
MatchBench: Benchmarking Schema Matching
Algorithms for Schematic Correspondences

Chenjuan Guo, Cornelia Hedeler, Norman W. Paton, and Alvaro A.A. Fernandes

School of Computer Science, University of Manchester, M13 9PL, UK
{guoc,chedeler,norm,alvaro}@cs.man.ac.uk

Abstract. Schema matching algorithms aim to identify relationships between
database schemas, which are useful in many data integration tasks. However, the
results of most matching algorithms are expressed as semantically inexpressive,
1-to-1 associations between pairs of attributes or entities, rather than semantically-
rich characterisations of relationships. This paper presents a benchmark for eval-
uating schema matching algorithms in terms of their semantic expressiveness.
The definition of such semantics is based on the classification of schematic het-
erogeneities of Kim et al.. The benchmark explores the extent to which matching
algorithms are effective at diagnosing schematic heterogeneities. The paper con-
tributes: (i) a wide range of scenarios that are designed to systematically cover
several reconcilable types of schematic heterogeneities; (ii) a collection of ex-
periments over the scenarios that can be used to investigate the effectiveness
of different matching algorithms; and (iii) an application of the experiments for
the evaluation of matchers from three well-known and publicly available schema
matching systems, namely COMA++, Similarity Flooding and Harmony.

1 Introduction

Schema matching methods identify matches between elements of data sources that show
similar properties (e.g., names, instances and structures) [4, 20]. Matching methods are
not an end in themselves, but rather form part of other operations, such as schema
mapping that refines matches into declarative but executable mappings (e.g., in SQL
or XSLT) to specify the relationships between the data sources [11, 5]. Schema match-
ing and mapping are important because a wide range of information management and
integration tasks [13, 12], such as data exchange, evolution and distributed query pro-
cessing, depend on a detailed understanding of the relationships between data sources.

Such integration tasks must be built on appropriate executable mappings, which,
in turn, require clear characterisations of matches between data sources. However, al-
though matches may be generated by a large number of different techniques, they are
often numerous, uncertain and conflicting [3]. As such, when evaluating matches, it
seems important to explore what kind of information is carried by matches that must be
taken into account by executable programs.

We note that there have been several evaluation activities relating to schema match-
ing/mapping in the data integration community in recent years, such as Ontology Align-
ment Evaluation Initiative (OAEI) [1], XBenchmark [10], eTuner [15] and STBench-
mark [2]. The first three activities aim to evaluate schema or ontology matching

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 92–106, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

MatchBench: Benchmarking Schema Matching Algorithms 93

systems (e.g., [8, 17, 7]) in terms of accuracy or correctness, e.g., precision, recall and
F-measure, of matches identified by the existing matching systems, while STBench-
mark aims to compare schema mapping systems (e.g., [11, 5, 6]) in terms of the effec-
tiveness of the support provided to mapping developers.

In this paper, we present a benchmark, called MatchBench, with the aim of under-
standing the effectiveness of schema matching systems in identifying specific relation-
ships between elements of two schemas, rather than simply assessing the correctness
of matches identified by the matching systems, thus differentiating MatchBench from
previous evaluation activities. We characterise such relationships between schema ele-
ments using the classification of schematic heterogeneities of Kim et al. [14]. We do
not intend to enumerate all kinds of relationships in MatchBench but try to exemplify a
collection of semantic relationships based on the schematic heterogeneities.

Thus, the hypothesis behind MatchBench is that the effectiveness of matching sys-
tems in practice can be evaluated in terms of their ability to diagnose (or support the
diagnosis of) such schematic heterogeneities as those proposed by Kim et al. The con-
tributions of the paper are presented as follows:

1. A collection of scenarios, based on the schematic heterogeneities of Kim et al.
[14], that systematically vary the amount and nature of the evidence available about
heterogeneities.

2. An experiment design over the scenarios at (1) that can be used as a benchmark to
investigate the contexts within which specific matchers are more, or less, effective.

3. The application of the benchmark to schema matching techniques is supported
within three well-known and publicly available matching systems1, namely
COMA++ [8], Similarity Flooding [17] and Harmony [22].

The remainder of the paper is structured as follows. Section 2 introduces the schematic
heterogeneities of Kim et al. [14]. Section 3 describes MatchBench, including the of-
fered scenarios and the associated experiments. Sections 4 describes the application of
MatchBench to matchers provided by COMA++, Similarity Flooding and Harmony,
respectively. Section 5 reviews related work, in particular on the evaluation of schema
matching techniques. Section 6 presents some overall conclusions.

2 Schematic Correspondences

The schematic heterogeneities proposed by Won Kim et al. [14] are defined as different
symbolic representations of data that represent the same real world information. We es-
sentially use the terms heterogeneity and correspondence as synonyms – a heterogeneity
is an inconsistency between data sources in representation, and a correspondence is a
description of the heterogeneity that allows it to be managed.

In this paper, we adopt the classification of schematic correspondences between rela-
tional schemas proposed by Won Kim et al. [14], and have refined the characteristics of
many-to-many entity correspondences from [14] to distinguish horizontal and vertical
partitioning. Before moving on to the details, let the following be the schemas of two

1 In order to maintain the initial feature of matching systems, we decided not to re-implement
the matching systems that are not publicly available.

94 C. Guo et al.

independently designed relational databases RDB1 and RDB22.

