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10.1            Introduction 

 Advances in medicine and technologies and 
socioeconomic development have all contributed 
to the well-being of mankind and an unprece-
dented increasing in longevity (Lang and Aspinall 
 2012 ). Consecutively, in addition to declining 
 fertility this has also led to a continuous rise in the 
number and proportion of older persons world-
wide (Lutz et al.  1997 ; Oeppen and Vaupel  2002 ). 
Presently 673 million inhabitants in the world are 
aged ≥60 years, among them 88 million are 
≥80 years old. According to the United Nations 
Prospects (United Nations  2008 ), the expected 
numbers for 2050 are of 2 billion (60 and over) 
and 400 million (80 and over), which means a 
multiplication by 3 and 4.5, respectively. Today, 
21 % of the European population and 17 % of the 
Northern American population are aged 60 and 
above. Those fi gures will increase to 35 and 27 %, 
respectively, by 2050. Five years from now, for 
the fi rst time in the human being history, the num-
ber of people aged 65 years or older will outnum-
ber children younger than 5 years (Shetty  2012 ). 
Moreover, one of the challenges in industrialized 
societies is that aging will progressively impact 

on every country in the world. Indeed, whether 
today, 50 % of the population aged ≥80 years 
lives in the most developed countries (29 % of 
them in Europe and 13 % in Northern America); 
tomorrow, less-developed countries will also 
observe this demographic transition. By 2050, 
62 % of the aged ≥60 years population will live in 
Asia (United Nations  2008 ). 

 Although the aging of the general population 
is one of humanity’s greatest triumphs (Lloyd- 
Sherlock et al.  2012 ), it also confronts our soci-
eties to enormous medical challenges (Oeppen 
and Vaupel  2002 ). If aging should be considered 
as being a positive experience (World Health 
Organization  2002 ), lengthening lifetime is not 
necessarily synonymous of extending life expec-
tancy in good health; studies demonstrated that 
chronic and degenerative disorders become more 
and more prevalent with advancing age and mul-
timorbidity is increasing (Thorpe and Howard 
 2006 ). Thus, the optimism created by the ever- 
increasing life expectancy, and the expectation 
of many individuals that they will live longer and 
healthier, must be balanced by the increased num-
ber of older individuals (Lang and Aspinall  2012 ). 
Thus, one of the challenges of a “long-life society” 
is to ensure that the years gained with a higher life 
expectancy are not only healthy and disability-free 
years but are years offering a good quality of life. In 
this perspective, recent research has concentrated 
on identifying the factors contributing rather than 
hindering the healthy aging process, and among 
them, the age-related changes of the immune sys-
tem, commonly termed immunosenescence, have 
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been particularly investigated (Weiskopf et al. 
 2009 ; Ongrádi and Kövesdi  2010 ). 

 As depicted in the Fig.  10.1 , immunosenes-
cence has been implicated in the increasing 
state of susceptibility to pathogens previously 
encountered and the decline in the body’s abil-
ity to mount adequate immune responses to new 
antigens. It also acts as a contributing factor to 
the increased susceptibility of older adults to 
develop not only infectious diseases but can-
cer, Alzheimer’s diseases, osteoporosis, insulin 
resistance, diabetes, atherosclerosis and autoim-
munity, and other main aged-related diseases 
(Lang et al.  2010c ; Fulop et al.  2011 ; Giunta 
et al.  2008 ; Ginaldi et al.  2005 ). Although indi-
viduals’ age seems to be a major contributor of 
this state of vulnerability, there is no single cause 
of immunosenescence, which is the consequence 
of a compilation of events (Govind et al.  2012 ; 
Lang et al.  2013a ), including thymic involution 
(Aspinall et al.  2010 ), the continuous reshaping 
of the immune repertoire by persistent antigenic 
challenges (Virgin et al.  2009 ), the dysregulation 

of Toll-like receptor (TLR) functions (Shaw 
et al.  2011 ), the reduced production of naïve B 
cells and the intrinsic defects arising in resident 
B cells (Frasca et al.  2011 ), and the impact of 
nutritional status and dysregulation of hormonal 
pathways (Lang et al.  2012a ; Kelley et al.  2007 ). 
Moreover, human aging is, by itself, also inex-
tricably linked with an ever-increasing incidence 
of chronic-comorbid conditions which contrib-
ute to increase the age-related chronic low-grade 
infl ammation (i.e., infl ammaging) that further 
impinge the immune system (Fulop et al.  2010 ). 
Effects of immunosenescence are now evident in 
both arms of the immune system: the innate and 
adaptive immune system (Lang et al.  2010b ). 
With respect to its central role in orchestrating 
the immune response, this chapter will focus 
on the main features of T cell-mediated immu-
nity senescence and the underlying mechanisms 
contributing to the age-related state of increased 
vulnerability. Furthermore, it will explore the 
means by which T cell functions could be identi-
fi ed and predicted by using biomarkers.
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  Fig. 10.1    The immunosenescence process with advanc-
ing age. This fi gure depicts the concept of accumulation of 
defi cits applied to immunosenescence. Thus, an accumula-
tion of immune defi cits could be used to predict immune 
status of a given individual. In complex systems such as 
the immune system, reliability of functions being under-
taken is dependent in part of the quality of the component 

and also on any functional overlap. Thus, reliability in the 
face of possible component failure can be achieved by hav-
ing multiple components capable of fulfi lling the same 
task ensuring that while some components fail the system 
as a whole remains functional.  CMV  cytomegalovirus,  IL  
interleukin,  TNF  tumor necrosis factor, and  TREC  T cell 
receptor excision circles       
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10.2        What Are the Main Features 
of the Senescence of T Cell 
Immunity? 

