
G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 149–164, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Fast Multi-update Operations on Compressed XML Data

Stefan Böttcher, Rita Hartel, and Thomas Jacobs

University of Paderborn, Computer Science, Fürstenallee 11, 33102 Paderborn, Germany
{stb@,rst@,tjacobs@mail.}uni-paderborn.de

Abstract. Grammar-based XML compression reduces the volume of big XML
data collections, but fast updates of compressed data may become a bottleneck.
An open question still was, given an XPath Query and an update operation, how
to efficiently compute the update positions within a grammar representing a
compressed XML file. In this paper, we propose an automaton-based solution,
which computes these positions, combines them in a so-called Update DAG,
supports parallel updates, and uses dynamic programming to avoid an implicit
decompression of the grammar. As a result, our solution updates compressed
XML even faster than MXQuery and Qizx update uncompressed XML.

Keywords: updating compressed XML data, grammar-based compression.

1 Introduction

Motivation: XML is widely used in business applications and is the de facto standard
for information exchange among different enterprise information systems, and XPath
is widely used for querying XML data. However, efficient storage, search, and update
of big XML data collections have been limited due to their size and verboseness.
While compression contributes to efficient storage of big XML data, and many com-
pressed XML formats support query evaluation, fast updates of compressed XML
formats involve the challenge to find and to modify only those parts of an XML doc-
ument that have been selected by an XPath query.

Background: We follow the grammar-based XML compression techniques, and we
extend an XML compression technique, called CluX, by fast multi-update operations,
i.e. operations that update multiple XML nodes selected by an XPath query without
full decompression. Like the majority of the XML compression techniques, we as-
sume that textual content of text nodes and of attribute nodes is compressed and
stored separately and focus here on the compression of the structural part of an XML
document.

Contributions: Our paper presents a new and efficient approach to simulate multi-
update operations on a grammar-compressed XML document. That is, given a
grammar G representing an XML document D, and given an update operation O to be
performed on all nodes N of D selected by an XPath query Q, we can simulate O’s
modification of all nodes N on G without prior decompression. To the best of our
knowledge, it is the first approach that combines the following properties:

150 S. Böttcher, R. Hartel, and T. Jacobs

Our approach computes all update positions in G determined by Q in such a way
that paths through the grammar to these update positions can be combined to a so-
called Update DAG. This Update DAG can be used for updating multiple XML nodes
at a time without full decompression of the grammar G. The Update DAG construc-
tion combines dynamic programming, a top-down evaluation of Q’s main path, and a
bottom-up evaluation of Q’s filters. As our performance shows, this outperforms
competitive query engines like QizX and MXQuery which work on uncompressed
documents.

Paper Organization: For simplicity of this presentation, we restrict it to XML docu-
ments containing only element nodes. The next section introduces the idea of gram-
mar based XML compression and of executing updates in parallel on such grammars.
Based on these fundamentals, we describe our main contribution, the goal of which is
to execute an XPath query on a given grammar and to compute the Update DAG
that supports parallel updates. The evaluation of the entire approach is then shown in
Section 4.

2 Fundamentals and Previous Work

Fig. 1. Document tree of an XML document D with repeated matches of patterns

2.1 Sharing Similar Trees of XML Documents Using Grammars

Fig. 1 shows an example XML document D represented as a binary tree, where e.g.
#’s first-child is c, the next-sibling of which is b. To distinguish multiple occurrences
of node labels, we have numbered the nodes in pre-order. The simplest grammar-
based XML compressors are those compressors that share identical sub-trees, such
that the compressed grammar represents the minimal DAG of the XML tree [1].
These Approaches share identical sub-trees T in an XML document D by removing
repeated occurrences of T in D, by introducing a grammar rule N→T, and by replac-
ing each T by non-terminal N. Applying this approach to our example document D,
the sub-tree b(t,t) is found with four matches, each of which is replaced by non-
terminal A0.

 Fast Multi-update Operations on Compressed XML Data 151

Fig. 2. Document of Fig. 1 with identical and similar sub-trees replaced by rule calls

However, a weakness of this approach is that only identical sub-trees can be com-
pressed. In our example, the sub-trees rooted in nodes a3 and a30 differ only at the
highlighted leaf nodes t10 and c37. By using approaches like CluX [2], BPLEX [3],
or TreeRePAIR [4], we are able to compress those similar sub-trees by introducing
parameterized grammar-rules. These grammar rules consist of the identical parts of
the sub-trees and introduce parameters as placeholders for the different parts. Fig. 2
shows one possible resulting grammar, i.e. Grammar 2, represented as a set of trees.
The similar sub-trees of Fig. 1 are replaced by non-terminals A1 and A2, which are
the left-hand sides of new grammar rules in Grammar 1 containing y1 as a parameter.

 A3  #(c(A2(t),b(A1(b),a(A1(t),b(A2(c),ε)))),ε)
 A2(y1)  a(b(g(A0,t),y1),ε)
 A1(y1)  g(b(c(A0,y1),t),ε)
 A0  b(t,t)

Grammar 1: A grammar sharing similar sub-trees by using parameterized rules.

