

D.-S. Huang et al. (Eds.) : ICIC 2013, LNCS 7995, pp. 8–20, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Self-adaptive Hybrid Population-Based Incremental
Learning Algorithm for M-Machine Reentrant

Permutation Flow-Shop Scheduling

Zuo-Cheng Li, Bin Qian*, Rong Hu, Chang-Sheng Zhang, and Kun Li

Department of Automation, Kunming University of Science and Technology,
Kunming 650500, China

bin.qian@vip.163.com

Abstract. This paper proposes a self-adaptive hybrid population-based incre-
mental learning algorithm (SHPBIL) for the m-machine reentrant permutation
flow-shop scheduling problem (MRPFSSP) with makespan criterion. At the ini-
tial phase of SHPBIL, the information entropy (IE) of the initial population and
an Interchange-based search are utilized to guarantee a good distribution of
the initial population in the solution space, and a training strategy is designed to
help the probability matrix to accumulate information from the initial popula-
tion. In SHPBIL’s global exploration, the IE of the probability matrix at each
generation is used to evaluate the evolutionary degree, and then the learning
rate is adaptively adjusted according to the current value of IE, which is helpful
in guiding the search to more promising regions. Moreover, a mutation mechan-
ism for the probability model is developed to drive the search to quite different
regions. In addition, to enhance the local exploitation ability of SHPBIL, a local
search based on critical path is presented to execute the search in some narrow
and promising search regions. Simulation experiments and comparisons demon-
strate the effectiveness of the proposed SHPBIL.

Keywords: Population-based incremental learning algorithm, m-machine reen-
trant permutation flow-shop scheduling, information entropy, self-adaptive
strategy, critical-path-based local search.

1 Introduction

This paper deals with the m-machine reentrant permutation flow-shop scheduling
problem (MRPFSSP) with makespan criterion, which represents a typical subsystem
in some semiconductor manufacturing system [1]. In MRPFSSP with n jobs and m
machines, each job should be processed on machine1, 2, ..., ,1, 2, ..., , ...,1, 2, ...m m m ,
and the job sequence is the same for each machine. It has been proved that the
MRPFSSP is NP-hard, even for the two-machine case [2]. Choi et al. [1] presented
several types of heuristic algorithms for the MRPFSSP to minimize makespan.

* Corresponding author.

 A SHPBIL Algorithm for MRPFSS 9

Chen et al. [3] proposed a hybrid genetic algorithm (HGA) for the reentrant flow-shop
scheduling problem (RFSSP) with makespan criterion. Chen et al. [4] developed a
HGA to obtain approximate optimal solutions for the reentrant permutation flow-shop
scheduling problem (RPFSSP) with makespan criterion. RPFSSP can be classified as
a special case of MRPFSSP, in which the sequence of jobs is the same for each ma-
chine at each level. Therefore, some approaches for RPFSSP also can be expanded to
address MRPFSSP.

As a novel probabilistic-model based evolutionary algorithm, population-based
incremental learning algorithm (PBIL) was introduced by Baluja [5] for solving trav-
eling salesman problem (TSP) and job-shop scheduling problem. PBIL uses a varia-
ble-independence probability model to generate new population and guide the search
direction, which is the earliest model of estimation of distribution algorithm (EDA).
The evolution process of PBIL is regarded as a process of competitive learning, and
its probability model is updated by the current best solution at each generation to
accumulate the information of excellent individuals. Due to its simple framework and
outstanding global exploration ability, PBIL has attracted much attention and has
been used to solve some production scheduling problems. Salhi et al. [6] proposed a
PBIL to deal with hybrid flow-shop scheduling problem. Wang et al. [7] developed a
hybrid PBIL for flexible job-shop scheduling problem, whose local search scheme is
designed based on the critical path. Pang et al. [8] presented an adaptive PBIL algo-
rithm for solving job-shop and flow-shop scheduling problem, which can obtain satis-
fied solutions.

