
Y. Gao et al. (Eds.): WAIM 2013 Workshops, LNCS 7901, pp. 223–235, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Efficient Indexing of the Past, Present and Future
Positions of Moving Objects on Road Network

Ying Fang1, Jiaheng Cao1, Yuwei Peng1, Nengcheng Chen2, and Lin Liu2

1 School of Computer, Wuhan University, China
{fangying,jhcao,ywpeng}@whu.edu.cn

2 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, China
cnc_dhy@hotmail.com

Abstract. Aim at moving objects on road network, we propose a novel indexing
named PPFN*-tree to store past trajectories, present positions, and predict near
future positions of moving objects. PPFN*-tree is a hybrid indexing structure
which consists of a 2D R*-tree managing the road networks, a set of TB*-tree
indexing objects' movement history trajectory along the polylines, and a set of
basic HTPR*-tree indexing the position of moving objects after recent update.
PPFN*-tree can not only support past trajectory query and present position
query, but also support future predictive query. According to the range query
time, query in PPFN*-tree can be implemented only in the TB*-tree, or only in
the HTPR*-tree, or both of them. Experimental results show that the update
performance of the PPFN*-tree is better than that of the PPFI and the RPPF-tree.
The query performance of the PPFN*-tree is better than that of the MON-Tree
and the PPFI.

Keywords: moving object indexing, PPFN*-tree, TB*-tree, HTPR*-tree, range
query, trajectory query.

1 Introduction

Developing efficient index structures is an important research issue for moving object
database. Traditional spatial index structures are not appropriate for indexing moving
objects because the constantly changing location of objects requires constant updates to
the index structures and thus greatly degrades their performance.

Numerous researches are focused on index structures for moving objects. They can
be classified into two major categories depending on whether they deal with past
information retrieval or future prediction. However, some queries not only involved
past positions but also current and future positions of moving objects. Many
researchers begin to focus on the index structure of moving object for support querying
about the past, the present and the future.

Most of these approaches for indexing moving objects assume free movement of
objects in the 2-dimensional space. According to reference [1], applications dealing

224 Y. Fang et al.

with moving objects can be grouped into three movement scenarios, namely
unconstrained movement, constrained movement, and movement in transportation
networks. The latter category is an abstraction of constrained movement, i.e., for cars,
one might be only interested in their position with respect to the road network, rather
than in absolute coordinates. Then, the movement can be viewed as occurring in a
different space than for the first two scenarios, which is called 1.5 dimensional spaces
in [2].

For the constrained movement scenario, most index structures are focused on
indexing the history trajectories or current position of moving objects. For example,
index method proposed by C. S. Jensen et al. [3], the Fixed Network R-Tree [4] and
MON-tree [5] store the complete trajectories of the moving objects and are capable to
answer queries about the past states of the database. However, all of these works are
focused on the historical movement and cannot support queries related to the current
positions and near future positions of moving objects. IMORS [6] is a hybrid index
method for indexing current positions of moving objects on road sectors. It relieves
update overheads and provides efficient mechanisms in both searching and updating.
However, only current positions of the moving objects can be searched in IMORS.

PPFI [7] is a hybrid indexing structure which consists of a 2D R*-tree built on
polylines describing road sectors for managing the fixed networks, a set of 1D
R*-Trees indexing objects' movement along the polylines, and a hash structure
describing the recent state of moving objects. It is capable of answering query related to
the past and current positions of moving objects, and predicting near future positions of
moving objects. However, some queries such as spatio-temporal range queries related
to position information after the most recent update could not be realized in PPFI.

In this paper, we address the problem of indexing moving objects on road network
from the past to the future. We propose a novel indexing method named PPFN*-tree
(Past-Present-Future index of Moving Object on Road Network) to store past
trajectories, present positions, and predict future positions of moving objects on road
network. PPFN*-tree is a hybrid indexing structure that consists of a 2D R*-tree which
is built on polylines describing road sectors for managing the road networks, a set of
TB*-trees indexing objects' movement history trajectory along the polylines, and a set
of basic HTPR*-tree indexing the position of moving objects after recent update. In
addition, two hash tables are included in PPFN*-tree. PPFN*-tree can not only support
past trajectory and present position query, but also support future predictive query.

