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Abstract. Append/Log-based Storage and Multi-Version Database Management
Systems (MV-DBMS) are gaining significant importance on new storage hard-
ware technologies such as Flash and Non-Volatile Memories. Any modification
of a data item in a MV-DBMS results in the creation of a new version. Traditional
implementations, physically stamp old versions as invalidated, causing in-place
updates resulting in random writes and ultimately in mixed loads, all of which
are suboptimal for new storage technologies. Log-/Append-based Storage Man-
agers (LbSM) insert new or modified data at the logical end of log-organised
storage, converting in-place updates into small sequential appends. We claim that
the combination of multi-versioning and append storage effectively addresses the
characteristics of modern storage technologies.

We explore to what extent multi-versioning approaches such as Snapshot Iso-
lation (SI) can benefit from Append-Based storage, and how a Flash-optimised
approach called SIAS (Snapshot Isolation Append Storage) can improve perfor-
mance. While traditional LbSM use coarse-grain page append granularity, SIAS
performs appends in tuple-version granularity and manages versions as simply
linked lists, thus avoiding in-place invalidations.

Our experimental results instrumenting a SSD with TPC-C generated OLTP
load patterns show that: a) traditional LbSM approaches are up to 73% faster
than their in-place update counterparts; b) SIAS tuple-version granularity append
is up to 2.99x faster (IOPS and runtime) than in-place update storage managers;
c) SIAS reduces the write overhead up to 52 times; d) in SIAS using exclusive
append regions per relation is up to 5% faster than using one append region for
all relations; e) SIAS I/O performance scales with growing parallelism, whereas
traditional approaches reach early saturation.

1 Introduction

Multi-Version Database Management Systems (MV-DBMS) and Log/Append-based
Storage Managers (LbSM) are gaining significant importance on new storage hardware
technologies such as Flash and Non-Volatile Memories. Compared to traditional storage
such as HDD or main memory new storage technologies have fundamentally different
characteristics. I/O patterns have major influence on their performance and endurance:
especially overwrites and (small) random writes are significantly more expensive than
a sequential write.

MV-DBMS create new versions of data items once they are modified. Treating old
and new versions differently provides a mechanism to leverage some of the properties of
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Fig. 1. Version handling

new storage, such as fast reads and low latency. However, HDD (read) optimised imple-
mentations such as Snapshot Isolation (SI) invalidate old versions physically in-place
as successor versions are created, resulting in random writes and mixed load which is
suboptimal for new storage technologies. Additionally they do not leverage read/write
asymmetry. Log/Append-based storage managers (LbSM) organise the storage as a cir-
cular log. They physically append modified/new data at the end (the logical head) of the
log, which eliminates in-place updates and random writes. LbSM maintain a mapping
of appended blocks and pages, they do not address issues related to version organisation
such as additional write overhead introduced by the in-place invalidation.

We claim that the combination of a MV-DBMS using LbSM effectively addresses the
characteristics of modern storage technologies. We further state that the most promis-
ing approach for append storage needs to be implemented within the architecture and
algorithms of modern MV-DBMS. The following example offers a detailed descrip-
tion. Fig. 1 shows the invalidation process of different MV-DBMS (SI, SIAS), coupled
to different types of storage managers (’in-place update’ as original SI, page granularity
LbMS, tuple granularity LbSM): three Transactions (T 1, T 2, T 3) update data item X
in serial order resulting in a relation that contains three different tuple versions of data
item X . T 1 creates the initial version X0 of X . T 2 issues the first update. In original
SI, X0 is invalidated in-place by setting its invalidation timestamp, subsequently X1 is
created. The update issued by T 3 proceeds analogously and X1 is invalidated in-place
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while X2 is created as a new tuple version. Original SI, coupled to in-place update stor-
age manager, writes X0 and X1 to the same location (random write) after the updates
T 1 and T 2 (the initial page based on the free space). Original SI, coupled to a page
append LbSM, will write X0 and X1 to pages with a higher page number (small se-
quential append). The payload of the write (updated versions/total versions per page)
may be very low, yielding ’sparse’ writes. Under SIAS X0, X1 and X3 will be buffered,
placed on the same page and appended altogether.

