
Chapter 3
Different Formulations of the Kansa
Method: Domain Discretization

Abstract In contrast to the traditional meshed-based methods such as finite
difference, finite element, and boundary element methods, the RBF collocation
methods are mathematically very simple to implement and are truly free of
troublesome mesh generation for high-dimensional problems involving irregular
or moving boundary. This chapter introduces the basic procedure of the Kansa
method, the very first domain-type RBF collocation method. Following this,
several improved formulations of the Kansa method are described, such as the
Hermite collocation method, the modified Kansa method, the method of particular
solutions, the method of approximate particular solutions, and the localized RBF
methods. Numerical demonstrations show the convergence rate and stability of
these domain-type RBF collocation methods for several benchmark examples.

Keywords Kansa method � Hermite collocation method � Modified Kansa
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In the last two decades, much effort has been devoted to developing a variety of
meshless schemes for numerical discretization of partial differential equations. The
driving force behind the scene is that mesh-based methods such as the standard
FEM and BEM often require excessive computational effort to mesh or remesh the
computational domain for high-dimensional, moving boundary, or complex-
shaped boundary problems. Many of the meshless techniques available today are
based on moving least squares (MLS). However, in some cases, shadow elements
are still required for the numerical integration. Therefore, these methods are not
entirely meshless. In contrast, the RBF collocation methods are exceedingly
simple for numerical implementation and are truly meshless and integration-free
because of their independency of dimensionality and complexity of problem
geometry. Nardini and Brebbia in 1982 have actually applied the RBF concept to
develop the popular dual reciprocity BEM without a notion of ‘‘RBF.’’ Only after
Kansa’s pioneer work in 1990 [1, 2], the research on the RBF method for PDEs has
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become very active. In general, RBF collocation methods can be classified into
domain- and boundary-type categories. This chapter focuses primarily on the
domain-type RBF collocation methods.

The Kansa method [1, 2] is the very first domain-type RBF collocation scheme
with easy-to-use merit, but the method lacks symmetric interpolation matrix due to
the boundary collocation of mixed boundary conditions. The Hermite collocation
method (HCM) [3] alleviates the unsymmetrical drawback. Similar to the Kansa
method, however, the HCM suffers relatively lower accuracy in boundary-adjacent
region. Namely, the numerical accuracy in the vicinity of boundary deteriorates by
one to two orders compared with those in the central region. By using the Green
second identity, Chen presented the symmetric domain-type modified Kansa
method (MKM) [4] to significantly improve the numerical accuracy in the region
near the boundary.

Inspired by the boundary collocation RBF techniques, the method of particular
solutions (MPS) [5, 6] and the method of approximate particular solutions (MAPS)
[5, 7] are developed to use the particular solution RBFs for the solution of PDEs.

The ill-conditioning and fully-populated interpolation matrix is the main
challenge for the application of the traditional Kansa method and its variants
mentioned above to large-scale problems. In addition, it remains an opening issue
to determine the optimal shape parameter using the MQ-RBF in a global inter-
polation. To remedy these two perplexing problems, a number of the localized
RBF methods [8–18] have been proposed in recent years and have attracted great
attention in the science and engineering communities.

Let X be a bounded and connected domain, and oX ¼ C1 [ C2; C1 \ C2 ¼ ;.
Without loss of generality, we make a straightforward illustration of these methods
through the following elliptical partial differential equation:

< u xð Þf g ¼ f xð Þ; x 2 X � Rn;

B1u xð Þ ¼ R xð Þ; x 2 C1;

B2u xð Þ ¼ N xð Þ; x 2 C2;

ð3:1Þ

where < is governing differential operator, B1;B2 boundary differential operators,
and f xð Þ;R xð Þ;N xð Þ are given functions.

