by the information content for similarity measure (Resnik, 1998; Lin, 1998), 
Chen & Chen (2000) describe a similarity-based model of learning morphological 
rules for Chinese compound nouns. Their model uses entropy to compute the similari-
ty measure between an OOV word and the words in Cilin (Mei et al., 1984). Tseng & 
Chen (2002) make use of the k-NN classifier to devise a morphological analyzer that 
can segment a word into a sequence of morphemes. The analyzer can also predict the 
morph-syntactic relationships between morphemes, such as modifier-head, verb-
object, and resultative verb, and is based on the assumption that the morpho-syntactic 
relation of an OOV word reflects its sense. Kwong & Tsou (2003) suggest POS tag-
ging should not only be theoretically valid but also sufficiently capture the extent of 
categorical fluidity as reflected by the corpus. Ng & Low (2004) suggest that charac-
ter-based approach is better than a word-based approach for POS tagging in Chinese, 
simply because Chinese characters have well defined meanings. They also suggest 
all-at-once approach, that is, available information should be integrated into a unified 
framework to make the prediction. Gao et al. (2006) use a support vector machine 
(SVM) to estimate the likelihood that two adjacent characters will form a new word. 
Four linguistically motivated features are found to be indicative of word formation, 
namely, independent word probability, anti-word pairs, word formation analogy, and 
morphological productivity. Although they do not target POS tagging, they find that 
their SVM classifier fits well with 1+11 and 2+1 OOV identification. Chung & Chen 
(2010) analyze the morpho-syntactic behaviors of about 4,025 morphemes and classi-
fy them into 4 semantic types. They also propose constraint-based resolutions and a 
set of composition rules to predict the POS tags. Inspired by the work above,  
in this paper, we take one step further to propose and implement a mechanism to pre-
dict the POS tag and the morpho-syntactic relation of the OOV words based on the 
distributional similarity, which is based on a distributional hypothesis that words that 
occur within similar neighbors are semantically similar (Harris, 1968; Dagan et al., 
1999; Pereira, et al., 1993). This hypothesis has already given rise to a large body of 
work on automatic thesaurus generation (Widdows, 2003; Curran & Moens, 2002; 

                                                           
1 1 = monosyllabic word    2 = disyllabic word. 
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Lin et al., 2003), named-entity recognition (Ciaramita & Johnson, 2003), lexical en-
tailment (Geffet & Dagan, 2005), and co-occurrence retrieval (Weeds & Weir, 2006). 
More specifically, researchers have attempted to assign OOV words automatically 
into WordNet using a corpus-based approach (Schütze, 1992; Curran, 2005). We have 
devised a set of collocation markers which uncover the co-occurrence between the 
word and some key linguistic clues in a corpus under the distributional hypothesis. 
Words that occur within similar contexts are syntactically similar. The detailed dis-
cussion of our approach is as follows. 

3 Similarity-Based POS Tagger 

The basic idea of the tagger in predicting the POS tags and the morpho-syntactic rela-
tions (MSyR) is based on two important types of features: morpheme properties and 
their word neighbors in raw text. In the POS tagging, the system architecture of the 
tagger is shown in Figure 1. Whenever there is an OOV word in the input sentence, 
the word is first subject to a similarity-based technique to unveil its potential POS 
tags before it is further processed in a base POS tagger. The fundamental rationale of 
our similarity-based technique is that whenever we have zero evidence for a higher-
order, we “back off” to a lower-order. We approximate the POS of the OOV words by 
their constituent morphemes information, without becoming trapped in a subjective 
linguistic quagmire.  

 

Fig. 1. Architecture of the POS tagger 

To build a similarity-based technique for OOV words in the POS tagger, the fol-
lowing questions arise naturally: (i) Given a word W and a large corpus of raw Chi-
nese text, is it possible to have a good estimation of the POS(W)? (ii) What features 
are important to determine its POS(W)? (iii) Do the features, that give a good predic-
tion of POS(W), produce a good or even better estimation on its morpho-syntactic 
relation (MSyR)? To answer the above questions, for each disyllabic word, the follow-
ing feature templates, shown in Table 1, are extracted for the training in a supervised 
machine learning algorithm in our similarity-based module. In the feature templates, 
M, R, and MPOS refer to the morpheme, the radical of the morpheme, and its mor-
pheme POS respectively. We denote n =0 for the left morpheme, 1 for the right one.  
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Table 1. Categories of features used in the technique 

 Feature Template 
(a) Morpheme features, Mn (n = 0, 1) 
(b) Radical features, Rn (n = 0, 1) 
(c) POS of the morphemes, MPOSn (n = 0, 1) 
(d)  Phonetic components 
(e) Collocation marker features 

For example, given a disyllabic word W in the database, say綠葉/lv4 ye4/(green 
leaf: leaf), templates (a)–(c) result in the following features, M0=綠 /lv4/(green),  
M1=葉 /ye4/(leaf), R0=糸 /mi4/(silk), R1=艸 /cao3/(grass), MPOS0=Ag, MPOS1=Ng 
where Ag, Ng represent an adjective and noun morpheme in the tagging convention 
of a lexicon respectively. We further decompose the pinyin of a Chinese morpheme 
into several phonetic components which involve consonants, vowels and tones. For 
example, the components for the morpheme綠/lv4/(green) are l, v (ü), 4. In addition, 
collocation marker features are used to uncover the co-occurrence between the disyl-
labic word W and some key linguistic clues in a corpus under the distributional hypo-
thesis. Words that occur within similar contexts are syntactically similar.  

Table 2. Sample of collocation markers 

Major Category Example of Collocation Markers 

Function words (把 ba3|被bei4|得de2)W  

Tense (已經yi3 jing1|現已xian4 yi3)W 

Comparable (很hen3|極ji2|較jue2) W 

Negative adverb L+"不 bu4"+ LR, where W = L+R 

Complement "又 you4"+ L+"又you4"+R, where W = L+R 

"shi" phrases L+"是shi"+R, where W = L+R 

"di4" phrases W+"地di4" 

A Chinese corpus with more than 2 billion characters is first segmented by a seg-
menter2 with an F-score of 98.5%. Similar to the work in Chinese Word Sketch de-
veloped in Academia Sinica (2006), these collocation markers reveal the syntactic 
context of the words and provide some hints on their part-of-speech. For example, the 
word W which follows the word 已經 /yi3 jing1/(already by: have been) is most like-
ly to be a verb. Similarly, the word which is right after the word 的/de/(of) has a good 
chance to be a noun. More than 100 collocation marker features are designed and then 
deployed to extract from the corpus. Table 2 shows some of the markers and their 
major categories. All these extracted features are then presented to a supervised en-
semble machine learning technique. The basic idea of ensemble techniques involves 

                                                           
2 http://HanMosaic.baf.cuhk.edu.hk 
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considering several classification methods or multiple outputs to reach a decision. An 
ensemble of classifiers is a set of classifiers whose individual decisions are combined 
in some way, typically by weighted or un-weighted voting to classify new examples. 
They tend to yield better results than a single classifier in those situations when dif-
ferent classifiers have different error characteristics and their errors can compensate 
each other. Two questions need to be addressed when building and using an ensemble 
that integrates the predictions of several classifiers. First, what data are used to train 
the classifiers so that the errors made by one classifier could be remedied by the oth-
er? Second, how are the individual classifiers fused or integrated to produce a final 
ensemble prediction? We address the first question by introducing two heterogeneous 
and mutually independent attribute feature sets, namely the morpheme and its related 
features, i.e. (a)-(d) in Table 1 and the collocation marker features as discussed in 
Table 2. Instead of training all the features to form a single giant classifier, we pro-
duce two distinct, sometimes diversified, training sets of data to form two separate 
moderate classifiers, in the hope that they will produce a highly accurate prediction. 
The second question is addressed by employing the boosting algorithm. Boosting is 
an effective method that produces a very accurate prediction rule by combining rough 
and moderately inaccurate rules of thumb (Freund & Schapire, 1997). It generates the 
classifiers in an iterative way. At the early beginning, an initial base classifier using a 
set of training data with equal weight is first constructed. When the prediction of the 
base classifier differs from the expected outcome, the weight of the poorly predicted 
data is increased to an extent based on their misclassification rate on the preceding 
classifiers. As a result, the learning of the subsequent classifier will focus on learning 
the training data that are misclassified, or poorly predicted. This process continues 
until a specified number of iterations are reached or a predefined termination condi-
tion is met. As a result, the certainty factors, as discussed in Section 4, generated from 
all the classifiers will be fused to produce the final verdict for the prediction.  

In the preparation of linguistic data as shown in Table 1, we first extend a Chinese 
compound words database which is developed at Peking University (PKU). The data-
base originally contains more than 50,000 Chinese compound words with their word 
POS tags, morpheme POS tags, pinyin, as well as their morpho-syntactic relations 
(Liu et al., 2000). It involves 21 different types of word POS tags and 23 types of 
morpheme POS tags. In addition, in our experiments, we target only at the disyllabic 
words in the database simply because of their pre-dominance. OOV words are usually 
generated in the process of disyllabification in Chinese. The further breakdown of the 
word POS tags for all 53,753 disyllabic words is shown in Table 3. In order to have a 
better overall picture of the Chinese compound words and of the variety of morpho-
syntactic relations it presents, we study the distribution of six most popular morpho-
syntactic relations found in four major POS tags, namely noun, verb, adjective and 
adverb. As shown in Table 3, about 80% of nouns are endocentric while verb-object 
and coordinative relations seem dominant in Chinese verbs. Among all 3,957 adjec-
tives, more than 62% of them are coordinative compounds. This shows that the mor-
pho-syntactic relations in each POS class are not random, at least demonstrated in 
more than 90% of our 53,753 disyllabic words. This provides further evidence that 
morphemes and their morpho-syntactic relations do hint on the part-of-speech of the 
Chinese words. 
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Table 3. Distribution, in percentage, of 53,753 disyllabic Chinese words in six major morpho-
syntactic relations under four different POS tags 

 

4 Experiments and Results 

We train and test the above feature templates in C5.0 decision tree which is a tree-
based supervised machine learning model and plays an important role in many data 
analyses (Quinlan, 1993). A key advantage of the tree-based learning is its interpreta-
bility. The feature spaces partition is fully described by a single tree. Usually, if the 
training data exhibit regular patterns and are not random, classifiers that are in form of 
rulesets will be constructed after training. Otherwise, no classifiers will be generated. 
The rulesets consist of unordered collections of if-then rules, each associated with a 
value, called certainty factor CF, between 0 and 1. The factor indicates the confidence 
with which this prediction is made. During prediction, for the rulesets, a feature is 
used to classify a case if it is referenced by a condition of at least one rule that applies 
to that case. In addition, in this experiment, we apply the ensemble technique to en-
hance its predictive power. This technique creates a finite set of classifiers from ran-
dom sets of training instances and then uses them together for the prediction. During 
the experiment, all the disyllabic words, except the ones which cannot be found in the 
segmented corpus, in the database are trained. Similar collocation markers features 
are bundled together. As a result, more than 60 different attributes, as described in 
Tables 1 & 2, are then subject to the training in the tree-based learning. Under the 
same attributes sets, we conduct two sets of experiments using two different targets, 
i.e., word POS tags, POS(W) and their morpho-syntactic relations, MSyR(W). There 
are more than 10 different morpho-syntactic relations in the experimental data. To 
evaluate the performance of our similarity-based technique, a 90/10 training/testing 
strategy is employed. Table 4 summarizes the experimental details.  

Coordinative
Endocentric 

modifier-
noun

Verb-Object
Endocentric 

modifier-verb 
Suffix

Verb/Adj. 
complement 

Noun 10.1% 79.4% 1.8% 0.5% 3.4% 0.0%

Verb 29.4% 0.9% 35.5% 18.5% 1.5% 10.1%

Adj. 62.1% 5.0% 16.5% 9.2% 0.7% 0.9%

Adverb 14.2% 13.6% 26.9% 24.7% 8.4% 0.5%
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Table 4. Summary of the experimental details 

# of disyllabic words in the PKU database 53,753 
# of disyllabic words found in the database, but not in 
the 2-billion characters segmented corpus 836 
# of disyllabic words for training (90%)  47,626 

# of disyllabic words for testing (10%)  5,291 
Total # of attributes used 83 
Total # of classifiers 10 
Total # of cross-validation trials 10 
Target 1  POS(W) 
Target 2  MSyR(W) 

At the same time, we winnow some attributes systematically in order to filter the 
useful attributes from the unhelpful ones. Table 5 demonstrates the outcomes of five 
experiments in which different combinations of features are winnowed.   

Table 5. Training and testing of classifiers using different feature sets in five experiments 

Feature Set Exp01 Exp02 Exp03 Exp04 Exp05 
Morpheme  √ √ √ √ √ 
Radical  √ √ √ √ X 
POS (morpheme) √ X √ √ √ 
Phonetic Components √ √ X √ X 
Collocation Markers √ √ √ X √ 
Target 1: POS(W)           
    Training error (%) 10.5 Fail 5.9 11.3 6.5 
    Test error (%) 15.7 Fail 14.9 16.5 15.3 
Target 2: MSyR(W)           
    Training error (%) 7.1 Fail 1.2 9.3 7.5 
    Test error (%) 16.6 Fail 15.8 18.5 16.7 

From experiment Exp02, it is clearly shown that the morpheme POS is a prominent 
feature set in predicting the word POS. Without the morpheme POS, the tree-based 
learning fails to produce any indicative classifier. That is, the training data exhibit no 
regular patterns and are apparently random. As a result, no classifiers will be generat-
ed and the learning terminates during the experiment. In other words, morpheme POS 
is an important attribute in training the classifiers both for POS(W) and  MSyR(W). 
While the inclusion of the features from phonetic components produces some nega-
tive impacts, the devised collocation markers are significant. They improve the accu-
racy about 1.0% and 2.0% in learning POS(W) and MSyR(W) respectively, even 
though the two different classifiers rely on the collocation markers in different extent. 
For example, the collocation markers found helpful in learning the POS(W) include 
the tense markers, such as (已經yi3 jing1|現已xian4 yi3)W, "di4" phrases, such as 
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Table 6. Additional features used in the base POS tagger. POS1R is the POS tag of the first 
neighbor word at the right of the target word. 

POS2L POS1L Target Word POS1R POS2R   
Additional features in the 
base POS tagger 

√ √     PMI(POS2L, POS1L) 

√ √   PMI(POS1L, POS1R) 

    √ √   PMI(POS1R, POS2R) 

In addition, we adopt the performance of automatic POS tagging accuracy is equal 
to the ratio of sum of words with correct POS tags to sum of words in gold-standard 
sentences. Table 7 shows the performance of our tagger with and without the similari-
ty-based technique. During the experiment, 3-best POS tags of the OOV, which are 
deduced by the technique, are fed into the base tagger as shown in Figure 1. In this 
research, we only implement the similarity-based technique for disyllabic compound 
words and leave trisyllabic words intact. At the same time, there is no special treat-
ment for proper nouns. The accuracy of the POS tagging for OOV increases more 
than 24%, with a ripple effect of 1.1% increase for the IV. This raises the final accu-
racy to 95.3% while the state-of-the-art in the competition for the closed and open 
tracks are 93.41% and 93.40% respectively. 

Table 7. Performance of our tagger with and (without) the similarity-based technique, where IV 
and OOV represent the in-vocabulary and out-of-vocabulary words respectively 

  Total IV OOV 

Correct 88,290 (85,684) 82,881 (81,891) 5,409 (3,793) 

Incorrect  4,397 (7,003) 3,255 (4,245) 1,142 (2,758) 

Total 92,687 86,136 6,551 

Accuracy 95.26% (92.44%) 96.22% (95.07%) 82.57% (57.90%) 

5 Conclusions  

Unlike English, words in Chinese are not often associated with any apparent morpho-
logical features. As a result, porting an English POS tagger directly into a Chinese 
counterpart is usually ineffectual, if not impossible. Whereas previous research on 
Chinese OOV words mostly focuses on the identification of proper nouns, in this 
paper, the focus of interest is on Chinese compound words. We take advantage of the 
features from word structures as well as their neighbors in raw text, the linguistic 
hints from the collocation markers. We have devised a similarity-based technique to 
determine the part-of-speech into which an OOV word fits mostly and to study its 
impacts on the morpho-syntactic relations. While we have identified several major 
features that are helpful in the predictions, we apply the technique into a real POS 
tagger. Experiments show our technique renders a relatively good POS tagging  



 Predicting Part-of-Speech Tags and Morpho-Syntactic Relations 81 

 

accuracy. While the research on OOV tagging is still ongoing, one of the possible 
enhancements is to capture the senses of the morphemes into the technique. Focus 
should also be on a more detailed study on morpho-semantic constraints imposed by 
each morpheme. 

Acknowledgement. The work described in this paper was partially supported by a 
grant from the Research Grants Council of the Hong Kong Special Administrative 
Region, China (Project No. CUHK440609). 

References  

1. Chen, K.-J., Bai, M.-H.: Unknown word detection for Chinese by a corpus-based learning 
method. Computational Linguistics and Chinese Language Processing 3(1), 27–44 (1998) 

2. Chen, K.-J., Chen, C.-J.: Automatic semantic classification for Chinese unknown com-
pound nouns. In: COLING 2000, pp. 173–179 (2000) 

3. Chinese Word Sketch (2006), http://wordsketch.ling.sinica.edu.tw/ 
4. Chung, Y.-S., Chen, K.-J.: Analysis of Chinese morphemes and its application to sense 

and part-of-speech prediction for Chinese compounds. In: Proceedings of the Joint Confe-
rence of 23rd International Conference on the Computer Processing of Oriental Languages 
(2010) 

5. Ciaramita, M., Johnson, M.: Supersense tagging of unknown nouns in WordNet. In: Pro-
ceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, 
pp. 168–175 (2003) 

6. Curran, J.R., Moens, M.: Improvements in automatic thesaurus extraction. In: Proceedings of 
the ACL 2002 Workshop on Unsupervised Lexical Acquisition, Philadelphia, Pennsylvania, 
pp. 59–66 (2002) 

7. Curran, J.R.: Supersense tagging of unknown nouns using semantic similarity. In: Proceed-
ings of the 43rd Annual Meeting of the Association for Computational Linguistics, Ann 
Arbor, pp. 26–33 (2005) 

8. Dagan, I., Lee, L., Pereira, F.: Similarity-based models of word co-occurrence probabili-
ties. Machine Learning Journal 34(1-3), 43–69 (1999) 

9. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998) 
10. Frege, G.: On sense and reference. The Philosophical Review 57, 207–230 (1948) 
11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an 

application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997) 
12. Gao, J., Li, M., Wu, A., Huang, C.-N.: Chinese word segmentation and named entity rec-

ognition: A pragmatic approach. Computational Linguistics 31(4), 531–574 (2006) 
13. Geffet, M., Dagan, I.: The distributional inclusion hypotheses and lexical entailment. In: 

Proceedings of the 43rd Annual Meeting of the ACL, pp. 107–114 (2005) 
14. Harris, Z.: Mathematical Structures of Language. Wiley, NY (1968) 
15. Kwong, O.Y., Tsou, B.K.: Categorical fluidity in Chinese and its implications for part-of-

speech tagging. In: Proceedings of the Conference on European Chapter of the Association 
for Computational Linguistics, pp. 115–118 (2003) 

16. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of 15th Interna-
tional Conference on Machine Learning, pp. 296–304 (1998) 

17. Lin, D., Zhou, S., Qin, L., Zhou, M.: Identifying synonyms among distributionally similar 
words. In: Proceedings of the 18th International Joint Conference on Artificial Intelli-
gence, pp. 1492–1493 (2003) 



82     S.W.K. Chan and M.M.C. Chong 

 

18. Liu, Y., Yu, S., Zhu, X.: Construction of the contemporary Chinese compound words da-
tabase and its application. In: Zhang, P. (ed.) The Contemporary Educational Techniques 
and Teaching Chinese as a Foreign Language, pp. 273–278. Guangxi Normal University 
Press (2000) 

19. Mei, J., Zhu, Y., Gao, Y., Ying, H.: Cilin《同 義 詞 詞 林》梅家駒等 商務印書館 
(1984) (in Chinese) 

20. Ng, H.T., Low, J.K.: Chinese part-of-speech tagging: One-at-a-time or all-at-once? Word-
based or character-based? In: Proceedings of EMNLP, Barcelona, Spain (2004) 

21. Packard, J.L.: The Morphology of Chinese: A Linguistic and Cognitive Approach. Cam-
bridge University Press (2000) 

22. Pereira, F., Tishby, N., Lee, L.: Distributional clustering of similar words. In: Proceedings 
of the 30th Annual Meeting of the Association for Computational Linguistics, pp. 183–190 
(1993) 

23. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993) 
24. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its ap-

plication to problem of ambiguity in natural language. Journal of Artificial Intelligence 
Research 11, 95–130 (1998) 

25. Schütze, H.: Automatic word sense discrimination. Computational Linguistics 24(1),  
97–124 (1992) 

26. Tseng, H., Chen, K.-J.: Design of Chinese morphological analyzer. In: Proceedings of the 
First SIGHAN Workshops on Chinese Language Processing (2002) 

27. Weeds, J., Weir, D.: Co-occurrence retrieval: A flexible framework for lexical distribu-
tional similarity. Computational Linguistics 31(4), 439–475 (2006) 

28. Widdows, D.: Unsupervised methods for developing taxonomies by combining syntactic and 
statistical information. In: Proceedings of the 2003 Conference of the North American  
Chapter of the Association For Computational Linguistics on Human Language Technology, 
Morristown, NJ, pp. 197–204 (2003) 



 

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 83–92, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Statistical Error Correction Methods  
for Domain-Specific ASR Systems 

Horia Cucu1, Andi Buzo1, Laurent Besacier2, and Corneliu Burileanu1 

1 University “Politehnica” of Bucharest, Romania 
{horia.cucu,andi.buzo,corneliu.burileanu}@upb.ro 

2 LIG, University Joseph Fourier, Grenoble, France 
laurent.besacier@imag.fr 

Abstract. Whenever an ASR company promises to deliver error-proof tran-
scripts to the end user, manual verification and correction of the raw ASR tran-
scripts cannot be avoided. This manual post-editing process systematically  
generates new and correct domain-specific data which can be used to incremen-
tally improve the original ASR system. This paper proposes a statistic, SMT-
based ASR error correction method, which takes advantage of the past  
corrected ASR errors to automatically post-process its future transcripts. We 
show that the proposed method can bring more than 10% WER improvements 
using only 2000 user-corrected sentences. 

Keywords: ASR, error correction, language modeling, statistical machine 
translation (SMT). 

1 Introduction 

There are many applications in which general, large vocabulary ASR (Automatic 
Speech Recognition) systems are the only choice, because a potentially unknown 
speaker can potentially speak about anything. In this kind of applications the ASR 
word error rate (WER) is generally around 15-20%. However, most ASR applications 
have a much more specific task (limited number of speakers, speaking domain, etc.) 
and, for these simpler scenarios, the customer asks for better performance. Several 
model adaptation methods have been proposed to increase the general ASR’s perfor-
mance for a specific task. These methods require task-specific acoustic data to adapt 
the ASR’s acoustic model and task-specific textual data to adapt the ASR’s language 
model. The drawback of these model adaptation methods is that they require access to 
the internals of the ASR system and therefore they cannot be used if the ASR system 
is purchased as a black-box. 

Among the various ASR applications, there are cases in which the user can benefit 
from error-prone transcriptions (i.e. spoken document retrieval, on-line movie cap-
tioning, etc.), but there are also cases in which the transcription must be manually 
post-edited (corrected) to become useful (i.e. dictation, interviews/news transcription, 
etc.). In this second case, the ASR user will always post-edit the raw transcriptions to 
create error-proof transcripts (for the final reader), systematically generating new and 
correct domain-specific data. 
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This paper deals with the latter case, investigating the ways in which the user-
generated data can be used to incrementally improve the ASR’s output. Although this 
study also analyzes the scenario in which the ASR system itself can be improved (and 
shows that its language model can be adapted to obtain better transcriptions), our 
main focus is on the scenario in which the ASR system is regarded as a black-box. In 
this scenario, we show that the user-generated data can be used to train a statistical 
post-editor (SPE), which can be afterwards employed to correct the raw ASR tran-
scriptions. 

The remainder of the paper is organized in five sections. Section 2 presents the 
most relevant related works in ASR errors correction, section 3 describes our pro-
posed correction methods and section 4 evaluates them. In section 5 we analyze and 
discuss the various types of corrections based on some particular examples and in 
section 6 we draw the conclusions of this work. 

2 Related Work 

ASR error correction methods can be broken down in two categories: a) ASR adapta-
tion methods and b) transcripts post-editing methods. ASR adaptation methods have 
been proven to be very effective when the recognition task is strictly defined and 
when the user has access to the internals of the ASR system. In [1] the user corrected 
text is used to identify the most probable cause for the error: out-of-vocabulary 
(OOV) word, wrong pronunciation or language model (LM) probabilities. Based on 
the identified error, the ASR is automatically adjusted: OOVs are inserted in the lex-
icon, the probability of the corrected bigram or trigram is boosted, new word pronun-
ciations are generated. In our former papers [2-3] we also showed that LM adaptation 
can be successfully used to adapt an ASR system to a specific domain, even if the 
textual data is only available in a different language. 

In other scenarios the ASR system is purchased as a black-box and the user does 
not have any hooks to modify the ASR models. In that case the ASR error correction 
methods apply a post-editing block to correct the errors in the raw ASR transcripts. 
One of the first works on this subject [4] uses a fertility channel model to correct 1-to-
1, 1-to-2 and 2-to-1 errors. The paper shows that, for a particular dataset, the post-
editing correction can be combined with LM adaptation to obtain even better results 
(24% relative WER improvement). Jung, Jeong, and Lee [5] also apply this fertility 
channel model (using syllables instead of words) along with an improved LM – that 
incorporates statistical and other higher level linguistic knowledge. They obtain much 
better results (on a very domain-specific Korean speech database): 40% relative WER 
improvement using only 70 training utterances. 

Another approach in ASR error correction uses statistical replacement rules  
extracted from a corpus of raw transcripts along with their manual corrections. Kaki, 
Sumita and Iida [6] report on using character co-occurrence rules and obtain an im-
provement of 8.5% relative WER, when 4300 utterances (from a Japanese travel spe-
cific speech database) were used for training. Brandow and Strzalkowski [7] propose 
a method based on word sequences replacement rules, but do not provide any evalua-
tion figures. Mangu and Padmanabhan [8] use ASR confusion networks composed of 
several word confusion sets to define rules that specify when the second candidate in 
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a confusion set should be preferred over the first one. This method’s reported im-
provement is only 4.2% relative WER, when 4000 speech utterances (from the 
Switchboard database) are used for training. Sarma and Palmer [9] regard ASR error 
correction only from an information retrieval point of view. They compile co-
occurrence statistics for each word in the vocabulary and finally use these statistics to 
identify possible ASR errors, but do not provide an ASR overall evaluation. 

In this paper we first analyze the potential of (unsupervised and semi-supervised) 
LM adaptation to correct ASR errors and propose a statistical post-editing error cor-
rection method inspired from statistical machine translation (SMT). Our proposed 
method goes beyond the state-of-the art by employing a new strategy for error detec-
tion and correction which is based on SMT principles and tools (Moses SMT Toolkit 
[10]). The method resembles in some aspects with the works presented in [4] and [5] 
because the SMT system also incorporates a fertility model, but extends this idea by 
generalizing this type of model. Moreover, we are the first to use a regular SMT sys-
tem for ASR transcription post-editing and in the end we describe how the SMT sys-
tem’s phrase translation table can be further used to deeply analyze the ASR errors. 
We evaluate the method on a Romanian domain-specific speech database (weather 
news) and obtain an improvement of 10.5% relative WER when 2000 utterances are 
used for training. 

3 ASR Output Error Correction 

Consider the scenario in which a general ASR system is used daily to transcribe do-
main specific speech, for example broadcast weather news. Due to the mismatch be-
tween the general ASR’s language model and the recognition domain (weather news), 
the recognition accuracy will be relatively poor. The ideal case would be to have a 
domain-specific ASR system, but this is not always possible (due to the lack of do-
main-specific data). In our previous studies [2-3] we considered the same problem 
and showed that if we have domain-specific text data in a different language we can 
translate it to the target language and successfully use it to adapt the ASR system. 
Now the premises have changed: we have domain-specific audio data in the target 
language, but not domain-specific text data (the required media type is not available). 
Consequently, we propose employing a general ASR system to transform the audio 
data into text and then use it to incrementally improve the ASR’s output. 

3.1 The Unsupervised Scenario 

In the fully unsupervised scenario the raw ASR transcriptions are directly used for 
LM adaptation. Apparently, the system would have no means of learning from its 
previous errors, because it does not know when it makes mistakes. However, adapting 
the language model with the raw transcriptions might be beneficial, because the LM 
probabilities for domain-specific words and word sequences will be boosted up. 

3.2 The Semi-supervised Scenarios 

In the scenario considered in this study (daily transcriptions of broadcasted weather 
news) the ASR user (i.e. a media company offering transcription services) cannot 
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deliver the raw transcripts to the final user due to the fact that they contain many er-
rors. This is an application where it is mandatory to have error-proof transcriptions; 
therefore the ASR output must be manually verified and post-edited (corrected) to 
become useful. In this case the ASR user will always post-edit the raw transcriptions, 
systematically generating new and useful domain-specific data. This user-generated 
data can be used in various ways to incrementally improve the ASR’s output and the 
improvement would obviously return to the user as he will have to do less and less 
corrections over time. 

If the user has the possibility to modify the internals of the ASR system, then a good 
choice would be to adapt the language model with the manually generated text. Doing 
so, the user will create a domain-specific ASR system, which will be much more ade-
quate at recognizing domain-specific speech. This is the first semi-supervised scenario 
discussed in this paper. 

However, in some cases, the ASR system is purchased as a black-box and the user 
can only attach an automatic post-editing correction block to the baseline transcription 
system. In this second scenario, we propose using a statistical post-editor (SPE) that is 
trained to correct the systematic ASR errors, just as Figure 1 illustrates. 

 

 

Fig. 1. Training and using the SPE system to correct ASR transcripts 

In statistical machine translation (SMT), a parallel corpus (composed of sentences in 
the source language aligned with sentences in the target language) is used to train a trans-
lation model. After the training phase, the SMT system is able to translate source lan-
guage sentences into the target language. The post-editing error correction method we 
propose in this paper uses an SMT system that regards the raw ASR transcripts as text in 
the source language and the manually corrected ASR transcripts as text in the target lan-
guage. Consequently, this statistical post-editor is trained on a parallel corpus (composed 
of raw and corrected transcripts), thus learning how to “translate” raw transcripts  
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into corrected transcripts. This error correction method is based on the observation that 
the post-editing task has quite a repetitive nature (the ASR usually makes systematical 
errors). The idea of using an SMT system to correct text was used before by Simard [11-
12] and Lagarda [13], but only in the context where the raw text came from a rule-based 
SMT system and not from an ASR system (as in our scenario). 

4 ASR Error Correction Experiments 

4.1 Experimental Setup 

For all the ASR experiments presented in this work we have used the same HMM-
based acoustic model [2]. This system models the 36 phonemes in Romanian in a 
context-dependent manner with 4000 HMM senones and 16 Gaussian mixtures per 
senone state [14]. The acoustic model was previously created and optimized (using 
the CMU Sphinx Toolkit [15]) with a training database of about 54 hours of Roma-
nian read speech. This speech database was progressively developed by our research 
group and now comprises isolated words, general newspaper articles and domain-
specific (library) dialogues. The texts were recorded by 17 speakers (7 males and 10 
females). The phonetic dictionary used in the experiments was created using a gra-
phemes-to-phonemes conversion tool [14] and covers all the words in the LMs. 

The general language model was previously created using a corpus of about 169M 
words collected from the Internet [2]. The domain specific language models were 
created using only the post-edited weather news transcripts. The domain adapted  
language models were created by interpolating the general language model with the 
domain specific language models. SRI-LM Toolkit [16] was used to create all the 
language models and to eventually interpolate them. The statistical machine transla-
tion system was trained using Moses SMT Toolkit [10]. The same toolkit was also 
used during system evaluation to automatically post-edit the raw transcriptions. 

For the weather news experiments, we developed a new speech database by record-
ing text news using three new speakers. One of these speakers recorded 2000 speech 
utterances to be further used for development (LM adaptation and SPE training) and 
all the speakers recorded 200 speech utterances each (a total of 600 utterances) to be 
further used for ASR evaluation. Although we admit that the evaluation database is 
quite small, we consider that the experimental results are conclusive and intend back 
them up with further experiments on a larger database. 

4.2 Experimental Results 

The general ASR system obtains a word error rate (WER) of 11.4% on the weather 
news evaluation database. This is considered to be the baseline which we want to 
improve by language model adaptation and statistical post-editing. 

In the first experiment we consider the fully unsupervised scenario:  

• the baseline ASR system is used to decode the 2000 utterances in the development 
database; 

• the raw transcripts are used to adapt the general language model; 
• the adapted ASR system is evaluated on the 600 utterances in the evaluation database. 
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Table 1 presents the adapted-ASR system results when 500, 1000, 1500 and respec-
tively 2000 transcriptions are used for adaptation. The conclusion that emerges from 
this experiment is that even unprocessed ASR data can be successfully used to adapt 
the general ASR system. A relative improvement of 10.5% is significant and it is very 
encouraging given the relatively small amount of data used for adaptation (2000 raw 
sentences). 

Table 1. Unsupervised LM adaptation 

 
# adaptation 
transcripts 

WER [%] relative gain 

baseline ASR 0 11.4% n/a 

unsupervised 
adapted ASR 

500 10.7% 6.1% 
1000 10.5% 7.9% 
1500 10.4% 8.8% 

2000 10.2% 10.5% 

For the second experiment we exploit the errors made by the baseline system (on 
the development database) to create a statistical post-editing system, as follows: 

• the baseline ASR system is used to decode the 2000 utterances in the development 
database; 

• the raw transcripts are manually post-edited to create a set of corrected transcripts; 
• the set of raw transcripts and the set of corrected transcripts are used to train a SPE 

system (as in Figure 1); 
• the baseline ASR system + the additional SPE correction block is evaluated on the 

600 utterances in the evaluation database (as in Figure 1). 

Table 2 presents the results for this second experiment. The conclusion that emerges 
from this experiment is that we can obtain an important WER improvement even if 
we do not have access to the ASR internals, by attaching an automatic correction 
block as proposed above. 

Table 2. Black-box ASR + SPE 

 
# corrected 
transcripts 

WER [%] relative gain 

baseline ASR 0 11.4% n/a 

baseline ASR 
(black-box) 

+ 
SPE block 

500 10.7% 6.1% 
1000 10.4% 8.8% 
1500 10.2% 10.5% 
2000 10.2% 10.5% 

In our third experiment we use the manually corrected transcripts to adapt the lan-
guage model in the baseline ASR system. These transcripts do not contain any errors 
(as opposed to the unsupervised scenario) and consequently the adaptation is much 
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more effective (see Table 3). The ASR improvement brought by this method is also 
more significant than the one obtained in the second experiment, but this error correc-
tion mechanism can be applied only if the user has the means of changing the LM (the 
ASR is not a black-box). 

Table 3. Semi-supervised LM adaptation 

 
# adaptation 
transcripts 

WER [%] relative gain 

baseline ASR 0 11.4% n/a 

semi-supervised 
adapted ASR 

500 6.8% 40% 

1000 6.0% 47% 
1500 5.4% 53% 
2000 4.9% 57% 

Finally, provided that we have access to the ASR internals, we combined the two 
semi-supervised methods presented above (LM adaptation and SPE correction). In 
this case, our experiments showed that the SPE block is left with almost nothing to 
correct and cannot bring any further improvements, but does not degrade the ASR 
performance either (same WER as in 3rd experiment). 

5 Error Correction Analysis and Discussion 

The ASR results obtained through unsupervised and semi-supervised LM adaption are 
quite easy to understand. Unsupervised LM adaptation boosts the probabilities of 
some domain-specific words and word sequences which were correctly recognized by 
the baseline ASR system. With increased LM probabilities, these items have a higher 
chance to be outputted in the future (and also in the ASR evaluation phase). This is in 
concordance with the reality: future weather news will also contain many weather 
terms and phrases. 

Besides the above advantage, semi-supervised LM adaptation benefits from several 
other key features, deriving from the fact that the adaptation is done with correct ASR 
transcripts: 

• all the words in the manually corrected transcripts get a LM probability boost, 
• the wrongly recognized words and phrases do not get a LM probability boost, 
• many OOV words for the baseline ASR can be detected in the development phase 

and recovered. 

Our analysis showed that the baseline ASR system lacked 315 words among the ones 
uttered in the development database (315 OOVs). A few examples are: climatologice 
(climatologically), burniţă (drizzle), se înnorează (it’s getting cloudy), tunete (thund-
ers), lapoviţa (sleet), consistenţi (consistent), aversele (the showers), etc. The OOVs 
detected in the development transcripts can be automatically recovered: inserted in the 
adapted LM and in the ASR vocabulary. This improves the overall ASR system, be-
cause many of these words were also uttered in the evaluation database: the 600 
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evaluation utterances initially had 48 OOVs, among which almost 60% were recov-
ered through the adaptation process. 

The SPE correction block manages to improve the raw ASR transcription by re-
placing erroneous words and word sequences with their correct counterparts. We 
analyzed the replacements made by this SPE block and reached several interesting 
conclusions. First, some of the most frequent OOVs in the evaluation database were 
in part corrected (1-to-1 replacements): 

• masive muntoase (mountains) → masivele muntoase (the mountains): 2 corrections 
out of 3, 

• averse (showers) → aversele (the showers): 1 correction out of 3, etc. 

In the same manner (1-to-1 replacements), many other wrongly recognized words  
(not only OOVs) were corrected by the SPE block: 

• ceaţa (the fog) → ceaţă (fog): 6 corrections, 
• noi (we) → norii (the clouds): 6 corrections, 
• continua (will continue) → continuă (continues): 5 corrections, 
• sînt ([they] are, old form) → sunt ([they] are): 7 corrections, etc. 

A second conclusion that emerged from analyzing the replacements was that, besides 
the 1-to-1 replacements, the SPE block also performs many-to-many replacements, as 
follows: 

• climatul logica/logice (logical climate) → climatologice (climatologically): 6 cor-
rections, 

• va sta la dispoziţie (will be available)→ vă stă la dispoziţie (is available): 7 correc-
tions, 

• nori consistent şi (consistent clouds and) → nori consistenţi (consistents clouds): 3 
corrections. 

We further analyzed the SPE translation table and found that it has learnt many other 
replacement rules that are potentially useful for the weather news domain, but were 
not needed (and consequently not applied) in this evaluation: 

• bun găsit dantelă şi domnilor (welcome, lace and gentlemen) → bun găsit doam-
nelor şi domnilor (welcome, ladies and gentlemen) 

• vor găsi tuturor ([they] will find everyone) → bun găsit tuturor (welcome every-
one) 

• teama de peste o vreme la această (the fear over a while at this [time]) → cam atât 
despre vreme la această (that’s all about the weather at this [time]) 

• valori la prânz între opt şi (values at noon between eight and...) → valori cuprinse 
între opt şi (values in the interval eigth and...) 

• noi taxe vreme (new taxes weather) → nu uitaţi vremea (don’t forget the weather) 

One last important conclusion is that the SPE usually learns replacement rules for 
phrases which have similar pronunciations. This is important, because the SPE should 
not change the acoustical context. However the phrase translation table also contains 
(wrong) rules, for which the acoustical context is not preserved at all: 
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• ce (what) →  aceste (these) 
• cinci (five) →  în jur de (around) 

The above observation leaves room for an important improvement for this system: the 
SPE rules could be filtered based on the acoustical similarity of the replacement pairs. 

6 Conclusion and Future Work 

Several ASR error correction methods have been proposed in the past 10-15 years and 
were shown to improve the speech-to-text transcription process. Most of these me-
thods regard the ASR system as a black-box and propose a correction block to post-
process the raw transcripts. 

This paper also proposed such an ASR correction block which uses SMT principles 
and tools to “translate” the raw transcripts into corrected transcripts. This SPE block 
takes advantage of the user generated corrections, in a scenario in which the ASR user 
must verify and correct the transcripts to be able to actually use them. We showed that 
the proposed method is scalable and gets better WER results as more user-generated 
data is used. We also deeply analyzed the ASR errors and the SPE corrections based 
on the output transcriptions and the SMT phrase translation table. A key conclusion 
which emerged from this analysis was that the correction block makes 1-to-1 re-
placements in particular word contexts, but also many-to-many replacements. 

In the near future we plan to use the N-best raw transcripts along with the manually 
corrected transcripts to train the SPE system (increasing the size of the training paral-
lel corpus). Moreover, we intend to introduce another factor in the factored translation 
model (of the SPE system) in order to weight the translation rules based on the acous-
tical similarity of the replacement pairs. This could be done by aligning the phonetic 
transcription of the replacement pairs and will provide an acoustical basis for our 
particular “translation” scenario. 

A second research direction is to evaluate the ASR correction method on various 
domains with different characteristics in order to see if the method is effective for 
broader domains, how the vocabulary richness of the domain correlates with the 
amount of transcriptions that need to be post-processed (corrected), etc. In the same 
context, changing the speech domain could also imply changing the language, be-
cause the proposed approach could be easily adapted to other languages by changing 
the black-box ASR system. 

Finally, we also intend to investigate whether the selection of the corrected tran-
scriptions used for SPE training has any effect on the system performance. There 
might be transcription subsets which generate a more effective SPE and consequently, 
our research goal would be to find the best selection procedure. 
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Abstract. This paper investigates the impact of reward shaping on a
reinforcement learning-based spoken dialogue system’s learning.

A diffuse reward function gives a reward after each transition between
two dialogue states. A sparse function only gives a reward at the end
of the dialogue. Reward shaping consists of learning a diffuse function
without modifying the optimal policy compared to a sparse one.

Two reward shaping methods are applied to a corpus of dialogues eval-
uated with numerical performance scores. Learning with these functions
is compared to the sparse case and it is shown, on simulated dialogues,
that the policies learnt after reward shaping lead to higher performance.

Keywords: Spoken Dialogue Systems, Evaluation, Reinforcement
Learning.

1 Introduction

Dialogue management is one of the core functionalities of a Spoken Dialogue
System (SDS) along with automatic speech recognition, natural language un-
derstanding, natural language generation and speech synthesis. The Dialogue
Manager (DM) sequences the interaction with the user. It chooses the action
to perform according to its beliefs about the current state of the dialogue. Ac-
tions the DM can perform might be: asking for a piece of information, asking
the user to confirm a statement, etc. Hand-coding the behaviour of the DM is
time consuming and results in a specific implementation difficult to transfer to
other domains. Therefore, statistical learning of the DM’s behaviour through
Reinforcement Learning (RL) [22] has become a popular technique: the DM is
modelled as a sequential decision making agent and it selects actions in order to
maximise a numerical return. This return is computed from a reward function
provided by the SDS designer [10]. Ideally, the reward function is to be conceived
as the most succinct, robust and transferable representation of the system’s task
[19].

However, it is common to define this function based on SDS designer intuition
and experience, not relying on any data. Only a few studies have been conducted
to learn a reward function from data. Among them, Walker et al [24] proposed
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a PARAdigm for DIalogue System Evaluation (PARADISE), modelling system
performance as a linear function of task completion and dialogue costs (dura-
tion of the dialogue, number of speech recognition rejections...). Walker et al.
[23] as well as Rieser and Lemon [18] evaluated the performance of different
systems using the PARADISE framework and used this evaluation as a reward
function. Yet, PARADISE requires to automatically compute task completion,
which is not always possible. Besides, the linear representation of system perfor-
mance has been criticised for not having a strong theoretical nor experimental
grounding [7]. Another methodology was proposed, which consists of learning,
from examples of expert behaviour, the reward function that describes best the
task being completed by that expert. This approach is known as Inverse Rein-
forcement Learning (IRL) [19]. It was first suggested for dialogue management
by Paek and Pieraccini [15] who thought of using IRL on Human-Human dia-
logues to learn a reward function enabling the SDS to mimic human operators
behaviour. Following this idea, Boularias et al. [2] learnt a reward function from
dialogues collected in a Wizard-of-Oz (WOZ) setting where a human expert re-
places the DM. However, it is not always possible to learn from a human expert.
For example, a DM could have to choose between different speech styles and
these choices can only be made statistically. Besides, it is difficult to transpose
speech recognition issues to WOZ experiments. IRL has also been used to model
user behaviour for dialogue simulations [4].

In previous work, we proposed two algorithms using a corpus of manually
evaluated dialogues (with numerical performance scores) to compute a reward
function [5]. It was shown that a reward function that predicts accurately the
subjective performance for a given dialogue could be learnt, even from a corpus
of small size. Sample efficiency has been an important subject of research in the
field of dialogue management [11,16]. A learning algorithm is said to be sample
efficient if it can learn a near-optimal policy with only a few dialogues, meaning
that it optimises data exploitation. It is costly to conduct evaluation campaigns
on an SDS and most of the time, only a few number of evaluated dialogues can
be collected, hence the importance of optimal data exploitation.

The reward function learnt with the methods we previously proposed gives
a reward after each transition between two dialogue states while keeping the
optimal policy unchanged compared to a sparser reward. We will call such a
function diffuse in contrast with the sparse case where a reward is only received
at the end of the dialogue. In this paper, it is shown, on a simulated corpus with
user behaviour inferred from real dialogues, that the policy learnt with diffuse
rewards entails higher performance than the one learnt with sparse rewards.

2 Reinforcement Learning for Dialogue Management

Dialogue management is cast as a sequential decision making problem, mod-
elled by a Markov Decision Process (MDP) (S,A, T,R, γ) where S is the state
space, A the action space, T the transition probabilities: ∀ (s = st, a = at, s

′ =
st+1), T (s, a, s′) = P (s′ | s, a) ∈ [0, 1], R the reward function: ∀(s = st, s

′ =
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st+1), R(s, s′) ∈ R and γ ∈]0, 1[ a discount factor. A similar MDP without a
reward function is denoted MDP\R.

A deterministic policy π is a function mapping each state to a unique action:
∀ s ∈ S, π(s) = a ∈ A. The immediate reward received after a transition (st, st+1)
is Rt = R(st, st+1) ∈ R. The cumulative reward (or return) at time t is the
discounted sum of immediate rewards: rt =

∑
k≥0 γ

kRt+k. Given a policy π, V π

is the state value function, the value V π(s) of a state s being the expected return
E[rt | st = s, π] over all possible trajectories starting in state st and following
π. Likewise, Qπ is the state-action value function, the value Qπ(s, a) of a state-
action couple (s, a) being E[rt | st = s, at = a, π]. The dialogue manager aims
to find an optimal policy: a mapping selecting actions maximising the expected
return for every state. An optimal policy π∗ is thus such that ∀ π, ∀ s, V π∗

(s) ≥
V π(s). Although uniqueness of the optimal policy is not guaranteed, all optimal
policies share the same state and state-action value functions noted V ∗ and Q∗

and thus perform comparatively. In the context of this paper, time is measured
in number of dialogue turns, each dialogue turn occurring in between two results
of automatic speech recognition.

If many dialogue parameters are taken into account, the state space can be-
come computationally intractable so designers usually define a summary state
space instead. A summary state is an agglomerate of states with similar features.
For example, for the SDS described in [8] which provides information about local
restaurants, the current state can be summed up in terms of empty, filled and
confirmed items (location, price range, type of food) instead of listing the current
values of all items (e.g. location=city center, price range=cheap, type=Italian).

The reward function is hard to define ex nihilo as one should be able to
numerically translate and appropriately distribute qualitative requirements. For
instance, one has to decide which prevails between task completion and speech
recognition rejections, when should the rewards be given during the dialogue,
which numerical range, and so forth. Our approach to this problem is given in
the following section which briefly presents two algorithms computing, from a
corpus of manually evaluated dialogues, a diffuse reward function, defined over
a summary state space S̃ [5]. These algorithms solve the problem introduced in
Definition 1. The manual evaluations in question are based on dialogue features
representative of system usability such as dialogue length, task completion,...
They can be computed from user answers to a Likert-scale questionnaire. In this
paper, dialogues are simulated and the scores are a linear combination of such
dialogue features.

Definition 1 (Reward inference problem). Infer a reward function from a
corpus of N dialogues (Di)i∈1..N among which p dialogues have been manually
evaluated with a numerical performance score Pi ∈ R.

3 Learning Rewards from Data

This section presents three different approaches to the problem issued in Defi-
nition 1. The first two algorithms infer diffuse reward functions. Details can be
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found in [5]. The third one, which will serve as a baseline, gives a reward equal
to system performance at the end of the dialogue.

3.1 Reward Shaping

This first algorithm is named Reward Shaping in reference to the line of research
which aims to include, without modification of the optimal policy, immediate
rewards as progress estimators instead of having to wait until the end of an
episode to receive a reward [12]. Ng et al. [14] proved that the optimal policy
of an MDP would not be changed by adding to the reward function a potential-
based reward function U such that U(s, s′) = γΦ(s′)− Φ(s) and experimentally
validated that, if Φ is equal to the value function, learning speed is increased.
In our case, reward shaping consists of using performance scores to evaluate
each state and then defining the reward associated to a given transition as the
difference of potential between the arrival and the initial state.

The value function V π is estimated according to the performance scores: the
return used to estimate the value of each summary state V π(s̃) is ∀ Di, rt =
γ−tPi. Thus, the global return r0 is equal to Pi.

The reward function (denoted RRS) is then defined as ∀ (s̃, s̃′), RRS(s̃, s̃
′) =

γV π(s̃′)−V π(s̃)+δs̃=s̃0V
π(s̃0) with δ the Kronecker symbol (δs̃=s̃0 = 1 if s̃ = s̃0

and 0 otherwise). In other words, the reward function is modelled as the sum of an
offset C0 = V π(s̃0) and the potential-based function U(s̃, s̃′) = γV π(s̃′)−V π(s̃).
With RRS , the global return r0 for a given dialogue D (lasting from turns 0 to
tf ) is: r0 = P̂ = γtfV π(s̃tf ). Since V π is estimated according to the returns
rt = γ−tPi, γ

tfV π(s̃tf ) is an estimation of the performance of the dialogues
ending with state s̃tf and r0 is an estimation of the performance of the system
during D.

3.2 Distance Minimisation

Instead of evaluating states, distance minimisation evaluates transitions. This
algorithm directly aims to cut the performance evaluations into local rewards
over the transition space. The distance minimisation problem is formalised in
Definition 2.

Definition 2. Let an MDP\R. Let φ = [φi]i=1,...,m be a vector of features over
the transition space (∀ i ∈ [1,m], ∀ (s̃, s̃′),
φi(s̃, s̃

′) ∈ [0, 1]). The immediate reward Rt following transition (s̃t, s̃
′
t) is

modelled as a linear sum of these features: Rt =
∑m

i=1 ωiφi(s̃t, s̃
′
t). Let P =

[Pi]i=1,...,p be a performance score vector such that each dialogue Di is associated
with a performance Pi, and let dP be a distance measure between P and the
return vector r0

1. The distance minimisation problem consists of finding the
weight vector ω∗ such that ω∗ = argminω dP (ω).

1 (r0)1≤i≤p, ∀i, r0i =
∑

t≥0

γtRt =
∑

s̃t,s̃
′
t

γt
m∑

j=1

ωjφj(s̃t, s̃
′
t).
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Here, Euclidean distance minimisation is solved. The problem issued in Defini-
tion 2 can be cast as a quadratic optimisation problem and solved with well-
known direct or iterative methods (resolution details can be found in [5]). The
resulting reward function is denoted RDM .

3.3 Performance Scores

RRS and RDM are compared to the sparse reward function which gives the
performance score at the end of each dialogue. This function (denoted RPS) is
defined as follows: ∀ Di, ∀ (s̃, s̃′), RPS(s̃, s̃

′) = 0 if s̃′ �= s̃f and RPS(s̃, s̃
′) =

γ−tf−1Pi otherwise
2.

In the following section, the performance of the policies learnt with RPS , RRS

and RDM on the same corpus of dialogues are compared.

4 Experimental Setting

4.1 System Overview

We used the TownInfo system, based on the DIPPER architecture [1]; it provides
informations about restaurants in a given city depending on three criteria: loca-
tion, price range and type of food [9]. At each time step, a slot corresponding to
one of these criteria can either be empty, filled or confirmed. We defined a sum-
marised state space which counts the number of empty, filled and confirmed slots.
We also defined a summary action space which does not differentiate the actions
according to the position of the slot involved (for instance, AskSlot1, AskSlot2
and AskSlot3 are summarised into AskASlot). Nevertheless, to assure dialogue
coherence and avoid e.g. asking for a slot that has already been confirmed, when
an action is chosen and has to be mapped to a slot, for example, AskASlot, we
first check the current value of the slots and then force this action to be mapped
only to empty slots. The state and action spaces were voluntarily made simple
as the main objective of this paper is to validate the diffuse rewards approach.

4.2 Dialogue Simulations

The three reward functions were applied to a corpus of 600 simulated dialogues.
User was simulated according to the Bayesian method proposed in [17]. It con-
sists of modelling user behaviour as a Bayesian network to simulate dialogues
at the intention level, including grounding behaviours. The parameters of the
Bayesian network were trained on the 1234 human-machine dialogues which are
described in [25].

As for system policy, it was set to be uniform to collect as much information
as possible for every state-action pair.

After each dialogue, a performance score was computed according to dialogue
features, in a PARADISE-like manner. Once again, since our aim was to validate

2 So that r0 = Pi.
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the diffuse rewards approach, a simple, automatically computed scoring function
was sufficient. With nbEmpty the number of empty slots, nbRight, the number
of slots that were correctly filled, nbWrong, the number of incorrectly filled slots
and nbTurns, the number of dialogue turns, the score was:

score =− 3× nbEmpty + 0.25× nbRight

− 0.75× nbWrong− 0.015× nbTurns (1)

4.3 Learning a Diffuse Reward Function

We simulated 2300 dialogues in total but we only used 600 dialogues to learnRRS

and RDM since it is difficult, in real-life experiments to obtain as many as 2300
dialogues. The proximity between RRS , RDM and the simulated performance
scores (see Equation 1) was assessed by Spearman’s rank correlation coefficient
[20]. The closer to 1 the correlation coefficient, the stronger the relationship
between the corresponding rankings.

We used the remaining 1700 dialogues to measure this proximity. We drew 100
times 600 dialogues from the corpus of simulations and computed the mean cor-
relation coefficient on these runs for both RRS and RDM . The mean correlation
coefficient was equal to 0.81 for RRS and 0.84 for RDM . Here, the coefficients
are high because the scoring function in equation 1 can be approximated on the
state space presented in Section 4.1 as the only non-observable parameter is the
number of correctly filled slots.

4.4 Learning a Near-Optimal Policy

Policies were learnt on the 600 dialogues with RRS , RDM and RPS using Least-
Squares Policy Iteration (LSPI, [6]). LSPI is an approximate policy iteration
algorithm involving LSTDQ3 which learns an approximate state-action value
function for a given policy from a fixed data set. After a policy was learnt with
LSPI, 200 new dialogues were generated with this policy and the dialogues were
automatically evaluated according to Equation 1. We also applied LSPI to the
whole corpus of 2300 dialogues and compared the three resulting policies on 200
dialogues. Our aim is to show that learning with RRS and RDM leads to higher
performance no matter the size of the training corpus.