In this paper, we propose a self-adaptive hybrid PBIL (SHPBIL) for MRPFSSP.
Firstly, the information entropy (IE) of the initial population and an Interchange-
based search are utilized to guarantee a good distribution of the initial population in
the solution space, and a training strategy is designed to help the probability matrix to
accumulate information from the initial population. Secondly, in SHPBIL’s global
exploration, the IE of the probability matrix at each generation is used to evaluate the
evolutionary level, and then the learning rate is adaptively adjusted according to the
current value of IE, which is helpful in guiding the search to more promising regions.
Thirdly, a mutation mechanism for the probability model is developed to drive the
search to quite different regions. Fourthly, to enhance the local exploitation ability of
SHPBIL, a local search based on critical path is presented to execute the search in
some narrow and promising search regions. Due to the hybridization of global search
and local search, MRPFSSP can be solved effectively. Simulation experiments and
comparisons show the effectiveness and robustness of the proposed SHPBIL.

The remainder of this paper is organized as follows. In the next section, the
MRPFSSP is stated briefly. In section 3, SHPBIL is presented and described in detail.
In section 4, simulation result and comparisons are given. Finally, we end the paper
with some conclusion and future work in section 5.

2 Problem Description

The problem size is denoted by n m L× × where n is the number of jobs, m is the
number of machines, and L means the repeat or reentrant times. The MRPFSSP is

10 Z.-C. Li et al.

usually defined as follows. Each job should be processed on machine
1, 2, ..., ,1, 2, ..., , ...,1, 2, ...m m m . In this case, every job can be decomposed into several
layers and each layer starts on 1 and finishes on. That is, each job should visits every
machine L (L>1) times. The job ordering is the same on all machines. No preemption
is allowed. Once an operation is started, it must be completed without any interrup-
tion. At any time, each machine can process at most one job.

Denote π =[1 2, , ..., n Lπ π π ×] the sequence or schedule of jobs to be processed, jπ

({1, ..., }j n L∈ ×) the jth job in π , ()jl π the repeat or reentrant times of job jπ in

[1 , ..., jπ π], (, , ())j jp k lπ π the ()thjl π processing time of job jπ on machine k ,

(, , ())j jC k lπ π the ()thjl π completion time of job jπ on machine k . Let

0 0(, , ()) 0C k lπ π = and (, , 0) 0jC kπ = for {1, ..., }k m∈ and {1, ..., }j n L∈ × . Then

(, , ())j jC k lπ π can be calculated as follows:

1 1(,1, ()) max{ (,1, ()), (, , () 1)}

 (,1, ()), 1,..., ,

j j j j j j

j j

C l C l C m l

p l j n L

π π π π π π
π π

− −= −

+ = ×

(1)

1 1(, , ()) max{ (, , ()), (, 1, ())}

 (, , ()), 1,..., , 2,..., .

j j j j j j

j j

C k l C k l C k l

p k l j n L k m

π π π π π π
π π

− −= −

+ = × =
 (2)

Thus, the makespan can be defined as

max () (, , ())n L n LC C m lπ π π× ×= . (3)

The MRPFSSP with the makespan criterion is to find a schedule π* in the set of all
schedules Π such that

*
maxarg{ ()} minCπ π= → , π∀ ∈Π . (4)

Obviously, the size of Π is ()!/ [!]nn L L× .

3 SHPBIL

3.1 Solution Representation

Based on the properties of MRPFSSP, we adopt the operation-based solution repre-
sentation, that is, every individual of the population is a feasible solution of the
MRPFSSP, for example, 1 2 4 2[, , ...,] [1, 2, 4, 2,1, 3,3, 4]π π π × = is an individual when

the problem’s scale n m L× × is set to 4 3 2× × .

3.2 Probability Model and Updating Mechanism

Different from other evolutionary algorithms, PBIL generates new population by
sampling a probability model (i.e., probability matrix). Hence, the probability model

 A SHPBIL Algorithm for MRPFSS 11

has a key effect on the performances of the PBIL. In this study, the probability matrix
is defined as follows:

11 1

1

() ()

()

() ()

C

matrix

n nC n C

P gen P gen

P gen

P gen P gen
×

 
 =  
 
 


  


, (5)

where C n L= × ,
1

() 1
n

wjw
P gen

=
= , and ()wjP gen is the probability of job w

appearing in the thj position of π at generation gen .