3.1 The Kansa Method

First, we introduce the well-known Kansa method [1, 2]. The method employs
both the RBFs and the polynomial basis to approximate the PDE solutions.
However, Wertz et al. [19] recently found that it is unnecessary to augment
polynomial term with the RBF approximate representation in solving PDEs. Thus,
this book only introduces the Kansa method without augmented polynomial basis
functions.
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Let fxjgNi
j¼1 be the interior points in the domain X, fxjgNiþN1

j¼Niþ1 2 C1, and

fxjgN
j¼NiþN1þ1 2 C2, where N ¼ Ni þ N1 þ N2. The Kansa method assumes the

solution uðxÞ in Eq. (3.1) can be approximated by a linear combination of the
RBFs at discrete nodes

uðxÞ ’ ~uðxÞ ¼
XN

j¼1

aj/ jjx� xjjj2
� �

; ð3:2Þ

where fajg are unknown coefficients, N the total number of the collocation knots,
and /ðxÞ denotes the RBFs, such as MQ, IMQ, TPS, and Gaussian, etc. Substituting
Eq. (3.2) into Eq. (3.1), the linear equations can be expressed in the following
matrix form:

Aa ¼ b; ð3:3Þ

where a ¼ a1; a2; . . .; aNð ÞT is the unknown vector to be determined, and

b ¼ f x1ð Þ; � � � ; f xNið Þ;R xNiþ1ð Þ; � � � ;R xNiþN1ð Þ;N xNiþN1þ1ð Þ; � � � ;N xNð Þð ÞT :

The RBF interpolation matrix can be of the form

A ¼
<fUg
B1 Uf g
B2 Uf g

2

4

3

5; ð3:4Þ

where U ¼ Uij

� �
¼ / jjxi � xjjj2

� �� �
. The Kansa method has been successfully

applied to various physical and engineering problems, such as fractional diffusion
problems [20], radiative transport problems [21], combustion problems [22],
electromagnetic problems [23], electrostatic problems [24], heat conduction
analysis [25], moving boundary problems [26], plate and shell analysis [27–32],
fluid flow problems [33], Stefan problems [34, 35], microelectromechanical sys-
tem analysis [36], groundwater contaminant transport [37], convection–diffusion
problems [38–40]. However, the Kansa method produces unsymmetric interpola-
tion matrix, and the rigorous mathematical proof of its solvability is still not
available [41]. In addition, the method suffers relatively lower accuracy in
boundary-adjacent region.

3.2 The Hermite Collocation Method

To make a symmetric RBF interpolation matrix, Fasshauer [3] applies the operator
<� and B�1;B

�
2 on both sides of the governing equation and the boundary conditions

in Eq. (3.1), respectively, where <� and B�1;B
�
2 are the self-adjoint operators of <

and B1;B2. We call this modified version of the Kansa method as the Hermite
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collocation method (HCM). The HCM interpolation representation for Eq. (3.1) is
given by

~u xð Þ ¼
XNi

j¼1

aj<�/ jjx� xjjj2
� �

þ
XNiþN1

j¼Niþ1

ajB
�
1/ jjx� xjjj2
� �

þ
XN

j¼NiþN1þ1

ajB
�
2/ jjx� xjjj2
� �

: ð3:5Þ

Its interpolation matrix is expressed as

A ¼
<<� Uf g <B�1 Uf g �

2 Uf g
B1<� Uf g B1B�1U B1B�2 Uf g
B2<� Uf g B2B�1 Uf g B2B�2 Uf g

2

4

3

5: ð3:6Þ

It is worth noting that the matrix A is symmetric. Hence the numerical dis-
cretization equations are always solvable. The HCM is applied to 2D elastostatic
[42], time-dependent [43–46], and nonlinear plate problems [47].

3.3 The Modified Kansa Method

In order to reduce the loss of accuracy near the boundary-adjacent region, Fedoseye
et al. [4] propose the PDE collocation on the boundary (PDECB), which requires an
additional set of nodes inside or outside of the physical domain yet adjacent to the
boundary. It is not a trivial task to optimally place these fictitious boundary nodes
for the best numerical accuracy and stability. Larsson [48] investigated and com-
pared the numerical accuracy of the Kansa method, the HCM, and the PDECB in
the context of the RBF shape parameter and the distribution of nodes.