RDB1:
home cust (id∗, name, birth, a id+, p city, p area, p local)
oversea cust (id∗, name, birth, a id+, p city, p area, p local)
account (id∗, name, balance, tax)

RDB2:
customer (id∗, c fname, c lname, c birth, account id+)
cust phone (id∗+, city, area, local, extension)
cust account (id∗, account name, account balance)

Both RDB1 and RDB2 contain information about customers and their accounts.
Even though they represent the information differently, it can be identified that they
represent broadly the same real world information, and that correspondences exist be-
tween them at both entity and attribute levels:
(i) The entity-level correspondences indicate the equivalence between two (sets of) en-
tities (e.g., tables), which can be decomposed into one-to-one and many-to-many entity
correspondences, where

– one-to-one entity correspondences relate pairwise entities that represent the same
information. For example, account in RDB1 and cust account in RDB2 can be
considered equivalent but show the following heterogeneities:
• name conflict, which indicates that equivalent entities have different names.

In the following, this conflict is called Different Names for the Same Entities
(DNSE). When different entities happen to have the same name, we call the
conflict Same Name for Different Entities (SNDE).

• missing attributes conflict, which identifies attributes that are present in one
entity but not in the other (e.g., attribute tax in account is a missing attribute
of cust account).

– many-to-many entity correspondences relate two sets of entities that represent the
same information. For example, home cust and oversea cust together in RDB1
describe the same information about customers as customer and cust phone in
RDB2. It can be seen that these two sets of entities in RDB1 and RDB2 do not
have the same structure, but the underlying information is similar. This difference
results in distinct types of many-to-many conflicts. Borrowing terminology from
distributed database systems [19],we classify them as follows:

• horizontal partitioning (HP), where one single entity is partitioned along its
instances into multiple entities in another schema. As such, all attributes of the
former entity are present in each of the corresponding entities in the latter (e.g.,
home cust and oversea cust in RBD1).

• vertical partitioning (VP), where a single entity is partitioned into multiple en-
tities in another schema, where the attributes in each of the latter constitute
subsets of the attributes in the former. The primary key of the vertically par-
titioned entity appears as an equivalent attribute in every one of its vertical
partitions in the other schema, whereas other attributes of the former entity are
present only once in the latter (e.g., customer and cust phone in RDB2).

2 Symbols ∗ and + indicate primary key and foreign key attributes, respectively.

MatchBench: Benchmarking Schema Matching Algorithms 95

Given the above information, we are then able to enumerate 4 types of many-to-
many entity correspondences: HP vs HP, HP vs VP, VP vs HP and VP vs VP cor-
respondences. For example, the correspondence between entity sets {home cust,
oversea cust} and {customer, cust phone} is a HP vs VP correspondence. Read-
ers may follow the definitions to enumerate other partitioning types, such as hybrid
partitioning, which refers to the cases where HP and VP appear together in the
source (or target).

(ii) The attribute-level correspondences indicate the equivalence between two (sets
of) attributes. For the remainder of the paper, we assume that attributes associated by
attribute-level correspondences belong to entities that are participating in some entity-
level correspondence. Similar the entity-level correspondence, the attribute-level corre-
spondences can be decomposed into one-to-one and many-to-many correspondences,
where

– one-to-one attribute correspondences relate pairwise attributes. Equivalent at-
tributes may have different names, so such a conflict is called Different
Names for the Same Attributes (DNSA) (e.g., account.name in RDB1 and
cust account.account name in RDB2). By contrast, attributes that are differ-
ent may have the same name, giving rise to Same Name for Different Attributes
(SNDA) correspondences.

– many-to-many attribute correspondences associate two sets of attributes that
present the same property of equivalent entities. For example, the single attribute
home cust.
name in RDB1 and the set of attributes customer.c fname and
customer.c lname in RDB2 represent names of customers.

3 Benchmark Description

This section describes the benchmark3 consisting of: (i) a collection of scenarios, in
which schematic heterogeneities are systematically injected into an initial database;
and (ii) a collection of experiments that investigate the ability of matching methods to
identify specific properties exhibited by the scenarios.

3.1 Scenario

The scenarios build upon the source and target databases illustrated in Fig. 1, derived
from TPC-E (http://www.tpc.org/tpce/), which are manipulated in a controlled manner.

There are positive and negative scenarios. In the positive scenarios, the starting point
is that the source and target databases have a single table in common, into which
schematic heterogeneities described in Section 2 are systematically introduced. In the
implementation, the initial target database is extended with a single table from the
source (see Fig. 1). In the negative scenarios, the starting point is that the source and

3 This paper only means to demonstrate a general idea of MatchBench. Readers may find the
complete version for all available scenarios and experiments from
http://code.google.com/p/matchbench/.

http://code.google.com/p/matchbench/

96 C. Guo et al.

Trade_ID char(16) *

TDatetime DateTime

Trade_Type_ID char(3)

IS_CASH boolean

Quantity integer

Bid_Price double

Customer_Account_ID char(12)

Executing_Name char(64)

Price double

Charge double

Commission double

Tax double

Customer_Account_ID char(12) *

Customer_Account

(1000 Instances)

Broker_ID char(12)

Customer_ID char(12)

Name varchar(50)

Tax_Status integer(1)

Balance double

Trade_Type_ID char(3) *

Name char(12)

IS_Sell boolean

IS_Market boolean

Broker_ID char(12) *

Name varchar(100)

Number_Trades integer(9)

Commission_Total double

Customer_ID char(12) *

Last_Name varchar(30)

First_Name varchar(30)

Middle_Name char(1)

Gender varchar(1)

Tier integer(1)

Birthday DATE

Address_ID char(12)

Phone_City CHAR(3)

Phone_Area char(3)

Phone_Local char(10)

Phone_Extension char(5)