5 Results

Table 1 shows that though the policy learnt with RRS leads to longer dialogues,
it has the best evaluation. This can be explained by the fact that this policy
has a better success at confirming slots than the other two. A great number of
confirmed slots implies a limited risk of getting one value wrong and since filling
and having the right value for each slot have a greater weight in the scoring

3 An extension to control problems of Least-Squares Temporal Differences, LSTD [3].
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Table 1. 95% confidence interval for the mean performance, mean number of dialogue
turns and mean number of empty and confirmed slots on 200 dialogues simulated with
the policies learnt with RRS , RDM and RPS after 600 and 2300 dialogues

Learning on 600 dialogues Performance Turns Empty confirmed

RRS 0.13 ± 0.09 11.6 0 3

RDM 0.062 ± 0.10 7.72 0 0

RPS 0.007 ± 0.10 8.55 0 0.8

Learning on 2300 dialogues Performance Turns Empty confirmed

RRS 0.13 ± 0.09 11.6 0 3

RDM 0.08 ± 0.10 7.28 0 0.23

RPS 0.04 ± 0.11 7.95 0 1.22

function (see Equation 1) than having short dialogues, the policy learnt with
RRS achieves better performance than the ones learnt with RDM and RPS . For
RRS , the results are the same after 600 and 2300 dialogues because the policies
learnt with LSPI on these two corpora are similar.

RPS gives the exact scores as rewards which makes it more accurate than RRS

and RDM but this accuracy is counterbalanced by the fact that the rewards are
only given at the end of each dialogue. The policy learnt with RPS is the least
competitive because it more poorly balances the trade-off between the number
of confirmed slots and dialogue length than the other two policies.

6 Relation to Prior Work

Walker et al. [23] used performance evaluation to learn a policy for an SDS
with Q-Learning [22], giving a reward equal to the evaluation at the end of
each dialogue. This SDS granted a vocal access to the user’s e-mail account and
could summarise and read messages. Walker et al. showed that about hundred
dialogues were sufficient to learn the best strategy between system and mixed
initiative yet it was not enough for the summary strategy to achieve convergence.
We showed, on a different dialogue task, that it is possible to shape a reward func-
tion based on performance evaluation in order to optimise corpus exploitation.
We believe that reward shaping is a promising method for statistical dialogue
management optimisation as it is often difficult to obtain corpora of great size.

Meguro et al. [13] designed a listening-oriented dialogue system and inferred
a reward function from third-party evaluation of user satisfaction. In order to
counter inter-annotators ambiguity concerning the interpretation of the Likert
scale, Sugiyama et al. [21] introduced Preference-based Inverse Reinforcement
Learning (PIRL): performance scores are used to deduce the best of two dialogues
and then a reward function that classifies dialogues respecting the same order is
learnt. Contrary to our reward inference algorithms, this method does not enable
to use directly performance scores given by users. Indeed, each user would have
to interact several times with the system for us to infer a ranking from their
evaluation, otherwise a third-party annotator would be required.
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7 Conclusion

This paper provided some empirical results on the issue of reward function design
for spoken dialogue systems. A diffuse reward function was learnt from a corpus
of evaluated dialogues. It was shown that diffuse rewards enabled to learn a
policy leading to a better performance on new dialogues.

Future work will include defining a compatible active learning framework and
proposing a method to optimise the conception of the summary state space.
We will also compare our reward inference methods to Preference-Based Inverse
Reinforcement Learning on dialogues evaluated by a third-party annotator.
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Supélec for providing a C implementation of LSPI and Olivier Pietquin thanks
Région de Lorraine for financial support.

References

1. Bos, J., Klein, E., Lemon, O., Oka, T.: DIPPER: Description and Formalisation
of an Information-State Update Dialogue System Architecture. In: Proceedings of
SIGdial Workshop on Discourse and Dialogue (2003)

2. Boularias, A., Chinaei, H.R., Chaib-draa, B.: Learning the reward model of dia-
logue pomdps from data. In: Proceedings of NIPS (2010)

3. Bradtke, S.J., Barto, A.G.: Linear least-squares algorithms for temporal difference
learning. Machine Learning 22, 33–57 (1996)

4. Chandramohan, S., Geist, M., Lefèvre, F., Pietquin, O.: User simulation in dialogue
systems using inverse reinforcement learning. In: Proceedings of Interspeech (2011)

5. El-Asri, L., Laroche, R., Pietquin, O.: Reward function learning for dialogue man-
agement. In: Proceedings of STAIRS (2012)

6. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine
Learning Research 4, 1107–1149 (2003)

7. Larsen, L.B.: Issues in the evaluation of spoken dialogue systems using objective
and subjective measures. In: Proceedings of IEEE ASRU, pp. 209–214 (2003)

8. Lemon, O., Georgila, K., Henderson, J., Stuttle, M.: An ISU dialogue system ex-
hibiting reinforcement learning of dialogue policies: Generic slot-filling in the talk
in-car system. In: Proceedings of EACL (2006)

9. Lemon, O., Georgila, K., Henderson, J., Stuttle, M.: An ISU dialogue system ex-
hibiting reinforcement learning of dialogue policies: generic slot-filling in the talk
in-car system. In: Proceedings of EACL (2006)

10. Lemon, O., Pietquin, O.: Machine learning for spoken dialogue systems. In: Pro-
ceedings of Interspeech, pp. 2685–2688 (2007)

11. Li, L., Williams, J.D., Balakrishnan, S.: Reinforcement learning for dialog manage-
ment using least-squares policy iteration and fast feature selection. In: Proceedings
of Interspeech (2009)

12. Mataric, M.J.: Reward functions for accelerated learning. In: Proceedings of ICML,
pp. 181–189 (1994)



Reward Shaping for Statistical Optimisation of Dialogue Management 101

13. Meguro, T., Higashinaka, R., Minami, Y., Dohsaka, K.: Controlling listening-
oriented dialogue using partially observable markov decision processes. In: Pro-
ceedings of Coling (2010)

14. Ng, A.Y., Harada, D., Russell, S.: Policy invariance under reward transformations:
Theory and application to reward shaping. In: Proceedings of ICML, pp. 278–287
(1999)

15. Paek, T., Pieraccini, R.: Automating spoken dialogue management design using
machine learning: An industry perspective. Speech Communication 50, 716–729
(2008)

16. Pietquin, O., Geist, M., Chandramohan, S., Frezza-Buet, H.: Sample-efficient batch
reinforcement learning for dialogue management optimization. ACM Transaction
on Speech and Language Processing 7(3), 1–21 (2011)

17. Pietquin, O., Rossignol, S., Ianotto, M.: Training Bayesian networks for realistic
man-machine spoken dialogue simulation. In: Proceedings of IWSDS 2009 (2009)

18. Rieser, V., Lemon, O.: Learning and evaluation of dialogue strategies for new appli-
cations: Empirical methods for optimization from small data sets. Computational
Linguistics 37 (2011)

19. Russell, S.: Learning agents for uncertain environments (extended abstract). In:
Proceedings of COLT (1998)

20. Spearman, C.: The proof and measurement of association between two things.
American Journal of Psychology 15, 72–101 (1904)

21. Sugiyama, H., Meguro, T., Minami, Y.: Preference-learning based Inverse Rein-
forcement Learning for Dialog Control. In: Proceedings of Interspeech (2012)

22. Sutton, R.S., Barto, A.G.: Reinforcement Learning. An introduction, pp. 56–57.
MIT Press (1998)

23. Walker, M.A., Fromer, J.C., Narayanan, S.: Learning optimal dialogue strategies: A
case study of a spoken dialogue agent for email. In: Proceedings of COLING/ACL,
pp. 1345–1352 (1998)

24. Walker, M.A., Litman, D.J., Kamm, C.A., Abella, A.: PARADISE: a framework for
evaluating spoken dialogue agents. In: Proceedings of EACL, pp. 271–280 (1997)

25. Williams, J.D., Young, S.: Partially observable markov decision processes for spo-
ken dialog systems. Computer Speech and Language 21, 231–422 (2007)



 

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 102–110, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Discriminative Framework  
for Spoken Tunisian Dialect Understanding 

Marwa Graja, Maher Jaoua, and Lamia Hadrich Belguith 

MIRACL Laboratory, Arabic Natural Language Processing Research Group (ANLP-RG) 
University of Sfax, Tunisia 

{marwa.graja,maher.jaoua,l.belguith}@fsegs.rnu.tn 

Abstract. In this paper, we propose to evaluate the performance of a discrimin-
ative model to semantically label spoken Tunisian dialect turns which are not 
segmented into utterances. We evaluate discriminative algorithm based on 
Conditional Random Fields (CRF). We check the performance of the CRF 
model to concept labeling on raw data in Tunisian dialect which are not ana-
lyzed in advance. We compared its performance with different types of prepro-
cessing data until arriving to well treated data. CRF model showed the ability to 
ameliorate the accuracy of labeling task for spoken language understanding of 
not segmented and not treated speech in Tunisian dialect. 

Keywords: concept labeling, discriminative model, speech understanding,  
Tunisian dialect. 

1 Introduction 

Spoken Language Understanding is an important component in spoken dialogue sys-
tems. It aims to clarify meaning from spontaneous speech [1]. The first level of spo-
ken language understanding is concept labeling which consists in extracting concepts 
and their relation from transcribed speech. In fact, the concept labeling task is seman-
tic labeling of transcribed words as input and concepts as output labels.  

To perform semantic labeling, many statistical methods have been used, from ge-
nerative to discriminative models [2]. Conditional random fields (CRF) model is the 
best of generative and discriminative models [3]. However, this model has been 
usually applied to semantic labeling of spontaneous speech for Latin languages such 
as English, French or Spanish [4]. However, speech understanding of Arabic dialect is 
still quite processed in the scientific research. Despite the importance of semantic 
analysis for the implementation of any dialogue system, there are only a few works 
which are interested in the automatic understanding of spoken standard Arabic [5][6] 
and not Arabic dialect. In this paper, we propose to evaluate a discriminative model 
on the spoken Tunisian dialect in the context of a definite task to semantically label 
oral utterances. In fact, we are interested in evaluating discriminative algorithm based 
on CRF model to semantic label raw data in Tunisian dialect which are not analyzed 
in advance. Then, we try to improve the raw data by applying several levels of treat-
ments to evaluate the performance of the CRF model to label spoken Tunisian dialect. 
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 We are interested in this paper in semantic labeling of client turns which are not 
segmented into utterances. This idea has been used by [4] and represents the more 
realistic situation of spontaneous speech. In fact, it is easier to segment dialogues into 
turns than into utterances.  

According to our knowledge, spontaneous-speech dialogue corpora in Tunisian di-
alect are not very current. So, possibilities to test dialogue technologies on Tunisian 
dialect are also not common. In this article, the corpus selected for testing the pro-
posed model is the TUDICOI corpus [7], which is a spoken task-oriented dialogue 
corpus in Tunisian dialect. The TUDICOI task consists of the request information 
about railway services recorded in train station. 

This paper is organized as follows: the next section presents the Tunisian dialect. 
Section 3 describes the TUDICOI corpus in Tunisian Dialect used for experiments. 
The section 4 presents the CRF discriminative model used to perform semantic labe-
ling. Experimental results are shown in section 5. Conclusion is drawing in the last 
section. 

2 Tunisian Dialect 

Arabic language is known by three main collections: the Classical Arabic, standard 
Arabic and dialectal Arabic. The dialectal Arabic is the real form of the language [8] 
since it is used in all informal communications. They are generally limited in use for 
request information and everyday communication. The main characteristic is that they 
are mainly spoken and not written. So it is so important to consider dialects in spoken 
dialogue system. Tunisian dialect is a subset of Arabic dialects related to the Arab 
Maghreb (western Arab world). Like all Arabic dialects, it is characterized by mor-
phology, syntax, phonology and lexicon which have similarities and differences com-
pared to the standard Arabic, and even to other Arabic dialects. Tunisian dialect is 
strongly influenced by the Berber and also by other languages such as Turkish, Italian 
and French. It has several large regional varieties, but the variety of Tunis (used in the 
capital of Tunisia) is the most understood by all Tunisians [9]. 

3 Spoken Dialogue Corpus for Tunisian Dialect 

The construction of a dialogue corpus represents a big challenge especially when we 
deal with Arabic dialects which suffer from lack of resources [10] [11].  In fact and 
according to our knowledge, there is no spoken dialogue corpus in Tunisian dialect 
dealing with a limited task. In this context, we have produced an initial corpus of real 
spoken dialogue corresponding to the task of railway request information in collabo-
ration with the National Company of Railway in Tunisia (SNCFT)1. This corpus is 
called TUDICOI as TUnisian DIalect COrpus Interlocutor. 

The main task of the TUDICOI corpus is request information in Tunisian dialect 
about the railway services in the train station. These requests are about train schedule 
consultation, train type, train destination, train path, ticket price and ticket booking. 
Based on these requests, several requests can be combined together during a dialogue 
                                                           
1 http://www.sncft.com.tn/ 
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between the staff and the client about railway services in the train station. An example 
of a real dialogue in Tunisian dialect between a client and a staff is shown below in 
Table 1. Two speaker types have participated in this dialogue who are the clients (C) 
and the staffs (S). 

Table 1. A sample of real dialogue in Tunisian dialect between a client (C) and a staff (S) 

Turn 
Transliteration Transcription 
Translation  

C: 
sAmHny wqtA$ yxrj EttrAn ltwns  سامحني وقتاش يخرج التران لتونس 
Excuse me when the train leaves to Tunis  

S: 
mADy sAEh wrbEh OdrAj  ماضي ساعه وربعه أدراج
One hour past twenty minutes  

C: 
bqdA$ hwA Ettkyh بقداش هوا التكيه 
How much the ticket  

S: 
vnA$ nlf wxmsmyh ltwns  ثناش نلف وخمسميه لتونس
Twelve dinars and five hundred to Tunis  

The TUDICOI corpus consists of 1825 dialogues from 1831 users. These dialogues 
represent 12182 utterances. The most important characteristics are shown in Table 2. 

Table 2. Main characteristics of the TUDICOI Corpus 

# Dialogues 1825 
# Speakers 1831 
# Client turns 6533 
# Staff turns 5649 
# Words in client turns 21682 
# Vocabulary size in client turns 108 

The 1825 dialogues are composed of 6533 client turns and 5649 staff turns. On av-
erage, each dialogue consists of three turns for client and three turns for staff. In addi-
tion each client turn is composed of an average of 3.3 words. It's so important to note 
that the average of words per client turn is very low. This is due to key words used by 
clients to request for information about railway services. 

It's so important to notice that we are interested in client turns. That's why we have 
manually labeled only transcribed speech data of clients based on semantic point of 
view in order to build a language model for client utterances. In fact, we have estab-
lished a well defined semantic annotation scheme for client utterances for the railway 
request information task to cover all aspects of client utterances in the studied task. 

The annotation scheme for concept labels respects many of the principles used in 
other speech annotated corpus with a structure which covers the more specific details 
of the task. Semantic concept labels used to label all versions of the annotated corpus 
are shown in Table 3.  



 Discriminative Framework for Spoken Tunisian Dialect Understanding 105 

 

Table 3. Semantic Concept labels 

Domain concepts  Requests concepts 
Train 
Train_Type 
Departure_hour 
Arrival_hour 
Day 
Origin 
Destination 
Fare 
Class 

Ticket_Numbers 
Ticket 
Hour_Cpt 
Departure_Cpt 
Arrival_Cpt 
Price_Cpt 
Class_Cpt 
Trip_time 
Ticket_type 

Path_Req 
Hour_Req 
Booking_Req 
Price_Req 

Existence_Req 
Trip_timeReq 
Clarification_Req 
 

Dialogue concepts 
Rejection 
Acceptance 
Politeness 
Salutation (Begin) 
Salutation (End) Link concepts 

Choice  
Coordination  

Out of vocabulary 

Out       

Generally, the most of works dealing with speech corpus perform some automatic 
treatments on the corpus before annotation. These treatments are done to reduce the 
complexity of the corpus and the structures [4]. In our case, we have two versions of 
annotated corpus. In the first version, we did not perform any treatments on the cor-
pus before annotation. Indeed, we annotated the raw version of the client turns to look 
for results of discriminative models when we deal with very raw quality of the corpus. 
This can give important results about the robustness of discriminative models against 
deteriorated data. In the second version of the annotated corpus, we have performed 
some automatic treatments before annotation to improve the turn's structure. These 
treatments include the following points: 

─ Lexical normalization: since the transcription was done manually, any word in the 
TUDICOI corpus can be written in different orthographic ways.  For example, we 
noticed that the word "رزرفسيون" "Reservation" is written in four different forms: 
" ريزرفسيون", "رازارفسيون", "رازرفسيون", "رزرفسيون . That's why we have performed 
automatic lexical normalization.  

─ Morphological analysis and lemmatization: in this analysis, we have performed 
verbs and nouns. Verbs treatment consists in determining the canonical form of the 
verb. For example, we replace the word "خارج" "is going" and "يخرج" "goes" by the 
following canonical form "خرج" "go". However, nouns treatment consists of two 
steps. The first step is returning to the singular form of the noun. The second step is 
replacing the definite form by the undefined form of the noun. As an example, the 
word "الترينوات" "trains" is transformed into "تران" "train". 

─ Synonyms treatment: this treatment consists in replacing each word by its  
synonym. 

Given the lack of standard orthography and dictionaries for the Tunisian dialect, we 
have performed the lexical normalization and synonyms treatment by creating a lex-
icon dictionary for the railway request information domain. This dictionary helps us 
to correct the orthography and replace each word by its synonym.  
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Due to the absence of automatic analyzer for the Tunisian dialect, we have per-
formed an automatic shallow morphological analysis for verbs and nouns by using the 
complete storage method [12]. Indeed, we have built a morphological base of possible 
changes for verbs and nouns which helps us to perform nouns and verbs treatments. 

These two versions of the same annotated corpus are investigated to perform expe-
riments and evaluate the CRF model on raw data and on very well treated data. 

Given the complexity and time-consuming of the manual annotation task, we have 
only annotated 623 dialogues. These dialogues represent 2352 client turns. The most 
important characteristics of the annotated corpus are shown in Table 4. 

Table 4. Main characteristics of annotated corpus 

# Annotated dialogues 623 
# Annotated client turns 2352 
# Annotated words in client turns 7814 

4 Statistical Method for Semantic Labeling 

4.1 Sequence Labeling Task 

The shallow parsing of spoken language understanding is sequence labeling which 
aims to attribute label sequences to a set of observation sequences of transcribed 
speech [13]. For example, consider the labeling task of words in an utterance with 
their corresponding concepts in the field of railway request information. In this task, 
each word is labeled with a concept indicating its appropriate semantic concept.  

 
 [Departure_Cpt يمشي]  [Train التران]  [Out إي]  [Out إي]  [Hour_Req وقتاش]  [Out  مع]

Fig. 1. Example of semantic labeling 

4.2 Statistical Semantic Labeling 

Previous works have dealt with sequence labeling task by means of statistical models. 
These models have been extremely investigated from generative to discriminative 
models. Raymond and al. [2] have compared SFST generative model to CRF discri-
minative model and [14] has shown that discriminative models are able to incorporate 
correlated features in conditional random fields (CRF). This advantage has reduced 
error rate for spoken language understanding compared to the generative model [15]. 
Based on its advantage, we choose the CRF model as a representative discriminative 
model to evaluate its performance on transcribed speech in Tunisian dialect which is 
not segmented into utterances and with different levels of treatment. 

4.3 CRF Based Model 

Conditional random fields (CRF) are undirected graphical models trained to maxim-
ize a conditional probability [16]. 
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Lafferty et al. [16] define the conditional probability of a label sequence    . . .  given an observation sequence    . . .  as: 

 1 exp , , , μ , ,  (1) 

With: 
 Z x exp , , , μ , ,  (2) 

 is the normalization factor that makes the sum of all probabilities equals to one.  , , ,  represents transition feature function of the entire observation se-
quence and the labels at positions  and 1 in the label sequence. , ,  
represents state feature function of the label at position  in the observation sequence. 

 and   are parameters which are estimated from training data. 
Given the model as defined in Equation (1), the most probable labeling sequence 
 for an input , is: 
 ⁄  (3) 
 

We used in our experiments the CRF++ toolkit [17]. It is a simple, customizable and 
open source implementation of Conditional Random Fields (CFRs) for segmentation 
and labeling sequence data. 

5 Experiments and Results 

Multiple of works have dealt with the labeling problem of the spoken language under-
standing using several statistical methods for different languages. But these works are 
usually interested on segmented dialogues into utterances. Our proposal in these expe-
riments is to test the performance of CRF model on spoken Tunisian dialect to label 
unsegmented turns. This situation appears more realistic since the speech recognition 
component provides as output turns for each speaker which are unsegmented into 
utterances. This idea is inspired from the works of Martinez and al. [5] who perform 
the labeling in the more realistic situation where the segmentation of turns into utter-
ances is not available. 

We evaluate the CRF model on the TUDICOI corpus for Tunisian dialect manually 
transcribed with unsegmented dialogue turns. We have used the same training corpus 
but treated differently. In fact, we have used two sets of annotated corpus to perform 
CRF model training. The first set (Set 1) is the annotated raw data version without 
any treatment in advance. The second set (Set 2) is the gold data of the annotated 
corpus which is analyzed morphologically, with lexical standardization and synonyms 
treatment. We learn the CRF model based on these two data sets to check the perfor-
mance of CRF model in different levels of annotated data. Each set consists of 5710 
words used as training corpus. To evaluate the performance of CRF model learned 
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from these two sets, we prepared a test corpus which consists of 2104 words. The test 
corpus is used on its raw version for the first test. Then, it is performed with the same 
treatment done on Set 2.   

The evaluation of the concepts sequence labeling is given in term of F-measure and 
concept error rate (CER). The CER is computed as incorrect prediction of the model 
by reference labels. Results are reported in Table 5. 

              #   # _   

Table 5. CRF labeling results with different sets of annotated data 

 Set 1 Set 2 
#Training words 5710 5710 
#Test words 2104 2104 
Correct prediction 1243 1332 
Incorrect prediction 223 198 
Reference concepts 1800 1800 

CER 12% 11% 
Precision 84% 87% 
Recall 69% 74% 
F-measure 75% 80% 

The model learned from the Set 2 has reduced the error rate compared to the CRF 
model learned from Set 1 (from 12% to 11%). This proves the importance of treat-
ment for learning CRF model to simplify the utterance structures.  

Despite the raw quality of the first set, CRF performs well in comparison with au-
tomatic labeling task using knowledgebase method. In fact, CRF performs better 
compared to result reported in [18] which uses domain ontology as knowledgebase 
with well performed data prepared in advance. This is a very important result since 
CRF model performs well with minimal preprocessing on the training data. This 
shows the robustness of such a model with noisy data by comparing it with a method 
based on knowledge which requires robust preprocessing to the training data. By ma-
nual examination of automatic labeling result using CRF, we found that the CRF have 
the ability to detect composed token specific to the task and label them correctly. CRF 
semantic labeling has failed in the case where labeled word in the training data de-
pends on the client intension which is an important feature in the TUDICOI corpus. 
Indeed, it should be noted that the TUDICOI corpus is a pilot corpus for direct com-
munications between clients and agents. So the client bases on gestures and intensions 
to request for information. 

6 Conclusion 

In this paper, we have evaluated the performance of the CRF model to perform se-
mantic labeling task for spontaneous speech in Tunisian dialect in the context of  
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spoken language understanding. These evaluations are done in the more realistic situ-
ation where the segmentation of turns into utterances is not available. We have per-
formed experiments based on different levels of treated data, from raw to very well 
performed transcribed speech. Discriminative model showed robustness against raw 
turns which are not treated in advance and not segmented into utterances. CRF model 
has the ability to improve semantic labeling with minimal data treatment in compari-
son with knowledgebase method which requires very well treated data in advance. So, 
CRF model is very adequate for languages which suffer from luck of resources such 
as the Tunisian dialect.   
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Abstract. Computing the most likely state sequence from an obser-
vation sequence is an important problem with many applications. The
generalized Viterbi algorithm, a direct extension of the Viterbi algorithm
for hidden Markov models (HMMs), has been used to find the most likely
state sequence for hierarchical HMMs. However, the generalized Viterbi
algorithm finds the most likely whole level state sequence rather than
the most likely upper level state sequence. In this paper, we propose a
marginalized Viterbi algorithm, which finds the most likely upper level
state sequence by marginalizing lower level state sequences. We show ex-
perimentally that the marginalized Viterbi algorithm is more accurate
than the generalized Viterbi algorithm in terms of upper level state se-
quence estimation.

1 Introduction

Hidden Markov models (HMMs) [6], known for their success in voice recognition,
have been widely used to analyze time series data. Fine et al. [1] proposed hi-
erarchical hidden Markov models (HHMMs) as a generalization of HMMs with
a hierarchical state space. An HHMM may be represented using a tree struc-
ture, where each state at a non-leaf node, called an internal state, is itself a
dynamical probabilistic model. Therefore, the internal states of an HHMM emit
sequences rather than a single symbol. An HHMM generates sequences by recur-
sive activation of a substate of an internal state, until a leaf node state, called
a production state, is reached. Production states are the only states that actu-
ally output symbols through the usual HMM mechanism. The original inference
algorithm for HHMMs is not efficient, taking O(T 3) time where T is the length
of the observation sequence. Murphy et al. [3] devised a dynamic Bayesian net-
work (DBN) representation for HHMMs, thanks to which a linear time (O(T ))
inference algorithm is now available.

HHMMs can naturally represent the multiple time scale structure of many
time series data (for example, voice has three time scale structures: word se-
quence, phone sequence, and sub-phone sequence), and are gaining much atten-
tion in the research community. Some of the applications of HHMMs are hand
written character recognition [1], information extraction from texts [8], and video
analysis [5,4].

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 111–122, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The problem of finding the most likely state sequence from an observation
sequence [6] is important and has many applications. To find the most likely state
sequence for HHMMs, the generalized Viterbi algorithm (GVA) [1,3], a direct
extension of the Viterbi algorithm for HMMs [9,6], has been used. However, GVA
finds the most likely whole level state sequence, but not the most likely upper
level state sequence.

In this paper, we propose a marginalized Viterbi algorithm (MVA) to over-
come the problem associated with GVA. MVA finds the most likely upper level
state sequence by marginalizing lower level state sequences. For example, MVA
will find the most likely sequence of ”word” states in speech recognition by
marginalizing the irrelevant ”phone” and ”sub-phone” state sequences, thus
avoiding the problems associated with words having several pronunciations [2]1.

To explain our motivation for marginalizing irrelevant lower level states, con-
sider the simple two level static hierarchical model in Fig. 1. The model can be
seen as a Gaussian mixture speaker model for speaker identification [7], where
the top level state, q1, stands for a speaker s, and the second level state, q2,
stands for a component c of the Gaussian mixture model:{

p(q2 = c|q1 = s) = πs
c

p(o = x|q1 = s, q2 = c) = N (x|μs
c ,Σ

s
c)
, (1)

where πs
c ≥ 0 is the weight of c and satisfies

∑
c π

s
c = 1.0, and N (x|μs

c ,Σ
s
c) is

a Gaussian density with mean vector μs
c and covariance matrix Σs

c. Given an
observation o = x, the most likely estimation for the speaker identification is

ŝ = argmax
s

p(q1 = s|o = x), (2)

where p(q1 = s|o = x) is obtained by

p(q1 = s|o = x) =
∑
c

p(q1 = s, q2 = c|o = x), (3)

that is, by marginalizing q2, an irrelevant second level state.
Our paper is organized as follows. We explain HHMMs in Section 2. We then

explain GVA and MVA in Section 3. In Section 4, we compare the performances
of GVA and MVA through experiments. We summarize the paper in Section 5.

2 HHMMs

2.1 Overview of HHMMs

An HHMM is represented as a tree structure as shown in Fig. 2. The circles,
trapezoids, and rectangles in the figure stand for internal states, production
states, and end states, respectively. The arrows connecting the states represent

1 MVA cannot, however, find the most likely word sequence since it does not marginal-
ize over word segmentation boundaries.
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q1 

q2 

o 

Fig. 1. Two level static hierarchical model

state transitions. A solid line indicates a horizontal transition to a state within
the same level, a broken line indicates a vertical transition to a child state in
the next level, and a dotted line indicates a transition to an end state, after
which control is returned to the calling parent state. The state at the top of the
hierarchy is called the root node. The level for the root node is 0, and a sequence
of state transitions starts at the root state.

An HHMM generates a sequence of observations as follows.

(Step 1) Start: we start from the root node at time t = 1.
(Step 2) Vertical transition : a transition occurs from the current state (an inter-

nal state) to a child state in the lower level. If the destination is an internal
state, further transitions to lower level states occur until a production state
is reached.

(Step 3) Output symbol emission: the production state emits an output symbol
ot. Time t is incremented by 1.

(Step 4) Horizontal transition: a transition to a state within the same level
occurs. If the destination is an internal state, we go back to Step 2, and if
the destination is a production state, we go back to Step 3. If the destination
is an end state, we proceed to Step 5.

(Step 5) Forced transition: A forced transition occurs to the upper level parent
state which has initiated the current level state transitions, and we go back
to Step 4.

Fine et al. [1], as well as proposing HHMMs, developed an algorithm for state
estimation on the basis of the inside-outside algorithm. This algorithm is not
efficient, however, and the time for state estimation and also for the most likely
state sequence estimation is O(T 3), where T is the length of the observation
sequence.
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Fig. 2. Example of an HHMM with a three-level hierarchy

2.2 Representing HHMMs as DBNs

Murphy et al. [3] devised a dynamic Bayesian network (DBN) representation
for HHMMs. A Bayesian network (BN) is a directed acyclic graph representing
conditional independence relationships between random variables, and a DBN
is an extension of a BN to a random process, where the random variables are
dependent on time t. Thanks to the DBN representation, linear time (O(T ))
algorithms for state estimation and the most likely state sequence estimation
have become available.

We show a DBN representation of a three-level HHMM in Fig. 3. (We assume
for simplicity that all production states are in the bottom level of the hierarchy.)
The random variable ot in the figure stands for the output from a production
state at time t (t = 1, . . . , T ). The output of an HHMM can be either discrete or
continuous, but we consider the case of discrete symbol output in this paper. The
state of the HHMM in level d and at time t is denoted by qdt (d ∈ {1, . . . , D}),
where d is the hierarchy index: the top level has d = 1, and the bottom level has
d = D.

fd
t is an indicator variable which is equal to 1 if qdt has transitioned to its

end state, and is 0 otherwise. The indicator variables play an important role in
representing an HHMM as a DBN. As we explained in the previous subsection, a
transition to an end state leads to a state transition in the upper level. In other
words, fd

t = 1 implies a possible state change in level d−1. In addition, if fd
t = 1

then fd′
t = 1 for all d′ > d; hence the number of indicator variables that equal 0

denotes the level of the hierarchy we are currently in.
We now explain the state transition probabilities and the discrete output

probabilities of an HHMM. The set of these probabilities constitutes the model
parameters of an HHMM and completely defines the HHMM. Note that fd

t = 1
implies not only that qd−1

t+1 , the state in level d − 1 at time t + 1, may change

from qd−1
t as mentioned above, but also that the value for qdt+1, the state in level

d at time t+ 1, is determined by a vertical transition. We show below the state
transition probabilities and the discrete output probabilities of an HHMM:
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Fig. 3. DBN representation of a three-level HHMM, which draws state-transitions from
time t− 1 to t+ 1

p(qdt =j′|qdt−1=j, fd+1
t−1 =b, fd

t−1=f, q1:d−1
t =i)

=

⎧⎨⎩
δ(j = j′) if b = 0,
Ad

i (j, j
′) if b = 1 and f = 0,

πd
i (j

′) if b = 1 and f = 1,
(4)

p(fd
t = 1|qdt = j, q1:d−1

t = i, fd+1
t = b) =

{
0 if b = 0,
Aedi (j) if b = 1,

(5)

p(ot = k|q1:Dt = i) = Bi(k), 1 ≤ k ≤ K, (6)

where q1:dt = (q1t , . . . , q
d
t ) is a vector consisting of the states in levels 1 through

d at time t, and is denoted by i 2. In Eq.(5), d ≥ 2 is assumed. We assume
that f1

0 = 1 so that a state transition occurs at time t = 1. We also assume
that fD+1

t = 1 so that a state transition occurs in the bottom level at each time
point.

δ(j = j′) in Eq.(4) is 1 if j = j′, and is 0 if j �= j′. If we assume that
the vector of higher-up state variables at time t, q1:d−1

t , is i, then Ad
i (j, j

′) is
the horizontal transition probability from state j to state j′ in level d, πd

i (j
′)

is the vertical transition probability to state j′ in level d, and Aedi (j) is the
horizontal transition probability in level d from state j to an end state. Bi(k)
is the probability to output the k-th symbol when q1:Dt is i. In Eq.(6), K is the
number of output symbols.

3 Finding the Most Likely State Sequence

3.1 GVA

GVA is a direct extension of the Viterbi algorithm to HHMMs that finds the
most likely sequence of states in all levels, including those in the lower levels.

2 We suppose that q1:d−1
t =i stands for the root node in level 0, when d = 1 in Eq.(4).
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Let us define the symbols we use in explaining GVA. Let Q1:D = (q1:D1 , . . . ,
q1:DT ) be a sequence of state vectors, where q1:Dt (1 ≤ t ≤ T ) is the vector of state
variables from level 1 to level D at time t, and let F 2:D = (f2:D

1 , ..., f2:D
T ) be a

sequence of indicator vectors, where f2:D
t (1 ≤ t ≤ T ) is the vector of indicator

variables from level 2 to level D at time t. Let O = (o1, ..., oT ) be a sequence of
observations, where ot(1 ≤ t ≤ T ) is the observation symbol at time t.

The most likely state sequence which GVA finds, (Q̂1:D, F̂ 2:D) is defined as
follows:

(Q̂1:D, F̂ 2:D) � argmax
Q1:D ,F 2:D

P (Q1:D, F 2:D|O). (7)

To find the most likely state sequence, (Q̂1:D, F̂ 2:D), given an observation se-
quence O = {o1, ..., oT }, we define δt(q,f) as follows:

δt(q,f) � max
q1:D1:t−1,f

2:D
1:t−1

logP
(
q1:D1:t−1, f

2:D
1:t−1, q

1:D
t = q, f2:D

t = f , o1, o2, · · · , ot
)
. (8)

δt(q,f ) is the log probability of the most likely state sequence that starts from
the initial state, emits o1, ..., ot, and ends at time t in state (q,f). By induction,
we can rewrite Eq.(8) as

δt(q,f ) =max
q′,f ′

{
δt−1(q′,f ′)+logP (q1:Dt =q, f2:D

t =f | q1:Dt−1=q′,f2:D
t−1 =f ′)

}
+ logP (ot | q1:Dt = q). (9)

To actually retrieve the state sequence, we keep track of q′,f ′ which maximizes
the right hand side of Eq.(9) for each state (q,f ) at each time t ≥ 2. We do
this via the array φt(q,f ). The whole procedure for finding the most likely state
sequence can now be stated as follows.

(Step 1) Initialization: for t = 1,

δ1(q,f) = logP (q1:D1 = q, f2:D
1 = f) + logP (o1|q1:D1 = q), ∀q, ∀f .(10)

(Step 2) Recursion: for t = 2, ..., T ,

δt(q,f)=max
q′,f ′

{
δt−1(q

′,f ′)+ logP (q1:Dt =q,f2:D
t =f | q1:Dt−1=q′,f2:D

t−1 =f ′)
}

+ logP (ot | q1:Dt =q), ∀q, ∀f , (11)

φt(q,f) =argmax
q′,f ′

{
δt−1(q

′,f ′) + logP (q1:Dt = q, f2:D
t = f | q1:Dt−1= q′,

f2:D
t−1 = f ′)

}
+ logP (ot | q1:Dt =q), ∀q, ∀f . (12)

(Step 3) Termination:

log P̂ = max
q,f

δT (q,f ), (13)

(q̂1:DT , f̂2:D
T ) = argmax

q,f
δT (q,f). (14)
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(Step 4) Path (state sequence) backtracking:
for t = T − 1, T − 2, ..., 1,

(q̂1:Dt , f̂2:D
t ) = φt+1(q̂

1:D
t+1, f̂

2:D
t+1 ). (15)

The time complexity of GVA is O(T ).

3.2 MVA for Two-Level HHMMs

In hierarchical models, upper level states usually convey more important infor-
mation. MVA finds the most likely upper level state sequence by marginalizing
the lower level state sequences. In this subsection, we explain MVA for two-level
HHMMs for simplicity. We skip explaining MVA for general D-level HHMMs
because of the space limitation.

Let Q1 = q11:T , Q
2 = q21:T , and let F 2 = f2

1:T . The most likely upper level

state sequence, (Q̂1, F̂ 2), is defined as follows 3:

(Q̂1, F̂ 2) � argmax
Q1,F 2

P (Q1, F 2, O) = argmax
Q1,F 2

∑
Q2

P (Q1:2, F 2, O). (16)

Before explaining MVA, let us define segments. Suppose we are given {Q1 =
q11:T , F

2 = f2
1:T , Q

2 = q21:T }, a state sequence from time 1 to time T . We call
{q1t1:t2 , f2

t1:t2 , q
2
t1:t2}, which is a partial sequence of states between time t1 and t2,

a segment with t1, t2 as the start time and the end time for the segment, when
{q1t1:t2 , f2

t1:t2 , q
2
t1:t2} satisfies the following conditions:⎧⎪⎨⎪⎩

t1 = 1 or f2
t1−1 = 1,

f2
t1:t2−1 = 0 if t2 − t1 ≥ 2,

f2
t2 = 1.

(17)

Simply speaking, a segment is a partial sequence of states between the time
just after the state in level 2 transitions to its end state and the time when the
state in level 2 transitions to its end state again. See Fig. 4. Note that level 1
state transitions occur only at segment boundaries, and that the state in level 1
does not change within a segment (i.e., between the start and the end time of
a segment). Therefore, the level 1 state sequence from time 1 to time T can be
specified by the end times (or the start times) of all the segments and the level
1 state for each of the segments.

Computing {δt(i) | 1 ≤ i ≤ N1, 1 ≤ t ≤ T } defined below plays a central role
in MVA:

δt(i) � max
q11:t−1,f

2
1:t−1

logP (q11:t−1, f
2
1:t−1, q

1
t = i, f2

t = 1, o1:t)

= max
q11:t−1,f

2
1:t−1

log
∑
q21:t

P (q11:t−1,f
2
1:t−1,q

2
1:t−1,q

1
t = i,f2

t =1,q2t,o1:t), (18)

3 For some applications, we may want to marginalize the indicator variable sequences,
F 2, as well.
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t1 t2 t2+1 t1+1 t1-1 

end end 

Fig. 4. Segment that starts at t1 and ends at t2

where N1 is the total number of level 1 states. δt(i) is the log probability of
the most likely level 1 state sequence which starts from the initial state, emits
o1, ..., ot, and ends at time t, when the level 1 state is i and the level 2 state
transitions to its end state (i.e. t is an end time of a segment).

Given an observation sequence, O, and the indicator variable at time T , f2
T =

f̃2
T , the most likely level 1 state sequence can be found by the following dynamic

program. We assume f̃2
T = 1 for simplicity.

(Step 1) Initialization: for t = 1,

δ1(i) = logP (q11 = i, f2
1 = 1, o1), ∀i, (19)

φ1(i) = (0, 0), ∀i. (20)

(Step 2) Recursion: for t = 2, ..., T ,

δt(i)=max
{
α0,t(i), max

j,τ :1≤τ<t

(
δτ (j)+ logA1

0(j, i)+ατ,t(i)
)}

, ∀i, (21)

φt(i)=

{
(0, 0) if δt(i) = α0,t(i),

(j∗,τ∗)=argmaxj,τ :1≤τ<t(δτ (j) +logA1
0(j, i) + ατ,t(i)) otherwise,

∀i, (22)

where

ατ,t(i)=logP (f2
τ+1:t−1=0,f2

t =1,oτ+1:t|f2
τ =1,q1τ+1= i)

= log
∑
q2τ+1:t

P (f2
τ+1:t−1 = 0, f2

t = 1, q2τ+1:t, oτ+1:t | f2
τ = 1, q1τ+1 = i),

τ ≥ 1,

α0,t(i)=logP (q11:t = i, f2
1:t−1 = 0, f2

t = 1, o1:t).

(Step 3) Backtracking

q̂1T = argmax
i

δT (i) ,f̂
2
T = 1, t = T. (23)
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while t > 0 do
1 ) (q̂1τ , τ) = φt(q̂

1
t ), f̂

2
τ = 1

q̂1τ+1:t−1 = q̂1t , f̂
2
τ+1:t−1 = 0 if τ + 1 ≤ t− 1

2 ) t ← τ
endwhile

In the above, A1
0(·, ·) is the horizontal transition probability for the level 1 states,

the subscript τ in ατ,t(i) is the end time of the segment just before the segment
which ends at time t, and ατ,t(i) is the log probability that the subsequence of
observations oτ+1:t is emitted by any segment whose level 1 state is i. That is,
ατ,t(i) is the marginalization over the lower level state sequence of the joint log
probability that oτ+1:t is emitted by a lower level state sequence generated by
the upper level state i. All of {ατ,t(i)|1 ≤ i ≤ N1, 1 ≤ τ < t} can be computed by
the backward procedure for HMMs in O(t) total time[6]. φt(i) is a variable used
for backtracking, containing both the level 1 state, j, of the previous segment
and the end time, τ , for the previous segment.

While the time complexity of GVA is O(T ), the time complexity of MVA
is O(T 2). This is the cost we have to pay to find the most likely level 1 state
sequence.

4 Experiments

We carry out two experiments. In Experiment 1, we compare GVA and MVA
in terms of accuracy. In Experiment 2, we determine when MVA is much more
accurate than GVA.

4.1 Overview of the Experiments

Experimental Data. Artificial data to be used in the experiments are
randomly generated from two-level HHMMs. The initial state probabilities,
{π1

0(i) | 1 ≤ i ≤ N1} (N1 is the total number of states at level 1), the
state transition probabilities, {A1

0(i, i
′) | 1 ≤ i, i′ ≤ N1}, for level 1, the

initial state probabilities, {π2
i (j) | 1 ≤ i ≤ N1, 1 ≤ j ≤ N2} (N2 is

the total number of states in level 2), and the state transition probabilities,
{A2

i (j, j
′) | 1 ≤ i ≤ N1, 1 ≤ j, j′ ≤ N2}, are all sampled from Dirichlet

distributions with concentration parameters αk equal to 1.0. The state ending
probabilities, {A2

i (j, end) | 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}, are all 0.1. The output
probabilities, {B(i,j)(k) | 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ K}, are also
sampled from Dirichlet distributions with concentration parameters αk equal to
1.0.

A concentration parameter of 1.0 in the Dirichlet distribution results in all
sets of probabilities being equally likely (i.e. a uniform distribution). The state
ending probabilities are set to 0.1 to make the segments longer and make upper
level state estimation easier.
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Performance Evaluation We estimate the upper level state sequences4 using
GVA and MVA. The performance of the algorithms is evaluated in terms of two
accuracy rates:

– Accuracy rate 1 is computed from the sequences:

accuracy rate 1 �
N corr

seq

Nseq
,

where Nseq is the total number of sequences, and N corr
seq is the total number

of sequences for which the upper level states are always correctly estimated.
– Accuracy rate 2 is computed from the times:

accuracy rate 2 � N corr
times

Ntimes
,

where Ntimes is the sum of the sequence lengths, and N corr
times is the sum of

the times at which the upper level states are correctly estimated.

4.2 Experiment 1

We set N1 = 2. Let λ and λ′ be the lower level models (considered as HMMs)
whose parent states are states 1 and 2 in level 1, respectively. In Experiment 1,
we consider the case where λ and λ′ have the same number of states.

– Nλ and Nλ′ , the total number of states in λ and λ′, are both four.
– K is 2, 4, 6, 8 or 10.
– We generate 100 sequences of length T = 10, T = 20, and T = 50 for each

trial.
– The accuracy rates are averaged over 100 trials.

We show the results in Table 1. MVA outperforms GVA in terms of both accuracy
rate 1 and accuracy rate 2. For both algorithms, accuracy rate 1 decreases as
T becomes longer. Accuracy rates 1 and 2 both increase as K becomes larger.
The reason is as follows. Since the symbol output probabilities are sampled from
Dirichlet distributions whose concentration parameters are 0.1, the probabilities
are close to 0 or 1, and therefore it becomes easier to estimate states from
observations when there are more output symbols.

4.3 Experiment 2

We set N1 = 2, as in Experiment 1. In Experiment 2, we consider the case
where λ and λ′ have different numbers of states. Nλ and Nλ′ are eight and four,
respectively. All other settings are the same as in Experiment 1.

4 An upper level state sequence can be either q11:T or (q11:T , f
2
1:T ), but we use the latter,

(q11:T , f
2
1:T ), as an upper level state sequence.
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Table 1. Results of Experiment 1 (N1 = 2, Nλ = Nλ′ = 4, the numbers in parentheses
are standard deviations)

Accuracy Rate 1 (%) Accuracy Rate 2 (%)

K T GVA MVA GVA MVA

2 10 30.6 (7.2) 32.7 (6.2) 64.8 (11.9) 69.1 (8.9)

20 9.4 (4.3) 11.5 (3.4) 56.0 (15.4) 64.7 (11.3)

50 0.5 (0.7) 0.6 (0.8) 58.1 (16.6) 65.1 (12.7)

4 10 31.7 (6.5) 34.0 (6.4) 68.3 (8.8) 71.1 (8.1)

20 11.9 (4.2) 13.4 (3.7) 66.6 (12.8) 72.1 (9.2)

50 0.4 (0.6) 0.7 (0.8) 64.6 (12.6) 71.0 (8.2)

6 10 32.1 (5.9) 34.2 (5.4) 68.7 (8.2) 71.2 (7.3)

20 12.3 (3.5) 13.3 (3.7) 70.0 (9.3) 72.6 (8.2)

50 0.8 (1.0) 0.9 (0.9) 69.4 (12.1) 73.8 (8.0)

8 10 34.1 (6.2) 36.0 (5.6) 70.4 (7.8) 73.2 (6.7)

20 12.3 (3.9) 13.7 (3.6) 69.4 (8.0) 72.7 (6.1)

50 0.6 (0.7) 0.7 (0.9) 70.0 (9.0) 73.8 (7.5)

10 10 33.5 (5.1) 35.3 (5.0) 71.2 (7.3) 73.5 (6.5)

20 12.4 (3.7) 13.3 (3.9) 71.1 (7.6) 73.3 (6.6)

50 0.7 (0.9) 0.8 (1.0) 72.3 (8.4) 75.9 (6.7)

Table 2. Results of Experiment 2 (Nλ = 8, Nλ′ = 4, the numbers in parentheses are
standard deviations)

Accuracy Rate 1 (%)

K T GVA MVA

2 10 25.3 (10.2) -5.3 32.3 (7.0) -0.4

20 7.5 (4.4) -1.9 11.4 (3.7) -0.2

50 0.4 (0.6) -0.1 0.6 (0.8) 0.0

4 10 26.5 (8.0) -5.3 33.8 (5.1) -0.2

20 9.1 (4.7) -2.7 13.0 (3.8) -0.4

50 0.3 (0.6) -0.1 0.5 (0.7) -0.2

6 10 28.4 (8.1) -3.8 34.5 (5.7) +0.3

20 9.2 (4.4) -3.0 13.0 (3.7) -0.4

50 0.4 (0.7) -0.4 0.7 (0.8) -0.2

8 10 29.8 (7.7) -4.3 35.1 (4.9) -0.9

20 10.2 (4.7) -2.1 14.5 (4.5) +0.8

50 0.4 (0.6) -0.2 0.7 (0.8) 0.0

10 10 28.6 (7.1) -4.9 34.4 (5.7) -0.9

20 9.9 (4.1) -2.5 13.3 (3.3) 0.0

50 0.4 (0.7) -0.3 0.9 (0.9) +0.1
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We show the results (accuracy rate 1) of Experiment 2 in Table 2. The last
figures in each boxes show the differences from the accuracy rates in Experi-
ment 1. When we compare the results with those from Experiment 1, we notice
that while the accuracy rates of GVA are lower, the accuracy rates of MVA do
not change very much. We conjecture that the reason is as follows. Since GVA
finds the most likely whole level state sequence including the lower level states, a
model which has fewer states (λ′), i.e. the upper level state 2, is more likely to be
chosen by the algorithm because of the (possibly) larger transition probabilities
in level 2. On the other hand, MVA, which marginalizes the lower level state,
does not have this problem. This is why there is a big difference in the accuracy
rates of the two algorithms.

5 Conclusions

The generalized Viterbi algorithm, a direct extension of the Viterbi algorithm
for HMMs, has been used to find the most likely state sequence for hierarchical
HMMs. However, the generalized Viterbi algorithm finds the most likely whole
level state sequence, but not the most likely upper level state sequence. In this
paper, we have proposed a marginalized Viterbi algorithm that finds the most
likely upper level state sequence by marginalizing the lower level state sequences.
Using experiments, we have shown that the marginalized Viterbi algorithm is
more accurate than the generalized Viterbi algorithm in terms of upper level
state sequence estimation.
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Abstract. Probabilistic approaches are now widespread in the various
applications of natural language processing and elicitation of a particular
approach usually depends on the task at hand. Targeting multilingual
interpretation of speech, this paper presents a comparison between the
state-of-the-art methods used for machine translation and speech under-
standing. This comparison justifies our proposition of a unified frame-
work to perform a joint decoding which translates a sentence and assigns
semantic tags to this translation in the same process. The decoding is
achieved using a cascade of finite-state transducers allowing to compose
translation and understanding hypothesis graphs. This representation is
favorable as it can be generalized to allow rich transmission of informa-
tion between the components of a human-machine vocal interface.

Keywords: Multilingual Understanding, CRF, Hypothesis Graphs.

1 Introduction

Today, probabilistic approaches are widely used in all applications of automatic
language processing (speech recognition, machine translation, syntactic parsing,
POS or semantic tagging etc.). The performance of an approach depends greatly
on the targeted task. Considering various tasks, the best performing approach
is not always the same.

For instance, for the Spoken Language Understanding (SLU) task, Conditional
Random Fields (CRF) [15] have been shown to be the most efficient so far [8].
Whereas for machine translation, Log-Linear Stochastic Phrase-Based Machine
Translation (LLPB-SMT) [14] are the most commonly used and have shown their
potential for many language pairs.

However, despite the initial formulations between the probabilistic approaches,
distinctions tend to fade away when confronted with practical considerations.
Also some works proposed the use of discriminative approaches, such as CRF,
for automatic translation [23,18,17] while at the same time the phrase-based
translation pipeline was also investigated for other natural language processing
tasks such as grapheme-phoneme conversion [25], Part-of-Speech tagging [7] etc.
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In this paper, our overall objective is to develop performing approaches for
speech understanding in a multilingual context. For that matter two state-of-
the-art approaches are investigated for each of the underlying issues: CRF-SLU
for speech understanding and LLPB-SMT for translation. In a first step, to
evaluate the practical interest of each method, we propose to use and optimize
the LLPB-SMT approach for speech understanding, and also to integrate a CRF-
based model in a machine translation module. This study allows to highlight
the specificities of each task and to evaluate the performance of the respective
approaches for these tasks.

On the other hand, we showed in a previous work [11,12] that the use of ma-
chine translation is an effective solution for the portability of an understanding
system from a language to another. For instance, this portability can be obtained
by cascading a translation module with an understanding system. In few words,
the idea here is to translate the inputs of a user into a language for which we
already have a (hopefully) performing understanding system.

In some cases, the best translation hypothesis is not the one for which the
system generates the best understanding (from our experience it is most often
caused by bad word reordering). Therefore the selection of the best translation
does not optimize the overall system in a scenario of multilingual understanding.

Based on the comparison made between both tasks we propose a model that
can jointly decode the inputs in terms of translation and understanding hypothe-
ses. This joint decoding will select a translation taking into account the semantic
tagging generated for this translation. In this line of thought, we no longer seek
the best possible translation, but the translation that can be semantically la-
belled in the best possible way.

Our experiments are based on the French dialogue corpus Media based on
which an initial understanding system for French can be built. In order to use
this system for Italian entry tagging, an Italian to French translation system is
also trained with few manual data. This system will be used during decoding
to translate Italian entries into French in order to provide French inputs to the
understanding system. Then these models will be merged in a single decoding
loop by means of hypothesis graphs.

The paper is organized as follows: Section 2 presents the use of a machine
translation approach for speech understanding. Then Section 3 describes the
use of CRF for machine translation. Our proposal for a joint decoding between
translation and understanding is presented in Section 4. Finally, Section 5 gives
an overview of the experimental study and results.

2 Using a Machine Translation Approach for Spoken
Language Understanding

The understanding of a user utterance can be seen as a translation from a se-
quence of words (source language) to a sequence of concepts (target language).
[20,19] showed that statistical machine translation approaches can be used in
a task of speech understanding. This approach assumes that the sequences of
concepts are the translations of the original sequences of words.
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Despite this similarity between the tasks of understanding and translation,
understanding has its own characteristics that must be taken into consideration
in order to improve the performance obtained by a LLPB-SMT approach.

The differences between a classical translation task (from a natural language
into another) and the use of translation for understanding (translation from a
language into semantic tags) can be summarized as follows:

– the semantics of a sentence generally follows the order in which words occur
unlike a translation task in which translated words may have a different
order between target and source depending on the language pair considered
and their syntactic proximity;

– in a translation task, a source word can be aligned to no target word (null
fertility), whereas for understanding every word must be aligned to a concept,
even though words that do not contribute to the meaning of the sentence
considering the domain of the task are labelled with a specific NULL concept;

– also, evaluation measures are different between both tasks (BLEU [24] for
translation vs. CER - Concept Error Rate - for understanding), therefore the
tools used for optimizing translation systems should be adapted to optimize
CER score instead of BLEU.

Following the assumption that the semantics of a sentence follows the order in
which words occurred, we propose to introduce a constraint of monotony, which
conducts the decoder to follow strictly the order of words to generate concepts.

A major difficulty of the translation task is that it requires to automatically
align a word from the source language to its corresponding word in the target
language. Since corpora used for training translation systems are usually aligned
at the sentence level, an automatic alignment step is necessary to obtain word
alignment. However, most of understanding corpora are labelled (aligned) at the
segment level and therefore the use of alignment information can be beneficial
to help the alignment process. In this respect, the use of the BIO tagging (Begin
Inside Outside) [26] ensures that each word in the source sentence is aligned
to its corresponding concept and therefore no additional automatic alignment
is required. In that way, the extraction of the phrase table is obtained from a
corpus with a perfect alignment (no alignment errors).

Finally, since we want to evaluate the hypotheses generated by this approach
from an understanding perspective (evaluating the CER and not the BLEU
score) we propose to modify the MERT - Minimum Error rate Training [22] -
algorithm to maximize the CER directly.

3 Using a Spoken Language Understanding Method for
Machine Translation

In this approach, the translation is viewed as a tagging of the source words
sequences, the possible tags being the words of the target language themselves.
Training a tagger based on a CRF approach requires an annotated corpus (trans-
lated corpus) at word level. The application of IBM models [4] provides auto-
matic word alignments from a bilingual corpus originally aligned at the sentence
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level. As for the understanding task, where many words may be associated with
a single concept, several source words can be aligned with only one target word.
Thus, we proposed to handle tags as it is done for understanding using the BIO
formalism. For example, the French sequence “Je voudrais” aligned to the Italian
word “vorrei” can be represented as: “je, B vorrei” “voudrais, I vorrei”.