The contributions of this paper are as follows. We explore the performance impli-
cations of an approach combining LbSM and MV-DBMS optimised for Flash storage
called SIAS (Snapshot Isolation Append Storage).

It organises versions in MV-DBMS as a simple backwards-linked list and assigns
all versions of a data item a virtual ID. SIAS involves adapted algorithmic version
invalidation handling and visibility rules. Furthermore, it is natively coupled to a LbSM
and uses tuple granularity for logical append I/Os.

The experimental results under a TPC-C aligned OLTP load show that: a) ’page
append LbSM’ is up to 73% faster than traditional the ’in-place update’ approach; b)
using SIAS version-wise append we observe up to 2.99 times improvement in both
IOPS and runtime; c) SIAS reduces the write overhead up to 52x; d) page-append LbSM
yields equal write amount as the ’in-place update’ approach; e) space reclamation due
to deleted/invisible tuples is not suitable for append LbSMs in general and slows them
down by approx. 40%; f) in SIAS using one local append region per relation is up to
5% faster than one global append region; g) using page remapping append with one
global region is approx. 4.5% faster than using a local region; h) all append storage I/O
performance scales with growing parallelism where in-place update approaches reach
early saturation.

The paper is organised as follows: Section 2 provides a brief overview on related
algorithmic approaches and systems; a general introduction of the used algorithms (SI
and SIAS) is provided in Section 4; the main characteristics of Flash storage are sum-
marised in Section 3. Section 2 describes combinations of in-place and append storage
managers. Our experimental setup and framework are described in Section 6. The ex-
perimental results are discussed in Section 7.

2 Related Work

Snapshot Isolation (SI) is introduced and discussed in [2]. Specifics of a concrete SI
implementation (PostgreSQL) are described in detail in [24,20]. As reported in [2] SI
fails to enforce serializability. Recently a serializable version of SI was proposed [5]
that is based on read/write dependency testing in serialization graphs. Serializable SI
assumes that the storage provides enough random read throughput needed to determine
the visible version of a tuple valid for a timestamp, making it ideal for Flash storage.
[19] represents an alternative proposal for SI serializability. In addition serializable SI
has been implemented in the new (but still unstable) version of PostgreSQL and will
appear as a standard feature in the upcoming release.

SI [2] assumes a logical version organisation as a double-linked list and a two place
invalidation, while making no assumption about the physical organisation. An
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improvement of SI called SI-CV, co-locating versions per transactions on pages has
been proposed in [10].

Alternative approaches have been proposed in [7] and explored in [17,4] in com-
bination with MVCC algorithms and special locking approaches. [17,4,7,11] explore
a log/append-based storage manager. A performance comparison between different
MVCC algorithms is presented in [6]. [15] offers insights to the implementation details
of SI in Oracle and PostgreSQL. An alternative approach utilising transaction-based
tuple collocation has been proposed in [10].

Similar chronological-chain version organisation has been proposed in the context
of update intensive analytics [14]. In such systems data-item versions are never deleted,
instead they are propagated to other levels of the memory hierarchy such as hard disks
or Flash SSDs and archived. Any logical modification operation is physically realised
as an append. SIAS on the other hand provides mechanisms to couple version visibil-
ity to (logical and physical) space management. Another difference is that SIAS uses
transactional time (all timestamps are based on a transactional counter) as opposed to
timestamps that correlate to logical time (dimension). Stonebraker et al. realised the
concept of TimeTravel in PostgreSQL [22].

Multi-Version Database Systems. While Time-travel and MVCC approaches have
been around for three decades, MV-DBMS approaches are nowadays applied in in-
memory computing systems such as Hyper [13] or HYRISE [12] to handle mixed
OLAP, OLTP loads, to handle database replication (Postgre-R) etc.

MV-DBMS are a good match for enterprise loads [14]. As discussed in [14], these
are read-mostly; the percentage of writes is as low as approx. 17% (OLTP) and approx.
7% (OLAP) [14]. Since reads are never blocked under MVCC, in such settings there
are clear performance benefits for the read-mostly enterprise workloads.

Multi-version approaches are widely spread in commercial and open source systems.
Some MV-DBMS systems are: Berkeley DB (Oracle), IBM DB2, Ingres, Microsoft
SQL Server 2005, Oracle, PostgreSQL, MySQL/InnoDB. And in addition in-memory
systems such as Hyper [13], Hyder [3] etc.

