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Abstract. This paper proposes a cognitive architecture based on Kah-
neman’s dual process theory [1]. The long-term memory is modeled as
a transparent neural network that develops autonomously by interact-
ing with the environment. The working memory is modeled as a buffer
containing nodes of the long-term memory. Computations are defined as
processes in which working memory content is transformed according to
rules that are stored in the long-term memory. In this architecture, sym-
bolic and subsymbolic reasoning steps can be combined and resource-
bounded computations can be defined ranging from formal proofs to
association chains.

Keywords: cognitive architecture, dual process theory, computation,
transparent neural network.

1 Introduction

Bridging the gap between symbolic and subsymbolic representations is
a – perhaps the – key obstacle along the path from the present state of
AI achievement to human-level artificial general intelligence. [2, p. 79]

This paper is concerned with artificial general intelligence (AGI). Our ultimate
goal is to create a computational model that may operate in any environment and
develop intelligence adapted to that environment in a fully automatic fashion.
In particular, we would like our model to be powerful enough to handle both
symbolic and subsymbolic reasoning, as per the distinction made in [2].

As the human brain is the only system known to us that fulfills the above
criteria, we have turned to psychology and neuroscience for inspiration. The
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proposed model was inspired by developmental psychology in that it learns from
its environment; by cognitive psychology in that it includes standard components
of memory system models and dual process theory; and by neuroscience in that
it is based on a network model. Our priority is problem solving and not biological
realism. Therefore the proposed model does not strive to reflect all facts that
have been established in the brain sciences.

This model consists of a long-term memory (LTM) structured as a developing
transparent neural network [3] and a working memory (WM). The model is a
generalization of some previously developed cognitive models for propositional
logic [4], first-order logic [5], and sequence extrapolation [6]. As these models
have been reported to perform above the average human level on the problem
domains under study, the proposed model can be expected to do the same.

The remainder of the paper is organized as follows: Section 2 presents some
brief remarks concerning cognitive modeling in general. Section 3 presents the
cognitive architecture used herein. Section 4 discusses the computations em-
ployed in this model. Finally, Section 5 presents the conclusions of this work.

2 Cognitive Modeling

This section provides a brief background on some aspects of cognitive modeling
that are relevant for the proposed model.

Memory plays a central role in the model. Wood et al. define memory as
the capacity to use previous experience to inform subsequent behavior; long-
term memory to be temporally indeterminate and independent of specific task
demands; working memory to be a functionally distinct memory structure, finite
in capacity and retention period, bounded by context and task demands, and
used for retention of task relevant information [7].

Sometimes the “magic number seven” is used to refer to the limited capacity of
working memory that can typically hold about seven items [8], but later studies
suggest the capacity to be about four items in young adults and less than that
in children and elderly [9]. In neuroscience memory formation has been studied
in the Hebbian tradition (“neurons that fire together wire together”) [10] and
memory decay has been considered as the effect of synaptic decay (“use them or
lose them”) [11]. Memory decay was investigated experimentally by Ebbinghaus
[12], who constructed a curve describing how forgetting is affected by the number
of repetitions and the time interval between repetitions.

Traditional computational models include symbolic models such as automatic
theorem provers [13], sub-symbolic models such as artificial neural networks
(ANNs) [14], and probabilistic models such as Bayesian networks [15]. Compu-
tational models of particular interest with respect to the distinction between
symbolic and subsymbolic processes include hierarchical temporal memory [16],
long short-term memory [17], conceptual spaces [18], and neural-symbolic sys-
tems [19]. Cognitive architectures of particular interest in the present context
include Soar [20], ACT-R [21], MicroPsi [22], Clarion [23], CHREST [24], and
NARS [25]. Many of these model reasoning processes in the style of Newell and
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Simon [26] and treat these processes as computations in abstract term-rewriting
systems [27].

In general, symbolic systems are good for reasoning but much less useful for
perceptual tasks. This can be solved by building hybrid systems, but many hybrid
systems are limited by the difficulty of designing interfaces for complex interac-
tions between their subsystems. This phenomenon holds true even if the basic
concepts are shared among the subsystems. In general, a hybrid of n special-
ized programs can handle n specialized domains, but it is challenging to capture
the deep interactions between these domains and to ensure useful generalization
beyond these domains.

