
Metacomputations and Program-Based

Knowledge Representation

Vitaly Khudobakhshov

St.-Petersburg State University, St.-Petersburg, Russia
vitaly.khudobakhshov@gmail.com

Abstract. Computer programs are a very attractive way to represent
knowledge about the world. A program is more than just objects and
relations. It naturally provides information about evolution of a sys-
tem in time. Therefore, programs can be considered the most universal
data structures. The main problem with such representation is that it is
much more difficult to deal with programs than with usual data struc-
tures. Metacomputations are a powerful tool for program analysis and
transformations. This paper describes artificial general intelligence from
metacomputational point of view. It shows that many methods of meta-
computations e.g. supercompilation and Futamura projections can be
applied to AGI problems.

1 Introduction

Let us start from a brief overview of the subject, as it can lead us to the roots
of ideas behind this paper. Metasystem Transition Theory [1] was developed in
70s by V. Turchin1. This theory evolved into the theory of metacomputations.
It describes properties of programs which manipulate other programs as data.
Such programs are called metaprograms. The former theory describes basic rules
of evolution in terms of system-metasystem transitions in which the next step
sets up every system as an object of manipulation of a system of the next level,
i.e. a metasystem, and so on. In these terms, metaprograms manipulate other
programs and a metaprogram can be applied to itself. This leads us to the idea
of evolution in the world of programs. Program manipulations include analysis
and transformations. The crucial idea that was pointed out by Turchin is that
metacomputations can be applied to any science if it has a formal linguistic
description [2].

In this paper, the ideas of metacomputations are applied to artificial general
intelligence by means of creating a suitable formal description.

It is easy to understand that static program analysis is difficult due to the
halting problem. Therefore, metacomputations are based on process-oriented ap-
proaches: to analyze and transform a program p, the metaprogram M must run
it somehow and observe states of the process of execution of p. More precisely,

1 Valentin Turchin is the author of Refal programming language, and he developed
the methods of metacomputations for Refal.

K.-U. Kühnberger, S. Rudolph, and P. Wang (Eds.): AGI 2013, LNAI 7999, pp. 70–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Metacomputations and Program-Based Knowledge Representation 71

M runs p with some data d or the whole set or a class of data C. A language
of implementation of programs should also be fixed. Let us call it the reference
language R. If all programs including metaprograms are written in the language
R, then metaprograms can be applied to themselves. One of the most challeng-
ing tasks in artificial intelligence is to find a suitable knowledge representation.
Data structures determine algorithms we are using to work with them. Usual
data structures, e.g. lists, trees and graphs are well understood, and there are a
lot of effective algorithms to work with the corresponding structures. Programs
are more flexible and can represent notion of time in a very natural way, because
we used it for modeling processes in the world. However, we need sophisticated
methods for program transformation to work with such representation. In the
following sections, these methods will be examined and their possible interpre-
tation will be discussed in the context of artificial general intelligence.

2 Specialization and Futamura Projections

In this section, one of the most fundamental results in metacomputations will be
discussed. Is it possible to transform one program into another with completely
different but desirable properties? Y. Futamura presented the first nontrivial ex-
ample of such a transformation in his famous paper [3]. He described a theoretical
possibility to create a compiler directly from an interpreter using a metaprogram
called specializer.

For the sake of clarity of explanation, we will sometimes deviate from rigor in
the mathematical sense. Lets define a program p in a language L. We will write
p ∈ L or just pL in this case. We assume that r is a result of execution of the
program pL with data d ∈ D, where D is a set of all possible data and we will
write it as r = pL(d). As stated above, the reference language R is fixed, and
in order to rewrite the last equation in terms of the reference language, we need
to introduce an interpreter of the language L written in R. We will denote it as
intL ∈ R. In this case, the equation will be as follows:

pL(d) = intL(pL, d). (1)

Equivalence in (1) means that the left and right hand sides are defined in the
same domain. The specializer specR is defined as a program with the following
behavior:

p(x, y) = specR(p, x)(y) (2)

for all x, y ∈ D and all p ∈ R. Here specR makes a deep transformation which
makes p|x = specR(p, x) efficient. Therefore, we can say that p(x, y) was partially
evaluated to p|x and p(x, y) = p|x(y) for any y ∈ D. Let us apply the specializer
to the interpreter defined in (1) as follows:

intL(pL, d) = specR(intL, pL)(d). (3)