The organization of this paper is as follows. Section 2 presents related works and
motivations of our work. Section 3 describes data model and update policy in
PPFN*-tree, shows the index structure of PPFN*-tree and the corresponding
algorithms. Section 4 reports on the performance evaluation. The conclusion is given in
section 5.

2 Related Works and Motivations

A number of index structures have been proposed for moving object database. Most of
these index structures are focused on free movement of the objects in the 2-dimensional

 Efficient Indexing of the Past, Present and Future Positions of Moving Objects 225

space. Some index structures only handles past positions or trajectories of moving
object focused on free movement in space. The STR-tree [8] attempts to group
segments according to their trajectory memberships, also taking spatial locations into
account. The TB-tree [8] aims only for trajectory preservation, leaving other spatial
properties aside. Based on the MVB-tree, Tao and Papadias propose the MV3R-tree [9]
which consists of an MVR-tree and a 3D R-tree to index past trajectory data. Lee Eung
Jae et al. propose TB* tree [10] for efficiently managing current and past trajectory of
moving objects. The proposed method considerably improves updating performance
using auxiliary cache and reduces index size by removing redundant data for
representing MBB. However, all the above indices capture only the positions of objects
from some past time up until the time of the most recent update.

Some structures only index the current and near-future positions of moving objects.
For example, Tayeb et al. [11] use the PMR-quadtree as their underlying spatial access
methods for indexing the future trajectories. Kollios et al. [12] and Papadopoulos et al.
[13] use the duality transformation to transform a line segment (e.g., trajectory) from
the time-space domain into a point in the two-dimensional space. By introducing
parametric bounding rectangles in R-tree, the TPR-tree [14] provides the capability to
answer the queries about current positions and future positions. The TPR*-Tree [15]
improved upon the TPR-Tree by introducing a new set of penalty functions based on
a revised query cost model. Based on the B+-tree, indices for moving objects not only
supporting queries efficiently but also supporting frequent updates are proposed.
Jensen et al. propose the Bx-tree [16], which employs space partitioning and
data/query transformations to index object positions and has good update
performance. ST2B-tree [17] is a Self-Tunable Spatio-Temporal B+-Tree index for
moving object database, which is amenable to tuning. Based on the TPR*-tree, basic
HTPR*-tree [18][19] adds creation or update time of moving objects to leaf node
entries. Basic HTPR*-tree not only supports predictive queries, but also supports
partial history queries involved from the most recent update instant of each object
(to

mru) to the last update time (tlu) of all objects.
Some indexing methods are proposed to support both the past and the future

movement of the objects. Sun et al. [20] propose a method for approximate query
answering based on multidimensional histograms. The BBx-tree proposed by Lin et al.
[21] retains the old phases so that past, present, and future positions of moving objects
are indexed, but it only indexes broken “polylines”. Based on the TPR-tree, Pelanis et
al. [22] propose the RPPF-tree. It can not only accurately index position for times
in-between the most recent instant of each object and the last update time of all objects,
but also describe connected trajectories of objects. PPFI*[23] is a hybrid indexing
structure which consists of a TB-tree indexing history trajectories from some past time
until the time of the most recent position sample of each object o(to

mru), and a
HTPR*-tree describing position information since the most recent update instant of
each object (to

mru). It not only supports queries of the positions of moving objects at all
points in time, but also supports frequent update.

In order to manage moving objects on road network, some special index structures
have been developed. For example, C. S. Jensen et al. [3] proposed an index method
which stores the network edges as line segments in a 2D R-Tree and the moving objects

226 Y. Fang et al.

in another 2D R-Tree to index the past trajectories of moving objects in networks.
FNR-Tree [4] separates spatial and temporal components of the trajectories and indexes
the time intervals that each moving object spends on a given network link. The
MON-tree approach [5] further improves the performance of the FNR-tree by
representing each edge by multiple line segments instead of just one. However, all of
these works are focused on the historical movement of moving objects, and query
related to the current positions and near future positions of moving objects could not be
realized in these index structures.

