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Preface

This volume contains the papers presented at BNCOD 2013: 29th British Na-
tional Conference on Databases held during July 7–9, 2013, in Oxford.

The BNCOD Conference is a venue for the presentation and discussion of
research papers on a broad range of topics related to data-centric computation.
For some years, every edition of BNCOD has centered around a main theme,
acting as a focal point for keynote addresses, tutorials, and research papers. The
theme of BNCOD 2013 is Big Data. It encompases a growing need to manage
data that is too big, too fast, or too hard for the existing technology.

This year, BNCOD attracted 42 complete submissions from 14 different
African, European, South and North American countries. Each submission was
reviewed by three Program Committee members. The committee decided to ac-
cept 20 papers on such topics as query and update processing, relational storage,
benchmarking, XML query processing, Big Data, spatial data, indexing, data ex-
traction and social networks. The conference program also included three keynote
talks, two tutorials, and one panel session.

We would like to thank the authors for supporting BNCOD by submitting
their work to the conference, the Program Committee members for their help
in shaping an excellent conference program, and the distinguished speakers for
accepting our invitation. Thanks also go to Elizabeth Walsh, Karen Barnes, and
Andrea Pilot for their involvement in the local organization of the conference.

May 2013 Georg Gottlob
Giovanni Grasso

Dan Olteanu
Christian Schallhart
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Big Data Begets Big Database Theory�

Dan Suciu

University of Washington

1 Motivation

Industry analysts describe Big Data in terms of three V’s: volume, velocity,
variety. The data is too big to process with current tools; it arrives too fast
for optimal storage and indexing; and it is too heterogeneous to fit into a rigid
schema. There is a huge pressure on database researchers to study, explain, and
solve the technical challenges in big data, but we find no inspiration in the
three Vs. Volume is surely nothing new for us, streaming databases have been
extensively studied over a decade, while data integration and semistructured has
studied heterogeneity from all possible angles.

So what makes Big Data special and exciting to a database researcher, other
for the great publicity that our field suddenly gets? This talk argues that the
novelty should be thought along different dimensions, namely in communication,
iteration, and failure.

Traditionally, database systems have assumed that the main complexity in
query processing is the number of disk IOs, but today that assumption no longer
holds. Most big data analysis simply use a large number of servers to ensure
that the data fits in main memory: the new complexity metric is the amount of
communication between the processing nodes, which is quite novel to database
researchers.

Iteration is not that new to us, but SQL has adopted iteration only lately,
and only as an afterthought, despite amazing research done on datalog in the
80s [1]. But Big Data analytics often require iteration, so it will play a center
piece in Big Data management, with new challenges arising from the interaction
between iteration and communication [2].

Finally, node failure was simply ignored by parallel databases as a very rare
event, handled with restart. But failure is a common event in Big Data manage-
ment, when the number of servers runs into the hundreds and one query may
take hours [3].

The Myria project [4] at the University of Washington addresses all three di-
mensions of the Big Data challenge. Our premise is that each dimension requires
a study of its fundamental principles, to inform the engineering solutions. In this
talk I will discuss the communication cost in big data processing, which turns
out to lead to a rich collection of beautiful theoretical questions; iteration and
failure are left for future research.

� This work was partially supported by NSF IIS-1115188, IIS-0915054 and
IIS-1247469.

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 1–5, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 D. Suciu

2 The Question

Think of a complex query on a big data. For example, think of a three-way join
followed by an aggregate, and imagine the data is distributed on one thousand
servers. How many communication rounds are needed to compute the query?
Each communication round typically requires a complete reshuffling of the data
across all 1000 nodes, so it is a very expensive operation, we want to minimize the
number of rounds. For example, in MapReduce [5], a MR job is defined by two
functions: map defines how the data is reshuffled, and reduce performs the actual
computation on the repartitioned data. A complex query requires several MR
jobs, and each job represents one global communication round. We can rephrase
our question as: how many MR jobs are necessary to compute the given query?
Regardless of whether we use MR or some other framework, fewer communication
rounds mean less data exchanged, and fewer global synchronization barriers. The
fundamental problem that we must study is: determine the minimum number of
global communication rounds required to compute a given query.

3 The Model

MapReduce is not suitable at all for theoretical lower bounds, because it allows
us to compute any query in one round: simply map all data items to the same
intermediate key, and perform the entire computation sequentially, using one
reducer. In other words, the MR model does not prevent us from writing a
sequential algorithm, and it is up to the programmer to avoid that by choosing
a sufficiently large number of reducers.

Instead, we consider the following simple model, called the Massively Parallel
Communication (MPC) model, introduced in [6]. There are a fixed number of
servers, p, and the input data of size n is initially uniformly distributed on the
servers; thus, each server holds O(n/p) data items. The computation proceeds
in rounds, where each round consists a computation step and a global com-
munication step. The communication is many-to-many, allowing a total reshuf-
fling of the data, but with the restriction that each server receives only O(n/p)
amount of data. The servers have unrestricted computational power, and un-
limited memory: but because of the restriction on the communication, after a
constant number of rounds, each server sees only a fraction O(n/p) of the input
data. In this model we ask the question: given a query, how many rounds are
needed to compute it? A naive solution that sends the entire data to one server
is now ruled out, since the server can only receive O(n/p) of the data.

A very useful relaxation of this model is one that allows each server to receive
O(n/p×pε) data items, where ε ∈ [0, 1]. Thus, during one communication round
the entire data is replicated by a factor pε; we call ε the space exponent. The
case ε = 0 corresponds to the base model, while the case ε = 1 is uninteresting,
because it allows us to send the entire data to every server, like in the MapReduce
example.
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4 The Cool Example

Consider first computing a simple join: q(x, y, z) = R(x, y), S(y, z). This can be
done easily in one communication round. In the first step, every server inspects
its fragment of R, and sends every tuple of the form R(a1, b1) to the destination
server with number h(b1), where h is a hash function returning a value between
1 and p; similarly, it sends every tuple S(b2, c2) to server h(b2). After this round
of communication, the servers compute the join locally and report the answers.

A much more interesting example is q(x, y, z) = R(x, y), S(y, z), T (z, y).
When all three symbols R,S, T denote the same relation, then the query com-
putes all triangles in the data1, a popular task in Big Data analysis [7]. Obviously,
this query can be computed in two communication rounds, doing two separate
joins. But, quite surprisingly, it can be computed in a single communication
round! The underlying idea has been around for 20 years [8,9,7], but, to our
knowledge, has not yet been deployed in practice. We explain it next.

To simplify the discussion, assume p = 1000 servers. Then each server can
be uniquely identified as a triple (i, j, k), where 1 ≤ i, j, k ≤ 10. Thus, the
servers are arranged in a cube, of size 10× 10× 10. Fix three independent hash
functions h1, h2, h3, each returning values between 1 and 10. During the single
communication round, each server sends the following:

– R(a1, b1) to the servers (h1(a1), h2(b1), 1), . . . , (h1(a1), h2(b1), 10)
– S(b2, c2) to the servers (1, h2(b2), h3(c2)), . . . , (10, h2(b2), h3(c2))
– T (c3, a3) to the servers (h1(a3), 1, h3(c3)), . . . , (h1(a3), 10, h3(c3))

In other words, when inspecting R(a1, b1) a server can compute the i and j
coordinates of the destination (i, j, k), but doesn’t know the k coordinate, and
it simply replicates the tuple to all 10 servers. After this communication step,
every server computes locally the triangles that it sees, and reports them. The
algorithm is correct, because every potential triangle (a, b, c) is seen by some
server, namely by (h1(a), h2(b), h3(c)). Moreover, the data is replicated only 10
times. The reader may check that, if the number of servers is some arbitrary
number p, then the amount of replication is p1/3, meaning that the query can
be computed in one communication round using a space exponent ε = 1/3.

It turns out that 1/3 is the smallest space exponent for which we can compute
q in one round! Moreover, a similar result holds for every conjunctive query
without self-joins, as we explain next.

5 Communication Complexity in Big Data

Think of a conjunctive query q as a hypergraph. Every variable is a node, and
every atom is an hyperedge, connecting the variables that occur in that atom.
For our friend R(x, y), S(y, z), T (z, y) the hypergraph is a graph with three nodes

1 The query q(x, y, z) = R(x, y), R(y, z), R(z, x) reports each triangle three
times; to avoid double counting, one can modify the query to q(x, y, z) =
R(x, y), R(y, z), R(z, x), x < y < z.
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x, y, z and three edges, denoted R,S, T , forming a triangle. We will refer inter-
changeably to a query as a hypergraph.

A vertex cover of a query q is a subset of nodes such that every edge contains at
least one node in the cover. A fractional vertex cover associates to each variable
a number ≥ 0 such that for each edge the sum of the numbers associated to
its variables is ≥ 1. The value of the fractional vertex cover is the sum of the
numbers of all variables. The smallest value of any fractional vertex cover is
called the fractional vertex cover of q and is denoted τ∗(q).

For example, consider our query q(x, y, z) = R(x, y), S(y, z), T (z, y). Any
vertex cover must include at least two variables, e.g. {x, y}, hence its value is 2.
The fractional vertex cover 1/2, 1/2, 1/2 (the numbers correspond to the vari-
ables x, y, z) has value 3/2 and the reader may check that this is the smallest
value of any fractional vertex cover; thus, τ∗(q) = 3/2. The smallest space ex-
ponent needed to compute a query in one round is given by:

Theorem 1. [6] If ε < 1 − 1/τ∗(q) then the query q cannot be computed in a
single round on the MPC model with space exponent ε.

To see another example, fix some k ≥ 2 and consider a chain query Lk =
R1(x0, x1), R2(x1, x2), . . . , Rk(xk−1, xk). Its optimal fractional vertex cover is
0, 1, 0, 1, . . . where the numbers correspond to the variables x0, x1, x2, . . . Thus,
τ∗(Lk) = �k/2�, and the theorem says that Lk cannot be computed with a space
exponent ε < 1− 1/�k/2�.

What about multiple rounds? For a fixed ε ≥ 0, let kε = 2�1/(1− ε)�; this is
the longest chain Lkε computable in one round given the space exponent ε. Let
diam(q) denote the diameter of the hypergraph q. Then:

Theorem 2. [6] For any ε ≥ 0, the number of rounds needed to compute q
within a space exponent ε is at least �logkε

(diam(q))�.

6 The Lessons

An assumption that has never been challenged in databases is that we always
compute one join at a time2: a relational plan expresses the query as a sequence of
simple operations, where each operation is either unary (group-by, selection, etc),
or is binary (join). We never use plans with other than unary or binary operators,
and never compute a three-way join directly. In Big Data this assumption needs
to be revisited. By designing algorithms for multi-way joins, we can reduce the
total communication cost for the query. The theoretical results discussed here
show that we must also examine query plans with complex operators, which
compute an entire subquery in one step. The triangle query is one example:
computing it in one step requires that every table be replicated p1/3 times (e.g.
10 times, when p = 1000), while computing it in two steps requires reshuffling
the intermediate result R(x, y), S(y, z), which, on a graph like twitter’s Follows
relation, is significantly larger than ten times the input table.

2 We are aware of one exceptions: the Leap Frog join used by LogicBlox [10].
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Compilation and Synthesis in Big Data Analytics

Christoph Koch

École Polytechnique Fédérale De Lausanne

Abstract. Databases and compilers are two long-established and quite
distinct areas of computer science. With the advent of the big data rev-
olution, these two areas move closer, to the point that they overlap and
merge. Researchers in programming languages and compiler construc-
tion want to take part in this revolution, and also have to respond to the
need of programmers for suitable tools to develop data-driven software
for data-intensive tasks and analytics. Database researchers cannot ig-
nore the fact that most big-data analytics is performed in systems such
as Hadoop that run code written in general-purpose programming lan-
guages rather than query languages. To remain relevant, each community
has to move closer to the other. In the first part of this keynote, I illus-
trate this current trend further, and describe a number of interesting
and inspiring research efforts that are currently underway in these two
communities, as well as open research challenges. In the second part, I
present a number of research projects in this space underway in my group
at EPFL, including work on the static and just-in-time compilation of
analytics programs and database systems, and the automatic synthesis
of out-of-core algorithms that efficiently exploit the memory hierarchy.

Curriculum Vitae

Christoph Koch is a professor of Computer Science at EPFL, specializing in data
management. Until 2010, he was an Associate Professor in the Department of
Computer Science at Cornell University. Previously to this, from 2005 to 2007, he
was an Associate Professor of Computer Science at Saarland University. Earlier,
he obtained his PhD in Artificial Intelligence from TU Vienna and CERN (2001),
was a postdoctoral researcher at TU Vienna and the University of Edinburgh
(2001-2003), and an assistant professor at TU Vienna (2003-2005). He obtained
his Habilitation degree in 2004. He has won Best Paper Awards at PODS 2002,
ICALP 2005, and SIGMOD 2011, a Google Research Award (in 2009), and an
ERC Grant (in 2011). He (co-)chaired the program committees of DBPL 2005,
WebDB 2008, and ICDE 2011, and was PC vice-chair of ICDE 2008 and ICDE
2009. He has served on the editorial board of ACM Transactions on Internet
Technology as well as in numerous program committees. He currently serves as
PC co-chair of VLDB 2013 and Editor-in-Chief of PVLDB.

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, p. 6, 2013.
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The Providence of Provenance

Peter Buneman

School of Informatics,
University of Edinburgh

Abstract. For many years and under various names, provenance has
been modelled, theorised about, standardised and implemented in var-
ious ways; it has become part of mainstream database research. More-
over, the topic has now infected nearly every branch of computer science:
provenance is a problem for everyone. But what exactly is the problem?
And has the copious research had any real effect on how we use databases
or, more generally, how we use computers.

This is a brief attempt to summarise the research on provenance and
what practical impact it has had. Although much of the research has
yet to come to market, there is an increasing interest in the topic from
industry; moreover, it has had a surprising impact in tangential areas
such as data integration and data citation. However, we are still lacking
basic tools to deal with provenance and we need a culture shift if ever we
are to make full use of the technology that has already been developed.

1 Why Were We Interested?

It is well over 20 years since the issue of provenance was first introduced to, and
initially ignored by, the database community [28]. It is noteworthy that much of
the early work on this topic [28,12,9] was initiated by the need to understand
provenance in the context of data integration. In fact, the earliest [28] paper
states this very well:

although the users want the simplicity of making a query as if it were a
single large database, they also want the ability to know the source of
each piece of data retrieved.

The other early paper on the topic [29] was more concerned with scientific pro-
gramming, but even this addressed the provenance of “each piece of data” in
an array. My own stimulus for studying provenance came from some molecular
biologists with whom we were collaborating on data integration. The problem
was compounded by the fact that they were not just building a data warehouse
but also manually correcting and augmenting the curated database they were
publishing.

Although database queries are relatively simple programs – they do little more
than rearrange the data from their input – the “source of each piece of data
retrieved” turns out to be a rather elusive concept. At least there are numerous
ways of describing the source: one may ask why a tuple is in the output [12,9] or

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 7–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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how it was constructed [19,21]. Even the description of where a “piece of data”
has been copied from is non-trivial [7].

At the same time that the initial research on provenance and database queries
was taking off, computer science researchers involved in scientific workflows
started to think about provenance, and now several establish workflow systems
provide some form of provenance capture [30,5,4,13,4,22]. Anyone who has done
any large-scale, complex, scientific programming, such as data analysis or sim-
ulation will know how easy it is to lose track of one’s efforts. One wants to be
able to repeat the work, and this calls for some form of provenance. Here we are
in a different playing-field. First, we are interested in the whole output, not one
“piece of data”; second, the subroutines that one invokes may be much more
complicated than database queries; and, finally, one may not trust those sub-
routines. To elaborate on this last point, database query languages have precise
specifications, and we expect them to perform according to those specifications
so we may not need to record the details of their execution. This is not the case
with scientific programs in general.

To deal with this, and perhaps to deal with other concepts in provenance
– such as those arising from traditional provenance associated with historical
artifacts – a W3C working group has produced a series of models of prove-
nance [23,17]. Starting with a simple causal model of provenance, the model has
been enriched with a variety of notions that describe various forms of interac-
tion between processes and artifacts. For whatever reason, there has been little
attempt to connect these models of provenance, which sometimes go under the
name of “workflow provenance” with the languages e.g., the workflow languages,
that produce provenance graphs. And while there are some obvious and basic
connections between workflow and data provenance, there may be much more
to be done in this area.

2 What Have We Achieved?

Possibly the greatest achievement has been the drawing together of a number
of research communities to tackle what, at first sight, is a common problem.
At a recent provenance workshop 1 there were people from the semantic Web,
databases, programming languages, computer systems, scientific programming as
well as curators who think about provenance in its traditional sense. In addition,
the study of provenance has led to some solid technical connections. Program
slicing, which attempts – for the purposes of debugging – to provide a part of
trace of the execution of a program that is relevant to some part of the output,
is closely connected with provenance and database queries [11]. In a series of
papers [19,21,1] Tannen and his colleagues show how many of the extensions to
relational databases: c-tables, probabilistic databases, multiset semantics, as well
as a number of provenance models have a common and powerful generalization
as an abstract “provenance polynomial” associated with each tuple in the answer

1 TaPP’11. 3rd Usenix Workshop on the Theory and Practice of Provenance. Herak-
lion, June 2011.
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to a query. Moreover, formalisms developed for provenance have influenced other
areas such as data integration [18] and hypothetical query answering [15].

The W3C working groups have also achieved some form of consensus on a
general model of provenance [23,17]. One of the things that is discussed in this
work but has not yet been fully formalised is the notion of granularity. Prove-
nance graphs should be capable of expansion into an increasingly fine-grained
description and possibly connect with ideas of data provenance. This does not
appear to be difficult, but the details do need to be worked out.

This process of repeated expansion of provenance raises the important ques-
tion: How much provenance we should record? Why not record the workflow
specification or the source code together with the input and re-execute the pro-
cess if we want to know what happened? If we look at data provenance where
the programs are queries, the details of “what happened” are typically not of
interest. Database queries are declarative, and we assume they have performed
according to the well-defined specification. As we have already noted, not all
programs have a well-defined specification and those that do may contain errors.
And, of course, if the purpose of keeping provenance is to “instrument” the ex-
ecution of a program in order to understand performance [6,24], then the more
detail the better.

In practice, we generally know what parts of a workflow are error-prone or are
the cause of a performance bottleneck, so why not keep provenance for just those
components, and ignore it for those that are properly specified? In doing the
latter, there is, of course, an interesting interaction with privacy in workflows [14].

3 What Impact Have We Had?

Those of us who have been working on provenance for some time might pose
the alternative question with: What impact did we expect it to have? It would
be great if we could say that a major disaster was avoided because we kept
provenance, and we probably can say this. The excellent version control systems
that are used in software development already keep a form of provenance, and
their use has almost certainly avoided a major software disaster, but we don’t
find this remarkable. In a related lecture, Margo Selzer [26] rates the impact of
provenance research as zero – at least in the sense that it has not yet produced
any headline-grabbing results.

Are we expecting too much? From my own experience, the recording of prove-
nance information has sometimes made life easier for scientists but has seldom
enabled them to do things that they could not, by more laborious means, already
do. Here are two examples.

– In working with the IUPHAR database [27] we installed an archiving sys-
tem [8] that recorded the complete history of the database. Proper archiving
is an essential precursor of any provenance or citation system that involves
an evolving database. One of the properties of the system, which was in-
tended as a compression technique, is that it allows one to see the evolution
of some part of the database. This was useful to the curators who did not
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have to open up, and search, old versions of the database in order to see how
some table had evolved.

– There was a recent case [2] of an influential paper, which justifies the case
for economic austerity measures being found by a student, who had been
asked to reproduce the results, to contain significant errors. It required a lot
of work by the student, who ultimately had to consult the authors, to do
this. One could imagine that had the paper been “provenance enabled”, or
– better – “executable” [25,16], the student would have spotted the mistake
immediately. Indeed the mistake might never have happened!

So perhaps the real impact of provenance is not so much in the tools and models
that we are directly developing to deal with it, but in the ancillary work on
archiving, data citation, annotation, executable papers, program slicing, etc.
that are directly connected with it and that are being informed, to some extent,
by those models and tools.

4 A Change of Attitude Is Needed

Although the scientific programming community is, of necessity, becoming aware
of the need to record provenance in some form. It is unclear that other commu-
nities, such as the Semantic Web, have developed the same level of awareness.
Moreover, most of us are blissfully unaware that we are constantly throwing
away provenance information in our ordinary work. To take one example the
“LOD cloud” [20] – a distributed collection of billions of RDF triples – was cre-
ated mostly by transforming and linking existing data sets. Somewhere in this
linkage you will find the data extracted from the CIA World Factbook [3], which
gives the population of Afghanistan as 31,889,923. If you go the the CIA World
Factbook [10], you will find the population of Afghanistan as 30,419.928, with
an annotation indicating that this estimate was made in 2012 and a further an-
notation indicating that this is significantly different from a previous estimate
of 33,809,9372 Presumably the LOD figure was copied from an older version of
the Factbook, but the version (provenance) is not obviously recorded and, more
importantly, whatever annotations there were in the original have “fallen off” in
the process that created the relevant LOD triples.

It is a non-trivial challenge to make this process of transforming and linking
data “provenance aware”, it appeard to require a substantial modification or
even a complete restructuring of the RDF. The same situation appears in any
kind of data warehousing operation, but until we tackle it properly, we have to
assume that almost any data we find on the Web is stale.

At a higher level, we need to get provenance into the general consciousness.
The evils of copy-paste need not be repeated here; but imagine a situation in
which, whenever you did a copy operation, you automatically were given prove-
nance data, and whenever you did a paste, either the program you were using
(e.g. a text editor) knew what to do with the information or you had consciously

2 Updated to a 2013 estimate of 31,108,077.
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to throw the provenance information away. Even in writing this very short pa-
per, I performed tens of copy-paste operations, and even here the benefits of
keeping provenance data are self-evident; but the process of keeping provenance
(in footnotes and citations for example) is arbitrary, and the editors and text
formatters that I used gave little help with the process.

So perhaps the practical moral of these stories is that we should worry less
about what provenance is and concentrate more on what we can do with it once
we have it.
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A Tutorial on Trained Systems:

A New Generation of Data Management
Systems?

Christopher Ré
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Abstract. A new generation of data processing systems, including web
search, Google’s Knowledge Graph, IBM’s DeepQA, and several different
recommendation systems, combine rich databases with software driven
by machine learning. The spectacular successes of these trained systems
have been among the most notable in all of computing and have gener-
ated excitement in health care, finance, energy, and general business. But
building them can be challenging even for computer scientists with PhD-
level training. This tutorial will describe some of the recent progress on
trained systems from both industrial and academic systems. It will also
contain a walkthrough of examples of trained systems that are in daily
use by scientists in Geoscience, PaleoBiology, and English Literature.

Papers, software, virtual machines that contain installations of our
software, links to applications that are discussed in this talk, and our
list of collaborators are available from our project page.1 We also have a
YouTube channel.2
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exploit data. Chris received his PhD from the University of Washington in Seat-
tle under the supervision of Dan Suciu. For his PhD work in probabilistic data
management, Chris received the SIGMOD 2010 Jim Gray Dissertation Award.
Chris’s papers have received four best-paper or best-of-conference citations, in-
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in 2011 and an Alfred P. Sloan fellowship in 2013. Software and ideas from his
group have been adopted by industry including Oracle and Greenplum along
with scientific collaborators in neutrino physics and geoscience.
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Querying Big Social Data

Wenfei Fan�

University of Edinburgh and Beihang University

Abstract. Big data poses new challenges to query answering, from com-
putational complexity theory to query evaluation techniques. Several
questions arise. What query classes can be considered tractable in the
context of big data? How can we make query answering feasible on big
data? What should we do about the quality of the data, the other side
of big data? This paper aims to provide an overview of recent advances
in tackling these questions, using social network analysis as an example.

1 Introduction

Big data refers to data that cannot be processed or analyzed using traditional
processes or tools, e.g., when the volume of data is “big” such as in PetaByte
(PB, 1015 bytes) or ExaByte (EB, 1018 bytes). As an example, let us consider
social networks, which are typically modeled as graphs. In such a graph, a node
denotes a person, carrying attributes such as label, keywords, blogs, comments,
rating. Its edges indicate relationships such as marriage, friendship, co-work,
advise, support and recommendation. Social graphs are often “big”. For example,
Facebook has more than 1 billion users with 140 billion links1.

Big data introduces challenges to query answering. As an example, consider
graph pattern matching, which is commonly used in social network analysis.
Given a social graph G and a pattern query Q, graph pattern matching is to find
the set M(Q,G) of all matches for Q in G, as illustrated below.

Example 1. Consider the structure of a drug trafficking organization [30], de-
picted as a graph pattern Q0 in Fig. 1. In such an organization, a “boss” (B)
oversees the operations through a group of assistant managers (AM). An AM su-
pervises a hierarchy of low-level field workers (FW), up to 3 levels as indicated by
the edge label 3. The FWs deliver drugs, collect cash and run other errands. They
report to AMs directly or indirectly, while the AMs report directly to the boss. The
boss may also convey messages through a secretary (S) to the top-level FWs as
denoted by the edge label 1. A drug ring G0 is also shown in Fig. 1 in which
A1, . . . , Am are AMs, while Am is both an AM and the secretary (S).

To identify all suspects in the drug ring, we want to find matches M(Q0, G0)
for Q0 in G0. Here graph pattern matching is traditionally defined as follows:

� Fan is spported in part by EPSRC EP/J015377/1, UK, the RSE-NSFC Joint Project
Scheme, and the 973 Program 2012CB316200 and NSFC 61133002 of China.

1 http://www.facebook.com/press/info.php?statistics
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Fig. 1. Drug trafficking: Pattern and social graphs

(1) subgraph isomorphism [35]: M(Q0, G0) is the set of all subgraphs G′ of G0

isomorphic to Q0, i.e., there exists a bijective function h from the nodes of Q0 to
those of G′ such that (u, u′) is an edge in Q0 iff (h(u), h(u′)) is an edge in G′; or

(2) graph simulation [28]: M(Q0, G0) is the maximum binary relation S ⊆
VQ×V , where VQ and V are the set of nodes in Q0 andG0, respectively, such that

– for each node u in VQ, there exists a node v in V such that (u, v) ∈ S, and
– for each pair (u, v) ∈ S and each edge (u, u′) in Q, there exists an edge

(v, v′) in G such that (u′, v′) ∈ S. �

No matter whether graph pattern matching is defined in terms of subgraph
isomorphism or graph simulation, it involves data-intensive computation when
graph G is “big”. To develop effective algorithms for computing the set M(Q,G)
of matches for Q in big G, we need to answer the following questions.

(1) What query classes are tractable on big data? A class Q of queries is tradi-
tionally considered tractable if there exists an algorithm for answering its queries
in time bounded by a polynomial (PTIME) in the size of the input, e.g., a social
graph and a pattern query [1]. That is, Q is considered feasible if its worst-case
time complexity is PTIME. For graph pattern queries, it is NP-complete to de-
termine whether there exists a match for Q in G when matching is defined with
subgraph isomorphism, and it takes O(|Q|2 + |Q||G| + |G|)2 time to compute
M(Q,G) with graph simulation [21]. As will be seen shortly, however, PTIME or
even linear-time algorithms are often beyond reach in the context of big data!
This suggests that we revise the traditional notion of tractable queries, so that
we can decide, given Q, whether it is feasible to evaluate the queries of Q on big
data.

(2) How can we make query answering feasible on big data? When a query class
Q is not tractable on big data, we may be able to transform Q to an “equivalent”
class Q′ of queries that operate on smaller datasets. That is, we reduce the big
data for Q to “small data” for Q′, such that it is feasible to answer the queries
of Q. When querying big data, one often thinks of MapReduce [7] and Hadoop2.
Nevertheless, MapReduce and Hadoop are not the only way to query big data.
We will see that this is the case for graph pattern matching with simulation.

2 http://hadoop.apache.org/
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(3) In the context of big data it is often cost-prohibitive to compute exact answers
to our queries. That is, algorithms for querying big data are often necessarily in-
exact. This is particularly evident when we want to find matches for our patterns
in big social graphs based on subgraph isomorphism. Hence we may have to settle
with heuristics, “quick and dirty” algorithms which return feasible answers. To
this end, we naturally want approximation algorithms, i.e., heuristics which find
answers that are guaranteed to be not far from the exact answers [6, 36]. How-
ever, traditional approximation algorithms are mostly PTIME algorithms for NP
optimization problems (NPOs). In contrast, we need approximation algorithms
for answering queries on big data rather than for NPOs, even when the queries
are known in PTIME, such that the algorithms are tractable on big data.

(4) When we talk about the challenges introduced by big data, we often refer
to the difficulty of coping with the sheer size of the data only. Nonetheless, the
quality of the data is as important and challenging as its quantity. When the
quality of the data is poor, answers to our queries in the data may be inaccurate
or even incorrect! Indeed, one of the dimensions of big data is its veracity, “as 1
in 3 business leaders don’t trust the information they use to make decisions”3.
Referring to Example 1, poor data may lead to false accusation against innocents
or letting go of real drug dealers. Already challenging even for “small” relational
data, data quality management is far more difficult for big data.

This paper provides an overview of recent advances in tackling these ques-
tions. We present a revision of tractable query classes in the context of big
data [10] (Section 2), and a set of effective techniques beyond MapReduce for
graph pattern matching with simulation [12–17, 27] (Section 3). We revisit tra-
ditional approximation algorithms for querying big data [5] (Section 4). Finally,
we highlight the need for studying the quality of big data (Section 5).

2 Tractable Query Classes on Big Data

We start with an examination of query evaluation on big data, including but not
limited to graph pattern matching. To develop algorithms for answering a class
Q of queries on big data, we want to know whether Q is tractable, i.e., whether
its queries can be evaluated on the big data within our available resources such
as time. Traditionally Q is considered (a) “good” (tractable) if there exists a
PTIME algorithm for evaluating its queries, (b) “bad” (intractable) if it is NP-
hard to decide, given a query Q ∈ Q, a dataset D and an element t, whether
t ∈ Q(D), i.e., t is an answer to Q in D; and (c) “ugly” if the membership
problem is EXPTIME-hard. This is, however, no longer the case when it comes
to big data.

Example 2. Consider a dataset D of 1PB. Assuming the fastest Solid State
Drives (SSD) with disk scanning speed of 6GB/s4, a linear scan of D will take at

3 http://www-01.ibm.com/software/data/bigdata/
4 http://www.fastestssd.com/featured/

ssd-rankings-the-fastest-solid-state-drives/#pcie

http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/#pcie
http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/#pcie
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least 166,666 seconds or 1.9 days. That is, even linear-time algorithms, a special
case of PTIME algorithms, may no longer be feasible on big data! �

There has been recent work on revising the traditional computational complex-
ity theory to characterize data-intensive computation on big data. The revisions
are defined in terms of computational costs [10], communication (coordination)
rounds [20, 25], or MapReduce steps [24] and data shipments [2] in the MapRe-
duce framework [7]. Here we focus on computational costs [10].

One way to cope with big data is to separate offline and online processes.
We preprocess the dataset D by, e.g., building indices or compressing the data,
yielding D′, such that all queries of Q on D can be evaluated on D′ online effi-
ciently. When the data is mostly static or when D′ can be maintained efficiently,
the preprocessing step can be considered as an offline process with a one-time
cost.

Example 3. Consider a classQ1 of selection queries. A queryQ1 ∈ Q1 on a relation
D is to find whether there exists a tuple t ∈ D such that t[A] = c, where A is an
attribute ofD and c is a constant. A naive evaluation of Q1 would require a linear
scan ofD. In contrast, we can first build aB+-tree on the values of theA column in
D, in a one-time preprocessing step offline. Thenwe can answerall queriesQ1 ∈ Q1

onD inO(log|D|) time using the indices. That is, we no longer need to scanDwhen
processing each query inQ1.WhenD consists of 1PBof data, we can get the results
in 5 seconds with the indices rather than 1.9 days. �

The idea has been practiced by database people for decades. Following this,
below we propose a revision of the traditional notion of tractable query classes.

To be consistent with the complexity classes of decision problems, we consider
Boolean queries, such as Boolean selection queries given in Example 3. We rep-
resent a class Q of Boolean queries as a language S of pairs 〈D,Q〉, where Q is
a query in Q, D is a database on which Q is defined, and Q(D) is true. In other
words, S can be considered as a binary relation such that 〈D,Q〉 ∈ S if and only
if Q(D) is true. We refer to S as the language for Q.

We say that a language S of pairs is in complexity class CQ if it is in CQ to
decide whether a pair 〈D,Q〉 ∈ S. Here CQ may be the sequential complexity
class P or the parallel complexity class NC, among other things. The complexity
class P consists of all decision problems that can be solved by a deterministic
Turing machine in PTIME. The parallel complexity class NC, a.k.a. Nick’s Class,
consists of all decision problems that can be solved by taking polynomial time
in the logarithm of the problem size (parallel polylog-time) on a PRAM (parallel
random access machine) with polynomially many processors (see, e.g., [18, 22]).

Π-Tractable Queries. Consider complexity classes CP and CQ. We say that a
class Q of queries is in (CP,CQ) if there exist a CP-computable preprocessing
function Π and a language S′ of pairs such that for all datasets D and queries
Q ∈ Q,
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– 〈D,Q〉 is in the language S of pairs for Q if and only if 〈Π(D), Q〉 ∈ S′, and
– S′ is in CQ, i.e., the language S′ of pairs 〈Π(D), Q〉 is in CQ.

Intuitively, function Π(·) preprocesses D and generates another structure D′ =
Π(D) offline, in CP. After this, for all queries Q ∈ Q that are defined on D,
Q(D) can be answered by evaluating Q(D′) online, in CQ. Here CP indicates the
cost we can afford for preprocessing, and CQ the cost of online query processing.
Depending on D′ = Π(D), we may let CQ be P if D′ is sufficiently small such
that PTIME evaluation of Q(D′) is feasible, i.e., if Π(D) reduces big data D to
“small data” D′. Otherwise we may choose NC for CQ, in parallel polylog-time.

We use ΠT0
Q to denote the set of all (P,NC) query classes, referred to as the set

of Π-tractable query classes, i.e., when CP is P and CQ is NC. We are particularly
interested in ΠT0

Q for the following reasons. (a) As shown in Example 3, parallel
polylog-time is feasible on big data. Moreover, NC is robust and well-understood.
It is one of the few parallel complexity classes whose connections with classical
sequential complexity classes have been well studied (see, e.g., [18]). Further, a
large class of NC algorithms can be implemented in the MapReduce framework,
which is widely used in cloud computing and data centers for processing big
data, such that if an NC algorithm takes t time, than its corresponding MapRe-
duce counterpart takes O(t) MapReduce rounds [24]. (b) We consider PTIME
preprocessing feasible since it is a one-time price and is performed off-line. In
addition, P is robust and well-studied [18]. Moreover, by requiring that Π(·)
is in PTIME, the size of the preprocessed data Π(D) is bounded by a polyno-
mial. When PTIME is too big a price to pay, we may preprocess D with parallel
processing, by allocating more resources (e.g., computing nodes) to it than to
online query answering. Here we simply use PTIME for CP to focus on the main
properties of query answering with preprocessing.

Example 4. As shown in Example 3, query class Q1 is in ΠT0
Q. Indeed, function

Π(·) preprocesses D by building B+-trees on attributes of D in PTIME. After
this, for any (A, c) denoting a query in Q1, whether there exists t ∈ D such that
t[A] = c can be decided in O(log|D|) time by using the indices Π(D). �

Making Query Classes Π-Tractable. Many query classes Q are not Π-
tractable. For instance, unless P = NC, we are not aware of any NC algorithm
for graph pattern matching even when matching is defined in terms of graph
simulation. Nonetheless, some Q that is not in ΠT0

Q can actually be transformed
to a Π-tractable query class by means of re-factorizations, which re-partition
the data and query parts of Q and identify a data set for preprocessing, such
that after the preprocessing, its queries can be subsequently answered in parallel
polylog-time.

More specifically, we say that a class Q of queries can be made Π-tractable if
there exist three NC computable functions π1(·), π2(·) and ρ(·, ·) such that for
all 〈D,Q〉 in the language S of pairs for Q,



Querying Big Social Data 19

– D′ = π1(D,Q), Q′ = π2(D,Q), and 〈D,Q〉 = ρ(D′, Q′), and
– the query class Q′ = {Q′ | Q′ = π2(D,Q), 〈D,Q〉 ∈ S} is Π-tractable.

Intuitively, π1(·) and π2(·) re-partition x = 〈D,Q〉 into a “data” part D′ =
π1(x) and a “query” part Q′ = π2(x), and ρ is an inverse function that restores
the original instance x from π1(x) and π2(x). Then the data part D′ can be
preprocessed such that the queries Q′ ∈ Q′ can then be answered in parallel
polylog-time. We denote by ΠTQ the set of all query classes that can be made
Π-tractable.

A form of NC-reductions �NC
fa is defined for ΠTQ, which is transitive (i.e., if

Q1 �NC
fa Q2 and Q2 �NC

fa Q3 then Q1 �NC
fa Q3) and compatible with ΠTQ (i.e., if

Q1�NC
fa Q2 andQ2 is in ΠTQ, then so isQ1). The following results are known [10]:

– NC ⊆ ΠT0
Q ⊆ P.

– Unless P = NC, ΠT0
Q ⊂ P, i.e., not all PTIME queries are Π-tractable.

– There exists a complete query class Q for ΠTQ under �NC
fa reductions, i.e.,

Q is in ΠTQ and moreover, for all query classes Q′ ∈ ΠTQ, Q′ �NC
fa Q.

– All query classes in P can be made Π-tractable by transforming them to a
query class in ΠTQ via �NC

fa reductions.

3 Graph Pattern Matching in Big Social Data

We now study how to compute matches M(Q,G) for a pattern Q in a big
social graph G. We focus on matching defined in terms of graph simulation
in this section, which is widely used in social data analysis such as detecting
social communities and positions [4, 33]. As remarked earlier, it takes O(|Q|2 +
|Q||G|+ |G|)2 time to compute M(Q,G) [21], a prohibitive cost when G is big.
Nonetheless, we can leverage a variety of techniques commonly used by database
people to reduce G to G′ of smaller size via preprocessing, such that M(Q,G′)
can subsequently be computed effectively for all patterns Q. Combinations of
these techniques outperform direct implementation of simulation algorithms in
MapReduce.

We first introduce a revision of graph simulation [28] for social data analysis
(Section 3.1). We then present a set of matching techniques (Sections 3.2–3.6).

3.1 Bounded Simulation: Graph Simulation Revisited

Recall Example 1: we want to identify suspects involved in a drug ring by com-
puting matches M(Q0, G0) for pattern Q0 in graph G0. However, observe the
following. (1) Nodes AM and S in Q0 should be mapped to the same node Am

in G0, which is not allowed by a bijection. (2) The node AM in Q0 corresponds
to multiple nodes A1, . . . , Am in G0. This relationship cannot be captured by a
function from the nodes of Q0 to the nodes of G0. (3) The edge from AM to FW in
Q0 indicates that an AM supervises FWs within 3 hops. It should be mapped to a
path of a bounded length in G0 rather than to an edge. Hence, neither subgraph
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isomorphism (for (1)–(3)) nor graph simulation (for (3)) is capable of identify-
ing the drug ring G0 as a match of Q0. These call for revisions of the notion of
graph pattern matching to accurately identify sensible matches in real-life social
graphs.

To cope with this, a revision of graph simulation is proposed in [12], referred
to as bounded simulation. To present this, we start with some notations.

Graphs and Patterns. A data graph is a directed graph G = (V,E, fA), where
(a) V is a finite set of nodes; (b) E ⊆ V × V , in which (v, v′) denotes an edge
from v to v′; and (c) fA(·) is a function that associates each v in V with a tuple
fA(v) = (A1 = a1, . . . , An = an), where ai is a constant, and Ai is referred to as
an attribute of v, written as v.Ai, carrying, e.g., label, keywords, blogs, rating.

A pattern query is defined as Q = (VQ, EQ, fv, fe), where (a) VQ is a finite
set of nodes and EQ is a set of directed edges, as defined for data graphs; (b)
fv(·) is a function defined on VQ such that for each node u, fv(u) is the predicate
of u, defined as a conjunction of atomic formulas of the form A op a; here A
denotes an attribute, a is a constant, and op is one of the comparison operators
<,≤,=, =, >,≥; and (c) fe(·) is a function defined on EQ such that for each
edge (u, u′) in EQ, fe(u, u

′) is either a positive integer k or a symbol ∗.
Intuitively, the predicate fv(u) of a node u specifies a search condition. We say

that a node v in a data graph G satisfies the search condition of a pattern node u
in Q, denoted as v ∼ u, if for each atomic formula ‘A op a’ in fv(u), there exists
an attribute A in fA(v) such that v.A op a. We will allow an edge (u, u′) in Q to
be mapped to a path ρ in a data graph G, and fe(u, u

′) imposes a bound on the
length of ρ. An example data graph (resp. pattern) is G0 (resp. Q0) of Fig. 1.

Bounded Simulation. We now present bounded simulation. A data graph G
matches a pattern Q via bounded simulation, denoted by Q�B

simG, if there exists
a binary relation S ⊆ VQ × V , referred to as a match in G for Q, such that

– for each node u ∈ VQ, there exists a node v ∈ V such that (u, v) ∈ S;
– for each pair (u, v) ∈ S, (a) v ∼ u, and (b) for each edge (u, u′) in EQ,

there exists a path ρ from v to v′ in G such that (u′, v′) ∈ S, len(ρ) > 0
and moreover, len(ρ) ≤ k if fe(u, u

′) = k. Here len(ρ) is the number of edges
on ρ.

Intuitively, (u, v) ∈ S if (1) node v in G satisfies the search condition specified
by fv(u) in Q; and (2) each edge (u, u′) in Q is mapped to a path ρ from v to v′

in G (len(ρ) > 0), such that v, v′ match u, u′, respectively; and moreover, when
fe(u, u

′) is k, it indicates a bound on the length of ρ, i.e., v is connected to v′

within k hops. When it is ∗, ρ can be a path of an arbitrary length greater than 0.
For pattern Q0 and graph G0 given in Fig. 1, Q0�B

simG0: a match S0 in G0

for Q0 maps B to B, AM to A1, . . . , Am, S to Am, and FW to all the W nodes.
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As experimentally verified in [12], bounded simulation is able to accurately
identify a number of communities in real-life social networks that its traditional
counterparts fail to catch. In addition, the following is known.

Theorem 1 [12]: For any pattern Q = (VQ, EQ, fv, fe) and graph G =
(V,E, fA), (1) there exists a unique maximum match M(Q,G) in G for Q, and
(2) M(Q,G) can be computed in O(|V ||E|+ |EQ||V |2 + |VQ||V |) time. �
As opposed to subgraph isomorphism, bounded simulation supports (a) simula-
tion relations rather than bijective functions, (b) search conditions based on the
contents of nodes, and (c) edge-to-path mappings instead of edge-to-edge. Graph
simulation is a special case of bounded simulation, by only allowing simple pat-
terns in which (a) node labels are the only attributes, and (b) all the edges are
labeled with 1, i.e., edge-to-edge mappings only. In contrast to the NP-hardness
of subgraph isomorphism, the complexity of bounded simulation is in PTIME,
comparable to that of graph simulation since in practice, |Q| � |D|.

There have also been revisions of (bounded) simulation by, e.g., incorporating
edge relationships [11] and imposing locality and duality on match relations [27].

3.2 Distributed Query Processing with Partial Evaluation

Although graph pattern matching with (bounded) simulation is in PTIME, when
a social graph G is big, the cost of computing M(Q,G) is still prohibitive. To
cope with the sheer size of G, we next present a set of approaches to computing
M(Q,G) on big G. The key idea of these approaches is to reduce G to smaller
G′ via preprocessing, such that graph pattern matching in G′ is feasible.

We start with distributed query processing, based on partial evaluation. Par-
tial evaluation has proven useful in a variety of areas including compiler gener-
ation, code optimization and dataflow evaluation (see [23] for a survey). Intu-
itively, given a function f(s, d) and part of its input s, partial evaluation is to
specialize f(s, d) with respect to the known input s. That is, it conducts the part
of f(s, ·)’s computation that depends only on s, and generates a partial answer,
i.e., a residual function f ′(·) that depends on the as yet unavailable input d.

This idea can be naturally applied to distributed graph pattern matching.
Consider a pattern Q posed on a graph G that is partitioned into fragments
F = (F1, . . . , Fn), where Fi is stored in site Si. We compute M(Q,G) as follows.

(1) The same query Q is posted to each fragment in F .
(2) Upon receiving Q, each site Si computes a partial answer of Q in fragment

Fi, in parallel, by taking Fi as the known input s while treating the fragments
in the other sites as yet unavailable input d.

(3) A coordinator site Sc collects partial answers from all the sites. It then
assembles the partial answers and finds M(Q,G) in the entire graph G.

The idea has proven effective for evaluating reachability queries defined in terms
of regular expressions, which are a special case of pattern queries [15].

Theorem 2 [15]: On a fragmentation F of graph G, reachability queries Q can
be answered (a) by visiting each site once, (b) in O(|Fm||Q|2 + |Q|2|Vf |2) time,
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and (c) with O(|Q|2|Vf |2) communication cost, where Fm is the largest fragment
in F and Vf is the set of nodes in G with edges to other fragments. �
That is, (1) the response time is dominated by the largest fragment in F , instead
of the size |G| of G; (2) the total amount of data shipped is determined by
the size of the query Q and how G is fragmented, rather than by |G|, and (3)
the performance guarantees remain intact no matter how G is fragmented and
distributed. As opposed to MapReduce [7], this approach does not require us to
organize our data in 〈key, value〉 pairs or re-distribute the data. Moreover, it has
performance guarantees on both response time and communication cost.

When G is not already partitioned and distributed, one may first partition G
as preprocessing, such that the evaluation of Q in each fragment is feasible.

3.3 Query Preserving Graph Compression

Another approach to reducing the size of big graph G is by means of compressing
G, relative to a class Q of queries of users’ choice, e.g., graph pattern queries.
More specifically, a query preserving graph compression for Q is a pair 〈R,P 〉,
where R(·) is a compression function, and P (·) is a post-processing function. For
any graph G, Gc = R(G) is the compressed graph computed from G by R(·),
such that (1) |Gc| ≤ |G|, and (2) for all queries Q ∈ Q, Q(G) = P (Q(Gc)). Here
P (Q(Gc)) is the result of post-processing the answers Q(Gc) to Q in Gc.

That is, we preprocess G by computing the compressed Gc of G offline. After
this step, for any query Q ∈ Q, the answers Q(G) to Q in the big G can be
computed by evaluating the same Q on the smaller Gc online. Moreover, Q(Gc)
can be computed without decompressing Gc. Note that the compression schema
is lossy: we do not need to restore the original G from Gc. That is, Gc only
needs to retain the information necessary for answering queries in Q, and hence
achieves better compression ratio than lossless compression schemes.

For a query class Q, if Gc can be computed in PTIME and moreover, queries
in Q can be answered using Gc in parallel polylog-time, perhaps by combining
with other techniques such as indexing, then Q is Π-tractable.

The effectiveness of the approach has been verified in [14], for graph pattern
matching with (bounded) simulation, and for reachability queries a special case.

Theorem 3 [14]: There exists a graph pattern preserving compression 〈R,P 〉
for bounded simulation, such that for any graph G = (V,E, fA), R(·) is in
O(|E| log |V |) time, and P (·) is in linear time in the size of the query answer. �
This compression scheme reduces the sizes of real-life social graphs by 98% and
57%, and query evaluation time by 94% and 70% on average, for reachability
queries and pattern queries with (bounded) simulation, respectively. Better still,
compressed Gc can be efficiently maintained. Given a graph G, a compressed
graph Gc = R(G) of G, and updates ΔG to G, we can compute changes ΔGc

to Gc such that Gc ⊕ΔGc = R(G⊕ΔG), without decompressing Gc [14]. As a
result, for each graph G, we need to compute its compressed graph Gc once for
all patterns. When G is updated, Gc is incrementally maintained.
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3.4 Graph Pattern Matching Using Views

Another technique commonly used by database people is query answering using
views (see [19, 26] for surveys). Given a query Q ∈ Q and a set V of view defini-
tions, query answering using views is to reformulateQ into another query Q′ such
that (a) Q and Q′ are equivalent, i.e., for all datasetsD, Q and Q′ have the same
answers in D, and moreover, (b) Q′ refers only to V and its extensions V(D).

View-based query answering suggests another approach to reducing big data
to small data. Given a big graph G, one may identify a set V views (pattern
queries) and materialize the set M(V , G) of matches for patterns of V in G, as a
preprocessing step offline. Then matches for patterns Q can be computed online
by usingM(V , G) only, without accessing the original big G. In practice,M(V , G)
is typically much smaller than G, and can be incrementally maintained and
adaptively adjusted to cover various patterns. For example, for graph pattern
matching with bounded simulation, M(V , G) is no more than 4% of the size
of G on average for real-life social graphs G. Further, the following has been
shown [17].

Theorem 4 [17]: Given a graph pattern Q and a set V of view definitions, (1)
it is in O(|Q|2|V|) time to decide whether Q can be answered by using V ; and if
so, (2) Q can be answered in O(|Q||M(V , G)|+ |M(V , G)|2) time. �
Contrast these with the complexity of graph pattern matching with bounded
simulation. Note that |Q| and |V| are sizes of pattern queries and are typically
much smaller than G. Moreover, |M(V , G)| is about 4% of |G| (i.e., |V |+ |E|) on
average. As verified in [17], graph pattern matching using views takes no more
than 6% of the time needed for computing M(Q,G) directly in G on average.

3.5 Incremental Graph Pattern Matching

Incremental techniques also allow us to effectively evaluate queries on big data.
Given a pattern Q and a graph G, as preprocessing we compute M(Q,G) once.
When G is updated by ΔG, instead of recomputing M(Q,G⊕ΔG) starting from
scratch, we incrementally compute ΔM such that M(Q,G⊕ΔG) = M(Q,G)⊕
ΔM , to minimize unnecessary recomputation. In real life, ΔG is typically small:
only 5% to 10% of nodes are updated weekly [31]. When ΔG is small, ΔM is
often small as well, and is much less costly to compute than M(Q,G⊕ΔG).

The benefit is more evident if there exists a bounded incremental matching
algorithm. As argued in [32], incremental algorithms should be analyzed in terms
of |CHANGED| = |ΔG| + |ΔM |, the size of changes in the input and output,
which represents the updating costs that are inherent to the incremental problem
itself. An incremental algorithm is said to be semi-bounded if its cost can be
expressed as a polynomial of |CHANGED| and |Q| [13]. That is, its cost depends
only on the size of the changes and the size of pattern Q, independent of the size
of big graph G. A semi-bounded incremental algorithm often reduces big graph
G to small data, since Q and |CHANGED| are typically small in practice.
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Theorem 5 [13]: There exists a semi-bounded incremental algorithm, in
O(|ΔG|(|Q||CHANGED| + |CHANGED|2)) time, for graph pattern matching de-
fined in terms of bounded simulation. �
In general, a query class Q can be considered Π-tractable if (a) preprocessing
Q(D) is in PTIME, and (b) Q(D⊕ΔD) can be incrementally computed in parallel
polylog-time. If so, it is feasible to answer Q in response to changes to big data D.

3.6 Top-k Graph Pattern Matching

In social data analysis we often want to find matches of a designated pattern
node uo in Q as “query focus” [3]. That is, we just want those nodes in a social
graph G that are matches of uo in M(Q,G), rather than the entire set M(Q,G)
of matches for Q. Indeed, a recent survey shows that 15% of social queries are to
find matches of specific pattern nodes [29]. This is how graph search5 of Facebook
is conducted on its social graph. Moreover, it often suffices to find top-k matches
of uo in M(Q,G). More specifically, assume a scoring function s(·) that given a
match v of uo, returns a non-negative real number s(v). For a positive integer
k, top-k graph pattern matching is to find a set U of matches of uo in M(Q,G),
such that U has exactly k matches and moreover, for any k-element set U ′ of
matches of uo, s(U

′) ≤ s(U), where s(U) is defined as Σv∈Us(v). When there
exist less than k matches of uo in M(Q,G), U includes all such matches.

This suggests that we develop algorithms to find top-k matches with the early
termination property [8], i.e., they stop as soon as a set of top-k matches is found,
without computing the entire M(Q,G). While the worst-case time complexity
of such algorithms may be no better than their counterparts for computing the
entire M(Q,G), they may only need to inspect part of big G, without paying the
price of full-fledged graph pattern matching. Indeed, for graph pattern matching
with simulation on real-life social graphs, it has been shown that top-k matching
algorithms just inspect 65%–70% of the matches in M(Q,G) on average [16].

4 Approximation Algorithms for Querying Big Data

Strategies such as those given above help us make the evaluation of some queries
tractable on big data. However, it is still beyond reach to find exact answers
to many queries in big data. An example is graph pattern matching defined in
terms of subgraph isomorphism: it is NP-complete to decide whether there exists
a match. As remarked earlier, even for queries that can be answered in PTIME, it
is often too costly and infeasible to compute their exact answers in the context
of big data. As a result, we have to evaluate these queries by using inexact
algorithms, preferably approximation algorithms with performance guarantees.

Previous work on this topic has mostly focused on developing PTIME approx-
imation algorithms for NP-optimization problems (NPOs) [6, 18, 36]. An NPO A
has a set I of instances, and for each instance x ∈ I and each feasible solution

5 http://www.facebook.com/about/graphsearch
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y of x, there exists a positive score m(x, y) indicating the quality measure of
y. Consider a function r(·) from natural numbers to (1,∞). An algorithm T is
called a r-approximation algorithm for problem A if for each instance x ∈ I, T
computes a feasible solution y of x such that R(x, y) ≤ r(|x|), where R(x, y) is
the performance ratio of y w.r.t. x, defined as follows [6]:

R(x, y) =

{
opt(x)/m(x, y) when A is a maximization problem
m(x, y)/opt(x) when A is a minimization problem

where opt(x) is the optimal solution of x. That is, while the solution y found by
T (x) may not be optimal, it is not too far from opt(x) (i.e., bounded by r(|x|)).

However, PTIME approximation algorithms that directly operate on the orig-
inal instances of a problem may not work well when querying big data.

(1) As shown in Example 2, PTIME algorithms on x may be beyond reach in
practice when x is big. Moreover, approximation algorithms are needed for prob-
lems that are traditionally considered tractable [18], not limited to NPO.

(2) In contrast to NPOs that ask for a single optimum, query evaluation is to
find a set of query answers in a dataset. Thus we need to revise the notion of
performance ratios to evaluate the quality of a set of feasible answers.

After the topic has been studied for decades, it is unlikely that we can expect
soon to have a set of algorithms that on one hand, have low enough complexity to
be tractable on big data, and on the other hand, have a nice performance ratio.

Data-driven Approximation. To cope with this, we propose to develop al-
gorithms that work on data with “resolution” lower than the original instances,
and strike a balance between the efficiency (scalability) and the performance
ratio [5]. Consider a pair 〈D,Q〉 that represents an instance x, where Q is a
query and D is a dataset (see Section 2). When D is big, we reduce D to D′ of
manageable size, and develop algorithms that are feasible when operating on D′.

More specifically, consider a function α(·) that takes |D| as input, and returns
a number in (0, 1]. We use a transformation function f(·) that given D, reduces
D to D′ = f(D) with resolution α(|D|) such that |D′| ≤ α(|D|) · |D|. We also use
a query rewriting function F : Q→ Q for a query class Q that, given any Q ∈ Q,
returns another query F (Q) in Q. Based on these, we introduce the following.

An algorithm T is called a (α, r)-approximation algorithm for Q if there exist
functions f(·) and F (·) such that for any dataset D,

(1) D′ = f(D) and |D′| ≤ α(|D|)|D|; and
(2) for each query Q in Q defined on D, Q′ = F (Q), and algorithm T computes

Y = Q′(D′) such that the performance ratio R(〈D,Q〉, Y ) ≤ r(|D|).
Intuitively, f(·) is an offline process that reduces big data D to small D′ with
a lower resolution α(|D|). After this, for all queries Q in Q posed on D, T is
used to evaluate Q′ = F (Q) in D′ as an online process, such that the feasible
answers Y = Q′(D′) computed by T in D′ are not too far from the exact answers
Q(D) in D. To evaluate the accuracy of Y , we need to extend the notion of
performance ratio R(·, ·) to measure how close a set of feasible query answers Y
is to the set Q(D) of exact answers. There are a variety of choices for defining
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R(·, ·), depending on the application domain in which T is developed (see [5] for
details).

Example 5. A weighted undirected graph is defined as G = (V,E,w), where for
each edge e in E, w(e) is the weight of e. Given G and two nodes s, t in V , we
want to compute the distance dist(s, t) between s and t in G, i.e., the minimum
sum of the weights of the edges on a path from s to t for all such paths in G.

There exist exact algorithms for computing dist(s, t) in O(|E|)-time (cf. [34]).
However, when G is big, we need more efficient algorithms. It has been shown
in [34] that for any constant k ≥ 1, one can produce a data structure of size
O(k|V |1+1/k). After this offline process, all distance queries onG can be answered
in O(k) time (constant time) online by using the structure, with a constant per-
formance ratio 2k−1 [34]. That is, there exists a (α, r)-approximation algorithm
for distance queries, with α(|G|) = |V |1+1/k/(|V |+ |E|) and r = 2k − 1. �

Data-driven approximation aim to explores the connection between the resolu-
tion of data and the performance ratio of algorithms, and speed up the online
process. As remarked earlier, the choice of f(·) and T depends on what cost we
can afford for offline preprocessing and what algorithms are tractable on big data.
When α(|D|) is sufficiently small (e.g., below a certain threshold ξ), f(D) reduces
“big data”D to “small data”D′, on which a PTIME algorithm T is feasible. How-
ever, if D′ remains “big”, i.e., when α(|D|) ≥ ξ, we may require T to be in NC.
To cope with big D, the offline preprocessing step may require more resources
such as computing nodes for parallel processing than online query evaluation.

5 Data Quality: The Other Side of Big Data

The study of querying big (social) data is still in its infancy. There is much more
to be done. In particular, a complexity class that captures queries tractable on
big data has to be identified, to characterize both computational and communi-
cation costs. Complete problems and reductions for the complexity class should
be in place, so that we can effectively decide whether a class of queries is tractable
on big data and whether a query class can be reduced to another one that we
know how to process. In addition, more effective techniques for querying big data
should be developed so that (combinations of) the techniques can improve query
processing by MapReduce. Furthermore, the connection between data resolution
and performance ratio needs a full treatment. Given a resolution, we should be
able to determine what performance ratio we can expect, and vice versa.

We have so far focused on how to cope with the volume (quantity) of big
data. Nonetheless, data quality is as important as data quantity. As an example,
consider tuples below that represent suspects for a secretary S in a drug ring,
identified by graph pattern matching in social networks (recall Q0 and G0 of
Fig. 1):

FN LN AC street city state zip status
t1: Mary Smith 212 Mtn Ave MH NJ 10007 single
t2: Mary Smith 908 Mtn Ave MH NJ 07974 single
t3: Mary Luth 212 Broadway NY NY 10007 married
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Each tuple in the table specifies a suspect: her name (FN and LN), area code
AC, address (street, city, state, zip code), and marital status, extracted from social
networks. Consider the following simple queries about the suspects.

(1) Query Q1 is to find how many suspects are based in New Jersey. By counting
those tuples t with t[state] = “NJ”, we get 2 as its answer. However, the answer
may be incorrect. Indeed, (a) the data in tuple t1 is inconsistent: t1[AC] = 212 is
an area code for New York, and it has conflict with t1[state] (NJ). Hence NJ may
not be the true value of t1[state]. (b) The data in the table may be incomplete.
That is, some suspects may not use social networks and hence, are overlooked. (c)
Tuples t1, t2 and t3 may refer to the same person and hence, may be duplicates.
In light of these data quality issues, we cannot trust the answer to query Q1.

(2) Suppose that the table above is complete, t1, t2 and t3 refer to the same
person Mary, and all their attribute values were once the true values of Mary
but some may have become obsolete. Now query Q2 is to find Mary’s current
last name. We do not know whether it is Smith or Luth. However, we know that
marital status can only change from single to married, and that her last name
and marital status are correlated. From these we can conclude that the answer
to Q2 is Luth.
This example tells us the following. First, when the quality of the data is poor,
we cannot trust answers to our queries no matter how big data we can handle and
how efficient we can process our queries. Second, data quality analyses help us
improve the quality of our query answers. However, already difficult for (small)
relational data (see [9] for a survey), the study of data consistency, accuracy,
currency, deduplication and information completeness is far more challenging
for big data. Indeed, big data is typically heterogeneous (variety), time-sensitive
(velocity), of low-quality (veracity) and big (volume). Despite these, data quality
is a must for us to study if we want to make practical use of big data.
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1 Overview

Large volumes of graph-structured data are becoming increasingly prevalent in
areas such as

– social and professional network analysis
– recommendation services, such as product advertisement, news and media

alerts, learning resource recommendation, itinerary recommendation
– scientific computing: life and health sciences, physical sciences
– crime investigation and intelligence gathering
– telecoms network management, for dependency analysis, root cause analysis,

location-based service provision
– linked open data
– geospatial data
– business process management: logistics, finance chains, fraud detection, risk

analysis, asset management
– organization management

Graph-structured data differs from other “big” data in its greater focus on the
relationships between entities, regarding these relationships as important as the
entities themselves, and allowing the possibility of modelling the attributes of
relationships just as for entities, specifying constraints on relationships, and un-
dertaking querying, analysis and reasoning over relationships.

Processing that may be undertaken with graph data includes on-line trans-
action processing and querying of the data on the one hand [23], and more
computationally- and data-intensive off-line search, mining and analytics on the
other [10].

Graph-oriented data processing algorithms may be applied to data that is
stored in conventional databases, in NoSQL databases, or in specialised triple
stores or graph databases. There are potentially several advantages in storing
graph-structured data in specialised databases in order to undertake graph-
oriented data processing: more natural support for graph data modelling [8],
support for graph-oriented query languages that are better suited to formulat-
ing and optimising graph queries [25,13,2,4]; graph-specific storage and indexing
for fast link and path traversal (e.g. as in Neo4J [7], DEX [18], GRAIL [26],
SCARAB [14], SAINT-DB [21]), and in-database support for core graph algo-
rithms such as subgraph matching, breadth-first/depth-first search, path finding,
shortest path.
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Beyond centralised architectures, in the area of distributed graph data pro-
cessing the aim is to handle larger volumes of graph data than can be handled on
a single server, with the goal of achieving horizontal scalability. Approaches in-
clude systems that provide distributed graph processing over MapReduce-based
frameworks, such as Pegasus [15]; BSP (Bulk Synchronous Processing) based
systems such as Pregel [17] and Giraph [3]; systems targeting distributed online
processing of ad hoc graph queries, such as Horton [23] and Trinity.RDF [28];
and systems such as the Aurelius Graph Cluster which provide a set of technolo-
gies targeting the full range of distributed OLTP, querying and analytics [1].
In general, distributed graph processing requires the application of appropriate
partitioning and replication strategies to the graph data so as to maximise the
locality of the processing i.e. minimise the need to ship data between different
network nodes.

To determine which architectures, storage and indexing schemes, computa-
tional models, algorithms, and partitioning/replication strategies are best suited
to which scenarios, new benchmarks are being developed with the aim of pro-
viding comparative performance tests for graph data processing [9,20,6].

The recent Big Graph Data Panel at ISWC 2012 [5] discussed several technical
challenges arising from big graph data, particularly as relating to the Semantic
Web: the need for parallelisation of graph data processing algorithms when the
data is too big to handle on one server; the need to understand the performance
impact on graph data processing algorithms when the data does not all fit into
the total main memory available and to design algorithms explicitly for these
scenarios; and the need to find automated methods of handling the heterogeneity,
incompleteness and inconsistency between different big graph data sets that need
to be semantically integrated in order to be effectively queried or analysed.

In relation to this last point, the explicit modelling and presence in graph data
of relationships between entities does provide additional means of identifying and
resolving inconsistencies, through following and checking different paths between
graph nodes. The explicit representation of relationships in graph data may also
have implications on the required levels of consistency in certain usage scenarios,
which may be more stringent than for more entity-oriented data given that the
temporary presence/absence of an edge in a graph may have a large impact
on query results such as reachability or shortest path. Providing the necessary
levels of consistency may in turn may have performance implications on the
whole workload handling.

Other challenges include: developing heuristics to drive the partitioning of
large-scale dynamic graph data for efficient distributed processing, given that
the classical graph partitioning problem is NP-Hard [19]; devising new seman-
tics and algorithms for graph pattern matching over distributed graphs, given
that the classical subgraph isomorphism problem is NP-complete [16]; devel-
oping query formulation and evaluation techniques to assist users querying of
complex, dynamic or irregular graph data, such that users may not be aware
of its full structure c.f. [11,22]; achieving scalable inferencing over large-scale
graph data [24,12]; analysing uncertain graph data [29,27]; enriching of graph
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data with additional inferred attributes and relationships (e.g. in a social net-
working setting, inferring information about peoples’ interests, knowledge, skills,
and social interactions); supporting users’ visual exploration of large-scale graph
data, and of query and analysis results; and developing algorithms for processing
high-volume graph data streams.

2 Panel Discussion

Issues to be discussed in the panel include:

1. What are novel and emerging Use Cases that are generating large volumes
of graph data?

2. How does “big” graph data differ from other graph data? Is there a spectrum
of increasing volume, velocity and variety; or is there a paradigm shift?

3. Is there a fundamental separation between on-line query processing and
large-scale analysis of graph data, or there is there an overlap between them?
Is there a need for different architectural approaches for these two aspects
of graph data processing or can “one size fit all”?

4. What graph data processing is provided more effectively by special-purpose
triple stores or graph databases compared to more general-purpose databases?

5. What processing can be done well with “big” graph data now, what can be
done less well, and what are the research challenges and opportunities?
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Abstract. The typical nodes used in mote-level wireless sensor networks
(WSNs) are often brittle and severely resource-constrained. In particu-
lar, nodes are often battery-powered, thereby making energy depletion
a significant risk. When changes to the connectivity graph occur as a
result of node failure, the overall computation may collapse unless it is
capable of adapting to the new WSN state. Sensor network query pro-
cessors (SNQPs) construe a WSN as a distributed, continuous query
platform where the streams of sensed values constitute the logical ex-
tents of interest. Crucially, in the context of this paper, they must make
assumptions about the connectivity graph of the WSN at compile time
that are likely not to hold for the lifetime of the compiled query evalua-
tion plans (QEPs) the SNQPs generate. This paper address the problem
of ensuring that a QEP continues to execute even if some nodes fail. The
goal is to extend the lifetime of the QEP, i.e., the period during which
it produces results, beyond the point where node failures start to occur.
We contribute descriptions of two different approaches that have been
implemented in an existing SNQP and present experimental results in-
dicating that each significantly increases the overall lifetime of a query
compared with non adaptive approach.

Keywords: Sensor Network Query Processors, Wireless Sensor Net-
works, Resilience.

1 Introduction

Wireless sensor networks (WSNs) are useful in data collection, event detection
and entity tracking applications, among others. In particular, mote-level WSNs
are sufficiently inexpensive that one can envisage deploying them to sense at fine
granularities both over space and over time. With the low cost, however, come
severe resource constraints in terms of energy stock, communication range, com-
putational and storage capabilities, etc. Our focus here is on WSNs comprising
static motes of this kind (e.g., [1]).

If one views the WSN as simply an instrument for data collection, one might
task the relevant subset of nodes to sense the physical world and send the sensed
values, using multi-hop communication paths, towards a base station where all
the processing takes place. However, sending all data in raw form to the base
station causes more bytes to be transmitted than would be the case if the nodes
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along the route to the base station were tasked with some of the processing [10].
Since the energy cost of processing data is typically an order of magnitude smaller
than the energy cost of transmitting the same data [6], it is more energy-efficient
to do as much processing as possible inside the WSN, as this is likely to reduce
the number of bytes that are transmitted to the base station.