Zhang et al. [49] also proposed a Hermite-type method to improve the numerical
accuracy of 2D elasticity problems, which collocates both governing equations and
boundary conditions on the same boundary nodes. However, the method is un-
symmetric for mixed boundary problems and lacks the theoretical support.

Based on the Green second identity, Chen [50] developed a symmetric Hermite
formulation, called the modified Kansa method (MKM). As mentioned in Sect. 2.3,
the Green second identity leads to the following solution of a PDE problem

~u xð Þ ¼
Z

X
f sð Þu� x; sð ÞdX sð Þ þ

Z

C
u
ou� x; sð Þ

on sð Þ �
ou

on sð Þ u
� x; sð Þ

� �
dC sð Þ; ð3:7Þ

where u� represents the fundamental solutions of differential operator <. If a
numerical integral scheme is employed to discretize Eq. (3.7), we have

~u xð Þ ¼
XN

j¼1

w x; xj

� �
f xj

� �
u� þ

XN

j¼Niþ1

Q x; xj

� �
u
ou�

on
� ou

on
u�

� �
; ð3:8Þ
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where w x; xj

� �
and Q x; xj

� �
denote the weighting functions dependent on the

integral schemes. Perceiving the RBF as an approximate Green function, we can
restate the representation (3.8) to construct the following interpolation formula:

~u xð Þ ¼
XN

j¼1

aj<�/ jjx� xjjj2
� �

þ
XNiþN1

j¼Niþ1

ajþN1þN2 B�1/ jjx� xjjj2
� �

;

þ
XN

j¼NiþN1þ1

ajþN1þN2 B�2/ jjx� xjjj2
� �

ð3:9Þ

where N1;N2 and N are defined as in Sect. 3.1. Note that the boundary nodes here
are used twice to satisfy both the governing equation and boundary conditions. On
the other hand, the MKM interpolation matrix inherits the symmetrical property of
the HCM. It is noted that the MKM differs from the PDECB in that it no longer
requires auxiliary boundary nodes and is derived naturally from the Green second
identity. Consequently, theoretical and operational ambiguities in the PDECB are
eliminated. At the end of this chapter, some numerical experiments will be
presented to compare the MKM with the Kansa method and the HCM.

3.4 The Method of Particular Solutions

This section introduces the method of particular solutions (MPS). The PDE
splitting approach [51] considers the solution u of Eq. (3.1) a sum of homogeneous
solution uh and particular solutions up

u ¼ uh þ up: ð3:10Þ

Note that the particular solution up satisfies

< up

� 	
¼ f xð Þ; x 2 X; ð3:11Þ

but does not necessarily satisfy boundary conditions. In contrast, the homogeneous
solution has to satisfy not only the corresponding homogeneous equation

< uhf g ¼ 0; x 2 X; ð3:12Þ

but also the updated boundary conditions

uh xð Þ ¼ R xð Þ � up xð Þ; x 2 C1; ð3:13Þ

ouh xð Þ
on

¼ N xð Þ � oup xð Þ
on

; x 2 C2: ð3:14Þ

From Eqs. (3.10–3.14), it can be found that the nonhomogeneous problem is
reduced to a homogeneous problem after the particular solution up is separately
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obtained from Eq. (3.11). One can use the RBFs or some other basis functions [52]
to evaluate the particular solution. In this study, we only consider the RBF
methods.

