
Chapter 2
Radial Basis Functions

Abstract The traditional basis functions in numerical PDEs are mostly coordinate
functions, such as polynomial and trigonometric functions, which are computa-
tionally expensive in dealing with high dimensional problems due to their
dependency on geometric complexity. Alternatively, radial basis functions (RBFs)
are constructed in terms of one-dimensional distance variable irrespective of
dimensionality of problems and appear to have a clear edge over the traditional
basis functions directly in terms of coordinates. In the first part of this chapter, we
introduces classical RBFs, such as globally-supported RBFs (Polyharmonic
splines, Multiquadratics, Gaussian, etc.), and recently developed RBFs, such as
compactly-supported RBFs. Following this, several problem-dependent RBFs,
such as fundamental solutions, general solutions, harmonic functions, and partic-
ular solutions, are presented. Based on the second Green identity, we propose the
kernel RBF-creating strategy to construct the appropriate RBFs.

Keywords Globally-supported RBFs � Compactly-supported RBFs � Operator-
dependent � Kernel RBFs

The functions expressed in the Euclidean distance variable are usually termed as
the radial basis functions (RBFs) in literatures. This is due to the fact that all such
RBFs are radially isotropic due to the rotational invariant, and have become de
facto the conventional distance functions of the widest use today. However, there
do exist some quite important anisotropic and inhomogeneous RBFs, for instance,
the spherical RBFs in handling geodesic problems and the so-called time–space
RBFs. It is obvious that all these so-called anisotropic RBFs are not radially
isotropic.

In terms of PDE kernel solutions, we have distance functions using three kinds
of distance variables underlying (1) rotational invariant, (2) translation invariant,
and (3) a scalar product of two vectors with the ridge function. The traditional
rotational invariant RBFs do not cover the latter two. In addition, there are many
other distance variables in the area of neural network and machine learning.
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In most literature, the term ‘‘RBF’’ is, however, often simply used indiscrimi-
natingly for the rotational and translation invariants distance variables and func-
tions. Thus, this book extends the definition of RBF to general distance functions.

This chapter begins with an introduction of traditional RBFs for multivariate
data interpolation, such as globally-supported RBFs and compactly-supported
RBFs. In addition, several problem-dependent RBFs, such as fundamental solu-
tions, general solutions, harmonic functions, and particular solutions, are also
presented for the use in the following chapters. In the end, we introduce the kernel
RBF-creating strategy.

2.1 Traditional RBFs

2.1.1 Globally-Supported RBFs

RBFs are mostly multivariate functions, and their values depend only on the
distance from the origin, so that /ðxÞ ¼ /ðrÞ 2 R; x 2 Rn; r 2 R; or alternatively
on the distance from a point of a given set xj

� �
, and /ðx� xjÞ ¼ /ðrjÞ 2 R: Any

function / satisfying the property /ðxÞ ¼ /ðjjxjj2Þ is a radial function. The norm
rj ¼ jjx� xjjj2 is usually the Euclidean distance. Certainly, the other distance
functions [1] are also possible. Some commonly used globally-supported RBFs are
shown in Table 2.1.

Our interest lies in the RBF interpolation of a continuous multivariate function,
f xð Þ; x 2 X � Rn, where X is a bounded domain. Given N interpolation function

values fyigN
i¼1 2 R at data location fxigN

i¼1 2 X � Rn, then f xð Þ can be approxi-
mated by a linear combination of RBFs, namely,

f xð Þ �
XN

j¼1

aj/ x� xj

�� ��
2

� �
; x 2 X; ð2:1Þ

Table 2.1 Commonly used globally-supported RBFs

RBFs /ðxÞ CPD order (m)

Polyharmonic spline r2k�1; k 2 N

r2k ln rð Þ; k 2 N

�
k=2½ � þ 1

Thin plate splines (TPS) r2 ln rð Þ 2
MQ ðr2 þ c2Þk; k [ 0; k 62 N k½ � þ 1

IMQ ðr2 þ c2Þ�k; k [ 0; k 62 N 0

Gaussian e� r2=c2ð Þ 0

k½ � denotes the nearest integers less than or equal to k, and N the natural number, c a positive
constant which is known as the shape parameter, and CPD denotes the m-order conditionally
positive definite functions [2]
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where aj

� �
are the unknown coefficients to be determined. By the collocation

method, we have

yi ¼ f xið Þ ¼
XN

j¼1

aj/ xi � xj

�� ��
2

� �
; i ¼ 1; � � � ;N: ð2:2Þ

The above linear system of equations can be expressed in the following matrix
form

Aa ¼ b; ð2:3Þ

in which a ¼ ða1; a2; . . .; aNÞT is an unknown coefficient vector to be determined,

b ¼ ðy1; y2; . . .; yNÞT is the right-hand side vector, and the RBF interpolation
matrix is given by

A ¼ ½Uij� ¼ ½/ðjjxi � xjjj2Þ�1� i;j�N : ð2:4Þ

However, some RBFs are conditionally positive definite functions as listed in
Table 2.1, such as MQ and TPS. Hence polynomials are augmented to Eq. (2.1) to
guarantee that the resultant interpolation matrix is invertible. Such a formulation is
expressed as follows

f ðxÞ ¼
XN

j¼1

aj/ðjjx� xjjj2Þ þ
XM

i¼1

aNþipiðxÞ; ð2:5Þ

with constraints

XN

j¼1

ajpiðxjÞ ¼ 0; i ¼ 1; 2; � � � ;M; ð2:6Þ

in which pi 2 Pm�1; i ¼ 1; 2; � � � ;M, where Pm represents the polynomial space
that all polynomials of total degree less than m in n variables,

M ¼ N þ m� 1
m� 1

� 	
.

Then, Eqs. (2.5) and (2.6) yield a matrix system of ðM þ NÞ � ðM þ NÞ

A P
PT 0


 �
a½ � ¼ b

0


 �
: ð2:7Þ

To illustrate the stability and efficiency of the RBF interpolation, without loss of
generality, we consider the following test functions on the 2D unit square domain

f1 ¼ fa þ fb; ð2:8Þ

f2 ¼ sin
px

6

� �
sin

7px

4

� 	
cos

3py

4

� 	
cos

5py

4

� 	
; ð2:9Þ

2.1 Traditional RBFs 7



where

fa ¼
3
4

exp
� 9x� 2ð Þ2

4
� 9y� 2ð Þ2

4

 !

þ 3
4

exp
� 9xþ 1ð Þ2

49
� 9yþ 1ð Þ2

10

 !

; ð2:10Þ

fb ¼
1
2

exp
� 9x� 7ð Þ2

4
� 9y� 3ð Þ2

4

 !

