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Abstract. Systems intended to operate in dynamic, complex environments – 
without intervention from their designers or significant amounts of domain-
dependent information provided at design time – must be equipped with a 
sufficient level of existential autonomy. This feature of naturally intelligent 
systems has largely been missing from cognitive architectures created to date, 
due in part to the fact that high levels of existential autonomy require systems to 
program themselves; good principles for self-programming have remained 
elusive. Achieving this with the major programming methodologies in use 
today is not likely, as these are without exception designed to be used by the 
human mind: Producing self-programming systems that can grow from first 
principles using these therefore requires first solving the AI problem itself – the 
very problem we are trying to solve. Advances in existential autonomy call for a 
new programming paradigm, with self-programming squarely at its center. The 
principles of such a paradigm are likely to be fundamentally different from 
prevailing approaches; among the desired features for a programming language 
designed for automatic self-programming are (a) support for autonomous 
knowledge acquisition, (b) real-time and any-time operation, (c) reflectivity, 
and (d) massive parallelization. With these and other requirements guiding our 
work, we have created a programming paradigm and language called Replicode.  
Here we discuss the reasoning behind our approach and the main motivations 
and features that set this work from apart from prior approaches.  

1 Introduction 

Future artificially generally intelligent (AGI) systems, to deserve the label, must be 
able to learn a wide variety of tasks and adapt to a wide range of conditions, none of 
which can be known at design time. This requires some minimum level of existential 
autonomy – the ability of a system to act without dependence on explicit outside 
assistance, whether from a human teacher or, in the case of AGI, the system designer. 
Achieving existential autonomy calls for unplanned changes to a system's own 
cognitive structures. Too be capable of cognitive growth – whether measured in 
minutes, days, years, or decades – such systems must thus ultimately be able to 
program themselves. Provided with (minimal) bootstrap knowledge, we target 
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systems that operate in in a way that, while initially limited, are capable of facing 
novel situations in their environment – simple at first – and grow their intelligence as 
experience accumulates. Given scalable principles, a system will continuously grow 
to ever-increasing levels of cognitive sophistication.  

In light of this goal, do any existing programming environments, paradigms, or 
languages allow us to get started on building such systems? After thorough 
investigation, having carefully considered an array of existing alternatives (for 
example Schiffel & Thielscher 2006, Schmidhuber 2004), our conclusion is that 
some, sometimes many, features of all prevailing programming paradigms and 
languages makes them unsuited to achieve the level of self-programming abilities 
required for the kind of AGIs we envision. Drescher (1991) proposes a paradigm that 
at first glance has some similarities with ours. Important and fundamental differences 
exist, however, which prevent us from building directly on his work – three of which 
we will mention here. First, operational reflectivity is not enforced in his approach, 
and thus his system cannot model its own operation. Second, as Drescher does not 
assume resource boundedness, no mechanisms for systems adapting to resource 
scarcity is provided. Third, his proposed schema control mechanism is inappropriate 
for real-time parallel operation. In fact, because all mainstream programming 
languages are created for human beings, their semantic complexity is too high to allow 
the kind of low-level self-programming needed for the kind of cognitive growth 
necessary for realizing truly adaptive systems (Thórisson 2012). For this reason no 
human-targeted programming languages provide a suitable foundation for systems 
capable of cognitive growth, which means a new paradigm must be developed.  

This paper introduces a new programming paradigm and language – Replicode – 
for building control systems that can autonomously accumulate and revise knowledge 
from their own experience, under constraints of limited time and computational 
resources (Wang 2006), through self-programming. Departing from traditional 
development methodologies that rely on human-crafted code, we follow the path of 
constructivist development (Thórisson 2012), which delegates the construction of the 
system in large part to the system itself. In our approach knowledge consists thus 
primarily of learned executable code. Replicode is an interpreted language designed 
to acquire, execute and revise vast amounts of fine-grained models in parallel and in 
(soft) real-time. The interpreter of Replicode – the executive – is a distributed virtual 
machine that runs on various hardware configurations, from laptops to clusters of 
computers. A thorough description of the language is beyond our scope here (see 
Nivel & Thórisson 2013 for the full language specification). Here we focus on how 
three key requirements affect the design of the Replicode programming language, 
namely automatic acquisition of knowledge, real-time any-time operation, and 
adaptation. First we present key motivations and requirements, alongside the 
resulting design decisions. Then follows a quick overview of the main Replicode 
features, memory organization, and rules for governing model execution. The two last 
sections describe briefly how learning is implemented in Replicode-based systems 
and the control mechanisms for supporting adaptation to resource scarcity. 
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2 Key Requirements for Existential Autonomy 

Autonomous expansion of a system's skill repertoire means the system must be 
outfitted with a principled way to govern the integration of new knowledge and skills. 
The rationale is threefold. 