 Quantifi cation of T cell numbers throughout the 
life-span shows that they are maintained in humans 
(Aspinall et al.  2010 ) even in their tenth decades at 
levels which are comparable to those found in 
younger individuals (Mitchell et al.  2010 ). This 
would imply that there is no decline in the homeo-
static mechanisms which preserve the size of the 
peripheral T cell pool within defi ned boundaries. 
As shown in Fig.  10.1 , the age-related changes in 
cell-mediated immunity are characterized by two 
major patterns: the reduction in thymic output 
(i.e., decrease in naïve T cells) and the increase in 
the number of antigen- experienced memory and in 
particular effector cells (i.e., increase in senescent 
cells) (Weiskopf et al.  2009 ). In addition, but not 
further detailed thereafter, thymic involution also 
leads to a decreased output of T regulatory cells 
(Treg) which have been reported to decline after 
the age of 50 and could contribute to age-related 
phenomena such as autoimmunity and increased 
infl ammation as well (Tsaknaridis et al.  2003 ; 
Weiskopf et al.  2009 ). 

10.2.1     Decreased Number 
of Naïve T Cells 

 Production and maintenance of the peripheral 
naïve T cell repertoire are critical to the normal 
function of the adaptive immune system as a 
whole (Ongrádi and Kövesdi  2010 ; Weiskopf 
et al.  2009 ). As a result of thymic involution, the 
output of peripheral naïve T cells is dramatically 
reduced with advancing age. Indeed, at birth the 
thymus is fully developed, its involution and the 
replacement of the active areas of thymopoiesis 
related to fat accumulation start soon after birth 
and continue throughout life, and it is almost 
complete at the age of 50 years (Aspinall et al. 
 2010 ). This leads to a reduced ability of the aged 
host to respond adequately to new antigens 
(Naylor et al.  2005 ), including not only pathogen 
but also vaccine antigens (Lang et al.  2010a ). 
Low naïve T cell numbers have been described in 

the periphery as well as lymphoid tissues 
(Aspinall et al.  2010 ). The thymic involution 
appears to be one of the major features of human 
immunosenescence (Ostan et al.  2008 ; Aspinall 
et al.  2010 ) because this is the single preceding 
event in all cases. 

 In the older adults, both the diversity and 
functional integrity of the naïve CD4 +  and CD8 +  
T cells subsets are decreased, but in slightly dif-
ferent ways (Naylor et al.  2005 ; Aspinall and 
Andrew  2000 ; Weinberger et al.  2007 ; Effros 
et al.  2003 ; Pfi ster et al.  2006 ; Lang et al.  2013a ). 
Although the diversity and number of naïve 
CD4 +  T cell compartment are maintained stable 
for a long time, a dramatic and sudden collapse of 
diversity occurs after the age of 70 years, consid-
erably shrinking the repertoire. Similar changes 
occur, but earlier and more gradually when aged, 
in the naïve CD8 +  T cells subset (Arnold et al. 
 2011 ). In contrast with CD4 + , naïve CD8 +  T cells 
are more susceptible to apoptosis in aged indi-
viduals (Gupta and Gollapudi  2008 ).    The reduced 
thymic output of newly generated naïve T cells 
seems to be compensated by different mecha-
nisms, and among them homeostatic prolifera-
tion has been identifi ed as playing a key role for 
the maintenance and restoration of the size of the 
naïve T cell pool (Hazenberg et al.  2003 ). Indeed, 
naive T cells are also readily detectable in elderly 
people (Douek et al.  1998 ; Chen et al.  2010 ), and 
adult thymectomy does not lead to a rapid decline 
in naïve T cell number. Similar data have been 
reported for juvenile rhesus macaques, where 
thymectomy did not accelerate age-related naïve 
T cell decline (Hazenberg et al.  2003 ). Thus, T 
cell can be produced at extra-thymic sites, such 
as peripheral lymph nodes and the gut. 

 Thymic atrophy and decreased thymopoiesis 
are active processes mediated by the upregulation 
of cytokines, i.e., interleukin (IL)-6, leukemia 
inhibitory factor (LIF), and oncostatin M (OSM), 
in aged human being and mice thymus tissue 
(Ongrádi and Kövesdi  2010 ; Sempowski et al. 
 2000 ), while IL-7 production by stromal cell is 
signifi cantly decreased (Ortman et al.  2002 ; 
Andrew and Aspinall  2002 ). IL-7 is necessary for 
thymopoiesis (Surh and Sprent  2002 ), promoting 
cell survival by maintaining the antiapoptotic 
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 protein B cell lymphoma 2 (Bcl-2) and inducing 
VDJ recombination (Fig.  10.2 ) (Kim et al. 
 1998 ; Jiang et al.  2005 ; Aspinall and Andrew 
 2000 ). The above changes result in decreased 
thymic output, in diminished number of circu-
lating naïve T cells (i.e., CD45RA + CD28 +  and 
CD45RA + CD28 + CD26L) in the blood stream 
and lymph nodes (Aspinall et al.  2010 ; Ongrádi 
and Kövesdi  2010 ). Naïve T cells from aged indi-
viduals exhibit numerous functional defects 
which are accelerated according to the increasing 
homeostatic proliferation (Arnold et al.  2011 ). 
Indeed, if the naïve T cell count drops below 4 % 
of total T cells, homeostatic proliferation increases 
exponentially. This leads, for example, to accel-
erated telomere shortening and may lead to a 
memory-like phenotype (Kilpatrick et al.  2008 ; 
Cicin-Sain et al.  2007 ).