Let fxjgNk
j¼1 2 X. We first approximate f xð Þ by a finite expansion series

f xð Þ � f̂ xð Þ ¼
XNk

j¼1

aj/ rj

� �
; ð3:15Þ

where fajg are the unknown coefficients to be determined, and rj ¼ x� xj



 


denotes the Euclidean distance between each pair of points x and xj. Then,

f xið Þ ¼ f̂ xið Þ ¼
XNk

j¼1

aj/ rij

� �
; 1� i�Nk: ð3:16Þ

Assuming fajg can uniquely be solved, the approximate particular solution ûp

of Eq. (3.11) is given by

ûp ¼
XNk

j¼1

ajU rj

� �
; ð3:17Þ

where

/ rj

� �
¼ < U rj

� �� 	
: ð3:18Þ

The above evaluation procedure for the particular solution is called reverse
differentiation process, which is introduced in Chap. 2, since the basis functions
U rð Þ in Eq. (3.17) are derived from Eq. (3.18) indirectly [5, 53, 54]. Some par-
ticular solutions U rð Þ are presented in Sect. 2.2.4.

Another technique is called the direct differentiation approach and utilizes a
traditional RBF U rð Þ in Eq. (3.17) as the basis function. Then / rð Þ in Eq. (3.15)
can be easily derived from Eq. (3.18) by a differentiation process. This scheme is
easy to implement, however, / rð Þ may not be positive definite or conditionally
positive definite RBFs to guarantee the invertibility of the resultant matrix in
Eq. (3.16).

By implementing one of the above two approaches, evaluating particular
solution up is reduced to a function interpolation problem. Giving Nk nonhomo-

geneous function values f xj

� �� 	
at all the collocation knots xj

� 	Nk

j¼1, the unknown

coefficients fajg can be determined by using formula (3.16) and then the particular
solution up is obtained via the expression (3.17). After the particular solution is
obtained, the homogeneous solution uh can be approximated by

uh � ûh ¼
XN1þN2

i¼1

bi/h rið Þ ð3:19Þ
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where fbig are the unknown coefficients, N1;N2 are, respectively, the number of
the collocation knots on C1 and C2, /h rj

� �
represents the fundamental solution,

RBF general solution, or harmonic function of the homogeneous governing
equation in Eq. (3.12). For more details of these functions satisfying homogeneous
equation, please see Sect. 2.2.1–2.2.3. Then, substituting Eq. (3.19) into boundary
condition in Eqs. (3.13) and (3.14), the unknown coefficients fbig can be deter-
mined and the approximate homogeneous solution ûh can be calculated via
Eq. (3.19). Finally, the solution of the original PDE can be obtained by using
Eq. (3.10). The above solution procedure is commonly called the two-stage MPS.

More recently, Chen et al. [5, 6] presented one-stage MPS to combine the
particular and homogeneous solutions together in a one-step process for solving
PDEs. This one-stage MPS interpolation formula is given by

~u xð Þ ¼
XNk

j¼1

ajU rj

� �
þ
XN1þN2

i¼1

bi/h rið Þ ð3:20Þ

It should be mentioned that the MPS solution procedure is equivalent to the
boundary-type RBF collocation methods in conjunction with dual reciprocity
method (DRM). However, the MPS conducts the whole domain discretization to
evaluate the particular solutions and is considered a special kind of domain-type
RBF collocation method.

3.5 The Method of Approximate Particular Solutions

Recently, Chen et al. [5, 7] proposed the method of approximate particular solu-
tions (MAPS) to improve the MPS by omitting the homogeneous solution part.
The MAPS approximate solution û of Eq. (3.1) is represented by

û xð Þ ¼
XNk

j¼1

ajU rj

� �
: ð3:21Þ

It is worth noting that the MAPS representation (3.21) appears similar to
Eq. (3.2) in the Kansa method. The major distinction between the MAPS and the
Kansa method is that the MAPS uses the corresponding derived particular solution
RBF by reverse differentiation process. Thus, the MAPS may have more sound
mathematical foundation. Some numerical experiments demonstrate that the
MAPS outperforms the Kansa method in both stability and accuracy, particularly
in the evaluation of partial derivatives.

