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Abstract. To guarantee the data quality, it is necessary to clean the missing data 
that prevalently exist in real world databases. By incorporating additional  
information, such as functional dependencies or integrity constraints, the correct 
value for each missing data item can be derived in many existing data cleaning 
methods. In this paper, we propose a method for cleaning the missing data item 
without additional information by adopting Bayesian network (BN) as the 
framework of the representation and inferences of probability distributions. 
First, we learn a Bayesian network from the complete part of the given incom-
plete database, called IBN. Then, we infer the probability distributions of each 
missing data item based on Gibbs sampling upon the IBN. Consequently, we 
obtain all possible values with their corresponding probability distributions (i.e., 
confidence degrees), by which we clean the incomplete databases. Experimental 
results showed the efficiency, accuracy and precision of our methods. 

Keywords: Missing data cleaning, Bayesian network, Probabilistic database, 
Gibbs sampling, Probabilistic inference. 

1 Introduction 

Data quality is often affected by data anomalies, e.g., missing data, which prevalently 
exist in real world databases. It is necessary to carry out data cleaning to guarantee  
the data quality [1]. Actually, data cleaning is one of the critical mechanisms for 
companies to realize the full business value of big data in helping meet the quality, 
performance and scalability goals [2]. Many methods were used to clean missing data 
upon the additional information. For example, missing data items can be filled in by 
choosing the values satisfying the given functional dependencies [3]. A correct value 
for each missing data item can be derived based on the given conditional functional 
dependencies [4]. The correct values for missing data items could be found given 
aggregate constraints [5] by deleting the tuples that do not satisfy the constraints. 

Actually, it is also necessary to fill in the missing value when the additional infor-
mation is not available. But the correct value for each missing data item is difficult to 
be obtained in this situation [1, 6]. In this paper, we address the problem of data 
cleaning without additional information by providing a set of possible values for each 
missing data item rather than only one correct value. Particularly, we desire to infer 
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the probability distributions of all possible values for the missing data items and then 
fill in the missing values by these distributions. 

In recent years, some methods have been proposed to predict the possible values 
for missing data based on the probabilistic model. For example, Mayfield [7] pre-
sented a framework to infer the missing values by capturing attributes dependencies 
with a relational dependency network. Stoyanovich [8] provided a framework to infer 
the probability distributions for missing data by learning a meta-rule semi-lattice 
(MRSL) model for each attribute from incomplete databases. These methods are effi-
cient, but model templates are required for constructing the structure of the probabilis-
tic model. Moreover, the MRSL model cannot represent the dependencies of all 
attributes from a global point of view and two inference methods are necessary: one 
for single attributes and another for multiple attributes separately. 

Therefore, in order to clean the missing values for arbitrary attributes, a probabilis-
tic model is necessary to represent the dependencies among all attributes. This means 
that to fulfill the cleaning of missing data, we will have to address the following two 
problems: (1) constructing a probabilistic model from the given incomplete databases; 
(2) providing an efficient inference mechanism to predict the probability distributions 
of all possible values for the missing data items for both single and multiple attributes. 

It is well known Bayesian network (BN) is an effective framework of representing 
dependencies among random variables [9]. A BN is a directed acyclic graph (DAG) 
where nodes represent random variables and edges represent dependencies among 
random variables. Each variable in a BN is associated with a conditional probability 
table (CPT) to give the probability of each state given parent states. Comparing to the 
above-mentioned probabilistic model, the global, qualitative and quantitative depen-
dencies among all attributes can be well represented by means of BNs. Furthermore, 
uncertainties can be inferred effectively by BN inference algorithms [9]. Thus, in this 
paper, we adopt BN as the underlying framework for representing dependencies 
among attributes. We learn the BN from the given incomplete database and derive the 
probability distributions for the missing data item by the BN inference algorithm.  

To learn BNs from the incomplete database, called IBN, we extend the classical 
dependency-analysis based BN learning algorithm [10] by incorporating the inherence 
of databases with missing values. From the inherence of data cleaning, missing values 
will always take a very small proportion of the whole database. Thus, learned from 
the complete part of the given incomplete database, IBN can represent the dependen-
cies or characteristics of the whole database basically, although the IBN does not 
include the items in the missing values. This makes the IBN be reasonably looked 
upon as the underlying model of probabilistic inferences for cleaning missing data. 
Comparing with the MRSL-based inferences, the probability distributions for single 
and multiple missing attributes can be derived universally by IBN inferences. Many 
algorithms for BN’s exact inferences have been proposed [11], but these methods are 
of the exponential complexity, which are not efficient and suitable enough with  
respect to the BN-based inference especially over large scale BNs. Thus, based on 
Gibbs sampling [11], we proposed an approximate inference algorithm to obtain the 
probability distribution based on the IBN. 