   Restricted T cell receptor (TCR) repertoire, 
reduced cytokine production, and impaired expan-
sion and differentiation into effector cells following 
antigen stimulation are also described (Weiskopf 
et al.  2009 ; Ferrando-Martinez et al.  2011 ). Thus, 
CD45RA + CD28 + CD8 +  in aged individuals produce 
larger amounts of proinfl ammatory cytokines such 
as interferon gamma (IFN-γ) and IL-2 and have a 

highly restricted TCR repertoire compared to 
younger adults (Aspinall et al.  2010 ; Pfi ster and 
Savino  2008 ). It has been also demonstrated that 
the CD4 +  subtype does not form immunologic syn-
apses upon stimulation with peptide antigen and 
antigen presenting cell and this partly through age-
associated defects in TCR signaling (Arnold et al. 
 2011 ). In addition, naïve T cells from aged indi-
viduals exhibit numerous functional defects in their 
activation, expansion, and differentiation that may 
also considerably affect their cognate helper func-
tion to B cells hence leading to reduced antibody-
mediated immunity following antigen stimulation 
(Weiskopf et al.  2009 ; Ferrando-Martinez et al. 
 2011 ; Haynes  2005 ).  

10.2.2     The Expansion 
of Dysfunctional Terminally 
Differentiated T Cells 

 Consequently to decreasing thymopoiesis, a shift 
in the ratio of naïve to memory T cells with an 
increasing number of the memory compartment 
in order to maintain peripheral T cell homeosta-
sis is observed with advancing age. In contrast to 
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  Fig. 10.2    Schematic representation of the somatic rear-
rangement process undergoing in every immature T cell 
TCR loci during the development from hematopoietic 
stem cell to mature naïve T cells. During the rearrangement 

process, the intervening DNA sequences, both for α- and 
β-chain, are deleted and circularized into episomal DNA 
molecules, called TCR excision circles (TRECs) (Adapted 
from Lang et al. ( 2013a ))       
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naïve T cells, memory cells rely on IL-7 in con-
cert with IL-15, cycle and self-renew in vivo 
three- to fourfold faster than naïve cells, and 
thereby are capable of vigorous proliferation 
(Arnold et al.  2011 ; Surh and Sprent  2002 ). 
Homeostatic turnover of naïve CD8 +  T cells that 
induces a memory-like phenotype further con-
tributes in a dramatically reduced diversity of the 
memory T cell pool in the elderly individuals 
(Weinberger et al.  2007 ; Naylor et al.  2005 ). 

 Repeated antigenic stimulation by certain 
pathogens shapes the T cell pool and directly 
contributes to immunosenescence (Virgin et al. 
 2009 ; Ongrádi and Kövesdi  2010 ) by accumulat-
ing clones of certain specifi cities (Karrer et al. 
 2003 ; Virgin et al.  2009 ). Scientifi c evidence has 
indeed accumulated that persistent viral infec-
tions play a major role in driving clonal expan-
sion, contraction, and homeostasis of the T cell 
compartment leading to the age-dependent accu-
mulation of dysfunctional terminally differenti-
ated T cells (CD8 + CD28 − ) commonly named 
senescent cells (Brunner et al.  2011 ; Virgin et al. 
 2009 ). While some reports suggest that localized, 
niche limited, latent herpes virus including 
Epstein-Barr virus (EBV), varicella-zoster virus 
(VZV), herpes simplex viruses (HVS) 1, and 
HVS2 may not have any impact, persistent viral 
infection with HCV (Gruener et al.  2001 ), HIV 
(Pantaleo et al.  1997 ; Sewell et al.  2000 ; Shankar 
et al.  2000 ), and CMV (Pawelec et al.  2009 ) has 
been shown to cause chronic infl ammation of 
exhausted T cells, even already early in life. 
Indeed, T cells are thus repeatedly stimulated by 
viral antigens thereby contributing to the massive 
accumulation of virus-specifi c CD4 +  and CD8 +  T 
cell clone. This has been observed in both mice 
and humans (Arnold et al.  2011 ). Particularly in 
the elderly individuals, the lifelong exposure to 
CMV severely impairs the T cell-mediated 
immune system by increasing the number of 
highly differentiated, exhausted CMV-specifi c 
CD4 +  and CD8 +  T cells (Pawelec et al.  2009 ). 

 One of the most robust markers in describing 
these exhausted T cell is the loss of the costimu-
latory molecule CD28 which has been further-
more reported as key predictor of immune 
incompetence in older individuals (Vallejo  2005 ; 

Frasca et al.  2011 ). CD28 marker is expressed 
constitutively on >99 % of human T cells at birth. 
With advancing age a progressive increase in the 
proportion of CD28 −  T cells is observed and par-
ticularly within the CD8 +  T cell subset (Lang 
et al.  2010a ). CD28-mediated costimulation is 
needed for effective primary T cell expansion 
and for the generation and activation of Treg cells 
(Hünig et al.  2010 ). CD28 signal transduction 
results in IL-2 gene transcription, expression of 
IL-2 receptor, and the stabilization of a variety of 
cytokine messenger RNAs. Consequently, mem-
ory CD8 + CD28 −  T cells generated from aged 
naïve T cells, compared to memory cells pro-
duced from young naïve cells, produced much 
less cytokine (IL-2 from T helper (Th) 1 and IL-4 
and IL-5 from Th2) (Ongrádi and Kövesdi  2010 ). 
Aged CD4 + CD28 −  produced from aged naïve 
cells also expressed decreased CD40-ligand 
(CD40L or CD154) marker. The CD154 ligand 
has been shown to induce cytokine production 
and costimulate proliferation of activated T cells, 
and this is accompanied by production of IFN-γ, 
tumor necrosis factor alpha (TNF-α), and IL-2. 
Hence, the capacity of these cells to help in B cell 
proliferation and antibody production is consid-
erably reduced contributing to the impairment of 
humoral response in the aged (Haynes  2005 ; 
Frasca et al.  2011 ). 