Each non-terminal Ai refers to exactly one grammar rule Ai(y1,y2,…,yn) →rhs(Ai),
with rhs(Ai) being the right-hand side of that rule. We call yi a formal parameter (or
just parameter). For a non-terminal expression Ai(t1,t2,…,tn) used in a right-hand
side of a grammar-rule, we refer to each ti as an actual parameter. The grammars con-
sidered here are linear and straight-line. Linearity means that each parameter occur-
ring on the left-hand side of a grammar rule appears exactly once in the right-hand
side of that same rule. A grammar is straight-line, if the graph representing the rule
calls is acyclic.

2.2 Using Grammar Paths to Identify Nodes

Each path to a selected node in an XML document D corresponds to exactly one
grammar path (GP) in the grammar G producing D. Beginning with the start non-
terminal of the grammar, this GP contains an alternating sequence of non-terminals Ai
and index positions within rhs(Ai) to refer to a symbol, which is a non-terminal Ni

152 S. Böttcher, R. Hartel, and T. Jacobs

calling the next grammar rule. It ends with the index of the symbol corresponding to
the selected terminal in the last grammar rule of the GP.

For example, if we apply the XPath query Q:=//a//b[./t] to Grammar 1, one of the
selected nodes can be described by GP1:=[A3,3,A2,4,A0:1]. Thus, GP1 de-
scribes a rule call to rhs(A2) at position 3 in rule A3 and a rule call to rhs(A0) at po-
sition 4 in rule A2. Finally, terminal b at position 1 in rhs(A0) is selected. A more for-
mal definition of grammar paths, however omitting rule names, is given in [5].

2.3 Executing an Update-operation for a Given Grammar Path

Now suppose that we want to execute an update operation for a single given GP. As
an example consider GP1:=[A3,3,A2,4,A0:1] and update operation relabel-
To(z), which replaces the label b of the selected terminal to z. Clearly, just relabeling
the first terminal in rhs(A0) would be wrong, since this terminal represents four nodes
in the uncompressed XML document. One possible solution to this problem was pre-
sented in [6]. The idea is to first create a copy of each grammar rule occurring in GP1.
Let Ai’ represent the left-hand side non-terminals of these copied rules. Then, for
each sub-sequence (Ai,k,Aj) in GP1, non-terminal Aj at position k in rhs(Ai’) is re-
placed by Aj’. Additionally, for the last sub-sequence (An:k), the update operation
(for example relabelTo(z)) is executed on symbol k in rhs(An’). Finally, the start rule
is replaced by the copy of the start rule. Applying this strategy to GP1, yields Gram-
mar 2 as a result. Note that the size of this grammar is not optimal and can be further
compressed.

A3’  #(c(A2’(t),b(A1(b),a(A1(t),b(A2(c),ε)))),ε)
A2(y1)  a(b(g(A0,t),y1),ε) A2’(y1)  a(b(g(A0’,t),y1),ε)
A1(y1)  g(b(c(A0,y1),t),ε)
A0  b(t,t) A0’  z(t,t)

Grammar 2: Grammar 2 after applying relabelTo(z) to GP1=[A3,3,A2,4,A0 : 1].

2.4 The Concept of Parallel Updates on Grammars

Given an XPath query, usually a set of multiple GPs is selected. Thus, a desirable
goal is to support executing updates on such a set of GPs in parallel and to keep the
size of the grammar low. A first step towards a solution of this problem is to construct
a prefix tree of the GPs [6]. This tree is constructed by introducing nodes with labels
Ai for non-terminals Ai and directed edges with label k for sub-sequences (Ai,k,Aj) in
the GPs to be updated. Furthermore, for sub-sequences (An:k), the tree-node created
for An saves an entry k. The resulting graph is a tree, as equal prefixes in the grammar
paths are combined, and since each grammar path begins in the start-rule. The result-
ing tree for the set of grammar paths selected by query Q:=//a//b[./t] is shown in
Fig. 3(a), where edges to numbers represent entries saved in a node, i.e. positions of
selected terminals.

 Fast Multi-update Operations on Compressed XML Data 153

Fig. 3. a) Prefix Tree for query //a//b[./t] on Grammar 1, b) Corresponding Update DAG

The updates are now executed by walking top-down through the tree. Intuitively,
the grammar rules on each tree-branch are isolated from the original grammar and
then updated. That is, for each node of the tree visited, the corresponding grammar
rule is copied. Let (Na,Nb) be an edge with label k and let label(Na)=Ai and la-
bel(Nb)=Aj respectively. With Ai’ and Aj’ being the non-terminals of the copied
grammar rules, the symbol at position k in the grammar rule of Ai’ is replaced by
non-terminal Aj’. Finally, for an entry k saved in node Ni, the update is applied to the
k-th symbol in rhs(Ai’).