The main difficulty for training CRF models for translation is related to the
high number of tags (corresponding to the target language vocabulary size).
Though some solutions exist, [27] proposed to use the RPROP algorithm for fea-
ture optimization to deal with a large number of features. This algorithm reduces
the memory requirements compared to other optimization algorithms [32].

Another limitation to the use of CRF for translation is that it does not take
into account word reordering and that the target language model is limited by
the computational complexity of the decoding. To obtain an efficient CRF-based
translation system, [17] have proposed a model based on finite state transducers
in which different stages of the translation process are composed. This model
will be called CRFPB-SMT because it embeds a mechanism for modelling a
translation table by sub-sentential segments (called tuples, but analogous to
phrases) and uses CRF as the probabilistic models providing the hypothesis
scores.

The proposed decoder is a composition of Weighted Finite State Transducers
(WFST) representing the following steps: reordering and segmentation of the
source sentence according to the words tuples , application of the translation
model with hypotheses evaluation based on CRF, and composition with a target
language model.

This architecture allows to consider the translation of a sentence as a compo-
sition of transducers in the following order:

λtranslation = λS ◦ λR ◦ λT ◦ λF ◦ λL

where λS is the acceptor of the source sentence s, λR implements segmentation
and reordering roles, λT is a dictionary of tuples, combining sequences of the
source language and their possible translation based on the tuples inventory, λF

is a feature matcher, which assigns probability scores to tuples using a CRF
model and λL is a language model of the target language.

4 Language Portability Scenario: Joint Decoding for
Translation and Understanding

4.1 Our Language Portability Scenario

Our study of the relations between the different approaches was mainly aimed
at being able to combine them for multilingual portability of an understanding
system. In a previous work [11], we have shown that the best way to port an
understanding system to a new language is also the simplest: to translate users
utterances of the new language back into the language of the existing under-
standing system and then to label the translation hypothesis with this system.
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This proposition is based on a pipeline of a translation system (LLPB-SMT)
and an understanding system (CRF-SLU). The best hypothesis generated by the
translation system is conveyed as input to the understanding system. However,
other hypotheses can be better interpreted by the tagger. So, the selection of the
best translation does not necessarily optimize the behavior of the overall system.

A joint decoding between translation and understanding can be an efficient
solution to address this problem. The joint decoding has the advantage of being
able to optimize the selection of the translation taking into account the tags that
can be assigned to the best possible translations.

The previously presented CRFPB-SMT approach can be generalized to the
understanding task. Therefore an understanding system λunderstanding can be
obtained in the same way as proposed in Section 3. This representation al-
lows to obtain a graph of understanding hypotheses similar to that obtained
for translation. Since the translation output vocabulary is the same as for the
understanding input, these two graphs can be composed to derive a joint graph:

λjoint = λtranslation ◦ λunderstanding

This composition takes a sentence in the target language as input and assigns
a sequence of concepts to that sentence using a semantic tagger available for
the source language. This consists in a joint decoding between the translation
and the understanding since the probabilities of the two models are taken into
account to determine the best overall hypothesis.

4.2 Related Works

The joint decoding issue has already been addressed in the past, mostly when
system component pipelines are involved for human-machine interaction systems.
In a standard architecture, the system transmits the best transcription hypoth-
esis from the automatic speech recognition system to the speech understanding
module. Considering that this hypothesis is noisy, it is not necessarily the best
labelled one.

Several studies have proposed a joint decoding between speech recognition
and understanding to take into account the n-best recognition hypotheses during
the semantic tagging. These early works [31,29,9] have proposed to produce a
confusion network out of several recognition graph outputs. The understanding
system was represented as a WFST, which weights were obtained by maximum
likelihood estimates on the training data. Then joint decoding is obtained as the
composition of the recognition graph with the understanding graph.

The positive results obtained by these proposals have encouraged further work
in the same line. Given that the most successful models in the SLU state-of-the-
art are CRF, [2] proposed to use them instead of WFST for understanding. In the
same line, our proposal seeks a joint decoding for translation and understanding.
Since the two systems are different by nature, their joint optimization is made
difficult, this is why we try to standardize systems over considered tasks.
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5 Experiments and Results

All experiments presented in this paper are based on the Media French dia-
logue corpus. Media (described in [3]) covers the domain of hotel reservation
and tourist information. This corpus is annotated with 99 semantic labels that
represent the domain semantics.

The corpus is composed of 1257 dialogues grouped into 3 parts: a training set
(13k sentences), a development set (1.3k sentences) and a test set (3.5k sentences).
A subset of the training data (about 5.6k sentences), as well as the test set and
the development set, are manually translated into Italian.

A LLPB-SMT based model is used to train an understanding system on the
French corpus, and the manually translated subset of this corpus is used as a
parallel corpus to train a translation model based on CRF. Then the CRFPB-
SMT approach based on transducers is evaluated separately for translation and
understanding before being used in the context of joint decoding.

The Concept Error Rate (CER) is the evaluation criterion used to evaluate
the understanding task. CER can be defined as the ratio of the sum of concepts
deleted, substituted and inserted on the number of concepts in the reference. On
the other hand the BLEU score [24], based on the accounts of n-grams shared
between hypothesis and reference, is used to evaluate the translation task.

5.1 Evaluation of the LLPB-SMT Model for Understanding

The MOSES toolkit [13] is used to train a LLPB-SMT for French language
understanding. The first attempts showed clearly inferior performance to those
obtained by a CRF-SLU baseline model (CER 23.2% after MERT tuning for
LLPB-SMT compared to 12.9% for CRF-SLU 1). Incremental improvements of
the model as proposed in Section 2 are evaluated in Table 1.

Using a monotone decoding allows a reduction of 0.5% absolute in CER.
Rewriting the training data into the BIO formalism reduces significantly the
CER (2.4% absolute). Optimizing the CER instead of BLEU reduces the CER
of an extra 0.4%. Finally, adding a list of cities in the training set considerably
addresses the OOV word issue and provides a final CER reduction of 0.8%.

Results show that despite all the improvements on the LLPB-SMT approach,
the CRF based approach still performs better for the understanding task (CER
12.9% for CRF-SLU vs 18.3% for LLPB-SMT). The analysis of the errors made
by each model shows that CRF have a high level of deletions compared to the
other types of errors, while the LLPB-SMT method presents a better trade-off
between deletion and insertion errors, even though it ends up with a higher CER.

5.2 Evaluation of the CRF Model for Translation

In order to evaluate our approach using a CRF-SLU model for the translation we
use the manually translated part of Media as parallel corpus to train the trans-
lation model (French to Italian). The GIZA++ toolkit (available with MOSES)

1 Please refer to [12] for more details on the CRF-SLU module.
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Table 1. Incremental improvements of LLPB-SMT model for French understanding

Models Sub Del Ins CER

Initial 5.4 4.1 14.6 24.1

+MERT (BLEU) 5.6 8.4 9.2 23.2
+Monotone decoding 6.2 7.8 8.7 22.7

+BIO formalism 5.7 9.3 5.3 20.3
MERT (CER) 5.3 9.2 4.6 19.1

OOV list 5.8 7.4 5.1 18.3

was used to automatically obtain word-to-word alignment between the two lan-
guages and WAPITI [16] was used to train the CRF model.

We trained a CRF-SLU model for translation using the RPROP algorithm as
proposed in Section 3. Characteristic functions of 5-grams on the observations
and bi-grams on labels are used to train the model. The performances obtained
are presented in Table 2. The results show that the performance of the CRF-SLU
model (BLEU 42.5) is significantly worse than the performance obtained by the
LLPB-SMT method using MOSES with basic settings (BLEU 47.2) 2.

To make a fair comparison between the two methods, we evaluate the LLPB-
SMT approach in the same conditions as the CRF-SLU approach. The LLPB-
SMT method uses a reordering model while CRF-SLU, dedicated to sequential
labelling, does not include such model. For that we added a monotony constraint
during decoding for the LLPB-SMT model. The performance of the LLPB-SMT
baseline model are obtained using a trigram language model (commonly used in
translation systems). However, the computational complexity of the CRF-SLU
approach does not allows the use of such a language in the label side. In order to
evaluate the CRF-SLU approach and the LLPB-SMT under the same conditions,
and since we can not increase the size of the characteristic functions of the CRF
model, we propose to use a bigram language model for the LLPB-SMT model.

Furthermore, while using the CRF-SLU model, OOV words are translated by
other words in the corpus according to the context of the sentence, unlike with
the LLPB-SMT approach which tends to project untouched the OOV words
in the translated sentence. These OOV words, being in most cases city names
or places, their translation does not change from one language to another, and
therefore their projection in the translated output is advantageous for LLPB-
SMT models. In that purpose, we introduced a pre-processing step for OOV
words in the source sentence to retrieve outputs in CRF-SLU approach.

The results presented in Table 2 show that the monotone decoding decreases
the performance of the LLPB-SMT model by 0.91% absolute. The use of a
bigram language model increases the loss of an extra 0.3%. OOV word processing
allows the CRF-SLU model to recover 1.0% of BLEU score compared to the
CRF-SLU baseline model. Despite downgrading of the LLPB-SMT model and
improvements of the CRF-SLU model, the performance of the latter is still lower
than the LLPB-SMT model (BLEU 43.5% for CRF vs. 46.0% for LLPB-SMT).

2 Please refer to [12] for more details on the LLPB-SMT model.
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Table 2. Comparaison of the LLPB-SMT and CRF-SLU models for Italian to French
translation (BLEU %)

CRF-SLU LLPB-SMT

Baseline 42.5 47.2
Monotone decoding 42.5 46.3

Bigrams 42.5 46.0
OOV processing 43.5 46.0

5.3 Evaluation of the CRFPB-SMT Model for Translation and
Understanding

A CRFPB-SMT model has been constructed for translation as described in Sec-
tion 3. This model was built using the N-CODE tool [6], implemented to train
translation models based on n-grams [21].

This tool uses the OpenFst library [1] to built a translation graph by com-
position of several transducers. The difference between the model implemented
by this tool and the model we aim to develop lies in the parameters of so-called
translation model. So we adapted the tool to use a CRF model to estimate the
translation probabilities and a normalization of the probability scores obtained
with the model is done over the different paths in the graph (as proposed in [17]).

In N-CODE, the reordering model (proposed by [5]) is based on a set of rules
extracted automatically from training data. This approach requires a grammati-
cal labelling of the source training sentences and a word alignment between the
source and target sentences to train the λR model. The TreeTagger tool [28] was
used for grammatical labelling and GIZA++ for word alignment. The language
model used in our experiments is a trigram model trained on the target side of
our training corpus using the SRILM tool [30].

Table 3 presents a comparison between three models: CRFPB-SMT, LLPB-
SMT (baseline) and the CRF-SLU (presented in the previous section). The results
show that the CRFPB-SMT approach based on transducers gives comparable per-
formance to those obtained by the LLPB-SMT approach.

Despite a loss of 3.1% absolute, the performance is fairly high for a translation
task (despite a limited size training set), which in our context is explained by the
limited vocabulary of the domain. On the other hand the results show that the
use of graphs in CRFPB-SMTmodel is doubly advantageous compared to the use
of a basic CRF approach. Besides the fact that it allows to process input graphs
(eg coming from the ASR module) this approach allows to increase the system
performance by about 1% absolute.

The mechanism used to obtain a translation graph can be used for understand-
ing. In a first step, the graph of concept hypotheses is obtained by composing all
models λS ◦λR ◦λT ◦λF ◦λL as for the translation. This approach gives a CER
of 15.3%. To take into account the specificities of understanding (which does not
require reordering model or long-range language model in the target side), we
propose to obtain the output graph by combining only λS ◦λT ◦λF . This allowed
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Table 3. Comparison between the different approaches (LLPB-SMT, CRF-SLU,
CRFPB-SMT) for Italian to French translation

Model Language BLEU

LLPB-SMT
IT – FR

47.2
CRF-SLU 43.5

CRFPB-SMT 44.1

Table 4. Evaluation of CRF-based approaches for French understanding

Model Sub Del Ins CER

CRF-SLU 3.1 8.1 1.8 12.9
CRFPB-SMT (λS ◦ λR ◦ λT ◦ λF ◦ λL ) 4.2 8.8 2.3 15.3

CRFPB-SMT (simplified) (λS ◦ λT ◦ λF ) 3.5 7.6 2.0 13.1

to increase the performance of this approach by 2.2% absolute (15.3% vs 13.1%)
to find almost the same performance as CRF-SLU (12.9%). A comparison be-
tween the performance of the different versions is given in Table 4. Subsequently,
simplified CRFPB-SMT is used for all reported experiments.

5.4 Joint Decoding for Multilingual Understanding

A joint decoding for translation and understanding has been applied as proposed
in section 4. This decoding will label Italian sentences by combining an Italian
into French translation system and a French understanding system. For that, we
adapted the acceptor of the French understanding model (given in the last row
of Table 4 and described in Section 5.3) to take graphs as input (instead of a
single hypothesis). This transducer generates a weighted understanding graph
that takes into account translation scores.

The two scores (translation and understanding) are considered in the decoding.
We propose that the final score for each path of the graph is the addition of the
translation score and the understanding on this path 3. The best path is then
selected among all possible paths of the graph. This path represents a joint
decoding between translation and understanding (marginalization of random
variability caused by intermediate translation).

We propose to perform the joint decoding in two modes: in the first, the
translation system used is a LLPB-SMT model (using the MOSES toolkit) while
we used a CRFPB-SMT (as described in 5.3) in the second. In both cases the
performance are compared with or without taking into account the hypotheses
graph in the joint decoding. In the first case, the 1-best translation of the graph
is transmitted to the understanding system. In the second case, the oracle of the
translation graph is given as input for understanding. Oracle scores represent an
evaluation based on the closest path to the translation reference. That allows

3 An experiment to assess the impact of scores weighting is presented in [10].
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Table 5. Evaluation of different configurations of multilingual understanding, depend-
ing on the communication channel (1-best, oracle or graph)

Translation Understanding (CRF)

Model Output BLEU/Oracle Input CER/Oracle BLEU

LLPB-SMT

1-best 47.2/47.2 1-best 19.9/19.9 47.2
graph 46.9/47.9 1-best(graph) 19.9/19.4 46.9
graph 46.9/47.9 oracle(graph) 19.8/19.3 47.9
graph 46.9/47.9 graph 19.7/19.1 46.3

CRFPB-SMT
graph 44.1/44.9 1-best(graph) 21.7/21.1 44.1
graph 44.1/44.9 oracle(graph) 21.6/21.1 44.9
graph 44.1/44.9 graph 21.3/20.6 43.9

to evaluate the impact of translation quality on understanding performance (see
table 5). We also evaluate the oracle scores (for translation and understanding)
on the outputs of the different combination, and we calculated the BLEU score
on the selected translation by the joint decoding (last column of Table 5).

The first line of this table is the baseline combination (without the use of
a graph) wherein the output of MOSES is given as input to a CRF model.
The results show that the graph of translation improves the performance of
the system compared to the system using the 1-best (CER 19.7% vs. 19.9% for
LLPB-SMT and 21.3% vs. 21.7% for CRFPB-SMT). Using a translation graph
also gives better performance compared to the combination with the translation
oracle (CER 19.7% vs. 19.8% for LLPB-SMT and 21.3 vs. 21.6 for CRF).

The difference between the performance obtained by the joint decoding us-
ing LLPB-SMT model for translation and this obtained using a CRFPB-SMT
model (CER 19.7% vs. 21.3%) can be explained by the difference between the
performance of these two models (BLEU 46.9% vs 44.1%).

It is important to mention that only combinations taking an input graph for
understanding allow to select the translation according to the labelling that will
be applied. In other cases the selection of the translation is done independently.
We note that the BLEU score of the translation selected by joint decoding is
lower than the best translation (46.3 vs. 47.2 for LLPB-SMT and 43.9 vs. 44.1
for CRFPB-SMT) despite that the former is better in terms of CER. This proves
the interest of the joint graph based method.

6 Conclusion

In this paper we evaluated and compared stochastic approaches for both speech
understanding and automatic translation. We showed that the discriminative
CRF approach is the best approach for speech understanding, despite all the
adaptations of LLPB-SMT approach for the task. Using a CRF approach for
translation has several limitations and the performance of this approach can
be improved by using a model based on transducers allowing the integration of
appropriates models (reordering, segmentation, language model).
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We proposed and evaluated an approach for joint decoding between the trans-
lation and the understanding in the context of a multilingual understanding
system. We have shown that with such a decoding we can achieve good perfor-
mance while providing a homogeneous system for two underlying tasks.

In the context of a human-machine dialogue system, a joint decoding between
speech recognition and translation can be added. That allows the recognition
system to transmit richer information to the understanding system and under-
standing system in turn will transmit rich information to the dialogue manager
which might positively influence the overall system performance.
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16. Lavergne, T., Cappé, O., Yvon, F.: Practical very large scale CRFs. In: ACL (2010)
17. Lavergne, T., Crego, J.M., Allauzen, A., Yvon, F.: From n-gram-based to crf-based

translation models. In: WSMT (2011)
18. Liang, P., Taskar, B., Klein, D.: Alignment by agreement. In: HLT-NAACL (2006)
19. Macherey, K., Bender, O., Ney, H.: Application of statistical machine translation

approaches to spoken language understanding. In: IEEE ICASSP (2009)
20. Macherey, K., Och, F.J., Ney, H.: Natural language understanding using statistical

machine translation. In: INTERSPEECH (2001)
21. Mariño, J.B., Banchs, R.E., Crego, J.M., de Gispert, A., Lambert, P., Fonollosa,
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Abstract. In this paper we suggest to apply a new feature, called Mini-
mum Energy Density (MED), in discrimination of audio signals between
speech and music. Our method is based on the analysis of local energy
for 1 or 2.5 seconds audio signals. An elementary analysis of the probabil-
ity for the power distribution is an effective tool supporting the decision
making system. We compare our feature with Percentage of Low Energy
Frames (LEF), Modified Low Energy Ratio (MLER) and examine their
efficiency for two separate speech/music corpora.

Keywords: speech/music discrimination, sound classification, audio
content analysis.

1 Introduction

Discrimination between speech and music has applications in different areas
of speech processing, such as voice activity detection (VAD), automatic cor-
pus creation [11] and as part of modern hearing aids [1]. For the purpose of
this discrimination many features, in time as well as in frequency domain, have
been proposed [2], [9]. The most common are 4 Hz modulation energy, entropy
modulation, spectral centroid, spectral flux, zero-crossing rate and cepstral co-
efficients, but more complex parameters like wavelet-based parameters [3] are
also explored. Recognition rate over 98% [8], [9], has been reported for subsets
of these features and their variations. Current research is focused on achieving
high recognition rate with aspect of minimizing required computations. In this
paper we focus on speech/music discrimination based on energy features. We
analyse energy distribution in speech and music signals and upon this analysis
we introduce a new feature Minimum Energy Density (MED). We compare this
feature with Percentage of Low Energy Frames (LEF), Modified Low Energy
Ratio (MLER) and examine their efficiency for corpus collected by Scheirer and
Slaney [9] and a second one, created by us.

2 Energy Features

It is very intuitive to try to discriminate speech and music based on shape of sig-
nal’s energy envelope. As Fig. 1 shows, speech signal has characteristic high and
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c© Springer-Verlag Berlin Heidelberg 2013



136 S. Kacprzak and M. Zió�lko

low amplitude parts, which represent voiced and unvoiced speech, respectively.
On the other hand, the envelope of music signal is more steady. Moreover, we
know that speech has a characteristic 4 Hz energy modulation, which matches
the syllabic rate [9].

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3

A
m
p
li
tu
d
e

Time (seconds)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 1 2 3

A
m
p
li
tu
d
e

Time (seconds)

Fig. 1. Speech (left) and music (right) samples

Saunders [8] stated: ”The energy contour is well known to be capable of sep-
arating speech from music.” His algorithm however, was based on zero-crossings
rate features and 90% accuracy was reported. It is interesting that after adding
a new feature, which was a measure of energy minima below some threshold
relative to peak energy, accuracy rose to 98%. Results based only on this energy
feature were not presented. Measure of rapid changes in speech signal was the
base of speech/music discrimination in hardware device described in patent [4].

In [9] authors define Percentage of Low Energy Frames (LEF) feature as
percentage of frames within 1 s window with root mean square (RMS) power
below 50% of window mean RMS power. This feature alone provides 14% error
rate and was the fastest one in the sense of computational time. Similar feature
was proposed in [5], but authors used short term energy instead of RMS. Wang,
Gao and Ying in [10] explore this idea by introducing Modified Low Energy
Ratio (MLER) which is different from LEF in the fact that percentage of the
window mean short term energy is not fixed to 50%, but its value is subject to
change. The formal definition of MLER [10] is

MLER =
1

2N

N∑
n=1

[sgn (lowthres− E(n)) + 1] , (1)

where

lowthres = δ ·
N∑

n=1

E(n) (2)
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and N is the total number of frames in a window and E(n) is frame short time
energy.

These features take under consideration skewness of energy distribution in
speech (Fig. 2), caused by the fact that there are many low energy or quiet
frames in speech, also more than in music. However, these features ignore energy
distribution within a window. Thus, they will fail in the presence of speech
window with low mean energy, that can appear for example when a fricative is
followed by a pause, or in case of whole silent window, which may occur if the
person is speaking slowly. Moreover, because of relative character of this feature,
MLER can fail in the presence of additive noise, since it would be necessary to
increase δ with the decrease of SNR.
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Fig. 2. Histogram outlines of normalized short time energy calculated for audio samples
used in [9]. Values of energy have been log-transformed.

The number of energy dips below the value of threshold, which is little above
noise level, was used as a feature in [7], where 86% accuracy was reported for 5 s
windows, but tests where performed on very rigorous music data which contained
single instrument music. Our feature explores idea of classification based on
energy dips.

3 Minimum Energy Density Feature

We know from energy distribution (Fig. 2) that speech has more low energy
frames than music. We also know that speech has 4 Hz energy modulation,
which implies four energy minima in 1 s window. These facts allow us to suspect
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that the presence of the frame with energy below some calculated threshold will
be sufficient to distinguish between speech and music. The disadvantage of this
approach is inability to rely on some fixed threshold value, due to differences in
signals power. To overcome that, we calculate probability distribution of short
time frame energy inside some time window, which we refer to as normalization
window. Normalization window has to be long enough to capture the nature of
the signal. For example 1 s window seems a bad idea, since in case of window
containing breathe pause we would get distribution close to uniform and infor-
mation about low energy of that window would be lost. We define probability of
short time frame energy as

probE(n) =
E(n)∑N
k=1 E(k)

. (3)

Next step is to find minimum probE(n) in the classification window. Length
of the classification window can be shorter than the length of normalization
window and it defines classification resolution. Taking into account the 4Hz en-
ergy modulation characteristic for speech, the length of the classification window
should be at least 250ms. We define Minimum Energy Density (MED) for k-th
classification window as

MED(k) = min{probE(n) : (k − 1) ·M + 1 ≤ n ≤ k ·M}, (4)

where M is the number of frames in the classification window.
During training phase a threshold value for MED is found so that the windows

with MED below that threshold are classified as speech and the rest as music.
In fact, for classifying unseen data, there is no need to find minimum value
of the classification window as in (4), because finding any frame with energy
below the threshold is sufficient to classify the window as speech. Additionally
we can reduce needed computations by, instead of normalizing each frame in
normalization window, scaling the threshold. Final decision about class for a
classification window is given by

class(k) =

{
speech if ∃n : E(n) < λ, where (k − 1) ·M + 1 ≤ n ≤ k ·M
music otherwise

,

(5)
where

λ = threshold ·
N∑

n=1

E(n) . (6)

Figure 3 shows histogram outlines of MED feature for speech and music signals.

4 Test Corpora

To evaluate our algorithm we use two separate audio data sets. First set, which
will be referred to as A, is the same that was used in [9] and consists of eighty
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Fig. 3. Histogram outlines of MED calculated on audio samples used in [9]. Values of
MED have been log-transformed.

15-second long audio samples of speech and the same amount of music samples.
As authors stated, the data was collected by digitally sampling FM tuner (16-bit
at a 22.05 kHz sampling rate). Speech data contains male and female speakers,
in quiet and in noisy conditions. Music data set contains variety of music styles,
with and without vocals. The second data set, which will be referred to as B,
was collected by us. We also prepared eighty 15-second long audio samples of
speech from mp3 of Polish audio-books and same amount of music derived from
private mp3 library (16-bit at a 44.1 kHz, stereo files were transformed to mono).
The speech samples feature both male and female, mostly professional speakers
and actors while in music data set we try to capture variety of music genres like
rock, pop, jazz, dance and reggae.

5 Experiment Evaluation

We examine our algorithm using 10ms frames, 15 s (whole audio sample) nor-
malization window and 1 s and 2.5 s classification windows. We compare results
of our new feature with LEF and MLER. For MLER we analyse the effect of δ
value first. The results, which are shown in Fig. 4, imply that in our case δ = 0.1,
as suggested in [10], is not the best possible option. Instead we choose δ = 0.02,
which is the cross point of lines representing average accuracy. To evaluate our
algorithms for every experiment we use over 10 cross-validation runs. In each
run we calculate MED for all samples. 70% of calculated parameters selected at
random is used as training set and the remaining 30% is used for testing. During
the training session the best threshold value that maximizes overall classifica-
tion accuracy over the training set is found and that threshold is used to classify
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data under test set. The mean results of cross-validation runs of speech/music
discrimination for 1 s and 2.5 s classification windows are shown in Tab. 1 and
Tab. 2, respectively.
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Fig. 4. Average accuracy of correct recognition based on MLER in function of param-
eter δ

Table 1. Correct classification results (mean and standard deviation) for the 1 s clas-
sification window

Data set A Data set B
LEF MLER MED LEF MLER MED

speech 87.5 ± 3.9% 91.3 ± 1.0% 91.6 ± 1.5% 88.1 ± 2.3% 95.1 ± 1.2% 94.9 ± 1.3%
music 90.1 ± 3.2% 96.7 ± 0.6% 95.3 ± 1.4% 90.4 ± 1.3% 92.6 ± 1.4% 95.3 ± 1.0%
total 88.8 ± 0.9% 94.0 ± 0.3% 93.5 ± 0.4% 89.3 ± 1.3% 93.8 ± 0.6% 95.1 ± 0.6%

Table 2. Correct classification results (mean and standard deviation) for the 2.5 s
classification window

Data set A Data set B
LEF MLER MED LEF MLER MED

speech 92.4 ± 2.5% 95.4 ± 2.1% 94.5 ± 2.2% 96.3 ± 1.7% 96.8 ± 2.3% 98.0 ± 1.1%
music 91.0 ± 3.5% 95.7 ± 1.6% 97.0 ± 1.4% 94.3 ± 1.7% 95.9 ± 2.0% 96.0 ± 1.5%
total 91.7 ± 1.6% 95.5 ± 1.2% 95.8 ± 1.5% 95.3 ± 1.1% 96.3 ± 1.2% 97.0 ± 0.7%
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6 Conclusions

The results in Tab. 1 and Tab. 2 demonstrate that MED method performs better
than LEF and slightly better or similarly as MLER. However, our method is not
dependent on any parameter, like δ in case of MLER, that has a strong effect
on accuracy and its optimal value depends on tested data. In case of the 2.5 s
classification window our method achieves 95.8% accuracy for data set A and
97% accuracy for data set B, what are very high results for single feature. In
contrast, in [9] authors reported 98.6% accuracy on the 2.4 s window using GMM
classifier based on 3 features.

Furthermore, in case of our algorithm, after finding the frame with energy
below the threshold, the calculation stops for a given window, resulting in the
reduction of the expected number of calculations. This fact and the manner
in which the threshold energy value based on MED is found, distinguishes our
algorithm from one presented in [7] and shows that MED is sufficient for good
discrimination in case of speech and typical modern music. Considering its good
performance and low computation load, the algorithm which is based on MED
feature allows more effective speech/music discrimination.

It needs to be pointed out that our tests include only recordings of speech
or music. There were no examples of speech over music, which would imply
three class discrimination, because classifying such signal as speech or music is
subjective. Nevertheless, our method alone has potential to be used for tasks like
automatic corpus [6] creation from sources for which we have prior knowledge
that are compound of alternating speech and music like audio-books, language
courses or radio drama.
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Abstract. In this paper, we propose a novel approach of histogram equalization 
for speaker recognition with short utterances which are not enough for building 
histograms. The proposed method clusters the features of randomly selected 
background speakers’ utterances, and estimates the cumulative distribution us-
ing the centroids of the clusters sorted in ascending order and the samples of a 
short test utterance. The ranks are obtained from the test utterance and the 
sorted centroid set and the sum of the two ranks are used to estimate the cumu-
lative distribution function. For the evaluation, we use ETRI PC database and 
simulate VoIP codecs for the test set. The system is compared with other fea-
ture normalization methods such as CMN, MVN and the conventional HEQ. 
Our proposed method reduces the error rates by 27.9%, 35.9%, and 30.1% rela-
tively in the test environments: G.729, SILK and Speex, respectively. 

Keywords: speaker recognition, speaker identification, histogram equalization. 

1 Introduction 

The current speaker recognition systems show good performance when the training 
and test environments are matched. However, it is difficult to match both environ-
ments in real situations. We use the feature normalization methods to overcome this 
problem. CMN (cepstral mean normalization) [1] and MVN (mean and variance nor-
malization) [2] are widely used to normalize features. The feature normalization me-
thods are suitable for removing linear channel effect but are weak in non-linear  
effects. In the speech and speaker recognition systems, the additive or channel noises 
affect the distribution of the utterances. To compensate for these effects, histogram 
equalization (HEQ) which is a non-linear transformation method using reference dis-
tribution such as standard normal distribution has been proposed [5]. Originally, the 
HEQ is used in order to control brightness and contrast of digital images in image 
processing [5]. Then it has been applied as a feature normalization method in speech 
recognition [9][10] and speaker recognition [7]. In speaker recognition, methods of 
applied HEQ have been proposed such as feature warping [6] and modified segmental 
HEQ [8]. The approaches divide an utterance into small windows and apply HEQ to 
                                                           
∗ Corresponding author. 
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each window, and the size of the windows should be at least three seconds long. Ac-
cording to Blanco’s research [3], “around 500 ordered samples are enough to esti-
mate very robustly and easily any CDF”. Therefore, it is difficult to expect good per-
formance of HEQ with short utterances which have fewer than 500 feature vectors.  
To alleviate the problem with short utterances, we supplement the utterance with fea-
tures from the training set for the background model. The features used to supplement 
are a set of fuzzy C-means centroids of each speaker’s speech which is used for train-
ing the UBM.  

In this paper, we describe a HEQ method for short utterances using complement 
features. In section 2, we review HEQ. In section 3, we describe our proposed me-
thod. In section 4, we show the experimental setup and results. Finally, we discuss the 
conclusion and the future works. 

2 Histogram Equalization 

HEQ transforms a given probability distribution into a reference probability distribu-
tion. The variable to be normalized is transformed by HEQ using the CDF (cumula-
tive distribution function) mapping between original distribution and reference  
distribution. The transform function is given as 

 1 ( ( ))ref xy C C x−=  (1) 

where x is the original value, y is the transformed value, C is the CDF of original  

distribution and 1−
refC  is the CDF of the inverse of the reference distribution. Figure 1 

shows an example of the transformation. The distribution of samples before the trans-
formation (left) has a multimodal distribution and the distribution of samples after the 
transformation (right) has a uni-modal distribution. 

 

Fig. 1. An example of the transformation of samples using HEQ 



 Histogram Equalization Using Centroids of Fuzzy C-Means of Background Speakers 145 

2.1 Cumulative Histogram-Based HEQ 

CHEQ (cumulative histogram-based HEQ) uses bins which are equally-spaced and 
non-overlapped to estimate CDF. The number of samples in each bin is used to build 
a histogram of the samples. The created histogram is used to estimate CDF of each 
bin. The details of CHEQ is described in [8] 

2.2 Order-Statistics-Based HEQ 

OHEQ (order-statistics-based HEQ) uses ranks of samples in ascending order. To 
build a histogram of the samples, the ranks are used. It is known that the order-
statistic-based CDF estimation is more accurate than the cumulative histogram-based 
estimation when the amount of estimation samples is small [4]. The details of OHEQ 
is described in [9]. 

3 The Proposed Method 

Our method is based on order-statistics-based HEQ. To reinforce short utterances, the 
proposed method uses the centroids of the clusters of the background speakers’ utter-
ances. Figure 2 shows the process of the proposed HEQ. In the offline step, we gener-
ate the supplement samples by clustering each speaker’s UBM training set using a 
fuzzy C-means [12] algorithm (m=2). To get the rank of the samples, all of the centro-
ids are collected and are sorted in ascending order. This supplement set is used to 
estimate CDF in offline and online steps. 

The details of the proposed HEQ are described as follows. Let U be the 
M speakers’ feature vectors which are used to train the UBM. Then U is given as 

 1 2{ , , , , }m MU U U U U=    (2) 

where mU is the observed D-dimensional features of m-th speaker in the UBM train-

ing set. Fuzzy C-means is applied to each mU . As a result of the fuzzy C-means, 
each speaker has K centroids. Newly obtained centroids are as follows: 

 1 2{ , , , , , }m MG G G G G=    (3) 

The K centroids of particular (d-th) component of m-th speaker can be represented as 

 { (1), (2), , ( ), , ( )}m m m m m
d d d d dG g g g k g K=    (4) 

We can define a new sequence S consisting of T frames of a particular feature com-
ponent as 

 { (1), (2), , ( ), ( )}d d d d dS s s s t s T=    (5) 
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where dS is a sequence formed by concatenating a particular component of the cen-

troids of all speakers. The length of T is M × K. Let X denote test feature vectors 
consisting of N frames. A test sequence of a particular component of X can be giv-
en as 

 { (1), (2), , ( ), , ( )}d d d d dX x x x n x N=    (6) 

where ( )dx n is the d-th feature component at n-th frame. To estimate CDF, we sort the 

sequence dS and dX in ascending order. We use two kinds of ranks. The one is the 

rank of ( )dx n in the sequence dS , which is denoted as ( )s
dr n . The other is the rank of 

( )dx n in the sequence dX , which is represented as ( )x
dr n . The new rank is defined as 

follows 

 ( ) ( ) ( )s x
d d dr n r n r n= +  (7) 

Then the CDF is estimated as 

 
( ) 0.5

( ) d
d

r n
n

T N

−Φ =
+

 (8) 

  
Fig. 2. The flow diagram of the proposed method 
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The transformed sequence is calculated as follows 

 1 ( )d ref dY C−= Φ  (9) 

A CDF table is used to get the inverse CDF. 
In this paper, we use standard normal distribution as the reference distribution. 

 
21

( ) exp
2 2

xP x
 −=  π  

 (10) 

4 Experimental Setup and Results 

4.1 Database 

To evaluate the proposed method, we use “Korean Speaker Recognition Database 
Recording using Middle Price Microphone” distributed by ETRI. The database con-
tains week-set, month-set and season-set. We use sentence numbered 10 ~ 19 of the 
first trial of first session of week-set to adapt speaker models and use same sentence 
of first trial of 2, 3, 4 sessions to test the system. We use sentence numbered 10 ~ 19 
of the first trial of the first session of month-set and season-set to train the UBM. 
Week-set is composed of 100 speakers, month-set is composed of 100 speakers and 
season-set is composed of 50 speakers. The database is recorded at 16 kHz. In order 
to match the sampling rate, the waveforms are downsampled from 16 kHz to 8 kHz. 
The total number of utterances of the UBM set is 1500 (150 × 10), the total number of 
training utterances is 1000 (100 × 10), and the total number of test utterances is 3000 
(3 × 100 × 10). Each utterance consists of 200~300 samples and is reduced to 
150~250 samples due to silence elimination.  

4.2 Feature Extraction and Speaker Modeling 

To evaluate speaker identification, test speech signals are filtered with a pre-emphasis 
filter with a factor 0.97. The filtered signal is partitioned into frames 25ms long with 
10ms interval, and Hamming window is applied to each frame. The silent parts are 
removed by using energy threshold. Each frame is filtered by a bank of 26 mel-scaled 
triangular filters and then the output is cosine transformed into 18-dimensional 
MFCCs.  

For speaker modeling, GMMs (Gaussian mixture models) are adopted using MAP 
( 1τ = ) from a UBM with 128 mixture components [11]. 

4.3 VoIP Codecs 

To simulate channel mismatches, we apply three kinds of VoIP codecs G.729 [13], 
SILK [14] and Speex [15] to the test sets. Table 1 shows the specification of the co-
decs we use. We simulate the test set in 8 kHz mode. 
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Table 1. Specification of codecs used 

Codec Organization Sampling rate Version 
G.729 ITU-T 8 kHz 3.3 
SILK Skype 8, 12, 16, 24 kHz 1.0.7 
Speex Xiph.org 8, 16, 32 kHz 1.2rc1 

4.4 Results 

We compare the performance of our proposed method with baseline systems which 
use MFCC without feature normalization method, and with conventional feature nor-
malization methods. In the figures below, MFCC denotes the baseline of our speaker 
identification system using MFCC without feature normalization method. CMN and 
MVN mean that the MFCCs normalized using CMN and MVN respectively. CHEQ 
denotes the cumulative histogram-based HEQ. To build a histogram, we use 1000 
bins for CHEQ. OHEQ denotes the order-statistics-based HEQ. The “proposed” de-
notes our proposed method. We select 10 speakers randomly from the UBM training 
set to get the centroids. 

 

Fig. 3. Speaker identification error rates in G.729 environment 

Figure 3 shows the results in G.729 environment, which shows the decreased per-
formance by channel mismatch. Our method shows better performance than other 
methods when the number of centroids is from 10 to 50. Figure 4 shows the results in  
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Fig. 4. Speaker identification error rates in SILK environment 

 

Fig. 5. Speaker identification error rates in Speex environment 
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SILK environment. Also, in SILK environment, the decreased performance is ob-
served. The proposed method has the best performance when the number of centroids 
is between 15 and 50. Figure 5 shows the results in Speex environment. In Speex 
environment, CHEQ has poor performance than the MFCC-only system. Our pro-
posed method shows better performance when the number of centroids is between 10 
and 35. 

Table 2. The relative error rate reduction when the proposed method has the best performance 

Normalization 
method 

Relative reduction of error rates (%) 
G.729 SILK SPEEX 

MFCC 34.32 17.35 52.62 
CMN 24.92 42.76 23.61 
MVN 22.04 35.07 17.34 
CHEQ 33.78 45.63 35.56 
OHEQ 24.57 35.56 21.35 

 
Table 3 shows the number of centroids used to calculate table 2. 

Table 3. The number of cluster centroids when the proposed HEQ has the best performance 

Channel The number of cluster centroids 
G.729 20 × 10 
SILK 30 × 10 
Speex 10 × 10 

5 Conclusion and Future Works 

In this paper, we propose a novel approach of HEQ using fuzzy C-means cluster cen-
troids of the features for the universal background model. We use the centroids of 
fuzzy C-means clusters to estimate cumulative distribution function robustly. In sec-
tion 4, we show the system performance with the change in the number of the centro-
ids. The proposed method shows improved results in comparison with the conven-
tional feature normalization methods in various codec environments. We can acquire 
the best performance when the number of the samples of the sum of the test samples 
(about 200 samples) and the supplement samples (about 300 samples) is about 500 
according to Blanco’s research [3]. 

We plan to use other clustering algorithms or feature selection algorithms to esti-
mate CDF more robustly. 
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Abstract. The aim of unsupervised and knowledge free morphological
segmentation is the identification of boundaries between morphs in words
of a given language without relying on any knowledge source about that
language. This paper describes a segmentation method that draws on
previous approaches based both on semantic and orthographical similar-
ity to identify morphologically related words. Using a version of Multiple
Sequence Alignment originally applied in bioinformatics, the method ex-
tracts both concatenative and non-concatenative (e.g. introflection and
circumfixation) morphological patterns and can thus handle languages
of different morphological types as well as non-dominant morphological
processes within languages of a particular predominant morphological
type.

Keywords: multiple sequence alignment, distributional similarity, un-
supervised morphological segmentation.

1 Introduction

Morphology can be defined as “the study of the combinations of morphemes to
yield words” [20]. Languages are traditionally classified according to their mor-
phological structure where the basic types are analytical (or isolating) languages,
and synthetic languages (the polysynthetic group is sometimes categorized as a
different family and other times as a sub-group of the synthetic type). The syn-
thetic group is further divided into agglutinative and fusional language types.
However, phenomena that characterize one language type are typically present
also in languages assigned to another type. For example, German, one of the
languages we analyze with the current method, is usually classified as a fusional
language i.e., a language in which several grammatical functions are expressed
by one affix. However, in addition to the fusional elements, German also features
elements from the other types: isolation, agglutination, polysynthesis.

Unsupervised methods address the problem of morphological analysis where
the only source of knowledge is a raw text. The existence of languages of dif-
ferent morphological types makes this task especially challenging. Furthermore,

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 152–163, 2013.
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the fact that languages constitute mixed morphological types, i.e., are not mor-
phologically pure (see e.g., [30]), complicates the task even more. Consequently,
only a method which can successfully handle all morphological types will be
able to handle all morphological processes in a given language. However, many
unsupervised methods use data structures which are suitable for morphological
analysis of some languages types but less so for others. This can be demon-
strated on concatenative vs. non-concatenative processes that appear in ag-
glutinative and in introflective languages, respectively. In frequently explored
languages (e.g., Dutch, English, Finnish, German, Turkish, in Morpho Chal-
lenge) affixes are mostly combined with their stems in a linear order i.e., in a
concatenative manner. Phenomena that do not conform with this type of mor-
phological process pose a problem to many algorithms especially if they rely on
inherently contiguous data structures like tries (see Section 2). Such processes
are, for instance, circumfixation (e.g., in German spiel-en ‘to play’, ge-spiel-t
‘played’ [past participle]) and introflexion (e.g. werden - wird - wurde). Non-
concatenative languages like Hebrew and Arabic, in which introflexion presents
a dominant morphological pattern, are challenging to the present unsupervised
morphological segmentation. Due to the described complexity, the algorithms
which do handle these languages, usually segment only the affixes which are
added to the stem in a concatenative manner [34,31]. Similarly, when applied to
languages with predominantly concatenative morphology, unsupervised methods
often have difficulties handling their non-concatenative features [9].

The method presented in this paper enables the extraction of both linear
and non-linear patterns and thus has the potential to deal successfully with
phenomena like introflection and circumfixation. It is based on Multiple Sequence
Alignment (MSA), an approach borrowed from bioinformatics, where it is used
to discover biological relations among sequences of DNA, RNA, proteins, etc.

2 Related Work

A variety of schemes for unsupervised morphological analysis has been devel-
oped along the years. They differ in the definition of the the task (segmentation,
finding morphologically related words, finding paradigms, etc.) and in the ap-
proaches for achieving these aims.

For the segmentation task, most of the approaches use a list of words to induce
the morpheme boundaries. The earliest attempt of this kind, later improved by
Hafer and Weiss [15], is due to Harris [18,19]. The algorithm, known as Letter
Successor Variety, detects morpheme boundaries as a function of the number of
distinct letters that follow, or precede, a letter sequence which is part of a word.
If a peak is reached in that number, then it is assumed to be due to a morpheme
boundary and a segmentation point is inserted.

Another type of algorithms which is used to derive morphological information
utilizes contextual information. These methods, however, are focused on aspects
of morphological analysis other than segmentation, e.g., finding morphologically
related words, or deriving dependencies between morphological variants. Schone
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and Jurafsky [33] incorporate semantic cues for detecting morphologically related
word pairs in English, German and Dutch. First, words are inserted into tries and
potential affixes are determined by identifying the branching points in the trie.
Pairs of candidate affixes are detected based on their common ancestor node in
the trie and constitute affix rules. Pairs of potential morphological variants (PP-
MVs) are then defined as two words which share the same ancestor and the same
affix rules. The method computes semantic vectors for each word using Latent
Semantic Analysis [8] and compares the vectors of PPMVs to see how well these
words correlate, in line with the notion that words which are morphologically
related are also semantically related. Baroni et al. [2] also aim at finding pairs of
morphologically related words in English and German, presupposing that ortho-
graphic and semantic similarities between pairs of words imply morphologically
relatedness. The method constructs two lists: of orthographically related words,
and of “semantically” related ones based on the mutual information of first-order
co-occurrences. A combined score for morphological relatedness is computed for
those pairs which exist in both lists. Freitag [12] creates clusters that correspond
roughly to syntactic groups in English based on the mutual information between
words and their immediate co-occurring words. The method then induces affix
transformation rules which express relations between clusters and show possible
affixation patterns. Bordag [3] enhances the LSV algorithm by employing con-
textual similarity to constrain the selection of candidates for affixes and stems
and uses tries to learn prefixes and suffixes.

Contrary to the method presented in this paper most of the above mentioned
methods using contextual information focus on inflectional morphology. Futher-
more, a common practice to distinguish between stems and suffixes in the meth-
ods described above is using a trie. This data structure, however, is able to learn
only concatenative processes. This poses a problem when non-concatenative pro-
cesses like stem changes occur in the language, for example in German, where
they are relatively few but occur frequently, or when non-concatenative processes
constitute the dominant morphological pattern as in Semitic languages like He-
brew and Arabic. For this reason this approach is avoided in the present method.
There are indeed approaches which do not rely on such structures and are able
to discover also non-concatenative patterns. They use some data additional to
the corpus and therefore cannot be classified as knowledge free, e.g., Hathout
[21] used semantic features extracted from dictionary definitions, and Dreyer [10]
incorporated sample paradigms as training data.

So far, the only method which employs bioinformatics-inspired approach for
morphological segmentation is MetaMorph by Tchoukalov et al. [35]. This method
starts with ordering words from a Hungarian corpus according to Levenshtein
distance [27]: First the two most similar words from the 1000 most frequent
words are added, and then, sequentially, a word from the rest of the corpus is
added to the list if the word that is orthographically most similar to it is already
on the list. The words are then aligned using Progressive Alignment [14] and
the method creates a Profile HMM [11] such that each column of the alignment
“acts as an HMM state whose character production probabilities correspond
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to the column’s character distribution” [35, p.670], and the rest of the words
are aligned to the Profile HMM. The algorithm first selects a set of columns
in the alignment and then it segments all words of the corpus along this set of
columns. To do so, the algorithm uses ParaMor-Morfessor Union system [26] and
searches for a set of segmentation columns that maximizes the F-score against
the ParaMor-Morfessor system. As known from bioinformatics [29], global MSA
methods are effective for aligning sequences that are assumed to be biologi-
cally related, and providing inappropriate sequences to such method would not
produce a meaningful result. Analogously, applying MSA to discover morpho-
logical patterns requires morphological relation among the aligned word forms.
The MetaMorph algorithm, however, aligns words which are only orthographi-
cally similar, a criterion which is not sufficient to guarantee such relation. For
a comprehensive survey of various other approaches and methods devoted to
unsupervised morphological analysis, see [16].

3 Method

The method presented in this paper is based on a linguistic principle formulated,
among others, by Bybee [5, p.118] that morphological relations exist among
words which are related both semantically and phonologically. We assume that
repeated patterns found among such related words correspond to morphological
relations between them. The presented method detects the patterns, and seg-
ments the words accordingly. In the first step, the method finds a set of words
distributionally similar to each input word. Then orthographically dissimilar
words to input words are filtered out of these sets. The resulting list for each
word form is then aligned by a MSA algorithm, and orthographical overlaps
among these words are identified. Based on these overlaps, repeated patterns
are extracted, and assumed morpheme boundaries are inserted.

3.1 Finding Semantically Related Words

In the first step, the method groups words which are distributionally similar to
each input word. According to the distributional hypothesis [17], such words tend
to be semantically similar. Words are therefore modeled in a high-dimension vec-
tor space, with each word form represented by a vector of weights. Each vector
component reflects the significance of the co-occurrence of this word with an-
other word in some context window. The number of random co-occurrences can
be approximated to a Poisson distribution [24] under the independence assump-
tion. The significance of a co-occurrence is computed by the Poisson collocation
measure [32] which expresses the degree of surprise of a joint occurrence of two
words. Following the method described in [4], the set of co-occurrents for each
word is ordered in decreasing order of significance and only the M=200 with
highest scores are retained. Dice’s coefficient is then used as means of measuring
the similarity between pairs of words by finding to what extent their respective
resulting vectors agree.
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3.2 Finding Phonologically Related Words

After a set of distributionally similar words had been retrieved for each input
word, it is further narrowed down by filtering out phonologically dissimilar words.
Phonology, in this case, is approximated by orthography. The orthographic dif-
ference between a given word and each of the distributionally similar words is
computed with Needleman-Wunsch edit distance [28] with affine gaps penalties
[13]. In this approach, different penalties are employed for opening a gap, as a
result of inserting or deleting a character, and for extending one. We consider it
more suitable for the given task than, e.g. Levenshtein edit distance [27] since
it reduces the number of gap sequences (for example two words which share the
same inflectional affixes should not be considered dissimilar only because their
stem lengths are different). The Needleman-Wunsch [28] method is employed
in bioinformatics to align a pair of biological sequences, finding a global align-
ment between the two sequences. In a biological context the cost of aligning one
character with another is specified by similarity matrices, such as PAM [7] and
BLOSUM [22] whose cell values reflect the likelihood of replacing one residue
with another. Similarly, in the linguistic context it is likely that one character
(or a string of characters) would replace another due to morphological processes,
and that the replacing character (or string of characters) is thus related to the
replaced one more than to the others.

In an unsupervised setting, however, the knowledge about relations between
phonemes is not provided in advance, and the scoring scheme must be therefore
uniform, without taking potential types of relations into account. Our setting
assigns a positive score (+2) for character matches, and a negative score (−2)
for mismatches. Gap opening is penalized with a cost of 4 and extending a gap
costs 1. The maximum score is achieved when the two words are identical, and
a minimum when all characters are mismatched and possible gaps are inserted
when two words have different lengths. The resulting score is normalized, to a
distance in the range [0, 1]:

d =
max_score − score

max_score −min_score
(1)

Words which are relatively dissimilar, with respect to orthography, from the
input word (d > 0.5) are then removed from the above mentioned set.

3.3 Extracting Patterns through Multiple Sequence Alignment

MSA is a natural extension to pairwise alignment, and is used to find conserved
regions within several sequences. In a bioinformatics context, MSA is applied
to collections of sequences which are assumed to be related, and the conserved
residues playing a functional or structural role in these relations [29]. A widely
used heuristic of aligning multiple sequences is to align the sequences progres-
sively; first the two most similar sequences are aligned and then less similar ones
are aligned in a cumulative way, producing intermediate alignments, to construct
the final alignment. In the context of morphological segmentation, selected sets
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of distributionally and orthographically similar words (as described above) are
treated as sequences that are to be aligned. The first sequence of the alignment
is the input word. The similarity criterion in this case is the similarity to the
input word. For the alignment purpose we used BioJava [23], and modified the
sequence alignment procedure to match our task.

Next, a pattern for the aligned sequences is to be found. The current method
performs a series of pairwise comparisons of the aligned sequences, extracting
identical fragments from each aligned pair, as a candidate pattern for the align-
ment. Each candidate pattern is stored with the number of corresponding se-
quences with which it matches. An aligned sequence can, of course, match more
than one candidate pattern. Table 1 demonstrates how an alignment set for an
input word looks, in this case for the word Ladenöffnungszeiten ‘shop opening-
hours’. Gaps (-) are inserted during the alignment process so that all sequences
have the same length.

Table 1. An example for an alignment

----ladenöffnungszeiten
---------öffnungszeiten
----ladenöffnung-------
---------öffnung-zeiten
----ladenschluß--zeiten
---------öffnungszeit--
---betreu----ungszeiten
ausbild------ungszeiten

As can be observed, several patterns can be extracted from this alignment
e.g., -öffnungszeiten, ladenöffnung-, laden-zeiten, etc.

Two scoring methods for candidate patterns were designed to choose the pat-
tern that best matches an alignment:

Method A. This method attempts to achieve balance between candidate pat-
terns that match many sequences and those that are long. The score for assigned
for patterni in an alignment is given by the following harmonic mean:

score(patterni) =
2

1
count(patterni)

+ 1
length(patterni)

, (2)

where count(patterni) is the number of times patterni was found among pairs
of aligned sequences and length(patterni) is its length in characters.

After scoring each of the candidate patterns, the one with the highest score is
selected as the one which describes best the alignment members, and those which
match it are segmented accordingly. The segmented forms are then recorded
together with the score (hereinafter “local” score) of the selected pattern.
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Method B. This method uses the relative frequency for each candidate pattern
compared to the other ones, weighted as a function of the alignment size, to
score each of the patterns extracted from an alignment. Using the size of the
alignment provides complementary information to the relative frequency, which
has only local nature, so that a pattern covers a large set of sequences in a
bigger alignment would have a higher score. The score is for patterni given by
the following formula:

score(patterni) =
count(patterni)∑
j count(patternj)

log(size) , (3)

where count(patterni) is the number of times patterni was found in the pair-
wise comparison of aligned sequences and size is the total number of sequences
participated in the alignment. The selected pattern for an alignment is again the
candidate pattern which achieved the highest score. The segmented form along
with this local score are recorded as in method A.

Since a word can occur as an input word and as a member in an alignment
set of some other input word, it may end up, in both methods, with several
options for segmentation. A list of possible segmentations ranked according to
their scores is created in order to select the most probable correct segmentation
of each word. Two ranking options were explored. One is frequency-based, and
the other is score based. In the former case the segmentation score is determined
solely by the number of cases where this segmentation was selected for the given
word form, and in the latter case, each segmentation option gets a “global” score
which is the sum of the “local” scores, and the list of segmentation is ranked
according to these scores.

4 Resources

The method was applied to German, English, and Hebrew. The German and the
English corpora were part of data sets available at the Morpho Challenge 2009
contest1 and were originally obtained from the Wortschatz2 collection. Each
of the corpora consists of three million plain text sentences. The corpora are
tokenized and lower-cased. The evaluation of word segmentation was performed
against CELEX lexical database [1], which consists of a list of word forms and
their lemmas that are analyzed morphologically. The CELEX word forms were
pre-processed to provide a segmented version for each of them, based on the
lemma analysis in this database.

For Hebrew we used the tokenized version of the MILA Arutz7 corpus, a
collection of news items and articles [25], comprising of 780,269 sentences. To the
best of our knowledge there is no morphological segmentation corpus for modern
Hebrew. We used a tagged sub-corpus of the MILA Arutz7 (containing 106,492
sentences) to extract the segmentations based on disambiguated morphological
analyses for each word.
1 www.cis.hut.fi/morphochallenge2009/
2 corpora.informatik.uni-leipzig.de/

www.cis.hut.fi/morphochallenge2009/
corpora.informatik.uni-leipzig.de/
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5 Evaluation and Results

5.1 Evaluation Measures

For English and German, the segments of the analyzed word forms were com-
pared to those extracted from CELEX. Correctly found boundaries were clas-
sified as true positives (tp), boundaries which were found by the method but
did not match the CELEX boundaries were classified as false positives (fp), and
CELEX boundaries which were not detected by the method were classified as
false negatives (fn). For Hebrew, the evaluation was performed analogically with
the gold standard based on the MILA Arutz7 corpus as described above. Pre-
cision and recall were then calculated for each word w, based on the number of
boundaries in each of the above categories:

Precisionw =
#tp

#tp+#fp
Recallw =

#tp

#tp+#fn
. (4)

The average precision (P) and recall (R) are calculated based on the results for
each word.