Email char(50),

Address_ID char(12) *

Line1 varchar(80)

Line2 varchar(80)

Zip_Code char(12)

Town varchar(80)

ADIV varchar(80)

Country varchar(80)

Trade (1000 Instances)

Trade_Type (5 Instances)

Address

(1000 Instances)

Customer (1000 Instances)

AP_CA_ID char(12) *

AP_Tax_ID varchar(20) *

ACL char(4),

Last_Name varchar(30)

First_Name varchar(30)

Status_Type_ID char(4) *

Name char(10)

CX_TX_ID char(4) *

CX_C_ID char(12) *

 Customer_Taxrate

(1000 Instances)

Company_ID char(12) *

Company (500 Instances)

ST_ID char(4)

Name varchar(60)

IN_ID char(2)

SP_Rate char(4)

CEO char(100)

AD_ID char(12)

Open_Date Date

Industry_ID char(2) *

Name varchar(50)

SC_ID char(2)

X (One of Tables in Source)

Account_Permission

(1000 Instances)

Industry (102 Instances)

Status_Type (5 Instances)

Source Schema Target Schemas

Broker (10 Instances)

Fig. 1. The source and target databases used as a basis for scenario generation, where primary
keys are marked with ∗

target databases have no single table in common, but similarities have been systemati-
cally introduced, giving rise to scenarios where tables should not be matched, but where
there are some similarities between tables.

Scenario Set 1:

(Baseline)

1. SNSE

2. SNSA

Scenario Set 6:

1. DNSE

2. DNSA

Change entity

name

Remove attributes

Change

attribute
Scenario Set 2:

1. SNSE

2. DNSA

Scenario Set 3:

1. SNSE

2. SNSA

3. Missing Attributes

Scenario Set 5:

1. DNSE

2. SNSA

Scenario Set 7:

1. DNSE

2. SNSA

3. Missing Attributes

Scenario Set 4:

1. SNSE

2. DNSA

3. Missing Attributes

Remove

attributes

Change

attribute names

Scenario Set 8:

1. DNSE

2. DNSA

3. Missing Attributes

names

Change

attribute

names

Change

attribute

names

Fig. 2. Positive scenarios for one-to-one entity
correspondences

Positive Scenarios for One-to-One Entity
Correspondences. Fig. 2 describes the
space of positive scenarios where hetero-
geneities are introduced into one-to-one
identical entities4. In the figure, boxes
represent scenario sets and arrows repre-
sent the systematic introduction of het-
erogeneities into the scenario sets. Each
scenario set consists of a collection of
databases each of which manifests exam-
ples of the heterogeneities named in the
corresponding box, the definitions of which are provided below. For example, Scenario
Set 1 represents the starting point for the introduction of the heterogeneities, and the
arrow leading to Scenario Set 5 indicates that it has been derived from Scenario Set 1
through the changing of entity names.

In what follows, where names are described as the same they are identical, and where
they are described as similar their strings overlap; neither of these properties hold for
different names. Following the terminology introduced in Section 2, terms used in Fig.
2 include SNSE as Same Name for Same Entity; DNSE as Different Names for Same
Entity; SNSA as Same Name for Same Attribute; and DNSA as Different Names for
Same Attribute. As such, a scenario set that exhibits one-to-one entity heterogeneities
may also exhibit one-to-one attribute heterogeneities.

In each scenario set, the extents of equivalent entities either contain the same in-
stances (SI) or disjoint instances (DI). The disjoint instances are generated by parti-
tioning instances of an original entity into two disjoint sets of instances, thus forming

4 The order of introducing different types of heterogeneities is insignificant.

MatchBench: Benchmarking Schema Matching Algorithms 97

disjoint instances of two equivalent entities. Overlapping instances are also possible
real world cases, but are not implemented in MatchBench.

Change entity name

Scenario Set 9:

(Baseline)

1. DNDE

2. DNDA

Scenario Set 10:

1. DNDE

2. DNDA

3. SNSA

Scenario Set 11:

1. DNDE

2. DNDA

3. DNSA

Add same attributes

Scenario Set 13:

1. SNDE

2. DNDA

Scenario Set 15:

1. SNDE

2. DNDA

3. DNSA

Scenario Set 14:

1. SNDE

2. DNDA

3. SNSA

names

Add same attributes

Change

attribute

Scenario Set 12:

1. DNDE

2. DNDA

3. SNDA

Scenario Set 16:

1. SNDE

2. DNDA

3. SNDA

Add same

attributes

with different

names

names

Add same

attributes

with different
Change

attribute

names

Fig. 3. Negative scenarios for one-to-one entity
correspondences

Negative Scenarios for One-to-One En-
tity Correspondences. The space of neg-
ative scenarios for one-to-one different
entities, where pairs of entities represent
different real world information, is de-
scribed in Fig. 3. Terms used to describe
the properties of the scenario sets include
DNDE as Different Names for Different
Entities; SNDE as Same Name for Differ-
ent Entities; DNDA as Different Names
for Different Attributes; SNSA as Same
Name for Same Attribute; DNSA as Dif-
ferent Names for the Same Attributes;
and SNDA as Same Name for Different
Attributes.

Change

attribute names

Scenario Set 17:

1. Attribute Many-to-One

Correspondences Types

2. SNSE

3. Similar Names for Attributes

Scenario Set 18:

1. Attribute Many-to-One

Correspondences Types

2. SNSE

3. Different Names for Attributes

Fig. 4. Positive scenarios for attribute many-to-
one correspondences.

