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Abstract. This paper proposes a self-adaptive hybrid population-based incre-
mental learning algorithm (SHPBIL) for the m-machine reentrant permutation 
flow-shop scheduling problem (MRPFSSP) with makespan criterion. At the ini-
tial phase of SHPBIL, the information entropy (IE) of the initial population and 
an Interchange-based search are utilized to guarantee a good distribution of 
the initial population in the solution space, and a training strategy is designed to 
help the probability matrix to accumulate information from the initial popula-
tion. In SHPBIL’s global exploration, the IE of the probability matrix at each 
generation is used to evaluate the evolutionary degree, and then the learning 
rate is adaptively adjusted according to the current value of IE, which is helpful 
in guiding the search to more promising regions. Moreover, a mutation mechan-
ism for the probability model is developed to drive the search to quite different 
regions. In addition, to enhance the local exploitation ability of SHPBIL, a local 
search based on critical path is presented to execute the search in some narrow 
and promising search regions. Simulation experiments and comparisons demon-
strate the effectiveness of the proposed SHPBIL. 

Keywords: Population-based incremental learning algorithm, m-machine reen-
trant permutation flow-shop scheduling, information entropy, self-adaptive 
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1 Introduction 

This paper deals with the m-machine reentrant permutation flow-shop scheduling 
problem (MRPFSSP) with makespan criterion, which represents a typical subsystem 
in some semiconductor manufacturing system [1]. In MRPFSSP with n jobs and m 
machines, each job should be processed on machine1, 2, ..., ,1, 2, ..., , ...,1, 2, ...m m m , 
and the job sequence is the same for each machine. It has been proved that the 
MRPFSSP is NP-hard, even for the two-machine case [2]. Choi et al. [1] presented 
several types of heuristic algorithms for the MRPFSSP to minimize makespan.  
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Chen et al. [3] proposed a hybrid genetic algorithm (HGA) for the reentrant flow-shop 
scheduling problem (RFSSP) with makespan criterion. Chen et al. [4] developed a 
HGA to obtain approximate optimal solutions for the reentrant permutation flow-shop 
scheduling problem (RPFSSP) with makespan criterion. RPFSSP can be classified as 
a special case of MRPFSSP, in which the sequence of jobs is the same for each ma-
chine at each level. Therefore, some approaches for RPFSSP also can be expanded to 
address MRPFSSP. 

As a novel probabilistic-model based evolutionary algorithm, population-based  
incremental learning algorithm (PBIL) was introduced by Baluja [5] for solving trav-
eling salesman problem (TSP) and job-shop scheduling problem. PBIL uses a varia-
ble-independence probability model to generate new population and guide the search 
direction, which is the earliest model of estimation of distribution algorithm (EDA). 
The evolution process of PBIL is regarded as a process of competitive learning, and 
its probability model is updated by the current best solution at each generation to 
accumulate the information of excellent individuals. Due to its simple framework and 
outstanding global exploration ability, PBIL has attracted much attention and has 
been used to solve some production scheduling problems. Salhi et al. [6] proposed a 
PBIL to deal with hybrid flow-shop scheduling problem. Wang et al. [7] developed a 
hybrid PBIL for flexible job-shop scheduling problem, whose local search scheme is 
designed based on the critical path. Pang et al. [8] presented an adaptive PBIL algo-
rithm for solving job-shop and flow-shop scheduling problem, which can obtain satis-
fied solutions. 

In this paper, we propose a self-adaptive hybrid PBIL (SHPBIL) for MRPFSSP. 
Firstly, the information entropy (IE) of the initial population and an Interchange-
based search are utilized to guarantee a good distribution of the initial population in 
the solution space, and a training strategy is designed to help the probability matrix to 
accumulate information from the initial population. Secondly, in SHPBIL’s global 
exploration, the IE of the probability matrix at each generation is used to evaluate the 
evolutionary level, and then the learning rate is adaptively adjusted according to the 
current value of IE, which is helpful in guiding the search to more promising regions. 
Thirdly, a mutation mechanism for the probability model is developed to drive the 
search to quite different regions. Fourthly, to enhance the local exploitation ability of 
SHPBIL, a local search based on critical path is presented to execute the search in 
some narrow and promising search regions. Due to the hybridization of global search 
and local search, MRPFSSP can be solved effectively. Simulation experiments and 
comparisons show the effectiveness and robustness of the proposed SHPBIL. 