Multi-Version approaches and MV-DBMS leverage the properties of new hardware.
In this paper we investigate how these can be utilised to leverage I/O asymmetry of
new storage technologies. Multi-version approaches can be used to leverage hardware
characteristics of modern CPUs in transparently creating snapshots of in-memory pages
[13] or to control data placement and caching in memory hierarchies.

Append Storage Management. LbSMs follow the principle of appending new data at
the end of log structured storage. MV-DBMS alleviate appending of new data in princi-
ple, yet traditional approaches write data to arbitrary positions, updating data in-place or
allocating new blocks. Such traditional approaches, implemented in current databases,
address special properties of HDDs – especially their high sequential throughput and
high latency access time on any type of I/O. They maintain clustering by performing
in-place updates to optimise for read accesses, reducing the latency introduced by the
properties of HDDs (rotational delay, positioning time). Thus implementations like SI
in PostgreSQL rely on the in-place invalidation of old tuple versions. New storage tech-
nologies introduce fundamentally different properties (Section 3) and require optimised
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access methods. Especially low latency access time and fast random reads are not ad-
dressed yet and have to be leveraged.

LbSMs address the high throughput of large sequential writes on HDDs but destroy
clustering, since new and updated data is not clustered with existing data yielding the
same clustering attributes. Approaches using delta stores still require relatively expen-
sive merge operations and generate overhead on read accesses [16].

The applicability of LbSMs for novel asymmetric storage has been partially ad-
dressed in [21,3] using page-granularity, whereas SIAS employs tuple-granularity (tu-
ple append LbSM) much like the approach proposed in [4], which however invalidates
tuples in-place. Given a page-append LbSM the invalidated page is remapped and per-
sisted at the head of the log, hence no write-overhead reduction. In tuple-granularity,
multiple new tuple-versions can be packed on a new page and written together.

3 Flash Memories

Enterprise Flash SSDs independent of their hardware interfaces (SATA, PCIe), exhibit
significantly better performance and very different characteristics than traditional hard
disks. Since most DBMS were build to compensate for the properties of HDDs, they
tread SSDs as HDD replacement, which yields suboptimal performance. The most im-
portant characteristics of Flash are:

(i) Asymmetric read/write performance – reads are up to an order of magnitude faster
than writes as a result of the physical NAND properties and their internal organisation.
NAND memories introduce erase as an additional third operation together with read
and write. Before performing a write, the whole block containing the page to be written
must be erased. Writes should be evenly spread across the whole volume to avoid dam-
age due to wear and increase endurance - wear-levelling. Hence no write in-place as on
HDDs, instead copy-and-write. (ii) High random read performance (IOPS) – random
reads for small block sites are up to hundred times faster than on an HDD. (iii) Low
random write performance (IOPS) – small random writes are five to ten times slower
than reads. Random writes depend one the fill-degree of device and incur a long term
performance degradation due to Flash-internal fragmentation effects. (iv) Good sequen-
tial read/write transfer. Sequential operations are asymmetric, due to techniques as read
ahead and write back caching the asymmetry is below 25%. (v) Suboptimal mixed load
performance – Flash SSDs can handle pure loads (read or write) very well despite of
the degree of randomness (random writes excluded). (vi) Parallelism – Compared to
the typical hard drive and due to their multi-chip internal organisation Flash can handle
much higher levels of I/O parallelism, [8],[1].

4 Algorithmic Description

In the following section we give a brief introduction to the SI algorithm as originally
proposed in [2]. We then illustrate SI by using the implementation in PostgreSQL and
point out differences and optimisations. Finally we present the SIAS algorithm.
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4.1 Snapshot Isolation Introduction