Let ()i genπ = [1 2(), (), ..., ()i i iCgen gen genπ π π] denote the thi individual in

SHPBIL’s population at generation gen , and ()genα the learning rate at generation

gen . The matrix (1)matrixP gen + is updated according to ()i genπ by the following

two steps:

Step 1: Set ()ijx genπ= and (1) () ()xj xjp gen p gen genα+ = + for 1,...,j =
n L× .

Step 2: Set 1(1) (1) / (1)n
wj wj y yjp gen p gen p gen=+ = + + for 1, ...,w n= and

j = 1,...,n L× .

3.3 New Population Generation Method

In each generation of the SHPBIL, the new individuals are generated by sampling the
probability matrix mentioned in 3.2. Denote PS the size of the population and

((1),)iSelectJob gen j+π the function of selecting a job in the thj position of

 (1)i genπ + by using the matrix ()matrixP gen . The procedure of ((1),iSelectJob genπ +

)j is described as follows:

Step 1: Randomly create a probability r where ~ [0,1)r .

Step 2: Get a candidate job CJ by the roulette-wheel selection scheme.

Step 2.1: If 1~ [0, ())jr p gen , then set 1CJ = and go to Step 3.

Step 2.2: If 1
1 1~ [(), ())w w

y yj y yjr p gen p gen+
= =  and {1, , 1}w n∈ − , then set

 1CJ w= + and go to Step 3.

Step 3: Return CJ .

Let (, (1))il CJ gen +π denote the repeat times of CJ in (1)i gen +π . Then, the new

population generation method is given as the following steps:

Step 1: Set 1i = .
Step 2: Generate a new individual (1)i gen +π .

Step 2.1: Set (1)ij genπ + =0 for 1, ,j n=  .

Step 2.2: Set 1j = .

12 Z.-C. Li et al.

Step 2.3: ((1),)iCJ SelectJob gen jπ= + .

Step 2.4: If (, (1))il CJ gen L+ =π , then go to Step 2.3.

Step 2.5: Set (1)ij gen CJπ + = .

Step 2.6: Set 1j j= + .

Step 2.7: If j n L≤ × , then go to Step 2.3.

Step 3: Set 1i i= + .
Step 4: If i PS≤ , then go to Step 2.

3.4 Population Initialization

The SHPBIL produces the initial population by using information entropy [9] and
Interchange-based neighborhood search. Firstly, we generate the population based on
information entropy theory to guarantee the initial population has a better distribution
in the solution space. Secondly, since Interchange is a simple and effective neighbor-
hood search in the existing literatures, an Interchange-based search can be utilized to
enhance the quality of individuals in the population. According to our previous tests,
we found that the initial population generated by our method could avoid both “super”
and “similar” individuals effectively and the performance of our method was better
than random-based or heuristic-based method.

Denote ()pop gen the population at generation gen , ()jIE gen the information

entropy of the j th position of all individuals in ()pop gen , _ ()IE pop gen the in-

formation entropy of ()pop gen , and 0 _IE pop the threshold of _ ()IE pop gen .

()jIE gen can be calculated by directly using the method in [9]. _ ()IE pop gen can

be expressed as:

1
_ () () / ()

n L

jj
IE pop gen IE gen n L

×

=
= × . (6)

We generate the initial population (0)pop by the following steps:

Step 1: Set 0 _IE pop to a certain value.

Step 2: Set (0)pop null= .

Step 3: Generate the first individual 1(0)π randomly and add it to (0)pop .

Step 4: 2i = .

Step 4.1: Generate an individual (0)iπ randomly and add it to (0)pop .

Step 4.2: Calculate _ (0)IE pop .

Step 4.3: If 0_ (0) _IE pop IE pop≤ , then delete (0)iπ from (0)pop .

Step 4.4: 1i i= + .
Step 4.5: If i PS≤ , then go to Step 4.1.

Step 5: Output (0)pop .

 A SHPBIL Algorithm for MRPFSS 13

Denote ((), ,)iInterchange gen u vπ the interchange of the job at the uth position (i.e.,

()iu genπ) and the job at the vth position (i.e., ()iv genπ). Then, the final (0)pop can

be obtained by using the Interchange-based neighborhood search as follows:

Step 0: Set i=1.
Step 1: Randomly choose two positions u and v, where (0) (0)iu ivπ π≠ . Then, set

1 (0) ((0), ,)i iInterchange u vπ π= .