A ranked list of segmentation options is calculated both for both methods A
and B, based on either the frequency of the those options or on the accumulated
scores resulting from the pattern scores.

The evaluation results for German are presented in Table 2 on 49748 word
forms which were found in the gold standard; for English in Table 3 on 23545
word forms which had entries in the gold standard; and for Hebrew in Table 4
which was evaluated on 87346 entries.

We report the results for top-1, top-2 and top-5 segmentation options. To have
a comparison with a state of the art system we report the results of Morfessor
[6] applied to the sets of words analyzed by our method. As can be seen, taking
the scores into account to rank segmentations is in general better than relying
on their raw frequency. This indicates that the score provides better insight into
the quality of the patterns resulting from individual alignments. It reflects the
fact that patterns derived from longer alignments and matching most words in
the alignment provide more reliable results.

A detailed look at the data reveals that complex processes can be handled
successfully by the presented method: Multimorphemeic words can be split into
all their components which may include circumfixation in addition to contin-
guos morphemes e.g., ein-ge-jag-t (Angst einjagen ‘to frighten’; ein:prefix, ge-
t:circumfix, jag:stem). The method is able to detect stem vowel changes (in-
troflection) as in the irregular verbs in German d-a-rf (dürfen ‘may’); k-ä-m-e
(kommen ‘to come’); s-e-nd-e, ein-ge-s-a-nd-te-n, zu-ge-s-a-nd-te-n (senden ‘to
send’). However, though these segmentations represent correct solutions with
respect to the involved introflective processes, they are evaluated as incorrect
since they are not represented in the CELEX gold standard.

Hebrew is a language with templatic morphology. A consonantal root carries
the core semantics and when inserted into a derivational or inflectional pat-
tern, a particular word form is created. Moreover, function words, as definite
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Table 2. Results for German

top-1 top-2 top-5

P R P R P R

A
freq 0.476 0.412 0.520 0.467 0.524 0.470
score 0.483 0.447 0.556 0.535 0.578 0.564
B
freq 0.507 0.407 0.575 0.482 0.587 0.498
score 0.502 0.448 0.613 0.576 0.665 0.644

Morf. 0.637 0.478

Table 3. Results for English

top-1 top-2 top-5

P R P R P R

A
freq 0.411 0.489 0.464 0.540 0.471 0.545
score 0.378 0.490 0.463 0.581 0.499 0.608
B
freq 0.500 0.512 0.578 0.600 0.591 0.617
score 0.473 0.517 0.588 0.648 0.644 0.706

Morf. 0.585 0.610

Table 4. Results for Hebrew

top-1 top-2 top-5

P R P R P R

A
freq 0.575 0.557 0.640 0.630 0.649 0.639
score 0.581 0.586 0.669 0.696 0.700 0.730
B
freq 0.487 0.374 0.688 0.554 0.721 0.607
score 0.519 0.411 0.750 0.638 0.826 0.770

Morf. 0.629 0.687

articles, conjunctions, or prepositions, which are usually distinct words in other
languages are attached to the Hebrew word forms enhancing them as prefixes,
while possessive markers enhance them as suffixes. Table 5 presents some ex-
amples which demonstrate correctly segmented word forms, resulting from the
proposed method, that capture both concatenative and non-concatenative pro-
cesses in Hebrew. The leftmost column presents the segmented word form, the
middle column presents the root of the word form along with the translation of
its core semantics, and the rightmost column presents a translation for the word
form which includes morphemic information.

Table 5. Hebrew wordforms segmented correctly

seg. worform root (core meaning) gloss

h-ar-i-k-h a-r-k (length) prolonged (3SG.F)
h-b-w-gr-im b-g-r (mature) the graduates (M)
m-brk-im b-r-k (bless) bless (PRS.M.PL)
h-rby-wn r-b-y (four) the quartile
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The comparison between the top-1 and top-2 (and top-5) results reveals that
the method has further potentials for raising precision and recall for top-1, if we
improve the mechanism of selecting the best pattern. In many cases, the top-1
option stayed under-segmented (often unanalyzed), and the second best choice
corresponded to the correct analysis.

6 Conclusions

We have presented an unsupervised method for morphological segmentation
which utilizes MSA for this task. The model is based on the principle that mor-
phological relations exist among words which are semantically and phonologi-
cally related and constructs groups of such words following this principle. These
groups are then aligned using Multiple Sequence Analysis, a method borrowed
from bioinformatics where it used for finding biologically conserved regions.

To our knowledge, the method we present is the first relying solely on the
alignment resulting from MSA to perform morphological segmentation. The ad-
vantage of this approach is that it can successfully deal with both concatenative
and non-concatenative morphological features, enabling adequate segmentation
of various language types as well as of non-contiguous patterns like introflection
and circumfixation which are typically ignored by other algorithms, or dealt with
in separate modules. There are several ways to improve the method. Method A
and Method B are based on different principles. While Method A takes into ac-
count the length of the shared segment(s) and the number of words that match
it, Method B considers the relative frequency of a given pattern and the overall
size of the alignment. We assume that a method taking both of these aspects
into account could yield better results. Furthermore, stricter approach to de-
termining the orthographic similarity, or using a different method for finding
orthographically similar words could improve the precision.

We believe that ability of the method to handle morphologically different
processes is a very important property, which distinguishes it from the other so
far developed systems for morphological segmentation.
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Abstract. Cross-lingual information retrieval aims at retrieving rele-
vant documents from a document collection in a language different from
the query language. A novel method is proposed which avoids direct
translation of queries by implicit encoding of translations in a bilingual
vector space model (VSM). Both queries and documents are represented
as vectors using an extension of random indexing (RI). As work on RI for
information retrieval is limited, it is first evaluated for monolingual re-
trieval. Two variants are tested: (1) a direct RI model that approximates
a standard VSM; (2) an indirect RI model intended to capture latent
semantic relations among terms with a sliding window procedure. Next
cross-lingual extensions of these models are presented and evaluated for
cross-lingual document retrieval.

1 Introduction

In the classic vector space model (VSM) for information retrieval (IR) [26,17],
both documents and queries are represented as vectors in a high-dimensional vec-
tor space. Each dimension represents term counts and terms are usually weighted
using some variant of TF*IDF [10]. Relevant documents are retrieved by com-
puting the cosine similarity between a query vector and the document vectors,
retrieving the n most similar documents. A limitation of the standard VSM
is that it cannot cope with semantically related terms, for example, synonyms.
This was part of the motivation for latent semantic indexing (LSI), which uses
dimensionality reduction as a means of accessing latent distributional similari-
ties between terms [7]. Evidence for the claim that LSI improves IR seems open
to interpretation. Initial evaluations suggested that LSI can improve results on
certain benchmark data sets; see [3] for a summary of findings. However, more
recent experimental results on a larger scale suggested otherwise [1].

Regardless of whether LSI improves retrieval or not, there is no dispute that it
is computationally expensive. The core of LSI is truncated singular value decom-
position (SVD), a mathematical operation for reducing a matrix that presumably
captures higher order relations between terms. The computational cost of trun-
cated SVD makes it hard to scale LSI to large document collections. Random
indexing (RI), an iterative indexing method based on the principle of sparse
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distributed memory [11], was initially proposed as a simpler and cheaper alter-
native to LSI [12,23]. It is argued to deliver comparable results at a much lower
computational cost. In addition, it is fully incremental, allowing addition of new
documents without the need to recompute the existing model (as in LSI). It
was initially evaluated for learning synonyms in a TOEFL test [12], measuring
word similarity through distributional similarity, that is, through a statistical
analysis of word co-occurrence frequencies in large text corpora. Since then it
has been applied to a range of tasks with generally positive results [13,24]. In
general, smoothing methods like LSI and RI are thought to promote a number of
desirable properties in models of distributional similarity, including revealing la-
tent meaning, reducing noise, capturing high-order co-occurrence relations, and
reducing sparsity [29].

Given that LSI is claimed to improve upon the classic VSM, and that RI is
claimed to be a comparable but cheap alternative to LSI, it is a logical step
forward to evaluate RI in an IR context. There seem to be few studies on this.
[22,5] explore RI in combination with holographic reduced representations (HRR).
[30] use a extension of RI called reflective random indexing (RRI) for classifying
MEDLINE articles. [2] use RI as word discrimination method in an IR task, and
compare it to a word disambiguation method. [28] report results on combining
RI and LSI for IR. Still, no good conclusion is given when it comes to the per-
formance of using RI as a document index for IR. A recent review article about
distributional semantics in the biomedical domain states: “To the best of our
knowledge Random Indexing has not been extensively evaluated in an informa-
tion retrieval context, presenting a research opportunity for its formal evaluation
in the context of information retrieval from MEDLINE” [6]. The first contribu-
tion of this paper is therefore to add new empirical results on monolingual IR
with RI.

Cross-lingual information retrieval (CLIR) aims at identifying relevant doc-
uments in a language other than that of the query [14]. Most approaches start
with translating the query to the target language using bilingual dictionaries
or machine translation systems. This raises the familiar problems in machine
translation such as lack of lexical coverage and lexical translation ambiguity.
Other approaches require bilingual data in the form of parallel text aligned at
the word, sentence or document level. For instance, [8] propose a bilingual LSI
model that requires pairs of documents and their translations for training. In
contrast to existing approaches, we propose a new method called cross-lingual
random indexing that avoids direct translation of the query. Instead translation
is implicitly encoded in a RI model. There is no need for aligned bilingual text
either, only a bilingual dictionary and monolingual corpora for both languages.
The second contribution of this paper is therefore a new model for CLIR and its
experimental evaluation.

The remainder of this paper has two major parts: random indexing for mono-
lingual retrieval and (2) cross-lingual RI for bilingual retrieval. It concludes with
a general summary of findings and an outlook on future work.
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2 Monolingual Information Retrieval with Random
Indexing

2.1 Direct Random Indexing

Conceptually, random indexing can be regarded as a method for compressing a
standard term–document or term–term matrix, where rows (vectors) represent
documents, columns represent unique terms and cells represent how many times
a certain term occurs in a certain document. In practice, RI directly generates
a matrix of reduced dimensionality through the following procedure:

1. Each term in the document collection gets a unique index vector. Index
vectors are high-dimensional, but typically of substantially lower size than
the total number of unique terms. These are very sparse randomly initiated
vectors containing mostly zeros, apart from a few randomly chosen 1s and
-1s. As a result these index vectors becomes “nearly orthogonal” to each
other in the vector space.

2. Each document is then represented by a document vector obtained by sum-
ming the index vectors of all terms occurring in the document. This option-
ally includes term weighting and vector length normalization.

As a result of this procedure, documents containing the same terms have vectors
composed of the same index vectors and are therefore more similar in the vector
space. The vector for a query likewise is constructed by summing the (weighted)
index vectors of all its terms.

2.2 Indirect Random Indexing

Indexing a text corpus with sliding window RI takes a somewhat different ap-
proach [13]. Instead of directly summing the index vectors of a document’s terms,
there is an intermediate step that first creates term context vectors. Indirect RI
involves the following steps:

1. Each unique term in the document collection gets a unique index vector.
2. Next a context vector is generated for each term. The document collection

is scanned by sliding a fixed-size window over the text, term by term. Each
step, the context vector of the term in the center of the window – often
referred to as the target term – is updated by adding the index vectors of
the neighboring terms within the window. As a result, terms co-occurring
with similar terms obtain similar context vectors in the vector space.

3. Context vectors are normalized by dividing them by the global frequency of
the term in the document collection.

4. Each document is then represented by a document vector obtained by sum-
ming the context vectors of all its terms, optionally including term weighting
and vector length normalization.

This method thus models higher-order co-occurrence relations among terms, cap-
tured through analyzing local co-occurrence relations among words. In addition,
there are methods for encoding word order relations within the sliding window.
These options and other experimental variables are detailed in the next section.
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2.3 Experimental Setup

We adopted the well-established CLEF framework for evaluation of cross-lingual
information retrieval, in particular, the ad hoc monolingual and bilingual tracks
from CLEF 2005 [4]. Monolingual experiments address English, whereas bilin-
gual experiments concern German and English as source and target language
respectively. This choice was primarily prompted by our access to CLEF 2004-
2008 data, as well as to a relatively large German-English translation dictionary.
The CLEF data consists of three components: document collections, search top-
ics, and relevance judgement; see [4] for details.

Document collections comprise news text from news wires, newspapers and
opinion magazines. Stopword removal and lemmatization were applied as this
was found to generally improve the IR scores. The full English corpus consist of
257,130 documents with approximately 130M words, and among these 325,617
unique ones after lemmatization. After stopword removal, the corpus is reduced
to 70M words, with 325,392 unique words. All documents were used for training,
and a subset of 169,477 was used as retrievable documents in the experiment.
Documents were lemmatized with TreeTagger. Stopwords were removed using
customized versions of the default stopword lists provided by the Lucene project
[16]. Terms occurring only once were also removed. For all remaining terms,
TF*IDF values were calculated [10], and used for weighting terms, i.e. their
context vectors, when creation of document vectors.

Topics express the informational need of a user and consist of three fields:
(1) a brief title stating the main keywords, (2) a single sentence description of
the concept conveyed by the keywords, and (3) a more elaborate narrative. All
experiments in this paper used the combination of title and description to create
a query.

Relevance judgements specify which documents from the document collection
are relevant to a particular topic. Documents are assessed as either relevant or
irrelevant to the topic by a panel of human judges.

The RI algorithms used for the experiments in this paper are based on the
JavaSDM package [9]. Scores are calculated using the trec eval tool (version
7.3). Results are reported in terms of mean average precision (MAP) together
with the total number and percentage of relevant documents retrieved over all
50 queries. For comparison we used Apache Lucene [16] (v4.1.0), a state-of-the-
art search engine implementing a TF*IDF weigthed variant of the standard
VSM. No additional weighting or “boosting” of specific sections or fields in the
documents or queries were applied.

Experiments explored a number of different configurations. The first two pa-
rameters concern the RI model itself:

Dimensionality. The size of the vectors (index and context vectors) ranged
from 1000 through 1800 to 4000.

Non-zeros. The total number of 1’s and −1’s randomly assigned to the index
vectors.

In addition, there were two parameters that only apply to Indirect RI:
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Window Size. The size of the sliding window ranged from 2+2 (i.e. two words
on the left and two words on the right of the target term) up to 20+20.

Weighting Scheme. Index vectors of the neighboring terms in the sliding win-
dow are weighted and/or modified before they are added to a context vector.
distance weighting uses the function 21−distance, distance being the distance
in words to the target term [13]. Random permutations (RP) [25] encode
word order relations by shifting the elements in the index vectors according
to both their position and their distance from the target term. In a similar
fashion, Direction vectors only encode direction by shifting index vectors
once, either left or right depending on which side of the target term they are
located [25], plus weighting the vectors similarly as in Distance Weighting.

2.4 Results

Lucene retrieved 1817 relevant documents (88.08%), resulting in a a MAP score
of 0.3713. Table 1 presents corresponding results for direct RI, indicating that
about 64–72% of the relevant documents were found, with a MAP score in the
range from 0.15–0.18. Increasing the number of non-zeros up till 8 was found to
improve results while changing dimensionality had no effect.

Table 2 presents selected results for Indirect RI. Vector dimensionality does
not affect the results beyond a certain size, approximately around 2000. The
number of non-zeros also has little effect, less so than in the Direct RI exper-
iments. Larger window sizes appear to yield better results than smaller sizes.
Weighting schemes do not have any positive effect, suggesting that word order
within the window is irrelevant. Smaller window sizes were tested for the other
weighting schemes, but none of these performed better than without weighting.
In sum, a medium vector dimensionality (1800) together with a large window
size (16+16), unweighted, and few non-zeros (4) gave the best performance.

2.5 Discussion

The direct RI method is essentially an approximation of the standard TF*IDF-
weighted VSM. However, where the VSM would have a dimensionality equal to
the number of unique terms in the document collection (e.g. 325,617 for English),
direct RI has just 1800, which amounts to approximately 2% of the size. This
may explain why Direct RI scores lower than what may be expected from a
standard VSM, here represented by Lucene.

Table 1. Results with direct random indexing for monolingual (English) ad hoc infor-
mation retrieval track from CLEF 2005

Dimensions Non-zeros MAP Found/2063 %Found

1800 2 0.1512 1340 64.95
1800 4 0.1769 1427 69.17
1800 8 0.1839 1481 71.79
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Table 2. Results with indirect random indexing for monolingual (English) ad hoc
information retrieval track from CLEF 2005

Dim. Non-zeros Window Weighting MAP Found/2063 %Found

1800 4 2+2 No weighting 0.1411 1238 60.01
1800 4 4+4 No weighting 0.1722 1316 63.79
1800 4 8+8 No weighting 0.1920 1387 67.23
1800 4 12+12 No weighting 0.1965 1415 68.59
1800 4 16+16 No weighting 0.1987 1426 69.12
1800 4 20+20 No weighting 0.1984 1420 68.83

1800 2 16+16 No weighting 0.1954 1413 68.49
1800 4 16+16 No weighting 0.1987 1426 69.12
1800 8 16+16 No weighting 0.1965 1400 67.86

1000 4 16+16 No weighting 0.1961 1400 67.86
1800 4 16+16 No weighting 0.1987 1426 69.12
4000 4 16+16 No weighting 0.1998 1411 68.40

1800 4 16+16 Rand. Permutations 0.1422 1067 51.72
1800 4 16+16 Direction Vectors 0.1391 1221 59.19
1800 4 16+16 Dist. weighting 0.1477 1286 62.34
1800 4 16+16 No weighting 0.1987 1426 69.12

We also find that indirect RI achieves slightly better mean average preci-
sion than direct RI, suggesting a better ranking among the top 1000 retrieved
documents, whereas direct RI yields better recall. This finding is in agreement
with the conclusions in [22]. Differences are small though (2.67%) and this may
therefore cast some doubt on the claim that the sliding window variant captures
latent relations between terms. Alternatively, it may be interpreted as an indi-
cation that modeling latent semantic information does not consistently improve
the IR results. In fact, some recent studies suggest that LSI also yields poor
retrieval accuracy on a large number of TREC bench mark sets [1].

3 Cross-Lingual Information Retrieval with Random
Indexing

3.1 Method

The core idea in the method for cross-lingual RI proposed here is that source and
target language models share the same vector space. In this way, the vector rep-
resentation of a query stated in the source language can be compared directly to
the vector representation of documents in the target language. This removes the
need for any explicit translation, as term translations and cross-lingual synonymy
are implicitly encoded in the vector space. This is accomplished through a sharing
of index vectors across languages during the random indexing procedure, so that
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terms that are translations of each other share a common index vector. Two vari-
ants of direct and indirect cross-lingual RI based on this idea are detailed below.

As a baseline for comparison, we use the dictionary to translate the queries,
translating each source term into the corresponding top−N most frequent target
terms according to the TL corpus. In addition, terms not in the dictionary are
simply copied over, assuming a lot of these are proper nouns. These translated
queries are then used by Lucene for monolingual IR in the TL.

Direct Cross-Lingual Random Indexing. The method for cross-lingual di-
rect RI is almost the same as for monolingual direct RI (cf. Section 2.1), except
for one crucial modification in the first step, where index vectors are shared
across languages. This assumes a translation dictionary mapping source lan-
guage terms to target language terms, with one-to-many mappings in the case
of translation ambiguity. First, a unique index vector is generated for each source
term in the dictionary. Next, each target term gets the same index vector as its
corresponding source term. If a target term serves as the translation of multiple
source terms, their index vectors are merged with disjunction. The second step
of creating query and document vectors is the same as for monolingual RI.

Indirect Cross-Lingual Random Indexing. As in the direct cross-lingual
case, index vectors are again shared among source terms and their translations.
Source language and target language document collections are then processed
independently using the sliding window procedure to build term context vectors
for source and target language terms respectively (step 2), followed by frequency
correction (step 3). Notice that documents are not aligned in any way and are in
fact completely unrelated. Finally, (multilingual) document vectors are obtained
by summing the context vectors of all target terms contained in the document,
whereas query vectors are constructed by summing vectors for their source terms.

A variant of this approach includes an extra step following the construction
of the term context vectors. For each context vector of a source term, we add to
it all the context vectors of its translations. Conversely, for each context vector
of a target term, we add to it all the context vectors of the source terms it
is a translation of. The resulting enriched context vectors will be referred to
as translation vectors. The reasoning behind this operation is that translation
vectors presumably encode second-order translation relations. That is, a pair of
vectors representing source and target language texts is not only similar when
the texts contain terms that are translations of each other, but also when the
texts contain terms co-occurring with terms that are in turn translations of each
other. This is akin to query expansion through related terms used to improve
recall.

3.2 Experimental Setup

A proprietary German-English translation dictionary was used in the process
of constructing index vectors. It is lemma-based, provides part-of-speech (POS)
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tags on both source and target side, and contains over 576k entries. In experi-
ments we only used single-word expressions, leaving out the multi-word expres-
sions, which did not seem to be benificial.

Cross-lingual experiments were based on the bilingual ad hoc retrieval track
using 50 German topics to retrieve English documents. The German topics cor-
responded to the English topics used earlier in the monolingual experiments;
the English document collection was the same as before (cf. Section 2.3). How-
ever, the use of a translation dictionary imposed some additional constraints.
First, the dictionary entries are lemma-based, so for the purpose of look-up, the
document collections were lemmatized with TreeTagger using pre-trained mod-
els for English and German [27]. Two variations where tested, one including
out-of-dictionary terms during training, and one where terms were limited to
those in the dictionary. For the latter, this reduced the number of unique En-
glish terms from 325,617 to 114,645 and the total number of indexed terms in
the English document collection from approximately 130M down to 70M (after
stopword removal). Likewise, the number of unique German terms was reduced
from 1,057,526 to 144,766 and the total number of indexed terms from about
80M down to 36M.

Model parameters were adopted from the best scoring configurations in the
monolingual IR experiment presented earlier: a vector dimensionality of 1800, 4
non-zeros for index vectors, and a unweighted window of 16+16 in indirect RI.

3.3 Results

Table 3 shows results for applying the cross-lingual random indexing method
to the bilingual ad hoc IR track. These scores are clearly a lot lower than the
monolingual scores, with direct RI again outperforming indirect RI in terms of
MAP scores. However, the variant of indirect RI employing translation vectors
performs best in terms of recall. The latter was also tested using out-of-dictionary
terms, resulting in lower recall but higher MAP. Unfortunately none of the RI
methods were able to beat the baseline relying on a two-step approach of query
translation using the dictionary followed by monolingual IR with Lucene. As
shown in Table 4, best MAP and recall scores were obtained by taking the two
or three most frequent translations respectively.

Table 3. Results with cross-lingual random indexing for bilingual (German-English)
ad hoc information retrieval track from CLEF 2005

Method MAP %Mono Found/2063 %Found

Direct Cross-lingual RI 0.0667 36.27 592 28.70
Indirect Cross-lingual RI 0.0176 8.56 400 19.39
Translation vectors limited to dictionary 0.0501 25.21 767 37.18
Translation vectors not limited to dictionary 0.0656 33.02 659 31.94
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Table 4. Results for combination of query translation and Lucene on bilingual
(German-English) ad hoc information retrieval track from CLEF 2005

Method for query translation MAP %Mono Found/2063 %Found

Dictionary ranked top1 0.1436 38.68 978 47.41
Dictionary ranked top2 0.1541 41.50 1068 51.77
Dictionary ranked top3 0.1437 38.70 1091 52.88
Dictionary ranked top4 0.1347 36.28 1073 52.01
Dictionary ranked top5 0.1275 34.34 1036 50.22

3.4 Discussion

Among the participants in CLEF 2005, none of them submitted any results for
English-German in the ad hoc bilingual track. However, three teams targeted
English from other source languages. University of Glasgow submitted results
for Greek-English [15]. After query expansion, Greek lemmas were automatically
translated into English with Yahoo’s Babelfish, a full fledged MT system. The
best results were obtained with the classic BM25 model [21] with empirically
tuned parameter. They achieved a MAP score of 0.2935, 68.14% of their re-
ported monolingual score. Johns Hopkins University worked on Greek-English,
Hungarian-English and Indonesian-English, aiming for a language-independent
solution based on character n-grams [18]. Queries were expanded prior to transla-
tion using the source language CLEF corpus. Next, queries were translated using
online translation services: Yahoo’s Babelfish for Greek, ToggleText’s Kataku for
Indonesian and TranslationExpert’s InterTran for Hungarian. A statistical lan-
guage model was employed for retrieval. They achieved MAP scores of 0.2418
(54.94%) for Greek, 0.3728 (84.71%) for Indonesian, and 0.1944 (44.17%) for Hun-
garian. University of Indonesia reported results for Indonesian-English. Queries
were first translated using Transtool, a commercial MT system. Retrieval relied
on VSM using the Lucene IR system, with a best MAP score of 0.1830 (52.16%).

Scores obtained with the cross-lingual RI methods are thus relatively low
compared with other approaches using generic MT systems for translating the
query prior to monolingual retrieval. We believe that the same issues that make
the RI model score quite a bit lower than the full VSM in monolingual IR, are
also present in the cross-lingual RI method tested here, together with other
factors such as dictionary coverage.

There is some related work on the notion of bilingual vector spaces. Most
related is the work by Dumais et al [8], who proposed a model for cross-lingual
IR based on bilingual LSI. In contrast to the cross-lingual RI methods, their
approach requires an aligned corpus of documents and their translations for
training purposes. In a different area, Rapp proposed cross-lingual distributional
similarity formalized as bilingual vector spaces to identify translation pairs in
non-parallel text [20]. Peirsman & Padó used a bilingual vector space as an
intermediary step in a model for learning selectional preferences [19]. Sahlgren
& Karlgren describe an approach for automatic extraction of bilingual lexica
using random indexing of parallel corpora [24].
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4 Conclusion and Future Work

The first contribution of this paper is experimental results for random index-
ing in document retrieval by applying it to the monolingual (English) ad hoc
IR track from CLEF 2005. It was found that indirect RI, which uses a sliding
window approach during training, achieves slightly better mean average preci-
sion than direct RI, which is conceptually a compressed version of a standard
VSM, suggesting a better ranking among the retrieved documents, whereas di-
rect RI yields slightly better recall. A full VSM model as implemented in Lucene
achieved better results than both of these. This is inconsistent with the claim
that models such as LSI and RI improve retrieval because they model latent
semantic relations among terms.

The second contribution is a new method for cross-lingual RI in which source
and target language models share the same vector space, allowing direct compar-
ison of the vector representations of source and target language texts without
the need for any explicit translation. This is accomplished through a sharing of
index vectors across languages during the random indexing procedure. It requires
a translation dictionary and unrelated monolingual text corpora, but no aligned
bilingual text. Of the three different variants proposed, indirect cross-lingual RI
with translation vectors performed best when applied to the German-English
bilingual ad hoc IR track from CLEF 2005. A straight-forward method of using
a dictionary for translation of the queries and then Lucene for monolingual IR
achieved better results than using our proposed methods.

Despite relatively low performance, the cross-lingual RI approach may still be
attractive because of several advantages. First, it is very light-weight in terms
of resources, as it only requires a translation dictionary. There is no need for
bilingual data in the form of parallel documents or word-aligned text, which can
be expensive to construct. Second, it inherits the computational simplicity from
standard RI and is therefore scalable to huge document collections while retain-
ing relateively small models. Third, additional target languages can be added
without the need to retrain the existing models. Forth, queries and documents are
in the same cross-lingual vector space, so no explicit translation step is required.
In addition, the method may have potential uses in specialized domains utilizing
specialized sublanguages where little or no aligned training data is available. One
such example being the clinical domain, which contains specialized documents
for which parallel or aligned text is difficult to produce and obtain. This may
also include cross-domain IR, possibly incorporating domain knowledge into the
cross-language/-domain dictionary to model domain-dependent relations among
terms and documents.

There are still many unsolved questions related to application of RI in re-
trieval. For instance, no good explanation is yet given for why capturing latent
semantic relations among terms seemingly does not improve document retrieval.
One possible explanation is that the features which make two documents similar,
or dissimilar, are not the same as those that determine similarity on a term level
(e.g. synonymy). Another explanation could be that the way vectors are com-
bined into documents, i.e. through TF*IDF weighted summation, is not optimal
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for capturing or preserving higher-order semantic relations among terms. More
experimentation is needed to explore a wider range of model configurations on
more benchmark data, both for monolingual IR using vectors of higher order
semantic information and for CLIR with language pairs other than German–
English. A direct comparison between LSI and RI for CLIR is desirable as well.
There is also a need for a more thorough evaluation of using the presented term
translation vectors in detecting semantically similar terms across languages.
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Abstract. Many stemming techniques are used in the context of Arabic
Text Classification. In this paper, we show the effect of stemming on clas-
sification systems. We introduce a new stemming technique -approximate
stemming- based on the use of Arabic patterns. These patterns are mod-
eled using transducers and stemming is done without depending on any
dictionary. Using transducers for stemming words, documents are trans-
formed into finite state transducers. This allow us to use rational kernels
as a framework for Arabic Text Classification. Experiments show that,
when compared with other approaches, our approach is more effective
specially in term of Accuracy, Recall and F1.

Keywords: Arabic, Automata, Kernels, N-gram, Text Classification.

1 Introduction

Text classification (TC) is the task of automatically sorting a set of documents
into one or more categories from a predefined set [1]. Text classification tech-
niques are used in many domains, including mail spam filtering, article index-
ing, Web searching, automated population of hierarchical catalogues of Web
resources, even automated essay grading task.

Due to the complexity of the arabic language, Arabic Text Classification
(ATC) starts receiving great attention. Many algorithms have been developed
to improve performance of Arabic TC systems [2–7]. In general, we can divide
an Arabic text classification system into three steps:

1. Preprocessing Step: where punctuation marks, diacritics, stop words and
non letters are removed.

2. Features Extraction: a set of features is extracted from the text, which
will represent the text in the next step. For instance, Khreisat [5] used the
N-gram technique to extract features from documents. Syiam et al. [7], used
stemming to extract features.

3. Learning Step: many supervised algorithms were used to learn systems how
to classify arabic text documents: Support Vector Machines [4, 6], K-Nearest
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Neighbors [7] and many others. Most algorithms rely on distance measures
over extracted features to decide how much two documents are similar.

In the second step, a feature vector is constructed. Several stemming approaches
are developed [8]. Khoja and Garside [9] developed a dictionary based stemmer.
It gives good performances, but the dictionary needs to be maintained. The
stemmer of Al-Serhan et al. [10] finds the three-letter roots for arabic words
without depending on any roots dictionary or pattern files.

Many arabic words have the same stem but not the same meaning. Reducing
two semantically different words to the same root can induce classification errors.
To prevent this, light stemming is used in TC algorithms [11]. Its main idea is
that a lot of words generated from the same root have different meanings. The
basis of this light-stemming algorithm consists of several rounds over the text,
that attempt to locate and remove the most frequent prefixes and suffixes from
the words. This leads to a lot of features due to the light stemming strategy.

In the third step, many distance measures could be used to calculate distance
(or dissimilarity) between documents using these feature vectors. The quality of
the classification system is related to the used distance measure.

In this paper, we study the effect of stemming on ATC. Let’s illustrate this
by an example. Given two simple documents d1 =" ��

�� � ���	
 ����
�� �� � ����� ��

������� 
" (Child learns and brought up in the school), and d2 = "��
��� 
 �� ����
������ ��	 
 � �����

��	 
  ��	  ��!"" (Schools provide education for our children). we compute
Euclidean distance between them using 3-grams, with and without stemming:

Distance 3-grams
Without stemming 0.18

With stemming 0.25

It is clear that distance between d1 and d2 is affected by stemming, specially
using 3-grams.

In this work, we introduce a new stemming technique which do not rely on
any dictionary. It is based on the use of transducers. This stemming technique
transforms documents into finite state transducers. Then, rational kernels [12]
are used as a framework to do ATC.

This paper is organized as follows. Section 2 presents, in more details, the
stemming techniques. In Section 3, we recall some notions on weighted trans-
ducers and rational kernels. We present our new stemming approach, called
"approximate-stemming", then we explain how to use rational kernels as a frame-
work for Arabic TC. Experiments and results are reported and interpreted in
Section 4.
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2 Stemming Techniques

In the context of ATC, stemming is applied to reduce dimentiality of the feature
vectors. Brute stemming (commonly called stemming) transforms each arabic
word in the document, into its root. However, light stemming, reduces word into
its light stem by removing prefixes and suffixes.

2.1 Brute Stemming

There are many brute stemming techniques used in the context of ATC. They can
be classified into two types: (i) Stemming using a dictionary, where dictionary
of arabic word stems is needed. (ii) Stemming without dictionary, where stems
are extracted without depending on any root or pattern files.

Khoja’s stemmer [9] removes the longest suffix and the longest prefix. It then
matches the remaining word with verb and noun patterns, to extract the root
by means of a dictionary. The stemmer makes use of many linguistic data files
such as a list of all diacritic characters, punctuation characters, definite articles
and stop words. This stemmer gives good performance but relies on dictionary
which needs to be updated. The second technique, due to Al-Serhan et al. [10],
finds the three-letter roots for arabic words without depending on any root or
pattern files. They extract word roots by assigning weights and ranks to the
letters that constitute a word. This algorithm, like any other brute stemming
algorithm, gives the same stem for two semantically different words. This could
decrease performance of the classification system.

2.2 Light Stemming

In Arabic language, some word variants do not have similar meanings (like the
two words: ���� ��#$ which means library and %� �� & which means writer). However,
these word variants give the same root if a brute stemming is used. Thus, brute
stemming affects the meanings of words. Light stemming [11] aims to enhance
the Text classification performance while retaining the words meanings. The
basis of this light-stemming algorithms consists of several rounds over the text,
that attempt to locate and remove the most frequent prefixes and suffixes from
the word. However, it leads to a lot of features.

3 Framework for Arabic Text Classification

Before describing our framework, let’s give in the following subsection, some
preliminaries on Weighted Transducers and Rational Kernels.
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3.1 Weighted Transducers and Rational Kernels

Transducers are finite automata in which each transition is augmented with an
output label in addition to the familiar input label. Output labels are concate-
nated along a path to form an output sequence as with input labels. Weighted
transducers are finite-state transducers in which each transition carries some
weight in addition to the input and output labels. The weight of a pair of input
and output strings (x, y) is obtained by summing the weights of the paths la-
beled with (x, y). The following definition gives a formal definition of weighted
transducers [13, 14].

Definition 1. A weighted finite-state transducer T over a semiring
(K,⊕,⊗, 0̄, 1̄) is an 8-tuple T = (Σ,Δ,Q, I, F,E, λ, ρ) where Σ is a finite input
alphabet, Δ is a finite output alphabet, Q is a finite set of states, I ⊆ Q the set of
initial states, F ⊆ Q the set of final states, E ⊆ Q×(Σ∪{ε})×(Δ∪{ε})×K×Q
a finite set of transitions, λ : I → K the initial weight function, and ρ : F → K

the final weight function

For a path π in a transducer, p[π] denotes the origin state of that path, n[π]
its destination state and w[π] gives the sum of the weights of its arcs. The set
of paths from the initial states I to the final states F labeled with input string
x and output string y is denoted by P (I, x, y, F ). A transducer T is regulated
if the output weight associated by T to any pair of input-output strings (x, y)
given by:

�T �(x, y) =
⊕

π∈P (I,x,y,F ) λ(p[π]) ⊗ w[π]⊗ ρ[n[π]] (1)

is well-defined in K. �T �(x, y) = 0̄ if P (I, x, y, F ) = ∅. Figure 1 shows an example
of a simple transducer, with an input string x : �' �� and an output string y :
�� �� .The onlypossible path in this transducer is the singular set:P ({0}, x, y, {4}).

Fig. 1. Example of a transducer

Regulated weighted transducers are closed under the following operations
called rational operations:
– the sum (or union) of two weighted transducers T1 and T2 is defined by:

∀(x, y) ∈ Σ∗ ×Σ∗, �T1 ⊕ T2�(x, y) = �T1�(x, y)⊕ �T2�(x, y) (2)

– the product (or concatenation) of two weighted transducers T1 and T2 is
defined by:

∀(x, y) ∈ Σ∗ ×Σ∗, �T1 ⊗ T2�(x, y) =
⊕

x = x1x2,

y = y1y2

�T1�(x1, y1)⊗ �T2�(x2, y2)(3)
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– The composition of two weighted transducers T1 and T2 with matching input
and output alphabets Σ, is a weighted transducer denoted by T1 ◦ T2 when
the sum:

�T1 ◦ T2�(x, y) =
⊕
z∈Σ∗

�T1�(x, z)⊗ �T2�(z, y) (4)

is well-defined in K for all x, y ∈ Σ∗

Rational Kernels are a general family of kernels, based on weighted transducers,
that extend kernel methods to the analysis of variable-length sequences or more
generally weighted automata. Let X and Y be non-empty sets. A function K :
X × Y → R is said to be a kernel over X × Y . Corinna et al. [12] give a formal
definition for rational kernels:

Definition 2. A kernel K over Σ∗ × Δ∗ is said to be rational if there exist
a weighted transducer T = (Σ,Δ,Q, I, F,E, λ, ρ) over the semiring K and a
function ϕ : K → R such that for all x ∈ Σ∗ and y ∈ Δ∗:

K(x, y) = ϕ(�T �(x, y)) (5)

K is then said to be defined by the pair (ϕ, T ).

3.2 Stemming by Transducers

Arabic language differs from other languages syntactically, morphologically and
semantically. One of the main characteristic features is that most words are
built up from roots by following certain fixed patterns1 and adding prefixes and
suffixes. For instance, the arabic word �������
 (school) is built from the three-

letters root or stem ��( (learn) and using the measure ���� ��$ (see Table 1), then

prefix 	 
 and suffix �) (which is used to denote female gender) are added. Notice
here that the letter �* denotes the first letter of the three-letters root, + denotes

the second letter and , denotes the third one.

Table 1. Measures for the three-letters root � � ( and the built words

Measures ���� ��$ �' �� �-.�' ��	
 ��	 � ��	
 �� ���� �' ������
Words �����$ ��
( �-.��
�	
 ���
��	
 ����� ��
�����

1 Also called measures or binyan.
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We will use measures to construct a transducer which do stemming. Figure 1
shows the example of the measure �' ��. This transducer (Tmeasure1) can be used
to extract the three-letters root of any arabic word matching with this measure.
This is achieved by composition operation (4).

We consider Tword, the transducer which map any string to it self, i.e, the
only possible path is the singleton set P ({0}, word, word, {i}) (Figure 2 shows
transducer associated to the arabic word �����$).

The composition of two transducers is also a transducer.

(Tword ◦ Tmeasure1)(word, y) =
∑

z∈Σ∗ Tword(word, z) · Tmeasure1(z, y)

Since the only possible string matching z is z = word, we conclude that:

(Tword ◦ Tmeasure1)(word, y) = Tword(word, word) · Tmeasure1(word, y)

As we have Tword(word, word) = 1, so:

(Tword ◦ Tmeasure1)(word, y) = Tmeasure1(word, y)

If word matches with the measure the output projection will extract the root
(or stem) y associated to word.

Fig. 2. Transducer corresponding to the word ������� 
 (school)

In Arabic language, there are 4 verb prefixes ( �/ 0� 
 �-), 12 noun prefixes (
� 1 �- 1 � 1 0� 1 , 1 �	 1 �* 1 � 1 �/ 1 /� 1 ,
 1 
) and more than 20 suffixes. As Modern
Standard Arabic don’t use diacritics, we don’t consider them in our approach.
his reduces patterns into 200. Indeed, the patterns (

2
��3

3�� 1
2

� 3�4�� 1
3

� 4�3�� 1
3

� 3�3�� ) will

result in only one pattern (�� ��) after removing diacritics.
We adopt the following process, to construct the stemming transducer, which

enable us to include all measures:

1. Building the transducer of all noun prefixes (resp. verb prefixes);
2. Building the transducer of all noun patterns (resp. verb patterns);
3. Building the transducer of all noun suffixes (resp. verb suffixes);
4. Concatenate noun transducers (resp. verb transducers) obtained in 1, 2 and 3.
5. Sum the two transducers obtained in step 4.
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The first and third steps are very simple. We construct a transducer for each
prefix (resp. suffix) then we do the union of these transducers. The resulting
transducer represents the prefixes (resp. suffixes) transducer (see Figure 3). In
the second step, we build all possible noun pattern transducers. Then, the sum
of these transducers represents the transducer of all noun patterns. We do the
same to build the transducer of all verb patterns. In the forth step, transducers
obtained in steps 1, 2 and 3 are concatenated. The final transducer is obtained
by doing the sum (union) of transducers built in step 4.

Tables 2 shows some examples of noun patterns. The resulting transducer
could not be represented graphically because of large number of states (about
400 states). This transducer can stem any well-formed arabic word, i.e, a word
which matches with some arabic measure. In addition, it can give us a semantic
information about the stemmed word. This information can be used to improve
the quality of classification system.

Table 2. Examples of noun patterns

3-letters 4-letters 5-letters 6-letters 7-letters
�� �� �' �� �' ��$ �' ����$ , � �����


Transducers are created and manipulated using the OpenFst library [15],
which is an open source library for constructing, combining, optimizing, and
searching weighted finite-state transducers.

3.3 Rational Kernels for Arabic Text Classification

Like any text classification system, Our system is divided into three stages:

1. preprocessing step.
2. feature extraction: the previous transducer is applied on each word of the

document resulting from step 1. Then, the transducer consisting of the con-
catenation of these words stems transducers will represent the document in
the next step.

3. learning task: Rational kernels will be used to measure distance between
documents [12, 14].

Considering a set of documents, each document is consisting of a sequence of
words: w1w2 . . . wn. Applying our stemming transducer on each word of a docu-
ment will transform this document into finite state transducer. These transducers
will be packaged into an archive file (far) to be treated by the learning algorithm.
OpenKernel, which is a library for creating, combining and using kernels for ma-
chine learning applications, will be used to accelerate experiments.

The next batch reports the main commands of OpenFst and OpenKernel
libraries used to implement our classification system. To stem words in the doc-
ument, we iterate on these words using the OpenFst command [15] fstcompose
(line 1), where word.fst is a linear finite state transducer with identical input
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Fig. 3. Transducer of noun prefixes (left) and verb prefixes (right)

Fig. 4. Transducer of verb patterns

and output labels, which represents a word, and model.fst is our stemming trans-
ducer [16]. The resulting transducer result.fst represents the set of possible stems.
Resulting transducers are right concatenated to a finite state transducer, rep-
resenting the entire document, using the openfst command fstconcate (line 2).
The set of finite state documents (FSTs) is then packaged in a FSTs archive
(far) using the openkernel command farcreate (line 3), where data.list contains
the list of all FSTs documents, one file per line, and data.far is the FST archive
(Far).
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Various types of kernels could be created using openkernel library. 3-gram
kernels could be created using the command klngram (line 3), where the first
argument –order specifies the size of the n-grams, and the second argument –
sigma specifies the size of the alphabet (arabic alphabet size is 29). The first
parameter is the FST archive (data.far) and the second parameter (3-gram.kar)
is the resulting kernel archive.

1 fstcompose word.fst model.fst result.fst
2 fstconcate doc.fst result.fst doc.fst
3 farcreate data.list data.far
4klngram −order=3 −sigma=29 data.far 3−gram.kar
5 svm−train −k openkernel −K 2−gram.kar cul.train cul.train.2−gram.model
6 svm−predict cul.test cul.train.2−gram.model cul.test.2−gram.pred

Openkernel library includes a plugin for the LibSVM implementation [17]. This
enables us to do training, predicting and scoring on our dataset. Training com-
mand creates a model on the training set (line 5), where the first argument -k
specifies the kernel format, the second one (-K) specifies the n-gram size. The first
parameter specifies a correctly classified subset of the training set, the second
parameter is the resulting model. In this command, cul.train contains a labeled
sub set of training documents belonging to Cultural class. Having a model, we
can use it to classify documents of the testing dataset with the command svm-
predict (line 6), where the first parameter specifies a correctly classified subset
of the testing set, the second parameter is the resulting model of the previous
command. The last parameter contains the result of prediction using the model.

4 Experimental Results and Discussion

We perform experiments on the Saudi Press Agency (SPA) dataset [2] for train-
ing and testing the ATC system. This dataset contains 1526 text documents
belonging to one of the six categories (culture, economic, social, general, politics
and sport) as detailed on Table 3. As mentioned before, stop words, non arabic
letters, symbols and digits were removed. We have used 80% of documents for
training the classifier and 20% for testing. Learning is done using LibSVM im-
plementation [17], included in Openkernel, with three different n-gram kernels
(n = 2, 3, 4). Since we want to show the effect of stemming, we report results of
the three classifier versions; without stemming, with our approximate-stemming
and with Al-Serhan’s stemmer, in term of accuracy, precision, recall and F1. In
Tables 4, 6 and 8 we report results in term of accuracy and precision for the
three classifiers with the tree kernels (bigrams, 3-grams and 4-grams). Tables 5,
7 and 9 give results in terms of recall and F1 for the same classifiers.

For the three classifiers, best results were reached with 3-grams kernel for
most measures (accuracy, recall and F1). This can be explained by the fact that
over 80% of arabic words can be mapped into 3-letter root patterns. However, for
precision, stemming do not enhance performances. This can be explained by the
fact that we consider all possible stems for each word. Thus, it is more beneficial
to consider only the most probable stem by a statistical langage study [18].
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Table 3. SPA corpus details

Categories Training texts Testings texts Total
Culture 201 57 258

Economics 200 50 250
Social 203 55 258
Politics 200 50 250
General 205 50 255
Sports 205 50 255

1214 312 1526

Table 4. Accuracy and Precision of SVM Classification using Bigram Kernel

Class Accuracy (%) Precision (%)
Without With With Serhan Without With With Serhan
stemming stemming stemmer stemming stemming stemmer

Culture 85,49 87,38 86,75 92,30 75,75 75,86
Economics 87,38 88,01 87,69 91,66 77,27 73,91
Social 82,65 84,23 82,64 - 100 50
Politics 85,17 85,49 87,06 63,63 60 73,68
General 85,17 88,01 84,54 90 84 68,75
Sports 95,90 95,90 94,32 97,36 95,12 88,09
Average 86,91 88,17 87,17 86,99 82,02 71,71

Table 5. Recall and F1 of SVM Classification results using Bigram Kernel

Class Recall F1
Without With With Serhan Without With With Serhan
stemming stemming stemmer stemming stemming stemmer

Culture 0,21 0,44 0,39 0,34 0,56 0,51
Economics 0,22 0,34 0,34 0,35 0,47 0,47
Social - 0,09 0,02 - 0,17 0,03
Politics 0,14 0,24 0,28 0,23 0,34 0,41
General 0,16 0,38 0,20 0,28 0,52 0,31
Sports 0,74 0,78 0,74 0,84 0,86 0,80
Average 0,25 0,38 0,33 0,41 0,49 0,42

Table 6. Accuracy and Precision of SVM Classification using 3-gram Kernel

Class Accuracy (%) Precision (%)
Without With With Serhan Without With With Serhan
stemming stemming stemmer stemming stemming stemmer

Culture 89,59 90,22 87,06 87,50 88,23 80,76
Economics 91,48 92,43 92,11 84,84 88,23 87,87
Social 83,91 83,60 83,28 75 61,53 75
Politics 89,27 88,33 89,59 90 80,95 84
General 89,27 87,38 89,59 92 77,77 95,83
Sports 97,48 97,79 94,95 100 100 90,47
Average 90,17 89,96 89,43 88,22 82,79 85,65

Considering the effect of stemming on the performance of classifiers, results
show that both our approximate stemmer and Al-serhan’s one improve perfor-
mances.

At last, compared with Al-Serhan’s stemmer, our stemmer gives better results
in most cases.
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Table 7. Recall and F1 of SVM Classification using 3-gram Kernel

Class Recall F1
Without With With Serhan Without With With Serhan
stemming stemming stemmer stemming stemming stemmer

Culture 0,49 0,53 0,37 0,63 0,66 0,51
Economics 0,56 0,60 0,58 0,67 0,71 0,70
Social 0,11 0,15 0,05 0,19 0,23 0,10
Politics 0,36 0,34 0,42 0,51 0,48 0,56
General 0,42 0,38 0,41 0,57 0,51 0,58
Sports 0,84 0,86 0,76 0,91 0,92 0,83
Average 0,46 0,48 0,43 0,58 0,59 0,55

Table 8. Accuracy and Precision of SVM Classification using 4-gram Kernel

Class Accuracy (%) Precision (%)
Without With With Serhan Without With With Serhan
stemming stemming stemmer stemming stemming stemmer

Culture 89,91 89,59 84,54 87,87 92,85 90
Economics 92,74 91,80 87,38 84,61 92,85 85,71
Social 84,54 83,60 82,64 75 71,42 50
Politics 87,07 87,38 86,12 71,42 81,25 71,42
General 88,96 89,27 86,75 85,71 95,65 93,33
Sports 97,79 96,85 91,48 100 100 87,09
Average 90,17 89,75 86,49 84,10 89 79,59

Table 9. Recall and F1 of SVM Classification using 4-gram Kernel

Class Recall F1
Without With With Serhan Without With With Serhan
stemming stemming stemmer stemming stemming stemmer

Culture 0,51 0,46 0,16 0,64 0,61 0,27
Economics 0,66 0,52 0,24 0,74 0,67 0,37
Social 0,16 0,09 0,02 0,27 0,16 0,035
Politics 0,30 0,26 0,20 0,42 0,39 0,31
General 0,44 0,40 0,25 0,58 0,56 0,40
Sports 0,86 0,80 0,54 0,92 0,89 0,66
Average 0,49 0,23 0,42 0,59 0,55 0,34

5 Conclusion and Future Directions

This paper presents a new framework for Arabic Text classification. It is based
on the use of transducers for stemming arabic words, and rational kernels for
measuring distance between documents. First, our stemming transducer is built
by means of arabic patterns. Second, rational kernels are also used to measure
distances between documents. Experiments and analysis of this framework in the
context of Arabic Text Classification show that stemming improves the quality
of classifiers in term of accuracy, recall and F1. But it decreases the precision.
3-grams classifier reached the best results. Like that of Aljlayl et al. [11], our
approach of stemming do not rely on dictionary, and gives better results than
statistically based stemmer of Al-Serhan et al. [10].

In future work, approximate-stemmer will be enhanced by a statistical study
of Arabic language. Other kernels, like word-grams and gappy grams, will be
investigated.
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Abstract. We present in this paper experiments with several semantic similarity 
measures based on the unsupervised method Latent Dirichlet Allocation. For 
comparison purposes, we also report experimental results using an algebraic 
method, Latent Semantic Analysis. The proposed semantic similarity methods 
were evaluated using one dataset that includes student answers from 
conversational intelligent tutoring systems and a standard paraphrase dataset, 
the Microsoft Research Paraphrase corpus. Results indicate that the method 
based on word representations as topic vectors outperforms methods based on 
distributions over topics and words. The proposed evaluation methods can also 
be regarded as an extrinsic method for evaluating topic coherence or selecting 
the number of topics in LDA models, i.e. a task-based evaluation of topic 
coherence and selection of number of topics in LDA. 

Keywords: semantic similarity, statistical methods, Latent Dirichlet Allocation. 

1 Introduction 

We address in this paper the important task of finding how semantically similar two 
texts are. We employ a novel set of semantic similarity methods that rely on the prob-
abilistic method Latent Dirichlet Allocation (LDA; Blei, Ng, & Jordnan, 2003). 

Semantic similarity is a widely used approach to the core problem of language un-
derstanding. It is an useful alternative to the true understanding approach which is 
intractable as it requires world knowledge. For instance, in dialogue-based Intelligent 
Tutoring Systems (ITS) it is important to understand students’ natural language res-
ponses. One frequently used approach to address this issue is to compute how similar 
student responses are to benchmark, expert-articulated responses (Graesser, Olney, 
Haynes, Chipman, 2005; Rus & Graesser, 2006). That is, the student response as-
sessment task is being modeled as a text-to-text similarity problem. 

Below, we show an example of a real student response from an ITS and the corres-
ponding benchmark answer authored by an expert. 

Student Response: An object that has a zero force acting on it will have zero  
acceleration. 

Expert Answer: If an object moves with a constant velocity, the net force on the  
object is zero. 
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The student response above is deemed correct as it is semantically similar to the 
expert answer. A student response is deemed incorrect if it is not similar to the expert 
response. More nuanced categorizations are possible, e.g. a student response can be 
partially correct. 

In this paper, we model the problem of semantic similarity as a binary decision 
problem in which a student response is deemed either correct or incorrect. We limit 
ourselves to such binary judgments because the primary scope of this work is to as-
sess the novel semantic similarity methods based on the unsupervised method Latent 
Dirichlet Allocation (LDA; Blei, Ng, & Jordnan, 2003). We plan to address more 
nuanced judgments of semantic similarity in the future. Also, the datasets that we 
used to evaluate the proposed methods only provide binary judgments. 

It should be noted that this type of binary modeling has been extensively used in 
previously proposed semantic similarity tasks such as the Recognizing Textual En-
tailment task (Dagan, Glickman, and Magnini, 2004), the paraphrase identification 
task (Dolan, Quirk, & Brockett, 2004), or the student input assessment task (Rus & 
Graesser, 2006; McCarthy & McNamara, 2008). 

The task of semantic similarity can be formulated at different levels of granularity 
ranging from word-to-word similarity to sentence-to-sentence similarity to document-
to-document similarity or a combination of these such as word-to-sentence or sen-
tence-to-document similarity. We propose in this paper novel solutions to the task of 
semantic similarity both at word and sentence level with an emphasis on sentence-
level similarity. In particular, we rely on one probabilistic method, LDA (Blei, Ng, & 
Jordan, 2003), that automatically discovers a set of underlying topics, represented as 
distributions over words, in texts. That is, texts are regarded as distribution over top-
ics. Words can be represented as a vector of contributions to topics in an LDA model. 

The semantic similarity measures of larger texts, e.g. sentences, can be defined 
based on either individual word representations, e.g. by extending word-to-word simi-
larity measures to sentence-to-sentence similarity (as in Lintean et al., 2010), or based 
on the representations of texts as distributions over topics (topics are distributions 
over words in the vocabulary). We propose here solutions based on both of these ap-
proaches. The LDA-based word-to-word semantic similarity measures are used in 
conjunction with greedy and optimal matching methods in order to measure similarity 
between larger texts such as sentences. The solutions based on the second approach, 
called text-to-text measures, are used directly to compute the similarity of two  
sentences. 

For comparison purposes, we also report experimental results using an algebraic 
method, Latent Semantic Analysis (LSA, Landauer et al., 2007), that automatically 
derives meaning representations in the form of latent concepts. Like LDA, LSA is 
fully automated. Words are represented as vectors in an LSA-derived semantic space. 
The dimensions of this space are latent concepts. Similarity of individual words and 
texts are computed based on vector algebra. LDA has one conceptual advantage over 
LSA: LDA represents multiple meanings of a word explicitly while LSA does not. 

We have experimented with a dataset compiled from dialogue-based intelligent  
tutoring systems as well as with the Microsoft Research Paraphrase corpus (Dolan, 
Quirk, & Brockett, 2004). 
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The rest of the paper is organized as in the followings. The next section provides 
an overview of related work. Then, we describe LDA and the semantic similarity 
measures based on LDA. The Experiments and Results section describes our experi-
mental setup and the results obtained. We conclude the paper with Discussion and 
Conclusions. 