One approach to in-WSN processing construes the WSN as a distributed
database, and the processing task injected into nodes for execution is the evalu-
ation of a query evaluation plan (QEP). In this approach, users specify their data
requirements in the form of declarative queries, which the system, called a sensor
network query processor (SNQP), compiles into optimized QEPs for injection
into the WSN. Through periodic evaluation, a stream of results is returned to
the users via the base station.

Many SNQPs have been proposed in the literature, e.g. SNEE [4], TinyDB [9],
and AnduIN [7]. These SNQPs often differ in terms, among others, of how much
of the required query functionality can be injected into the WSN, how much use
they make of distributed query processing techniques (e.g., fragment partition-
ing, buffering tuples for block transmission, etc.), and how much compile-time
knowledge of the WSN state they require in order to produce a QEP. Thus, An-
duIN does not inject joins for in-network execution, only QEP leaves, i.e., sensing
tasks. AnduIN uses a TCP/IP protocol stack and therefore has no need to know
the state of the WSN connectivity graph at compile time. The benefit ensuing
from this approach comes at the price of potentially greater energy expenditure
(since TCP and IP were not designed with the goal of preserving energy) and of
reduced capability to inject functionality into the network (since part of the very
scarce program memory has to be assigned to the protocol stack). In contrast,
TinyDB is capable of performing limited forms of joins inside the WSN but
pushes the entire QEP to every participating node. Again, this is profligate with
respect to program memory. TinyDB infers the current connectivity graph from
the dissemination of the QEP into the WSN. Finally, SNEE, which we focus on in
this paper, pushes very expressive QEPs into the WSN whilst still partitioning
the latter into fragments that are as small as possible for each node. However,
SNEE neither uses a generic protocol stack nor can it compile the QEP without
knowledge of the current connectivity graph.

SNEE does more in-WSN processing than the other SNQPs mentioned above.
It generates QEPs that deliver good energy efficiency [4] whilst scheduling for
node execution QEP fragment instances that use less memory (partly by not
using, and hence not loading, generic protocol stacks) [4] than the other SNQPs
mentioned above. To generate QEPs where medium access, routing, and trans-
port are query-specific, the SNEE compiler takes as input (among other meta-
data) the current connectivity graph. This implies a further, and stronger, as-
sumption, viz., that if the connectivity graph changes (e.g., a node fails) during
the lifetime of QEP p, then p may not be optimal for the new topology (and,
indeed, p may even be unable to go on running). In other words, maximizing
QEP lifetime is dependent on resilience to failure. A SNEE QEP often has its
lifetime bounded by the time-to-failure of participating nodes. In practice, not
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only is node failure assumed to be a common occurrence, the energy stock of
participating motes is guaranteed to diminish over time and depletion eventually
causes the motes to become non-functional.

SNEE QEPs are therefore particularly brittle: if a participating node fails,
poor performance, or even a crash, could ensue. One aspect of poor performance
is the lack of adaptation to tuple loss when the corresponding extent draws
from a failed node. Such failures lead to partial results for the query. It is,
therefore, desirable that, if possible, the QEP is adapted in response to node
failure. Another possibility is that the failed node causes the communication
graph used by the QEP to partition in such a way that, although all sensed
values are flowing out of the leaves, they cannot be used as they fail to reach
some downstream operators, i.e., the energy expenditure of the leaves is wasted.

Adaptations aim to minimize information loss and foster compliance with
quality of service (QoS) expectations such as maximum delivery rate and con-
stant acquisition rate.

The purpose of adaptations, in the case of this paper, is to maximize the
lifetime of the QEP. Since lifetime is influenced by the rate of depletion of energy
stocks and since any adaptation will cause some such depletion (i.e., carries an
energy overhead cost), adaptations must take into account the time taken to
adapt (during which, data will cease to flow) and the energy spent in carrying
out the adaptation. Our hypothesis is that the benefit of adapting with a view
to significantly increase the QEP lifetime (and, therefore, the amount of data
produced) outweighs the cost incurred in adapting.

We compare two strategies that at runtime adapt the QEP in different ways to
increase resilience to failure. The first strategy acts as a baseline: it recomputes
the entire QEP for the new deployment state, and disseminates the recomputed
QEP. This acts like a reset and has high overhead because both the dissemination
of a QEP and its writing onto program memory are costly in terms of time and
energy expenditure. In contrast, the second strategy identifies adaptations that
require the minimal amount of changes to repair the QEP.

The results show that the adaptation costs incurred by the both strategies
can lead to significant increases in the lifetime of a QEP.

The rest of the paper is as follows Sec. 2 briefly describes related work. Sec. 3
describes the SNEE SNQP and how the time and energy costs of a QEP are
modelled. Sec. 4 describes each strategy. Sec. 5 describes how we experimentally
evaluated each one. Sec. 6 draws conclusions.

2 Related Work

Broadly speaking, current SNQPs are not very tolerant of node failure. In
TinyDB, the fact that routing trees [9] are constructed during the QEP
dissemination process provides some amount of inter-query fault tolerance, as
failed nodes do not take part in disseminating the next QEP (which could be
a recompilation of the same query) and hence will be disqualified from partici-
pating in its evaluation. Also, each node in TinyDB evaluates the entire QEP
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(i.e., TinyDB makes no attempt to partition the plan into fragments), and, as
a result, ignoring a failed node is a sound strategy. Thus, whilst TinyDB is not,
strictly speaking, adaptive, it is, to a certain degree, resilient to some forms of
node failure. However, tuple transmission is not globally scheduled (as it is in
SNEE), so there is no way of estimating how many tuples might be lost as a
result of failed nodes.

The SmartCIS project [8] builds upon TinyDB with a particular goal (among
others) of supporting fault-tolerant routing trees via multi-path transmissions.
This approach incurs energy overheads in verifying that current paths are correct
and in searching for new correct ones.

AnduIN has no specific mechanism for fault tolerance. In contrast with both
TinyDB and SNEE, which compile into TinyOS [5], AnduIN compiles into Con-
tiki [3]. The difference is relevant in our context because, unlike TinyOS, Contiki
provides a TCP/IP-based communication protocol stack. Thus, AnduIN benefits
from the robust routing and transport properties built into TCP/IP. The draw-
back is that TCP/IP incur much greater overheads (and take up more memory
footprint) than the minimalistic, query-specific protocols used by TinyDB and
SNEE. Some of these overheads stem from the need to maintain up-to-date con-
nectivity paths as well as from the need to send acknowledgement packets. As to
memory occupancy, TCP/IP implementations will take up space and will also
claim more memory for such structures as routing tables. By reducing the mem-
ory on the nodes that can be allocated to the QEP, there is a reduction in how
much processing can be shipped to the WSN and how much memory can be
used buffering and blocked transmission, both features that are energy-saving.
AnduIN does not adapt to failure of acquisition nodes.

Our prior work [11] explored logical overlays which use redundant nodes (for-
tuitous or planned) within the network to achieve resilience to node failure using
clusters of equivalent nodes.

3 Technical Context

SNEE aims to generate energy-efficient QEPs. The compilation/optimization
process takes as input a SNEEql query (as exemplified in Fig. 1), QoS expecta-
tions (not shown in the figure) in the form of a desired acquisition rate (i.e., the
frequency at which sensing takes place) and a maximum delivery time (i.e., an
upper bound on the acceptable amount of time between data being acquired and
being reflected in the emitted results), and the following kinds of metadata: (1)
the current connectivity graph, which describes the (cost-assigned) communica-
tion edges in the WSN; (2) the logical schema for the query, which describes the
available logical extents over the sensing modalities in the WSN; (3) the physical
schema for the query, which describes which physical nodes contribute data to
which logical extent, and which node acts as base station; (4) statistics about
nodes (e.g., available memory and energy stocks); and (5) cost-model parame-
ters (e.g., unit costs for sleeping, sensing, processing, and communicating) [2].
The example query takes two streams, one stemming from sensors in a field, the
other from sensors in a forest. It joins them on the condition that light levels
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are higher in the field than in the forest and emits onto the output stream the
matching values and the ids of the nodes that generated them. The intuition
behind the query is that if light levels in the forest are higher than in the open
field, then one might suspect that a forest fire has started.

Fig. 2 shows the SNEE (compilation/optimization) stack. As a distributed
query optimizer, it uses a two-phase approach. The single-site phase (Steps 1-3
in Fig. 2) comprises the classical steps needed to compile and optimize a query
for centralized execution. The outcome is the physical-algebraic form (PAF) for
the query, where each operator has been given its execution order and assigned
a concrete algorithm. The multi-site phase (Steps 4-7 in Fig. 2) turns the PAF
into a distributed algebraic form (DAF) for the query by making decisions that
are specific to in-WSN execution. These include deciding on a routing tree R, on
fragment instance allocation along the routing tree captured as a DAF D and
on timing the activities in the nodes (switching from QEP fragment evaluation
to communication and so on) in the form of an agenda A. A final step converts
the triple 〈R,D,A〉 into a set of per-node nesC/TinyOS source files, which are
then compiled into binary form. This is what we refer to as the executable QEP.

In more detail, Step 4 in Fig. 2 generates a routing tree (RT) for the query as
an approximation of a Steiner tree, e.g., the one in Fig. 3(a) for our example query.
Each vertex is a sensor node; an edge denotes that the two nodes can communicate;
the arrow denotes the direction of communication; double-line circles denote the
sink or else nodes that do sensing; single-line nodes do processing or communication
or both. Recall that a Steiner tree is a minimum spanning tree (and hence likely to
be energy-efficient) that necessarily includes a given set of nodes. In our case, these
are the leaves (i.e., the acquisition nodes) and the root (i.e., the base station).

Step 5 in Fig. 2 decides which fragment instances to place for execution in
which node. This partitions the PAF into fragment instances and assigns the
latter to RT nodes with a view to conserving energy by reducing the number of
tuples that need to be transmitted. The resulting DAF for the example query is
shown in Fig. 3(b). Dashed boxes define fragment boundaries; the list in curly
brackets at the bottom-right corner (below the fragment identifier) denotes how
many instances of that fragment there are and in which nodes they run. The
fragment containing the deliver operator runs on the sink node, the fragment
instances containing the acquisition operators run on the leaf nodes and the
remaining fragment instances are assigned to run on Node 1 because it is,
amongst the nodes through which all tuple streams required for the join flow,
the hop-count closest to the leaves. We call such nodes, confluence nodes.

Logical Schema: field (id, time, temp, light); forest (id, time, temp, light);

Physical Schema: field: {N6, N9}; forest: {N7}; sink: {N8}

Q: SELECT RSTREAM c.id, c.light, f.id, f.light FROM field[NOW] c, forest[NOW] f

WHERE c.light < f.light

Fig. 1. Example Query, Logical/Physical Schemas
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Fig. 2. The SNEE Compilation Stack

Step 6 in Fig. 2 decides when to execute the different tasks in each partici-
pating node. These decisions are represented as an agenda, i.e., a matrix where
rows denote points in time in the query evaluation cycle, columns denote par-
ticipating nodes, and the content of each cell defines the task scheduled for that
node at that time. The agenda for the example query is shown in Fig. 3(c).
Fragments are identified by number as in Fig. 3(b), with subscripts denoting
fragment instances; the notation txn (resp., rxn) denotes that that node at that
time is transmitting to (resp., receiving from) node n; a row labelled sleeping
denotes the fact that, for that slot, all the nodes in the WSN are idle. In the
process of deciding on an agenda, SNEE also determines how much buffering
of tuples can be done on the nodes with the memory remaining from fragment
instance allocation. By being governed by an agenda, a SNEE QEP implements
a simple form of TDMA (time-division multiple-access to channels). Whilst this
is often economical provided that the estimation models are accurate (and [2]
shows that the ones used in SNEE are), any changes to the timing of the opera-
tors or transmissions requires the agenda to be recomputed and hence the QEP
to be recompiled and propagated into the WSN.

Step 7 in Fig. 2 takes the RT from Step 4, the DAF from Step 5, and the agenda
from Step 6 to produce a set of per-participating-node source files. Compiling
these files yields the binaries that, together, comprise the QEP. For an in-depth
description of the SNEE compilation stack and data structures, see [4].

We note that, as described in [2], SNEEmakes intensive use of the empirically-
validated analytical cost models for energy, memory and time expenditure com-
puted over the RT, DAF and agenda for a query. For example, in SNEE, we can
estimate the energy and time cost of running a QEP fragment instance on any
given node per agenda execution cycle. Such capabilities allow us to estimate
the time that a QEP will run before a given node fails due to energy depletion.
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(a) RT (b) DAF (c) Agenda

Fig. 3. Example Inputs to Code Generation

Fig. 4. The adaptive infrastructure

4 Adaptation Strategies

Figure 4 provides an overview of the Stages 1.1 and 1.2 represent the compile
time actions executed by the SNEE SNQP; Once stage 1.2 has been executed,
there would be an operating QEP that would be producing output tuples.

The problem of handling node failure can then be broken down into the prob-
lems of monitoring this QEP for node failures, determining how to respond to
the failure and finally responding to the failure. In Figure 4 Stages 2.1 to 2.5
shows how the SNEE infrastructure has been modified to include an adaptive
control loop that monitors the network by using models to assess non intrusively
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if the network has experienced a node failure (Stages 2.1 and 2.2 in Figure 4).
When a node failure has been detected, an adaptive strategy is executed to de-
termine how to repair the QEP to recover from the failure (represented as stage
2.3 in Figure 4). The strategy returns a new QEP which is then broken down
into a set of adaptation actions that together can change the currently running
QEP into the new QEP during Stage 2.4 of Figure 4. These actions are:

1. Reprogramming the node completely (giving it a fresh binary to execute).
2. Redirecting the destination to which tuples are being sent.
3. Deactivating a node so that it no longer participates in the QEP.
4. Activating a node so that it can start participating in the QEP.
5. Shifting the node’s agenda by a specific time period, thereby making the

node change when it executes its operators and engages in data transport.

The reprogramming of nodes is the most expensive of the above actions in terms
of both energy and time, as node binaries imply a large number of data packets
to transmit, and these packets need to be stored in flash memory. The other
four actions only require one message to be sent to the nodes in question as
these changes require no reprogramming of the node. The time and energy used
whilst the WSN is adapting is time and energy that the QEP is not devoting to
processing tuples for the end user, and so should be as small as possible.

These action messages are then sent into the network in Stage 2.5 of Figure 4.
This adaptation cycle repeats if necessary until either the query has finished
executing (e.g., it was required to run for a fixed amount of time), or the network
experiences a failure from which it cannot recover.

The problem of repairing a QEP from node failure is split into two problems.
The first is to reroute tuples around the failed nodes. The second problem is to
reassign operators that were previously running on the failed node to new nodes
whilst still meeting Quality of Service (QoS) expectations.

We propose two different strategies. The global strategy tries to adapt whilst
minimising the new QEP’s execution cost. The regional repair strategy tries to
adapt with the minimal amount of runtime reprogramming.

We assume that each strategy has the same node failure detection procedure
which in our case is based on significant discrepancies between the estimated and
the observed number of tuples returned by the QEP given a defined selectivity
value for each operator. These estimates are obtained by an analytical model.
Finally, we also assume that the metadata representing the WSN has already
been updated to reflect the failure.

In the next two subsections we define how each strategy adapts to node failure.
For the sake of clarity, we use a different representation of the DAF by first
overlaying it over the RT as shown in Figure 5(a). This allows us to show the
extra communication operators and the physical layout of the DAF which is not
easily apparent in a DAF. As these strategies try to exploit nodes not currently
being used by the QEP, we overlay this representation on top of the entire
deployment (as shown in Figures 5(b),5(c) and 5(d)). This gives us a simple
graphical example of the different DAFs generated by the strategies.



Adapting to Node Failure in Sensor Network Query Processing 41

(a) Original
DAF over-
layed on the
RT

(b) Original DAF
overlay on the De-
ployment

(c) Global’s DAF
overlay on the De-
ployment

(d) Regional’s
DAF overlay on
the Deployment

Fig. 5. Adaptations after the failure of Node 1

Figure 5(b) shows the original DAF with tuples being acquired at node 6
and 8 which are then forwarded to node 1 where select and project operators
are executed. The results from these operators are forwarded to node 0 which
delivers the tuples out of the network. Nodes 3,4,5 and 7 are not participating
in the current QEP. Each communication path available is annotated with the
energy cost of transmitting tuples through it.

4.1 Global Strategy

The global strategy seeks to generate the least energy expensive QEP for the
new state of the network. This strategy uses all available information about the
network and re-optimises over the entire network.

The global strategy is the simplest of the two strategies as the first three
stages in the strategy’s execution stack (represented in Figure 6(a)) are identical
to the multi-site phase of the SNEE compilation stack in Figure 2. At the end of
stage three, a new RT, DAF and Agenda will have been computed, in this case
resulting in the DAF depicted in Figure 5(c).

The downside to the global strategy is that its likely to result in reprogram-
ming of several nodes, as any change in the fragments in a node requires a
complete reprogramming of the node.

Adaptation Break Down. Stage 4 of the global execution stack compares
the new and old QEP data structures and looks for changes between them. In
Figure 5(c) nodes 2,4,5 and 6 are reprogrammed, due to having no operators on
them (as in nodes 4 and 5) or having the incorrect fragments (as in nodes 6 and
2). Node 8 only requires a redirection action to change its parent node’s id from
the failed node to node 6.
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(a) Global (b) Regional Repair

Fig. 6. Each Strategies Execution Stack

These actions are then used in the adaptation stage, where pre-defined mes-
sages are forwarded from the base station to the nodes in question. For repro-
gramming, the messages contain the entire new node binary, which is sent down
the RT to the node in question, where it is installed into flash memory. For
redirection, activation, deactivation and temporal adjustment, one message is
sent communicating changes in variables in the binary, an example of which is
a change of the node id that acts as its parent.

4.2 Regional Repair Strategy

The regional repair strategy tries to reduce the amount of run time reprogram-
ming by exploring a collection of possible changes in the neighbourhood of the
failed node aiming to retain unchanged as much as possible of the original plan.
Therefore it essentially seeks to repair the current plan rather than to identify a
brand new one. It aims to derive a new QEP that requires the least amount of
reprogramming to transition from the old to the new QEP, thereby reducing the
time and energy overheads incurred whilst the WSN is adapting. The downside
to this strategy is that the repaired QEP may be more expensive than the one
that would have been produced by the global strategy.

The strategy works in five stages as depicted in the regional repair execution
stack in Figure 6(b). In each of the following five subsections we explain how
each step operates for the example depicted in Figure 5(b).

Pin Nodes. The pinning stage (numbered 1 in Figure 6(b)) works to reduce the
scope of the routing algorithm by removing nodes from consideration from the
connectivity graph for routing decisions. The goal is to avoid disrupting the rest
of the QEP by starting with nodes which do not currently participate within the
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(a) Incomplete
RT

(b) Repaired
RT

Fig. 7. Comparison between the original, incomplete and repaired RT’s

QEP. This is done by traversing the connectivity graph and locating any node
which is in the original RT and is not a failed node. These nodes are said to be
pinned. The rest are reprogrammable. The original RT is updated to reflect the
failed node, resulting in a disconnection in the original RT, as in Figure 7(a).
The pinned nodes, failed nodes and the reprogrammable set are then used as
inputs for the routing stage. In this example nodes 2,6,8 and 0 are pinned, and
node 1 is removed from the RT.

Routing and Unpinning. Stage 2.1 in Figure 6(b) attempts to repair the RT
with the least amount of reprogramming. This is done by first locating sections
of the RT where the failed node and any unpinned nodes (initially an empty set)
communicate with each other. Each of these sections is repaired independently.
In the example only one section is located, viz., node 1.

Each section then gives rise to a Steiner tree problem where the inputs of
the leaf nodes of the section (node 2 and 8) and the parent of the root node
of the section (node 0) become mandatory nodes (represented as double circled
nodes in Figure 7). A heuristic algorithm given in [6] is used over the union
of the reprogrammable and unpinned sets to compute a Steiner tree, in this
case forcing a route through node 3, as node 3 can communicate directly with
nodes 0, 2 and 8. Each section’s Steiner tree solution is then integrated into the
disconnected RT to create a new RT as represented in Figure 7(b).

If the heuristic algorithm fails to find a tree to connect the mandatory nodes
in a section, then Stage 2.2 is initiated in order to choose one of the pinned nodes
to become unpinned and therefore reprogrammable. This is done by selecting the
parent of the root node in the problem section. If no parent node is available
(because the algorithm has travelled to the sink node) then a node is chosen
at random. At this point, Stage 2.1 is restarted, this cycle continues until all
sections have a corresponding Steiner tree solution.
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Where Scheduling. Stage 3 takes the new RT and generates a DAF by placing
all non-attribute sensitive pinned QEP fragments onto the pinned nodes. Any
remaining QEP fragments (in this case, the one containing the project and select
operators originally placed on node 1) are placed on the most applicable site (site
3) determined by the where scheduling phase discussed in Section 3. This results
in the DAF shown in Figure 5(d).

When Scheduling and Adaptation Breakdown. Stage 4 behaves exactly
as the SNEE when scheduler in Figure 2 and the same comparison stage as men-
tioned in the global strategy is executed, resulting in node 3 being reprogrammed
and nodes 2 and 8 tuples being redirected to node 3 instead of node 1.

5 Experimental Evaluation

This section presents experimental evidence to test the hypothesis that the ben-
efit of adapting with a view to increasing the QEP lifetime (and, therefore, the
amount of data produced) outweighs the cost incurred in adapting. All experi-
ments were carried out using the Avrora [12] simulator.

We began by generating a set of 30 synthetic WSN topologies, with corre-
sponding physical and logical schemas with the same generator used in [4]. Each
topology comprises 30 nodes with random connectivity to a subset of other
nodes.1 For a third of the topologies, SELECT * queries were generated over the
available sensed extent. For another third of the topologies, aggregation queries
were generated. For the final third, join queries were generated. In all cases, we
have set the QoS expectations as follows: the acquisition rate is a tuple every 10
seconds and the maximum delivery time is 600 seconds.

For each topology, query, logical and physical schemas, we used SNEE to
generate the corresponding, initial QEP.

When simulating the failure of a node, we take the following into account: (a)
we prefer confluence nodes both because they are, by definition, crucial for the
correctness of the query, and because they tend to have a higher workload than
other types of node and are, therefore, more likely to fail in practice; and (b)
we exclude acquisition nodes because it allows us to evaluate the net benefit of
adaptive responses between functionally-equivalent plans.

Results and Observations. To evaluate how the energy drain from the adap-
tation affects the lifetime (and, therefore, tuple delivery) of the network, we
estimate how many agenda cycles can be completed successfully by each node in
the RT and use the lowest value as the maximum number of successful agenda
execution cycles for the QEP. From the estimated lifetime we can infer the max-
imum number of tuples that can be delivered to the base station by multiplying
the lifetime by the calculated maximum tuple generation per agenda execution
cycle.

These results are shown in Figure 8(a). The following observations can be
made from these results:
1 We ran experiments over larger topologies, but no new conclusions emerged so we
have omitted the results to save space.
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(a) Number of Tuples Delivered Covering
the Different Types of Queries

(b) Length of Time taken to Adapt For
Each Strategy

Fig. 8. Results

1. As all the strategies use a derivative of the routing algorithm used by the
SNEE compiler, there is a risk that confluence nodes which have not failed
will be used to transmit reprogramming packets down to nodes. This puts
more pressure on these nodes resulting in them failing earlier than expected
and therefore delivering fewer tuples. Examples of this are topologies 5, 7,
25 and 30.

2. Most of the time, adapting to node failure results in an extended QEP life-
time. This is due to the re-distribution of operators to different nodes in the
network, that often have more energy than the nodes that participated in
the original OTA programming, therefore resulting in a extended lifetime
and delivered more tuples.

3. When comparing the numbers of tuples delivered to the original QEP with-
out an adaptation, each strategy results in a substantial benefit in total tuple
delivery. Because aggregation operators reduce all input tuples into a single
output one, in aggregation queries there is no noticeable difference in tuple
delivery unless the entire data stream is disconnected. We point out that
accuracy of the resulting tuple may now be severely reduced (e.g. a count or
an average).

4. The difference in tuple gain between the strategies is only approximately 1 to
4 % with neither outperforming the other on a regular basis. This shows that
for one adaptation, the energy used up by the adaptations is discounted by
the regular cost of the executing QEP. We note that given more node failures
during the QEPs execution may result in more significant differences between
the strategies, and is left for future work.

The time the network is adapting to the node failure is time that it is not
producing results, and therefore is important to consider as it will result in gaps
within the output steam. This motivated us to observe the time period taken
to execute the changes within the network, show in Figure 8(b). The following
observations can be made from these results:
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1. In most cases the global strategy produces adaptations which incur a signif-
icantly higher time cost than the regional strategy. This means that using
the global strategy is likely to generate more down time and therefore larger
gaps within the output.

2. In most cases the regional strategy executes all of its changes within one
agenda cycle, and therefore it could be possible to repair and reproduce the
lost result before the next agenda cycle is executed by exploiting the time
period at the bottom of an agenda, where all nodes are doing nothing, to
retransmit the lost packets.

In summary, we have provided experimental evidence that adapting to node
failure as it occurs gives rise to significant benefits in terms of additional lifetime
that averages of approx 4.00% for select * queries, 1.47% for aggregation queries,
and 27.64% for join queries. We also determined that regional changes could
result in less downtime for making the adaptations in relation to doing a global
reset.

6 Conclusion

This paper has described two strategies for recovering from node failure in SNQP
and makes the following contributions:

1. We have described approaches that adapt to node failure where one strategy
re-optimises the QEP to the new state of the network, and the other strat-
egy repairs the in-network QEP with as little in-network reprogramming as
possible.

2. We have reported on empirical performance evaluation of the two strategies.
The experiments consistently show that adapting to node failure is beneficial
in relation to the number of tuples that are delivered to the base station by
extending the lifetime of the QEP.
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Abstract. The additional expressive power of procedural extensions of
query and update languages come at the expense of trading the efficient
set-at-a-time processing of database engines for the much less efficient
tuple-at-a-time processing of a procedural language. In this work, we
consider the problem of rewriting for-loops with update statements into
sequences of updates which do not use loops or cursors and which simul-
taneously carry out the action of several loop iterations in a set-at-a-time
manner. We identify idempotence as the crucial condition for allowing
such a rewriting. We formulate concrete rewrite rules for single updates
in a loop and extend them to sequences of updates in a loop.

1 Introduction

To enhance the expressive power of SQL for querying and modifying data, the
SQL standard proposes SQL/PSM as a Turing complete procedural extension
of SQL. Most relational database management systems provide their own pro-
cedural programming language such as PL/pgSQL of PostgreSQL, PL/SQL of
Oracle, SQL PL of IBM’s DB2, Transact-SQL in Microsoft SQL Server, etc.
The key feature of these extensions of SQL is to allow the definition of loops
for iterating over relations with a cursor and to “parameterize” so to speak the
action in the loop body by the current tuples of these relations. The additional
expressive power however comes at the expense of trading the efficient set-at-a-
time processing of SQL for the much less efficient tuple-at-a-time processing of a
procedural language. For the sake of optimizing updates, the question naturally
arises if a given sequence of updates necessarily has to be realized by a loop
containing these updates or whether it would be possible to achieve the same
effect with a sequence of simple updates that do not use loops or cursors.

In this paper we restrict ourselves to for -loops with updates. Our goal is to
provide rewrite rules that allow one to transform for-loops with update state-
ments into a sequence of simple updates that simultaneously carry out the action
of several loop iterations in a set-at-a-time manner. To this end, we will first in-
troduce an update language which we find convenient for our investigations and
point out how update statements of this form can be represented in (standard)
SQL. We then identify a crucial property of updates as a sufficient condition for
the elimination of for-loops containing update statements, namely the idempo-
tence of updates, i.e., applying the same update twice or more often yields the
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same result as a single application of the update. Based on this condition, we
shall define rewrite rules for unnesting a single update and also several successive
updates in a for-loop. The elimination of nested loops with updates is thus also
covered by successively applying the rewrite rules to each loop - starting with
the innermost one.

Update optimization is an old topic in database research. A problem statement
similar to ours was considered by Lieuwen and DeWitt in [5], who provided rules
for optimizing for-loop statements in the database programming language O++.
There, the authors focus on flattening the nested loops. In contrast, our approach
allows for complete elimination of loops and replacing them with relational-style
update commands. This problem has been also considered in [1] in the context
of uncertain databases. The results in the present paper extend that work: in
particular, we consider update commands in which arbitrary attributes can be
referenced on the right-hand side of equalities in the set -clause, whereas in [1]
only constants are supported.

Our transformation relies on the idempotence of update operations, which can
be easily tested: the operation is idempotent if repeating it twice or more times
has the same effect as applying it only once. The importance of the idempotence
property for update optimization for the task of incremental maintenance of
materialized views [4], has been identified in [3]. More recently, idempotent op-
erations have been found useful also in a broader setting in the area of distributed
systems [2,6]. Efficient and block-free methods of failure recovery are essential in
distributed environments. The idempotence property ensures that such repeated
evaluation is safe and does not change the semantics of a program.

Organization of the Paper and Summary of Results. In Section 2, we
introduce a simple update language, which is convenient for our investigations,
and establish its connection to (standard) SQL. In Section 3 we present our
rewrite rule for eliminating a for-loop with a single update statement inside.
Clearly, this rewrite rule is also applicable to nested loops starting with the
innermost loop. The crucial condition for the applicability of our rewrite rule is
the idempotence of the update. In Section 4, we formulate a sufficient condition
for the elimination of for-loops with more than one update inside and present
an appropriate extension of our rewrite rule.

2 Update Language

Suppose that we want to update some relation R whose schema sch(R) is given
as sch(R) = {A1, . . . , Am}. In this paper, we restrict ourselves to updates which
can be defined by a relation U with {A1, . . . , Am, A′

1, . . . , A
′
m} ⊆ sch(U) in the

following sense: the tuples affected by such an update are T = {r | ∃u ∈ U , s.t.
r.A1 = u.A1∧. . .∧r.Am = u.Am}, i.e., T = R>< U . The new values to which the
attributes Ā = (A1, . . . , Am) of each tuple r ∈ T are modified are defined by the
components Ā′ = (A′

1, . . . , A
′
m) of the corresponding tuple in U , i.e.: each r ∈ T

is modified to πĀ′(σU.Ā=r(U)). Clearly, there must exist a functional dependency
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U.Ā→ U.Ā′ to make sure that every tuple in T is mapped to precisely one value
U.Ā′. This leads to the definition of the following language of update statements:

Definition 1. Let R and U be relations with sch(R) = {A1, . . . , Am} and {A1,
. . . , Am, A′

1, . . . , A
′
m} ⊆ sch(U). Then the “update defined by U” is denoted as

update R set Ā = U.Ā′ from U where R.Ā = U.Ā;

Such an update is called well-defined if there exists a functional dependency
U.Ā → U.Ā′. In this case, the effect of this update is to replace each tuple r in
R>< U by the uniquely determined value U.Ā′, s.t. r.Ā = U.Ā.

Note that the above definition imposes no restriction on the nature of the relation
U . In particular, U may itself be defined by some query. In this case, the value of
U immediately before updating R is considered as fixed throughout the update
process. This is in line with the transactional semantics of SQL updates, i.e.,
changes made by an update are not visible to the update itself before the end of
the update operation.

The proposed syntax is general enough to cover many practical cases. In
particular, the updates of the form “update R set Ā = c̄ where φ”, considered
in [1], can be captured easily: Let Qφ denote the semi-join query returning
the tuples of R that have to be updated. In order to write the above update
in the form: update R set Ā = U.Ā′ from U where R.Ā = U.Ā; we have to
define the relation U . Suppose that sch(R) = {A1, . . . , Am, B1, . . . Bn}, which we
abbreviate as Ā, B̄. Likewise, we write Ā′, B̄′ to denote {A′

1, . . . , A
′
m, B′

1, . . . B
′
n}.

Then U(Ā, B̄, Ā′, B̄′) is defined by the following query (in logic programming
notation):

U(Ā, B̄, c̄, B̄) :- R(Ā, B̄), Qφ;

We give some further simple examples of updates below:

Example 1. Consider a relation R with attributes (A1, A2). An update operation
that swaps the two attributes of R can be defined as

update R set Ā = U.Ā′ from U where R.Ā = U.Ā;

such that U(A1, A2, A
′
1, A

′
2) is defined by the following query:

U(A1, A2, A2, A1) :- R(A1, A2).

Now suppose that A1, A2 have numerical values. Moreover, suppose that we
want to apply the above update only to tuples r in R where A1 is an even number
and A1 < A2 holds. Then we just have to modify the definition of relation U ,
namely:

U(A1, A2, A2, A1) :- R(A1, A2), A1 < A2, A1 mod 2 == 0.

More generally, suppose that R contains m attributes (A1, . . . , Am) and we
want to swap the first two of them. Then U(A1, . . . , Am, A′

1, . . . , A
′
m) is defined

as follows:

U(A1, A2, A3, . . . , Am, A2, A1, A3, . . . , Am) :- R(A1, . . . , Am). �
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We conclude this section by describing a translation of updates formulated in
our syntax to standard SQL. Consider an update of the form

update R set Ā = U.Ā′ from U where R.Ā = U.Ā;

where Ā denotes the attributes {A1, . . . , Am} of R. This update can be rewritten
as follows:

update R set
A1 = (select A′

1 from U where R.Ā = U.Ā)
. . .
Am = (select A′

m from U where R.Ā = U.Ā)
where exists (select * from U where R.Ā = U.Ā).

where we write R.Ā = U.Ā to abbreviate the condition R.A1 = U.A1 and . . . and
R.Am = U.Am. If the DBMS supports the extended update syntax (like ’update
from’ in PostgreSQL), then the SQL update statement becomes more concise:

update R set A1 = A′
1, . . . , Am = A′

m

from U
where R.Ā = U.Ā.

Of course, in simple cases, the relation U does not have to be defined explicitly
(e.g., as a view), as the following example illustrates:

Example 2. Consider relations R,S, P with sch(R) = {A1, A2, A3}, sch(S) =
{B1, B2}, and sch(P ) = {C1, C2}. Let an update be defined by the relation
U(A1, A2, A3, A

′
1, A

′
2, A

′
3), where U is defined as follows:

U(A1, A2, A3, A1, A
′
2, A

′
3) :- S(A2, A

′
2), P (A3, A

′
3), A

′
2 < A′

3.

Intuitively, S defines the update of the second component of R and P defines
the update of the third component of R. Moreover, these updates may only be
applied if the new value for the second component of R is less than for the third
one. In SQL we get:

update R
set

A2 = (select S.B2 as A′
2 from S, P

where S.B1 = R.A2 and P.C1 = R.A3 and S.B2 < P.C2),
A3 = (select P.C2 as A′

3 from S, P
where S.B1 = R.A2 and P.C1 = R.A3 and S.B2 < P.C2)

where exists (select * from S, P
where S.B1 = R.A2 and P.C1 = R.A3 and S.B2 < P.C2).

If the DBMS supports the extended update syntax, then the above update state-
ment can be greatly simplified to:

update R
set A2 = S.B2, A3 = P.C2

from S, P
where S.B1 = A2 and P.C1 = A3 and S.B2 < P.C2 �
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for ($t in Q){update R set Ā = U [$t].Ā′ from U [$t] where R.Ā = U [$t].Ā};
� update R set Ā = V.Ā′ from V where R.Ā = V.Ā;

s.t. V =
⋃

t∈Q U [t].

Fig. 1. Unnesting update programs

3 Loop Elimination

Recall from Definition 1 that, in this paper, we are considering updates defined
by some relation U . Now suppose that an update occurs inside a loop which
iterates over the tuples in some relation Q. Hence, in general, the update relation
U depends on the current tuple t of Q. We thus write U [t] to denote the value of
U for a given tuple t of Q. In a loop over Q, the relation U is parameterized so to
speak by the tuples in Q. We thus write U [$t] to denote the family of relations
U that we get by instantiating the variable $t by the tuples t in Q. We thus have
to deal with loops of the following form:

for ($t in Q){update R set Ā = U [$t].Ā′ from U [$t] where R.Ā = U [$t].Ā};

where sch(R) = {A1, . . . , Am}. Moreover, for every instantiation of $t to a tuple
t over the schema sch(Q), U [$t] yields a relation whose schema contains the
attributes {A1, . . . , Am, A′

1, . . . , A
′
m}. The relation resulting from instantiating

$t to t is denoted as U [t]. The semantics of the above loop is the following:
for each value $t in Q, peform the update of R using the update relation U [$t]
according to Definition 1.

Of course, updates may also occur inside nested loops. We thus get statements
of the following form:

for ($t1 in Q1) {
for ($t2 in Q2) {
. . .
for ($tn in Qn) {update R

set Ā = U [$t1, . . . , $tn].Ā
′

from U [$t1, . . . , $tn]
where R.Ā = U [$t1, . . . , $tn].Ā}. . . }};

such that, for every instantiation of $t1, . . . , $tn to tuples t1, . . . , tn over the
schemas sch(Q1), . . . , sch(Qn), U [$t1, . . . , $tn] yields a relation whose schema
contains the attributes {A1, . . . , Am, A′

1, . . . , A
′
m}. The relation resulting from

instantiating $t1 to t1, . . . , $tn to tn is denoted as U [t1, . . . , tn].
For unnesting updates, it suffices to provide a rule for transforming a single for-

loop with update into an update statement without loop. In case of nested loops,
this transformation has to be applied iteratively starting with the innermost for-
loop. Such a rule can be found in Fig. 1. It is put into effect in the following
example:
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Example 3. Consider relations Department and Employee: sch(Department) =
{dept id, bonus}, sch(Employee) = {empl id, dept id, base salary, compensation}.
Using logic programming notation, we define the relations Q and U :

Q(Dept id,Bonus) :- Department(Dept id,Bonus)

U(Empl id,Dept id, Base sal, Comp,
Empl id,Dept id, Base sal, Comp′)[$t] :- Comp′ = Base sal · (1 + $t.bonus)

The following update loop increases the compensation of all employees:

for($t in Q )
update Employee set compensation = U [$t].compensation′ from U [$t]
where U [$t].empl id = Employee.empl id and

U [$t].dept id = Employee.dept id and
U [$t].base salary = Employee.base salary and
U [$t].compensation = Employee.compensation

For the sake of readability, in the set -clause of the update command we omit
the assignments to the attributes which are not modified in U [$t]. Applying the
unnesting rule from Fig. 1, the update loop can be rewritten as the following
command:

update Employee set compensation = V.compensation′ from V
where V.empl id = Employee.empl id and

V.dept id = Employee.dept id and
V.base salary = Employee.base salary and
V.compensation = Employee.compensation

Here, V is obtained from U [$t] by taking a join of U [$t] with Q and replacing
$t in the body of U with Q.

V (Empl id,Dept id, Base sal, Comp,Empl id,Dept id, Base sal, Comp′) :-
Comp′ = Base sal · (1 +Q.Bonus),
Q(Dept id,Bonus)

It is easy to see that the above expression for V expresses exactly the one in
Fig. 1, namely V =

⋃
t∈Q U [t]. This expression can be further simplifed as

V (Empl id,Dept id, Base sal,Comp,Empl id,Dept id, Base sal, Comp′) :-
Comp′ = Base sal · (1 + Department.Bonus),
Department(Dept id,Bonus) �

Remark 1. Note that to ensure that the update is well-defined, it might be
necessary to inspect the particular instance of the join between the updated
table and the update relation U . However, if certain integrity constraints are
present in the schema, such inspection can be spared, since the desired key
dependency may be inferred from the definition of the update relation U and
existing schema constraints. For instance, for the update relation U [$t](Ā, Ā′) in
Example 3, the dependency Ā→ Ā′ has to be checked. Since the only modified
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attribute of Employee is compensation, it suffices to check the functional depen-
dency Ā→ compensation′, where Ā denotes the first four attributes of U [$t]. Note
that compensation′ is determined by base salary and Department.bonus. More-
over, note that empl id and dept id are respective primary keys in the Employee
and Department tables. Then, also the functional dependency empl id → bonus
holds in the relation Employee �� Department. Therefore, the functional depen-
dency empl id→ compensation′ holds in U [$t] and thus the respective update is
well-defined irrespective of the database instance.

The following theorem gives a sufficient correctness criterion for the loop
elimination from Fig. 1.

Theorem 1. Let Q and R be relations with sch(Q) = {B1, . . . , B�} and sch(R)
= {A1, . . . , Am}. Moreover, let U [$t] be a parameterized relation with sch(U [$t])
= {A1, . . . , Am, A′

1, . . . , A
′
m} and sch($t) = sch(Q). Finally, suppose that, for

every $t ∈ Q, the update of R defined by U [$t] is well-defined (cf. Definition 1).
The rewrite rule in Fig. 1 is correct (i.e., the update resulting from the rewrite

rule application has the same effect on the database as the loop), if the following
conditions are fulfilled.

1. In V , the functional dependency V.Ā → V.Ā′ holds, i.e, the update of R by
V is well-defined.

2. The relation ρĀ←Ā′ (πĀ′(V )) �� πĀ,Ā′(V ) contains only tuples which fulfill
the selection criterion σĀ=Ā′ .

3. The relation R is not used in the definition of U [$t], i.e., U [$t] is not modified
by the update.

Remark 2. The second condition in the above theorem reads as follows: Consider
all tuples in πĀ′(V ). They constitute a superset of the values that may possibly
occur as the result value of some update step. The renaming ρĀ←Ā′ and the join
with πĀ,Ā′(V ) computes the result value (for arbitrary tuple t ∈ Q) if the update
is applied to the same row of R again. The second condition thus requires that
applying the update again must not alter the value anymore. In other words, the
second condition imposes a strong kind of idempotence, i.e., if r′ is the result
obtained from updating r ∈ R in the loop iteration according to some t ∈ Q,
then the update of r′ for any tuple t′ ∈ Q must not alter r′. Many real-world
updates are idempotent: for instance, the commands setting attributes equal to
constants, or looking up new values using join expressions, provided that the
attributes used for the look-up are not affected by the update (cf. Example 3).

The third condition above means that we are considering loops with updates
defined by relations U whose value is not modified inside the loop. Note that
this restriction is quite realistic since otherwise the semantics of the loop might
easily depend on the concrete order in which the tuples t of the “outer relation”
Q are processed.

Note that if the update relation U [$t](Ā, Ā′) is such that all attributes in Ā
are either equal to the corresponding attributes in Ā′ or not bound in the body
of U , the second condition is fulfilled trivially (cf. Example 3). If also the first
condition of updates to be well-defined is enforced by the schema constraints (as
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described in Remark 1), then the applicability of the transformation in Fig. 1
can be checked statically, that is, without inspecting the actual instance.

Proof (Theorem 1). We first introduce some useful notation: Suppose that a
tuple r ∈ R is affected by the update in the i-th iteration of the loop, i.e., r ∈ R
is replaced by some tuple r′. Of course, it may happen that this result tuple
r′ itself is affected by the update in the j-th iteration of the loop with j > i.
For this proof, it is convenient to think of the tuples r ∈ R as equipped with
an additional attribute id , which serves as a unique identifier of the tuples and
which is never altered by any update. Hence, by identifying every tuple r ∈ R
with its unique id , we may distinguish between a tuple id(r) and its value r.
In particular, the updates only change the values of the tuples in R, while R
contains always the same set of tuples.

Now let T = {t1, . . . , tn} denote the tuples in Q, s.t. the loop processes the
tuples in Q in this (arbitrarily chosen) order. For every i ∈ {1, . . . , n}, let Qi

and Vi be defined as Qi = {t1, . . . , ti} and Vi =
⋃

t∈Qi
U [t]. Clearly, it suffices to

prove the following claim in order to prove the theorem:

Claim A. For every i ∈ {1, . . . , n}, the update defined by the loop

for ($t in Qi){update R set Ā = U [$t].Ā′ from U [$t] where R.Ā = U [$t].Ā};
has the same effect on the database as the update

update R set Ā = Vi.Ā
′ from Vi where R.Ā = Vi.Ā;

We proceed by induction on i with i ∈ {1, . . . , n}:
“i = 1” In this case, we have Q1 = {t1}. Thus, the above for-loop is iterated
exactly once and the corresponding update of R is defined by U [t1]. On the other
hand, we have V1 = U [t1]. Hence, the update defined by V1 is precisely the same
as the update in the (single iteration of) the loop.

“(i−1)→ i” By definition, Qi = Qi−1∪{ti} and Vi = Vi−1∪U [ti]. We first show
that the tuples of R affected by the first i iterations of the above loop coincide
with tuples of R affected by the unnested update defined by Vi. In the second
step, we will then show that the affected tuples of R are mapped to the same
value by the loop-updates and by the unnested update.

Let r ∈ R with identifier id . We observe the following equivalences: r is
affected by an update in the first i iterations of the loop ⇔ there exists a j ≤ i
and a tuple u ∈ U [tj ], s.t. r.Ā = u.Ā holds⇔ r is affected by the update defined
by Vi =

⋃
t∈Qi

U [t].
As for the value of the tuple r ∈ R with identifier id after the i iterations of

the for-loop respectively after the update defined by Vi, we distinguish 3 cases:

Case 1. Suppose that r is affected by the first i − 1 iterations of the loop but
the resulting tuple r′ (which still has the same identifier id) is not affected by
the i-th iteration. By the induction hypothesis, the updates carried out by the
first i − 1 loop iterations and the update defined by Vi−1 have the same effect
on r, namely they both modify r to r′. By assumption, this value is unchanged
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in the i-th loop iteration. On the other hand, since Vi−1 ⊆ Vi and, by condition
1 of the theorem, the updated defined by V (and, therefore also by Vi ⊆ V ) is
well-defined. Hence, the update defined by Vi has the same effect on r as Vi−1.

Case 2. Suppose that r is affected by the i-th iteration of the loop for the first
time. The update by the i-th loop iteration is defined by U [ti]. On the other
hand, U [ti] ⊆ Vi and, by condition 1 of the theorem, the updated defined by
V (and, therefore also by Vi ⊆ V ) is well-defined. Hence, both in the loop and
in the unnested update, the tuple r is modified to the value r′ according to the
update defined by U [ti].

Case 3. Suppose that r is affected by the first i−1 iterations of the loop and the
resulting tuple r′ (which still has the same identifier id) is again affected by the
i-th iteration. By the induction hypothesis, the updates carried out by the first
i − 1 loop iterations and the update defined by Vi−1 have the same effect on r.
Let the resulting value in both case be denoted as r′. Since Vi−1 ⊆ Vi and Vi is
well-defined, the update defined by Vi also modifies r to r′. It remains to show
that the i-th iteration of the loop does not alter r′ anymore. Suppose that r′ is
modified to r′′ by the update defined by U [ti]. Clearly, r

′ ∈ πĀ′(V ). Moreover,
(r′, r′′) ∈ U [ti] ⊆ V and, therefore, (r′, r′′) ∈ ρĀ←Ā′ (πĀ′(V )) �� πĀ,Ā′(V ).
Hence, r′ = r′′ by condition 3 of the theorem. �
If we want to apply the unnesting according to Theorem 1 to updates inside
nested loops, we have to start from the innermost loop. Suppose that the nested
loop looks as follows:

for ($t1 in Q1) {
for ($t2 in Q2) {
. . .
for ($tn in Qn) {update R

set Ā = U [$t1, . . . , $tn].Ā
′

from U [$t1, . . . , $tn]
where R.Ā = U [$t1, . . . , $tn].Ā}. . . }};

In this case, U [$t1, . . . , $tn] plays the role of U [$t] in Theorem 1 and the con-
ditions of Theorem 1 have to be fulfilled for all possible instantiations of the
parameters $t1, . . . , $tn−1 over the corresponding domains.

The following example illustrates the problems which could arise if no idem-
potence condition were required:

Example 4. Consider the program

for ($t in Q){update R set A = U [$t].A′ from U [$t] where R.A = U [$t].A};
such that R, Q, and U [$t] are relations with sch(R) = {A}, sch(Q) = {B1, B2},
and sch(U [$t]) = {A,A′}. Suppose that the update relation U [$t], which is
parameterized by the tuple $t, is defined as follows:

U [$t](A,A′) :- A = $t.B1, A
′ = $t.B2.

In other words, we consider a loop which is controlled by the tuples of Q, s.t.
each tuple t ∈ Q defines an update on R, namely if t.B1 coincides with some
entry (A) ∈ R, then (A) is replaced by t.B2.
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Table 1. Non-idempotence of updates

R.A1 Q.B1 Q.B2 Q′.B1 Q′.B2

1 1 2 1 2
2 2 3 2 2

First, suppose that the relations R and Q are given in Table 1. In this case,
the result of the update loop depends on the order in which the elements of Q
are processed: if the tuple (1, 2) ∈ Q is chosen first, then both tuples in R are
updated to (3) (the first tuple of R is processed by each iteration: 1 is replaced
with 2 and then further replaced with 3 at the second iteration). On the other
hand, if the tuple (2, 3) ∈ Q is processed first by the loop, then R is updated to
{(2), (3)} by the entire loop.

Clearly, a loop whose result depends on the order in which the tuples of Q are
selected is usually not desired. In this case, condition 2 of Theorem 1 is violated
and, hence, the rewriting of Fig. 1 is not allowed. Indeed, condition 2 requires
that the relation (ρB1←B2(πB2(Q)) ��B1=B2 Q) consist of tuples with two equal
columns, which is not the case.

Now suppose that we use the relation Q′ instead of Q. Then the condition 2
of Theorem 1 is satisfied. Indeed, with any order of selecting the tuples of Q′ in
the loop, R gets modified to {(2), (2)}. �

As could be seen in the previous example, the violation of condition 2 of Theo-
rem 1 may indicate an undesired behavior of the loop. However, a non-idempotent
behavior of an update inside a loop is not always undesired. For instance, con-
sider the following variation of the update in Example 3 increasing the salary of
each employee who has been participating in a successfully finished project.

Example 5. Consider the schema of Example 3 extended with the relations
Project and EmployeeProject with sch(EmployeeProject) = {empl id, proj id} and
sch(Project) = {proj id, status}. Suppose that the employee’s compensation grows
depending on the number of successful projects she has been working in. For in-
stance, the following statement can be used to update the Employee table to
reflect such a policy:

Q(Empl id, Proj id):- EmployeeProject(Empl id, Proj id),
Project(Proj id, ’success’)

U(Empl id,Dept id, Base sal, Comp,Empl id,Dept id, Base sal, Comp′)[$t] :-
Empl id = $t.empl id,
Department(Dept id,Bonus),
Comp′ = Comp · (1 +Bonus)
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for ($t in Q){up1; . . . upn};
� for ($t in Q){upj1 ; . . . upjα}; for ($t in Q){upjα+1 ; . . . upjn};
s.t. upi denotes the update of Ri by Ui[$t], i.e., upi is of the form
update Ri set Āi = Ui[$t].Ā

′
i from Ui[$t] where Ri.Āi = Ui[$t].Āi;

Fig. 2. Unnesting update programs

for($t in Q )
update Employee set compensation = U [$t].compensation′ from U [$t]
where U [$t].empl id = Employee.empl id and

U [$t].dept id = Employee.dept id and
U [$t].base salary = Employee.base salary and
U [$t].compensation = Employee.compensation

The update is well-defined but not idempotent: the incremented compensation
depends on the previous compensation. The restriction of Theorem 1 is not
desirable here. �

Different special cases like this leave a space for refining the preconditions for
loop elimination. E.g., the update predicate can be iterated some reasonable
number of times to check if the update becomes deterministic at some point
reachable by the update loop.

4 Loops with More Than One Update

In this section, we consider the case of two (or more updates) inside a loop. If
these updates operate on different relations R1 and R2, then the loop can obvi-
ously be decomposed into two loops with a single update inside. More generally,
we define the following rewrite rule.

Theorem 2. Let Q, R1, . . . , Rn be relations with sch(Q) = {B1, . . . , B�} and
sch(Ri) = Āi = {Ai1, . . . , Aimi} for i ∈ {1, . . . , n}, and let let U1[$t], . . . , Un[$t]
be parameterized relations with sch(Ui[$t]) = {Ai1, . . . , Aimi , A

′
i1, . . . , A

′
imi

} and
sch($t) = sch(Q). Moreover, suppose that, for every $t ∈ Q, the update of Ri

defined by Ui[$t] is well-defined (cf. Definition 1).
The rewrite rule in Fig. 2 is correct (i.e., the two loops resulting from the

rewrite rule application have the same effect on the database as the original
loop), if the following conditions are fulfilled.

1. The set {1, . . . , n} is partitioned into two sets J1 = {j1, . . . , jα} and J2 =
{jα+1, . . . , jn}, s.t. the two sequences of indices (j1, . . . , jα) and (jα+1, . . . , jn)
are arranged in increasing order.

2. {Rs | s ∈ J1} and {Rs | s ∈ J2} are disjoint.
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Proof. Let T = {t1, . . . , tN} denote the tuples in Q, s.t. the loop processes
the tuples in Q in this (arbitrarily chosen) order. For every k ∈ {1, . . . , N}, let
Tk = {t1, . . . , tk}. We claim that, for every k ∈ {1, . . . , N} the following rewriting
is correct:

for ($t in Tk){up1; . . . upn};
� for ($t in Tk){upj1 ; . . . upjα}; for ($t in Tk){upjα+1 ; . . . upjn};

The correctness of this decomposition of the loop into two loops can be proved
by an easy induction argument which uses the facts that the relations U1, . . . , Un

are never modified inside these loops and the updates in the two resulting loops
operate on different relations Rs with s ∈ J1 and Rs′ with s′ ∈ J2. Hence, there
is no interdependence between the updates in the two resulting loops. �

From now on, we may concentrate on the case that all updates in a loop operate
on the same relation R. Below we define a rewrite rule for contracting two
updates of the same relation R to a single update. By repeating this rewrite
step, any number of updates of the same relation R can be rewritten to a single
update of R.

Theorem 3. Let R, U1, and U2 be relations with sch(R) = {A1, . . . , Am} and
sch(Ui) = {A1, . . . , Am, A′

1, . . . , A
′
m} for i ∈ {1, 2} and suppose that the update

defined by each Ui is well-defined. Moreover, let U ′
i be defined as follows:

U ′
i(X1, . . . , Xm, X ′

1, . . . , X
′
m) :- Ui(X1, . . . , Xm, X ′

1, . . . , X
′
m).

U ′
i(X1, . . . , Xm, X1, . . . , Xm) :- R(X1, . . . , Xm),

not Ui(X1, . . . , Xm, , . . . , ).

U ′
i(X1, . . . , Xm, X1, . . . , Xm) :- U1( , . . . , , X1, . . . , Xm),

not U1(X1, . . . , Xm, , . . . , ).

U ′
i(X1, . . . , Xm, X1, . . . , Xm) :- U2( , . . . , , X1, . . . , Xm),

not U2(X1, . . . , Xm, , . . . , ).

Finally, we define V with sch(V ) = {A1, . . . , Am, A′
1, . . . , A

′
m} as follows:

V (X1, . . . , Xm, X ′
1, . . . , X

′
m) :- U ′

1(X1, . . . , Xm, Y1, . . . , Ym),
U ′
2(Y1, . . . , Ym, X ′

1, . . . , X
′
m).

Then the rewrite rule in Fig. 3 is correct, i.e., the update of R defined by V is
also well-defined and has the same effect on the database as the two successive
updates of R by U1 and U2.

Remark 3. Note that there are two possibilities why the update of a relationR de-
fined by some relation U leaves a value combination (a1, . . . , am) of the attributes
(A1, . . . , Am) unchanged: either U does not contain a row, s.t. the firstm columns
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{update R set Ā = U1.Ā
′ from U1 where R.Ā = U1.Ā;

update R set Ā = U2.Ā
′ from U2 where R.Ā = U2.Ā}

� update R set Ā = V.Ā′ from V where R.Ā = V.Ā;
s.t. V is defined as in Theorem 3.

Fig. 3. Contracting two updates

coincide with (a1, . . . , am); or U contains the row (a1, . . . , am, a1, . . . , am). In-
tuitively, the latter case makes the identity mapping for the tuple (a1, . . . , am)
in R explicit. The intuition of each relation U ′

i in the above theorem is that it
defines exactly the same update of R as Ui. The only difference between U ′

i and
Ui is that U

′
i makes all possible identity mappings explicit.

Proof. Let r be an arbitrary tuple in r and suppose that r is modified to r′ by
the update defined by U1 (of course, r′ = r if r is not affected by this update).
Moreover, let r′ be further modified to r′′ by the update defined by U2. Then
either r ∈ πĀ(U1) or (r, r′) ∈ U1. In either case, (r, r′) ∈ U ′

1. Likewise, we may
conclude that (r′, r′′) ∈ U ′

2 holds. Hence, also (r, r′′) ∈ U ′
1 �� U ′

2 = V holds. Note
that the value of r′ is uniquely determined by r. This is due to the definition of
U ′
1 and to the fact that U1 is well-defined. Likewise, the value of r′′ is uniquely

determined by r′. Hence, the update defined by V is well-defined. Moreover, it
indeed modifies r to r′′. �

In total, we define the following algorithm for unnesting updates in for-loops:

1. In case of nested for-loops, start with the innermost loop.
2. If a loop contains several updates affecting more than one relation, then

replace the for-loop by several successive for-loops each updating a single
relation (by iteratively applying the rule of Fig. 2).

3. If a loop contains several updates which all affect the same relation, then
replace this sequence of updates by a single update (by iteratively applying
the rule of Fig. 3).

4. Replace a loop with a single update by an update without loop (by applying
the rule of Fig. 1).

From a program optimization point of view, also partial unnesting via our tech-
niques may lead to much more efficient queries – even if complete unnesting is not
always possible (due to the conditions which are required for our transformation
rules to be correct).

5 Conclusion

We have considered the problem of unnesting relational updates with cursors
and replacing them with simpler, purely relational update expressions. The full
set of our rewrite rules can handle loops with one or multiple update statements.
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Unnesting and loop elimination can drastically simplify the database program,
making it truly declarative and thus more readable and accessible for optimiza-
tion through appropriate components of the database engine.

Our technique crucially relies on the idempotence of the update operation.
Reasonable in most cases, in some situations this requirement can be too restric-
tive, as discussed in Section 3 (see Example 5). More fine-grained optimization
techniques of update loops, relaxing the idempotence requirement where ap-
propriate, as well as more elaborate techniques of splitting loops with multiple
updates are left for future work.
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Abstract. Append/Log-based Storage and Multi-Version Database Management
Systems (MV-DBMS) are gaining significant importance on new storage hard-
ware technologies such as Flash and Non-Volatile Memories. Any modification
of a data item in a MV-DBMS results in the creation of a new version. Traditional
implementations, physically stamp old versions as invalidated, causing in-place
updates resulting in random writes and ultimately in mixed loads, all of which
are suboptimal for new storage technologies. Log-/Append-based Storage Man-
agers (LbSM) insert new or modified data at the logical end of log-organised
storage, converting in-place updates into small sequential appends. We claim that
the combination of multi-versioning and append storage effectively addresses the
characteristics of modern storage technologies.

We explore to what extent multi-versioning approaches such as Snapshot Iso-
lation (SI) can benefit from Append-Based storage, and how a Flash-optimised
approach called SIAS (Snapshot Isolation Append Storage) can improve perfor-
mance. While traditional LbSM use coarse-grain page append granularity, SIAS
performs appends in tuple-version granularity and manages versions as simply
linked lists, thus avoiding in-place invalidations.

Our experimental results instrumenting a SSD with TPC-C generated OLTP
load patterns show that: a) traditional LbSM approaches are up to 73% faster
than their in-place update counterparts; b) SIAS tuple-version granularity append
is up to 2.99x faster (IOPS and runtime) than in-place update storage managers;
c) SIAS reduces the write overhead up to 52 times; d) in SIAS using exclusive
append regions per relation is up to 5% faster than using one append region for
all relations; e) SIAS I/O performance scales with growing parallelism, whereas
traditional approaches reach early saturation.

1 Introduction

Multi-Version Database Management Systems (MV-DBMS) and Log/Append-based
Storage Managers (LbSM) are gaining significant importance on new storage hardware
technologies such as Flash and Non-Volatile Memories. Compared to traditional storage
such as HDD or main memory new storage technologies have fundamentally different
characteristics. I/O patterns have major influence on their performance and endurance:
especially overwrites and (small) random writes are significantly more expensive than
a sequential write.

MV-DBMS create new versions of data items once they are modified. Treating old
and new versions differently provides a mechanism to leverage some of the properties of

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 62–76, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Version handling

new storage, such as fast reads and low latency. However, HDD (read) optimised imple-
mentations such as Snapshot Isolation (SI) invalidate old versions physically in-place
as successor versions are created, resulting in random writes and mixed load which is
suboptimal for new storage technologies. Additionally they do not leverage read/write
asymmetry. Log/Append-based storage managers (LbSM) organise the storage as a cir-
cular log. They physically append modified/new data at the end (the logical head) of the
log, which eliminates in-place updates and random writes. LbSM maintain a mapping
of appended blocks and pages, they do not address issues related to version organisation
such as additional write overhead introduced by the in-place invalidation.

We claim that the combination of a MV-DBMS using LbSM effectively addresses the
characteristics of modern storage technologies. We further state that the most promis-
ing approach for append storage needs to be implemented within the architecture and
algorithms of modern MV-DBMS. The following example offers a detailed descrip-
tion. Fig. 1 shows the invalidation process of different MV-DBMS (SI, SIAS), coupled
to different types of storage managers (’in-place update’ as original SI, page granularity
LbMS, tuple granularity LbSM): three Transactions (T 1, T 2, T 3) update data item X
in serial order resulting in a relation that contains three different tuple versions of data
item X . T 1 creates the initial version X0 of X . T 2 issues the first update. In original
SI, X0 is invalidated in-place by setting its invalidation timestamp, subsequently X1 is
created. The update issued by T 3 proceeds analogously and X1 is invalidated in-place
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while X2 is created as a new tuple version. Original SI, coupled to in-place update stor-
age manager, writes X0 and X1 to the same location (random write) after the updates
T 1 and T 2 (the initial page based on the free space). Original SI, coupled to a page
append LbSM, will write X0 and X1 to pages with a higher page number (small se-
quential append). The payload of the write (updated versions/total versions per page)
may be very low, yielding ’sparse’ writes. Under SIAS X0, X1 and X3 will be buffered,
placed on the same page and appended altogether.

The contributions of this paper are as follows. We explore the performance impli-
cations of an approach combining LbSM and MV-DBMS optimised for Flash storage
called SIAS (Snapshot Isolation Append Storage).

It organises versions in MV-DBMS as a simple backwards-linked list and assigns
all versions of a data item a virtual ID. SIAS involves adapted algorithmic version
invalidation handling and visibility rules. Furthermore, it is natively coupled to a LbSM
and uses tuple granularity for logical append I/Os.

The experimental results under a TPC-C aligned OLTP load show that: a) ’page
append LbSM’ is up to 73% faster than traditional the ’in-place update’ approach; b)
using SIAS version-wise append we observe up to 2.99 times improvement in both
IOPS and runtime; c) SIAS reduces the write overhead up to 52x; d) page-append LbSM
yields equal write amount as the ’in-place update’ approach; e) space reclamation due
to deleted/invisible tuples is not suitable for append LbSMs in general and slows them
down by approx. 40%; f) in SIAS using one local append region per relation is up to
5% faster than one global append region; g) using page remapping append with one
global region is approx. 4.5% faster than using a local region; h) all append storage I/O
performance scales with growing parallelism where in-place update approaches reach
early saturation.

The paper is organised as follows: Section 2 provides a brief overview on related
algorithmic approaches and systems; a general introduction of the used algorithms (SI
and SIAS) is provided in Section 4; the main characteristics of Flash storage are sum-
marised in Section 3. Section 2 describes combinations of in-place and append storage
managers. Our experimental setup and framework are described in Section 6. The ex-
perimental results are discussed in Section 7.

2 Related Work

Snapshot Isolation (SI) is introduced and discussed in [2]. Specifics of a concrete SI
implementation (PostgreSQL) are described in detail in [24,20]. As reported in [2] SI
fails to enforce serializability. Recently a serializable version of SI was proposed [5]
that is based on read/write dependency testing in serialization graphs. Serializable SI
assumes that the storage provides enough random read throughput needed to determine
the visible version of a tuple valid for a timestamp, making it ideal for Flash storage.
[19] represents an alternative proposal for SI serializability. In addition serializable SI
has been implemented in the new (but still unstable) version of PostgreSQL and will
appear as a standard feature in the upcoming release.

SI [2] assumes a logical version organisation as a double-linked list and a two place
invalidation, while making no assumption about the physical organisation. An
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improvement of SI called SI-CV, co-locating versions per transactions on pages has
been proposed in [10].

Alternative approaches have been proposed in [7] and explored in [17,4] in com-
bination with MVCC algorithms and special locking approaches. [17,4,7,11] explore
a log/append-based storage manager. A performance comparison between different
MVCC algorithms is presented in [6]. [15] offers insights to the implementation details
of SI in Oracle and PostgreSQL. An alternative approach utilising transaction-based
tuple collocation has been proposed in [10].

Similar chronological-chain version organisation has been proposed in the context
of update intensive analytics [14]. In such systems data-item versions are never deleted,
instead they are propagated to other levels of the memory hierarchy such as hard disks
or Flash SSDs and archived. Any logical modification operation is physically realised
as an append. SIAS on the other hand provides mechanisms to couple version visibil-
ity to (logical and physical) space management. Another difference is that SIAS uses
transactional time (all timestamps are based on a transactional counter) as opposed to
timestamps that correlate to logical time (dimension). Stonebraker et al. realised the
concept of TimeTravel in PostgreSQL [22].

Multi-Version Database Systems. While Time-travel and MVCC approaches have
been around for three decades, MV-DBMS approaches are nowadays applied in in-
memory computing systems such as Hyper [13] or HYRISE [12] to handle mixed
OLAP, OLTP loads, to handle database replication (Postgre-R) etc.

MV-DBMS are a good match for enterprise loads [14]. As discussed in [14], these
are read-mostly; the percentage of writes is as low as approx. 17% (OLTP) and approx.
7% (OLAP) [14]. Since reads are never blocked under MVCC, in such settings there
are clear performance benefits for the read-mostly enterprise workloads.

Multi-version approaches are widely spread in commercial and open source systems.
Some MV-DBMS systems are: Berkeley DB (Oracle), IBM DB2, Ingres, Microsoft
SQL Server 2005, Oracle, PostgreSQL, MySQL/InnoDB. And in addition in-memory
systems such as Hyper [13], Hyder [3] etc.

Multi-Version approaches and MV-DBMS leverage the properties of new hardware.
In this paper we investigate how these can be utilised to leverage I/O asymmetry of
new storage technologies. Multi-version approaches can be used to leverage hardware
characteristics of modern CPUs in transparently creating snapshots of in-memory pages
[13] or to control data placement and caching in memory hierarchies.

Append Storage Management. LbSMs follow the principle of appending new data at
the end of log structured storage. MV-DBMS alleviate appending of new data in princi-
ple, yet traditional approaches write data to arbitrary positions, updating data in-place or
allocating new blocks. Such traditional approaches, implemented in current databases,
address special properties of HDDs – especially their high sequential throughput and
high latency access time on any type of I/O. They maintain clustering by performing
in-place updates to optimise for read accesses, reducing the latency introduced by the
properties of HDDs (rotational delay, positioning time). Thus implementations like SI
in PostgreSQL rely on the in-place invalidation of old tuple versions. New storage tech-
nologies introduce fundamentally different properties (Section 3) and require optimised
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access methods. Especially low latency access time and fast random reads are not ad-
dressed yet and have to be leveraged.

LbSMs address the high throughput of large sequential writes on HDDs but destroy
clustering, since new and updated data is not clustered with existing data yielding the
same clustering attributes. Approaches using delta stores still require relatively expen-
sive merge operations and generate overhead on read accesses [16].

The applicability of LbSMs for novel asymmetric storage has been partially ad-
dressed in [21,3] using page-granularity, whereas SIAS employs tuple-granularity (tu-
ple append LbSM) much like the approach proposed in [4], which however invalidates
tuples in-place. Given a page-append LbSM the invalidated page is remapped and per-
sisted at the head of the log, hence no write-overhead reduction. In tuple-granularity,
multiple new tuple-versions can be packed on a new page and written together.