� 1
5

exp � 9x� 4ð Þ2� 9y� 7ð Þ2
� �

: ð2:11Þ

Figure 2.1 shows the profiles of these two test functions. Note that f1 is the
well-known Franke’s function [3]. We conduct numerical experiments via the MQ.
This study defines the normalized root-mean-square error (Rerr) and the normal-
ized maximum error (Mrerr) as

Rerr ¼ 1
max

1� i�NT
fe xið Þj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NT

XNT

i¼1

f xið Þ � fe xið Þj j2
vuut ; ð2:12Þ

Mrerr ¼ 1
max

1� i�NT
fe xið Þj j max

1� i�NT
f xið Þ � fe xið Þj j; ð2:13Þ

where fe xið Þ and f xið Þ are the analytical and numerical solutions evaluated at xi,
respectively, and NT ¼ 10; 201 is the total number of 101� 101 uniformly dis-
tributed test points in a unit square domain.

In this study, we place the interpolation points with uniform spacing, h, for easy
comparisons. From the numerical errors presented in Table 2.2, one can observe
that

(a) The error decreases with the grid refinement.
(b) The condition number of RBF interpolation matrix increases with the grid

refinement.
(c) The shape parameter c is very sensitive to the test functions and the grid size.

Fig. 2.1 Profiles of test functions a Eq. (2.8), b Eq. (2.9)
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(d) The accuracy in function f1, with the grid size h ¼ 0:1, is poor because the grid
is too coarse to perform a more accurate solution.

From the above numerical experiments, we observe that the numerical accuracy
depends on the grid size, the shape parameter, the complexity of the given func-
tions, and the other potential factors. Great efforts have been made to find the
relationship between the RBF interpolation’s accuracy and that of various influ-
ential factors [4–8]. Duchon [9], Madych and Nelson [10–12], Wu and Schaback
[13], and Cheng [14] made contributions to estimate the error of RBF interpola-
tion. Wendland [15] made a summary of these estimates for different RBFs with
respect to grid size h, which is presented in Table 2.3.

Theoretical analysis and empirical formulas for RBF interpolation are also
proposed in literature but remain underdeveloped. Based on Madych’s theoretical
analysis [16], the error estimates of MQ, IMQ, and Gaussian RBFs are made up of
the product of two rival terms. Namely, one part grows exponentially, and the
other decays exponentially as the shape parameter c increases

e	O eackc=h
� �

; 0\k\1; a [ 0; ð2:14Þ

or

e	O eac2
kc=h

� �
; 0\k\1; a [ 0: ð2:15Þ

Huang et al. [6] proposed an empirical error estimate for the IMQ RBF

e	O eac3=2
kc1=2=h

� �
; 0\k\1; a [ 0: ð2:16Þ

Table 2.2 Numerical errors using MQ RBF based on grid size h ¼ 0:1 and h ¼ 0:05

Functions Grid size (h) Optimal shape parameter (c) Condition number Mrerr Rerr

f1 0.1 0.16 3.4e ? 05 1.2e-02 1.4e-03
f1 0.05 0.31 3.8e ? 14 2.8e-05 3.1e-06
f2 0.1 1.16 3.2e ? 17 8.5e-05 1.1e-05
f2 0.05 0.78 6.6e ? 19 3.4e-06 4.7e-07

Table 2.3 Error estimates of different RBFs with respect to grid size h

RBFs /ðxÞ Error estimate

Polyharmonic spline r2k�1; k 2 N

r2k ln rð Þ; k 2 N

�
hk

Thin plate splines (TPS) r2 ln rð Þ h2

MQ ðr2 þ c2Þk; k [ 0; k 62 N e�a=h

IMQ ðr2 þ c2Þ�k; k [ 0; k 62 N e�a=h

Gaussian e� r2=c2ð Þ e�a ln h=h
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Following Madych’s formula, Cheng [14] established the following estimate for
the Gaussian RBF

e	O eac4
kc=h

� �
; 0\k\1; a [ 0: ð2:17Þ

From the above-mentioned error estimates, one can derive different explicit
formulas for the optimal c. According to Eq. (2.15), the optimal c can be
approximated by

copt	O � ln k=2ahð Þ: ð2:18Þ

Similar to Eq. (2.18), the optimal c for IMQ RBF in terms of Eq. (2.16) is

copt	O � ln k=3ahð Þ: ð2:19Þ

The optimal c for Gaussian RBF can also be obtained from Eq. (2.17)

copt	O � ln kð Þ1=3
.

22=3a1=3h1=3
 �� �

: ð2:20Þ

In recent years, we have witnessed the continued efforts of many to establish the
theory of evaluating the optimal shape parameter c in the MQ interpolation.
However, such an explicit formula is only available in special cases. Conse-
quently, numerically determining the optimal c proves to be essential. And
numerical experiments find that the best c, via a numerical scheme, may not be
theoretically optimal.

Since the condition number of the MQ interpolation matrix grows rapidly as
c increases, the optimal c is the largest value at which it can be utilized before the
instability of matrix calculation occurs due to the machine precision. We draw the
following conclusions upon the above discussions.

Among the advantages of Globally-supported RBFs are

(a) Highly accurate and often converge exponentially.
(b) Easy to apply to high dimensional problems.
(c) Meshless in the approximation of multivariate scattered data, and easy to

improve the numerical accuracy by adding more points around large gradient
regions.

On the other hand, the downside is that the interpolation matrix is fully pop-
ulated and ill-conditioned, and thus sensitive to shape parameter. As a result, it is
computationally very expensive to apply the traditional RBF interpolation to large-
scale problems.
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2.1.2 Compactly-Supported RBFs

Following a similar methodology in the corrected reproducing kernel approxi-
mation [17], Wu [18] and Wendland [19] proposed a new type of RBFs to make
the interpolation matrix sparse, which is defined as compactly-supported positive
definite RBFs (CS-RBFs). The popular Wendland’s CS-RBFs [19] are listed below
in Table 2.4.