Hybrid-like systems have also been proposed within psychology. For example,
several versions of dual process theory exist. The version introduced by Kahne-
man [1], that has been an inspiration for the present work, features two systems
named System 1 (Intuition) and System 2 (Reasoning). System 1 is used for fast,
associative thinking, whereas System 2 is used for slow, analytical thinking.

A computer program that has been developed by traditional means by a
human engineer tends to be understandable in the sense that an informed human,
e.g., the author of the program or a peer, can explain how the program works,
predict its input-output behavior, and predict the consequences of modifying
the program in various ways. In contrast, artificial neural networks, which are
represented by matrices of real-valued connection weights, tend to be difficult
to understand. Except for trivial cases, it is virtually impossible for humans to
understand what functions such neural networks compute. This holds true even
for small feed-forward networks and more so for recurrent networks. It would
thus be useful if there existed a transparent way to design these types of models.

Many of the above-mentioned computational models are problematic when
considered in light of our present desiderata: some require human interaction
to adapt to new problem domains (e.g. in the form of manual programming
or manual selection of training sets); some are hybrids with unclear or insuffi-
cient interaction between subsystems; some are difficult to understand and are
therefore problematic to use as foundations for more complex models; some are
severely limited in their versatility or computational power; some have unclear
interfaces for communication with the external world; some specialize exclusively
in symbolic or sub-symbolic processing. The cognitive architecture presented in
the next section was designed to avoid these problems.

3 Cognitive Architecture

This section introduces our novel cognitive architecture that solves some of the
problems discussed above and combines different modes of operation within a
unified transparent architecture. First, we describe the LTM, which is modeled
as a network that develops according to certain rules.

Transparent Neural Networks. Let I be the set of real numbers in the
interval [0, 1]. This set will be used to model signal intensity and connection
weights.
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Definition 1 (TNN). A TNN is a structure (V,E1, E2), where

– E1 and E2 are binary relations on V .
– Each element of V has a unique associated label from the following list:

SENSORi where i ∈ M (fan-in 0)
MOTOR (fan-out 0)
MIN (fan-in 2)
DELAY (fan-in 1)
SPACE(μ, σ) (fan-in 1).

The fan-in and fan-out restrictions refer to the relation E2. M represents a
set of modalities and μ and σ are real numbers.

– Each element of E1 has a unique associated weight in I.
– The structure (V,E2) is an acyclic directed graph.

As we shall see, E1 and E2 are used for modeling System 1 and System 2 pro-
cesses, respectively.

Activity. TNN stimuli are modeled as follows:

Definition 2 (Stimuli). Let T be the set of integers (modeling time). A stim-
ulus for a TNN with sensor set V ′ ⊆ V is a function S : V ′ × T → I.

Stimuli give rise to two types of activity that propagate through the TNN.
Roughly stated, the two types of activity model System 1 and System 2 pro-
cesses, respectively. The two types of activity propagate along the edges of E1

and E2, respectively. Therefore a TNN can be viewed as two subsystems that
interact with each other. Our rationale for introducing two types of activity (and
here we may depart from Kahneman’s model) is that it enables us to make the
fundamental distinction between perception and imagination. We believe this
distinction to be crucial for many cognitive processes, including hypothetical
reasoning. For instance, it enables us to distinguish between the perceived taste
of an apple and the imagined taste of an apple or between a real lion and an
imagined lion. It is not hard to imagine scenarios in which such distinctions can
be critical to survival. Despite some undesired connotations, we shall call the
two types of activity perception and imagination, respectively.

Definition 3 (Perception). The perception p : V × T → I is defined as fol-
lows. If t ≤ 0 then let p(a, t) = 0 and if t > 0 then let

p(a, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S(a, t) if a is labeled SENSOR
p(a′, t) if a is labeled MOTOR, (a′, a) ∈ E2

min{p(a′, t) : (a′, a) ∈ E2} if a is labeled MIN
N(μ,σ)(p(a

′, t)) if a is labeled SPACE(μ, σ), (a′, a) ∈ E2

p(a′, t− 1) if a is labeled DELAY, (a′, a) ∈ E2.

Here N(μ,σ)(x) = exp{−(x−μ)2/σ2}. This is the Gaussian (similarity) function
with mean μ, standard deviation σ, and max value 1.
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Fig. 1. Sequences. Solid arrows represent E2-edges, and dashed arrows represent E2-
edges with a DELAY node inserted in the middle. This network represents the rewrite
rule 3+4 → 7 as a sequence of symbols. The nodes with fan-in 0 can either be dedicated
sensors or complex networks that recognize the corresponding symbols. The top right
node becomes activated if and only if the sequence 3 + 4 → 7 is perceived.