3 Flash Memories

Enterprise Flash SSDs independent of their hardware interfaces (SATA, PCIe), exhibit
significantly better performance and very different characteristics than traditional hard
disks. Since most DBMS were build to compensate for the properties of HDDs, they
tread SSDs as HDD replacement, which yields suboptimal performance. The most im-
portant characteristics of Flash are:

(i) Asymmetric read/write performance – reads are up to an order of magnitude faster
than writes as a result of the physical NAND properties and their internal organisation.
NAND memories introduce erase as an additional third operation together with read
and write. Before performing a write, the whole block containing the page to be written
must be erased. Writes should be evenly spread across the whole volume to avoid dam-
age due to wear and increase endurance - wear-levelling. Hence no write in-place as on
HDDs, instead copy-and-write. (ii) High random read performance (IOPS) – random
reads for small block sites are up to hundred times faster than on an HDD. (iii) Low
random write performance (IOPS) – small random writes are five to ten times slower
than reads. Random writes depend one the fill-degree of device and incur a long term
performance degradation due to Flash-internal fragmentation effects. (iv) Good sequen-
tial read/write transfer. Sequential operations are asymmetric, due to techniques as read
ahead and write back caching the asymmetry is below 25%. (v) Suboptimal mixed load
performance – Flash SSDs can handle pure loads (read or write) very well despite of
the degree of randomness (random writes excluded). (vi) Parallelism – Compared to
the typical hard drive and due to their multi-chip internal organisation Flash can handle
much higher levels of I/O parallelism, [8],[1].

4 Algorithmic Description

In the following section we give a brief introduction to the SI algorithm as originally
proposed in [2]. We then illustrate SI by using the implementation in PostgreSQL and
point out differences and optimisations. Finally we present the SIAS algorithm.
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4.1 Snapshot Isolation Introduction

SI is a timestamp based MVCC mechanism which assigns each running transaction ex-
actly one timestamp and each data item two. The transaction’s timestamp corresponds
to the start of the transaction and the data item’s timestamps correspond to the creation,
respectively the invalidation of that item. An invalidation is issued on an update/dele-
tion of an item. Each running transaction executes against its own version/snapshot of
the committed state of the database. Isolated from effects of other concurrently run-
ning transactions, a transaction is allowed to read an older committed version of a
data item instead of reading a newer, uncommitted version of the same item or be-
ing blocked/aborted. A snapshot describes the visible range of items the transaction is
able to ”see” (facilitated by the timestamps). On an access to an item the transaction’s
timestamp is compared to the ones on the item. Items with a higher creation timestamp
(inserted after the start of the transaction) are invisible and such with a lower (or equal)
timestamp are visible to the transaction as long as they are committed and were not in-
serted concurrently. Reads are therefore never blocked by writes and changes made by a
transaction are executed on its own snapshot which becomes visible to follow up trans-
actions after its successful commit. Whether or not a commit is successful is determined
at commit time by the transaction manager, which performs a write set comparison of
the involved concurrent transactions. Overlapping write sets between concurrent trans-
actions are not allowed and lead to the abort of at least one transaction since it is not
allowed to have more than one update to an item. Two equivalent rules guarantee this
behaviour: ”first-committer-wins” [2] and ”first-updater-wins” [2],[20]. The former cor-
responds to a deferred check at commit time, while the latter is enforced by immediate
checks e.g. exclusive locks.

4.2 SIAS - Algorithm

Fig. 1 shows how different versions are handled under different approaches. SIAS [18]
introduces a new addressing mechanism: (multiple) tuple versions are addressed as a
chain by means of a virtual tuple ID (V ID) that identifies the chain (as one logical
item; all tuple versions in the chain share the same VID).

When a tuple-version is read the entry point is fetched first and the visibility can be
determined for each VID. If the entry points timestamp is too high or equals a con-
current transaction, the predecessor version is fetched. Visibility information is coded
within the algorithmic chain traversal access methods. Each version n(n = 0) of a tu-
ple is linked to its predecessor n − 1. The first version (n = 0) points to itself or uses
a NULL pointer. The V ID identifies a chain; each member-tuple receives a unique
tuple-ID (TID) as well as a version count that indicates its position within the chain.
The newest member has the highest chain count and becomes the entry point. To speed
up VID lookups an in-memory data structure, recording of all entry points is created
(Sect. 4.3). The tuple structure used by SIAS is shown in Table 1 and illustrated in
the following example. Assume two data items X and Y forming two chains; X was
updated once and Y twice. The entry points are versions X1 and Y2 (marked bold in
Table 1). Each version maintains a pointer to its predecessor forming a physical chain.
The visibility is determined by a chain traversal, starting at the entry point applying
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Table 1. SIAS - On-Tuple Information

Tuple Creation Predecessor Predecessor VID Version
Xmin Pointer Xmin (Xpred) Count

X0 15 X0 null 0x0 0
X1 38 X0 15 0x0 1
Y0 50 Y0 null 0x23 0
Y1 83 Y0 50 0x23 1
Y2 110 Y1 83 0x23 2

the SIAS algorithm rules – instead of reading an invalidation timestamp the creation
timestamps of two subsequent versions are compared (xmin, xmin pred).

SIAS verifies visibility of tuple versions based on the entry point, while SI inspects
each tuple version individually. The number of chains equals the number of entry points
(items) while the amount of tuple versions in the database can be much higher. SIAS
entry-points represent a subset of all tuple-versions and at most one tuple-version per
chain is visible to each transaction. The visibility control can discard a whole (sub-)
chain of tuple-versions, depending on the value of the creation timestamp, thus saving
I/O. Hence on average, SIAS has to read less tuple-versions to determine visibility, but
may perform more read I/Os to fetch the appropriate version. The most recent version
may not be the one visible for an older (longer running) transaction.

4.3 SIAS - Data Structures

SIAS introduces two data structures to organise the entry point information:
(i) dstructI: mapping of the VID to the chain member count.
(ii) dstructII: mapping of the VID to (the location of) the entry point (TID).
dstructI accelerates verification of the following condition: is the tuple-version un-

der inspection an entry-point or has the entry-point been changed by another committed
transaction. This information can also be obtained by comparing the tuple ID (TID) of
the read tuple version and the TID within dstructII , thus making dstructI optional.

dstructII is used to access the current entry-point.
The chaining mechanism based on VIDs has the following implications: (a) The

chain length depends on whether old and invisible versions are retained/archived and
on the update frequency and duration of transactions. The chain length is therefore
defined by the total amount of updates on the respective tuple. (b) The amount of extra
reads due to chain traversal depends on (c) The amount of visible versions.

5 Append Storage

In the following we briefly introduce our approaches to append storage in MV-DBMS.
We classify the approaches in page-wise and tuple-wise LbSMs, further categorize them
according to Figure 2 and explain them in more detail in the following sections.
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5.1 Page-Append

The page-append LbSM describes append storage outside the database, without knowl-
edge of the inertia of transmitted pages, implementing a ’holistic’ page remapping
paradigm. We utilise a default out of the box PostgreSQL running under a SI MVCC
mechanism (Sect. 6), enhanced by LbSMs in the following variants:

SI-PG (SI – Page Global) denotes the traditional approach where pages are written
to one single append region on the storage device; hence a global append region. It
performs a remapping of page- and block addresses. We simulate variants with (SI-PG-
V) and without a garbage collection mechanism (SI-PG-NV); we refer to SI-PG when
describing both variants.

SI-PL (SI – Page Local) extends the SI-PG approach with multiple append regions.
SI-PL receives more information about the content of the transmitted pages. SI-PL par-
titions the global append storage into multiple local append regions, dedicating each
region to a single relation of the database. We simulate variants with (SI-PL-V) and
without a garbage collection mechanism (SI-PL-NV); we refer to SI-PL when describ-
ing both variants.

PostgreSQL uses a space reclamation process called vacuum to garbage collect in-
visible versions (Sect. 5.4). SI-PG and SI-PL do not require changes to the MV-DBMS.
They rather maintain a mapping of pages, performing block-address translation to gen-
erate flash-aware patterns. Both can be implemented as a layer between the device and
the MV-DBMS. Although this already delivers some benefits for new storage media
such as flash, our evaluation shows that those can be optimised by inherently integrat-
ing the storage manager into the MV-DBMS.
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5.2 SIAS - Tuple Append LbSM

We developed SIAS (Snapshot Isolation Append Storage) which algorithmically changes
SI and improves on it by enabling tuple based appends without the need for in-place in-
validation of old tuple versions. SIAS appends tuples to a page until it is filled and
subsequently appends it to the head of the corresponding append log.
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SIAS-L uses multiple append regions, where each region is dedicated to exactly one
relation of the database. All pages in a local append region belong to the same relation
and all tuples within a page belong to the same relation. Tuples are appended to a page
of their relation, which is subsequently appended to the relation’s local append region,
after the page is filled completely or has reached a certain threshold.

SIAS-G uses one append region for all pages. Tuples within a single page belong to
the same relation. Tuples get appended to a single page (analogously to SIAS-L) which
is then appended to a global append region. The global append region maintains pages
of all the relations of the MV-DBMS.

According to the SIAS concept we compare two variants of SIAS-L and SIAS-G,
an optimistic approach which assumes that SIAS data structures are cached (SIAS-LO
and SIAS-GO) and a pessimistic approach which fetches the data structures separately
(SIAS-LP and SIAS-GP), thus resulting in four variants of SIAS. Since the test results
of all SIAS variants showed the same performance independent of the garbage collec-
tion process, we omit the detailed report of these additional results in this paper and
refer to SIAS-L and SIAS-G subsuming all four approaches.

5.3 In-Place - No Append

For the in-place approach we use the original Snapshot Isolation in two configurations:
SI-NV (SI No Vacuum) – deactivated garbage collection in PostgreSQL (vacuum),
SI-V (SI with Vacuum) – activated garbage collection (vacuum) in PostgreSQL.

5.4 Space Reclamation

In LbSMs written data is immutable, whereas in a MV-DBMS invalidated versions
of tuples become invisible and occupy space which can be freed. The page-append
LbSM has no knowledge about invalidated versions and therefore has to rely on meth-
ods within the MV-DBMS for space reclamation (e.g. vacuum in PostgreSQL).

Physical blocks get invalidated because the logical pages were remapped to another
position and have to be physically deleted on the Flash device. The moment of execution
is implementation dependent. On Flash an erase can only be performed in granularities
of an erase unit - usually much larger than a page. Issuing an overwrite of a block
(instead of deleting it) results in a remapping within the Flash device and therefore
to unpredictable performance analogously to an in-place update (black box). Physical
deletes should therefore only be issued in erase unit granularity (using trim). Pages
which are still valid and reside within the unit which is about to be erased have to be
re-mapped/re-inserted (append).

The tuple-append LbSM in SIAS is able to garbage collect single versions of a tuple.
A page may contain still valid tuples which are simply re-inserted into the append log.
Since each page is appended as soon as it is filled, the pages stay compact.

6 Evaluation

Our evaluation of the different LbSM alternatives (Sect. 2) is based upon a trace driven
simulation, which we describe in the following paragraphs. We opted for simulation
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for two reasons: (a) to focus on the main characteristics of the multi versioning algo-
rithms (i.e. exclude influences of the transaction-, storage- and buffer-manager as well
as PostgreSQL’s specific overhead); and (b) to compare a number of LbSM and SIAS
alternatives. The simulator was validated against the PostgreSQL implementation of
our baseline SIAS algorithm (see validation in this section). The simulation workload
is created by an open source TPC-C implementation [23]. The simulation (Fig. 3(b))
comprises the following steps: (i) Recording of the raw-trace; (ii-a) Simulation of SIAS
and SI resulting in I/O traces; (ii-b) remapping of the traces, creating SI-PL and SI-PG
traces; (iii) I/O trace execution on a physical SSD (Intel X25-E SLC) using FIO; and
(iv) validation using our SIAS prototype in PostgreSQL, which was installed on the
same hardware. We describe all those steps in detail in the following paragraphs.

Instrumentation. A default, out of the box PostgreSQL (9.1.4.) was used to record
the trace. It was instrumented utilising TPC-C (DBT2 v0.41)[23] with the PostgreSQL
default page size of 8KB. All appends were conducted using this granularity. The used
Fedora Linux (kernel 2.6.41) included the systemtap extension (translator 1.6; driver
0.152).

Raw Trace. The raw trace (Fig. 3(b)) contains: (i) tuples and the operations executed
on them; (ii) the visibility decision for each tuple; (iii) the mapping of tuples to pages.
We record each operation on a tuple and trace the visibility decision for that tuple.
By setting probing points accordingly within the transaction- and buffer-manager, we
eliminate their influence and are able to simulate the raw I/O of heap-data (non-index
data) tuples. The resulting raw-trace is fed to the simulator.

(a) Blocktrace on SSD: SI-V vs. SIAS-LO (b) Simulation Process

Fig. 3. Blocktraces and Simulation Process

Simulator. SI and SIAS are simulated based on the raw trace including visibility checks
and the resulting storage accesses. During the simulation the DB state is re-created
according to the respective approach (Fig. 2). Hence the simulated databases always
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contain exactly the same tuples as the original DB. The only difference is the permuta-
tion of the tuples’ location; tuples reside on different pages within the simulated DB.

SIAS creates a new tuple mapping: when a tuple is inserted into the original DB (raw
trace), the tuple is inserted in its initial version, augmented by the SIAS attributes. The
baseline SIAS algorithm (SIAS-L) algorithmically generates a local append, yielding
one append region per relation. In order to simulate SIAS-G, an additional mapping is
performed, analogous to the page-append LbSM.

As a result of the simulation process block-level traces are generated. These reflect
the I/O access pattern that a DMBS would execute against the storage. Subsequently the
block-level traces are executed on an a real SSD using FIO, which allows us to precisely
investigate the influence of I/O parallelism and raw access.

FIO Trace. The FIO I/O benchmark guarantees controlled trace execution, repeatable
results, configurable I/O parallelism and reliable metrics. FIO was configured using the
libaio library accessing an Intel X25-E SSD via direct I/O as a raw device. The raw
device had no filesystem layer in between. We consider the SSD as a black box, which
means that no tuning for device-specific properties was applied. To avoid SSD state
dependencies we executed a series of 8KB random writes after each single run.

Validation. We implemented the SIAS prototype in PostgreSQL. This prototype was
validated under a TPC-C workload. The write patterns generated by our simulation and
the PostgreSQL SIAS prototype are the same (see Fig. 3(a)). In terms of I/O parallelism
both (PostgreSQL prototype and simulation) achieve: (i) compareable performance; (ii)
similar write patterns; and (iii) the same net/gross write overhead reduction.

Load Characterisation. We used the DBT2 benchmark v0.41 [9] which is an open
source TPC-C [23] implementation. DBT2 was configured for two traces. Both traces
used 10 clients per warehouse and a total of 200 warehouses. Trace I with a runtime of
60 minutes and Trace II with a runtime of 90 minutes. Based on these two traces we
also investigate the impact on space management, chain length etc.

7 Results

I/O Performance and Parallelism. We measured the performance of the algorithms
discussed in Section 2 and shown in Fig. 2. We configured FIO with different queue
depths (QD) ranging from 1 (no parallelism) to 32 (the maximum queue depth of our
Intel X25-E SSD). I/O performance: In general, SI-V and SI-NV (SI with and without
Vacuum/garbage collection) show the lowest performance for Trace I and Trace II: the
read IOPS of SI-V are the lowest as depicted in Fig. 4a, 4b, 4c and 4d, therefore the
runtime of SI-V and SI-NV is significantly higher (Fig. 4e and 4f). Figure 4a and 4c
both illustrate the same trace. Figure 4a illustrates the differences between SIAS and
SI-P in both global and local implementation variants. Figure 4c additionally displays
the general in-place update approach of SI. Furthermore, the I/O performance (seeks,
throughput, access distribution) over time for 32 QD is depicted in Fig. 6; SI-V needs
more than twice the time of SIAS-L variants. The runtime of the page-append LbSM
variants is 2.1x the runtime of SIAS for Trace I (Fig. 4d) and Trace II (Fig. 4e, 4f).
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Fig. 4. I/O Parallelism: Read IOPS vs. Queue Depth for Trace I (a, c, d, e) and Trace II (b, f)

Without parallelism: (i) the SIAS I/O rate is 34% higher than SI-V and 23% higher than
SI-NV; (ii) SI-NV is approx. 8% faster than SI-V.

I/O parallelism: Fig. 4 shows that SI-V and SI-NV improved up to a QD of two (2
parallel I/O requests), stagnated at four and reached saturation at a QD of eight; hence
no leverage of parallelism. The page-append LbSM variants SI-PG and SI-PL are up to
73% faster than the in-place update SI variants SI-V and SI-NV (QD of 32). Without
parallelism SI-PL is 13% faster than SI if garbage collection (Vacuum) is activated
(up to 25% higher read IOPS than SI-V if vacuum is deactivated). SI-PL is marginally
slower than SI-PG (Fig. 4c and 4d). Since SI-PL has to write at multiple locations, more
seeks (random writes) are required than in SI-PG, as illustrated in Fig. 5 (Seek Count)
– the append-log region for reads/writes of each relation is visible as a straight line.

With increasing parallelism approaches using one append region per relation have
the advantage over single region approaches.

Garbage Collection (Vacuum): all variants with enabled vacuum are significantly
slower than their counterparts. This trend is intensified by a higher degree of paral-
lelism. In Fig. 4a and 4b we observe that vacuum creates significant overhead when
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using the page-append LbSM. Starting with a queue depth of four, page-append LbSM
variants loose up to 35% IOPS when using vacuum (Fig. 4a and 4b). SI-PG-NV and SI-
PL-NV scale up to the maximum queue depth experiencing a slight stagnation at queue
depths larger than four (Fig. 4a and 4b). SI-PG-V and SI-PL-V benefit from higher
queue depths but not as much as the variants with deactivated vacuum. Garbage col-
lection mechanisms are therefore not beneficial for page-append LbSMs. SIAS scales
almost linearly with increasing parallelism and benefits from a high queue depth. The
difference between pessimistic and optimistic SIAS is not significant but enhances with
increasing levels of parallelism as depicted overall in Fig. 4. Global and local variants
of SIAS perform equally well at lower levels of parallelism. With increasing parallelism
the local approach is approx. 5% faster than the global approach, hence making opti-
mal use of the Flash device’s parallelism. On Trace I, SIAS (in all variants) is up to
2.99x faster than SI-V, 2.43x faster than SI-PL-V/SI-PG-V and approx. 40% faster than
SI-PG-NV/SI-PL-NV. Since the performance difference between the global and local
implementation of SIAS is marginal and in favour of the local variant, it is not justi-
fied to create and maintain an additional page mapping as it is necessary for the global
variant (SIAS-G). Trace II shows results analogous to Trace I. The I/O rate directly
correlates with the runtime of the traces. The tendencies observed in this section are
confirmed. The in-place approaches SI-V and SI-NV need the most time to complete
the trace as depicted in Fig. 4d and Fig.6. SI-PL-NV and SI-PG-NV show almost iden-
tical runtime behaviour as well as SI-PL-V and SI-PG-V (Fig. 4e). SIAS is in all four
implementations faster than the other approaches (Fig. 4).

Fig. 5. Read Write Blocktrace on Physical Device: SI-PL vs. SI-PG

Read/Write Overhead. Non-Vacuum SI variants (SI-PG-NV, SI-PL-NV and SI-NV)
write 966MB in Trace I and 1396MB in Trace II. SI variants performing Vacuum (SI-
PG-V, SI-PL-V and SI-V) write 1304.6MB in Trace I and 1975.3 in Trace II. A key
feature of SIAS is the significant write reduction of up to 52 times. SIAS writes (in
all variants) 25MB in Trace I and 39.9MB in Trace II. The write overhead is reduced
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to a fragment of the usual amount, which is a direct consequence of the out-of-place
invalidation, logical tuple appends and dense filling of pages. The metadata update to
invalidate a tuple version in SI leads to an update of the page in which this version re-
sides, although the data-load of that version is unchanged. Additionally the new version
has to be stored. SIAS avoids such metadata updates. Pages are packed more dense and
tuple versions of subsequent access are most likely cached.

Fig. 6. Read Write Blocktrace on Physical Device: SI-V vs. SIAS-LO

8 Conclusion

We compared in-place storage management and page-/tuple-based LbSM approaches
in conjunction with multi versioning databases on new storage technologies and elab-
orated the influence of one single or multiple append regions. Our findings show that
while page-append LbSM approaches are better suitable for new storage technologies,
they can be optimised by implementing tuple-based LbSM directly into the MV-DBMS.
We implemented SIAS, a tuple-append LbSM within a MV-DBMS which algorithmi-
cally generates local append behaviour. SIAS leverages the properties of Flash stor-
age, achieves high performance, scales almost linearly with growing parallelism and
exhibits a significant write reduction. Our experimens show that: a) traditional LbSM
approaches are up to 73% faster than their in-place update counterparts; b) SIAS tuple-
version granularity append is up to 2.99x faster (IOPS and runtime) than in-place update
approaches; c) SIAS reduces the write overhead up to 52 times; d) in SIAS using ex-
clusive append regions per relation is up to 5% faster than using one append region for
all relations.

Acknowledgements. This work was supported by the DFG (Deutsche Forschungsge-
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Abstract. Horizontal decomposition is the process of splitting a relation
into sub-relations, called fragments, each containing a subset of the rows
of the original relation. In this paper, we consider horizontal decomposi-
tion in a setting where some of the attributes in the database schema are
interpreted over a specific domain, on which a set of special predicates
and functions is defined.

We study the losslessness of horizontal decomposition, that is, whether
the original relation can be reconstructed from the fragments by union,
in the presence of integrity constraints on the database schema. We intro-
duce the new class of conditional domain constraints (CDCs), restricting
the values the interpreted attributes may take whenever a certain condi-
tion holds on the non-interpreted ones, and investigate lossless horizontal
decomposition under CDCs in isolation, as well as in combination with
functional and unary inclusion dependencies.

1 Introduction

Horizontal decomposition (or fragmentation) is the process of splitting a relation
into sub-relations on the same attributes and of the same arity, called fragments,
each containing a subset of the rows of the original relation. Fragmentation (hori-
zontal and/or vertical) plays an important role in distributed database systems,
where fragments of a relation are scattered over several (local or remote) sites, as
it typically increases the system’s throughput by permitting a number of trans-
actions to execute concurrently and by allowing the parallel execution of a single
query as a set of subqueries that operate on fragments [11]. This is especially
crucial in data intensive applications. Horizontal decomposition is also important
for improving schema design, in that it can alleviate the problem of dependencies
not being preserved, that might arise in the conversion into Boyce-Codd normal
form (BCNF) when a non-key set of attributes determines part of the key [7].

The study of horizontal decomposition in the literature [2,4,5,3,7,10] focused
on uninterpreted data, that is, settings where data values can only be compared
for equality. However, most real-world applications make use of data values be-
longing to domains with a richer structure (e.g., ordering) on which a variety of
other restrictions besides equality can be expressed (e.g., being within a range or
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above a threshold). Examples are dimensions, weights and prices in the database
of a postal service or shipping company, or the various amounts (credits, debits,
exchange and interest rates, etc.) recorded in a banking application. It is there-
fore of practical interest to consider a scenario where some of the attributes in the
database schema are interpreted over a specific domain, such as the reals or the
integers, on which a set of predicates (e.g., smaller/greater than) and functions
(e.g., addition and subtraction) are defined, according to a first-order theory C.
In this paper, we consider horizontal decomposition in such a setting, where frag-
ments are defined by means of selection queries with equalities and inequalities
on the non-interpreted attributes, extended with constraints on the interpreted
attributes expressed by formulae of C. As it is customary in the study of database
decompositions, we make the pure universal relation assumption (URA) [1], that
is, we limit our investigation to a database schema consisting of only one relation
symbol. This simplifying assumption, even though it might seem unrealistic in
general, is nevertheless satisfied by a surprising number of real-world databases.

We study the losslessness of horizontal decomposition, that is, whether the
original relation can be reconstructed from the fragments by union, in the pres-
ence of integrity constraints on the database schema. Specifically, we investigate
the problem of deciding whether a set of user views specified by selection quer-
ies (on interpreted attributes), which form a horizontal decomposition, is lossless
under constraints. This is relevant to applications in data privacy (where lossless-
ness is undesirable because it means that the views expose the whole database)
and in view updates (where losslessness is desirable in that it allows changes on
the views to be univocally propagated to the underlying database).

We introduce the new class of conditional domain constraints (CDCs) which
by means of a C-formula restrict the values that the interpreted attributes can
take whenever certain conditions hold on the non-interpreted ones. We speak of
C-CDCs to emphasise that the restriction on the interpreted attributes is given
by a formula in C. Depending on the expressive power of C, CDCs can capture
constraints naturally arising in practise, such as, in the above mentioned postal
service scenario, that a parcel of type “letter” not marked as “oversized” weights
less than 20 grammes and each of its dimensions (height, width, depth) is less
than 30 centimetres. We do not commit to any specific language C and we simply
assume that C is closed under negation.

First of all, we show how to check whether a set of C-CDCs is consistent by
means of a characterisation in terms of satisfiability in C, which directly yields a
decision procedure whenever the latter is decidable. This is the case, e.g., for the
so-called Unit Two Variable Per Inequality (UTVPI) constraints – a fragment of
linear arithmetic over the integers whose formulae, which we refer to as UTVPIs,
have at most two variables and variables have unit coefficients – as well as for
boolean combinations of UTVPIs. We prove that deciding consistency is in NP
for the former language, and is NP-complete for the latter.

Then, we give a characterisation of lossless horizontal decomposition under
C-CDCs in terms of unsatisfiability in C, which again directly yields a de-
cision procedure whenever the latter is decidable, and we prove that deciding
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losslessness is in co-NP for the language of UTVPIs, and it is co-NP-complete
for the language consisting of boolean combinations of UTVPIs.

Finally, we study lossless horizontal decomposition under CDCs and tradi-
tional integrity constraints, and show that functional dependencies (FDs) can be
allowed without any restriction, as they do not interact with CDCs, whereas this
is not the case for unary inclusion dependencies (UINDs). We provide a domain
propagation rule that, under certain restrictions on the CDCs, fully captures the
interaction between CDCs and UINDs (on both interpreted and non-interpreted
attributes) w.r.t. the losslessness of horizontal decomposition, which allows to
“separate” the UINDs from the CDCs and employ the general technique in this
case as well.

Related Work. De Bra [2,4,5] developed a theory of horizontal decomposition to
partition a relation into two sub-relations, one of which satisfies a set of specified
FDs, while the other does not. The approach is based on constraints that capture
empirically observed “implications” between sets of FDs and “exceptions” to sets
of FDs, for which a sound and complete set of inference rules is provided. Maier
and Ullman [10] study how to propagate insertions and deletions, and how to
answer selection queries, in a setting with physical and virtual fragments, where
the losslessness of the decomposition is taken as an underlying assumption. Ceri
et al. [3] investigate the problem of finding an optimal horizontal partitioning
w.r.t. the number of accesses to different portions of data.

Structure of the Paper. The rest of the paper is organised as follows: in Sec. 2 we
formally define the notion of horizontal decomposition and introduce the class of
CDCs; in Sec. 3 we show how to check for the consistency of a set of CDCs; the
study of lossless horizontal decomposition under CDCs is carried out in Sec. 4,
and it is then extended to CDCs in combination with FDs and UINDs in Sec. 5;
we conclude in Sec. 6 with a brief discussion of the results and by pointing out
future research directions.

2 Preliminaries

We start by introducing notation and basic notions that will be used throughout
the paper. We first provide some general definitions, which we then specialise to
the case we will investigate in the upcoming sections.

Basics. A (database) schema (also called a relational signature) is a finite set S of
relation symbols, where each S ∈ S has arity |S| and its positions are partitioned
into interpreted and non-interpreted ones. Let dom be a possibly infinite set of
arbitrary values, and let idom be a set of values from a specific domain (such as
the integers Z) on which a set of predicates (e.g., ≤) and functions (e.g., +) are
defined, according to a first-order language C closed under negation. An instance
over a schema S associates each S ∈ S with a relation SI of appropriate arity
on dom∪ idom, called the extension of S under I, such that the values for the
interpreted and non-interpreted positions of S are taken from idom and dom,
respectively. The set of elements of dom ∪ idom that occur in an instance I is
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the active domain of I, denoted by adom(I). An instance is finite if its active
domain is, and all instances are assumed to be finite unless otherwise specified.

Constraints. Let L be a domain-independent (that is, safe-range) fragment of
first-order logic over a relational signature S with constants dom∪ idom under
the standard name assumption, extended with predicates and functions inter-
preted on idom according to C. A constraint is a closed formula in L. The sets of
relation symbols (from S) and constants occurring in a constraint ϕ are denoted
by sig(ϕ) and const(ϕ), respectively. We extend sig(·) and const(·) to sets of con-
straints in the natural way. For a set of constraints Γ , we say that an instance I
over sig(Γ ) is a model of (or satisfies) Γ , and write I |= Γ , to indicate that the
relational structure I = 〈adom(I) ∪ const(Γ ), I〉 makes every formula ϕ in Γ
true w.r.t. the semantics of L. We write I |= ϕ to indicate that I satisfies ϕ. A
set of constraints Γ entails (or logically implies) a constraint ϕ, written Γ |= ϕ,
if every finite model of Γ also satisfies ϕ. All sets of constraints in this paper are
assumed to be finite.

We consider a source schema R, consisting of a single relation symbol R, and a
decomposed schema V, disjoint with R, of view symbols with the same arity as
R. We formally define horizontal decompositions as follows.

Definition 1 (Horizontal Decomposition). Let V = {V1, . . . , Vn} and let
R = {R}. Let Δ be a set of constraints over R, and let Σ be a set of exact view
definitions, one for each Vi ∈ V, of the form ∀x . Vi(x) ↔ ϕ(x), where ϕ is a
safe-range formula over R. We say that Σ is a horizontal decomposition of R
into V under Δ if Δ ∪Σ |= ∀x . Vi(x) → R(x) for every Vi ∈ V. Moreover, Σ
is lossless if Δ ∪Σ |= ∀x . R(x)↔ V1(x) ∨ · · · ∨ Vn(x).

For the sake of simplicity, we assume w.l.o.g. that the first k positions of R and
of each V ∈ V are non-interpreted, while the remaining ones are interpreted.
Under this assumption, instances overR∪V associate each symbol with a subset
of domk× idom|R|−k. Throughout the paper, we further assume that a variable
appearing in the i-th position of R is named xi if i ≤ k, and yi−k otherwise.
Clearly, this is also w.l.o.g. as it can be easily achieved by renaming.

For what concerns integrity constraints on the source schema, we introduce
the class of conditional domain constraints (CDCs), which restrict the admissible
values at interpreted positions by means of a formula in C, whenever a condition
holds on the non-interpreted ones. Such constraints have the form

∀x, y .
(
R(x, y) ∧ x′ = a ∧ x′′ = b

)→ δ(y) , (1)

where x′ and x′′ consist of variables from x, possibly with repetitions, and δ(y) ∈
C. To explicitly indicate that the consequent of a CDC is a formula in C, we refer
to it as a C-CDC. For simplicity of notation, we omit the universal quantifier
and the R-atom from (1).

We consider horizontal decompositions where the symbols in the decomposed
schema are defined by means of selection queries with equalities and inequalit-
ies between variables and constants at non-interpreted positions, extended with
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conditions in C on the interpreted positions. Formally, each V ∈ V is defined by
a formula of the form

∀x, y . V (x, y)↔ (
R(x, y) ∧ x′ = a ∧ x′′ = b ∧ σ(y)

)
, (2)

with x′ and x′′ consisting of variables from x, possibly with repetitions, and
σ(y) ∈ C. In the following, we will simply write (2) as V : x′ = a ∧ x′′ = b ∧ σ(y).

The class of Unit Two Variable Per Inequality constraints (UTVPIs), a.k.a.
generalised 2SAT (G2SAT) constraints, is a fragment of linear arithmetic con-
straints over the integers. UTVPIs have the form ax + by ≤ d, where x and y
are integer variables, a, b ∈ {−1, 0, 1} and d ∈ Z. As the integer domain allows
to represent real numbers with fixed precision as well, this class of constraints is
suitable for most applications. Note that ax + by ≥ d is equivalent to a′x + b′y
≤ −d, with a′ = −a and b′ = −b, and that ax+ by < d and ax+ by > d can be
rewritten as ax + by ≤ d′ and ax + by ≥ d′′, respectively, with d′ = d − 1 and
d′′ = d+1. Thus, UTVPIs are powerful enough not only to express comparisons
(≤, <, >, ≥) between two variables and between a variable and an integer, but
also to compare the sum or difference of two variables with an integer. Observe
that, even though equality is not directly expressible within a single UTVPI, the
equality x = y in the consequent of a CDC, where y is a variable or an integer,
can be expressed by means of two CDCs with the same antecedent, where one
has x ≤ y as consequent, the other x ≥ y. Equality between the sum or difference
of two variables and an integer in a CDC is expressed in a similar way.

We denote by UTVPI the language of UTVPIs and by bUTVPI the language
consisting of boolean combinations of UTVPIs, in turn called bUTVPIs. Check-
ing whether a set of UTVPIs is satisfiable can be done in polynomial time [12,9,8],
and the satisfiability problem for bUTVPI is NP-complete [13].

We conclude the preliminaries by introducing an example based on UTVPI-
CDCs, which we will then use and further extend in the upcoming sections.

Example 1. Let R be on Name, Department, Position, Salary and Bonus, in this
order, where the last two are interpreted over the integers, let a = “ICT” and
b = “Manager”, and let Δ consist of the following UTVPI-CDCs:

x2 = a → y1 + y2 ≤ 5 ; x3 = b → y2 ≥ 2 ; � → y1 − y2 ≥ 0 .

Intuitively, the above constraints state that employees working in the ICT de-
partment have a total income (salary plus bonus) of at most 5 – say – thousands
of euros per month; that employees who work as managers receive a bonus of at
least 2, and that employees never get a bonus greater than their salary.

3 Consistency of Conditional Domain Constraints

Before turning our attention to horizontal decomposition, we first deal with the
relevant problem of determining whether a set of generic C-CDCs is consistent.
Indeed, it is important to make sure that the integrity constraints on the source
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schema are consistent, as any horizontal decomposition would be meaninglessly
lossless otherwise. In this section, we will characterise the consistency of a set of
C-CDCs in terms of satisfiability in C. We will show that deciding consistency is
in NP when C is the language UTVPI, and is NP-complete when C is the language
bUTVPI. Moreover, the technique employed here will serve as the basis for the
approach we follow in Sec. 4 in the study of lossless horizontal decomposition.

Since CDCs are universally-quantified implicational formulae, any set thereof
is always trivially satisfied by the empty instance, thus we say that a set of CDCs
is consistent if it has a non-empty model. Observe that, given their form, CDCs
affect only one tuple at a time, hence whether an instance satisfies a set of CDCs
depends on each tuple of the instance in isolation from the others. Indeed, a set of
CDCs is satisfiable if and only if it is satisfiable on an instance consisting of only
one tuple, and so we can restrict our attention to single tuples. But, as dom and
idom are infinite domains in general, we cannot simply guess a tuple of values
and check that it satisfies the CDCs. However, it is not necessary to know which
values a tuple actually contains at non-interpreted positions, but only whether
such values satisfy the equalities and inequalities in the antecedent of each CDC.
To this end, with each equality or inequality between a variable xi and a constant
a we associate a propositional variable pai , whose truth-value indicates whether
the value in the i-th position is a. To each valuation of such variables corresponds
the (possibly infinite) set of tuples that satisfy the conditions specified by the
names of the variables. For instance, a valuation of {pa1 , pb2} that assigns true to
pa1 and false to pb2 identifies all the tuples in which the value of the first element
is a and the value of the second is different from b. Thus, for each such valuation
it is possible to determine which equalities and inequalities are satisfied. Some
care is only needed with valuations of propositional variables that refer to the
same position (i.e., with the same subscript) but to different constants (i.e., with
different superscripts). For example, pa1 and pb1 (with a = b) should never be both
evaluated to true.

Roughly said, checking whether a set of C-CDCs Δ is consistent amounts to,
as we shall see, first building from Δ a propositional theory where equalities and
inequalities are replaced by propositional variables as above, and then finding a
valuation α in which two propositional variables that refer to the same position
but to different constants are not both evaluated to true, and for which the set of
C-formulae that apply under α (obtained by “filtering” the propositional theory
with α) is satisfiable.

For each C-CDC ϕ ∈ Δ, which we recall has the form (1), we construct the
propositional formula

prop(ϕ) = � ∧
[ ∧
xi∈var(x′)
xi=x′[j]

p
a[j]
i

]
∧
[ ∧
xi∈var(x′′)
xi=x′′[j]

¬pb[j]i

]
→ v , (3)

where v is a fresh propositional variable associated with the C-formula δ(y) in
the consequent of ϕ. We call ΠΔ = { prop(ϕ) | ϕ ∈ Δ } the propositional theory
associated with Δ. Each propositional formula in ΠΔ is of the form � ∧ L→ v,
with L a (possibly empty) conjunction of literals and v a propositional variable
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associated with a C-constraint, denoted by constr(v). We omit � in the l.h.s. of
the implication if L is non-empty, and consider the set var(ΠΔ) of propositional
variables occurring in ΠΔ partitioned into pvar(ΠΔ) = { var(L) | (L → v) ∈
ΠΔ } and cvar(ΠΔ) = var(ΠΔ) \ pvar(ΠΔ). For a propositional theory ΠΔ, we
build the following auxiliary theory:

Π⊥ =
{
pai ∧ pbi → ⊥ | a = b, pai , p

b
i ∈ pvar(ΠΔ)

}
, (4)

intuitively stating that distinct values are not allowed in the same position.

Example 2. The propositional theory associated withΔ from Example 1 isΠΔ =
{ pa2 → v1, p

b
3 → v2, � → v3 }, with pvar(ΠΔ) = { pa2 , pb3 } and cvar(ΠΔ) = { v1,

v2, v3 }. The corresponding auxiliary theory is Π⊥ = ∅. The association constr
between the propositional variables in cvar(ΠΔ) and UTVPI-formulae is given
by { v1 �→ y1 + y2 ≤ 5, v2 �→ y2 ≥ 2, v3 �→ y1 − y2 ≥ 0 }.

For a valuation α of pvar(ΠΔ), from ΠΔ we build the set

Πα
Δ = { constr(v) | (� ∧ L→ v) ∈ ΠΔ, L is empty or α(L) = T } , (5)

consisting of C-constraints associated with propositional variables that occur in
some formula of ΠΔ whose l.h.s. holds true under α. We call Πα

Δ the α-filtering
of ΠΔ. Note that, since C is closed under negation, all the constraints in Πα

Δ are
C-formulae.

We can now state the main result of this section, characterising the consistency
of a set of C-CDCs in terms of satisfiability in C. We remark that the result
holds in general for any language C, not necessarily closed under negation. This
requirement will however become essential in the upcoming Sec. 4 and Sec. 5.

Theorem 1. Let Δ be a set of C-CDCs, ΠΔ be the propositional theory associ-
ated with Δ, and Π⊥ be the corresponding auxiliary theory. Then, Δ is consistent
if and only if there exists a valuation α of pvar(ΠΔ) satisfying Π⊥ such that Πα

Δ

is satisfiable.

Clearly, whenever the satisfiability of sets of C-formulae is decidable, Theorem 1
directly yields an algorithm to check whether a set of C-CDCs is consistent. We
illustrate this in our running example with UTVPI-CDCs.

Example 3. With respect toΠΔ of Example 2, consider the valuation α = { pa2 �→
T, pb3 �→ F }, for which we have Πα

Δ = { y1 + y2 ≤ 5, y1 − y2 ≥ 0 }. Obviously, α
satisfies the (empty) auxiliary theory Π⊥ for ΠΔ. In addition, Πα

Δ is satisfiable,
as for instance { y1 �→ 3, y2 �→ 2 } is a solution to every UTVPI in it.

The consistency problem for C-CDCs is the problem that takes as input a set of
C-CDCs Δ and answers the question: “Is Δ consistent?” In light of Theorem 1,
the problem of checking whether a given set of C-formulae is satisfiable reduces
to checking consistency for C-CDCs. Indeed, every instance of the satisfiability
problem for C, asking whether a set F of C-formulae is satisfiable, can be encoded
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into an instance of the consistency problem for C-CDCs by considering, for each
C-formula in F , a C-CDC which has that formula in the consequent and � in the
antecedent (i.e., no equalities and inequalities). Thus, whenever the satisfiability
problem in C is C-hard, for some complexity class C, then the consistency problem
for C-CDCs is also C-hard. We have the following complexity results concerning
the consistency problem for UTVPI-CDCs and bUTVPI-CDCs.

Theorem 2. The consistency problem for C-CDCs is in NP when C = UTVPI,
and is NP-complete when C = bUTVPI.

4 Losslessness of Horizontal Decomposition

The technique described in Sec. 3 can be extended to, and applied for, checking
whether a horizontal decomposition is lossless under C-CDCs. In this section,
given a horizontal decomposition Σ of R into V1, . . . , Vn and a set Δ of C-CDCs,
we will characterise the losslessness of Σ under Δ in terms of unsatisfiability in
C. Moreover, we will also show that deciding losslessness is in co-NP when C is
the language UTVPI, and it is co-NP-complete when C is the language bUTVPI.
For these languages, our characterisation yields an exponential-time algorithm
for deciding the losslessness of Σ under Δ by a number of unsatisfiability checks
in C which is exponentially bound by the size of Δ.

By definition, Σ is lossless under Δ if the extension of R under every model I
of Σ ∪Δ coincides with the union of the extensions of each Vi under I, that is,
RI = V1

I ∪· · · ∪Vn
I . As the extension of each view symbol is always included in

the extension of R, the problem is equivalent to checking that there is no model
I of Σ∪Δ where a tuple t ∈ RI does not belong to any Vi

I , which in turn means
that for each selection inΣ, some value in t at a non-interpreted position does not
satisfy an equality or inequality, or the values in t at interpreted positions do not
satisfy the C-formula σ. As already noted for CDCs, also the formulae in Σ apply
to one tuple at a time, so we can again focus on single tuples. With each equality
and inequality we associate as before a propositional variable, whose evaluation
determine whether the equality or inequality is satisfied. We then need to check
that there exists no valuation α that does not satisfy some of the equalities and
inequalities in each selection, but satisfies the C-formulae in the r.h.s. of all the
C-CDCs that are applicable under α, along with the negation of any C-constraint
appearing in some selection of Σ whose equalities and inequalities are satisfied
by α. Indeed, from such a valuation and corresponding assignment of values from
idom satisfying the relevant C-formulae, we can construct a tuple that provides
a counterexample to losslessness.

Before discussing the details, let us first extend the setting of Example 1, by
introducing a horizontal decomposition which will serve as our running example
throughout this section.

Example 4. Consider the same R as in Example 1, let V = {V1, V2, V3 }, and let
Σ be the horizontal decomposition defined as follows:

V1 : x2 = a ∧ x3 = b ; V2 : y2 < 4 ; V3 : x3 = b .
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Intuitively, V1, V2 and V3 select employees working as managers in departments
other than ICT, getting strictly less than 4 as bonus, and not working as man-
agers, respectively.

Let ΠΔ be the propositional theory associated with Δ as in Sec. 3. Similarly,
we construct a propositional theory ΠΣ associated with Σ as follows: For each
ϕ ∈ Σ, which we recall has the form (2), we build a propositional formula of the
form (3), where v is either a fresh propositional variable (not in ΠΔ) associated
with the C-formula σ(y), if any, occurring in ϕ, or ⊥ otherwise. This is because
the selections in Σ may consist only of equalities and inequalities without a C-
constraint, whereas C-CDCs must have a C-formula in the consequent in order
to be meaningful.

Let Π = ΠΔ∪ΠΣ and observe that each propositional formula in Π is of the
form �∧L→ v∨⊥, in which L is a (possibly empty) conjunction of literals and v
(if present) is a propositional variable associated with a C-constraint, denoted by
constr(v) as before. We omit � in the l.h.s. of the implication if L is non-empty,
and ⊥ in the r.h.s. when v is present. We consider an extended auxiliary theory
Π⊥ for Π defined as follows:

Π⊥ =
{
pai ∧ pbi → ⊥ | a = b, pai , p

b
i ∈ pvar(Π)

} ∪ {P ∈ ΠΣ | P = L→ ⊥}, (6)

where the first set in the union is the same as in (4), but on pvar(Π) rather than
just pvar(ΠΔ), and the second is the set of all the propositional formulae in ΠΣ

whose r.h.s. is not associated with a C-constraint.1

Example 5. The propositional theory associated with the horizontal decompos-
ition Σ of Example 4 is ΠΣ = {¬pa2 ∧ pb3 → ⊥, � → v4, ¬pb3 → ⊥}. Let ΠΔ

be the propositional theory of Example 2, and let Π = ΠΔ ∪ ΠΣ . Then, the
association between the propositional variables in cvar(Π) and UTVPIs is as in
Example 2 but extended with { v4 �→ y2 < 4 }, and the extended auxiliary theory
for Π is Π⊥ = {¬pa2 ∧ pb3 → ⊥, ¬pb3 → ⊥}.
For a valuation α of pvar(ΠΔ), let Πα

Δ be the α-filtering of ΠΔ defined as in
Sec. 3. Similarly, for a valuation α of pvar(ΠΣ), the α-filtering of ΠΣ is

Πα
Σ = {¬ constr(v) | (� ∧ L→ v) ∈ ΠΣ , L is empty or α(L) = T } , (7)

consisting of the negation of C-constraints associated with propositional variables
that occur in some formula of ΠΣ, whose l.h.s. holds true under α. Observe that
in (7), differently from (5), C-constraints are negated because a counter-instance
I to losslessness is such that RI consists of only one tuple and V1

I∪· · ·∪Vn
I = ∅,

and therefore, whenever all of the equalities and inequalities in the selection that
defines a view are satisfied by I, the C-constraint is not. On the other hand, the
C-constraint in the consequent of a CDC must hold whenever the equalities and
inequalities in the antecedent are satisfied. For a valuation α of pvar(Π), the α-
filtering of Π is the set Πα = Πα

Δ∪Πα
Σ . Note that, as C is closed under negation,

all the constraints in Πα are C-formulae.
1 These originate from formulae of Σ that do not specify a C-constraint σ(y).
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The main result of this section gives a characterisation of lossless horizontal
decompositions in terms of unsatisfiability in C.

Theorem 3. Let Δ consist of C-CDCs and let Σ be a horizontal decomposition.
Let ΠΔ and ΠΣ be the propositional theories associated with Δ and Σ, respect-
ively, and let Π⊥ be the extended auxiliary theory for Π = ΠΔ∪ΠΣ . Then, Σ is
lossless under Δ if and only if the α-filtering Πα = Πα

Δ ∪Πα
Σ of Π is unsatisfi-

able for every valuation α of pvar(Π) satisfying Π⊥.

Obviously, whenever the satisfiability of sets of C-formulae is decidable, The-
orem 3 directly yields an algorithm for deciding whether a horizontal decompos-
ition is lossless. We illustrate this in our running example with UTVPIs.

Example 6. Consider Π and Π⊥ from Example 5. The only valuation of pvar(Π)
satisfying Π⊥ is α = { pa2 �→ T, pb3 �→ T}, for which Πα

Δ = { y1 + y2 ≤ 5, y2 ≥ 2,
y1 − y2 ≥ 0 } and Πα

Σ = { y2 ≥ 4 }. Note that y2 ≥ 4 in Πα
Σ is ¬ constr(v4), that

is, the negation of y2 < 4. The set Πα = Πα
Δ ∪Πα

Σ is unsatisfiable because from
y1 + y2 ≤ 5 and y2 ≥ 4 we obtain y1 ≤ 1, which together with y1− y2 ≥ 0 yields
y2 ≤ 1, in conflict with y2 ≥ 2.

The losslessness problem in C is the problem that takes as input a horizontal
decomposition Σ specified by C-selections and a set of C-CDCs Δ, and answers
the question: “Is Σ lossless under Δ?” In light of Theorem 3, the unsatisfiability
problem for C, asking whether a given set F of C-formulae is unsatisfiable, reduces
to the losslessness problem in C as follows: take Δ empty and, for each C-formula
in F , consider a new view symbol defined inΣ by an C-selection consisting only of
the negation of that formula (which is still in C as C is closed under negation) and
without equalities and inequalities. Thus, whenever the unsatisfiability problem
in C is C-hard, for some complexity class C, then the losslessness problem in C is
also C-hard. We have the following complexity results concerning the losslessness
problem in UTVPI and bUTVPI.

Theorem 4. The losslessness problem in C is in co-NP when C = UTVPI, and
is co-NP-complete when C = bUTVPI.

5 Adding Functional and Inclusion Dependencies

In this section, we will study the interaction between the newly-introduced CDCs
and traditional database constraints w.r.t. the losslessness of horizontal decom-
positions. This investigation is crucial in order to understand to what extent the
techniques we described in Sec. 4 can be applied to an existing database schema,
on which a set of integrity constraints besides CDCs is already defined. We will
focus two well-known classes of integrity constraints, namely functional depend-
encies (FDs) and unary inclusion dependencies (UINDs), and show how to fully
capture the interaction between them and CDCs w.r.t. lossless horizontal de-
composition, under certain syntactic restrictions. It is important to remark that
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we consider restrictions solely on the CDCs, so that existing integrity constraints
need not be changed in order to allow for CDCs.

We begin by observing that FDs do not interact with CDCs, and can thus be
freely allowed in combination with them, as long as lossless horizontal decompo-
sition is concerned.

Theorem 5. Let Δ consist of FDs and CDCs, and let Δ′ ⊆ Δ consist of all the
CDCs in Δ. Then, a horizontal decomposition is lossless under Δ if and only if
it is lossless under Δ′.

The above follows from the fact that a horizontal decomposition is lossy under
CDCs precisely if there is a one-tuple counter-example to its losslessness, while
an FD violation always involves at least two tuples.

Let us recall that an instance I satisfies a UIND R[i] ⊆ R[j] if every value in
the i-th column of RI appears in the j-th column of RI . While FDs do not play
any role in whether a horizontal decomposition is lossless, this is definitely not
the case for UINDs, as the following example shows.

Example 7. Let R = {R} and V = {V }, with |R| = |V | = 2 and both positions
interpreted over the integers. Consider the horizontal decomposition Σ of R into
V defined by V : y1 > 3, and integrity constraints Δ on R given by � → y2 > 3
along with the UIND R[1] ⊆ R[2]. It is easy to see that Δ entails the additional
CDC � → y1 > 3. Therefore, Σ is lossless as V selects all the tuples in R, which
is clearly not the case in the absence of the UIND.

Notation. As it might not be possible to compare values from dom with values
from idom and vice versa, in our setting we consider UINDs on positions that
are either both interpreted or both non-interpreted. We introduce the following
notation for UINDs: we write R[xi] ⊆ R[xj ] with i, j ∈ {1, . . . , k}, where k is the
number of non-interpreted positions of R, to denote the UIND R[i] ⊆ R[j]; we
write R[yi] ⊆ R[yj ] with i, j ∈ {|R| − k, . . . , |R|} to denote R[i+ k] ⊆ R[j + k].

As we have seen in Example 7 in the case of UINDs, when we allow CDCs in
combination with constraints from another class, their interaction may entail ad-
ditional constraints which may in turn influence losslessness. We now introduce a
general property, called separability, for which the interaction of the CDCs with
other constraints can be fully captured, as long as lossless horizontal decompos-
ition is concerned, so that after making explicit the result of such interaction we
can “separate” the constraints that are not CDCs.

Definition 2 (Separability). Let C be a class of integrity constraints, let S be
a finite set of sound inference rules2 for C extended with CDCs, and let Δ consist
of CDCs and C-constraints. We say that the C-constraints are S-separable in Δ
from the CDCs if every horizontal decomposition is lossless under Δ precisely
when it is lossless under Δ′, where Δ′ is obtained by first saturating Δ with S
2 We assume the reader to be familiar with the standard notions (from proof theory)
of inference rule and soundness.
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and then retaining only the CDCs.3 When the C-constraints are S-separable for
S = ∅, we simply say that they are separable.

According to the above definition, we have that the FDs are separable from the
CDCs in every set consisting of FDs and CDCs, in light of Theorem 5. Observe
also that S-separability implies S ′-separability for every sound S ′ ⊇ S.

The interaction of UINDs on interpreted attributes with a restricted form of
CDCs is captured by the following domain propagation rule:

� → δ(yi) R[yj] ⊆ R[yi]

� → δ(yj)
, (dp)

whose soundness can be easily shown.
It turns out that if all the CDCs that mention variables corresponding to the

interpreted positions in some UIND have the form used in (dp), then the domain
propagation rule fully captures the interaction between such CDCs and UINDs
on interpreted positions w.r.t. the losslessness of horizontal decompositions.

Theorem 6. Let Δ be a set of UINDs on interpreted positions and CDCs such
that, for every UIND R[yi] ⊆ R[yj] in Δ, all of the CDCs in Δ that mention the
variable y, where y is yi or yj, are of the form � → δ(y). Then, the UINDs are
{(dp)}-separable in Δ from the CDCs.

We now turn our attention to UINDs on non-interpreted positions in combination
with CDCs. We introduce syntactic restrictions, one on the CDCs w.r.t. the
UINDs and one on the CDCs in themselves, that together ensure the separability
of the UINDs.

Definition 3. Let Δ consist of CDCs and UINDs. We say that the CDCs are
non-overlapping with the UINDs on non-interpreted positions if for each UIND
R[xi] ⊆ R[xj ] and any two CDCs φ(x1, y1) and ψ(x2, y2) in Δ such that either

a) xi ∈ var(x1) and xj ∈ var(x2), or
b) var(x1) = ∅, and xi ∈ var(x2) or xj ∈ var(x2),

it is the case that var(y1) ∩ var(y2) = ∅.

Intuitively, the above requires that CDCs φ and ψ, such that the antecedent of φ
mentions the variable xi affected by a UIND R[xi] ⊆ R[xj ] and the antecedent of
ψ mentions xj , have no overlap in the variables mentioned in their consequents.
This must also hold when one of the CDCs has the form � → δ(y) and the other
mentions one of the variables affected by the UIND. The UTVPI-CDC and the
UIND in Example 7 satisfy the non-overlapping restriction.

Definition 4. Let Δ consist of CDCs. We say that Δ is partition-free if it is not
possible to find n distinct variables x[k1], . . . , x[kn] ∈ var(x), constants a1, . . . , an
from dom and 2n distinct CDCs ϕ1, . . . , ϕ2n in Δ such that:

3 As the constraints that are not CDCs are in any case filtered out after saturating Δ
with S , it does not matter whether C extended with CDCs is closed under S or not.
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a) the antecedent of each CDC mentions only x[k1], . . . , x[kn] without repetitions
and, for every i ∈ {1, . . . , n}, it contains either the equality x[ki] = ai or the
inequality x[ki] = ai;

b) {0, . . . , 2n−1} = {d ∈ N | enc(ϕj) is the binary encoding of d, 1 ≤ j ≤ 2n},
where enc(ϕj) is an n-digit binary number b whose i-th digit is 1 if x[ki] = ai
is in ϕj and 0 otherwise.

Intuitively, the above requires that there cannot be 2n CDCs, whose antecedents
are all on the same n variables and constants and cover all possible combinations
of equalities and inequalities between a variable and the corresponding constant.
We remark that for every partition-free set of CDCs it is always possible to find
a valuation under which the antecedents of all of its CDCs evaluate to false.

Theorem 7. Let Δ consist of UINDs on non-interpreted positions and CDCs,
where the CDCs are partition-free and non-overlapping with the UINDs. Then,
the UINDs are separable in Δ from the CDCs.

We close this section by remarking that the restrictions of Theorems 6 and 7
can be put together in order to combine CDCs with UINDs on both interpreted
and non-interpreted positions.

6 Discussion and Outlook

In this paper, we investigated lossless horizontal decomposition under integrity
constraints in a setting where some of the attributes in the schema are interpreted
over specific domains. Such domains are associated with special predicates and
functions that allow to compare data values other ways beyond equality. To the
best of our knowledge, this scenario had not yet been explored in the literature,
in particular in the study of horizontal decomposition, which has mostly been
concerned with uninterpreted data. In this context, we introduced a new class
of integrity constraints, called CDCs, and we have shown how to check for the
losslessness of horizontal decompositions under CDCs in isolation, as well as in
combination with FDs and UINDs.

Even though the focus of this paper has been on domain constraints on inter-
preted positions, observe that domain constraints on non-interpreted positions of
the form � → xi = a1 ∨ · · · ∨ xi = an, with a1, . . . , an ∈ dom, can be expressed
by means of two C-CDCs:4

xi = a1 ∧ · · · ∧ xi = an → δ(y) ; xi = a1 ∧ · · · ∧ xi = an → ¬δ(y) ;

for some δ(y) ∈ C.5 Being standard CDCs, such constraints are directly handled
by the techniques we described for the consistency of CDCs and the losslessness
of horizontal decompositions.

4 Repetition of the same variable in the antecedent of a CDC is allowed.
5 Recall that C is closed under negation, hence ¬δ(y) ∈ C.
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The results presented in Sec. 5 about separable combinations of CDCs and
UINDs do not automatically carry over to the case in which FDs are also present.
Indeed, even though FDs do not interact directly with CDCs, they do in general
interact with UINDs, which in turn interact with CDCs. The only case in which
there is no interaction between FDs and UINDs is when the former are on non-
interpreted positions while the latter are on interpreted ones. In fact, Theorem 6
can be straightforwardly generalised to include also FDs on non-interpreted po-
sitions. In the other cases, the interaction between FDs and UINDs can be fully
captured, as there is a sound and complete axiomatization for finite implication
of FDs and UINDs [1]. Therefore, we conjecture that FDs and UINDs together
are S-separable from (appropriately restricted) CDCs, where S consists of the
known inference rules for FDs and UINDs extended with our domain propaga-
tion rule, and that Theorems 6 and 7 can be generalised to include also FDs (on
all attributes).

Applying a general criterion for the translatability of view updates, recently
provided in [6], it is possible to determine whether an update can be performed
on each fragment, and propagated to the underlying database, without affecting
the other fragments. The same information can also be used for adding suitable
conditions in the selections defining the view symbols so that each fragment is
disjoint with the others, that is, to obtain a partition. In follow-up work, we plan
on performing an in-depth study of partitioning and update propagation in the
setting studied in this paper.

A lossy horizontal decomposition can always be turned into a lossless one by
defining an additional fragment that selects the missing tuples. We are currently
working on a general algorithm to compute the definition, in the setting studied
in this paper, of the unique fragment that selects all and only the rows of the
original relation which are not selected by any of the other fragments.
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Abstract. Schema matching algorithms aim to identify relationships between
database schemas, which are useful in many data integration tasks. However, the
results of most matching algorithms are expressed as semantically inexpressive,
1-to-1 associations between pairs of attributes or entities, rather than semantically-
rich characterisations of relationships. This paper presents a benchmark for eval-
uating schema matching algorithms in terms of their semantic expressiveness.
The definition of such semantics is based on the classification of schematic het-
erogeneities of Kim et al.. The benchmark explores the extent to which matching
algorithms are effective at diagnosing schematic heterogeneities. The paper con-
tributes: (i) a wide range of scenarios that are designed to systematically cover
several reconcilable types of schematic heterogeneities; (ii) a collection of ex-
periments over the scenarios that can be used to investigate the effectiveness
of different matching algorithms; and (iii) an application of the experiments for
the evaluation of matchers from three well-known and publicly available schema
matching systems, namely COMA++, Similarity Flooding and Harmony.

1 Introduction

Schema matching methods identify matches between elements of data sources that show
similar properties (e.g., names, instances and structures) [4, 20]. Matching methods are
not an end in themselves, but rather form part of other operations, such as schema
mapping that refines matches into declarative but executable mappings (e.g., in SQL
or XSLT) to specify the relationships between the data sources [11, 5]. Schema match-
ing and mapping are important because a wide range of information management and
integration tasks [13, 12], such as data exchange, evolution and distributed query pro-
cessing, depend on a detailed understanding of the relationships between data sources.

Such integration tasks must be built on appropriate executable mappings, which,
in turn, require clear characterisations of matches between data sources. However, al-
though matches may be generated by a large number of different techniques, they are
often numerous, uncertain and conflicting [3]. As such, when evaluating matches, it
seems important to explore what kind of information is carried by matches that must be
taken into account by executable programs.

We note that there have been several evaluation activities relating to schema match-
ing/mapping in the data integration community in recent years, such as Ontology Align-
ment Evaluation Initiative (OAEI) [1], XBenchmark [10], eTuner [15] and STBench-
mark [2]. The first three activities aim to evaluate schema or ontology matching

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 92–106, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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systems (e.g., [8, 17, 7]) in terms of accuracy or correctness, e.g., precision, recall and
F-measure, of matches identified by the existing matching systems, while STBench-
mark aims to compare schema mapping systems (e.g., [11, 5, 6]) in terms of the effec-
tiveness of the support provided to mapping developers.

In this paper, we present a benchmark, called MatchBench, with the aim of under-
standing the effectiveness of schema matching systems in identifying specific relation-
ships between elements of two schemas, rather than simply assessing the correctness
of matches identified by the matching systems, thus differentiating MatchBench from
previous evaluation activities. We characterise such relationships between schema ele-
ments using the classification of schematic heterogeneities of Kim et al. [14]. We do
not intend to enumerate all kinds of relationships in MatchBench but try to exemplify a
collection of semantic relationships based on the schematic heterogeneities.

Thus, the hypothesis behind MatchBench is that the effectiveness of matching sys-
tems in practice can be evaluated in terms of their ability to diagnose (or support the
diagnosis of) such schematic heterogeneities as those proposed by Kim et al. The con-
tributions of the paper are presented as follows:

1. A collection of scenarios, based on the schematic heterogeneities of Kim et al.
[14], that systematically vary the amount and nature of the evidence available about
heterogeneities.

2. An experiment design over the scenarios at (1) that can be used as a benchmark to
investigate the contexts within which specific matchers are more, or less, effective.

3. The application of the benchmark to schema matching techniques is supported
within three well-known and publicly available matching systems1, namely
COMA++ [8], Similarity Flooding [17] and Harmony [22].

The remainder of the paper is structured as follows. Section 2 introduces the schematic
heterogeneities of Kim et al. [14]. Section 3 describes MatchBench, including the of-
fered scenarios and the associated experiments. Sections 4 describes the application of
MatchBench to matchers provided by COMA++, Similarity Flooding and Harmony,
respectively. Section 5 reviews related work, in particular on the evaluation of schema
matching techniques. Section 6 presents some overall conclusions.

2 Schematic Correspondences

The schematic heterogeneities proposed by Won Kim et al. [14] are defined as different
symbolic representations of data that represent the same real world information. We es-
sentially use the terms heterogeneity and correspondence as synonyms – a heterogeneity
is an inconsistency between data sources in representation, and a correspondence is a
description of the heterogeneity that allows it to be managed.

In this paper, we adopt the classification of schematic correspondences between rela-
tional schemas proposed by Won Kim et al. [14], and have refined the characteristics of
many-to-many entity correspondences from [14] to distinguish horizontal and vertical
partitioning. Before moving on to the details, let the following be the schemas of two

1 In order to maintain the initial feature of matching systems, we decided not to re-implement
the matching systems that are not publicly available.
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independently designed relational databases RDB1 and RDB22.

RDB1:
home cust (id∗, name, birth, a id+, p city, p area, p local)
oversea cust (id∗, name, birth, a id+, p city, p area, p local)
account (id∗, name, balance, tax)

RDB2:
customer (id∗, c fname, c lname, c birth, account id+)
cust phone (id∗+, city, area, local, extension)
cust account (id∗, account name, account balance)

Both RDB1 and RDB2 contain information about customers and their accounts.
Even though they represent the information differently, it can be identified that they
represent broadly the same real world information, and that correspondences exist be-
tween them at both entity and attribute levels:
(i) The entity-level correspondences indicate the equivalence between two (sets of) en-
tities (e.g., tables), which can be decomposed into one-to-one and many-to-many entity
correspondences, where

– one-to-one entity correspondences relate pairwise entities that represent the same
information. For example, account in RDB1 and cust account in RDB2 can be
considered equivalent but show the following heterogeneities:
• name conflict, which indicates that equivalent entities have different names.

In the following, this conflict is called Different Names for the Same Entities
(DNSE). When different entities happen to have the same name, we call the
conflict Same Name for Different Entities (SNDE).

• missing attributes conflict, which identifies attributes that are present in one
entity but not in the other (e.g., attribute tax in account is a missing attribute
of cust account).

– many-to-many entity correspondences relate two sets of entities that represent the
same information. For example, home cust and oversea cust together in RDB1
describe the same information about customers as customer and cust phone in
RDB2. It can be seen that these two sets of entities in RDB1 and RDB2 do not
have the same structure, but the underlying information is similar. This difference
results in distinct types of many-to-many conflicts. Borrowing terminology from
distributed database systems [19],we classify them as follows:

• horizontal partitioning (HP), where one single entity is partitioned along its
instances into multiple entities in another schema. As such, all attributes of the
former entity are present in each of the corresponding entities in the latter (e.g.,
home cust and oversea cust in RBD1).

• vertical partitioning (VP), where a single entity is partitioned into multiple en-
tities in another schema, where the attributes in each of the latter constitute
subsets of the attributes in the former. The primary key of the vertically par-
titioned entity appears as an equivalent attribute in every one of its vertical
partitions in the other schema, whereas other attributes of the former entity are
present only once in the latter (e.g., customer and cust phone in RDB2).

2 Symbols ∗ and + indicate primary key and foreign key attributes, respectively.
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Given the above information, we are then able to enumerate 4 types of many-to-
many entity correspondences: HP vs HP, HP vs VP, VP vs HP and VP vs VP cor-
respondences. For example, the correspondence between entity sets {home cust,
oversea cust} and {customer, cust phone} is a HP vs VP correspondence. Read-
ers may follow the definitions to enumerate other partitioning types, such as hybrid
partitioning, which refers to the cases where HP and VP appear together in the
source (or target).

(ii) The attribute-level correspondences indicate the equivalence between two (sets
of) attributes. For the remainder of the paper, we assume that attributes associated by
attribute-level correspondences belong to entities that are participating in some entity-
level correspondence. Similar the entity-level correspondence, the attribute-level corre-
spondences can be decomposed into one-to-one and many-to-many correspondences,
where

– one-to-one attribute correspondences relate pairwise attributes. Equivalent at-
tributes may have different names, so such a conflict is called Different
Names for the Same Attributes (DNSA) (e.g., account.name in RDB1 and
cust account.account name in RDB2). By contrast, attributes that are differ-
ent may have the same name, giving rise to Same Name for Different Attributes
(SNDA) correspondences.

– many-to-many attribute correspondences associate two sets of attributes that
present the same property of equivalent entities. For example, the single attribute
home cust.
name in RDB1 and the set of attributes customer.c fname and
customer.c lname in RDB2 represent names of customers.

3 Benchmark Description

This section describes the benchmark3 consisting of: (i) a collection of scenarios, in
which schematic heterogeneities are systematically injected into an initial database;
and (ii) a collection of experiments that investigate the ability of matching methods to
identify specific properties exhibited by the scenarios.

3.1 Scenario

The scenarios build upon the source and target databases illustrated in Fig. 1, derived
from TPC-E (http://www.tpc.org/tpce/), which are manipulated in a controlled manner.