Note that the cut-off function rð Þþ is defined to be r if 0� r� 1 and to be zero
elsewhere. Furthermore, another class of CS-RBFs constructed by Buhmann [20]
is reminiscent of the popular thin plate splines. Three examples of these CS-RBFs
are given below

/ðxÞ ¼ 2r4 logðrÞ � 7r4
�

2þ 16r3
�

3� 2r2 þ 1=6
 �

þ; x 2 R3; ð2:21Þ

/ðxÞ ¼ 112r9=2
�

45þ 16r7=2
�

3� 7r4 � 14r2
�

15þ 1=9
 �

þ; x 2 R2; ð2:22Þ

/ðxÞ ¼ 1=18� r2 þ 4r3
�

9þ r4
�

2� 4r3 logðrÞ
�

3
 �

þ; x 2 R2: ð2:23Þ

Wu employs convolution to construct another kind of CS-RBFs as shown in
Table 2.5. Wu’s functions can be derived by the following formula

uk;s¼Dk usð Þ; d� 2kþ1; ð2:24Þ

where differential operator D is defined as

Table 2.4 Wendland’s CS-RBFs

Dimension /ðxÞ Continuity of function

d ¼ 1 1� rð Þþ C0

1� rð Þ3þ 3r þ 1ð Þ C2

1� rð Þ5þ 8r2 þ 5r þ 1ð Þ C4

d ¼ 2; 3 1� rð Þ2þ C0

1� rð Þ4þ 4r þ 1ð Þ C2

1� rð Þ6þ 35r2 þ 18r þ 3ð Þ C4

1� rð Þ8þ 32r3 þ 25r2 þ 8r þ 1ð Þ C6

Table 2.5 Wu’s CS-RBFs

k uk;3ðxÞ Continuity of
function

0 1� rð Þ7þ 5r6 þ 35r5 þ 101r4þ147r3 þ 101r2 þ 35r þ 5
 �

C6

1 1� rð Þ6þ 5r5 þ 30r4þ72r3 þ 82r2 þ 36r þ 6
 �

C4

2 1� rð Þ5þ 5r4þ25r3 þ 48r2 þ 40r þ 8ð Þ C2

3 1� rð Þ4þ 5r3 þ 20r2 þ 29r þ 16ð Þ C0
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Duð Þ rð Þ¼ � u0 rð Þ=r; r
 0; ð2:25Þ

and the strictly positive definite function us rð Þ is stated as

us rð Þ¼ u � uð Þ 2rð Þ¼
Z 1

�1
1� t2
 �s

þ 1� 2r � tð Þ2
� �s

þ
dt: ð2:26Þ

The CS-RBFs can result in a sparse banded interpolation matrix and effectively
avoids the ill-conditioned and dense matrix in the classical RBF interpolation and
consequently reduces computational costs. However, the discouraging lower order
of accuracy causes a major impediment to its practical use. To overcome the ill-
conditioned problems and reduce the computational costs without loss of accuracy,
several alternative localized approaches have been proposed and will be intro-
duced in Chap. 3.

2.2 Problem-Dependent RBFs

As the RBF collocation methods attract growing attention in the field of numerical
PDEs in the recent two decades, various solutions of PDEs and their variants
emerge to be a powerful approach in the construction of the problem-dependent
RBFs. This section introduces several problem-dependent RBFs. Consider the
following elliptic PDEs

<u ¼ f xð Þ; x 2 X;
Bu ¼ g xð Þ; x 2 C;

ð2:27Þ

where < and B denote the linear partial differential operator and boundary oper-
ators. X � Rn is a bounded domain, and C denotes its boundary.

2.2.1 Fundamental Solutions

The fundamental solutions of radially invariant differential operator have the radial
form with respect to origin and are of a radial function. The fundamental solution
/F satisfies the governing differential equation of interest

< /Ff g ¼ �di; ð2:28Þ

where di is the Dirac delta function.
The fundamental solutions of commonly used differential operators are listed in

Table 2.6 [21], where D denotes the Laplace operator, r the gradient operator, D
the diffusivity coefficient, k a real number known as the wave number, v and r the

velocity vector and distance vector, l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vj j=2Dð Þ2þk=D
q

, j foundation stiffness,
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and r the Euclidean norm between the point x and the origin. Y0 and K0 are the
Bessel and modified Bessel functions of the second kind of order zero, respec-
tively. We can see that the two Kelvin functions are the component functions of
the fundamental solutions of the Winkler operator, where Kei represents the
modified Kelvin functions of the second kind, and Ber denotes the Kelvin func-
tions of the first kind. It is worthy noting that the fundamental solutions to a
differential operator may not be unique. For the Laplace operator, a constant may
be included in its fundamental solution.

By utilizing Green second identity, the high-order fundamental solutions of the
Laplace operator Dm [22] can be derived by

/m
F ðxÞ ¼

r2m

2p
Cm ln r � Bmð Þ; x 2 R2

1
2mð Þ!

r2m�1

4p
; x 2 R3

8
>><

>>:
; ð2:29Þ

where

C0 ¼ 1; B0 ¼ 0; Cmþ1 ¼
Cm

4ðmþ 1Þ2
; Bmþ1 ¼

1

4ðmþ 1Þ2
Cm

mþ 1
þ Bm

� 	
:

Itagaki [23] and Chen [24] derived the explicit expressions of high-order fun-
damental solutions of Helmholtz, modified Helmholtz, and steady convection–
diffusion operators. The high-order fundamental solutions of Helmholtz-type

operator Dþ k2 �m
[23, 24] are given by

/m
F ðxÞ ¼ AmðkrÞmþ1�n=2Ym�1þn=2ðkrÞ; x 2 Rn; ð2:30Þ

where Am ¼ Am�1
�

2mk2;A0 ¼ 1, m is the order of operator of interest, and
n denotes dimensionality.

The high-order fundamental solutions of modified Helmholtz-type operator

D� k2 �m
[23, 24] are given by

Table 2.6 Fundamental solutions to commonly used differential operators of two and three
dimensions

< 2D 3D

D ln rð Þ= 2pð Þ 1= 4prð Þ
Dþ k2 Y0ðkrÞ= 2pð Þ cos kr= 4prð Þ
D� k2 K0ðkrÞ= 2pð Þ e�kr

�
4prð Þ

DDþ v � r � k2 K0ðlrÞe�v�r
2D

�
2pð Þ e�lr�v�r

2D

�
4prð Þ

D2 � k4 Y0ðkrÞ þ K0ðkrÞð Þ= 2pð Þ e�kr þ cos kr
 ��

4prð Þ
D2 þ j2 Keið

ffiffiffi
j
p

rÞ þ Berð
ffiffiffi
j
p

rÞ Kei3=2
ffiffiffi
j
p

rð Þ þ Ber3=2
ffiffiffi
j
p

rð Þ
D2 � k2D K0ðkrÞ þ ln rð Þð Þ

�
2pk2 �

e�kr þ 1
 ��

4pk2r
 �
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/m
F ðxÞ ¼ AmðkrÞmþ1�n=2Km�1þn=2ðkrÞ; x 2 Rn: ð2:31Þ