 Globally, the proliferative capacity of CD28 −  
T cells is also limited; these cells have short-
ened telomeres and show increased resistance 
to apoptosis and restricted T cell diversity and 
are named senescent cells (Vallejo  2005 ). These 
cells are also able to secrete proinfl ammatory 
cytokines such as TNF-α and INF-γ through a 
switch from Th1- to Th2-like cytokine response 
that contributes to the ongoing age-related pro-
infl ammatory background observed in elderly 
persons (i.e., infl ammaging) (Franceschi et al. 
 2007 ). Senescent cells also exert regulatory roles 
in vivo that further impinge the immune system 
capacities such as poorer immune responses 
to infl uenza vaccination (Goronzy et al.  2001 ; 
Saurwein-Teissl et al.  2002 ) and higher autoreac-
tive immunologic memory (Weiskopf et al.  2009 ). 
Recently, it has been demonstrated that senescent 
CD8 +  T cells are specially enriched in niches such 
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as the bone marrow, where they resided in a state 
of pre-activation and can produce cytokine upon 
stimulation (Herndler- Brandstetter et al.  2011 ). 
In general, the CD8 +  subset is more affected by 
the accumulation of terminally differentiated T 
cell than the CD4 +  compartments with advancing 
age (Arnold et al.  2011 ).  

10.2.3     The Decreased Output 
of Regulatory T Cells 

 Treg, formerly known as suppressor T cells, are a 
special subset of T lymphocytes of which the phe-
notype is CD4 + CD25 + FOXP3 + . They are gener-
ated from the thymus or from anergized peripheral 
CD4 +  T cells under particular conditions of subop-
timal antigen exposure and/or costimulation. 
Natural Treg cells are positively selected in the 
cortex through their TCR interactions with self-
peptides presented by thymic stromal cells. It is 
likely that this high-affi nity recognition results in 
signals rendering them anergic and able to produce 
antiapoptotic molecules which protect them from 
negative selection and results in an endogenous 
long-lived population of self-antigen- specifi c T 
cells in the periphery (Maggi et al.  2005 ). 

 These cells have demonstrated to mediate 
self-tolerance, modulate the immune response, 
and abrogate autoimmune disease (Korn et al. 
 2007 ).They represent the link between the two 
arms of the adaptive immune system by regulat-
ing the switch between Th1-like cytokine 
responses (IL-2, INF-γ, and TNF-α) and Th2-like 
cytokine responses (IL-3, IL-4, IL-5, and IL-10) 
that, respectively, support T and B cell-mediated 
immunity (CMI) (i.e., pro- and anti- infl ammatory 
responses). Moreover, these cells seem to also 
play a crucial role in defense against certain 
pathogens including  C .  albicans ,  C .  neoformans , 
 H .  pylori ,  K .  pneumoniae ,  M .  tuberculosis , and 
 Staphylococcus  (Peck and Mellins  2010 ; Lages 
et al.  2008 ). Whether Treg cell number or func-
tions are altered with age is still controversial 
(Fulop et al.  2010 ). Some reports highlighted 
however that their proportion and activity were 
increased with advancing age, also contributing 
to the reduced proliferative capacity of T cells 

from older adults (Tsaknaridis et al.  2003 ; 
Weiskopf et al.  2009 ). As this is an important 
issue with still rather few data available, Treg 
cells activity and effects on other T cell subsets 
activities in the elderly would be worth address-
ing (Fulop et al.  2010 ).   

10.3     Progress in Understanding 
Underlying Mechanisms 

10.3.1     Defects in Some Signaling 
Pathways in CD4 +  T Cells 

 The decrease ability of aged individuals to mount 
adequate specifi c antibody response to infl uenza 
vaccination (i.e., anti-hemagglutination activity 
inhibition or HAI) partly results from decrease in 
naïve T cells (Lang et al.  2010a ,  b ). Concomitant 
increase in memory/effector T cells (CD8 + ) 
(Effros  2007 ; Herndler-Brandstetter et al.  2011 ) 
and loss in CD28 expression (Vallejo  2005 ; 
Effros  2007 ), cytokine production, and T cell 
proliferation seem also to be affected by signal 
transduction defects (Sadighi Akha and Miller 
 2005 ) particularly in CD4 +  (Yu et al.  2012 ). 
Recently, Yu et al. have observed that CD4 +  
memory cells from individuals ≥65 years dis-
played signifi cant increased and sustained tran-
scription of the dual-specifi c phosphatase 4 
(DUSP4) that shortened expression of CD40L 
(Yu et al.  2012 ). The CD40L has been shown to 
induce cytokine production and costimulate pro-
liferation of activated T cells, and this is accom-
panied by production of IFN-γ, TNF-α, and IL-2 
(Lang et al.  2010a ). The capacity of CD4 + CD40L −  
to help B cell proliferation and anti-HA produc-
tion is reduced (Haynes  2005 ). Moreover, 
sustained transcription of DUSP4 also shortened 
inducible T cell costimulator (ICOS) and 
decreased production of IL-4, IL-17A, and IL-2 
after in vitro activation (Yu et al.  2012 ). In vivo 
after infl uenza vaccination, activated CD4 +  T 
cells from older adults had increased DUSP4 
transcription, which inversely correlated with the 
expression of CD40L, ICOS, and IL-4 (Yu et al. 
 2012 ). These fi ndings therefore suggest that 
increased DUSP4 expression in activated T cells 
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in part accounts for defective adaptive immune 
responses to infl uenza vaccination in the elderly. 
Furthermore, silencing of DUPS4 expression in 
elderly CD4 +  T cells restores their ability to pro-
vide helper activity for B cell differentiation and 
antibody production (Yu et al.  2012 ).  