First, as informationally rich open-ended complex environments cannot be 
axiomatized beforehand, very few assumptions can be made about the knowledge that a 
system may have to acquire: The information available to be perceived and the 
behavioral challenges that the system's future environment(s) may present, can be of 
potentially multiple types, and the specifics of these types cannot be known beforehand. 
The generality of the system is thus constrained by its ability to deal with this potentially 
large set of information and skills in a uniform manner: the less specific to particular 
types of information the knowledge representation is, the greater the system's potential 
for being general. This is the requirement of knowledge representation uniformity.  

Second, systems that improve all the time, while "on the job", must maintain and 
expand their knowledge incrementally and continuously, in order to discard faulty 
models as early as possible (before knowledge is built up on top of them – which by 
extension would also be faulty). To do this the system must perform frequent reality 
checks on its modeling (understanding) of the world, as the opportunities may arise, at 
any time, as the system steadily builds up its knowledge. This requirement directs us 
towards low knowledge representation ("peewee") granularity; fine-grained 
knowledge permits higher "clock rate", with smaller incremental checks and changes.  

Third, as the systems we envision should perform in (soft) real-time and any-time, 
knowledge integration speed is of the essence – in other words, the processes that 
perform integration shall be as simple and efficient as possible. What we aim for here 
is knowledge representation plasticity: A system must be able to add and remove 
knowledge very quickly and very often, irrespective of knowledge semantics. The 
knowledge must also have a high degree of composability, giving the system an 
ability to easily construct knew knowledge from existing knowledge. 

Real-time Control. To act meaningfully in real-time, control systems must anticipate 
the behavior of the controlled entities. In other words, the system must make 
predictions, based on its knowledge acquired to date. To apply continuously to any 
and all actions of the system, at any level of detail, predictions must essentially be 
produced all the time, as an integral part of the system's cognitive operation, and as 
quickly as possible, to be ahead of the reality to which they apply. As the system is 
doing this, however, it must also keep acting on its environment to satisfy its goals 
and constraints. This means that sub-goals should be produced as soon as top-level 
goals are produced. This gives us two sub-requirements. 

First, reality checks can only be performed by monitoring the outcome of 
predictions: this is how the reliability of the system's knowledge can be assessed – the 
quality cannot be judged based solely on the results of internal abduction; abduction 
can only produce a set of possible sub-goals, from which the system must then select, 
and discard the rest. As it does so, a potential problem is that the search (which sub-
goal to choose) may be faulty – not the knowledge. Therefore if we had two kinds of 
models for representing predictive knowledge and prescriptive knowledge, only the 
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predictive models could be maintained at any point in time. Thus, it follows that both 
deduction and abduction should be supported in a single model. This is the 
requirement for a unified representation for abduction and deduction processes. 

Second, deduction and abduction should proceed concurrently at runtime: the 
control system cannot be put on hold achieving its goals while predictions are 
produced, because then it will lag behind its controlled entities; reciprocally, the 
system cannot wait to monitor the outcome of predictions to act in due time. This is 
the requirement of simultaneous execution of abduction and deduction.  

Real-time Learning. We target systems to learn as they act, and to use newly-acquired 
knowledge as soon as possible, as the need may arise during the system's operation. A 
programming language must not restrict these in such a way that they are mutually 
exclusive at runtime. Here again, a fine granularity is of the essence. If the granularity 
of knowledge representation was so coarse-grain as to encode large complex 
algorithms, instead of e.g. a single simple rule, then it will more difficult for the 
system to assess the model's performance, as increased complexity would mean that 
the encoded knowledge would cover broader and richer situations – which would 
increase the complexity of reality checks, thus degrading the system‘s responsiveness.  