The high-order fundamental solutions of modified convection–diffusion-type

operator DDþ v � r � k2 �m
[24] are given by

/m
F ðxÞ ¼ AmðlrÞmþ1�n=2e�

v�r
2D Km�1þn=2ðlrÞ; x 2 Rn: ð2:32Þ

Furthermore, the high-order composite operator is the product of different types
of commonly used differential operators. For instance, the thin plate vibration
operator is the product of the Laplace and the Helmholtz operators, and the Berger
operator is a composite operator of the Laplace and the modified Helmholtz
operators. And their fundamental solutions of orders are a sum of the solutions of
the corresponding component operators. Recently, Chen [24] derived the high-
order fundamental solutions of thin plate vibration, Berger plate, and Winkler
plate. The high-order fundamental solutions of thin plate vibration-type operator

r4 � k4 �m
are given by

/m
F ðxÞ ¼ AmðkrÞmþ1�n=2 Ym�1þn=2ðkrÞ þ Km�1þn=2ðkrÞ

 �
; x 2 Rn: ð2:33Þ

The high-order fundamental solutions of Berger plate-type operator

r4 � k2r2
 �m

are given by

/m
F ðxÞ ¼

r2m

2p
Cm ln r � Bmð Þ þ AmðkrÞmKmðkrÞ; x 2 R2

1
2mð Þ!

r2m�1

4p
þ AmðkrÞm�1=2Km�1=2ðkrÞ; x 2 R3

8
>><

>>:
: ð2:34Þ

The high-order fundamental solutions of Winkler plate-type operator
r4 þ j2ð Þm are given by

/m
F ðxÞ ¼ Am

ffiffiffi
j
p

r
 �mþ1�n=2

Kein=2
ffiffiffi
j
p

r
 �

þ Bern=2
ffiffiffi
j
p

r
 � �

; x 2 Rn; ð2:35Þ

where m is an odd-integer order of operator, and

/m
F ðxÞ ¼ Am

ffiffiffi
j
p

r
 �mþ1�n=2

Kein=2�1
ffiffiffi
j
p

r
 �

þ Bern=2�1
ffiffiffi
j
p

r
 � �

; x 2 Rn; ð2:36Þ

where m is an even-integer order. Note that we cannot verify the high-order
Winkler plate-type fundamental solutions for more than 5-dimensions (n [ 5)
because of the following reasons:

(a) Equations (2.35) and (2.36) are not applicable for the Winkler operator of
more than 5-dimensions.

(b) The solutions of the Winkler operator of more than 5-dimensions do not exist.
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2.2.2 General Solutions

It is well known that the fundamental solutions have singularities at origin.
Thereby, the special treatment of these singularities should be handled numeri-
cally. In contrast, Chen [24, 25] proposed the general solutions /G, which are
nonsingular radial functions satisfying the corresponding governing differential
equations in the manner

< /Gf g ¼ 0: ð2:37Þ

It is seen from Eq. (2.37) that the general solutions at origin have a bounded
value rather than infinity as in the fundamental solution case. The general solutions
of differential operator differ essentially from the corresponding fundamental
solutions in that the former are nonsingular, while the latter are singular at origin.

Similarly, the nonsingular general solutions are also one kind of radial func-
tions. Some useful general solutions [24] are listed in Table 2.7, where I0 and J0

represent the Bessel and modified Bessel functions of the first kind of order zero,
respectively, and two Kelvin functions are the component functions of the general
solutions of the Winkler operator, Ber and Bei denote the Kelvin functions of the
first and second kind, respectively. It is noted that the RBF general solution of
Laplace equation is a constant and is not suitable as a basis function. This issue
will be further discussed in the next section.

We can also obtain the high-order RBF general solutions of Helmholtz-type

operator Dþ k2 �m
[24]

/m
GðxÞ ¼ AmðkrÞmþ1�n=2Jm�1þn=2ðkrÞ; x 2 Rn; ð2:38Þ

where Am ¼ Am�1

�
2mk2;A0 ¼ 1, m denotes the order of operator, and n represents

the dimensionality.
The high-order RBF general solutions of modified Helmholtz-type operator

D� k2 �m
[24] are given by

/m
GðxÞ ¼ AmðkrÞmþ1�n=2Im�1þn=2ðkrÞ; x 2 Rn: ð2:39Þ

Table 2.7 Nonsingular RBF general solutions to commonly used differential operators

< 2D 3D

D / /

Dþ k2 J0ðkrÞ= 2pð Þ sin krð Þ= 4prð Þ
D� k2 I0ðkrÞ= 2pð Þ sinh krð Þ= 4prð Þ
DDþ v � r � k2 I0ðlrÞe�v�r

2D

�
2pð Þ e�

v�r
2D sinhðlrÞ= 4prð Þ

r4 � k4 J0ðkrÞ þ I0ðkrÞð Þ= 2pð Þ sin krð Þ þ sinhðkrÞð Þ= 4prð Þ
r4 þ j2 Bei

ffiffiffi
j
p

rð Þ þ Ber
ffiffiffi
j
p

rð Þ Bei3=2
ffiffiffi
j
p

rð Þ þ Ber3=2
ffiffiffi
j
p

rð Þ
r4 � k2r2 I0ðkrÞ þ 1ð Þ

�
2pk2 �

sinh krð Þ þ rð Þ
�

4pk2r
 �
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The high-order RBF general solutions of modified convection–diffusion-type

operator DDþ v � r � k2 �m
[24] are represented by

/m
GðxÞ ¼ AmðlrÞmþ1�n=2e�

v�r
2D Im�1þn=2ðlrÞ; x 2 Rn: ð2:40Þ

The high-order RBF general solutions of thin plate vibration-type operator

r4 � k4 �m
are expressed as

/m
GðxÞ ¼ AmðkrÞmþ1�n=2 Jm�1þn=2ðkrÞ þ Im�1þn=2ðkrÞ

 �
; x 2 Rn: ð2:41Þ

The high-order RBF general solutions of Berger plate-type operator

r4 � k2r2
 �m

are stated as

/m
GðxÞ ¼ Am þ AmðkrÞmþ1�n=2Im�1þn=2ðkrÞ; x 2 Rn: ð2:42Þ

The high-order RBF general solutions of Winkler plate-type operator
r4 þ j2ð Þm are given by

/m
GðxÞ ¼ Am

ffiffiffi
j
p

r
 �mþ1�n=2

Bein=2
ffiffiffi
j
p

r
 �

þ Bern=2
ffiffiffi
j
p

r
 � �

; n ¼ 2; 3; ð2:43Þ

where the order m of operator is an odd integer, and

/m
GðxÞ ¼ Am

ffiffiffi
j
p

r
 �mþ1�n=2

Bein=2�1
ffiffiffi
j
p

r
 �

þ Bern=2�1
ffiffiffi
j
p

r
 � �

; n ¼ 2; 3; ð2:44Þ

where m is an even integer. It should also be mentioned that Eqs. (2.43) and (2.44)
do not establish for the Winkler operators of more than 3-dimensions. It remains
an open issue to find such high-order general solutions.

