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Abstract. Efficient database indexing and information retrieval tasks
such as k -nearest neighbor (kNN) search still remain difficult challenges
in large-scale and high-dimensional data. In this work, we perform the
first comprehensive analysis of different partitioning strategies for the
state-of-the-art high-dimensional indexing technique iDistance. This work
greatly extends the discussion of why certain strategies work better than
others over datasets of various distributions, dimensionality, and size.
Through the use of novel partitioning strategies and extensive experi-
mentation on real and synthetic datasets, our results establish an up-to-
date iDistance benchmark for efficient kNN querying of large-scale and
high-dimensional data and highlight the inherent difficulties associated
with such tasks. We show that partitioning strategies can greatly affect
the performance of iDistance and outline current best practices for using
the indexing algorithm in modern application or comparative evaluation.

Keywords: iDistance, Large-scale, High-dimensional, Indexing,
Retrieval, kNN.

1 Introduction

Modern database-oriented applications are filled with rich information composed
of an ever-increasing amount of large-scale and high-dimensional data. While
storing this data is becoming more routine, efficiently indexing and retrieving it
is still a practical concern. A frequent and costly retrieval task on these databases
is k-nearest neighbor (kNN) search, which returns the k most similar records to
any given query record. While all database management systems (DBMS) are
highly optimized for a few dimensions, the traditional indexing algorithms (e.g.,
the B-tree and R-tree families) degrade quickly as the number of dimensions
increase, and eventually a sequential (linear) scan of every single record in the
database becomes the fastest retrieval method.

Many algorithms have been proposed in the past with limited success for truly
high-dimensional indexing, and this general problem is commonly referred to as
the curse of dimensionality [4]. Practitioners often mitigate these issues through
dimensionality reduction techniques (manual and automated) before using multi-
dimensional indexing methods, or even adding application logic to combine mul-
tiple independent indexes or requiring user involvement during search. However,
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modern applications are increasingly employing highly-dimensional techniques
to effectively represent massive data, such as the highly popular 128-dimensional
SIFT features [11] in Content-Based Image Retrieval (CBIR).

First published in 2001, iDistance [10,20] specifically addressed kNN queries in
high-dimensional space and has since proven to be one of the most efficient and
state-of-the-art high-dimensional indexing techniques available for exact kNN
search. In recent years, iDistance has been used in a number of demanding ap-
plications, including large-scale image retrieval [21], video indexing [15], mobile
computing [8], peer-to-peer systems [6], and surveillance system video retrieval
[14]. Unfortunately, no works to date have focused on developing methods of
best practice for these modern applications.

This work methodically analyzes partitioning strategies with the goal of in-
creasing overall performance efficiency of indexing and retrieval determined by
the total tree nodes accessed, candidate records returned, and the time taken to
perform a query. These metrics are used to quantitatively establish best practices
and provide benchmarks for the comparison of new methods. We introduce a new
and open-source implementation of the original iDistance algorithm1 including
detailed documentation, examples, visualizations, and extensive test scripts. We
also contribute research-supporting code for pre-processing datasets and post-
processing results, as well as all published algorithmic improvements.

The motivations addressed in the original iDistance publications have only
increased in importance because of the ubiquity of rich high-dimensional and
large-scale data for information retrieval, such as multimedia databases and the
mobile computing market which have exploded in popularity since the last pub-
lication in 2005. While there is little doubt the algorithm remains effective and
competitive, a more thorough investigation into performance-affecting criteria
is needed to provide a basis for general capabilities and best practices. With-
out this study, it can be difficult to effectively use iDistance in application and
reliably compare it to new methods in future research.

The rest of the paper is organized as follows. Section 2 highlights background
and related works, an overview of iDistance is presented in Section 3, and exper-
iments and results are presented in Section 4. We follow with a brief discussion
of key findings and best practices in Section 5, and we close with our conclusions
and future work in Section 6.