This is the first Futamura projection. The value of specR(intL, pL) is a program
in R language and it should be interpreted as a result of compilation of the

72 V. Khudobakhshov

program pL from L to R. Since specR is just a two-argument program one can
immediately apply the rule (2) to specR itself and get the second projection

specR(intL, pL)(d) = specR(specR, intL)(pL)(d). (4)

Now, the right hand side of the last equation gives us the compiler from L to R.
Moreover it is possible to apply the specializer once again because we have the
same program specR in the right hand side, but with another two arguments. It
leads us to the third projection:

specR(specR, intL)(pL)(d) = specR(specR, specR)(intL)(pL)(d). (5)

The result of the specR(specR, specR) execution is a program which for every
interpreter intL of the language L (obviously, it can be any interpreter of any
language) generate a compiler from L to R.

Is it possible to use this technique outside the interpreter-compiler example?
Consider a program pred ∈ R with two arguments e and w, where e is a empirical
knowledge about the world and w ∈ W is a world state. Empirical knowledge
can be a table-like structure which maps world states to itself. Program pred is
a program which predicts the next world state according to experience e and the
current world state w.

Let us try to apply Futamura projections to such a system. After applying
specializer for the first time, we will have the following result:

pred(e, w) = specR(pred, e)(w). (6)

One can find a suitable meaning for this equation. specR(pred, e) is a program in
language R and it can be treated as a world model based on experience during
the prediction process. The next projection leads us to a model generator

specR(specR, pred)(e)(w), (7)

which has semantics similar to the compiler in the second Futamura projection.
In fact, the model generator for any experience e returns the required model in
R language.

After applying the specializer to (7), one will have the same result as in
the compiler case (5). However, this time it can be considered a generator of
generators. If specR(specR, specR) is applied to pred, then it will be a program
which generates a model generator for the specified predictor pred.

3 Another Application of Specializer

This section describes another application of metacomputations. Let us describe
the world as a sequence of states W . As in the previous section, w ∈W describes
the current state of the world. For example, it can be realized as k-dimensional
vector for some k. One can imagine that evolution of the world is specified by
the function n(w) that returns the next state of the world for the given one, so

Metacomputations and Program-Based Knowledge Representation 73

we will have a chain of states n(w0) = w1, n(w1) = w2 and so on2. We know
nothing about the internal structure of the function n, it is completely imaginary
and is used only to describe the sequential nature of W .

Let us consider a model m of the world W . This model is a program in
some language L. The model may be good or bad depending on how precisely it
represents the world W . Predictions of states of the world can be described by
the following equation: m(w) = w̄, where w̄ is the predicted next state.

Let imp ∈ R will be a program which improves the specified model m accord-
ing to a new (actual) world state w′ by the following rule:

imp(m,w,w′) =

{
m, m(w) = w′

m′ : m′(w) = w′, m(w) �= w′ , (8)

where w is defined by an equation n(w) = w′, i.e. it is the previous world
state. One can improve the model of the world by an iterative application of
the program imp to every new state. Improvement process is assumed to be
continuous, i.e. m(w0) = m′(w0) = w, where w0 is a state before w. Before the
examination of properties of the program imp, let us define its place in the whole
intelligent system. The program can be considered a desirable component of the
system. However, the system must have other components.

Obviously, the program provides only one way interaction. In this case, only
the world can affect the system. If we want to achieve practical success, we
need to add a component that can modify the world state. Intentions of the
system are out of scope of this paper, but one thing should be mentioned. After
intention is stated, the system must be able to achieve the desirable world state.
To do so, one must require the language L to have an inverse semantics [4].
This means the program m will be invertible, i.e. m−1 exists in some sense.
This property leads us to some special cases including the situation in which
desirable goals can not be achieved. It happens if there is no x ∈ W for the
given w, such that m(x) = w, or a solution can not be found in reasonable time
due to computational complexity. The inversion problem will be discussed in the
next section. On the other hand, if m is invertible, then one can have a history
chain started from given w

m−1 ◦m−1 ◦ . . . ◦m−1(w), (9)

as opposed to the prediction chain defined by the composition of m.
Iterative application of metaprogram imp to its arguments can be considered

as a reasoning about the world.
Futamura projections do not have special meaning in this case, but one can

suggest possible generalization of equation (8) as follows:

imp(y, x, x′) =

{
y, y(x) = x′

y′ : y′(x) = x′, y(x) �= x′ . (10)

2 To be precise, n(w) returns the next observable state, because the world usually
evolves much faster than any system can react.