2 Previous Work 

The task of semantic similarity between two short texts, namely two sentences, has 
been addressed using various solutions that range from simple word overlap to greedy 
methods that rely on word-to-word similarity measures (Fernando & Stevenson, 
2008;) to algebraic methods (Lintean, Moldovan, Rus, & McNamara, 2010) to ma-
chine learning based solutions (Kozareva & Montoyo, 2006). 

The most relevant work to ours is by Lintean et al. (2010) who looked at the role of 
LSA (Landauer et al., 2007) in solving the paraphrase identification task. As already 
mentioned, LSA is a vectorial representation in which a word is represented as a vec-
tor in a low dimensionality space (300-500 dimensions or latent concepts; we use 300 
dimensions in our experiments reported here). Computing the similarity between two 
words is equivalent to computing the cosine, i.e. the normalized dot product, between 
the corresponding LSA vectors. 

Lintean et al. (2010) used LSA as a way to compute semantic similarity in two dif-
ferent ways. First, they used LSA to compute a word-to-word similarity measure 
which they combined with a greedy-matching method to obtain a sentence level simi-
larity score. For instance, each word in one sentence was greedily paired with one 
word in the other sentence. An average of these word-to-word similarities was then 
assigned as the semantic similarity score of the two sentences. Second, LSA was used 
to directly compute the similarity of two sentences by applying the cosine (norma-
lized dot product) of the LSA vectors of the sentences. The LSA vector of a sentence 
was computed by adding all the individual word vectors. We present results with 
these methods and, additionally, with a method based on optimal matching that only 
uses word-to-word LSA similarity. 

LDA itself was occasionally used for computing the semantic similarity of texts. 
The closest use of LDA for a semantic similarity task was by Celikyilmaz, Hakkani-
Tur, & Tur (2010) for ranking candidate answers to a question in Question Answering 
(QA). Given a question, they ranked candidate answers based on how similar these 
answers were to the target question. That is, for each question-answer pair they gener-
ated an LDA model which then they used to compute a degree of similarity (DES) 
that consists of the product of two measures: sim1 and sim2. Sim1 captures the word-
level similarities of the topics present in an answer and the question. Sim2 measures 
the similarities between the topic distributions in an answer and the question. The 
LDA model was generated based solely on each question and candidate answers. As 
opposed to our task, in which we compute the similarity between sentences, the can-
didate answers in Celikyilmaz, Hakkani-Tur, & Tur (2010) are longer, consisting of 
more than one sentence. This particular difference is important when it comes to 
computing the semantic similarity based on LDA as the shorter the texts the sparser 
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the distributions, in particular the distribution over topics, based on which the similar-
ity is computed. 

Similar to Celikyilmaz, Hakkani-Tur, & Tur (2010), we define several semantic 
similarity measures based on the topic and word distributions in LDA. We do use 
Information Radius as Celikyilmaz, Hakkani-Tur, & Tur (2010) and, in addition, pro-
pose similarity measures based on Hellinger and Manhattan distances. 

Another use of LDA for computing similarity between texts, namely blogs, relied 
on a very simple measure of computing the dot product of topic vectors as opposed to 
a similarity based on distributions (Chen et al., 2012). Because using such topic vec-
tors for short texts leads to very sparse topic vectors, we did not experiment and do 
not report results with similarity methods based on just topic vectors. 

The work presented here extends our previous work on LDA-based semantic simi-
larity (Rus, Niraula, & Banjade, 2013). To the best of our knowledge, LDA has not 
been used so far for addressing the task of paraphrase identification in the context of 
student responses in dialogue-based ITSs, which is the focus of our work. 

3 LDA-Based Similarity Measures 

Latent Dirichlet Allocation (LDA; Blei, Ng,& Jordan, 2003) belongs to the broader 
category of methods called topic models. Topic models are based on the assumption 
that a relatively small set of latent topics underly natural language texts. The topics 
are groups of semantically related words. A word can belong to multiple topics. If one 
interprets each topic as a concept then LDA directly models polysemy which LSA 
does not. In LSA, each word has a unique vector representation. That is, multiple 
senses of the same word are mapped to the same representation in the reduced LSA 
space. Some argue that the LSA vector for a given word represents an average of all 
the senses of the word, while others argue that it represents the dominant, most fre-
quent sense. Given this theoretical advantage of LDA over LSA when it comes to 
modeling word meanings, one wonders which one is better at tasks in which word 
meanings play a role such as sentence-level text-to-text similarity. This paper is a step 
towards understanding the strengths of LDA versus LSA. 

It is important to add that LDA has been proposed to address several limitations of 
the earlier Probabilistic Latent Semantic Indexing model (pLSI; Hoffman, 1999). For 
instance, the pLSI model cannot handle unseen documents. Also, the number of pa-
rameters to be estimated in the pLSI models increases linearly with the number of 
documents leading to overfitting. 

3.1 Latent Dirichlet Allocation 

LDA is a generative probabilistic model for collections of discrete items, i.e. words in 
our case. The only observed things are the words (denoted by w) in documents. All 
else are latent variables. LDA derives the parameters of the latent variables using only 
the observed words in the corpus. Thus, LDA captures significant intra-document 
statistical structure via mixing distributions. 

We will use the notation in Blei, Ng, and Jordan (2003) to explain the basic LDA 
model. A word, denoted w, is a discrete unit entry in a vocabulary V whose elements 
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are indexed {1,…,V}. A document is a sequence of N words denoted w = <w1, w2, …, 
wN,>, where wi is the i-th word in the document. A corpus D is a collection of docu-
ments D = {w1, w2, …, wM}.  

Documents are regarded as random mixtures of topics and a topic is a distribution 
over words in the vocabulary. LDA follows the following generative process for a 
document w. 

(a) Choose a topic distribution θ ~ Dir (α); the dimensionality k (number of topics) 
of the Dirichlet distribution is given; 

(b) For each of the N words wi in w: 
(i) Select a topic zi based on θ; 
(ii) Choose a word wi using  p(wi| zi,β) 

LDA has two Dirichlet priors: α for document-topic distributions and β for topic-word 
distributions. These two priors, α and β, are also known as hyper-parameters for the 
document-topic and topic-word Dirichlet distributions. Although they can be vector 
valued, many LDA implementations use α and β as scalars to simplify and get sym-
metric Dirichlet priors. Currently most LDA users choose symmetric Dirichlet priors 
using some heuristics. One such heuristics is mentioned by Steyvers and Griffiths 
(2006): although the values of these priors depend on vocabulary size and the number 
of topics, setting α = 50/k and β = 0.01 worked well for many different text collec-
tions. We followed this latter approach in our work presented here. 

LDA estimation includes learning the various distributions, e.g., the set of topics, 
the word probabilities for each topic, the topic mixture proportion of each document, 
and the topic of each word in each document. Estimation of the LDA parameters  
directly and exactly maximizing the likelihood of the whole data collection is intract-
able. Approximate estimation methods are used to solve the problem. The three popu-
lar methods reported in the literature are: variational methods (Blei et al, 2003),  
expectation propagation (Griffiths and Steyvers, 2004), and Gibbs sampling (Griffiths 
and Steyvers, 2004). We used in our work an implementation based on Gibbs sam-
pling (i.e., JGibbLDA). 

3.2 Number of Topics 

The standard LDA model requires the specification of the number of latent topics in 
advance. That is, the number of topics is set by the user. Choosing the right number of 
topics is important as they determine the quality of the LDA model. Many believe that 
choosing the right value for the number of topics is more art than science. 

One solution is to try a range of values and choosing the best number of topics ac-
cording to some intrinsic criterion, such as the coherence of the topics, or according to 
some extrinsic criterion such as accuracy on a task, .e.g. paraphrase identification. We 
use in this paper as a starting point the topic coherence for selecting the number of 
topics (see next subsection). Furthermore, our experiments with using LDA for the 
task of paraphrase identification can be viewed as an extrinsic, task-based selection or 
validation of the number of topics. 
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Other methods to select the number of topics exist. Some rely on heuristics for se-
lecting the number of topics. Nonparametric Bayesian models such as Hierarchical 
Dirichlet process were also proposed to automatically estimate the number of topics 
(Teh et al., 2004). The nonparametric models are not computationally efficient  
(Wallach et al., 2009). 

3.3 Assessment of Topics  

As mentioned, we used topic coherence as an intrinsic criterion to select the number 
of topics upfront. Newman et al. (2010) have explored techniques for measuring topic 
coherence and presented a comparative study of topic coherence evaluation using 
Wikipedia, Google n-gram dataset, and WordNet. The pointwise mutual information 
(PMI) method was best when compared to human judgments of topic coherence. They 
counted the frequency of the co-occurring words in a window of 10-word in Wikipe-
dia corpus and 5 in case of Google 5-grams. 

Similarly, we used the average PMI of the top 10 and also top 20 words to assess 
the quality of topic coherence. That is, we formed all possible pairs with the top 10 or 
20 words in each topic (words in each topic are decreasingly ordered based on their 
contribution to the topic) and computed the PMI for each pair based on word frequen-
cies derived from a Wikipedia-based corpus. 

The PMI was calculated using 4,134,837 English-language Wikipedia articles 
dumped on January 3, 2013. It contained 1,284,156,826 tokens and 5,693,208 word 
types (i.e. unique words) counted after removing digits and punctuation and changing 
to lower case. After removing the stop words, the number of tokens was 672,542,579. 
We found that a 100-topic LDA model leads to highest average topic coherence (we 
varied the number of topics from 10 to 300, the typical dimensionality used in LSA 
spaces). Experimental results on the paraphrase identification task, which can be 
viewed as an extrinsic, task-based evaluation of topic coherence, confirmed that using 
k=100 topics is best. Given that measuring topic coherence based on the average PMI 
of top 10 words recommends the same best number of topics as our task-based evalu-
ation further supports the use of top 10 words PMI for measuring topic coherence (as 
suggested by Newman et al., 2010). The best coherence when using top 20 words is 
for a 20-topic LDA model. However, the average PMI for the 20 topics model is not 
significantly different from the 100 topics model.  

In a way, our extrinsic, task-based validation of the number of topics is stronger 
than the validation based on human judgments provided by Newman and colleagues 
(2010) as they asked human judges to assess only a subset of the topics. Furthermore, 
it is not clear whether they asked the human judges to consider only top 10 words 
from each topic or not. They used the top 10 words only when computing the PMI. 

3.4 LDA-Based Semantic Similarity Measures 

As we already mentioned, LDA is a probabilistic generative model in which docu-
ments are viewed as distributions over a set of topics and each word in a document is 
generated based on a distribution over words that is specific to each topic. 

A first semantic similarity measure among words would then be defined as a dot-
product between the corresponding vectors representing the contributions of each 
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word to a topic. It should be noted that the contributions of each word to the topics 
does not constitute a distribution, i.e. the sum of contributions does not add up to 1. 
Assuming the number of topics T, then a simple word-to-word measure is defined by 
the formula below where we denote by φ distributions over words for a topic t. 

 
 
 

More global text-to-text similarity measures could be defined in several ways. Be-
cause a document is a distribution over topics, the similarity of two texts needs to be 
computed in terms of similarity of distributions. The Kullback-Leibler (KL) diver-
gence defines a distance, or how dissimilar, two distributions p and q are as in the 
formula below. 

 
 
 
 

If we replace p with θd (text/document d’s distribution over topics) and q with θc  
(text/document c’s distribution over topics) we obtain the KL distance between two 
documents (documents d and c in our example). 

Furthermore, KL can be used to compute the distance between two topics using 
their distributions over words (φt1 and φt2). The KL distance has two major problems. 
In case qi is zero KL is not defined. Furthermore, KL is not symmetric which does not 
fit well with semantic similarity measures which in general are symmetric. That is, if 
text A is a paraphrase of text B that text B is a paraphrase of text A. The Information 
Radius (IR) measure solves these problems by considering the average of pi and qi as 
below. 

The IR can be transformed into a similarity measure as in the following (Dagan, 
Lee, & Pereira, 1997): 

 
 

All our results reported here for LDA similarity measures between two documents c 
and d are computed by multiplying the similarities between the distribution over top-
ics (θd and θc) and distribution over words (φt1 and φt2). For space reasons, we do not 
provide all the details. 

The Hellinger distance between two distributions is another option that allows 
avoiding the shortcomings of the KL distance.  

 
 
 
 

The Hellinger distance varies from 0 to 1 and is defined for all values of pi and qi. A 
value of 1 means the distance is maximum and thus the distributions are very differ-
ent. A value of 0 means the distributions are very similar. We can transform the  
Hellinger distance into a similarity measure by subtracting it from 1 such that a zero 
distance means a large similarity score and vice versa. 
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Lastly, we used the Manhattan distance between distributions p and q as defined 
below. 

 
 
 

MD is symmetric, defined for any values of p and q, and ranges between 0 and 2. We 
can divide MD by 2 and subtract from 1 to transform it into a similarity measure. 

4 From Word Representations to Text-to-Text Similarity 

As mentioned, we focus in this paper on two categories of methods: those that rely on 
word-to-word similarity measures and those that compute similarity globally, i.e. 
avoiding word-to-word similarities. In LSA, text-to-text similarity can be computed 
directly using the global vectors of each sentence which are obtained by summing up 
the individual word vectors. In LDA, global text-to-text similarity measures can be 
computed using the distributions over topics and over words without the need for 
word-to-word similarity measures. 

Word-to-word similarity measures can be expanded to work at text-to-text level us-
ing greedy (see Lintean et al., 2010) or optimal matching algorithms (Rus & Lintean, 
2012). We experimented with a method that guarantees optimal overall best match 
using the job assignment algorithm, a well-known combinatorial optimization prob-
lem. The assignment problem can be formulated as finding a permutation π for which  ∑ ,  is maximum where w(si,tπ(i)) is the fitness of worker si to 
job ti. Such an assignment is called optimum assignment. An algorithm, the Kuhn-
Munkres method (Kuhn, 1955; Munkres, 1957), has been proposed that can find a 
solution to it in polynomial time. 

In our case, we optimally match words in text T1 to words in text T2 based on how 
well the words in T1 fit the words in T2. The fitness between the words is nothing 
else but their word-to-word similarity according to some metric of word similarity, in 
our case LDA or LSA-based word-to-word measures.  

5 Experimental Setup and Results 

We present results with the previously described methods on the User Language Pa-
raphrase Corpus (ULPC; McCarthy and McNamara, 2008) and additionally on the 
Microsoft Research Paraphrase corpus (MSRP; Dolan, Quirk, & Brockett, 2004). The 
ULPC corpus contains pairs of target-sentence and student response texts. These pairs 
have been evaluated by expert human raters along 10 dimensions of paraphrase cha-
racteristics. We used the ”Semantic Completeness” dimension that measures the se-
mantic equivalence between the target-sentence and the student response on a binary 
scale, similar to the scale used in MSRP corpus. From a total of 1,998 pairs, 1,436 
(71%) were classified by experts as being paraphrases. The data set is divided into 
three subsets: training (1,012 instances, 708-304 split of TRUE-FALSE paraphrases), 
validation (649 instances, 454-195 split), and testing (337 instances, 228-109 split). 
The average number of words per sentence is 15. 
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The MSRP corpus consists of 5,801 sentence pairs collected from newswire ar-
ticles, 3,900 of which were labeled as paraphrases by human annotators. The whole 
set is divided into a training subset (4,076 sentences of which 2,753, or 67.5%, are 
true paraphrases), and a test subset (1,725 pairs of which 1,147, or 66.5%, are true 
paraphrases). A simple baseline for the MSRP corpus, the majority baseline when all 
instances are classified as positive, gives an accuracy and precision of 66.5% and 
perfect recall. The average number of words per sentence is 17 in this corpus. 

We followed a training-testing methodology according to which we first trained to 
learn some parameters of the proposed model after which we used the learned values 
for the parameters on testing data. In our case, we learned a threshold for the text-to-
text similarity score above which a pair of sentences is deemed a paraphrase and any 
score below the threshold means the sentences are not paraphrases. We report perfor-
mance of the various methods using accuracy (percentage of correct predictions), F-
measure (harmonic mean of precision and recall), and kappa statistics (a measure of 
agreement between our method’s output and experts’ labels while accounting for 
chance agreement). 

We experimented with both word-to-word similarity measures and text-to-text si-
milarity measures. The word-to-word similarity measures were expanded to work at 
sentence level using optimal matching. For LDA, we used the word-to-word measure 
and text-to-text measures described earlier. For LSA, we use the cosine between two 
words’ LSA vectors as a measure of word-to-word similarity. For LSA-based text-to-
text similarity we first add up the word vectors for all the words in a text thus obtain-
ing two text vectors, one for each text, and then compute the cosine between these 
two text vectors. 

An important step in the process of obtaining the LSA vectorial representation is 
the derivation of the semantic space, i.e. discovering the latent dimensions or con-
cepts, from a large enough corpus. In our work, we experimented with an LSA space 
computed from the TASA corpus (compiled by Touchstone Applied Science Asso-
ciates), a balanced collection of representative texts from various genres (science, 
language arts, health, economics, social studies, business, and others). The TASA 
corpus contains 10,937,986 words with a vocabulary size of 91,897 after removing 
stop words. 

We varied the number of topics for the LDA model and observed changes in perfor-
mance. Fewer topics usually means semantically less coherent topics as more words with 
different meaning will be grouped under the same topic. Our experiments revealed that 
using just top 10 or 20 words for measuring topic coherence indicates the opposite: the 
fewer the topics the higher their semantic coherence, e.g. topics sets of size 100, 40, or 
20, all have higher average topic coherence scores compared to 200- or 300-topic mod-
els. We concluded that the 100, 40, and 20 models yield results similar to higher 200 and 
300 topics models. That is, using 100 topics models could be a good choice that balances 
a sufficiently large number of topics and good topic coherence when addressing sen-
tence-level semantic similarity tasks such as paraphrase identification. 

We also present results obtained using 300 dimensions for the LSA space, a stan-
dard value, and a similar number of topics for LDA (see column T=300 in Table 1). 
This number of dimensions has been empirically established by LSA researchers to 
deliver best results. We also present results for 100 dimensions to compare with the 
best LDA model which corresponds to 100 topics. 
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Table 1. Results on ULPC (column 2 and 3) and MSRP (column 3 and 4) test data with LDA-
based methods for various number of topics (T=100 represents the most coherent set of topics) 

Method Accuracy/ Kap-

pa/F-measure 

(T=300) 

Accuracy/Kappa/ 

F-measure 

(T=100) 

Accuracy/Kappa/ 

F-measure 

(T=300) 

Accuracy/Kappa/F-

measure 

(T=100) 

LDA-IR 71.17/16.17/81.94 68.24/3.09/80.92 67.47/4.52/79.87 67.01/3.15/79.98 

LDA-

Hellinger 

71.32/18.85/81.75 68.24/2.46/80.99 67.36/4.39/79.73 67.18/3.50/80.04 

LDA-

Manhattan 

71.07/10.10/82.50 71.21/23.41/81.16 66.78/3.56/79.91 67.18/4.04/80.04 

LDA-Greedy 77.32/34.40/85.75 76.85/37.89/84.94 73.04/35.01/81.31 73.10/34.27/81.32 

LDA-Optimal 76.97/36.96/85.06 75.96/36.75/84.14 73.27/36.74/80.71 73.15/36.86/80.71 
LSA-Greedy 77.22/33.82/85.73 Same 72.86/33.89/81.11 same 

LSA-Optimal 77.12/36.80/85.24 Same 73.04/35.95/80.80 same 

LSA 77.47/37.54/85.50 Same 73.56/34.61/81.83 same 

 
The results in Table 1 indicate that the best LDA-based methods rival the LSA 

based method. A combination of greedy matching and LDA word-to-word similarity 
yields best accuracy and F-measure results on the ULPC corpus while text-to-text 
similarity based on LSA yields best accuracy. The 100-topic LDA model produces 
similar accuracy results on ULPC and a higher kappa (kappa=37.89 for 100-topic 
model and kappa=34.40 for the 300-topic model).  

Similarly, for the MSRP corpus the LDA models produce results very close to 
LSA. The 100-topic LDA model has a slightly better kappa score compared to the 
300-topic model. The 100-topic models yields very similar accuracy score to the 300-
topic model, and an identical F-measure score. 

All the distance-between-distributions based LDA measures (top 3 rows in Table 
1) yield modest results. This is mainly due to the sparsity of topic distributions in 
short texts compared to the size of the model in terms of number of topics. If a 100-
topic model is used and the sentence has on average 15 words, in the best case scena-
rio in which each word in the sentence corresponds to a unique topic, 85 of the  
remaining topics in the 100-topic model would have a probability of zero. This leads 
to small distances/large similarities between the corresponding topic distributions. 

6 Discussion and Conclusions 

We presented in this paper our work on defining semantic similarity measures at word 
and sentence level based on LDA. A measure based on word representations as vec-
tors of topic contributions yields competitive results with the unsupervised algebraic 
method of LSA. Furthermore, Table 1 indicates that semantic similarity measures 
based on distances among distributions over words and topics (see the rows for LDA-
IR, LDA-Hellinger, LDA-Manhattan) are not useful for short texts due to topic 
sparseness in short texts. We plan to investigate this issue in future work. 
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Abstract. This paper presents models for automatic transliteration of
proper names between languages that use different alphabets. The mod-
els are an extension of our work on automatic discovery of patterns of
etymological sound change, based on the Minimum Description Length
Principle. The models for pairwise alignment are extended with algo-
rithms for prediction that produce transliterated names. We present
results on 13 parallel corpora for 7 languages, including English, Rus-
sian, and Farsi, extracted from Wikipedia headlines. The transliteration
corpora are released for public use. The models achieve up to 88% on
word-level accuracy and up to 99% on symbol-level F-score. We discuss
the results from several perspectives, and analyze how corpus size, the
language pair, the type of names (persons, locations), and noise in the
data affect the performance.

1 Introduction

The task of machine transliteration involves mapping the representation of a
word to another language, typically using a different alphabet, based on its
sound or spelling, rather than its meaning. Transliteration is commonly applied
to proper names, as well as to terms in rapidly growing areas, such as medicine
or technology, [12]. Two principal applications for machine transliteration are
machine translation and information search—multilingual information retrieval
(IR), information extraction (IE), and named-entity recognition (NER). While
in machine translation the goal may be to produce only one correct translite-
ration for each word, in other tasks we may wish to produce several possible
transliterations, and merge different variants of the same name.

There are two main approaches to machine transliteration: transliteration
generation and transliteration mining (discovery). In transliteration generation
one builds a transliteration model, which takes a source named entity as input
and produces its representations in the target language as output.

Transliteration generation can be considered in a broad sense as a special case
of alignment and transduction of words. The similarity of machine transliteration
and alignment of etymologically-related words have been observed by [14], who
applied the same model, a finite state transducer, for both tasks. In [1], translite-
ration is mentioned in the broader context of linguistic string-transduction tasks,
such as paraphrasing, morphological transformation and co-reference resolution.

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 200–211, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The definition that [3] proposes for cognate—“words with a common form and
meaning across the languages”—is applicable to both transliterated and etymo-
logically related words. Machine transliteration is, of course, a different task from
cognate alignment. The main principle for word changes in etymology is the reg-
ularity of sound change, whereas transliteration of names may not always follow
regular rules. Transliteration does not always follow pronunciation in practice—
it can be based on script, or tradition, or on translation. For example, the French
name Jean [ZÃ] used to be transliterated into Russian as �ean [üEan], i.e., based
on its French spelling rather than its pronunciation. The same name may be
transliterated into another language differently depending on tradition: e.g., the
name of the famous Russian author Lev Tolstoĭ is commonly translated into
English as Leo Tolstoy; the name of his son, which is identical in Russian, is
commonly transliterated as Lev Tolstoy. Furthermore, transliteration rules may
be different in different domains [6].

Thus, there may be more noise in transliteration data than in etymological
data. On the other hand, words in remotely related languages, (e.g., Finnish–
Hungarian), will have substantially more complex correspondences. Therefore,
while the tasks of transliteration and etymological alignment may be similar from
the algorithmic point of view, it is not a priori obvious that the same algorithms
will work for both tasks.

The models that we use for transliteration were originally developed for auto-
matic discovery of patterns in etymological sound change, [16]. We apply these
models to 13 parallel corpora in 7 languages: Farsi, English, Russian, Greek,
Hebrew, French, and Japanese (Katakana script for foreign names), which are
extracted from Wikipedia headlines using language links. We report results on
automatic transliteration of names of American actors from English into four
languages that use different kinds of writing systems: alphabetic (Russian and
Greek) and consonantal (Farsi and Hebrew). We also examine the performance
on data of different semantic type—person names vs. location names. For exam-
ple, for English-Russian transliteration we use 3 different datasets: person names
of English origin (American actors), person names of Russian origin (Russian
writers), and location names of Russian origin (Russian cities).

As far as we are aware, the comparison of transliteration results among differ-
ent semantic types has not been addressed in the literature to date; [10] studied
the influence of the origin of names and of noise in the data on the results of
transliteration, but they did not apply their method to words of different types.

2 Related Work

A comprehensive survey in [9] classifies machine transliteration generation meth-
ods into several broad categories: rule-based, phonetics-based, spelling-based,
hybrid—a mix of spelling and phonetics, and combined—applying several meth-
ods and then selecting the best transliteration via re-ranking. According to this
classification scheme, the models we use would be classified as spelling-based,
as they use only the spelling of the words with no information about their
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pronunciation. Some of our etymological models use phonetic features [18]; they
will be applied to the transliteration task in future work.

The most common approach for spelling-based transliteration uses source-
channel models, [11,4]. Many methods used for machine transliteration are ad-
opted from phrase-based statistical machine translation [15,5]. The importance
of the representation of word-pairs is emphasized in [6], i.e., the features used
in the transliteration task. The representation in [6] combines uni-grams and
bi-grams, which are then used as features in an optimization task. It was shown
in [12] that sequential n-grams outperform the bag-of-word n-gram models.

A Minimum Description Length (MDL) approach to transliteration is de-
scribed in [21]. This work, as well as others [13,8], uses the Expectation-
Maximization (EM) algorithm: in the Expectation stage the probabilities of
substring correspondence are counted; in the Maximization stage word pairs
are re-aligned using these probabilities.

Automatic transliteration and evaluation has been explored in a series of
workshops on Named Entities, which organized shared tasks in transliteration
generation and mining [23].

3 Data

We use datasets that we extracted from cross-language links in the Wikipedia.
We did not try to extract as much data as possible; rather, we focused on lan-
guage and on topical homogeneity of each dataset. In this paper, we present
work on Wikipedia dumps dated up to 12 December 2012.1 We used only the
page titles, language links, and category links. The full text of the articles is
not used in the transliteration task, with one exception, below. To extract the
datasets we used Wikipedia Categories; we tried to focus on categories that can
guarantee higher homogeneity in the data. For example, the majority of names
in category American actors are of English origin, and most of the names in
category Russian Writers are of Russian origin. However, there are many excep-
tions among person names; this is especially true for languages such as English
or Russian, which are in use across wide geographic areas.

We also used location names, since toponyms may be more stable and more
consistent than person names. For the dataset of Iranian Locations, we parsed
the content of the corresponding Wikipedia pages. Since the number of titles
for Iranian cities in the Russian Wikipedia was small, we collected names of
towns and locations from Russian-Wikipedia pages about Iranian Shahrestans
(counties). The data used our experiments is summarized in Table 1.

Each dataset was semi-automatically cleaned. Some amount of noise was in-
tentionally left in data; e.g., the name of the Russian city Sankt-Peterburg
([Sankt-Peterburg]) is usually “transcribed” into English as Saint-Petersburg, be-
cause this is a commonly accepted translation, although it is not phonetically
accurate. We removed patronymics, which are very common in the Russian data,
1 Wikipedia dumps are available under the GNU Free Documentation License and

Creative Commons License at the Wikimedia Web-site.
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Table 1. Transliteration corpora/datasets, extracted from Wikipedia headlines and
language links. The language codes are: En–English, Fa–Farsi, Fr–French, Gr–Greek,
He–Hebrew, Jp–Japanese (Katakana), Ru–Russian.

Dataset Language Size: # Dataset Language Size: #
pair of pairs pair of pairs

American Actors En–Ru 1471 Russian Cities Ru–En 1136
En–He 1245 Ru–Fa 870
En–Fa 840 Ru–Fr 828
En–Gr 407 Ru–Jp 317

Russian Writes Ru–En 1462 French Cities Fr–Ru 828
Iranian Cities Fa–En 439 Iranian Locations Fa–Ru 1893

Fa–Ru 469

since in most cases they are omitted in other languages. We also removed all ac-
cent marks from the Greek dataset. Since these marks are obligatory in Greek
script, transliteration models based on these data cannot be used in real-world
application, though this data still interesting for a transliteration task.2

It was stated in [23] that “a reasonably large” dataset for the translitera-
tion task should consist of ∼10 000 name pairs, which is orders of magnitude
larger than our datasets. Some authors report satisfactory results using consid-
erably smaller datasets. For example, a word-level accuracy of 33% for Arabic-
to-English transliteration is reported using a training set of only 935 name pairs,
and an accuracy of 46% for Russian-to-English, using a training set of 545 name
pairs [22]. In this paper we present models that achieve good results (Section 6)
on relatively small datasets; DirecTL+ [7], which we use as a baseline for com-
parison, also demonstrates reasonable results on our datasets.

4 Method

We use Etymon, a set of MDL-based models that we developed for analyzing
etymological data, as the basis for our transliteration models.3 The collection
of models is described in [16,18,17]. The models take as input a phonetic repre-
sentation of genetically related words, or cognates, and aim to discover regular
phonetic changes between languages within a language family. This is done by
searching for the best pairwise alignment of words, by optimizing the description
length of the alignments. Transliteration is an analogous task, since in order to
learn how to transliterate from one language to another, it seems that a natural
prerequisite is to align the words in the training set. Thus, it seemed reason-
able to suppose that we could use these models for aligning the data. After
alignment, we introduce a set of prediction procedures for performing the actual
transliteration—based on the alignment. We briefly describe the models; detailed
explanations can be found in [16,18]—and the prediction procedure.
2 We consider recovery of accents a separate task, beyond the scope of this work.
3 The tools are publicly available from http://etymon.cs.helsinki.fi/

http://etymon.cs.helsinki.fi/
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Fig. 1. English–Farsi alignment matrix; American Actors dataset. The size of each ball
indicates the probability of the corresponding symbol-pair alignment.

4.1 1×1 Alignment

Our baseline 1×1 model finds an optimal alignment, where each symbol of the
source word may align to at most one symbol of the target word, with possible
insertions or deletions. Information about the context of the symbols is not used.

For example, the alignment matrix for English to Farsi transliteration on the
American Actors is shown in Figure 1. The matrix shows that, e.g., English e
is most frequently aligned to “.” due to omission of short vowels in Farsi script.
Mapping English a to Farsi 5


 is rare, as seen from the size of the corresponding
bubble; this happens when a designates [a] that is situated at the beginning of
the word. The 1×1 model is unable to capture this rule; the only information it
uses is that a is transliterated to 
 more frequently than to any other symbol.

4.2 2×2 Alignment

The 2×2 model extends the 1×1 model, by allowing for alignment of up to two
consecutive symbols at a time on each level; this model also takes into account the
start and end word boundaries. Unlike the 1×1 model, this model captures some
information about the symbols’ context when learning the correspondences. For
example, it should discover cases where one symbol in language A corresponds
to two symbols in language B; e.g., Russian ‘q’ is often transliterated as “ch”
in English—the 1×1 model is by definition unable to discover such correspon-
dences. The 2×2 model can also discover that certain symbols are transliterated
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differently when they appear at the beginning or at the end of a word, as in the
example of a and 5


 mentioned above, in Section 4.1. For example, the name Alda
from the American Actors dataset is correctly transliterated into Farsi as 
�	

5

 by

the the 2×2 model—with 5

 at the beginning. The 1×1 model incorrectly predicts

the transliteration 
�	
—with 
 as the most probable correspondence for a in both
initial and final position, unable to exploit the context information.

4.3 Prediction

Once all word pairs in the training set are aligned, the discovered symbol corre-
spondences can be used to predict transliterations for new, unseen words. The
result of the convergence of the alignment algorithm is a count matrix, such
as one shown in Figure 1, which indicates how often each symbol (in the 1×1
model)—or pair of symbols (in the 2×2 model)—of the source language is aligned
to symbols in the target language in an optimal way. We have implemented an
algorithm that predicts the target representation of a given source word based
on the alignment. Theoretically, this is done by searching among all possible
strings in the target language to select the string that yields the lowest cost
under the model, when aligned with the source word. In practice, this can be
achieved efficiently, by using simple table lookup for the baseline 1×1 model,
and by a Dynamic Programming algorithm for the more complex models. Pre-
diction based on the 1×1 model is straightforward, since symbols are aligned
independently of their context; we assign to each source symbol the single target
symbol to which it is cheapest to align:

ti = argmin
t∈T

L(si, t) (1)

where si is the ith symbol in source word, T is the alphabet of the target lan-
guage augmented with the special symbol ‘.’ to allow for deletions, and L(x, y)
is the cost (code-length) of aligning the source-language symbol x to the target-
language symbol y under the learned model.

The 2×2 prediction is more complicated, since it is possible to align zero,
one, or two source symbols to symbols of the target language, and we need
to choose the lowest cost alignment for the entire source word. We solve this
optimization problem using Dynamic Programming (DP). To predict a target
word, the algorithm starts from the beginning of the source word, and for each
symbol si, finds the best prediction up to si based on previously computed partial
alignments. The algorithm computes the cost L(i) of the best prediction up to
si, for all i. Thus, for predicting the best target sequence corresponding to the
source word up to the i-th symbol, si, the possible final candidate alignments
are in the set C, where:

C =
{
(si : .), (si : t), (si : tt

′), (si−1si : .), (si−1si : t), (si−1si : tt
′)
}
,
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and t and t′ are symbols from the target alphabet. Each of these 6 alignments
has a fixed cost under the learned 2×2 model. The optimal prediction up to the
i-th source symbol is given by minimizing the sum of one of these alignments,
plus the cost L(i − 1) of the optimal alignment up to symbol si−1, for the first
three candidates in C, or L(i− 2), the optimal cost up to si−2 for the last three
candidates in C,—where L(i− 1) and L(i− 2) have been pre-computed by DP
previously. Using this approach the best target word—under the model—can be
predicted in linear time.

5 Evaluation

The quality of machine transliteration depends on the ultimate task for which
transliteration is being developed. In multilingual IE and IR, the system may
make use of multiple possible variants. For example, in many cases more than one
transliteration may be acceptable for a particular name, but if the system pop-
ulates a database with events or relationships, identifying and merging different
references to the same real-world entity is needed across multiple sources, [20,19].
In a multi-lingual setting, this capability is indispensable, [2]

Here, we evaluate performance of the transliteration models at the word level
and at the symbol level. The most common word-level measure is accuracy [9]:

A =
number of correct transliterations

total number of test words
(2)

Symbol-based evaluation measures are more diverse than word-based ones; in
general, they are based on an edit distance between the system response and
the expected transliteration. In this paper we use Normalized Edit Distance and
Mean F-score. The normalized edit distance is computed as:

NED =

∑
i ED(ci, ri)∑

i |ci|
(3)

where ci is the expected transliteration for word i, ri is the system response, and
ED(ci, ri) is an edit distance (here, the Levenshtein edit distance).

The symbol-level Mean F-score [23] is based on the Longest Common Subse-
quence between an expected transliteration c and the system response r4:

LCS(c, r) =
1

2
(|c|+ |r| − ED′(c, r)) (4)

Recall, Precision and F-score for a particular word are calculated on the basis
of LCS (distance ED′ allows insertions and deletions and no substitutions):

P =
LCS(c, r)

|r| R =
LCS(c, r)

|c| F = 2
R × P

R + P
(5)

We average the F-score over all words to get the mean over the entire data set.

4 We slightly simplify all formulae here, assuming only one expected transliteration
and one system response for each word.
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Alongside our models, we use two other models for comparison. One is a naive
baseline, where each symbol of source alphabet is transliterated as fixed symbol
(or a string of symbols) from the target alphabet. In many cases this is a one-to-
one mapping, but there are many exceptions; e.g., the Russian w corresponds to
English shch while Russian � is most frequently omitted in transliteration. We
did not apply this baseline to Katakana, since it is difficult to make reasonable
correspondence between Katakana and Russian symbols.

The second model we used for comparison is the open-source system Di-
recTL+ [7]. It uses aligned data as input for the training; for alignment, we
use the M2M-aligner, an open source program by the same authors, [8].5

We evaluate the models’ performance via leave-one-out cross-validation.

6 Results

The results are shown in Tables 2 and 3, followed by the overall scores, average
over all datasets that we tested. Although on some of the datasets, DirecTL+
beats the Etymon models, Etymon’s performance appears higher overall.

One shortcoming of this evaluation scheme may be that only one correct
answer is permitted for each word pair. For example, in the American Actors
dataset, the English surname Murray is transliterated into Russian in two dif-
ferent ways: twice as M�rreĭ and twice as M�rr�ĭ—therefore, for this name
(Murray) any model can get at most 50% accuracy at the word level. We did not
measure how this ambiguity ultimately affects the evaluation results, though it
is common for person names.

By comparison, location names are more consistent; in most cases the to-
ponyms are older and represent a more homogeneous transliteration scheme.
Loan words and repetitions are more rare among location names. Thus, the re-
sults on location data are in general higher. For example, if we consider the
results on three English-Russian datasets, namely American Actors, Russian
Writers and Russian Cities, we can see from the tables that for both forward
and backward transliteration the highest performance is achieved on the Russian
Cities dataset. Comparing the datasets Russian Writers and Russian Cities is
informative: both datasets use the same language pair, have the same language
of names origin, and approximately the same size. However, we observe a differ-
ence of 20% in word-level accuracy on Ru-En transliteration and 14% on En-Ru,
due to differences in the nature of the names.

It is also interesting to compare the Iranian Cities and Iranian Locations
datasets for Russian-Farsi transliteration. As was described in Section 3, the
latter contains a list of the Shahrestan’s locations with population over 800. The
dataset is four times larger, but it is also more noisy: Wikipedia editors seem
to pay less attention to transliteration of smaller place names. In fact, we have

5 We use default parameters for both programs. It may be possible to achieve bet-
ter results through elaborate tuning of the parameters, though we did not explore
parameter tuning. By comparison, our Etymon models have no parameters to tune.
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Table 2. Transliteration results

Size: # Word level Mean Word level Mean
of pairs Model Accuracy NED F-Score Accuracy NED F-Score

American Actors
En → Fa Fa → En

1x1 0.223 0.256 0.816 0.081 0.371 0.703
840 2x2 0.393 0.180 0.867 0.080 0.346 0.730

Baseline 0.233 0.273 0.817 0.032 0.433 0.641
DirecTL+ 0.157 0.363 0.797 0.118 0.324 0.756

En → Gr Gr → En
1x1 0.157 0.312 0.776 0.079 0.385 0.692

407 2x2 0.437 0.171 0.878 0.268 0.238 0.812
Baseline 0.179 0.343 0.750 0.101 0.456 0.650
DirecTL+ 0.342 0.232 0.849 0.140 0.417 0.693

En → He He → En
1x1 0.160 0.301 0.764 0.070 0.382 0.696

1245 2x2 0.415 0.186 0.868 0.104 0.337 0.738
Baseline 0.074 0.426 0.725 0.043 0.430 0.640
DirecTL+ 0.160 0.331 0.817 0.131 0.327 0.755

En → Ru Ru → En
1x1 0.338 0.222 0.815 0.309 0.223 0.814

1471 2x2 0.430 0.176 0.851 0.388 0.177 0.853
Baseline 0.298 0.250 0.799 0.282 0.250 0.795
DirecTL+ 0.387 0.214 0.834 0.373 0.189 0.854

Russian Cities
En → Ru Ru → En

1x1 0.448 0.113 0.904 0.509 0.082 0.957
1136 2x2 0.762 0.040 0.972 0.881 0.018 0.989

Baseline 0.379 0.176 0.868 0.823 0.028 0.983
DirecTL+ 0.501 0.163 0.886 0.813 0.028 0.985

Fa → Ru Ru → Fa
1x1 0.180 0.230 0.815 0.441 0.110 0.924

870 2x2 0.302 0.170 0.866 0.684 0.060 0.964
Baseline 0.125 0.264 0.781 0.507 0.098 0.928
DirecTL+ 0.325 0.190 0.852 0.514 0.100 0.947

Ru → Jp Jp → Ru
1x1 0.013 0.552 0.470 0.016 0.377 0.733

317 2x2 0.565 0.126 0.904 0.300 0.145 0.876
DirecTL+ 0.022 0.742 0.541 0.287 0.159 0.870

Ru → Fr Fr → Ru
1x1 0.389 0.124 0.930 0.355 0.154 0.890

828 2x2 0.697 0.051 0.968 0.668 0.065 0.953
Baseline 0.383 0.122 0.914 0.307 0.210 0.864
DirecTL+ 0.736 0.042 0.973 0.396 0.189 0.873
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Table 3. Transliteration results, continued, including overall averaged scores.

Size: # Word level Mean Word level Mean
of pairs Model Accuracy NED F-Score Accuracy NED F-Score

Russian Writers
En → Ru Ru → En

1x1 0.400 0.153 0.878 0.415 0.126 0.920
1462 2x2 0.634 0.091 0.934 0.689 0.073 0.943

Baseline 0.347 0.201 0.856 0.651 0.075 0.944
DirecTL+ 0.462 0.176 0.875 0.588 0.090 0.933

French Cities
Ru → Fr Fr → Ru

1x1 0.088 0.338 0.745 0.113 0.357 0.715
828 2x2 0.148 0.297 0.776 0.381 0.182 0.863

Baseline 0.075 0.376 0.704 0.081 0.471 0.699
DirecTL+ 0.199 0.259 0.808 0.176 0.381 0.767

Iranian Cities
En → Fa Fa → En

1x1 0.196 0.334 0.787 0.109 0.280 0.817
439 2x2 0.435 0.155 0.896 0.228 0.205 0.857

Baseline 0.175 0.353 0.789 0.057 0.282 0.790
DirecTL+ 0.132 0.391 0.786 0.289 0.185 0.863

Ru → Fa Fa → Ru
1x1 0.382 0.197 0.856 0.134 0.282 0.803

469 2x2 0.525 0.139 0.890 0.252 0.237 0.827
Baseline 0.267 0.277 0.803 0.092 0.296 0.775
DirecTL+ 0.151 0.332 0.800 0.222 0.210 0.846

Iranian locations
Ru → Fa Fa → Ru

1x1 0.380 0.201 0.863 0.135 0.274 0.812
1893 2x2 0.553 0.134 0.902 0.278 0.217 0.841

Baseline 0.285 0.270 0.816 0.078 0.318 0.752
DirecTL+ 0.155 0.345 0.813 0.317 0.189 0.854

Results averaged over all datasets
1x1 0.235 0.259 0.804
2x2 0.442 0.162 0.878
Baseline 0.245 0.278 0.795
DirecTL+ 0.311 0.253 0.832

found many inaccuracies among the Iranian Locations. For example, the Iranian
place-name �6��7�.�� /buin/ appears in Russian as Bu /bu/. Due to such noise in the
data, for these datasets we achieved approximately the same results according
to all measures, although the number of word pairs in the Iranian Cities dataset
(439) is four times smaller than in the Iranian Locations dataset (1893). This
may mean that it is possible to use quite small training sets for transliteration,
if the data are highly homogeneous and clean.
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7 Discussion and Current Work

To summarize, the main contributions of the presented work are: we provide a
new, simple, and manually verified data set for evaluation of transliteration mod-
els; we apply models built for etymological alignment to the task of cross-lingual
transliteration; we introduce simple extensions for prediction to the alignment
models, which yield procedures for transliteration based on the alignment. We
attempt to ground this work clearly in the context of other related approaches.

The MDL-based Etymon models, applied to the transliteration task without
significant modifications, have achieved results that are comparable with state-
of-the-art methods reported in the literature. We have discussed how the nature
of data, as well as its homogeneity, impacts performance quality.

Current work includes adapting Etymon’s context-sensitive models for transli-
teration. These models were shown, [18], to achieve substantially lower compres-
sion cost and normalized edit distance than the 1×1 and 2×2 models. We are
implementing the prediction algorithm for these models, which is more complex
and requires a target language model. Another complication is that the context
models require each symbol to be represented as a vector of phonetic features.
Thus, the next step will be an implementation of phonetic representations of the
data. We also plan to expand our datasets by including more language pairs,
and more complex types of data, including company names.
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Abstract. Hidden Markov Models (HMMs) are widely used to model
discrete time series data, but the EM and Gibbs sampling methods used
to estimate them are often slow or prone to get stuck in local minima. A
more recent class of reduced-dimension spectral methods for estimating
HMMs has attractive theoretical properties, but their finite sample size
behavior has not been well characterized. We introduce a new spectral
model for HMM estimation, a corresponding spectral bilinear regression
model, and systematically compare them with a variety of competing
simplified models, explaining when and why each method gives supe-
rior performance. Using regression to estimate HMMs has a number of
advantages, allowing more powerful and flexible modeling.

Keywords: Hidden Markov Models, Spectral Methods.

1 Introduction

Hidden Markov Models (HMMs) [1] are widely used in modelling time series
data from text, speech, video and genomic sequences. In applications where
the dimension of the observations is much larger than the dimension of the
hidden state space, spectral methods can be used project the high dimensional
observations down to a much lower dimensional representation that captures the
information of the hidden state in the HMM. We call this class of model “spectral
HMMs” (sHMMs) and show in this paper that sHMMs can be estimated in a
variety of ways.

Standard algorithms for HMMs estimate the unobservable transition matrix
T and emission matrix O, but are prone to getting stuck in local optima (for
instance the EM algorithm) or are computationally intensive (Gibbs sampling).
In contrast, sHMM methods estimate a fully observable representation of T and
O and are fast, do not have local minima, have nice theoretical error bound
proofs, and are optimal in linear estimation sense.

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 212–223, 2013.
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[8] showed that a set of statistics using unigrams, bigrams and trigrams of ob-
servations are sufficient to estimate such models. We present a simpler estimation
technique and show that it generalizes to a rich collection of regression-based
methods for estimating HMMs. In regression, one can easily include more infor-
mation such as a longer history, or more features about the observed data. These
cannot as easily be added into a pure HMM model. Our methods are particularly
useful for language modeling, where the emissions of the Hidden Markov Mod-
els are words drawn from a large vocabulary (tens or hundreds of thousands of
words), and the hidden state is a much lower dimensional representation (30-100
dimensions).

HMMs of this size are widely used in modeling NLP. Many variants of and
applications of HMMs have been proposed including (to present a random list
of recent work) multiple span-HMM to predict predicates in different domains
[9], factorial-HMMs to resolve the pronoun anaphora [11], multi-chain HMMs
to compute the meaning of terms in text [18], tree-modified HMMs to do ma-
chine translation [19], fertility-HMM to reduce word alignment errors [20] and
continuous HMMs to summarize speech documents without text [13].

Our main HMM estimation method, which we call a spectral HMM is in-
spired by the observation in [8] that the ’Observable Operator’ model [10] which
estimates the probability of a sequence x1, x2, . . . , xt as

Pr(x1, x2, . . . , xt) = 1	A(xt)A(xt−1) · · ·A(x1)π (1)

in terms of the still unobservable A(x) = Tdiag(O	x) (where x = ei denotes
word i in a vocabulary, and ei denotes as usual the vector of all zeros and a
one in the ith position) and the unigram probabilities π, can be rewritten to
be a fully observable, partially reduced model through clever projections and
combinations of the moment statistics. [6] extend this to a fully reduced, fully
observable model. This extension directly motivates simplified bilinear and re-
gression estimation procedures.

We find that a wide range of spectral methods work well for estimating HMMs.
HMMs have an intrinsically bi-linear model, but using a linear approximation
works well in practice, especially when one still keeps the use of recursive pre-
diction. Our regression methods are competitive with the ”traditional” method
of moments methods, and make it relatively easy to add in much richer sets of
features than either EM or standard spectral HMM estimations.

The rest of the paper is organized as follows. In section 2 we formally describe
the reduced dimension spectral HMM (sHMM) model and the bilinear and
simplified regression models that it motivates. We also compare our sHMM
model against the partially reduced dimension model of [8]. Section 3 gives our
experimental results, and discusses prediction accuracy of the different methods
in different limits. Section 4 concludes.
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2 Approximations to HMMs

Consider a discrete HMM consisting of a sequence of observations (x1, x2, ..., xt)
at discrete times 1...t. Each observation, xi corresponds to one of n labels (e.g.
words). There is a corresponding sequence of hidden states, (h1, h2, ..., ht), where
hi corresponds to one of m labels.

Assume that m << n, as is the case, for example, when the vocabulary size n
of words is much bigger than the hidden state size. Let T of size m×m denote
the transition matrix; Tij = Pr(ht = i|ht−1 = j). Let O of size n × m denote
the emission matrix; Oij = Pr(xt = ei|ht = j).

We estimate an sHMM using a matrix U which projects each observation xt

onto a low dimensional representation yt using yt = U	xt, where xt is defined
as before. We work primarily in the y space, which is dimension m instead of the
n-dimensional observation space. Note that unlike h, which is a discrete space,
y lies in a continuous space.

U is the mapping between the original high dimension observation space and
the reduced dimensional representation space. This matrix received a full treat-
ment in [8] and therefore is not the focus of this paper. It is worth noting,
however, that U is not unique, and need only satisfy a handful of properties. We
call U the eigenword matrix, as y = U	x forms a low dimensional representation
of each word x in the vocabulary. For completeness, we note that a version of U
can be easily estimated by taking the largest left singular vectors of the bigram
matrix P21, where

[P21]i,j = P (xt = ei, xt+1 = ej).

We use this version in the empirical results presented below. This works well
in theory (see details below) and adequately in practice, but better Us can be
found, either by estimating U from another much bigger data set, or by using
more complex estimation methods [5].

In all of our methods, we will estimate a model to predict the probability of
the next item in the sequence given what has been observed so far:

Pr(xt+1|xt, xt−1, . . . , x1) = Pr(xt+1, xt, xt−1, . . . , x1)/Pr(xt, xt−1, . . . , x1).

We do this in the reduced dimension space of yi.

2.1 sHMM Model and Estimation

Our core sHMM algorithm estimates Pr(xt, xt−1, . . . , x1) via the method of mo-
ments, writing it in terms of c	∞, c1 and C(yt), and in turn writing each of these
three items in terms of moments of the Y s. From [8] and [6] we have

Pr(x1, x2, . . . , xt) = c	∞C(yt)C(yt−1) · · · C(y1)c1 (2)
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with

c1 = μ, c	∞ = μ	Σ−1, C(y) = K(y)Σ−1

and parameters

μ = E(y1) = U	O π

Σ = E(y2y
	
1 ) = U	O T diag(π) O	U

K(a) = E(y3y
	
1 y

	
2 )a = U	O T diag(O	Ua) T diag(π) (O	U)

This yields the following estimate of Pr():

P̂r(xt, xt−1, . . . , x1) = ĉ	∞Ĉ(yt)Ĉ(yt−1) · · · Ĉ(y1)ĉ1 (3)

where

ĉ1 = μ̂, ĉ	∞ = μ̂	Σ̂−1, Ĉy = Ĉ(y) = K̂(y)Σ̂−1

and μ̂, Σ̂ and K̂() are the empirical estimates of the first, second and third
moments of the Y ’s, namely

μ̂ =
1

N

N∑
i=1

Yi,1, Σ̂ =
1

N

N∑
i=1

Yi,2Y
	
i,1, K̂(y) =

1

N

N∑
i=1

Yi,3Y
	
i,1Y

	
i,2 y

Here Yi,t indexes the N different independent observations (over i) of our data
at time t ∈ {1, 2, 3}.

Our HMM model is shown in Figure 1.
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Fig. 1. The HMM with states h1, h2, and h3 which emit observations x1, x2, and
x3. These observations are further projected onto the lower dimensional space with
observations y1, y2, y3 by U from which our core statistic Cy is computed based on
K = E(y3y

�
1 y�

2 ) which is a (m×m×m) tensor.



216 J. Rodu et al.

[6] proved that the sHMM model is PAC learnable if the true model is an
HMM and the projection matrix U has the property that range(O) ⊂ range(U)
and |Uij | ≤ 1. Given any small error ε and small confidence parameter δ, when
the sample triples of observations are bigger than a polynomial of m, n, ε and
δ, the probability estimated by reduced dimensional tensor C(y) in Eqn. 3 is
smaller than ε with high confidence 1− δ.

For any t ∈ [2..∞), the estimated value of yt, denoted by ŷt, can be recursively
estimated using the information at the previous time:

ŷt =
C(yt−1)ŷt−1

ĉ	∞C(yt−1)ŷt−1
(4)

with ŷ1 = μ̂. Since the denominator in Eqn. 4 is a scalar constant for a particular
time, we will separate the rescaling step from the recursive computation. Let
λt = ĉ	∞C(yt−1)ŷt−1. First we estimate ỹt = C(yt−1)ŷt−1 using the information
from time t− 1, then we set ŷt = ỹt/λt.

1

Note that once we have computed ỹt, λt is computed deterministically; hence
the key component in estimating ŷt is the computation of

ỹt = C(yt−1) ŷt−1. (5)

The observable HMM representation with ŷ1, ĉ∞ and C(y) is sufficient to predict
the probabilities of sequences of observations generated by an HMM. For joint
probability of an observation sequence (x1, x2, ..., xt) one can use Eqn. 2. The
conditional probability of the same sequence can be computed directly using ŷt.
The conditional probability of observing i at time t is

Pr[xt = ei|x1, x2, ..., xt−1] = [Uŷt]i (6)

This concludes the full presentation of the sHMM model. As mentioned in the
introduction, this motivates simpler approximations which will now be discussed.

2.2 Bilinear Regression Model

Our sHMM model (5) that outputs the current ỹt is bilinear in yt−1 and ŷt−1.
In other words, let yj,t be the jth element of yt, and [C]ijk = cijk. Then we can
write

ỹj,t =
∑
i,k

cijkyi,t−1ŷk,t−1 (7)

This leads naturally to our first simplified estimation technique–using linear
regression by regressing ỹt on the outer product of yt−1 and ŷt−1 as shown in eqn.
7. We call this estimation method Bilin-RRegr. “Bilin”since it is Bilinear, “R”
for recursive, since it is recursively estimated and predicted using the previous
value of ŷk,t−1, and “Regr”, since it is estimated using regression.

1 Note the use of ỹt for the non-rescaled version of ŷt.
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A note on training this model: in order to learn the parameters cijk we first
estimate ỹ’s and ŷ’s using linear regression on our empirically collected trigram
data using the actual y = U	x’s as the “responses” to be predicted. We then
estimate the parameters in 7 using a second regression in which these intial
estimates of y form the responses. One could iterate this to fixed point, but the
above process is in practice sufficient.

Also, although sHMM uses the method of moments to estimate the parame-
ters while Bilin-RRegr uses linear regression, when used to make predictions the
two methods are used identically.

2.3 Other Regression Models

As mentioned in the introduction, many methods can be used to estimate the
sHMM model. We focus on two main simplifications: one can linearize the
bilinear model, and one can drop the recursive estimation. Recursion shows up
in two places: when doing estimation, one can regress either on yt and ŷt or
on yt and yt−1, and when using the model to predict, one can do a “rolling”
prediction, in which yt+1 is predicted using the observed yt and the predicted
ŷt. These choices are made independently. For example the base spectral HMM
method uses trigrams (no recursion) to estimate, but uses recursion to predict.