2 Background and Related Works

The ability to efficiently index and retrieve data has become a silent backbone of
modern society, and it defines the capabilities and limitations of practical data
usage. While the one-dimensional B+-tree [2] is foundational to the modern re-
lational DBMS, most real-life data has many dimensions (attributes) that would
be better indexed together than individually. Mathematics has long-studied the
partitioning of multi-dimensional metric spaces, most notably Voronoi Diagrams
and the related Delaunay triangulations [1], but these theoretical solutions can be

1 Publicly available at: http://code.google.com/p/idistance/
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too complex for application. R-trees [7] were developed with minimum bounding
rectangles (MBRs) to build a hierarchical tree of successively smaller MBRs con-
taining objects in a multi-dimensional space, and R*-trees [3] enhanced search
efficiency by minimizing MBR overlap. However, these trees (and most deriva-
tions) quickly degrade in performance as the dimensions increase [5,13].

Recently, research has focused on creating indexing methods that define a one-
way lossy mapping function from a multi-dimensional space to a one-dimensional
space that can then be indexed efficiently in a standard B+-tree. These lossy
mappings require a filter-and-refine strategy to produce exact query results,
where the one-dimensional index is used to quickly retrieve a subset of the data
points as candidates (the filter step), and then each of these candidates is checked
to be within the specified query region in the original multi-dimensional space
(the refine step). Because checking the candidates in the actual dataspace is a
costly task, the goal of the filter step is to return as few candidates as possible
while retaining the exact results.

The Pyramid Technique [5] was one of the first prominent methods to effec-
tively use this strategy by dividing up the d-dimensional space into 2d pyramids
with the apexes meeting in the center of the dataspace. This was later extended
by moving the apexes to better balance the data distribution equally across
all pyramids [22]. For greater simplicity and flexibility, iMinMax(θ) [13,16] was
developed with a global partitioning line θ that can be moved based on the
data distribution to create more balanced partitions leading to more efficient re-
trieval. The simpler transformation function also aids in faster filter-step calcu-
lations for finding candidate sets. Both the Pyramid Technique and iMinMax(θ)
were designed for range queries in a multi-dimensional space, and extending to
high-dimensional kNN queries is not a trivial task.

It should also be briefly noted that many other works are focused on returning
approximate nearest neighbors [9,18], but these are outside the scope of efficient
exact kNN retrieval by iDistance presented in this paper.

3 iDistance

The basic concept of iDistance is to segment the dataspace into disjoint par-
titions, where all points in a specific partition are indexed by their distance
(“iDistance”) to the reference point of that partition. This results in a set of
one-dimensional distance values, each related to one or more data points, for
each partition that are all together indexed in a single standard B+-tree. The
algorithm was motivated by the ability to use arbitrary reference points to de-
termine the (dis)similarity between any two data points in a metric space, al-
lowing single dimensional ranking and indexing of data points no matter what
the dimensionality of the original space [10]. The algorithm also contains several
adjustable parameters and run-time options, making the overall complexity and
performance highly dependent on the choices made by the user. Here we provide
an overview of the algorithm and readers are encouraged to refer to the original
works [10,20] for details that are beyond the scope of our investigation.
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3.1 Building the Index

The most important algorithmic option for iDistance is the partitioning strategy.
The original works presented two types of abstract partitioning strategies: space-
based, which assumes no knowledge of the actual data, and data-based, which
adjusts the size and location of partitions based on the data distribution [10,20].
For any strategy, every partition requires a representative reference point, and
data points are assigned to the single closest partition in Euclidean distance.