There are positive and negative scenarios. In the positive scenarios, the starting point
is that the source and target databases have a single table in common, into which
schematic heterogeneities described in Section 2 are systematically introduced. In the
implementation, the initial target database is extended with a single table from the
source (see Fig. 1). In the negative scenarios, the starting point is that the source and

3 This paper only means to demonstrate a general idea of MatchBench. Readers may find the
complete version for all available scenarios and experiments from
http://code.google.com/p/matchbench/.

http://code.google.com/p/matchbench/
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Trade_ID char(16) *

TDatetime DateTime

Trade_Type_ID char(3) 

IS_CASH boolean

Quantity integer

Bid_Price double

Customer_Account_ID char(12)

Executing_Name char(64) 

Price double

Charge double

Commission double

Tax double

Customer_Account_ID char(12) *

Customer_Account

(1000 Instances)

Broker_ID char(12)

Customer_ID char(12)

Name varchar(50)

Tax_Status integer(1)

Balance double

Trade_Type_ID char(3) *

Name char(12) 

IS_Sell boolean 

IS_Market boolean

Broker_ID char(12) *

Name varchar(100)

Number_Trades integer(9) 

Commission_Total double

Customer_ID char(12) *

Last_Name varchar(30)

First_Name varchar(30)

Middle_Name char(1)

Gender varchar(1)

Tier integer(1) 

Birthday DATE

Address_ID char(12)

Phone_City CHAR(3)

Phone_Area char(3)

Phone_Local char(10)

Phone_Extension char(5)

Email char(50),

Address_ID char(12) *

Line1 varchar(80)

Line2 varchar(80)

Zip_Code char(12) 

Town varchar(80)

ADIV varchar(80)

Country varchar(80)

Trade (1000 Instances)

Trade_Type (5 Instances)

Address 

(1000 Instances)

Customer (1000 Instances)

AP_CA_ID char(12) *

AP_Tax_ID varchar(20) *

ACL char(4),

Last_Name varchar(30)

First_Name varchar(30)

Status_Type_ID char(4) *

Name char(10)

CX_TX_ID char(4) *

CX_C_ID char(12) *

 Customer_Taxrate 

(1000 Instances)

Company_ID char(12) *

Company (500 Instances)

ST_ID char(4)

Name varchar(60)

IN_ID char(2)

SP_Rate char(4)

CEO char(100)

AD_ID char(12)

Open_Date Date

Industry_ID char(2) *

Name varchar(50)

SC_ID char(2)

X (One of Tables in Source)

Account_Permission 

(1000 Instances)

Industry (102 Instances)

Status_Type  (5 Instances)

Source Schema Target Schemas

Broker (10 Instances)

Fig. 1. The source and target databases used as a basis for scenario generation, where primary
keys are marked with ∗

target databases have no single table in common, but similarities have been systemati-
cally introduced, giving rise to scenarios where tables should not be matched, but where
there are some similarities between tables.

Scenario Set 1: 

(Baseline)

1. SNSE

2. SNSA

Scenario Set 6: 

1. DNSE

2. DNSA

Change entity 

name

Remove  attributes

Change 

attribute 
Scenario Set 2: 

1. SNSE

2. DNSA

Scenario Set 3: 

1. SNSE

2. SNSA

3. Missing Attributes 

Scenario Set 5: 

1. DNSE

2. SNSA

Scenario Set 7:

1. DNSE 

2. SNSA

3. Missing Attributes

Scenario Set 4: 

1. SNSE 

2. DNSA

3. Missing Attributes

Remove 

attributes

Change 

attribute names

Scenario Set 8: 

1. DNSE

2. DNSA

3. Missing Attributes 

names

Change 

attribute 

names

Change 

attribute 

names

Fig. 2. Positive scenarios for one-to-one entity
correspondences

Positive Scenarios for One-to-One Entity
Correspondences. Fig. 2 describes the
space of positive scenarios where hetero-
geneities are introduced into one-to-one
identical entities4. In the figure, boxes
represent scenario sets and arrows repre-
sent the systematic introduction of het-
erogeneities into the scenario sets. Each
scenario set consists of a collection of
databases each of which manifests exam-
ples of the heterogeneities named in the
corresponding box, the definitions of which are provided below. For example, Scenario
Set 1 represents the starting point for the introduction of the heterogeneities, and the
arrow leading to Scenario Set 5 indicates that it has been derived from Scenario Set 1
through the changing of entity names.

In what follows, where names are described as the same they are identical, and where
they are described as similar their strings overlap; neither of these properties hold for
different names. Following the terminology introduced in Section 2, terms used in Fig.
2 include SNSE as Same Name for Same Entity; DNSE as Different Names for Same
Entity; SNSA as Same Name for Same Attribute; and DNSA as Different Names for
Same Attribute. As such, a scenario set that exhibits one-to-one entity heterogeneities
may also exhibit one-to-one attribute heterogeneities.

In each scenario set, the extents of equivalent entities either contain the same in-
stances (SI) or disjoint instances (DI). The disjoint instances are generated by parti-
tioning instances of an original entity into two disjoint sets of instances, thus forming

4 The order of introducing different types of heterogeneities is insignificant.
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disjoint instances of two equivalent entities. Overlapping instances are also possible
real world cases, but are not implemented in MatchBench.

Change entity name

Scenario Set 9: 

(Baseline)

1. DNDE

2. DNDA

Scenario Set 10: 

1. DNDE

2. DNDA

3. SNSA

Scenario Set 11: 

1. DNDE

2. DNDA

3. DNSA 

Add same attributes

Scenario Set 13: 

1. SNDE

2. DNDA

Scenario Set 15: 

1. SNDE

2. DNDA

3. DNSA

Scenario Set 14: 

1. SNDE

2. DNDA

3. SNSA 

names

Add same attributes

Change 

attribute

Scenario Set 12: 

1. DNDE

2. DNDA

3. SNDA

Scenario Set 16: 

1. SNDE

2. DNDA

3. SNDA 

Add same 

attributes 

with different

names

names

Add same 

attributes 

with different
Change 

attribute

names

Fig. 3. Negative scenarios for one-to-one entity
correspondences

Negative Scenarios for One-to-One En-
tity Correspondences. The space of neg-
ative scenarios for one-to-one different
entities, where pairs of entities represent
different real world information, is de-
scribed in Fig. 3. Terms used to describe
the properties of the scenario sets include
DNDE as Different Names for Different
Entities; SNDE as Same Name for Differ-
ent Entities; DNDA as Different Names
for Different Attributes; SNSA as Same
Name for Same Attribute; DNSA as Dif-
ferent Names for the Same Attributes;
and SNDA as Same Name for Different
Attributes.

Change 

attribute names

Scenario Set 17: 

1. Attribute Many-to-One 

Correspondences Types

2. SNSE

3. Similar Names for Attributes

Scenario Set 18: 

1. Attribute Many-to-One 

Correspondences Types

2. SNSE

3. Different Names for Attributes

Fig. 4. Positive scenarios for attribute many-to-
one correspondences.

Positive Scenarios for Attribute Many-
to-One Correspondences. In Fig. 4, the
space of attribute many-to-one corre-
spondences is described, where a set of
attributes and a single attribute that be-
long to equivalent entities represent the
same real world information. We note
that most schema matchers only handle many-to-one attribute correspondences, and
thus we set up a task that existing matchers can manage. MatchBench includes three
different types of attribute many-to-one correspondences shown as follows.

1. numeric operation: (price + charge + commission) × (1 + tax) = price
2. string concatenation: Concat (first name, middle name, last name) = name
3. numeric concatenation:

Concat (phone city, phone area, phone local, phone extension) = phone

Similar to Fig. 2, extents of equivalent entities are generated that give rise to SI and DI
cases for scenario set 17. Scenario set 18 only contains SI cases but not DI, in order to
retain a certain level of similarity between attributes.

Change 

attribute names

Scenario Set 19: 

1. Entity Many-to-Many 

Correspondence Types

2. Different Entity Names

3. Same Attribute Names

Scenario Set 20: 

1. Entity Many-to-Many 

Correspondence Type

2. Different Entity Names

3. Similar Attribute Names

Fig. 5. Positive scenarios for many-many entity
correspondences

Positive Scenarios for Entity Many-to-
Many Correspondences. Two sets of en-
tities, shown in Fig. 5, represent the same
real world information. Three different
types of many-to-many entity correspon-
dences are included in MatchBench:

– HP vs HP, where the two sets are related by horizontal partitioning.
– VP vs VP, where the two sets are related by vertical partitioning.
– HP vs VP, where the two sets are related by horizontal and vertical partitioning.



98 C. Guo et al.

3.2 Experiments

Effectiveness Measures. The effectiveness of matching systems is evaluated in Match-
Bench by identifying whether the systems meet specific requirements for diagnosing
each type of schematic heterogeneity. Each such requirement is met if results of the
systems are close to the correct matches provided by the scenarios presented in this
section. Following terms in the standard definitions [9] of information retrieval, we
call the correct matches as ground truth. We compare the results of the systems with
the ground truth, and report recall, precision and F-measure of the results following to
shown the effectiveness of the matching systems.

Experiment Design. Building on the scenarios, we designed 10 experiments to measure
how effectively matching systems identify the presence of schematic heterogeneities.
Due to the space limitations, only 4 experiments are presented in this paper. More
experiments are included in the technical report.

In Experiments 1, 3 and 4, where schematic heterogeneities are exhibited in the
chosen scenarios, the F-measure is reported in the vertical axis drawn in the figures
produced in Section 4.2. The higher the F-measure reports, the better is the matching
system for diagnosing the heterogeneity. In Experiment 2, which involves negative sce-
narios, where there are no such heterogeneities in the chosen scenarios, 1 – F-measure
is reported on the vertical axis so that larger values also reflect the better effectiveness
of the matching system on not reporting the heterogeneities.

Experiment 1: Identifying when the same entity occurs in positive scenarios. This ex-
periment involves Scenario Sets 1 to 8 in Fig. 2, and reports on the ability of the match-
ers to meet two requirements:

- Requirement R1: Equivalent entities are matched, where the ground truth is the set of
pairwise entity matches between equivalent entities.

- Requirement R2: Equivalent attributes are matched, where the ground truth is the
collection of pairwise attribute matches between equivalent attributes.

Experiment 2: Identifying when the same entity occurs in negative scenarios. This ex-
periment involves Scenario Sets 9 to 16 in Fig. 3, and reports on the ability of matching
systems in scenarios where no correspondences exist:
- Requirement R1: Different entities are not matched, where the ground truth is that
there are no pairwise entity matches between different entities.
- Requirement R2: Different attributes are not matched, where the ground truth is that
there are no pairwise attribute matches between pairs of attributes.

Experiment 3: Identifying many-to-one attribute correspondences in positive scenar-
ios. This experiment involves Scenario Sets 17 and 18 in Fig. 4, where each element
in the ground truth is a collection of attribute matches between each attribute in the set
and the single attribute.

Experiment 4: Identifying many-to-many entity correspondences in positive scenarios.
This experiment involves Scenario Sets 19 and 20 in Fig. 5.

- Requirement R1: Each entity in the source set should be matched to all entities in the
target set. The ground truth is the collection of pairwise entity matches between each
entity in the source set and all entities in the target set.
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The following two requirements are investigated only when the evaluated systems
are able to meet R1.
- Requirement R2: Primary key attributes in each entity in the source set should be
matched to primary key attributes in all entities in the target set. The ground truth is the
collection of pairwise attribute matches between primary key attributes in each entity
in the source set and primary key attributes in all entities in the target set.
- Requirement R3: Partitions in the source schema are matched against partitions in the
target schema, with a view to identifying specific types of many-to-many correspon-
dences. For each type, the ground truth is the collection of pairwise attribute matches
between attributes as described below:

– Horizontal Partitioning vs Horizontal Partitioning: Each non-key attribute in each
entity in the source (target) set should be matched to a single non-key attribute in
every entity in the target (source) set.

– Vertical Partitioning vs Vertical Partitioning: Each non-key attribute in each entity
in the source (target) set should be matched to a single non-key attribute in an entity
in the target (source) set.

– Horizontal Partitioning vs Vertical Partitioning: Each non-key attribute in each en-
tity in the source set should be matched to a single non-key attribute in an entity in
the target set; but each non-key attribute in each entity in the target set should be
matched to a single non-key attribute in each entity in the source set.

4 Application of MatchBench

4.1 Matching Systems

In general, we follow the advice of the developers when configuring matching systems,
for example, by employing the settings suggested in the published papers or in private
communication with the authors. In addition, we take all steps that are available to us in
order to help the systems to perform well, e.g., by plugging an instance-level matcher
into Similarity Flooding and Harmony, which were both originally supplied with only
schema-level matchers.

COMA++ [8] is a schema matching platform that supports the composition of
schema and instance level matchers from a substantial library. In particular, we ap-
plied AllContext as the matching strategy, selected matchers Name, NamePath, Leaves
and Parents at the schema-level and Content-based at the instance-level, and employed
Average for aggregation, Both for direction, Threshold+MaxDelta for selection and Av-
erage for combination, as they are demonstrated to be effective in published experi-
mental evaluations [8]. As experience with COMA++ has not given rise to consistent
recommendations for Threshold and Delta [16, 8], we decided to employ the default
settings of Threshold and Delta (i.e., 0.1 and 0.01) provided with the COMA++ tool.

Similarity Flooding (SF) [17] is a schema matching operator used by the model
management platform, Rondo [18]. SF applies a name matcher NGram and a similarity
flooding algorithm to generate candidate matches, and selects a best match for each
element from the candidate matches under the constraint that each element can only be
associated with a single match.
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For the evaluation of SF using MatchBench, the NGram matcher and an instance
matcher (i.e., the Content-based matcher of COMA++) are used together to enable SF
making use of instance-level information. This improvement turns out to be important
for identifying schematic correspondences.

Harmony [22] is an interactive matching tool contained in a suite of data integration
tools, called OpenII [21]. For the evaluation using MatchBench, we chose the EditDis-
tance, Documentation and Exact matchers provided by Harmony but we left out the
Mapping matcher as we do not consider previous matches during the evaluation.

Harmony returns all candidate matches and allows the user to slide a threshold bar
while visually observing which matches pass different thresholds. However, there are a
large number of scenarios in MatchBench, thus selecting a threshold manually for each
of them is not practical. Therefore, we decided to follow the recommendation of the
OpenII authors. We use the top matches associated with each element while not restrict-
ing the number of matches associated with an element. In addition, as Harmony only
works at the schema-level, we combine it with the Content-based matcher of COMA++,
to provide the same basis in terms of instance-based matches as COMA++ and SF.

4.2 Effectiveness Comparison

Experiment 1: Identifying when the same entity occurs in positive scenarios. The re-
sults of this experiment are presented in Fig. 6(a) to (d). The following can be observed:
(i) All three systems have been reasonably successful at matching equivalent entities
and equivalent attributes when they have the same instances (recalls reported are fairly
high, though not illustrated here), but have been less successful for disjoint instances.
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Fig. 6. Experiments 1 and 2 for COMA++, Similarity Flooding (SF) and Harmony

(ii) A significant number of false positives between different entities and between dif-
ferent attributes have been generated by all systems (the F-measures reported in Fig.
6(a) to (d) are fairly low, given high recalls). This is due to the selection strategies these



MatchBench: Benchmarking Schema Matching Algorithms 101

platforms employ: for COMA++, the MaxDelta method always chooses a few of the top
matches associated with an element, even though the scores of these matches may be
fairly low due to the low threshold of 0.1; SF only returns 1-to-1 matches by selecting
a best match for each element, regardless of its similarity score; and Harmony keeps
a match as long as it is the top match for either of its associated elements irrespective
of the match scores, resulting in a large number of incorrect matches, which makes it
perform worst among the three platforms.
(iii) Changing the names of equivalent entities into similar or different has almost no
impact on the three platforms on matching equivalent attributes (Fig. 6(c) and (d)).

Experiment 2: Identifying when the same entity occurs in negative scenarios. The re-
sults of this experiment are presented in Fig. 6(e) and (f). The following can be ob-
served: (i) All three systems have matched the two different entities when similarities
have been injected into their names or their attributes (Average(1 – F-measure) > 0 in
Sets 13 to 16 in Fig. 6(e)). This is because all three systems choose the top candidate
matches for each element, and this also indicates that entities are matched because they
are more similar to each other than to other entities, but not because they represent the
same real world notion. (ii) COMA++ and SF perform satisfactorily in not matching
different attributes (Fig. 6(f)). Where attributes are matched, this is normally because
similar attributes have been introduced, and the remainder results from overlaps in the
instances or the names of non-equivalent attributes. Harmony has matched several dif-
ferent attributes even in the baseline scenarios where no similarities have been injected.
This shows that its selection strategy that keeps a top match for each element is not
effective in deciding the final matches.
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Fig. 7. Experiment 3 for COMA++,
Similarity Flooding (SF) and Harmony

Experiment 3: Identifying many-to-one attribute
correspondences in positive scenarios. The re-
sults of this experiment are presented in Fig.
7. COMA++ and SF have failed in this experi-
ment. In contrast to SF, which only identifies 1-
to-1 matches, the Threshold+MaxDelta method
COMA++ uses allows the identification of n-to-1
matches. However, given the delta value of 0.01,
the MaxDelta method sets a fairly small tolerance
range below the top match of an attribute, thus only being able to return matches whose
similarities are close to the top match. Harmony has identified some n-to-1 attribute
correspondences, where the n attributes and the 1 attribute have similar names (Sets
17 SI and 17 DI in Fig. 7), because Harmony chooses a best match for each element
and allows a match to be kept as long as it is the best match for either of its associated
elements. When the n attributes and the 1 attribute have similar names, the matches be-
tween the n attributes and the 1 attribute are usually the top matches for the n attributes,
and thus are selected by Harmony.

Nevertheless, an n-to-1 attribute correspondence refers to a transformation of in-
stances (e.g., string concatenation or numeric operation) between the n attributes and
the 1 attribute rather than a selection of matches whose similarities are close or the top,
as determined by comparing names or instances of pairwise attributes. We anticipate
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that iMAP [7] could identify the n-to-1 attribute correspondences, however, the system
is not publicly available.

Experiment 4: Identifying many-to-many entity correspondences in positive scenarios.
In this experiment, SF is not able to carry out the task due to its focus on 1-to-1 matches.
Where SF identifies a few matches (Fig. 8(e) and (f)), it is because the ground truth is the
1-to-1 matches in vertical partitioning. COMA++ and Harmony have performed rather
patchily in seeking to meet requirement R1, as presented in Fig. 8(a) and (b), though
COMA++ and Harmony have performed satisfactorily on investigating requirements
R2 and R3. The following can be observed for COMA++ and Harmony.
(i) COMA++ has only been able to associate the n-to-m entities, i.e., to satisfy require-
ment R1, where the same instances are being represented in the horizontal partitioning
models (Set 19 HP vs HP and Set 20 HP vs HP in Fig. 8(a)), but has failed in other
partitioning models or in disjoint instances. This is because only when the two orig-
inal entities that have the same instances are horizontally partitioned, the similarities
between each pair of entities in the source and target sets are close, and as such are se-
lected by the MaxDelta method. Harmony has performed slightly better than the others.
However, it has been fairly generous (the recalls are always high, but the precisions are
fairly low). Therefore, the patchy results shown by Harmony are because the equivalent
n-to-m entities have also been matched to different entities.
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Fig. 8. Experiment 4 for COMA++, Similarity Flooding (SF) and Harmony

(ii) Similar to requirement R1, when the alternatively fragmented entities have the same
instances and no changes have been made to attribute names, and thus the similarities
of matches for many-to-many primary key attributes are close, COMA++ has gener-
ally been successful in satisfying requirement R2, as shown in Fig. 8(c). Harmony has
performed fairly satisfactorily in satisfying requirement R2 in the SI case, however, for
cases where there is less evidence (e.g., the DI case), equivalent primary key attributes
are matched to different attributes (Fig. 8(c) and (d)).
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(iii) COMA++ has been generally successful at matching non-key attributes, i.e., satis-
fying requirement R3, in both scenario sets where the same instances are represented,
but has performed slightly worse in the presence of disjoint instances. COMA++ has
performed particularly well in the vertical partitioning scenarios (Set 19 VP vs VP
and Set 20 VP vs VP in Fig. 8(e)), as the non-key attributes only have single corre-
sponding attributes; but has performed less well in the horizontal partitioning scenarios
(Set 19 HP vs HP and Set 20 HP vs HP in Fig. 8(e)) where many-to-many correspon-
dences between non-key attributes should be identified. This indicates that COMA++
is more suited to identifying one-to-one correspondences than to many-to-many cor-
respondences. Harmony has been competitive with COMA++ in the SI case, but has
performed better in the DI case (Fig. 8(e) and (f)), as the lack of a threshold means that
Harmony tends to return more matches, some of which are true positives.

4.3 Summary

The following lessons have been learned from the application of the representative
matchers to the benchmark:

(1) The existing schema matching methods were designed principally to associate sim-
ilar schema elements, and have been shown to perform rather better at this task than at
diagnosing the schematic heterogeneities of Kim et al. [14].
(2) The existing schema matching methods were more designed for identifying one-to-
one matches than for identifying many-to-many schematic correspondences.
(3) The strategy for selecting candidate matches influences the overall effectiveness of
schema matching methods significantly.
(4) COMA++ offers alternative choices for different matching tasks. We anticipate that
with more appropriate threshold and delta values, COMA++ would have performed bet-
ter in experiments provided in MatchBench [15]. However, as a well-known problem,
this presents practical challenges that setting any parameters generally requires access
to at least some training data.
(5) SF always identifies one-to-one matches between elements of data sources, and thus
cannot be used in diagnosing many-to-many schematic heterogeneities.
(6) Designed as an interactive tool, Harmony seems unsuitable for scenarios where a
very large number of matching tasks are required and where the automatic generation
of matches are demanded, since it is not practical to manually choose matches in such
scenarios for individual human users.

5 Related Work

This section reviews work that is related to that carried out here, and considers in par-
ticular experimental evaluation practice for schema matching, generation of test cases
for schema matching and mapping, and existing benchmarks for matching.

In terms of experimental evaluation practice for schema matching, most results
have been presented in the context of specific matching proposals, as compared by
Do et al. [9]. This comparison makes explicit that the diversity in evaluation practice is
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problematic, thus providing motivation for the development of benchmarks [9]. Overall,
the comparison indicates that most evaluations have been carried out using representa-
tive real-world schemas; while this approach provides insights into the effectiveness
of techniques in specific contexts, the lack of fine-grained control over properties of
the matched schemas can make it difficult to understand precisely the circumstances in
which methods are effective. Rather than revisiting the ground covered by Do et al.,
here we focus on the published evaluations of COMA++, SF and Harmony, to which
MatchBench is applied in Section 4.

The most comprehensive comparative activity of relevance to MatchBench is the
Ontology Alignment Evaluation Initiative (OAEI) [1], which runs an annual event on
evaluating ontology matching systems. Whereas, MatchBench is designed to assess
whether specific relationships, i.e., schematic correspondences, can be identified by
schema matching systems.

In terms of generation of test cases for schema matching and mapping, test cases
have been generated to support both tuning of matching systems in eTuner [15] and
evaluation of schema mapping platforms in STBenchmark [2]. The test schemas over
which eTuner is evaluated are generated by applying a number of rules for introducing
perturbations into existing schemas. These perturbations overlap with those described
in Section 3, but differ in the following respects: (i) they do not follow an established
classification of schematic correspondences; (ii) the emphasis is on 1-to-1 matches;
(iii) no negative scenarios are described; and (iv) there is no specific identification of
collections of test scenarios.

STBenchmark [2] is a benchmark for comparing visual interactive mapping con-
struction systems that aim at assisting an expert in generating a precise specification
of mappings between two schemas with less effort. STBenchmark provides rules for
generating mapping scenarios and evaluates the degree of effort supported by a schema
mapping system in specifying mappings. In essence, these rules overlap with those de-
scribed in Section 3. However, selecting types of variations and generating evaluation
scenarios is the responsibility of users. On the other hand, MatchBench supports the
developers of matchers through the provision of immediately usable scenarios.

In terms of existing benchmarks for matching, XBenchmark [10] has been developed
in the context of XML schema matching, and STBenchmark has been used for schema
mapping generation [2]. XBenchmark reports results at a very coarse grain, and is ag-
nostic as to the test cases used. In contrast, we systematically generate test cases to as-
sess the capabilities of matchers in specific scenarios with known properties, and have
an overall objective of ascertaining whether or not the matchers provide the diagnostic
information required to identify specific schematic heterogeneities. STBenchmark aims
for evaluating interactive tools for constructing mappings from matchings, such as Clio
[11] or BizTalk Mapper5, and thus the benchmark measures the amount of human effort
involved in addressing specific mapping scenarios given specific matchings. As such,
STBenchmark is complementary to MatchBench; indeed, insights from MatchBench
may inform the development of helper components for interactive mapping tools that
suggest to users what mappings may be most appropriate in a given setting.

5 www.microsoft.com/biztalk



MatchBench: Benchmarking Schema Matching Algorithms 105

6 Conclusions

This paper has presented a benchmark for schema matching methods that identifies the
extent to which these methods are successful at identifying correspondences between
schemas in the presence of the schematic heterogeneities of Kim et al. [14]. This is
in contrast to most reported evaluations of matching methods, where the focus is on
the identification of 1-to-1 matches between individual schema elements, where the
ability to combine these observations to draw higher level conclusions has not been
investigated.

The objective of the benchmark is not to seek to identify which matching methods
are “better” than others, but rather to enhance understanding of when and why specific
matching methods are suitable for a given task, with a view to guiding matcher selection
and configuration. In providing a revised focus for the evaluation of matching methods,
on diagnosing the heterogeneities that mappings must resolve, the benchmark both sup-
ports the reassessment of existing proposals and timely evaluation of new techniques.
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Abstract. The spectacular use of ontologies generates a big amount
of semantic instances. To facilitate their management, a new type of
databases, called semantic databases (SDB) is launched. Large panoply
of these SDB exists. Three main characteristics may be used to differen-
tiate them: (i) the storage layouts for storing instances and the ontology,
(ii) ontology modeling languages, and (iii) the architecture of the target
database management system (DBMS) supporting them. During the de-
ployment phase, the database administrator (DBA) is faced to a choice
problem (which SDB she/he needs to choose). In this paper, we first
present in details the causes of this diversity. Based on this analysis, a
generic formalization of SDB is given. To facilitate the task of the DBA,
mathematical cost models are presented to evaluate the performance of
each type of SDB. Finally, two types of intensive experiments are con-
ducted by considering six SDB, both issued from industry and academic
communities; one based on our mathematical cost models and another
based on the studied semantic DBMS cost models.

Keywords: Semantic Databases, Cost Models, Query Performance.

1 Introduction

The database is one of the robust technologies. Along its history, we remark
that when a new data model (e.g., the relational, object or XML data model)
is considered; the database technology offers storage, querying and management
solutions to deal with these new data. These solutions were directly implemented
in academic and industrial DBMS. In the last decades, the semantic technology
got a lot of attention from the research community, where semantic (ontolog-
ical) data models were proposed. This phenomenon generates a large amount
of semantic data that require efficient solutions to store and manage them. In
order to honour its tradition and to keep its marketplace, the database technol-
ogy responded to this need and offered persistent solutions. As a consequence,
a new type of databases is created, called semantic databases (SDB), to store
both data and ontologies in the same repository. A large panoply of SDB exists.
OntoDB [1], Jena [2] or Sesame [3] are examples of academician SDB. Oracle
[4] and IBM [5,6] are example of solutions coming from industry.
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Contrary to traditional databases, SDB bring new dimensions: (1) the diver-
sity of ontology formalisms : each SDB uses a particular formalism to define its
ontologies (e.g., OWL [7] or PLIB [8]), (2) the diversity of storage layouts : in
a SDB, several storage layouts (horizontal, vertical, binary) are used to store
ontologies and their data, and (3) the diversity of architectures : three main ar-
chitectures of DBMS managing SDB are distinguished according to the number
of schemes used to store ontologies, data and eventually the ontology formal-
ism used to define them. These dimensions complicates the deployment phase of
SDB as each dimension may impact positively or negatively the performance of
the target applications. Thus evaluating different SDB becomes a crucial issue
for DBA. To do so, two directions are possible: (i) the use of mathematical cost
models and (ii) the real deployment of SDB on several DBMS. Most of studies
have been concentrated on the physical phase of performance of SDB, where
algorithms for selecting optimization structures such as materialized views [9]
are proposed. These studies assume that a fixed SDB is used and do not con-
sider the dimensions that we discussed. Thus the proposed cost models do not
cover all possible combinations of deployment, they only consider one SDB with
a fixed ontology formalism model, storage layout and architecture.

In this paper, we propose a formalization of the notion of SDB. The different
components of this formal model are illustrated. This formalization allows us
to compare the existing SDB. Cost models depending on the different types
of SDB are proposed and used to compare the existing SDB. To the best of
our knowledge, our proposal is the first one dealing with the development of
cost models considering the large diversity of SDB. To validate this cost model,
several experiments are run on the LUBM benchmark.

This paper consists of six sections. Section 2 defines basic notions related to
ontologies and presents the diversity of SDB. Section 3 introduces a formalization
of SDB and the section 4 defines our cost model. We present in section 5 the
performance evaluations of several SDB. Finally, section 6 concludes the paper.

2 Background: The Diversity of SDB
A variety of SDB have been proposed in the last decade. Some SDB only consider
the management of ontology instances represented as RDF data while others
also support the management of ontologies and ontology formalisms inside the
database. Moreover the management of these data is based on different storage
layouts. In this section, we introduce basic notions about ontology and detail
the different storage layouts and architectures of SDB.

2.1 Ontology Definition and Formalism

An ontology is a consensual model defined to explicit the semantics of a do-
main by a set of concepts (class or property) that can be referenced by universal
identifiers (e.g., URI). Two main types of concepts in a conceptual ontology are
distinguished: primitive and defined concepts. Primitive concepts (or canonical
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concepts) represent concepts that can not be defined by a complete axiomatic
definition. They define the border of the domain conceptualized by an ontol-
ogy. Defined concepts (or non canonical concepts) are defined by a complete
axiomatic definition expressed in terms of other concepts (either primitive or
defined concepts). These concepts are the basis of inference mechanisms like
automatic classification.

Several formalisms (or languages) have been proposed for defining ontologies.
They differ on their descriptive and deductive capabilities. Some ontology lan-
guages focuses mainly on the definition of primitive concepts. Thus they are
used to define ontologies that are consensual and enhanced conceptual models.
RDF Schema and PLIB are two examples of such languages. RDF Schema is a
language defined for the Semantic Web. It extends the RDF model to support
the definition of classes and properties. The PLIB (Parts Library) formalism is
specialized in the definition of ontology for the engineering domain which of-
ten requires a precise description (e.g., value scaling and context explication)
of primitive concepts. OWL Lite, DL and Full are ontology models with more
deductive capabilities. They support the definition of defined concepts with var-
ious constructors such as restrictions (e.g, the definition of the Man class as all
persons whose gender is male) or Boolean expression (e.g., the definition of the
Human class as the union of the Man and Woman classes).

2.2 Storage Layouts Used in SDB
Three main storage layouts are used for representing ontologies in databases
[10]: vertical, binary and horizontal. These storage layouts are detailed below
and illustrated on a subset of the LUBM ontology in the Figure 1.

TRIPLES

Subject Predicate Object

ID1 type Department

ID1 subOrganizationOf ID2

ID2 type University

TYPE

Subject Object

ID1 Department

ID2 University

SUBORGANIZATIONOF

Subject Object

ID1 ID2

UNIVERSITY

Subject

ID2

DEPARTMENT

Subject subOrganizationOf

ID1 ID2

(a) Vertical Representation

(b) Binary Representation(c) Horizontal Representation

University Department
subOrganizationOf

Ontology/instances

ID2 ID1

subOrganizationOf
type type

Fig. 1. Main storage layouts used by SDB

– vertical storage layout: it consists of a single triples table with three columns
(subject, predicate, object). Since URI are long strings, additional ta-
bles may be used to store only integer identifier in the triple table. Thus this
storage layout is a direct translation of the RDF model. It can be used to
store the different abstraction layers related to the management of ontolo-
gies. The main drawback of this storage layout is that most queries require
a lot of self-join operations on the triple table [10].The SDB Sesame (one
version of it) and Oracle use this storage layout.



110 B. Mbaiossoum, L. Bellatreche, and S. Jean

– binary storage layout: it consists of decomposing the triple table into a set
of 2-columns tables (subject, object), one for each predicate. In some
implementations, the inheritance of classes and class membership are repre-
sented in a different way (e.g., the class membership can be represented by
a unary table for each class or the inheritance using the table inheritance of
PostgreSQL). Compared to the vertical storage layout, this storage layout
results in smaller tables but queries can still require many joins for queries
involving many properties [1]. The SDB SOR uses the binary storage layout
for the representation of ontologies and their instances.

– horizontal storage layout: it consists of a set of usual relational tables. For
storing ontologies, this storage layout consists of a relational schema defined
according to the ontology formalism supported. For managing ontology in-
stances, a table C (p1 , . . . , pn) is created for each class C where p1 , . . . , pn
are the set of single-valued properties used at least by one instance of the
class. Multi-valued properties are represented by a two-column table such
as in the binary representation or by using the array datatype available in
relational-object DBMS. Since all instances do not necessarily have a value
for all properties of the table, this representation can be sparse which can
impose performance overhead. The SDB OntoDB uses the horizontal storage
layout for storing instances, ontologies and the ontology formalism.

2.3 Architectures of SDB
According to the abstraction layers managed (instances, ontologies and ontology
formalism) and the storage layouts used, SDB are decomposed into one or several
schemes leading to different architectures illustrated Figure 2.

meta_table 

ID name   
Id3 triples … …

 

Catalog system 

Data

Triples 

subj pred obj 
Id1 type univ 
Id2 type dpt 

 

1

2

Type 1 architecture 

meta_table 

ID name   
Id5 class … …
Id6 triples   

 

Catalog system 

Data

1

2Ontology 3

Class 

ID name   
Id3 dpt … …
Id4 univ   

 

Type 2 architecture Type 3 architecture

meta_table 

ID name   
Id5 class … …
Id6 triples   

 

Catalog system 

Data

1

2Ontology 3

Entity 

ID name   
Id7 class … …
Id8 property  

 

Meta-Schema 4

Triples 

subj pred obj 
Id1 type univ 
Id2 type dpt 

 

Triples 

subj pred obj 
Id1 type univ 
Id2 type dpt 

 

Class 

ID name   
Id3 dpt … …
Id4 univ   

 

Fig. 2. Different Architectures of SDB
– Type 1 architecture: some SDB like Oracle or Jena use only one schema

to store all information. As a consequence, these SDB have two parts like
classical database: the data and system catalog parts.

– Type 2 architecture: other SDB like IBM SOR [5] have chosen to separate the
storage of ontology instances from the storage of the ontology (classes and
properties) in two different schemes. This separation leads to SDB composed
of three parts: data, ontology and system catalog.
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– Type 3 architecture: SDB like OntoDB [1] have introduced a fourth part
to store the ontology formalism used. This part, called the metaschema in
OntoDB, is a specialized system catalog for the ontology part. With this
part, users can modify the ontology formalism used in the SDB.

3 Formalization of SDB and Comparison Features

3.1 Formalization of SDB
In the previous sections we have seen that SDB presents an important diversity
in terms of architecture, storage layouts and ontology formalisms supported. To
provide a general view of SDB that can be used as a basis for the physical design
of SDB, we propose the following formalization:
SDB : < MO, I, Sch, Pop, SMMO, SMInst, Ar > , where :

– MO represents the ontology (model part). It is formalized by the following
5-tuple: < C, P , Applic, Ref , Formalism > where :

• C represents the classes of the ontology.
• P represents the properties of the ontology.
• Applic : C → P 2 is a function returning all properties whose domain is
a given class.

• Ref : C → (operator, exp(C)) is a function that maps each class to an
operator (inclusion or equivalence) and an expression of other classes.
It is used to represent the relationship between classes (subsumption,
Boolean operators, etc.).

• Formalism is the ontology formalism used to define the ontology.

For example, an OWL ontology is defined by:< Classes, Properties, Applic,
descriptionlogicoperators, OWL> where descriptionlogicoperators is the
set of description logic operators supported by the given version of OWL.

– I: represents the set of ontology instances.
– Sch : C → P 2 is a function that maps each class to the set of properties

valued by at least one instance of this class.
– Pop : E → 2I is a function that associates a class to its instances.
– SMMO is the storage layout used to represent the ontology (vertical, hori-

zontal or binary).
– SMInst is the storage layout used to represent the ontology instances.
– Ar is the SDB architecture (Type1, Type2, Type3).

According to this formalization, the SDB Oracle is represented by:
SDBOracle :< MO :<Classes,Properties,Applic,Operators (RDFS,OWLSIF
or OWLPrime), (RDFS or OWL)>, RDFInstances, φ, tablesRDF link and
RDF values giving instances of each class, V ertical, V ertical, Type1>
This model gives a general view on the diversity of SDB. In the next section, we
gives a more precise comparison of SDB by defining some key futures of these
systems.
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3.2 Key Features of SDB
To deepen our study, we have compared six SDB: three coming from research
(OntoDB [1], Sesame [3] and Jena [2]) and three coming from industry (Oracle
[4], DB2RDF [6] and IBM SOR [5]). From our study, we have identified a set of
key features of SDB. These features include :

– Natural language support: this feature consists in using the linguistic infor-
mation (sometimes in several natural languages) available in an ontology.

– Query language: the query language supported by the SDB.
– Version and evolution of ontologies: this feature consists in providing a way

of modifying an ontology while keeping track of the modification done.
– Inference support: this feature consists in supporting the inference rule de-

fined for the ontology formalism supported.
– User-defined rules: this feature consists in allowing users to define their own

derivation rules.

Table 1 shows these key features of SDB (in addition to the previous identified
criteria) and their availability in the SDB studied.

Table 1. Comparative study of SDB (V : vertical, H: horizontal, B: binary, H: hybrid)

Features Oracle SOR OntoDb Jena Sesame Db2rdf

Formalism supported RDF,
OWL

OWL PLIB RDF,
OWL

RDF,
OWL

RDF

Natural Language Support yes yes yes no no no

Query Languages sql,
sparql

sparql ontoql,
sparql

rql, Rdql,
sparql

serql,
sparql

sql,
sparql

Version and evolution no no yes no no no

Inference support yes yes no yes yes no

User-defined rules yes no no yes yes no

Ontology Storage layout V H H V, H V, H V

instances Storage layout V B H H V, B V

Architecture Type1 Type2 Type3 Type1 Type1 Type1
Underlying DBMS Oracle DB2,

Derby
Postgres Oracle,

Postgres,
Mysql

Oracle,
Postgres,
Mysql

DB2

The performance of current SDB is also an important feature. We propose
a theoretical comparison through a cost model (Section 4) and an empirical
comparison of six SDB to validate our cost model (section 5).

4 Cost Model

The cost model is an important component of a query optimizer. It can be
used for important tasks such as selecting the best query plan or using adaptive
optimization techniques. In this section we propose a cost model for SDB that
takes into account their diversity.
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4.1 Assumptions

Following assumptions of classical cost models such as those made in System
R, we assume that (1) computing costs are lower than disk access costs, (2)
statistics about the ontology and their instances are available (e.g., the number
of instances by class) and (3) the distribution of values is uniform and attributes
are independent of each other.

We also need to make specific assumption for SDB. Indeed logical inference
plays an important role in SDB. A SDB is said to be saturated if it contains
initial instances and inferred instances, otherwise it is called unsaturated. Some
SDB are saturated during the data loading phase either automatically (e.g.,
IMB SOR) or on demand (e.g., Jena or Sesame). Other SDB (e.g., Oracle) can
be saturated at any time on demand. Our cost function relies on the saturated
SDB (it does not take into account the cost of logical inference).

4.2 Parameters of the Cost Function

As in traditional databases, the main parameters to be taken into account in
the cost function of SDB are: the cost of disk access, the cost of storing in-
termediate files and the computing cost. Let q be a query and sdb a semantic
database against which q will be executed and cost the cost function. In terms
of architecture model, we can see that compared to a traditional cost model, the
cost model in SDB is increased, resulting from the access cost to different parts
of the architecture:
Type1 : cost(q, sdb) = cost(syscatalog) + cost(data)
Type2 : cost(q, sdb) = cost(syscatalog) + cost(data) + cost(ontology)
Type3 : cost(q, sdb) = cost(syscatalog) + cost(data) + cost(ontology)

+ cost(ontology meta − schema)
The cost to access the system catalog (cost(syscatalog)) is part of the cost model
of classical databases. It is considered negligible because the system catalog can
be kept in memory. Thus, the query cost function depends on the architecture
and the storage model of SDB.

We assume that the meta-schema and the ontology-schema are small enough
to be also placed in memory. Hence in all architectures the cost can be re-
duced to the cost of data access, expressed as the number of inputs/outputs
(Cost(q, sdb) = cost(data)). The cost of queries execution is heavily influenced
by the operations done in the query, which are mainly projection, selection and
join. Our cost function focuses on these three operations.

4.3 Our Queries Template

We consider queries expressed according to template below. These queries can
be expressed in most semantic query languages like SPARQL, OntoQL, etc. If
C1 , . . . , Cn are ontology classes and p11 , . . . , pnn properties, the considered
query pattern is the following:
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(?id1 , type,C1 ) (?id1 , p11 , ?val11 ) · · · (?id1 , pn1 , ?valn1 ) [FILTER()]
(?id2 , type,C2 ) (?id2 , p12 , ?val12 ) · · · (?id2 , pn2 , ?valn2 ) [FILTER()]
...
(?idn , type,Cn) (?idn , p1n , ?val1n ) · · · (?idn , pnn , ?valnn ) [FILTER()]

4.4 Cost of Selections and Projections

In our template, a selection is a query that involves a single class. It has the fol-
lowing form: (?id , type,C )(?id , p1 , ?val1 ) . . . (?id , pn , ?valn )[FILTER()]. We dis-
tinguish single-triple selections, which are queries consisting of a single triple
pattern, and multi-triples selections, consisting of more than one triple pattern
(all concerning a single class). In the vertical and binary representations only
single-triple selections are interpreted as selections, because multi-triples selec-
tions involve joins. We define the cost function as in relational databases. For
single-triple selection, our function is equal to the number of pages of the table
involved in the query:

– vertical layout: Cost (q, sdb) = |T |, where |T | is the number of pages of the
table T. If an index is defined on the triples table, cost(q, sdb) = P (index)+
sel(t) ∗ |T |, where P(index) is the cost of index scanning and sel(t) is the
selectivity of the triple pattern t as defined in [11].

– binary layout: the selection is done on the property tables. Cost(q, sdb) = |Tp|
where Tp is the property table of the property of the query triple pattern.
With an index on the selection predicate, cost(q, sdb) = P (index)+sel∗|Tp|,
where sel is the selectivity of the index.

– horizontal layout: the selection targets the tables of classes domain of the
property of the query triple pattern. Cost(q, sdb) =

∑
Tcp∈dom(p)(|Tcp|),

where Tcp are the tables corresponding to the classes domain of the property
of the query triple pattern. If there is an index defined on the selection
predicate, cost(q, sdb) =

∑
Tcp∈dom(p)(P (index) + sel ∗ |Tcp|) where sel is

the index selectivity.

Multi-triples selection queries are translated into joins in vertical and binary
layouts. In the horizontal layout, the cost function is the same as the one defined
for single-triple selection. A projection is a free filter selection having a list of
attributes whose size is less than or equal to the number of properties of the
class on which it is defined. Its cost is defined in the same way as the selection.

4.5 Cost of Joins

Join operations are done in queries that involve at least two triple patterns. In
the horizontal layout these triple patterns must belong to at least two classes
from different hierarchies. In the vertical layout, we note that self-join of triples
table can be done in two ways: (1) a naive join of two tables i.e., a Cartesian
product followed by a selection. We call this a classic join. (2) a selection for
each triple pattern followed by joins on selection results. We call that a delayed
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join. We consider separately these two approaches of self-join of triples table.
Our cost function for other approaches is the same as in relational databases,
and depends on the join algorithm. Only the cost of hash join is presented in
this paper (Tab. 2 where V, B and H represent respectively the Vertical, Binary
and Horizontal layouts).

Table 2. Cost of joins (dom(p) : domain of p)

Hash join index delayed join classic join

V: join(T,T), T triples table 2 ∗ |T |+ 4 ∗ (|t1|+ |t2|) 6 ∗ |T |
B: join(T1, T2), Ti Tables of prop. not applicable 3 ∗ (|T1|+ |T2|)
H: join(T1, T2), Ti tables of classes not applicable

∑
T∈dom(p) 3(|T1|+ |T2|)

4.6 Application of Cost Model

To illustrate our cost function, we considered queries 2, 4 and 6 of the LUBM
benchmark. We have translated these queries according to the different storage
layouts. Then we have made an evaluation of their cost using statistics of the
Lubm01 dataset (given in the section 5). Figure 3 presents the results obtained.
It shows that processing a self-join query on the triples table with a classic join
requires more I/O than with a delayed join. We observe that for a single-triple
selection, the binary layout requires less I/O, so it is likely to be more efficient
than other storage layouts. In other types of queries (join queries and multi-
triples selections), the horizontal layout provides the best results. This theoretical
results have been partially confirmed by our experimental results presented in
the next section. Indeed as we will see, OntoDB (horizontal layout) provide
the best query response time followed by Oracle (vertical layout). However for
some SDB such as Jena, Sesame and DB2RDF, the evaluation results do not
clearly confirm these theoretical results. We believe this is due to the specific
optimization done in these systems.

5 Performance Evaluation

We have run experiments to evaluate the data loading and query response time
of the six considered SDB. As OntoDB was originally designed for the PLIB
formalism we have developed a module to load OWL ontologies.

5.1 Dataset Used in Experiments

We used the benchmark of Lehigh University (denoted LUBM) to generate five
datasets with respectively 1, 5, 10, 50 and 100 universities (denoted respectively
Lubm01, Lubm05, Lubm10, Lubm50 and Lubm100). The number of instances
and triples generated are presented in Table 3. Our experiments were conducted
on a 3.10 GHZ Intel Xeon DELL personal computer with 4GB of RAM and
500GB of hard disk. We have used the following DBMS: Oracle 11g, IBM DB2
9.7 for SOR and DB2RDF and PosgresSQL 8.2 for OntoDB, Jena and Sesame.
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Table 3. Generated datasets

Dataset Lubm01 Lubm05 Lubm10 Lubm50 Lubm100

# instances 82415 516116 1052895 5507426 11096694

# triples 100.851 625.103 1.273.108 6654856 13405675

5.2 Performance in Terms of Data Loading Time

We loaded and measured the loading time four times for each dataset on each
SDB and took the average time. Results are given in Table 4. Since Sesame
can be used as a SDB with vertical or binary approach, we tested these two
approaches. In the following, we call SesameSdbI and SesameSdbII the Sesame
system implemented respectively with the vertical and binary layout. For Oracle
we used the rule base owlprime.

Table 4. Summary of loading time (in sec)

Dataset Lubm01 Lubm05 Lubm10 Lubm50 Lubm100

Oracle 12 55 116 1562 39216

DB2RDF 11 53 109 2322 22605

Jena 25 188 558 40862 147109

SesameSdbI 16 158 391 23424 65127

SesameSdbII 27 231 522 33521 260724

OntoDB 15975 72699 146023 − −
IBM SOR 90 590 1147 − −
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Interpretation of Results. In terms of loading time, as we can see in Table 4,
Oracle and DB2RDF provide the best results. This can be explained by the
specific and optimized loading mechanisms that have been build on the Oracle
and DB2 DBMS. Compared to DB2RDF, SOR is slower as it takes a lot of time
to make the inferences on the ontology and instances and we were not able to
load LUBM50 and LUBM100. For the other SDB, the results of the two versions
of Sesame and Jena are similar with a slight advantage for the vertical layout
of Sesame (the triple table which is a direct translation of the RDF model).
OntoDB is slower that the other SDB. This overhead is most probably due to
our added loading module that imposes a new layer on top of the loading engine.
Like with SOR, we were not able to load LUBM50 and LUBM100.

5.3 Performance in Terms of Queries Processing Time

We measured the query response time of queries on each SDB four times and we
kept the average time. We used the 14 queries of the LUBM benchmark, adjusted
to be accepted by our SDB. The datasets used are Lubm01 and Lubm100. The
results obtained led to the histograms presented Figure 4 and Figure 5. For
readability we present the results of the queries that have a long response time
in Table 5. As we were not able to load LUBM100 on OntoDB and SOR, the
query response times for these dataset are not shown.

Table 5. Query response time on LUBM100 (Q2,Q6,Q7,Q9,Q14) (in sec)

Q2 Q6 Q7 Q9 Q14

Oracle 240,75 1743 125,76 1973,32 473,23

DB2RDF 95552,5 12815,5 330454,67 692432 6477

Jena 372760,33 147696 224287,33 3538480 163798

SesameSDB1 32920,66 29922,66 21907,66 110498 16707,33

SesameSDB2 115819 70458 2266 242991 64107

Interpretation of Results. Regarding the queries response times, OntoDB
reacts better than the other SDB for most queries executed on LUBM01. In-
deed, since OntoDB uses the horizontal layout and that queries involve several
property, it performs less join operations than other SDB. Indeed all queries on
properties of a same class can be reduced to selection operations on table corre-
sponding to this class, which is not the case when we use an other layout. Query 4
of the benchmark LUBM is a good illustration. This query is made of five triples
patterns having all the same domain (Professor). This query does not need a
join operation in OntoDB, but requires at least four joins in other systems. If
the query involves less property (e.g., query 6 of LUBM is a simple selection
query on a single property), the query response time is close to the SDB that
use a binary layout as this layout also requires a single scan of a unique property
table. For this query, the horizontal layout is the worse as it requires a scan of
the whole triple table (Oracle, DB2RDF). We notice that even if Oracle uses an
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horizontal layout, the query response time are really close to OntoDB and better
than the other SDB. These good results are certainly due to the specific opti-
mization techniques set up in this system. Indeed, several materialized view are
used to reduce the need to scan the whole triple table. Considering the Sesame
SDB, we note that the binary layout implementation of Sesame (sesameBdsII)
outperforms slightly the vertical layout (sesameBdsI). For the SDB based on
DB2, the poor performance of DB2RDF can be explained by the fact that it
uses a horizontal layout with a lot of tables linked to the triples table (and so
need many joins in addition to the self-joins of the triple table). The result of
SOR for LUBM01 are slightly better than DB2RDF but worst than the other
SDB. Like for the loading part, this result is due to inference done by SOR
during the query processing. Indeed for the LUBM query 12, other SDB return
an empty result since there is no explicit statement of an instance of the Chair
class. On the contrary SOR returns several results thanks to a deductive process
(an instance of Professor is also an instance of Chair if it is at the headOf a
Department). If we add a rule reflecting this assertion to other SDB having an
inference engine they would also provide answers (but with a worse execution
time). Considering the deductive process, Jena and Sesame use inference engines
based on a central memory management or file system, but they do not work on
data stored in databases yet. It is also possible to use an inference engine during
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the data loading phase and to store all inferred data in the database. But if we
do that the loading time will be worst.

6 Conclusion

In recent years, ontologies have been increasingly used in various domains. There-
fore a strong need to manage these ontologies in databases has been felt. As a
consequence, both academics and industrialists have proposed persistence solu-
tions based on existing DBMS. Unlike traditional DBMS, SDB are diverse in
terms of ontology formalisms supported, storage layouts and architectures used.
To facilitate the understanding of this diversity, we have studied six SDB and
proposed a model that captures this diversity. Considering the performance of
SDB, we have conducted a study both theoretically by the definition of a cost
model and empirically by measuring the data loading time and query processing
time on the LUBM benchmark. The results show that our cost model predict
the performance obtained for the SDB that do not use specific optimizations.
Regarding the performances, we first note the effectiveness of industrial seman-
tic databases in terms of data loading time. For the query response time, the
results are different. The SDB that uses an horizontal layout give good results
for most queries but the completeness of the inference process has to be taken
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into account. As a further step in our study of SDB, we plan to modify the
data and queries used in our experiment to determine under what conditions a
storage layout and/or an architecture is better than an other. The application of
our cost model for specific query optimization problem in SDB (e.g. materialized
view selection) is also an important perspective for future work.
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Abstract. A number of uncertain data models have been proposed,
based on the notion of compact representations of probability distribu-
tions over possible worlds. In probabilistic relational models, tuples are
annotated with probabilities or formulae over Boolean random variables.
In probabilistic XML models, XML trees are augmented with nodes
that specify probability distributions over their children. Both kinds of
models have been extensively studied, with respect to their expressive
power, compactness, and query efficiency, among other things. Probabilis-
tic database systems have also been implemented, in both relational and
XML settings. However, these studies have mostly been carried out inde-
pendently and the translations between relational and XML models, as
well as the impact for probabilistic relational databases of results about
query complexity in probabilistic XML and vice versa, have not been
made explicit: we detail such translations in this article, in both direc-
tions, study their impact in terms of complexity results, and present in-
teresting open issues about the connections between relational and XML
probabilistic data models.

Keywords: probabilistic data, relational data, XML.

1 Introduction

A variety of systems have been put forward to represent probabilistic data
and cover the needs of the various applications that produce and process un-
certain data. In particular, both relational [1] and XML [2] probabilistic data
models have been studied in depth, and have been investigated in terms of
expressive power, query complexity, underlying algorithms, update capabilities,
and so on. Similarly, systems have been developed to query probabilistic rela-
tional databases (e.g., MayBMS [3] and Trio [4]) or probabilistic documents (e.g.,
ProApproX [5] and [6]). By and large, these two lines of work have been con-
ducted independently, and the results obtained have not been connected to each
other.
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The purpose of this article is to give a general overview of probabilistic rela-
tional and XML data models, describe the various query languages over these
models, present how one can encode queries and probabilistic instances of each
one of these models into the other, and investigate the consequences of these
encodings in terms of complexity results. We focus specifically on the existence
and efficiency of translations across models, and on the transposition of query
complexity results, rather than on a systems aspect. Section 2 introduces the
probabilistic representation systems we consider, and Section 3 the correspond-
ing query languages. We describe encodings of relations into XML in Section 4,
and of XML into relations in Section 5.

2 Data Models

Probabilistic data models are a way to represent a probability distribution over
a set of possible worlds that correspond to possible states of the data. We focus
on the discrete and finite case where the set of possible worlds is finite; each
possible world is associated with a probability value, i.e., a rational in (0, 1],
such that the sum of probabilities of all possible worlds is 1. States of the data
that are not part of the set of possible worlds have a probability of 0.

A straightforward probabilistic data model is to materialize explicitly the
collection of possible worlds with their probability. However, this straightforward
representation is not compact ; it is as large as the number of possible worlds, and
any operation on it (such as answering a query) must iterate over all possible
worlds. For this reason, probabilistic data models usually represent the set of
possible worlds and the probability distribution in an implicit fashion.

Probabilistic data models usually achieve a trade-off between expressiveness
and computational complexity: ability to represent as many different kinds of
distributions as possible on the one hand, tractability of various operations on
the model, such as querying, on the other hand. In this section, we present
probabilistic data models for relational data and for XML data: in both settings,
we will move from the less expressive to the more expressive.

2.1 Relational Models

Probabilistic models for relational data have usually been built on top of models
for representing incomplete information. Incomplete information defines a set
of possible worlds (the possible completions of the existing information), and
probabilistic models usually add some probability scores for each of the possible
worlds. See [1] for a general survey of probabilistic relational models.

The tuple-independent model. One of the simplest ideas to define a probabilis-
tic relational model is the tuple-independent model [7,8] (also known as tables
with maybe tuples [9] or probabilistic ?-tables [10]). In this model, a probabilistic
database is an ordinary database where tuples carry a probability of actually
occurring in the database, independently from any other tuple. Formally, given
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a relational schema Σ, an instance D̂ of the probabilistic relational schema Σ̂ is
defined as a Σ-instance in which every tuple R(a) is annotated with a rational

probability value Pr
̂D(R(a)) ∈ (0, 1] (with tuples absent from D̂ having prob-

ability 0). The probability of a Σ-instance D according to D̂ is then defined
as Pr

̂D(D) =
∏

R(a)∈D Pr
̂D(R(a))

∏
R(a)/∈D

(
1− Pr

̂D(R(a))
)
, the product of the

probabilities in D̂ of retaining the tuples occurring in D and dropping the oth-
ers (note that the second product is infinite but has finite support). Since each

tuple is either retained or dropped, there are 2| ̂D| possible worlds of non-zero
probability, and we can check that their probabilities sum to 1.

This model is simple but not very expressive because of the independence
assumption. As an example, if the original schema has a predicate R(A,B) with a
key constraintA→ B, we cannot give non-zero probability to instances {R(a, b)}
and {R(a, b′)} without giving non-zero probability to instance {R(a, b), R(a, b′)}
that violates the key constraint.

The block-independent-disjoint model. An extension of the tuple-independent
model to support simple mutually exclusive choices is the block-independent dis-
joint model [11,12]. In this variant, we assume that every predicate R of Σ is
of the form R(K,A), where the attributes have been partitioned into two sets:
K, the possible worlds key, and A, the value attribute set. Besides, we require
that the key constraint K → A holds. The BID schema Σ̂ is defined as be-
fore with the added constraint that

∑
a∈A Pr

̂D(R(k, a)) � 1 for every predicate

R̂(K,A) and possible worlds key k ∈ K. Intuitively, for each k, there is a prob-
ability distribution on the possible exclusive choices of a (including the default

option of choosing no a). A Σ̂-instance D̂ defines the probability distribution

Pr
̂D(D) =

∏
R(k,a)∈D Pr

̂D(R(k, a))
∏

R(k,•)/∈D

(
1−∑

̂R(k,a,p)∈ ̂D Pr
̂D(R(k, a))

)
with the added constraint that there are no duplicate facts R(k, a) and R(k, a′)
for any R(K,A) ∈ Σ̂, K ∈ K, a, a′ ∈ A, a = a′ (otherwise the probability is 0).

An example BID database, consisting of a single Customer(Id,Name,City)
relation (where Id is the key) is given in Fig. 1. Mutually exclusive names and
cities are given for the two customers, with the possibility also that neither
customer exists in a possible world. Such an uncertain table may be obtained,
for instance, following a data integration process from conflicting sources.

Intuitively, instances are drawn from a BID instance by picking one of the
mutually exclusive choices of a within each block defined by a choice of k, and
doing so independently across the blocks. The BID model is more expressive
than the tuple-independent model (which can be seen as the case in which all
attributes of every predicate are taken as the possible worlds key K).

Of course, the structure of the BID model is still unable to represent many
kinds of probability distributions. For instance, if instance {R(a, b), R(a′, b′)} has
non-zero probability in a relation whose possible worlds key is the first attribute,
then instances {R(a, b)} and {R(a′, b′)} will also have non-zero probability.
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Customer

Id Name City Pr

1 John New York 0.4
1 Johny New York 0.2
1 John Boston 0.1
2 Mary Boston 0.4
2 Maria Boston 0.1

Fig. 1. Example BID
database
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Fig. 3. Example PrXML{ind,mux} tree encoding the BID
database of Fig. 1

Fig. 2. Example of
a TPQJ to encode
Customer(x, y,Boston)
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The pc-tables model. We will now present a much more expressive model: prob-
abilistic c-tables (a.k.a. pc-tables) [9,3]. To simplify the writing, we will restrict
our exposition to Boolean pc-tables, that are known to be as expressive as general
pc-tables [9].

Given a relational schema Σ, an instance D̂ of the probabilistic relational
schema Σ̂ is a Σ-instance which annotates every tuple R(a) with a Boolean
formula Con

̂D(R(a)) over a global finite set of variables V and provides an
additional relation B assigning a probability value Pr

̂D(x) ∈ (0, 1] to each
variable x ∈ V occurring in the instance (intuitively, the probability that x
is true). Given an assignment ν from the set V of Boolean assignments (i.e.,
functions from V to Boolean values {t, f}), we define Dν to be the Σ-instance

obtained from D̂ by removing each fact R(a) such that Con
̂D(R(a)) evaluates

to f under ν. We then define the probability of assignment ν as: Pr
̂D(ν) =(∏

x∈V s.t. ν(x)=t Pr ̂D(x)
)(∏

x∈V s.t. ν(x)=f

(
1− Pr

̂D(x)
))

. The probability of a

Σ-instance D is then: Pr
̂D(D) =

∑
ν∈V s.t. Dν=D Pr

̂D(ν). Intuitively, Σ-instances
are obtained by drawing an assignment of the variables independently according
to B and keeping the facts where the condition is true.

It is not very hard to see that any probability distribution over any finite
set of possible worlds can be modeled with a pc-table, given sufficiently many
tuples and variables. In particular, BID tables can be expressed as pc-tables, and
a direct polynomial-time translation is straightforward.

2.2 XML Models

We will now present probabilistic models for XML data. This presentation is
inspired by [2] in which more details can be found. Given an infinite set of
labels L, an XML document is a rooted, unordered, directed, and finite tree
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where each node has a label in L. For simplicity, we will always require that the
root of an XML document (probabilistic or not) has a fixed label σr ∈ L. We
denote by X the collection of XML documents over L.

The PrXML{ind} data model. We define a probabilistic document in the
PrXML{ind} model as an XML document over L ∪ {ind} (ind for independent),
where the outgoing edges of ind nodes carry a rational number in (0, 1] as la-
bel. Such documents will define a probability distribution over X that we will
describe as a sampling process: in a top-down fashion, for every ind node x,
independently choose to keep or discard each of its children according to the
probability label on each outgoing edge, and, in the father y of x, replace x by
the descendants of x that were chosen, removing x and its unchosen descendants.
Perform this process independently for every node ind.

Once all ind nodes have been processed and removed in this way, the outcome
is ar XML document over L, and its probability is the conjunction of the inde-
pendent events of all the results of the draws at ind nodes. The probability of a
document is the sum of the probability of all outcomes leading to it. Note that
multiple different outcomes may lead to the same document.

The PrXML{mux} data model. In the same fashion, we can define the PrXML{mux}

data model (mux for mutually exclusive), in which we also require that the
outgoing edges of each mux node x carry a rational number in (0, 1] as label such
that the labels of all the outgoing edges of x sum to at most 1. The sampling
process proceeds as described above, except that each mux node choses at most
one of its children according to the probability label on each outgoing edge.

Of course, we can define the PrXML{ind,mux} data model as the data model in
which both ind and mux nodes are allowed, which was studied under the name
ProTDB in [13]. An example PrXML{ind,mux} is given in Fig. 3; as we shall see in
Section 4, it is an encoding of the BID database of Fig. 1.

The PrXML{fie} data model. Finally, we define the PrXML{fie} data model (fie
for formula of independent events), in which the outgoing edges of fie nodes are
labeled with Boolean formulae on some finite set V of Boolean variables and in
which we are given a rational probability value P (x) in (0, 1] for each variable
x ∈ V . The sampling process is to draw independently the truth value of each
x ∈ V according to the probability P (x), and replace each fie node by its children
for which the Boolean formula appearing as an edge label evaluates to t under
the assignment that was drawn.

Expressive power and compactness. PrXML{ind} and PrXML{mux} are incompa-
rable in terms of expressive power [14]: some probability distributions can be

expressed by one and not by the other. Thus, PrXML{ind,mux} is strictly more
expressive than these two, and it is easy to see that one can actually use it to
represent any finite probability distribution over X (recall that the root label of
all possible documents is fixed).
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Any PrXML{ind,mux} probabilistic document can be transformed in polynomial
time into an PrXML{fie} document (where all Boolean formulae are conjunctions)
which yields the same probability distribution: ind nodes can be encoded with fie
nodes by creating one Boolean variable for each of their descendants; a similar
encoding exists for mux nodes by first encoding n-ary mux nodes in a subtree
of binary mux nodes, and then replacing each binary mux node by one fie node
whose children are labeled by x and ¬x, where x is a fresh Boolean variable with
adequate probability.

On the other hand, no polynomial time translation exists in the other direc-
tion [14], even when considering PrXML{fie} probabilistic documents with con-

junctions only. In other words, though PrXML{ind,mux} and PrXML{fie} have the
same expressive power, the latter can be exponentially more compact than the
former.

3 Querying Probabilistic Data

Up to this point, we have described probabilistic data models that serve as a
concise representation of a probability distribution on a set of possible worlds.
However, the main interest of such models is to use them to evaluate queries on all
possible worlds simultaneously and return the aggregate results as a probability
distribution on the possible answers. For clarity of the exposition, we restrict
ourselves to Boolean queries, that are either true or false on a given possible
world. Extensions to non-Boolean queries are straightforward.

More formally, given some probabilistic data model, given a probabilistic in-
stance M̂ defining a probability distribution over possible worlds X, and given
a Boolean query q that can be evaluated on each X ∈ X to produce either t
or f, we define the probability of q on M̂ as: q̂(M̂) =

∑
X∈X s.t. q(X)=t Pr̂M (X).

Evaluating q̂ on M̂ means computing the probability of q on M̂ . This is called
the possible-worlds query semantics.

In this section, we present known results about the complexity of query eval-
uation under this semantics. The query is always assumed to be fixed, i.e., we
discuss the data complexity of query evaluation.

We will need some basic notions about complexity classes for computation and
counting problems [15]. The class FP is that of computation problems solvable
in deterministic polynomial time, while #P problems are those that can be ex-
pressed as the number of accepting runs of a polynomial-time nondeterministic
Turing machine. A computation problem is in FP#P if it can be solved in deter-
ministic polynomial time with access to a #P oracle. A problem is FP#P-hard if
there is a polynomial-time Turing reduction from any FP#P problem to it.

3.1 Relational Models

Typical query languages on relational data include conjunctive queries (CQs, i.e.,
select-project-joins), unions of conjunctive queries (disjunctions of conjunctive
queries, a.k.a. UCQs), and the relational calculus. A CQ is hierarchical if for any
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two variables x and y, either the intersection of the set of atoms that contain x
with that of y is empty, or one of them is contained in the other (this notion can
be extended to arbitrary relational calculus queries, see [1]). A CQ is without
self-join if all atoms bear distinct relation names.

For instance, a simple CQ for the database of Fig. 1, testing whether any
customer is located in Boston, is qBoston = ∃x∃yCustomer(x, y,Boston). This
query, having a single atom, is trivially hierarchical and without self-joins. It is
easy to see that q̂Boston(D̂) = 0.55, where D̂ is the database of Fig. 1.

Extensive results exist about the complexity of evaluating the probability of
a query for these various query languages over the tuple-independent, BID, and
pc-tables models. We refer to [1] for a detailed overview and summarize here the
main results:

– Query evaluation for relational calculus queries over pc-tables is FP#P [16].
– CQs of only one atom are already FP#P-hard over pc-tables, even when the

Boolean formulae in the pc-table are restricted to conjunctions [17].
– For UCQs over tuple-independent databases, there is a dichotomy between

FP#P-hard queries and FP queries [18]; however, the only known algorithm
to determine the complexity of a query is doubly exponential in the query
size, and the exact complexity of this problem is unknown.

– A similar dichotomy, but with a polynomial-time test, holds for CQs without
self-joins over BIDs. [16]

– A CQ without self-joins is FP#P-hard over tuple-independent databases if
and only if it is not hierarchical. [8] Being non-hierarchical is a sufficient
condition for any relational calculus query to be FP#P-hard.

3.2 XML Models

Tree-pattern queries with joins. The first query language that we will consider
on XML data are tree-pattern queries with joins (TPQJs). A TPQJ q is a rooted,
unordered, directed and finite tree whose nodes are labeled either with elements
of L or with variable symbols taken from some infinite fixed set of variables V ,
and whose edges are either child or descendant edges. Given an assignment
ν : V → L, we define the application of ν to q (written q[ν]) as the tree where
each label x ∈ V is replaced by ν(x). A match of q in an XML document d is
an assignment ν and a mapping μ from the nodes of q[ν] to the nodes of d such
that:

1. For any child edge x→ y in q[ν], μ(y) is a child of μ(x) in d.
2. For any descendant edge x→ y in q[ν], μ(y) is a descendant of μ(x) in d.
3. For any node x of q[ν], its label is the same as that of μ(x) in d.

Intuitively, we match the query with some part of the document so that child,
descendant, and fixed label constraints are respected, and all the occurrences of
a variable are mapped to nodes with the same label. Tree-pattern queries (TPQs)
are TPQJs where all variable symbols are distinct.

We show in Fig. 2 an example TPQJ. Here, x and y are variables, all other la-
bels are from L. We can show that this query, when evaluated on the
PrXML{ind,mux} tree of Fig. 3, yields a probability of 0.55.
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Monadic second-order logic with joins. A more expressive query language for
XML documents is monadic second-order tree logic with value joins (MSOJ).
Remember that a monadic second-order formula is a first-order formula extended
with existential and universal quantification over node sets. An MSOJ query is
a monadic second-order formula over the predicates x → y (y is a child of x),
λ(x) (x has label λ), and x ∼ y (x and y have same label, a.k.a. value join).