The bilinear equation in Eqn 7 can be linearized to give a simpler model to
estimate ỹt using regression on yt−1 and ŷt−1. In the experimental results below,
we call the resulting recursive linear model Lin-RReg:

ỹt = α yt−1 + β ŷt−1 (8)

We can also further simplify either the recursive bilinear model in Eqn 7 or the
recursive linear model of Eqn 8 by noting that a simple linear estimate of ŷt−1 is
ŷt−1 = Ayt−2. Since the matrix A is arbitrary, it can be folded into the model,
giving a simple linear regression, Lin-Regr, model

ŷt = αyt−1 + β1 ŷt−1

= αyt−1 + β2Ayt−2

= αyt−1 + β yt−2

Note that here we estimate ŷ directly instead of first estimating the unscaled ỹ
and then rescaling to get our ŷ. Similarly, one can build a non-recursive bilinear
model Bilin-Regr.

All of the above estimators work completely in the reduced dimension space
Y . They are summarized in Table 1, along the single-lag version of Lin-Regr, Lin-
Regr-1, and a couple of partially reduced dimension models which are described
in the following section.
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2.4 Partially Reduced Dimension Models

Instead of our fully dimension-reduced model sHMM , one can, following [8]
estimate a tensor B(x), which is only projected into the reduced dimension space
in two of its three components. B(x) thus takes an observation x, and produces
an m×m matrix, unlike C(y) which takes a reduced dimension y and produces
an m×m matrix.2

Given B(x), which is estimated from bigram an trigram occurrence counts,
similarly to C(y), the probability of the next item in a sequence is predicted using
the same recursive (rolling) method described above. The fundamental equation
is similar in form:

Pr(x1, x2, . . . , xt) = b	∞B(xt)B(xt−1) · · · B(x1)b1 (9)

See [8] for details. We call this method HKZ after its authors.
Our fully reduced dimension sHMM offers several advantages over the orig-

inal HKZ method. Working entirely in the reduced dimension space reduces
number of parameters to be estimated from m2n to m3. This comes at a cost
in that the theorems for sHMM require U to contain full range of O instead of
only just being full dimension.

The other big change in this paper over [8] is the use of linear regression
to estimate the model. Computing a regression, unlike using the method of
moments, requires computing the inverse of the covariance of the features (the
outer product of yt and ŷt). At the cost of doing the matrix inversion, we get
more accurate estimates, particularly for the rarer emissions.

Using a regression model also gives a tremendous increase in flexibility; The
regression can easily include more terms of history, giving more accurate esti-
mates, particularly for more slowly changing or non-Markovian processes. This
comes at a cost of estimating more parameters, but if the history is included in
linear, instead of a bilinear model, this is relatively cheap.

3 Experiments

In this section, we present experimental results on synthetic and real data for a
variety of algorithms for estimating spectral HMMs.

2 Those familiar with the original paper will note that we have slightly re-interpreted
Bx, which Hsu et al. call a matrix, and that what we call x here, they call δx.

Also the resulting m×m matrices are identical, specifically

C(y) = K(y)Σ−1

= (U�O)T diag(O�Uy)(U�O)−1

= (U�O)T diag(O�x)(U�O)−1

= B(x)
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Table 1. Methods compared in our experiments. ”Num Params” is the number
of parameters, not including the m× n parameters for U . ŷ denotes the estimate of y
scaled by λt as in Eqn. 4, and ỹ denotes the unscaled estimate.

Method Equation Num. Params.

sHMM ỹt = C(yt−1)ŷt−1 m3

Bilin-RRegr ỹt = C(yt−1)ŷt−1 m3

Bilin-Regr ŷt = Γ (yt−1)yt−2 m3

Lin-RRegr ỹt = αyt−1 + β ŷt−1 2m2

Lin-Regr ŷt = αyt−1 + β yt−2 2m2

Lin-Regr-1 ŷt = αyt−1 m2

Lin-Regr-X x̂t = αxt−1 + β xt−2 2n2

HKZ ỹt = B(xt−1)ŷt−1 m2n
EM(BaumWelch) MLE m2

Table (1) lists the methods we used in our experiments. The number of pa-
rameters being estimated in each case (not including the U projection matrix)
are listed on the right side. We expect models with more parameters to better
on larger training sets and worse on smaller ones.

3.1 Synthetic Data Test

The synthetic data is generated by constructing HMMs as follows: A potential
transitionmatrix T is generatedwith normally distributed elements. It is accepted
if its second eigenvalue is in the range 0.9±0.1. Similarly, emission matrices O are
generated with normally distributed elements and accepted if the second eigen-
value is in 0.8±0.1. This allows us to generate a selection of HMMs, but to control
the length of memory of the HMM and the difficulty of estimating it.

We run the experiments as follows. For each of 10 runs, we generate a random
HMMmodel (T,O) as described above and use it to generate a longer observation
sequence as training data and 100 short (length 10) sequences as test data.

We then estimate the various models using the training data. First we build
the unigram P1, bigram P21 and trigram P3x1 of the observations and use them
to estimate the projection matrix U and model parameters such as α, β, Γ and
C and B. U consists of the first m singular vectors corresponding to the m largest
singular values of P21. For the EM algorithm we use the R package [7]. Finally,
we apply every method on each of test sequences and predict the last observation
of each test sequence given the preceding observations.

Each method in table (1) was tested varying several properties: training se-
quence lengths (figure 2a), the dimension of observations (figure 2b), and the state
transition probabilities (figure 3). In the last table, the second eigenvalue (2nd
EV) of the transition matrix is varied. When this is close to 1, the process mixes
slowly. In other words, it behaves close to a deterministic process. When this 2nd
eigenvalue is close to zero, the process mixes rapidly. Basically it behaves like a
sequence of IID hidden states. Hence more naive estimators will do well.

We report the prediction accuracy averaged over the 10 runs. We count a
prediction as correct if the true observation has the highest estimated probability.



220 J. Rodu et al.

Seq Length

A
cc

ur
ac

y

100 1K 10K 100K 1000K

55

60

65

70

75

80

sHMM
BilinRRegr
BilinRegr
LinRRegr
LinRegr
LinRegr1
LinRegrX
HKZ
EM
TrueModel

Observation Dimensions

A
cc

ur
ac

y

10 50 250

40

50

60

70

80

sHMM
BilinRRegr
BilinRegr
LinRRegr
LinRegr
LinRegr1
LinRegrX
HKZ
EM
TrueModel

Fig. 2. Prediction accuracy on synthetic data. Number of correct predictions
of the 10th observation given the preceding 9 observations on 100 HMM sequences
generated with dimension of states m = 4, second eigenvalue of transition matrix T =
0.9, second eigenvalue of emission matrix O = 0.8. Results are the average of 10 runs.
The standard errors of 10 runs ranged from .06 to 3.1. Left: Accuracy as a result of
training sequence length. Observation dimension n = 10. Right: Accuracy
as a result of observation dimension. Training length 10K.

3.2 NLP Data Test

We also evaluated our sHMM and rHMM on real NLP data sets. As with the
synthetic data experiment, we predict the last word of a test sequence using the
preceding words.

We use the New York Times Newswire Service (nyt-eng) portion of English
Gigaword Fourth Edition corpus (LDC2009T13) in Penn Treebank [14]. We used
a vocabulary of ten thousand words, including tokens for punctuation, sentence
boundaries, and a single word token for all out-of-vocabulary words. The corpus
consisted of approximately 1.3 billion words from 1.8 million document. Our
training and test data set are drawn randomly without replacement from the
nyt-eng corpus. The training data consists of long sequences of observations with
lengths varying from 1K to 1000K. The test data consists of 10,000 sequences of
observations of length 100.

Following the language modeling literature, we use perplexity to measure how
well our estimated language models fit the test data [2,15]. Suppose a predicted
distribution of a word x is p and the true distribution is q, the perplexity PP (x)
is defined as PP (x) = 2H(p,q), where H(p, q) is the cross-entropy of p and q. i.e.
H(p) = −∑

x q(x) log2
qx
p(x) . Because our true distribution q is a unit vector with

only one element 1 at the x-th dimension, the actual computing of perplexity of
word x is simplified as PP (x) = 1

px
. A lower perplexity PP (x) indicates a better

prediction on x.
We use the same test procedure and methods as for the synthetic data set.

The perplexities of language models on nyt-eng corpus are shown in figures (4a)
and (4b) with vocabularies of 1,000 and 10,000 words.

The results show several main trends, which are illustrated by two-way com-
parisons
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Fig. 3. Prediction accuracy relative to that of True Model on synthetic data
in terms of the second eigenvalue of the transition matrix. Inset: actual
prediction accuracy. Number of correct predictions of the 10th observation given
the preceding 9 observations on 100 HMM sequences. Results are the average of 10
runs. The standard errors of 10 runs ranged from 1.3 to 3.7. The model parameters are
the number of states m = 4, the number of observations n = 10, the training length =
10K, and the second eigenvalue of the emission matrix O = 0.8.

– Fully reduced sHMM vs. Partially reduced method HKZ
• For small training sequences, sHMM is better than HKZ, as one would
expect, since sHMM has far fewer parameters to estimate; C(y) is m/n
times smaller than B(x). As theory predicts, in the limit of infinite train-
ing data, the two models are equivalent.

– Fully reduced sHMM vs. Bilinear recursive regression Bilin-RReg.
• On synthetic data generated from an HMM, for smaller training sets
sHMM performs better.

– Bilinear regression Bilin-RReg. vs. Linear regression Lin-RReg.
• As expected, the simpler model linear model works better with short
training sequences (We are not regularizing our regression, and so over-
fitting is possible). Lin-RReg unlike Bilin-RReg, is not a correct model of
an HMM, and so will not perform as well in the limit of infinite training
data.

– Recursive Methods (Bilin-RReg, Lin-RReg) vs. non-recursive ones (Bilin-
Reg, Lin-Reg)
• Recursive prediction always helps for linear models. For the more com-
plicated bilinear model, recursion helps if there is sufficient training data.
Keeping more lags in the model helps (e.g. Lin-Regr vs. Lin-Regr1 ).

– EM method EM
• The EM method is prone to get stuck in local minima and often gives
poor results. One could use a more sophisticated EM method, such as
random restarts or annealing methods, but a major advantage of all
of the spectral methods presented here is that they are fast (see, for
example [4]) and guaranteed to converge to a good solution.
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Fig. 4. Log of perplexities of language models on nyteng corpus. Left: corpus
vocabulary size 1000 words. Right: corpus vocabulary size 10,000 words
Note: EM has been excluded on the right in order to preserve a sensible yaxis scale the
performance was poor across all sequence lengths.

4 Discussion

HMM’s are intrinsically nonlinear, but it is often advantageous to use a linear
estimator, even when the data are generated by a model that is not linear. Linear
estimators are fast, are guaranteed to converge to a single global optimum, and
one can prove strong theorems about them. None of these properties are true of
iterative algorithms such as EM for estimating nonlinear models.

We compared two major classes of techniques for estimating HMMs, method
of moments (sHMM and HKZ) and regression methods. All the methods pre-
sented here inherit the advantage of [8]’s method in that they use the projection
matrix U containing the singular vectors of the bigram co-occurrence matrix to
reduce the observations from a high dimension observation space X to a low di-
mension space Y . The Y space captures the information inherent in the hidden
states and has same dimension as the hidden states. In this sense, the Y space
can be seen as a linear transformation of the hidden state space. One could, of
course, do regression in the original observation space, but that leads to models
with vastly more parameters, making bilinear models prohibitively expensive.
Models in the reduced dimension Y space have far fewer parameters and hence
lower computational and sample complexity.

The method of moments models are simple to estimate, requiring only un-
igram bigram and trigram counts, and not requiring any recursive estimation
(only recursive prediction). However, using regression models to estimate HMMs
allows us far more flexibility than the method of moments models. Simple lin-
ear models can be used when training data are limited. Bilinear models that are
identical to the sHMM model can be used when more data are available. Longer
histories can be used to estimate slowly changing HMMs (e.g. when the second
eigenvalue of the transition matrix is close to 1) or when one does not believe
that the HMM model is correct. Richer feature sets such as part of speech tags
can also be added to the regression models when they are available.
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Much work has been done generalizing the (partially reduced) HKZ method
[16,17] and extending it and our fully reduced sHMM to probabilistic parsers
[3,4,12]. We believe that extensions of the regression-based estimators presented
in this paper should prove valuable in these settings as well.
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Abstract. We argue that for purely incremental unsupervised learn-
ing of phrasal inversion transduction grammars, a minimum description
length driven, iterative top-down rule segmentation approach that is the
polar opposite of Saers, Addanki, and Wu’s previous 2012 bottom-up
iterative rule chunking model yields significantly better translation ac-
curacy and grammar parsimony. We still aim for unsupervised bilingual
grammar induction such that training and testing are optimized upon
the same exact underlying model—a basic principle of machine learning
and statistical prediction that has become unduly ignored in statistical
machine translation models of late, where most decoders are badly mis-
matched to the training assumptions. Our novel approach learns phrasal
translations by recursively subsegmenting the training corpus, as opposed
to our previous model—where we start with a token-based transduction
grammar and iteratively build larger chunks. Moreover, the rule segmen-
tation decisions in our approach are driven by a minimum description
length objective, whereas the rule chunking decisions were driven by
a maximum likelihood objective. We demonstrate empirically how this
trades off maximum likelihood against model size, aiming for a more
parsimonious grammar that escapes the perfect overfitting to the train-
ing data that we start out with, and gradually generalizes to previously
unseen sentence translations so long as the model shrinks enough to war-
rant a looser fit to the training data. Experimental results show that
our approach produces a significantly smaller and better model than the
chunking-based approach.

1 Introduction

In this paper we argue that significantly better phrasal inversion transduction
grammars, or ITGs [1], can be obtained through unsupervised learning with a
minimum description length, or MDL, driven, iterative top-down rule segmen-
tation approach, than with the polar opposite: a maximum likelihood driven,
iterative bottom-up rule chunking model (as described in our previous work [2]).
The size of the search space—all possible combinations of phrasal transduction

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 224–235, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Iterative Rule Segmentation under MDL for TG Induction 225

rules—is so huge that any help we can get in navigating it is welcome; choosing
a top-down rather than bottom-up search strategy gives a smaller initial set of
rules, and generating new candidates by segmenting (linear in the length of the
rule) rather than chunking (quadratic in the size of the rule set) is much more
efficient. Given this relationship between the size and number of rules on the one
hand, and the search complexity on the other, using minimum description length
as learning objective makes a lot of sense: it is designed to explicitly factor in
the size of the model, and to keep it parsimonious, as opposed to the maximum
likelihood objective, which has no mechanism for rewarding parsimony. We show
empirically that the proposed search strategy gives better translation accuracy
with a smaller model than our previous model [2].

Our approach also represents a new attack on the problem suffered by most
current SMT approaches of learning phrase translations: they require enormous
amounts of run-time memory, contain a high degree of redundancy, and fails to
provide an obvious basis for generalization to abstract translation schemas. In
particular, phrasal SMT models such as [3] and [4] often search for candidate
translation segments and transduction rules by committing to a word alignment
based on very different modelling assumptions [5, 6], and heuristically derive lex-
ical segment translations [7]. In fact, it is possible to improve the performance
by tossing away most of the learned segmental translations [8]. In contrast, we
adopt a more “pure” methodology for evaluating transduction grammar induc-
tion than typical system building papers. Instead of embedding our learned ITG
in the midst of many other heuristic components for the sake of a short term
boost in BLEU, we focus on scientifically understanding the behavior of pure
MDL-based search for phrasal translations, divorced from the effect of other
variables, even though BLEU is naturally much lower this way. The common
practice of plugging some aspect of a learned ITG into either (a) a long pipeline
of training heuristics and/or (b) an existing decoder that has been patched up
to compensate for earlier modeling mistakes—as we and others have done be-
fore, see for example [9–20]—obscures the specific traits of the induced grammar.
Instead, we directly use our learned ITG in translation mode (any transduction
grammar also represents a decoder when parsing with the input sentence as a
hard constraint) which allows us to see exactly which aspects of correct transla-
tion the transduction rules have captured.

When the structure of an ITG is induced without supervision, we and others
have so far assumed that smaller rules should get clumped together into larger
rules. This is a natural way to search, since maximum likelihood (ML) tends to
improve with longer rules, which is typically balanced with Bayesian priors [10].
Bayesian priors are also used in Gibbs sampling [11, 15], as well as other non-
parametric learning methods [19, 20]. All of the above evaluate their models
by feeding them into mismatched decoders, making it hard to evaluate how
accurate the learned models themselves were. In this work we take a radically
different approach, and start with the longest rules possible and attempt to
segment them into shorter rules iteratively. This makes ML useless, since our
initial model maximizes it. Instead, we balance the ML objective with a minimum
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description length (MDL) objective, which let us escape the initial ML optimum
by rewarding model parsimony. The MDL objective is very similar to a Bayesian
prior over the structure.

Transduction grammars can also be induced from treebanks instead of unan-
notated corpora, which cuts down the vast search space by enforcing additional,
external constraints. This approach was pioneered by [21], and there has been
a lot of research since, usually referred to as tree-to-tree, tree-to-string and
string-to-tree, depending on where the analyses are found in the training data.
This complicates the learning process by adding external constraints that are
bound to match the translation model poorly; grammarians of English should
not be expected to care about its relationship to Chinese. It does, however, con-
stitute a way to borrow nonterminal categories that help the translation model.

The MDL objective that we will be using to drive the learning has been used
before, but to induce monolingual grammars. [22] uses a method similar to MDL
called Bayesian model merging to learn the structure of hidden Markov models
as well as stochastic context-free grammars (SCFGs). The SCFGs are induced
by allowing sequences of nonterminals to be replaced with a single nonterminal
(chunking) as well as allowing two nonterminals to merge into one. [23] uses
it to learn nonterminal categories in a context-free grammar. It has also been
used to interpret visual scenes by classifying the activity that goes on in a video
sequences [24]. Our work in this paper is markedly different to even the previous
NLP work in that (a) we induce an inversion transduction grammar rather than a
monolingual grammar, and (b) we focus on learning the terminal segments rather
than the nonterminal categories. We would, of course, like to learn nonterminal
categories as well, but will defer that to future work.

We start by taking a closer look at the minimum description length principle
(Section 2). Then we describe how the top-down ITG is initialized (Section 3) and
generalized (Section 4). After that we outline the empirical experiment (Section
5) and the results (Section 6) before offering some conclusions (Section 7).

2 The Minimum Description Length Principle

The minimum description length principle is about finding the optimal balance
between the size of a model and the size of some data given the model [25, 26].
Consider the information theoretical problem of encoding some data with a
model, and then sending both the encoded data and the information needed to
decode the data (the model) over a channel; the minimum description length
would be the minimum number of bits sent over the channel. The encoded data
can be interpreted as carrying the information necessary to disambiguate the
ambiguities or uncertainties that the model has about the data. Theoretically,
the model can grow in size and become more certain about the data, and it can
shrink in size and become less certain about the data. An intuitive interpretation
of this is that the exceptions, which are a part of the encoded data, can be moved
into the model itself. By doing so, the size of the model increases, but there is no
longer an exception that needs to be conveyed about the data. Some exceptions
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occur frequently enough that it is a good idea to incorporate them into the model,
and some do not; finding the optimal balance minimizes the total description
length. Formally, the description length (DL) is:

DL (Φ,D) = DL (D|Φ) + DL (Φ) (1)

where Φ is the model and D is the data. Note the clear parallel to probabili-
ties that have been moved into the logarithmic domain, but keep in mind that
lengths do not necessarily have a probabilistic interpretation, whereas probabil-
ities always have a length-in-bits interpretation [27].

In natural language processing, we never have complete data to train on, so
we need our models to generalize to unseen data. A model that is very certain
about the training data runs the risk of not being able to generalize to new
data—we call this over-fitting. It is bad enough when estimating the parameters
of a transduction grammar, and catastrophic when inducing the structure of the
grammar. The key concept that we want to capture when learning the structure
of a transduction grammar is generalization. This is the property that allow it to
translate new, unseen, input. The challenge is to pin down what generalization
actually is, and how to measure it.

One property of generalization for grammars is that it will lower the probability
of the training data. This may seem counterintuitive, but can be understood as
moving some of the probability mass away from the training data and putting
it in unseen data. A second property is that rules that are specific to the training
data can be eliminated from the grammar (or replaced with less specific rules that
generate the same thing). The second property would shorten the description of
the model, and the first would make the description of the data longer. That is:
generalization raises the first term and lowers the second term in Equation 1. A
good generalization will lower the total MDL, whereas a poor one will raise it.

2.1 Measuring the Length of a Corpus

The information-theoretic view of the problem gives a hint at the operational-
ization of description length of a corpus given a grammar. [27] stipulates that
we can get a lower bound on the number of bits required to encode a specific
outcome of a random variable. We thus define description length of the corpus
given the grammar as:

DL (D|Φ) = −lgP (D|Φ)

2.2 Measuring the Length of a Transduction Grammar

Since information theory deals with encoding sequences of symbols, we need
some way to serialize an inversion transduction grammar (ITG) into a message
whose length can be measures; this section describes how we do this.

To serialize an ITG, we first need to determine the alphabet that the mes-
sage will be written in. We obviously need one symbol for every nonterminal,
L0-terminal and L1-terminal. We will also make the assumption that all these
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symbols are used in at least one rule, so that it is sufficient to serialize the rules
in order to express the entire grammar. To serialize the rules, we need some
kind of delimiter to know where one rule ends and the next rule begins; we will
exploit the fact that we also need to specify whether the rule is straight or in-
verted (unary rules are assumed to be straight), and merge these two functions
into one symbol. What we end up with is the union of the symbols of the gram-
mar and the set {[], 〈〉}, where [] signals the beginning of a straight rule, and
〈〉 signals the beginning of an inverted rule. The serialized format of a rule will
be: rule type/start marker, followed by the left-hand side nonterminal, followed
by all right-hand side symbols. The symbols on the right-hand sides are either
nonterminals, biterminals—pairs of L0-terminals and L1-terminals that model
translation equivalences. The serialized form of a grammar will be the serialized
form of all rules concatenated.

Consider the following toy grammar:

S → A, A → 〈AA〉, A → [AA] , A → have/yǒu, A → yes/yǒu, A → yes/sh̀ı

Its serialized form would be: []SA〈〉AAA[]AAA[]Ahaveyou[]Ayesyou[]Ayessh. Now
that we have a message made up of discrete symbols, we can, again turn to in-
formation theory to arrive at an encoding for this message. Assuming a uniform
distribution over the symbols, each symbol will require − lg

(
1
N

)
bits to encode

(where N is the number of different symbols—the type count). The above exam-
ple grammar has 8 symbols, meaning that each symbol requires 3 bits; the entire
message is 23 symbols long, which means that we need 69 bits to encode it.

3 Initializing the ITG

Rather than starting out with a fairly general transduction grammar and fitting
it to the training data, we do the exact opposite: we start with a transduction
grammar that fits the training data as well as possible, and generalize from there.
The transduction grammar that fits the training data the best is the one where
the start symbol rewrites to the full sentence pairs that it has to generate. It is
also possible to add any number of nonterminal symbols in the layer between the
start symbol and the bisentences without altering the probability of the training
data. We take advantage of this by allowing for one intermediate symbol so that
the grammar conforms to the normal form and the start symbol always rewrites
to precisely one nonterminal symbol. This does violate the minimum description
length principle, as the introduction of new symbols, by definition, makes the
description of the model longer, but conforming to the normal form of inversion
transduction grammars was deemed more important than strictly minimizing
the description length. Our initial grammar thus looks like this:

S → A, A → e0..T0/f0..V0 , A → e0..T1/f0..V1, ..., A → e0..TN/f0..VN

where S is the start symbol, A is the nonterminal, N is the number of sentence
pairs in the training corpus, Ti is the length of the ith output sentence (making
e0..Ti the ith output sentence), and Vi is the length of the ith input sentence
(making f0..Vi the ith input sentence).
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4 Generalizing the ITG

To generalize the initial inversion transduction grammar we need to identify
parts of the existing biterminals that could be validly used in isolation, and
allow them to combine with other segments. This is the very feature that allows
a finite transduction grammar to generate an infinite set of sentence pairs; when
we do this, we move some of the probability mass which was concentrated in
the training data out to other data that are still unseen—the very definition of
generalization. The over all strategy is to propose a number of sets of biterminal
rules and a place to segment them, evaluate how the description length would
change if we were to apply one of these sets of segmentations to the grammar,
and commit to the best set. That is: we do a greedy search over the power set of
possible segmentations of the rule set. As we will see, this intractable problem
can be reasonable efficiently approximated, which is what we have implemented
and tested.

The key component in the approach is the ability to evaluate how the descrip-
tion length would change if a specific segmentation was made in the grammar.
This can then be extended to a set of segmentations, which only leaves the
problem of generating suitable sets of segmentations.

The key to a successful segmentation is to maximize the potential for reuse.
Any segment that can be reused saves model size. Consider the terminal rule:

A → five thousand yen is my limit/wǒ zùi dūo chū wǔ q̄ıan r̀ı yúan

This rule can be split into three rules:

A → 〈AA〉
A → five thousand yen/ wǔ q̄ıan r̀ı yúan

A → is my limit/wǒ zùi dūo chū

Note that the original rule consists of 16 symbols (in our encoding scheme),
whereas the new tree rules consists of 4 + 9 + 9 = 22 symbols. Add to that the
fact that three rules are likely to be less probable than one rule when parsing,
which makes the training data longer as well. It is reasonable to believe that the
bracketing inverted rule is present in the grammar already, but this still leaves
18 symbols, which is decidedly longer than 16 symbols—and we need to get the
length to be shorter if we want to see a net gain. What we really need to do
is find a way to reuse the lexical rules that came out of the segmentation. Now
suppose the grammar also contained this terminal rule:

A →the total fare is five thousand yen/

zǒng gòng de fèi yòng sh̀ı wǔ q̄ıan r̀ı yúan

This rule can also be split into three rules:

A → [AA]

A →the total fare is/zǒng gòng de fèi yòng sh̀ı

A →five thousand yen/wǔ q̄ıan r̀ı yúan
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G // The ITG
biaffixes_to_rules // Maps biaffixes to the rules they occur in
do

biaffixes_delta = []
for each biaffix b :

delta = eval_dl(b, biaffixes_to_rules[b], G)
if (delta < 0)

biaffixes_delta.push(b, delta)
sort_by_delta(biaffixes_delta)
real_delta = 0
for each b:delta pair in biaffixes_delta :

real_delta = eval_dl(b, biaffixes_to_rules[b], G)
if (real_delta < 0)

G = make_segmentations(b, biaffixes_to_rules[b], G)
while real_delta < 0

Fig. 1. Pseudocode for the top-down search algorithm using description length as learn-
ing objective

Again, we will assume that the structural rule is already present in the grammar,
the old rule was 19 symbols long, and the two new terminal rules are 12+9 = 21
symbols long. Again we are out of luck, as the new rules are longer than the old
one, and three rules are likely to be less probable than one rule during parsing.
The way to make this work is to realize that the two existing rules share a
bilingual affix—a biaffix: “five thousand dollars” translating into “wǔ q̄ıan r̀ı
yúan”. If we make the two changes at the same time, we get rid of 16 + 19 = 35
symbols worth of rules, and introduce a mere 9 + 9 + 12 = 30 symbols worth of
rules (assuming the structural rules are already in the grammar). Making these
two changes at the same time is essential, as the length of the five saved symbols
can be used to offset the likely increase in the length of the corpus given the
data. And of course: the more rules we can find with shared biaffixes, the more
likely we are to find a good set of segmentations.

Our algorithm takes advantage of the above observation by focusing on the
biaffixes found in the training data. Each biaffix defines a set of lexical rules
paired up with a possible segmentation. We evaluate the biaffixes by estimating
the change in description length associated with committing to all the segmen-
tations defined by a biaffix. This allows us to find the best set of segmenta-
tions, but rather than committing only to the one best set of segmentations,
we will collect all sets which would improve description length, and try to com-
mit to as many of them as possible. The pseudocode for our algorithm can be
found in Figure 1. The pseudocode uses the methods eval dl, sort by delta

and make segmentations. These methods evaluate the difference in description
length, sorts candidates by these differences, and commits to a given set of can-
didates, respectively. To evaluate the description length of a proposed set of can-
didate segmentations, we need to calculate the difference in description length
between the current model, and the model that would result from committing
to the candidate segmentations:

DL (Φ′, D)−DL (Φ,D) = DL (D|Φ′)−DL (D|Φ) + DL (Φ′)−DL (Φ)
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The model lengths are trivial, as we merely have to encode the rules that are
removed and inserted according to our encoding scheme and plug in the summed
lengths in the above equation (making sure to add any one rule once only). This
leaves the difference in data length, which is:

DL (D|Φ′)− DL (D|Φ) = −lg
P (D|Φ′)
P (D|Φ)

This lets us determine the probability through biparsing with the grammar being
induced. Biparsing is, however, a very expensive operation, and we are making
relatively small changes to the grammar, so we will further assume that we can
estimate the description length difference in closed form based on the grammar
parameters. Given that we are splitting the rule r0 into the three rules r1, r2
and r3, and that the probability mass of r0 is distributed uniformly over the
new rules, the new grammar parameters θ′ will be identical to the old grammar
parameters θ, except that:

θ′r0 = 0

θ′r1 = θr1 +
1

3
θr0

θ′r2 = θr2 +
1

3
θr0

θ′r3 = θr3 +
1

3
θr0

We estimate the probability of the corpus given this new parameters to be:

−lg
P (D|Φ′)
P (D|Φ) ≈ −lg

θ′r1θ
′
r2θ

′
r3

θr0

To generalize this to a set of rule segmentations, we construct the new parameters
θ′ to reflect all the changes in the set in a first pass, and then sum the differences
in description length for all the rule segmentations with the new parameters in
a second pass.

5 Experimental Setup

We have made the claim that iterative top-down segmentation guided by the
objective of minimizing the description length is superior to iterative bottom-up
chunking as a way of learning stochastic inversion transduction grammars in an
unsupervised fashion. We have spent the paper so far outlining how this can be
done in practice, and we are now about to show that the outlined method is
indeed superior. To substantiate our claim, we will initialize a stochastic brack-
eting inversion transduction grammar (BITG) to rewrite it’s one nonterminal
symbol directly into all the sentence pairs of the training data (iteration 0). We
will then segment the the grammar iteratively a total of seven times (iteration
1–7), after which the changes are negligible. For each iteration we will record
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Fig. 2. Number of rules (a), and the impact of changes in the model structure (b)
during the structure induction phase. The change in model structure is broken down
into the size of the model (bottom) and the size of the data given the model (top).

the change in description length and test the learned grammar. Each iteration
requires us to biparse the training data to get the data probability of the data
given the grammar the iteration starts with. We do this with our in-house im-
plementation of the cubic time algorithm described in [28], with a beam width
of 100.

As training data, we use the IWSLT07 Chinese–English data set [29], which
contains 46,867 sentence pairs of training data and 489 Chinese sentences with 6
English reference translations each as test data; all the sentences are taken from
the traveling domain.

To test the learned grammar as a translation model, we first tune the grammar
parameters to the training data using expectation maximization [30] and parse
forests acquired with the above mentioned in-house biparser, again with a beam
width of 100. To do the actual decoding, we use our in-house ITG decoder. The
decoder uses a CKY-style parsing algorithm [31–33] and cube pruning [34] to
integrate the language model scores. The decoder builds an efficient hypergraph
structure which is then scored using both the induced grammar and the language
model. We use SRILM [35] for training a trigram language model on the English
side of the training data. To evaluate the quality of the resulting translations,
we use BLEU [36], and NIST [37].

6 Results

We claimed that our iterative top-down segmentation guided by the minimum
description length objective is superior to iterative bottom-up guided by likeli-
hood for unsupervised induction of inversion transduction grammars; by superior
we mean that it produces a smaller model which gives better translation quality,
and in the previous section we outlined an experiment to verify this claim.
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Fig. 3. Variations in translation quality over different iterations. The dotted line rep-
resents the baseline [2].

Figure 2 shows the size of our model during induction, both in terms of rule
count and in terms of description length. The initial ITG is at iteration 0, where
the vast majority of the size is taken up by the model (DL (Φ), bottom), and
very little by the data (DL (D|Φ), top)—just as we predicted. The trend over the
induction phase is a sharp decline in model size, and a moderate increase in data
size, with the overall size constantly decreasing. Note that, although the number
of rules rises, the total description length decreases. Again, this is precisely what
we expected. The size of the model learned by [2] is close to 30 Mbits, and far
off the chart.

Figure 3 shows the translation quality of our model as it learns. Here we see
a sharp early rise, and then levelling off and even some decline. The main point
to focus on is, however, that the second iteration puts us firmly past the results
published in [2].

7 Conclusions

We have presented an unsupervised learning method for inversion transduction
grammars that iteratively segments the training data in a top-down fashion
driven by the objective to minimize description length. This contrasts to our
previous work where the learning is conducted bottom-up through chunking
towards a maximum likelihood objective. Our experiments show that our new
approach is superior.
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Abstract. In this paper we study the effect of different lexical resources
and strategies for selecting synonyms in a lexical simplification system
for the Spanish language. The resources used for the experiments are the
Spanish EuroWordNet, the Spanish Open Thesaurus and a combination
of both. As for the synonym selection strategies, we have used both local
and global contexts for word sense disambiguation. We present a novel
evaluation framework in lexical simplification that takes into account the
level of ambiguity of the word to be simplified. The evaluation compares
various instances of the lexical simplification system, a gold standard, and
a baseline. On the basis of our results we recommend different resources
and word sense disambiguation methods depending on the ambiguity
level of the target word to be simplified.

Keywords: Lexical Simplification, Text Simplification, Spanish, Word
Sense Disambiguation, Word Vector Model, Lexical Simplification Eval-
uation.

1 Introduction

Lexical Simplification aims at replacing difficult words with easier synonyms,
while preserving the meaning of the original text segments. It is usually consid-
ered as an essential part of text simplification, which might target other aspects
of textual complexity, such as the syntactic complexity of sentences. Text Sim-
plification can be used as a linguistic preprocess in order to improve other NLP
tasks [9, 23], but it can potentially help people with various types of reading
comprehension problems [1, 7, 21].

Lexical simplification requires the solution of at least two tasks: First, the
finding of a set of synonymic candidates for a given word generally relying on a
dictionary and, second, replacing the target word by a synonym which is easier
to read and understand in the given context. For the first task different resources
are generally used such as WordNet [18]. For the second task, different strategies
of word sense disambiguation (WSD) and simplicity computation are requited.

Even if there is a considerable number of approaches to lexical simplification
in different languages, an estimation of how different lexical resources and WSD

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 236–247, 2013.
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strategies impact the task have not yet been studied. There is also no previous
work which addresses the question in how far the level of ambiguity of a word
influences the degree of success in automatic lexical simplification. The goal of
this paper is to address these gaps using LexSiS [5], a system for Spanish lexical
simplification which uses as parameter a lexical resource which provides word
senses and lists of synonyms. Hence, the main contributions of this paper are:

– A comparison of the performance of our lexical simplification system with
two different lexical resources (Open Thesaurus and EuroWordNet), in ad-
dition to a combined version of the two.

– A comparison of two different strategies for word sense disambiguation, one
which only considers the local context of a target word and another which
assumes that each target word has only one meaning per text and takes all
local contexts for a given target into account.

– An evaluation that assesses the performance of the system depending on
different levels of the ambiguity of target words.

The rest of the paper is organized as follows: In Section 2 we discuss the related
work and the context in which our proposal has to be seen. In Section 3 we
describe our system, including the alternative resources it can work with and
alternative strategies to perform word sense disambiguation. Section 4 explains
the evaluation framework and presents the experimental results while Section 5
draws some conclusions on the use of different lexical resources and disambigua-
tion method. Section 6 concludes the paper with a summary of the main results
and an outlook on future work.

2 Related Work

In this paper, we are only interested in lexical simplification as one of the various
aspects of text simplification. Lexical simplification requires, at least, two things:
a way of finding synonyms (or, in some cases, hyperonyms), and a way of measur-
ing lexical complexity (or simplicity). Many approaches to lexical simplification
[6, 7, 16] used WordNet in order to find appropriate word substitutions. Bautista
et al. [3] use a dictionary of synonyms. De Belder et al. [11] apply explicit word
sense disambiguation, with a Latent Words Language Model, in order to tackle
the problem that many of the target words to be substituted are polysemic. As
a measure of lexical simplicity most of the cited approaches [6, 7, 16] have relied
on word frequency, with the exception of Bautista et al. [3], who use word length
as a predictor for lexical simplicity. Since both word frequency and word length
have been shown to correlate to the cognitive effort in reading [20], Bott et al.
[5] use a weighted simplicity metric which combines length and frequency.

More recently, the availability of the Simple English Wikipedia (SEW) [10],
in combination with the “ordinary” English Wikipedia (EW), made a new gen-
eration of text simplification approaches possible, which use primarily machine
learning techniques [10, 28–30, 32]. This includes some new approaches to lexi-
cal simplification, which are the most important points of reference for our work.
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Yatskar et al. [31] use edit histories for the SEW and the combination of SEW
and EW in order to create a set of lexical substitution rules. Biran et al. [4] also
rely on the SEW/EW combination (without the edit history of the SEW), in
addition to the explicit sentence alignment between SEW and EW. They use
WordNet as a filter for possible lexical substitution rules but do not apply ex-
plicit word sense disambiguation, their approach is context-aware, since they use
a cosine-measure of similarity between a lexical item and a given context, in
order to filter out possibly harmful rule applications which would select word
substitutes with the wrong word sense.

Finally, there is a recent tendency to use statistical machine translation tech-
niques for text simplification (defined as a monolingual machine translation task).
Coster and Kauchak,[10] and Specia [24], drawing on work by Caseli et al.[8],
use standard statistical machine translation machinery for text simplification.
In this case lexical simplification is treated as an implicit part of the machine
translation problem. The former uses a dataset extracted from the SEW/EW
combination, while the latter is noteworthy for two reasons: first, it is one of the
few statistical approaches that targets a language different from English (namely
Brazilian Portuguese); and second, it is able to achieve good results, although
for a limited range of phenomena, with a surprisingly small bi-data-set of only
4,483 sentences.

3 Spanish Lexical Simplification in LexSiS

LexSiS tries to find the best substitution candidate (a word lemma) for every
word which has an entry in a lexical resource which is a parameter of the sim-
plification process. The substitution operates in two steps: first the system tries
to find the most appropriate sense for a given word, and then it tries to find the
best substitution candidate within the list of synonyms of this sense. Here the
best candidate is defined as the simplest and most appropriate synonym word
in the given context. In order to perform word sense dissambiguation we rely on
a word vector space model while for the simplicity criterion we apply a combi-
nation of word length and word frequency. In the rest of this section we provide
the details of the resources and methods used by LexSiS.

3.1 Lexical Resources

As already mentioned, some approaches to lexical simplification make use of
WordNet [18] in order to measure the semantic similarity between lexical items
and to find an appropriate substitute. Spanish is one of the languages represented
in EuroWordNet [27], although its scope is more modest1. We have tried three
lexical resources in LexSiS: the Spanish Open Thesaurus (SOT), the Spanish

1 The Spanish part of EuroWordNet contains only 50,526 word meanings and 23,370
synsets, in comparison to 187,602 meanings and 94,515 synsets in the English Word-
Net 1.5.
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EuroWordNet (SWN), and combination of SWN and SOT (SWN+SOT).
We describe each of them below.

The Spanish Open Thesaurus lists 21,831 target words (lemmas) and provides
a list of word senses for each word. Each word sense is, in turn, a list of substitute
words (and we shall refer to them as substitution sets hereafter). There is a total
of 44,353 such word senses. The substitution candidate words may be contained
in more than one of the substitution sets for a target word. The entry in SOT
for the word hoja is as in (a).

(a) hoja|3
- |acero|espada|puñal|arma blanca
- |bráctea|hojilla|hojuela|bractéola
- |lámina|plancha|placa|tabla|rodaja|peĺıcula|chapa|lata|viruta|loncha|lonja|capa|. . .

The first line of the entry represents the target word and states that there are
three different meanings. The three lines that follow list synonyms for the three
word meanings (blade, leaf and sheet in English).

A second resource we use is the Spanish EuroWordNet. However, for its use
with LexSiS we represented synset of SWN in the same format as the Span-
ish Open Thesaurus, additionally enriching each entry with hyperonymes (e.g.
organo de una planta/plant organ in the last sense below) of the word. The SWN
entry for hoja is given in (b)2.

(b) hoja|4
- |instrumento cortante
- |folio|cuartilla|pliego|hoja de papel|papel
- |folio|folio|cuartilla|pliego|hoja de papel
- |follaje|órgano|órgano de una planta|órgano vegetal

The word hoja is also semantically ambiguous here and can mean blade, leaf or
sheet of paper. Here the sense for sheet of paper is represented by two synsets
(second and third lines).

Finally, we are interested in whether a combination of SWN and SOT is able to
produce better substitutions since this combination provides more substitution
candidates to choose from. For this end we used a union of SWN synsets and
SOT substitution sets and let LexSiS choose freely from the alternative lists of
synonym words stemming from the two resources. The combined (SOT+SWN)
representation for hoja contains all the lines contained in (a) and in (b).

3.2 Word Vector Space Model

In order to measure lexical similarity between words and contexts, we used a
Word Vector Space Model [22]. Word Vector Space Models are a good way of
modelling lexical semantics [26], since they are robust, conceptually simple and

2 It can be seen in this example that SWN lists many multi-word expressions. At
the moment we do not have a module that can detect the same kind of multi-word
expressions in the linguistic pre-process, so we have to ignore these entries.
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mathematically well defined. The ‘meaning’ of a word is represented as the con-
texts in which it can be found. A word vector can be extracted from contexts
observed in a corpus, where the dimensions represent the words in the context,
and the component values represent their frequencies. The context itself can
be defined in different ways, such as an n-word window surrounding the target
word. Whether two words are similar in meaning can be measured as the cosine
distance between the two corresponding vectors. Moreover, vector models are
sensitive to word senses. For example, vectors for word senses can be built as
the sum of word vectors which share one meaning.

We trained a vector model on a 8M word corpus of Spanish online news.
We lemmatized the corpus with FreeLing [19] and for each lemma type in the
corpus we constructed a vector, which represents co-occurring lemmas in a 9-
word (actually 9-lemma) window (4 lemmas to the left and to the right). The
vector model has n dimensions, where n is the number of lemmas in the lexicon.
The dimensions of each vector in the model (i.e. the vector corresponding to a
target lemma) represent the lemmas found in the contexts, and the value for
each component represents to number of times the corresponding lemma has
been found in the 9-word context. In the same process, we also calculated the
absolute and relative frequencies of all lemmas observed in this training corpus.

3.3 Word Sense Dissambiguation in LexSiS

We implemented two different methods to carry out word sense disambiguation,
which we call the local and the global method. The local method only looks
at the local context of a target word assuming that the local context provides
enough information for disambiguation [15], while the global method takes all
the occurrences of each target word within a text and constructs a combined
representation of the contexts in which they are found, assuming the one sense
per discourse hypothesis [14].

For the local method, we check for each lemma if it has alternatives in our
lexical resource. If this is the case, we extract a vector from the surrounding
9-word window. Since each word is a synonym to itself (and might actually be
the simplest word among all alternatives), we include the original word lemma in
the list of words that represent the word sense. We construct a common vector
for each of the word senses listed in the thesaurus by adding all the vectors of
the words listed in each word sense. Then, we select the word sense with the
lowest cosine distance to the context vector. In the second step, we select the
best candidate within the selected word sense, assigning a simplicity score and
applying several thresholds in order to eliminate candidates which are either not
much simpler or seem to differ too much from the context.

The global method works largely like the local method, with one difference.
We assume that each target word has only one meaning in each text it appears.
So, instead of extracting a local context vector for each target instance of a word
w, we extract all of the local vectors for w found in the text. Then we sum over
all of these local vectors, and obtain a global vector for w and compare it to the
vectors representing word senses.
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3.4 Simplicity Computation and Filtering in LexSiS

As a measure for simplicity we use the metric proposed by Bott et al. [5], which
combines word length and word frequency. This metric weights scores for length
and frequency and combines them into a single simplicity score. The authors
give arguments for the inclusion of word length into the calculus on the basis of
a corpus study.

We also apply three thresholds in order to reduce the amount of bad simpli-
fication candidates proposed by LexSiS. First of all, we do not want to simplify
frequent words, even if our resources (SOT or SWN) list them. So we set a cut-
off point for frequent words, such that LexSiS does not try to simplify words
with a frequency higher than 0.001% (calculated on the training corpus we used
to build the vector model). We also discard substitutes where the difference in
the simplicity score with respect to the original word is lower than 0.5, because
such words can be expected not to be significantly simpler. We achieved this
latter value through experimentation. Since many of the alternatives proposed
by LexSiS are not acceptable substitutes, we try to filter out words that do not
fit into the context by discarding all candidates whose word vector has a distance
with a cosine inferior to 0.013, another value achieved through experimentation.
This last threshold is also an attempt to remedy some shortcomings of the lex-
ical resource, especially SOT, which often has entries which are far from being
perfect.

4 Evaluation

In this section we present the experimental set-up employed to evaluate the
different resourses and word sense disambiguation strategies for LexSiS. The
evaluation was conducted thoroughly, rating the degree of simplification and the
preservation of meaning of the substitutions.

Baseline: As baseline we use the method of [12]. It replaces a word with its
most frequent synonym, presumed to be the simplest. This frequency baseline
was also used in SemEval-2012 shared task for lexical simplification [25].

Gold Standard: We have an in-house corpus of parallel texts, consisting of
160 news texts (718 sentences) and manually simplified versions of these text,
aligned on the sentence level. As the gold standard we used the manual lexical
simplifications we found in this corpus.

Evaluation Dataset: The dataset is composed of the total of lexical simplifica-
tion substitutions from our gold standard (55), together with the corresponding
synonyms generated by LexSiS using the different resources (55 lexical substi-
tutions each), giving a total of 275 lexical substitutions: baseline substitutions
(FREQ), SWN substitutions, SOT substitutions, SWN+SOT substitutions,
Gold manual lexical substitutions.

For each of the methods we used two different WSD strategies, having as a result
275 simplifications using a local strategy (Local WSD) and 275 simplifications
using a global strategy (Global WSD).
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Since we wanted to evaluate the meaning presentation as well as the simpli-
fication, each of the substitutions were inserted in their original sentences. In
total we had 550 lexical substitutions to be compared with the original target
words. We manually corrected the ungrammatical examples3 and deleted the
duplicated lexical substitutes giving a total of 456 unique lexical substitutions.
We believe this is a reasonable size for an evaluation dataset, in [31] they use a
total of 200 simplification examples, and in [4] 130 sentences were used. Below,
we show two examples of a sentence with its original word (O) and the lexical
substitution proposed by our system using SWN+SOT.

(O) Se encuentra a favor de la lucha contra la DESIGUALDAD y la pobreza.
‘It is in favor of the fight against inequality and poverty.’
(SWN+SOT) Se encuentra a favor de la lucha contra la IRREGULARIDAD y
la pobreza.
‘It is in favor of the fight against irregularity and poverty.’

Ambiguity Bands: We divided the target words of the dataset in three levels
of difficult depending on their degree of ambiguity. For measuring the degree of
ambiguity we considered the average of senses per word given by WordNet and
Open Thesaurus. Hence, our dataset has three ambiguity bands, low (from 0.5
to 1.5 senses, 49.08% of the dataset), medium (from 2 to 2.5 senses, 25.09 % of
the dataset) and high (3 senses or more, 25.84% of the dataset).

Design: We created a multiple choice questionnaire presenting two sentences
for each item. The test included all the unique lexical substitutions. Each item
contained one sentence with a simplification example and the same sentence with
the original word. These sentences were presented in counterbalanced order to
the annotator (i.e., either as Original vs. SYSTEM or SYSTEM vs. Original).
For each pair of sentences, the annotators were asked two questions to choose one
option in each of then, one regarding the meaning preservation: “the sentences
above have the same meaning” vs. “the sentences above do not have the same
meaning”, and another one regarding the simplicity degree: “the first of the
sentence above is simpler than the second” vs. “the first of the sentence above
is not simpler than the second”. Five annotators with no previous annotation
experience performed the tests using an on-line form. They were all Spanish
native speakers, frequent readers and were not the authors of this paper. The
five participants annotated all the instances of the datasets, achieving a Fleiss’
kappa score of 0.332. Hence, we can assume we have a fair agreement [13, 17],
comparable with other inter-annotator agreements in related work, where kappa
score was between 0.35 and 0.53 [4].

4.1 Results

Table 1 shows a direct comparison of the performance of LexSiS with different re-
sources and the two different WSD methods, the baseline and the gold standard.

3 The correction only affected inflections and agreement errors, since we could not use
a morphological generator in the experimental setting.
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Table 1. Results for the different resources using local and global WSD

Method WSD Synonym Simpler

SWN Local 63.2 68.2
SWN Global 62.2 69.2

SOT Local 62.0 66.7
SOT Global 62.0 66.7

SWN + SOT Local 58.6 66.4
SWN + SOT Global 60.6 68.2

Baseline - 52.6 71.1

Gold - 75.9 69.3

Table 2. Results for meaning preservation for different ambiguity levels

Ambig. Meaning preservation Simpler synonyms
Band WSD SWN SOT SOT+SWN SWN SOT SOT+SWN

Low Local 60.0 62.5 56.0 70.0 70.0 68.7
Low Global 61.0 62.5 56.9 70.3 70.0 68.9

Med. Local 65.5 51.1 56.9 72.2 60.9 70.3
Med. Global 61.7 51.1 63.1 73.0 60.9 70.8

High Local 67.4 70.4 66.7 60.6 65.8 58.3
High Global 65.3 70.4 66.1 62.5 65.8 64.1

In Table 2 we show the results for WSD and simplicity by ambiguity level. The
scores for simplicity were calculated over those data points which were judged
as being synonymous in order to be able to achieve independent scores for syn-
onymity and simplicity. The WSD methods of local and global correspond to the
two ways of constructing context vectors described in Section 3.

5 Discussion

We observe (Table 1) that LexSiS shows consistently much higher synonymity
scores than the baseline. For the whole dataset, without distinction of levels
of ambiguity LexSiS with SWN achieves a score of 63.16% in comparison to
52.59% produced by the baseline. When LexSiS uses other resources (SOT or
SWN+SOT) the scores are only slightly lower. The score for the gold standard
is higher (75.92%), but surprisingly it does not even get close to 100%, which
shows that human judges are reluctant to accept alternatives as being fully
synonymous and gives an idea of the difficulty of the task. A surprise is that the
combination of the two resources (SWN+SOT) performs much worse than the
two resources on their own. We hoped that the word disambiguation component
would perform better with the availability of more synonym sets, because the
cosine distance between the vectors for these sets should lead to a selection of
the set with the most coherent meaning, penalising sets which include words
that are not coherent with the rest of the set. This expectation was not met. A
possible alternative would be to align the resources so that equivalent synsets
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are merged together providing additional synonym choices for equivalent senses.
We will investigate this in future work.

Turning to the question whether the use of SOT shows a worse performance
than that of SWN, we can observe a slightly better performance of LexSiS+SWN
than LexSiS+SOT in both categories (Table 1), but none of the differences is
statistically significant. This is an interesting result, because it suggests that a
simpler resource like SOT can lead to nearly the same level of performance than
the use of a more sophisticated resource like SWN, whose quality is controlled in
a much stricter way. In SOT we often observed incoherent synonyms sets, cases in
which more than one synonym sets appear to represent the same word sense and
word senses which are not represented by a single synonym set. Nevertheless, we
think that the use of the word sense disambiguation component in combination
with the threshold that filters out candidates with a high cosine distance to the
context can partially remedy the shortcomings of the thesaurus.

The left part of Table 2 (meaning preservation) suggests that words with a
higher degree of ambiguity are easier to disambiguate, which might come as
another surprise. We suspect that this reveals a possible shortcoming of the re-
sources used: words which are listed with only one word sense are often still
ambiguous, while the entries of words with many listed senses tend to be disam-
biguated better in the dictionary entry.

Turning to the production of synonyms which are perceived as being actu-
ally simpler than the original, again SWN outperforms SOT and SWN+SOT
(cf. Table 1). In right part of Table 2 (simpler synonyms) we can observe that
the success of producing simpler synonyms depends very much on the level of
ambiguity of the target word. Highly ambiguous words are harder to simplify,
while words with low ambiguity are easier. Words with a medium level ambigu-
ity show a curious behaviour: for SWN and the combination of SWN and SOT
these words appear to be easier to simplify.

Table 2 also shows that the global method of choosing synonyms (one synonym
for each target per text) systematically outperforms the local method in its abil-
ity to produce simpler substitutes. We attribute this to the fact that the summed
vectors for target word contexts are present much richer context information and
are much more reliable than the rather sparse vectors for individual contexts. The
assumption that each target word has only one meaning per text proves to be
quite helpful. For example, in the following sentence the original word noción
(notion) has been substituted with the word representaćıon(representation) with
the local method and the more acceptable word idea with the global method,
using SWN+SOT.

(O) . . . vivimos en un mundo en el que se ha perdido la NOCIÓN de autoridad.
‘. . . we live in a world where the NOTION of authority has been lost’

In Table 1 the baseline outperforms LexSiS and even the gold standard in the
simplification task, but it has to be taken into account that the simplicity scores
were calculated only over those data instances that were actually perceived by
the annotators as being synonymous. This amounts to saying that the frequency
baseline would perform extraordinarily if all the non-synonym productions were
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filtered out, which is first impossible and would result in a much lower coverage
(i.e. much less substitutions produced) than LexSiS. As a curious matter of fact,
only 51.85% of the gold standard cases were both judged as being synonymous
and being simpler, which illustrates the difficultly of the combined task.

Turning to significance, we only found a significant effect between different
methods on the meaning preservation; the gold standard preserved significantly
more meaning in their substitutions that the rest of the methods, (F (9, 2262) =
4.062, p < 0.01). This finding is hardly surprising, given the difficulty of the word
sense disambiguation task. It is probably more interesting to note that, while the
gold standard achieves higher scores for simplicity, this score is not much higher
than the score for LexSiS with the use of SWN. Also, even if the scores for LexSiS
with different configurations are lower, the difference to the gold standard could
not be shown to be statistically significant.

6 Conclusions and Outlook

In this paper we compared the effect of using different lexical resources and dis-
ambiguation strategies in a lexical simplification system for the Spanish language.
In particular we have instantiated experiments with the Spanish WordNet and
the Spanish Open Thesaurus as lexical resources. Where disambiguation meth-
ods are concerned, we have tried local and global disambiguation strategies.

The comparison of two different lexical resources shows how far the quality of
the resource used influences the quality of the lexical simplifications the system
produces. Since Open Thesaurus is an open collaborative effort, the quality of
the thesaurus entries is not strongly controlled, a factor which we could see re-
flected in poorly separated word senses and even missing representation for some
senses. We could find differences in the performance depending on the lexical re-
source used, but it was surprisingly low and not statistically significant. This
is a good result because the main bottleneck for the most language dependent
part of a lexical simplification system like LexSiS is the availability of lexical
resources. Our evaluation suggests that thesauri may be a good substitute for
more sophisticated lexical ontologies.