MIN

Coffee Sugar

w

w′

(a) Coffee-Sugar

MIN

Lightning Thunder
w

(b) Lightning-Thunder

Fig. 2. Associations. Dotted arrows represent E1-edges. Again, the nodes with fan-in
0 can either be dedicated sensors or top nodes of networks that recognize the corre-
sponding concepts. In panel (a), the E1-edges propagate imagination from Coffee to
Sugar and also from Sugar to Coffee. In panel (b), the E1-edge leads to the prediction
of Thunder whenever Lightning occurs.

The SPACE nodes are used for storing values. The closer the input is to the
stored value μ, the closer the output is to 1. DELAY nodes delay signals by one
time unit.

Definition 4 (Imagination). The imagination i : V × T → I is defined as
follows: if t ≤ 0 then let i(a, t) = 0 and if t > 0 then let

i(a, t) = max {p(a′, t) · w(a′, a, t) : (a′, a) ∈ E1}∪
{ζ(i(a′, t) · w(a′, a, t)) : (a′, a) ∈ E1}),

where ζ : I → I is a damping function and w(a′, a, t) is the label on the edge
(a′, a) ∈ E1 at time t.

Examples of TNNs are given in Figures 1 – 2.
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Fig. 3. The three memory addition rules. (a) Space memory addition. Starting from
node a, this rule forms the structure shown in the figure with μ = p(a, t) and σ = 0.25.
This rule can only be triggered if p(a, t) differs sufficiently from all the values stored in
the existing SPACE nodes that are connected to a. (b) Associative memory addition.
Starting from the nodes a and b, this rule forms the structure shown in the figure. This
rule can only be triggered if a and b“fire together.” (c) Sequence memory addition.
Starting from nodes a and b, this rule forms the structure shown in the figure. This
rule can only be triggered if b and the delayed signal of a "fire together". Here, the
rule applies to the special case when the delay is one time unit, but it also applies to
arbitrary time intervals.

Development Rules. Now, we briefly survey the development rules. There are
15 development rules, some of which have rather involved triggering conditions.
To conserve space, therefore, we only present partial descriptions of the most
fundamental rules. An earlier set of rules is given in [3]. The development rules
can be divided into rules for forming, updating, merging, and removing memo-
ries. The effects of the three memory addition rules are shown in Figure 3. The
modalities of sensors, and by extension of other nodes, play a role in memory
addition, as unimodal concepts are prioritized over polymodal concepts. The
memory removal rule works as follows: for each node in V , a vitality score is
stored and updated according to Ebbinghaus’ forgetting curve. If the vitality
score of a ∈ V falls below a given threshold, then a is removed in an "avalanche"
together with other structures that become detached upon the removal of a. Es-
sentially, the memory removal rule serves as a filter that preserves memories of
recurrent phenomena but removes memories of coincidences. The main rationale
for this rule is to keep the number of memory structures on a manageable level.

The LTM is continuously developed using these rules, starting from a initial
TNN at t = 0. The set of sensors are held constant throughout development.
The WM is a list of nodes of the LTM . The WM can be regarded as a low-
capacity memory buffer containing pointers to pieces of information (chunks) in
the form of LTM nodes. An information state is specified by the stimuli, the
WM content, and when applicable, an LTM node encoding a transition.

Actions. Actions are binary relations among information states. Section 4 pro-
vides several concrete examples of actions. There are three types of actions:



146 C. Strannegård et al.

Attentional Actions. input information into the WM . These actions include
Look, Listen, and Taste.

Computational Actions. manipulate information in the WM . These actions
include Rewrite, which carries out the transition from a to b, provided that
a → b is in the LTM , cf. Figure 1; the action Associate, which carries out
the transition from a to b, provided that w(a, b, t) is maximal, cf. Figure
2a; and the action Speculate, which carries out the transition from a to b,
where b is chosen randomly from the E1-successors of a, with probabilities
proportional to their weights.

Motor Actions. output information from the WM to the MOTOR nodes.
These actions include Speak, Write, and Move.

4 Computations

A computation is a sequence of information states, where each transition is gen-
erated by an action. Several examples of computations are given in Tables 1–6.