A mapping scheme is required to create separation between the partitions
in the underlying B+-tree, ensuring any given index value represents a unique
distance in exactly one partition. Given a partition Pi with reference point Oi,
the index value yp for a point p assigned to this partition is defined by Equation
1, where dist() is any metric distance function, i is the partition index, and c is a
constant multiplier for creating the partition separation. While constructing the
index, each partition Pi records the distance of its farthest point as distmaxi.

yp = i× c+ dist(Oi, p) (1)

3.2 Querying the Index

The index should be built in such a way that the filter step returns the fewest
possible candidate points without missing the true k-nearest neighbor points.
Fewer candidates reduces the costly refinement step which must verify the true
multi-dimensional distance of each candidate from the query point. Performing
a query q with radius r consists of three basic steps: 1) determine the set of

(a) (b)

Fig. 1. (a) A query sphere q with radius r and the searched regions (shaded) in the two
overlapping partitions Pi and Pj defined by their reference points Oi and Oj , and radii
distmaxi and distmaxj respectively. (b) A scatter plot of a two dimensional dataset
with four clusters, accompanied by each single dimensional histogram.
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partitions to search, 2) calculate the search range for each partition in the set,
and 3) retrieve the candidate points and refine by true distance.

Figure 1(a) shows an example query point q with radius r contained com-
pletely within partition Pi and intersecting partition Pj , as well as the shaded
ranges of each partition that need to be searched. For each partition Pi and its
distmaxi, the query sphere (q, r) overlaps the partition if the distance from the
edge of the query sphere to the reference point Oi is less than distmaxi, as de-
fined in Equation 2. There are two possible cases of overlap: 1) q resides within
Pi, or 2) q is outside of Pi, but the query sphere intersects it. In the first case, the
partition needs to be searched both inward and outward from the query point
over the range (q ± r), whereas an intersected partition is only searched inward
from the edge of the partition to the farthest point of intersection. Equation 3
combines both overlap cases into a single search range for each partition.

dist(Oi, q)− r ≤ distmaxi (2)

[dist(Oi, q)− r,MIN(dist(Oi, q) + r, distmaxi)] (3)

3.3 Partition Strategies

Space-based Strategies. The only space-based methods presented in detail
in previous works [10,20] were Center of Hyperplane and External Point, which
we refer to in this work as Half-Points (HP) and Half-Points-Outside (HPO),
respectively. The HP method mimics the Pyramid-Technique [5] by placing ref-
erence points at the center of each dimensional edge of the data space with 2d
partitions in d dimensions. The HPO method creates the same reference points,
but then moves them outside of the dataspace by a preset distance to reduce the
overlap volume between partitions. For example, in a 2D space such as Figure
1(b), HP would result in four partitions, based on reference points: (0.0, 0.5),
(0.5, 0.0), (1.0, 0.5), and (0.5, 1.0), and HPO-10 (movement of 10.0) would result
in reference points: (−10.0, 0.5), (0.5,−10.0), (11.0, 0.5), and (0.5, 11.0) respec-
tively. Here we also introduce random reference point selection (RAND) to cre-
ate any number of partitions located randomly in the dataspace. While this is a
trivial strategy, it has not been shown before and greatly helps compare other
strategies by providing a näıve benchmark.

Data-based Strategies. The primary benefit of data-based methods is their
adaptability to data distributions, which greatly increases retrieval performance
in real-world settings. Two methods were originally introduced: center of cluster
and edge of cluster, but only the center of cluster method was actually presented
in published results [10,20], which used algorithmically derived cluster centers
as reference points to create cluster-based partitions in the dataspace.

Approximate cluster centers can be found through a variety of popular cluster-
ing algorithms, such as k-Means [12], BIRCH [23], etc., and the original authors
recommend (without explicit rationale) to use 2d as the number of partitions
(clusters). They believed using the edges of clusters is intuitively more promis-
ing as it should reduce partition overlap (decreasing node accesses) and reduce
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the number of equi-distant points from any given reference point (decreasing
candidates). Unfortunately, they leave us with only implementation suggestions,
such as “points on hyperplanes, data space corners, data points at one side of a
cluster and away from other clusters, and so on” [10], but many of these methods
are infeasible in high dimensions and were never presented.