Another contribution of this paper is the comparison of two WSD methods:
one based on local context and the second global method based on summed local
context on the text level. We could show that the global method performs better
for the lexical substitution task. The choice of the lexical resource is only one of a
list of possible optimizations for the LexSiS system. There are other possibilities
we would like to explore in the future, such as the use of TF*IDF weights and the
investigation of in how far the size of the window which represents the context
influences the system performance. Our lexical simplification system could also
help to normalize paraphrases to the simplest word choice, which could be useful
in plagiaism detection [2].
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References
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Abstract. In our paper, we present a method for automated correction
of spelling errors in Hungarian clinical records. We model the problem
of spelling correction as a translation task, where the source language is
the erroneous text and the target language is the corrected one using an
SMT decoder to perform the error correction. Since no orthographically
correct proofread text from this domain is available, we cannot use such
a corpus for training the system, instead a spelling correction generation
and ranking system is used to create translation models. In addition,
a language model is used in order to model lexical context. We show
that our system outperforms the first candidate accuracy of the baseline
ranking system.

Keywords: spelling correction, agglutinating languages, medical text
processing.

1 Introduction

Processing medical texts is an emerging topic in natural language processing.
There are existing solutions mainly in English to extract knowledge from medi-
cal documents, which thus becomes available for researchers and medical experts.
However, locally relevant characteristics of applied medical protocols or informa-
tion relevant to locally prevailing epidemic data can be extracted only from
documents written in the language of the local community.

In Hungarian hospitals, clinical records are created as unstructured texts,
without any automated proofing control (e.g. spell checking). Moreover, the lan-
guage of these documents contains a high ratio of word forms not commonly
used, such as Latin medical terminology, abbreviations and drug names. Many
of the authors of these texts are not aware of the standard orthography of this
terminology. Thus processing such documents is not an easy task and automatic
correction of the documents is a prerequisite of any further linguistic processing.

We investigated anonymized clinical records of a Hungarian clinic, in which we
found errors due to the frequent (and apparently intentional) use of non-standard
orthography, unintentional mistyping, inconsistent word usage and ambiguous
misspellings (e.g. misspelled abbreviations), some of which are very hard to
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interpret and correct even for a medical expert. Besides, there is a high number
of real-word errors, i.e. otherwise correct word forms, which are incorrect in
the actual context. Many misspelled words never or hardly ever occur in their
orthographically standard form in our corpus of clinical records. One possible
solution for this problem is creating and using a quasi-standard representation
(i.e. each concept represented by the same string for all occurrences) even if that
representation does not correspond to the academic standard.

In our paper, we present a method, built on a baseline system for generating
correction candidates, for considering textual context when recognizing and cor-
recting spelling errors. We show that our system is able to correct certain errors
with high accuracy, and, due to its parametrization, it can be tuned to the actual
task. Thus the presented method is able to automatically correct single errors in
words, making a firm base for extending it to the correction of multiple errors
as well, and creating a normalized version of the clinical records corpus in order
to apply higher level processing.

2 Spelling Errors

A characteristic of clinical documents is that they are usually created in a rush
without proofreading. The medical records creation and archival tools used at
most Hungarian hospitals provide no proofing or structuring tools. Thus the
number of spelling errors is very high and a wide variety of error types occur.
These errors are not only due to the complexity of the Hungarian language and
orthography, but also to characteristics typical of the medical domain and the
situation in which the documents are created. The most frequent types of errors
are the following:

– mistyping, accidentally swapping letters, inserting extra letters or just miss-
ing some,

– lack or improper use of punctuation (e.g. no sign of sentence boundaries,
missing commas, no space between punctuation and the neighboring words),

– grammatical errors,
– sentence fragments,
– domain-specific and often ad hoc abbreviations, which usually do not corre-

spond to any standard
– Latin medical terminology not conforming to orthographical standards.

A common characteristic of these phenomena is that the prevailing errors vary
with the doctor or assistant typing the text. Thus it can occur that a certain
word is mistyped and should be corrected in one document while the same
word is a specific abbreviation in another one, which does not correspond to
the same concept as the corrected one. Latin medical terms usually have a stan-
dard form based on both Latin and Hungarian orthography, however what we
find in the documents is often an inconsistent mixture of the two (e.g. ten-
sio/tenzio/tensió/tenzió). Even though the spelling of these forms is standard-
ized, doctors tend to develop their own customs which they use inconsistently.

Another difficulty is the complete lack of correctly written clinical documents
that could be used for creating the appropriate language and error models.
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3 Related Work

Much research has been done on spelling correction. Kukich [9] partitions the
problem to three subproblems as (a) non-word error detection; (b) isolated-word
error correction; and (c) context-dependent word correction. However, most of
the described techniques rely on a lexicon-based approach that is not applicable
to agglutinating languages such as Hungarian. The problems of spelling correc-
tion in agglutinative languages is described in [12]. One way of handling an
infinite vocabulary is applying finite state automata or transducers, which are
used in [14], [10] and [16].

In our work, we aim at solving all of the three problems in one step, that
is, recognizing and correcting misspellings in context. A current trend is to ap-
ply statistical or hybrid approaches that outperform the previously prevailing
rule-based methods. A widespread solution is to apply the noisy-channel model.
The systems described in [5] and [3] apply variants of this model using different
error models and probability scoring. The work described in [2] emphasizes the
beneficial use of a contextual language model in the case of spelling correction
while adopting the noisy-channel model. Another work applies a graph-based
approach in a very strict domain-specific solution described in [1]. In [20], mis-
spelled words are identified by comparing them to some predefined list of words,
but this baseline method is extended by doing prevalence analysis, i.e. determin-
ing the frequency ratio of a word and its one edit distance alternatives in the
corpus.

The problem of spelling correction in the clinical domain has been addressed
in a number of publications. A research published in [15] uses several knowledge
bases of English clinical terms besides applying statistical methods. In [6], a so-
lution is implemented for rescoring the ranked candidates of different correction
suggestion methods.

Although the idea of the noisy-channel model, which is explored in several
works, is the basis of statistical machine translation algorithms as well, only
very few works use SMT implementations directly. Mass noun errors in English
as a Second Language texts are corrected in [4], which is a grammatical rather
than an orthographic problem. The work most similar to our approach is that
described in [7], where the traditional SMT algorithm is applied to the problem
of spelling error correction. However, in that implementation, the translation
model is based on a parallel corpus of proofread and erroneous texts into which
errors were introduced artificially. One problem with this approach is that the
random errors introduced into the corpus might not model well the types of
errors people actually introduce. Another problem from our perspective is that
one needs a correctly written corpus in the first place, which we do not have.

Regarding related literature, none of the solutions that use a predefined lexi-
con are applicable in our case due to the problems caused by an agglutinating
language.
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4 Application of a Statistical Machine Translation
System for Spelling Correction

Our goal was to improve a baseline system presented in [18] that is able to gen-
erate correction suggestions for misspelled words considering them as isolated
single words ignoring their context. The ranking in this baseline system is based
on statistics built from domain-specific and general corpora in addition to gram-
maticality judgment of a wide coverage Hungarian morphological analyzer [11],
[17]. The system is parametrized to assign much weight to frequency data coming
from the domain-specific corpus, which ensures not coercing medical terminol-
ogy into word forms frequent in general out-of-domain text. The baseline system
was able to recognize most spelling errors and the list of the ten highest ranked
automatically generated corrections contained the actually correct one in 98%
of the corrections in the test set.

Since our goal is to create fully automatic correction, rather than offering
the user a set of corrections that they can choose from, the system should be
able to automatically find the most appropriate correction. In order to achieve
this goal, the ranking of the baseline system based on morphology and word
frequency data is not enough. To improve the accuracy of the system, lexical
context also needs to be considered. To satisfy these two requirements, we applied
Moses [8], a widely used statistical machine translation (SMT) toolkit. During
“translation”, we consider the original erroneous text as the source language,
while the target is its corrected, normalized version. In this case, the input of the
system is the erroneous sentence: E = e1, e2 . . . ek, and the corresponding correct
sentence C = c1, c2 . . . ck is the expected output. Applying the noisy-channel
model terminology to our spelling correction system: the original message is the
correct sentence and the noisy signal received at the end of the channel data is
the corresponding sentence containing spelling errors. The output of the system
trying to decode the noisy signal is the sentence Ĉ, where

Ĉ = argmaxP (C|E) = argmax
P (E|C)P (C)

P (E)
(1)

conditional probability takes its maximal value. Since P (H) is constant, the
denominator can be ignored, thus the product in the numerator can be derived
from the statistical translation and language models.

These models in a traditional SMT task are built from a parallel corpus of the
source and target languages based on the probabilities of phrases corresponding
to each other. The language model responsible for checking how well each can-
didate generated by the translation model fits the actual context is built using
the SRILM toolkit [19].

4.1 Translation Models

In our system, we applied three translation (correction) models according to
three categories of words and errors. The first one handles possible abbreviations,
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the second one can split erroneously joined words, and the third one handles all
other errors. In the following sections, we describe each of these models starting
with the last one.

Translation Model for General Words and Errors. The translation model
is based on the output of the baseline system described in [18]. For each word,
except for abbreviations and some stopwords, we considered the first 20 sugges-
tions. The original suggestion system is also extended in a way that it can also
generate suggestions by splitting words. Considering more than 20 candidates
would have caused noise rather than increasing the quality of the system. The
scores used for ranking these suggestions are normalized as a quasi-probability
distribution, so that the sum of the probabilities of all possible corrections for a
word is 1. We applied this method instead of learning these probabilities from a
parallel corpus as no such corpus is available. It should be noted, that though
suggestions are generated for each word in the sentences, these suggestions usu-
ally include the original form. The scoring ensures that if the original form was
correct, then it will receive a high score, thus the decoder will not modify the
word.

Table 1 contains a common word that is misspelled in the input text. The word
hosszúságu should be written as hosszúságú ‘of length ...’. Another word form,
hosszúsági ‘longitudinal’ is ranked higher by the original context-insensitive scor-
ing algorithm, since it is also a correct and more frequent Hungarian word, and
since the u:i correspondence is also a frequent error beside u:ú since u and i
are neighboring letters on the keyboard. Though the rest of the words in the
example are also correct candidates, they received a lower score.

Without considering the context, all the others would also be correct at the
word level. Our language model will be responsible for making the contextually
optimal choice.

Table 1. A fragment of the translation model for a misspelled common word, its
possible candidate corrections and their probabilities

hosszúságu hosszúsági 0.01649
hosszúságu hosszúságú 0.01560
hosszúságu hosszúsága 0.01353
hosszúságu hosszúságuk 0.01317
hosszúságu hosszúságul 0.01292
hosszúságu hosszúságé 0.01284
hosszúságu hosszúság 0.01034

Translation Model for Abbreviations. Clinical documents contain much
more abbreviations than general texts. (The ratio of abbreviations is 8.49% in
our sample of clinical documents, while 0.36% in general texts.) Applying the
above models to abbreviations is difficult due to two main reasons. On the one
hand, the same word or phrase usually appears in several different abbreviated
forms in the text according to the taste of the author or just due to accidental
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variation. On the other hand, most abbreviations are very short, and, in the
case of most of them, the suggestion generator would prefer to transform the
original abbreviation to a very frequent similar common word. Due to their high
frequency and the fact that the morphology would also affirm their correctness,
such “corrections” would practically ruin the semantics of the original text.

To eliminate these problems, we collected the possible abbreviations from the
clinical corpus with automatic methods and after manually filtering this list, inte-
grated some of these into the morphology. However, this alone does not solve the
problem, since the same abbreviation might have several variations in the texts.
Thus we collected possible variations of each potential abbreviation from the cor-
pus together with their frequencies and used these values as maximum likelihood
estimates. An alternative translation model was created this way. These abbre-
viations are not present in the first translation model in order to prevent the
system transforming them to other words. We then applied the decoder of the
SMT system so that the translation model of the abbreviations is given priority
ensuring that abbreviations are transformed to their correct form rather than
to other words. Table 2 shows some combinations of abbreviation corrections in
the translation model.

Table 2. A portion of the translation model for abbreviations

conj. conj. 0.6078
conj conj. 0.8696
conj conj 0.1303
mko mko 0.4891
mko mko. 0.9970
mko. mko. 0.9993

Handling Joining Errors. Since the Moses SMT toolkit is usually used as a
phrase-based translation tool in traditional translation tasks, a general feature
of the translation models is that the translation of one (or more) words can also
be more than one word. Thus the system can be used to generate multi-word
suggestions for a single word in a straightforward manner, this way our system
can split erroneously joined words. Probability estimates for these phrases are
also derived from the scores assigned by the suggestion generation system. When
inserting a space into a word, the models used for creating the ranking scores are
calculated for both words separately and the geometric mean of these values is
assigned to the phrase as a score. This final score then corresponds to the scale
of the rest of the single word suggestions. An example for correction candidates
for erroneously joined words is shown in Table 3.

Table 3. Extract from the translation model for multiword errors

soronḱıvül soron ḱıvül 0.02074
soronḱıvül soronḱıvül 0.01459
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4.2 The Language Model

The language model is responsible for taking the lexical context of the words
into account. In order to have a proper language model, it should be built on
a correct, domain specific corpus by acquiring the required word n-grams and
the corresponding probabilities. Since the only manually corrected portion of
our corpus was the test set, we could not build such a language model. Though
there are orthographically correct texts of other, mostly general domains, the
n-gram statistics of these would not correspond to the characteristics of the
clinical domain. That is why we did not use such texts to build our language
model. However, we found that our clinical corpus contains several very frequent
word sequences, but there are a relatively smaller amount of different n-grams
compared to general texts. See Table 4 for the difference in the number of n-
grams in a general corpus and our clinical documents corpus.

Table 4. The number of different n-grams in a 1,000,000-word general and clinical
corpus of Hungarian

General text Clinical text

1-grams 127784 106113
2-grams 505253 416362
3-grams 781917 622053

We assumed that the frequency of correct occurrences of a certain word se-
quence can be expected to be higher than that of the same sequence containing
a misspelled word. Of course, the test set that we used for evaluation was sepa-
rated from the corpus prior to building the language model. Otherwise the word
sequences would have corresponded to these, and no correction would have been
made.

The documents in the corpus were split into sentences at hypothesized sen-
tence boundaries (finding sentence boundaries was often quite challenging in our
corpus) along with applying tokenization as a preprocessing step. The average
length of these-quasi-sentences is 8.58 tokens. We used a 3-gram language model
due to the relatively short sentences, longer mappings cannot be expected. Our
measurements confirmed this: choosing a higher n resulted in worse accuracy.

4.3 Decoding

The result of formula (1) is determined by the decoding algorithm of the SMT
system based on the above models. To carry out decoding, we used the widely
used Moses toolkit. The parameters of decoding can be set in the Moses configu-
ration file, thus they can be changed easily in order to adapt the system to new
circumstances and weighting schemes. During decoding, each input sentence is
corrected by creating the translation models based on the suggestions generated
for the words occurring in the actual sentence, and using the pre-built abbrevi-
ation translation model and the language model. The parameters for decoding
were set as follows:
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– Weights of the Translation Models: since the contents of the phrase
tables do not overlap, their weights can be set independently. As mentioned
earlier, the correction of the texts was meant as a normalization process
rather than adjusting them to a strict orthographic standard. In the case
of correcting abbreviations, the goal was to choose the same form for each
abbreviation with high probability, but giving a slight chance for each form
for special cases. We guaranteed this by giving the abbreviation translation
model a higher weight.

– Language Model: a 3-gram language model was applied, which was given
a lower weight than the translation models in order to prevent the harmful
effect of the possibly erroneous n-grams due to the incorrect word forms in
the corpus that we used for building this model.

– Reordering Constraint: when translating between different languages in
a traditional translation task, the reordering of some words within a sen-
tence might be necessary. However, word order changes are not allowed in
our application, since modifications can only occur within words or by split-
ting some words, but cannot change the structure of the sentence. Thus a
monotone decoding was applied.

– Penalty for Difference in the Length of Sentences Before and After
Correction: since the length of a sentence measured in number of tokens
cannot change significantly during correction, there is no need to apply a
penalty factor of the decoder for this parameter. (The theoretical maximum
in the change of the length for a sentence is doubling it by inserting a space
to every word, but the necessary number of space insertions was at most two
per sentence in the test set.)

5 Results

In order to evaluate our system, a manually corrected test set of clinical docu-
ments was necessary. We randomly selected 2000 sentences and sentence frag-
ments from the corpus, from various clinical departments and corrected these
texts regarding both tokenization and spelling. The remaining part of the corpus
contained 978,000 sentences and that was used for creating the language model.
Both sets of sentences only contained free-text parts of clinical reports. Tabular
laboratory data, measurement results, headers, ICD codes and other structured
content were previously filtered out. In spite of this, there were still a high num-
ber of sentences both in the training and test sets that contained hardly any
real words, consisting of sequences of abbreviations and numbers while having a
clearly Hungarian syntax.

Moreover, we had to accept some non-standard forms that were consistently
used throughout the whole corpus, without the standard form appearing at all.
We believe that the retrieval of concepts in the texts and their normalization
do not require that the normalized version of each word be the orthographi-
cally standard form, but mapping variants to a single representation is sufficient.
Therefore, we regarded all of these considerations when creating the test set and
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created multiple corrected references with possible corrections. The baseline to
which we compared our contextual error correction system was an implementa-
tion that simply replaced every word with the first ranked suggestion that the
suggestion generation system generated.

We evaluated how well each system performed on correcting erroneous words
in the test set. The size of the test set was 19148 tokens (6744 types), of which
1289 tokens (847 types) were misspelled or in a non-standard form. More than
half of these erroneous words are potential abbreviations of length less than 4
characters. Table 5 shows the performance of each system. The overall accuracy
(i.e. the ratio of the well corrected words relative to the number of erroneous
words) of the baseline system was 72.5%, while the SMT system improved the
results significantly to 88.28%. We performed several experiments with different
parameter settings that resulted in worse overall quality, but handled some spe-
cial phenomena better. Table 6 shows some originally erroneous sentences with
their corrections and the reference correction as well. The examples are chosen
so that they contain different types of sentences occurring in the corpus.

Table 5. Evaluation results of the context-aware system and the 1-best baseline

System Accuracy

Baseline (1-best) 72.5%
SMT-based context-aware 88.28%

We also performed manual evaluation of the results, where we found that even
though there are several cases, where none of the correction systems is able to
find the correct form of a word, the SMT-based context-aware system resulted in

Table 6. Originally erroneous sentences with the automatic correction of the baseline
and the SMT systems and the manually corrected reference

Original sentence csppent elő́ırés szerint ,
Baseline correction cseppent elő́ır és szerint ,
SMT correction cseppent elő́ırás szerint ,
Reference cseppent elő́ırás szerint ,

Original sentence th : mko tovább 1 x duotrav 3 ü-1 rec , ı́b : 2 x azoipt 3 ü-1 rec
Baseline correction th : mko tovább 1 x duotrav 3 ü-1 sec , kb : 2 x azoipt 3 ü-1 sec
SMT correction th. : mko tovább 1 x duotrav 3 ü-1 rec , kb : 2 x azopt 3 ü-1 rec
Reference th. : mko. tovább 1 x duotrav 3 ü-1 rec , kb. : 2 x azopt 3 ü-1 rec

Original sentence /alsó m?fogsor .
Baseline correction /alsó műfogsor .
SMT correction alsó műfogsor .
Reference alsó műfogsor .

Original sentence vértelt nyállkahártyák , kp erezett conjuctiva , fehér sclera .
Baseline correction vértelt nyálkahártyák , kp erezett conjunctiva , fehér sclera .
SMT correction vértelt nyálkahártyák , kp. erezett conjunctiva , fehér sclera .
Reference vértelt nyálkahártyák , kp. erezett conjunctiva , fehér sclera .
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Table 7. Examples for the transformation of a correct sentence to another correct
sentence with very similar meaning, but different words

Original sentence homályos látást panaszol . (s/he complains about blurred vision)
SMT correction homályos látás panaszok . (complaints of blurred vision)

Original sentence panasz nem volt . (there were no complaints)
SMT correction panasza nem volt . (s/he didn’t have any complaints)

such words that are much “closer” to the real correction. Even in cases when an
originally correct word is modified, the second system results in an appropriate
word, which is also correct in its context, however the baseline system usually
replaces these words with some meaningless strings. These are usually real-word
errors, when an originally correct word form is transformed to another correct
word or if the original form is not correct, it might be corrected to a word that is
correct and grammatically appropriate in the sentence, nevertheless it is still not
the actually expected correction. Some examples are in Table 7. These effects
originate mainly from the language model that also contains some improper
n-grams.

6 Conclusion

In our paper, we presented a method to correct single spelling errors with high
accuracy in Hungarian clinical records written in a special variant of domain
specific language containing a lot of abbreviations. Besides applying morpho-
logical rules and statistics on the word level, lexical context is also considered
during correction. Due to the lack of a corpus normalized to proper standard
orthography, a practical goal in our work was to consider frequently used word
forms as a quasi-standard. Applying our method to raw clinical free-text data,
a normalized representation can be achieved that is of crucial importance for
further processing steps.

Our method is not perfect, in our paper, we presented some difficult situations
that the system is not able to handle yet. We have some future plans of utilizing a
richer model containing lemmas and part-of-speech tags and we also expect some
improvement if the languagemodel is built iteratively from already corrected texts.

We showed that applying an SMT framework as a spelling correction system
is appropriate and can achieve high accuracy.
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tion suggestion system for Hungarian clinical records. In: 8th SaLTMiL Workshop
on Creation and Use of Basic Lexical Resources for Less-resourced Languages,
pp. 29–34 (2012)

19. Stolcke, A., Zheng, J., Wang, W., Abrash, V.: SRILM at sixteen: Update and out-
look. In: Proc. IEEE Automatic Speech Recognition and Understanding Workshop,
Waikoloa, Hawaii (December 2011)

20. Turchin, A., Chu, J.T., Shubina, M., Einbinder, J.S.: Identification of misspelled
words without a comprehensive dictionary using prevalence analysis. In: AMIA
Annual Symposium Proceedings, pp. 751–755 (2007)



Pronunciation Extraction

from Phoneme Sequences through Cross-Lingual
Word-to-Phoneme Alignment

Felix Stahlberg1, Tim Schlippe1, Stephan Vogel2, and Tanja Schultz1

1 Karlsruhe Institute of Technology, Cognitive Systems Lab.
Adenauerring 4, 76131 Karlsruhe, Germany

felix.stahlberg@student.kit.edu, {tim.schlippe,tanja.schultz}@kit.edu
2 Qatar Foundation, Qatar Computing Research Institute

Al-Nasr Tower A, 21st Floor, Doha, Qatar
svogel@qf.org.qa

Abstract. With the help of written translations in a source language,
we cross-lingually segment phoneme sequences in a target language into
word units using our new alignment model Model 3P [17]. From this, we
deduce phonetic transcriptions of target language words, introduce the
vocabulary in terms of word IDs, and extract a pronunciation dictionary.
Our approach is highly relevant to bootstrap dictionaries from audio
data for Automatic Speech Recognition and bypass the written form
in Speech-to-Speech Translation, particularly in the context of under-
resourced languages, and those which are not written at all.

Analyzing 14 translations in 9 languages to build a dictionary for
English shows that the quality of the resulting dictionary is better in case
of close vocabulary sizes in source and target language, shorter sentences,
more word repetitions, and formal equivalent translations.

Keywords: pronunciation dictionary, under-resourced languages, speech-
to-speech translation, word segmentation.

1 Introduction

There are over 7,000 living languages and dialects in the world [8]. Automatic
Speech Recognition (ASR) and Machine Translation (MT) systems exist only for
few of them. Porting rapidly and economically language technology to new un-
seen and under-resourced languages is in particular required in situations where
languages with few linguistic resources suddenly appear in the focus of interest.
Another challenge is the merely spoken nature of many languages and dialects,
some of which are widespread despite the lack of a written script [16,13]. How-
ever, language technology generally requires a written script nowadays.

In [17] and in this work, we take first steps towards gathering training data
for ASR and MT systems for an unseen target language rapidly and at low cost:
We segment phoneme sequences into word units using information from another
language. We then deduce word pronunciations from these units, introduce the

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 260–272, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Long-term scenario

vocabulary in terms of word IDs, and extract a pronunciation dictionary. Dic-
tionaries are used to train speech processing systems by describing the pronun-
ciation of words in manageable units such as phonemes [12]. As dictionaries are
so fundamental, much care has to be taken to select a dictionary that is as free
of errors as possible. Thus our approach is highly relevant for Speech-to-Speech
Translation (S2S) of under-resourced languages, and those which are not written.

We explore 14 translations in 9 languages to build a dictionary for English.
Our method benefits from the fact that written sentences are available in several
economically viable languages such as Spanish. We assume that a speaker is
available who understands Spanish and who speaks translations of the Spanish
sentences in his or her mother tongue. This is a weak assumption, since human
simultaneous translations happen frequently in the real world, e.g. in the context
of humanitarian aid operations or in multilingual parliament sessions [7]. Our
goal is to exploit the phonetic output of such human translators, so that the
following scenario comes within reach (Fig. 1):

1) We recognize the spoken translations with a language independent phoneme
recognizer. 2) We build an alignment between words in the written Spanish sen-
tence and phonemes in the corresponding recognized phoneme sequence in the
target language. 3) Using this cross-lingual alignment, we segment the phoneme
sequence into word units. 4a) The word segmentation induces phonetic transcrip-
tions of target language words, which are used in a pronunciation dictionary for
ASR systems. 4b) The segmented phoneme sequence is replaced by a sequence
of word IDs. This results in a parallel training corpus on the word level for a
Statistical MT (SMT) system as described in [2]. Our final goal is to bootstrap
an S2S system without any linguistic knowledge of the target language.

While we have focused on step 2 and 3 in [17], we tackle step 4a in this paper
– the pronunciation extraction. We test our algorithms on parallel data from
the Christian Bible since it is available in many different languages in written
form and in some languages also as audio recordings. A variety of linguistic
approaches to Bible translation [21] enables us to compare different translations
within the same source language. In our experiments, English takes the role of
the under-resourced target language. English is by no means under-resourced and
comprehensive pronunciation dictionaries are readily available [24]. However, for
this exploratory work we feel that understanding the target language gives a
deeper insight in the strengths and weaknesses of our algorithms.
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Fig. 2. Word segmentation through word-to-phoneme alignment

2 Word Segmentation

Cross-lingual word-to-phoneme alignments introduced in [2,19,20] and tackled
by us with our new alignment model Model 3P [17] are the basis for our pronun-
ciation extraction algorithm in Sec. 3. Therefore, this section summarizes the
concepts of [17] in condensed form. The word segmentation problem describes
the task of segmenting phoneme sequences into word units. We have shown in
[17] that unsupervised learning of word segmentation is more accurate when
information of another language is used. Model 3P1 for cross-lingual word-to-
phoneme alignment extends the generative process of IBM Model 3 by a word
length step and additional dependencies for the lexical translation probabilities.
Those alignments can be used for the segmentation task as illustrated in Fig. 2.
Using Model 3P for the alignment between English words and correct Spanish
phoneme sequences on the BTEC corpus [10] resulted in 76.5% F-Score (90.0%
accuracy [22]) and thus outperformed a state-of-the-art monolingual word seg-
mentation approach [9] by 42% absolute in F-Score (18.2% in accuracy).

3 Word Pronunciation Extraction

3.1 Formal Framework

Let Vsrc be the vocabulary of the source language and PhonemeSettrgt the
phoneme set of the target language. The data source we explore in our scenario
is a set DB ⊂ Vsrc

+ × PhonemeSettrgt
+ of pairs containing a written sentence

in the source language and its spoken translation in the target language. As de-
scribed in Sec. 2, we use Model 3P to find word-to-phoneme alignments for each
sentence-phoneme sequence pair in DB. An alignment As,t consists of a mapping
between the words in the source language sentence s ∈ Vsrc

+ and the phonemes
in the target language phoneme sequence t ∈ PhonemeSettrgt

+ segmented into
word units. We formalize As,t as a word over an alphabet containing pairs of
source language words and target language phoneme sequences.

As,t ∈ (PhonemeSettrgt
+ × Vsrc)

+

1 A multi-threaded implementation is available at http://pisa.googlecode.com/

http://pisa.googlecode.com/
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Fig. 3. Steps 1-5 on a German-English example (”Sprache zu Sprache Übersetzung” →
”Speech to speech translation”, ”Sprache die für dich dichtet und denkt” → ”Language
verses and thinks for you”, ”Erkennung von Sprache” → ”Speech recognition”)

Each element in As,t contains a hypothetical target language word represented
by its phonemes and the source language word aligned to it. We postulate that
the source language words are elements in s, and that concatenating all target
language words results in the complete phoneme sequence t.

3.2 Pronunciation Extraction Algorithm

We extract pronunciations based on the assumption, that phoneme sequences,
that are aligned to the same source language word, are likely to represent the
same target language word. They only differ due to phoneme recognition and
alignment errors. From the linguistic point of view, this is not always the case: in
Fig. 3, the German word Sprache has two different English translations (Speech
and Language). Step 3 of our algorithm addresses this special case.

We build the pronunciation dictionary iteratively by repeating the following
steps until all source language words are marked. The steps are visualized in
Fig. 3 with German as source language and English as target language.

1. Select the most frequent unmarked source language word v ∈ Vsrc and mark it.
2. Collect the set P ⊂ PhonemeSettrgt

+ of all phoneme sequences, which are aligned
to v (hypothetical target language words):2

2 For technical reasons, we define the ∈ sign for a symbol x ∈ Σ and a word w ∈ Σ+

as x ∈ w :⇔ ∃i ∈ N : x = wi
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P ← {h|∃(s, t) ∈ DB : (h, v) ∈ As,t}
3. Group the phoneme sequences into clusters C ⊂ 2P . We applied the clustering

algorithm DBSCAN [6] (ε = 1, minPts = 3) implemented in the ELKI [1] environment
with the Levenshtein distance metric. This step aims to separate elements in P
from each other, which do not represent the same target language word.

4. At this point, the clusters should contain phoneme sequences representing the same
target language word, but differing due to alignment and phoneme recognition
errors. Thus we try to reconstruct the correct phoneme sequence for each cluster
by merging its elements with the nbest-lattice [18] program.We obtain a set H ⊂
PhonemeSettrgt

+ of phoneme sequences, which are now assumed to correspond
to real target language words.

5. For each pronunciation h ∈ H , we choose a new word ID idh ∈ N and add both to
the pronunciation dictionary Dict.

When we apply the general algorithm above to the example in Fig. 3, the vari-
ables have following values:

1. v = Sprache

2. P = {s b ih ch r eh, l ae ng g w ah jh, uw s p iy ch, s p iy sh}
3. C = {{l ae ng g w ah jh}, {s b ih ch r eh, uw s p iy ch, s p iy sh}}
4. H = {l ae ng g w ah jh, s p iy ch}
5. Dict = {(1, l ae ng g w ah jh), (2, s p iy ch)}

4 Experiments

4.1 Corpus

We tested our pronunciation extraction algorithm on parallel data from the
Christian Bible. A variety of linguistic approaches to Bible translation (Dy-
namic equivalence, formal equivalence, and idiomatic translation [21]) enables
us to compare different translations within the same source language. In our ex-
periments, English takes the role of the under-resourced target language. For this
exploratory work we feel that understanding the target language gives a deeper
insight in the strengths and weaknesses of our algorithms. The English Standard
Version (ESV) [5] is a literal English translation of the Christian Bible [3]. Half
of the words in the vocabulary occur three times or more in the text, 30.5% have
only one occurrence. High word frequencies are suitable for our extraction algo-
rithm since we merge more phoneme sequences in Step 4 which leads to better
error correction as shown in Sec. 4.4. Verses in the ESV Bible are identified by
unique verse numbers (such as Galatians 5:22), which are consistent with verse
numbers in other Bible translations. Based on these numbers, we extracted a
parallel and verse-aligned corpus consisting of 30.6k English Bible verses (target
language) and 14 written translations of them (Tab. 1).
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To generate the target language phoneme sequences, we replaced the words in
the ESV Bible with their canonical pronunciations and removed word boundary
markers. Thereby we simulate the output of a perfect phoneme recognizer (0%
Phoneme Error Rate) and refrain from dealing with pronunciation variants and
phoneme recognition errors. However, we design our algorithms to be robust
against recognition errors. The pronunciations were taken from the CMUdict [24]
or generated with a grapheme-to-phoneme model trained on it (39 phonemes).

4.2 Evaluation Measures

We measure the quality of the word segmentation (Sec. 2) in terms of accu-
racy [22]. Additionally, we suggest 3 different evaluation measures, which ad-
dress different aspects of the quality of the extracted dictionary.

Let I be the set of all word IDs in the extracted dictionary Dict : I →
PhonemeSettrgt

+. We measure the structural quality of Dict by the Out-Of-
Vocabulary rate (OOV) on a subset of the English ESV Bible. The OOV rate
can not be calculated directly since Dict contains word IDs instead of written
words consisting of graphemes like in the ESV Bible. Therefore, a mapping be-
tween the word IDs and the written words is required. Let Vtrgt be the vocabulary
of the ESV Bible (written words) and Dictref : Vtrgt → PhonemeSettrgt

+ the
reference dictionary with the correct pronunciations. The mapping m : I → Vtrgt

assigns each word ID to the written word with the most similar pronunciation.

m(n) = argminv∈Vtrgt
dedit(Dict(n), Dictref (v)) (1)

where dedit denotes the edit distance. The setm(I) of matched vocabulary entries
in Dictref is then used to calculate the OOV rate.

Table 1. Overview of used Bible translations

ID Language Full Bible Version Name Number of running words

bg Bulgarian Bulgarian Bible 643k

cs Czech Bible 21 547k

da Danish Dette er Biblen p̊a dansk 653k

de1 German Schlachter 2000 729k

de2 German Luther Bibel 698k

es1 Spanish Nueva Versión Internacional 704k

es2 Spanish Reina-Valera 1960 706k

es3 Spanish La Biblia de las Américas 723k

fr1 French Segond 21 756k

fr2 French Louis Segond 735k

it Italian Nuova Riveduta 2006 714k

pt1 Portugese Nova Versão Internacional 683k

pt2 Portuguese João Ferreira de Almeida Atualizada 702k

se Swedish Levande Bibeln 595k

en English English Standard Version 758k
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While the OOV rate indicates the coverage of Dict on a Bible text, the
Phoneme Error Rate (PER) reflects the quality of the extracted pronun-
ciations on the phoneme level. It is defined as the average edit distance between
the entries in Dict and the closest entry in the reference dictionary Dictref :

PER =

∑
n∈I dedit(Dict(n), Dictref (m(n)))

|I| (2)

TheHypo/Ref ratio indicates how many hypothesis entries inDict are mapped
bym to a single reference entry inDictref on average (|I| divided by |m(I)|). The
higher the Hypo/Ref ratio, the more pronunciations are extracted unnecessarily.

4.3 Which Source Translation Is Favorable?

Fig. 4 shows the distribution of the edit distances between the extracted pronun-
ciations and the closest entries in the reference dictionary (pairs (n,m(n))) for
each of the 14 translations in Tab. 1. For example, the length of the dark blue
bar above the es3 label shows, that using the Spanish La Biblia de las Américas
translation, 4,464 of the 21,561 extracted pronunciations (20.7%) contain no
or only minor phoneme errors (edit distance lower than 0.1). The translations
are sorted by accuracy (descending from left to right). We can observe, that
the red bar (interval [0.1, 0.2)) is small, because a word has to contain at least
6 phonemes (and 1 phoneme error) to fall into this class and English words are
usually shorter. Apart from these side effects, the edit distance usually seems to
be approximately uniformly distributed in [0, 0.6), and only a few outliers have
higher edit distances. Exceptions are bg and cs. The red line marks the actual
size of the ESV Bible vocabulary. Fig. 5 breaks down the extracted pronunci-
ations by the differently colored absolute number of insertions, deletions, and
substitutions. 20% of all entries contain no phoneme error, 50% no more than
one error. Only about 30% of all entries contain 3 or more phoneme errors.

We investigate the impact of four factors to our evaluation measures.

Fig. 4. Distribution of the edit distances between the extracted pronunciations and
the nearest entry in the reference dictionary for all 14 source translations
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Fig. 5. Distribution of the absolute number of insertions, deletions, and substitutions
between the extracted pronunciations and the nearest entry in the reference dictionary

– Δ Vocabulary Size. The difference between the vocabulary size of the source
translation and the size of the ESV vocabulary.

– Δ Average Number of Words per Verse. The difference between the average
verse length in the source translation and in the ESV Bible.

– Δ Average Word Frequency The difference between the average number of
word repetitions in the source language and in the ESV Bible.

– IBM-4 PPL. To measure the general correspondence of the translation to IBM-
Model based alignment models, we run GIZA++ [14] with default configuration
on the word level and use the final perplexity of IBM Model 4 [4].

Tab. 2 shows the Pearson’s correlation coefficient |r| [15] between those four fac-
tors and our evaluation measures from Sec. 4.2. Fig. 6 plots some of the point
clouds with their regression line. We observe a rather weak linear correlation be-
tween the OOV rate and the word segmentation accuracy in Fig. 6 (a) (r = 0.68):
The better the word segmentation, the closer the extracted and the reference dic-
tionary structurally. The dominant factor for the OOV rate is the IBM-4 PPL
(Fig. 6 (b), r = 0.96). This suggests, that a literal translation is more important
than cross-lingual linguistic dissimilarities. This hypothesis is supported by the

Table 2. Absolute correlation coefficients |r| ∈ [0, 1] between our evaluation measures
and different influencing factors (high |r| - high linear correlation)

|r| Accuracy PER Hypo/Ref ratio OOV rate

Δ Vocabulary size 0.47 0.71 0.98 0.31

Δ Average number of words 0.59 0.72 0.85 0.06

Δ Average word frequency 0.55 0.79 0.97 0.21

IBM-4 PPL 0.77 0.54 0.10 0.96

PER 0.94 - - -

Hypo/Ref Ratio 0.53 0.77 - -

OOV rate 0.68 0.40 0.24 -
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wide variance of the evaluation measures between different translations within
the same source language: es3 has 5.5% higher accuracy, 10.7% lower OOV rate,
and 3.9% lower PER (absolute) than es1 since es3 is a very literal translation [11].
Similar results can be observed for French and Portuguese.There is only a weak
linear correlation of the average word frequency with the accuracy (Fig. 6 (c)),
but a stronger correlation with the PER. Consequently, frequent word repetitions
improve the quality of the extracted pronunciations on the phoneme level since
Step 4 in our extraction algorithm in Sec. 3.2 merges many phoneme sequences
and can correct errors more effectively. The Hypo/Ref ratio is highly correlated
with both the vocabulary size and the average word frequency. This suggests,
that Step 3 in our extraction algorithm needs to be improved: Often one single
cluster per source language word is generated, and Step 4 merges words which
are different in the target language. This high correlation also uncovers another
point for improvement: Pronunciations extracted from different source language
words can not be merged. For example, all three German definite articles are
translated to the, so there are at least three dictionary entries for the alone.
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Fig. 7. Average word frequency and number of phonemes per word over the PER (es3)

4.4 Which Words Are Extracted Correctly?

This section describes the characteristics of words which are likely to be extracted
correctly when the source translation es3 is used. Experiments with other source
translations show similar results. Fig. 7 indicates, that frequently repeated words
tend to contain no or only minor errors on the phoneme level (blue bar) while
there is no such clear correlation with the number of phonemes per word (red
bar). A look at some extracted pronunciations reveals two major sources of errors
for words with only 1-2 phoneme errors:

1. Single phonemes are added or dropped in the beginning or end of a word because
of off-by-one alignment errors:

– z f ih s t s instead of f ih s t s (fists)
– ih k s t instead of f ih k s t (fixed)

2. Different words with the same stem are merged together:

– s ih d uw s ih t instead of s ih d uw s t (seduced) or s ih d uw s ih

ng (seducing)
– ih k n aa l ih jh m instead of ih k n aa l ih jh (acknowledge) or ih k

n aa l ih jh m ah n t (acknowledgement)

Entries with two phoneme errors or more often contain two words because of
missing word boundaries between words often occurring in the same context:

– w er ih n d ih g n ah n t (were indignant)
– f ih n ih sh t ih t (finished it)

We assume that this kind of errors would not be very critical when using the
dictionary in an S2S system since those words are likely to be stuck together as
phrase later in the training process of the translation model anyway.

4.5 Combining Multiple Translations

In case of several written translations, we first extract the pronunciation dictio-
nary with each source translation separately, and then combine all of them in a
single dictionary. To combine the set of dictionaries, we first add the translation
tags (i.e. es3, de2. . . ) to the word IDs to obtain globally unique IDs. Second,
we concatenate all dictionaries and remove homophones. Starting out from the
es3 dictionary, we successively combined more dictionaries of other translations
ordered descending by the word segmentation accuracy. Fig. 8 suggests, that the
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Fig. 8. Evaluation measures over the number of combined source translations

OOV rate decreases slightly exponentially with the number of combined trans-
lations. At the same time, the Hypo/Ref ratio increases linearly. The PER only
increases slightly. Combining all 14 translations results in a dictionary with only
7.9% OOV rate, but more than 9 of 10 dictionary entries are extracted unnec-
essarily (Hypo/Ref ratio 10.7:1). Such a dictionary is far too noisy for practical
use, but it shows, that experiments with different source translations extract
different English words. Therefore, our future work will also focus on how to
remove this noise and explore the synergy of multiple translations.

5 Conclusion and Future Work

Using written translations in one or many source languages, we cross-lingually
segmented phoneme sequences in a target language using our alignment model
Model 3P [17]. We proposed a new algorithm for extracting a pronunciation
dictionary with word IDs from these segmentations and alignments, which can
be used in an S2S system bypassing the written form of a non-written or under-
resourced target language. In our exploratory experiments, we extracted English
pronunciations by using 14 different translations in 9 languages. With a Spanish
translation (es3), we built a dictionary for the ESV Bible [5] with 26.9% OOV
rate, in which most of the pronunciations contain not more than one wrong
phoneme. Combining dictionaries from multiple translations drops the OOV
rate to 7.9%, but increases the number of unnecessary entries. This shows, that
depending on the used translation, different English words are extracted.

In the future, we plan to enhance our pronunciation extraction algorithm
based on the results from Sec. 4.3: Step 3 needs to be improved to separate pro-
nunciation variants and different words with the same translation more reliably.
The algorithm needs to be adjusted to allow merging of pronunciations generated
by distinct source language words. Off-by-one pronunciation errors due to align-
ment errors may be reduced by reinforcing the alignments with the extracted
pronunciations after each iteration of our algorithm. Monolingual word segmen-
tation methods as in [9] may give additional hints. When combining multiple
dictionaries, a mechanism is to be found to filter accurate entries and benefit
from the lower OOV rate while keeping the Hypo/Ref ratio constant. In a next
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step, we will use a phoneme recognizer to obtain the phoneme sequences. Such a
phoneme recognizer can be bootstrapped using recognizers from other languages
and adaptation techniques as presented in [23]. Furthermore, we intend to use
the extracted dictionaries in a speech recognizer for a truly under-resourced lan-
guage. The final goal is to build an S2S system without any linguistic knowledge
of the target language.
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20. Stüker, S., Besacier, L., Waibel, A.: Human Translations Guided Language Dis-
covery for ASR Systems. In: Interspeech (2009)

21. Thomas, R.L.: Bible Translations: The Link Between Exegesis and Expository
Preaching. The Masters Seminary Journal 1, 53–74 (1990)

22. VIM: International Vocabulary of Basic and General Terms in Metrology. Interna-
tional Organization, pp. 09–14 (2004)

23. Vu, N.T., Kraus, F., Schultz, T.: Rapid Building of an ASR System for Under-
Resourced Languages Based on Multilingual Unsupervised Training. In: Inter-
speech (2011)

24. Weide, R.: The Carnegie Mellon Pronouncing Dictionary 0.6 (2005)



Can Statistical Tests Be Used

for Feature Selection
in Diachronic Text Classification?
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Abstract. In spite of the great number of diachronic studies in vari-
ous languages, the methodology for investigating language change has
not evolved much in the last fifty years. Following the progressive trends
in other fields, in this paper, we argue for the adoption of a machine
learning approach in diachronic studies, which could offer a more effi-
cient analysis of a large number of features and easier comparison of the
results across different genres, languages and language varieties. We sug-
gest the use of statistical tests as an initial step for feature selection in
an approach which uses the F-measure of the classification algorithms as
a measure of the extent of diachronic changes. Furthermore, we compare
the performance of the classification task after the feature selection made
by statistical tests and the CfsSubsetEval attribute selection algorithm.
The experiments were conducted on the British part of the biggest ex-
isting diachronic corpora of 20th century written English language – the
‘Brown family’ of corpora, using 23 different stylistic features. The results
demonstrated that the use of the statistical tests for feature selection can
significantly increase the accuracy of the classification algorithms.

1 Introduction

Approaches to text classification continue to develop from those based on knowl-
edge engineering techniques that prevailed in the 1980s, in which classifiers were
defined manually by domain experts. In the 1990s, these methods were super-
seded by those relying on machine learning which provided high levels of efficacy,
cost effectiveness, in terms of time and manual effort, and easy adaptation for
use in different scenarios and domains [26]. Continuous methodological improve-
ments in the field of text classification has led to the adoption of more effective
and less labour intensive approaches in place of those requiring a large amount
of human annotation. By contrast, approaches to the linguistic study of stylistic
variation and change were more conservative and did not follow the progressive
trends in other related fields.

Early work in the field of stylistic variation and change was based on histori-
cal and sociolinguistic approaches, e.g. [14,1,4]. The next generation of stylistic
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variation studies, e.g. [7,8] employed a corpus-based methodology and the multi-
dimensional framework presented in [5,6]. The same methodology was used in a
great number of subsequent diachronic studies, e.g. [32,33]. Another set of corpus-
based diachronic studies was initiated by the emergence of the diachronic part
of the ‘Brown family’ of corpora in the 1990s. These corpora offered a possi-
bility for diachronic comparison of various lexical, grammatical, syntactic and
stylistic features in two major English language varieties – British and American
[21] in the period 1961–1991/2. Many diachronic studies of these corpora (e.g.
[23,22,24]), shared the same methodology. The corpora were POS tagged, change
was presented in terms of absolute and relative differences between the corpora
and the statistical significance of that change was measured using the log like-
lihood function. The first attempt at completely automated feature extraction
from the raw text version of these ‘Brown family’ of corpora in diachronic stud-
ies was reported in [30]. The corpora were parsed with Connexor’s Machinese
Syntax parser1 and the features were automatically extracted from the parser’s
output. Statistical significance of the results was measured by the t-test.

In this paper, we adopt the hypothesis that diachronic language change could
be seen as a classification problem and therefore addressed by machine learning
techniques. To illustrate, if we wish to investigate the degree of change in certain
features between the texts published in 1961 and 1991, we could train a classifier
on a representative set of labeled texts (using the selected features as variables)
and then classify a set of randomly selected unlabeled texts using this classifier.
The performance of the classifier (in terms of the F-measure), would then repre-
sent the extent of diachronic change in the selected features. In the cases where
diachronic changes were most pronounced, the F-measure obtained by the clas-
sification algorithm will be at its highest level. More importantly, by using the
machine learning approach, we could also take advantage of existing attribute
selection algorithms in order to single out from a large set of initial features,
those features which underwent the most extensive changes over the observed
period. In this paper, we wanted to investigate whether statistical tests and the
CfsSubsetEval attribute selection algorithm [15] would improve the accuracy of
diachronic classification and whether they would select the same subsets of fea-
tures. In order to do so, we applied several well-known classification algorithms
(Näıve Bayes and different versions of Logistic and Support Vector Machines
functions) in Weka2 on the texts from the British part of the ‘Brown family’ of
corpora, using different subsets of the 23 initial features.

2 Related Work

Altmann et al. [3] and Kroch [19] proposed the logistic function as the underly-
ing S-shaped curve of linguistic change. Although the correctness of this choice
was not proved at the time, it was generally considered appropriate to use this
function in statistical studies of changing percentages of alternating forms over

1 http://www.connexor.eu
2 http://www.cs.waikato.ac.nz/ml/weka/

http://www.connexor.eu
http://www.cs.waikato.ac.nz/ml/weka/
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time ([2,29] in [18]). Twenty years later, Geisler [13] used logistic regression in
the study of relativisation variation in Ulster English [12]. Therefore, we decided
to include the classifier based on the logistic function for our experiments.

A survey of previous diachronic studies of the ‘Brown family’ of corpora mo-
tivated the development of our initial feature set. Leech and Smith [22] reported
a reduction in the use of passive voice between 1961 and 1991/2 in both British
and American English. Stajner and Mitkov [30] investigated diachronic changes
of four stylistic features: average sentence length, Automated Readability Index
[27], lexical density and lexical richness [11]. The results revealed statistically
significant changes in these features between 1961 and 1991/2 in both varieties
of English and across all four main text categories (Press, Prose, Learned and
Fiction). Although in both cases the authors differentiated only between texts
across the four main text categories, it is reasonable to expect that some signifi-
cant changes of these features would also be reported in a separate investigation
of the sub-genres (A–R, see Table 1). Mair et al. [23] compared the frequency of
occurrence of words with particular parts of speech in the British part of the cor-
pora. They reported a significant increase in the number of nouns and adjectives
and a decrease in the frequency of occurrence of pronouns in all four main text
categories over the observed period (1961–1991). Usage of verbs underwent a sig-
nificant increase in the Press and Science categories, and a significant decrease
in the Prose and Fiction categories. In the study reported in the current paper,
we investigated nine different POS tags. We differentiated between texts across
sub-genres (A–R) and calculated two different types of tag frequencies – tag fre-
quency as a percentage of the selected tag in the whole text and tag frequency
as an average per sentence. Stajner and Mitkov [31] reported some significant
changes in sentence complexity in the period 1961–1991 in three genres of the
British part of the corpora.

Identifying the best set of features for a particular classification task is one of
the central problems in machine learning. The CfsSubsetEval attribute selection
algorithm uses a correlation based approach to the feature selection problem.
It is based on the idea that “good feature sets contain features that are highly
correlated with the class, yet uncorrelated with each other” [15]. When compared
with a wrapper, the CfsSubsetEval gave similar results to the wrapper and even
outperformed the wrapper on small datasets [15].

3 Methodology

The corpora, features and experimental settings used in this study are presented
in the following three subsections.

3.1 Corpora

We used only the British part of the aforementioned ‘Brown family’ of corpora
[21]:

– the Lancaster-Oslo/Bergen Corpus of British English (LOB);
– the Freiburg-LOB Corpus of British English (F-LOB).
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These two corpora are mutually comparable [21] and contain texts published in
1961 and 1991, respectively.3 Each corpus consists of approximately 1,000,000
words (500 texts of about 2000 running words each). The texts cover fifteen
different text genres (Table 1), which could be further grouped into four, more
generalised, categories: Press (A–C), Prose (D–H), Learned (J) and Fiction (K–
R). The corpora were used in their untagged, raw text versions and parsed with

Table 1. Structure of the corpora

Category Code Genre # texts

Press
A Press: Reportage 44
B Press: Editorial 27
C Press: Review 17

General Prose

D Religion 17
E Skills, Trades and Hobbies 38
F Popular Lore 44
G Belles Lettres, Biographies, Essays 77
H Miscellaneous 30

Learned J Science 80

Fiction

K General Fiction 29
L Mystery and Detective Fiction 24
M Science Fiction 6
N Adventure and Western 29
P Romance and Love Story 29
R Humour 9

Connexor’s Machinese Syntax parser in order to achieve consistent, highly accu-
rate sentence splitting, tokenisation, lemmatisation and part-of-speech, syntactic
and functional tagging.

3.2 Features

Twenty-three stylistic features (automatically extracted from the parser’s out-
put) were exploited (Table 2). Nine different POS tags were considered: N
(noun)4, A (adjective), PRON (pronoun), DET (determiner), ADV (adverb),
V (verb)5, CC (coordinative conjunction), CS (subordinate conjunction), PREP
(preposition). Each POS tag was represented by two separate features: (1) the
percentage of tokens tagged with that POS in each text; and (2) the average
number of tokens tagged with that POS per sentence. Therefore, the last two
rows in Table 2 account for 18 different features in total.

Connexor’s Machinese Syntax parser was reported to achieve 99.3% accuracy
in POS tagging on Standard Written English (benchmark from the Maastricht
Treaty) [10]. Details of the parser’s tokenisation and lemmatisation processes
can be found in [30], while the details of passive and finite predicator marking
procedures can be found in [31].

3 Both corpora are publicly available as a part of the ICAME corpus collection at
http://www.hit.uib.no/icame

4 The ABBR morphological tag was counted as occurrence of a noun (N).
5 The morphological tags ING (present participle) and EN (past participle) were
counted as occurrences of a verb (V).

http://www.hit.uib.no/icame
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Table 2. Features (Key: c – total number of characters in a text; w – total number
of words in a text; s – total number of sentences in a text; tokens – total number of
tokens in a text; passive – total number of passive constructions in a text; active – total
number of active constructions in a text; simple s – total number of sentences in a text
which have 1 finite predicator at the most; complex s – total number of sentences in a
text which have 2 or more finite predicators)

Feature Code Formula
Average sentence length ASL ASL = w/s
Coleman-Liau readability index CLI CLI = 5.89(c/w) - 29.5(s/w) - 15.8
Lexical richness LR LR = (unique lemmas)/(unique tokens)
Passive voice (%) PASS PASS = passive/(passive+active)
Sentence complexity COMPL COMPL = (simple s)/(complex s)
Part-of-Speech (%) POS per POS per = POS/tokens
Part-of-Speech (on average per sentence) POS av POS av = POS/s

3.3 Experimental Settings

First, we wanted to explore whether it is reasonable to expect that these 23 stylis-
tic features would differ between the texts published in 1961 and those published
in 1991, if we investigate them in each sub-genre (A–R) separately. Therefore,
we conducted two sets of preliminary experiments. The Shapiro-Wilk’s W test
(offered by SPSS) was applied in order to determine whether the features follow
the normal distribution across all thirteen genres in the two observed years. Ad-
ditionally, the skewness and the existence of outliers was examined by using the
box-plot. As the results demonstrated that the distribution of certain features in
certain genres was significantly different from the normal distribution, we were
not able to apply the t-test as a measure of statistical significance of the changes
in all cases. In the cases where the distribution of the features was not approx-
imately normal in both samples, we applied a non-parametric statistical test
(Kolmogorov-Smirnov test).6 The results of these statistical tests revealed signif-
icant differences in all 23 features, though in different subsets across the thirteen
analysed genres. After these two preliminary experiments, which justified the
use of the 23 initial features, we applied several Machine Learning algorithms
in Weka Experimenter [34]: Support Vector Machines [25,17], Näıve Bayes [16],
Logistic [9] and Simple Logistic [20,28] to classify the texts according to the year
of publication – 1961 or 1991, using 5-fold cross-validation with 10 repetitions.
The experiments were conducted separately for each text genre (A–P, excluding
M)7, thus enabling a comparison of diachronic changes in the period 1961–1991
across these thirteen text genres. We conducted three sets of experiments which
differed in the subset of features they used:

– Experiment I: Using all 23 features;
– Experiment II: Using only the features marked as significant (at a 0.05 level

of significance) by the statistical tests;

6 We followed the same method for deciding on the appropriate statistical test as
described in [31].

7 Genres M and R were excluded from our analysis as they contain less than 10 texts
in each corpus which is insufficient for the Machine Learning approach.
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– Experiment III: Using only the features selected by the CfsSubsetEval at-
tribute selection algorithm [15].