SI is a timestamp based MVCC mechanism which assigns each running transaction ex-
actly one timestamp and each data item two. The transaction’s timestamp corresponds
to the start of the transaction and the data item’s timestamps correspond to the creation,
respectively the invalidation of that item. An invalidation is issued on an update/dele-
tion of an item. Each running transaction executes against its own version/snapshot of
the committed state of the database. Isolated from effects of other concurrently run-
ning transactions, a transaction is allowed to read an older committed version of a
data item instead of reading a newer, uncommitted version of the same item or be-
ing blocked/aborted. A snapshot describes the visible range of items the transaction is
able to ”see” (facilitated by the timestamps). On an access to an item the transaction’s
timestamp is compared to the ones on the item. Items with a higher creation timestamp
(inserted after the start of the transaction) are invisible and such with a lower (or equal)
timestamp are visible to the transaction as long as they are committed and were not in-
serted concurrently. Reads are therefore never blocked by writes and changes made by a
transaction are executed on its own snapshot which becomes visible to follow up trans-
actions after its successful commit. Whether or not a commit is successful is determined
at commit time by the transaction manager, which performs a write set comparison of
the involved concurrent transactions. Overlapping write sets between concurrent trans-
actions are not allowed and lead to the abort of at least one transaction since it is not
allowed to have more than one update to an item. Two equivalent rules guarantee this
behaviour: ”first-committer-wins” [2] and ”first-updater-wins” [2],[20]. The former cor-
responds to a deferred check at commit time, while the latter is enforced by immediate
checks e.g. exclusive locks.

4.2 SIAS - Algorithm

Fig. 1 shows how different versions are handled under different approaches. SIAS [18]
introduces a new addressing mechanism: (multiple) tuple versions are addressed as a
chain by means of a virtual tuple ID (V ID) that identifies the chain (as one logical
item; all tuple versions in the chain share the same VID).

When a tuple-version is read the entry point is fetched first and the visibility can be
determined for each VID. If the entry points timestamp is too high or equals a con-
current transaction, the predecessor version is fetched. Visibility information is coded
within the algorithmic chain traversal access methods. Each version n(n �= 0) of a tu-
ple is linked to its predecessor n − 1. The first version (n = 0) points to itself or uses
a NULL pointer. The V ID identifies a chain; each member-tuple receives a unique
tuple-ID (TID) as well as a version count that indicates its position within the chain.
The newest member has the highest chain count and becomes the entry point. To speed
up VID lookups an in-memory data structure, recording of all entry points is created
(Sect. 4.3). The tuple structure used by SIAS is shown in Table 1 and illustrated in
the following example. Assume two data items X and Y forming two chains; X was
updated once and Y twice. The entry points are versions X1 and Y2 (marked bold in
Table 1). Each version maintains a pointer to its predecessor forming a physical chain.
The visibility is determined by a chain traversal, starting at the entry point applying
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Table 1. SIAS - On-Tuple Information

Tuple Creation Predecessor Predecessor VID Version
Xmin Pointer Xmin (Xpred) Count

X0 15 X0 null 0x0 0
X1 38 X0 15 0x0 1
Y0 50 Y0 null 0x23 0
Y1 83 Y0 50 0x23 1
Y2 110 Y1 83 0x23 2

the SIAS algorithm rules – instead of reading an invalidation timestamp the creation
timestamps of two subsequent versions are compared (xmin, xmin pred).

SIAS verifies visibility of tuple versions based on the entry point, while SI inspects
each tuple version individually. The number of chains equals the number of entry points
(items) while the amount of tuple versions in the database can be much higher. SIAS
entry-points represent a subset of all tuple-versions and at most one tuple-version per
chain is visible to each transaction. The visibility control can discard a whole (sub-)
chain of tuple-versions, depending on the value of the creation timestamp, thus saving
I/O. Hence on average, SIAS has to read less tuple-versions to determine visibility, but
may perform more read I/Os to fetch the appropriate version. The most recent version
may not be the one visible for an older (longer running) transaction.

4.3 SIAS - Data Structures

SIAS introduces two data structures to organise the entry point information:
(i) dstructI: mapping of the VID to the chain member count.
(ii) dstructII: mapping of the VID to (the location of) the entry point (TID).
dstructI accelerates verification of the following condition: is the tuple-version un-

der inspection an entry-point or has the entry-point been changed by another committed
transaction. This information can also be obtained by comparing the tuple ID (TID) of
the read tuple version and the TID within dstructII , thus making dstructI optional.

dstructII is used to access the current entry-point.
The chaining mechanism based on VIDs has the following implications: (a) The

chain length depends on whether old and invisible versions are retained/archived and
on the update frequency and duration of transactions. The chain length is therefore
defined by the total amount of updates on the respective tuple. (b) The amount of extra
reads due to chain traversal depends on (c) The amount of visible versions.

