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Abstract. Reconstruction of 3D laser scanned point clouds may generate a 
mesh characterized by a high number of triangles. Unfortunately, in Computer 
Aided Design environments neither a simple triangle reduction, nor decimation 
filters are feasible for mesh optimization, because of their intrinsic errors.  

In this paper we show how Genocop III can be effectively used to recon-
struct a point cloud bounding the error under a certain threshold. Moreover, we 
define an optimized algorithm for evaluating the reconstruction error, that ex-
ploits AABB-trees and pre-computation and provides a useful metric to the ge-
netic algorithm. 
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1 Introduction 

Laser scanning of 3D surfaces allows capturing huge points cloud datasets that can be 
used in a Computer Aided Design (CAD) environments. After a preliminary data-
cleaning and registration phase, a digital representation of the original surface can be 
computed through a process of surface reconstruction that generates a polygonal 
mesh, usually made of triangles. However, reconstructing a surface for further use in 
architectural CAD software introduces two more requirements: 

─ reconstructed mesh triangles count should be as lowest as possible; 
─ maximum error caused by reconstruction should be bounded by a pre-defined thre-

shold. 
                                                           
∗ Corresponding author. 
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Usually, a surface optimization algorithm aims at reducing the triangles count to a 
specific value, while binding the consequent error under a specified threshold. In 
order to make a surface reconstruction algorithm feasible for architectural CAD envi-
ronments, instead, we are mainly interested in minimizing the triangles count, while 
maintaining the maximum reconstruction error under a specified threshold. 

Such a result is usually obtained by carefully searching and setting reconstruction 
and post-processing parameters. In this paper we investigate how to exploit genetic 
algorithms in order to automatically set the parameters, guaranteeing a low complexi-
ty mesh, paying a feasible error. Despite of the high efficiency of modern reconstruc-
tion techniques, an external hint is still required in order to point out the parameters 
used to generate and simplify the output mesh: our main contribution is to define an 
efficient and automatic algorithm to find the best ratio between reconstruction error 
and triangle count. Additionally, our algorithm allows the integration of different 
reconstruction, decimation and hole filling methods, helping to find the best configu-
ration for the reconstruction system.  

Moreover, since to define a way to compute the reconstruction error is not a trivial 
task (and it turns to be even more difficult, when executed within a genetic algorithm 
iteration), we propose a way to solve the 3D distance problem by means of a fast 2D 
algorithm, optimized for a huge number of iterations, which takes advantage of search 
trees and point-triangle distance techniques. 

 

Fig. 1. Mesh reconstruction and optimization from 71787 to 24161 triangles 

The paper is organized as follows. In section 2, we outline some mesh reconstruc-
tion, hole filling and decimation procedures that have included in our algorithm. Ge-
nocop III, an evolutionary genetic algorithm that handles non-linear constraints is 
then shortly recalled. In section 3, we describe the implementation of our algorithm 
for 3D surfaces reconstruction optimization. In section 4, we define a metric to pro-
vide an accurate estimation of the error generated by the reconstruction and decima-
tion process. Experimental results, carried out both on syntethical benchmark and real 
world point clouds, are presented in section 5, evidencing the ability of the system to 
optimize the reconstructed mesh by finding the best parameter set. Conclusions are 
pointed out in section 6. 

2 Background 

Reconstruction and post-processing, starting from a points cloud, can be realized with 
a great number of algorithms, each characterized by strengths and weaknesses.  
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The choice of the algorithms and their parameters is usually committed to human 
operators, and this phase may require an intensive tuning step, in order to obtain an 
output mesh that minimizes the triangles count by satisfying the maximum error  
requirements. 

2.1 3D Reconstruction 

A typical surface reconstruction algorithm takes as input noisy points clouds that do 
not encode information on the original surface topology. We have considered the 
CPU-time and the quality of reconstruction as discriminating factors for the 3D re-
construction algorithm to adopt in our surface reconstruction procedure. This choice 
is due to the subsequent use of a genetic algorithm, which typically suffers time steps. 
In the following, we will explain the techniques that underlie the main steps of our 
surface reconstruction procedure. They are preliminary to the adoption of the genetic 
algorithm: in particular, after the reconstruction phase, the hole filling and the deci-
mation filtering phases are necessary in order to achieve a low triangles count. 