IMORS [6] is a hybrid index method for indexing current positions of moving
objects on road sectors. It relieves update overheads and provides efficient mechanisms
in both searching and updating. However, only current positions of the moving objects
can be searched in IMORS. PPFI [7] is a hybrid indexing structure which consists of a
2D R*-tree built on polylines describing road sectors for managing the fixed networks,
a set of 1D R*-trees indexing objects' movement along the polylines, and a hash
structure describing the recent state of moving objects. It is capable of answering query
related to the past and current positions of moving objects, and predicting near future
positions of moving objects. Because PPFI uses a hash structure describing the recent
state of moving objects, it only supports the prediction of near future positions of
moving objects and does not provide predictive range query and predictive nearest
neighbor (NN) query.

Our work aims to provide an indexing structure not only to support frequent update
of moving objects positions, but also to provide querying from the past to the future for
moving objects on road networks.

3 PPFN*-Tree

3.1 Data Modeling and Update Policy

As for object moving on road network, road network model is necessary. In
PPFN*-tree, the road network is represented in terms of routes and junctions between
the routes, i.e., a network G=(R, J), where R is a set of routes and J is a set of junctions.
A route r ∈ R has an associated polyline pl = p0, . . . , pn, where pi are 2-dimensional
points, 0 ≤ i ≤ n, and n+1 is the size of the route. We term p0 the start point and pn the
end point of the polyline. The direction of a polyline is from its start point to its end
point. A polyline, exemplified in Figure 1, can be described as a sequence of connected
line segments.

The measure (m) of a point p located on a polyline is the distance, measured along
the polyline, from the start point to point p; see Figure 1.

Function M calculates the measure of any point p located on a polyline pl.

0 0pp =

=),(pplM

),(),(ppdpplM ii +

)|min({(plsspjii jj ∈∧∈=∃

undefined otherwise

 Efficient Indexing of the Past, Present and Future Positions of Moving Objects 227

Fig. 1. Polyline

The measure of a point p is equal to the measure of the starting point pi of segment si on
which the point p is located, plus the Euclidean distance d(pi, p).The representation of a
moving object on a polyline is a four-tuple),,,(tplspdmplmop = . Here, Rpl ∈
is the polyline on which the moving object is located; m is the measure giving the
moving object’s location on pl; plspd is the moving object’s signed speed along the
polyline; and t is the time when the preceding values are valid.

3.2 Index Structure

PPFN*-tree consists of static part and dynamic part. The former contains a 2D R*-tree
built on road sectors for managing the road networks and a hash structure H1. The latter
contains a set a TB*-trees indexing objects' movement history trajectory along the
polylines, a set of basic HTPR*-tree indexing the position of moving objects after
recent update, and a hash table H2. In order to improve update and query performance,
we use H1 in static part containing entries of the form <polyid, tree1pt, tree2pt>, where
polyid is the polyline identification, tree1pt is a pointer to the corresponding TB*-tree,
and tree2pt is a pointer to the corresponding basic HTPR*-tree.

Figure 2 illustrates the overall data structures of PPFN*-tree. Note Rroad is a 2D
R*-tree for managing the road networks. Each leaf node entry of Rroad points to a
TB*-tree and a basic HTPR*-tree. Note Rtbi (1≤i≤n) is a TB*-tree for managing history
trajectories of moving objects from some past time until the time of the most recent
position sample of each object o(to

mru) moved on polyline Si (1 ≤ i ≤ n). Rhi(1 ≤ i ≤ n) is
the basic HTPR*-tree which indexes position information since the most recent update
instant of each object (to

mru) moving on polyline Si(1 ≤ i ≤ n).
In Rroad, leaf nodes contain the information <mbb, polypt, tree3pt, tree4pt> where

mbb is the MBB of the polyline, polypt points to the real representation of the polyline,
tree3pt points to TB*-tree of object moved on that polyline, and tree4pt points to basic
HTPR*-tree of object moving on that polyline. Internal nodes have the following
information <mbb, childpt>, where mbb is the MBB that contains all MBBs of the
entries in the child node, and childpt is a pointer to the child node.