A MSO query is an MSOJ query without any value join predicate.

Query complexity. We refer to [2] for a survey of query complexity in probabilistic
XML and summarize here the main results:

– Query evaluation for TPQJs over PrXML{fie} is FP#P [19].

– For MSO queries over PrXML{ind,mux}, query evaluation is linear-time [20].

– Any non-trivial TPQ is FP#P-hard over PrXML{fie}, even when the Boolean
formulae of the document are restricted to conjunctions [21].

– If a TPQJ has a single join (i.e., a single variable appears twice in the query),

then the following dichotomy holds over PrXML{ind,mux} [19]: if it is equivalent
to a join-free query, it is linear-time; otherwise it is FP#P-hard. Testing for
this equivalence is ΣP

2 -complete. It is open whether this still holds for TPQJs
with more than one join.

Note that this list of results has some similarity with that in the relational setting:
a broad FP#P membership result, hardness of models with Boolean formulae,
even with just conjunctions, and a dichotomy between FP#P-hard queries and
FP queries for some class of queries over “local” models. In the following, we
establish connections between relational and XML settings, exploring whether
this yields any connections between these complexity results.

4 From Relations to XML

We explain here how to encode probabilistic relational data models into proba-
bilistic XML.

Encoding instances. Given a relational schema Σ = {(Ri(A
i
j))}, we will define

the node labels 〈�〉, 〈Ri〉, 〈Ai
j〉, along with labels representing all possible con-

stants as text values. The root label of XML documents will always be 〈�〉. XML
representations of instances of the schema will obey the following DTD:

〈�〉 : (〈R1〉∗, ..., 〈Rn〉∗)
∀i, 〈Ri〉 : (〈Ai

1〉, ..., 〈Ai
ni
〉)

∀i, j, 〈Ai
j〉 : #PCDATA

We now define the encoding 〈D〉 of an instance D of Σ. The encoding 〈Ri(a1, ...,
ani)〉 of the fact Ri(a1, ..., ani) is the subtree whose root has label 〈Ri〉 and chil-
dren 〈Ai

j〉, each child 〈Ai
j〉 having as child one text node with a label 〈aj〉 repre-

senting the corresponding aj . The encoding 〈D〉 of a full instance D is the XML
document whose root has one child 〈Ri(a1, ..., ani)〉 per fact Ri(a1, ..., ani) ∈ D.
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Encoding probabilistic instances. We will now define the encoding 〈D̂〉 of proba-
bilistic instances D̂ for the various probabilistic relational data models that we
described in Section 2.1. The encodings will be given in the probabilistic XML
data models of Section 2.2. When we say that we “encode” one probabilistic
data model into another, we mean that the following property holds:

∀D̂,D, Pr〈 ̂D〉(〈D〉) = Pr
̂D(D) (1)

Proposition 1. Any tuple-independent database can be encoded in linear time
as a PrXML{ind} probabilistic document.

Proof. Given a tuple-independent probabilistic instance D̂, we encode it as a
PrXML{ind} document 〈D̂〉 whose root has an ind node as its only child. We root

as children of this node the subtrees encoding each of the tuples of D̂, where the
probability of the tuple is indicated on the edge attaching it to the ind node. It
is easy to see that Equation (1) holds with this encoding. !"
Proposition 2. Any BID can be encoded in linear time as a PrXML{ind,mux}

probabilistic document.

Proof. Consider a BID probabilistic Σ̂-instance D̂. We will first define an encod-
ing for the blocks of D̂, before defining the encoding 〈D̂〉 of D̂.

For all R(K,A, P ) ∈ Σ̂, for all k ∈ K such that R(k, a, p) ∈ D̂ for some
(a, p) ∈ A × P , we first define 〈R(k, , )〉 as the subtree whose root has label
〈R〉, has |K| children 〈Kj〉 whose children are text nodes 〈kj〉 representing the
associated kj , and has as (|K|+ 1)-th child a mux node; as children of this mux
node, we put one ind node per a ∈ A such that p = Pr

̂D(R(k, a)) is > 0, with
p as edge label. As children of each of these ind nodes, with edge probability 1,
we put |A| nodes 〈Aj〉 with children text nodes 〈aj〉.

Hence, for each R(K,A, P ) ∈ Σ̂, for each choice of k ∈ K, the mux node will

select one of the possible choices of a ∈ A based on their probability in D̂, those
choices being independent between all of the mux nodes.

As expected, we define 〈D̂〉 to be the PrXML{mux} document whose root has

one child 〈R(k, , )〉 per possible choice of R(K,A, P ) ∈ Σ̂ and R(k, , ) ∈ D̂.
!"

This construction is illustrated in Fig. 3, which is a PrXML{ind,mux} encoding of
the BID database in Fig. 1.

Proposition 3. Any pc-table can be encoded in linear time as a PrXML{fie}

probabilistic document with the Boolean formulae unchanged.

Proof. Consider a probabilistic Σ̂-instance D̂ in the pc-table formalism. We will
set 〈V〉 (the variable set for the PrXML{fie} formalism) to be the variable set V
of D̂, and will simply take 〈P 〉(〈x〉) to be Pr

̂D(x).

We now define 〈D̂〉 as the PrXML{fie} document whose root has a fie node as
its only child. This node has as descendants the subtrees encoding each of the
tuples of D̂, where the condition of the tuple is indicated on the edge attaching
it to the fie node. !"
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Encoding queries. We will now show how a query q on a relational instance D
is encoded as a query 〈q〉 on its XML encoding 〈D〉. Of course, we will ensure
that queries commute with encodings, i.e., the following property holds:

∀D̂, q, q
(
D̂
)
= 〈q〉

(〈
D̂
〉)

(2)

Proposition 4. A CQ can be encoded as a TPQJ in linear time.

Proof. The encoding 〈a〉 of a constant a is its textual representation, and the
encoding 〈x〉 of a variable x of the query is a TPQJ variable. The encoding 〈F 〉
of an atomic formula F = R(z1, ..., zn) over the relation R(A1, ..., An) is the
subtree whose root has label 〈R〉 and has n children; each child has label 〈Ai〉
and has one child 〈zi〉. The encoding 〈q〉 of a CQ q is a tree whose 〈�〉-labeled
root has one child 〈F 〉 per atomic formula F in q. !"
This encoding is shown in Fig. 2, a TPQJ that encodes qBoston. We rediscover
with this result the FP#P membership of CQ evaluation over pc-tables given
that of TPQJ over PrXML{fie}. We also obtain the FP#P-hardness of TPQJ over
PrXML{ind} given that of CQs over tuple-independent databases. We can finally
use this result to find individual hard TPQJ queries as those that are encodings
of hard CQs over tuple-independent databases (e.g., non-hierarchical CQs).

Proposition 5. A query in the relational calculus can be encoded as an MSOJ
query in linear time; the resulting query does not have any second-order quanti-
fier, i.e., it is actually a first-order query with joins.

Proof. Let q be a relational calculus query. We denote by V and C respectively
the set of variables and constants appearing in q. For each variable x in V , and
each occurrence of x in q, we introduce a new variable xi. We encode subgoals
R(z1, ..., zn) for the relation R(A1, ..., An) by the following formula: ∃y 〈R〉(y) ∧∧

j ∃w (y → w ∧ 〈Aj〉(w) ∧ w → 〈zj〉) where the encoding 〈zi〉 of a constant a
is a fresh variable ca and the encoding of a variable x is the encoding 〈xi〉 of
the fresh variable for this specific occurrence of x. Let 〈q〉′ be the MSO formula
obtained from q by encoding all of its subgoals in this way. The MSOJ query 〈q〉
is 〈q〉′∧(∧x∈V ∃x

∧
i x ∼ xi

)∧(∧ca
a(ca)

)
where all xi’s and ca’s are existentially

quantified at the top level. !"
As an immediate consequence of this encoding, if the original first-order query
is read-once (no query variable is used twice), it is linear-time to evaluate it over

BIDs thanks to the linear-time evaluation of MSO over PrXML{ind,mux}. Read-
once queries are of limited interest, however.

5 From XML to Relations

We now show, in the reverse direction, how to encode probabilistic XML in-
stances into probabilistic relational models. This problem has been explored
in [6] with two solutions proposed:
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Schema-based: adapted inlining Assume we have a DTD for possible XML
documents. This method transforms a PrXML{ind,mux} probabilistic document
(but it is easy to adapt the technique to PrXML{fie}) into a pc-table whose
schema is derived from the DTD, adapting techniques from [22] for storing
XML documents into relations. Queries are translated as in [22], which may
result in queries involving a fixpoint operator in the case of recursive DTDs.

Schemaless: adapted XPath accelerator In the absence of a schema, Hol-
lander and van Keulen propose to transform PrXML{ind,mux} probabilistic
documents (again, the same would hold with PrXML{fie}) into pc-tables by
using a pre/size/level encoding as in MonetDB/XQuery [23]. Queries are
then translated into queries with inequality predicates and arithmetic.

These two translations are used to show that probabilistic XML can be queried
on top of a probabilistic relational engine, Trio in [6] or MayBMS in [24]. However,
we present here an alternative translation that has the advantage of transforming
TPQJs into CQs, without any need for recursion or inequality predicates.

Encoding instances. Let d be an XML document. We construct the relational
schema Σ = {Label(id , lab),Child (id , cid),Desc(id , did),Root(id)} and encode
each node n by a unique ID 〈n〉. The encoding 〈d〉 of d is a relation over Σ
defined as follows:
– for every node n of d with label l, we add a fact Label (〈n〉, 〈l〉);
– for every edge (n, n′) in d, we add a fact Child (〈n〉, 〈n′〉);
– for every node n and descendant n′ of n in d, we add a fact Desc(〈n〉, 〈n′〉);
– we add a single fact Root(〈r〉) for the root r of d.

Note that this construction is quadratic at worst since we may add linearly many
Desc facts for every node n.

Encoding probabilistic instances. We will now encode a probabilistic XML docu-
ment d̂ from Section 2.2 into a probabilistic relational instance 〈d̂〉 of Section 2.1.
Again, the goal is to have an encoding that satisfies (1).

We start with a negative result that shows that tuple-independent databases
or even BIDs are unusable for encoding even simple probabilistic documents:

Proposition 6. No probabilistic document of PrXML{ind,mux} with more than
one possible world can be encoded as a BID (with the instance encoding above).

Proof. Assume by way of contradiction we have such a document d̂ and its
encoding 〈d̂〉. Since d̂ has more than one possible world, it contains at least one
ind or mux node, say x, and there is a child y of x such that the edge probability
label between x and y is p < 1. Let z be the lowest ancestor of x that is neither
an ind or mux node; if y is itself an ind or mux node, we take y to be its highest
descendant that is neither an ind or mux node.

There exists possible worlds d and d′ of d̂ such that, in 〈d〉, Child (〈z〉, 〈y〉) and
Desc(〈z〉, 〈y〉) holds, while in 〈d′〉, neither of these facts hold. But then, since the
Child and Desc tables are fully independent in a BID, there is a possible world
of 〈d̂〉 where Child(〈z〉, 〈y〉) holds and Desc(〈z〉, 〈y〉) does not, which is absurd,

since no encoding of a possible world of d̂ verifies this. !"
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This result may seem to be an artifact of the particular encoding of instances
we chose. However, there is something deeper happening here: BIDs are not
able to correlate probabilities of tuples, which means they will not be able in
particular to represent hierarchies of ind nodes [14]. More generally, the main
issue comes from the fact that BIDs are not a strong representation system [10]
for the language of (non-Boolean) conjunctive queries: the output of a conjunc-
tive query over BIDs cannot in general be represented as a BID; on the other
hand, PrXML{ind,mux} can represent any discrete probability distribution, and can
therefore represent the output of any query over PrXML{ind,mux}. This mismatch
means it is hopeless to come up with an alternative way of encoding instances
that would make BIDs sufficient to encode PrXML{ind,mux}.

On the other hand, pc-tables can encode probabilistic XML documents:

Proposition 7. Any PrXML{ind,mux} or PrXML{fie} probabilistic document can
be encoded as a pc-table in cubic time.

Proof. We restrict to PrXML{fie} since PrXML{ind,mux} can be tractably encoded
into PrXML{fie}. We first remove every fie node of the probabilistic document by
connecting each non-fie descendant n′ of a fie node to its lowest non-fie ancestor n,
labeling the edge (n, n′) with the conjunction of all formulae appearing as labels
on the edges of the original path from n to n′. We then construct a pc-table from
this document as if it were a non-probabilistic document, except that to each
tuple Child (〈n〉, 〈n′〉) we add the Boolean condition that appears as label on
(n, n′), and to each tuple Desc(〈n〉, 〈n′〉) we add the conjunction of all Boolean
conditions that appear as labels on the edges of the path between n and n′. At
worst, this results in a cubic construction: for every node, for every descendant
of this node, we have a condition that has at most linear size. !"

Encoding queries. Again, our goal is an encoding of tree queries that satisfies (2).

Proposition 8. A TPQJ can be encoded as a CQ in linear time.

Proof. Let q be a TPQJ. The CQ 〈q〉 is the conjunction of the following atomic
formulae:
– for every node n of q with constant or variable label l, an atom Label(〈n〉, 〈l〉);
– for every child edge (n, n′), an atom Child(〈n〉, 〈n′〉)
– for every descendant edge (n, n′), an atom Desc(〈n〉, 〈n′〉). !"

This can be used to reestablish the FP#P membership of TPQJ over PrXML{fie}

from the similar result over relations, or, for example, the FP#P-hardness of any
encoding of a TPQJ with a single join. Note that the encoding of any TPQ with
depth greater than 1 will be non-hierarchical but still tractable on the encodings
of PrXML{ind,mux}: we cannot just use the fact that non-hierarchical queries are
intractable since we are working with a specific class of databases.

MSOJ queries cannot be encoded into the relational calculus, since they can
express such things as the existence of a path between nodes of a graph (this
graph being represented as a tree, e.g., as in Section 4), which is impossible to
test in first-order logic. [25]
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6 Conclusion

We have thus established connections between probabilistic relational and XML
models, showing how probabilistic instances and queries from one model can be
encoded into the other. Though we can rediscover some general results in this
way (such as the FP#P-completeness of query evaluation), we also see that results
over probabilistic XML (such as the linear-time evaluation of MSO queries, or
the dichotomy for TPQJ queries with a single join) are not direct translations of
similar results in the relational case but deep consequences of the true structure.

To go further, one direction would be to look at the tree-width (of the data
structure, of the queries, of the Boolean formulae) as an indicator of the tractabil-
ity of a query; Jha and Suciu have shown [26] that it is tractable to evaluate the
probability of a bounded tree-width Boolean function. It is still an open prob-
lem to understand the dependency between the tree-width of a query lineage
and the tree-width of the query, of the data and of the Boolean formulae. This
could suggest new tractable classes of probabilistic relational databases, inspired
by the tractable classes of probabilistic XML.

We have restricted our study to discrete finite probabilistic distributions; mod-
els for discrete infinite distributions arise naturally in probabilistic XML [27] by
adding probabilities to an XML schema [28]; their meaning is less clear in the
relational setting. Probabilistic models with continuous distributions can also be
defined in the relational [29] and XML [30] cases, though the precise semantics
can be tricky. Moreover, no strong representation systems (say, for conjunctive
queries) involving continuous distributions have been put forward yet.
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Abstract. Big Data scenarios often involve massive collections of nested
data objects, typically referred to as “documents.” The challenges of doc-
ument management at web scale have stimulated a recent trend towards
the development of document-centric “NoSQL” data stores. Many query
tasks naturally involve reasoning over data residing across NoSQL and
relational “SQL” databases. Having data divided over separate stores
currently implies labor-intensive manual work for data consumers. In
this paper, we propose a general framework to seamlessly bridge the
gap between SQL and NoSQL. In our framework, documents are logi-
cally incorporated in the relational store, and querying is performed via
a novel NoSQL query pattern extension to the SQL language. These
patterns allow the user to describe conditions on the document-centric
data, while the rest of the SQL query refers to the corresponding NoSQL
data via variable bindings. We give an effective solution for translating
the user query to an equivalent pure SQL query, and present optimiza-
tion strategies for query processing. We have implemented a prototype of
our framework using PostgreSQL and MongoDB and have performed
an extensive empirical analysis. Our study shows the practical feasibility
of our framework, proving the possibility of seamless coordinated query
processing over relational and document-centric data stores.

1 Introduction

Nested data sets are ubiquitous in Big Data scenarios, such as business and scien-
tific workflow management [2,12] and web analytics [15]. The massive collections
of such loosely structured data “documents” encountered in these scenarios have
stimulated the recent emergence of a new breed of document-centric “NoSQL”
data stores, specifically targeting the challenges of data management at web-
scale [6,17]. These solutions aim for flexible responsive management of nested
documents, typically serialized in the JSON [8] data format.

While very popular and successful in many Big Data application domains,
NoSQL systems will of course not displace traditional relational stores offer-
ing structured data storage and declarative querying (e.g., SQL-based access).
Indeed, there is growing consensus that both NoSQL and “SQL” systems will
continue to find and fulfill complementary data management needs [17]. There-
fore, we can expect it to become increasingly common for users to face prac-
tical scenarios where they need to reason in a coordinated fashion across both
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document-centric and relational stores. Indeed, the study presented in this paper
was sparked directly by our work with a local web startup.

To our knowledge, there currently exists no unified query framework to sup-
port users in such cross-data-store reasoning. Hence, users must currently issue
independent queries to the separate relational and document stores, and then
manually process and combine intermediate results. Clearly, this labor-intensive
and error-prone process poses a high burden to consumers of data.

Contributions. In this paper, we take the first steps towards bridging the worlds
of relational and document data, with the introduction of a novel general frame-
work, and its implementation strategies, for seamless querying over relational
and document stores. Our particular contributions are as follows:

– we present a logical representation of NoSQL data in the relational model,
and a query language extension for SQL, which permits seamless querying
of NoSQL data in SQL;

– we develop a basic approach for processing such extended queries, and present
a range of practical optimizations; and,

– we present the results of a thorough empirical analysis of our framework,
demonstrating its practicality.

The solution we present here is the first to eliminate the need for ad-hoc manual
intervention of the user in query (re)formulation and optimization.

Related Work. Our logical representation of documents is inspired by the so-
called first-order normal form for tabular data [11] and its applications in web
data integration [1,3,9]. Furthermore, our language extension is motivated by
the successes of syntactic extensions for SQL which have been explored, e.g., for
RDF graphs [7]. To our knowledge, however, our novel proposals are the first
to directly address the new data and query challenges, resp., raised by NoSQL
stores. The only closely related effort in this area that we are aware of is the
recently proposed SOS project [4]. SOS aims at providing a uniform application
programming interface to federations of heterogeneous NoSQL data stores, which
is complementary to the goals of our framework.

Organization. We proceed in the paper as follows. In the next section, we in-
troduce our theoretical framework. We then discuss query processing strategies
in Sec. 3. In Sec. 4 we present the setup of our empirical study, and then in
Sec. 5 we present results of our experiments. Finally, we close the paper with
indications for further research in Sec. 6.

2 Theoretical Framework

In this section we present our generic framework for query processing solutions
over SQL and NoSQL data stores. There are two major components of the
framework. First, a logical relation available in the SQL database representing
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(arbitrary) NoSQL data is introduced in Sec. 2.1. Second, to seamlessly and
transparently query the NoSQL data from SQL, we present an SQL query
language extension with a JSON-like syntax in Sec. 2.2. We conclude the section
with an overview of the entire theoretical framework.

2.1 Logical Representation of NoSQL Data in the Relational Model

In this paper, we model NoSQL documents as finite sets of key-value pairs,
where values themselves can be finite sets of key-value pairs, and where keys
and atomic values are elements of some infinite universe (e.g., Unicode strings).
For the sake of simplicity, and without any loss of generality, we omit other
features available in the JSON data model, such as ordered list values.

Disregarding implementation details for the moment, we assume that in the
relational store there is a relation F (id, key, value) available containing records
representing the NoSQL data. This is a potentially virtual relation, i.e., F is
implemented as a non-materialized view on the NoSQL data. The basic idea is
that each document d in the NoSQL data set is assigned a unique identifier id.
Then, for each key-value pair k : v of d, a triple (id, k, v) is added to F . If v is
a nested value, then it is assigned a unique identifier, and the process recurs on
the elements of v.

We illustrate F via an example. Suppose we have product data in the docu-
ment store, with nested supplier data to identify the supplier and to keep track
of current stock. Then an example snippet of F , containing three product doc-
uments i1, i2, and i3, is as follows:

F = {(i1, name,monitor), (i1, category, 7), (i1, color, black), (i1, supplier, i4),

(i2, name,mouse), (i2, category, 37), (i2, color, pink), (i2, supplier, i5),

(i3, name, keyboard), (i3, category, 37), (i3, supplier, i6),

(i4, id, 1), (i4, stock, 1), (i5, id, 3), (i5, stock, 5), (i6, id, 1)}.
For example, i1 corresponds to the document

{name : monitor, category : 7, color : black, supplier : {id : 1, stock : 1}}.
Here, we see that the “supplier” key of i1 has a nested value, given the unique
identifier i4. Clearly, the F representation of a document store is well-defined.
Due to space limitations we omit a formal definition and refer the reader to the
full version of this paper for further details [16].

The F representation has two important advantages. Firstly, it is a basic and
extremely flexible way to describe data which can be used to denote any possible
type of NoSQL data, including documents with missing and/or set-valued keys.
Secondly, F has a fixed schema and thus the (potentially schema-less) non-
relational data can be accessed via a standard table in the SQL database.

The relation F can be used in queries just like any other relation in the
relational database. This means we can join F to other relations to combine
SQL and NoSQL data to construct a single query result. Important to note
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however, is that the records in F are retrieved from the external NoSQL data
source on the fly. To return the records of F , the SQL database has to retrieve
the external NoSQL data in triple format.

This implies that the retrieved data has to be communicated to the relational
database, which is dependent on the exact implementation of F and the method
used to retrieve data from the NoSQL source. We assume that information
regarding to which NoSQL source F should connect and what data to retrieve
is given. In practice, the implementation of F will of course be parameterized,
to specify which NoSQL database should be used. For readability however,
we ignore such parameters. In the remainder of this paper we will thus simply
use F as the relation of triples that represents the NoSQL data. We discuss
implementation details further in Sec. 4, below.

2.2 Declarative Querying over SQL and NoSQL Stores

A series of self joins of F on the id field allows reconstruction of the NoSQL
data. However, in cases where many self joins are needed (e.g., to retrieve data
elements in deeply nested documents) this is a tedious error-prone task. To
facilitate querying the NoSQL data more conveniently and avoid the task of
manually adding join conditions, we introduce an SQL extension which we call
a NoSQL query pattern (NQP).

An NQP is based on the concept of variable bindings as used in standard
conjunctive query patterns which are at the core of well-known languages such as
Datalog, SQL, SPARQL, and XPath [1]. Consider a graph pattern where triples
can be nested, and triple elements can be either variables or atomic values. All
triples on the same nesting level describe the same triple subject and therefore
the identifier of this element can be excluded from the query. The result is a
JSON-like nested set of key-value pairs where some elements may be variables.

For example, suppose that on the SQL side we have a table of product sup-
pliers, with schema Supplier (id, name, region), and on the NoSQL side the pre-
viously mentioned product data (this is an actual real-world situation which we
encountered in our collaboration with a local web startup). The query given in
Listing 1.1 retrieves product name and supplier region information for products
in category 37 having a minimum stock of 2.

1 SELECT

2 p.n, s.region

3 FROM

4 NoSQL( name: ?n, category : 37, color: ?c,

5 supplier: ( id: ?i, stock: ?s ) ) AS p,

6 Supplier AS s

7 WHERE

8 p.i = s.id AND p.s >= 2

Listing 1.1. Example SQL query with an NQP

Besides illustrating the NQP syntax, the example also demonstrates how
NQP’s are included in an SQL query. This method allows easy isolation of the
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Fig. 1. Architectural workflow illustrating the life of a SQL+NoSQL query

NQP and references to the variable bindings in the rest of the query. In the
SQL part of the query the variables in the NQP can be treated as relation
attributes from the virtual NoSQL relation. In Sec. 3 we describe a method to
automatically translate an arbitrary NQP to a pure SQL equivalent.

The NQP extension provides a convenient way to describe which NoSQL
data is required and how it should be reconstructed on the SQL side, without
exposing to the user the underlying representation and query processing. As far
as the user is concerned, the NoSQL data is contained in a single native relation.

In addition to user transparency and simplicity, an additional major advantage
of our approach is its independence from the underlying NoSQL database. The
use of another document store implies a new implementation of the F relation.
However, SQL+NQP queries, and hence the applications in which they are
embedded, are not affected by the change of the underlying database.

Architectural Overview. To summarize, we give an overview of our theoret-
ical framework in Fig. 1. Documents, stored in a NoSQL database, are made
available in the relational database via a logical relation F . This data is streamed
in on demand, so the NoSQL database is still used as the primary store for the
document data. A user can then issue an SQL query containing NQP’s, which
describes constraints on the desired NoSQL data and their combination with
the SQL data. The query is then automatically translated behind the scenes to
a pure SQL query and processed by the relational database.
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3 Query Processing Strategies

In this section we introduce implementation strategies for putting our theoretical
framework of the previous section into practice. The NQP extension, based
on a virtual relational representation of document data, must be automatically
translated to a pure SQL equivalent to be executed by an SQL database. In
Sec. 3.1 we provide a baseline approach to this translation. Sec. 3.2 focuses on
optimization techniques to accelerate the performance of this base translation.

3.1 Base Translation

The nested key-value pairs in an NQP can be recursively numbered as follows:

NoSQL(k1 : v1, k2 : v2, . . . , kr : (kr,1 : vr,1, kr,2 : vr,2, . . . , kr,m : vr,m) . . . , kn : vn)

The basic idea behind a translation of an NQP is that each key-value pair
t = kt : vt is represented in SQL using its own copy Ft of the logical relation
F . For these copies we introduce a shorthand notation to avoid naming conflicts
and to apply selection conditions, specified as follows:

Ft Constant kt Variable kt
Constant vt ρFt(it,kt,vt) (σkey=kt∧value=vt (F )) ρFt(it,kt,vt) (σvalue=vt (F ))
Variable vt ρFt(it,kt,vt) (σkey=kt (F )) ρFt(it,kt,vt) (F )
Nested vt ρFt(it,kt,vt) (σkey=kt (F )) ρFt(it,kt,vt) (F )

Each copy of F is subscripted with t, just like each of its attributes. Depending
on the type of both the key and value of the pair, we can add a selection operator
to exclude unnecessary triples from Ft on the SQL side. When neither the key
nor the value is a constant value, Ft is only a renamed version of F . This is
inefficient for query processing, because Ft then contains all triples in F , and
thus potentially the entire NoSQL dataset.

The next translation step is reconstruction of the NoSQL data by correctly
joining the Ft copies. For key-value pairs at the same nesting level in the NQP
this means that the id attributes should have the same value, since the Ft re-
lations for an NoSQL object have been given identical id values. For a nested
NQP the translation is applied recursively. The triple relations are created such
that nested data is connected via a value attribute that is equal to the id value
of the nested triples. Combining the correct triples is therefore only a matter of
inserting the correct join condition for the nested set of F copies.

Using this method, the NQP of the example query from Listing 1.1 is trans-
lated to the following series of joins:

Fname ��iname=icategory Fcategory ��icategory=isupplier Fsupplier ��vsupplier=isupplier.id(
Fsupplier.id ��isupplier.id=isupplier.stock Fsupplier.stock

)
��isupplier=icolor Fcolor.

Note that since the nested relations Fr,t have equal id values, a single join
constraint is sufficient. Because of the introduced shorthand notation, this query
applies the correct selection criteria to each relation Ft, renames the attributes
and combines the corresponding triples.
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In the rest of the query outside of the NQP, references to variables in the
NQP occur. This means that we must keep track of the variables used in the
NQP and use this information to adjust the SQL part of the query accordingly.
To achieve this we introduce the function insert(v, a) defined as:

insert(v, a) =

{
Vv = {a} , if Vv does not exist

Vv = Vv ∪ {a} , otherwise.

We call this function for each variable in the NQP. Now, letting V be the set
of variables encountered, we can replace the references to these variables in the
SQL part of the query by an attribute from a triple relation copy as follows:
∀v∈VQ [r.v := ev] , for an arbitrary ev ∈ Vv.

Now the NQP has been translated, all relations are joined correctly, and vari-
able references in the SQL part of the query have been replaced by appropriate
relation attributes. Finally, we add an additional selection condition to the query
which ensures that if the same variable is used multiple times in the NQP, it
has an equal value. Formally and without minimizing the number of equalities
this means:

∧
v∈V
∧

i,j∈Vv
i = j.

3.2 Optimizations

We next briefly introduce optimization strategies, to improve upon the naive
base translation of the previous section. Further details can be found in [16].

(1) Data filtering. Although the naive approach from Sec. 3.1 results in a correct
SQL translation, this method has a significant disadvantage. For each copy of
Ft the entire NoSQL dataset must be transformed to triples and shipped to
the SQL database. A straightforward way to improve performance is to filter
NoSQL data that is not required to answer the query.

Firstly, we introduce a parameter c for the relations Ft. This parameter is used
to describe a conjunction of selection conditions. These conditions are pushed
down to the NoSQL database to restrict the number of documents that have to
be sent to the SQL database. Also, in addition to conventional relational algebra
conditions, more advanced selection conditions, like the existence of a field in
the NoSQL database, can be pushed down:

c =

⎧⎪⎨⎪⎩
kt = vt, if both kt and vt have a constant value

exists(kt), if only kt has a constant value

true, otherwise.

Moreover, while translating the NQP to SQL, we can collect all selections and
combine them in a single condition that describes the entire constraint on the
NoSQL data we can derive from the NQP. Because this is a conjunction of
criteria, more documents are filtered from each Ft copy.
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Additionally, we derive new NoSQL selection conditions from the SQL part
of the query. Moreover, we can also apply transitivity on the available conditions
to put even more selective constraints on the NoSQL data.

For our example this means that the SQL selection p.s >= 2 can be in-
cluded in the final selection condition used to filter the NoSQL documents: c =
exists(name)∧category = 37∧exists(color)∧exists(supplier)∧exists(supplier.id)∧
supplier.stock ≥ 2. Note that we adopt a non-null semantics for simplicity.

This document filter pushdown reduces the number of NoSQL documents.
The matching NoSQL objects themselves, however, are completely transformed
to triples before they are shipped to the SQL side. We can further reduce the
size of the NoSQL data by excluding triples representing attributes that are
not used elsewhere in the SQL query. Hence, we introduce a parameter p for the
relations Ft, to describe an attribute filter pushdown condition on the NoSQL
data to eliminate shipping of these unused attributes.

To determine if a given key-value pair t must be shipped to the SQL database,
we recursively determine if t contains a variable used in the SQL part of the
query, or, in case vt is nested, if there exists a nested key-value pair under t which
should be in the translation. Note that the Ft copy representing t is no longer
required in the query. In addition to decreasing the amount of data that has to
be shipped from NoSQL to SQL, this optimization will lead to a final query
which also contains fewer relations and thus requires fewer joins to reconstruct
the NoSQL data in the relational database.

For the example query this means we can exclude Fcolor and Fcategory, since
these are not used except as selection conditions on the NoSQL data. The
reduction of the number of triples is achieved by the following projection argu-
ment: p = {name, supplier, supplier.id, supplier.stock}. Note that Fsupplier is still
necessary to retrieve the supplier and its current stock count.

(2) Temporary table. Each relation copy Ft requires a new connection to the
external NoSQL database. To avoid this overhead we can create a temporary
relation T equal to F prior to a query execution. We then change the translation
such that instead of F the temporary relation T is used. As a result all triples are
communicated to the SQL database only once. Document and attribute filter
pushdown can now be applied to this temporary table.

(3) Tuple reconstruction. Triples are joined based on shared id values, matching
a higher level value in case of nested data. This means that for nested data it
is not possible for an arbitrary pair of triples in F to determine whether or not
they belong to the same NoSQL data object. This information could be used
when joining the triples and thereby speed up the NoSQL data reconstruction
in the relational database.

To achieve this, we add an additional attribute nosql to F that indicates
the NoSQL document to which the record belongs. Triples originating from
the same document get equal nosql values, using the native NoSQL document
identifier. Only triples from the same NoSQL document are combined on the
SQL side, so this extra information can speed up the join.
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At the creation of the temporary table we use the nosql attribute to include
additional selection conditions. We create a hash index on the nosql attribute
and include an equality selection condition on this attribute for each Ft used
in the SQL query. This way, the relational database has additional knowledge
about the triple structure and is able to combine triples that belong to the same
NoSQL document, regardless of the nesting level.

4 Experimental Setup

With the developed theoretical framework and the automatic query transla-
tion and its optimizations, we implemented a prototype version of the hybrid
database to provide a proof of concept that the theoretical framework is practi-
cally feasible. In this section, we first elaborate on the specific SQL and NoSQL
databases we used and how the virtual relation F is implemented. Following this,
we then discuss the experiment setup, including the data and benchmark queries
used in our study. Interested readers will find deeper details on all aspects of the
experimental setup in the full version of this paper [16].

Environment. In our empirical study we use MongoDB 2.0.2, an open-source
and widely used document-oriented NoSQL data store.1 For the relational
database we use PostgreSQL 9.1.2.2, an open source, industrial strength,
widely used system, which offers great extensibility. The latter is particularly
useful for the implementation of F .

The logical F relation is implemented as a foreign table, using a foreign data
wrapper (FDW) as described in the SQL/MED extension of the SQL standard
[14]. From a user perspective a foreign table is a read-only relation similar to
any other relation. The technical difference is that the data in a foreign table is
retrieved from an external source at query time. We use the Multicorn 0.0.9
FDW to implement the foreign table.3 This is an existing PostgreSQL exten-
sion that uses the output of a Python script as the external data source. In
our case the script retrieves the data from MongoDB and performs necessary
transformations on the documents.

For the experiment we use a machine with 2 quad core Intel Xeon E5640
processors, 36GB of memory, and 4 10 krpm SAS hard disks in RAID 5 running
on Debian wheezy/sid for the PostgreSQL and MongoDB database. Due
to practical constraints a virtual machine on the same machine is responsible
for running the experiment. The virtual machine runs on the same OS, uses 2
processor cores and has 2GB of memory available. The experiment process sends
a query to be executed to the main machine, retrieves the result, and performs
time measurements.

1 http://www.mongodb.org/
2 http://www.postgresql.org/
3 http://multicorn.org/

http://www.mongodb.org/
http://www.postgresql.org/
http://multicorn.org/
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Experiments. The experiment is twofold. We start with a small Experiment 1
in which we focus on the feasibility of the prototype implementation and the
effect of using a temporary relation prior to the actual query execution. We
compare implementations Ia and Ib. Implementation Ia is the base translation
with only the data filtering optimization included. In Ib the temporary table is
also implemented. For both implementations the number of documents returned
is limited to 100.

In Experiment 2 we compare two implementations to see what the impact
of the tuple reconstruction optimization is in a larger scale setting. Here we
have implementation Ic, similar to Ib, and implementation Id with the tuple
reconstruction included. For this experiment we increase the limit on the number
of MongoDB documents returned to 25 000.

For both experiments the performance of the implementations is measured
in terms of query execution time. Query translation, logical table generation,
indexing, and actual query execution are measured separately.

Data. We use multiple datasets for a detailed comparison. The first dataset
is constructed using a set of real life product data taken from a company’s
production environment. This NoSQL data is similar to our running example
above, and can be joined to two relations in the SQL database.

Using this product set as a basis, we create different datasets by varying three
parameters. Firstly, the number of products in the NoSQL dataset is either low
or high. In our case this means 100 000 or 400 000 documents respectively. Also,
we vary the SQL data size between 1000 and 10 000 records. And finally we
cover different join probability between SQL and NoSQL data by using 0.05,
0.20, and 1.00. We use all possible combinations of these variations and thus
create 12 datasets based on the product data. Each of these datasets is named
Sn,s,j , where n, s, and j describe the NoSQL size, SQL size, and join probability
respectively.

To see the impact of a totally different dataset, we also use a Twitter dataset.
For this dataset we collected a coherent set of 500 000 tweets about a single
subject posted between March 5 and March 11 of 2012 using the Twitter Search
API. These tweets have information about users and languages included, which
we store in an SQL database to create a possibility to join the non-relational
Twitter data to SQL data. We use St to denote this dataset.

Queries. The manner in which a query uses SQL and NoSQL data influences
the query execution time. There are different ways to combine data from both
stores regarding the data source on which the query mainly bases its selections.
We use the term flow class to indicate how the query is constructed. We consider
four flow classes: Fi (queries only selecting NoSQL data); Fii (queries selecting
SQL data on the basis of NoSQL data); Fiii (queries selecting NoSQL data
on the basis of SQL data); and, Fiv (queries selecting SQL data on the basis of
NoSQL data selected using SQL data). Other flow classes can be studied, but
these cover the basic ways to combine data.
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Besides the flow class of a query, query execution can also depend on how the
NoSQL data is used in the SQL query. We distinguish two query properties:
(a) uses all mentioned NoSQL keys in the SQL part of the query; and, (b) all
mentioned NoSQL keys exist in the data for all documents. We create different
query types based on the possible combinations of these two properties, namely:
Q1 ((a) ∧ (b)); Q2 ((a) ∧ ¬(b)); Q3 (¬(a) ∧ (b)); and, Q4 (¬(a) ∧ ¬(b)). The
example query of Listing 1.1 above falls into flow class Fii and query type Q4.

For each dataset we construct a set of query templates, for each combination
of a flow class and a query type. For each dataset we thus have a total of 16 query
templates. From each query template 16 concrete queries are created by filling in
random values for placeholders included in the template. In our experiments, we
evaluate and measure each concrete query 5 times. For the empirical analysis we
drop the highest and lowest value from the 5 repetitions and report the average;
we also drop the 3 highest and lowest averages per template.

5 Empirical Analysis

In this section we discuss the results of Experiments 1 and 2. We start with a
presentation of the results of the first experiment, where we analyze the effect
of using a temporary relation. This is followed by a discussion of the second
experiment, where theNoSQL data reconstruction optimization is used. Finally,
we discuss the main conclusions which can be drawn from these investigations.

Results of Experiment 1. In Experiment 1 we look at the effect of creating
a single temporary relation containing all required triples prior to the actual
query execution on the SQL side in a small scale experiment. In Table 1 the
average result per query flow class and query type are presented. From these
results, it is clear that the use of a temporary table is a significant improvement,
except for Q3 within Fi. For this exception however, the initial result for Ia was
already low and the result for Ib still is the best for all flow class and query type
combinations.

In Table 2 we see that the Twitter dataset in particular profits from this
optimization. For Twitter, the average query time was 21.7521 s compared to
0.4785 s with the use of a temporary relation. For the average product dataset,
on the other hand, the average result dropped from 9.8303 s to 0.5789 s.

Results of Experiment 2. The larger-scale second experiment focuses on the
effects of optimizing the NoSQL data reconstruction in the relational database
by including additional information with each triple. Similar to the analysis of
Experiment 1, Table 3 provides an overview per query flow class and query type.

For Fi and Fii the added SQL attribute creates a small overhead. As a result,
the tuple reconstruction is not an improvement and hence we omit their details
in the table. For Fi and Fii we observed that the average time increased from
11.5800 s and 12.5575 s to 12.4004 s and 13.1219 s respectively.

The other flow classes, Fiii and Fiv, indicate that optimizing the tuple recon-
struction can have a positive effect on the performance of the prototype. Both
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Table 1. Comparison of Ia and Ib performance in seconds per flow class

(a) Flow class Fi

Ia Ib Ib / Ia

Q1 4.1123 0.4766 0.116
Q2 22.0757 0.6694 0.030
Q3 0.2467 0.4021 1.630
Q4 4.6585 0.4469 0.096

(b) Flow class Fii

Ia Ib Ib / Ia

Q1 4.8076 0.5232 0.109
Q2 14.7703 0.7101 0.048
Q3 3.1227 0.4493 0.144
Q4 6.7764 0.4309 0.064

(c) Flow class Fiii

Ia Ib Ib / Ia

Q1 10.9531 0.6207 0.057
Q2 38.5549 0.8354 0.022
Q3 5.7535 0.4733 0.082
Q4 18.7430 0.5599 0.030

(d) Flow class Fiv

Ia Ib Ib / Ia

Q1 8.6195 0.6662 0.077
Q2 11.7808 0.8811 0.075
Q3 6.7123 0.4301 0.064
Q4 10.2702 0.5645 0.055

Table 2. Comparison of Ia and Ib performance in seconds per dataset

Fi Fii Fiii Fiv

Ia Ib Ib / Ia Ia Ib Ib / Ia Ia Ib Ib / Ia Ia Ib Ib / Ia

Sl,l,l 5.5666 0.5054 0.091 3.3699 0.5207 0.154 26.5421 0.6488 0.024 7.7278 0.6041 0.078
Sl,l,m 5.6544 0.4989 0.088 2.6993 0.5134 0.190 12.9048 0.6137 0.048 9.4213 0.6354 0.067
Sl,l,h 5.6304 0.5043 0.090 10.2625 0.5691 0.055 10.6876 0.6416 0.060 15.1030 0.6971 0.046
Sl,h,l 5.8085 0.4940 0.085 1.5479 0.5193 0.335 31.5640 0.6483 0.021 6.8629 0.6285 0.092
Sl,h,m 5.8462 0.4967 0.085 4.3644 0.5171 0.118 12.4716 0.6125 0.049 7.5289 0.6451 0.086
Sl,h,h 5.9960 0.5000 0.083 10.3962 0.5720 0.055 11.0061 0.6555 0.060 16.1746 0.7054 0.044
Sh,l,l 6.0348 0.4958 0.082 5.3076 0.5169 0.097 33.0351 0.6581 0.020 7.9743 0.5678 0.071
Sh,l,m 5.9849 0.4984 0.083 1.6218 0.5066 0.312 13.2531 0.6295 0.047 1.6119 0.5764 0.358
Sh,l,h 5.5507 0.5038 0.091 9.9075 0.5476 0.055 10.8158 0.6367 0.059 14.8312 0.7086 0.048
Sh,h,l 5.9669 0.5192 0.087 1.5943 0.5079 0.319 31.0614 0.6595 0.021 6.1285 0.6327 0.103
Sh,h,m 5.4860 0.4984 0.091 8.1835 0.5415 0.066 13.0176 0.6209 0.048 8.1223 0.6426 0.079
Sh,h,h 5.6549 0.4814 0.085 10.1422 0.5555 0.055 10.6277 0.6359 0.060 14.8031 0.7003 0.047
St 31.8727 0.4870 0.015 26.4032 0.4813 0.018 23.5278 0.4290 0.018 5.2046 0.5169 0.099

Avg 7.7733 0.4987 0.064 7.3693 0.5284 0.072 18.5011 0.6223 0.034 9.3457 0.6355 0.068

these flow classes focus on selecting SQL data before joining NoSQL data. Es-
pecially Q2 within Fiii shows that the average query time can be significantly
reduced when the NoSQL data reconstruction is optimized.

When comparing the different datasets in Table 4 we again exclude Fi and
Fii since the optimization does not have an effect for these flow classes. For the
other flow classes average results per dataset are presented. Again we see that
the optimization typically results in a significant performance increase.

Discussion. After analyzing both experiments separately, we can draw some
broad conclusions regarding the framework and optimizations. Firstly, Experi-
ment 1 shows that a working prototype can be constructed based on the pro-
posed framework. Furthermore, a temporary relation significantly improves the
performance by an order of magnitude. The second experiment, conducted in
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Table 3. Comparison of Ic and Id performance in seconds per flow class

(a) Flow class Fiii

Ic Id Id / Ic

Q1 13.5964 11.3169 0.832
Q2 34.1419 7.7161 0.226
Q3 9.2465 9.6599 1.045
Q4 7.0996 5.7576 0.811

(b) Flow class Fiv

Ic Id Id / Ic

Q1 15.5227 11.8015 0.760
Q2 12.8297 8.9534 0.698
Q3 11.8088 10.2127 0.865
Q4 8.2041 6.1557 0.750

Table 4. Comparison of Ic and Id performance in seconds per dataset

Fiii Fiv

Ic Id Id / Ic Ic Id Id / Ic

Sl,l,l 8.0736 1.3646 0.169 8.8565 1.7372 0.196
Sl,l,m 9.6559 4.7486 0.492 6.7734 5.4149 0.799
Sl,l,h 11.4418 11.5517 1.010 12.1739 13.2877 1.091
Sl,h,l 9.1960 1.2582 0.137 11.1787 1.6435 0.147
Sl,h,m 9.6356 4.4673 0.464 12.5762 5.2294 0.416
Sl,h,h 11.3714 13.1159 1.153 12.8711 13.2781 1.032
Sh,l,l 7.3243 4.2647 0.582 7.7039 3.2565 0.423
Sh,l,m 11.3422 12.2677 1.082 13.8836 13.1399 0.946
Sh,l,h 70.5085 20.8496 0.296 23.5845 22.5808 0.957
Sh,h,l 11.1132 4.0471 0.364 6.6920 4.3302 0.647
Sh,h,m 11.7446 12.8316 1.093 12.5065 13.6754 1.093
Sh,h,h 35.7321 20.1385 0.564 22.7828 22.1383 0.972
St 1.1351 1.0585 0.933 5.6044 0.9391 0.168

Avg 16.0211 8.6126 0.538 12.0913 9.2808 0.768

a larger-scale setting shows that the NoSQL data reconstruction strategy is
indeed a successful optimization for many query classes. The final prototype,
Id, while successful as a proof-of-concept, leaves space open for future improve-
ments. In general, we conclude from our study the practical feasibility of the
proposed query processing framework.

6 Conclusions

In this paper we have presented the first generic extensible framework for co-
ordinated querying across SQL and NoSQL stores which eliminates the need
for ad-hoc manual intervention of the user in query (re)formulation and opti-
mization. An extensive empirical study demonstrated practical feasibility of the
framework and the proposed implementation strategies.

The groundwork laid here opens many interesting avenues for further research.
We close by listing a few promising directions. (1) We have just scratched the
surface of implementation and optimization strategies. We give two suggestions
for future work here. (a) We can study adaptations and extensions of indexing
and caching mechanisms developed for RDF, a triple-based data model, and
XML to more scalable implementations of F [13,18]. (b) Individual queries are
often part of a longer-running collection. It would be certainly worthwhile to
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investigate strategies for multi-query optimization with respect to a dynamic
query workload. (2) There is recent work in the community towards standard-
ization of document query languages and their semantics [5,10,19]. An important
interesting topic for further investigation is to coordinate our results with these
emerging efforts (e.g., studying appropriate extensions or restrictions to NQP’s).
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Abstract. Grammar-based XML compression reduces the volume of big XML 
data collections, but fast updates of compressed data may become a bottleneck. 
An open question still was, given an XPath Query and an update operation, how 
to efficiently compute the update positions within a grammar representing a 
compressed XML file. In this paper, we propose an automaton-based solution, 
which computes these positions, combines them in a so-called Update DAG, 
supports parallel updates, and uses dynamic programming to avoid an implicit 
decompression of the grammar. As a result, our solution updates compressed 
XML even faster than MXQuery and Qizx update uncompressed XML. 

Keywords: updating compressed XML data, grammar-based compression. 

1 Introduction 

Motivation: XML is widely used in business applications and is the de facto standard 
for information exchange among different enterprise information systems, and XPath 
is widely used for querying XML data. However, efficient storage, search, and update 
of big XML data collections have been limited due to their size and verboseness. 
While compression contributes to efficient storage of big XML data, and many com-
pressed XML formats support query evaluation, fast updates of compressed XML 
formats involve the challenge to find and to modify only those parts of an XML doc-
ument that have been selected by an XPath query.  

Background: We follow the grammar-based XML compression techniques, and we 
extend an XML compression technique, called CluX, by fast multi-update operations, 
i.e. operations that update multiple XML nodes selected by an XPath query without 
full decompression. Like the majority of the XML compression techniques, we as-
sume that textual content of text nodes and of attribute nodes is compressed and 
stored separately and focus here on the compression of the structural part of an XML 
document.  

Contributions: Our paper presents a new and efficient approach to simulate multi-
update operations on a grammar-compressed XML document. That is, given a  
grammar G representing an XML document D, and given an update operation O to be 
performed on all nodes N of D selected by an XPath query Q, we can simulate O’s 
modification of all nodes N on G without prior decompression. To the best of our 
knowledge, it is the first approach that combines the following properties: 
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Our approach computes all update positions in G determined by Q in such a way 
that paths through the grammar to these update positions can be combined to a so-
called Update DAG. This Update DAG can be used for updating multiple XML nodes 
at a time without full decompression of the grammar G. The Update DAG construc-
tion combines dynamic programming, a top-down evaluation of Q’s main path, and a 
bottom-up evaluation of Q’s filters. As our performance shows, this outperforms 
competitive query engines like QizX and MXQuery which work on uncompressed 
documents. 

Paper Organization: For simplicity of this presentation, we restrict it to XML docu-
ments containing only element nodes. The next section introduces the idea of gram-
mar based XML compression and of executing updates in parallel on such grammars. 
Based on these fundamentals, we describe our main contribution, the goal of which is 
to execute an XPath query on a given grammar and to compute the Update DAG  
that supports parallel updates. The evaluation of the entire approach is then shown in 
Section 4. 

2 Fundamentals and Previous Work 

 

Fig. 1. Document tree of an XML document D with repeated matches of patterns 

2.1 Sharing Similar Trees of XML Documents Using Grammars 

Fig. 1 shows an example XML document D represented as a binary tree, where e.g. 
#’s first-child is c, the next-sibling of which is b. To distinguish multiple occurrences 
of node labels, we have numbered the nodes in pre-order. The simplest grammar-
based XML compressors are those compressors that share identical sub-trees, such 
that the compressed grammar represents the minimal DAG of the XML tree [1]. 
These Approaches share identical sub-trees T in an XML document D by removing 
repeated occurrences of T in D, by introducing a grammar rule N→T, and by replac-
ing each T by non-terminal N. Applying this approach to our example document D, 
the sub-tree b(t,t) is found with four matches, each of which is replaced by non-
terminal A0. 
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Fig. 2. Document of Fig. 1 with identical and similar sub-trees replaced by rule calls 

However, a weakness of this approach is that only identical sub-trees can be com-
pressed. In our example, the sub-trees rooted in nodes a3 and a30 differ only at the 
highlighted leaf nodes t10 and c37. By using approaches like CluX [2], BPLEX [3], 
or TreeRePAIR [4], we are able to compress those similar sub-trees by introducing 
parameterized grammar-rules. These grammar rules consist of the identical parts of 
the sub-trees and introduce parameters as placeholders for the different parts. Fig. 2 
shows one possible resulting grammar, i.e. Grammar 2, represented as a set of trees. 
The similar sub-trees of Fig. 1 are replaced by non-terminals A1 and A2, which are 
the left-hand sides of new grammar rules in Grammar 1 containing y1 as a parameter. 

 
 A3      #(c(A2(t),b(A1(b),a(A1(t),b(A2(c),ε)))),ε) 
 A2(y1)  a(b(g(A0,t),y1),ε) 
 A1(y1)  g(b(c(A0,y1),t),ε) 
 A0    b(t,t) 

Grammar 1: A grammar sharing similar sub-trees by using parameterized rules. 

Each non-terminal Ai refers to exactly one grammar rule Ai(y1,y2,…,yn) →rhs(Ai), 
with rhs(Ai) being the right-hand side of that rule. We call yi a formal parameter (or 
just parameter). For a non-terminal expression Ai(t1,t2,…,tn) used in a right-hand 
side of a grammar-rule, we refer to each ti as an actual parameter. The grammars con-
sidered here are linear and straight-line. Linearity means that each parameter occur-
ring on the left-hand side of a grammar rule appears exactly once in the right-hand 
side of that same rule. A grammar is straight-line, if the graph representing the rule 
calls is acyclic. 

2.2 Using Grammar Paths to Identify Nodes 

Each path to a selected node in an XML document D corresponds to exactly one 
grammar path (GP) in the grammar G producing D. Beginning with the start non-
terminal of the grammar, this GP contains an alternating sequence of non-terminals Ai 
and index positions within rhs(Ai) to refer to a symbol, which is a non-terminal Ni  
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calling the next grammar rule. It ends with the index of the symbol corresponding to 
the selected terminal in the last grammar rule of the GP.  

For example, if we apply the XPath query Q:=//a//b[./t] to Grammar 1, one of the 
selected nodes can be described by GP1:=[A3,3,A2,4,A0:1]. Thus, GP1 de-
scribes a rule call to rhs(A2) at position 3 in rule A3 and a rule call to rhs(A0) at po-
sition 4 in rule A2. Finally, terminal b at position 1 in rhs(A0) is selected. A more for-
mal definition of grammar paths, however omitting rule names, is given in [5].  

2.3 Executing an Update-operation for a Given Grammar Path  

Now suppose that we want to execute an update operation for a single given GP. As 
an example consider GP1:=[A3,3,A2,4,A0:1] and update operation relabel-
To(z), which replaces the label b of the selected terminal to z. Clearly, just relabeling 
the first terminal in rhs(A0) would be wrong, since this terminal represents four nodes 
in the uncompressed XML document. One possible solution to this problem was pre-
sented in [6]. The idea is to first create a copy of each grammar rule occurring in GP1. 
Let Ai’ represent the left-hand side non-terminals of these copied rules. Then, for 
each sub-sequence (Ai,k,Aj) in GP1, non-terminal Aj at position k in rhs(Ai’) is re-
placed by Aj’. Additionally, for the last sub-sequence (An:k), the update operation 
(for example relabelTo(z)) is executed on symbol k in rhs(An’). Finally, the start rule 
is replaced by the copy of the start rule. Applying this strategy to GP1, yields Gram-
mar 2 as a result. Note that the size of this grammar is not optimal and can be further 
compressed. 

A3’     #(c(A2’(t),b(A1(b),a(A1(t),b(A2(c),ε)))),ε) 
A2(y1)  a(b(g(A0,t),y1),ε)     A2’(y1)  a(b(g(A0’,t),y1),ε) 
A1(y1)  g(b(c(A0,y1),t),ε) 
A0      b(t,t)                   A0’  z(t,t) 

Grammar 2: Grammar 2 after applying relabelTo(z) to GP1=[A3,3,A2,4,A0 : 1]. 

2.4 The Concept of Parallel Updates on Grammars  

Given an XPath query, usually a set of multiple GPs is selected. Thus, a desirable 
goal is to support executing updates on such a set of GPs in parallel and to keep the 
size of the grammar low. A first step towards a solution of this problem is to construct 
a prefix tree of the GPs [6]. This tree is constructed by introducing nodes with labels 
Ai for non-terminals Ai and directed edges with label k for sub-sequences (Ai,k,Aj) in 
the GPs to be updated. Furthermore, for sub-sequences (An:k), the tree-node created 
for An saves an entry k. The resulting graph is a tree, as equal prefixes in the grammar 
paths are combined, and since each grammar path begins in the start-rule. The result-
ing tree for the set of grammar paths selected by query Q:=//a//b[./t] is shown in  
Fig. 3(a), where edges to numbers represent entries saved in a node, i.e. positions of 
selected terminals. 
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Fig. 3. a) Prefix Tree for query //a//b[./t] on Grammar 1, b) Corresponding Update DAG 

The updates are now executed by walking top-down through the tree. Intuitively, 
the grammar rules on each tree-branch are isolated from the original grammar and 
then updated. That is, for each node of the tree visited, the corresponding grammar 
rule is copied. Let (Na,Nb) be an edge with label k and let label(Na)=Ai and la-
bel(Nb)=Aj respectively. With Ai’ and Aj’ being the non-terminals of the copied 
grammar rules, the symbol at position k in the grammar rule of Ai’ is replaced by 
non-terminal Aj’. Finally, for an entry k saved in node Ni, the update is applied to the 
k-th symbol in rhs(Ai’). 

Although this approach works correctly, it induces a large overhead, since grammar 
rules are unnecessarily copied. For example, there are three equal nodes having label A0 
in the tree of Fig. 3(a). Thus, copying the corresponding grammar rule once would have 
sufficed. The same holds for nodes with label A2. Formally, two leaf nodes are equal, if 
they save the same entries of selected terminals and have the same label, i.e. they corre-
spond to the same non-terminal. Two inner nodes are equal, if they additionally have an 
identical number of outgoing edges with equal labels pointing to (recursively) equal child 
nodes. This finally brings us to the concept of parallel updates as introduced in [6]. In-
stead of looking at each grammar path for its own, we construct the (minimal) grammar 
path DAG from the prefix tree by combining equal nodes. This way, not only the size of 
the prefix tree is reduced, but additionally, we avoid unnecessary copying of grammar 
rules. In the context of executing update operations, we refer to this DAG as the Update 
DAG. The Update DAG for the given prefix tree of Fig. 3(a) is shown in Fig. 3(b).  
Executing the update operation relabelTo(z) then results in the more space saving 
Grammar 3. For a core XPath expression P, our approach supports the update operations 
P.relabelTo(z), P.deleteNodesAndTheirFirstChildSubtree() P.insertAsFirstChild(tree), 
and P.insertAsNextSibling(tree) on all selected nodes (More details are given in [6]). 

 
A3’     #(c(A2’(t),b(A1(b),a(A1’(t),b(A2’(c),ε)))),ε) 
A2(y1)  a(b(g(A0,t),y1),ε)      A2’(y1)  a(z(g(A0’,t),y1),ε) 
A1(y1)  g(b(c(A0,y1),t),ε)      A1’(y1)  g(z(c(A0’,y1),t),ε) 
A0       b(t,t)                  A0’       z(t,t) 

Grammar 3: Grammar 2 after applying relabelTo(z) based on the Update DAG of Fig.3(b). 
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3 Construction of the Update DAG 

3.1 Assumptions and Problem Definition 

Let Q be an XPath query, O be an update operation, and G a straight-line linear 
grammar representing an XML document D. In the following, we assume that Q is an 
absolute query corresponding to Core XPath [7]. To simplify the explanations, we 
only consider non-nested relative filters excluding boolean operators. However, note 
that our software prototype obeys the complete Core XPath specification. Given these 
assumptions, the aim is to evaluate query Q on grammar G yielding the Update DAG 
to allow the execution of parallel updates. 

3.2 Overview of Our Approach 

Our algorithm directly computing the Update DAG consists of three main steps: 

a. Given an XPath query Q, we follow the Looking Forward approach of [8], i.e., 
we rewrite Q in such a way that it consists of forward axes only. Additionally, we 
extract the filters with their current context nodes from the main path of Q. 

b. Given the set of extracted filters, for each filter expression F, we construct a spe-
cial bottom-up automaton to evaluate F on grammar G. As a result, for each filter 
expression F, we get the minimal grammar path DAG (called Filter DAG) con-
taining all grammar paths to nodes in the document for which F is fulfilled.  

c. As last step, we construct a top-down automaton for the main path of Q following 
the approach of [9]. To test, whether a filter is fulfilled in a node, we use the Fil-
ter DAGs constructed in Step b. The result of this step is the Update DAG. 

To avoid an implicit decompression of the grammar in steps b and c, we follow and 
extend the idea of dynamic programming and hashing as introduced in [5]. 

3.3 Query Rewriting and Extraction of Filters 

As a first step, we rewrite the given XPath query Q, such that it contains forward axes 
of the set {descendant, descendant-or-self, child, following-sibling, self} only. The 
example query Q=//a//b[./t] already contains forward axes only. From the rewritten 
query, we extract the filters from the main path, i.e., for each location step of the form 
ax::tst[pred] which is not part of another filter predicate itself, we extract tst[pred]. 
Furthermore, we keep references in the main path pointing to the extracted filters. For 
Q, this results in the main path M=/descendant::a/descendant::b→F1 and the filter 
F1=b[child::t]. 

3.4 Evaluation of Queries without Filters 

Now let us first consider the evaluation of a query without filters. As the example 
query we use main path M, assuming filter F1 always evaluates to true. To evaluate  
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Fig. 4. a) Top-down automaton for main path M, b) Evaluation on the document tree of Fig. 1 

the query, we extend our automaton-based top-down approach of [9] to work on 
grammars. It has the advantage that it is rather simple and allows us to use dynamic 
programming avoiding an implicit decompression of the grammar. 

Constructing the Top-Down Automaton: The automaton for the main path of the 
query is constructed as presented in [9]. That is, each location step ax::tst can be  
described by an atomic automaton having transitions accepting events of the form 
binAx::tst, where binAx is a binary XPath axis first-child (fc), next-sibling (ns) or 
self. The main path then is the concatenation of these automata, as Fig. 4 (a) shows 
for the example query. 

Evaluation on an Uncompressed Document Tree: The evaluation of such an auto-
maton on uncompressed document trees works as described in [9]. The basic idea is to 
walk top-down in pre-order through the tree and to generate corresponding first-child, 
next-sibling and self-events. After visiting a first-child node, before continuing to the 
next-sibling of the parent node, a parent-event is generated, which resets the active 
automaton states to the states which were active in that parent node before. For exam-
ple, for a tree b(t,t), the sequence (self::b, fc::*, self::t, parent::*, ns::*, self::t) is gen-
erated. Note that self-events are fired, as long as transitions can fire. A detailed de-
scription is given in [9]. Fig. 4 (b) sketches the evaluation (represented by sets of 
active states) of the automaton in Fig. 4 (a) that corresponds to Q’s main path. 

Evaluation on Grammars: As the evaluation of this top-down automaton so far only 
worked on uncompressed documents, we extended it to work on grammars and to directly 
compute the Update DAG. Our idea is to keep the automaton unchanged, but to introduce 
an additional module which traverses the grammar, generates grammar events, stores and 
recovers automaton state-sets and forwards some events to the automaton. Table 1 gives 
an overview of the algorithms involved in this module. Let V be the nodes and E be the 
edges of the DAG, both initialized with empty sets. The evaluation starts with calling 
procedure evalRule() for the start-rule of the grammar. For each (recursive) call of eva-
lRule(), a DAG-node D is created, and entries(D) later-on store the positions within the 
currently visited grammar rule of terminals selected by the query. Each grammar rule is 
traversed top-down and corresponding events are generated. This works in the same  
way as for the uncompressed document, but with four new events terminal (replacing 
event self::*), nonTerminal, actualParameter and formalParameter (c.f. Table 1).  
E.g., consider t(A(a),y1). For this expression, event-sequence (terminal(t,1), fc::*,  
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nonTerminal(A,2), actualParameter, terminal(a,3), parent::*, formalParameter) is generat-
ed. Events fc::*, ns::* and parent::* are directly forwarded to the automaton. When disco-
vering a terminal L, repeatedly an event self::L is forwarded to the automaton until no 
more transitions of the automaton can fire (line 17). Whenever the automaton accepts, we 
know that L is selected by the query, and we add L’s position in the grammar rule to  
entries(D). Second, when a non-terminal Ak is found in the actual rule Ai, we recursively 
traverse the grammar rule for Ak, unless we can skip the traversal of Ak by dynamic pro-
gramming as explained in the next sub-section. After processing Ak, we add an edge from 
 

Table 1. Algorithm and events for top-down evaluation of a Grammar 

(1) procedure evalRule(non-terminal Nt): (DagNode node, list buffer) 

(2) {  D               = new DagNode; 

(3)    label(D)        = Nt; 

(4)    entries(D)      = empty set; //positions of selected terminals  

(5)    actParamBuffer  = empty list; 

(6)    formParamBuffer = empty list; 

(7)    traverse and evaluate rhs(Nt) in pre-order and generate the  

   events fc::*, ns::*, parent::*, terminal, nonterminal,  

   formalParameter, actualParameter; 

(8)    if (node-set V of DAG contains a node D’ equal to D)  D = D’; 

(9)    else V = V ∪ D; 
(10)    return (D,formParamBuffer); 

(11) } 

(12) event formalParameter 

(13)    formParamBuffer.append(automaton.getActiveStates());   

(14) event actualParameter 

(15)    automaton.setActiveStates(actParamBuffer.getAndRemoveHead()); 

(16) event terminal(label L, int position) 

(17)    do (automaton.fire(self::L)) while automaton.changesStates();  

(18)    if (automaton.isAccepting()) entries(D).add(position);      

(19) event nonTerminal(label N, int position) 

(20)    states = automaton.getActiveStates(); 

(21)    if (lemmaTable.contains((N,states)))         // skip calling N 

(22)       (node,buffer) = lemmaTable.getValueForKey((N,states)); 

(23)    else                // cannot skip calling the production of N 

(24)    {  (node,buffer) = evalRule(N); 

(25)       key           = (N, states); 

(26)       value         = (node, buffer); 

(27)       lemmaTable.put(key,value); 

(28)    } 

(29)    edge        = (D,node); 

(30)    label(edge) = position;  

(31)    E           = E ∪ edge;    
(32)    actParamBuffer.prepend(buffer); //copy of buffer now list-head 
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the current DAG-node D to the DAG node returned by evalRule(Ak). Third, when a for-
mal parameter is found, we must store the set of active states of the automaton, since we 
need these states later when continuing on the corresponding actual parameter of the call-
ing grammar-rule (line 13). Intuitively, we freeze the automaton, until we later continue on 
the actual parameter of the calling rule. Fourth, when an actual parameter is found, we 
activate the state-set frozen in the automaton (line 15). We must know, which state-set  
we have to activate for continuing traversal on the actual parameter. Therefore, when  
previously processing the non-terminal of that actual parameter, we copy the state-sets to a 
list actParamBuffer (line 32). After the traversal of a grammar rule, procedure evalRule() 
checks, whether there is an equal DAG node already in set V, whereas equality is defined 
as in the section introducing parallel updates. Note, that this test can be done in time  
O(1) using hashing. As a result, evalRule() finally returns the root-node of the minimal 
Update DAG. 

An example is shown in Fig. 5. While traversing rhs(A2), y1 is discovered and the 
active state-set of the automaton is stored in list formParamBuffer. After completing 
the traversal of rhs(A2), this state-set is returned by evalRule(A2) and prepended to 
actParamBuffer of evalRule(A3). Then, traversal continues at terminal t of rhs(A3), 
which is an actual parameter. Thus, the head of list actParamBuffer saving the  
state-set of the previously discovered parameter y1 is removed and activated in the 
automaton.  

 

Fig. 5. a), b) Evaluation of the automaton of Fig. 4 (a) on Grammar 1 

Optimization Using Dynamic Programming and Hashing: Using this approach, a 
problem still is that we would unnecessarily evaluate some grammar rules multiple 
times. To avoid this, we use dynamic programming and hashing for grammar-
compressed XML documents as itwas introduced in [5] for bottom-up automaton-
based evaluations. For our approach, we extended it to work for a top-down evalua-
tion of the grammar, as well. We introduce a lemma hash-table mapping keys to val-
ues. A key is a tuple of a non-terminal label and state-set, whereas a value is a tuple 
storing the DAG-node which was created for that non-terminal and a list of state-sets 
holding one state-set for each formal parameter of that grammar rule. The observation 
is that when a rule was traversed before with the same set of states active in the  
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automaton, then the subsequent traversal of that rule must produce an equal DAG-
node and equal sets of automaton states for the formal parameters. The use of the 
lemma table is already implemented in event nonTerminal of Table 1. However, note 
that in the worst case, the lemma table does never permit skipping a grammar rule. In 
this case, we would still implicitly traverse the whole uncompressed document. A 
detailed analysis for a bottom-up traversal already was given in [5]. Similar results 
hold for the top-down traversal, too. However, our evaluations in Section 4 show that 
on all tested documents and queries we are faster using dynamic programming than 
without using it, reaching speed-ups up to a factor of 6.7. 