In [1], Hoppe proposes an approach based on a function that estimates the signed 
distance of each point from an unknown surface S. The key operation to define the 
distance function is to associate an oriented tangent plane with each point. The tan-
gent plane Ti associated with the point xi is built by a point oi (center) and a normal 
vector ni. Under this assumption, the distance from an arbitrary point pk of the cloud 
to the plane Ti equals to: 

 iniokpkp
iTdist ⋅−= )()(  

The subsequent phase aims to find geometrically close points, by checking if their 
corresponding tangent planes are consistently oriented. Starting from these ones, the 
distance function of pi to an unknown surface can be computed using the oriented 
tangent planes: first, the algorithm finds a tangent plane Ti whose center oi is the clos-
est to pi. The tangent plane is a local linear approximation of the surface S, so the 
signed distance f(p) can be computed as the distance of pi from the tangent plane Ti. 
The real surface can be described as the zero-set of the signed distance function. In a 
last stage, a marching cubes based contour tracing algorithm is used to approximate 
the zero set with a triangular mesh. The algorithm leads to the creation of an extreme-
ly dense initial mesh, that needs to be optimized in order to be feasible in a computer 
graphics environment. In order to achieve this result, Hoppe defines an automatic 
optimization procedure that aims to reduce the mesh complexity. The main target is to 
find a simplicial complex K and a set of vertex positions V that define a new mesh M’ 
= (K, V) by minimizing an energy function E(K,V): 

 
),()(),(),( VKspringEKrepEVKdistEVKE ++=

 

where Edist (distance energy) equals to the sum of the quadratic errors from the cloud 
to the mesh, and is calculated by identifying the nearest triangle to each point  
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and computing their distance; Erep (representation energy) is introduced in order to 
penalize meshes with a high number of vertexes, and is proportional to a penalization 
factor defined by the user; Espring (spring energy) is useful to ensure the convergence 
of the optimization algorithm. 

In [2], Kazhdan et al. face the reconstruction problem by defining a 3D indicator 
function χ, defined as 1 for the points inside the surface and 0 for those outside. As 
the indicator function gradient is a vector field that has a non-zero value only in prox-
imity of the surface, computing the indicator function reduces to the search for the 
scalar function χ whose gradient best approximates the vector field V defined by the 
points cloud. Applying the divergence operator, this variational problem is trans-
formed into a standard Poisson problem of computing the scalar function χ, whose 
Laplacian equals to the divergence of the vector field 

 V:  δχ ≡ ∇ ⋅ ∇χ = ∇ ⋅ V. 

A different approach to the reconstruction problem is defined by the algorithm Gree-
dy Surface Triangulation [3], based on the concept of surface growing. The mesh 
generation algorithm proceeds incrementally by searching, for each point Pi, a k-
neighborhood made by the k nearest point from Pi within a sphere of radius r = μ ⋅ d0, 
where d0 is the distance from Pi to his closest point, and μ is a user specified constant. 
The neighborhood is then projected on a plane that is approximately tangential to the 
surface formed by the neighborhood. Projected points, whose visibility is occluded 
from Pi by the mesh edges are removed, and the remaining ones are triangulated, 
obtaining the final mesh. As this greedy approach proceeds incrementally, without 
deleting edges, the new surface grows directly leading to the final mesh, avoiding the 
memory consumption of the two other approaches. 

2.2 Hole Filling and Decimation 

The reconstruction process may cause the presence of holes in the mesh, so a hole 
filling filter is required in order to reduce the reconstruction error during the subse-
quent decimation phase. As in [4], the adopted hole filling algorithm proceeds by  
detecting boundary edge rings and associates neighborhood of points. Then, the neigh-
borhood is projected on a tangent plane, and new vertexes are interpolated. In the last 
step, new triangles are computed with the Moving Least Squares algorithm [5]. 