The remainder of this paper is organized as follows. In the next section, the 
MRPFSSP is stated briefly. In section 3, SHPBIL is presented and described in detail. 
In section 4, simulation result and comparisons are given. Finally, we end the paper 
with some conclusion and future work in section 5. 

2 Problem Description 

The problem size is denoted by n m L× ×   where n is the number of jobs, m is the 
number of machines, and L means the repeat or reentrant times. The MRPFSSP is 
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usually defined as follows. Each job should be processed on machine 
1, 2, ..., ,1, 2, ..., , ...,1, 2, ...m m m . In this case, every job can be decomposed into several 
layers and each layer starts on 1  and finishes on. That is, each job should visits every 
machine L (L>1) times. The job ordering is the same on all machines. No preemption 
is allowed. Once an operation is started, it must be completed without any interrup-
tion. At any time, each machine can process at most one job. 

Denote π =[ 1 2, , ..., n Lπ π π × ] the sequence or schedule of jobs to be processed, jπ  

( {1, ..., }j n L∈ × ) the jth job in π , ( )jl π  the repeat or reentrant times of job jπ  in 

[ 1 , ..., jπ π ], ( , , ( ))j jp k lπ π  the ( )thjl π  processing time of job jπ  on machine k , 

( , , ( ))j jC k lπ π  the ( )thjl π  completion time of job jπ  on machine k . Let 

0 0( , , ( )) 0C k lπ π =  and ( , , 0) 0jC kπ =  for {1, ..., }k m∈  and {1, ..., }j n L∈ × . Then 

( , , ( ))j jC k lπ π  can be calculated as follows: 

1 1( ,1, ( )) max{ ( ,1, ( )), ( , , ( ) 1)}

                          ( ,1, ( )),  1,..., ,

j j j j j j

j j

C l C l C m l

p l j n L

π π π π π π
π π

− −= −

+ = ×
 

(1)

1 1( , , ( )) max{ ( , , ( )), ( , 1, ( ))}

                           ( , , ( )), 1,..., , 2,..., .

j j j j j j

j j

C k l C k l C k l

p k l j n L k m

π π π π π π
π π

− −= −

+ = × =
 (2)

Thus, the makespan can be defined as 

max ( ) ( , , ( ))n L n LC C m lπ π π× ×= . (3)

The MRPFSSP with the makespan criterion is to find a schedule π*  in the set of all 
schedules Π  such that 

*
maxarg{ ( )} minCπ π= → , π∀ ∈Π . (4)

Obviously, the size of Π  is ( )!/ [ !]nn L L× . 

3 SHPBIL 

3.1 Solution Representation 

Based on the properties of MRPFSSP, we adopt the operation-based solution repre-
sentation, that is, every individual of the population is a feasible solution of the 
MRPFSSP, for example, 1 2 4 2[ , , ..., ] [1, 2, 4, 2,1, 3,3, 4]π π π × =  is an individual when 

the problem’s scale n m L× ×  is set to 4 3 2× × . 

3.2 Probability Model and Updating Mechanism 

Different from other evolutionary algorithms, PBIL generates new population by 
sampling a probability model (i.e., probability matrix). Hence, the probability model 
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has a key effect on the performances of the PBIL. In this study, the probability matrix 
is defined as follows: 

11 1

1

( ) ( )

( )

( ) ( )

C

matrix

n nC n C

P gen P gen

P gen

P gen P gen
×

 
 =  
 
 


  


, (5)

where C n L= × , 
1

( ) 1
n

wjw
P gen

=
= , and ( )wjP gen  is the probability of job w  

appearing in the thj  position of π  at generation gen . 

Let ( )i genπ = [ 1 2( ), ( ), ..., ( )i i iCgen gen genπ π π ] denote the thi  individual in 

SHPBIL’s population at generation gen , and ( )genα  the learning rate at generation 

gen . The matrix ( 1)matrixP gen +  is updated according to ( )i genπ  by the following 

two steps:  

Step 1:  Set ( )ijx genπ=  and ( 1) ( ) ( )xj xjp gen p gen genα+ = +  for 1,...,j =   
n L× . 

Step 2:  Set 1( 1) ( 1) / ( 1)n
wj wj y yjp gen p gen p gen=+ = + +  for 1, ...,w n=  and 

j =  1,...,n L× . 