Step 2: Set 1LOOP = .

Step 2.1: Randomly choose two positions u and v, where 1 1(0) (0)iu ivπ π≠ .

Then, set 2 1(0) ((0), ,)i iInterchange u vπ π= .

Step 2.2: If 2 1((0)) ((0))i if fπ π< , then set 1 2(0) (0)i iπ π= .

Step 2.3: 1LOOP LOOP= + .
Step 2.4: If (1) / 2LOOP n L n L< × × × − , then go to Step 2.1.

Step 3: If 1((0)) ((0))i if fπ π< , then set 1(0) (0)i iπ π= .

Step 4: Set i=i+1. If i ≤ PS, then goto Step 1.
Step 5: Output the final (0)pop .

3.5 Probability Matrix Training

The population initialization strategy in the above subsection can guarantee the initial
population has a better distribution in the solution space. However, based on our pre-
vious tests, the PBIL algorithm with the proposed population initialization strategy
was still likely to fall into low-quality local optima at the start phase. This phenome-
non shows the fact that the probability matrix ()matrixP gen does not have enough

historical information to track the relatively high-quality individuals in the initial
population. Therefore, an information-entropy-based probability matrix training me-
thod is designed to enhance PBIL’s search ability. Denote _tra iniIE the initial training

information entropy, _ (0)matrixtraIE P the information entropy of (0)matrixP , traK

(1traK <) the training constant, _ 0traIE the threshold of _ (0)matrixtraIE P , and

1(0) [(0),..., (0)]lbest lbest lbest
n Lπ π π ×= the best individual of the initial population (0)pop .

Based on the method in [8], _ (0)matrixtraIE P can be calculated by the following for-

mulation:

1 1
_ (0) (0) ln((0))

n n L
matrixtra ij iji j

IE P P P
×

= =
= − ×  .

(7)

The procedure of probability matrix training can be expressed as follows:

Step 0: Set _ ln()tra iniIE n L n= × × .

Step 1: Set _ 0 _tra tra tra iniIE K IE= × .

Step 2: Train the probability matrix.

14 Z.-C. Li et al.

Step 2.1: Randomly select u and v, where (0) (0)lbest lbest
u vπ π≠ .

Step 2.2: (0) ((0), ,)lbest lbest
neighbor Interchange u vπ π= .

Step 2.3: Update the probability matrix (0)matrixP according to (0)lbest
neighborπ by

 using the updating method in subsection 3.2.
Step 2.4: Calculate _ (0)matrixtraIE P of the current (0)matrixP by using (7).

Step 2.5: If _ 0_ (0)matrixtra traIE P IE> , then go to Step 2.1.

Step3: Output a new probability matrix (0)matrixP and the current _ (0)matrixtraIE P .

It can be seen from the above procedure that Step 2.1 and Step 2.2 compose a pertur-
bation operator, and Step 2.5 is used to help (0)matrixP to accumulate information

from the Interchange-based neighbors of the best individual in (0)pop . Moreover,

the output _ (0)matrixtraIE P is used in the calculation of a threshold 0IE in the next

subsection.

3.6 Self-adaptive Adjusting Strategy

PBIL is a stochastic search algorithm, which guides the search direction by sampling
the probability model. The updating mechanism of probability model is a key factor
to perform global exploration. However, in the process of probability model updating,
learning rate is a sensitive parameter. That is, a small value of learning rate will slow
down the convergence speed. On the contrary, a large value of learning rate will cause
the population to converge too early. Thus, it is important to choose suitable value for
learning rate.