74 V. Khudobakhshov

In this equation, y, x and x′ are programs and y also can be considered a mat-
aprogram, because it transforms x somehow. In this case, the sign “=” implies
equivalence in the most general sense.

The next step includes description of world states in terms of programs, i.e. we
would like to consider w as a program. Unification of the programming language
to the reference one, i.e. L = R is also a very important assumption. These
requirements allow to get (8) from (10) by substitution y ← m, x ← w and
x′ ← w′, moreover we can use projections for partial self-application.

Specialization can be done for the arbitrary argument and one can get the
following projection by applying the program s twice: the first time for the second
argument w and the second time for third argument w′ (or vice versa):

imp|w,w′(m) = specR(specR(imp,w), w′)(m). (11)

It allows to apply the program imp to imp|w,w′ for some m1 and m2:

imp′ = imp(imp|w,w′,m1,m2). (12)

According to (10), it can be treated as an improvement of improvement mecha-
nism with a fixed world state. In this case, imp′ is a one-argument program, and
it returns a new model for the old one. The interpretation of the equation (12) is
clear. Consider a situation in which there are two intelligent systems of the same
type defined by the equation (10) and these systems share the same world3. Let
us call these systems S and T . According to our assumption, both systems are
tuples (impS ,mS , . . .) and (impT ,mT , . . .) respectively, where dots mean that
there are some other components of these systems we are not interested in4.

Suppose that we need to provide the knowledge transfer from T to S. One can
think that T is a teacher and S is a student. Only two methods are available for
the transfer. One can use mT as a bootstrap for S. In this case, we will have an
improved world model provided by the following procedure: impS(mT , w, w

′).
Another method of knowledge transfer from one system to another is to describe
the improvement procedure based on examples, i.e. impS |w,w′ can be treated as
the improvement procedure. Using (12), the system T can improve impS |w,w′

by
imp′S = impT (impS |w,w′ ,mS ,mT). (13)

Obviously, imp′S is not useful if the world state has changed. Therefore, after
application of this metaprogram to some model m we have to use the old impS
metaprogram to provide continuous evolution of the model according to the
changing world state. We can also describe the result as follows: there is no
way to improve the improvement process in a global context in terms of the
improvement process.

In this section, we have deduced useful properties of intelligent systems of the
given type using metacomputations.

3 We also assume that they are somehow separated from the world relative to each
other.

4 One can require for these components that they can not change an internal structure
of imp.

Metacomputations and Program-Based Knowledge Representation 75

4 Supercompilation and Inversion

Supercompilation is a very important technique in metacomputations due to the
huge practical interest. Starting from the early works, it was the most claiming
metacomputational technique. It is on the frontier of computer science today.
Despite of many works published and some practical supercompilers developed,
this technique is not widely used. A detailed discussion is out of purpose of this
paper, but one important result for practical application to artificial general
intelligence will be briefly discussed below.

The term supercompilation was proposed by Turchin. He described this term
as follows[5]:

A program is seen as a machine. To make sense of it, one must observe
its operation. So a supercompiler does not transform the program by
steps; it controls and observes (SUPERvises) the machine, let us call it
M1, which is represented by the program. In observing the operation
of M1, the supercompiler COMPILES a program which describes the
activities of M1, but it makes shortcuts and whatever clever tricks it
knows, in order to produce the same effect as M1, but faster. the goal
of the supercompiler is to make the definition of this program (machine)
M2, self-sufficient. When this is achieved, it outputs M2, and simply
throws away the (unchanged) machine M1. A supercompiler would run
M1 in a general form, with unknown values of variables, and create a
graph of states and transitions between possible configurations of the
computing system. . . in terms of which the behavior of the system can
be expressed. Thus the new program becomes a self-sufficient model of
the old one.

The process described can be considered as an equivalent program transfor-
mation. The main goal of such transformations is to make the program more
efficient. Methods of the transformation are well known [6].

One of the most interesting effects of supercompilation is that it can trans-
form ineffective program to an effective one. A well known example of such an
improvement is the KMP-test. For the given naive string matching program, a
supercompiler transforms it to an effective Knuth-Morris-Pratt matching pro-
gram. This property makes supercompiler a desirable component of an intelligent
system with the program-based knowledge representation. Moreover supercompi-
lation with specialization gives us a very important relationship between artificial
general intelligence and narrow intelligence:

nAI = sc(spec(AGI, pd)), (14)

where spec is a specializer, sc is a supercompiler. In the equation narrow artificial
intelligence can be obtained by supercompilation of specialized AGI system for
given problem description pd. Of course we cannot achieve more than AGI can
do but we can get optimized solution of the problem by removing all unnecessary
computational steps. In theory it is a useful tool to compare general intelligent

76 V. Khudobakhshov

systems because it reduces these systems to unified basis (it is clear if we compare
systems written in the same language).