The comparison of the results obtained from these three experiments allowed us
to further explore the potential of such a machine learning approach in diachronic
studies. The goal was to answer the following questions:

1. Could the use of the statistical tests as a preprocessing (feature selecting)
step improve the classification accuracy? (Comparison of the results of the
first and second experiment).

2. Would the classification accuracy be improved if only the features selected
by the CfsSubsetEval attribute selection algorithm were used? (Comparison
of the results of the first and third experiment).

3. Would the CfsSubsetEval attribute selection algorithm be consistent with
the results of the statistical tests? (Comparison of the results of the second
and third experiment).

4 Results and Discussion

The results of the classification experiments are presented in Table 3. Column
‘Exp.’ contains the label of the experiment (I, II, III or III+). While running the
CfsSubsetEval attribute selection algorithm in the third experiment, it was noted
that in the cases when it actually cannot find the best subset of features, the al-
gorithm returns the first feature in the given list of all features as the best one.
In those cases, the value of ‘the merit of best subset found’ is zero, while in the
case of successful feature selection ‘the merit of best subset found’ has a value
greater than zero. Therefore, in the first of these cases, an additional classification
experiment was carried out – Exp. III+– on the features selected by the CfsSub-
setEval algorithm applied only on the subset of the initial set of features (those fea-
tures reported as significant by the statistical tests). Columns ‘NB’, ‘Log.’, ‘SLog.’,
‘SMO(s)’, and ‘SMO(n)’ contain the F-measures of the five following classifica-
tion algorithms: Näıve Bayes, Logistic, Simple Logistic, Support Vector Machines
(with previous normalisation of the data), Support Vector Machines (with previ-
ous standardisation of the data) used in 5-fold cross-validationwith 10 repetitions.
Column ‘#feat.’ contains the number of features used in each experiment. The
highest obtained F-measure in each genre is shown in bold. As each genre con-
tains the same number of texts published in 1961 and those published in 1991,
the baseline accuracy in all genres could be considered to be 0.5. All comparisons
between the results of experiment I and any other experiment were done pairwise
using the paired t-test at a 0.05 level of significance. The statistically significant
differences are shown in bold, with significantly lower results presented with an
‘*’, and significantly higher results presented with a ‘v’.

From the results presented in Table 3 it can be noted that in all cases where
a statistically significant difference between the results of the first and second
experiments was reported (genres B and N), the F-measure was lower in exper-
iment I which uses all features. This indicates that the use of statistical tests
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Table 3. Results of the classification experiments

Code Genre Exp. NB Log. SLog. SMO(n) SMO(s) #feat.

A Press: Reportage
I 0.69 0.74 0.81 0.79 0.84 23
II 0.76 0.81 0.78 0.78 0.77 8
III 0.76 0.74 0.72 0.74 0.73* 3

B Press: Editorial
I 0.62 0.68 0.74 0.75 0.66 23
II 0.80v 0.81v 0.79 0.77 0.78 4
III 0.72 0.73 0.73 0.72 0.73 1

C Press: Review
I 0.61 0.72 0.73 0.74 0.76 23
II 0.69 0.71 0.72 0.73 0.71 2
III 0.75 0.72 0.74 0.78v 0.75 1

D Religion
I 0.71 0.72 0.76 0.74 0.74 23
II 0.78 0.63 0.79 0.79 0.77 5
III 0.84 0.80 0.81 0.81 0.82 1

E Skills, Trades and Hobbies
I 0.56 0.62 0.66 0.64 0.62 23
II 0.62 0.62 0.62 0.54 0.61 2
III 0.61 0.61 0.61 0.59 0.61 1

III+ 0.61 0.61 0.61 0.59 0.61 1

F Popular Lore
I 0.45 0.54 0.65 0.61 0.61 23
II 0.53 0.62 0.64 0.56 0.61 3
III 0.59 0.67 0.67 0.50 0.66 1

G Belles Lettres, Biographies...
I 0.57 0.70 0.72 0.68 0.71 23
II 0.60 0.67 0.67 0.63 0.66 6
III 0.63 0.62 0.61 0.62 0.64 2

H Miscellaneous
I 0.55 0.60 0.65 0.59 0.61 23
II 0.55 0.57 0.62 0.55 0.58 3
III 0.63 0.62 0.62 0.64 0.61 1
III+ 0.50 0.62 0.62 0.35 0.55 1

J Science
I 0.65 0.74 0.71 0.69 0.74 23
II 0.70 0.72 0.72 0.69 0.71 6
III 0.71 0.73 0.72 0.69 0.73 3

K General Fiction
I 0.52 0.47 0.48 0.55 0.50 23
II 0.63 0.65 0.64 0.65 0.64 3
III 0.54 0.55 0.56 0.43 0.51 1
III+ 0.59 0.61 0.60 0.50 0.55 1

L Mystery and Detective Fiction
I 0.35 0.57 0.58 0.54 0.56 23
III 0.50 0.46 0.58 0.37 0.42 1

N Adventure and Western
I 0.69 0.57 0.55 0.58 0.45 23
II 0.70 0.71 0.68 0.69 0.69v 2
III 0.69 0.67 0.68 0.72 0.70v 1

P Romance and Love Story
I 0.60 0.56 0.54 0.56 0.51 23
II 0.65 0.64 0.63 0.66 0.63 2
III 0.63 0.63 0.62 0.58 0.59 1
III+ 0.66 0.68 0.68 0.67 0.67 1

as a preprocessing step could enhance the diachronic classification of texts. In
comparison with the results of the first experiment (Exp. I), the use of the Cf-
sSubsetEval attribute selection algorithm (Exp. III) significantly increased the
classification performance in two cases (genres C and N), while it significantly
decreased the classification accuracy in genre A.

The use of the classification algorithms based on the logistic function (columns
‘Log.’ and ‘SLog.’) led to the highest F-measure in 9 genres (B, C, E–L, and P),
while the classification algorithms based on Support Vector Machines (columns
‘SMO(n)’ and ‘SMO(s)’) led to the highest results only in 5 genres (A, C, J, K,
and N). This might be interpreted as support for the idea that the diachronic
change is best presented by the logistic function [3,19].
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The results presented in Table 3 also indicate that the stylistic changes (in
terms of these 23 initial features) were most pronounced in the Press category
(genres A–C). Genres belonging to the Prose category underwent less extensive
stylistic changes than those in the Press genre, as the F-measures are significantly
lower in Prose than in the Press category. It can also be noted that within the
Prose category, genre D (Religion) stands out in with the highest classification
accuracy which leads to the conclusion that the stylistic changes were more
pronounced in that genre than in the other four, thus making this genre an
outlier in its category.

A more detailed analysis of features marked as significant by statistical tests
and those returned by the CfsSubsetEval attribute selection algorithm as part
of the best subset of features (Table 4) revealed that the features selected by the
CfsSubsetEval algorithm are a subset of features marked as significant by statis-
tical tests, in all cases where the CfsSubsetEval algorithm was successful (‘the
merit of the best subset found’ above zero). In the cases when the CfsSubsetEval
algorithm is unable to find the best subset of features, the algorithm selects the
first feature in the given list of features, with ‘the merit of best subset found’
equal to zero.

Table 4. Selected features in experiments II, III and III+

Genre Exp. II Exp. III Exp. III+

A ASL, LR, PASS, COMPL, V per, V av, N av, det per LR, COMPL, v av /
B LR, det per, prep per, sc av LR /
C LR, COMPL LR /
D n av, prep av, adj per, adj av, CLI CLI /
E LR, CLI CLI* CLI*
F pron per, pron av, CLI CLI /
G LR v per, n per, sc per, sc av, CLI CLI, n per /
H ASL, det av, prep av CLI* ASL*
J PASS, det per, det av, prep per, prep av, CLI CLI, prep per, det per /
K COMPL, adv av, cc per CLI* adv av
L / CLI* /
N n per, CLI CLI* CLI*
P LR, adv per CLI* LR*

The results of experiment III+ were found to be significantly better than those
of experiment III when CfsSubsetEval:

– fails to find the best subset of the initial features (selected feature in column
‘Exp. III’ in Table 4 is marked by an ‘*’),

– succeeds in finding the best subset of those features reported as significant
by statistical tests (selected feature in column ‘Exp. III+’ in Table 4 is not
marked by an ‘*’).

Although in our data set we found only one such case (genre K), we could still
say that the safest way to use the CfsSubsetEval attribute selection algorithm
would be to apply it only to a subset of initial features (only those features which
were marked as significant by the statistical tests).
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5 Conclusions

The results presented in this study indicated that the stylistic diachronic changes
of written British English in the period 1961–1991 were significantly more pro-
nounced in the Press category than in three other text categories (Table 3).
They also demonstrated that the genres within the same broad text category
are very heterogeneous. In each of them, different groups of features underwent
a significant diachronic change (Table 4) and the extent of those changes dif-
fered significantly across them (Table 3). The results also indicated that lexical
richness (LR) and the Coleman-Liau readability index were the features which
significantly changed in most of the investigated genres (Table 4).

On the basis of the comparison of the results of different experiments, we can
conclude that the use of the statistical tests as a preprocessing (feature selection)
step, significantly increases the classification accuracy in several cases, while in
others it does not have any significant influence. Therefore, we suggest the use of
the statistical tests as a preprocessing step in other diachronic text classification
tasks. When compared with the CfsSubsetEval attribute selection algorithm, the
statistical test achieved significantly better or equal performance (with the only
exception in genre D, for the Näıve Bayes classification algorithm). In most cases,
this was due to the fact that the CfsSubsetEval algorithm selects the first feature
in the given list of features in the cases when it is not able to find a subset with
‘the merit of best subset found’ greater than zero. The use of the CfsSubsetEval
attribute selection algorithm on the subset of features previously selected by the
statistical tests, significantly improves the classification accuracy (genre K) or
it leaves it unchanged. The statistical tests when used in the preprocessing step
on their own, either significantly improve the classification accuracy (genres B
and N) or they do not lead to any significant differences. Therefore, we suggest
either the use of the statistical tests on their own or the combination of the
CfsSubsetEval attribute selection algorithm with them in the preprocessing step
of diachronic text classification.

Most importantly, the presented study demonstrated various possibilities that
the machine learning approach can offer to the investigation of language change.
By partially automating the process, it can speed up and facilitate the initial
phases of language change studies, by providing a broad overview of possible
changes and selecting the most important features from a potentially large ini-
tial set, which would be the subject of closer investigation. A machine learning
approach could also offer an easier comparison of diachronic changes across dif-
ferent genres, languages and language varieties.
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Abstract. Sentiment analysis is an area of research that has gained considerable 
attention in recent years due to the increasing availability of opinionated infor-
mation online. The majority of the work in sentiment analysis considers the po-
larity of word terms rather than the polarity of specific senses of the word but 
different senses of a word can have different opinion-related properties. In order 
to address this issue we consider novel semantic features of words in the con-
text of a sentence. We take a sentence as a sequence of words augmented with 
features based on word sense disambiguation and sentiment lexicons with sense 
specific opinion-related properties. We then use a factored version of the se-
quence kernel in a support vector machine, and apply it to sentiment classifica-
tion of sentences. We evaluate this sentiment analysis methodology on three 
publicly available corpuses. We also evaluate the effectiveness of several pub-
licly available sense specific polarity lexicons and combinations. Experiments 
show that our factored approach offers improvements over the surface words 
baseline and other state-of-the-art kernels. 

Keywords: Information Retrieval, Social Media, Sentiment Analysis, Opinion 
Mining, Polarity Classification, Kernel Methods, Word Sense Disambiguation. 

1 Introduction 

Textual information can easily be seen as consisting of facts and/or opinions. Facts 
are an objective expression about entities, events and their properties, and opinions 
are a subjective expression of people’s sentiments, appraisals or feelings toward enti-
ties, events and their attributes [1]. Determining the opinion contained within a piece 
of text is the aim of sentiment analysis (or opinion mining), which is assisted by natu-
ral language processing (NLP), information retrieval (IR) and computational linguis-
tics (CL).  

Sentiment analysis has gained considerable attention in recent years, partially due 
to the many practical applications it supports. Examples include helping companies 
and organizations find customer opinions of commercial products or services; track-
ing opinions in online forums, blogs and social networks; or helping individuals de-
cide on which product to buy or which movie to watch. The growing demand for 
automated sentiment analysis is supported by an increasing amount and availability of 
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opinionated information online, mainly due to social media websites and e-commerce 
services [2], [3]. Some of the most common tasks in sentiment analysis include: 

• Subjectivity Classification: Determining if a given piece of text is factual, describ-
ing a given situation or event without expressing an opinion, or opinionated [4]. 
This equates to a binary text classification task of classifying a given piece of text 
as either subjective or objective; 

• Polarity Classification: Determining if a given piece of text expresses a positive, 
negative or neutral (or both) opinion or attitude [4]; 

• Polarity Intensity Classification: Determining the direction (polarity) and intensity 
of an opinion in a given piece of text. The intensity is usually in the form of a scale 
of star ratings [5]; 

• Feature/Aspect-based Sentiment Analysis: Discovering relevant aspects of entities 
in a given piece of text and the opinions or sentiments they express, and then de-
termining the polarity of these opinions [6]. The features or aspects can be 
attributes or components of an object or entity. 

These tasks can also be performed in combination, for example, one can start by clas-
sifying expressions as being either objective or subjective in nature; expressions clas-
sified as subjective can then be further classified as neutral or polar; and finally polar 
expressions can be classified as either positive, negative or both. Moreover polarity 
classification can be performed at various levels: word-level, phrase-level, sentence-
level and document-level. Classifying the sentiment of documents is a very different 
task from recognizing the contextual polarity of words and phrases, where there is 
very little contextual information. This paper focuses on polarity classification at the 
sentence (and phrase) level. 

Support vector machine (SVM) is a popular kernel method for text classification 
[7]. Kernel methods are based on the use of a kernel function, which allows the map-
ping of data from the original feature space into a higher dimensional linear space. 
The comparison of data can thus be done by computing the inner product in the higher 
dimensional space, albeit implicitly through the so-called kernel trick. The choice of 
kernel function depends on the application. Kernel methods can be applied to com-
plex objects such as sequences, images, graphs and textual documents [8], based on 
an appropriate kernel function. This makes them well suited for structured NLP [9] 
and they have been applied to various tasks such as Question Answering, Summariza-
tion and Recognizing Textual Entailment. This paper focuses on the sequence kernel 
(SK), which has been successfully employed for sentiment analysis tasks [10], [11]. 
The SK aggregates the frequency of matching subsequences between two sequences. 
A common approach is to consider the words, or terms of a sentence as the individual 
objects in the sequence. 

Despite recent efforts [12], [13], [14], [15], [16], [17] the majority of work in sen-
timent analysis still considers the polarity of word terms rather than the polarity of 
specific senses of the word. It is clear that different senses of a word can have differ-
ent opinion-related properties, for example, the adjective “hysterical” can mean, upset 
or scared (e.g. she was frightened and out of control, she was hysterical) but it can 
also mean excited or hilarious (e.g. the comedian was so funny, he was hysterical). In 
order to address this issue we consider novel semantic features of words in the context 
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of a sentence. To be precise we take a sentence as a sequence of words augmented 
with features based on word sense disambiguation (WSD) and sentiment lexicons 
with sense specific opinion-related properties. Namely the surface words with the 
corresponding WordNet [18] senses (defined as a concatenation of the word’s lemma, 
its reduced part of speech (POS) tag and its sense number, see section 3.3) and their 
corresponding polarity. We consider individual features as well as a factored repre-
sentation of features. We evaluate the quality of such feature sequences on two binary 
text classification tasks, the determination of whether a sentence is subjective or ob-
jective in nature (subjectivity classification); and whether a sentence expresses a posi-
tive or negative sentiment (sentiment polarity classification). Our evaluations show 
that the factored sequence kernel can be quite effective for the tasks of polarity and 
subjectivity classification, and performs better than other state-of-the-art techniques. 

To the best of our knowledge no previous study has considered a factored version 
of the sequence kernel for sentiment classification, nor used sequences of WordNet 
senses and sequences of polarities. 

The rest of this paper is structured as follows. Section 2 gives a brief introduction 
to sequence kernels and their factorization. Section 3 describes the text classification 
tasks as well as the experimental setting considered for evaluation of the kernel and 
features. Section 4 reports the experimental results. Section 5 concludes this paper 
with a discussion of the results and possible future work. 

2 Sequence Kernels 

Some of the first kernel methods represented documents as a bag-of-words until Lod-
hi et al. [19] developed what would become known as sequence kernels (SKs) (or 
string kernels). Rather than making use of features such as word frequencies, SKs use 
the number of all possible ordered subsequences of characters contained in a text 
document. Although such mechanisms reflect the structure of sentences, it was still 
not the ideal solution for comparing sentences within large corpora, due to the compu-
tational complexity of the kernel. Due to this downside, further developments ex-
tended the idea of SKs to process documents as sequences of words (word sequence 
kernel) increasing the number of symbols to consider but greatly reducing the average 
number of symbols per document. Since the kernel’s dynamic programming algo-
rithm depends only on sequence length this increases its computational efficiency 
significantly [20], [21]. This idea was extended to allow the comparison of complex 
objects, such as fixed length vectors of features, through a weighted factored repre-
sentation [10]. Cancedda et al. in the latter study have shown that there are advantages 
in using the factored kernel, compared to a linear combination of kernels or a single 
kernel applied to each element in the vector separately. 

Definition 1. Let  be a feature subsequence space of sequences set , and  be 
the set of subsequences of  of size ,  be the number of gaps in the subse-
quence , and  be the gap penalization factor, so for  and  belonging to  and 

, the gap-weighted subsequence kernel of order  can also be defined as an 
inner product of vectors of : 



 Factored Semantic Sequence Kernel for Sentiment Polarity Classification 287 

 

 , ,  ∑  (1) 

where 

  ∑ 1   (2) 

When  is 1 there is no penalization of gaps, meaning every subsequence will contri-
bute equally whether the elements in the sequence are contiguous or not. As  de-
creases the gap penalization increases, meaning that as its value gets very close to 0 
the kernel will be reduced to counting the number of consecutive subsequences.  

A dynamic programming algorithm used for computing SK, requiring | || |  arithmetic operations, is presented in [19]. Note that when computing the 
order  kernel , this algorithm computes all kernels  for  allowing the 
computation of an    kernel ∑ . 
2.1 Factored Sequence Kernel 

This paper considers more complex structures as the objects in the sequences, such as 
fixed length vectors of associated features/factors. One efficient way to combine the 
results of such kernels of these features is the factored combination of kernels. 

 
Definition 2. Let  be defined as a tuple of  features :  Σ , and the 
weights  0 control the relative contribution of the different factors in the global 
kernel. The factored SK is defined as a soft-matching kernel, where for a pair of ob-
jects ,  the kernel  is defined as 

 , ∑ 1    (3) 

that is 

  ,  ∑ ∑ ∏ ∑     (4) 

Note that whereas the linear combination of SK has  times the complexity of the 
single kernel version, the factored version has complexity | || |  which 
can be quite significant for large sequences. Finally note that since the number of 
subsequences in a sequence increases with its length, the value of the kernels should 
be normalized to compensate for this effect. Then 

 

 ,  ,, ,    (5) 

3 Methodology 

This paper presents a novel set of feature sequences based on word sense disambigua-
tion (WSD) and sentiment lexicons with sense specific opinion-related properties. We 
consider a tridimensional factored representation in a similar fashion to Cancedda  
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et al. [10], where each word in the sequences is also accompanied by its associated 
lemma and POS. In this paper we explore a novel set of features: the surface words, 
their WordNet sense, and their polarity: 

, , ,  ,  

 

Table 1. Tridimensional factored representation of an example sentence “This movie is not 
good” 

     i 
d 

1 2 3 4 5 

1 This movie is not good 
2 this#ND movie#n#1 is#v#1 not#r#1 good#a#1 
3 O O O N P 

 
This allows the kernel to not only match the surface words but also senses of the 

words as well as the polarity of the word senses. The idea is that having a set of fea-
tures that is tailored for the task will increase the performance of the system. 

3.1 Sentiment Polarity Corpuses 

We evaluate our approach on two binary text classification tasks, the determination of 
whether a sentence is subjective or objective in nature (subjectivity classification); 
and whether a sentence expresses a positive or negative sentiment (sentiment polarity 
classification). We conduct a series of 10-fold cross-validation tests on three publicly 
available corpuses. Namely: 

• Movie Reviews Polarity corpus (sentence polarity dataset v1.0) [5] – This corpus 
contains 5331 positive and 5331 negative processed sentences/snippets taken from 
several movie reviews. 

• SemEval-2007 Affective Task corpus [22] – This corpus contains 500 positive  
(valence  0) and 500 negative (valence  0) news headlines, extracted from 
news web sites (such as Google news and CNN) and/or newspapers. 

• Movie Reviews Subjectivity corpus (subjectivity dataset v1.0) [4] – This corpus 
contains 5000 subjective and 5000 objective processed sentences taken from sever-
al movie reviews. 

3.2 Word Sense Disambiguation 

We perform WSD with a WordNet-based method (WordNet::SenseRelate::AllWords 
[23]) in order to obtain the WordNet sense corresponding to the words in the corpus. 
We choose the same combination of parameters that achieved the best result reported 
in [23], using the Lesk measure [24] as the similarity function, which tends to result in 
much higher recall, (since it is able to measure the similarity between words with any  
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POS); and a window size of 15 (the number of words, to be taken into consideration 
when performing the WSD). In order to increase the compatibility of the sentences in 
the corpuses with WordNet::SenseRelate::AllWords, we replace contracted expres-
sions with their full version (e.g.  the term “won’t” is replaced by  “will not”). 

3.3 Sentiment Lexicons 

Despite recent efforts, most work still makes use of the words’ prior polarity in order 
to classify the polarity of sentences or documents. Often overlooking the fact that the 
polarity of a word depends on the context in which it is expressed [25]. In order to 
address this issue this paper makes use of several WordNet-based polarity lexicons 
that take into account the polarity of particular senses of the words, namely, Senti-
WordNet [2][26], Q-WordNet [27] Micro-WNOp [28]. 

This paper assigns each WordNet sense a value based on an aggregated score (A-
score = P-score – N-score) similar to the approach taken by Agerri et al. [27]. Namely 
assigning the following values for the overall polarity: 

• “P” to positive senses (A-score > 0) – e.g. true#a#2 which has a P-score of 1 and a 
N-score of 0; 

• “N” to negative senses (A-score < 0) – e.g. cynical#a#1 which has a P-score of 0 
and a N-score of 1; and 

• “O” to objective and neutral senses (A-score = 0) – e.g. real#a#7 which has a P-
score of 0 and a N-score of 0. 

We also consider an alternative representation by assigning a value of B for senses 
that can have both polarities (A-score = 0, P-score ≠ 0, N-score ≠ 0, and P-score = N-
score) – e.g. literal#a#1 which has a P-score of 0.25 and a N-score of 0.25. This alter-
native representation seems to have little to no effect in preliminary experiments, as 
such it is not considered for the final experiments. 

We analyze the effectiveness and coverage of the polarities obtained from the dif-
ferent sentiment lexicons, by themselves and in combination as depicted in Table 2. 

Table 2. Sentiment lexicons considered 

ID Lexicon Senses 
L1 Micro-WNOp (MWN) 2800 
L2 Q-WordNet (QWN) 15511 
L3 SentiWordNet (SWN) 49447 
CL1 Micro-WNOp + Q-WordNet (MWN + QWN) 18062 
CL2 Micro-WNOp + SentiWordNet (MWN + SWN) 51001 
CL3 Q-WordNet + SentiWordNet (QWN+SWN) 60738 
CL4 Micro-WNOp + Q-WordNet + SentiWordNet (MWN+QWN+SWN) 62194 

The polarity lexicons are in the format Lemma#ReducedPart-of-SpeechTag# 
SenseNumber Polarity {P or N or O (or B)}. Note that the combined lexicon 
QWN+SWN (CL3), for example, does not have the same meaning as SWN+QWN. 
QWN+SWN is generated by using the polarities in Q-WordNet as a starting point and 
then adding to it the polarities extracted from SentiWordNet for words that are present in 
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SentiWordNet and not in Q-WordNet. This means that there are other possible combina-
tions that are not featured in this table, since they proved to be less effective The most 
efficient combinations are those that give priority to the most finegrained and smallest 
lexicons especially when considering SWN, for example QWN (15511) + SWN (49447) 
results in 60738 unique WordNet sense polarities in total. This might be due to the fact 
that SWN was not manually annotated and some senses are misclassified, so by giving 
priority to the senses in MWN and QWN we reduce this negative influence. 

3.4 Support Vector Machine 

The SVM implementation chosen to run the classification tasks is libSVM [29]. In 
order to investigate the effects of the different features considered, we use the follow-

ing combinations of weight vectors , , : 

• For the single feature experiments: 1,0,0 , 0,1,0 , 0,0,1 ; 
• for the two factor experiments: 1,1,0 , 1,0,1 , 1,2,0 , 2,1,0 , 2,2,0 , 1,0,2 , 2,0,1 , 2,0,2 ; 
• and for the full factored experiments: 1,1,1 , 1,1,2 , 2,1,1 , 1,2,1  and w = [2,4,1] 

For the SK’s parameters  and , we use values from the sets {2, up to 2, 3, up to 3} 
and {0.1, 0.5, 1} respectively. 

4 Experimental Evaluation 

We evaluate the impact of the proposed methodology for sentiment classification 
tasks. Note that the results are for a combination of parameters where a given combi-
nation is denoted by  in Table 3. 

Table 3. Parameter combinations 

           
 

. .  

   
   

We start by evaluating the performance of the different sentiment lexicons consi-
dered, using only the polarities generated by each corresponding lexicon (Table 4). 
We found that the combined lexicon CL4 comprising Micro-WNop, Q-WordNet and 
SentiWordNet achieves the best performance in most cases. Since it also has the larg-
est coverage, we choose it for the remaining tests. 
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Table 4. Sentiment lexicon evaluation 

Lexicon Movie Polarity SemEval News Movie Subjectivity 
L1 50.81 54.70 53.00 
L2 53.19 55.40 53.42 
L3 56.27 58.90 63.52 

CL1 53.73 56.40 53.97 
CL2 56.19 59.20 63.63 
CL3 57.35 59.60 62.59 
CL4 57.51 60.10 63.17 

We then evaluate the performance of the various features separately, as well as the 
SK parameter combinations (Table 5). Please note that these experiments equate to 
the simple SK where: 1,0,0  means only the surface words contribute,  0,1,0  means only the WordNet senses contribute and 0,0,1  means that 
only the polarities contribute. We found that WSD provides an improvement over the 
surface words for the SemEval News and Movie Reviews Polarity corpuses. However 
for the Movie Reviews Polarity corpus there is a slight decline from using the Word-
Net senses. We also found that the polarity sequences are not very accurate, being 
much lower in accuracy than the surface words or WordNet senses.  

Table 5. Single feature SK parameter evaluation 

 Movie Polarity SemEval News Movie Subjectivity 
 

 
[1,0,0] [0,1,0] [0,0,1] [1,0,0] [0,1,0] [0,0,1] [1,0,0] [0,1,0] [0,0,1] 

 76.22 75.32 57.48 68.00 69.40 58.10 89.63 89.77 63.04 
 76.08 75.43 57.40 68.50 71.50 58.10 89.79 89.73 63.13 
 76.11 75.24 57.51 68.90 70.10 57.00 89.86 89.99 63.07 
 76.33 75.70 57.48 67.00 69.70 57.90 89.99 89.93 63.17 
 76.21 75.59 57.39 68.30 70.40 57.30 89.72 89.80 63.09 
 76.30 75.55 57.39 68.00 69.00 57.30 89.68 89.70 63.07 
 76.19 75.41 57.34 67.00 70.10 57.10 89.83 89.73 63.01 
 76.00 75.33 57.44 67.30 69.10 57.10 89.80 89.92 63.02 
 76.21 75.53 57.28 67.60 69.50 58.20 89.83 90.05 62.98 
 76.27 76.05 57.30 69.00 70.90 58.50 89.64 89.97 63.00 
 76.00 75.43 57.36 67.30 69.90 59.30 89.69 89.86 63.03 
 75.92 75.40 57.41 67.80 70.70 60.10 89.93 89.87 62.95 

Next we evaluate the performance of the factored SK using all of our features 
combined (Table 6) and using the best performing parameter combinations identified 
in Table 5. We found that for the SemEval News corpus, there is an improvement by 
using the factored features, however this results is still lower than when using the  
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WordNet senses by themselves. As for the Movie Reviews Polarity and Subjectivity 
corpuses there is a decline in performance when compared to only using the surface 
words.   

Table 6. Full factored evaluation (Word + WordNet + Polarity) 

 Movie Polarity SemEval News Movie Subjectivity 

         P 

w 
      

[1:1:1] 71.76 71.90 68.00 69.30 86.89 86.88 

[1:1:2] 70.76 70.80 68.20 68.10 86.21 86.16 

[1:2:1] 71.84 72.15 69.30 68.70 86.98 87.10 

[2:1:1] 71.88 72.11 69.20 69.60 87.12 87.13 

[2:4:1] 72.75 71.76 70.70 69.70 87.56 87.60 

We postulate that the polarity feature is actually hindering the overall performance 
of the factored SK. In order to verify this we further evaluate the performance of the 
factored SK using combinations of two features only (Table 7). We found that using 
only the surface words combined with the WordNet senses improves the performance 
for the Movie Review Polarity and Subjectivity corpuses. However for the SemEval 
News corpus, despite a small improvement over the surface words, it still does not 
outperform the WordNet senses or even the full factored features. 

Table 7. Evaluation of the factored sk using combinations of two features 

 Movie Polarity SemEval News Movie Subjectivity 
       P 
 w 

      

[1:0:1] 69.24 69.43 65.70 65.30 84.91 84.95 
[1:0:2] 68.10 67.91 64.00 63.60 83.94 84.01 
[2:0:1] 70.47 70.34 66.10 67.00 85.74 85.70 
[1:1:0] 76.30 76.55 69.10 69.20 90.17 89.96 
[1:2:0] 76.39 76.84 69.70 69.80 90.21 90.20 
[2:1:0] 76.93 76.65 68.90 68.90 90.10 90.24 

Finally by way of comparison we evaluate the performance of our approach and 
other popular kernels for sentiment classification tasks. Namely the Linear kernel 
with Bag of Words (BoW), the Subset Tree kernel [30] (SST) with Syntactic Parse 
trees and the Partial Tree kernel [31] (PT) with Dependency Parse trees. We found 
that our approach outperforms all the other kernels considered. 
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Table 8. Comparison of our approach and other popular kernels for sentiment classification 
tasks 

Methodology Movie Polarity SemEval Movie Subjectivity 

Linear, BoW 50.47 54.10 53.71 

SST,  Syntactic Parse trees 71.70 62.60 89.01 

PT, Dependency Parse trees 74.86 65.20 88.84 

Factored Sequence Kernel, WSD 76.93 71.50 90.24 

5 Conclusions and Outlook 

The majority of the work in sentiment analysis considers the polarity of word terms 
rather than the polarity of specific senses of the word. It should be clear that different 
senses of a word can have different opinion-related properties. This work addressed 
this issue, by considering a sentence as a sequence of words augmented with their 
WordNet sense and sense specific opinion-related properties. 

We evaluated three sentiment lexicons and four combinations of these. We found 
that the combined lexicon CL4 comprising Micro-WNop, Q-WordNet and Senti-
WordNet achieves the best performance for the polarity classification tasks. For the 
subjectivity classification task, CL2 achieves the best performance but CL4 is very 
close. This might be due to the polarity sequences being more relevant for polarity 
classification tasks rather than subjectivity classification tasks. 

Despite WSD being reportedly only about 50-70% accurate [14], [23], [17] the ex-
perimental evaluation shows that performing WSD provides an improvement over the 
surface words for the SemEval News and Movie Reviews Subjectivity corpuses, from 
69% up to 71.5% and from 89.99% up to 90.05% respectively. As for the Movie Re-
views Polarity corpus there is a slight decline from 76.33% down to 76.05%. 

In the full factored (words + WordNet sense + polarity) evaluation, for the SemEv-
al News corpus, there is an improvement by using the factored features (from 69% up 
to 70.7%), however this result is low when compared to only using the WordNet 
senses (71.5%); as for the Movie Review Polarity and Subjectivity corpuses there is 
substantial decline, from 76.33% down to 72.75% and from 89.99% down to 87.6% 
respectively. Note however, that the polarity sequences are not very accurate, being 
much lower in accuracy than the surface words or WordNet senses. For the Movie 
Reviews Polarity corpus there is an 18.82% decrease in accuracy, for the SemEval 
corpus there is an 11.4% decrease in accuracy and finally for the Movie Reviews 
Subjectivity corpus there is a decrease of 26.88% in accuracy. This suggests that the 
polarity sequences may not be a useful feature for discovering similarity (particularly 
for the subjectivity classification task). As there are only three (or four) forms of po-
larity value considered, subsequences of this feature may convey very little informa-
tion for distinguishing between a sentence that is positive and one that is negative. For 
example two positive sentences may share little similar subsequences based on the 
polarity feature. Due to the lower accuracy the polarity sequences achieve, we post-
ulate that they are actually hindering the overall performance when used in the fac-
tored SK. In order to investigate this we evaluated the performance of the factored SK 
using combinations of two features. We found that this improved the performance for 
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the Movie Review Polarity and Subjectivity corpuses, when combining the surface 
words and the WordNet senses, from 76.33% up to 76.93% and 89.99% up to 90.24% 
respectively. For the SemEval News corpus, despite a small improvement over the 
surface words (from 69% up to 69.8%), it still does not surpass the performance of 
using only the WordNet senses (71.5%) or even the full factored performance 
(70.7%). 

Our evaluations confirm previous findings that WSD offers improvements for sen-
timent classification tasks, however since the WSD is an intermediate task, disambig-
uation errors can affect the quality of the corresponding sense specific opinion-related 
properties and thus the classification quality. Finally our results show that the factored 
sequence kernel can be quite effective for sentiment classification tasks, and performs 
better than other state-of-the-art kernels. 

Further work will possibly include: applying the methodology to other corpuses; 
exploring other polarity representations (e.g. ranking); handling polarity modification 
features (e.g. negation, intensification) in order to improve the polarity sequences; 
applying the methodology to 3-class and 5-class polarity classification problems; and 
expanding the methodology to classify documents. 
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Abstract. In this paper, we investigate the adaptation of language mod-
eling for conversational Mandarin-English Code-Switching (CS) speech
and its effect on speech recognition performance. First, we investigate the
prediction of code switches based on textual features with focus on Part-
of-Speech (POS) tags. We show that the switching attitude is speaker
dependent and utilize this finding to cluster the training speakers into
classes with similar switching attitude. Second, we apply recurrent neural
network language models which integrate the POS information into the
input layer and factorize the output layer into languages for modeling
CS. Furthermore, we adapt the background N-Gram and RNN language
model to the different Code-Switching attitudes of the speaker clusters
which lead to significant reductions in terms of perplexity. Finally, using
these adapted language models we rerun the speech recognition system
for each speaker and achieve improvements in terms of mixed error rate.

Keywords: multilingual speech processing, code switch attitude, lan-
guage model adaptation.

1 Introduction

Code-Switching (CS) speech is defined as speech that contains more than one lan-
guage (‘code’). It is a common phenomenon in multilingual communities where
people of different cultures and language background communicate with each
other [2]. The switch between languages can happen between or within an ut-
terance. In this paper, we show that the decision whether and when a speaker
changes the language is rather individual (‘Code-Switching attitude’).

For the automated processing of spoken communication in these scenarios, a
speech recognition system must be able to handle code switches. However, the
components of speech recognition systems are usually trained on monolingual
data, particulary when there is a lack of multilingual training data. This is why
the CS task appears to be difficult to solve.

While there have been promising research results in the area of acoustic mod-
eling to handle Code-Switching, only few approaches so far address this challenge
in the language model. Recently, it has been shown that recurrent neural net-
work language models (RNNLMs) improve perplexity and error rates in speech
recognition systems in comparison to traditional N-Gram approaches [9,10,15].

A.-H. Dediu et al. (Eds.): SLSP 2013, LNAI 7978, pp. 297–308, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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One reason for that is their ability to handle longer contexts. Furthermore, the
integration of additional features as input is rather straight-forward due to their
structure. Recently, we proposed an extended structure of recurrent neural net-
works in order to predict CS points. In this paper, we extend this work by show-
ing that Code-Switching can be regarded as a speaker dependent phenomenon.
Hence, it is possible to cluster speakers with similar Code-Switching attitudes
to obtain more specific models. Our experimental results demonstrate that this
clustering leads to significant improvements in terms of perplexity for each test
speaker and that these improvements also transform into error rate reductions.
Figure 1 illustrates our adaptation process.

audio file

Fig. 1. Overview: language model adaptation to Code-Switching attitudes

The remainder of the paper is organized as follows: Section 2 reports on previ-
ous research in the area of Code-Switching, text clustering and language model-
ing using recurrent neural networks. Section 3 describes the SEAME corpus and
analyzes it with focus on Part-of-speech tags triggering CS events. In section 4,
we present how speakers can be clustered using the results of our analysis. Fur-
thermore, we describe the adaptation of N-Gram and recurrent neural network
language modeling for each Code-Switching attitude. In section 5, we present
our experiments and results. The study is concluded in section 6.

2 Related Work

For this work, three different topics are investigated: 1) analysis of CS points
and their integration into language models, 2) text clustering using similarity
measures and 3) recurrent neural network language modeling and adaptation to
more specific data. This section gives a short overview of prior work in these
fields.
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2.1 The Code-Switching Phenomenon

In [4,12,13], it is observed that code switches occur at positions in an utter-
ance where they do not violate the syntactical rules of the involved languages.
On the one hand, Code-Switching can be regarded as a speaker dependent phe-
nomenon [3]. On the other hand, particular CS patterns are shared across speak-
ers [14]. It is shown that speakers mainly switch to another language for nouns
and object noun phrases. Therefore, the most frequent switches are between
determiners and nouns and between verb phrases and object noun phrases.

In [16], different machine learning algorithms (for instance the Naive Bayes
Classifier) trained on textual features are used to predict CS points. As features,
word form, language identity, Part-of-Speech tags and the position of the word
relative to the phrase are used. [5] compares four different kinds of N-Gram
language models to predict Code-Switching. It is discovered that a class-based
model which clusters all foreign words into their POS classes achieves the best
performance. In [1], we show that the integration of POS tags into a neural
network, which predicts the next language as well as the next word, leads to
significant reductions in terms of perplexity.

2.2 Clustering Textual Documents

There are different text clustering techniques, such as hierarchical clustering
(bottom-up or top-down) or k-means. While hierarchical clustering often pro-
vides better results, its time complexity is quadratic. On the other hand, k-means
has a linear time complexity. Each technique requires a distance or similarity
measure. The most common measure is the cosine measure [17].

2.3 Recurrent Neural Networks and Their Adaptation

In the last years, neural networks have been used for a variety of tasks. [9] intro-
duces a refined form of neural networks for the task of language modeling. The
so-called recurrent neural networks are able to handle long-term contexts since
the input vector does not only contain the current word but also the previous
output from the neurons in the hidden layer. It is shown that these networks
outperform traditional language models, such as N-Grams which only contain
very limited histories. In [10], the network is extended by factorizing the out-
put layer into classes to accelerate the training and testing processes. Recently,
further information has been added to neural networks. [15] augments the input
layer to model features, such as topic information or Part-of-Speech tags. In [6],
it is shown that adaptation of Recurrent Neural Network Language Models in
form of one-iteration retraining leads to improvements in the word error rate
when the adapted models are applied for rescoring.

3 Code-Switching Prediction Using Part-Of-Speech

This section describes the SEAME data corpus and the analyses which we per-
formed on the data: 1) A speaker independent analysis in which we compute
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the CS rate after each Part-of-speech tag over all speakers and 2) A speaker
dependent analysis in which the CS rate per speaker is calculated.

3.1 SEAME Corpus

SEAME (South East Asia Mandarin-English) is a conversational Mandarin-
English Code-Switching speech corpus recorded from Singaporean and Malaysian
speakers, created and collected by [7]. The corpus was used for the research
project ‘Code-Switch’, jointly performed by Nanyang Technological University
(NTU) and Karlsruhe Institute of Technology (KIT). The recordings consist of
spontanously spoken interviews and conversations of about 63 hours of audio
data. For this task, all hesitations are deleted and the transcribed words are
divided into four categories: English words, Mandarin words, particles (Singa-
porean and Malaysian discourse particles) and others (other languages). These
categories are used as language information in our neural networks. The aver-
age number of code switches between Mandarin and English is 2.6 per utterance.
The duration of monolingual segments is very short: More than 82% English and
73% Mandarin segments last less than 1 second with an average duration of En-
glish and Mandarin segments of only 0.67 seconds and 0.81 seconds respectively.
In total, the corpus contains 9,210 unique English and 7,471 unique Mandarin
vocabulary words. The corpus is divided into three disjoint sets (training, de-
velopment and test set). The data is assigned to them based on several criteria
(gender, speaking style, ratio of Singaporean and Malaysian speakers, ratio of
the four categories, and the duration in each set). Table 1 lists the statistics of
the SEAME corpus in these sets.

Table 1. Statistics of the SEAME corpus

Train set Dev set Eval set

# Speakers 139 8 8
Duration(hours) 59.2 2.1 1.5
# Utterances 48,040 1,943 1,018
# Token 525,168 23,776 11,294

3.2 Assigning POS Tags to Code-Switching Data

To be able to assign Part-of-Speech tags to our bilingual text corpus, we use
two different taggers: On the one hand, the Stanford log-linear POS tagger for
Mandarin and on the other hand, the Stanford log-linear POS tagger for English
[19,20]. The tags are derived from the Penn Treebank POS tag set for Mandarin
and English [8,22]. First, we determine Mandarin as matrix language (the main
language of an utterance) and English as embedded language. If three or more
words of the embedded language are detected, they are passed to the English
tagger. The rest of the text is passed to the Chinese tagger, even if it contains
foreign words. The idea is to provide the tagger as much context as possible.
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However, most English words in the Mandarin segments are falsely tagged as
nouns by the Chinese tagger. To avoid subsequent errors in the determination
of trigger POS tags, we add a postprocessing step to the tagging process: We
select all foreign words in the Mandarin segments and pass them to the English
tagger in order to replace the wrong tags with the correct ones.

3.3 Speaker Independent Analysis

After having tagged the CS text, we select those tags that possibly predict CS
points. The results are shown in table 2. First, we consider only those tags that
appear in front of a CS point from Mandarin to English. Second, we investigate
the tags predicting a CS point from English to Mandarin. In each case, only those
tags are counted that occur more than 250 times in the text. Table 2 shows that
CS points are most often triggered by determiners in Mandarin and by verbs
and nouns in English. This seems reasonable since it is possible that a Mandarin
speaker switches for the noun to English and afterwards back to Mandarin. It
also corresponds to previous investigations as described in section 2.

Table 2. Mandarin and English POS that trigger a CS point

Tag meaning frequency CS-rate

DT determiner 11276 40.44%
DEG associative 的 4395 36.91%
MSP other particle 507 32-74%
VC 是 6183 25.85%
DEC 的 in a relative-clause 5763 23.86%

NN noun 49060 49.07%
NNS noun (plural) 4613 40.82%
RP particle 330 36.06%
RB adverb 21096 31.84%
JJ adjective 10856 26.48%

3.4 Speaker Dependent Analysis

The previous analysis detects CS rates up to less than 50%. Thus, the triggering
may not be reliable. A possible reason is that one speaker switches often after a
specific tag while other speakers do not. Hence, a speaker dependent analysis is
performed. The CS rate for each tag is computed for each speaker. Then, mini-
mal, maximal and mean values and standard deviations are calculated. Indeed,
the spread between minimal and maximal values is quite high for most of the
tags. Figure 2 shows the distribution of the speaker dependent CS rates for all
tags that appear more than 250 times in the text.

To sum up, whether a Part-of-speech tag triggers a CS event is rather speaker
dependent. This corresponds to the previous investigations described in section 2.
Hence, a model that includes all individual deviations cannot be very precise.
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Fig. 2. Distribution of speaker dependent CS rates

4 Code-Switching Attitude Dependent Language
Modeling

As shown in section 3, Code-Switching attitude is speaker dependent. Hence, we
perform a clustering of the manual transcriptions of all speakers of our training
data intoK different groups to describe different Code-Switching attitudes. After
that, we are able to adapt our language model to each class. Thus, we obtain
K different language models that model Code-Switching more precisely and,
therefore, achieve better recognition results.

4.1 Text Clustering

We apply the k-means algorithm to cluster the training transcriptions. As sim-
ilarity measure, we chose the cosine distance because it was applied succesfully
to cluster documents in the past. The following equation shows the computation
of the cosine distance. d1 denotes a vector representing document 1 and d2 a
vector for document 2.

Dist(d1, d2) = (d1.d2)/(||d1|| · ||d2||) (1)

For the Code-Switching modeling, we define the document vectors d as follows:

d = [fcs(POS1)/f(POS1), ..., fcs(POSn)/f(POSn)] (2)

fcs(POSi) defines the number of switches after the Part-of-Speech tag i in the
given document while f(POSi) refers to the number of all occurences of the
tag. After the clustering process converges (when there are no changes in the
clusters), we use the mean vector of each cluster as representant.

Figure 3 shows for the example of three classes that clustering helps to de-
crease the spread of the Code-Switching attitudes. There are still tags for which
the clustered speakers show different attitudes but there are also tags for which
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(a) distribution in class 1
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(b) distribution in class 2

�

���

���

���

���

�

�
	

�
�


�
�

�
�


�
�

�
�


	
	
�

�


�
�
�

�


� 	

�


�
�

�


	
�

�
�


�

�
�


�
�

�


�
�

�


�
�

�
�


	
�

�
�


�
�

�
�


�
�

�


��

�
�


�
�
�

�
�


�
�

�


	
	

�


�
�

�
�


�

�
�


�
�

�


�
�

�
�


�
�
�

�
�


�
�

�
�


�
�
�

�


�
�
�

�


	
	

�
�


�
�

�
�


�
�

�
�


�
�

�


��

�


��

�


 
!
"#
$
%&

'()*+,-

(c) distribution in class 3

Fig. 3. Distribution of speaker dependent Code-Switching rates after clustering

their attitude is quite similar. For example, the spread of the English tag ‘NN’
(noun) is discriminated into upper and lower values by the classes.

Further analyses show that, on the one hand, the classes divide different na-
tionalities while, on the other hand, the gender of the speakers and the speaking
style is similar in all classes. Hence, Code-Switching attitude seems to depend
on the nationality but not on the gender or style. Table 3 summarizes the most
important results for three classes.

Table 3. Analysis of the speakers that are clustered into one class

(con. denotes conversational speech, while iv. stands for interview)
Class nationalities gender style

1 66 % Malaysia, 34 % Singapour 58 % female, 52 % male 5 % con., 95 % iv.
2 7 % Malaysia, 93 % Singapour 55 % female, 45 % male 47 % con., 53 % iv.
3 0 % Malaysia, 100 % Singapour 66 % female, 34 % male 29 % con., 71 % iv.

4.2 Language Modeling

Training. We train two different language models (LM): An N-Gram LM for
the decoding process and a recurrent neural network LM for rescoring.
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N-Gram Language Model for Code-Switching. We use the SRI Language Model-
ing Toolkit [18] to build trigram LMs from the SEAME training transcriptions.
These models are interpolated with two monolingual language models that were
created from 350k English sentences from NIST and 400k Mandarin sentences
from the GALE project. The vocabulary of 30k entries contains all words in the
transcriptions and the most frequent words in the monolingual corpora. Further-
more, characteristics of Code-Switching from the SEAME training transcriptions
are analyzed and additional Code-Switching text is generated artificially as de-
scribed in [21].

Recurrent Neural Network Language Modeling for Code-Switching. In this
paragraph, we describe the original version of the RNNLM toolkit [11] and
our extension to it which is illustrated in figure 4. Vector w(t), which repre-
sents the current word using 1-of-N coding, forms the input of the RNN. Its
dimension equals the size of the vocabulary. Vector s(t) contains the state of
the network and is called ‘hidden layer’. The network is trained using back-
propagation through time (BPTT), an extension of the back-propagation al-
gorithm for RNNs. With BPTT, the error is propagated through recurrent
connections back in time for a specific number of time steps. Hence, the net-
work is able to remember information for several time steps. The matrices U ,
V and W contain the weights for the connections between the layers. They are
learned during the training phase. Moreover, the output layer is factorized into
classes to accelerate the training and testing processes. Every word belongs to
exactly one class. The classes are formed during the training phase depending
on the frequencies of the words. Vector c(t) provides the probabilities for each
class and vector y(t) the probabilities for each word given its class. Hence, the
probability P (wi|history) is computed as shown in equation 3.

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (3)

In our extension of the RNNLM, the output classes do not depend on word
frequencies but on languages. We use the language categorization described in
section 3.1. Therefore, our model consists of four classes: One class for English
words, one for Mandarin words, one for other languages and one for particles.
We do not only intend to predict the next word but also the next language
in our bilingual corpus. Hence according to equation 3, the probability of the
next language is computed first and then the probability of each word given the
language. Furthermore, we add another vector f(t) to the network which provides
features corresponding to the current word and concantenate the former input
layer with this vector. According to the analyses described in section 3, we use
POS tags as features. Vector f(t) consists of 67 elements (31 Mandarin POS
tags, 34 English POS tags, one feature for words classified as other languages
and one feature for particles). During the training and testing phases, not only
the current word is activated but also its feature. Because the POS tags are
integrated into the input layer, they are also propagated into the hidden layer
s(t). Thus, features from several previous time steps are stored in the history.
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Fig. 4. RNNLM for Code-Switching based upon a figure in [10]

Hence in equation 3, the term P (ci|s(t)) computes the next language ci using
not only information about previous words, but also previous features.

Adaptation. After the clustering, we retrain our models with the data of the
different clusters. For the N-Gram model, we interpolate the baseline N-Gram
model with an N-Gram model trained on the texts of one class. Hence, we obtain
one N-Gram model per class. The interpolation weights are chosen to minimize
the perplexity of the development set speakers that are similar to the class.
Analog to this, we retrain one RNNLM per class. We perform one-iteration
training using the texts of the different classes.

Rescoring. The decoding process contains two different passes. In the first pass,
we run the speech recognition system to extract the N-best hypotheses using the
speaker independent N-Gram LM. Based on the average score of the CS attitude
dependent RNNLM on these N-bests, each speaker is assigned to a specific CS
attitude. In the second pass, we rerun the decoding process using our CS attitude
dependent N-Gram for each speaker and rescore the 100-best hypotheses using
the CS attitude dependent RNNLM to obtain the best hypothesis.

5 Experiments and Results

This section reports the experiments and evaluations performed on the challenge
of CS language modeling. Since the models are adapted to fit better to individual
speakers, their perplexities are computed speaker-wise.

5.1 Clustering Experiments with K-Means

The most important parameter in the clustering process is the cluster size. Hence,
different sizes are tested. Since rescoring experiments with the RNNLM are faster
than decoding experiments with the N-Gram model, the following values are
calculated using the 100-best lists of the speaker independent system and the
RNNLM system to compute perplexities and rescore the hypotheses.
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Table 4. Minimum and maximum perplexity on the development set speakers

Speaker Baseline 2 classes 3 classes 4 classes 5 classes

Speaker 1 257.47 234.29 - 270.57 234.08 - 270.56 233.39 - 267.56 237.32 - 274.98
Speaker 2 221.00 194.78 - 218.96 194.66 - 219.04 194.41 - 216.52 196.96 - 222.16
Speaker 3 253.31 242.94 - 283.21 243.54 - 283.44 242.87 - 280.27 242.03 - 289.04
Speaker 4 201.28 186.14 - 213.38 186.70 - 213.55 185.96 - 212.29 188.37 - 217.14
Speaker 5 339.50 299.69 - 355.34 299.84 - 355.75 299.58 - 349.79 303.15 - 366.97
Speaker 6 151.92 135.00 - 156.76 135.05 - 156.81 134.92 - 156.67 135.49 - 160.82
Speaker 7 225.82 221.99 - 251.83 222.00 - 250.66 223.56 - 252.66 220.47 - 279.62
Speaker 8 194.35 189.30 - 206.97 189.30 - 206.32 188.97 - 207.64 191.10 - 222.73

Table 4 summons the minimum and maximum perplexity on the eight devel-
opment set speakers in order to detect the most appropriate cluster size.

It can be noted that the results of two, three and four classes are quite similar
and superior to a cluster size of five. Although the worst result per cluster per-
forms worse than the baseline model, most of the classes of each cluster lead to
an improvement of the perplexity. These results support the speaker dependent
analysis: It is possible to adapt the language model to individual Code-Switching
attitudes. The three best cluster sizes (2, 3, and 4 classes) are further evaluated
regarding their word error rate reduction in the rescoring process. This results
in a best cluster size of 3 classes. This is reasonable since two classes might not
cover enough different speaker attitudes, while four or more classes do not con-
tain enough training data per class. Hence, a cluster size of three is chosen for
further evaluations.

5.2 Results

This subsection summons the results of our experiments, including the test of
our models on the evaluation set speakers. Table 5 shows the minimum and
maximum perplexities per speaker of all three adapted models and the baseline
model for each the N-Gram and the RNN LM.

Again, the models adapted on the clustered training data can improve the
performance in terms of perplexity for all speakers. Finally, the adapted models
are used to decode and rescore the evaluation set speakers. We use the system in
[21] to perform the decoding process. As performance measure, the Mixed Error
Rate (MER) as proposed in [21] is calculated. It applies word error rates to
English and character error rates to Mandarin and is the weighted average over
all English and Mandarin parts of the speech recognition output. By applying
character based error rates to Mandarin, the performance does not depend on the
applied word segmentation algorithm for Mandarin and thus the performance
can be compared across different segmentations. Table 6 shows the results on
the SEAME development and evaluation set.
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Table 5. Minimum and maximum perplexities on the evaluation set speakers

Speaker N-Gram Adapted N-Gram RNNLM Adapted RNNLM

Speaker 1 317.84 302.94 - 326.24 200.66 197.74 - 204.82
Speaker 2 265.77 253.73 - 270.81 181.60 175.85 - 185.48
Speaker 3 327.09 302.56 - 352.60 187.04 170.92 - 197.30
Speaker 4 232.83 213.33 - 248.30 174.13 160.58 - 185.28
Speaker 5 367.72 365.47 - 409.25 364.59 327.33 - 392.68
Speaker 6 175.28 162.02 - 181.83 275.89 253.67 - 299.37
Speaker 7 318.50 306.58 - 375.41 286.31 286.30 - 292.29
Speaker 8 292.53 281.57 - 331.04 256.99 241.69 - 268.23

Table 6.Mixed error rate results after decoding and rescoring with the adapted models

Model development set evaluation set

Speaker-independent N-Gram model 34.74% 29.23%
Adapted N-Gram model + RNNLM 34.47% 28.89%

6 Conclusions

In this paper, we showed that Code-Switching is a speaker dependent phe-
nomenon. Therefore, we clustered similar Code-Switching attitudes using cosine-
distances. Furthermore, we trained recurrent neural network language models for
the Code-Switching task by adding POS information to the input layer and by
factorizing the output layer into languages. Afterwards, we adapted our back-
ground N-Gram and RNN language model using the corresponding training texts
of these clusters. We showed that this approach leads to significant reductions
in terms of perplexity. Finally, we used these adapted language models to rerun
and rescore the speech recognition system for each speaker and achieved some
improvements in terms of mixed error rate.
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