However, if the governing differential operator < is complicated, it is difficult
to find the integral-derived particular solutions U rð Þ of Eq. (3.18). To implement
the MAPS, we rewrite Eq. (3.1) as

<0 uf g ¼ f xð Þ þ <0 � <ð Þ uf g; x 2 X; ð3:22Þ
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where <0 is a simpler differential operator, and the corresponding formula

<0U rð Þ ¼ / rð Þ; ð3:23Þ

has the known particular solution U rð Þ for the RBF / rð Þ. This approach allows the
MAPS to solve a broad types of linear and nonlinear PDEs [55].

3.6 Localized RBF Methods

In the previous sections, the RBF numerical solution of a PDE of interest is
interpolated by all the collocation points in the whole physical domain and
boundary. Such methods are called global approximation. As a result, the resultant
matrices are fully populated and thus ill-conditioned. This leads to unstable
computation. In addition, the dense matrix equation is also computationally very
expensive to solve. These RBF collocation methods are not applicable for large-
scale problems.

In recent decades, several techniques have been developed to overcome the
above-mentioned difficulties. The singular value decomposition (SVD) [56] per-
forms well to regularize the ill-conditioning of the moderate-size RBF dense
interpolation matrix [57–59]. Alternatively, one could also utilize the multi-grid
approach [60], the greedy algorithm [61, 62], the extended precision arithmetic
[63]. If a large number of interpolation points are required, the fast matrix com-
putational algorithms have been introduced in the RBF collocation methods to
significantly reduce computing costs and ill-conditioning, such as preconditioning
methods [64, 65], Fast Multipole Methods (FMM) [66, 67], H-matrix [68],
Domain Decomposition Method (DDM) [69–74], pre-corrected Fast Fourier
Transform (pFFT) [75], and Adaptive Cross Approximation (ACA) [76].

Different from the above-mentioned methodologies and inspired by the idea of
CS-RBFs, a number of localized RBF methods [8–18] have been proposed to
alleviate the ill-conditioning of the resultant matrix, costly dense matrix of the
RBF interpolation, and the uncertainty of the selection of the optimal shape
parameter.

Consider the elliptical PDE (3.1) again and let xsf gN
s¼12 X, the solution u xð Þ

can be approximated by a localized formulation as follows:

~u xsð Þ ¼
Xn

j¼1

as
j/ jjxs � xs

j jj2
� �

; ð3:24Þ

where n is the number of nearest neighboring points xs
j

n on

j¼1
surrounding collo-

cation point xs, including the collocation point itself. as
j

n o
are the unknown

coefficients to be determined, / xð Þ is an RBF. If all the collocation points are
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distinct, it can be proved that the RBF interpolation matrix U ¼ / jjxs
i � xs

j jj2
� �� �

is nonsingular if / xð Þ is a positive definite RBF. Hence, the unknown coefficients
in Eq. (3.24) have the following matrix form:

as ¼ U�1us; ð3:25Þ

where as ¼ as
1; . . .; as

n

� �T
, us ¼ u xs

1

� �
; � � � ; u xs

n

� �� �T
. Then the approximate solu-

tion ~u xsð Þ can be rewritten in terms of the given nodal values u xs
j

� �
at its n-nearest

neighboring points

~us ¼ Usas ¼ UsU�1us ¼ Wsus; ð3:26Þ

where Us ¼ / jjxs � xs
j jj2

� �� �
and Ws ¼ UsU�1 ¼ ws

j

n o
.

It stresses to point out that the number of selected nearest neighboring points for
a specified collocation point is far smaller than the total number of collocation
points, namely, n� N. If we rewrite Eq. (3.26) in terms of the approximate
solution ~u xj

� �
at all of the collocation points, it has

~us ¼ Wu; ð3:27Þ

where W is a N 	 N sparse matrix only having N 	 n nonzero elements. Substi-
tuting Eq. (3.27) into Eq. (3.1) yields

<W
B1W
B2W

2
4

3
5~u ¼ b½ 
: ð3:28Þ

Then, solving the above linear sparse system of equations, we get the
approximate solutions ~u at all of the collocation points. Comparing with the
aforementioned global RBF collocation schemes, a wide variety of efficient sparse
matrix solvers can be utilized to solve the localized RBF formulation of very large
scale in a far more efficient manner.