5 Append Storage

In the following we briefly introduce our approaches to append storage in MV-DBMS.
We classify the approaches in page-wise and tuple-wise LbSMs, further categorize them
according to Figure 2 and explain them in more detail in the following sections.
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5.1 Page-Append

The page-append LbSM describes append storage outside the database, without knowl-
edge of the inertia of transmitted pages, implementing a ’holistic’ page remapping
paradigm. We utilise a default out of the box PostgreSQL running under a SI MVCC
mechanism (Sect. 6), enhanced by LbSMs in the following variants:

SI-PG (SI – Page Global) denotes the traditional approach where pages are written
to one single append region on the storage device; hence a global append region. It
performs a remapping of page- and block addresses. We simulate variants with (SI-PG-
V) and without a garbage collection mechanism (SI-PG-NV); we refer to SI-PG when
describing both variants.

SI-PL (SI – Page Local) extends the SI-PG approach with multiple append regions.
SI-PL receives more information about the content of the transmitted pages. SI-PL par-
titions the global append storage into multiple local append regions, dedicating each
region to a single relation of the database. We simulate variants with (SI-PL-V) and
without a garbage collection mechanism (SI-PL-NV); we refer to SI-PL when describ-
ing both variants.

PostgreSQL uses a space reclamation process called vacuum to garbage collect in-
visible versions (Sect. 5.4). SI-PG and SI-PL do not require changes to the MV-DBMS.
They rather maintain a mapping of pages, performing block-address translation to gen-
erate flash-aware patterns. Both can be implemented as a layer between the device and
the MV-DBMS. Although this already delivers some benefits for new storage media
such as flash, our evaluation shows that those can be optimised by inherently integrat-
ing the storage manager into the MV-DBMS.
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5.2 SIAS - Tuple Append LbSM

We developed SIAS (Snapshot Isolation Append Storage) which algorithmically changes
SI and improves on it by enabling tuple based appends without the need for in-place in-
validation of old tuple versions. SIAS appends tuples to a page until it is filled and
subsequently appends it to the head of the corresponding append log.
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SIAS-L uses multiple append regions, where each region is dedicated to exactly one
relation of the database. All pages in a local append region belong to the same relation
and all tuples within a page belong to the same relation. Tuples are appended to a page
of their relation, which is subsequently appended to the relation’s local append region,
after the page is filled completely or has reached a certain threshold.

SIAS-G uses one append region for all pages. Tuples within a single page belong to
the same relation. Tuples get appended to a single page (analogously to SIAS-L) which
is then appended to a global append region. The global append region maintains pages
of all the relations of the MV-DBMS.

According to the SIAS concept we compare two variants of SIAS-L and SIAS-G,
an optimistic approach which assumes that SIAS data structures are cached (SIAS-LO
and SIAS-GO) and a pessimistic approach which fetches the data structures separately
(SIAS-LP and SIAS-GP), thus resulting in four variants of SIAS. Since the test results
of all SIAS variants showed the same performance independent of the garbage collec-
tion process, we omit the detailed report of these additional results in this paper and
refer to SIAS-L and SIAS-G subsuming all four approaches.

5.3 In-Place - No Append

For the in-place approach we use the original Snapshot Isolation in two configurations:
SI-NV (SI No Vacuum) – deactivated garbage collection in PostgreSQL (vacuum),
SI-V (SI with Vacuum) – activated garbage collection (vacuum) in PostgreSQL.

5.4 Space Reclamation

In LbSMs written data is immutable, whereas in a MV-DBMS invalidated versions
of tuples become invisible and occupy space which can be freed. The page-append
LbSM has no knowledge about invalidated versions and therefore has to rely on meth-
ods within the MV-DBMS for space reclamation (e.g. vacuum in PostgreSQL).

Physical blocks get invalidated because the logical pages were remapped to another
position and have to be physically deleted on the Flash device. The moment of execution
is implementation dependent. On Flash an erase can only be performed in granularities
of an erase unit - usually much larger than a page. Issuing an overwrite of a block
(instead of deleting it) results in a remapping within the Flash device and therefore
to unpredictable performance analogously to an in-place update (black box). Physical
deletes should therefore only be issued in erase unit granularity (using trim). Pages
which are still valid and reside within the unit which is about to be erased have to be
re-mapped/re-inserted (append).