3.3 New Population Generation Method 

In each generation of the SHPBIL, the new individuals are generated by sampling the 
probability matrix mentioned in 3.2. Denote PS  the size of the population and 

( ( 1), )iSelectJob gen j+π  the function of selecting a job in the thj  position of 

 ( 1)i genπ + by using the matrix ( )matrixP gen . The procedure of ( ( 1),iSelectJob genπ +  

 )j  is described as follows: 

Step 1: Randomly create a probability r  where ~ [0,1)r . 

Step 2: Get a candidate job CJ  by the roulette-wheel selection scheme. 

Step 2.1: If 1~ [0, ( ))jr p gen , then set 1CJ =  and go to Step 3. 

Step 2.2: If 1
1 1~ [ ( ), ( ))w w

y yj y yjr p gen p gen+
= =   and {1, , 1}w n∈ − , then set  

 1CJ w= +  and go to Step 3.  

Step 3: Return CJ . 

Let ( , ( 1))il CJ gen +π  denote the repeat times of CJ  in ( 1)i gen +π . Then, the new 

population generation method is given as the following steps: 

Step 1: Set 1i = . 
Step 2: Generate a new individual ( 1)i gen +π . 

Step 2.1: Set ( 1)ij genπ + =0 for 1, ,j n=  . 

Step 2.2: Set 1j = . 
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Step 2.3: ( ( 1), )iCJ SelectJob gen jπ= + . 

Step 2.4: If ( , ( 1))il CJ gen L+ =π , then go to Step 2.3. 

Step 2.5: Set ( 1)ij gen CJπ + = . 

Step 2.6: Set 1j j= + . 

Step 2.7: If j n L≤ × , then go to Step 2.3. 

Step 3: Set 1i i= + . 
Step 4: If i PS≤ , then go to Step 2. 

3.4 Population Initialization 

The SHPBIL produces the initial population by using information entropy [9] and 
Interchange-based neighborhood search. Firstly, we generate the population based on 
information entropy theory to guarantee the initial population has a better distribution 
in the solution space. Secondly, since Interchange is a simple and effective neighbor-
hood search in the existing literatures, an Interchange-based search can be utilized to 
enhance the quality of individuals in the population. According to our previous tests, 
we found that the initial population generated by our method could avoid both “super” 
and “similar” individuals effectively and the performance of our method was better 
than random-based or heuristic-based method. 

Denote ( )pop gen  the population at generation gen , ( )jIE gen  the information 

entropy of the j th position of all individuals in ( )pop gen , _ ( )IE pop gen  the in-

formation entropy of ( )pop gen , and 0 _IE pop  the threshold of _ ( )IE pop gen . 

( )jIE gen  can be calculated by directly using the method in [9]. _ ( )IE pop gen  can 

be expressed as: 

1
_ ( ) ( ) / ( )

n L

jj
IE pop gen IE gen n L

×

=
= × . (6)

We generate the initial population (0)pop  by the following steps: 

Step 1: Set 0 _IE pop  to a certain value. 

Step 2: Set (0)pop null= . 

Step 3: Generate the first individual 1(0)π  randomly and add it to (0)pop . 

Step 4: 2i = . 

Step 4.1: Generate an individual (0)iπ  randomly and add it to (0)pop . 

Step 4.2: Calculate _ (0)IE pop . 

Step 4.3: If 0_ (0) _IE pop IE pop≤ , then delete (0)iπ  from (0)pop . 

Step 4.4: 1i i= + . 
Step 4.5: If i PS≤ , then go to Step 4.1. 

Step 5: Output (0)pop .  
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Denote ( ( ), , )iInterchange gen u vπ  the interchange of the job at the uth position (i.e., 

( )iu genπ ) and the job at the vth position (i.e., ( )iv genπ ). Then, the final (0)pop  can 

be obtained by using the Interchange-based neighborhood search as follows: 

Step 0: Set i=1.  
Step 1: Randomly choose two positions u and v, where (0) (0)iu ivπ π≠ . Then, set  

1 (0) ( (0), , )i iInterchange u vπ π= .  

Step 2: Set 1LOOP = .  

Step 2.1: Randomly choose two positions u and v, where 1 1(0) (0)iu ivπ π≠ .  

Then, set 2 1(0) ( (0), , )i iInterchange u vπ π= . 

Step 2.2: If 2 1( (0)) ( (0))i if fπ π< , then set 1 2(0) (0)i iπ π= . 