2.2.3 Harmonic Functions

As mentioned earlier, the general solution of Laplace equation is a constant rather
than a RBF and is not suitable for function interpolation and numerical PDEs.
Chen [26] made an attempt to use the nonsingular general solutions of Helmholtz-
like equation with a small characteristic parameter to replace the constant general
solution of Laplace equation. However, the characteristic parameter such as the
wave number should generally be small to get accurate solution. It is somewhat
sensitive to the domain geometry of problem of interest. And it is not easy to
determine its optimal value as the shape parameter of the MQ.

On the other hand, Hon and Wu [27] applied a translate-invariant 2D harmonic
function as the basis function to devise a simple and efficient numerical scheme for
solving 2D Laplace problems. Hon and Wu’s harmonic function of the two-
dimensional Laplace equation D H0

2ðxi; yiÞ
 �

¼ 0 is given by

H0
2ðxi; yiÞ ¼ expð�cðx2

ik � y2
ikÞÞ cosð2cxikyikÞ; ð2:45Þ
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where c is the shape parameter and is dependent on problem of interest, and
xik ¼ xi � xk, yik ¼ yi � yk.

Compared with the singular fundamental solutions, the harmonic solutions are
nonsingular. Thus, it is appealing to choose harmonic functions, which avoid the
singularities of Laplace fundamental solution. However, this comes at a price one
has to pay that their shape parameter c has to be determined as the MQ shape
parameter [28]. The performances such as accuracy and convergence rate of the
harmonic functions are largely dependent on the problem-dependent parameter c.

The harmonic functions are guaranteed invertibility if the solution is in the
bounded domain or decays to zero at infinite for the unbounded domain. As quoted
from Hon and Wu [27], ‘‘The result in this paper is given for bounded functions
which are harmonic on the upper half plane. This ensures that the functions can be
expressed in the form of Poisson integrals so that the solution can be determined
by its given values on the boundary. The numerical computations, however,
indicate that the result is also valid for unbounded functions (but bounded on the
boundary) which are harmonic on the upper half plane.’’

High-order polyharmonic solutions

Based on Hon and Wu’s work [27], the high-order polyharmonic functions in two-
and three- dimensional problems are constructed by Chen and Fu [29, 30]. The m-
order polyharmonic functions of Dm Hm

2 ðxi; yiÞ
 �

¼ 0 in two-dimension are repre-
sented as

Hm
2 xi; yið Þ ¼ r2m exp �c x2

ik � y2
ik

 � �
cos 2cxikyikð Þ: ð2:46Þ

Three-dimensional harmonic solutions

The harmonic function of three-dimensional Laplace equation D H0
3ðxi; yi; ziÞ

 �
¼

0 can be intuitionally obtained as

H0
3 xi; yi; zið Þ ¼ exp �c x2

ik � y2
ik

 � �
cos 2cxikyikð Þþ

exp �c y2
ik � z2

ik

 � �
cos 2cyikzikð Þ þ exp �c z2

ik � x2
ik

 � �
cos 2czikxikð Þ

ð2:47Þ

Similarly, the m-order polyharmonic functions of Dm Hm
3 xi; yi; zið Þ

 �
¼ 0 in

three dimension are represented as

Hm
3 xi; yi; zið Þ ¼ r2m exp �c x2

ik � y2
ik

 � �
cos 2cxikyikð Þþ

�

exp �c y2
ik � z2

ik

 � �
cos 2cyikzikð Þ þ exp �c z2

ik � x2
ik

 � �
cos 2czikxikð Þ

� ð2:48Þ

2.2.4 Particular Solutions

Another important type of problem-dependent RBFs are particular solutions. A
splitting approach [31] is used to split the solution of the nonhomogeneous gov-
erning Eq. (2.27) into homogeneous solution and particular solution. The key issue
is to construct the particular solutions U rð Þ to satisfy the following equation
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<U rð Þ ¼ / rð Þ: ð2:49Þ

Typically, there are two approaches to construct the particular solutions U rð Þ.
The first approach is utilizing the above-mentioned RBFs as the particular solu-
tions U rð Þ, then deriving the basis functions / rð Þ from Eq. (2.49) by differentiation
process. This scheme is easy to derive the particular solutions, however, such
RBFs / rð Þ may not remain in the positive definite property to guarantee the matrix
invertibility, which depends on the governing differential operator <.

The second approach is utilizing the existing RBFs discussed before as the
functions / rð Þ, then deriving the particular solutions U rð Þ from Eq. (2.49) by
reverse differentiation process. The deriving process in this strategy is far more
challenging than the former one. Nevertheless, the corresponding derived partic-
ular solutions U rð Þ inherit the positive definite property from the existing RBFs. In
virtue of this excellent property, various particular solutions have been derived by
the second approach. Chen and Rashed [32] were the first to extend the derivation
of TPS-based solutions for Helmholtz-type operators. Muleshkov et al. [33] and
Cheng [34] further derived the particular solutions by Polyharmonic splines.
Recently, Muleshkov and Golberg [35], Chen et al. [36], and Tsai et al. [37]
extended the derivation to more composite differential operators. We list some
particular solutions U rð Þ for the traditional RBFs / rð Þ [38] as follows:

(a) The corresponding particular solutions as a prior to satisfy the differential
equation DU rð Þ ¼ / rð Þ.