The information entropy is utilized to measure the evolutionary degree. The evolu-
tion of PBIL is a process of accumulating the excellent solutions’ historical informa-
tion. That is, during the evolutionary process of PBIL, each ()wjP gen in probability

matrix ()matrixP gen changes gradually from initial values to 0 or 1. Let

_ ()matrixIE P gen denote the information entropy of ()matrixP gen . By using the method

in [8], _ ()matrixIE P gen can be expressed as:

1 1
_ () () ln(())

n n L
matrix ij iji j

IE P gen P gen P gen
×

= =
= − ×  , 0gen ≥ . (8)

Obviously, _ ()matrixIE P gen decreases with an increase of gen , and _ ()matrixIE P gen

tends to 0 when gen increases to a large value. Denote 0 0 _ (0)matrixtraIE k IE P= ×

the threshold of _ ()matrixIE P gen and 0α the maximum learning rate. The learning

rate ()genα is adaptively adjusted according to the formula as follows:

2 0

1 0 0 0
(_ () 1)

0 0

exp[(_ () 1)] _ ()
()

_ ()

matrix matrix

k IE Pmatrix gen IE
matrix

k IE P gen IE IE P gen IE
gen

IE P gen IE

α
α

β α× −

× − × <
=  × ≥

, (9)

 A SHPBIL Algorithm for MRPFSS 15

where 0k , 1k , and 2k are the adjusting parameters and β (0 1β< <) is the base

number of exponential function. The self-adaptive adjusting strategy is reflected in
formula (9). That is, with the increase of gen , ()genα is set to a relatively small

value to increase the population diversity and track the population at the beginning
phase, and it is set to a comparatively large value to speed up the process of accumu-
lating information at the middle phase, and it is set to a small value to enhance the
search precision and avoid falling into local optima at the last phase.

3.7 Mutation Mechanism

Each ()wjP gen in probability matrix ()matrixP gen changes gradually from initial

values to 0 or 1 when gen increases to a large value. This means the population

diversity and exploration ability are decreased with the increase of gen . Inspired by

Bajula’s work [10], we propose a mutation operator to disturb the probability matrix.
Denote ()m genα the mutation rate at generation gen and set

() () / 2m gen genα α= . The process of the proposed mutation mechanism can be de-

scribed as follows:

Step 1: Randomly select u, v and q, where u v q≠ ≠ .

Step 2: Randomly select 1ω , 2ω and 3ω .

Step 3: Set
1 1

() () ()u u mP gen P gen genω ω α= + ,
2 2

() () ()v v mP gen P gen genω ω α= + , and

3 3

() () ()q q mP gen P gen genω ω α= + .

Step 4: For 1, ..,w n= , set
1

() () / ()
n

wu wu yuy
P gen P gen P gen

=
=  , ()wvP gen =

1
() / ()

n

wv yvy
P gen P gen

= , and
1

() () / ()
n

wq wq yqy
P gen P gen P gen

=
=  .

3.8 Critical-Path-Based Local Search

3.8.1 Critical Path and Block
Referring to the work of Grabowski and Wodecki [11], the MRPFSSP can also be
described by a graph model, which illustrates the technological constraints for each
job and the processing sequence on each machine. The longest path from node (1,1)

to (,)m n L× in the graph is defined as the critical path, and the length of the critical

path is equal to maxC .

3.8.2 Search Strategy
Grabowski and Wodecki [11] had given a detailed definition of the moves and neigh-
borhood structure for the permutation flow-shop problem, which can avoid invalid
moves inside blocks. We extend Grabowski’s structure in this subsection, which can
also provide some narrow and promising search regions. Denote (, ,)iInsert u vπ the

insertion of the job iuπ before ivπ when u v> and after ivπ when u v< ,

16 Z.-C. Li et al.

1 2[, ,...,]kb
k k k kB π π π= the thk block and kb the length of kB . Then, we define Left

moves ()L kM B and Right moves ()R kM B as follows:

()L kM B : (, ,1)kInsert B u for 2,...,u kb= .

()R kM B : (, ,)kInsert B u kb for 1,..., 1u kb= − .

Denote 1 2() [(), (),..., ()]lbest lbest lbest lbest
n Lgen gen gen genπ π π π ×= the local best individual of

the current population ()pop gen , BL the total number of blocks in ()lbest genπ ,

()lbest
kN B the set of neighbors of ()lbest genπ when applying ()L kM B and

()R kM B to ()lbest genπ , and (())lbest lbestFindBestN genπ the scanning procedure of

finding the best neighbor in 1 2() () ()lbest lbest lbest
BLN B N B N B∪ ∪ ∪ . The procedure

of the critical-path-based local search for ()lbest genπ is given as follows:

Step 1: Set _ 0 ()i lbest genπ π= .