For each missing data item (i.e., incomplete tuple) t in databases, its probability 
distribution derived by the IBN’s inference is a set of all possible combinations of 
values of the attributes missing in t. The sum of all the probabilities of the filled  
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values is 1, which means that the distributions can be calculated in a principled  
fashion. It is known that probabilistic databases have been proposed to manage a 
probability distribution on a set of possible worlds [12, 13]. Exactly, we store the 
probability distributions for the missing data items in a probabilistic database. 

Generally speaking, our main contributions can be summarized as follows: 

• We propose an efficient dependency analysis method to learn the IBN from in-
complete databases, as the basis for cleaning missing values. 

• We propose an approximate inference method to predict the probability distribu-
tions of possible values for the missing data items, and correspondingly give an al-
gorithm to clean the missing data. 

• We implement the proposed algorithms and make preliminary experiments to test 
the feasibility of our method. 

The remainder of this paper is organized as follows: In Section 2, we learn a BN from 
incomplete databases. In Section 3, we infer the probability distributions of missing 
data and then clean the missing data. In Section 4, we show experimental results. In 
Section 5, we conclude and discuss future work. 

2 Learning Bayesian Network from Incomplete Databases 

Learning a BN from databases always has two steps: first constructing the structure of 
BN and then learning the CPTs [9], where the former is critical and challenging. 

A BN is a DAG G=(V, E), where V is the set of nodes and E is the set of edges. If 
two nodes in a BN are conditionally independent, there will be no edge between them, 
and information theory based measures can be used to detect conditional independen-
cies of nodes [10]. The mutual information of two nodes X, Y is defined as 
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The conditional mutual information is defined as 
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That I(X, Y) is smaller than a certain threshold ε means that X and Y are marginally 
independent. Given condition Z, that I(X, Y| Z) is smaller than ε means that X and Y 
are conditionally independent. 

Cheng [10] proposed a dependency analysis method to construct the structure of 
BN from complete databases based on the information theory. In this classical algo-
rithm, a node ordering is given to specify a causal or temporal order of the nodes of a 
BN. Considering the characteristics of the incomplete database, we modify the above 
distribution for node X (or X and Y), the tuples with missing values on X (or on X and 
Y) will not be taken into consideration. Following, we illustrate this by an example. 
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Example 1. Table 1 shows a part of incomplete table containing 4 non-key attributes, 
where “?” indicates a missing value. For convenience, we denote tub, smo, can, xray 
by t, s, c and x respectively. When computing P(t, s), tuple t5 should be not taken into 
consideration, P(t=absent, s=smoker)=0.5, P(t=absent, s=nonsmoker)=0.25 and P(t= 
present, s=nonsmoker)=0.25. t5 should be taken into consideration when computing 
P(t, x) since the values on t and x exist. 

Table 1. A part of an incomplete database table 

id tub smo can xray
t1 absent nonsmoker absent normal 
t2 absent smoker absent normal 
t3 present nonsmoker present abnormal 
t4 absent smoker absent normal 
t5 absent ? ? normal 

Algorithm 1 describes the steps of constructing an IBN. 
 

Algorithm 1. IBN-Construction 
Input: T, an incomplete table; O, a vector of node 
Output: G=(V,E), a DAG of the IBN 
Variables: L, a list of pairs of nodes and each l∈L is a 
pair (vi,vj), vi,vj∈V and i≠j; Z, a cut set 
Steps: 
V ← Set-Node-Ordering(O), E ← {}, L ← {} 
if I(vi,vj)> ε then L←L∪{(vi,vj)} //By Equation (1) 
sort L by the decreasing order of I(vi,vj)  
l ← L[0], E ← E∪{l}, L ←L-{l} 
for each l(vi,vj) in L do 
 if no open path1 between (vi,vj) then 
  E ← E∪{l}, L ←L-{l} 
 end if 
end for 
for each l(vi,vj) in L do 
 Z ← Find-Cut-Set(vi,vj) 
 if I(vi,vj|Z)> ε  then E ← E∪{l} //By Equation (2) 
end for 
for each e in E do 
 if there are paths besides e between vi and vj then 
  E ← E-{e}, Z ← Find-Cut-Set(vi,vj)  
  if I(vi,vj|Z)> ε then E ← E-{e} 
end for 
return G 

                                                           
1 A path that does not include head-to-head nodes is call open path. 
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For an incomplete database with n attributes, the conditional independency tests 
will be done for O(n2) times. Example 2 illustrates the execution of Algorithm 1. 