4 Experiments and Results

We propose new iDistance partitioning strategies and methodically determine
the effectiveness of various strategies over a wide range of dataset characteristics
that lead to generalized conclusions about when and how to apply certain strate-
gies (if at all). This not only depends on the dataset size and dimensionality,
but also on additional knowledge possibly available, such as data distributions
and clusters. We highlight these variabilities over extensive experiments that not
only validate the results (and independent/unbiased reproducibility) of original
research [10,20], but also greatly extend the analyses through novel strategies
and specially designed dataspaces.

Every run of our implementation of iDistance reports a set of statistics de-
scribing the index and query performance of that run. As an attempt to remove
machine-dependent statistics, we use the number of B+-tree nodes instead of
page accesses when reporting query results and tree size. Tracking nodes ac-
cessed is much easier within the algorithm and across heterogeneous systems,
and is still directly related to page accesses through the given machine’s page
size and B+-tree leaf size. We primarily highlight three statistics from tested
queries: 1) the number of candidate points returned during the filter step, 2) the
number of nodes accessed in the B+-tree, and 3) the time taken (in milliseconds)
to perform the query and return the final results. Often we express the ratio of
candidates and nodes over the total number of points in the dataset and the
total number of nodes in the B+-tree, respectively, as this eliminates skewed
results due to varying the dataset.

The first experiments are on synthetic datasets (uniform and clustered) so
we can properly simulate specific dataset conditions, and we later apply these
results towards evaluating strategies on real world dataset. All artificial datasets
are given a specified number of points and dimensions in the unit space [0.0, 1.0].
For clustered data we provide the number of clusters and the standard deviation
of the independent Gaussian distributions centered on each cluster (in each di-
mension). For each dataset, we randomly select 500 points as kNN queries (with
k = 10) for all experiments, which ensures that our query point distribution
follows the dataset distribution.

Sequential scan is often used as a benchmark comparison for worst-case per-
formance. It must check every data point, and even though it does not use the
B+-tree for retrieval, total tree nodes provides the appropriate worst-case com-
parison. Note that all data fits in main memory, so all experiments are compared
without depending on the behaviors of specific hardware-based disk caching rou-
tines. In real-life however, disk-based I/O bottlenecks are a common concern for
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Fig. 2. Space-based methods on uniform data (10K) over dimensions
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Fig. 3. Space-based methods on uniform data (16D) over dataset size

inefficient retrieval methods. Therefore, unless sequential scan runs significantly
faster, there is a greater implied benefit when the index method does not have
to access every data record, which could potentially be on disk.

4.1 Space-Based Strategies in Uniform Data

Our first experiments compare Sequential Scan (SS) to space-based methods in
uniform datasets ranging from 4 to 64 dimensions and 1,000 (1k) to 1 million
(1000k) points. We present Half-Points (HP) and Half-Points-Outside (HPO),
specifically HPO-10 and HPO-100, and also show the RAND method with an
equivalent 2d reference points (R2D).

Figures 2 and 3 validate the original claim that HPO performs better than
HP [10,20], but surprisingly it also shows that R2D works better than HP. We
can also see that a movement of 10.0 (HPO-10) outside of the dataspace is
sufficient for performance improvements with HPO, and there is minimal gain
thereafter. Although space-based methods take longer than SS in 16 dimensions
(16D) or less, they access significantly less nodes and return fewer candidates.
Note that it is possible to access the same nodes multiple times because data
points from disjoint partitions can be stored in the same tree leaves. Another
important performance factor is dataset size, shown in Figure 3 over a constant
16D. This can be linked to Figure 2 at 10k data points. We now log-transform
the query time to show that as expected, larger datasets slow down all methods.
However, sequential scan grows the fastest (with a linear increase), because at a
certain point space-based strategies begin to properly filter the congested space
and access less nodes while returning fewer candidates.