3.5 Evaluation of Queries Having Filters 

Our example query Q=//a//b[./t] has a filter, and we decomposed Q into the main path 
M=/descendant::a/descendant::b →F1 and the filter F1=b[child::t]. Therefore, when 
using the top-down approach of the last section for evaluating M, we somehow need 
to know for which terminals b on which grammar paths, the filter F1 is fulfilled. In 
our top-down query evaluation approach of [9] on uncompressed documents, this is 
done by using a top-down automaton for the filter, as well. An instance of this auto-
maton is created each time a node b is selected by M, and this instance then is eva-
luated in parallel during top-down evaluation. However, this approach has the disad-
vantage that there may be several instances of a filter automaton evaluated in parallel, 
i.e. one for each b-node in this case. Furthermore, as the main path of the query can 
have more than one filter attached to any location step, the automaton processing that 
main path needs to store references to filter automata instances in its states. Therefore, 
we decided to use another approach. Before evaluating M, we evaluate the filters 
using bottom-up automata resulting in a DAG for each filter. Such a DAG saves all 
grammar paths to nodes for which the corresponding filter is fulfilled. Thus, for F1, 
this DAG saves all grammar paths to b-terminals having a child t. When afterwards 
evaluating the main path of the query, we can use the computed DAGs to decide, for 
which document node which filter is fulfilled. This approach has the major advantage 
that the automata for the top-down traversal are kept simple and that we can extend 
the idea of dynamic programming to consider filters. 

 

Fig. 6. a) Bottom-up automaton for F1=b[child::t], b) Evaluation on document tree of Fig. 1 

Construction of Bottom-up Automata: To evaluate the extracted filters, we first 
construct a special bottom-up automaton for each filter reusing the ideas of [10]. The  
basic observation is that we can evaluate a location-path bottom-up from right to  
left, i.e., each expression tst1/ax::tst2 can be represented by the equivalent reverse 
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expression tst2::axR/tst1, where axR is the reverse XPath axis of ax. For 
F1=b[child::t], we get t::parent/b. As in the top-down approach, each location step can 
then be expressed as an automaton using the events fcR::*, nsR::* and self::tst, with 
fcR being the reverse axis of first-child, nsR the reverse axis of next-sibling, and tst 
being a node test. Concatenating these automata for each location step then results in 
an automaton evaluating the whole filter expression. Fig. 6 (a) shows the resulting 
automaton for filter F1. 

Evaluation on an Uncompressed Document Tree: A bottom-up automaton is eva-
luated on a tree by traversing the tree in a reversed post-order walk. Each time, when 
continuing evaluation at a leaf-node, a new instance of that automaton is created. 
When traversing the path from a leaf up to the root of the tree, corresponding events 
fcR::tst and nsR::tst are generated, with tst being the name of the node reached. For a 
leaf-node and for each node reached during traversal with label tst, an event self::tst is 
generated as long as transitions can fire. Note, that a transition with a label of the 
form axis::* can fire for any event axis::tst. Furthermore, for an event self::tst, the 
source states of firing transitions stay active for the same reasons as explained in [9].  
The start-state of an automaton-instance is activated whenever a document node ful-
filling the node name-test attached to the start-state of that automaton is found. As an 
optimization, when two leaf-to-root paths share a node, the two automata instances 
are unified to one instance at the first common node by computing the union of the 
active state sets. This way, sub-paths are traversed only once. Fig. 6 (b) visualizes the 
evaluation of the automaton for F1 on parts of the document tree of Fig. 1. The filter 
corresponding to the automaton is fulfilled in a document node n if and only if the 
automaton accepts in that node. In Fig. 6 (b), this holds for nodes b31 and b33, since 
they are the only b-nodes having a child with label t.  

Evaluation on Grammars: The evaluation of each filter automaton on the grammar 
follows the idea of the top-down evaluation of the main path of the query. That is, we 
begin the traversal in the start rule and recursively traverse the rules of non-terminals, 
we find. The only difference is that grammar rules are processed bottom-up from right 
to left. This has the advantage that for a non-terminal expression Aj(p1,…,pn),  
the actual parameters pi are visited before Aj itself. For each actual parameter, the set 
of active states for every filter automaton is saved. When visiting non-terminal Aj 
afterwards, the traversal continues in rhs(Aj), which is processed in the same way 
bottom-up. When visiting a formal parameter yk, the state sets saved for actual pa-
rameter pk are activated in the automata. After finishing the traversal of rhs(Aj), pro-
cessing continues in the calling grammar rule. A sketch of this is shown in Fig. 7 (a). 
Note that actual parameter t is visited before calling rhs(A2) and that the automaton 
states are transferred to y1 in rhs(A2). The Filter DAG is constructed in the same way 
as with the top-down approach. The (minimal) Filter DAG for filter F1 is shown in 
Fig. 7 (b). 
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Fig. 7. a) Evaluation of F1 on Grammar 1, b) Resulting minimal Filter DAG 

Optimization Using Dynamic Programming and Hashing: As for the top-down ap-
proach, we reuse the idea for the bottom-up evaluation of filters, as introduced in [5]. 
Again, we use a lemma hash-table mapping keys to values (one table for each filter). 
Each entry describes a rule-call from a non-terminal N occurring somewhere in the 
right-hand side of a production. A key is a tuple consisting of the non-terminal name 
of N and a list of state-sets. Each state-set at position i in the list describes the set of 
states which were active in the i-th actual parameter of N. The value is a tuple consist-
ing of the DAG-node generated for traversing rhs(N) and the set of automaton-states, 
which were active after traversing that rule. The observation is that we can skip an 
additional traversal of rhs(N), when the automaton produces the same active state-sets 
for the actual parameters of the new occurrence of N. In this case, traversing the 
grammar rule again would produce the same DAG-node and the same active state-set.  

As an example consider filter F1=b[child::t] evaluated on Grammar 1. Obviously, 
grammar rule rhs(A0) is traversed four times without dynamic programming. How-
ever, non-terminal A0 has no parameters, which means that evaluating the filter au-
tomaton on rhs(A0) always produces the same result. Thus, it is sufficient to traverse 
rhs(A0) only once. Furthermore, consider the grammar rule of A2. It is called two 
times from rhs(A3) by expressions A2(t) and A2(c). During the bottom-up evaluation 
of rhs(A3), the actual parameters t and c are visited before their non-terminal A2. 
Evaluating the automaton on terminals t and c yields state-sets {1,2} and {-} respec-
tively. But this means, when processing rhs(A2) the automaton might produce differ-
ent results, i.e. accept in different terminals and end-up in different active states after 
evaluating rhs(A2). This is, because the state sets computed in the actual parameters 
are used when visiting the formal parameter y1 in rhs(A2). Thus, we must not skip a 
second traversal through rhs(A2) here. 

Note that we evaluate all filters of the query in parallel. Skipping the traversal of a 
grammar rule therefore is only allowed, if all lemma tables permit skipping. If only 
some of the lemma tables allow for skipping, we pause the automata of the corre-
sponding filters such that only the automata which need to traverse that rule again are 
active. 

Using the Filter DAGs during Evaluation: Now, having a Filter DAG for each 
filter, we must extend the top-down approach to use these DAGs. The general idea is 
to synchronously walk through the Filter DAGs while walking through the grammar. 
I.e., for the first call of evalRule(), we start in the root-nodes of the Filter DAGs. 
Then, for each recursive call to evalRule(), we follow the corresponding edges in the 
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Filter DAGs. This way, the top-down automaton can easily test, whether a filter is 
fulfilled in a currently visited terminal at position i, by checking whether the currently 
visited Filter DAG node of the corresponding filter stores an entry i. However, we 
also have to care about actual rule parameters for the following reason. Suppose, we 
have expressions N(b) and N(t) in a right-hand side of a grammar rule. Since we have 
filters and the actual parameters differ, different terminals may be selected in both 
rule-calls of rhs(N). Thus, we need to know, whether the filters for both calls of 
rhs(N) evaluate to true at the same positions. Exactly for this situation, we use the 
Filter DAGs. In a (minimal) Filter DAG, equal nodes have been combined to a single 
node. But this means, (only) when for both calls of rhs(N), in each Filter DAG, we are 
in the same Filter DAG node, the filters evaluate to true at the same positions. In this 
case, we can safely skip a second traversal of rhs(N). Thus, the decision to skip a 
traversal of a grammar rule also depends on the DAG-nodes currently visited and 
which were visited at the previous traversal of that rule. Therefore, we extend our 
lemma table of the top-down approach. A key-tuple additionally saves for each Filter 
DAG, the node which was active in that Filter DAG.  

4 Evaluation 

All tests were performed on an Intel Core2 Duo CPU P8800 @ 2.66 GHz. We used 
Java 1.7 (64 bit) with 2500 MB heap space assigned. As the first test document, we 
chose XMark (XM) which was generated using a scaling factor of 1.0 [11]. The se-
cond document is SwissProt (SP). To make our evaluations independent of the kind of 
text compression used, we removed all text- and attribute-nodes, resulting in docu-
ments of sizes 25.6 MB (XM) and 43.1 MB (SP), respectively. These documents were 
used as input for the query processors QizX [12] and MXQuery [13]. Furthermore, we 
used CluX to compress the documents, yielding grammars of size 1.15 MB (XM) and 
1.74 MB (SP), respectively. These grammars were used as input to our algorithm 
using dynamic programming (directUD) and without using dynamic programming 
(directUD no). For a better comparison of the results, all documents were read from a 
RAM-disc. As running time, we measured the time, the algorithms spent in user mode 
on the CPU. 

 

Fig. 8. a) Evaluation results on XMark document, b) on SwissProt document 
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Fig. 8 shows the evaluation results for both documents. The queries a1 to a8 exe-
cuted on XM correspond to the XPath-A queries of the XPathMark benchmark [14]. 
For SP, queries q1 and f1 are designed such that they consist of few child axes only, 
whereas the other ones are more complex, having several following-sibling and des-
cendant axes. Note that MXQuery currently does not support following-sibling axes 
and therefore was not executed on queries q2, f2 and f3. On the selected nodes by 
each query, a delete update operation was executed, removing these nodes including 
their first-child sub-trees. The times measured include both, the evaluation of an 
XPath query and the execution time of the update operation. Results not shown in the 
diagram were worse than 3 seconds for XM or worse than 6 seconds for SP, respec-
tively. As both, Fig. 8 (a) and (b), show, our new approach outperforms QizX and 
MXQuery on each query. For the XMark document, we are about 4.2 times faster 
than QizX on average. However, when disabling dynamic programming, results get 
worse, such that QizX was faster than our algorithm for query a8. It has to be noted 
that query a8 has filters, such that our approach needs two runs through the grammar. 
Disabling dynamic programming results in implicitly decompressing that grammar 
twice. In this sense, our results show the benefit of using dynamic programming, be-
ing 3 times faster on average on the XMark document, when enabling it. In case of 
the SwissProt document, we benefit even more from dynamic programming, being up 
to 6.7 times faster when enabling it. Note that QizX was aborted after 60 seconds 
running on the rather complex query q2 having a rather high selectivity of 76,573 
nodes, whereas our algorithm took less than one second.  

5 Related Work 

There are several approaches to XML structure compression which can be mainly 
divided into the categories: encoding-based, schema-based or grammar-based com-
pressors. Encoding-based compressors (e.g.[15], [16], [17], XMill [18], XPRESS 
[19], and XGrind [20]) allow for a faster compression speed than the other ones, as 
only local data has to be considered in the compression as opposed to considering 
different sub-trees as in grammar-based compressors. Schema-based compressors 
(e.g. XCQ [21], Xenia [22], and XSDS [23]) subtract the given schema information 
from the structural information and only generate and output information not already 
contained in the schema information. XQzip [24] and the approaches [25] and [1] 
belong to grammar-based compression. They compress the data structure of an XML 
document by combining identical sub-trees. An extension of [1] and [24] is the 
BPLEX algorithm [3] that not only combines identical sub-trees, but recognizes simi-
lar patterns within the XML tree, and therefore allows a higher degree of compres-
sion. The approach presented in this paper, which is an extension of [2], follows the 
same idea. But instead of combining similar structures bottom-up, our approach 
searches within a given window the most promising pair to be combined while fol-
lowing one of three possible clustering strategies. Furthermore, in contrast to [5] and 
[26], that perform updates by path isolation only sequentially, our approach allows 
performing updates in parallel which takes only a fraction of time.  
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6 Summary and Conclusions 

We have presented an approach to directly support updates on grammar-compressed big 
XML data. Given a grammar G representing an XML document D, and given an XPath 
query Q selecting nodes N of D and an update operation O to be performed on all these 
nodes N, our approach simulates this multi-update operation on G without full decom-
pression of G. For this purpose, it computes the set of all grammar paths through G rep-
resenting the nodes selected by Q, combines these paths into a small Update DAG, and 
then executes O in parallel on all the paths described by the Update DAG. As an ad-
vantage over other algorithms, there is no need to decompress the document and to com-
press it again afterwards. Additionally, by using the Update DAG, redundant modifica-
tions within the compressed grammar can be avoided, which increases the performance 
and keeps the size of the compressed XML document low. To further speed-up the exe-
cution of Q when computing update positions in G, we separate the top-down evaluation 
of Q’s main path from the bottom-up computation of Q’s filters, and we use dynamic 
programming for both, the top-down and the bottom-up computation. As a result, our 
solution outperforms other update processors like QizX and MXQuery working on un-
compressed XML only up to a factor of 37 and more.  
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Abstract. Efficient twig pattern matching is essential to XML queries
and other tree-based queries. Numerous so-called holistic algorithms have
been proposed to process the twig patterns in XML queries. However,
a more general form of twig patterns, called B-twig (or Boolean-twig),
which allow arbitrary combination of all the three logical connectives,
AND, OR, and NOT in the twig patterns, has not yet been adequately
addressed. In this paper, a new approach accompanied with an optimal
implementation algorithm is presented for efficiently processing B-twig
XML queries. Experimental study confirms the viability and performance
superiority of our new approach.

Keywords: Query processing, XML query, Tree pattern query, Boolean
twig, Twig join, Tree pattern matching.

1 Introduction

XML as a de facto standard for data exchange and integration is ubiquitous
over the Internet. Many scientific datasets are represented in XML, such as
the Protein Sequence Database which is an integrated collection of functionally
annotated protein sequences [2] and the scientific datasets at NASA Goddard
Astronomical Data Center [1]. Moreover, XML is frequently adopted for repre-
senting meta data for scientific and other computing tasks. Efficiently querying
XML data is a fundamental request to fulfill these scientific applications. In ad-
dition to examining the contents and values, an XML query requires matching
the implied twig patterns against XML datasets. Twig pattern matching is a core
operation in XML query processing. In the past decade, many algorithms have
been proposed to solve the XML twig pattern matching problem. Holistic twig
pattern matching has been demonstrated as a highly efficient overall approach
to XML twig pattern computation.

Most of previous algorithms were designed to deal with plain twig patterns.
However, queries in practical applications may contain all the three types of
Boolean predicates, AND, OR, and NOT, resulting in a more general form of
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twig patterns that we used to call as All-twigs [4] and now tend to call as
Boolean-Twigs [5]. The following is an example B-twig XML query (given in an
XPath-like format) that involves all the three logical predicates, asking for the
cars that are either “made by BMW after 2005” or “white but not a coupe”:

/vehicle/car/[[made = ‘BMW’ AND year > 2005] OR [NOT[type = ‘coupe’]
AND color = ‘white’].

As a practical example, the above query signifies that uniform and efficient
support for AND, OR, and NOT is important for any XML query system.

We see only limited reported efforts made on holistically computing of B-twig
pattern matches (a core operation in XML query evaluation). This paper reports
our most recent result on this line of research, which is based on numerous
years of efforts [4,5,7]. More specifically, we present a new and more efficient
approach for B-twig pattern computing. With resort to minimum preprocessing,
our new algorithm, FBTwigMerge, outperforms all prior related algorithms.
With this new approach and the accompanying algorithm, we contribute to the
community with a relatively complete family (this work, plus [5] and [7]) of
approaches/algorithms for holistic B-twig pattern matching.

The remainder of the paper is organized as follows. Section 2 reviews related
works. Section 3 provides preliminaries. Section 4 elaborates on our new ap-
proach. Section 5 presents our new algorithm, FBTwigMerge. Section 6 shows
experimental results, and Section 7 concludes this paper.

2 Related Work

Twig pattern matching is a core operation in XML query processing. Holistic
twig joins has been repeatedly demonstrated of performance superiority. In 2002,
Bruno et al. [3] first proposed the so-called holistic twig join algorithm to XML
twig queries, named TwigStack, whose main goal was to overcome the draw-
back of structural joins that usually generate large sets of unused intermediate
results. TwigStack is not optimal when PC (parent-child) edges are involved
in the twig patterns. Lu et al. [11] tried to make up this flaw and presented a
new holistic twig join algorithm called TwigStackList, where a list structure is
used to cache limited elements in order to identify a larger optimal query class.
Chen et al. [6] studied the relationship between different data partition strate-
gies and the optimal query classes for holistic twig joins. Grimsmo et al. [8]
introduced effective filtering strategies into twig pattern matching and proposed
algorithms that are worst-case optimal and faster in practice, which however
address only the plain twigs. Lots of efforts have been reported on extending the
holistic twig join approach to more general twigs such as Boolean twigs. Jiang
et al. [10] made the first effort toward holistic computing of AND/OR-twigs. Yu
et al. proposed a method for holistic computing of AND/NOT-twigs [15]. We [5]
proposed and implemented the first holistic B-twig pattern matching algorithm
called BTwigMerge (that allows arbitrary combinations of ANDs, NOTs, ORs
in input twigs). The approach [5] resorts to normalization to regulate the com-
binations of AND, NOT, OR predicates in a B-twig, but normalization comes
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with a cost – extra processing and potential query expansion. We then designed
an alternative algorithm, DBTwigMerge [7], that discards normalization (and
its inherent drawbacks) and has “the theoretical beauty” of no preprocessing,
but does not outperform in all cases. The new algorithm to be detailed in this
paper combine the advantages of our prior algorithms and is overall the best.

In order to concentrate our energy on innovative holistic approaches, we have
adopted the simply region encoding scheme for labeling the XML data elements.
Besides region encoding, extended Dewey [12,13,14,9] has been shown more ad-
vantageous, and will be considered for adoption in the frameworks [5,7] we have
proposed for holistic B-twig pattern matching in the future.

In contrast, our work focuses on more powerful, efficient, and innovative holis-
tic computing schemes for arbitrary B-twig patterns. Our work is unique by itself
– no other researchers have done the same kind of research – efficient and holis-
tic B-twig pattern computing. Our new approach combines the benefits of our
two prior approaches [5,7], and our new algorithm demonstrates superior perfor-
mance in all cases. The subsequent sections elaborate on the details of our new
approach and new algorithm.

3 Data Model and Tree Representation

We adopt the general perspective [3] that an XML database is a forest of rooted,
ordered, and labeled trees where each node corresponds to a data element or a
value, and each edge represents an element-subelement or element-value relation.
We assume a simple encoding scheme, a triplet region code (start, end, depth),
which is assigned to each data element in a XML document. Each node (element-
type) in an input twig query is associated to an input stream of elements (rep-
resented using their respective region code) of the type. Our goal is to design a
scheme to efficiently find all the mappings of an arbitrary B-twig onto an XML
document (or dataset). An arbitrary B-twig may consist of the two general types
of nodes, QNode and LgNode. Furthermore, a LgNode represents any of the fol-
lowing types of nodes: ANode, ONode and NNode [7]. For ease of presentation,
we use the term “query node” to generally refer to any node (QNode or LgNode)
that appears in a B-twig query. The answer to a B-twig query is a set of qualified
twig instances (i.e., the embeddings of the twig pattern into the XML database).
We assume the same output model for B-twigs as in [5].

4 A Practical Approach for for B-Twigs

In this section, we present our new approach to holistic B-twig pattern matching.
This approach is motivated from our two prior approaches [5,7]. We refer to our
new approach as the “practical approach” as it combines the advantages of the
two prior ones and outperforms both them in practice.

The key insight we obtained from our prior work [5,7] has two folds: nor-
malization can effectively control combination complexity but may cause query
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expansion, and complete discard of normalization leads to very complex process-
ing and inefficiency. The inspiration is to retain normalization but restrain to
the extent that the net performance gain can be maximized. The bottom line
is discard or minimize the normalization that causes major expansion on input
B-twigs [5]. We particularly address the following three issues in the rest of this
section: (i) identify the favored forms of B-twigs that yield efficient holistic pro-
cessing; (ii) develop the preprocessing steps that transform an arbitrary B-twig
into a desired form; (iii) design a new algorithm for efficiently (and holistically)
evaluating the transformed B-twigs.

We call the favored/desired forms of B-twigs Well-Formed B-Twigs (or WF-
BTs for short) that tolerate many of the combinations that normalized forms [5]
would not. The definition is given below.

Definition 1. (Well-Formed B-Twig) A WFBT must satisfy: (1) not contain
any superficially redundant edges such as AND-AND, OR-OR, NOT-NOT; (2)
not involve three or more consecutive LgNodes between any two QNodes along any
root-to-leaf paths, except for one special case of combination, OR-AND-NOT.

WFBTs permit many combinations that would not be allowed by the normal
forms, but are feasible to efficient algorithmic processing. Here we set the thresh-
old “three” because we can pretty easily and efficiently deal with less than three
consecutive LgNodes in a B-twig; for three (or more) consecutive LgNodes, we re-
quire to transform the input B-twig complying to WFBTs; the above-mentioned
special case of combination, OR-AND-NOT, is already the favored pattern that
the normalization discussed in [5] was purposefully seeking. When a B-twig is
not recognized as a WFBT per Definition 1, it will be transformed into an equiv-
alent WFBT in our new holistic approach. We retained three from the eight rules
of [5] for transforming any non WFBT into an equivalent WFBT. These three
rules, shown in Fig. 1(a), are adequate and necessary for obtaining WFBTs
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Fig. 1.

Theorem 1 (Completeness of Transformation). By applying the three rules,
every B-twig can be transformed into an equivalent WFBT per Definition 1.

Proof. Let Q be an arbitrarily given B-twig. We leave out the following three triv-
ial cases: (1) Q involves superficially redundant edges; (2) Q contains nomore than
three consecutive LgNodes between any two QNodes on any path; (3) Q contains
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the favored pattern of three consecutive LgNodes, OR-AND-NOT. We prove that
any combination pattern other than OR-AND-NOT and involving three or more
consecutive LgNodes on a path can be transformed into either (i) shorter patterns
involving two or less consecutive LgNodes; or (ii) the favored OR-AND-NOT pat-
tern through combined application of the three transformation rules.

With three consecutive LgNodes along a root-to-leaf path, there are totally
12 possible different combinations, including the favored one, OR-AND-NOT
(details omitted due to space reason). We take AND-NOT-OR as an example
for illustration: first, we apply Rule 1 to the NOT-OR sub-pattern, replacing the
OR node with an AND node and pushing down the NOT node below the AND
node (notice that the NOT node is duplicated by Rule 1); the above step results
in an AND-AND edge along the path, and the two AND nodes shall be trivially
merged into a singe one. If below at least one of NOT nodes immediately follows
another LgNode, a further application of one of the three rules shall be carried
out accordingly. Analogously for all other non-favored combinations of LgNodes.
The correctness/equivalence of each performed transformation step is assured by
the self-evident correctness of each of the three transformation rules. �
To help perceive the implication of our WFBTs, we show, in Fig. 1(b), all the
four distinct combination patterns (with limited length) of consecutive LgNodes
that are allow in WFBTs. These patterns are generic in the sense that every
LgNode may be replaced by either an AND, an OR, or a NOT node. From Fig.
1(b)), we can derive a total of 11 combinations that may immediately follow
a QNode. This observation greatly facilitates the design of our algorithm for
efficiently and holistically processing WFBTs.

Cost of Preprocessing.Transformation of an input B-twig into aWFBT comes
with a cost. The cost consists of two parts: direct cost and indirect cost. The direct
part counts the time consumed by the preprocessing itself and the indirect part
counts any extra time spent by the query due to the alteration (including expected
minor expansion). In practice, since the size of queries are usually small, the time
consumed by preprocessing is usually marginal compared to the time spent on
evaluating the query. When considering the indirect cost we need to carefully re-
check our three transformation rules to see what side effects could be induced.
Both Rule 1 and Rule 2 both introduce an additional NOT node, which is nothing
because a negated query node can be processed as efficiently as a regular query
node. Rule 3, while swapping AND and OR, may duplicate one (or more if applied
repeatedly) child of anANDnode (e.g., the D node of Rule 3 as shown in Fig. 1(a)).
But the duplicated child just adds one more branch to the upper OR node, our
optimized implementation for the OR predicate in a B-twig is able to identify such
cases and evaluate duplicated query nodes only once. In all cases, no additional
I/O cost is introduced, which is key to marginalize the preprocessing cost.

5 The FBTwigMerge Algorithm

In this section, we present our new algorithm, named FBTwigMerge, designed
based on our above-sketched approach. Our new algorithm requires new mecha-
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nisms for efficiently evaluating WFBTs. Since our new approach shares the same
overall framework as BTwigMerge [5], in the following we only give the impor-
tant lower-level supporting mechanisms that are new or substantially different.

5.1 Novel Supporting Mechanisms for WFBTs

In order to holistically and efficiently computing the matches for WFBTs, we
introduce the following important supporting mechanisms/functions:

– edgeT est: examines the containment relation between two elements, depicted
as an edge of either ‘/’ or ‘//’.

– nEdgeTest: examines a negated leaf QNode.
– nNodeTest: examines a negated non-leaf QNode.
– ANodeTest: evaluates a simple AND node (predicate) that has only QNodes

as children (operands).
– ONodeTest: evaluates a simple OR node that has only QNodes as children.
– SuperANodeTest: evaluates an complex AND node that may bear other

LgNodes as children.
– SuperONodeTest: evaluates an complex OR node that may bear other LgN-

odes as children.
– SuperNNodeTest: evaluates a complex NOT node that may bear another

LgNode as its child.
– hasExtension: the key supporting function, examines whether an element

indeed leads to a strict subtree match.

The hasExtension function, as the key supporting mechanism in the imple-
mentation of FBTwigMerge, examines whether there exists a strict subtree
match. In Section 4, we summarized 11 distinct cases of combinations follow-
ing a QNode, which must all be incorporated into hasExtension. This func-
tion in turn relies on a set of other, more fundamental supporting subroutines.
Among them, ANodeTest, NNodeTest, SuperANodeTest, SuperONodeTest,
and SuperNNodeTest are specially designed for FBtwigMerge that targets at
WFBTs. In the following, due to space concern, we choose to elaborate on the
algorithms of the three ‘super’ functions, which correspond to three generic cases
involving AND, OR, and NOT, respectively.

Function SuperANodeTest handles the following three cases of potential com-
binations of LgNodes: QNode-ANode-QNode, QNode-ANode-ONode-QNode,
and QNode-ANode-NNode-QNode per Definition 1. The ANode in the first case
is a simple ANode while the ANodes in the other two cases are complex ANodes.
Function SuperONodeTest deals with the following three potential combination
patterns: QNode-ONode-QNode, QNode-ONode-ANode-QNode, and QNode-
ONode-NNode-QNode. Algorithm 1 sketches the implementation of Super-
ONodeTest, which (at line 7) calls function SuperANodeTest to deal with a po-
tential complex ANode child. Function SuperNNodeTest deals with the follow-
ing three potential combinations: QNode-NNode-QNode, QNode-NNode-ANode-
QNode and QNode-NNode-ONode-QNode. The algorithms of Super-ANodeTest
and SuperNNodeTest are omitted.

All these three new ‘super’ functions are called by the key supporting function,
hasExtension, which has been substantially generalized (see Algorithm 2 and
compare with [5]).
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Algorithm 1. SuperONodeTest(ONode q, ONode qi)
1: for all qj ∈ qi.getChildren() do
2: if qj .isQNode() then
3: if edgeTest(q, qj)&&hasExtension(qj) then
4: return true
5: end if
6: else if qj .isANode() then
7: if SuperANodeTest(q, qj) then
8: return true;
9: end if

10: else if qi.isNNode() then
11: return nNodeTest(q, qj); //return anyway.
12: end if
13: end for

Algorithm 2. hasExtension(QNode q)
1: for all qi ∈ q.getChildenList() do
2: if isQNode(qi) then
3: if !(edgeTest(q, qi)&&hasExtension(qi)) then
4: return false;
5: end if
6: end if
7: if isANode(qi) then
8: if !SuperANodeTest(q, qi) then
9: return false;

10: end if
11: else if isONode(qi) then
12: if !SuperONodeTest(q, qi) then
13: return false;
14: end if
15: else if isNNode(qi) then
16: if !SuperNNodeTest(q, qi) then
17: return false;
18: end if
19: end if
20: end for
21: return true;

5.2 Cost Analysis of FBTwigMerge

Relying on the core supporting function, hasExtension, our new algorithm,
FBTwigMerge, probes through the input streams and seeks only for exact sub-
tree matches. During the whole process, FBTwigMerge strictly differentiates
PC edges from AD (ancestor-descendant) edges, generates (and pushes onto
stacks) only useful elements that form optimal matches. As for I/O’s, similar to
BTwigMerge [5], FBTwigMerge never backtracks on any input stream. It (at
the first phase) only sequentially scans through all relevant input streams once
and produces path matches (intermediate results), and (at the second phase)
reads the paths in (for resembling) and output final results at the end. So the
total I/O sums up to |input|+3|output|, which is overall linear to the sizes of in-
put and output. We therefore can conclude that FBTwigMerge has worst-case
optimal CPU and I/O costs, which are both linear to |input|+ |output|.

6 Experiments

In this section we present the results of our experimental study and compare
with related algorithms. We only compare with algorithms that also adopt re-
gion encoding instead of the Dewey encoding. The algorithms we selected for
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this study include TwigStack [3] (the first and representative algorithm for
plain AND-only twigs), GTwigMerge [10] (the first and only known algorithm
for AND/OR-twigs), TwigStackList¬ [15] (the first algorithm for AND/NOT-
twigs), BTwigMerge [5] (the first and only known algorithm for normalized
B-twigs), and DBTwigMerge (the first and only known direct algorithm for
arbitrary B-twigs).

6.1 Experimental Setup

The platform of our experiments contains an Intel Core 2 DUO 2.2 GHz running
Windows 7 System with 4GB memory. These algorithms were implemented and
tested in JDK1.6. The region codes of elements and set of test queries were
stored in external files on hard disk. To avoid potential bias of using a single
dataset, all the experiments were conducted on two distinct data sets: the Protein
Sequence Database (PSD) [2] and the Treebank (TB) dataset. The file size of
PSD is 683MB and the size of TB is 82MB. We carefully considered the following
factors, topology, distribution of logical nodes, selection ratio, and designed four
sets of total 40 queries. Each set represents a distinct class of B-twigs: Set 1
consists of AND-only twigs; Set 2 consists of AND/OR-twigs; Set 3 consists of
AND/NOT-twigs; and Set 4 consists of full B-twigs. This study focused on the
key performance metric — CPU cost. Scalability test was also conducted on
varied dataset sizes (i.e., multiples of a selected base dataset).

6.2 Performance Results

We conducted four sets of tests respectively with the PSD and TB datasets. For
compactness, with each pair of corresponding tests (respectively with PSD and
TB), we over-stack the performance charts in the same figure (left y-axis reads
out the running time of the queries on TB, and the right y-axis reads out the
running time of queries on PSD), and only indicate applicable algorithms in the
performance charts.

Test 1: With Plain Twigs. All the 6 tested algorithms show comparable
performance on plain twigs (performance figure omitted for space reason).

Test 2: with AND/OR-Twigs. As we can see in Fig. 2(a) regarding the 4
applicable algorithms, BTwigMerge and FBTwigMerge have similar perfor-
mance and both perform the best. On TB,GTwigMerge perform the worst, while
on PSD, DBTwigMerge perform the worst. The reason why DBTwigMerge
perform worse than BTwigMerge and FBTwigMerge lies the followings: first,
DBTwigMerge incorporates logical nodes into its iterations, which takes upmore
time; second, the normalization/preprocessing step can actually simplify the input
AND/OR-twigs to a certain degree, depending the pattern of the input queries,
which is to the disadvantage of DBtwiMerge (in contrast, BTwigMerge and
FBTwigMerge do not take logical nodes into their main iterations).

Test 3: with AND/NOT-Twigs. As shown in Fig. 2(b), FBTwigMerge per-
form the best in almost all the queries tested, due to the mentioned advantage
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of preprocessing on input B-twigs. For q5 of both PSD and TB, DBTwigMerge
performs the worst because these queries contains a relatively large number of
LgNodes, led to many extra processing iterations that do not exist in the other
algorithms. For q5, BTwigMerge performs the worst. The reason that causes
BTwigMerge to slowdown is the twig expansion rendered by its normalization
resulted from repeated pushing-down of NOTs. In contrast, unfavorable normal-
ization is reduced to the minimum in FBTwigMerge, which helps circumvent
the drawback of BTwigMerge.

Test 4: with Full B-Twigs. For AND/OR/NOT-twig (or full B-twig) queries,
only BTwigMerge, DBTwigMerge, and FBTwigMerge are applicable. The
experiment result is plotted in Fig. 2(c).DBTwigMerge performs the worst with
this set of queries due to the same reason as we explained with the AND/OR-twig
and AND/NOT-twig queries. FBTwigMerge is the overall winner.

Scalability Test. Scalability test for FBTwigMerge is done with varied (in-
creased) dataset sizes. For this purpose, 8 most complicated queries from our
test sets were chosen and evaluated over the PSD dataset that was resized at
5 different scales. The ith dataset contains 2i−1 × 100k Protein entries, and the
sizes of the datasets range from 276MB to 4.31GB. The results of scalability
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test are plotted in Fig. 2(d), from where we can see that our FBTwigMerge
demonstrates nearly linear scalability of CPU time with all tested queries.

7 Summary

Holistic twig join is a critical operation in XML query processing. All three types
of logical predicates, AND, OR, and NOT, are equally important to general XML
queries. In this paper, we presented a novel and efficient approach for holistic
computing of B-twig patterns and detailed its implementation. Our new algo-
rithm, FBTwigMerge, outperforms all previous algorithms though not very sig-
nificantly but pretty consistently in all test cases. The consistent out-performance
of FBTwigMerge makes it the best option to practical XML query systems.
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Abstract. The MapReduce programming model is recently getting a
lot of attention from both academic and business researchers. Systems
based on this model hide communication and synchronization issues from
the user and allow processing of high volumes of data on thousands of
commodity computers. In this paper we are interested in applying MR
to processing hierarchical data with nested collections such as stored in
JSON or XML formats but with restricted nesting depth as is usual in
the nested relational model. The current data analytics systems now of-
ten propose ad-hoc formalisms to represent query evaluation plans and
to optimize their execution. In this paper we will argue that the Nested
Relation Calculus provides a general, elegant and effective way to de-
scribe and investigate these optimizations. It allows to describe and com-
bine both classical optimizations and MapReduce-specific optimizations.
We demonstrate this by showing that MapReduce programs can be ex-
pressed and represented straightforwardly in NRC by adding syntactic
short-hands. In addition we show that optimizations in existing systems
can be readily represented in this extended formalism.

1 Introduction

MapReduce (MR) is a programming model developed at Google to easily dis-
tribute processing of high volumes of data on thousands of commodity comput-
ers. Systems based on this model hide communication and synchronization issues
from the user, while enforcing a simple yet powerful programming style which
is influenced by functional programming. MR is being successfully applied [6]
on Web scale data at Google processing centers. After Google published the pa-
per explaining the idea behind MR, an open source version, named Hadoop [2],
was created and started to be widely used by both universities for research and
companies like Yahoo, Twitter and Facebook to process their data.

Even though the MR model makes writing distributed, data-driven software
a lot easier than with older technologies like MPI or OpenMP, for many appli-
cations it is too general and low level. This forces the developers who want to
process large collections of data to deal with multiple concerns. Additionally to
dealing with the problem they are trying to solve, they have to struggle with
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implementing and optimizing typical operations. As happened many times in
history, e.g., with compilers or relational databases, it is better to separate con-
cerns by introducing a higher level, more declarative language, better suited for
specifying tasks for data analytics or scientific data processing, and at the same
time more amenable to optimization. This is a topic of intensive study at the
time of this writing and many systems are being built on top of implementa-
tions of MR ranging from data analytics Pig [10], data warehousing Hive [16],
through workflow systems like Google’s Sawzall [15], to graph processing systems
like Pregel [14].

An effort is also undertaken on finding the best formal model of MR com-
putations and their cost that would allow to reason which algorithms can be
efficiently expressed in MR, and which cannot and why. Several attempts were
made to define cost model, which is easy to use, understand and allows to rea-
son on MR programs efficiency. One of the more successful ideas is a notion of
replication rate introduced by Afrati, Ullman et al. [1], who count the number of
excessive data transfers and claim that it is a good metric of MR efficiency since
it deals with the bottleneck of typical MR programs — the network efficiency.
In another work by Karloff et al. [12] a notion of MR expressive power was re-
searched and a correspondence showed between MR framework and a subclass
of PRAM.

In this paper we are interested in applying MR to processing hierarchical
data with nested collections such as stored in JSON or XML formats but with
restricted nesting depth as is usual in the nested relational model. We show that
the Nested Relational Calculus (NRC) [3], a core language that describes a small
but practically and theoretically interesting class of queries and transformations
over nested relational data, is a good formalism to reason about MR programs.
We demonstrate this by showing how some of the most important higher-level
MR languages can be expressed in NRC with added syntactic short-hands. In
addition we show that NRC provides a general, elegant and effective way to
describe and investigate optimizations used in existing systems.

A similar attempt was made by Lämmel [13], who expressed the MR frame-
work in t he Haskell language. Our approach is more formal and slightly stronger,
as we are using a more minimal and formally defined calculus which is not Turing
complete.

2 The Nested Relational Calculus: NRC

In this paper we are interested in operations on large datasets, mainly repre-
senting large collections of data. For simplicity we will restrict ourselves to one
collection type: bags. This collection type has more algebraic properties than
lists, which can be exploited for optimization purposes, and the natural notion
of grouping is easily represented in terms of bags. Moreover, sets can be intro-
duced straightforwardly by means of a set operator which removes duplicates
from a bag. We denote bags by generalizing set enumeration, and so {a, a, b}
denotes the bag that contains a twice and b once. The bag union is denoted as #
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and is assumed to be additive, e.g., {a, b}# {b, c, c} = {a, b, b, c, c}. In this paper
we consistently use curly brackets { } to denote bags, not sets as usual.

Our data model will be essentially that of the nested relational model. Allowed
data types are (1) basic types which contain atomic values being constants from
some domain, which is assumed here to include at least integers and booleans,
and to allow equality tests (2) named tuples with field names being strings and
values being of any of allowed data types and (3) bag types which describe finite
bags containing elements of a specify type. The instances of types will be called
both data and values interchangeably.

For the purpose of optimization we will focus on a limited set of operators
and language constructs that is a variant of the NRC. We will use the following
syntax for our variant of NRC:

E ::= C | X | ∅ | {E} | E # E | 〈K : E, . . . ,K : E〉 | E.K |
set(E) | F (E) | {E | X ∈ E, . . . , X ∈ E,E, . . . , E} | E ≈ E.

We discuss the constructs in the order of appearance. The first one is C which
describes denotations of constant atomic values. The nonterminal X stands for
variables. The following three constructs form the basic bag operations, i.e.,
the empty bag constructor, the singleton bag constructor and the additive bag
union. Usually also a typing regime is introduced with the calculus to ensure
well-definedness and for example require that the bag union is only applied to
bags of the same type, but for brevity we omit this and refer the reader to [17,7].

Next we have the tuple creation and tuple projection. In this paper we will
be working with named tuples. The nonterminal K stands for field names and it
must hold that all field names are distinct. The types that describe tuples, called
tuple types, are defined as partial functions form field names to types, i.e., 〈id : 1〉
and 〈value : 1〉 have different types, but 〈1 : int, 2 : bool〉 and 〈2 : bool, 1 : int〉
have the same type. We will sometimes omit the column names. Notice that we
allow the empty tuple as well, which will be called unit and denoted 〈〉.

The next construct is the set operator, which removes all duplicates from a
bag. The F represents user defined functions (UDFs). We require that UDFs
come with a well defined semantics, being a partial function from all possible
values to all possible values, and are describe by a type. The Nested Relational
Calculus as presented here is parametrized with the set of user-defined functions
F , which is denoted as NRCF .

The bag comprehensions of the form {e | x1 ∈ e1, . . . , xn ∈ en, e
′
1, . . . , e

′
m},

also known from some functional programming languages [18] and query eval-
uation languages [9], returns a bag, which is constructed in the following way:
starting with x1 ∈ e1 and going to the right we iterate over the given collection
(here e1) and assign one element at the time to the given variable (here x1) in a
nested-loop fashion. In the body of the innermost loop the expressions e′1, . . . , e

′
m

are evaluated, and if any of their values is false then no output is generated,
otherwise e is evaluated and its value added to the returned collection. Finally
the construct of the form e1 ≈ e2 denotes the equality between values and re-
turns true if e1 and e2 evaluate to the same values, and false otherwise. The
equality between tuples or bags is defined in a standard way.
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Below we define the semantics for the NRC, which starts with the definition
of substitution of variable x with expression e′ in expression e, denoted as e[x/e′].
Its formal semantics can be defined by induction on the structure of e as follows:

c[x/e] = c x[x/e] = e

x = y

x[y/e] = x ∅[x/e] = ∅ {e}[x/e′] = {e[x/e′]}

(e1 # e2)[x/e′] = e1[x/e′] # e2[x/e′]

〈κ1 : e1, . . . , κn : en〉[x/e] = 〈κ1 : e1[x/e], . . . , κn : en[x/e]〉 e.κ[x/e′] = e[x/e′].κ

set(e)[x/e′] = set(e[x/e′]) f(e)[x/e′] = f(e[x/e′]) {e |}[x/e′] = {e[x/e′] |}

{e | x1 ∈ e1, Δ}[x1/e′] = {e | x1 ∈ e1[x1/e′], Δ}

x1 = y {e | Δ}[y/e′] = {e′′ | Δ′′}
{e | x1 ∈ e1, Δ}[y/e′] = {e′′ | x1 ∈ e1[x1/e′], Δ

′′}

{e | Δ}[y/e′] = {e′′ | Δ′′}
{e | e1, Δ}[y/e′] = {e′′ | e1[x1/e′], Δ

′′} (e1 ≈ e2)[x/e′] = (e1[x/e′] ≈ e2[x/e′])

Now we define the NRC semantics, i.e., the relation e ⇒ v which denotes that
expression e returns value v. It is defined in the following way:

c⇒ c ∅ ⇒ ∅
e⇒ v

{e} ⇒ {v}
e⇒ {v1, . . . , vn}, e′ ⇒ {v′1, . . . , v′n}
e # e′ ⇒ {v1, . . . , vn, v′1, . . . , v′n}

e1 ⇒ v1, . . . , en ⇒ vn

〈κ1 : e1, . . . , κn : en〉 ⇒ 〈κ1 : v1, . . . , κn : vn〉
e⇒ 〈κ1 : v1, . . . , κn : vn〉

e.κi ⇒ vi

e⇒ {v1, . . . , vn}
set(e)⇒ ∪n

i=1{vi}
f(v)⇒ v′ e⇒ v

f(e)⇒ v′
e1 ⇒ false

{e | e1, Δ} ⇒ ∅

e1 ⇒ {v1, . . . , vn} ∀ni=1({e | Δ}[xi/vi] ⇒ v′i)
{e | x1 ∈ e1, Δ} ⇒ #n

i=1v
′
i

e1 ⇒ true {e | Δ} ⇒ v

{e | e1, Δ} ⇒ v

e⇒ v

{e |} ⇒ {v}
e⇒ v e′ ⇒ v′ v = v′

e ≈ e′ ⇒ false

e⇒ v e′ ⇒ v

e ≈ e′ ⇒ true

where we let ⊕n
i=1Si denote S1⊕. . .⊕Sn. Observe that the result of an expression

is defined iff the expression contains no free variables.1

1 Note that we do not require that the free variables of the substituted expression are
not bound after the substitution, since we only substitute values.
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3 MapReduce

MapReduce (MR) is a programming model for heavily distributed software,
which hides most of the complexity coming from parallelism. The system handles
communication, synchronization and failure recovery, while the user is responsi-
ble only for writing the program logic in the form of Map and Reduce functions.
The working of the system is described in detail in [6], below we give only an
outline of its design.

The input of a MR routine is a collection of key-value pairs. The main as-
sumption is that the collection is too big to fit into the memory of a machine,
so it is necessary to distribute the computations over multiple machines. MR is
built on top of a Distributed File System (DFS) (for example the Google File
System [11]) and takes advantage of its architecture, as the input is stored in
DFS, thus it is divided into blocks, spread and replicated throughout a cluster.

The first stage of an MR routine is the Map phase. In the ideal case there is
almost no communication needed during this phase, as the system tries to pro-
cess the data on machines that already store it, which is often feasible thanks to
the replication. In real life some of the data may need to be sent, but we chose
to ignore it, as it is too low level for our model and the amount of necessary
communication depends on many hard to predict factors, like cluster configura-
tion and its load. After the map phase, the user can choose to run the combine
phase, which takes all the data from a single mapper for a single key and runs
a UDF on such a collection. As this phase is designed only to improve efficiency
not the expressive power of the model, e.g. some frameworks may choose not
execute Combine functions, we chose to skip this phase all together.

The next stage of MR is opaque for the user and is called the Shuffle phase.
It consists of grouping all the Map outputs which have the same intermediate
key and sending the data to the machines on which Reduce functions will be
run. In practice there is a sort order imposed on the intermediate keys, and
sometimes also on the grouped data, but we choose to ignore the order and
work on bags instead, since the order is rarely relevant at the conceptual level
of the transformation, i.e., users usually think about their collections as bags
and do not care about the specific ordering. This is the stage where communica-
tion and synchronization takes place, and opaqueness of it makes the reasoning
about MR routines easier. In some implementations of MR the user can specify
a partitioner, which is responsible for distributing the data between machines
running the reducers. Note that this behavior may be modeled using secondary-
key grouping, as it is required that all datagrams with the same intermediate
key end up on the same machine.

The last phase is called the Reduce phase, and it consists of independent
executions of the Reduce function, each on a group of values with the same
intermediate-key, and produces a collection of result key-value pairs.

It is possible to feed a Reducer from multiple different mappers, as long as
the Shuffle phase can group the outputs of all the mappers together. In such
a case, the intermediate data from all mappers is treated identically and is
merged together for shuffling. Furthermore, often MR routines are pipelined
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together, making the output of one routine, an input of another one. In such a
case product-keys of the former, become input-keys of the latter. Sometimes by
MR we do not mean a MR construct, but a computation model consisting of MR
routines and ability to connect those routines to form a DAG. Such computation
model is parametrized with a class of allowed Map and Reduce UDFs. It should
be clear from the context which meaning of MR we have in mind.

We chose a simplified version of MR, without ordering, intermediate Com-
bine phase, Partitioning etc., as this is the model appearing most often in the
literature. Furthermore some of our simplifications do not impact the expressive
power of the model, which what we are interested in this paper. Those simplifi-
cations may turn out to be too strong in the future, to work with some low-level
query optimizations, but they proved to be appropriate for the optimizations we
are considering in this paper.

4 Defining MapReduce in NRC

We proceed by showing that the MR framework can be defined using NRC
constructs described in the previous section. Here we want the reader to note
that both Map and Reduce phases apply Map and Reduce UDFs to the data.
In the general case functions passed as arguments to Map and Reduce can be
arbitrary, as long as they have following types: 〈k : α1, v : β1〉 → {〈k : α2, v : β2〉}
and 〈k : α2, vs : {β2}〉 → {〈k : α3, v : β3〉}, respectively. Here in the rest of the
paper we use the short names k, v and vs for key, value and values respectively,
to make the presentation shorter.

Note that in our definition of NRC there are no functions per se, so in stead
we use expressions with free variables. To denote expressions with abstracted
variables we use the λ notation, e.g. if e is a NRC expression with a single free
variable x, with the semantics well defined for x of a type α with a result type
β, then λx.e is a function of type α→ β.

The Map routine, where the first argument is a Map UDF, and D is a phase
input of type {〈k : α1, v : β1〉}, can be written in NRC as:

Map [λx.emap](D) = {z | y ∈ D, z ∈ emap[x/y]}.

Note that we assume that the result of λx.emap is a collection and the
Map flattens the result, hence the output of the Map has the same type as
λx.emap.

The Shuffle phase at the conceptual level essentially performs a grouping on
the key values. It can be expressed in NRC as:

Shuffle(D) = {〈k : x, vs : {z.v | z ∈ D, z.k ≈ x}〉 | x ∈ set({y.k | y ∈ D})},

The result of the Shuffle phase is a collection of key-collection pairs of all values
grouped by keys.

The Reduce phase gets the output of the Shuffle phase, which is of type
collection of key-collection pairs, and is responsible for producing the result of
the whole MapReduce routine. It can be formulated in NRC as:
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Reduce [λx.ered](D) = {z | y ∈ D, z ∈ ered[x/y]},
Having defined all phases of MR separately, we can define the whole MR syn-
tactic short-hand:

MR [λx.emap][λx.ered](D) = Reduce [λx.ered](Shuffle (Map [λx.emap](D))),

The extension of NRC with the MR syntactic short-hand construct will be re-
ferred to as NRC-MR. Our definition or MR construct allows only one mapper.
It is easy to generalize it to handle multiple mappers, as long as they have a
common output type. To do so we need to feed the Shuffle with the union of
all mapper outputs.

We define a MR program informally as a workflow described by a directed
acyclic graph that ends with a single node and where each internal and final node
with n incoming edges as associated with (1) an MR step with n mappers and
(2) an ordering on the incoming edge. Moreover, the start nodes with no incoming
edges are each associated with a unique input variable. When executing this
program the data received through the ith input edge is fed to the ith mapper
of that node. Note that our definition of MR program is valid for standard
data processing, where MR is a top-level language. Sometimes, e.g. in case of
workflows with feedback or graph algorithms, there is an additional level of
programming needed on top of MR which introduces recursion. Our model can
be seen as a formalization of MR programs where the dataflow does not depend
on the actual data, which is the case for most of database queries.

Theorem 1. Any MR program where the MR steps use as mappers and reduc-
ers functions expressible in NRCF can be expressed in NRCF .

Proof. Indeed any MR routine using functions from F can be written in NRC
using the MR shorthand, as showed above. Composing the routines into a DAG
is equivalent to nesting the expressions for corresponding routines, in NRC.

5 Higher-Level MapReduce-Based Languages

Recently, high-level languages compiled to MR are receiving a lot of attention.
Examples of those attempts are Facebook’s Hive [16] – a Hadoop based data
warehouse with SQL-like query language, Yahoo!’s Pig Latin [10] – a data anal-
ysis imperative language with SQL-like data operations, and Fegaras’s MRQL [8]
– an extension of SQL, which allows rnesting and in which MR is expressible in
the same sense as in the NRC. In this section we review the ideas and operators
from those languages and also provide an overview of the types of optimizations
their implementations include.

5.1 Hive QL

Hive [16], is designed to replace relational databases, so some of its features
like data insertion are orthogonal to our perspective. The Hive compilation and
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execution engine uses knowledge of the physical structure of the underlying data
store. Since we abstract from a concrete physical representation of the data,
we concentrate on the Hive Query Language (Hive QL). Its SQL-based syntax
allows subqueries in the FROM clause, equi-joins, group-by’s and including MR
code. Hives does a handful of optimizations which are applied while creating
the execution plan, including: (1) combining multiple JOIN s on the same key
into a single multi-way join,(2) pruning unnecessary columns from the data, (3)
performing map-side JOIN s when possible and (4) tricks based on knowledge of
the physical structure of the underlying data store.

5.2 Pig Latin

Pig Latin [10] is a query language for the Pig system. It is business intelligence
language for parallel processing huge data sets. The data model of Pig is similar
to the one in this paper, with nesting and data types like tuples, bags and maps.
Unlike other languages discussed here, Pig Latin is not declarative. Programs are
series of assignments, and similar to an execution plan of a relational database.
The predefined operators are iteration with projection FOREACH-GENERATE,
filtering FILTER, and COGROUP. The COGROUPs semantics is similar to a
JOIN but instead of flattening the product, it leaves the collections nested, e.g.,
COGROUP People BY address, Houses BY address returns a collection of
the type: 〈address, {People with given address}, {Houses with given address}〉. It
is easy to see that GROUP is a special case of COGROUP where the input is
a single bag, and JOIN is a COGROUP with a flattened result. In addition
Pig Latin also provides the user with some predefined aggregators, like COUNT,
SUM, MIN etc., which we skip in our work since their optimized implementation
is a research topic on its own and requires the inclusion of the Combine phase.

On the implementation and optimization side, the Pig system starts with
an empty logical plan and extends it one by one with the user-defined bags,
optimizing the plan after each step. Pig generates a separate MR job for ev-
ery COGROUP command in the expression. All the other operations are split
between those COGROUP steps and are computed as soon as possible, i.e. op-
erations before the first COGROUP are done in the very first Map step, and all
the others in the reducer for the preceding COGROUP.

5.3 MRQL

MRQL is a query language designed by Fegaras et al. [8] as a declarative language
for querying nested data, which is as expressive as MR. The language is also
designed to be algebraic in the sense that all the expressions can be combined
in arbitrary ways. MRQL expressions are of the form:

select e from d1 in e1, d2 in e2, . . . , dn in en

[where pred] [group by p′ : e′ [having eh]] [order by eo [limit n]]

where e’s denote nested MRQL expressions.
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What is the most interesting in MRQL from our perspective, is not the lan-
guage itself since it is similar to SQL, but the associated underlying physical
algebraic operators. The main two operators are groupBy and flatten-map/cmap
as known from functional programming languages. Those are the two operators
which are needed to define the MR operator. Our approach is similar to Fe-
garas’s, but in contrast we have one language for both query specification and
query execution. An MRQL program is first rewritten to a simpler form if pos-
sible, and then an algebraic plan is constructed. The operators in such plan are
cmaps, groupBys and joins. Possible optimizations are:
- combining JOIN s and GROUP BY s on the same key into a single operation,
(1) choosing an optimal JOIN strategy depending on the data, (2) fusing cascad-
ing cmaps, (3) fusing cmaps with joins, (4) synthesizing the Combine function.
In section 7 we show all those optimizations, except the last one, can be done
in NRC. The last one is skipped because for the sake of simplicity we do not
include Combine functions in our execution model.

6 Defining Standard Operators in NRC

In this section we take a closer look on the operators found in the higher-level
MR languages described in the previous section. We show how operators from
those three languages can be defined in NRC. This illustrates that our framework
generalizes the three considered languages.

6.1 SQL Operators

We start from the standard SQL operators, which form the basis of the three
analyzed languages. For the sake of clarity, we sometimes abuse the notation, to
make things clearer, e.g. we avoid the key-value pair format in MR expressions,
if the keys are not used in the computation. In this section we assume that x is
an element from collection X , wherever X denotes a collection.

The first and the most basic operator is the projection. Assuming that X
has the type {α}, α = 〈· · · 〉, and π is some function, usually a projection on a
subtuple of α, we have the following equivalent formulas:

SQL, MRQL : SELECT π(x) FROM X,

Pig Latin : FOREACH X GENERATE π(x)

NRC : {π(x) | x ∈ X}
MR-NRC : MR [λx.{π(x)}][λx.idR](X),

Here idR = {〈x.k, y〉 | y ∈ x.vs} and is an “identity” reducer.
The second operator is filtering. Assuming that X is a collection of type {α}

and ϕ : α→ boolean, the formulas for filtering are as follows:

SQL, MRQL : SELECT ∗ FROM X WHERE ϕ(x),

Pig Latin : FILTER X BY ϕ(x),

NRC : {x | x ∈ X,ϕ(x)},
MR-NRC : MR [λx.{y | y ∈ {x}, ϕ(y)}][λx.idR](X),
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In some cases it is more efficient to apply projection or filter-
ing in the Reduce phase. Corresponding alternative MR ver-
sions for these cases are MR [λx.{x}][λx.{π(y) | y ∈ x.vs}](X) and
MR [λx.{x}][λx.{y | y ∈ x.vs, ϕ(y)}](X), respectively. Note that moving
those operators, as well as the cmap, between the mapper and the reducer is a
straightforward rewrite rule.

The third and most complex construct we are interested in is GROUP BY.
Below we assume that X has the type {α}, with α = 〈. . . , κ : β, . . . 〉 and πκ is
a projection of type α→ β.

SQL, MRQL : SELECT ∗ FROM X GROUP BY πκ(x),

Pig Latin : GROUP X BY πκ(x),

NRC : {{x | x ∈ X, πκ(x) ≈ y} | y ∈ set({πκ(x) | x ∈ X})},
MR-NRC : MR [λx.{〈k : πκ(x), v : x〉}][λx.x}](X).

6.2 Pig Latin, HiveQL and MRQL Operators

We move to operators unique to higher-level MR languages, viz., cmap from
the physical layer of MRQL and similar to the comprehension operator, which
is based on a map construct instead of a cmap; and the COGROUP from Pig
Latin, which can be seen as a generalization of GROUP and JOIN operators.
HiveQL does not add new operators on top of the SQL ones. We leave for future
work all forms of the ORDER BY operator.

First let us look at the cmap(f)X from MRQL, which is based on the concat
map well known from the functional languages. The typing of this construct is
as follows: X : {α}, f : α → {β} and cmap(f) : {α} → {β}. It can be easily
expressed in NRC as {y | x ∈ X, y ∈ f(x)}.

Provided that f does not change the key, i.e., f : 〈k : α, v : β〉 → 〈k : α, v : γ〉
such that f(〈k : e, v : e′〉).k ≡ e, we can move the application of f between the
mapper and the reducer. The efficiency of either choice depends on whether f
inflates or deflates the data. In the first case it is better to have it in the reducer,
in the second case in the mapper:

MR [λx.f(x)][λx.idR](D) ≡
MR [λx.{x}][λx.{z | y ∈ x.vs, z ∈ f(〈k : x.k, v : y〉)}](D)

This rule can be generalized such that it allows f to be split into a part that is
executed in the mapper and a part that is executed in the reducer.

The COGROUP is the only operator in which the nested data model is crucial.
The syntax of COGROUP in Pig Latin is:

COGROUP X BY πκ(x), Y BY πι(y),

where X : {α}, Y : {β}, πκ : α → γ, and πι : β → γ. The NRC expression for
computing COGROUP has the form:

{〈a, {x | x ∈ X, πκ(x) ≈ a}, {x | x ∈ Y, πι(x) ≈ a}〉
| a ∈ set({πκ(x) | x ∈ X} # {πι(x) | x ∈ Y })}.
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The MR routine for computing the COGROUP has the form (note the use of
multiple mappers):

MR [λx.{〈k : πκ(x), v : χ2
1(x)〉}, λx.{〈k : πι(x), v : χ2

2(x)〉}]
[λx.〈k : x.k, v : 〈{z | y ∈ x.vs, z ∈ y.v1}, {z | y ∈ x.vs, z ∈ y.v2}〉〉](X,Y ),

where χj
i (x) stands for 〈v1 : ∅, . . . vi : {x}, . . . vj : ∅〉. Here the mapper creates

tuples with two data fields, the first of which corresponds to the first input, and
the second to the second input. Mappers put the input data in the appropriate
field as a singleton bag and an empty bag in all other fields. The reducer combines
those fields into the resulting tuple. The COGROUP is the first operator which
spans through both the map and the reduce phase. This is the reason why it is
important in the Pig query planner.

7 NRC Optimizations of Higher-Level Operators

In this section we show how optimizations described in [8,10,16] can be repre-
sented as NRC rewrite rules. We briefly recall the optimizations mentioned in
section 5: (1) pruning unnecessary columns from the data, (2) performing map-
side JOIN s when possible, (3) combining multiple JOIN s on the same key, (4)
combining JOIN s and GROUP BY s on the same key, to a single operation, (5)
fusing cascading cmaps, (6) fusing cmaps with JOIN s, (7) computing projections
and filterings as early as possible in the intervals between COGROUPs – fusing
projections and filterings with COGROUPs. In the order of appearance, we de-
scribe the optimizations and present NRC rewrite rules corresponding with each
given optimization. By = we denote syntactic equality, while by ≡ we denote
semantic equivalence.

Pruning unnecessary columns strongly depends on the type of the given data
and expression. Pruning columns can be easily expressed with well-known NRC
rewrite rules, and so we will assume we are working with expressions that project
unused columns away as soon as possible.

The map-side join (2) is a technique of computing the join in the mapper, when
one of the joined datasets is small enough to fit into a single machine’s memory,
thus its applicability is data-dependent. It is achieved by replacing the standard
reduce-side COGROUP -based JOIN operator by applying the following rewrite
rule:

MR [λx.{〈k : πκ(x), v : χ2
1(x)〉〉}, λx.{〈k : πι(x), χ

2
2(x)〉}]

[λx.{〈k : x.k, v : θ(y1, z1)〉 | y ∈ x.vs, z ∈ x.vs, y1 ∈ y.v1, z1 ∈ z.v2}](X,Y )

≡ MR [λx.{〈k : πκ(x), v : θ(x, z)〉 | z ∈ Y, πι(z) ≈ πκ(x)}][λx.idR](X).

The θ is a convenience notation for merging the data from two tuples into a
single tuple. It is easily NRC expressible as long as we know the the tuple types
and how to deal with field name collisions.

As was shown in previous paragraph JOIN ’s result is usually materialized in
the reducer, but if one dataset is small enough it could be materialized in the
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mapper. We refer to the first as the reduce-side JOIN, and to the second one as
the map-side JOIN. In the following we are discussing combining multiple JOIN s
together, assuming they join on the same key, and we have to consider three cases:
combining two map-side JOIN s, combining a map-side JOIN with a reduce-side
JOIN and combining two reduce-side JOIN s. Note that any computation in the
mapper, before creating the intermediate key, can be seen as a preprocessing.
Thus combining a map-side JOIN with any other join can be treated as adding
an additional preprocessing before the actual MR routine. Hence the first two
cases are easy.

The last case, namely combining reduce-side JOIN s, and also combining
JOIN s with GROUP BY s on the same key, are generalized by combining
COGROUP operators which we present here. We define a family of rewrite
rules, depending on the number of inputs, and show only an example for three
inputs, as generalization is simple:

MR [λx.{〈k : x.k, v : χ2
1(x.v)〉〉}, λx.{〈k : πι(x), v : χ2

2(x)〉}]
[λx.〈k : x.k, v : 〈{z | y ∈ x.vs, z ∈ y.v1.1},
{z | y ∈ x.vs, z ∈ y.v1.2}, {z | y ∈ x.vs, z ∈ y.v2}〉〉](inner(X,Y), Z)

≡ MR [λx.{〈k : πκ(x), v : χ3
1(x)〉}, λx.{〈k : πι(x), v : χ3

2(x)〉},
λx.{〈k : πζ(x), v : χ3

3(x)〉}][λx.〈x.k, {z | y ∈ x.vs, z ∈ y.v1},
{z | y ∈ x.vs, z ∈ y.v2}, {z | z ∈ x.vs, z ∈ y.v3}〉](X,Y, Z),

where inner is a COGROUP :
MR [λx.{〈k : πκ(x), v : χ2

1(x)〉}, λx.{〈k : πι(x), v : χ2
2(x)〉}]

[λx.〈k : x.k, v : 〈{z | y ∈ x.vs, z ∈ y.v1}, {z | y ∈ x.vs, z ∈ y.v2}〉〉](X,Y ).

Fusing cmaps (5) is a plain NRC rewrite rule, as it is roughly the same as fusing
the comprehensions:

cmap(f)(cmap(g)D) = {y | x ∈ {g(x) | x ∈ D}, y ∈ f(x)}
≡ cmap(λx.{z | y ∈ g(x), z ∈ f(y)})(D).

Note that a composition of cmaps is also a cmap, hence there is actually never
a need to more than a single cmap between other operators.

We deal with the last two items (6) and (7) together, as projections and
filterings are just a special case of the cmap operator. There are two cases of
possible fusions. Either the cmap may be done on an input of COGROUP or
JOIN, or on their output. Both those cases can be easily represented as rewrite
rules. We denote the cmaps UDF by f and present only the right hands of
the rules, as the left hand sides are straightforward pipelinings of MR routines
corresponding respectively to the given constructs for cmap before and after
COGROUP :
... = MR [λx.{〈k : πκ(x), v : χ2

1(f(x))〉}, λx.{〈k : πι(x), v : χ2
2(x)〉}]

[λx.〈k : x.k, v : 〈{z | y ∈ x.vs, z ∈ y.v1}, {z | y ∈ x.vs, z ∈ y.v2}〉〉](X,Y ),

... = MR [λx.{〈k : πκ(x), v : χ2
1(x)〉}, λx.{〈k : πι(x), v : χ2

2(x)〉}]
[λx.f(〈k : x.k, v : 〈{z | y ∈ x.vs, z ∈ y.v1}, {z | y ∈ x.vs, z ∈ y.v2}〉〉)](X,Y ).
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8 Conclusion

In this paper we have demonstrated that the Nested Relational Calculus is a
suitable language to formulate and reason about MR programs for nested data.
It is declarative and higher level than MR, but in some ways lower level than
MRQL thus allowing a bit more precise refined optimizations. We showed that
MR programs can be expressed in NRC when allowed the same class of UDFs. We
also showed that the NRC formalism can express all constructs and optimizations
found in Hive, Pig Latin and MRQL. Moreover, NRC is suitable both for writing
high-level queries and transformations, as well as MR-based physical evaluation
plans when extended with the appropriate constructs. This has the benefit of
allowing optimization through rewriting essentially the same formalism, which
is not the case for any of the former higher-level MR languages.

Our framework allows for a clear representation of MR programs, which is
essential for reasoning about particular programs or the framework in general.
NRC is a well defined and thoroughly described language, which has the ap-
propriate level of abstraction to specify the class of MR algorithms we want to
concentrate on. It is important that this language is well-designed, much smaller
and with a much simpler semantics than other languages than were used to de-
scribe MR, like Java or Haskell. This is the reason we think that our work can
be potentially more effective than [5,4].

The higher-level goal of this research is to build a query optimization module
that takes as input an NRC expression and translates it into an efficient MR
program that can be executed on a MapReduce backend. In future work we
will therefore investigate further to what extent NRC and NRC-MR allow for
meaningful optimizations through rewriting, either heuristically or cost-based.
Moreover, we will investigate the problem of deciding which sub-expressions can
be usefully mapped to an MR step, and how this mapping should look in order
to obtain an efficient query evaluation plan. This will involve investigating which
cost-models are effective for the different types of MapReduce backends.
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Abstract. Computing the bisimulation partition of a graph is a fun-
damental problem which plays a key role in a wide range of basic ap-
plications. Intuitively, two nodes in a graph are bisimilar if they share
basic structural properties such as labeling and neighborhood topology.
In data management, reducing a graph under bisimulation equivalence is
a crucial step, e.g., for indexing the graph for efficient query processing.
Often, graphs of interest in the real world are massive; examples include
social networks and linked open data. For analytics on such graphs, it
is becoming increasingly infeasible to rely on in-memory or even I/O-
efficient solutions. Hence, a trend in Big Data analytics is the use of
distributed computing frameworks such as MapReduce. While there are
both internal and external memory solutions for efficiently computing
bisimulation, there is, to our knowledge, no effective MapReduce-based
solution for bisimulation. Motivated by these observations we propose in
this paper the first efficient MapReduce-based algorithm for computing
the bisimulation partition of massive graphs. We also detail several op-
timizations for handling the data skew which often arises in real-world
graphs. The results of an extensive empirical study are presented which
demonstrate the effectiveness and scalability of our solution.

1 Introduction

Recently, graph analytics has drawn increasing attention from the data manage-
ment, semantic web, and many other research communities. Graphs of interest,
such as social networks, the web graph, and linked open data, are typically on
the order of billions of nodes and edges. In such cases, single-machine in-memory
solutions for reasoning over graphs are often infeasible. Naturally, research has
turned to external memory and distributed solutions for graph reasoning. Ex-
ternal memory algorithms often suffice, but their performance typically scales
(almost) linearly with graph size (usually the number of graph edges), which
is then limited by the throughput of the I/O devices attached to the system.
In this respect, distributed and parallel algorithms become attractive. Ideally, a

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 189–203, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



190 Y. Luo et al.

well-designed distributed algorithm would scale (roughly) linearly with the size
of the computing resources it has, making use of the parallelism of the infrastruc-
ture. Though there are many alternatives, recently the MapReduce platform [8]
has become a de-facto parallel processing platform for reasoning over Big Data
such as real-world graphs, with wide adoption in both industry and research.