Concerning the localized RBF methods, an important issue is an efficient
algorithm to search the nearest neighboring source points surrounding a given
collocation point from a large number of collocation points in a high-dimensional
space. Lee et al. [15] defined an influence domain for each collocation point as the
cut-off function, and then the nearest n neighbors of a given collocation point are
located inside this influence domain. Chen and Yao [16, 17] employed the kd-tree
algorithm [77, 78] for the method of approximate particular solutions (MAPS) to
solve large-scale problems, for example, calcium dynamics in ventricular
myocytes [79]. In computer science, there exist several other search algorithms to
deal with this issue such as the quad-tree algorithm, the locality sensitive hashing
algorithm [80], and the R-tree algorithm [81].

For reasons of limitations of space, we will only mention a few more RBF
domain methods for numerical PDEs, such as the radial basis function network
method [82, 83], global and local integrated radial basis function collocation
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method [84, 85], the MQ quasi-interpolation method [86], the local MQ-DQ
method [87–89], the RBF-FD method [90–93], the RBF pseudo-spectral method
[94], and the radial point interpolation method [95, 96], the Hermite-type radial
point interpolation method [97], and the subdomain RBF collocation method [98].

3.7 Numerical Experiments

In this section, we first investigate the accuracy, stability, and convergence rate of
the Kansa method, the Hermite collocation method (HCM), and the modified
Kansa method (MKM) for some benchmark examples. In the following, Aerr
represents the L2 absolute error, Lerr represents the L2 relative error, which are
defined as follows:

Aerr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

i¼1

u xið Þ � ~u xið Þð Þ2
vuut ; ð3:29Þ

Lerr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

i¼1

u xið Þ � ~u xið Þ
u xið Þ

� �2
vuut ; ð3:30Þ

where NT is the total number of test points in the domain and on the boundary. In
the following tests, the MQ-RBF / rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

is chosen as the basis function.
First, we compare the convergence rate and stability of the three schemes in the

unit square domain. Figure 3.1 shows the mixed-type boundary conditions covered
by uniform and random collocation points, respectively. In this case, the MQ shape
parameter c ¼ 16

� ffiffiffiffi
N
p

is selected and the test point is 51	 51 uniform mesh grid,
namely, NT ¼ 2; 601.

Example 3.1: Consider the 2D Poisson equation in the unit square domain shown
in Fig. 3.1

Du ¼ 3þ 4x2
� �

ex2þy; x ¼ x; yð Þ 2 X; ð3:31Þ

whose boundary conditions are assigned in terms of the analytical solution

u ¼ ex2þy. C1 and C2 shown in Fig. 3.1 denote Dirichlet and Neumann boundary
conditions, respectively.

Figure 3.2 depicts the accuracy variation of these three methods with respect to
the number of uniform and random collocation points. In all three methods, the
numerical accuracy improved with the increasing number of collocation points
N. We observe that the HCM numerical result is as accurate as the Kansa method.
The MKM performs much better than both the Kansa method and the HCM using
the same number of collocation points. Figure 3.3 shows the condition number
Cond of the interpolation matrix A ¼ Aij

� �
of the three methods verses the number
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Fig. 3.1 Mixed-type boundary problem in square domain with (a) uniform and (b) random
collocation points

Fig. 3.2 Convergence rates with (a) uniform and (b) random collocation points in Example 3.1

Fig. 3.3 Condition numbers with (a) uniform and (b) random collocation points in Example 3.1
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of collocation points N. We can see that all the condition numbers of these three
methods increase rapidly when N becomes large.