Positive Scenarios for Attribute Many-
to-One Correspondences. In Fig. 4, the
space of attribute many-to-one corre-
spondences is described, where a set of
attributes and a single attribute that be-
long to equivalent entities represent the
same real world information. We note
that most schema matchers only handle many-to-one attribute correspondences, and
thus we set up a task that existing matchers can manage. MatchBench includes three
different types of attribute many-to-one correspondences shown as follows.

1. numeric operation: (price + charge + commission) × (1 + tax) = price
2. string concatenation: Concat (first name, middle name, last name) = name
3. numeric concatenation:

Concat (phone city, phone area, phone local, phone extension) = phone

Similar to Fig. 2, extents of equivalent entities are generated that give rise to SI and DI
cases for scenario set 17. Scenario set 18 only contains SI cases but not DI, in order to
retain a certain level of similarity between attributes.

Change

attribute names

Scenario Set 19:

1. Entity Many-to-Many

Correspondence Types

2. Different Entity Names

3. Same Attribute Names

Scenario Set 20:

1. Entity Many-to-Many

Correspondence Type

2. Different Entity Names

3. Similar Attribute Names

Fig. 5. Positive scenarios for many-many entity
correspondences

Positive Scenarios for Entity Many-to-
Many Correspondences. Two sets of en-
tities, shown in Fig. 5, represent the same
real world information. Three different
types of many-to-many entity correspon-
dences are included in MatchBench:

– HP vs HP, where the two sets are related by horizontal partitioning.
– VP vs VP, where the two sets are related by vertical partitioning.
– HP vs VP, where the two sets are related by horizontal and vertical partitioning.

98 C. Guo et al.

3.2 Experiments

Effectiveness Measures. The effectiveness of matching systems is evaluated in Match-
Bench by identifying whether the systems meet specific requirements for diagnosing
each type of schematic heterogeneity. Each such requirement is met if results of the
systems are close to the correct matches provided by the scenarios presented in this
section. Following terms in the standard definitions [9] of information retrieval, we
call the correct matches as ground truth. We compare the results of the systems with
the ground truth, and report recall, precision and F-measure of the results following to
shown the effectiveness of the matching systems.

Experiment Design. Building on the scenarios, we designed 10 experiments to measure
how effectively matching systems identify the presence of schematic heterogeneities.
Due to the space limitations, only 4 experiments are presented in this paper. More
experiments are included in the technical report.

In Experiments 1, 3 and 4, where schematic heterogeneities are exhibited in the
chosen scenarios, the F-measure is reported in the vertical axis drawn in the figures
produced in Section 4.2. The higher the F-measure reports, the better is the matching
system for diagnosing the heterogeneity. In Experiment 2, which involves negative sce-
narios, where there are no such heterogeneities in the chosen scenarios, 1 – F-measure
is reported on the vertical axis so that larger values also reflect the better effectiveness
of the matching system on not reporting the heterogeneities.

Experiment 1: Identifying when the same entity occurs in positive scenarios. This ex-
periment involves Scenario Sets 1 to 8 in Fig. 2, and reports on the ability of the match-
ers to meet two requirements:

- Requirement R1: Equivalent entities are matched, where the ground truth is the set of
pairwise entity matches between equivalent entities.

- Requirement R2: Equivalent attributes are matched, where the ground truth is the
collection of pairwise attribute matches between equivalent attributes.

Experiment 2: Identifying when the same entity occurs in negative scenarios. This ex-
periment involves Scenario Sets 9 to 16 in Fig. 3, and reports on the ability of matching
systems in scenarios where no correspondences exist:
- Requirement R1: Different entities are not matched, where the ground truth is that
there are no pairwise entity matches between different entities.
- Requirement R2: Different attributes are not matched, where the ground truth is that
there are no pairwise attribute matches between pairs of attributes.

Experiment 3: Identifying many-to-one attribute correspondences in positive scenar-
ios. This experiment involves Scenario Sets 17 and 18 in Fig. 4, where each element
in the ground truth is a collection of attribute matches between each attribute in the set
and the single attribute.

Experiment 4: Identifying many-to-many entity correspondences in positive scenarios.
This experiment involves Scenario Sets 19 and 20 in Fig. 5.

- Requirement R1: Each entity in the source set should be matched to all entities in the
target set. The ground truth is the collection of pairwise entity matches between each
entity in the source set and all entities in the target set.

MatchBench: Benchmarking Schema Matching Algorithms 99

The following two requirements are investigated only when the evaluated systems
are able to meet R1.
- Requirement R2: Primary key attributes in each entity in the source set should be
matched to primary key attributes in all entities in the target set. The ground truth is the
collection of pairwise attribute matches between primary key attributes in each entity
in the source set and primary key attributes in all entities in the target set.
- Requirement R3: Partitions in the source schema are matched against partitions in the
target schema, with a view to identifying specific types of many-to-many correspon-
dences. For each type, the ground truth is the collection of pairwise attribute matches
between attributes as described below:

– Horizontal Partitioning vs Horizontal Partitioning: Each non-key attribute in each
entity in the source (target) set should be matched to a single non-key attribute in
every entity in the target (source) set.

– Vertical Partitioning vs Vertical Partitioning: Each non-key attribute in each entity
in the source (target) set should be matched to a single non-key attribute in an entity
in the target (source) set.

– Horizontal Partitioning vs Vertical Partitioning: Each non-key attribute in each en-
tity in the source set should be matched to a single non-key attribute in an entity in
the target set; but each non-key attribute in each entity in the target set should be
matched to a single non-key attribute in each entity in the source set.