Among fundamental graph problems, the bisimulation partition problem plays
a key role in a surprising range of basic applications [24]. Informally, the bisimula-
tion partition of a graph is an assignment of each node n of the graph to a unique
block consisting of all nodes having the same structural properties as n (e.g., node
label and neighborhood topology). In data management, variations of bisimula-
tion play a fundamental role in constructing structural indexes for XML and RDF
databases [21,23], andmany other applications for general graph data such as com-
pression [4,11], query processing [16], and data analytics [10]. Beingwell studied for
decades, many main-memory efficient algorithms have been developed for bisimu-
lation partitioning (e.g., [9,22]). The state-of-the-art I/O efficient algorithm takes
just under one day to compute a standard “localized” variant of bisimulation on a
graph with 1.4 billion edges on commodity hardware [20]. This cost can be a po-
tential bottleneck since bisimulation partitioning is typically one step in a larger
workflow (e.g., preparing the graph for indexing and query processing).

Contributions. Motivated by these observations, we have studied the effective
use of the MapReduce framework for accelerating the computation of bisimula-
tion partitions of massive graphs. In this paper we present, to our knowledge, the
first efficient MapReduce-based algorithm for localized bisimulation partitioning.
We further present strategies for dealing with various types of skew which occur
in real-world graphs. We discuss the results of extensive experiments which show
that our approach is effective and scalable, being up to an order of magnitude
faster than the state of the art. As a prototypical graph problem, we hope that
sharing our experiences with graph bisimulation will stimulate further progress
in the community on MapReduce-based solutions for reasoning and analytics
over massive graphs.

Related Work. While there has been work on distributed computation of
bisimulation partitions, existing approaches (e.g., [3]) are not developed for the
MapReduce platform, and hence are not directly applicable to our problem.
Research has been conducted to investigate using the MapReduce framework
to solve graph problems [6,18] right after the framework was proposed. A ma-
jor issue here is dealing with data skew in graphs. Indeed, skew is ubiquitous
in real-world graphs [5]. During our investigation, we also experienced various
types of skew from graph bisimulation, as we discuss below. There has been
much progress done from the system side to tackle this problem. The main ap-
proach in this literature is to devise mechanisms to estimate costs of MapReduce
systems (e.g., [13]) and modify the system to mitigate the skew effects, both stat-
ically [12,15,17] and dynamically [17,25], so that the modification is transparent
to the users. However, it is still possible to gain much efficiency by dealing with
skew from the algorithm design perspective [19], as we do in the novel work we
present in this paper.
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Paper Organization. In the next section we give a brief description of localized
bisimulation and MapReduce. We then describe in Section 3 our base algorithm
for computing localized bisimulation partitions using MapReduce. Next, Section
4 presents optimizations of the base algorithm, to deal with the common problem
of skewed data. Section 5 presents the results of our empirical study. We then
conclude in Section 6 with a discussion of future directions for research.

2 Preliminaries

2.1 Localized Bisimulation Partitions

Our data model is that of finite directed node- and edge-labeled graphs 〈N,E,
λN , λE〉, where N is a finite set of nodes, E ⊆ N ×N is a set of edges, λN is a
function from N to a set of node labels LN , and λE is a function from E to a
set of edge labels LE .

The localized bisimulation partition of graph G = 〈N,E, λN , λE〉 is based on
the k-bisimilar equivalence relation.

Definition 1. Let G = 〈N,E, λN , λE〉 be a graph and k ≥ 0. Nodes u, v ∈ N
are called k-bisimilar (denoted as u ≈k v), iff the following holds:

1. λN (u) = λN (v),
2. if k > 0, then for any edge (u, u′) ∈ E, there exists an edge (v, v′) ∈ E, such

that u′ ≈k−1 v′ and λE(u, u
′) = λE(v, v

′), and
3. if k > 0, then for any edge (v, v′) ∈ E, there exists an edge (u, u′) ∈ E, such

that v′ ≈k−1 u′ and λE(v, v
′) = λE(u, u

′).

Given the k-bisimulation relation on a graph G, we can assign a unique partition
identifier (e.g., an integer) to each set of k-bisimilar nodes in G. For node u ∈ N
and relation ≈k, we write pIdk(u) to denote u’s k-partition identifier, and we
call pIdk a k-partition identifier function.

Definition 2. Let G = 〈N,E, λN , λE〉 be a graph, k ≥ 0, and {pId0, . . . , pIdk}
be a set of i-partition identifier functions for G, for 0 ≤ i ≤ k. The k bisimulation
signature of node u ∈ N is the pair sigk(u) = (pId0(u), L) where:

L =

{
∅ if k = 0,

{(λE(u, u
′), pIdk−1(u

′)) | (u, u′) ∈ E} if k > 0.

We then have the following fact.

Proposition 1 ([20]). pIdk(u) = pIdk(v) iff sigk(u) = sigk(v), k ≥ 0.

Since there is a one-to-one mapping between a node’s signature and its partition
identifier, we can construct sigk(u) (∀u ∈ N, k ≥ 0), assign pIdk(u) according
to sigk(u), and then use pIdk(u) to construct sigk+1(u), and so on. We call
each such construct-assign computing cycle an iteration. This signature-based
approach is robust, with effective application in non-MapReduce environments
(e.g., [3,20]). We refer for a more detailed discussion of localized bisimulation to
Luo et al. [20].
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Example. Consider the graph in Fig-
ure 1. In iteration 0, nodes are par-
titioned into blocks P1 and P2 (in-
dicated by different colors), based on
the node label A and B (Def. 1).
Then in iteration 1, from Def. 2, we
have sig1(1 ) = (1, {(w,P1), (l, P2)}) and
sig1(2 ) = (1, {(w,P1), (l, P2)}), which in-
dicates that pId1(1 ) = pId1(2 ) (Prop. 1).
If we further compute 2-bisimulation, we see that sig2(1 ) = sig2(2 ), and we
conclude that nodes 1 and 2 are not 2-bisimilar, and block P1 will split.

The partition blocks and their relations (i.e., a “structural index”) can be seen
as an abstraction of the real graph, to be used, for example, to filter unnecessary
graph matching during query processing [11,23]. A larger k leads to a more
refined partition, which results in a larger structural index. So there is a trade-
off between k and the space we have for holding the structural index. In practice,
though, we see that a small k value (e.g., k ≤ 5) is already sufficient for query
processing. In our analysis below, we compute the k-bisimulation result up to
k = 10, which is enough to show all the behaviors of interest for structural
indexes.

2.2 MapReduce Framework

The MapReduce programming model [8] is designed to process large datasets in
parallel. A MapReduce job takes a set of key/value pairs as input and outputs
another set of key/value pairs. A MapReduce program consists of a series of
MapReduce jobs, where each MapReduce job implements a map and a reduce
function (“[ ]” means a list of elements):

map (k1, v1) → [(k2, v2)]
reduce (k2, [v2]) → [(k3, v3)].

The map function takes key/value pair (k1, v1) as the input, emits a list of
key/value pairs (k2, v2). In the reduce function, all values with the same key are
grouped together as a list of values v2 and are processed to emit another list of
key/value pairs (k3, v3). Users define the map and reduce functions, letting the
framework take care of all other aspects of the computation (synchronization,
I/O, fault tolerance, etc.).

The open source Hadoop implementation of the MapReduce framework is
considered to have production quality and is widely used in industry and research
[14]. Hadoop is often used together with the Hadoop Distributed File System
(HDFS), which is designed to provide high-throughput access to application
data. Besides map and reduce functions, in Hadoop a user can also write a
custom partition function, which is applied after the map function to specify to
which reducer each key/value pair should go. In our work we use Hadoop for
validating our solutions, making use of the partition function as well.
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3 Bisimulation Partitioning with MapReduce

For a graph G = 〈N,E, λN , λE〉, we arbitrarily assign unique (integer) identifiers
to each node of N . Our algorithm for computing the k-bisimulation partition of
G has two input tables: a node table (denoted as Nt) and an edge table (denoted
as Et). Both tables are plain files of sequential records of nodes and edges of G,
resp., stored on HDFS. The schema of table Nt is as follows:

nId node identifier
pId0 nId 0 bisimulation partition identifier for the given nId
pIdnew nId bisimulation partition identifier for the given nId from the

current computation iteration

The schema of table Et is as follows:

sId source node identifier
tId target node identifier
eLabel edge label
pIdold tId bisimulation partition identifier for the given tId from the

last computation iteration

By combining the idea of Proposition 1 and the MapReduce programming
model, we can sketch an algorithm for k-bisimulation using MapReduce, with
the following workflow: for each iteration i (0 ≤ i ≤ k), we first construct the
signatures for all nodes, then assign partition identifiers for all unique signatures,
and pass the information to the next iteration. In our algorithm, each iteration
then consists of three MapReduce tasks:

1. task Signature performs a merge join of Nt and Et, and create signatures;

2. task Identifier distributes signatures to reducers and assigns partition
identifiers; and,

3. task RePartition sorts Nt to prepare it for the next iteration.

Note that a preprocessing step is executed to guarantee the correctness of the
map-side join in task Signature. We next explain each task in details.

3.1 Task Signature

Task Signature (Algorithm 1) first performs a sort merge join of Nt and Et,
filling in the pIdold tId column of Et with pIdnew nId of Nt. This is achieved in
the map function using a map-side join [18]. Then records are emitted grouping
by nId in Nt and sId in Et. In the reduce function, all information to construct a
signature resides in [value]. So the major part of the function is to iterate through
[value] and construct the signature according to Definition 2. After doing so, the
node identifier along with its pId0 nId value and signature are emitted to the
next task. Note that the key/value pair input of SignatureMapper indicates
the fragments of Nt and Et that need to be joined. The fragments need to be
preprocessed before the algorithm runs.
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Algorithm 1. task Signature

1: procedure SignatureMapper(key, value)
2: perform map-side equi-join of Nt and Et on nId and tId, fill in pIdold tId with

pIdnew nId , put all rows of Nt and Et into records
3: for row in records do
4: if row is from Et then
5: emit (sId, the rest of the row)
6: else if row is from Nt then
7: emit (nId, the rest of the row)

1: procedure SignatureReducer(key, [value]) � key is nId or sId
2: pairset ← {}
3: for value in [value] do
4: if (key,value) is from Nt then
5: pId0 nId ← value.pId0 nId � record pId0 nId

6: else if (key,value) is from Et then
7: pairset ← pairset ∪ {(eLabel, pIdold tId)}
8: sort elements in pairset lexicographically, first on eLabel then on pIdold tId

9: signature ← (pId0 nId , pairset)
10: emit (key, (pId0 nId , signature))

3.2 Task Identifier

On a single machine, in order to assign distinct values for signatures, we only
need a dictionary-like data structure. In a distributed environment, on the other
hand, some extra work has to be done. The Identifier task (Algorithm 2)
is designed for this purpose. The map function distributes nodes of the same
signature to the same reducer, so that in the reduce function, each reducer only
needs to check locally whether the given signature is assigned an identifier or
not; if not, then a new identifier is generated and assigned to the signature. To
assign identifiers without collisions across reducers, we specify a non-overlapping
identifier range each reducer can use beforehand. For instance, reducer i can
generate identifiers in the range of [i× |N |, (i+ 1)× |N |).

Algorithm 2. task Identifier

1: procedure IdentifierMapper(nId, (pId0 nId , signature))
2: emit (signature, (nId,pId0 nId))

1: procedure IdentifierReducer(signature, [(nId, pId0 nId)])
2: pIdnew nId ← get unique identifier for signature
3: for (nId, pId0 nId ) in [(nId, pId0 nId )] do
4: emit (nId, (pId0 nId , pIdnew nId ))

3.3 Task RePartition

The output of task Identifier is Nt filled with partition identifiers from the
current iteration, but consists of file fragments partitioned by signature. In order
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to perform a map-side join with Et in task Signature in the next iteration,
Nt needs to be sorted and partitioned on nId, which is the main job of task
RePartition (Algorithm 3). This task makes use of the MapReduce framework
to do the sorting and grouping.

Algorithm 3. task RePartition

1: procedure RePartitionMapper(nId, (pId0 nId , pIdnew nId))
2: emit (nId, (pId0 nId , pIdnew nId)) � do nothing

1: procedure RePartitionReducer(nId, [(pId0 nId , pIdnew nId )])
2: for (pId0 nId , pIdnew nId) in [(pId0 nId , pIdnew nId)] do
3: emit (nId, (pId0 nId , pIdnew nId ))

3.4 Running Example

We illustrate our algorithm on the example graph of Figure 1. In Figures 2(a),
2(b) and 2(c), we show the input and output of the map and reduce phases
of tasks Signature, Identifier and RePartition, respectively, for the first
iteration (i = 0), with two reducers (bounded with gray boxes) in use.

4 Strategies for Dealing with Skew in Graphs

4.1 Data and Skew

In our investigations, we used a variety of graph datasets to validate the results of
our algorithm, namely: Twitter (41.65M, 1468.37M), Jamendo (0.48M, 1.05M),
LinkedMDB (2.33M, 6.15M), DBLP (23M, 50.2M), WikiLinks (5.71M, 130.16M),
DBPedia (38.62M, 115.3M), Power (8.39M, 200M), and Random (10M, 200M);
the numbers in the parenthesis indicates the node count and edge count of the
graph, resp.. Among these, Jamendo, LinkedMDB, DBLP, WikiLinks, DBPedia,
and Twitter are real-world graphs described further in Luo et al. [20]. Random
and Power are synthetic graphs generated using GTgraph [2], where Random is
generated by adding edges between nodes randomly, and Power is generated
following the power-law degree distribution and small-world property.

During investigation of our base algorithm (further details below in Section 5),
we witnessed a highly skewed workload among mappers and reducers. Figure 4(a)
illustrates this on the various datasets, showing the running time for different
reducers for the three tasks in the algorithm. Each spike is a time measurement
for one reducer. The running time in each task is sorted in a descending order. We
see that indeed some reducers carry a significantly disproportionate workload.
This skew slows down the whole process since the task is only complete when
the slowest worker finishes.

From this empirical observation, we trace back the behavior to the data.
Indeed, the partition result is skewed in many ways. For example, in Figure 3,
we show the cumulative distribution of partition block size, i.e., number of nodes



196 Y. Luo et al.

1 - 1 02 - 1 03 - 2 04 - 2 05 - 2 06 - 2 0
3 l 11 w 22 w 25 l 24 l 31 l 42 l 6

1 - 1 1,{(w,1),(l,2)}2 - 1 1,{(w,1),(l,2)}3 - 2 2,{(l,1)}4 - 2 2,{(l,2)}5 - 2 2,{(l,1)}6 - 2 2,{}

1 - 1 11 w 2 11 l 4 22 - 1 12 w 2 12 l 6 23 - 2 23 l 1 1
4 - 2 24 l 3 2
6 - 2 2
5 - 2 25 l 2 1 6 nodes

1 - 1 13 l 1 12 - 1 11 w 2 12 w 2 15 l 2 13 - 2 24 l 3 24 - 2 21 l 4 25 - 2 26 - 2 22 l 6 2

Nodes:

Edges:

Join + Map Reduce Output
(a) Task Signature

4 - 2 2,{(l,2)}5 - 2 2,{(l,1)}6 - 2 2,{}

1 - 1 1,{(w,1),(l,2)}2 - 1 1,{(w,1),(l,2)}3 - 2 2,{(l,1)}
3 - 2 2,{(l,1)}5 - 2 2,{(l,1)}6 - 2 2,{}
1 - 1 1,{(w,1),(l,2)}2 - 1 1,{(w,1),(l,2)}4 - 2 2,{(l,2)}

3 - 2 15 - 2 16 - 2 21 - 1 72 - 1 74 - 2 8

r2r2r1
112
778

r2r1r1
Map Reduce Output

(b) Task Identifier

1 - 1 72 - 1 73 - 2 14 - 2 85 - 2 16 - 2 2

3 - 2 15 - 2 16 - 2 21 - 1 72 - 1 74 - 2 8

1 - 1 72 - 1 73 - 2 1
4 - 2 85 - 2 16 - 2 2Map Reduce Output

(c) Task RePartition

Fig. 2. Input and output of the three tasks of our algorithm for the example graph of
Figure 1 (iteration i = 0)

assigned to the block, to the number of partition blocks having the given size,
for the real-world graphs described above. We see that for all of the datasets,
block size shows a power-law distribution property.
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This indicates the need to rethink the design of our base algorithm. Recall
that at the end of the map function of Algorithm 2, nodes are distributed to
reducers based on their signatures. Since some of the signatures are associated
with many nodes (as we see in Figure 3), the workload is inevitably unbalanced.
This explains the reducers’ behavior in Figure 4(a) as well. In the following, we
propose several strategies to handle such circumstances.

4.2 Strategy 1: Introduce another Task Merge

Recall from Section 3.2 that nodes with the same signature must be distributed
to the same reducer, for otherwise the assignment of partition block identifiers
cannot be guaranteed to be correct. This could be relaxed, however, if we in-
troduce another task, which we call Merge. Suppose that when we output the
partition result (without the guarantee that nodes with the same signature go to
the same reducer), for each reducer, we also output a mapping of signatures to
partition identifiers. Then in task Merge, we could merge the partition IDs based
on the signature value, and output a local pid to global pid mapping. Then in
the task RePartition, another map-side join is introduced to replace the lo-
cal pid with the global pid. Because the signature itself is not correlated with
the partition block size, the skew on partition block size should be eliminated.
We discuss the implementation details in the following.

In Nt assume we have an additional field holding the partition size of the node

from the previous iteration, named pSizeold , and letMRLoad = |N |
number of reducers .

We define rand(x) to return a random integer from 0 to x, and % as the modulo
operator.

We first change the partition function for Identifier (Algorithm 4). In this
case, for nodes whose associated pSizeold are above the threshold, we do not
guarantee that they end up in the same reducer, but make sure that they
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Algorithm 4. modified partition function for task Identifier

1: procedure Identifier getPartition � for each key/value pair
2: if pSizeold > threshold then
3: n = pSizeold/MRLoad � numbers of reducers we need
4: return (signature.hashcode()+rand(n)) % number of reducers
5: else
6: return signature.hashcode() % number of reducers

are distributed to at most n reducers. Then we come to the reduce phase for
Identifier (Algorithm 5). Here we also output the local partition size (named
pSizenew ) for each node.

Then the task Merge (Algorithm 6) will create the mapping between the
locally assigned pIdnew nId and global pid.

Algorithm 5. modified reduce function for task Identifier

1: procedure IdentifierReducer(signature, [(nId,pId0 nId ,pSizeold )])
2: pIdnew nId ← get unique identifier for signature
3: pSizenew← size of [(nId,pId0 nId , pSizeold )]
4: for (nId, pId0 nId , pSizeold ) in [(nId, pId0 nId , pSizeold )] do
5: emit (nId, (pId0 nId , pIdnew nId ))
6: emit (signature, (pIdnew nId , pSizenew ))

Algorithm 6. task Merge

1: procedure MergeMapper(signature, (pIdnew nId , pSizenew ))
2: emit (signature, (pIdnew nId , pSizenew )) � do nothing

1: procedure MergeReducer(signature, [(pIdnew nId , pSizenew )])
2: global pid count ← 0
3: global pid ← get unique identifier for signature
4: for (pIdnew nId , pSizenew ) in [(pIdnew nId , pSizenew )] do
5: global pid count ← global pid count + pSizenew
6: emit (global pid, (pIdnew nId)) � the local - global mapping

7: emit (global pid, global pid count)

Finally at the beginning of task RePartition, the partition identifiers are
unified by a merge join of the local pid - global pid mapping table and Nt.
We achieve this by distributing the local pid - global pid table to all map-
pers before the task begins, with the help of Hadoop’s distributed cache. Also,
global pid count is updated in Nt.

While this is a general solution for dealing with skew, the extra Merge task
introduces additional overhead. In the case of heavy skew, some signatures will
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produce large map files and performing merging might become a bottleneck.
This indicates the need for a more specialized solution to deal with heavy skew.

4.3 Strategy 2: Top-K Signature-Partition Identifier Mapping

One observation of Figure 3 is that only a few partition blocks are heavily skewed.
To handle these outliers, at the end of task Signature, besides emitting Nt, we
can also emit, for each reducer, an aggregation count of signature appearances.
Then a merge is performed among all the counts, to identify the most frequent
K signatures and fix signature-partition identifier mappings for these popular
partition blocks. This mapping is small enough to be distributed to all cluster
nodes as a global variable by Hadoop, so that when dealing with these signatures,
processing time becomes constant. As a result, in task Identifier, nodes with
such signatures can be distributed randomly across reducers.

There are certain drawbacks to this method. First, the output top-K frequent
signatures are aggregated from local top-K frequent values (with respect to each
reducer), but globally we only use these values as an estimation of the real
counts. Second, the step where signature counts have to be output and merged
becomes a bottleneck of the whole workflow. Last but not least, users have to
specify K before processing, which may be either too high or too low.

However, in the case of extreme skew on the partition block sizes, for most
of the real world datasets, there are only a few partition blocks which delay
the whole process, even for very large datasets. So when we adopt this strat-
egy, we can choose a very small K value and still achieve good results, without
introducing another MapReduce task. This is validated in Section 5.1.

5 Empirical Analysis

Our experiments are executed on the Hadoop cluster at SURFsara in Amster-
dam, The Netherlands.1 This cluster consists of 72 Nodes (66 DataNodes &
TaskTrackers and 6 HeadNodes), with each node equipped with 4 x 2TB HDD,
8 core CPU 2.0 GHz and 64GB RAM. In total, there are 528 map and 528 reduce
processes, and 460 TB HDFS space. The cluster is running Cloudera CDH3 dis-
tribution with Apache Hadoop 0.20.205. All algorithms are written in Java 1.6.
The datasets we use are described in Section 4.1. A more detailed description of
the empirical study can be found in de Lange [7].

5.1 Impact on Workload Skew of the Top-K Strategy

Figure 4(b) shows the cluster workload after we create a identifier mapping for
the top-2 signature-partitions from Section 4.3. We see that, when compared with
Figure 4(a), the skew in running time per reducer is eliminated by the strategy.
This means that workload is better distributed, thus lowering the running time
per iteration and, in turn, the whole algorithm.

1 https://www.surfsara.nl

https://www.surfsara.nl
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5.2 Overall Performance Comparison

In Figure 5, we present an overall performance comparison for computing 10-
bisimulation on each graph with: our base algorithm (Base), the merge (Merge)
and top-K (Top-K Signature) skew strategies, and the state of the art single-
machine external memory algorithm (I/O Efficient) [20]. For the Top-K Signa-
ture strategy, we set K = 2 which, from our observation in Section 5.1, gives
excellent skew reduction with low additional cost. For the Merge optimization
we used a threshold of 1 ×MRload such that each partition block larger than
the optimal reducer block size is distributed among additional reducers. Fur-
thermore, for each dataset, we choose 3 × � edge table size

64 MB � number of reducers,
which has been tested to lead to the minimum elapsed time. We empirically
observed that increasing the number of reducers beyond this does not improve
performance. Indeed, adding further maps and reducers at this point negatively
impacts the running time due to framework overhead. Each experiment was re-
peated five times, and the data point reported is the average of the middle three
measurements.

We immediately observe from Figure 5 that for all datasets, among the Base
algorithm and its two optimizations, there are always at least two solutions
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which perform better than the I/O efficient solution. For small datasets such
as Jamendo and LinkedMDB, this is obvious, since in these cases only 1 or 2
reducers are used, so that the algorithm turns into a single-machine in-memory
algorithm. When the size of the datasets increases, the value of MapReduce
becomes more visible, with up to an order of magnitude improvement in the
running time for the MapReduce-based solutions. We also observe that the skew
amelioration strategies give excellent overall performance on these big graphs,
with 2 or 3 times of improvement over our Base algorithm in the case of the
highly skewed graphs such as DBLP and DBPedia. Finally, we observe that,
relative to the top-K strategy, the merge skew-strategy is mostly placed at a
disadvantage due to its inherent overhead costs.
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To further study the different behaviors among the MapReduce-based solu-
tions, we plot the running time per iteration of the three solutions for DBPedia
and Twitter in Figure 6. We see that for the Twitter dataset, in the first four
iterations the skew is severe for the Base algorithm, while the two optimization
strategies handle it well. After iteration 5, the overhead of the Merge strategy
becomes non-negligible, which is due to the bigger mapping files the Identifier
produces. For the DBPedia dataset, on the other hand, the two strategies per-
form consistently better than the Base algorithm.

Over all, based on our experiments, we note that our algorithm’s performance
is stable, i.e., essentially constant in running time as the number of maps and
reducers is scaled with the input graph size.

6 Concluding Remarks

In this paper, we have presented, to our knowledge, the first general-purpose al-
gorithm for effectively computing localized bisimulation partitions of big graphs
using the MapReduce programming model. We witnessed a skewed workload
during algorithm execution, and proposed two strategies to eliminate such skew
from an algorithm design perspective. An extensive empirical study confirmed
that our algorithm not only efficiently produces the bisimulation partition result,



202 Y. Luo et al.

but also scales well with the MapReduce infrastructure, with an order of mag-
nitude performance improvement over the state of the art on real-world graphs.

We close by indicating several interesting avenues for further investigation.
First, there are additional basic sources of skew which may impact performance
of our algorithm, such as skew on signature sizes and skew on the structure of
the bisimulation partition itself. Therefore, further optimizations should be in-
vestigated to handle these additional forms of skew. Second, in Section 5.2 we see
that all three proposed solutions have their best performance for some dataset,
therefore it would be interesting to study the cost model of the MapReduce
framework and combine the information (e.g., statistics for data, cluster status)
within our algorithm to facilitate more intelligent selection of strategies to use
at runtime [1]. Last but not least, our algorithmic solutions for ameliorating
skew effects may find successful applications in related research problems (e.g.,
distributed graph query processing, graph generation, and graph indexing).
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Abstract. Online aggregation provides estimates to the final result of a compu-
tation during the actual processing. The user can stop the computation as soon as
the estimate is accurate enough, typically early in the execution. When coupled
with parallel processing, this allows for the interactive data exploration of the
largest datasets. In this paper, we identify the main functionality requirements of
sampling-based parallel online aggregation—partial aggregation, parallel sam-
pling, and estimation. We argue for overlapped online aggregation as the only
scalable solution to combine computation and estimation. We analyze the prop-
erties of existent estimators and design a novel sampling-based estimator that is
robust to node delay and failure. When executed over a massive 8TB TPC-H in-
stance, the proposed estimator provides accurate confidence bounds early in the
execution even when the cardinality of the final result is seven orders of magni-
tude smaller than the dataset size and achieves linear scalability.

Keywords: parallel databases, estimation, sampling, online aggregation.

1 Introduction

Interactive data exploration is a prerequisite in model design. It requires the analyst to
execute a series of exploratory queries in order to find patterns or relationships in the
data. In the Big Data context, it is likely that the entire process is time-consuming even
for the fastest parallel database systems given the size of the data and the sequential
nature of exploration—the next query to be asked is always dependent on the previ-
ous. Online aggregation [1] aims at reducing the duration of the process by allowing
the analyst to rule out the non-informative queries early in the execution. To make this
possible, an estimate to the final result of the query with progressively narrower con-
fidence bounds is continuously returned to the analyst. When the confidence bounds
become tight enough, typically early in the processing, the analyst can decide to stop
the execution and focus on a subsequent query.

Online aggregation in a centralized setting received a lot of attention since its intro-
duction in the late nineties. The extension to parallel environments was mostly consid-
ered unnecessary – when considered, it was direct parallelization of serial algorithms –
given the performance boost obtained in such systems by simply increasing the physi-
cal resources. With the unprecedented increase in data volumes and the proliferation of
multi-core processors, parallel online aggregation becomes a necessary tool in the Big
Data analytics landscape. It is the combination of parallel processing and estimation
what truly makes interactive exploration of massive datasets feasible.

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 204–217, 2013.
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In this paper, we identify the main requirements for parallel online aggregation—
partial aggregation, parallel sampling, and estimation. Partial aggregation requires the
extraction of a snapshot of the system during processing. What data are included in the
snapshot is the result of parallel sampling, while estimates and confidence bounds for
the query result are computed from the extracted samples. Our specific contributions
are as follows:

– We discuss in details each stage in the parallel online aggregation process.
– We analyze and thoroughly compare the existent parallel sampling estimators.
– We introduce a scalable sampling estimator which exhibits increased accuracy in

the face of node delay and failure.
– We provide an implementation for the proposed estimator that confirms its accuracy

even for extremely selective queries over a massive 8TB TPC-H instance.

2 Preliminaries

We consider aggregate computation in a parallel cluster environment consisting of mul-
tiple processing nodes. Each processing node has a multi-core processor consisting of
one or more CPUs, thus introducing an additional level of parallelism. Data are parti-
tioned into fixed size chunks that are stored across the processing nodes. Parallel aggre-
gation is supported by processing multiple chunks at the same time both across nodes
as well as across the cores inside a node.

We focus on the computation of general SELECT-PROJECT-JOIN (SPJ) queries
having the following SQL form:

SELECT SUM(f(t1 • t2))

FROM TABLE1 AS t1, TABLE2 AS t2

WHERE P(t1 • t2)

(1)

where • is the concatenation operator, f is an arbitrary associative decomposable ag-
gregate function [2] over the tuple created by concatenating t1 and t2, and P is some
boolean predicate that can embed selection and join conditions. The class of associative
decomposable aggregate functions, i.e., functions that are associative and commuta-
tive, is fairly extensive and includes the majority of standard SQL aggregate functions.
Associative decomposable aggregates allow for the maximum degree of parallelism in
their evaluation since the computation is independent of the order in which data inside
a chunk are processed as well as of the order of the chunks, while partial aggregates
computed over different chunks can be combined together straightforwardly. While the
paper does not explicitly discuss aggregate functions other than SUM, functions such as
COUNT, AVERAGE, STD DEV, and VARIANCE can all be handled easily—they are all
associative decomposable. For example, COUNT is a special case of SUM where f(·) =
1 for any tuple, while AVERAGE can be computed as the ratio of SUM and COUNT.

Parallel aggregation. Aggregate evaluation takes two forms in parallel databases. They
differ in how the partial aggregates computed for each chunk are combined together.
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In the centralized approach, all the partial aggregates are sent to a common node –
the coordinator – that is further aggregating them to produce the final result. As an in-
termediate step, local aggregates can be first combined together and only then sent to
the coordinator. In the parallel approach, the nodes are first organized into an aggre-
gation tree. Each node is responsible for aggregating its local data and the data of its
children. The process is executed level by level starting from the leaves, with the final
result computed at the root of the tree. The benefit of the parallel approach is that it
also parallelizes the aggregation of the partial results across all the nodes rather than
burdening a single node (with data and computation). The drawback is that in the case
of a node failure it is likely that more data are lost. Notice that these techniques are
equally applicable inside a processing node, at the level of a multi-core processor.

Online aggregation. The idea in online aggregation is to compute only an estimate of
the aggregate result based on a sample of the data [1]. In order to provide any useful
information though, the estimate is required to be accurate and statistically significant.
Different from one-time estimation [3] that might produce very inaccurate estimates for
arbitrary queries, online aggregation is an iterative process in which a series of estima-
tors with improving accuracy are generated. This is accomplished by including more
data in estimation, i.e., increasing the sample size, from one iteration to another. The
end-user can decide to run a subsequent iteration based on the accuracy of the estima-
tor. Although the time to execute the entire process is expected to be much shorter than
computing the aggregate over the entire dataset, this is not guaranteed, especially when
the number of iterations is large. Other issues with iterative online aggregation [4,5]
regard the choice of the sample size and reusing the work done across iterations.

An alternative that avoids these problems altogether is to completely overlap query
processing with estimation [6,7]. As more data are processed towards computing the
final aggregate, the accuracy of the estimator improves accordingly. For this to be true
though, data are required to be processed in a statistically meaningful order, i.e., ran-
dom order, to allow for the definition and analysis of the estimator. This is typically
realized by randomizing data during the loading process. The drawback of the over-
lapped approach is that the same query is essentially executed twice—once towards the
final aggregate and once for computing the estimator. As a result, the total execution
time in the overlapped case is expected to be higher when compared to the time it takes
to execute each task separately.

3 Parallel Online Aggregation

There are multiple aspects that have to be considered in the design of a parallel on-
line aggregation system. First, a mechanism that allows for the computation of partial
aggregates has to be devised. Second, a parallel sampling strategy to extract samples
from data over which partial aggregates are computed has to be designed. Each sam-
pling strategy leads to the definition of an estimator for the query result that has to be
analyzed in order to derive confidence bounds. In this section, we discuss in detail each
of these aspects for the overlapped online aggregation approach.
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3.1 Partial Aggregation

The first requirement in any online aggregation system is a mechanism to compute par-
tial aggregates over some portion of the data. Partial aggregates are typically a superset
of the query result since they have to contain additional data required for estimation.
The partial aggregation mechanism can take two forms. We can fix the subset of the
data used in partial aggregation and execute a normal query. Or we can interfere with
aggregate computation over the entire dataset to extract partial results before the com-
putation is completed. The first alternative corresponds to iterative online aggregation,
while the second to overlapped execution.

Partial aggregation in a parallel setting raises some interesting questions. For iterative
online aggregation, the size and location of the data subset used to compute the partial
aggregate have to be determined. It is common practice to take the same amount of
data from each node in order to achieve load balancing. Or to have each node process
a subset proportional to its data as a fraction from the entire dataset. Notice though
that it is not necessary to take data from all the nodes. In the extreme case, the subset
considered for partial aggregation can be taken from a single node. Once the data subset
at each node is determined, parallel aggregation proceeds normally, using either the
centralized or parallel strategy. In the case of overlapped execution, a second process
that simply aggregates the current results at each node has to be triggered whenever a
partial aggregate is computed. The aggregation strategy can be the same or different
from the strategy used for computing the final result. Centralized aggregation might be
more suitable though due to the reduced interference. The amount of data each node
contributes to the result is determined only by the processing speed of the node. Since
the work done for partial aggregation is also part of computing the final aggregate,
it is important to reuse the result so that the overall execution time is not increased
unnecessarily.

3.2 Parallel Sampling

In order to provide any information on the final result, partial aggregates have to be sta-
tistically significant. It has to be possible to define and analyze estimators for the final
result using partial aggregates. Online aggregation imposes an additional requirement.
The accuracy of the estimator has to improve when more data are used in the computa-
tion of partial aggregates. In the extreme case of using the entire dataset to compute the
partial aggregate, the estimator collapses on the final result. The net effect of these re-
quirements is that the data subset on which the partial aggregate is computed cannot be
arbitrarily chosen. Since sampling satisfies these requirements, the standard approach
in online aggregation is to choose the subset used for partial aggregation as a random
sample from the data. Thus, an important decision that has to be taken when designing
an online aggregation system is how to generate random samples.

Centralized sampling. According to the literature [8], there are two methods to generate
samples from the data in a centralized setting. The first method is based on using an
index that provides the random order in which to access the data. While it does not
require any pre-processing, this method is highly inefficient due to the large number of
random accesses to the disk. The second method is based on the idea of storing data
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in random order on disk such that a sequential scan returns random samples at any
position. Although this method requires considerable pre-processing at loading time to
permute data randomly, it is the preferred randomization method in online aggregation
systems since the cost is paid only once and it can be amortized over the execution of
multiple queries—the indexing method incurs additional cost for each query.

Sampling synopses. It is important to make the distinction between the runtime sam-
pling methods used in online aggregation and estimation based on static samples taken
offline [3], i.e., sampling synopses. In the later case, a sample of fixed size is taken only
once and all subsequent queries are answered using the sample. This is typically faster
than executing sampling at runtime, during query processing. The problem is that there
are queries that cannot be answered from the sample accurately enough, for example,
highly selective queries. The only solution in this case is to extract a larger sample en-
tirely from scratch which is prohibitively expensive. The sampling methods for online
aggregation avoid this problem altogether due to their incremental design that degener-
ates in a sample consisting of the entire dataset in the worst case.

Sample size. Determining the correct sample size to allow for accurate estimations is
an utterly important problem in the case of sampling synopses and iterative online ag-
gregation. If the sample size is not large enough, the entire sampling process has to
be repeated, with unacceptable performance consequences. While there are methods
that guide the selection of the sample size for a given accuracy in the case of a single
query, they require estimating the variance of the query estimator—an even more com-
plicated problem. In the case of overlapped online aggregation, choosing the sample
size is not a problem at all since the entire dataset is processed in order to compute the
correct result. The only condition that has to be satisfied is that the data seen up to any
point during processing represent a sample from the entire dataset. As more data are
processed towards computing the query result, the sample size increases automatically.
Both runtime sampling methods discussed previously satisfy this property.

Stratified sampling. There are multiple alternatives to obtain a sample from a partitioned
dataset—the case in a parallel setting. The straightforward solution is to consider each
partition independently and to apply centralized sampling algorithms inside the parti-
tion. This type of sampling is known as stratified sampling [9]. While stratified sampling
generates a random sample for each partition, it is not guaranteed that when putting all
the local samples together the resulting subset is a random sample from the entire data.
For this to be the case, it is required that the probability of a tuple to be in the sample
is the same across all the partitions. The immediate solution to this problem is to take
local samples that are proportional with the partition size.

Global randomization. A somehow more complicated solution is to make sure that a
tuple can reside at any position in any partition—global randomization. This can be
achieved by randomly shuffling the data across all the nodes—as a direct extension
of the similar centralized approach. The global randomization process consists of two
stages, each executed in parallel at every node. In the first stage, each node partitions
the local data into sets corresponding to all the other nodes in the environment. In the
second stage, each node generates a random permutation of the data received from
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all the other nodes—random shuffling. This is required in order to separate the items
received from the same origin.

The main benefit provided by global randomization is that it simplifies the complex-
ity of the sampling process in a highly-parallel asynchronous environment. This in turn
allows for compact estimators to be defined and analyzed—a single estimator across
the entire dataset. It also supports more efficient sampling algorithms that require a
reduced level of synchronization, as is the case with our estimator. Moreover, global
randomization has another important characteristic for online aggregation—it allows
for incremental sampling. What this essentially means is that in order to generate a
sample of a larger size starting from a given sample is enough to obtain a sample of
the remaining size. It is not even required that the two samples are taken from the same
partition since random shuffling guarantees that a sample taken from a partition is ac-
tually a sample from the entire dataset. Equivalently, to get a sample from a partitioned
dataset after random shuffling, it is not necessary to get a sample from each partition.

While random shuffling in a centralized environment is a time-consuming process
executed in addition to data loading, global randomization in a parallel setting is a
standard hash-based partitioning process executed as part of data loading. Due to the
benefits provided for workload balancing and for join processing, hash-based partition-
ing is heavily used in parallel data processing even without online aggregation. Thus,
we argue that global randomization for parallel online aggregation is part of the data
loading process and it comes at virtually no cost with respect to sampling.

3.3 Estimation

While designing sampling estimators for online aggregation in a centralized environ-
ment is a well-studied problem, it is not so clear how these estimators can be extended
to a highly-parallel asynchronous system with data partitioned across nodes. To our
knowledge, there are two solutions to this problem proposed in the literature. In the
first solution, a sample over the entire dataset is built from local samples taken indepen-
dently at each partition. An estimator over the constructed sample is then defined. We
name this approach single estimator. In the single estimator approach, the fundamental
question is how to generate a single random sample of the entire dataset from samples
extracted at the partition level. The strategy proposed in [4] requires synchronization
between all the sampling processes executed at partition level in order to guarantee that
the same fraction of the data are sampled at each partition. To implement this strategy,
serialized access to a common resource is required for each item processed. This results
in unacceptable execution time increase when estimation is active.

In the second solution, which we name multiple estimators, an estimator is defined
for each partition. As in stratified sampling theory [9], these estimators are then com-
bined into a single estimator over the entire dataset. The solution proposed in [10] fol-
lows this approach. The main problem with the multiple estimators strategy is that the
final result computation and the estimation are separate processes with different states
that require more complicated implementation.

We propose an asynchronous sampling estimator specifically targeted at parallel
online aggregation that combines the advantages of the existing strategies. We de-
fine our estimator as in the single estimator solution, but without the requirement for
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synchronization across the partition-level sampling processes which can be executed
independently. This results in much better execution time. When compared to the mul-
tiple estimators approach, our estimator has a much simpler implementation since there
is complete overlap between execution and estimation. In this section, we analyze the
properties of the estimator and compare it with the two estimators it inherits from. Then,
in Section 4 we provide insights into the actual implementation, while in Section 5 we
present experimental results to evaluate the accuracy of the estimator and the runtime
performance of the estimation.

Generic Sampling Estimator. To design estimators for the parallel aggregation prob-
lem we first introduce a generic sampling estimator for the centralized case. This is
a standard estimator based on sampling without replacement [9] that is adequate for
online aggregation since it provides progressively increasing accuracy. We define the
estimator for the simplified case of aggregating over a single table and then show how
it can be generalized to GROUP BY and general SPJ queries.

Consider the dataset D to have a single partition sorted in random order. The number
of items in D (size of D) is |D|. While sequentially scanning D, any subset S ⊆ D
represents a random sample of size |S| taken without replacement from D. We define
an estimator for the SQL aggregate in Eq. 1 as follows:

X =
|D|
|S|

∑
s∈S,P(s)

f(s) (2)

where f and P are the aggregate function and the boolean predicate embedding selection
and join conditions, respectively. X has the properties given in Lemma 1:

Lemma 1. X is an unbiased estimator for the aggregation problem, i.e., E [X ] =∑
d∈D,P(d) f(d), where E [X ] is the expectation of X . The variance of X is equal to:

Var (X) =
|D| − |S|

(|D| − 1)|S|

⎡⎢⎣|D| ∑
d∈D,P(d)

f2(d)−
⎛⎝ ∑

d∈D,P(d)

f(d)

⎞⎠2
⎤⎥⎦ (3)

It is important to notice the factor |D| − |S| in the variance numerator which makes
the variance to decrease while the size of the sample increases. When the sample is the
entire dataset, the variance becomes zero, thus the estimator is equal to the exact query
result. The standard approach to derive confidence bounds [11,12,13] is to assume a
normal distribution for estimator X with the first two frequency moments given by
E [X ] and Var (X). The actual bounds are subsequently computed at the required con-
fidence level from the cumulative distribution function (cdf) of the normal distribution.
Since the width of the confidence bounds is proportional with the variance, a decrease
in the variance makes the confidence bounds to shrink. If the normality condition does
not hold, more conservative distribution-independent confidence bounds can be derived
using the Chebyshev-Chernoff inequalities, for example.

A closer look at the variance formula in Eq. 3 reveals the dependency on the entire
dataset D through the two sums over all the items d ∈ D that satisfy the selection pred-
icate P. Unfortunately, when executing the query we have access only to the sampled



Sampling Estimators for Parallel Online Aggregation 211

data. Thus, we need to compute the variance from the sample. We do this by defining a
variance estimator, EstVar(X), with the following properties:

Lemma 2. The estimator

EstVar(X) =
|D|(|D| − |S|)
|S|2(|S| − 1)

⎡⎢⎣|S| ∑
s∈S,P(s)

f2(s)−
⎛⎝ ∑

s∈S,P(s)

f(s)

⎞⎠2
⎤⎥⎦ (4)

is an unbiased estimator for the variance in Eq. 3.

Having the two estimators X and EstVar(X) computed over the sample S, we are in the
position to provide the confidence bounds required by online aggregation in a central-
ized environment. The next step is to extend the generic estimators to a parallel setting
where data are partitioned across multiple processing nodes.

Before that though, we discuss on how to extend the generic estimator to GROUP BY
and general SPJ queries. For GROUP BY, a pair of estimators X and EstVar(X) can be
defined independently for each group. The only modification is that predicate P includes
an additional selection condition corresponding to the group. A detailed analysis on how
X and EstVar(X) can be extended to general SPJ queries is given in [11]. The main idea
is to include the join condition in predicate P and take into consideration the effect it
has on the two samples. We do not provide more details since the focus of this paper is
on parallel versions of X and EstVar(X).

Single Estimator Sampling. When the dataset D is partitioned across N processing
nodes, i.e., D = D1∪D2∪· · ·∪DN , a sample Si, 1 ≤ i ≤ N is taken independently at
each node. These samples are then put together in a sample S = S1∪S2∪· · ·∪SN over
the entire dataset D. To guarantee that S is indeed a sample from D, in the case of the
synchronized estimator in [4] it is enforced that the sample ratio Si

Di
is the same across

all the nodes. For the estimator we propose, we let the nodes run independently and
only during the partial aggregation stage we combine the samples from all the nodes
as S. Thus, nodes operate asynchronously at different speed and produce samples with
different size. Global randomization guarantees though that the combined sample S is
indeed a sample over the entire dataset. As a result, the generic sampling estimator in
Eq. 2 can be directly applied without any modifications.

Multiple Estimators Sampling. For the multiple estimators strategy, the aggregate∑
d∈D,P(d) f(d) can be decomposed as

∑N
i=1

∑
d∈Di,P(d)

f(d), with each node com-
puting the sum over the local partition in the first stage followed by summing-up the
local results to get the overall result in the second stage. An estimator is defined for
each partition as Xi =

|Di|
|Si|
∑

s∈Si,P(s)
f(s) based on the generic sampling estimator

in Eq. 2. We can then immediately infer that the sum of the estimators Xi,
∑N

i=1 Xi,

is an unbiased estimator for the query result and derive the variance Var
(∑N

i=1 Xi

)
=∑N

i=1 Var (Xi) if the sampling process across partitions is independent. Since the sam-
ples are taken independently from each data partition, local data randomization at each
processing node is sufficient for the analysis to hold.
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Discussion. We propose an estimator for parallel online aggregation based on the sin-
gle estimator approach. The main difference is that our estimator is completely asyn-
chronous and allows fully parallel evaluation. We show how it can be derived and ana-
lyzed starting from a generic sampling estimator for centralized settings. We conclude
with a detailed comparison with a stratified sampling estimator (or multiple estimators)
along multiple dimensions:

Data randomization. While the multiple estimators approach requires only local ran-
domization, the single estimator approach requires global randomization across all the
nodes in the system. Although this might seem a demanding requirement, the random-
ization process can be entirely overlapped with data loading as part of hash-based data
partitioning.

Dataset information. Multiple estimators requires each node to have knowledge of the
local partition cardinality, i.e., |Di|. Single estimator needs only full cardinality infor-
mation, i.e., |D|, where the estimation is invoked.

Accuracy. According to the stratified sampling theory, multiple estimators provides bet-
ter accuracy when the size of the sample at each node is proportional with the local
dataset size [9]. This is not true in the general case though with the variance of the
estimators being entirely determined by the samples at hand. In a highly asynchronous
parallel setting, this optimal condition is hard to enforce.

Convergence rate. As with accuracy, it is not possible to characterize the relative con-
vergence rate of the two methods in the general case. Nonetheless, we can argue that
multiple estimators is more sensitive to discrepancies in processing across the nodes
since the effect on variance is only local. Consider for example the case when one
variance is considerably smaller than the others. Its effect on the overall variance is
asymptotically limited by the fraction it represents from the overall variance rather than
the overall variance.

Fault tolerance. The effect of node failure is catastrophic for multiple estimators. If one
node cannot be accessed, it is impossible to compute the estimator and provide bounds
since the corresponding variance is infinite. For single estimator, the variance decrease
stops at a higher value than zero. This results in bounds that do not collapse on the true
result even when the processing concludes.

4 Implementation

We implement the sampling estimators for online aggregation in GLADE [2,14], a
parallel processing system optimized for the execution of associative-decomposable
User-Defined Aggregates (UDA). In this section, we discuss the most significant exten-
sions made to the GLADE framework in order to support online aggregation. Then, we
present the implementation of the single estimator as an example UDA.

Extended UDA Interface. Table 1 summarizes the extended UDA interface we pro-
pose for parallel online aggregation. This interface abstracts aggregation and estimation
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Table 1. Extended UDA interface

Method Usage

Init () Basic interface
Accumulate (Item d)
Merge (UDA input1,UDA input2, UDA output)
Terminate ()
Serialize () Transfer UDA
Deserialize () across processes
EstTerminate () Partial aggregate
EstMerge (UDA input1,UDA input2, UDA output) computation
Estimate (estimator, lower, upper, confidence) Online estimation

in a reduced number of methods, releasing the user from the details of the actual execu-
tion in a parallel environment which are taken care of transparently by GLADE. Thus,
the user can focus only on estimation modeling.

The first extension is specifically targeted at estimation modeling for online aggrega-
tion. To support estimation, the UDA state needs to be enriched with additional data on
top of the original aggregate. Although it is desirable to have a perfect overlap between
the final result computation and estimation, this is typically not possible. In the few
situations when it is possible, no additional changes to the UDA interface are required.
For the majority of the cases though, the UDA interface needs to be extended in order to
distinguish between the final result and a partial result used for estimation. There are at
least two methods that need to be added to the UDA interface—EstTerminate and
EstMerge. EstTerminate computes a local estimator at each node. It is invoked
after merging the local UDAs during the estimation process. EstMerge is called to put
together in a single UDA the estimators computed at each node by EstTerminate.
It is invoked with UDAs originating at different nodes. Notice that EstTerminate is
an intra-node method while EstMerge is inter-node. It is possible to further separate
the estimation from aggregate computation and have an intra-node EstMerge and an
inter-node EstTerminate.

The second extension to the UDA interface is the Estimate method. It is invoked
by the user application on the UDA returned by the framework as a result of an estima-
tion request. The complexity of this method can range from printing the UDA state to
complex statistical models. In the case of online aggregation, Estimate computes an
estimator for the aggregate result and corresponding confidence bounds.

Example UDA. We present the UDA corresponding to the proposed asynchronous
estimator for single-table aggregation – more diverse examples of higher complexity
are presented in [15] – having the following SQL form:

SELECT SUM(f(t)) FROM TABLE AS t WHERE P(t) (5)

which computes the SUM of function f applied to each tuple in table TABLE that
satisfies condition P. It is straightforward to express this aggregate in UDA form. The
state consists only of the running sum, initialized at zero. Accumulate updates the
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Algorithm 1. UDASum-SingleEstimator
State: sum; sumSq; count
Init ()

1. sum = 0; sumSq = 0; count = 0

Accumulate (Tuple t)

1. if P(t) then
2. sum = sum + f(t); sumSq = sumSq + f2(t); count = count + 1
3. end if

Merge (UDASum input1, UDASum input2, UDASum output)

1. output.sum = input1.sum+ input2.sum
2. output.sumSq = input1.sumSq + input2.sumSq
3. output.count = input1.count + input2.count

Terminate ()
Estimate (estimator, lowerBound, upperBound, confLevel)

1. estimator = |D|
count

∗ sum
2. estV ar = |D|∗(|D|−count)

count2∗(count−1)
∗ (count ∗ sumSq − sum2

)

3. lowerBound = estimator +NormalCDF
(

1−confLevel
2

,
√
estV ar

)

4. upperBound = estimator +NormalCDF
(

confLevel + 1−confLevel
2

,
√
estV ar

)

current sum with f(t) only for the tuples t satisfying the condition P, while Merge
adds the states of the input UDAs and stores the result as the state of the output UDA.

UDASum-SingleEstimator implements the estimator we propose. No modifications
to the UDA interface are required. Looking at the UDA state, it might appear erroneous
that no sample is part of the state when a sample over the entire dataset is required
in the estimator definition. Fortunately, the estimator expectation and variance can be
derived from the three variables in the state computed locally at each node and then
merged together globally. This reduces dramatically the amount of data that needs to be
transferred between nodes. To compute the estimate and the bounds, knowledge of the
full dataset size is required in Estimate.

Parallel Online Aggregation in GLADE. At a high level, enhancing GLADE with
online aggregation is just a matter of providing support for UDAs expressed using the
extended UDA interface in Table 1 in order to extract a snapshot of the system state
that can be used for estimation. While this is a good starting point, there are multiple
aspects that require careful consideration. For instance, the system is expected to pro-
cess partial result requests at any rate, at any point during query execution, and with
the least amount of synchronization among the processing nodes. Moreover, the system
should not incur any overhead on top of the normal execution when online aggregation
is enabled. Under these requirements, the task becomes quite challenging.

Our solution overlaps online estimation and actual query processing at all levels of
the system and applies multiple optimizations. Abstractly, this corresponds to execut-
ing two simultaneous UDA computations. Rather than treating actual computation and
estimation as two separate UDAs, we group everything into a single UDA satisfying the
extended interface. More details can be found in an extended version of the paper [15].
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5 Empirical Evaluation

We present experiments that compare the asynchronous single estimator we propose
in this paper and the multiple estimators approach. We evaluate the “time ’til utility”
(TTU) [13] or convergence rate of the estimators and the scalability of the estimation
process on a 9-node shared nothing cluster—one node is configured as the coordinator
and the other 8 nodes are workers. The dataset used in our experiments is TPC-H scale
8,000 (8TB)—each node stores 1TB. For more details on the experimental setup, we
refer the reader to our extended report [15].

The aggregation task we consider is given by the following general SPJ query:

SELECT n name, SUM(l extendprice*(1-l discount)*(1+l tax))
FROM lineitem, supplier, nation
WHERE l shipdate = 1993-02-26 AND l quantity = 1 AND
l discount between [0.02,0.03] AND
l suppkey = s suppkey AND s nationkey = n nationkey
GROUP BY n name

To execute the query in parallel, supplier and nation are replicated across all the
nodes. They are loaded in memory, pre-joined, and hashed on s suppkey.lineitem
is scanned sequentially and the matching tuple is found and inserted in the group-by
hash table. Merging the GLA states proceeds as in the group-by case. This join strategy
is common in parallel databases.

What is important to notice about this query is the extremely high selectivity of the
selection predicates. Out of the 48× 109 tuples in lineitem, only 35, 000 tuples are
part of the result. These tuples are further partitioned by the GROUP BY clause such that
the number of tuples in each group is around 1, 500. This corresponds to a selectivity
of 29 × 10−7—a veritable needle in the haystack query. Providing sampling estimates
for so highly selective queries is a very challenging task.
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Fig. 1. Comparison between single estimator and multiple estimators. The plots print the results
corresponding to the PERU group.
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The results are depicted in Figure 1. As expected, the accuracy of the two estimators
increases as more data are processed, converging on the correct result in the end. The
effect of using a larger number of processing nodes is also clear. With 8 nodes more
result tuples are discovered in the same amount of time, thus the better accuracy. Since
the query takes the same time when proportionally more data and processing nodes
are used, the scaleup of the entire process is also confirmed. What is truly remarkable
though, is the reduced TTU even for this highly selective query. Essentially, the error is
already under 10% when less than half of the data are processed. The reason for this is
the effective tuple discovery process amplified by parallel processing.

When comparing the two estimators, there is no much difference—both in accuracy
and in execution time. This confirms the effectiveness of the proposed estimator since
the multiple estimators approach is known to have optimal accuracy in this particularly
balanced scenario. It is also important to notice that the execution time is always limited
by the available I/O throughput. The difference between the two estimators is clear
when straggler nodes are present or when nodes die. Essentially, no estimate can be
computed by the multiple estimators approach when any node dies. We refer the reader
to the extended version of the paper [15] for experiments concerning the reliability of
the estimators—and many other empirical evaluations.

6 Related Work

There is a plethora of work on online aggregation published in the database literature
starting with the seminal paper by Hellerstein et al. [1]. We can broadly categorize
this body of work into system design [16,6], online join algorithms [17,11,18], and
methods to derive confidence bounds [17,11,12]. All of this work is targeted at single-
node centralized environments.

The parallel online aggregation literature is not as rich though. We identified only
three lines of research that are closely related to this paper. Luo et al. [10] extend the
centralized ripple join algorithm [17] to a parallel setting. A stratified sampling estima-
tor [9] is defined to compute the result estimate while confidence bounds cannot always
be derived. This is similar to the multiple estimators approach. Wu et al. [4] extend
online aggregation to distributed P2P networks. They introduce a synchronized sam-
pling estimator over partitioned data that requires data movement from storage nodes
to processing nodes. This corresponds to the synchronized single estimator solution.

The third piece of relevant work is online aggregation in Map-Reduce. In [19],
stock Hadoop is extended with a mechanism to compute partial aggregates. In sub-
sequent work [7], an estimation framework based on Bayesian statistics is proposed.
BlinkDB [20] implements a multi-stage approximation mechanism based on precom-
puted sampling synopses of multiple sizes, while EARL [5] is an iterative online ag-
gregation system that uses bootstrapping to produce multiple estimators from the same
sample. Our focus is on sampling estimators for overlapped online aggregation. This is
a more general problem that subsumes sampling synopses and estimators for iterative
online aggregation.
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7 Conclusions

We propose the combination of parallel processing and online aggregation as a feasi-
ble solution for Big Data analytics. We identify the main stages – partial aggregation,
parallel sampling, and estimation – in the online aggregation process and discuss how
they can be extended to a parallel environment. We design a scalable sampling-based
estimator with increased accuracy in the face of node delay and failure. We implement
the estimator in GLADE [2] – a highly-efficient parallel processing system – to confirm
its accuracy even for extremely selective queries over a massive TPC-H 8TB instance.
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Abstract. The discovery, representation and reconstruction of Business
Networks (BN) from Network Mining (NM) raw data is a difficult prob-
lem for enterprises. This is due to huge amounts of fragmented data
representing complex business processes within and across enterprise
boundaries and heterogeneous technology stacks. To remain competitive,
the visibility into the enterprise and partner networks on different, in-
terrelated abstraction levels is desirable. We show the data management
capabilities of a novel data discovery, mining and network inference sys-
tem, called Business Network System (BNS) that reconstructs the BN
- integration and business process networks - from raw data, hidden in
the enterprises’ landscapes. The paper covers both the foundation and
key data management characteristics of BNS.

Keywords: Data Management, Data Provenance, Data System Archi-
tecture, Network Mining, Network Reconstruction.

1 Introduction

Enterprises are part of value chains consisting of business processes connecting
intra- and inter-enterprise participants. The network that connects these par-
ticipants with their technical, social and business relations is called a Business
Network (BN). Even though this network is very important for the enterprise,
there are few - if any - people in the organization who understand this network
as the relevant data is hidden in heterogeneous enterprise system landscapes.
Yet simple questions about the network (e.g., which business processes require
which interfaces, which integration artifacts are obsolete) remain difficult to
answer, which makes the operation and lifecycle management like data migra-
tion, landscape optimization and evolution hard and more expensive increasing
with the number of the systems. To change that, Network Mining (NM) sys-
tems are used to discover and extract raw data [11] - be it technical data (e.g.
configurations of integration products like Enterprise Service Bus (ESB) [6])
or business data (e.g., information about a supplier in a Supplier Relationship
Management (SRM) product). The task at hand is to provide a system, that
automatically discovers and reconstructs the ”as-is” BN from the incomplete,
fragmented, cross-domain NM data and make it accessible for visualization and
analysis.

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 218–227, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Previous work on NM systems [11] and their extension towards a holistic
management of BN [13] provide a comprehensive, theoretical foundation on how
to build a system suited to this task. With the Business Network System (BNS),
we are exploiting this opportunity stated by these requirements. In particular,
we are leveraging the work on the modeling and reconstruction of integration
networks [15], conformance checking of implicit data models [14], the client API
[12] and the BN model [10] to deliver an emergent, holistic foundation for a
declarative BN management system.

In this work we discuss the data management requirements of the BNS and
shed light into its internal mechanics. The major contributions of this work are
(1) a sound list of the most important requirements of the data management
in the BNS, building on previous work, (2) a data processing approach suitable
for these requirements, and (3) a system implementing this architecture for con-
tinuous and scalable end-to-end network query, traversal and update processing
based on the data transformation and provenance approach.

Section 2 guides from the theoretical work conducted in the areas of NM [11]
and Business Network Management (BNM) [13] to the real-world data manage-
ment requirements of a BNS (refers to (1)) and sketches a high-level view on the
system’s architecture (refers to (3)). Section 3 provides an overview of BNS’s
query and update processing (refers to (2)). Section 4 reviews and discusses re-
lated work and systems that influenced BNS. Section 5 concludes the paper and
lists some of the future work.

2 The Business Network System

The BN consists of a set of interrelated perspectives of domain networks (e.g.,
business process, integration, social), that provide a contextualized view on
which business processes (i.e., business perspective) are currently running, im-
plemented on which integration capabilities (i.e., integration perspective) and
operated by whom (i.e., social perspective). To compute the BN, Network Min-
ing (NM) systems automatically discover raw data from the enterprise landscapes
[11]. These conceptual foundations are extended to theoretically ground the new
BN data management domain [13].

2.1 The Data Management Requirements and Architecture

The fundamental requirements and capabilities of a BNS are derived from the
theoretical foundations in previous work. In a nutshell they cover REQ-1 the
(semi-)automatic discovery of data within the enterprise landscapes and cloud
applications, REQ-2 a common, domain independent, network inference model,
REQ-3 the transformation of the domain data into this model, REQ-4 a scalable,
continuously running and declaratively programmable inference system, REQ-
5 the cross-domain and enterprise/ tenant reconstruction, REQ-6 the ability
to check the data quality and compliance to the inference model, and REQ-7
the visualization of different perspectives (i.e., views) on the BN (e.g., business
process, integration).
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Fig. 1. System stack for BN discovery, conformance checking and continuous network
reconstruction

When starting with a system, which fulfills these requirements, the specific
data management and data processing aspects of the BNS summarize to the
following: REQ-8 The common access pattern for query, traversal and full-text
search across the interconnected BN perspectives shall be supported by a scal-
able (remote) client API (e.g., through index creation) (from [12]); REQ-9 The
(remote) API shall allow efficient resource access to the BN mainly for low la-
tency, read-only requests, ”get all” and selective queries. While the availability
is crucial, the consistency model for concurrent BN access could be eventual
consistency (from [12]); REQ-10 The user shall be able to enrich (e.g., labeling,
grouping) and to enhance the BN data (e.g., adding/ removing nodes and edges)
through the client API, while delta-changes from existing data sources and ini-
tial loads from new data sources are merged into the existing BN (from [13]);
REQ-11 Through the whole system, the data origin shall be tracked through all
transformations from the source to the BN (i.e., data provenance). This shall
allow for continuous data source integration, user enrichments/ enhancements as
well as possible re-deployment from the BN to the data sources (from [13]); REQ-
12 The source data shall be available at all times for continuous re-computation
of the network (i.e., even if the original source is not accessible for a while)
(from [13] and REQ-11 ); REQ-13 The system shall be able to process data
from a growing number of data sources across different enterprises (from [13]).
The data required for the reconstruction of the BN is assumed to be found in
the enterprise system landscapes. However, in reality the data is fragmented and
scattered across different applications and domains (e.g., log files, system land-
scape directories, configuration). For a single domain, the discovery (see REQ-1 )
extracts several hundreds of thousands of facts (i.e., without real-time instance
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data). Hence, in an enterprise context the amount of data could easily reach
several ten or hundred million facts.

To sketch an idea on what these requirements mean for the construction of a
BNS, Figures 1 and 2 provide a high-level view on the core data management
capabilities of our BNS. Within the enterprise landscapes (not shown), source
domain models consist of a mix of business process, social and integration ar-
tifacts stored in databases, packaged applications, system landscape directories
(e.g., SAP SLD [17]), middleware systems (e.g., SAP PI [16]), documents/ files,
application back-ends, and so on. 1© When pointed to an enterprise data source
through configuration by a domain expert, the BN discovery introspects the
source’s metadata (e.g., WSDL file for web service), discovers and transforms
the domain data to a common representation (see REQ-1,2 ). The common rep-
resentation, referred to as the inference model, is a uniform, formalization of the
enterprise’s data sources as Datalog facts (see REQ-2,3 ). The center of Figure
1 shows the core elements of a NM system, theoretically discussed in [11] and
[13], which computes the perspectives of the BN for client access (see Figure 2
9©; REQ-7 ). After the loaded data has been checked for conformance to the in-
ference model in 2© (see REQ-6 ) it is stored as raw data 3© for the continuously
running network reconstruction programs using logic programming (i.e., our ap-
proach uses Datalog due to the rationale in [15]) in 6© (see REQ-4 ). For that, the
Datalog programs are loaded in 4© and optimally distributed across processing
resources in 5©. Since BN reconstruction works on cross-domain and the enter-
prise data, and (cloud) applications want to access the BN data, the NM-part
of the system is located in the private or public cloud, while the discovery-part
is located in the enterprise system landscapes (see REQ-5 ). That means, the
data sources are highly distributed and the permanent, efficient access is not
guaranteed. For that, the source data is copied to the Business Network Server
by a set of protocol adapters. The data is stored as raw data, but linked to its
original source for later reference (see REQ-11 ).

Figure 2 shows how the computation of the network results in interrelated net-
work perspectives, which are accessed by the clients for network visualization,
simulation or analytics in 9© (see REQ-7,8,9 ). For that, the inference result is
translated into the BN model in 7© and compiled to a resource graph representa-
tion in 8© [12]. User updates are brought into the system through the client API
and are visible (at least) for the authors (see REQ-10 ). In each of the steps the
data provenance is updated to preserve the path to the origin of the data from
the client queries to the source models (see REQ-11 ). Together with REQ-12,
an end-to-end lineage from the original source data artifacts to the visualized
instances of the computed network shall be possible. Through the separation of
a storage for raw data (i.e., optimized for data write operations) and one for the
BN (i.e., optimized for concurrent read access) REQ-13 can be satisfied.

2.2 The BNS Models

The premise of NM is that all information required to compute the BN is
available in the enterprises’ landscapes. In fact, the information can be found
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Fig. 2. System stack of BN translation, resource creation and client access

scattered across divers data sources, which come with different meta-data, for-
mats, data semantics and quality (e.g., a SAP PI Business System [16] represents
a node in the BN, later called participant or system. The information about its
interfaces can be found in the middleware system, e.g., SAP PI, however its
description and physical host it runs on is usually maintained in a system land-
scape directory, e.g., SAP SLD [17]). The network inference approach must not
know about the domain-specificities, but should be more generally able to iden-
tify an entity and assign all its data fragments (see REQ-2 ). Hence, the BNS
provides deployable components specific to the different domains, which can be
configured to extract information from the data sources, pre-analyzes and trans-
forms it into the inference model, defined in [15] (see Figure 1 1©). Since in our
approach the inference programs are written as Datalog rules [18], the inference
model is represented as Datalog facts. Figure 3 (right) shows the node part of
the inference model, whose basic entities are system and host. Each entity in the
inference model (e.g., node) holds a reference to its origin (i.e., meta-data about
the data source and original object instance).

The distributed, domain-specific analysis decentralizes the information dis-
covery process and guarantees that no domain logic has to be encoded in the
inference programs (see REQ-2 ). The decentralized discovery components collect
the transformed information and push them to the inference system at a config-
urable schedule. With this operation, the current state of the system is moved to
the inference system, which stores the information in the local knowledge base
as raw data. Through that, the inference programs only rely on local raw data,
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Fig. 3. Excerpts from the inference model (right) and BN model (left) showing only
parts of the node definition

which ensures more efficient processing and makes it less dependent on network
communication. However, the attached origin information keeps the link to the
original records in the respective data sources (i.e., needed for provenance and
continuous loading from the same source).

In Datalog, the raw data represents the extensible database (EDB) relations,
which are evaluated by intensional database (IDB) rules (i.e., the inference pro-
grams). The result of the evaluation is the BN, which is already represented in
a computer readable, visualizable standard as network-centric BPMN [10]. Fig-
ure 3 (left) shows the node part of the BN model, derived from the BPMN 2.0
collaboration-conversation diagram. The Participant corresponds to the system
from the inference model. In addition, the inference programs compute Partici-
pantLink, which represent semantic contextualization between participants from
different network perspectives (see see REQ-7 ). The business process and inte-
gration perspectives are built-in and defined as NetworkSpaces, which are part
of the Network (i.e., BN; see REQ-7 ).