Note Rtbi (1 ≤ i ≤ n) is a TB*-tree for managing history trajectories of moving objects
from some past time until the time of the most recent position sample of each object
o(to

mru) moved on polyline Si(1 ≤ i ≤ n). The node structure is as follows:

Start point

P0

S0

P1

P2

P3

P4

End point

m0= 0

m1= 3

m2 =6

m3= 10

m4= 15

S3
S2S1

direction

228 Y. Fang et al.

Fig. 2. Overall data structure of PPFN*-tree

Nnonleaf= [ptrparent, (ptr1, MBB1), (ptr2, MBB2), …, (ptrk, MBBk)]
Nleaf= [Oid, polyid, ptrparent, ptrprev, ptrnext, (m1, t1), …, (mk, tk)]

Where ptri (1 ≤ i ≤k) points its childe node with MBBi, and ptrparent points its parent
node. Ptrparent is used for improvement of insertion performance by bottom-up update
when new data is inserted into index.

In the leaf node, its entry contains not MBB but location of moving object. Oid is the
identifier of the moving object, and polyid is the identifier of the polyline where the
object is located. The measure (m) of a point p located on a polyline is the distance
which measured along the polyline from the start point p0 to point p. (mi, ti) implies the
measure of the objects inside the given polyline are mi at time ti. The leaf nodes of
TB*-tree are linked with other leaf nodes belonging to the same object. Ptrprev and
ptrnext are used for managing linked list. Ptrprev is a pointer that points to the last node
either in the same Rtb or in the different Rtb, and ptrnext points to the next node either in
the same Rtb, or in the different Rtb, or in the Rh. This information makes it easy to access
whole trajectory with minimal cost by visiting an arbitrary leaf node.

Rhi is a basic HTPR*-tree to manage position information since the most recent
update instant of each object (tomru) moving on polyline Si(1 ≤ i ≤ n). In order to support
querying from the past to the future, Rhi should be associated with Rtbj(1 ≤ j ≤ n) through
pointer. We add ptr to leaf node entry of Rhi which points to a leaf node of Rtbj including
the most recent history segment. So, the structure of each leaf node entry of Rhi is of the
form (oid, tpp, ptr, t). Here, tpp=(m, v), with the m and v being the measure and
velocity, respectively, of the object located on polyline Si at creation or update time t.
The structure of each non-leaf node entry is in the form of (ptr, tpbr, st1, st2). Here ptr
is a pointer that points to the child node. St1 is the minimal creation or update time of
moving objects included in the child node pointed by ptr, and st2 is the maximum value

Static Part: Rroad

Dynamic Part:TB*-tree

 and HTPR*-tree Rtb :TB*-tree
Rh: HTPR*-tree

H2

O

O

O9

O1

..

S3
S

5

S4

S1 S2 Sn

P3

S

1

S2 S6

A

C
DB

P

1

P2

S3

R
tbn

R
h1

R
tb

1

R
hn

H1

… … …

S1

S2

Sn

 Efficient Indexing of the Past, Present and Future Positions of Moving Objects 229

compare with st1. The tpbrs of the Basic HTPR*-tree are bound time-parameterized
points which bound objects since time st1.

The item in hash table H2 is defined as vector <oid, ptr>, where oid denotes the
identifier of moving object, and ptr denotes physical offset of the leaf node in Rhi
which object entry locates.

3.3 Insertion

Inserting a new moving object into PPFN*-tree involved Rh, hash table H1 and H2. It is
carried out by three steps: (1) Based on the polyline identification polyid where the
object o is located, we can get Rhi where the object o should be inserted through hash
structure H1; (2) A entry (oid, tpp, ptr, st) (ptr is null) describing the object o is inserted
in Rhi and get the leaf node where entry (oid, tpp, ptr, st) is located. (3) The object o is
registered with its oid in H2 and linked to the leaf node of Rhi storing the object o with
pointer. The detailed algorithm is given in algorithm 1.
——————————————————————————————————
Algorithm 1. Insert (R, o, polyid)
——————————————————————————————————————

/*Input: o is a moving object with oid, m, v and t; R is the PPFN*-tree, polyid is the polyline

identification that o located*/

1. get the Rhi that o should be inserted

2. invoke Insert (Rhi, o)

