
Learning Agents

with Evolving Hypothesis Classes

Peter Sunehag and Marcus Hutter

Research School of Computer Science
Australian National University

Canberra Australia
{Peter.Sunehag,Marcus.Hutter}@anu.edu.au

Abstract. It has recently been shown that a Bayesian agent with a uni-
versal hypothesis class resolves most induction problems discussed in the
philosophy of science. These ideal agents are, however, neither practical
nor a good model for how real science works. We here introduce a frame-
work for learning based on implicit beliefs over all possible hypotheses
and limited sets of explicit theories sampled from an implicit distribution
represented only by the process by which it generates new hypotheses.
We address the questions of how to act based on a limited set of the-
ories as well as what an ideal sampling process should be like. Finally,
we discuss topics in philosophy of science and cognitive science from the
perspective of this framework.

1 Introduction

Bayesian inference [BT92, Rob94, Jay03] is arguably the most prominent formal
mathematical framework for learning. It is being used in Artificial Intelligence
(AI) [RN10] to create intelligent agents, in economics [Sav54, Nya93, OR94] as a
model of rational agents, in cognitive science [Edw68, And91, GKT08, TKGG11]
as a model of human learning and in philosophy of science [Goo84, HU05, Str06]
as a model for induction and scientific progress. The basic principle is that we
have an a priori distribution over a hypothesis space and after gaining experience
the prior weights are updated using Bayes rule to a posteriori beliefs. Decisions
are then taken based on maximum expected utility with respect to the posterior
distribution. If an agent performs this procedure sequentially, its a Bayesian
reinforcement learning agent [Hut05]. In some of the contexts mentioned above,
e.g. philosophy of science, some of the aspects like either the decision making or
the sequential nature is often suppressed, while still important for the relevant
problem setting.

These are ideal models and can often, as models, fail in systematic ways to
perfectly meet up with reality and as an AI architecture fail to scale and, there-
fore, need approximation. We will here discuss some of these approximations
and modifications needed to reach a practical learning model. Furthermore, we
will discuss some questions in philosophy of science from the perspective of this
model. [Hut07, RH11] show that the classical induction problems are resolved
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or disappear in an ideal universal induction setting where we maintain a cer-
tain form of distribution over all computable hypotheses. This form of induction
[Sol64], often called Solomonoff induction, is not only impractical but also in-
computable, though still serves as an important gold standard. [Hut05] extended
Solomonoff Induction to the reinforcement learning setting, which includes most
(perhaps all) known sequential decision making problems.

In this work we consider a framework where we have an implicit distribution
over all possible hypotheses in the form of a sampling process. This process
slowly builds a class of explicit hypothesis which are excluded when they are
contradicted by experience. The Bayesian learning is still present in the implicit
distribution, while we will here consider a different approach for working with the
explicit hypothesis. We extend our previous optimistic reinforcement learning
agent presented in [SH12] to a setting with a growing hypotheses class and,
furthermore, to a setting where the agent works with partial hypothesis that
only make predictions for some of the features of the world. In our full setting
we combine deterministic laws that predict the effect of actions on some features
with correlations between features that land us in between the deterministic and
stochastic settings that retains the obvious exclusion rule from the deterministic
case as well as the desirable finite error bound while allowing for uncertainty in
the world.

Outline. We first give an overview in Section 2. In Section 3 we introduce the
algorithm for how to act given a set of theories. This is an extension of earlier
work on optimistic agents for finite classes of environments to the case of partial
theories and also to the case with a countably infinite number of environments.
In Section 4 we define the process of generating new theories. In Section 5 we
discuss the practical planning problems involved and how they relate to human
cognitive biases. In Section 6 we discuss issues in philosophy of science related
to our framework and we conclude in Section 7.

2 Overview of the Framework

In this section, we give an overview of the framework we suggest and its moti-
vation before giving more technical details in the next two sections.