Adaptation. In informationally rich open-ended environments conditions may arise at 
any time that an intelligent system is not equipped to handle, or that the system may 
only partially be able to address. A system which cannot prioritize its tasks according 
to the time and CPU power available is doomed in such conditions. As this kind of 
adaptability is critical for achieving experiential autonomy, methods for controlling 
resource expenditure is a hard requirement for such systems. Advanced levels of such 
resource control call for fully-fledged introspective capabilities; this is what we aim 
for in our work. We propose the following four principles to achieve this.  

First, the system's executive should periodically publish assessments of its own 
performance (for example, the time it takes to execute a unit of knowledge, or the 
average lag behind deadlines). 

Second, the executive should expose several control parameters that allow a 
system-wide tuning of its various computation strategies. 

Third, operational reflectivity should be supported at every level of abstraction in 
the language, which means that every operation the system performs is reflected as a 
first-class (internal) input, allowing the modeling of causal relationships between 
strategy tuning and its effects (performance assessment). 

Last, a programming language should also provide a way to reduce the amount of 
inputs to process (i.e. attention mechanisms) that discards irrelevant inputs. 

3 Overview of Replicode 

Taking a symbolic approach, Replicode1 is based on pattern-matching and is data-
driven: as input terms become available the executive continually attempts to match 

                                                           
1 The Replicode language source code is available from http://cadia.ru. 
  is/svn/repos/replicode 
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them to patterns; and when succeeding some computation is scheduled for execution, 
possibly resulting in the production of more input terms. Replicode is operationally 
reflective; the trace of every operation it performs is injected in memory as an internal 
input to allow a system to model its own operation, a necessary prerequisite for 
enabling some degree of self-control – and thus of adaptation. Replicode is goal-
driven: the programmer defines fixed top-level goals (called drives) that initiate 
abduction and eventually the effective acting on the environment (when the system 
commits to a goal containing a command on an effector, this command is executed). 

Replicode meets the requirement of uniform knowledge representation by 
encoding all knowledge as executable models, forming a highly dynamic hierarchy 
that models the behavior of entities in the environment – including the system's 
internal behavior. The hierarchy is expanded incrementally: fine-grained models are 
added continuously as the system interacts in its environment, and said models are 
also deleted as soon as enough counter-evidences of their reliability is observed. 

The execution of a single model produces predictions, given some observed facts, 
and at the same time generates sub-goals, given some top-level goal(s). In essence, 
the model hierarchy is thus traversed by two simultaneous flows of information: a 
flow of predictions, bottom-up (assuming the inputs come from the bottom) and a 
flow of goals, top-down (assuming the super-goals come from the top and the 
commands to the effectors are located on the bottom). This paves the way for a 
system implemented in Replicode to drive its behavior in an anticipatory fashion to 
learn and act simultaneously, and achieve real-time and any-time performance. 

 

 

Fig. 1. Overview of a Replicode-based System 

A system controls its environment or entities situated therein via dedicated sub-systems (I/O 
boxes) such as machine vision equipment or any kind of particular device driver. Notice that 
a system can be controlled by another one by means of the former’s internal inputs and 
control parameters. 
 
Replicode relies on a real-valued temporal term logic. Terms encode facts (or 

absence thereof) that hold within some time interval (specified in microseconds) and 
with a certain confidence value (in [0,1]). Goals and predictions are also encoded as 
facts: the confidence value carried by a goal stands for its likelihood to succeed, 
whereas the confidence value of a prediction stands for its likelihood to come true. 
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For goals, the time interval specifies the lower and upper deadlines in between which 
the goal shall be achieved, whereas for predictions, the time interval defines the time 
segment when evidences or counter-evidences shall be checked to assess the accuracy 
of the predictions. 

4 Model Execution and Memory Management 

The memory in Replicode is organized in groups of objects (for example models and 
facts) used to isolate subsets of knowledge. Each object in a group is qualified by 
three control values, saliency, activation and resilience. The saliency determines the 
eligibility of an object to be an input for some executable object (for example 
models2), the activation determines the eligibility of some executable object to 
process any input and the resilience defines the object‘s time to live. A group defines 
several control parameters, of which the most essential are (a) a saliency threshold 
(any object whose saliency is below the threshold becomes invisible to executable 
objects) and, (b) an activation threshold (any executable object whose activation is 
below the threshold will not be allowed to process any input). 