Likelihood estimation [11] is commonly used to estimate the parameters of a statis-
tical method by counting the frequency from tuples. We adopt this method to compute 
the CPT for each variable easily upon the IBN structure, where the probability is 

( )
( )
, the number of  ( , )
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the number of  
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Example 2. For the incomplete table shown in Table 1, suppose the node ordering is 
{tub, smo, can, xray}. The mutual information of all pair of nodes obtained from da-
tabases are: I(t, s)=0.0, I(t, c)=0.0001, I(t, x)=0.033, I(s, c)=0.0278, I(s, x)=0.0139 and 
I(c, x)=0.192. Suppose ε is 0.01, so I(c, x)>I(t, x)>I(s, c)>I(s, x)>ε. So, L is {(c, x), (t, 
x), (s, c), (s, x)} and three edges (c, x), (t, x) and (s, c) can be added into E. Edge (s, x) 
will not be added since I(s, x | c)= −0.0001 is smaller than ε, where c is the cut set of 
s, x. Upon the obtained IBN structure, the CPTs can be computed based on Equation 
(3). Finally we can obtain the IBN as shown in Fig 1. 

 

Fig. 1. An IBN learned from the incomplete table shown in Table 1 

3 Cleaning Missing Data Based on Probabilistic Inferences 

For each incomplete tuple t, we are to infer the probability distributions for the possible 
values of the attribute on which t’s value is missing. All the possible values with  
probability distributions exactly constitute the representation of x-relation for uncertain 
data tuples, interpreted in [14]. An x-relation consists of one or more x-tuples  
independent of each other, each of which is a multiset of one or more mutually exclu-
sive tuples, called alternatives. We then store the probability distribution of possible 
values for each missing data item as an x-tuple with a foreign key linked to the original 
incomplete table. Finally, we can fill in the missing value using the most probable one 
in corresponding x-tuples (i.e., the alternative with the largest probability). 

It is known that Gibbs sampling is a Markov chain Monte Carlo algorithm and it 
always generates a Markov chain of samples. Thus, Gibbs sampling is particularly 
well-adapted to sampling the posterior distributions of a BN [11]. To infer the proba-
bility distributions of all possible values, we give Algorithm 2 as an approximate 
method for IBN inferences. First, we give the basic ideas as follows: 
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(1) We set a value to each attribute with missing value (i.e., nonevidence variable) 
and constitute the initial state including the attributes with complete values (i.e., evi-
dence variables). 

(2) We sample one of the attributes with missing values randomly and determine 
the value of the selected attribute from the conditional distribution under the current 
state. The new state can also be used for the next time of sampling. We repeat the 
sampling until the given threshold number of samples is reached.  

(3) We get a set of samples, containing possible combination of values of the 
attributes with missing values, and those of the attributes with complete values. Then, 
the corresponding probability distributions can be achieved.  

 

Algorithm 2. X-Tuple-Deriving 
Input: X, missing attributes, {X1, X2, … , Xn }; e, non 
missing attributes, {e1, e2, … , em}; ibn, an IBN 
Output: an x-tuple 
Variables: T[s], a vector of counts over s, initially ze-
ro; s, the current state of ibn, initially copied from e; 
x, a vector of values of X in s; B[], a set of probabil- 
ity conditioned on the Markov blanket2 of X, denoted as 
MB(X); s(-i), the set (X1, X2, … , Xi-1, Xi+1, … , Xw, e1, e2, … 
, em); m, threshold of total number of samples to be gen-
erated 
Steps: 
x ← random values of Xi in X, s ← x∪e 
for j←1 to m do 
 if T[s] contains s then 
  T[s] ← T[s]+1 
 else 
  insert s into T[s], T[s] ← 1 
 end if 
 select a query variable Xi from X randomly 
 B[0] ← P(X =x1|MB(Xi))  // Xi∈{x1,x2,…,xk} 
 for i←1 to k do 
  B[i] ← B[i-1]+P(X =xi|MB(Xi)) 
 end for   
 generate a random value r∈[0,B[k]] 
 Xi ← xj where r <=B[j] //Determine the value of Xi 
 s ← (s(-i),Xi) 
end for 
T[s] ← T[s]/m 
return T[s] 

                                                           
2 A Markov blanket of X is the set of nodes composed of X’s parents, its children and its  

children’s other parents. 
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For an IBN with n nodes, the computations of probabilities conditioned on the 
Markov blanket are less than O(nm) times. Following, we illustrate the execution of 
Algorithm 2 by an example. 