Restricted Explicit Hypothesis Classes. The main restriction we impose on
the agent is that it can only explicitly represent and work with a limited number
of hypotheses. The hypotheses will be generated by a sampling process over time
and they will be excluded when contradicted by observations. The restriction of
limited hypothesis classes obviously applies to both science, where the existence
of unconceived alternatives to existing hypotheses has been used to challenge
the rationality of science [Sta06], and to individual human cognition where the
very same issue is even more pronounced. In practical Bayesian reinforcement
learning [Str00], an important technique to approximately maximize expected
value is to sample a few hypothesis from the posterior and work only with these.
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Having an Implicit Universal Distribution. Here we are going to suggest
a framework for learning when an unlimited amount of theories cannot be con-
sidered at a time. This model of learning can e.g. be considered for building an
artificial intelligent agent or for modeling science or human cognition. It main-
tains an implicit generative distribution over all possible theories. In the AI
setting, samples would be generated by an algorithm. Inductive Logic Program-
ming procedures [Mug91] as well as evolutionary algorithms [Rec71, Hol75] are
fields studying processes for generating hypotheses without directly aiming for
sampling from a given distribution, while Markov Chain Monte Carlo (MCMC)
methods , e.g. Gibbs sampling [CG92, Ber04], are directly built for the purpose
of sampling from a posterior distribution. A recent article, Logical Prior Prob-
ability [Dem12], samples sentences from a first order theory for the purpose of
approximating a universal distribution over sequences.

In the case of science, the scientific community and its processes and members
generate new hypotheses. We model this as sampling from an implicit distribu-
tion and we stipulate that the distribution depends on both how likely a theory
seems given existing evidence and how simple the theory is, possibly given the
theories that have been suggested in the past. For practicality of artificial intel-
ligent agents, and to align with reality when modeling science and cognition, we
should also have a bias towards convenient theories that one can work efficiently
with. As an example, note the ubiquity of tree structures in scientific theories.

Laws, Concepts and Correlations. The word theory is in cognitive science
often used for a framework of concepts and relations [GT09, KTNG10]. Concepts
are here understood as a feature vector that summarizes all perceptions made
up until the current time. We distinguish between the correlations among the
features and deterministic laws that state how some of the features change when
a given action is taken. The features, the correlations and the laws make up what
we here call a theory. The conceptual framework, i.e. the feature map and the
correlations, allows the raw perceptions from the world to be represented by an
extracted feature vector. The features could in principle be the raw data, i.e. a
coding of the observed world [Hut12], but not in practise. One approach is to base
the conceptual framework on a probabilistic model [KTNG10] of the world. The
feature map, or rather its output, is in this paper assumed given. An example of
a feature vector is the location and velocity of a number of object, e.g. planets.
Furthermore, given some of the elements of the feature vector, a distribution
over the rest is also assumed and referred to as correlations. The feature map
and correlations must in practise be learnt, e.g. through an hierarchical Bayesian
inference procedure [GT09] or as in the feature reinforcement learning framework
[Hut09] by minimizing a cost function based on the ability to predict future
rewards.