The tuple-append LbSM in SIAS is able to garbage collect single versions of a tuple.
A page may contain still valid tuples which are simply re-inserted into the append log.
Since each page is appended as soon as it is filled, the pages stay compact.

6 Evaluation

Our evaluation of the different LbSM alternatives (Sect. 2) is based upon a trace driven
simulation, which we describe in the following paragraphs. We opted for simulation
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for two reasons: (a) to focus on the main characteristics of the multi versioning algo-
rithms (i.e. exclude influences of the transaction-, storage- and buffer-manager as well
as PostgreSQL’s specific overhead); and (b) to compare a number of LbSM and SIAS
alternatives. The simulator was validated against the PostgreSQL implementation of
our baseline SIAS algorithm (see validation in this section). The simulation workload
is created by an open source TPC-C implementation [23]. The simulation (Fig. 3(b))
comprises the following steps: (i) Recording of the raw-trace; (ii-a) Simulation of SIAS
and SI resulting in I/O traces; (ii-b) remapping of the traces, creating SI-PL and SI-PG
traces; (iii) I/O trace execution on a physical SSD (Intel X25-E SLC) using FIO; and
(iv) validation using our SIAS prototype in PostgreSQL, which was installed on the
same hardware. We describe all those steps in detail in the following paragraphs.

Instrumentation. A default, out of the box PostgreSQL (9.1.4.) was used to record
the trace. It was instrumented utilising TPC-C (DBT2 v0.41)[23] with the PostgreSQL
default page size of 8KB. All appends were conducted using this granularity. The used
Fedora Linux (kernel 2.6.41) included the systemtap extension (translator 1.6; driver
0.152).

Raw Trace. The raw trace (Fig. 3(b)) contains: (i) tuples and the operations executed
on them; (ii) the visibility decision for each tuple; (iii) the mapping of tuples to pages.
We record each operation on a tuple and trace the visibility decision for that tuple.
By setting probing points accordingly within the transaction- and buffer-manager, we
eliminate their influence and are able to simulate the raw I/O of heap-data (non-index
data) tuples. The resulting raw-trace is fed to the simulator.

(a) Blocktrace on SSD: SI-V vs. SIAS-LO (b) Simulation Process

Fig. 3. Blocktraces and Simulation Process

Simulator. SI and SIAS are simulated based on the raw trace including visibility checks
and the resulting storage accesses. During the simulation the DB state is re-created
according to the respective approach (Fig. 2). Hence the simulated databases always
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contain exactly the same tuples as the original DB. The only difference is the permuta-
tion of the tuples’ location; tuples reside on different pages within the simulated DB.

SIAS creates a new tuple mapping: when a tuple is inserted into the original DB (raw
trace), the tuple is inserted in its initial version, augmented by the SIAS attributes. The
baseline SIAS algorithm (SIAS-L) algorithmically generates a local append, yielding
one append region per relation. In order to simulate SIAS-G, an additional mapping is
performed, analogous to the page-append LbSM.

As a result of the simulation process block-level traces are generated. These reflect
the I/O access pattern that a DMBS would execute against the storage. Subsequently the
block-level traces are executed on an a real SSD using FIO, which allows us to precisely
investigate the influence of I/O parallelism and raw access.

FIO Trace. The FIO I/O benchmark guarantees controlled trace execution, repeatable
results, configurable I/O parallelism and reliable metrics. FIO was configured using the
libaio library accessing an Intel X25-E SSD via direct I/O as a raw device. The raw
device had no filesystem layer in between. We consider the SSD as a black box, which
means that no tuning for device-specific properties was applied. To avoid SSD state
dependencies we executed a series of 8KB random writes after each single run.

Validation. We implemented the SIAS prototype in PostgreSQL. This prototype was
validated under a TPC-C workload. The write patterns generated by our simulation and
the PostgreSQL SIAS prototype are the same (see Fig. 3(a)). In terms of I/O parallelism
both (PostgreSQL prototype and simulation) achieve: (i) compareable performance; (ii)
similar write patterns; and (iii) the same net/gross write overhead reduction.