3. achive the leaf node of o stored in Rhi

4. register o with its oid in H2, link H2 with leaf node of Rhi using ptr*/

ENDInsert

——————————————————————————————————

3.4 Update

When a moving object o with its object identifier reports a new position and velocity to
the system, update may be caused by the following three kinds of situation. Firstly, the
velocity is changed. Secondly, the allowed position precision threshold is exceeded.
Lastly, the new position reported by the object o is outside the polyline Si but inside
another polyline Sj, that is the polyline identification polyid is changed. In the first two
kinds of situation, o and o’ (after changed of o) are located in the same polyline. So, we
can get Rhi where o’ will be insert and Rtbi where the history segment of o will be
inserted through H2, update of PPFN*-tree need only update Rhi and insert a history
segment to Rtbi. Of course, the leaf node entry of the object o in Rhi can be obtained
through H2 and updated in a bottom-up manner strategy.

Algorithm 2 describes update procedure of PPFN*-tree indexing objects that are
moving on the same polyline.

230 Y. Fang et al.

——————————————————————————————————

Algorithm 2. Update (R , o, o’, polyid)

/*Input: o is a moving object with oid, m, v and st; at time st’, it is changed to o’; R is the

PPFN*-tree, polyid is the polyline identification that o located */

1. get the Rtbi where history trajectory segment of o should be inserted through R.H1

2. get leaf node entry e1 of o in Rhi through R.H2

3. invoke Rhi.update(o, o’)

4. get leaf node entry e2 of o’ in Rhi

5. get history trajectory segment e3=(st, st’, m, m’)

6. if object o has no history trajectories in Rtbi

7. insert new segment e3 in Rtbi with top-down

8. create pointer of leaf node where o’ is located in Rhi with leaf node where e3 is located in Rtbi

9. else

10. get leaf node n1where the last recent history trajectory segment of o is located in Rtbi

through e1 of o in Rhi

11. if n1 has space

12. Insert new segment e3 in n1

13. else

14. create new leaf node n2 for new segment e3

15. find a non-full parent node n3 of n1

16. insert n2 in tree rooted by n3 through right-most path

17. create ptrprev pointers of n2 to n1 in Rtbi, and ptrnext pointers of n2 to entry e2 of o’ in Rhi

ENDUpdate

3.5 Search Procedure

3.5.1 Spatio-Temporal Range Query

PPFN*-tree can support spatio-temporal range query (given a query window w=(x1,
y1, x2, y2, t1, t2), the query is “find all objects that have lain within the area r=(x1, y1,
x2, y2) during the time interval t=(T1, T2)”).

In the range query, when the temporal dimension is zero extent, a special case of
range query so-called time-slice query is shown in Figure 3. Figure 4 describes
timeslice query and spatio-temporal range query of objects moving on one of polylines
on road network.

For the range query, the algorithm receives a spatio-temporal query window w and
performs in the following three steps. In the first step, a search in the top R*-Tree is
performed to find the polylines’ MBBs that intersect the spatial query window r. Then,
the intervals where the polyline intersects r are searched using the real polyline

 Efficient Indexing of the Past, Present and Future Positions of Moving Objects 231

Fig. 3. Time–slice Query of PPFN*-tree Fig. 4. Querying the Positions of Moving Objects

representation. The result is a set of windows w’= {(M11, M12, T1, T2), . . ., (Mn1, Mn2,
T1, T2)}, where n is the set size, n ≥ 1, and the interval (T1, T2) is the query time interval
t. Here, the windows are disjoint and ordered. Finally, given this set of windows w’,
each w’ is performed query in corresponding Rtbi or Rhi pointed by polyline Si.

Spatio-temporal range query in PPFN*-tree is bound up with the query time interval
t=(T1, T2). The detailed search procedure is as follows:
——————————————————————————————————
Algorithm 3. RQuery(R, r, T1, T2)
——————————————————————————————————————

/*Input: R is the PPFN*-tree, r is the query spatial area, (T1, T2) is the query time interval*/

1. get R.Rroad

2. performing a search in R.Rroad to find the polylines’ MBBs that intersect r

3. for each Si acquired in step 2

4. change search w to a set of w’= {(M11, M12, T1, T2),…, (Mn1, Mn2, T1, T2)} in

corresponding polyline Si

5. if T2< Rtbi..root.st1,

6. for each w’=(Mj1, Mj2 T1, T2) invoke Rtb.RQuery.(Rtbi, Mj1, Mj2, T1, T2)