Setp 2: Insert -based perturbation.

Step 2.1: Randomly select u and v, where () ()lbest lbest
u vgen genπ π≠ and u v> .

Step 2.2: () ((), ,)lbest lbestgen Insert gen u vπ π= .

Step 3: _1 (())i lbest lbestFindBestN genπ π= .

Step 4: If _1 _ 0() ()i if fπ π< , then _ 0 _1i iπ π= .

Step 5: Output _ 0iπ .

3.9 Procedure of SHPBIL

Based on the contents in the above subsections, we propose the procedure of SHPBIL
as follows:

Step 0: Denote gbestπ the global best individual and genMax the maximum gen-

eration.
Step 1: Initialization.
 Step 1.1: Set 0gen = .

 Step 1.2: Generate the initial population (0)pop by using the method in sub-

 section 3.4 and set (0)gbest lbestπ π= .

 Step 1.3: Set () 1/wjP gen n= for 1, ...,w n= and 1, ...,j n L= × .

 Step 1.4: Train the probability matrix (0)matrixP by using the method in sub- sec-

tion 3.5.
Step 2: Set 1gen gen= + .

Step 3: Calculate the learning rate (1)genα − by using the self-adaptive adjusting

strategy in subsection 3.6.

 A SHPBIL Algorithm for MRPFSS 17

Step 4: Generate the population ()pop gen by using the new population genera-

tionmethod in subsection 3.3, and calculate the makespan of each
individual and update ()lbest genπ .

Step 5: Disturb the probability matrix ()1matrixP gen − by using the mutation

mech-anism in subsection 3.7.
Step 6: Apply critical-path-based local search in subsection 3.8 to ()lbest genπ

and update gbestπ .

Step 7: Update the probability matrix ()matrixP gen according to gbestπ by using

the updating mechanism in subsection 3.2.
Step 8: If gen genMax< , then go to Step2.

Step 9: Output gbestπ .

It can be seen from the above procedure that Step 7 uses gbestπ obtained in Step 6 and
the self-adaptive (1)genα − obtained in Step 3 to update the probability matrix,

which means new generated individuals can aptly absorb the information of the global
best individual during the evolution process and then guide the search to more prom-
ising regions, and Step 5 is the perturbation operator, which can restrain the search
from dropping into local optima and drive the search to quite different regions. More-
over, Step 6 performs exploitation from the regions obtained by Step 4. Since both
exploration and exploitation are stressed and balanced, SHPBIL is hopeful to obtain
good results.

4 Simulation Result and Comparisons

4.1 Experimental Design

In order to test the performance of the proposed SHPBIL, a set of instances under
different scales is randomly generated. The n m L× × combinations include
10 5 3× × , 10 8 6× × , 20 10 3× × , 20 12 5× × , 30 10 3× × , 30 15 6× × , 40 10 2× × ,
40 15 3× × , 50 10 3× × , and 50 20 4× × . The processing time (, , ())j jp k lπ π is gen-

erated from a uniform distribution [1, 100]. All algorithms are coded in Delphi7.0 and
are executed on Mobile Intel Core 2 Duo 2.0 GHz processor with 2GB memory.

For each instance, each algorithm is run 20 times independently. Based on our pre-
vious experiments, the parameters of SHPBIL are set as follows: the population size

50PS = , the threshold 0 _ 0.2IE pop = , the maximum learning rate 0 0.04α = , the

adjusting parameters 0 0.9k = , 1 0.3k = and 2 0.7k = , the base number of exponen-

tial function 0.25β = and the training constant 0.25traK = .