Step 2.3: 1LOOP LOOP= + . 
Step 2.4: If ( 1) / 2LOOP n L n L< × × × − , then go to Step 2.1. 

Step 3: If 1( (0)) ( (0))i if fπ π< , then set 1(0) (0)i iπ π= . 

Step 4: Set i=i+1. If i ≤ PS, then goto Step 1. 
Step 5: Output the final (0)pop . 

3.5 Probability Matrix Training 

The population initialization strategy in the above subsection can guarantee the initial 
population has a better distribution in the solution space. However, based on our pre-
vious tests, the PBIL algorithm with the proposed population initialization strategy 
was still likely to fall into low-quality local optima at the start phase. This phenome-
non shows the fact that the probability matrix ( )matrixP gen  does not have enough 

historical information to track the relatively high-quality individuals in the initial 
population. Therefore, an information-entropy-based probability matrix training me-
thod is designed to enhance PBIL’s search ability. Denote _tra iniIE  the initial training 

information entropy, _ (0)matrixtraIE P  the information entropy of (0)matrixP , traK  

( 1traK < ) the training constant, _ 0traIE  the threshold of _ (0)matrixtraIE P , and 

1(0) [ (0),..., (0)]lbest lbest lbest
n Lπ π π ×=  the best individual of the initial population (0)pop . 

Based on the method in [8], _ (0)matrixtraIE P  can be calculated by the following for-

mulation: 

1 1
_ (0) (0) ln( (0))

n n L
matrixtra ij iji j

IE P P P
×

= =
= − ×  . 

(7) 

The procedure of probability matrix training can be expressed as follows: 

Step 0: Set _ ln( )tra iniIE n L n= × × . 

Step 1: Set _ 0 _tra tra tra iniIE K IE= × . 

Step 2: Train the probability matrix. 
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Step 2.1: Randomly select u and v, where (0) (0)lbest lbest
u vπ π≠ . 

Step 2.2: (0) ( (0), , )lbest lbest
neighbor Interchange u vπ π= . 

Step 2.3: Update the probability matrix (0)matrixP  according to (0)lbest
neighborπ   by  

              using the updating method in subsection 3.2. 
Step 2.4: Calculate _ (0)matrixtraIE P  of the current (0)matrixP  by using (7). 

Step 2.5: If _ 0_ (0)matrixtra traIE P IE> , then go to Step 2.1. 

Step3: Output a new probability matrix (0)matrixP  and the current _ (0)matrixtraIE P . 

It can be seen from the above procedure that Step 2.1 and Step 2.2 compose a pertur-
bation operator, and Step 2.5 is used to help (0)matrixP  to accumulate information 

from the Interchange-based neighbors of the best individual in (0)pop . Moreover, 

the output _ (0)matrixtraIE P  is used in the calculation of a threshold 0IE  in the next 

subsection. 

3.6 Self-adaptive Adjusting Strategy 

PBIL is a stochastic search algorithm, which guides the search direction by sampling 
the probability model. The updating mechanism of probability model is a key factor 
to perform global exploration. However, in the process of probability model updating, 
learning rate is a sensitive parameter. That is, a small value of learning rate will slow 
down the convergence speed. On the contrary, a large value of learning rate will cause 
the population to converge too early. Thus, it is important to choose suitable value for 
learning rate. 

The information entropy is utilized to measure the evolutionary degree. The evolu-
tion of PBIL is a process of accumulating the excellent solutions’ historical informa-
tion. That is, during the evolutionary process of PBIL, each ( )wjP gen  in probability 

matrix ( )matrixP gen  changes gradually from initial values to 0 or 1. Let 

_ ( )matrixIE P gen  denote the information entropy of ( )matrixP gen . By using the method 

in [8], _ ( )matrixIE P gen  can be expressed as: 

1 1
_ ( ) ( ) ln( ( ))

n n L
matrix ij iji j

IE P gen P gen P gen
×

= =
= − ×  , 0gen ≥ .  (8) 

Obviously, _ ( )matrixIE P gen  decreases with an increase of gen , and _ ( )matrixIE P gen  

tends to 0 when gen  increases to a large value. Denote 0 0 _ (0)matrixtraIE k IE P= ×  

the threshold of _ ( )matrixIE P gen  and 0α  the maximum learning rate. The learning 

rate ( )genα  is adaptively adjusted according to the formula as follows: 