For MQ, / rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

, we have the following results

U rð Þ ¼ 4c2 þ r2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p
� c3

3
ln cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p� �
ð2:50Þ

in R2, and

U rð Þ ¼ 5c2þ2r2

24

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2
p

þ c4 ln rþ
ffiffiffiffiffiffiffiffiffi
c2þr2
pð Þ

8r � c3

3 �
c4 ln cð Þ

8r ; r 6¼ 0
0; r ¼ 0

(

ð2:51Þ

in R3.
For IMQ, / rð Þ ¼ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

, we obtain

U rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p
� c ln cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p� �
ð2:52Þ

in R2, and

U rð Þ ¼
ffiffiffiffiffiffiffiffiffi
c2þr2
p

2 þ c2

2r ln rþ
ffiffiffiffiffiffiffiffiffi
c2þr2
p

c

� �
� c

2 ; r 6¼ 0

0; r ¼ 0

(

ð2:53Þ

in R3.
For Polyharmonic splines / rð Þ ¼ rk ln rð Þ; k ¼ 2; 4; 6; . . .; in R2, we derive
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U rð Þ ¼ rkþ2 ln rð Þ
4 k=2þ 1ð Þ2

� rkþ2

4 k=2þ 1ð Þ3
; ð2:54Þ

which can be regarded as high-order fundamental solutions of Laplace operator.
For Polyharmonic splines, / rð Þ ¼ rk; k ¼ 1; 3; 5; . . .; in R3, we get

U rð Þ ¼ rkþ3

k þ 3ð Þ k þ 2ð Þ : ð2:55Þ

(b) The corresponding particular solutions as a prior to satisfy the differential
equation Dþ k2 �

U rð Þ ¼ / rð Þ.
For TPS, / rð Þ ¼ r2 ln rð Þ in R2, we have the following results

U rð Þ ¼ � r2 ln rð Þ
k2 þ 4 ln rð Þþ4

k4 þ 4
k4 K0 krð Þ; r 6¼ 0

4
k4 � 4c

k4 � 4
k4 ln k

2

 �
; r ¼ 0

(

: ð2:56Þ

For Polyharmonic splines of order two, / rð Þ ¼ r4 ln rð Þ in R2, we derive the
following results

U rð Þ ¼ � r4 ln rð Þ
k2 þ 8r2 2 ln rð Þþ1ð Þ

k4 þ 64 ln rð Þþ96
k6 þ 64K0 krð Þ

k6 ; r 6¼ 0
96
k6 � 64c

k6 � 64
k6 ln k

2

 �
; r ¼ 0

(

: ð2:57Þ

For Polyharmonic splines of higher order, / rð Þ ¼ rk ln rð Þ; k ¼ 4; 6; 8; � � � in R2,
we get

U rð Þ ¼ � 1

k2

Xk=2

i¼0

� D

k2

� 	i

rk ln rð Þ � �1ð Þk=2 kð Þ!!2

kkþ2 K0 krð Þ: ð2:58Þ

For TPS / rð Þ ¼ r in R3, we find the following particular solution

U rð Þ ¼ � r
k2 þ 2

k4r
� 2e�kr

k4r
; r 6¼ 0

2
k3 ; r ¼ 0

(

: ð2:59Þ

For Polyharmonic splines / rð Þ ¼ rk; k ¼ 1; 3; 5; � � � in R3, we derive the par-
ticular solution

U rð Þ ¼ �
Xk=2

i¼0

�1ð Þi k þ 1ð Þ!rk�2i

k þ 1� 2ið Þ!k2iþ2 þ
2 �1ð Þi k þ 1ð Þ!

k2kþ4

e�kr

r
: ð2:60Þ

(c) The corresponding particular solutions as a prior to satisfy the differential
equation D� k2 �

U rð Þ ¼ / rð Þ.
For TPS / rð Þ ¼ r2 ln rð Þ in R2, we obtain
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U rð Þ ¼ � r2 ln rð Þ
k2 � 4 ln rð Þþ4

k4 � 4
k4 K0 krð Þ; r 6¼ 0

� 4
k4 þ 4c

k4 þ 4
k4 ln k

2

 �
; r ¼ 0

(

: ð2:61Þ

For Polyharmonic splines of order 2, / rð Þ ¼ r4 ln rð Þ in R2, the corresponding
particular solution is

U rð Þ ¼ � r4 ln rð Þ
k2 � 8r2 2 ln rð Þþ1ð Þ

k4 � 64 ln rð Þþ96
k6 � 64K0 krð Þ

k6 ; r 6¼ 0

� 96
k6 þ 64c

k6 þ 64
k6 ln k

2

 �
; r ¼ 0

(

: ð2:62Þ

For Polyharmonic splines of higher order / rð Þ ¼ rk ln rð Þ; k ¼ 4; 6; 8; � � � in R2,
we have

U rð Þ ¼ � 1

k2

Xk=2

i¼0

D

k2

� 	i

rk ln rð Þ � kð Þ!!2

kkþ2 K0 krð Þ: ð2:63Þ

For TPS / rð Þ ¼ r in R3, we get

U rð Þ ¼ � r
k2 � 2

k4r
þ 2e�kr

k4r
; r 6¼ 0

� 2
k3 ; r ¼ 0

(

: ð2:64Þ

For Polyharmonic splines / rð Þ ¼ rk; k ¼ 1; 3; 5; � � � in R3, we obtain

U rð Þ ¼ �
Xk=2

i¼0

k þ 1ð Þ!rk�2i

k þ 1� 2ið Þ!k2iþ2 þ
2 k þ 1ð Þ!

kkþ3

e�kr

r
: ð2:65Þ

(d) The corresponding particular solutions as a prior to satisfy the differential
equation D2U rð Þ ¼ / rð Þ.

For MQ, / rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

in R2, we derive the particular solution

U rð Þ ¼ 1
12

r2c3 � 7
60

c4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p
þ 2

45
c2 c2 þ r2
 �3

2

þ 1
225

c2 c2 þ r2
 �5

2þ 2c2 � 5r2

60
ln cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ r2

p� � ð2:66Þ

For IMQ, / rð Þ ¼ 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ c2
p

in R2, the particular solution is stated as

U rð Þ ¼ � 5c2
ffiffiffiffiffiffiffiffiffi
c2þr2
p

12 þ c2þr2ð Þ
3
2

9 þ cr2

2 þ
2c3�3cr2ð Þ ln cþ

ffiffiffiffiffiffiffiffiffi
c2þr2
pð Þ

12 ; r 6¼ 0
c3

36 6 ln 2cð Þ � 11ð Þ; r ¼ 0

8
<

:
: ð2:67Þ

For Polyharmonic splines / rð Þ ¼ rk; k ¼ 1; 3; 5; � � � in R3, we have

U rð Þ ¼ rkþ4

k þ 2ð Þ k þ 3ð Þ k þ 4ð Þ k þ 5ð Þ ð2:68Þ
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(e) The corresponding particular solutions as a prior to satisfy the differential
equation r4 � k4 �

U rð Þ ¼ / rð Þ.
For Polyharmonic splines of order 2, / rð Þ ¼ r4 ln rð Þ in R2, we get