10.3.2     The Role of the Aged Bone 
Marrow in Regulating 
Memory T Cell Functions 

 The homeostatic maintenance of memory T cells 
throughout lifetime is tightly regulated and pre-
serves T cell repertoire diversity to combat com-
mon and emerging pathogens as well as recall 
response to booster vaccination (Nikolich-Zugich 
 2008 ). It is only recently that researcher has begun 
to understand how and where memory T cells are 
maintained and sheltered. In this respect, the bone 
marrow (BM) and its mesenchymal stromal cells 
(MSCs) have been paid attention (Herndler-
Brandstetter et al.  2011 ,  2012 ). MSCs express 
proteoglycan ligands to CD44 which is present on 
memory T cells and mediates their local retention. 
They also produce IL-7 and IL-15 for the homeo-
static maintenance of memory T cells (Tokoyoda 
et al.  2010 ). IL-7 has been shown to be important 
for the survival of memory CD4 +  T cells (Guimond 
et al.  2009 ; Kondrack et al.  2003 ), and in the BM, 
memory CD4 +  T cells with a Ly6C hi CD62 ligand –  
phenotype are in close contact with IL-7-
producing VCAM1 +  stromal cells (Tokoyoda 
et al.  2009 ). In contrast, memory CD8 +  T cell sur-
vival is mostly dependent on IL-15-mediated sig-
naling (Zhang et al.  1998 ), and the BM has been 
shown to be a preferred site for IL-15-driven acti-
vation and proliferation of memory CD8 +  T cells 
(Becker et al.  2005 ). In contrast to IL-7, IL-15 is 
presented by IL-15Rα +  BM cell leading to sus-
tained IL-15-mediated signaling (Schluns et al. 
 2004 ). However, lifelong homeostatic turnover of 
memory T cells may lead to the accumulation of 
highly differentiated memory T cells in elderly 
persons (Weinberger et al.  2007 ; Nikolich-Zugich 
 2008 ). In vitro studies indicate that common 
γ-chain signaling in CD8 + CD28 +  T cells, in par-
ticular, mediated by IL-15, downregulates the 

expression of the important costimulatory mole-
cule CD28, thereby facilitating the accumulation 
of CD8 + CD28 −  senescent T cells (Borthwick et al. 
 2000 ; Chiu et al.  2006 ). Thus, it has been pro-
posed that memory T cell, when in contact with 
MSCs, is suppressed and displays reduced allo-
genic and mitogenic proliferation, a state of T cell 
anergy and reduced apoptosis as well as modu-
lated cytokine production (Tokoyoda et al.  2010 ; 
Herndler- Brandstetter et al.  2011 ). Little is how-
ever known about the aged BM and its role in 
regulating the survival and function of memory T 
cells (Arnold et al.  2011 ). 

 In a recent report, Herndler-Brandstetter et al. 
have observed that the number of CD4 +  and CD8 +  T 
cells was maintained during aging into the BM 
(Herndler-Brandstetter et al.  2011 ). Similarly to 
what happens into the blood stream, the composi-
tion of this pool is altered with a decline of naïve 
and an increase in memory T cells. However, in 
contrast to the peripheral blood, a highly activated 
CD8 + CD28 − T cell population, which lacks the late 
differentiation marker CD57, accumulates in the 
BM of elderly persons. IL-6 and IL-15, which are 
both increased in the aged BM, effi ciently induce 
the activation, proliferation, and differentiation of 
CD8 +  T cells in vitro, highlighting a role of these 
cytokines in the age- dependent accumulation of 
highly activated CD8 + CD28 −  T cells in the BM 
(Herndler- Brandstetter et al.  2012 ). However, these 
age- related changes do not impair nevertheless the 
maintenance of a high number of polyfunctional 
memory CD4 +  and CD8 + T cells. Effector CD8 +  T 
cells that reside in the BM are in a state of pre- 
activation and can rapidly express cytokines and 
CD40L upon stimulations and effi ciently induce the 
production of high-affi nity antibodies by B cells 
(Tokoyoda et al.  2009 ; Na et al.  2009 ). Taken 
together these fi ndings demonstrate that with 
advancing age a highly activated CD8 + CD28 −  T cell 
population accumulates in the BM, which is driven 
by the age-related increase of IL-6 and IL-15. 
Terminally differentiated effector CD8 +  T cells may 
therefore represent an interesting and important line 
of defense to pathogens in aging and old adult popu-
lation and can still fulfi l important functions and 
compensate for the loss of regenerative capacity 
(Herndler-Brandstetter et al.  2012 ).  
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10.3.3     Decreasing of Memory 
T Cells Reactogenicity 

 Some interesting information about the reactoge-
nicity of memory T cells in the aged individuals 
can be learnt from the experience of the herpes 
zoster (HZ) vaccine. Indeed, the specifi c VZV 
CMI is naturally amounted following the primary 
contact with the virus responsible for chicken-
pox. While VZV becomes permanently latent in 
the dorsal-root sensory nerves, the specifi c CMI 
contributes to prevent VZV reactivating and acute 
HZ occurrence (Lang and Michel  2011 ). It was, 
however, observed that the age-related reduc-
tion in CMI to VZV was the main cause of VZV 
reactivation in older individuals and in individu-
als who are immunocompromised as a result of 
diseases or its treatments (Weinberg et al.  2009 ; 
Kimberlin and Whitley  2007 ). CMI is, however, 
expected to be restored across the life- span either 
by subclinical VZV infections occurring periodi-
cally and a similar boost in immunocompromised 
hosts who experience asymptomatic VZV vire-
mia (Lang and Michel  2011 ) or vaccinating indi-
viduals with the licensed HZ vaccine (Levin and 
Hayward  1996 ). 

 Although Oxman et al. in a large random-
ized controlled trial has demonstrated that the 
HZ vaccine markedly reduced morbidity from 
HZ among older adults (Oxman et al.  2005 ), 
subsequent analyses have demonstrated that 
the vaccine- induced boost in CMI was also a 
function of the age of the vaccine (Weinberg 
et al.  2009 ). Furthermore, a loss of CD4 +  and 
CD8 +  early effectors and CD4 +  effector memory 
cells was particularly observed among poorer 
responders (Weinberg et al.  2012 ). This demon-
strates that the vaccine cannot reactivate VZV 
CMI effi ciently enough in older adults. This is 
moreover reinforced by the recent demonstration 
that risk of HZ recurrences after a fi rst episode 
that was initially considered being negligible 
appears as frequent as rates of the fi rst occur-
rence in immunocompetent individuals after the 
age of 50 years (Yawn et al.  2011 ). Thus, also 
the natural infection cannot properly reactivate 
CMI to elicit durable protection in older adult 
population either.   