4 Application of MatchBench

4.1 Matching Systems

In general, we follow the advice of the developers when configuring matching systems,
for example, by employing the settings suggested in the published papers or in private
communication with the authors. In addition, we take all steps that are available to us in
order to help the systems to perform well, e.g., by plugging an instance-level matcher
into Similarity Flooding and Harmony, which were both originally supplied with only
schema-level matchers.

COMA++ [8] is a schema matching platform that supports the composition of
schema and instance level matchers from a substantial library. In particular, we ap-
plied AllContext as the matching strategy, selected matchers Name, NamePath, Leaves
and Parents at the schema-level and Content-based at the instance-level, and employed
Average for aggregation, Both for direction, Threshold+MaxDelta for selection and Av-
erage for combination, as they are demonstrated to be effective in published experi-
mental evaluations [8]. As experience with COMA++ has not given rise to consistent
recommendations for Threshold and Delta [16, 8], we decided to employ the default
settings of Threshold and Delta (i.e., 0.1 and 0.01) provided with the COMA++ tool.

Similarity Flooding (SF) [17] is a schema matching operator used by the model
management platform, Rondo [18]. SF applies a name matcher NGram and a similarity
flooding algorithm to generate candidate matches, and selects a best match for each
element from the candidate matches under the constraint that each element can only be
associated with a single match.

100 C. Guo et al.

For the evaluation of SF using MatchBench, the NGram matcher and an instance
matcher (i.e., the Content-based matcher of COMA++) are used together to enable SF
making use of instance-level information. This improvement turns out to be important
for identifying schematic correspondences.

Harmony [22] is an interactive matching tool contained in a suite of data integration
tools, called OpenII [21]. For the evaluation using MatchBench, we chose the EditDis-
tance, Documentation and Exact matchers provided by Harmony but we left out the
Mapping matcher as we do not consider previous matches during the evaluation.

Harmony returns all candidate matches and allows the user to slide a threshold bar
while visually observing which matches pass different thresholds. However, there are a
large number of scenarios in MatchBench, thus selecting a threshold manually for each
of them is not practical. Therefore, we decided to follow the recommendation of the
OpenII authors. We use the top matches associated with each element while not restrict-
ing the number of matches associated with an element. In addition, as Harmony only
works at the schema-level, we combine it with the Content-based matcher of COMA++,
to provide the same basis in terms of instance-based matches as COMA++ and SF.

4.2 Effectiveness Comparison

Experiment 1: Identifying when the same entity occurs in positive scenarios. The re-
sults of this experiment are presented in Fig. 6(a) to (d). The following can be observed:
(i) All three systems have been reasonably successful at matching equivalent entities
and equivalent attributes when they have the same instances (recalls reported are fairly
high, though not illustrated here), but have been less successful for disjoint instances.

0

0.2

0.4

0.6

0.8

1.0

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

A
ve

ra
ge

 F
-m

ea
su

re

Scenario Sets

COMA++ SF Harmony

(a) Expt 1: R1, same instances

0

0.2

0.4

0.6

0.8

1.0

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

A
ve

ra
ge

 F
-m

ea
su

re

Scenario Sets

COMA++ SF Harmony

(b) Expt 1: R1, disjoint instances

0

0.2

0.4

0.6

0.8

1.0

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

A
ve

ra
ge

 F
-m

ea
su

re

Scenario Sets

COMA++ SF Harmony

(c) Expt 1: R2, same instances

0

0.2

0.4

0.6

0.8

1.0

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

A
ve

ra
ge

 F
-m

ea
su

re

Scenario Sets

COMA++ SF Harmony

(d) Expt 1: R2, disjoint instances

0

0.2

0.4

0.6

0.8

1.0

Set 9 Set 10 Set 11 Set 12 Set 13 Set 14 Set 15 Set 16

A
ve

ra
ge

 (1
 -

F-
m

ea
su

re
)

Scenario Sets

COMA++ SF Harmony

(e) Expt 2: R1

0

0.2

0.4

0.6

0.8

1.0

Set 9 Set 10 Set 11 Set 12 Set 13 Set 14 Set 15 Set 16

A
ve

ra
ge

 (1
 -

F-
m

ea
su

re
)

Scenario Sets

COMA++ SF Harmony

(f) Expt 2: R2

Fig. 6. Experiments 1 and 2 for COMA++, Similarity Flooding (SF) and Harmony

(ii) A significant number of false positives between different entities and between dif-
ferent attributes have been generated by all systems (the F-measures reported in Fig.
6(a) to (d) are fairly low, given high recalls). This is due to the selection strategies these

MatchBench: Benchmarking Schema Matching Algorithms 101

platforms employ: for COMA++, the MaxDelta method always chooses a few of the top
matches associated with an element, even though the scores of these matches may be
fairly low due to the low threshold of 0.1; SF only returns 1-to-1 matches by selecting
a best match for each element, regardless of its similarity score; and Harmony keeps
a match as long as it is the top match for either of its associated elements irrespective
of the match scores, resulting in a large number of incorrect matches, which makes it
perform worst among the three platforms.
(iii) Changing the names of equivalent entities into similar or different has almost no
impact on the three platforms on matching equivalent attributes (Fig. 6(c) and (d)).