• Replicode models consists of two patterns (a left-side pattern, or l-pattern and a 
right-side one, or r-pattern). When an input matches an l-pattern, a prediction 
patterned after the r-pattern is injected in the memory (deduction, or forward 
chaining). Reciprocally, when a goal matches an r-pattern, a sub-goal patterned 
after the l-patterned is injected in the memory (abduction, or backward chaining). 
A system can thus be considered a dynamic model hierarchy based on pattern 
affordances. 

• Models carry two specific control values, a success rate and an evidence count. 
The success rate is the number of positive evidences (the number of times the 
model predicted correctly) divided by the total number of evidences (the number of 
times the model tried to predict). When a model produces an output from an input 
it computes the confidence value of the output as the product of the confidence 
value of the input and the success rate of the model. The confidence value carried 
by an object is assigned to its saliency. It follows that, in the model hierarchy, 
information resulting from traversal of many models will likely be less salient than 
information resulting from traversing fewer models (assuming identical success 
rates in both cases). If we picture predictions flowing bottom-up and goals top-
down (see figure 2 below), then only predictions produced by the best models will 
reach the top of the hierarchy, whereas only goals produced by the best models will 
end up at the bottom where commands are issued to the actuators of the system. In 
addition, the success rate of a model is used as its activation value: as a result bad 
performers will be eventually deactivated.  

• The programmer initially defines top-level goals (drives) that subsequently are 
periodically injected into the hierarchy by the system. These drives are fixed and 

                                                           
2  Replicode defines other types of executable code (programs). These are mere infrastructure 

 constructs and are not essential for the present discussion. 
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encode the objectives and constraints of a given system – representing its reasons 
for being, as it were. By tuning their saliency values, the designer or the system 
itself can activate or deactivate some of these drives. For example, when the 
resources are becoming dangerously deficient, the system can choose to ignore the 
least essential (salient) drives – provided it has been given (or has acquired)  
the knowledge to do so. 
 

 
Fig. 2. Model Hierarchy 

The bootstrap code is composed of drives (black boxes) and top-level models (grey boxes) 
that give the system the initial knowledge to satisfy its drives. New models are dynamically 
added to the hierarchy (white boxes) when the system learns how to predict inputs for the 
top-level models or to solve goals produced by said top-level models - or deleted from it if 
they turn out to be poor predictors. Only the best models will propagate predictions bottom-
up from the inputs received from the I/O devices and only the best models will generate sub-
goals top-down, eventually issuing commands to the I/O devices. 
 

In Replicode backward chaining provides a way to perform abductions, i.e. to derive 
sub-goals given an input goal. It may turn out that given such an input goal, several 
sub-goals can be produced, each representing a particular way to achieve the super-
goal. In addition, several sub-goals resulting from several super-goals may target 
conflicting states. These situations call for a control policy over the search: before 
committing to any sub-goal, the executive simulates their respective possible 
outcomes, ranks them and commits to the best ones. The simulation phase is akin to a 
parallel breadth-first search and proceeds as follows. The executive defines a 
parameter called the simulation time horizon. When a goal matches an r-pattern  
a simulated sub-goal is produced which triggers the production of more sub-goals. At 
half the time horizon, backward chaining stops and simulated predictions are 
produced (these predict states targeted by the deepest simulated sub-goals). Such 
predictions flow up in the hierarchy for another half the time horizon. At the time 
horizon, and on the basis of the simulated predictions, branches of sub-goal 
productions are evaluated and the best ones selected for commitment (see Figure 3 
below for an example).  
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Fig. 3. Simulation 

Consider a model M0 producing a goal g0 at time t0.Simulated sub-goals (blue arrows) will 
be produced by relevant models until time t0+STHZ/2 where STHZ stands for simulation 
time horizon. At this time, simulated predictions will start to flow upward (red arrows) and 
at time t0+STHZ, models having produced goals (like M0 or M1) will assess the simulated 
predictions for committing to the best sub-goal(s). For example, it can turn out that 
committing to g2 for achieving g1 will predictably (p1) conflict with the resolution of 
another goal (g1). In that case, and assuming g0 is less important than g1, M0 will not 
commit to g2 and will chose another sub-goal (if available) whereas M1 will commit to g1.  