Although this approach works correctly, it induces a large overhead, since grammar
rules are unnecessarily copied. For example, there are three equal nodes having label A0
in the tree of Fig. 3(a). Thus, copying the corresponding grammar rule once would have
sufficed. The same holds for nodes with label A2. Formally, two leaf nodes are equal, if
they save the same entries of selected terminals and have the same label, i.e. they corre-
spond to the same non-terminal. Two inner nodes are equal, if they additionally have an
identical number of outgoing edges with equal labels pointing to (recursively) equal child
nodes. This finally brings us to the concept of parallel updates as introduced in [6]. In-
stead of looking at each grammar path for its own, we construct the (minimal) grammar
path DAG from the prefix tree by combining equal nodes. This way, not only the size of
the prefix tree is reduced, but additionally, we avoid unnecessary copying of grammar
rules. In the context of executing update operations, we refer to this DAG as the Update
DAG. The Update DAG for the given prefix tree of Fig. 3(a) is shown in Fig. 3(b).
Executing the update operation relabelTo(z) then results in the more space saving
Grammar 3. For a core XPath expression P, our approach supports the update operations
P.relabelTo(z), P.deleteNodesAndTheirFirstChildSubtree() P.insertAsFirstChild(tree),
and P.insertAsNextSibling(tree) on all selected nodes (More details are given in [6]).

A3’  #(c(A2’(t),b(A1(b),a(A1’(t),b(A2’(c),ε)))),ε)
A2(y1)  a(b(g(A0,t),y1),ε) A2’(y1)  a(z(g(A0’,t),y1),ε)
A1(y1)  g(b(c(A0,y1),t),ε) A1’(y1)  g(z(c(A0’,y1),t),ε)
A0  b(t,t) A0’  z(t,t)

Grammar 3: Grammar 2 after applying relabelTo(z) based on the Update DAG of Fig.3(b).

154 S. Böttcher, R. Hartel, and T. Jacobs

3 Construction of the Update DAG

3.1 Assumptions and Problem Definition

Let Q be an XPath query, O be an update operation, and G a straight-line linear
grammar representing an XML document D. In the following, we assume that Q is an
absolute query corresponding to Core XPath [7]. To simplify the explanations, we
only consider non-nested relative filters excluding boolean operators. However, note
that our software prototype obeys the complete Core XPath specification. Given these
assumptions, the aim is to evaluate query Q on grammar G yielding the Update DAG
to allow the execution of parallel updates.

3.2 Overview of Our Approach

Our algorithm directly computing the Update DAG consists of three main steps:

a. Given an XPath query Q, we follow the Looking Forward approach of [8], i.e.,
we rewrite Q in such a way that it consists of forward axes only. Additionally, we
extract the filters with their current context nodes from the main path of Q.

b. Given the set of extracted filters, for each filter expression F, we construct a spe-
cial bottom-up automaton to evaluate F on grammar G. As a result, for each filter
expression F, we get the minimal grammar path DAG (called Filter DAG) con-
taining all grammar paths to nodes in the document for which F is fulfilled.

c. As last step, we construct a top-down automaton for the main path of Q following
the approach of [9]. To test, whether a filter is fulfilled in a node, we use the Fil-
ter DAGs constructed in Step b. The result of this step is the Update DAG.

To avoid an implicit decompression of the grammar in steps b and c, we follow and
extend the idea of dynamic programming and hashing as introduced in [5].

3.3 Query Rewriting and Extraction of Filters

As a first step, we rewrite the given XPath query Q, such that it contains forward axes
of the set {descendant, descendant-or-self, child, following-sibling, self} only. The
example query Q=//a//b[./t] already contains forward axes only. From the rewritten
query, we extract the filters from the main path, i.e., for each location step of the form
ax::tst[pred] which is not part of another filter predicate itself, we extract tst[pred].
Furthermore, we keep references in the main path pointing to the extracted filters. For
Q, this results in the main path M=/descendant::a/descendant::b→F1 and the filter
F1=b[child::t].

3.4 Evaluation of Queries without Filters

Now let us first consider the evaluation of a query without filters. As the example
query we use main path M, assuming filter F1 always evaluates to true. To evaluate

 Fast Multi-update Operations on Compressed XML Data 155

Fig. 4. a) Top-down automaton for main path M, b) Evaluation on the document tree of Fig. 1

the query, we extend our automaton-based top-down approach of [9] to work on
grammars. It has the advantage that it is rather simple and allows us to use dynamic
programming avoiding an implicit decompression of the grammar.

Constructing the Top-Down Automaton: The automaton for the main path of the
query is constructed as presented in [9]. That is, each location step ax::tst can be
described by an atomic automaton having transitions accepting events of the form
binAx::tst, where binAx is a binary XPath axis first-child (fc), next-sibling (ns) or
self. The main path then is the concatenation of these automata, as Fig. 4 (a) shows
for the example query.

Evaluation on an Uncompressed Document Tree: The evaluation of such an auto-
maton on uncompressed document trees works as described in [9]. The basic idea is to
walk top-down in pre-order through the tree and to generate corresponding first-child,
next-sibling and self-events. After visiting a first-child node, before continuing to the
next-sibling of the parent node, a parent-event is generated, which resets the active
automaton states to the states which were active in that parent node before. For exam-
ple, for a tree b(t,t), the sequence (self::b, fc::*, self::t, parent::*, ns::*, self::t) is gen-
erated. Note that self-events are fired, as long as transitions can fire. A detailed de-
scription is given in [9]. Fig. 4 (b) sketches the evaluation (represented by sets of
active states) of the automaton in Fig. 4 (a) that corresponds to Q’s main path.