10.4     Is the Senescence of T Cell- 
Mediated Immunity a 
Quantifi able Disorder? 

 Predicting individual immune responsiveness 
using biological markers that easily distinguish 
between healthy and immunosenescent states is a 
great but desirable challenge. Since the single pre-
ceding event in all cases of immunosenescence is 
thymic involution (Aspinall et al.  2010 ), the ques-
tion is: can we identify specifi c T cell immunity 
makers linked to a state of immunosenescence? 
The pioneering OCTO and NONA studies have 
resulted in the emerging concept of an Immune 
Risk Profi le (IRP) (Strindhall et al.  2007 ; Wikby 
et al.  2005 ,  2008 ). This immune condition con-
sists of (1) a depleted number of naïve T cells, (2) 
a high CD8 +  and low CD4 +  numbers characterized 
by an inverted CD4 + :CD8 +  ratio, (3) a poor mito-
gen response to concanavalin (ConA) stimulation, 
and (4) the expansion of dysfunctional terminally 
differentiated CD8 + CD28 −  T cells (i.e., senescent 
cells) (Brunner et al.  2011 ; Pawelec et al.  2009 ). 
This IRP was identifi ed from healthy octogenari-
ans and nonagenarians and 2-, 4-, and 6-year 
 mortality predicted. Hirokawa et al. have thus 
proposed a T cell immune score expressing the 
immune status as a simple score combining fi ve T 
cell-related parameters (Hirokawa et al.  2009 ): 
total number of T cells, CD4 + :CD8 +  ratio, number 
of naïve T cells (CD4 + CD45RA + ), ratio of naïve 
to memory (CD4 + CDRO + ) T cells, and T cell pro-
liferative index (TCPI). In patients with colorectal 
cancer compared to healthy age- matched con-
trols, this T cell immune score of patients in stages 
I–IV was signifi cantly decreased. Furthermore, 
the complex remodeling of immune system 
observed during aging also includes profound 
modifi cations within the cytokine network (Larbi 
et al.  2011 ). The typical feature of this phenome-
non is a general increase in plasma cytokine levels 
and cell capability to produce proinfl ammatory 
cytokines, including a chronic, low-grade, proin-
fl ammatory condition usually termed infl amm-
aging (Franceschi et al.  2007 ; Franceschi  2007 ; 
Macaulay et al.  2012 ). This results from a shift 
from a CD4 +  Th cells, Th1-like cytokine response 
to a Th2-like response, and, furthermore, an 
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increase in levels of proinfl ammatory cytokines 
(i.e., IL-6, TNF-α, as well as IL-1β, IL-18, and 
IL-12). While a wide range of factors have been 
claimed to contribute to this state (i.e., increased 
amount of adiposity, decreased production of sex 
steroid, and chronic health comorbid disorders) 
(Ostan et al.  2008 ; Fulop et al.  2010 ), this altered 
infl ammatory response has also been attributed to 
the continuous exposure to CMV antigen stimula-
tion and/or reactive oxygen species (ROS) 
(Pawelec et al.  2009 ; Larbi et al.  2011 ; Brunner 
et al.  2011 ). However, whether these parameters 
could provide a robust set of criteria for the deter-
mination of an individual’s immunological status 
in the older old adults, further studies are still 
required in order to identify biomarkers that are 
identifi able earlier in life so that intervention strat-
egies can be administered sooner rather than later 
(Govind et al.  2012 ). 

 With this aim, genomic not only may help to 
identify factors usable as a measure of biological 
aging but that may also be useful as a tool for pre-
dicting immune capabilities within the population 
(Ostan et al.  2008 ). Studies that tracked the 
changes in thymic output have attempted to estab-
lish the number of naïve cells and thereby provide 
an assessment of immune status by using an exci-
sional by-product of TCR genes rearrangement 
(Govind et al.  2012 ; Douek et al.  1998 ,  2000 ; 
Mitchell et al.  2010 ; Hazenberg et al.  2002 ,  2003 ). 
These products are termed TCR- rearrangement 
excision circles (TRECs) (Kong et al.  1998 ; Livak 
and Schatz  1996 ; Takeshita et al.  1989 ).  

10.5     Could sj-TREC Be Considered 
as a Biomarker of Effective 
Aging? 

10.5.1     sj-TREC: Episomal DNA 
Sequences Generated During 
the TCR Gene Rearrangement 

 The ability of T lymphocytes to recognize a spe-
cifi c region of a particular antigen is driven by the 
presence of antigen receptors on the surface of 
each cell. The TCR is a heterodimer that consists 
in 95 % of T cells of an alpha (α) and beta (β) 