2 0

1 0 0 0
( _ ( ) 1)

0 0

exp[ ( _ ( ) 1)] _ ( )
( )

_ ( )

matrix matrix

k IE Pmatrix gen IE
matrix

k IE P gen IE IE P gen IE
gen

IE P gen IE

α
α

β α× −

× − × <
=  × ≥

,  (9) 
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where 0k , 1k , and 2k  are the adjusting parameters and β  ( 0 1β< < ) is the base 

number of exponential function. The self-adaptive adjusting strategy is reflected in 
formula (9). That is, with the increase of gen , ( )genα  is set to a relatively small 

value to increase the population diversity and track the population at the beginning 
phase, and it is set to a comparatively large value to speed up the process of accumu-
lating information at the middle phase, and it is set to a small value to enhance the 
search precision and avoid falling into local optima at the last phase.   

3.7 Mutation Mechanism  

Each ( )wjP gen  in probability matrix ( )matrixP gen  changes gradually from initial 

values to 0 or 1 when gen  increases to a large value. This means the population 

diversity and exploration ability are decreased with the increase of gen . Inspired by 

Bajula’s work [10], we propose a mutation operator to disturb the probability matrix. 
Denote ( )m genα  the mutation rate at generation gen  and set 

( ) ( ) / 2m gen genα α= . The process of the proposed mutation mechanism can be de-

scribed as follows: 

Step 1: Randomly select u, v and q, where u v q≠ ≠ . 

Step 2: Randomly select 1ω , 2ω  and 3ω . 

Step 3: Set 
1 1

( ) ( ) ( )u u mP gen P gen genω ω α= + , 
2 2

( ) ( ) ( )v v mP gen P gen genω ω α= + , and 

 
3 3

( ) ( ) ( )q q mP gen P gen genω ω α= + . 

Step 4: For 1, ..,w n= , set 
1

( ) ( ) / ( )
n

wu wu yuy
P gen P gen P gen

=
=  ,   ( )wvP gen =  

1
( ) / ( )

n

wv yvy
P gen P gen

= , and 
1

( ) ( ) / ( )
n

wq wq yqy
P gen P gen P gen

=
=  . 

3.8 Critical-Path-Based Local Search 

3.8.1  Critical Path and Block 
Referring to the work of Grabowski and Wodecki [11], the MRPFSSP can also be 
described by a graph model, which illustrates the technological constraints for each 
job and the processing sequence on each machine. The longest path from node (1,1)  

to ( , )m n L×  in the graph is defined as the critical path, and the length of the critical 

path is equal to maxC .  

3.8.2  Search Strategy 
Grabowski and Wodecki [11] had given a detailed definition of the moves and neigh-
borhood structure for the permutation flow-shop problem, which can avoid invalid 
moves inside blocks. We extend Grabowski’s structure in this subsection, which can 
also provide some narrow and promising search regions. Denote ( , , )iInsert u vπ  the 

insertion of the job iuπ  before ivπ  when u v>  and after ivπ  when u v< , 
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1 2[ , ,..., ]kb
k k k kB π π π=  the thk  block and kb  the length of kB . Then, we define Left 

moves ( )L kM B  and Right moves ( )R kM B  as follows: 

( )L kM B : ( , ,1)kInsert B u  for 2,...,u kb= . 

( )R kM B : ( , , )kInsert B u kb  for 1,..., 1u kb= − . 

Denote 1 2( ) [ ( ), ( ),..., ( )]lbest lbest lbest lbest
n Lgen gen gen genπ π π π ×=  the local best individual of 

the current population ( )pop gen , BL  the total number of blocks in ( )lbest genπ , 

( )lbest
kN B  the set of neighbors of ( )lbest genπ  when applying ( )L kM B  and 

( )R kM B  to ( )lbest genπ , and ( ( ))lbest lbestFindBestN genπ  the scanning procedure of 

finding the best neighbor in 1 2( ) ( ) ( )lbest lbest lbest
BLN B N B N B∪ ∪ ∪ . The procedure 

of the critical-path-based local search for ( )lbest genπ  is given as follows: 

Step 1: Set _ 0 ( )i lbest genπ π= . 

Setp 2: Insert -based perturbation.  

Step 2.1: Randomly select u and v, where ( ) ( )lbest lbest
u vgen genπ π≠  and u v> . 