Example 3. For the incomplete tuple t5 in Table 1, we are to obtain the probability 
distribution P(s, c|t=absent, x=normal). We initialize the state s0={s=nonsmoker, 
c=absent, t=absent, x=normal} and set 1 as the value of N[s0]. Then, we randomly 
select s as a query variable and generate a value r∈[0,1.0] randomly. Suppose r=0.67, 
and then we set s=smoker and generate a new state s1={s=smoker, c=absent, t=absent, 
x=normal}. This procedure will be repeated for m times. Finally, we obtain the esti-
mation (i.e., an x-tuple) of t5 shown in the right of Table 2. 

Then, we can fill in the missing values by creating a new table including the x-tuple 
derived by Algorithm 2. For each incomplete tuple t in T, we call the function X-
Tuple-Deriving in Algorithm 3 to generate an x-tuple t ′. Then, we can select the al-
ternative from T′ with the largest probability and then update t in T. 
 
Algorithm 3. Missing-Data-Cleaning 
Input: T, an incomplete table; ibn, an IBN learned from 
the incomplete table T 
Output: T’, an x-relation corresponding to T 
Variables: X, a set of attributes; e, a set of values of 
attributes; t’, an x-tuple 
Steps: 
create table T’ 
for each incomplete tuple t∈T do 
 //Attributes with missing values as query variables 
X ← Missing-Attributes(t) 

 e ← Non-Missing-Attribute-Values(t) 
 t’← X-Tuple-Deriving(X, e, ibn) 
 insert t’ into T’ 
 update t by the alternative with the largest probabil- 
ity in T’ //t is the incomplete tuple in T 

end for 
return T’ 

 
Example 4. Revisiting the incomplete tuples in Table 1, we obtain the x-tuple for t5 
by using Algorithm 2 and store it in Table 2, from which we select tuple t5.1 with the 
largest probability and update t5. 

Table 2. x-tuple for t5 in Table 1 

id tub smo can xray prob
t5.1 absent nonsmoker absent normal 0.564 
t5.2 absent smoker absent normal 0.430 
t5.3 absent smoker present normal 0.004 
t5.4 absent nonsmoker present normal 0.002 
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4 Experimental Results 

To verify the feasibility of the methods proposed in this paper, we implemented the 
presented algorithms. We mainly tested the accuracy and efficiency of IBN learning, 
and tested the convergence of the method of IBN inferences, and finally we tested the 
precision and efficiency of IBN-based missing data cleaning. 

4.1 Experiment Setup 

In the experiments, we adopted four classical BNs, Cancer Neapolitan (CN), Chest 
Clinic (CC), Car Diagnosis2 (CD) and Alarm (AL), widely used benchmarks. For 
each BN, we generated five original data sets of 1000, 3000, 6000, 10000 and 15000 
tuples according to their probability distributions from Norsys [15]. We then generat-
ed five test data sets for each original one with 5%, 10%, 20%, 30% and 40% of in-
complete tuples respectively, by setting one or more attributes to be NULL randomly. 
All the data sets were stored in MS SQL Server 2008 and all the codes were written in 
C#. The machine configurations are as follows: AMD Athlon64 X2 5000+ CPU, 2GB 
of main memory, running Windows 7 Ultimate 32-bit operating system. 

4.2 Accuracy and Efficiency of IBN Learning 

The edges which exist in the IBN structure but not exist in the true structure obtained 
from Norsys [15] are called extra edges. Edges which do not exist in the learned 
structure but exist in the true structure are called missing edges. We evaluated the 
accuracy of Algorithm 1 by recording the extra edges and missing edges. The extra 
edges and missing edges with the increase of incomplete tuples are shown in Fig. 2 
(a). It can be seen clearly that the less the incomplete tuples, the more the learned IBN 
will be close to the true one. Meanwhile, there are few extra edges and missing edges 
in the IBN when the proportion of the incomplete tuples is about 5%. The extra edges 
and missing edges with the increase of tuples in the data set are shown in Fig. 2 (b). It 
is clear that the more the tuples in the given data set, the more accurate the learned 
IBN will be, which is consistent with the general conclusion for BN learning. Thus, 
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Table 3. Accuracy of Algorithm 1 on various BNs 

extra edges missing edges correct edges
Caner Neapolitan 0 0 5 
Chest Clinic 0 1 7 
Car Diagnosis2 0 0 20 
Alarm 0 3 43 

 
we can conclude that Algorithm 1 is accurate for IBN learning. Further, for 15000 
tuples with 10% incomplete tuples, we recorded the extra, missing and correct edges 
all the benchmark BNs, shown in Table 3. 