4.2 Comparisons of HGA, Random+MN3+SO, HGA_V, and SHPBIL

For the purpose of showing the effectiveness of SHPBIL, we compare SHPBIL with a
hybrid genetic algorithm (HGA) [4] and a so-called Random+MN3+SO algorithm

18 Z.-C. Li et al.

[1]. HGA is an effective algorithm for RPFSSP. Random+MN3+SO algorithm is one
of the most effective algorithms for MRPFSSP [1]. Moreover, we also compare
SHPBIL with HGA_V, which is a variant of an effective HGA for RFSSP [3]. In
HGA_V, we generate the first part of initial population randomly. The maximum
generations of HGA, HGA_V and SHPBIL are set to 1000, 50000 and 500, respec-
tively. The running time of Random+MN3+SO is decided only by the scale of prob-
lem. The simulation results are listed in Table 1 and Table 2, where BEST denotes
the best makespan, AVG denotes the average makespan, WORST denotes the worst
makespan, avgT denotes the average running time, and SD denotes the standard

derivation.
From Table 1 and Table 2, it is shown that the SHPBIL is better than HGA,

HGA_V and Random+MN3+SO with respect to solution quality. The values of AVG ,

Table 1. Comparisons of BEST and AVG of HGA, HGA_V, Random+MN3+SO and SHPBIL

Instances
HGA HGA_V Random+MN3+SO SHPBIL

BEST AVG BEST AVG BEST AVG BEST AVG WORST

10×5×3 1995 2014.10 1990 2029.45 2186 2323.40 1968 1995.70 2012

10×8×6 4265 4325.25 4595 4672.00 4986 5367.35 4247 4287.75 4399

20×10×3 3914 3960.60 3877 3933.35 3976 4322.60 3892 3920.40 3947

20×12×5 6808 6923.80 6956 7032.35 7093 7591.15 6842 6963.95 7038

30×10×3 5808 5855.45 5790 5843.20 5989 6219.40 5796 5834.50 5880

30×15×6 11739 11846.60 11649 11846.80 12100 12653.85 11674 11823.65 11902

40×10×2 4848 4906.90 4851 4893.55 4850 5013.95 4793 4806.90 4822

40×15×3 7751 7842.85 7633 7717.50 7764 8019.25 7592 7676.65 7718

50×10×3 8832 8908.75 8933 8998.10 8788 8930.65 8689 8702.10 8717

50×20×4 12968 13092.75 12937 13017.45 12903 13446.35 12855 12993.00 13072

Average 6892.80 6967.71 6921.10 6998.38 7063.50 7388.80 6834.80 6900.46 6950.70

Table 2. Comparisons of Tavg and SD of HGA, HGA_V, Random+MN3+SO and SHPBIL

Prob-

lems

HGA HGA_V Random+MN3+SO SHPBIL

Tavg SD Tavg SD Tavg SD Tavg SD

10×5×3 7.20 10.31 18.89 17.94 0.01 95.03 3.40 11.27

10×8×6 75.85 44.31 25.51 34.77 0.13 264.25 24.89 42.36

20×10×3 79.45 18.77 34.58 29.20 0.23 200.31 32.08 17.97

20×12×5 469.17 53.04 179.67 83.29 1.66 223.28 156.61 47.26

30×10×3 299.85 29.43 128.10 50.73 1.05 143.00 107.62 25.70

30×15×6 954.68 89.09 766.40 80.79 16.01 340.50 683.41 59.84

40×10×2 74.81 28.16 74.16 14.65 0.51 94.01 69.85 8.99

40×15×3 362.55 60.45 261.33 41.42 4.81 199.69 215.31 34.50

50×10×3 697.84 40.87 537.64 44.55 4.67 80.72 455.03 8.43

50×20×4 2058.76 76.48 1301.29 61.74 40.65 355.98 1266.78 64.41

Average 508.02 45.09 332.76 45.91 6.97 199.68 301.50 32.07

 A SHPBIL Algorithm for MRPFSS 19

BEST and SD obtained by SHPBIL are much better than those obtained by HGA,
HGA_V and Random+MN3+SO. Moreover, the WORST values of SHPBIL are
smaller than the AVG values of the other compared algorithms for almost all the
instance. Thus, SHPBIL is an effective algorithm for the m-machine reentrant permu-
tation flow-shop scheduling problem.

5 Conclusion and Future Work

This paper proposed a self-adaptive hybrid population-based incremental learning
algorithm (SHPBIL) to solve the m-machine reentrant permutation flow-shop sche-
duling problem (MRPFSSP). In SHPBIL, the initial population was generated by
using several presented methods, the global search was performed through the im-
proved PBIL with adaptive learning rate and mutation scheme, and a local search was
guided by the critical-path-based neighborhood. Since the search behavior was
enriched as well as global exploration and local exploitation were well balanced,
MRPFSSP can be solved effectively. Simulation results and comparisons based on a
set of randomly-generated instances showed the effectiveness of SHPBIL. Our future
work is to develop some PBIL-based algorithms to deal with re-entrant job-shop
scheduling problems.