Load Characterisation. We used the DBT2 benchmark v0.41 [9] which is an open
source TPC-C [23] implementation. DBT2 was configured for two traces. Both traces
used 10 clients per warehouse and a total of 200 warehouses. Trace I with a runtime of
60 minutes and Trace II with a runtime of 90 minutes. Based on these two traces we
also investigate the impact on space management, chain length etc.

7 Results

I/O Performance and Parallelism. We measured the performance of the algorithms
discussed in Section 2 and shown in Fig. 2. We configured FIO with different queue
depths (QD) ranging from 1 (no parallelism) to 32 (the maximum queue depth of our
Intel X25-E SSD). I/O performance: In general, SI-V and SI-NV (SI with and without
Vacuum/garbage collection) show the lowest performance for Trace I and Trace II: the
read IOPS of SI-V are the lowest as depicted in Fig. 4a, 4b, 4c and 4d, therefore the
runtime of SI-V and SI-NV is significantly higher (Fig. 4e and 4f). Figure 4a and 4c
both illustrate the same trace. Figure 4a illustrates the differences between SIAS and
SI-P in both global and local implementation variants. Figure 4c additionally displays
the general in-place update approach of SI. Furthermore, the I/O performance (seeks,
throughput, access distribution) over time for 32 QD is depicted in Fig. 6; SI-V needs
more than twice the time of SIAS-L variants. The runtime of the page-append LbSM
variants is 2.1x the runtime of SIAS for Trace I (Fig. 4d) and Trace II (Fig. 4e, 4f).
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D: Parallelism (QD) - Runtime (sec.) Trace (I) 
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F: Parallelism (QD) - Runtime (sec.) Trace (II) 
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Fig. 4. I/O Parallelism: Read IOPS vs. Queue Depth for Trace I (a, c, d, e) and Trace II (b, f)

Without parallelism: (i) the SIAS I/O rate is 34% higher than SI-V and 23% higher than
SI-NV; (ii) SI-NV is approx. 8% faster than SI-V.

I/O parallelism: Fig. 4 shows that SI-V and SI-NV improved up to a QD of two (2
parallel I/O requests), stagnated at four and reached saturation at a QD of eight; hence
no leverage of parallelism. The page-append LbSM variants SI-PG and SI-PL are up to
73% faster than the in-place update SI variants SI-V and SI-NV (QD of 32). Without
parallelism SI-PL is 13% faster than SI if garbage collection (Vacuum) is activated
(up to 25% higher read IOPS than SI-V if vacuum is deactivated). SI-PL is marginally
slower than SI-PG (Fig. 4c and 4d). Since SI-PL has to write at multiple locations, more
seeks (random writes) are required than in SI-PG, as illustrated in Fig. 5 (Seek Count)
– the append-log region for reads/writes of each relation is visible as a straight line.

With increasing parallelism approaches using one append region per relation have
the advantage over single region approaches.

Garbage Collection (Vacuum): all variants with enabled vacuum are significantly
slower than their counterparts. This trend is intensified by a higher degree of paral-
lelism. In Fig. 4a and 4b we observe that vacuum creates significant overhead when
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using the page-append LbSM. Starting with a queue depth of four, page-append LbSM
variants loose up to 35% IOPS when using vacuum (Fig. 4a and 4b). SI-PG-NV and SI-
PL-NV scale up to the maximum queue depth experiencing a slight stagnation at queue
depths larger than four (Fig. 4a and 4b). SI-PG-V and SI-PL-V benefit from higher
queue depths but not as much as the variants with deactivated vacuum. Garbage col-
lection mechanisms are therefore not beneficial for page-append LbSMs. SIAS scales
almost linearly with increasing parallelism and benefits from a high queue depth. The
difference between pessimistic and optimistic SIAS is not significant but enhances with
increasing levels of parallelism as depicted overall in Fig. 4. Global and local variants
of SIAS perform equally well at lower levels of parallelism. With increasing parallelism
the local approach is approx. 5% faster than the global approach, hence making opti-
mal use of the Flash device’s parallelism. On Trace I, SIAS (in all variants) is up to
2.99x faster than SI-V, 2.43x faster than SI-PL-V/SI-PG-V and approx. 40% faster than
SI-PG-NV/SI-PL-NV. Since the performance difference between the global and local
implementation of SIAS is marginal and in favour of the local variant, it is not justi-
fied to create and maintain an additional page mapping as it is necessary for the global
variant (SIAS-G). Trace II shows results analogous to Trace I. The I/O rate directly
correlates with the runtime of the traces. The tendencies observed in this section are
confirmed. The in-place approaches SI-V and SI-NV need the most time to complete
the trace as depicted in Fig. 4d and Fig.6. SI-PL-NV and SI-PG-NV show almost iden-
tical runtime behaviour as well as SI-PL-V and SI-PG-V (Fig. 4e). SIAS is in all four
implementations faster than the other approaches (Fig. 4).