7. else if T1>Rhi..root. st2

8. for each (Mj1, Mj2 T1, T2) invoke Rh.RQuery. .(Rhi, Mj1, Mj2, T1, T2)

9. else range query is implemented in both Rtbi and Rhi

End RQuery(R, r, t1, t2)
——————————————————————————————————

3.5.2 Trajectory Query

Trajectory query is to extract information related to moving objects’ trajectories, e.g.,
“What were the trajectories of trains after they left Wuhan between 5 and 12 today, in
the next hour?” We have to (a) select the objects, and (b) select the partial trajectory of
each obtained object. In PPFN*-tree, selection of objects can occur by range query and
topological query, or obtained by objects identifiers directly. So trajectory query in

S 1
S 2

S 3
S

S
5

S 6

A

C

D 4
B

W

Rroad Search :{S1, S2, S3}

Selection of moving objects: {B,C}

time tmru CT

1

2

3

4

5

6

7

Q3

Q4
Q1

O3

O2

O1

X

tlu

Q2

232 Y. Fang et al.

PPFN*-tree can be realized by selecting object records in H2 and getting pointer to
extract objects' trajectories during t=(T1, T2) in the corresponding Rh and Rtb.

3.5.3 Topological Query

Query of the form “find all objects that enter, leave, cross, or bypass a given area r=(x1,
y1, x2, y2), during the time interval t=(t1, t2)” is called topological query [3].

The topological query algorithm consists of three steps: (1) We can obtain polylines
intersecting with area r via Rroad, and area r=(x1, y1, x2, y2) is changed into r’= (M1, M2)
in given Rs; (2) Each leaf node entry that (T1, T2) intersects with t in every Rs obtained in
the first step is examined, and we can obtain the object’s measure in t1 and t2; (3) The
result in step 2 can be used to estimate topological query. Figure 4 shows object O1
leaves Q3, but O2 enters Q3.

4 Performance Study

4.1 Experimental Setting and Details

In this section, we evaluate the performance of the PPFN*-tree with the MON-tree,
the PPFI and the RPPF-tree. In all our experiments, we used the network-based moving
objects generator proposed in [24]. The generator takes a map of a real road network as
input (our experiment is based on the map of Oldenburg including 7035 segments). The
positions of the objects are given in two dimensional X-Y coordinates. Since our
experiment use edge (polyline) oriented model, we transform X-Y coordinates to the
form of (ployid; pos), where ployid denotes the polyline identifier and pos denotes the
object relative position on the polyline. After that, the total number of polylines is
3803.

4.2 Performance Analysis

● Update Cost Comparison

Figure 5 compares the average update cost of the PPFN*-tree, the PPFI and the
RPPF-tree as a function of the number of updates. The update cost of the PPFN*-tree
increases as the num of updates, but it does not as much as that of the PPFI and the
RPPF-tree. This is due to the fact that the HTPR*-tree and TB*-tree of PPFN*-tree
adopt bottom-up update strategy to avoid the excessive node accesses, but the PPFI
and the RPPF-tree adopt top-down update strategy. Moreover, a history trajectory after
the most recent update instant in the RPPF-tree is stored in several entries and even in
several nodes, which should be modified when an update occurs. This greatly enhances
the cost of update operation of the RPPF-tree. At the same time, a new trajectory inserted
into the RPPF-tree also causes time split of node, which also reduce the update
performance.

 Efficient Indexing of the Past, Present and Future Positions of Moving Objects 233

● Query Cost Comparison

In order to study the deterioration of the indices with time, we measure the performance
of the PPFN*-tree, MON-tree and the PPFI using the same query workload.

First, we compare trajectory query performance of the PPFN*-tree with that of PPFI.
Figure 6 shows trajectory query performance. We find the PPFN*-tree is more efficient
than PPFI under trajectory query, since moving object trajectories were stored in leaf
nodes of TB*-tree and basic HTPR*-tree which can be obtained through pointer in H2
directly. Because the TB*-tree strictly preserves trajectories such that a leaf node only
contains segments belonging to the same trajectory, trajectory query of the PPFN*-tree
will access less leaf nodes than that of the PPFI.