Evaluation on Grammars: As the evaluation of this top-down automaton so far only
worked on uncompressed documents, we extended it to work on grammars and to directly
compute the Update DAG. Our idea is to keep the automaton unchanged, but to introduce
an additional module which traverses the grammar, generates grammar events, stores and
recovers automaton state-sets and forwards some events to the automaton. Table 1 gives
an overview of the algorithms involved in this module. Let V be the nodes and E be the
edges of the DAG, both initialized with empty sets. The evaluation starts with calling
procedure evalRule() for the start-rule of the grammar. For each (recursive) call of eva-
lRule(), a DAG-node D is created, and entries(D) later-on store the positions within the
currently visited grammar rule of terminals selected by the query. Each grammar rule is
traversed top-down and corresponding events are generated. This works in the same
way as for the uncompressed document, but with four new events terminal (replacing
event self::*), nonTerminal, actualParameter and formalParameter (c.f. Table 1).
E.g., consider t(A(a),y1). For this expression, event-sequence (terminal(t,1), fc::*,

156 S. Böttcher, R. Hartel, and T. Jacobs

nonTerminal(A,2), actualParameter, terminal(a,3), parent::*, formalParameter) is generat-
ed. Events fc::*, ns::* and parent::* are directly forwarded to the automaton. When disco-
vering a terminal L, repeatedly an event self::L is forwarded to the automaton until no
more transitions of the automaton can fire (line 17). Whenever the automaton accepts, we
know that L is selected by the query, and we add L’s position in the grammar rule to
entries(D). Second, when a non-terminal Ak is found in the actual rule Ai, we recursively
traverse the grammar rule for Ak, unless we can skip the traversal of Ak by dynamic pro-
gramming as explained in the next sub-section. After processing Ak, we add an edge from

Table 1. Algorithm and events for top-down evaluation of a Grammar

(1) procedure evalRule(non-terminal Nt): (DagNode node, list buffer)

(2) { D = new DagNode;

(3) label(D) = Nt;

(4) entries(D) = empty set; //positions of selected terminals

(5) actParamBuffer = empty list;

(6) formParamBuffer = empty list;

(7) traverse and evaluate rhs(Nt) in pre-order and generate the

 events fc::*, ns::*, parent::*, terminal, nonterminal,

 formalParameter, actualParameter;

(8) if (node-set V of DAG contains a node D’ equal to D) D = D’;

(9) else V = V ∪ D;
(10) return (D,formParamBuffer);

(11) }

(12) event formalParameter

(13) formParamBuffer.append(automaton.getActiveStates());

(14) event actualParameter

(15) automaton.setActiveStates(actParamBuffer.getAndRemoveHead());

(16) event terminal(label L, int position)

(17) do (automaton.fire(self::L)) while automaton.changesStates();

(18) if (automaton.isAccepting()) entries(D).add(position);

(19) event nonTerminal(label N, int position)

(20) states = automaton.getActiveStates();

(21) if (lemmaTable.contains((N,states))) // skip calling N

(22) (node,buffer) = lemmaTable.getValueForKey((N,states));

(23) else // cannot skip calling the production of N

(24) { (node,buffer) = evalRule(N);

(25) key = (N, states);

(26) value = (node, buffer);

(27) lemmaTable.put(key,value);

(28) }

(29) edge = (D,node);

(30) label(edge) = position;

(31) E = E ∪ edge;
(32) actParamBuffer.prepend(buffer); //copy of buffer now list-head

 Fast Multi-update Operations on Compressed XML Data 157

the current DAG-node D to the DAG node returned by evalRule(Ak). Third, when a for-
mal parameter is found, we must store the set of active states of the automaton, since we
need these states later when continuing on the corresponding actual parameter of the call-
ing grammar-rule (line 13). Intuitively, we freeze the automaton, until we later continue on
the actual parameter of the calling rule. Fourth, when an actual parameter is found, we
activate the state-set frozen in the automaton (line 15). We must know, which state-set
we have to activate for continuing traversal on the actual parameter. Therefore, when
previously processing the non-terminal of that actual parameter, we copy the state-sets to a
list actParamBuffer (line 32). After the traversal of a grammar rule, procedure evalRule()
checks, whether there is an equal DAG node already in set V, whereas equality is defined
as in the section introducing parallel updates. Note, that this test can be done in time
O(1) using hashing. As a result, evalRule() finally returns the root-node of the minimal
Update DAG.

An example is shown in Fig. 5. While traversing rhs(A2), y1 is discovered and the
active state-set of the automaton is stored in list formParamBuffer. After completing
the traversal of rhs(A2), this state-set is returned by evalRule(A2) and prepended to
actParamBuffer of evalRule(A3). Then, traversal continues at terminal t of rhs(A3),
which is an actual parameter. Thus, the head of list actParamBuffer saving the
state-set of the previously discovered parameter y1 is removed and activated in the
automaton.