Fig. 5. Read Write Blocktrace on Physical Device: SI-PL vs. SI-PG

Read/Write Overhead. Non-Vacuum SI variants (SI-PG-NV, SI-PL-NV and SI-NV)
write 966MB in Trace I and 1396MB in Trace II. SI variants performing Vacuum (SI-
PG-V, SI-PL-V and SI-V) write 1304.6MB in Trace I and 1975.3 in Trace II. A key
feature of SIAS is the significant write reduction of up to 52 times. SIAS writes (in
all variants) 25MB in Trace I and 39.9MB in Trace II. The write overhead is reduced
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to a fragment of the usual amount, which is a direct consequence of the out-of-place
invalidation, logical tuple appends and dense filling of pages. The metadata update to
invalidate a tuple version in SI leads to an update of the page in which this version re-
sides, although the data-load of that version is unchanged. Additionally the new version
has to be stored. SIAS avoids such metadata updates. Pages are packed more dense and
tuple versions of subsequent access are most likely cached.

Fig. 6. Read Write Blocktrace on Physical Device: SI-V vs. SIAS-LO

8 Conclusion

We compared in-place storage management and page-/tuple-based LbSM approaches
in conjunction with multi versioning databases on new storage technologies and elab-
orated the influence of one single or multiple append regions. Our findings show that
while page-append LbSM approaches are better suitable for new storage technologies,
they can be optimised by implementing tuple-based LbSM directly into the MV-DBMS.
We implemented SIAS, a tuple-append LbSM within a MV-DBMS which algorithmi-
cally generates local append behaviour. SIAS leverages the properties of Flash stor-
age, achieves high performance, scales almost linearly with growing parallelism and
exhibits a significant write reduction. Our experimens show that: a) traditional LbSM
approaches are up to 73% faster than their in-place update counterparts; b) SIAS tuple-
version granularity append is up to 2.99x faster (IOPS and runtime) than in-place update
approaches; c) SIAS reduces the write overhead up to 52 times; d) in SIAS using ex-
clusive append regions per relation is up to 5% faster than using one append region for
all relations.
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5. Cahill, M.J., Röhm, U., Fekete, A.D.: Serializable isolation for snapshot databases. In: Proc.
SIGMOD 2008, pp. 729–738 (2008)

6. Carey, M.J., Muhanna, W.A.: The performance of multiversion concurrency control algo-
rithms. ACM Trans. on Computer Sys. 4(4), 338 (1986)

7. Chan, A., Fox, S., Lin, W.-T.K., Nori, A., Ries, D.R.: The implementation of an integrated
concurrency control and recovery scheme. In: Proc. SIGMOD 1982 (June 1982)

8. Chen, F., Koufaty, D.A., Zhang, X.: Understanding intrinsic characteristics and system im-
plications of flash memory based solid state drives. In: Proc. SIGMETRICS 2009 (2009)

9. Database Test Suite DBT2, http://osdldbt.sourceforge.net
10. Gottstein, R., Petrov, I., Buchmann, A.: SI-CV: Snapshot isolation with co-located versions.

In: Nambiar, R., Poess, M. (eds.) TPCTC 2011. LNCS, vol. 7144, pp. 123–136. Springer,
Heidelberg (2012)

11. Gottstein, R., Petrov, I., Buchmann, A.: Aspects of append-based database storage manage-
ment on flash memories. In: Proc. of DBKDA 2013, pp. 116–120. IARIA (2013)
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