Experiment 2: Identifying when the same entity occurs in negative scenarios. The re-
sults of this experiment are presented in Fig. 6(e) and (f). The following can be ob-
served: (i) All three systems have matched the two different entities when similarities
have been injected into their names or their attributes (Average(1 – F-measure) > 0 in
Sets 13 to 16 in Fig. 6(e)). This is because all three systems choose the top candidate
matches for each element, and this also indicates that entities are matched because they
are more similar to each other than to other entities, but not because they represent the
same real world notion. (ii) COMA++ and SF perform satisfactorily in not matching
different attributes (Fig. 6(f)). Where attributes are matched, this is normally because
similar attributes have been introduced, and the remainder results from overlaps in the
instances or the names of non-equivalent attributes. Harmony has matched several dif-
ferent attributes even in the baseline scenarios where no similarities have been injected.
This shows that its selection strategy that keeps a top match for each element is not
effective in deciding the final matches.

0

0.2

0.4

0.6

0.8

1.0

Set 17 SI Set 17 DI Set 18

F-
m

ea
su

re

Scenario Sets

COMA SF Harmony

Fig. 7. Experiment 3 for COMA++,
Similarity Flooding (SF) and Harmony

Experiment 3: Identifying many-to-one attribute
correspondences in positive scenarios. The re-
sults of this experiment are presented in Fig.
7. COMA++ and SF have failed in this experi-
ment. In contrast to SF, which only identifies 1-
to-1 matches, the Threshold+MaxDelta method
COMA++ uses allows the identification of n-to-1
matches. However, given the delta value of 0.01,
the MaxDelta method sets a fairly small tolerance
range below the top match of an attribute, thus only being able to return matches whose
similarities are close to the top match. Harmony has identified some n-to-1 attribute
correspondences, where the n attributes and the 1 attribute have similar names (Sets
17 SI and 17 DI in Fig. 7), because Harmony chooses a best match for each element
and allows a match to be kept as long as it is the best match for either of its associated
elements. When the n attributes and the 1 attribute have similar names, the matches be-
tween the n attributes and the 1 attribute are usually the top matches for the n attributes,
and thus are selected by Harmony.

Nevertheless, an n-to-1 attribute correspondence refers to a transformation of in-
stances (e.g., string concatenation or numeric operation) between the n attributes and
the 1 attribute rather than a selection of matches whose similarities are close or the top,
as determined by comparing names or instances of pairwise attributes. We anticipate

102 C. Guo et al.

that iMAP [7] could identify the n-to-1 attribute correspondences, however, the system
is not publicly available.

Experiment 4: Identifying many-to-many entity correspondences in positive scenarios.
In this experiment, SF is not able to carry out the task due to its focus on 1-to-1 matches.
Where SF identifies a few matches (Fig. 8(e) and (f)), it is because the ground truth is the
1-to-1 matches in vertical partitioning. COMA++ and Harmony have performed rather
patchily in seeking to meet requirement R1, as presented in Fig. 8(a) and (b), though
COMA++ and Harmony have performed satisfactorily on investigating requirements
R2 and R3. The following can be observed for COMA++ and Harmony.
(i) COMA++ has only been able to associate the n-to-m entities, i.e., to satisfy require-
ment R1, where the same instances are being represented in the horizontal partitioning
models (Set 19 HP vs HP and Set 20 HP vs HP in Fig. 8(a)), but has failed in other
partitioning models or in disjoint instances. This is because only when the two orig-
inal entities that have the same instances are horizontally partitioned, the similarities
between each pair of entities in the source and target sets are close, and as such are se-
lected by the MaxDelta method. Harmony has performed slightly better than the others.
However, it has been fairly generous (the recalls are always high, but the precisions are
fairly low). Therefore, the patchy results shown by Harmony are because the equivalent
n-to-m entities have also been matched to different entities.

0

0.2

0.4

0.6

0.8

1.0

Set 19
 HP vs HP

Set19
 VP vs VP

Set19
 HP vs VP

Set20
 HP vs HP

Set20
 VP vs VP

Set20
 HP vs VP

A
ve

ra
ge

 F
-m

ea
su

re

 Scenario Sets

COMA++ SF Harmony

(a) R1, same instances

0

0.2

0.4

0.6

0.8

1.0

Set 19
 HP vs HP

Set19
 VP vs VP

Set19
 HP vs VP

Set20
 HP vs HP

Set20
 VP vs VP

Set20
 HP vs VP

A
ve

ra
ge

 F
-m

ea
su

re

 Scenario Sets

COMA++ SF Harmony

(b) R1, disjoint instances

0

0.2

0.4

0.6

0.8

1.0

Set 19
 HP vs HP

Set19
 VP vs VP

Set19
 HP vs VP

Set20
 HP vs HP

Set20
 VP vs VP

Set20
 HP vs VP

A
ve

ra
ge

 F
-m

ea
su

re

 Scenario Sets

COMA++ SF Harmony

(c) R2, same instances

0

0.2

0.4

0.6

0.8

1.0

Set 19
 HP vs HP

Set19
 VP vs VP

Set19
 HP vs VP

Set20
 HP vs HP

Set20
 VP vs VP

Set20
 HP vs VP

A
ve

ra
ge

 F
-m

ea
su

re

 Scenario Sets

COMA++ SF Harmony

(d) R2, disjoint instances

0

0.2

0.4

0.6

0.8

1.0

Set 19
 HP vs HP

Set19
 VP vs VP

Set19
 HP vs VP

Set20
 HP vs HP

Set20
 VP vs VP

Set20
 HP vs VP

A
ve

ra
ge

 F
-m

ea
su

re

 Scenario Sets

COMA++ SF Harmony

(e) R3, same instances

0

0.2

0.4

0.6

0.8

1.0

Set 19
 HP vs HP

Set19
 VP vs VP

Set19
 HP vs VP

Set20
 HP vs HP

Set20
 VP vs VP

Set20
 HP vs VP

A
ve

ra
ge

 F
-m

ea
su

re

 Scenario Sets

COMA++ SF Harmony

(f) R3, disjoint instances

Fig. 8. Experiment 4 for COMA++, Similarity Flooding (SF) and Harmony

(ii) Similar to requirement R1, when the alternatively fragmented entities have the same
instances and no changes have been made to attribute names, and thus the similarities
of matches for many-to-many primary key attributes are close, COMA++ has gener-
ally been successful in satisfying requirement R2, as shown in Fig. 8(c). Harmony has
performed fairly satisfactorily in satisfying requirement R2 in the SI case, however, for
cases where there is less evidence (e.g., the DI case), equivalent primary key attributes
are matched to different attributes (Fig. 8(c) and (d)).