U rð Þ ¼ � r4 ln rð Þ
k4 � 64 ln rð Þþ96

k8 � 16 K0 krð Þ�pY0 krð Þð Þ
k8 ; r 6¼ 0

� 96
k8 þ 64c

k8 þ 64
k8 ln k

2

 �
; r ¼ 0

(

: ð2:69Þ

For Polyharmonic splines/ rð Þ ¼ rk ln rð Þ; k ¼ 2; 4; 6; � � � in R2, we obtain

U rð Þ ¼ � 1

k4

Xk=2

i¼0

D2

k4

� 	i

rk ln rð Þ � k=2ð Þ!2

kkþ4 2K0 krð Þ þ �1ð Þk=2þ1pY0 krð Þ
� �

:

ð2:70Þ

For Polyharmonic splines / rð Þ ¼ rk; k ¼ 1; 3; 5; � � � in R3, we have

U rð Þ ¼ � 1

k4

Xk�1ð Þ=2

i¼0

D2

k4

� 	i

rkþ2 þ k þ 1ð Þ!
2kkþ5r

e�kr þ �1ð Þ kþ1ð Þ=2
cos krð Þ

� �
: ð2:71Þ

(f) The corresponding particular solutions as a prior to satisfy the differential
equation r4 þ j2ð ÞU rð Þ ¼ / rð Þ.

For Polyharmonic splines / rð Þ ¼ rk ln rð Þ; k ¼ 2; 4; 6; � � � in R2, we have the
following results

U rð Þ ¼

Pk=2

i¼0
� D2

j2

� �i
rk ln rð Þ

j2
þ
�1ð Þk=2 k=2ð Þ!2 2K0

ffiffiffi
j
p

rð Þ þ �1ð Þk=2þ1pY0
ffiffiffi
j
p

rð Þ
� �

jk=2þ2
:

ð2:72Þ

For Polyharmonic splines / rð Þ ¼ rk; k ¼ 1; 3; 5; � � � in R3, we have

U rð Þ ¼

Pk�1ð Þ=2

i¼0
� D2

j2

� �i
rkþ2

j2
þ
�1ð Þ

kþ1
2 k þ 1ð Þ! e�

ffiffi
j
p

r þ �1ð Þ
kþ1

2 cos
ffiffiffi
j
p

rð Þ
� �

2j kþ5ð Þ=2r
ð2:73Þ

2.2.5 Anisotropic RBFs

Numerical methods based on RBFs appear very efficient for isotropic problems.
However, Carlson and Foley [39] found that the isotropic RBFs, such as the MQ
and TPS, do not work well for the so-called track or directional data problems.
This kind of problems characterizes a preferred direction. For directional data, the
anisotropic RBFs can capture the directional property. For instance, consider heat
conduction in anisotropic media
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Xd

i;j¼1

o

oxi
Kij

ou xð Þ
oxj

� 	
¼ 0; x 2 X; ð2:74Þ

where d denotes the dimensionality of problem. K ¼ Kij

� �
1� i;j� d denotes the

matrix of anisotropic material parameter, which has the symmetrical and positive-
definite properties, for example, d ¼ 2, K12 ¼ K21and DK ¼ det Kð Þ ¼
K11K22 � K2

12 [ 0. Typically, there are two approaches to construct the anisotropic
RBFs.

Domain mapping method [40]
The domain mapping method is a transformation technique and can be applied

to the anisotropic problem in field theory. The 2D and 3D direct domain mapping
formulas are represented by

X1 � Xk1

X2 � Xk2

� 	
¼

ffiffiffiffiffiffi
DK
p �

K11 0
�K12=K11 1

� 	
x1 � xk1

x2 � xk2

� 	
; ð2:75Þ

X1 � Xk1

X2 � Xk2

X3 � Xk3

0

@

1

A ¼

ffiffiffiffiffiffi
DK
p �

K11 0 0
�K12=K11 1 0

b1 b2 b3

0

@

1

A
x1 � xk1

x2 � xk2

x3 � xk3

0

@

1

A; ð2:76Þ

where
b1 ¼ K12K13 � K23K11ð Þ=

ffiffiffiffi
w
p

, b2 ¼ K12K23 � K13K22ð Þ=
ffiffiffiffi
w
p

, b3 ¼ DK=
ffiffiffiffi
w
p

,
and w ¼ K11K33DK � K11K22K2

13 þ 2K11K12K13K23 � K2
23K2

11.
Geodesic distance functions [41]
Another strategy is to construct geodesic distance functions. The standard

Euclidean distance rk ¼ x� xkk k2 is replaced by the geodesic distance Rk between
points x ¼ x1; x2; � � � ; xdð Þ and xk ¼ xk1; xk2; � � � ; xkdð Þ defined as below

R2
k ¼

Xd

i¼1

Xd

j¼1

K�1
ij ðxi � xkiÞðxj � xkjÞ ¼ ðx� xkÞT K�1ðx� xkÞ; ð2:77Þ

where K�1 ¼ K�1
ij

h i
is the inverse anisotropic coefficient matrix. In case of iso-

tropic media, K is an identity matrix and the geodesic distance is reduced to the
Euclidean distance.

It is straightforward to construct the anisotropic RBFs from the corresponding
isotropic RBFs described above via the variable transformation Eqs. (2.75), (2.76),
and (2.77).

2.2.6 Time–Space RBFs

In terms of generalized time–space field, an interesting and significant extension
of the RBF concept is to introduce time–space RBFs for time-dependent
problems. One of the proposed methodology defines the interpolation function on
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Rn � T [42], where T is the additional time axis. Hence the time–space RBFs have

the representation form
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2 tj j2

q
. The parameter c reflects a realistic rela-

tionship between space and time. Such a metric considers the time axis being
‘‘orthogonal’’ to all of the space axes but with a different unit.

Yet another type of the time–space RBFs originates from transient fundamental
solution and general solution of time-dependent partial differential equations [43–
45]. Consider the diffusion equation

ouðx; tÞ
ot

¼ kr2uðx; tÞ; x 2 X � Rn; ð2:78Þ

where x is the general spatial coordinate, t the time, k the diffusion coefficient. By
applying the Fourier and the inverse Fourier transforms to Eq. (2.78), the funda-
mental solutions in Rn and the general solutions in R3 can be obtained, respec-
tively, and stated as

/m
F ðx; t; s; sÞ ¼

e
� x�sk k2

2
4kðt�sÞ

4kpðt � sÞð Þn=2
Hðt � sÞ; x 2 Rn; ð2:79Þ

/m
Gðx; t; s; sÞ ¼ e�kðt�sÞ sin x� sk k2

x� sk k2

; x 2 R3; ð2:80Þ

where n is the spatial dimensionality and HðtÞ represents the Heaviside step
function, x denotes the location of the field points, and s means the location of the
source points. t and s are the time of the field and source points, respectively.