While still using uniform data, we investigate the effects of varying the num-
ber of reference points. Figures 4 and 5 look at the RAND method with 16
(R16), 64 (R64), 256 (R256), and 1024 (R1024) reference points. We also in-
clude dynamic methods of 2d over number of dimensions d (R2D) and

√
p over

number of points p (RP*), which are meant to better account for the specific
dataspace characteristics. The results highlight the trade-off between dimensions
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Fig. 4. Varying number of random ref. points on uniform data (10K) over dimensions
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Fig. 5. Varying number of random ref. points on uniform data (10K) over dataset size

of a space and total points, showing that as the number of dimensions increase,
more partitions reduce the number of candidates, but also increase the nodes ac-
cessed and overall query time. Conversely, as the number of data points increase
and dimensionality holds constant, kNN queries become more compact, and the
number of candidates and nodes decreases leading to a shorter query time.

4.2 The Transition to Clustered Data

Since most real-world data is not uniform, we turn our attention to clustered
data and data-based partitioning strategies. As mentioned by the authors in the
original iDistance publications [10,20], data-adaptive indexing is the primary
strength of iDistance, and we too show it greatly improves overall performance.
We start by trying to better understand when data-based strategies overtake
space-based strategies through varying cluster densities in the space, which has
not been investigated previously. For each dataset, cluster centers (12 total)
are randomly generated and then points are sampled with a standard deviation
(stdev) ranging from 0.40 to 0.005 in each dimension of the 16D space with a
total of 100k points equally distributed among clusters. We use the actual cluster
centers – True Centers (TC) – as the only reference points. For comparison, we
include Half-Points (HP) and Sequential Scan (SS) as baseline benchmarks.
The RAND method was not included because it produces unpredictable results
depending on the location of reference points and underlying data clusters.

In Figure 6, we can see the effect that cluster density has as the space tran-
sitions from very loose to extremely tight clusters. We do not report candidates
because the results closely mirror the nodes accessed ratio. While using the true
centers of the clusters as reference points quickly becomes the better technique, it
eventually stalls out and fails to improve once the data is sufficiently dense – but
notice that HP’s performance steadily increases to near similar results. Since the
space-based reference points are not bound to clusters, they continue to increase
in effectiveness by searching smaller and smaller “slices” of each partition.
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Fig. 6. Results over varying cluster density (by standard deviation)
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Fig. 7. Results over dimensions of 12 clusters with 0.1 standard deviation

We can further see these trade-offs in Figure 7. Here we set the stdev of all 12
clusters to 0.1 and vary the dimensionality of 100k data points. The 12 equal-
sized clusters seem to explain why TC stabilizes with around 8% (or 1/12) of
the nodes accessed in both of these figures. In other words, the clusters become
so dense that although the kNN queries rarely have to search outside of a single
partition, they ultimately have to search through the entire partition containing
the query. We confirm this in Figure 8, which shows the total partitions checked
and candidates returned for three clustered datasets with 6 (TC6), 12 (TC12),
and 24 (TC24) clusters over varying cluster density. Notice that all three start
with accessing all partitions and most data points, but all converge to only one
checked partition with the respective ratio of candidates.
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Fig. 8. Results of various numbers of clusters over cluster density

4.3 Reference Points: Moving from Clusters

We now investigate more advanced data-based partitioning strategies using the
True Centers (TC) of clusters as our benchmark reference points. Original works
make mention of reducing partition overlap, and thereby increasing performance,
by moving reference points away from each other [10,20], but did not investigate
it. This approach should perform better than TC because there will be less equi-
distant points for each reference point, meaning the lossy transformation is less
destructive for true data point similarity.
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We present two strategies for moving reference points away from cluster
centers. Since cluster centers are typically found by minimizing inter-cluster
similarity while maximizing intra-cluster similarity, by moving reference points
away from the cluster centers, one could hypothesize that there should be less
equi-distant points in each partition and therefore a more discriminative one-
dimensional B+-tree index. The two methods are: 1) Min-Edge (M), moving
towards the closest edge of the dataspace in any single dimension, and 2) Ran-
dom (R), moving randomly in any/all dimensions. We specify movement by a
total distance in the multi-dimensional dataspace and both methods are capable
of pushing reference points outside of the dataspace – which makes the Min-Edge
method similar to Half-Points Outside (HPO). Using Min-Edge on the data in
Figure 1(b) as an example, the upper-left cluster center will decrease along the
x-axis, and the upper-right cluster will increase along the y-axis.