MatchBench: Benchmarking Schema Matching Algorithms 103

(iii) COMA++ has been generally successful at matching non-key attributes, i.e., satis-
fying requirement R3, in both scenario sets where the same instances are represented,
but has performed slightly worse in the presence of disjoint instances. COMA++ has
performed particularly well in the vertical partitioning scenarios (Set 19 VP vs VP
and Set 20 VP vs VP in Fig. 8(e)), as the non-key attributes only have single corre-
sponding attributes; but has performed less well in the horizontal partitioning scenarios
(Set 19 HP vs HP and Set 20 HP vs HP in Fig. 8(e)) where many-to-many correspon-
dences between non-key attributes should be identified. This indicates that COMA++
is more suited to identifying one-to-one correspondences than to many-to-many cor-
respondences. Harmony has been competitive with COMA++ in the SI case, but has
performed better in the DI case (Fig. 8(e) and (f)), as the lack of a threshold means that
Harmony tends to return more matches, some of which are true positives.

4.3 Summary

The following lessons have been learned from the application of the representative
matchers to the benchmark:

(1) The existing schema matching methods were designed principally to associate sim-
ilar schema elements, and have been shown to perform rather better at this task than at
diagnosing the schematic heterogeneities of Kim et al. [14].
(2) The existing schema matching methods were more designed for identifying one-to-
one matches than for identifying many-to-many schematic correspondences.
(3) The strategy for selecting candidate matches influences the overall effectiveness of
schema matching methods significantly.
(4) COMA++ offers alternative choices for different matching tasks. We anticipate that
with more appropriate threshold and delta values, COMA++ would have performed bet-
ter in experiments provided in MatchBench [15]. However, as a well-known problem,
this presents practical challenges that setting any parameters generally requires access
to at least some training data.
(5) SF always identifies one-to-one matches between elements of data sources, and thus
cannot be used in diagnosing many-to-many schematic heterogeneities.
(6) Designed as an interactive tool, Harmony seems unsuitable for scenarios where a
very large number of matching tasks are required and where the automatic generation
of matches are demanded, since it is not practical to manually choose matches in such
scenarios for individual human users.

5 Related Work

This section reviews work that is related to that carried out here, and considers in par-
ticular experimental evaluation practice for schema matching, generation of test cases
for schema matching and mapping, and existing benchmarks for matching.

In terms of experimental evaluation practice for schema matching, most results
have been presented in the context of specific matching proposals, as compared by
Do et al. [9]. This comparison makes explicit that the diversity in evaluation practice is

104 C. Guo et al.

problematic, thus providing motivation for the development of benchmarks [9]. Overall,
the comparison indicates that most evaluations have been carried out using representa-
tive real-world schemas; while this approach provides insights into the effectiveness
of techniques in specific contexts, the lack of fine-grained control over properties of
the matched schemas can make it difficult to understand precisely the circumstances in
which methods are effective. Rather than revisiting the ground covered by Do et al.,
here we focus on the published evaluations of COMA++, SF and Harmony, to which
MatchBench is applied in Section 4.

The most comprehensive comparative activity of relevance to MatchBench is the
Ontology Alignment Evaluation Initiative (OAEI) [1], which runs an annual event on
evaluating ontology matching systems. Whereas, MatchBench is designed to assess
whether specific relationships, i.e., schematic correspondences, can be identified by
schema matching systems.

In terms of generation of test cases for schema matching and mapping, test cases
have been generated to support both tuning of matching systems in eTuner [15] and
evaluation of schema mapping platforms in STBenchmark [2]. The test schemas over
which eTuner is evaluated are generated by applying a number of rules for introducing
perturbations into existing schemas. These perturbations overlap with those described
in Section 3, but differ in the following respects: (i) they do not follow an established
classification of schematic correspondences; (ii) the emphasis is on 1-to-1 matches;
(iii) no negative scenarios are described; and (iv) there is no specific identification of
collections of test scenarios.

STBenchmark [2] is a benchmark for comparing visual interactive mapping con-
struction systems that aim at assisting an expert in generating a precise specification
of mappings between two schemas with less effort. STBenchmark provides rules for
generating mapping scenarios and evaluates the degree of effort supported by a schema
mapping system in specifying mappings. In essence, these rules overlap with those de-
scribed in Section 3. However, selecting types of variations and generating evaluation
scenarios is the responsibility of users. On the other hand, MatchBench supports the
developers of matchers through the provision of immediately usable scenarios.