Example 3.2: Consider the following 2D modified Helmholtz equation in multi-
connected domain shown in Fig. 3.4

D� 2ð Þu ¼ 2� 4xð Þe� xþyð Þ; x ¼ x; yð Þ 2 X: ð3:32Þ

The mixed-type boundary conditions can be easily derived from the analytical
solution u ¼ x2e� xþyð Þ, where C1 and C2 shown in Fig. 3.4 denote Dirichlet and
Neumann boundary conditions, respectively. In the numerical implementation, we
choose MQ shape parameter c ¼ 12

� ffiffiffiffi
N
p

and NT ¼ 1; 510.
Figure 3.5 displays the convergence rates and condition number curves by these

three schemes. Both the Kansa method and the HCM produce similar results.
Although having the largest condition number, the MKM performs the most
accurate solutions among these three schemes. The numerical accuracy of the
MKM is almost one order of magnitude better than the other two schemes.
Figure 3.6 shows the profile of the analytical solution and relative errors by these
three RBF schemes. Figure 3.6b–d illustrates that the errors are smaller on the
boundary and the maximum error appears in the boundary-adjacent region.
Compared with the other two methods, it can be observed from Fig. 3.6 that the
MKM obtains better accuracy at close-to-boundary nodes by almost one order of
magnitude.

Example 3.3: Plate bending of the simply-supported unit square plate

The governing equation of a simply-supported thin plate under uniform loading is

r4w ¼ q0

D
; ð3:33Þ

Fig. 3.4 The profile of the
multi-connected domain
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Fig. 3.5 (a) Accuracy and (b) condition numbers versus collocation points N in Example 3.2

Fig. 3.6 (a) The profile of analytical solution. (b–d) The relative numerical errors of Kansa,
HCM, and MKM, respectively
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with boundary conditions

w ¼ 0; ð3:34Þ

Mn ¼ �D mr2wþ 1� mð Þ cos2 h
o2w

ox2
þ sin2 h

o2w

oy2
þ sin 2h

o2w

oxoy

� �� �
¼ 0;

ð3:35Þ

where w represents the deflection of the middle surface of the plate,r4 denotes the
biharmonic operator, and D ¼ Eh3

�
12 1� m2ð Þ½ 
 is the flexural rigidity of the plate,

n ¼ cos h; sin h½ 
 the unit outward normal vector. The parameter values are
E ¼ 2:1	 1011, h ¼ 0:01, m ¼ 0:3, q0 ¼ 106. We choose MQ-RBF with shape
parameter c ¼ 40=Ni. This case study will also investigate convergence rate and
stability.

Numerical accuracy variation of these three methods with respect to the number
of unknown coefficients is shown in Fig. 3.7a. The numerical accuracy improves
with the increasing number of points. We observe from Fig. 3.7a that the HCM
achieves similar accuracy as the Kansa method, but eliminates the error oscillation
with the increasing number of points. It is noted that the MKM obtains the most
accurate results among these three methods. On the other hand, the condition
numbers of interpolation matrixes increase rapidly with the increasing number of
points. This ill-conditioning problem may affect the numerical stability of these
RBF collocation methods. It is necessary to introduce the additional techniques to
mitigate the effect of ill-conditioning as mentioned in Sect. 3.5.

Fig. 3.7 (a) Numerical accuracy variations and (b) condition numbers versus the number of
unknown coefficients in Example 3.3
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Example 3.4: This example compares the method of approximate particular
solutions (MAPS) with the Kansa method of a 2D convection–diffusion problem

Duþ x2 þ y2
� �

uþ y cos yð Þ ou

ox
þ sin h xð Þ ou

ox
¼ f x; yð Þ; x; yð Þ 2 X; ð3:36Þ

u ¼ R x; yð Þ; x; yð Þ 2 C; ð3:37Þ

where the physical domain X is a star-shaped region as shown in Fig. 3.8 and its
boundary is defined by the following parametric equation:

C ¼ x; yð Þ x ¼ q cos h; y ¼ q sin h; 0� h\2pjf g; ð3:38Þ

in which q ¼ 1þ cos 4hð Þð Þ2. The given functions f x; yð Þ;R x; yð Þ are easily
derived from the following analytical solution

u x; yð Þ ¼ sin pxð Þ cosh yð Þ � cos pxð Þ sinh yð Þ: ð3:39Þ

Tsai et al. [99] employed a golden search method to find the good shape
parameter c in the MQ RBF. Table 3.1 shows the comparison of the absolute
errors Aerr by the MAPS and the Kansa method. The MAPS achieves the similar
accuracy as the Kansa method using the same placement of the collocation points.