The laws mentioned earlier are defined on the feature vector above and are
such that given the current feature vector and an action they predict some of the
features at the next time step. Combined with the correlations, a probabilistic
prediction about the whole next feature vector is made. A feature of particular
interest is the reward received.
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Reinforcement Learning. A question that is often not explicitly discussed
when modeling science or cognition is how decisions, e.g. choice of experiment
to perform, are made. The Bayesian inference framework can be adopted to
perform this job if a utility function is defined, i.e. how good is it to have a
certain outcome of a chosen experiment. Given this, one chooses to act so as to
maximize expected utility. This is the description of a rational agent in rational
choice theory [Sav54] and in rational reinforcement learning [SH11]. The ques-
tion if ideal reinforcement learning is possible and what it is, is not as clear as in
the case of sequence prediction. In induction one can have most or all relevant
forms of optimality, except for efficiency in computation and memory, at the
same time [Hut07]. In reinforcement learning, the observation received depends
on what decisions one makes, e.g. which experiments one performs. This leads to
the exploration vs exploitation dilemma where one chooses between exploiting
the knowledge one has or explore to gain more knowledge. However, if the goal
is pure knowledge seeking, i.e. we have defined the reward to represent gain of
new knowledge in a suitable sense, the dilemma disappears. In [Ors11, OL13]
it is shown that a pure knowledge seeking Bayesian agent, if suitably defined,
is guaranteed asymptotic optimality as well as success in identifying the cor-
rect hypothesis from all other hypotheses that are sufficiently separable from it.
Asymptotic optimality cannot in general be guaranteed in reinforcement [LH11],
though it is possible in a weaker “in average” sense. This failure is due to a never
ending need for exploration phases. These phases do not need to be explicitly
defined but one can instead rely on optimism as in [SH12] which introduced an
agent that always achieves optimality for any finite class of deterministic envi-
ronments and with high probability in the stochastic case. The optimistic agent
introduced by [SH12] and its guarantees are in [SH13] extended to the setting of
a countable class by slowly adding environments to a finite class, as well as to a
setting where it has to work with partial hypothesis which can be combined and
complemented with correlations to complete environments in an uncountably
infinite number of ways but still satisfy error bounds depending on the number
of introduced laws.

3 Optimistic Agents

We consider observations of the form of a feature vector o = x̄ = (xj)
M
j=1 (includ-

ing the reward as one coefficient) where xj is an element of some finite alphabet.

A law is a function τ : H × A → Õ where A is the action set, H the set of
histories and Õ consists of the feature vectors from O (the observation set) but
where some elements are replaced by a special letter meaning that there is no
prediction for this feature. At any time t, there is a set Tt of laws that have been
suggested so far. We consider some of them to have been refuted since they were
suggested and we have a smaller working set T w

t ⊂ Tt of unrefuted laws. The
laws in the sets can be overlapping and contradictory. We combine several laws
for each time step. When they cannot be combined into a complete environment,
[SH13] combine laws with correlations to define complete environments.
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Given a finite class of deterministic environments M = {ν1, ..., νm}, [SH12]
defines an algorithm that for any unknown environment from M eventually
achieves optimal behavior in the sense that there exists T such that maximum
reward is achieved from time T onwards. The algorithm chooses an optimistic
hypothesis from M in the sense that it picks the environment in which one
can achieve the highest reward and then the policy that is optimal for this
environment is followed. If this hypothesis is contradicted by the feedback from
the environment, a new optimistic hypothesis is picked from the environments
that are still consistent with h. This technique has the important consequence
that if the hypothesis is not contradicted we are still acting optimally when
optimizing for this incorrect hypothesis.

Combining Laws. Each law τ predicts either none, some or all of the features
(concepts) xj at the same time point. A law depends on some of the features in
the history, perhaps only on the current features if the features summarize all
relevant information up to the current time. If the latter is true, it makes the task
simpler because it restricts the total class of laws. Another distinction is whether
all features are such that they can be predicted (near) deterministically from the
previous features or not. Given a set of laws where in every situation and for ev-
ery feature there is at least one law that makes a prediction of this feature in the
given situation, then we can directly define a set of environments by combining
such laws. If this is not the case, we will need to use the relations between the
features. [SH13] extends the optimistic agent from [SH12] to this case by only
considering contradiction for the deterministically predicted features. Whenever
an environment is contradicted, some law must be contradicted. Therefore, the
number of introduced laws up to a certain time upper bounds how many con-
tradictions we could have had. After the true environment has been introduced
this bounds the number of errors committed by the agent. Since the true envi-
ronment is introduced after a finite amount of time, this reasoning, but more
formally defined, leads to the error bounds in [SH13].