Then, we used range query which tries to find all objects that are moving during a
given time interval in a given area. We are interested in the behavior of the indexes
according to the follow variables:

0k 20k 40k 60k 80k 100k
0

30

60

90

120

150

180

210

240

 PPFN*-tree

 RPPF
-tree

 PPFI

no
de

 a
cc

es
se

s

number of updates

Fig. 5. Update Cost Comparison Fig. 6. Trajectory Query Cost Comparison

0 5 10 15 20 25 30 35 40 45 50
0k

2k

4k

6k

8k

10k

12k

14k

16k

18k

no
de

 a
cc

es
se

s

Time interval size (%)

MON-tree
PPFN*-tree
PPFI

5 10 15 20
0k

2k

4k

6k

8k

10k

12k

14k

no
de

 a
cc

es
se

s

Window size (%)

 MON-tree
 PPFN*-tree
 PPFI

Fig. 7. Range Query Cost Comparison

0k 20k 40k 60k 80k 100k
0

20

40

60

80

100

120

140

160

180

200

no
de

 a
cc

es
se

s

number of objects

 PPFN*-tree
PPFI-tree

234 Y. Fang et al.

• Size of the query time interval. We generated queries with a range of 1%, 5%,
10%, 50%, and 100% of the total data set time interval.

• Size of the query window. We generated queries with a range of 1%, 5%, 10%, and
20% of the total data set space.

For each combination of the two variables, we generated randomly 100 queries. The
performance of the indexes is then compared by the average number of disk accesses
for executing the queries. Figure 7 shows the influence of the query time interval size
and the query window size in the performance of queries. As can be seen from these
figures, the PPFN*-tree has a linear behavior with respect to the increase of these two
variables. For a small range of query interval, the PPFN*-tree shows superior query
performance over the MON-tree and the PPFI. However, with the query window size
increasing in the largest query time interval size, the query performance deterioration of
the PPFN*-tree is more than that of the MON-tree. Because range query of the bottom
2D R-Trees in the MON-tree is superior to that of TB*-tree in the PPFN*-tree.
Similarly, with the query time interval size increasing in the largest query window size,
the query performance deterioration of the PPFN*-tree is more than that of the
MON-tree.

5 Conclusion

In this paper, we develop a novel index structure named PPFN*-tree which consists of
a 2D R*-tree which is built on polylines describing road sectors for managing the road
networks, a set of TB*-trees indexing objects' movement history trajectory along the
polylines, and a set of basic HTPR*-tree indexing the position of moving objects after
recent update. PPFN*-tree can not only support past trajectory query and present
position query, but also support future predictive query. Extensive experiments prove
that the update performance of PPFN*-tree is better than those of the PPFI and the
RPPF-tree, trajectory query performance of the PPFN*-tree are significantly improved
compared with those of the PPFI. At the same time, for a small range of query interval,
the PPFN*-tree shows superior query performance over the MON-tree and the PPFI.

Acknowledgments. This work is supported by the National Natural Science
Foundation of China (Grant No.90718027 and Grant No.41171315).

References

[1] Pfoser, D.: Indexing the Trajectories of Moving Objects. IEEE Data Engineering
Bulletin 25(2), 2–9 (2002)

[2] Kollios, G., Gunopulos, D., Tsotras, V.J.: On indexing mobile objects. In: Proc. of ACM
Symp. on Principles of Database Systems (PODS), pp. 261–272 (1999)

[3] Jensen, C.S., Pfoser, D.: Indexing of network constrained moving objects. In: Proc. of the
11th Intl. Symp. on Advances in Geographic Information Systems (2003)

[4] Frentzos, E.: Indexing objects moving on fixed networks. In: Hadzilacos, T.,
Manolopoulos, Y., Roddick, J., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750,
pp. 289–305. Springer, Heidelberg (2003)

 Efficient Indexing of the Past, Present and Future Positions of Moving Objects 235

[5] Victor, T.D.A., Ralf, H.G.: Indexing the Trajectories of Moving Objects in Networks.
GeoInformatica 9(1), 33–60 (2005)

[6] Kim, K.-S., Kim, S.-W., Kim, T.-W.: Fast indexing and updating method for moving
objects on road networks. In: Proc. of the 4th Intl. Conf. on Web Information Systems
Engineering Workshops, pp. 34–42 (2003)