Figure 9 shows the ratio of candidates returned from the two cluster center
movement methods (M and R), with movement distances of {0.025, 0.05, 0.1,
0.2, 0.4}, each compared to TC. Each method performs best with a movement
distance of 0.2, as shown with TC in the third column chart for better readability.
We can see that above 16D (with 12 clusters and 100k points) no methods
seem to make a significant difference. However, lower dimensions do support our
hypothesis that moving away from the centers can help. Figure 10 shows the
same methods in 16D over a varying number of data points, and here we see the
methods also become ineffective as the number of points increase.
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Fig. 9. Results of center movement methods
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Fig. 10. Results of center movement methods

4.4 Reference Points: Quantity vs. Quality

While we know that iDistance performs well on datasets with known clusters, a
more common scenario is less knowledge of the data where the size and number
of clusters are unknown. This is the focus of the original iDistance works, which
suggest the use of any popular clustering algorithm as a pre-processor to identify
more optimal reference point placements. The original publications used BIRCH
[23] in 2001 [20] and k-Means [12] in 2005 [10].
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In these experiments we investigate the effect of the number of provided clus-
ters during our pre-processing with the k-Means algorithm. It should be stated
that k-Means is known to be sensitive to the initial starting position of cluster
centers, and does not ensure any balance between cluster populations. We use a
standard MATLAB implementation and mitigate these inherent weaknesses by
initializing our cluster centers on a randomly sampled data subset, and forcing
all clusters to contain at least one point so the resultant reference points are not
accidentally removed and ignored from the space. Although never discussed in
previous works, we believe it is very important to address the case of non-empty
clusters, especially when analyzing how well a certain number of reference points
perform. Otherwise, there is no guarantee that the specified number of reference
points actually reflects the same number of partitions as intended.

The authors of iDistance originally suggested a general setting of 2d reference
points – so k-Means with k = 2d clusters – which also matches the space-based
strategies [10,20]. In Figure 11, we look at the performance of k-Means (KM) with
d-relative clusters from d/2 to 4d, in various dimensions over 100k points in 12
clusters. We also include True Centers (TC) as our current baseline benchmark,
and k-Means with 12 clusters but without knowledge of the true cluster centers
upon initialization (KM-12*). Notice the relatively equal nodes accessed ratio
for all methods in higher dimensions, but the increase in overhead time taken
for the methods with more clusters (partitions).
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Fig. 11. Varying k-Means centers with 12 clusters (100K points) over dimensions
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Fig. 12. Varying k-Means centers with d clusters (100K points) over dimensions

An important realization here is how beneficial the knowledge of true cluster
centers can be, as we see TC performs more consistently (and nearly always
better) than other methods over all dimensions. The same can be seen in Figure
12, where we now generate d clusters in the dataset instead of only 12. However,
here we see that in higher dimensions more clusters make a major difference for
the number of nodes accessed, and 2d clusters seem in many cases to be an ap-
propriate balance between the number of partitions and the time taken to search
all the partitions, as both 1d and 4d clusters are equally slower. Also note that
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Fig. 13. Results of k-Means and RAND on real data over varying reference points

setting k to the number of known clusters for k-Means (KM-12* in Figure 11)
does not guarantee performance because of the variability of discovered clusters
from the k-Means algorithm.

Our final experiments use a real dataset to determine if any of our findings
carry over from synthetic dataset studies. We use a popular real world dataset
containing one million 128-dimensional SIFT feature vectors2. This dataset was
recently used by the authors of the SIMP algorithm [17] to show comparatively
better performance over their private implementation of iDistance using 5,000
reference points. However, without knowledge of algorithmic options, or several
baseline experiments to show optimal performance results, we have very little
insight into the effectiveness (and reproducibility) of their specific comparison.