Fig. 5. a), b) Evaluation of the automaton of Fig. 4 (a) on Grammar 1

Optimization Using Dynamic Programming and Hashing: Using this approach, a
problem still is that we would unnecessarily evaluate some grammar rules multiple
times. To avoid this, we use dynamic programming and hashing for grammar-
compressed XML documents as itwas introduced in [5] for bottom-up automaton-
based evaluations. For our approach, we extended it to work for a top-down evalua-
tion of the grammar, as well. We introduce a lemma hash-table mapping keys to val-
ues. A key is a tuple of a non-terminal label and state-set, whereas a value is a tuple
storing the DAG-node which was created for that non-terminal and a list of state-sets
holding one state-set for each formal parameter of that grammar rule. The observation
is that when a rule was traversed before with the same set of states active in the

158 S. Böttcher, R. Hartel, and T. Jacobs

automaton, then the subsequent traversal of that rule must produce an equal DAG-
node and equal sets of automaton states for the formal parameters. The use of the
lemma table is already implemented in event nonTerminal of Table 1. However, note
that in the worst case, the lemma table does never permit skipping a grammar rule. In
this case, we would still implicitly traverse the whole uncompressed document. A
detailed analysis for a bottom-up traversal already was given in [5]. Similar results
hold for the top-down traversal, too. However, our evaluations in Section 4 show that
on all tested documents and queries we are faster using dynamic programming than
without using it, reaching speed-ups up to a factor of 6.7.

3.5 Evaluation of Queries Having Filters

Our example query Q=//a//b[./t] has a filter, and we decomposed Q into the main path
M=/descendant::a/descendant::b →F1 and the filter F1=b[child::t]. Therefore, when
using the top-down approach of the last section for evaluating M, we somehow need
to know for which terminals b on which grammar paths, the filter F1 is fulfilled. In
our top-down query evaluation approach of [9] on uncompressed documents, this is
done by using a top-down automaton for the filter, as well. An instance of this auto-
maton is created each time a node b is selected by M, and this instance then is eva-
luated in parallel during top-down evaluation. However, this approach has the disad-
vantage that there may be several instances of a filter automaton evaluated in parallel,
i.e. one for each b-node in this case. Furthermore, as the main path of the query can
have more than one filter attached to any location step, the automaton processing that
main path needs to store references to filter automata instances in its states. Therefore,
we decided to use another approach. Before evaluating M, we evaluate the filters
using bottom-up automata resulting in a DAG for each filter. Such a DAG saves all
grammar paths to nodes for which the corresponding filter is fulfilled. Thus, for F1,
this DAG saves all grammar paths to b-terminals having a child t. When afterwards
evaluating the main path of the query, we can use the computed DAGs to decide, for
which document node which filter is fulfilled. This approach has the major advantage
that the automata for the top-down traversal are kept simple and that we can extend
the idea of dynamic programming to consider filters.

Fig. 6. a) Bottom-up automaton for F1=b[child::t], b) Evaluation on document tree of Fig. 1

Construction of Bottom-up Automata: To evaluate the extracted filters, we first
construct a special bottom-up automaton for each filter reusing the ideas of [10]. The
basic observation is that we can evaluate a location-path bottom-up from right to
left, i.e., each expression tst1/ax::tst2 can be represented by the equivalent reverse

 Fast Multi-update Operations on Compressed XML Data 159

expression tst2::axR/tst1, where axR is the reverse XPath axis of ax. For
F1=b[child::t], we get t::parent/b. As in the top-down approach, each location step can
then be expressed as an automaton using the events fcR::*, nsR::* and self::tst, with
fcR being the reverse axis of first-child, nsR the reverse axis of next-sibling, and tst
being a node test. Concatenating these automata for each location step then results in
an automaton evaluating the whole filter expression. Fig. 6 (a) shows the resulting
automaton for filter F1.

Evaluation on an Uncompressed Document Tree: A bottom-up automaton is eva-
luated on a tree by traversing the tree in a reversed post-order walk. Each time, when
continuing evaluation at a leaf-node, a new instance of that automaton is created.
When traversing the path from a leaf up to the root of the tree, corresponding events
fcR::tst and nsR::tst are generated, with tst being the name of the node reached. For a
leaf-node and for each node reached during traversal with label tst, an event self::tst is
generated as long as transitions can fire. Note, that a transition with a label of the
form axis::* can fire for any event axis::tst. Furthermore, for an event self::tst, the
source states of firing transitions stay active for the same reasons as explained in [9].
The start-state of an automaton-instance is activated whenever a document node ful-
filling the node name-test attached to the start-state of that automaton is found. As an
optimization, when two leaf-to-root paths share a node, the two automata instances
are unified to one instance at the first common node by computing the union of the
active state sets. This way, sub-paths are traversed only once. Fig. 6 (b) visualizes the
evaluation of the automaton for F1 on parts of the document tree of Fig. 1. The filter
corresponding to the automaton is fulfilled in a document node n if and only if the
automaton accepts in that node. In Fig. 6 (b), this holds for nodes b31 and b33, since
they are the only b-nodes having a child with label t.