In terms of existing benchmarks for matching, XBenchmark [10] has been developed
in the context of XML schema matching, and STBenchmark has been used for schema
mapping generation [2]. XBenchmark reports results at a very coarse grain, and is ag-
nostic as to the test cases used. In contrast, we systematically generate test cases to as-
sess the capabilities of matchers in specific scenarios with known properties, and have
an overall objective of ascertaining whether or not the matchers provide the diagnostic
information required to identify specific schematic heterogeneities. STBenchmark aims
for evaluating interactive tools for constructing mappings from matchings, such as Clio
[11] or BizTalk Mapper5, and thus the benchmark measures the amount of human effort
involved in addressing specific mapping scenarios given specific matchings. As such,
STBenchmark is complementary to MatchBench; indeed, insights from MatchBench
may inform the development of helper components for interactive mapping tools that
suggest to users what mappings may be most appropriate in a given setting.

5 www.microsoft.com/biztalk

MatchBench: Benchmarking Schema Matching Algorithms 105

6 Conclusions

This paper has presented a benchmark for schema matching methods that identifies the
extent to which these methods are successful at identifying correspondences between
schemas in the presence of the schematic heterogeneities of Kim et al. [14]. This is
in contrast to most reported evaluations of matching methods, where the focus is on
the identification of 1-to-1 matches between individual schema elements, where the
ability to combine these observations to draw higher level conclusions has not been
investigated.

The objective of the benchmark is not to seek to identify which matching methods
are “better” than others, but rather to enhance understanding of when and why specific
matching methods are suitable for a given task, with a view to guiding matcher selection
and configuration. In providing a revised focus for the evaluation of matching methods,
on diagnosing the heterogeneities that mappings must resolve, the benchmark both sup-
ports the reassessment of existing proposals and timely evaluation of new techniques.

References

[1] Ontology Alignment Evaluation Initiative (OAEI),
http://oaei.ontologymatching.org/

[2] Alexe, B., Tan, W.C., Velegrakis, Y.: Stbenchmark: towards a benchmark for mapping sys-
tems. PVLDB 1(1), 230–244 (2008)

[3] Bernstein, P., Melnik, S.: Model management 2.0: manipulating richer mappings. ACM
SIGMOD, 1–12 (2007)

[4] Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years later.
PVLDB 4(11), 695–701 (2011)

[5] Bonifati, A., Chang, E.Q., Ho, T., Lakshmanan, L.V.S., Pottinger, R., Chung, Y.: Schema
mapping and query translation in heterogeneous p2p xml databases. VLDB J. 19(2), 231–
256 (2010)

[6] Bonifati, A., Mecca, G., Pappalardo, A., Raunich, S., Summa, G.: Schema mapping verifi-
cation: the spicy way. In: EDBT, pp. 85–96 (2008)

[7] Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., Domingos, P.: imap: Discovering complex
mappings between database schemas. In: SIGMOD Conference, pp. 383–394 (2004)

[8] Do, H., Rahm, E.: Matching large schemas: Approaches and evaluation. Information Sys-
tems 32(6), 857–885 (2007)

[9] Do, H.-H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:
Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS, vol. 2593,
pp. 221–237. Springer, Heidelberg (2003)

[10] Duchateau, F., Bellahsene, Z., Hunt, E.: Xbenchmatch: a benchmark for xml schema match-
ing tools. In: VLDB, pp. 1318–1321 (2007)

[11] Fagin, R., Haas, L.M., Hernández, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio: Schema
mapping creation and data exchange. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu,
E.S. (eds.) Conceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 198–
236. Springer, Heidelberg (2009)

[12] Franklin, M., Halevy, A., Maier, D.: From databases to dataspaces: a new abstraction for
information management. SIGMOD Record 34(4), 27–33 (2005)

[13] Haas, L.: Beauty and the beast: The theory and practice of information integration. In:
Schwentick, T., Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 28–43. Springer, Hei-
delberg (2006)

http://oaei.ontologymatching.org/

106 C. Guo et al.

[14] Kim, W., Seo, J.: Classifying schematic and data heterogeneity in multidatabase systems.
IEEE Computer 24(12), 12–18 (1991)

[15] Lee, Y., Sayyadian, M., Doan, A., Rosenthal, A.: etuner: tuning schema matching software
using synthetic scenarios. VLDB J. 16(1), 97–122 (2007)

[16] Massmann, S., Engmann, D., Rahm, E.: Coma++: Results for the ontology alignment con-
test oaei 2006. Ontology Matching (2006)

[17] Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: a versatile graph matching
algorithm and itsapplication to schema matching. In: ICDE, pp. 117–128 (2002)

[18] Melnik, S., Rahm, E., Bernstein, P.: Rondo: a programming platform for generic model
management. In: ACM SIGMOD, pp. 193–204 (2003)

[19] Ozsu, M.T., Valduriez, P.: Principles of distributed database systems. Addison-Wesley,
Reading Menlo Park (1989)

[20] Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching. The VLDB
Journal The International Journal on Very Large Data Bases 10(4), 334–350 (2001)

[21] Seligman, L., Mork, P., Halevy, A.Y., Smith, K., Carey, M.J., Chen, K., Wolf, C., Madhavan,
J., Kannan, A., Burdick, D.: Openii: an open source information integration toolkit. In:
SIGMOD Conference, pp. 1057–1060 (2010)

[22] Smith, K., Morse, M., Mork, P., Li, M.H., Rosenthal, A., Allen, D., Seligman, L.: The role
of schema matching in large enterprises. In: CIDR (2009)

	MatchBench: Benchmarking Schema Matching
Algorithms for Schematic Correspondences

	1 Introduction
	2 Schematic Correspondences
	3 Benchmark Description
	3.1 Scenario
	3.2 Experiments

	4 Application of MatchBench
	4.1 Matching Systems
	4.2 Effectiveness Comparison
	4.3 Summary

	5 Related Work
	6 Conclusions
	References