Example 3.5: Let us consider the localized RBF formulations in the solution of
the following Poisson problem:

Du ¼ f x; yð Þ; x; yð Þ 2 X
u ¼ R x; yð Þ; x; yð Þ 2 oX

; ð3:40Þ

Fig. 3.8 Profiles of
computational domain of
Example 3.4 (Reprinted from
Ref. [99], Copyright 2012,
with permission from
Elsevier)
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where the physical domain X is a rectangular 0; 1½ 
 	 0;H½ 
. The given functions
f x; yð Þ;R x; yð Þ are given based on the following analytical solution:

u x; yð Þ ¼ 1:25þ cos 5:4yþ 2:7ð Þ
6 1þ 3xþ 0:5ð Þ2
� � ð3:41Þ

In the numerical implementation, all the interior and boundary points are dis-
tributed uniformly. The number of internal nodes is N ¼ S2

n H � 1ð Þ þ Sn � 1ð ÞH,
and the number of boundary nodes is Ni ¼ 2 Sn � 1ð Þ H þ 1ð Þ. n is the number of
nearest neighbor points, and Sn denotes the number of partition in [0,1]. Table 3.2
lists numerical results obtained by the Localized Kansa method (LKM) and the
Localized MAPS (LMAPS) using various number of nearest neighbor points and
H ¼ 20; Sn ¼ 25. We observe that the LKM and the LMAPS have similar accu-
racy with the optimal shape parameter in Table 3.2. As n increases, the accuracy of
the localized RBF formulations improves while the computational efficiency
decreases. Therefore, n ¼ 9 is fixed to apply the localized formulations to the
large-scale problems with millions of points. Table 3.3 shows numerical errors of
the LKM and the LMAPS with various values H for n ¼ 9; Sn ¼ 30. It should be
mentioned that 30	 30 uniform nodes are distributed inside
0; 1½ 
 	 i� 1; i½ 
; i ¼ 1; � � � ;H. Since the same collocation nodes in each square
0; 1½ 
 	 i� 1; i½ 
 are used, the optimal shape parameter c is stable and independent

on H. From Table 3.3, it can be found that the localized methods can solve the
problem with 900,000 interpolation points and obtain good accuracy. In Fig. 3.9
we present the errors Aerr with respect to the shape parameter c by the global
MAPS (GMAPS) and the LMAPS with n ¼ 9; Sn ¼ 10;H ¼ 1. In Fig. 3.9 the
shape parameter c in the LMAPS is more stable than the GMAPS. Hence the

Table 3.1 Comparison of Aerr by the MAPS and the Kansa method for Example 3.4

N Ni MAPS Kansa

Aerr Optimal c Aerr Optimal c

213 113 1.68e-4 2.45 1.08e-4 2.94
313 193 4.74e-5 1.48 2.47e-5 2.17
401 261 2.48e-5 1.34 1.35e-5 1.89

Table 3.2 Numerical results obtained by Localized Kansa and Localized MAPS with various
number of nearest neighbor points using Sn ¼ 25;H ¼ 20 for Example 3.5

n Localized MAPS Localized Kansa (MQ)

Aerr Optimal c Aerr Optimal c

7 9.46e-5 9.3 5.87e-5 0.8
9 5.88e-5 5.3 8.34e-5 0.5
11 1.10e-4 2.4 8.29e-5 0.4
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LMAPS alleviates the difficulty of choosing the shape parameter c in the tradi-
tional RBF approaches. In this example it also reveals that the localized RBF
formulation can provide highly accurate results for large-scale problems.
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