Evaluation on Grammars: The evaluation of each filter automaton on the grammar
follows the idea of the top-down evaluation of the main path of the query. That is, we
begin the traversal in the start rule and recursively traverse the rules of non-terminals,
we find. The only difference is that grammar rules are processed bottom-up from right
to left. This has the advantage that for a non-terminal expression Aj(p1,…,pn),
the actual parameters pi are visited before Aj itself. For each actual parameter, the set
of active states for every filter automaton is saved. When visiting non-terminal Aj
afterwards, the traversal continues in rhs(Aj), which is processed in the same way
bottom-up. When visiting a formal parameter yk, the state sets saved for actual pa-
rameter pk are activated in the automata. After finishing the traversal of rhs(Aj), pro-
cessing continues in the calling grammar rule. A sketch of this is shown in Fig. 7 (a).
Note that actual parameter t is visited before calling rhs(A2) and that the automaton
states are transferred to y1 in rhs(A2). The Filter DAG is constructed in the same way
as with the top-down approach. The (minimal) Filter DAG for filter F1 is shown in
Fig. 7 (b).

160 S. Böttcher, R. Hartel, and T. Jacobs

Fig. 7. a) Evaluation of F1 on Grammar 1, b) Resulting minimal Filter DAG

Optimization Using Dynamic Programming and Hashing: As for the top-down ap-
proach, we reuse the idea for the bottom-up evaluation of filters, as introduced in [5].
Again, we use a lemma hash-table mapping keys to values (one table for each filter).
Each entry describes a rule-call from a non-terminal N occurring somewhere in the
right-hand side of a production. A key is a tuple consisting of the non-terminal name
of N and a list of state-sets. Each state-set at position i in the list describes the set of
states which were active in the i-th actual parameter of N. The value is a tuple consist-
ing of the DAG-node generated for traversing rhs(N) and the set of automaton-states,
which were active after traversing that rule. The observation is that we can skip an
additional traversal of rhs(N), when the automaton produces the same active state-sets
for the actual parameters of the new occurrence of N. In this case, traversing the
grammar rule again would produce the same DAG-node and the same active state-set.

As an example consider filter F1=b[child::t] evaluated on Grammar 1. Obviously,
grammar rule rhs(A0) is traversed four times without dynamic programming. How-
ever, non-terminal A0 has no parameters, which means that evaluating the filter au-
tomaton on rhs(A0) always produces the same result. Thus, it is sufficient to traverse
rhs(A0) only once. Furthermore, consider the grammar rule of A2. It is called two
times from rhs(A3) by expressions A2(t) and A2(c). During the bottom-up evaluation
of rhs(A3), the actual parameters t and c are visited before their non-terminal A2.
Evaluating the automaton on terminals t and c yields state-sets {1,2} and {-} respec-
tively. But this means, when processing rhs(A2) the automaton might produce differ-
ent results, i.e. accept in different terminals and end-up in different active states after
evaluating rhs(A2). This is, because the state sets computed in the actual parameters
are used when visiting the formal parameter y1 in rhs(A2). Thus, we must not skip a
second traversal through rhs(A2) here.

Note that we evaluate all filters of the query in parallel. Skipping the traversal of a
grammar rule therefore is only allowed, if all lemma tables permit skipping. If only
some of the lemma tables allow for skipping, we pause the automata of the corre-
sponding filters such that only the automata which need to traverse that rule again are
active.

Using the Filter DAGs during Evaluation: Now, having a Filter DAG for each
filter, we must extend the top-down approach to use these DAGs. The general idea is
to synchronously walk through the Filter DAGs while walking through the grammar.
I.e., for the first call of evalRule(), we start in the root-nodes of the Filter DAGs.
Then, for each recursive call to evalRule(), we follow the corresponding edges in the

 Fast Multi-update Operations on Compressed XML Data 161

Filter DAGs. This way, the top-down automaton can easily test, whether a filter is
fulfilled in a currently visited terminal at position i, by checking whether the currently
visited Filter DAG node of the corresponding filter stores an entry i. However, we
also have to care about actual rule parameters for the following reason. Suppose, we
have expressions N(b) and N(t) in a right-hand side of a grammar rule. Since we have
filters and the actual parameters differ, different terminals may be selected in both
rule-calls of rhs(N). Thus, we need to know, whether the filters for both calls of
rhs(N) evaluate to true at the same positions. Exactly for this situation, we use the
Filter DAGs. In a (minimal) Filter DAG, equal nodes have been combined to a single
node. But this means, (only) when for both calls of rhs(N), in each Filter DAG, we are
in the same Filter DAG node, the filters evaluate to true at the same positions. In this
case, we can safely skip a second traversal of rhs(N). Thus, the decision to skip a
traversal of a grammar rule also depends on the DAG-nodes currently visited and
which were visited at the previous traversal of that rule. Therefore, we extend our
lemma table of the top-down approach. A key-tuple additionally saves for each Filter
DAG, the node which was active in that Filter DAG.