[7] Fang, Y., Cao, J.: Indexing the Past, Present and Future Positions of Moving Objects on
Fixed Networks. In: Intl. Conf on Computer Science and Software Engineering,
pp. 524–527 (2008)

[8] Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel Approaches to the Indexing of Moving
Object Trajectories. In: Proc. of the 26th Intl. Conf. on Very Large Databases, pp. 395–406
(2000)

[9] Tao, Y., Papadias, D.: MV3R-Tree: A Spatio-Temporal Access Method for Timestamp
and Interval Queries. In: Proceedings of the International Conference on Very Large
Databases, VLDB (2001)

[10] Tayeb, J., Ulusoy, O., Wolfson, O.: A Quadtree-Based Dynamic Attribute Indexing
Method. The Computer Journal 41(3), 185–200 (1998)

[11] Kollios, G., Gunopulos, D., Tsotras, V.J.: On Indexing Mobile Objects. In: ACM PODS,
pp. 261–272 (1999)

[12] Papadopoulos, D., Kollios, G., Gunopulos, D., Tsotras, V.J.: Indexing Mobile Objects on
the Plane. In: MDDS, pp. 693–697 (2002)

[13] Saltenis, S., Jensen, C.S., Leutenegger, S.T., Lopez, M.A.: Indexing the Positions of
Continuously Moving Objects. In: ACM SIGMOD, pp. 331–342 (2000)

[14] Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized spatiotemporal Access
Method for Predictive Queries. In: Proc. of 29th Int. Conf. on Very Large Data Bases,
pp. 790–801 (2003)

[15] Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based Indexing of
Moving Objects. In: VLDB, pp. 768–779 (2004)

[16] Chen, S., Ooi, B.C., Tan, K.L., Nacismento, M.: ST2B-tree: A Self-Tunable
Spatio-Temporal B+-tree Index for Moving Objects. In: ACM SIGMOD, pp. 29–42
(2008)

[17] Fang, Y., Cao, J., Wang, J., Peng, Y., Song, W.: HTPR*-Tree: An Efficient Index for
Moving Objects to Support Predictive Query and Partial History Query. In: Wang, L.,
Jiang, J., Lu, J., Hong, L., Liu, B. (eds.) WAIM 2011. LNCS, vol. 7142, pp. 26–39.
Springer, Heidelberg (2012)

[18] Fang, Y., Cao, J., Peng, Y., Chen, N.: Indexing Partial History Trajectory and Future
Position of Moving Objects Using HTPR*-Tree. In: Yu, H., Yu, G., Hsu, W., Moon, Y.-S.,
Unland, R., Yoo, J. (eds.) DASFAA Workshops 2012. LNCS, vol. 7240, pp. 229–242.
Springer, Heidelberg (2012)

[19] Sun, J., Papadias, D., Tao, Y., Liu, B.: Querying about the past, the present and the future
in spatio-temporal databases. In: ICDE, pp. 202–213 (2004)

[20] Lin, D., Jensen, C.S., Ooi, B.C., Saltenis, S.: Efficient indexing of the historical, present,
and future positions of moving objects. In: MDM, pp: 59–66 (2005)

[21] Pelanis, M., Saltenis, S., Jensen, C.S.: Indexing the Past, Present and Anticipated Future
Positions of Moving Objects. ACM TODS 31(1), 255–298 (2006)

[22] Fang, Y., Cao, J., Zeng, C., Chen, N.: Indexing the Past, Present and Future Positions of
Moving Objects Using PPFI*. In: Proc. of the 8th Intl. Conf. on Networked Computing
and Advanced Information Management, pp. 314–320 (2012)

[23] http://www.fh-oow.de/institute/iapg/personen/brinkhoff/gene
rator/

	Efficient Indexing of the Past, Present and Future
Positions of Moving Objects on Road Network
	1 Introduction
	2 Related Works and Motivations
	3 PPFN*-Tree
	3.1 Data Modeling and Update Policy
	3.2 Index Structure
	3.3 Insertion
	3.4 Update
	3.5 Search Procedure

	4 Performance Study
	4.1 Experimental Setting and Details
	4.2 Performance Analysis

	5 Conclusion
	References