Table 1 shows an example of arithmetical calculation. Here, 17 ·3 is computed
in a rewrite system similar to the one used in [6]. The rewrite rules are stored
as nodes representing sequences in the LTM , cf. Figure 1. The symbol sequence
17 ·3 is given as visual input. Look puts this sequence into the WM , and a series
of Rewrite applications transforms it into 51. Finally, Write invokes the write
module, which outputs 51.

Table 2 shows a propositional proof. The tautology p ∨ (p ⇒ q) is proven.
The proof system here is similar to that used in [4]. The formula is provided as
visual input and then rewritten to True in a goal-driven process using several

Table 1. Arithmetical calculation

Stimuli WM LTM Action
17 · 3 Look

17 · 3 17 → (10 + 7) Rewrite
(10 + 7) · 3 (x+ y) · z → x · z + y · z Rewrite
10 · 3 + 7 · 3 10 · 3 → 30 Rewrite
30 + 7 · 3 7 · 3 → 21 Rewrite
30 + 21 30 + 21 → 51 Rewrite
51 Write

Table 2. Propositional proof

Stimuli WM LTM Action
p ∨ (p ⇒ q) Look

p ∨ (p ⇒ q) (x ⇒ y) → (¬x ∨ y) Rewrite
p ∨ (¬p ∨ q) ((x ∨ (y ∨ z)) → ((x ∨ y) ∨ z) Rewrite
(p ∨ ¬p) ∨ q (x ∨ ¬x) → True Rewrite
True ∨ q (True ∨ x) → True Rewrite
True Write
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Table 3. Sequence generation

Stimuli WM LTM Action
1, 2 Look

1, 2 x, y → x, y, x+ y Rewrite
1, 2, 1 + 2 1 + 2 → 3 Rewrite
1, 2, 3 x, y → x, y, x+ y Rewrite
1, 2, 3, 2 + 3 2 + 3 → 5 Rewrite
1, 2, 3, 5 Write

Table 4. Classification

Stimuli WM LTM Action
Apple Taste

Apple Apple � [æpl] Associate
[æpl] Speak

Table 5. Association

Stimuli WM LTM Action
Coffee Taste

Coffee Coffee � Sugar Associate
Sugar Sugar � Brazil Associate
Brazil Brazil � Football Associate
Football

Table 6. Speculation

Stimuli WM LTM Action
Beach Beach � Ocean Speculate
Ocean Ocean → Water Rewrite
Water Water � Drown Speculate
Drown

applications of Rewrite. The output True is then sent to a write module, which
outputs True.

Table 3 illustrates sequence generation. A Fibonacci sequence is generated
by repeated applications of Rewrite using the sequence x, y → x, y, x + y. This
example illustrates how the model can extrapolate from examples.

Table 4 shows a classification. In computations, we use the symbol � for
E1-edges. Here, an apple is given as the stimulus. The action Taste identifies
the topmost active taste-node, which is inserted into the WM . Then, Associate
replaces this node by the phonetic sequence [æpl].
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The formation of an association is shown in Table 5. Here, Coffee taste begins
a chain of associations. The transitions follow the E1-edges with the highest
weights.

Finally, Table 6 shows how the model can speculate. Speculations are modeled
as random walks along the E1-edges with random start nodes.

5 Conclusion

A cognitive architecture was constructed with transparency as one of the major
design goals. A partial implementation exists in Haskell. Dual process theory was
used in order to maintain the crucial, but often neglected, distinction between
reality (perception) and imagination. The architecture is based on two memory
systems: (i) a long-term memory, which is an autonomous system that devel-
ops automatically through interactions with the environment, and (ii) a work-
ing memory, which is a memory system used to define the notion of (resource-
bounded) computation. This notion of computation is general enough to model
arithmetical calculations, propositional proofs, sequence generation, classifica-
tion, association, and speculation. Thus, symbolic and subsymbolic processing
can coexist and interact with each other in this monolithic architecture.