In the previous section, the model inversion was used to obtain particular
state changes that the system must undergo to achieve goals. Turchin proposed
Universal Resolving Algorithm (URA) to solve the problem [7]. A specializer
allows to obtain a program invertor and an invertor generator using URA [8,4]
in the same manner as described above for the model generator and for the
Futamura case.

To apply inversion to our problem, we should supply the language, in which
models are described, with inverse semantics. Examples of such languages can
be found in [4].

5 Conclusion

Application of metacomputations to artificial intelligence is not quite new. Kahn
in [9] discussed possible applications of partial evaluation to AI. Possibility of
using specialization to wide class of programs with interpretator-like behavior
was mentioned in [10].

In this paper, metacomputations were examined in the context of artificial
general intelligence. Metacomputations were applied to program-based knowl-
edge representation to get a new description of AGI problems. The fundamental
Futamura result was extended to intelligent systems with predictors. As a model
can be explicitly constructed from the predictor, it can be used as a bootstrap
for the system (8).

After the generalization of the system (8) to the case (10), some important
limitations of self-application for such systems were discovered. From the philo-
sophical point of view, these limitations are very natural and can be described
by the following words of Pythagoras: “You cannot explain everything to ev-
eryone”. In this case program imp can be treated as a talent which cannot be
overcome. But if we want to improve imp program we need to have a higher level
metaprogram which will provide an evolution of imp. Therefore, it is sufficient
to have imp program in the form of (8) for practical purposes.

Due to technical difficulties one can confront with during construction and
using supercompiler, equation (14) can be written in the weaker form

nAI = spec(AGI, pd), (15)

but it may be sufficient for practical purposes. Furthermore in the case of limited
resources nAI can be considerably stronger than its general counterpart. In time
bounded conditions inequality

tspec(AGI, pd) + tnAI < tAGI(pd) (16)

gives us a speedup and therefore a better result. Inequality (16) is a variation of
inequality given in [10].

This work should be considered only the first step of the research towards creat-
ing the real world intelligent systems based on the metacomputational approach.

Metacomputations and Program-Based Knowledge Representation 77

References

1. Turchin, V.F.: The Phenomenon of Science. Columbia University Press, New York
(1977)

2. Glück, R., Klimov, A.: Metacomputation as a Tool for Formal Linguistic Modeling.
In: Cybernetics and Systems 1994, pp. 1563–1570. World Scientific (1994)

3. Futamura, Y.: Partial evaluation of computation process - an approach to a
compiler-compiler. Systems, Computers, Controls 2(5), 45–50 (1971)

4. Romanenko, A.Y.: Inversion and metacomputation. In: Proceedings of the Sym-
posium on Partial Evaluation and Semantics-Based Program Manipulation, pp.
12–22. ACM Press (1991)

5. Turchin, V.F.: The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 8(3), 292–325 (1986)

6. Sørensen, M.H.: Turchin’s Supercompiler Revisited: an Operational Theory of Posi-
tive Information Propagation. Master’s thesis, Københavns Universitet, Datalogisk
Institut (1994)

7. Turchin, V.F.: Equivalent Transformations of Recursive Functions defined in RE-
FAL. In: Teoria Yasykov i Methody Postroenia System Programirowania. Trudy
Symp. Kiev-Alushta, pp. 31–42 (1972) (in Russian)

8. Abramov, S.M.: Metacomputation and Logic Programming. In: Semiotic Aspects
of Formalization of the Intellectual Activity. All-union School-workshow ‘Borjomi
1988’, Moscow (1988) (in Russian)

9. Kahn, K.: Partial Evaluation, Programming Methodology, and Artificial Intelli-
gence. AI Magazine 5(1), 53–57 (1984)

10. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice Hall (1994)

	Metacomputations and Program-Based Knowledge Representation
	1 Introduction
	2 Specialization and Futamura Projections
	3 Another Application of Specializer
	4 Supercompilation and Inversion
	5 Conclusion
	References