chain, whereas in 5 % of T cells this consists of 
gamma and delta (γ/δ) chains. In order to create a 
border repertoire of TCR, an intricate process of 
cutting and splicing undergoes during the com-
plex transition from hematopoietic stem cell to 
mature naïve T lymphocyte that leads to random 
joining of DNA segments from the TRC locus 
(Chain et al.  2005 ). In T cells expressing TCR-αβ, 
rearrangements of both TCR-α and TCR-β genes 
produce TRECs, as depicted in Fig.  10.2 , by VJ 
gene recombination and by V(D)J gene recombi-
nation, respectively (Bogue and Roth  1996 ). Both 
involve a somewhat random joining of gene seg-
ments to generate the complete TCR chain, and 
the two rearrangement events that occur during 
this process are identical in 70 % of αβ T cells 
(Verschuren et al.  1997 ). The α-chain rearrange-
ment produces a signal- joint TREC (sj-TREC) 
and the β-chain a coding- joint TREC (Douek 
et al.  1998 ). Thus, the TRECs generated are com-
mon to most αβ T lymphocytes and are detectable 
exclusively in phenotypically naïve T cells (i.e., 
undetectable in memory/effector T cells, B cells, 
and other peripheral mononuclear cells) (Aspinall 
and Andrew  2000 ; Kohler et al.  2005 ; Hazenberg 
et al.  2003 ). Because of the enormous diversity of 
TCR-α VJ and TCR-β VDJ recombination events 
(Siu et al.  1984 ; Arden et al.  1985 ) and thus the 
number of TRECs produced, no single TREC can 
be used as a marker to assess the overall thymic 
function (Douek et al.  1998 ; Hazenberg et al. 
 2003 ). While α- and β-TRECs possess an identi-
cal DNA sequences, respectively, and are both 
stable (Livak and Schatz  1996 ), not duplicated 
during subsequent mitosis (Takeshita et al.  1989 ), 
TRECs generated during α-chain rearrangement 
are generally preferred (Aspinall et al.  2000 ). 
Indeed they are generated after β-TRECs and are 
therefore less diluted out with each subsequent 
cellular division. Moreover, a common require-
ment for productive rearrangement of the TCR-α 
locus is the deletion of the TCR-δ locus (Fig.  10.2 ). 
Sj-TREC generated during the α-chain rearrange-
ment can be easily quantifi ed in clinical samples 
(Douek et al.  2000 ; Hazenberg et al.  2000 ,  2002 , 
 2003 ; Lang et al  2011 ; Zubakov et al.  2010 ; Patel 
et al.  2000 ; Aspinall et al.  2000 ; Murray et al. 
 2003 ; Kohler et al.  2005 ).  

10 T Cell-Mediated Immunity in the Immunosenescence Process



170

10.5.2     sj-TREC: A Marker of the 
Resting Naïve T Cell Pool 

 Phenotypic analyses have confi rmed that the 
exhaustion of thymic output with advancing age 
was at the basis of the defi cient replacing of naïve 
T cells lost in the periphery (i.e., by death or con-
version to memory/effector cells) (Weiskopf 
et al.  2009 ; Haines et al.  2009 ; Ostan et al.  2008 ; 
Kohler et al.  2005 ). Whether this contributes to 
the inability of maintaining the T cell repertoire 
breadth in older adults, TREC values could not 
be immediately interpreted to refl ect continuous 
thymic output of naïve T cells (Hazenberg et al. 
 2003 ). While, as showed in Fig.  10.3 , some 
reports have shown age-associated decline in the 
sj-TREC values (Mitchell et al.  2010 ; Zubakov 
et al.  2010 ), Chen et al. have demonstrated that 
TRECs were still readily detectable in healthy 
nonagenarians (Chen et al.  2010 ). This suggests, 
as demonstrated by Hazenberg, that TREC T 
cells content should be fi nally more considered 
as a biomarker of the resting naïve T cell pools 
rather than a record of thymic output (Hazenberg 
et al.  2003 ). This is well illustrated by fi ndings 
from studies performed in individuals suffering 
from different health conditions (Douek et al. 
 1998 ,  2000 ; Markert et al.  1999 ; Patel et al. 
 2000 ). Two major biological parameters that 
complicate the interpretation of TREC data 
explain this assertion: longevity of naïve T cells 
and TREC dilution within the two daughter cells 

after each round of cell division (Hazenberg et al. 
 2003 ). Indeed, estimating that healthy adult has a 
steady state of 10 11  naïve T cells and a thymic 
output of 10 7 –10 8  naïve cells per day, it was esti-
mated that naïve T cells have a life-span of 
1,000–10,000 days (Sprent and Tough  1994 ). 
Consistently, thymectomy should not lead to 
rapid decline in naïve T cell numbers, and in a 
group of adults thymectomized three to 39 years 
prior to analysis, TRECs were still clearly pres-
ent (Douek et al.  1998 ). It was thus assumed that 
naïve T cell division would be too low to signifi -
cantly affect the TREC content (Douek et al. 
 1998 ). Whether that is true in healthy adults, it is 
not the case in human immunodefi ciency virus 
(HIV)-infected individuals or in lymphopenic 
cancer adults (Hazenberg et al.  2000 ,  2002 ). In 
these two populations TREC values are signifi -
cantly lower compared to healthy age-matched 
control, but TREC increased rapidly with highly 
active antiretroviral therapy (HAART) and dur-
ing T cell reconstitution with stem cell transplan-
tation, respectively, and even TREC values 
reached supranormal levels (Hazenberg et al. 
 2000 ,  2002 ). In individuals with severe combined 
immunodefi ciency (SCID) or in congenitally 
athymic patients (i.e., Di George syndrome), 
TRECs became detectable after either haemato-
poietic stem cell transplantation or transplanta-
tion of cultured postnatal thymic tissue (Markert 
et al.  1999 ; Patel et al.  2000 ). Finally, in any case, 
in clinical conditions involving or infl uencing the 

C
el

l-
m

ed
ia

te
d

 im
m

u
n

e 
ca

p
ac

it
y

80.0 years

Increasing age DeathBirth

Lower level

Upper level

H
et

er
og

en
ei

ty

TREC values

  Fig. 10.3    Schematic 
representation of the 
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cell-mediated immune system or with advancing 
age, the number of TREC and the T cell TREC 
content are not only determined by thymic output 
but also by peripheral events such as homeostatic 
proliferation of existing naïve T cells which 
replace those cells lost by death or conversion to 
memory/effector cells (Hazenberg et al.  2003 ). 
Thus, analyzing TREC numbers in healthy indi-
viduals, Murray et al. found a marked change in 
the source of naive T cells before and after 
20 years of age (Murray et al.  2003 ). The bulk of 
the naive T cell pool was sustained primarily 
from thymic output for individuals younger than 
20 years of age, whereas proliferation within the 
naïve phenotype was dominant for older individ-
uals. Over 90 % of phenotypically naïve T cells 
in middle age were not of direct thymic origin.