 

Fig. 2. Mesh reconstruction and optimization from 93836 to 20795 triangles 
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Afterward, triangles decimation is performed. Decimation is based on the approach 
described in [6], that chooses which vertexes can be removed by classifying them in 
simple, complex and boundary. A simple vertex is surrounded by a complete triangle 
cycle, and can also be identified either as an interior vertex (if it is part of two edges 
that generate a large angle between the triangles they belong to, named feature edge) 
or a corner vertex (if it belongs to one or more than two feature edges). A boundary 
vertex is surrounded by a half cycle of triangles and a complex vertex is surrounded 
by a complete cycle of triangles and belongs to a triangle not in the cycle. Every ver-
tex that is not a complex nor a corner vertex, can be removed and put into a priority 
queue, ordered by crescent values of the error implied by their removal. Finally, the 
queue is processed removing each vertex and re-triangulating the generated holes. 
This process is repeated until an optimization target is met. 

2.3 Genetic Algorithms and Genocop III 

Genetic Algorithms [7][8] are complex adaptive procedures, aimed to solve optimiza-
tion problems in several real world applications, and are based on natural evolution 
principles. They work by selecting the best solutions for a given optimization prob-
lem, recombining them to build new generation, and converging towards the best 
solution. Genetic algorithms usually follow these main steps: 
1. an initial set of possible solutions is defined; 
2. each solution is evauated, and the best ones (in the sense of a given fitness func-

tion) are selected; 
3. a new set of solutions is defined by manipulating the best solutions of the previous 

set. By this way, a good solution has better chances to reproduce itself, and to con-
tinue the evolution process. New solutions are obtained through mutation and cros-
sover operations; 

4. if a maximum iteration count is met, or the algorithm reaches an optimum solution, 
the optimization process ends. If not, the iterative process continues from step 2. 

Usually, each solution (phenotype) is codified as binary code in chromosomes made 
of set of bits (genes). The evaluation of each phenotype is made through a fitness 
function that describes its attitude to solve the problem. Genetic Algorithms play a 
main role in the process of defining the best set of reconstruction and decimation 
parameters. Additionaly, they ensure that the parameter search converges towards the 
best solution faster than other optimization techniques. We have chosen to adopt Ge-
nocop III [9][10] (GEnetic algorithm for Numerical Optimization of COnstrained 
Problems), which supports nonlinear constraints, and is based on the concepts of co-
evolution and repair algorithms.  

3 Optimized Reconstruction 

Our target is to find a parameter set that allows to obtain a reconstructed mesh charac-
terized by the lowest triangles count, and leads to an error no higher than the defined 
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error threshold. This can be formalized as an optimization problem with a single non-
linear constraint, the maximum error. 

In order to exploit the computational efficiency of Genocop III, we have defined 
two functions that can represent the evaluation function and the non-linear constraint. 
Chromosomes modeling is a propaedeutic step to the entire optimization process, and 
allows to apply mutation and crossover operators, in order to combine the best indi-
viduals and to obtain a population that converges towards the optimization target. The 
optimization process starts from an initial population random solutions. Each individ-
ual is uniquely identified by a specific value set for reconstruction and post-
processing parameters, needed for the mesh generation. Each parameter has its own 
domain, defined in Genocop III configuration file. The evaluation function returns the 
triangles count of the reconstructed mesh. Therefore, this forces the algorithm to 
compute a reconstruction function M for each reference point. Given a reconstruction 
and decimation parameter set, tied to the current reference point R , the evaluation 
function can be defined as: 

 counttriangleRMReval _).()( =  

In order to bind the reconstruction error below the threshold, we have defined a non-
linear constraint that takes advantage of the error function described in section 4. For 
a search point S , each point of the original cloud is evaluated, measured its distance 
from the reconstructed mesh, and obtained the maximum quadratic error: 

 { }))(,(max)(2
max DMixdistSe =  

2
maxe is then used by Genocop III to evaluate if a search point S  can be feasible and, 

thus, entered in the reference population. 