4 Evaluation

All tests were performed on an Intel Core2 Duo CPU P8800 @ 2.66 GHz. We used
Java 1.7 (64 bit) with 2500 MB heap space assigned. As the first test document, we
chose XMark (XM) which was generated using a scaling factor of 1.0 [11]. The se-
cond document is SwissProt (SP). To make our evaluations independent of the kind of
text compression used, we removed all text- and attribute-nodes, resulting in docu-
ments of sizes 25.6 MB (XM) and 43.1 MB (SP), respectively. These documents were
used as input for the query processors QizX [12] and MXQuery [13]. Furthermore, we
used CluX to compress the documents, yielding grammars of size 1.15 MB (XM) and
1.74 MB (SP), respectively. These grammars were used as input to our algorithm
using dynamic programming (directUD) and without using dynamic programming
(directUD no). For a better comparison of the results, all documents were read from a
RAM-disc. As running time, we measured the time, the algorithms spent in user mode
on the CPU.

Fig. 8. a) Evaluation results on XMark document, b) on SwissProt document

162 S. Böttcher, R. Hartel, and T. Jacobs

Fig. 8 shows the evaluation results for both documents. The queries a1 to a8 exe-
cuted on XM correspond to the XPath-A queries of the XPathMark benchmark [14].
For SP, queries q1 and f1 are designed such that they consist of few child axes only,
whereas the other ones are more complex, having several following-sibling and des-
cendant axes. Note that MXQuery currently does not support following-sibling axes
and therefore was not executed on queries q2, f2 and f3. On the selected nodes by
each query, a delete update operation was executed, removing these nodes including
their first-child sub-trees. The times measured include both, the evaluation of an
XPath query and the execution time of the update operation. Results not shown in the
diagram were worse than 3 seconds for XM or worse than 6 seconds for SP, respec-
tively. As both, Fig. 8 (a) and (b), show, our new approach outperforms QizX and
MXQuery on each query. For the XMark document, we are about 4.2 times faster
than QizX on average. However, when disabling dynamic programming, results get
worse, such that QizX was faster than our algorithm for query a8. It has to be noted
that query a8 has filters, such that our approach needs two runs through the grammar.
Disabling dynamic programming results in implicitly decompressing that grammar
twice. In this sense, our results show the benefit of using dynamic programming, be-
ing 3 times faster on average on the XMark document, when enabling it. In case of
the SwissProt document, we benefit even more from dynamic programming, being up
to 6.7 times faster when enabling it. Note that QizX was aborted after 60 seconds
running on the rather complex query q2 having a rather high selectivity of 76,573
nodes, whereas our algorithm took less than one second.

5 Related Work

There are several approaches to XML structure compression which can be mainly
divided into the categories: encoding-based, schema-based or grammar-based com-
pressors. Encoding-based compressors (e.g.[15], [16], [17], XMill [18], XPRESS
[19], and XGrind [20]) allow for a faster compression speed than the other ones, as
only local data has to be considered in the compression as opposed to considering
different sub-trees as in grammar-based compressors. Schema-based compressors
(e.g. XCQ [21], Xenia [22], and XSDS [23]) subtract the given schema information
from the structural information and only generate and output information not already
contained in the schema information. XQzip [24] and the approaches [25] and [1]
belong to grammar-based compression. They compress the data structure of an XML
document by combining identical sub-trees. An extension of [1] and [24] is the
BPLEX algorithm [3] that not only combines identical sub-trees, but recognizes simi-
lar patterns within the XML tree, and therefore allows a higher degree of compres-
sion. The approach presented in this paper, which is an extension of [2], follows the
same idea. But instead of combining similar structures bottom-up, our approach
searches within a given window the most promising pair to be combined while fol-
lowing one of three possible clustering strategies. Furthermore, in contrast to [5] and
[26], that perform updates by path isolation only sequentially, our approach allows
performing updates in parallel which takes only a fraction of time.

 Fast Multi-update Operations on Compressed XML Data 163

6 Summary and Conclusions

We have presented an approach to directly support updates on grammar-compressed big
XML data. Given a grammar G representing an XML document D, and given an XPath
query Q selecting nodes N of D and an update operation O to be performed on all these
nodes N, our approach simulates this multi-update operation on G without full decom-
pression of G. For this purpose, it computes the set of all grammar paths through G rep-
resenting the nodes selected by Q, combines these paths into a small Update DAG, and
then executes O in parallel on all the paths described by the Update DAG. As an ad-
vantage over other algorithms, there is no need to decompress the document and to com-
press it again afterwards. Additionally, by using the Update DAG, redundant modifica-
tions within the compressed grammar can be avoided, which increases the performance
and keeps the size of the compressed XML document low. To further speed-up the exe-
cution of Q when computing update positions in G, we separate the top-down evaluation
of Q’s main path from the bottom-up computation of Q’s filters, and we use dynamic
programming for both, the top-down and the bottom-up computation. As a result, our
solution outperforms other update processors like QizX and MXQuery working on un-
compressed XML only up to a factor of 37 and more.