Step 2.2: ( ) ( ( ), , )lbest lbestgen Insert gen u vπ π= . 

Step 3: _1 ( ( ))i lbest lbestFindBestN genπ π= . 

Step 4: If _1 _ 0( ) ( )i if fπ π< , then _ 0 _1i iπ π= . 

Step 5: Output _ 0iπ . 

3.9 Procedure of SHPBIL 

Based on the contents in the above subsections, we propose the procedure of SHPBIL 
as follows: 

Step 0: Denote gbestπ  the global best individual and  genMax  the maximum gen-

eration. 
Step 1: Initialization. 
   Step 1.1:  Set 0gen = . 

   Step 1.2:   Generate the initial population (0)pop  by using the method in sub- 

    section 3.4 and set (0)gbest lbestπ π= . 

   Step 1.3: Set ( ) 1/wjP gen n=  for 1, ...,w n=  and 1, ...,j n L= × . 

   Step 1.4: Train the probability matrix (0)matrixP  by using the method in sub- sec-

tion  3.5. 
Step 2: Set 1gen gen= + . 

Step 3: Calculate the learning rate ( 1)genα −  by using the self-adaptive adjusting 

strategy in subsection 3.6.  
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Step 4: Generate the population ( )pop gen  by using the new population genera-

tionmethod in subsection 3.3, and calculate  the  makespan  of  each  
individual and update ( )lbest genπ . 

Step 5: Disturb the probability matrix ( )1matrixP gen −   by using the mutation 

mech-anism in subsection 3.7. 
Step 6: Apply critical-path-based local search in subsection 3.8 to  ( )lbest genπ   

and  update gbestπ . 

Step 7: Update the probability matrix ( )matrixP gen  according to gbestπ  by using 

the  updating mechanism in subsection 3.2. 
Step 8: If gen genMax< , then go to Step2. 

Step 9: Output gbestπ . 

It can be seen from the above procedure that Step 7 uses gbestπ  obtained in Step 6 and 
the self-adaptive ( 1)genα −  obtained in Step 3 to update the probability matrix, 

which means new generated individuals can aptly absorb the information of the global 
best individual during the evolution process and then guide the search to more prom-
ising regions, and Step 5 is the perturbation operator, which can restrain the search 
from dropping into local optima and drive the search to quite different regions. More-
over, Step 6 performs exploitation from the regions obtained by Step 4. Since both 
exploration and exploitation are stressed and balanced, SHPBIL is hopeful to obtain 
good results. 

4 Simulation Result and Comparisons 

4.1 Experimental Design 

In order to test the performance of the proposed SHPBIL, a set of instances under 
different scales is randomly generated. The n m L× ×  combinations include 
10 5 3× × , 10 8 6× × , 20 10 3× × , 20 12 5× × , 30 10 3× × , 30 15 6× × , 40 10 2× × , 
40 15 3× × , 50 10 3× × , and 50 20 4× × . The processing time ( , , ( ))j jp k lπ π  is gen-

erated from a uniform distribution [1, 100]. All algorithms are coded in Delphi7.0 and 
are executed on Mobile Intel Core 2 Duo 2.0 GHz processor with 2GB memory. 

For each instance, each algorithm is run 20 times independently. Based on our pre-
vious experiments, the parameters of SHPBIL are set as follows: the population size 

50PS = , the threshold 0 _ 0.2IE pop = , the maximum learning rate 0 0.04α = , the 

adjusting parameters 0 0.9k = , 1 0.3k =  and 2 0.7k = , the base number of exponen-

tial function 0.25β =  and the training constant 0.25traK = . 

4.2 Comparisons of HGA, Random+MN3+SO, HGA_V, and SHPBIL 

For the purpose of showing the effectiveness of SHPBIL, we compare SHPBIL with a 
hybrid genetic algorithm (HGA) [4] and a so-called Random+MN3+SO algorithm 



18 Z.-C. Li et al. 

 

[1]. HGA is an effective algorithm for RPFSSP. Random+MN3+SO algorithm is one 
of the most effective algorithms for MRPFSSP [1]. Moreover, we also compare 
SHPBIL with HGA_V, which is a variant of an effective HGA for RFSSP [3]. In 
HGA_V, we generate the first part of initial population randomly. The maximum 
generations of HGA, HGA_V and SHPBIL are set to 1000, 50000 and 500, respec-
tively. The running time of Random+MN3+SO is decided only by the scale of prob-
lem. The simulation results are listed in Table 1 and Table 2, where BEST  denotes 
the best makespan, AVG  denotes the average makespan, WORST  denotes the worst 
makespan, avgT  denotes the average running time, and SD  denotes the standard 

derivation. 
From Table 1 and Table 2, it is shown that the SHPBIL is better than HGA,  