3.1 Optimization Workflow 

The optimization algoritm can search for the best reconstruction parameter set PR, as 
well as the best decimation parameter set PD. The optimization process is modeled as 
a unique execution of the genetic algorithm, in which each search point S = {PR, PD} 
contains reconstruction and decimation parameters. At each evaluation, the algorithm 
launches the mesh reconstruction function and computes the decimation filter. The 

main target of this optimization problem is to find a parameter set ( )DR PP ,  such that 
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4 Error Computation 

While filtering reconstructed meshes, our optimization algorithm needs an estimation 
of the output surface quality. In order to make the generated mesh feasible for a com-
puter aided design environment, a reconstruction algorithm must guarantee that the 
maximum error deriving by the decimation process does not exceed the specified 
threshold; under this assumption a simple error estimation, as the one used in com-
mon decimation algorithms, is not satisfactory. To face this problem, we have defined 
an error computation function that could be used by the genetic algorithm to check 
whether the generated population satisfies the maximum error constraint. This error 
metric is defined as the greatest distance between the cloud points and the generated 
geometry, i.e. the maximum deviation of the reconstructed mesh from the input point 
cloud. In order to compute the distance of a single point from the mesh, the error al-
gorithm searches for the nearest triangle through an AABB-tree and a “point-triangle 
distance” is then computed. 

As described by Jones in [11], the point-triangle distance could be obtained by pro-
jecting the point, say P, onto the plane of triangle T, and evaluating the position of the 
projection PT. If PT lies inside the triangle, the length |PPT| is the distance of P from T. 
If instead PT falls outside the triangle, the point-triangle distance equals to the dis-
tance from P to the closest edge or vertex to PT, depending of the projection position.  

Starting from the optimized 2D method proposed by Jones, we implemented a 
point-triangle distance algorithm, that converts the problem into a two dimensional 
one and exploits pre-computation to achieve better computational performances. Our 
algorithm pre-computes a translation and a rotation matrix, to place the triangle so 
that V1 lies on the origin, V2 lies on the z axis and V3 lies in the yz plane. 

By this way we can reduce a 3D distance calculation into a bi-dimensional one, 
avoiding cross and dot products, and lowering the total number of computations 
needed to obtain the point-triangle distance. Transformation matrices are applied to 
translate and rotate the triangle and then are applied again to the point. P is then pro-
jected onto the plane of the triangle by setting its x coordinate to zero, obtaining P'. 

Even though this process introduces an additional complexity to the distance  
computation process, transformation matrices allow to reduce the number of steps 
needed to obtain the distance, with computation times 94% lower than a matrix-free  
approach. 

P' position is evaluated by computing its barycentric coordinates (u,v) respect of 
the translated triangle V1V2V3. P' lies inside the triangle if 

 1,10,10 ≤+≤≤≤≤ vuvu  

In this case, the point-triangle distance is xPd .= . If P lies outside the triangle, the 

point-triangle distance equals to the distance of P from the nearest of the triangle 
edges. For the edge V1V2, its distance from P is computed by calculating the norma-
lized projection of P' on it: 
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triangle distance equals instead to the distance from P to the nearest vertex (V1 if t < 0 
or V2 if t > 1). Following the same process, the distance of P from V1V3 and V2V3 can 
be computed. 

4.1 Error Computation Optimization 

This phase requires two steps. A first step aims at reducing the point triangle distance 
CPU-time by applying a pre-computation process in order to reduce redundant calcu-
lations. A subsequent step allows a high decrease of the total number of distance 
evaluations by exploiting a binary search tree. By this way, for each point, the nearest 
triangle is identified and unnecessary distance computations are removed from the 
error estimation process. 

Pre-computation: As more than one point usually share the same nearest triangle, 
the error algorithm can be optimized by pre-computing the transformation matrices as 
they depend on the triangle vertices, and remain constant when changing P coordi-
nates. Additionally, barycentric coordinate equations 
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contain only four terms, depending on P', that need to be calculated at each iteration. 
Other terms are constant and can be reduced to a constant factor, reducing the com-
plexity of the computation.  

Search trees: Another optimization factor is introduced by a nearest triangle search 
algorithm. During the pre-computation step, the mesh is organized upon a hierarchic 
tree (AABB-tree [12]) whose leaf nodes contain a single triangle each. The partition-
ing process works by iteratively subdividing the space, binding each triangle to the 
partition that contains the center of its Axis Aligned Bounding Box (AABB). The 
subdivision process continues until the whole search tree is defined. Because of  
the AABB-tree depth, a hint mechanism has been adopted in order to allow to begin 
the search from an intermediate node, instead of the root node. A kd-tree [13] is built 
together with the AABB-tree, and is used to identify the group of triangles that likely  
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contains the nearest one from the computed point. Because of the construction tech-
nique used, the triangles group identified by the kd-tree search is contained in the 
same AABB-tree node. By this way, it is possible to start the AABB-tree search from 
an intermediate node, reducing the computational complexity of the search algorithm. 