2.3 Kernel RBFs

As the motto goes ‘‘the laws of universe are written in the language of partial
differential equation,’’ the construction of an efficient and stable RBF is not an
exception. Building on the firm grounds of integral equation theory (distribution
theory), this section presents a recent approach for constructing the novel RBFs in
terms of the potential theory.

The Green second identity was found to be a powerful alternative tool to create
and analyze efficient RBFs [43, 46, 47]. The kernel solutions of partial differential
equations can be used to create the kernel RBFs. By using the Green second
theorem, the solution of Eq. (2.27) can be expressed as

uðxÞ ¼
Z

X
f ðsÞu�ðx; sÞdXðsÞ þ

Z

C
u
ou�ðx; sÞ

onðsÞ �
ou

onðsÞ u
�ðx; sÞ

� �
dCðsÞ; ð2:81Þ

where u� represents the fundamental solutions of governing operator <, and s
denotes source point. It is noted that the first and second terms of Eq. (2.81) are the
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particular and the homogeneous solutions in the PDE splitting approach [31].
Applying a numerical integral scheme to approximate Eq. (2.81), we have

uðxÞ ¼
XN

j¼1

wðx; xjÞf ðxjÞu� þ
XN

j¼Niþ1

wðx; xjÞ u
ou�

on
� ou

on
u�


 �
; ð2:82Þ

where Ni is the number of the interior knots in X, N the total number of knots in
the domain and on the boundary, and w x; xj

 �
the integration weighting functions.

We can further restate the approximate representation (2.82) as

uðxÞ ¼
XN

j¼1

ajhjðx; xjÞu�f ðxjÞ �
XN

j¼Niþ1

bjpjðx; xjÞu� þ
XN

j¼Niþ1

cjqjðx; xjÞ; ð2:83Þ

where fajg; fbjg and fcjg are unknown expansion coefficients, fhjg and fpjg
represents weighting functions to be specified. hu�f , pu� are in fact the radial basis
functions. Therefore, the first term of Eq. (2.83) suggests that the RBFs can be
constructed using interior source points xj

� �
[43, 46, 47] by

/ðx; xjÞ ¼ hjðx; xjÞu� x; xj

 �
f ðxjÞ: ð2:84Þ

When u� is a singular fundamental solution, hj is an augmented RBF function to
remove the singularities of fundamental solutions and guarantee that the function
/ðx; xjÞ has enough differentiability. Power function hj ¼ rm is a convenient
choose where r denotes the Euclidean distance. For instance, the TPS is a special
case of the kernel RBFs for 2D biharmonic operator. Polyharmonic splines RBFs
are recommended for higher dimensional problems. On the other hand, u� in Eq.
(2.84) can be replaced by nonsingular general solutions [46, 48].

Regarding the boundary source points, we suggest a RBF as

/ðx; xjÞ ¼ pjðx; xjÞu� x; xj

 �
: ð2:85Þ

The weighting function pj ¼ rm is also a simple choice. It is of worthy noting
that the high-order fundamental solutions, general solutions, and harmonic func-
tions in Sects. 2.2.1–2.2.3 are not singular and appear similar to the fundamental
solutions augmented with a power function. Table 2.8 lists some typical kernel
RBFs augmented by a power function [43].

Another strategy is to construct shifted kernel RBFs [43] by replacing
Euclidean distance r in the fundamental solutions with a shifted distance variableffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ r2
p

to remedy the singularity, where c is a dilution shape parameter. For
instance, the MQ RBF can be used as a correcting function to determine local
optimal shape parameter by establishing the reproducing conditions. These shifted
kernel RBFs are especially attractive for multiscale problems. Table 2.9 lists some
shifted kernel RBFs.
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With the help of the kernel solutions of time-dependent PDEs, we can also
construct the time–space kernel RBFs. For instance, consider the wave propaga-
tion equation

o2u

ox2
¼ 1

c2

o2u

ot2
þ f x; tð Þ: ð2:86Þ

Let

s ¼ ict; ð2:87Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

. We have

o2u

ox2
þ o2u

os2
¼ f x; tð Þ: ð2:88Þ

Similar to the definition of Euclidean distance, the generalized time–space
distance is defined by

rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xj

 �2þ s� sj

 �2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xj

 �2�c2 t � tj

 �2
q

: ð2:89Þ

However, such a definition can lead to complex value of distance variable.
Thus, it is better to use

rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xj

 �2þc2 t � tj

 �2
q

: ð2:90Þ

Table 2.8 Kernel RBFs augmented by a power function

Power augmented scheme /ðxÞ
Polyharmonic spline rm; m ¼ 1; 3; 5; � � �

rm ln rð Þ;m ¼ 2; 4; 6; � � �

�

Thin plate spline r2 ln rð Þ
Power exponential functions rme�r2

High-order fundamental solutions See Sect. 2.2.1
High-order RBF general solutions See Sect. 2.2.2
High-order harmonic functions See Sect. 2.2.3

Table 2.9 Shifted kernel RBFs

Shape parameter scheme /ðxÞ
Multiquadric

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

Shifted logarithm function ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p �

Shifted Polyharmonic spline rm ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p �

Shifted exponential function e�
ffiffiffiffiffiffiffiffiffi
r2þc2
p

Shifted fundamental solutions /m
F ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

Þ
Shifted RBF general solutions [49] /m

Gð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ c2
p

Þ
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Here c is the wave velocity. The RBFs with respect to time–space distance
(2.90) differ from the standard RBFs in that the time variable is handled equally as
the space variables. Time–space RBFs eliminate time dependence directly in the
basis functions. The Green second theory suggests that the time–space kernel
RBFs can be constructed by [46, 47]

/ðrjÞ ¼ hjðrjÞu� rj

 �
f ðxj; tÞ; ð2:91Þ

for interior source points, and

/ðrjÞ ¼ pjðrjÞu� rj

 �
; ð2:92Þ

for boundary source points.
Another strategy is to construct time-dependent kernel RBFs by augmenting

fundamental or general solutions with time power function stated below

/ðrjÞ ¼ t2mu� rj

 �
f ðxj; tÞ; ð2:93Þ

where t2m remedies the singularities of transient fundamental solution u� rj

 �
. The

time–space RBFs in Sect. 2.2.6 can be modified by utilizing shifted RBF formulas
(2.91–2.93). The time–space kernel RBFs have great potential to transient image
data processing such as motion pictures.

The other approaches for constructing the appropriate RBFs are also reported in
literatures, such as combined RBFs [50], oscillatory RBFs [51], Trefftz RBFs [52],
and wavelet-based adaptive RBF method [53]. For more details, the interested
readers may look into the respective papers.
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