Acknowledgments. This research was partially supported by National Science Foun-
dation of China (No. 60904081) and 2012 Academic and Technical Leader Candidate
Project for Young and Middle-Aged Persons of Yunnan Province (No. 2012HB011).

References

1. Choi, S.W., Kim, Y.D.: Minimizing Makespan on an M-machine Re-entrant Flowshop.
Computers & Operations Research 35(5), 1684–1696 (2008)

2. Choi, S.W., Kim, Y.D.: Minimizing Makespan on a Two-machine Re-entrant Flowshop.
In: Proceedings of the Fifth Asia Pacific Industrial Engineering and Management Systems
Conference, vol. 31(19), pp. 1–10 (2004)

3. Chen, J.S., Pan, J.C.H., Lin, C.M.: A Hybrid Genetic Algorithm for the Re-entrant Flow-
shop Scheduling Problem. Expert Systems with Applications 34(1), 570–577 (2008)

4. Chen, J.S., Pan, J.C.H., Lin, C.M.: Solving the Reentrant Permutation Flow-shop Schedul-
ing Problem with a Hybrid Genetic Algorithm. International Journal of Industrial Engi-
neering 16(1), 23–31 (2009)

5. Baluja, S.: Population-based Incremental Learning: a Method for Integrating Genetic
Search based Function Optimization and Competitive Learning. Technical Report CMU-
CS-94-193. Carnegie Mellon University, Pittsburgh (1994)

6. Salhi, A., Rodriguez, J.A.V., Zhang, Q.F.: An Estimation of Distribution Algorithm with
Guided Mutation for a Complex Flow Shop Scheduling Problem. In: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Computation, London, UK, pp. 570–
576 (2007)

20 Z.-C. Li et al.

7. Wang, S., Wang, L., Zhou, G., Xu, Y.: An Estimation of Distribution Algorithm for the
Flexible Job-shop Scheduling Problem. In: Huang, D.-S., Gan, Y., Gupta, P., Gromiha,
M.M. (eds.) ICIC 2011. LNCS (LNAI), vol. 6839, pp. 9–16. Springer, Heidelberg (2012)

8. Pang, H., Hu, K., Hong, Z.: Adaptive PBIL Algorithm and Its Application to Solve Sche-
duling Problems. In: Proceedings of the 2006 IEEE Conference on Computer Aided Con-
trol Systems Design, Munich, Germany, pp. 784–789 (2006)

9. Hong, S.K.: Shape Optimization of Electromagnetic Devices Using Immune Algorithm.
IEEE Transactions on Magnetics 33(2), 1876–1879 (1997)

10. Baluja, S., Caruana, R.: Removing the Genetics From the Standard Genetic Algorithm. In:
Proceeding of the International Conference on Machine Learning, Lake Tahoe, CA, pp.
38–46 (1995)

11. Grabowski, J., Wodecki, M.: A very Fast Tabu Search Algorithm for the Permutation Flow
Shop Problem with Makespan Criterion. Computers & Operations Research 31(11), 1891–
1909 (2004)

	A Self-adaptive Hybrid Population-Based Incremental Learning Algorithm for M-Machine Reentrant
Permutation Flow-Shop Scheduling

	1 Introduction
	2 Problem Description
	3 SHPBIL
	3.1 Solution Representation
	3.2 Probability Model and Updating Mechanism
	3.3 New Population Generation Method
	3.4 Population Initialization
	3.5 Probability Matrix Training
	3.6 Self-adaptive Adjusting Strategy
	3.7 Mutation Mechanism
	3.8 Critical-Path-Based Local Search
	3.9 Procedure of SHPBIL

	4 Simulation Result and Comparisons
	4.1 Experimental Design
	4.2 Comparisons of HGA, Random+MN3+SO, HGA_V, and SHPBIL

	5 Conclusion and Future Work
	References