In Figure 13, we look at RAND and k-Means over a varying number of refer-
ence points, and include HP and SS methods as comparisons. We can see that
the only method that performs significantly better than SS is k-Means (KM).
Although the number of candidates returned continues to decrease as we add
reference points, we can see that after a certain point the overhead costs of
additional partitions outweighs the filtering benefits, and the number of nodes
accessed begins to increase while query time dramatically rises. We note there
exists a clear range of relatively equivalent results from approximately d/2 (64)
to 4d (512) partitions, which might be a combination of many factors including
indexing performance and dataset characteristics. This performance plateau also
provides an excellent measure for tuning to the proper number of partitions.

We also analyzed the number of partitions that were empty or checked for
candidates, and the results of RAND exemplified our concerns over empty parti-
tions and poor reference point placement. Essentially, as the number of random
reference points increased, the more empty partitions are created. Worse yet, ev-
ery non-empty partition is almost always checked due to high overlap and poor
placement relative to each other and the data (and query) distributions.

5 Discussion

We see a promising result in Figure 10 at 1000k data points, suggesting that it is
still possible to produce better results by moving reference points. This suggests
there may exist a more sophisticated solution than the relatively simple methods
we presented. We note that because of the default closest distance assignment
strategy, when reference points are moved the points assigned to them may

2 Publicly available at: http://corpus-texmex.irisa.fr/

http://corpus-texmex.irisa.fr/
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change. Thus our efforts to reduce the number of equi-distant points may have
been confounded, and if reference points are moved outside the dataspace, their
partitions may become empty. Unfortunately, we found no significant difference
in results by employing a static partition assignment before and after reference
point movement, and therefore did not include the results for discussion. Clearly,
more knowledge is required to move reference points in an optimal way that
impacts partitioning efficiency. We have begun investigating the idea of clustering
for the sake of indexing, by learning cluster arrangements explicitly for use as
reference points within iDistance [19].

In general, we find a trade-off between dimensionality and dataset size, where
more dimensions lead to less precise query regions (classic curse of dimension-
ality problem), but more points allow smaller regions to fully satisfy a given
query. Space-based methods suffer much worse from dimensionality and are re-
ally not ideal for use. We agree with the original authors that 2d reference points
seems appropriate as a general recommendation. In relatively moderate to small
datasets and multi-dimensional spaces, 2d is probably overkill but far less bur-
densome than in exceptionally large datasets and high-dimensional spaces where
the cost of additional reference points dramatically increases without providing
much benefit. Results strongly support an intelligent data-centric approach to
the amount and placement of reference points that results in minimally overlap-
ping and non-empty partitions.

6 Conclusions and Future Work

We presented many complementary results to that of the original iDistance
works, and through extensive experiments on various datasets and data char-
acteristics we uncovered many additional findings that were not presented or
discussed in prior works. This paper establishes a self-standing baseline for the
wide variance in performance of partitioning strategies that opens the door for
more directed and concise future works grounded on our findings. These results
have also helped to establish an up-to-date benchmark and best practices for
using the iDistance algorithm in a fair and efficient manner in application or
comparative evaluations.

Many of the results show that traditional iDistance partitions stabalize in per-
formance by accessing entire clusters (within single partitions), despite dataset
size and dimensionality. This leads us to explore methods to further segment par-
titions in future work, so that we can better prune away large sections of dense
data clusters. These novel strategies are much like the works of the iMinMax
[13] and recently published SIMP [17] algorithms, whereby we can incorporate
additional dataspace knowledge at the price of added complexity and perfor-
mance overhead. Our preliminary work shows potential enhancements to the
filtering power of iDistance through novel algorithm extensions that help reduce
the negative effects of equi-distant points and partition overlap.
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