10.6         Could We Identify Different 
Trends of Aging When 
Analyzing sj-TREC Values? 

 A possibly clearer picture the TREC decline in 
the oldest old was recently shown in a study ana-
lyzing blood samples from 215 healthy individuals 

ranging in age from 60 to 104 years (Mitchell 
et al.  2010 ). The number of donors aged 
≥70 years were 66 %, and ≥80 years were 27 %. 
Changes in thymic output were quantifi ed using 
TREC: 10 5  T cells ratio. TREC measurements 
were obtained by quantitative polymerase chain 
reaction (QPCR), and the number of T cells was 
determined using fl uorescence-activated cell 
sorter (FACS) analysis. Thus, while the absolute 
number of leukocytes and T lymphocytes did not 
change signifi cantly across the age range studied, 
the authors demonstrated a slowly accelerated 
curvilinear decline of the TREC ratio between 
sixth and nineth decade of life. As shown with 
Fig.  10.4 , the most pronounced decline was seen 
in those individuals more than 90 years of age. 
Moreover, samples from earlier decades showed 
a wide range of TREC values with a convergence 
of the sample heterogeneity observed in the 
TREC levels with increasing age (Fig.  10.4  –
Panel a). These fi ndings contribute to speculate 
for a number of interesting hypotheses presented 
in Fig.  10.4  –Panel b. First, are low TREC mea-
surements refl ective of an individual’s immu-
nosenescence status? If so, are the individuals in 
the lower left (LL) quadrant (low TREC level at 
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younger age) at a more advanced stage of immu-
nosenescence? The converse argument could also 
be inferred for individuals with the highest TREC 
levels (upper left (UL) quadrant). These individu-
als may therefore be more likely to progress to 
become the long-lived healthy individuals 
observed in the lower right (LR) quadrant. This 
concept lends itself to the argument that immu-
nosenescence is not merely a measurement of 
chronological age but points towards immune 
exhaustion arising at different ages (i.e., physio-
logical age) (Mitchell et al.  2010 ; Lang et al. 
 2010c ). The downward trajectory of an individu-
al’s thymic output profi le over time has been 
demonstrated previously by Kilpatrick et al. 
(Kilpatrick et al.  2008 ) and could be considered 
as part of longitudinal studies similar to the 
OCTA and NONA studies to investigate further 
the potential role of sj-TREC as predictive marker 
of aging (Strindhall et al.  2007 ; Wikby et al. 
 2005 ,  2008 ). Interestingly, in one study carried 
out in old female rhesus macaques, which were 
vaccinated with inactivated infl uenza vaccine 
(strain A/PR/8/34), animals with the higher HAI 
and best specifi c T cell proliferation titres against 
infl uenza antigen were among those with the 
highest TREC ratio levels (Aspinall et al.  2007 ).

   Thus, whether predicting human phenotypes 
from genotypes is relevant both for personal-
ized medicine and applying preventive strategies 
(Janssens and van Duijn  2008 ), additional clini-
cal and translational studies at population, clini-
cal, cellular, and molecular levels are still needed 
in order to elucidate the exact implications of the 
TREC values on the age-related senescence of 
the cell-mediated immune response (Lang et al. 
 2011 ). With these perspectives, we have recently 
developed and optimized a quantitative real-time 
polymerase chain reaction (qPCR) mono-assay 
measuring the TREC ratio in dried blood spot 
(DBS) samples (Lang et al.  2011 ,  2012b ,  2013b ). 
This technology (Fig.  10.5 ) will be applied on 
the DBS collected during the 2002–2011 World 
Health Organization’s (WHO)  S tudy on global 
 AG ing and adult health ( SAGE ) project (World 
Health Organization  2011 ). The SAGE project 
is a longitudinal study conducted in six countries 
(China, Ghana, India, Mexico, Russia Federation, 
and South Africa) with a total sample size of 

nearly 50,000 respondents aged 18 years or over 
with an special emphasis on the population aged 
≥50 years. The objective of the study is to obtain 
reliable, valid, and comparable health-related and 
well-being data over a range of key domains for 
younger and older adult populations in nationally 
representative samples. The collected data exam-
ines health, health-related outcomes and well- 
being, and their determinants over time. With a 
fi rst whole data collection completed, a follow up 
will be conducted every 2 years. SAGE intends to 
generate large cohorts of older adult populations to 
be compared with cohorts of younger populations 
to follow up intermediate outcomes, monitoring 
trends, examining transitions and life events, and 
addressing relationships between determinants and 
health, well-being, and health- related outcomes 
   (http://www.who.int/healthinfo/systems/sage/en/    )    .

       Conclusion 

 This chapter clearly has presented the main 
features of T cell-mediated immunity both 
related to intrinsic defects and its reduced 
capacity to help B cells proliferation, matura-
tion, and specifi c antibody production. It has 
also explored some new insights in the under-
standing of the mechanisms underlying immu-
nosenescence. Ongoing research in this fi eld is 
very active (Govind et al.  2012 ), and this is not 
only in exploring the process itself but also 
more and more growing regarding how best to 
rejuvenate T cell-mediated immunity (Lang 
et al.  2013a ). Nevertheless some robust mark-
ers for identifying and grading immunosenes-
cent states and fi nally distinguishing between 
healthy and immunosenescent individuals are 
still and profoundly lacking. Furthermore, 
although age clearly imposes drastic changes 
in the immune physiology and contributes to 
render individuals more prone to develop main 
age- related diseases and being vulnerable fac-
ing of many pathogens, older adults also dem-
onstrate a broad heterogeneity in their health 
and/or immune phenotypes (Yao et al.  2011 ; 
Mitchell et al.  2010 ) (Fig.  10.1 ). This fi nally 
poses new challenges to scientists. Research 
on the immunology of aging has to go beyond 
the simple identifi cation of age-associated 
immune features.     
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