Then, Fig. 3 presents the execution time of IBN learning, including the time of 
DAG constructing and that of CPT computation. It can be seen that execution time is 
increased linearly with the increase of data tuples and nearly quadratically with the 
increase of attributes. This means that the execution time is not sensitive to the scale 
of the data set. In particular, we can also see that the cost of IBN learning is mainly 
dependent of the number attributes of the data set, as the node numbers of IBN,  
instead of that of tuples. Thus, our method for IBN leaning is efficient. 

4.3 Convergence of the Inference Algorithm 

It is pointed out that the posterior probabilities predicted by an approximate algorithm 
for BN’s inferences are correct only if the sampling results are converged to a 
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certain probabilistic value [11]. Thus, we tested the convergence of Algorithm 2 by 
recording the results upon the Cancer Neapolitan IBN under Serum_Calcium= in-
creased, Brain_Tumor=absent, Coma=present and Severe_Headaches=present. Prob1 
and Prob 2 in Fig. 4 is the probability of Metastatic_Cancer = absent and that of Me-
tastatic_Cancer=present under the above evidences. It can be seen that Prob1 and 
Prob2 are stable around 0.2 and 0.8 respectively with the increase of the generated 
samples. The results show that the probabilities returned by Algorithm 2 converge to 
a certain value efficiently with just about 1000 samples, which guarantees the effi-
ciency and correctness of Algorithm 2. 

4.4 Precision and Efficiency of Data Cleaning 

First, we compared the most possible value predicted by Algorithm 3 with the true 
value in the original data set. We used 1 (and 0) to denote the case that the predicted 
value is (not) the same with the true one. We defined the average precision by the 
mean of 0 or 1 for all incomplete tuples. Fig. 5 (a) shows the average precision of the 
most possible values obtained by Algorithm 3 on 1000 tuples, from which we can see 
that the precision will be decreased slowly with the increase of the proportion of  
incomplete tuples.  

Meanwhile, we know that the measure of Kullback-Leibler (KL) divergence [16] is 
close to zero when the distributions are close to the results of Enumeration algorithm, 
as the exact BN inference algorithm [11]. The KL divergence of distribution Q from 
distribution P is computed by 

( )
( || ) ln( ) ( )

( )KL
i

P i
D P Q P i

Q i
=   (4)

Then, we recorded the KL divergence values for different proportions of incomplete 
tuples in the data set, shown in Fig. 5 (b). It can be seen that less the incomplete  
tuples, the smaller the KL divergence, i.e. the closer the two probability distributions, 
will be. This means that derived probability distributions are quite close to those  
obtained by the exact inference algorithm. 
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Table 4. Precision of Algorithm 3 on various numbers of tuples 

tuples 
CN CC CD AL 

precision KL precision KL precision KL precision KL 
1000 0.82  0.07  0.65  0.04 0.82  0.06 0.68  0.16  
3000 0.74  0.11  0.55  0.05 0.75  0.06 0.66  0.21  
6000 0.75  0.11  0.52  0.06 0.71  0.12 0.80  0.15  

10000 0.76  0.10  0.49  0.06 0.72  0.10 0.80  0.14  
15000 0.72  0.11  0.52  0.07 0.69  0.14 0.83  0.14  
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Fig. 6. Execution time of data cleaning with 5% incomplete tuples 

Further, we recorded the results of cleaning on various numbers of tuples with 5% 
incomplete parts, shown as Table 4. Thus, the accuracy of Algorithm 3 for missing 
data cleaning is mainly determined by the IBN with a certain portion of incomplete 
tuples. From the perspective of real applications of data cleaning on an original data 
table with a small proportion of incomplete tuples, our method can work effectively. 

Following, we recorded the execution time of Algorithm 3 shown in Fig. 6 for four 
BNs, each of which corresponds to five test data sets with 5% incomplete tuples. It 
can be seen that the execution time is increased linearly with the increase of tuples 
and attributes of the data sets, which verifies the efficiency of Algorithm 3. 

5 Conclusion and Future Work 

In this paper, we proposed the BN-based method for cleaning missing data. Focusing 
on the associations between attributes, we gave the methods for BN learning and infe-
rences taking the given incomplete database as input. Theoretical and experimental 
analysis results verify the feasibility of our method. 

To test our method further, we will make experiments on arbitrarily distributed  
data sets. As well, more efficient method for model learning and inferences will be 
considered by incorporating some optimization strategies. To extending our method to 
the realistic big data sets by incorporating the techniques of uncertain databases. 
Based on the methods proposed in this paper, we can explore the BN-based cleaning 
for redundant or wrong values. These are exactly our future work. 
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