References

1. Buneman, P., Grohe, M., Koch, C.: Path Queries on Compressed XML. In: VLDB 2003,
Berlin, Germany (2003)

2. Böttcher, S., Hartel, R., Krislin, C.: CluX - Clustering XML Sub-trees. In : ICEIS 2010,
Funchal, Madeira, Portugal (2010)

3. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML documents.
In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 199–216. Springer,
Heidelberg (2005)

4. Lohrey, M., Maneth, S., Mennicke, R.: Tree Structure Compression with RePair. In: DCC
2011, Snowbird, UT, USA (2011)

5. Fisher, D., Maneth, S.: Structural Selectivity Estimation for XML Documents. In: ICDE
2007, Istanbul, Turkey (2007)

6. Bätz, A., Böttcher, S., Hartel, R.: Updates on grammar-compressed XML data. In: Fer-
nandes, A.A.A., Gray, A.J.G., Belhajjame, K. (eds.) BNCOD 2011. LNCS, vol. 7051, pp.
154–166. Springer, Heidelberg (2011)

7. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries. ACM
Trans. Database Syst. 30 (2005)

8. Olteanu, D., Meuss, H., Furche, T., Bry, F.: XPath: Looking forward. In: Chaudhri, A.B.,
Unland, R., Djeraba, C., Lindner, W. (eds.) EDBT 2002. LNCS, vol. 2490, pp. 109–127.
Springer, Heidelberg (2002)

9. Böttcher, S., Steinmetz, R.: Evaluating xPath queries on XML data streams. In: Cooper,
R., Kennedy, J. (eds.) BNCOD 2007. LNCS, vol. 4587, pp. 101–113. Springer, Heidelberg
(2007)

10. Benter, M., Böttcher, S., Hartel, R.: Mixing bottom-up and top-down xPath query evalua-
tion. In: Eder, J., Bielikova, M., Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 27–
41. Springer, Heidelberg (2011)

164 S. Böttcher, R. Hartel, and T. Jacobs

11. Schmidt, A., Waas, F., Kersten, M., Carey, M., Manolescu, I., Busse, R.: XMark: A
Benchmark for XML Data Management. In : VLDB 2002, Hong Kong, China (2002)

12. Axyana-Software: Qizx, http://www.axyana.com/qizx
13. MXQuery, http://mxquery.org
14. Franceschet, M.: XPathMark: An XPath Benchmark for the XMark Generated Data. In:

Bressan, S., Ceri, S., Hunt, E., Ives, Z.G., Bellahsène, Z., Rys, M., Unland, R. (eds.) XSym
2005. LNCS, vol. 3671, pp. 129–143. Springer, Heidelberg (2005)

15. Zhang, N., Kacholia, V., Özsu, M.: A Succinct Physical Storage Scheme for Efficient
Evaluation of Path Queries in XML. In: ICDE 2004, Boston, MA, USA (2004)

16. Cheney, J.: Compressing XML with Multiplexed Hierarchical PPM Models. In: DCC
2001, Snowbird, Utah, USA (2001)

17. Girardot, M., Sundaresan, N.: Millau: an encoding format for efficient representation and
exchange of XML over the Web. Computer Networks 33 (2000)

18. Liefke, H., Suciu, D.: XMILL: An Efficient Compressor for XML Data. In: SIGMOD
2000, Dallas, Texas, USA (2000)

19. Min, J.-K., Park, M.-J., Chung, C.-W.: XPRESS: A Queriable Compression for XML Da-
ta. In: SIGMOD 2003, San Diego, California, USA (2003)

20. Tolani, P., Haritsa, J.: XGRIND: A Query-Friendly XML Compressor. In: ICDE 2002,
San Jose, CA (2002)

21. Ng, W., Lam, W., Wood, P., Levene, M.: XCQ: A queriable XML compression system.
Knowl. Inf. Syst. (2006)

22. Werner, C., Buschmann, C., Brandt, Y., Fischer, S.: Compressing SOAP Messages by us-
ing Pushdown Automata. In: ICWS 2006, Chicago, Illinois, USA (2006)

23. Böttcher, S., Hartel, R., Messinger, C.: XML Stream Data Reduction by Shared KST Sig-
natures. In: HICSS-42 2009, Waikoloa, Big Island, HI, USA (2009)

24. Cheng, J., Ng, W.: XQzip: Querying compressed XML using structural indexing. In: Ber-
tino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K.
(eds.) EDBT 2004. LNCS, vol. 2992, pp. 219–236. Springer, Heidelberg (2004)

25. Adiego, J., Navarro, G., Fuente, P.: Lempel-Ziv Compression of Structured Text. In: DCC
2004, Snowbird, UT, USA (2004)

26. Fisher, D., Maneth, S.: Selectivity Estimation. Patent WO 2007/134407 A1 (May 2007)

	Fast Multi-update Operations on Compressed XML Data

	1 Introduction
	2 Fundamentals and Previous Work
	2.1 Sharing Similar Trees of XML Documents Using Grammars
	2.2 Using Grammar Paths to Identify Nodes
	2.3 Executing an Update-operation for a Given Grammar Path
	2.4 The Concept of Parallel Updates on Grammars

	3 Construction of the Update DAG
	3.1 Assumptions and Problem Definition
	3.2 Overview of Our Approach
	3.3 Query Rewriting and Extraction of Filters
	3.4 Evaluation of Queries without Filters

	4 Evaluation
	5 Related Work
	6 Summary and Conclusions
	References