Example 1 (Going to get coffee). If the agent from a state where it is in its
office (a boolean feature) goes to the coffee machine in the kitchen (a sequence
of actions) it ends up at the coffee machine (a sequence of laws). Standing at
the coffee machine correlates to some probabilistic degree with seeing that there
is too many people being at the coffee machine. Furthermore, if it is after five
on a Friday and then the agent will end up in a state where it is at the coffee
machine and it is after five on a Friday. Conditioning on these two features,
the probability for the coffee machine being crowded and no reward of coffee,
is lower. These deterministic laws have to be learnt and an agent might start
with many more alternatives for what happens when going into the kitchen, e.g.
ending up on the street. Exploration rules out wrong alternatives.

Joint Learning of Concepts and Laws. In reality, this article’s assumption
that we have already finished learning the conceptual framework (features and
correlations) and that it needs no further updating, is not realistic. Also, since
there might be some arbitrariness in representation of the distribution over raw
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data that the conceptual framework is based on, we want a representation with
features that admit powerful deterministic laws. This leads to an interplay be-
tween learning laws and concepts. A particularly interesting situation is when a
suggested law is contradicted. Then, this might either lead to excluding the law
or modifying the involved concepts.

4 Suggesting Laws

We take the position that a law’s probability of being suggested is a combination
of the probability that it will be considered based on simplicity (possibly given
previous suggestions) and the probability that it is true given what we know.
In other words, the law’s appearance or not depends probabilistically on both
the simplicity of the theory and the alignment with observations made. We will
assume that these two are independent, i.e.

Pr(τ suggested |ht) = Pr(τ considered)Pr(τ true|ht)

or if we take previously suggested theories into account

Pr(τ suggested|ht, Tt) = Pr(τ considered|Tt)Pr(τ true|ht).

In [GS82, HLNU13] it was shown that one can define distributions over rich
languages like first order logic or even higher order logic and that the distri-
butions satisfy properties that makes them suitable for learning, i.e. for defin-
ing Pr(τ true|ht). For example, there are distributions that satisfy Cornout’s
condition that if something is (logically) possible it must have strictly positive
probability and the Gaifman condition that enables confirmation of universal
laws in the limit.

To define a sensible distribution to sample laws from, we rely on Algorithmic
Information Theory and the notion of Kolmogorov complexity [LV93]. The re-
sulting distributions have the property that laws that are simpler, in the sense of
being compressible into a short code, are more likely. Sampling from such a dis-
tribution is what we consider to be ideal, though we recognize that any practical
generative process is likely to have a sequential dependence where new laws that
are similar to already suggested laws are more likely to be considered though
not necessarily suggested. Therefore, after some laws (sentences) have been sug-
gested, we need to consider laws that are close to those earlier ones, to be simpler
than they were because we can now understand them from the perspective of a
law we already know. This is naturally formalized using conditional Kolmogorov
complexity K(s|s′) which is the length of the shortest program that produces
output (the encoding of) s given side information s′. If sentences s1, ..., sn have
been suggested, we let

Pr(τ considered|s1, ..., sn) = 2−K(τ |s1,...,sn).
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Example 2. If τ has been suggested and τ says that if xj = a at time t then
xk = b at time t+1, then the law that instead concludes that xk = c �= b is more
likely to be considered but it might still not be likely to be suggested if the data
is aligned with the predictions of τ .

5 Human Cognitive Biases and Practical Planning

We have so far ignored the issue of how to calculate the optimal value that can
be achieved in some environment. The task of finding the optimal policy, i.e
the policy that achieves the highest expected value, in some given environment
is the planning problem [RN10]. This is a very demanding problem and much
work in AI on planning has been conducted in a deterministic setting which
greatly reduces the complexity of the task. The optimistic choice can actually
be represented as just one planning problem but with the action space enlarged
to include the choice of laws to use for predicting the next step. This trick has
been used in the Markov Decision Process case [ALL+09].