HGA_V and Random+MN3+SO with respect to solution quality. The values of AVG , 
 

Table 1. Comparisons of BEST and AVG of HGA, HGA_V, Random+MN3+SO and SHPBIL 

Instances 
HGA HGA_V Random+MN3+SO SHPBIL 

BEST AVG BEST AVG BEST AVG BEST AVG WORST 

10×5×3 1995 2014.10 1990 2029.45 2186 2323.40 1968 1995.70 2012 

10×8×6 4265 4325.25 4595 4672.00 4986 5367.35 4247 4287.75 4399 

20×10×3 3914 3960.60 3877 3933.35 3976 4322.60 3892 3920.40 3947 

20×12×5 6808 6923.80 6956 7032.35 7093 7591.15 6842 6963.95 7038 

30×10×3 5808 5855.45 5790 5843.20 5989 6219.40 5796 5834.50 5880 

30×15×6 11739 11846.60 11649 11846.80 12100 12653.85 11674 11823.65 11902 

40×10×2 4848 4906.90 4851 4893.55 4850 5013.95 4793 4806.90 4822 

40×15×3 7751 7842.85 7633 7717.50 7764 8019.25 7592 7676.65 7718 

50×10×3 8832 8908.75 8933 8998.10 8788 8930.65 8689 8702.10 8717 

50×20×4 12968 13092.75 12937 13017.45 12903 13446.35 12855 12993.00 13072 

Average 6892.80 6967.71 6921.10 6998.38 7063.50 7388.80 6834.80 6900.46 6950.70 

Table 2. Comparisons of Tavg and SD of HGA, HGA_V, Random+MN3+SO and SHPBIL 

Prob-

lems 

HGA HGA_V Random+MN3+SO SHPBIL 

Tavg SD Tavg SD Tavg SD Tavg SD 

10×5×3 7.20 10.31 18.89 17.94 0.01 95.03 3.40 11.27 

10×8×6 75.85 44.31 25.51 34.77 0.13 264.25 24.89 42.36 

20×10×3 79.45 18.77 34.58 29.20 0.23 200.31 32.08 17.97 

20×12×5 469.17 53.04 179.67 83.29 1.66 223.28 156.61 47.26 

30×10×3 299.85 29.43 128.10 50.73 1.05 143.00 107.62 25.70 

30×15×6 954.68 89.09 766.40 80.79 16.01 340.50 683.41 59.84 

40×10×2 74.81 28.16 74.16 14.65 0.51 94.01 69.85 8.99 

40×15×3 362.55 60.45 261.33 41.42 4.81 199.69 215.31 34.50 

50×10×3 697.84 40.87 537.64 44.55 4.67 80.72 455.03 8.43 

50×20×4 2058.76 76.48 1301.29 61.74 40.65 355.98 1266.78 64.41 

Average 508.02 45.09 332.76 45.91 6.97 199.68 301.50 32.07 
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BEST  and SD  obtained by SHPBIL are much better than those obtained by HGA, 
HGA_V and Random+MN3+SO. Moreover, the WORST  values of SHPBIL are 
smaller than the AVG  values of the other compared algorithms for almost all the 
instance. Thus, SHPBIL is an effective algorithm for the m-machine reentrant permu-
tation flow-shop scheduling problem. 

5 Conclusion and Future Work 

This paper proposed a self-adaptive hybrid population-based incremental learning 
algorithm (SHPBIL) to solve the m-machine reentrant permutation flow-shop sche-
duling problem (MRPFSSP). In SHPBIL, the initial population was generated by 
using several presented methods, the global search was performed through the im-
proved PBIL with adaptive learning rate and mutation scheme, and a local search was 
guided by the critical-path-based neighborhood. Since the search behavior was 
enriched as well as global exploration and local exploitation were well balanced, 
MRPFSSP can be solved effectively. Simulation results and comparisons based on a 
set of randomly-generated instances showed the effectiveness of SHPBIL. Our future 
work is to develop some PBIL-based algorithms to deal with re-entrant job-shop 
scheduling problems. 
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