References

1. Kahneman, D.: A perspective on judgment and choice: mapping bounded rational-
ity. American Psychologist 58, 697 (2003)

2. Goertzel, B.: Perception processing for general intelligence: Bridging the sym-
bolic/subsymbolic gap. In: Bach, J., Goertzel, B., Iklé, M. (eds.) AGI 2012. LNCS,
vol. 7716, pp. 79–88. Springer, Heidelberg (2012)

3. Strannegård, C., Häggström, O., Wessberg, J., Balkenius, C.: Transparent neural
networks: Integrating concept formation and reasoning. In: Bach, J., Goertzel, B.,
Iklé, M. (eds.) AGI 2012. LNCS, vol. 7716, pp. 302–311. Springer, Heidelberg (2012)

4. Strannegård, C., Ulfsbäcker, S., Hedqvist, D., Gärling, T.: Reasoning Processes in
Propositional Logic. Journal of Logic, Language and Information 19(3), 283–314
(2010)

5. Strannegård, C., Engström, F., Nizamani, A.R., Rips, L.: Reasoning about truth
in first-order logic. Journal of Logic, Language and Information, 1–23 (2013)

6. Strannegård, C., Amirghasemi, M., Ulfsbäcker, S.: An anthropomorphic method
for number sequence problems. Cognitive Systems Research (2012)

7. Wood, R., Baxter, P., Belpaeme, T.: A review of long-term memory in natural and
synthetic systems. Adaptive Behavior 20(2), 81–103 (2012)

8. Miller, G.: The magical number seven, plus or minus two: some limits on our
capacity for processing information. Psychological Review 63(2), 81 (1956)

9. Cowan, N.: Working memory capacity. Psychology Press, New York (2005)
10. Baars, B., Gage, N.: Cognition, brain, and consciousness: Introduction to cognitive

neuroscience. Academic Press (2010)
11. Wixted, J.: The psychology and neuroscience of forgetting. Annu. Rev. Psychol. 55,

235–269 (2004)



A Cognitive Architecture Based on Dual Process Theory 149

12. Ebbinghaus, H.: Memory: A contribution to experimental psychology. Number 3.
Teachers college, Columbia university (1913)

13. Harrison, J.: Handbook of practical logic and automated reasoning. Cambridge
University Press (2009)

14. Rumelhart, D., McClelland, J.: Parallel distributed processing: Psychological and
biological models, vol. 2. The MIT Press (1986)

15. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-
ference. Morgan Kaufmann (1988)

16. Hawkins, J., George, D.: Hierarchical temporal memory - concepts, theory, and
terminology. Technical report, Numenta, Inc. (2006)

17. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computa-
tion 9(8), 1735–1780 (1997)

18. Gärdenfors, P.: Conceptual Spaces. MIT Press (2000)
19. d’Avila Garcez, A.S., Lamb, L.C.: Cognitive algorithms and systems: Reasoning

and knowledge representation. In: Cutsuridis, V., Hussain, A., Taylor, J.G. (eds.)
Perception-Action Cycle. Springer Series in Cognitive and Neural Systems, pp.
573–600. Springer, New York (2011)

20. Laird, J., Newell, A., Rosenbloom, P.: Soar: An Architecture for General Intelli-
gence. Artificial Intelligence 33(3), 1–64 (1987)

21. Anderson, J., Lebiere, C.: The atomic components of thought. Lawrence Erlbaum,
Mahwah (1998)

22. Bach, J.: The MicroPsi agent architecture. In: Proceedings of ICCM-5, Interna-
tional Conference on Cognitive Modeling, Bamberg, Germany, pp. 15–20 (2003)

23. Sun, R.: The importance of cognitive architectures: An analysis based on Clarion.
Journal of Experimental & Theoretical Artificial Intelligence 19(2), 159–193 (2007)

24. Gobet, F., Lane, P.C.: The CHREST architecture of cognition: the role of percep-
tion in general intelligence. Kitzelmann, E (2010)

25. Wang, P.: From nars to a thinking machine. In: Proceedings of the 2007 conference
on Advances in Artificial General Intelligence: Concepts, Architectures and Algo-
rithms: Proceedings of the AGI Workshop 2006, pp. 75–93. IOS Press, Amsterdam
(2007)

26. Simon, H., Newell, A.: Human problem solving: The state of the theory in 1970.
American Psychologist; American Psychologist 26(2), 145 (1971)

27. Huet, G.: Confluent reductions: Abstract properties and applications to term
rewriting systems: Abstract properties and applications to term rewriting systems.
Journal of the ACM (JACM) 27(4), 797–821 (1980)


	A Cognitive Architecture Based on Dual Process Theory
	1 Introduction
	2 Cognitive Modeling
	3 Cognitive Architecture
	4 Computations
	5 Conclusion
	References