5 Learning 

The formation of new models relies on a basic heuristic: temporal precedence means 
causation. The good news is that, at least in our pilot tests, temporal precedence does 
actually indicate causation, and some models will capture such causal relationships 
correctly. The bad news is that this approach leads to the construction of many faulty 
models. To address this we have implemented a model revision process that manages 
faulty model deletion. Learning in a Replicode-based system results from the 
interplay of the continuous and concurrent processes of model acquisition and 
revision. In that sense, Replicode implements learning that is incremental (the model 
hierarchy is built progressively as experience accumulates), continuous (the system 
never stops learning as long as it faces novelty), and real-time (the system learns on 
the fly while acting on its environment). 

New models are built based on the exploitation of time-bound input buffers, which 
can be considered a kind of short-term memory. The buffers are allocated for each 
goal and predictions the system produces: the executive will attempt to model the 
success of a goal or the failure of a prediction provided these events have not been 
predicted by existing models. In addition, the executive will also attempt to model the 
change of a given state, provided said change has not been predicted. In any case, the 
executive takes every input from a buffer and turns it into an l-pattern paired with  
the target (the r-pattern), that is the goal, prediction or state it focuses on. 
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Each time a model produces a prediction, the executive monitors all inputs for a 
confirmation of the predicted fact (with respect to the predicted time interval). When 
the outcome is positive the success rate of the model will increase. If the predicted 
fact is not observed in due time or if a counter evidence is observed, then the success 
rate will decrease. If the success rate gets under the group‘s activation threshold, then 
the model is deactivated.3 

6 Control Mechanisms 

Given its limited resources, an existentially autonomous system must direct its 
computation at the most interesting inputs. Some advanced designs have been 
proposed for such an attention mechanism (see Helgason et al. 2012, for example), 
however Replicode uses a simpler scheme. An input is said interesting if (a) it shares 
at least one variable with a goal the system currently pursues, (b) it shares at least one 
variable with a prediction the system is monitoring or, (c) it indicates a change of a 
state. This is to say that the focus is driven top-down (triggered by goals and 
predictions) and also bottom-up (detection of state changes). 

There are several other ways to control the processing in Replicode. These are: 

• Adjusting the thresholds of the primary and secondary groups: this has an 
immediate effect on the number of goals and predictions that constitute inputs for 
models, and thus affects the processing load. 

• Adjusting the saliency of drives: discarding less important drives will prune the 
(top-down) flow of goals. 

• Adjusting the time horizons for simulation: this will narrow the breadth of the 
search, leading to more responsiveness, at the expense of discarding valuable 
alternatives perhaps too early – the system will prefer well known and reliable 
solutions over less proven ones that might have been more efficient. 

• Adjusting the time horizon for the acquisition of models: by doing so, less model 
candidates will be inferred, thus reducing the size of the model hierarchy, at the 
expense of making the system more "short-sighted". 

7 Conclusion and Future Work 

Replicode is a programming paradigm designed to meet a stringent set of requirements 
derived from the goal of producing systems exhibiting high levels of existential 
autonomy. Replicode is intended for creating model-based control systems that control 
other systems in a general fashion. Given (minimal) bootstrap code, Replicode systems 
are meant to continuously improve their understanding of their operating environment 
through incremental knowledge accumulation via the generation of models that describe 
observed causal relationships, both in the environment and within themselves. 

                                                           
3 Some advanced mechansims to reactivate models have been implemented, but these are out 

of the scope of this paper. 
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The language has already been implemented and tested on pilot systems, and 
proven to solve all the requirements; it nevertheless is still in early phases of 
development. Features that we intend to address in the coming years include more 
sophisticated inferencing, like similarity and equivalence identification, and the 
ability to make analogies. A lack of analogy capabilities makes a system singularly 
dependent on observation of explicit causation in its environment; advanced 
inferencing abilities would allow the system to extract more knowledge from that 
same information.  
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