Science is always aiming at finding concepts which allow for deterministic
prediction and the hind-sight bias [NBvC08] in human cognition, referring to
the human habit of finding a way of seeing past events as inevitable, can be
viewed as searching for deterministic explanations.

Optimism treats the uncertainty regarding which laws are true in a positive
way where we assume that we are in the best of all possible worlds. This is a
strong version of the optimism bias in human cognition [Wei80]. As we have
discussed earlier, optimism leads to explorative behavior though obviously this
best-of-all-worlds assumption is also associated with big risks. Humans incorpo-
rate a strong aversion to big losses in their decision making [KT79].

6 Philosophical Issues

In this section we discuss how one can understand a number of issues studied in
philosophy of science assuming our model of learning.

Paradigms, Unconceived Alternatives and Rationality of Science
[Sta06] discussed the problem of believing in a hypothesis because one cannot
conceive of alternatives and asks if this makes science irrational. From the strict
point of view that the rational choice axioms [Sav54] lead to Bayesian inference
where we have a prior, which should be strictly positive for all alternatives, to
be admissible, it is correct to conclude that science is not rational since it is only
working with a subset. However, we argue that it is enough that the processes
of science will eventually produce those unconceived alternatives and that the
likelihood of them appearing will increase when evidence makes them more likely
to be true. This approach saves a claim to a weaker form of rationality where we
demand; a) that a hypothesis’ likelihood of appearing depends on its likelihood to
be true in the Bayesian sense of conditional probability given a prior distribution
over all possible hypothesis; b) When it has appeared it is evaluated based on if
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it aligns with evidence or not; c) Experiments are chosen such that eventually,
if not immediately, we will falsify wrong hypothesis.

A consequence of the discussed model is that wrong hypotheses might be
retained for a long time if they are useful and not contradicted but eventually
better alternatives are conceived of and the old hypothesis is overturned. In
the meantime we are acting in a manner that is confirming the existing fruitful
hypotheses. This process naturally leads to paradigms as discussed by [Kuh70].

Old Evidence and New Theories. The “old evidence and new theories prob-
lem” asks how evidence gathered before a theory was suggested can be used, as
it has often been, to validate the new theory. In the universal Bayesian approach
all possible theories (e.g. all computable hypotheses) are included from the start
and, therefore, there are no new theories and no problem [Hut07, RH11]. How-
ever, this is not the situation of actual science where the conundrum came from.
The answer we present here is in a sense close to the answers from [Hut07, RH11]
though we have a limited explicit set of theories generated through a process that
(approximately) samples from an implicit distribution over all possible theories
with a bias towards simple theories. It is this full distribution that is being up-
dated through the processes of the scientific community and this resolves the
problem without removing the question. A combination of a theory’s simplicity
and its alignment with past observations makes the theory plausible and war-
rants inclusion among the small number of theories whose predictions are being
further tested.

Theory-Laden Observations and Reintroduced Hypotheses. In the his-
tory of science, excluded theories have sometimes been reintroduced. This can
happen if the scientific community due to new evidence that strongly supports a
previously rejected hypothesis, suspects that the previous observations were not
valid or misinterpreted. The latter can relate to a modification of the conceptual
framework that underpins the interpretation of raw data. The observations de-
pend on the conceptual framework, which is often expressed as saying that they
are theory-laden [Han58]. This is what we discuss in Section 3 when addressing
joint learning of concepts and laws.

7 Conclusions

Bayesian inference is often viewed as ideal learning in many different fields in-
cluding AI, cognitive science and philosophy of science. However, many questions
in those fields do not make sense in the full Bayesian framework and when creat-
ing artificial intelligent agents, approximations to scale to complex environments
are required. In all of these areas it is clear that one cannot explicitly maintain
beliefs over truly rich sets of hypotheses. We introduced a framework for learning
based on implicit beliefs over all possible hypotheses and limited sets of explicit
theories. Furthermore, we showed how to define a reasonable instance of the
framework and we discussed implications for some questions in philosophy of
science.
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