Using search trees, our algorithm can evaluate the maximum error by computing a 
single distance for each point of the cloud, reducing the total number of point-triangle 
distance computations. 

5 Test and Results 

The optimization procedure has been verified using the reconstruction algorithm 
Greedy Projection Triangulation [3], because it is faster and more efficient than the 
other solutions analyzed in section 2. Even if we focused our study on a set of three 
reconstruction methods, our optimization algorithm ensures a high compatibility with 
every reconstruction and post-processing technique, and can adapt itself to the user 
requests. The algorithm has been then tested on benchmark point clouds, managing to 
achieve a good triangle count reduction, without exceeding the maximum error thre-
shold. An initial execution of the algorithm on the Stanford Bunny dataset, shows the 
optimization rate in respect of the maximum error imposed (Fig. 3). 

 

Fig. 3. Optimization rate 

The maximum error of 0.3 mm is a lower threshold. Under this error value, our al-
gorithm cannot optimize the mesh without breaking the precision requirement. Re-
sults for an error threshold of 0.5 mm are shown in Figure 1. Similar tests have been 
performed on different point cloud datasets, with increasing complexity. Our algo-
rithm has been proved to be able to generate an optimized mesh with a low triangle 
count. Figure 2 evidences the presence of some reconstruction errors, due to the lack 
of points in some areas of the original cloud. The optimization algorithm interpolated 
the missing surface and applied the decimation filter in order to reduce by 80% the 
number of triangles. Figure 4 shows the reconstruction and decimation process start-
ing from a high density point cloud. As it can be noticed, the reconstructed surface 
quality is high, with a maximum error lower than 0.2% of the point cloud width. 



610 V. Bevilacqua et al. 

 

 

Fig. 4. Mesh optimization from 437645 points to 98857 triangles 

A final test has been executed on a real world Trait d’Union company case project con-
sisting of a 65506 points cloud scanned from the 3x6x5 m3 environment of the Audito-
rium Unità d'Italia, Isernia (Italy). The resulting dataset is characterized by not equally 
distributed points, huge areas without any information and a strong noise caused by the 
presence of a building yard. Starting from the point cloud, a very dense mesh has been 
reconstructed, obtaining 518626 triangles. The decimation algorithm managed to reduce 
the triangles count up to 186132, with a maximum error of 5 cm (Fig. 5). 

 

Fig. 5. Mesh reconstruction and optimization from 518626 to 186132 triangles 

6 Conclusions 

We have shown how genetic algorithms can be exploited in order to automatically 
obtain optimized mesh reconstruction parameters. The reconstruction process can fit 
within a computer aided design environment, defining an algorithm that complies 
with precision and triangle count constraints. Mesh optimization has proven effective 
with both low and high resolution point clouds, even if the resulting mesh quality is 
tied to the number of points in the original cloud and the maximum distance between 
them. In practical use, surface sampling with laser scanner introduces an intrinsic 
error that cannot be avoided, and it has to be taken into account, when defining the 
algorithm target error threshold. The main problem we had to deal with, was the high 
computational complexity of reconstruction algorithms that, in a genetic algorithm, 
become a strong factor of time consumption and get even worse when the number of 
points in the cloud increases. Starting from these assumptions, it is possible to define 
some areas of future research and development: 

─ further optimization the error computation algorithm with a better exploitation of 
search trees; 

─ point cloud partitioning, in order to execute the algorithm on smaller datasets and 
merge the optimized meshes; 
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─ implementing a reconstruction and decimation algorithm oriented for an execution 
in a genetic algorithm; 

─ 3D geometric feature extraction and modeling of surfaces by using in a combined 
way genetic algorithms and Hough transform [14]; 

─ porting the algorithm in a parallel environment (e.g., GP-GPU, FPGA).  
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