2.3 Declarative Network Mining and Extensibility

The choice for two models throughout the whole architecture (i.e., inference
model and BN model) helps to separate the distributed discovery and inference
from the (remote) access for search, query and traversal (see 6©, 9©). Furthermore
this allows for a possibly different model evolution between the two models (e.g.,
new fields, entities added to the BN do not necessarily need to be propagated
to the inference model). That means, only information from the automatic dis-
covery has to be added in the inference model and programs. More concrete, an
end-to-end model extension would require the 1© inference model and 2© its con-
formance checks, 7© the BN model, 6© the inference programs, and 8© the indices
for query and traversal to change (depicted in Figures 1 or 2). Clearly, this is
no task that should be done manually in the source code. Rather a configurable,
declarative, model-centric approach is preferable (see REQ-4 ).
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Figures 1 or 2 show the end-to-end declaration and configuration approach
chosen for the BNS. The inference model provides the specification for the com-
pilation and configuration of the conformance checks (details on the DSL are
in [14] and the Datalog programs for the inference task are in [15]). While the
conformance checks can be generated and configured without additional manual
adaptation (see REQ-6 ), the inference programs can only partially be generated,
since they represent domain expert knowledge (e.g., business process, integra-
tion), which cannot be derived from the inference model yet. However, this is a
natural extension point, which allows domain experts to write their own infer-
ence programs to tweak the BN (see REQ-4 ). The BN model has to be adjusted
before to allow the Datalog program to reference the modified entities. The re-
source graph representation and index structures for search, query and traversal
of the BN adapt to changes in the BN model through a generic model inter-
pretation (see requirement REQ-2 ). The remaining major, manual effort are the
mapping of the domain-specific artifacts to the modified inference model and the
adaptation of the source code that discovers the information in the enterprise
landscape. Since these tasks still require significant expert knowledge and vary
between enterprise landscapes, the automation is left for further research.

3 Query and Update Processing Overview

The data management capabilities of the BNS can be determined by the data
flow. The data flow through the BNS covers client query and the update pro-
cessing from the data sources. Figure 1 shows the update processing through
the BN data discovery from the enterprise system landscapes 1©. The process of
discovering the source domain models can be scheduled and thus the raw data
(represented as Datalog facts) does not necessarily be persisted before uploading
the BNS. During the upload of the data it is checked for conformance with the
inference model (see 2©) by an automata-based runtime, compiled and configured
from validation programs. The validation programs are declaratively developed
on top of the inference model. If the check is successful, the data is stored in the
knowledge base as raw data (see 3©). More precisely, the conform raw data is
stored, while keeping potential duplicate information. However, the unique iden-
tifiers from the source systems may not be unique in the inference system. To
avoid ”collisions” in case identifier occur more than once across different sources,
the records are stored with a composed key containing their locally unique iden-
tifier and their origin. Keeping this in mind, records from the same origin with
the same identifier are updated (i.e. remain as one record), while all other cases
lead to different records (i.e. same origin, different keys; same key, different ori-
gin). That means, if a record is pushed to the inference system, which already
contains a record with the same key and origin, the records are merged. In case
of records without any primary key, the identity of the information cannot be
determined. Hence a hash function is calculated over the record values, which
leads to new records whenever the information is loaded. It then is the task of
the inference programs to identify equivalence between the records and chose a
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meaningful surrogate. There are cases, in which the record has more than one
identifiers. These are simply represented as combined primary key. The lineage
tracing for the black-box transformation leverages the unique keys within the
source combined with the origin information, which directs to the correct source.
In this way, an anchor to the sources is created, which however lies in the storage
close to the inference system.

The stored raw data represents the EDB for the inference programs. These
programs are executed as inference tasks (see 4©), which are analyzed with re-
spect to partitioning and distribution over processing units in the system accord-
ing to the entity dependency in the inference model and the programs them-
selves (see 5©). For instance, the semantic relations same system(sys1, sys2)
and runs on(sys, host), which require the sets of logical systems and hosts
with their origin facts, can be scheduled as separate jobs, partitioned and dis-
tributed among different processing units. The corresponding optimized plans
would look like jobany(programany , factsany), where programany is the set of
inference programs to determine the semantic references, and factssame :=
system, σsystem(origin) and factsruns := system, host, σsystem,host(origin) are
the partitioned sets of the EDB. The selection σ on system and host ensures
that only the corresponding origins are taken into account.

One of the tasks of the optimized inference programs is to find equivalences
between the same entities of the BN model (see 6©). Due to the nature of equiv-
alence classes, the most common operations are data copies (i.e., direct lineage
tracing) and data aggregations. Since the identifiers in the BN become immedi-
ately visible to the applications, new keys are generated and a key mapping is
maintained (see 7©). The more difficult case is the aggregation of information, for
which at least three variants are possible: (1) perform a ”destroying merge” that
identifies a leading set of data (the leading object or surrogate) and enrich the
record by missing information from equivalent objects (e.g. add description to
the leading object) and update the surrogate by any change from the sources, (2)
perform a ”preserving merge”, which keeps all equivalent records and identifies a
surrogate filled up with missing information (similar to (1)), while remembering
from which object the information in the surrogate came from, or (3) do not
aggregate at all, but make the equivalence information public for the applica-
tions and let them handle the merge. Although it comes with the highest data
management efforts, the BNS supports the ”information preserving”, surrogate
approach (2), which fulfills REQ-11 for the BNS best. With that, the lineage
tracing down to the sources (i.e., for operations on discovered records) and the
steady integration of new sources and updates is granted.

The result of the translation from Datalog facts to the BN is then compiled
to a resource graph structure (see 8©), which automatically layouts the access
paths and index structures for the client access and stores the ”resource-oriented”
BN for scalable access from the clients. The query processing capabilities of this
system cover ”get-everything” and selective queries, full-text search and traversal
on the linked data in the BN. Hereby, the requests are formulated according to
the business network protocol as RGQL (Resource Graph Query Language) [12].
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For instance, the following RGQL specifies a keyword search with search term
and result set restriction to Host (see 9©)

http://localhost/search?query=term&type=Host&...

and field, as field specific search criteria:

http://localhost/search?location=Oxford.

In the same way, the result set can be defined to return any information in
the BN by traversing the network, e.g., from a specific participant system1,
e.g., http://localhost/SYSTEM1/?show=meta,location,host.name, which
returns location information of the participant itself and the name of the linked
host the participant runs on. Simple Friend of a Friend (FoaF) queries returning,
e.g., the hosts of all neighbors of the participant are equally straight forward,
e.g., http://localhost/SYSTEM1/neighbors/host/. Due to the decoupling of
the data query and traversal components from the network inference and model-
centric index generation, all requests are processed within short time even on
larger networks (see [12] for performance numbers).

4 Related Work

For the overall system approach, related work is conducted in the area of Process
Mining (PM) [1], which sits between computational intelligence and data mining.
It has similar requirements for data discovery, conformance and enhancement
with respect to NM [11], but does not work with network models and inference.
PM exclusively strives to derive BPM models from process logs. Hence PM
complements BNM in the area of business process discovery.

Gaining insight into the network of physical and virtual nodes within enter-
prises is only addressed by the Host entity in NIM, since it is not primarily rel-
evant for visualizing and operating integration networks. This domain is mainly
addressed by the IT service management [8] and virtualization community [5],
which could be considered when introducing physical entities to our meta-model.

The linked (web) data research, shares similar approaches and methodologies,
which have so far neglected linked data within enterprises and mainly focused on
RDF-based approaches [3,4]. Applications of Datalog in the area of linked data
[9,2] and semantic web [7] show that it is used in the inference domain, however
not used for network inference.

5 Discussion and Future Work

In this work, we present insights into a reference implementation of the data
management within a Business Network System based on the theory on Business
Networks [11] and Business Network Management [13]. For that, we combined
our work on conformance checking [14], business network inference [15] and a
client API [12] into an emergent, enterprise-ready architecture. The architec-
ture consitutes a holistic network data management platform, reaching from the
information retrieval, network mining and inference, up to the BN.
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The data provenance topic for the re-deployment of user information to the
sources requires further as well as the topics of declarative, automatic informa-
tion retrieval and inference program generation.
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Abstract. Geographical databases are often incomplete, especially when built
up incrementally and by volunteers. A prominent example is OpenStreetMap.
Often such databases contain also metadata saying that certain features are com-
pletely captured for certain areas. We show how to use such metadata to analyse
in which areas queries return a complete answer. Such “completeness areas” can
be computed via standard spatial operations. Still larger completeness areas can
be derived if not only metadata but also the actual content of the database is taken
into account. Finally, we discuss which challenges arise if one wants to practi-
cally utilize the completeness metadata in OpenStreetMap.

1 Introduction

Storage and querying of geographic information has always been important. Recently,
due to the increased availability of GPS devices, volunteered geographical information
systems, in particular OpenStreetMap, have quickly evolved. Ongoing open public data
initiatives that allow to integrate government data also contribute. The level of detail of
OpenStreetMap is generally significantly higher than that of commercial solutions such
as Google Maps or Bing Maps, while its accuracy and completeness are comparable.

OpenStreetMap (OSM) allows to collect information about the world in remarkable
detail. This, together with the fact that the data is collected in a voluntary, possibly not
systematic manner, brings up the question of the completeness of the OSM data. When
using OSM, it is desirable also to get metadata about the completeness of the presented
data, in order to properly understand its usefulness.

Judging completeness by comparing with other data is only possible, if more reli-
able data exists, which is generally not the case. Therefore, completeness can best be
assessed by metadata about the completeness of the data, that is produced in parallel to
the base data, and that can be compiled and shown to users. In geographical database
systems it is very common to collect metadata, as widespread standards such as the
FGDC metadata standard show. However, little is known about how query answers can
be annotated with completeness information.

As an example, consider that a tourist wants to find hotels in some town that are no
further than 500 meters away from a spa. Assume, that, as shown in Figure 1, the data
about hotels and spas is only complete in parts of the map. Then, the query answer is
only complete in the intersection of the areas where hotels are complete and a zone 500
meters inside the area where spas are complete (green in the figure), because outside,
either hotels or spas within 500 meters from a hotel could be missing from the database,
thus leading to missing query results.

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 228–237, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. Spatial query completeness analysis example. For a more complex one, see Figure 3.

Our contribution in this paper is a general solution for reasoning about the complete-
ness of spatial data. In particular, we show that metadata can allow elaborate conclu-
sions about query completeness, when one takes into account the data actually stored
in the database. We also show that metadata about completeness is already present to
a limited extent for OSM, and discuss practical challenges regarding acquisition and
usage of completeness metadata in the OSM project.

The structure of this paper is as follows: In Section 2, we discuss spatial database
systems, online map services, geographical data completeness and OpenStreetMap. In
Section 3, we give necessary formalizations to discuss the problem of reasoning about
geographical data completeness in Section 4. In Section 5, we discuss practical issues
regarding the applicability of our solution to OpenStreetMap.

2 Background

2.1 Spatial Databases Systems and Online Map Services

To facilitate storage and retrieval, geographic data is usually stored in spatial databases.
According to [1], spatial databases have three distinctive features. First, they are
database systems, thus classical relational/tree-shaped data can be stored in them and
retrieved via standard database query languages. Second, they offer spatial data types,
which are essential to describe spatial objects. Third, they efficiently support spatial
data types via spatial indexes and spatial joins.

Online map services usually provide graphical access to spatial databases and pro-
vide services for routing and address finding. There are several online map services
available, some of the most popular ones being Google Maps, Bing Maps, MapQuest
and OpenStreetMap. With the exception of OSM, the data underlying those services
is not freely accessible. The most common uses of those services are routing (“Best
path from A to B?”), address retrieval (“Where is 2nd street?”) and business retrieval
(“Hotels in Miami”). While the query capabilities of most online map services are cur-
rently still limited (one can usually only search for strings and select categories), spatial
databases generally allow much more complex queries.
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Example 1. Tourists could be interested in finding those hotels that are less than 500
meters from a spa and 1 kilometer from the city center. Real estate agents could be
interested in properties that are larger than 1000 square meters and not more than 5
kilometers from the next town with a school and a supermarket. Evacuation planners
might want to know which public facilities (schools, retirement homes, kindergartens,
etc.) are within a certain range around a chemical industry complex.

2.2 Geographical Data Completeness

In addition to precision and accuracy, knowledge about completeness is essential when
using spatial data [2]. Completeness describes the extent to which features in the real
world that are of interest are also present in the database. Completeness can highly
vary for different features. If metadata about completeness is present, it is attractive to
visualize it on maps [3]. Completeness is especially a challenge when (1) databases are
to capture continuously the current state (as opposed to a database that stores a map for
a fixed date) because new features can appear, (2) databases are built up incrementally
and are accessible during build-up (as it is the case for OSM) and (3) the level of detail
that can be stored in the database is high (as it is easier to be complete for all highways
in a state than for all post boxes).

2.3 OpenStreetMap

OpenStreetMap is a wiki-style project for building a map of the world. Contributors
to the project are volunteers that commonly use GPS devices to track paths and fea-
tures or use aerial pictures to identify them. In contrast to most commercial products,
the project’s data is freely available and map data can be reused in other applications
and visualized for different specific needs. In most areas of the world, OSM provides
significantly more information than its commercial competitors.1 The level of detail of
features that can be stored is remarkable, as for example for buildings, entrances and
building heights can be stored, for vending machines the kind of good they sell or for
waste baskets the kind of waste they accept.

There have been some attempts at formalizing [4] and assessing the quality of OSM
[5,6]. The latter showed that the road map coverage of England is quite good, but it is
clear that, because of the level of detail that can be stored, many non-core features are
currently far from being complete.

Assessment of completeness is not only important for consumers but also for the
producers of the data (mappers), because they are interested to know where to direct
their work. Some OSM mappers therefore introduced the idea of storing information
about completeness of different features in tables on the OSM wiki [7]. An example of
such a table is shown in Figure 2.

3 Formalization

3.1 Spatial Databases

A geometry is a datatype used to represent the location and extent of a spatial object,
for example as a point or a polygon.

1 For a graphical comparison tool, see for example http://tools.geofabrik.de/mc/ .

http://tools.geofabrik.de/mc/


Assessing the Completeness of Geographical Data 231

Fig. 2. Completeness information for different districts of Lübbenau, Germany. Each symbol
stands for a set of features, the colors for its completeness level. Taken from [8].

We assume that a spatial database consists of a set of relations, where each relation
has besides other attributes exactly one attribute g of type geometry.

We consider a special class of queries, which we call star-shaped queries, that allow
only joins over the distance-less-than relation with the output relation. Formally, a star-
shaped query is written as

Q(g0) :−R0(x̄0, g0),M0,R1(x̄1, g1),M1, dist(g0, g1) < c1, . . . ,

Rn(x̄n, gn),Mn, dist(g0, gn) < cn,

(1)

where each Mi is a set of comparisons of the arguments of Ri with constants.

Example 2. Consider again the query asking for hotels that are closer than 500 meters
to a spa and closer than 1 km to the city center. This can be written as

Qhotels(g0) :− Hotel(n, r, g0), Spa(g1), dist(g0, g1) < 500,

Center(g2), dist(g0, g2) < 1000,

if we assume a ternary relation Hotel with attributes name, rating, and geometry and
unary relations for spas and centers. The query is star-shaped, because both spa and
center are joined with hotel, which is the relation providing the output. The other queries
in Example 1 are star-shaped as well.

3.2 Completeness

Real-world databases are often incomplete. This was formalized by Motro [9] such that
incomplete databases are actually pairs (Di,Da), where the available (real) database Da

contains only a subset of the facts that hold in the ideal database Di, which represents
the complete information about the world.

Example 3. Consider that in the real world, there are a Hilton (4 stars), a Sheraton (5
stars) and a Best Western (3 stars) hotel in a town, but in the database, the information
about the Best Western is missing. Ideal and available database for that scenario are
shown in Table 1.
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Table 1. Example of an ideal and available database

Ideal database — Relation Hotel Available database — Relation Hotel
name rating (stars) geometry name rating (stars) geometry
Hilton 4 P(46.61, 12.30) Hilton 4 P(46.61, 12.30)

Sheraton 5 P(46.62, 12.30) Sheration 5 P(46.62, 12.30)
Best Western 3 P(46.64, 12.26)

To express partial completeness, Levy introduced a format for metadata about data-
base completeness, which he called local completeness statements [10]. We extend
those to feature completeness statements. Formally, a feature completeness statement
F is written as Compl(R(x̄, g); M; A) and consists of a relation name R, a set M of com-
parisons of the attributes of R with constants, and an area A. The feature completeness
statement holds over a pair of an ideal and an available database (Di,Da), if its asso-
ciated query QF(g) :−R(x̄, g),M returns the same answers over both databases in the
area A, that is, if QF(Di) ∩ A = QF (Da) ∩ A.

Example 4. The database in Table 1 is complete for all hotels with more than 3 stars
on the full map, that is, it satisfies the statement F1 = Compl(Hotel(n, r, g); {r > 3};
FULL_MAP). Furthermore, it is complete for all hotels in areas south of 46.63 latitude,
that is, it satisfies F2 = Compl(Hotel(n, r, g); ∅; RECTANGLE(0, 0 46.63, 20)).

Let F be a set of feature completeness statements F and Q be a star-shaped query. We
define the completeness area CA of Q wrt F as the set of points p such that for all pairs
of an ideal and an available database (Di,Da) that satisfy F , it holds that p ∈ Q(Di)
implies p ∈ Q(Da). In other words, Q will not miss p as an answer over the available
database if it would return p over the ideal database. Thus, CA is the largest area such
that Q(Di) ∩ CA = Q(Da) ∩ CA for all (Di,Da) satisfying F .

Example 5. Consider the query QFiveStars(g) :−Hotel(n, r, g), r = 5 that asks for all ho-
tels with five stars. Assuming only the feature completeness statement F1 from above
holds, CA is FULL_MAP. Assuming, however, only the statement F2 holds, CA is
RECTANGLE(0, 0 46.63, 20).

4 Query Completeness Analysis

Given a query Q and a set of FC statements F , the completeness analysis problem is to
determine CA. We first analyse the general problem, then show that larger completeness
areas can be derived, if the available database is taken into account. For simplicity, we
assume in the following that the geometries of all features are points, and consider only
star-shaped queries.

4.1 Analysis without the Database Instance

We first consider completeness analysis problem for simple queries, which are of the
form Q(g) :−R(x̄, g),M.
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Let F be a set of FC statements and R be a relation. Then we denote by F R the
subset of F that consists of those statements that talk about R. Suppose F1, . . . , Fm is an
enumeration of the statements in F R. Then each F j in F R is of the form Compl(R(x̄, g);
M j; A j), where M j is a set of comparisons over the variables in x̄ and A j is an area.

Proposition 1. Let F be a set of FC statements and Q(g) :−R(x̄, g),M be a simple
query. Then CA, the completeness area of Q wrt F , satisfies

CA =
⋃{⋂

F j∈F0
A j

∣∣∣ F0 ⊆ F R and M |= ∨F j∈F0
M j
}
.

The preceding proposition says that CA is a union of areas
⋂

F j∈F0
A j, which are ob-

tained as follows. One chooses a subset F0 of statements F j, such that the query con-
dition M entails the disjunction of the conditions Mj of the F j. Intuitively, this means
that the M j cover all possible ways in which M can be satisfied. Then one intersects the
areas A j of the statements in F0. Of course, it suffices to take only minimal subsets F0

of F R (wrt set inclusion) whose comparisons are entailed by M.
We remark that the decision version of the problem to determine the CA for a simple

query (“Given F , Q and a point p, is p in CA?”) is coNP-hard. This can be seen by an
encoding the tautology problem for propositional logic. The problem is also in coNP
because to show that a point is not in CA, it suffices to guess values for the attributes of
R such that none of the conditions of the FC statements that hold in p are satisfied. The
hardness however may be practically not very problematic, because (i) it is maybe rather
uncommon that FC statements only together imply completeness, because for that, they
must complement each other, while it is more realistic, that they only linearily extend
each other, and (ii) because geometries of FC statements may seldomly be overlapping,
since they are expected to be given for administrative units.

To formulate a characterization of the completeness sets of arbitrary star-shaped
queries, we need some additional notation. For an area A and a number c > 0, we
denote with shrink(A, c) the set of points p in A such that the distance between p and
the complement of A is at least c. Intuitively, these are points that are lying deep in A.

For an arbitrary star-shaped query Q as in Equation (1) we introduce n + 1 simple
queries Q0, . . . ,Qn, defined as Qi(gi) :−Ri(x̄i),Mi for i = 1, . . . , n, which we call the
component queries of Q.

Theorem 1. Let F be a set of FC statements, Q(g0) a query as in Equation (1), and
Q0, . . . ,Qn the component queries of Q. Then CA, the completeness area of Q wrt F ,
satisfies

CA = CA0 ∩ shrink(CA1, c1) ∩ . . . ∩ shrink(CAn, cn),

where CAi is the completeness area of Qi.

Example 6. See again Figure 1. There, hotels are complete within the brown rectan-
gle and spas within the blue. The area shrink(Spa, 500) is indicated by the dashed line.
Completeness of the query only holds inside the green area, because for any point out-
side the brown rectangle, there could be a hotel missing in the database that has a spa
nearby, and for any point outside shrink(Spa, 500) there could be a spa missing outside
the blue rectangle, that indicates that a hotel has the property of having a spa within 500
meters.
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Algorithms to compute CAi and CA(Q,F ) are given below:

CompleteArea (Feature R, Conditions M, Set of FC statements F)
1: Area = empty
2: for each subset S of F:
3: if statements in S imply completeness of R,M

then Area = Area.union(intersection of geometries in S)
4: return Area

CalcQueryComplW /oInstance(Query Q, Set of FC statements F)
1: Area = CompleteArea (R0, M0, F)
2: for each pair Ri, Mi i>0 in Q:
3: AtomArea = ShrinkArea(CompleteArea (Ri,Mi,F),ci)
4: Area = Area.intersect(AtomArea)
5: return Area

Listing 1.1. Algorithms to compute the complete area for an atom and for a query

4.2 Analysis with the Database Instance

When analysing query completeness, one can also take into account the actual state of
the database. The problem is then, given a query Q, a set of FC statements F and an
available database instance Da, to find the largest area CA where it holds for all ideal
databases Di, that, whenever (Di,Da) satisfies F , then Q(Di) ∩ CA = Q(Da) ∩ CA.
Taking into account the available database, more completeness can be derived.

Example 7. Consider Figure 3. The completeness statements are the same as in Fig-
ure 1, however now, there are also the positions of the hotels h1, h2, h3 and spas s1 and
s2 shown, as they are stored in Da. The area CA is now significantly larger for two
reasons:

1. All points within Compl(Hotel), where no hotel is located that could possibly be an
answer (i.e., all points except h2), are now added to CA. The reason is that for all
those points it holds that there cannot be any hotel missing that satisfies the query
condition, because hotels are complete in that point.

2. All points within shrink(Compl(Spa), 500m) where no spa is within a distance of
500m are added, because for those points, although hotels could possibly be miss-
ing from the database, none can be missing that satisfies the query condition, be-
cause there are no spas around within 500 meters and spas are complete within 500
meters.

To formalize our observations, we first introduce two definitions. Consider a query Q
as in Equation (1), a set of FC statements F and an available database Da.

We say that a point p is a potential answer to Q, if (i) there is an atom R(t̄, p) in R(Da),
(ii) p is not in Q(Da) and (iii) there exists an ideal database Di with (Di,Da) |= F such
that p ∈ Q(Di). We denote the set of all potential answers of Q by Pot(Q). The potential
answers can be calculated by removing from πg(R) all those points that are a certain
answer (i.e., are in Q(Da) and that are an impossible answer (i.e., cannot be in Q(Di)
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Fig. 3. Completeness analysis when taking into account the database instance. Observe that the
point h2 does not belong to the completeness area.

because some join partner Ai is not in the range ci in Da and the atom is also complete
in the area buffer(p, ci), which is the set of points with a distance of at most ci from p.

For a pair Gi = Ri(x̄),Mi in Q, we define the area ComplOutOfRangeF ,Da (Gi) as
shrink(CAAi , ci) \⋃{buffer(p, ci) | p ∈ Q(g) :−Ai(x̄, g),Mi}.

Now, we can compute the largest area in which a query Q is complete wrt. F and
Da by taking the union of the area where G0 is complete with the areas where each Gi

is complete and out of reach in the distance ci, and finally removing the points where
potential answers are located:

Theorem 2. Let Q be a star-shaped query with n atoms, F be a set of FC statements
and Da be an available database. Then

CA(Q, F,Da) = CAA0 ∪ (
⋃

i=1...n

ComplOutOfRangeF ,Da (Gi)) \ πg(Pot(Q)).

5 Practical Issues in OpenStreetMap

In the OpenStreetMap-wiki, a template for tables that store completeness information
exists (see Figure 2). The template introduces 6 levels of completeness (“Largely in-
complete” to “Completeness verified by two mappers”) for 11 different features (such
as roads or sights), and is used on approximately 1,100 Wiki pages (estimate based on
number of pages that contain an image used in the table), which corresponds to 5% of
all pages on the Wiki (21,989 content pages on 22.01.2013).

The table in Figure 2 expresses for example that the roads in Lehde are generally
complete, the cycling paths largely and the house numbers partially.

The completeness statements that can be expressed via those tables are of a simpler
form than the ones discussed before, because there cannot be any comparisons. Also,
there can be at most one completeness statement per relation per area, and the areas are
disjoint, since they talk about different administrative units. Altogether, this makes the
query completeness analysis computationally easy.
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Practically challenging is especially the proper interpretation of those completeness
levels: It is hard to say what “Largely complete” can actually mean, and whether that
level of completeness is satisfactory for a user’s request. A possible solution would be to
use percentages instead of informal descriptions for completeness statements, however
the problem then is that giving correct numbers (“60% complete”) is only possible, if
one has a good estimate of what 100% would be.

Another serious challenge is to get mappers to widely give those completeness state-
ments. The current usage (5%) is clearly insufficient. A possible reason is that com-
pleteness statements introduce a kind of negative responsibility: One states, that there
are no unmapped features in a certain kind of area. This is a much stronger statement
than saying that a feature is present at some place, which is the usual implicit statement
that mappers give when adding a feature to the map.

A third challenge is provided by changes in the real world: While during the build-up
of a geographical database changes in the real world are less important, during longer
runs, also changes becomes a problem, because features that can have been correct in
the past can disappear (e.g. hotels can close), or new features can appear (e.g. new hotels
can open). Thus, completeness statements would need periodic review, a possibly not
very attractive activity (Wikipedia has a similar problem with its review system).

Minor technical challenges are that the completeness statements would need to be
crawled from the OSM-wiki pages, that the district borders used in the Wiki do not
always exist in the database and that the OSM data is not stored in relational format but
in XML format.

Fig. 4. Screenshot of our demo program for reasoning about the completeness of OSM

6 Conclusion

We have shown that completeness is a major concern in geographical databases that
are built up incrementally and by volunteers, and that that holds particularly for Open-
StreetMap. We also showed that for analyzing database completeness, metadata is re-
quired, because completeness can normally not be analyzed by looking at the data itself.

We showed how metadata about feature completeness can be used to analyze query
completeness, and that more completeness can be concluded when not only the meta-
data but also the database content is taken into account.
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We discussed that major challenges for practical applicability are the willingness of
mappers to give completeness statements and to review them regularly.

We also implemented a small test program that contains a fictive scenario for the
town of Bolzano, which is available under [13]. A screenshot is also shown in Figure 4.

Future work will focus on implementation techniques for a tool that is built upon real
OSM data and on discussing the applicability and usefulness of our proposal with the
OSM community.

Acknowledgement. We are thankful to the user Bigbug21 for information about the
OSM community.
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Abstract. Efficient database indexing and information retrieval tasks
such as k -nearest neighbor (kNN) search still remain difficult challenges
in large-scale and high-dimensional data. In this work, we perform the
first comprehensive analysis of different partitioning strategies for the
state-of-the-art high-dimensional indexing technique iDistance. This work
greatly extends the discussion of why certain strategies work better than
others over datasets of various distributions, dimensionality, and size.
Through the use of novel partitioning strategies and extensive experi-
mentation on real and synthetic datasets, our results establish an up-to-
date iDistance benchmark for efficient kNN querying of large-scale and
high-dimensional data and highlight the inherent difficulties associated
with such tasks. We show that partitioning strategies can greatly affect
the performance of iDistance and outline current best practices for using
the indexing algorithm in modern application or comparative evaluation.

Keywords: iDistance, Large-scale, High-dimensional, Indexing,
Retrieval, kNN.

1 Introduction

Modern database-oriented applications are filled with rich information composed
of an ever-increasing amount of large-scale and high-dimensional data. While
storing this data is becoming more routine, efficiently indexing and retrieving it
is still a practical concern. A frequent and costly retrieval task on these databases
is k-nearest neighbor (kNN) search, which returns the k most similar records to
any given query record. While all database management systems (DBMS) are
highly optimized for a few dimensions, the traditional indexing algorithms (e.g.,
the B-tree and R-tree families) degrade quickly as the number of dimensions
increase, and eventually a sequential (linear) scan of every single record in the
database becomes the fastest retrieval method.

Many algorithms have been proposed in the past with limited success for truly
high-dimensional indexing, and this general problem is commonly referred to as
the curse of dimensionality [4]. Practitioners often mitigate these issues through
dimensionality reduction techniques (manual and automated) before using multi-
dimensional indexing methods, or even adding application logic to combine mul-
tiple independent indexes or requiring user involvement during search. However,

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 238–252, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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modern applications are increasingly employing highly-dimensional techniques
to effectively represent massive data, such as the highly popular 128-dimensional
SIFT features [11] in Content-Based Image Retrieval (CBIR).

First published in 2001, iDistance [10,20] specifically addressed kNN queries in
high-dimensional space and has since proven to be one of the most efficient and
state-of-the-art high-dimensional indexing techniques available for exact kNN
search. In recent years, iDistance has been used in a number of demanding ap-
plications, including large-scale image retrieval [21], video indexing [15], mobile
computing [8], peer-to-peer systems [6], and surveillance system video retrieval
[14]. Unfortunately, no works to date have focused on developing methods of
best practice for these modern applications.

This work methodically analyzes partitioning strategies with the goal of in-
creasing overall performance efficiency of indexing and retrieval determined by
the total tree nodes accessed, candidate records returned, and the time taken to
perform a query. These metrics are used to quantitatively establish best practices
and provide benchmarks for the comparison of new methods. We introduce a new
and open-source implementation of the original iDistance algorithm1 including
detailed documentation, examples, visualizations, and extensive test scripts. We
also contribute research-supporting code for pre-processing datasets and post-
processing results, as well as all published algorithmic improvements.

The motivations addressed in the original iDistance publications have only
increased in importance because of the ubiquity of rich high-dimensional and
large-scale data for information retrieval, such as multimedia databases and the
mobile computing market which have exploded in popularity since the last pub-
lication in 2005. While there is little doubt the algorithm remains effective and
competitive, a more thorough investigation into performance-affecting criteria
is needed to provide a basis for general capabilities and best practices. With-
out this study, it can be difficult to effectively use iDistance in application and
reliably compare it to new methods in future research.

The rest of the paper is organized as follows. Section 2 highlights background
and related works, an overview of iDistance is presented in Section 3, and exper-
iments and results are presented in Section 4. We follow with a brief discussion
of key findings and best practices in Section 5, and we close with our conclusions
and future work in Section 6.

2 Background and Related Works

The ability to efficiently index and retrieve data has become a silent backbone of
modern society, and it defines the capabilities and limitations of practical data
usage. While the one-dimensional B+-tree [2] is foundational to the modern re-
lational DBMS, most real-life data has many dimensions (attributes) that would
be better indexed together than individually. Mathematics has long-studied the
partitioning of multi-dimensional metric spaces, most notably Voronoi Diagrams
and the related Delaunay triangulations [1], but these theoretical solutions can be

1 Publicly available at: http://code.google.com/p/idistance/

http://code.google.com/p/idistance/
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too complex for application. R-trees [7] were developed with minimum bounding
rectangles (MBRs) to build a hierarchical tree of successively smaller MBRs con-
taining objects in a multi-dimensional space, and R*-trees [3] enhanced search
efficiency by minimizing MBR overlap. However, these trees (and most deriva-
tions) quickly degrade in performance as the dimensions increase [5,13].

Recently, research has focused on creating indexing methods that define a one-
way lossy mapping function from a multi-dimensional space to a one-dimensional
space that can then be indexed efficiently in a standard B+-tree. These lossy
mappings require a filter-and-refine strategy to produce exact query results,
where the one-dimensional index is used to quickly retrieve a subset of the data
points as candidates (the filter step), and then each of these candidates is checked
to be within the specified query region in the original multi-dimensional space
(the refine step). Because checking the candidates in the actual dataspace is a
costly task, the goal of the filter step is to return as few candidates as possible
while retaining the exact results.

The Pyramid Technique [5] was one of the first prominent methods to effec-
tively use this strategy by dividing up the d-dimensional space into 2d pyramids
with the apexes meeting in the center of the dataspace. This was later extended
by moving the apexes to better balance the data distribution equally across
all pyramids [22]. For greater simplicity and flexibility, iMinMax(θ) [13,16] was
developed with a global partitioning line θ that can be moved based on the
data distribution to create more balanced partitions leading to more efficient re-
trieval. The simpler transformation function also aids in faster filter-step calcu-
lations for finding candidate sets. Both the Pyramid Technique and iMinMax(θ)
were designed for range queries in a multi-dimensional space, and extending to
high-dimensional kNN queries is not a trivial task.

It should also be briefly noted that many other works are focused on returning
approximate nearest neighbors [9,18], but these are outside the scope of efficient
exact kNN retrieval by iDistance presented in this paper.

3 iDistance

The basic concept of iDistance is to segment the dataspace into disjoint par-
titions, where all points in a specific partition are indexed by their distance
(“iDistance”) to the reference point of that partition. This results in a set of
one-dimensional distance values, each related to one or more data points, for
each partition that are all together indexed in a single standard B+-tree. The
algorithm was motivated by the ability to use arbitrary reference points to de-
termine the (dis)similarity between any two data points in a metric space, al-
lowing single dimensional ranking and indexing of data points no matter what
the dimensionality of the original space [10]. The algorithm also contains several
adjustable parameters and run-time options, making the overall complexity and
performance highly dependent on the choices made by the user. Here we provide
an overview of the algorithm and readers are encouraged to refer to the original
works [10,20] for details that are beyond the scope of our investigation.
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3.1 Building the Index

The most important algorithmic option for iDistance is the partitioning strategy.
The original works presented two types of abstract partitioning strategies: space-
based, which assumes no knowledge of the actual data, and data-based, which
adjusts the size and location of partitions based on the data distribution [10,20].
For any strategy, every partition requires a representative reference point, and
data points are assigned to the single closest partition in Euclidean distance.

A mapping scheme is required to create separation between the partitions
in the underlying B+-tree, ensuring any given index value represents a unique
distance in exactly one partition. Given a partition Pi with reference point Oi,
the index value yp for a point p assigned to this partition is defined by Equation
1, where dist() is any metric distance function, i is the partition index, and c is a
constant multiplier for creating the partition separation. While constructing the
index, each partition Pi records the distance of its farthest point as distmaxi.

yp = i× c+ dist(Oi, p) (1)

3.2 Querying the Index

The index should be built in such a way that the filter step returns the fewest
possible candidate points without missing the true k-nearest neighbor points.
Fewer candidates reduces the costly refinement step which must verify the true
multi-dimensional distance of each candidate from the query point. Performing
a query q with radius r consists of three basic steps: 1) determine the set of

(a) (b)

Fig. 1. (a) A query sphere q with radius r and the searched regions (shaded) in the two
overlapping partitions Pi and Pj defined by their reference points Oi and Oj , and radii
distmaxi and distmaxj respectively. (b) A scatter plot of a two dimensional dataset
with four clusters, accompanied by each single dimensional histogram.
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partitions to search, 2) calculate the search range for each partition in the set,
and 3) retrieve the candidate points and refine by true distance.

Figure 1(a) shows an example query point q with radius r contained com-
pletely within partition Pi and intersecting partition Pj , as well as the shaded
ranges of each partition that need to be searched. For each partition Pi and its
distmaxi, the query sphere (q, r) overlaps the partition if the distance from the
edge of the query sphere to the reference point Oi is less than distmaxi, as de-
fined in Equation 2. There are two possible cases of overlap: 1) q resides within
Pi, or 2) q is outside of Pi, but the query sphere intersects it. In the first case, the
partition needs to be searched both inward and outward from the query point
over the range (q ± r), whereas an intersected partition is only searched inward
from the edge of the partition to the farthest point of intersection. Equation 3
combines both overlap cases into a single search range for each partition.

dist(Oi, q)− r ≤ distmaxi (2)

[dist(Oi, q)− r,MIN(dist(Oi, q) + r, distmaxi)] (3)

3.3 Partition Strategies

Space-based Strategies. The only space-based methods presented in detail
in previous works [10,20] were Center of Hyperplane and External Point, which
we refer to in this work as Half-Points (HP) and Half-Points-Outside (HPO),
respectively. The HP method mimics the Pyramid-Technique [5] by placing ref-
erence points at the center of each dimensional edge of the data space with 2d
partitions in d dimensions. The HPO method creates the same reference points,
but then moves them outside of the dataspace by a preset distance to reduce the
overlap volume between partitions. For example, in a 2D space such as Figure
1(b), HP would result in four partitions, based on reference points: (0.0, 0.5),
(0.5, 0.0), (1.0, 0.5), and (0.5, 1.0), and HPO-10 (movement of 10.0) would result
in reference points: (−10.0, 0.5), (0.5,−10.0), (11.0, 0.5), and (0.5, 11.0) respec-
tively. Here we also introduce random reference point selection (RAND) to cre-
ate any number of partitions located randomly in the dataspace. While this is a
trivial strategy, it has not been shown before and greatly helps compare other
strategies by providing a näıve benchmark.

Data-based Strategies. The primary benefit of data-based methods is their
adaptability to data distributions, which greatly increases retrieval performance
in real-world settings. Two methods were originally introduced: center of cluster
and edge of cluster, but only the center of cluster method was actually presented
in published results [10,20], which used algorithmically derived cluster centers
as reference points to create cluster-based partitions in the dataspace.

Approximate cluster centers can be found through a variety of popular cluster-
ing algorithms, such as k-Means [12], BIRCH [23], etc., and the original authors
recommend (without explicit rationale) to use 2d as the number of partitions
(clusters). They believed using the edges of clusters is intuitively more promis-
ing as it should reduce partition overlap (decreasing node accesses) and reduce
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the number of equi-distant points from any given reference point (decreasing
candidates). Unfortunately, they leave us with only implementation suggestions,
such as “points on hyperplanes, data space corners, data points at one side of a
cluster and away from other clusters, and so on” [10], but many of these methods
are infeasible in high dimensions and were never presented.

4 Experiments and Results

We propose new iDistance partitioning strategies and methodically determine
the effectiveness of various strategies over a wide range of dataset characteristics
that lead to generalized conclusions about when and how to apply certain strate-
gies (if at all). This not only depends on the dataset size and dimensionality,
but also on additional knowledge possibly available, such as data distributions
and clusters. We highlight these variabilities over extensive experiments that not
only validate the results (and independent/unbiased reproducibility) of original
research [10,20], but also greatly extend the analyses through novel strategies
and specially designed dataspaces.

Every run of our implementation of iDistance reports a set of statistics de-
scribing the index and query performance of that run. As an attempt to remove
machine-dependent statistics, we use the number of B+-tree nodes instead of
page accesses when reporting query results and tree size. Tracking nodes ac-
cessed is much easier within the algorithm and across heterogeneous systems,
and is still directly related to page accesses through the given machine’s page
size and B+-tree leaf size. We primarily highlight three statistics from tested
queries: 1) the number of candidate points returned during the filter step, 2) the
number of nodes accessed in the B+-tree, and 3) the time taken (in milliseconds)
to perform the query and return the final results. Often we express the ratio of
candidates and nodes over the total number of points in the dataset and the
total number of nodes in the B+-tree, respectively, as this eliminates skewed
results due to varying the dataset.

The first experiments are on synthetic datasets (uniform and clustered) so
we can properly simulate specific dataset conditions, and we later apply these
results towards evaluating strategies on real world dataset. All artificial datasets
are given a specified number of points and dimensions in the unit space [0.0, 1.0].
For clustered data we provide the number of clusters and the standard deviation
of the independent Gaussian distributions centered on each cluster (in each di-
mension). For each dataset, we randomly select 500 points as kNN queries (with
k = 10) for all experiments, which ensures that our query point distribution
follows the dataset distribution.

Sequential scan is often used as a benchmark comparison for worst-case per-
formance. It must check every data point, and even though it does not use the
B+-tree for retrieval, total tree nodes provides the appropriate worst-case com-
parison. Note that all data fits in main memory, so all experiments are compared
without depending on the behaviors of specific hardware-based disk caching rou-
tines. In real-life however, disk-based I/O bottlenecks are a common concern for
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Fig. 2. Space-based methods on uniform data (10K) over dimensions
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Fig. 3. Space-based methods on uniform data (16D) over dataset size

inefficient retrieval methods. Therefore, unless sequential scan runs significantly
faster, there is a greater implied benefit when the index method does not have
to access every data record, which could potentially be on disk.

4.1 Space-Based Strategies in Uniform Data

Our first experiments compare Sequential Scan (SS) to space-based methods in
uniform datasets ranging from 4 to 64 dimensions and 1,000 (1k) to 1 million
(1000k) points. We present Half-Points (HP) and Half-Points-Outside (HPO),
specifically HPO-10 and HPO-100, and also show the RAND method with an
equivalent 2d reference points (R2D).

Figures 2 and 3 validate the original claim that HPO performs better than
HP [10,20], but surprisingly it also shows that R2D works better than HP. We
can also see that a movement of 10.0 (HPO-10) outside of the dataspace is
sufficient for performance improvements with HPO, and there is minimal gain
thereafter. Although space-based methods take longer than SS in 16 dimensions
(16D) or less, they access significantly less nodes and return fewer candidates.
Note that it is possible to access the same nodes multiple times because data
points from disjoint partitions can be stored in the same tree leaves. Another
important performance factor is dataset size, shown in Figure 3 over a constant
16D. This can be linked to Figure 2 at 10k data points. We now log-transform
the query time to show that as expected, larger datasets slow down all methods.
However, sequential scan grows the fastest (with a linear increase), because at a
certain point space-based strategies begin to properly filter the congested space
and access less nodes while returning fewer candidates.

While still using uniform data, we investigate the effects of varying the num-
ber of reference points. Figures 4 and 5 look at the RAND method with 16
(R16), 64 (R64), 256 (R256), and 1024 (R1024) reference points. We also in-
clude dynamic methods of 2d over number of dimensions d (R2D) and

√
p over

number of points p (RP*), which are meant to better account for the specific
dataspace characteristics. The results highlight the trade-off between dimensions
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Fig. 4. Varying number of random ref. points on uniform data (10K) over dimensions
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Fig. 5. Varying number of random ref. points on uniform data (10K) over dataset size

of a space and total points, showing that as the number of dimensions increase,
more partitions reduce the number of candidates, but also increase the nodes ac-
cessed and overall query time. Conversely, as the number of data points increase
and dimensionality holds constant, kNN queries become more compact, and the
number of candidates and nodes decreases leading to a shorter query time.

4.2 The Transition to Clustered Data

Since most real-world data is not uniform, we turn our attention to clustered
data and data-based partitioning strategies. As mentioned by the authors in the
original iDistance publications [10,20], data-adaptive indexing is the primary
strength of iDistance, and we too show it greatly improves overall performance.
We start by trying to better understand when data-based strategies overtake
space-based strategies through varying cluster densities in the space, which has
not been investigated previously. For each dataset, cluster centers (12 total)
are randomly generated and then points are sampled with a standard deviation
(stdev) ranging from 0.40 to 0.005 in each dimension of the 16D space with a
total of 100k points equally distributed among clusters. We use the actual cluster
centers – True Centers (TC) – as the only reference points. For comparison, we
include Half-Points (HP) and Sequential Scan (SS) as baseline benchmarks.
The RAND method was not included because it produces unpredictable results
depending on the location of reference points and underlying data clusters.

In Figure 6, we can see the effect that cluster density has as the space tran-
sitions from very loose to extremely tight clusters. We do not report candidates
because the results closely mirror the nodes accessed ratio. While using the true
centers of the clusters as reference points quickly becomes the better technique, it
eventually stalls out and fails to improve once the data is sufficiently dense – but
notice that HP’s performance steadily increases to near similar results. Since the
space-based reference points are not bound to clusters, they continue to increase
in effectiveness by searching smaller and smaller “slices” of each partition.
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Fig. 6. Results over varying cluster density (by standard deviation)
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Fig. 7. Results over dimensions of 12 clusters with 0.1 standard deviation

We can further see these trade-offs in Figure 7. Here we set the stdev of all 12
clusters to 0.1 and vary the dimensionality of 100k data points. The 12 equal-
sized clusters seem to explain why TC stabilizes with around 8% (or 1/12) of
the nodes accessed in both of these figures. In other words, the clusters become
so dense that although the kNN queries rarely have to search outside of a single
partition, they ultimately have to search through the entire partition containing
the query. We confirm this in Figure 8, which shows the total partitions checked
and candidates returned for three clustered datasets with 6 (TC6), 12 (TC12),
and 24 (TC24) clusters over varying cluster density. Notice that all three start
with accessing all partitions and most data points, but all converge to only one
checked partition with the respective ratio of candidates.
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Fig. 8. Results of various numbers of clusters over cluster density

4.3 Reference Points: Moving from Clusters

We now investigate more advanced data-based partitioning strategies using the
True Centers (TC) of clusters as our benchmark reference points. Original works
make mention of reducing partition overlap, and thereby increasing performance,
by moving reference points away from each other [10,20], but did not investigate
it. This approach should perform better than TC because there will be less equi-
distant points for each reference point, meaning the lossy transformation is less
destructive for true data point similarity.
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We present two strategies for moving reference points away from cluster
centers. Since cluster centers are typically found by minimizing inter-cluster
similarity while maximizing intra-cluster similarity, by moving reference points
away from the cluster centers, one could hypothesize that there should be less
equi-distant points in each partition and therefore a more discriminative one-
dimensional B+-tree index. The two methods are: 1) Min-Edge (M), moving
towards the closest edge of the dataspace in any single dimension, and 2) Ran-
dom (R), moving randomly in any/all dimensions. We specify movement by a
total distance in the multi-dimensional dataspace and both methods are capable
of pushing reference points outside of the dataspace – which makes the Min-Edge
method similar to Half-Points Outside (HPO). Using Min-Edge on the data in
Figure 1(b) as an example, the upper-left cluster center will decrease along the
x-axis, and the upper-right cluster will increase along the y-axis.

Figure 9 shows the ratio of candidates returned from the two cluster center
movement methods (M and R), with movement distances of {0.025, 0.05, 0.1,
0.2, 0.4}, each compared to TC. Each method performs best with a movement
distance of 0.2, as shown with TC in the third column chart for better readability.
We can see that above 16D (with 12 clusters and 100k points) no methods
seem to make a significant difference. However, lower dimensions do support our
hypothesis that moving away from the centers can help. Figure 10 shows the
same methods in 16D over a varying number of data points, and here we see the
methods also become ineffective as the number of points increase.
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Fig. 9. Results of center movement methods
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Fig. 10. Results of center movement methods

4.4 Reference Points: Quantity vs. Quality

While we know that iDistance performs well on datasets with known clusters, a
more common scenario is less knowledge of the data where the size and number
of clusters are unknown. This is the focus of the original iDistance works, which
suggest the use of any popular clustering algorithm as a pre-processor to identify
more optimal reference point placements. The original publications used BIRCH
[23] in 2001 [20] and k-Means [12] in 2005 [10].
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In these experiments we investigate the effect of the number of provided clus-
ters during our pre-processing with the k-Means algorithm. It should be stated
that k-Means is known to be sensitive to the initial starting position of cluster
centers, and does not ensure any balance between cluster populations. We use a
standard MATLAB implementation and mitigate these inherent weaknesses by
initializing our cluster centers on a randomly sampled data subset, and forcing
all clusters to contain at least one point so the resultant reference points are not
accidentally removed and ignored from the space. Although never discussed in
previous works, we believe it is very important to address the case of non-empty
clusters, especially when analyzing how well a certain number of reference points
perform. Otherwise, there is no guarantee that the specified number of reference
points actually reflects the same number of partitions as intended.

The authors of iDistance originally suggested a general setting of 2d reference
points – so k-Means with k = 2d clusters – which also matches the space-based
strategies [10,20]. In Figure 11, we look at the performance of k-Means (KM) with
d-relative clusters from d/2 to 4d, in various dimensions over 100k points in 12
clusters. We also include True Centers (TC) as our current baseline benchmark,
and k-Means with 12 clusters but without knowledge of the true cluster centers
upon initialization (KM-12*). Notice the relatively equal nodes accessed ratio
for all methods in higher dimensions, but the increase in overhead time taken
for the methods with more clusters (partitions).
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Fig. 11. Varying k-Means centers with 12 clusters (100K points) over dimensions
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Fig. 12. Varying k-Means centers with d clusters (100K points) over dimensions

An important realization here is how beneficial the knowledge of true cluster
centers can be, as we see TC performs more consistently (and nearly always
better) than other methods over all dimensions. The same can be seen in Figure
12, where we now generate d clusters in the dataset instead of only 12. However,
here we see that in higher dimensions more clusters make a major difference for
the number of nodes accessed, and 2d clusters seem in many cases to be an ap-
propriate balance between the number of partitions and the time taken to search
all the partitions, as both 1d and 4d clusters are equally slower. Also note that
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Fig. 13. Results of k-Means and RAND on real data over varying reference points

setting k to the number of known clusters for k-Means (KM-12* in Figure 11)
does not guarantee performance because of the variability of discovered clusters
from the k-Means algorithm.

Our final experiments use a real dataset to determine if any of our findings
carry over from synthetic dataset studies. We use a popular real world dataset
containing one million 128-dimensional SIFT feature vectors2. This dataset was
recently used by the authors of the SIMP algorithm [17] to show comparatively
better performance over their private implementation of iDistance using 5,000
reference points. However, without knowledge of algorithmic options, or several
baseline experiments to show optimal performance results, we have very little
insight into the effectiveness (and reproducibility) of their specific comparison.

In Figure 13, we look at RAND and k-Means over a varying number of refer-
ence points, and include HP and SS methods as comparisons. We can see that
the only method that performs significantly better than SS is k-Means (KM).
Although the number of candidates returned continues to decrease as we add
reference points, we can see that after a certain point the overhead costs of
additional partitions outweighs the filtering benefits, and the number of nodes
accessed begins to increase while query time dramatically rises. We note there
exists a clear range of relatively equivalent results from approximately d/2 (64)
to 4d (512) partitions, which might be a combination of many factors including
indexing performance and dataset characteristics. This performance plateau also
provides an excellent measure for tuning to the proper number of partitions.

We also analyzed the number of partitions that were empty or checked for
candidates, and the results of RAND exemplified our concerns over empty parti-
tions and poor reference point placement. Essentially, as the number of random
reference points increased, the more empty partitions are created. Worse yet, ev-
ery non-empty partition is almost always checked due to high overlap and poor
placement relative to each other and the data (and query) distributions.

5 Discussion

We see a promising result in Figure 10 at 1000k data points, suggesting that it is
still possible to produce better results by moving reference points. This suggests
there may exist a more sophisticated solution than the relatively simple methods
we presented. We note that because of the default closest distance assignment
strategy, when reference points are moved the points assigned to them may

2 Publicly available at: http://corpus-texmex.irisa.fr/

http://corpus-texmex.irisa.fr/
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change. Thus our efforts to reduce the number of equi-distant points may have
been confounded, and if reference points are moved outside the dataspace, their
partitions may become empty. Unfortunately, we found no significant difference
in results by employing a static partition assignment before and after reference
point movement, and therefore did not include the results for discussion. Clearly,
more knowledge is required to move reference points in an optimal way that
impacts partitioning efficiency. We have begun investigating the idea of clustering
for the sake of indexing, by learning cluster arrangements explicitly for use as
reference points within iDistance [19].

In general, we find a trade-off between dimensionality and dataset size, where
more dimensions lead to less precise query regions (classic curse of dimension-
ality problem), but more points allow smaller regions to fully satisfy a given
query. Space-based methods suffer much worse from dimensionality and are re-
ally not ideal for use. We agree with the original authors that 2d reference points
seems appropriate as a general recommendation. In relatively moderate to small
datasets and multi-dimensional spaces, 2d is probably overkill but far less bur-
densome than in exceptionally large datasets and high-dimensional spaces where
the cost of additional reference points dramatically increases without providing
much benefit. Results strongly support an intelligent data-centric approach to
the amount and placement of reference points that results in minimally overlap-
ping and non-empty partitions.

6 Conclusions and Future Work

We presented many complementary results to that of the original iDistance
works, and through extensive experiments on various datasets and data char-
acteristics we uncovered many additional findings that were not presented or
discussed in prior works. This paper establishes a self-standing baseline for the
wide variance in performance of partitioning strategies that opens the door for
more directed and concise future works grounded on our findings. These results
have also helped to establish an up-to-date benchmark and best practices for
using the iDistance algorithm in a fair and efficient manner in application or
comparative evaluations.

Many of the results show that traditional iDistance partitions stabalize in per-
formance by accessing entire clusters (within single partitions), despite dataset
size and dimensionality. This leads us to explore methods to further segment par-
titions in future work, so that we can better prune away large sections of dense
data clusters. These novel strategies are much like the works of the iMinMax
[13] and recently published SIMP [17] algorithms, whereby we can incorporate
additional dataspace knowledge at the price of added complexity and perfor-
mance overhead. Our preliminary work shows potential enhancements to the
filtering power of iDistance through novel algorithm extensions that help reduce
the negative effects of equi-distant points and partition overlap.
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Abstract. Pyramid Technique and iMinMax(θ) are two popular high-
dimensional indexing approaches that map points in a high-dimensional
space to a single-dimensional index. In this work, we perform the first inde-
pendent experimental evaluation of Pyramid Technique and iMinMax(θ),
and discuss in detail promising extensions for testing k -Nearest Neighbor
(kNN) and range queries. For datasets with skewed distributions, the
parameters of these algorithms must be tuned to maintain balanced parti-
tions. We show that, by using the medians of the distribution we can opti-
mize these parameters. For the Pyramid Technique, different approximate
median methods on data space partitioning are experimentally compared
using kNNqueries. For the iMinMax(θ), the default parameter setting and
parameters tuned using the distribution median are experimentally com-
pared using range queries. Also, as proposed in the iMinMax(θ) paper,
we investigated the benefit of maintaining a parameter to account for the
skewness of each dimension separately instead of a single parameter over
all the dimensions.

Keywords: high-dimensional indexing, iMinMax, Pyramid Technique.

1 Introduction

Efficient indexing structures exist for storing and querying low-dimensional data.
The B+-tree [2] offers low-cost insert, delete, and search operations for single-
dimensional data. The R tree [7] extends the concepts of the B+-tree to 2 or
more dimensions by inserting minimum bounding rectangles into the keys of the
tree. The R* tree [3] improves the performance of the R tree by reducing the
area, margin and overlap of the rectangles. Unfortunately, the performance of
these hierarchial index structures deteriorates when employed to handle highly
dimensional data [8]. On data with more than 8 dimensions, most of these tech-
niques perform worse than a sequential scan of the data and this performance
degradation has come to be called the “curse of dimensionality” [5]. Improved
techniques for indexing highly dimensional data are necessary.
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One popular approach in addressing the problem of highly dimensional data
is to employ an algorithm that maps the values of a high-dimensional record
to a single-dimensional index [10]. After the data is collapsed to this single-
dimensional index, it is possible to re-use existing algorithms and data structures
that are optimized for handling single-dimensional data, such as the B+-tree,
which offers fast insert, update, and delete operations. An advantage of mapping
to a single dimension and using a B+-tree is that the algorithms can be easily
implemented on top of an existing DBMS [4]. The most widely cited examples
of this strategy include the Pyramid Technique [4], and the iMinMax(θ) [8].

Both the Pyramid Technique (PT) and iMinMax(θ) partition the data space
into different partitions that map the high-dimensional data to a single dimen-
sional value. To partition the data space, the PT uses the center point of the
data space [4], and the iMinMax(θ) uses the dimension that has the largest or
smallest value [8]. For data sets with skewed distributions, these two indexing
techniques can result in a disproportionate number of points in the resulting par-
titions. In this paper, we show that by using medians (approximate and actual)
of the skewed distribution in the data we can improve the partitioning strategy
in a way that will better balance the number of points in resulting partitions.

The rest of the paper is organized as follows: In section 2, we give a brief
background of PT and iMinMax(θ). In section 3 we explain PT and our pro-
posed extensions in detail. In section 4 we explain iMinMax(θ) and our proposed
extensions in detail. Finally, we present a large variety of experiments demon-
strating the impact of extensions to PT and iMinMax(θ), and conclude with a
summary of results.

2 Brief Background

The PT introduced in [4], partitions a data space of d dimensions into 2d hyper-
pyramids, with the top of each pyramid meeting at the center of the data space.
The index of each point has an integer part and a decimal part. The integer part
refers to the pyramid in which the point can be found, and the decimal part refers
to the “height” of the point within that pyramid. Although two points may be
relatively far apart in the data space, any number of points can potentially be
mapped to the same index, because each point is indexed by a single real value.

Following a similar strategy, the iMinMax(θ), first presented in [8], maps each
point to the “closest edge/limit” of the data space instead of explicitly parti-
tioning the data space into pyramids. By mapping to axes instead of pyramids,
they reduce the number of partitions from 2d to d. The simple mapping function
was also intended to avoid more costly pyramid intersection calculations.

Mapping to a single dimension from multiple dimensions results in a lossy
transformation. Therefore, both of these techniques must employ a filter and
refine strategy. To be useful, the transformation should allow much of the data
to be ignored for a given query. At the same time, the transformation must
ensure that the filter step misses no true positives, so that, after the refine step
removes the false positives, the result is exactly the points that match the query.



Extending High-Dimensional Indexing Techniques Pyramid and iMinMax(θ) 255

3 The Pyramid Technique

The PT [4] divides the high-dimensional data space to 2d pyramids (see Fig. 1),
each of which share the center point of the data space as the top of the pyramid
and have a (d − 1)-dimensional surface of the data space as the base of the
pyramid. A point in the data space is associated to a unique pyramid. The point
also has a height within its pyramid. This association of point to a pyramid is
called the pyramid number of a point in the data space. Any order-preserving
one-dimensional index structure can be used to index pyramid values. For both
insert and range query processing, the d-dimensional input is transformed into
a 1-dimensional value, which can be processed by the B+-tree. The leaf nodes
of the B+-tree store the d-dimensional point value and the 1-dimensional key
value. Thus, inverse transformation is not necessary. In the next section, the
data space partitioning will be explained in greater detail.

Fig. 1. Partition of data space into pyramids

3.1 Index Creation

The partition of the data space in the PT follows two steps. In the first step,
the d-dimensional data space is divided into 2d pyramids, with the center point
of the data space as the top of each pyramid and a (d − 1)-dimensional surface
as the base of each pyramid. In the second step, each pyramid is divided into
multiple partitions, each partition corresponding to one data page of the B+-tree.
Fig. 1 shows the partitioning of a 2-dimensional data space into four pyramids
p0, p1, p2, and p3, which all have the center point of the data space as the top
and one edge of the data space as the base. Also the partitions within pyramid
p0, and height (hv) of a point v in pyramid p0 are shown in the figure.

The pyramid value of a point (pvv), is the sum of the pyramid number and the
height of the point within that pyramid. Calculation of the pyramid number and
the height of a point is shown in Algorithm 1. In this algorithm, D is the total
number of dimensions, dmax is the pyramid number in the data space partition.
The algorithm assumes the data space has been normalized so that the center of
the data space is at 0.5 in each dimension. Using the pvv as a key, the d-dimensional
point is inserted in the B+-tree in the corresponding data page of the B+-tree.

3.2 Query Processing

We now discuss point queries, range queries, and kNN queries in this section.
The general definition of point query, can be stated as follows “Given a query
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Algorithm 1. To calculate the pyramid value of a point v, adapted from [4]

PyramidValue(Point v)
dmax = 0
height = |0.5− v[0]|
for j = 1 → D − 1 do

if height < |0.5 − v[j]| then
dmax = j
height = |0.5− v[j]|

end if
end for
if v[dmax] < 0.5 then

i = dmax

else
i = dmax +D

end if
pvv = i+ height
return pvv

point q, decide whether q is in the database.” This problem can be solved by
first finding the pyramid value pvq of the query point q and querying the B+-tree
using pvq. Thus, d-dimensional results are obtained sharing the pyramid value
pvq. From this result, we scan and determine whether the result contains q and
output the result.

Second, for range queries, which are stated as “Given a d-dimensional in-
terval [q0min , q0max ], . . . , [qd−1min , qd−1max ], determine the points in the database
which are inside the range.” Range query processing using the PT is a complex
operation, a query rectangle of a range query might intersect several pyramids,
and computation of the area of the interval is not trivial.

Fig. 2. Transformation of range queries

Fig. 2 shows a query rectangle and the region accessed for that query rectangle.
This computation of the area is a two-step process. First, we need to determine
which pyramids intersect with the query rectangle, and second, we need to deter-
mine the height intervals inside the pyramids. To determine the interval inside a
pyramid (hv between two values) for all objects is a one-dimensional indexing prob-
lem. Next, a simple point-in-rectangle test is performed in the refinement step.

An algorithm to find pyramid intersections and the interval within each pyra-
mid for range queries is given in Algorithm 2, and it uses Equations 1 through
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8. In this algorithm, the given query rectangle is first transformed in a way that
the interval is defined relative to the center point. Next, pyramids in the data
space partition that intersect with the query rectangle are found and the inter-
val [i + hlow, i + hhigh] inside each intersected pyramid is computed. Using this
interval, a point-in-rectangle test is performed using the B+-tree.

intersect =

{
true if k = D

false if k = D
(1)

where k is obtained from equation 2

k =

{
∀j, 0 ≤ j < D, q̂imin ≤ −MIN(q̂j) : if i < D

∀j, 0 ≤ j < D, q̂i−Dmin
≥ −MIN(q̂j) : if D − 1 < i

(2)

Algorithm 2. To process range query [q̂r0min
, q̂r0max

], ..., [q̂rd−1min
, q̂rd−1max

],
adapted from [4]

RangeQuery(qr[D][2])
// Initialize variables
sq[D][2]
qw[D][2]
for i = 0 → D − 1 do

sq[i][0] = qr[i][0] − 0.5
sq[i][1] = qr[i][1] − 0.5

end for
for i = 0 → (2D) − 1 do

if (i < D) then
qw[i][0] = sq[i][0]
qw[i][1] = sq[i][1]

end if
if (i ≥ D) then

qw[i−D][0] = sq[i−D][0]
qw[i−D][1] = sq[i−D][1]

end if
// Using Equation 1
if intersect then

if (i < D) ∧ (qw[i][1] > 0) then
qw[i][1] = 0

end if
if (i ≥ D) ∧ (qw[i−D][0] < 0) then

qw[i−D][0] = 0
end if
// Using Equation 6 and 8
Find hlow and hhigh

Search B+-tree
end if

end for
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q̄j =

{
MIN(qj) if MIN(qj) >MIN(qi)

MIN(qi) otherwise
(3)

MIN(r) =

{
0 if rmin ≤ 0 ≤ rmax

min(|rmin|, |rmax|) otherwise
(4)

MAX(r) = max(|rmin|, |rmax|) (5)

hhigh = MAX(q̂i) (6)

hvalue = max0≤j<D : (q̄j)(∗) (7)

hlow =

{
0 if ∀j, 0 ≤ j < D : (q̂jmin ≤ 0 ≤ q̂jmax)
hvalue otherwise

(8)

Finally, we address kNN queries, which are stated as “Given a set S of n d-
dimensional data points and a query point q, the kNN search is to find subset
S′ ⊆ S of k ≤ n data points such that for any data point u ∈ S′ and v ∈
S−S′, dist(u, q) ≤ dist(v, q)”. The procedure to perform a kNN search using the
decreasing-radius kNN search technique, introduced in [9], is given in Algorithm
3. In this method, after finding the pyramid number for the given query point
q, the B+-tree is searched to locate the leaf node that has the key value for the
qiven point q, or the largest key value less than the key value of q. Once the key
value is identified, the function SEARCHLEFT (SEARCHRIGHT ) is used
to check the data points of the node towards the left (right) to determine if they
are among the k nearest neighbors. When the difference between the current key
value in the node and the pyramid value of q is greater than Dmax and there
are k data points in A or the key value of the leaf node is less (greater) than i
(i+ 0.5), the search on left (right) stops. In the next step, a query square W is
generated to perform an orthogonal range search. The rest of the pyramids are
examined one by one, and if a pyramid intersects with W , a RangeQuery(W ) is
performed to check if the data points in this pyramid intersecting W are among
the k nearest neighbors. The side length of W is updated after each pyramid is
examined. The algorithm stops once all the pyramids have been examined.

3.3 Extending Pyramid Technique

The data partitioning strategy of the original PT assumes a uniform data distri-
bution. For clustered data, as shown in Fig. 3 (a), most of the data is contained
in only a few pyramids. Partitioning this data space will result in sub-optimal
space partition, as shown in Fig. 3 (b). A better partitioning approach is shown
in Fig. 3 (c).

In the Extended PT, the basic idea is to let the pyramid’s center point to
follow the center of the actual data distribution. Thus, the data space is mapped
to the canonical data space [0, 1]d such that the d-dimensional median of the
data space is mapped to the center point. The transformation is applied only
to determine the pyramid value of points and query rectangles, and hence an
inverse transformation is again unnecessary.
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Algorithm 3. The decreasing radius Pyramid kNN search algorithm, adapted
from [9]

PyramidkNN(Point q, int k)
A ← emptyset
i ← pyramid number of the pyramid q is in
node ← LocateLeft(T, q)
SearchLeft(node,A, q, i)
SearchRight(node,A, q, i+ 0.5)
Dmax ← D(A0, q)
Generate W centered at q with � ← 2Dmax

for j = 0 → 2D − 1 do
if (j �= i) ∧ (W intersects pyramid j) then

RangeQuery(W)
Update W with updated � ← 2Dmax

end if
end for
return A

Fig. 3. Extending Pyramid Technique for skewed data distributions

Computing the d-dimensional median is a hard problem [4] and thus two
different approaches for finding the approximate median are explored. In the first
approach, a histogram is created for each dimension. From the created histogram,
the bin containing the median is found, and then that bin is searched for the
median. This method requires n comparisons. In the second approach, we use
the approximate median finding algorithm described in [1]. This method requires
fewer than (4/3)×n comparisons and (1/3)×n exchanges on average, and fewer
than (3/2) × n comparisons, with (1/2) × n exchanges in the worst case. The
algorithm takes n = 3r as the input where r is an integer and proceeds in r stages.
At each stage the algorithm divides the input into subsets of three elements, and
calculates the median of each such triplet. Medians of each triplet are used in the
next stage. The algorithm continues recursively, using the medians saved from
the previous stage to compute the approximate median of the initial set. The
method described can be generalized to array sizes which are not powers of three
as follows: Let the array size be n, where n = 3 × t + k, and where k ∈ 0, 1, 2.
Then the first t triplets have their median extracted as before, and the t selected
medians, as well as the remaining k elements are forwarded to the next stage.
Moreover the direction in which those first triplets are selected alternates—either
left-to-right or right-to-left. This ensures that no elements remain for more than
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one iteration. The algorithm continues iteratively using the results of each stage
as input for the next one. This is done until the number of elements falls below
a small fixed threshold. Finally, the elements are sorted to obtain their median
as the final result.

The computation of the median can be done dynamically, in the case of dy-
namic insertions, or once in the case of a bulk load of points. This d-dimensional
approximate median may lie outside the convex hull of the data cluster. Given
the d-dimensional median mpi of the data set, a set of d functions ti are defined
in [4], 0 ≤ i < (d − 1) transforming the given data space in dimension i such
that the transformed data space still has a range of [0, 1]d, that the median of
the data becomes the center point of the data space, and that each point in the
original data space is mapped to a point inside the canonical data space.

ti(x) = x−(1/log2(mpi))

To insert a point v into an index, transform v into a point such that v′i = ti(vi)
and determine the pyramid value pvv′ . Using pvv′ , point v is inserted into the
B+-tree. To process a query, first transform the query rectangle q into a query
rectangle q′ such that q′imin

= ti(qimin) and q′imax
= ti(qimax ). Next, algorithms

discussed in earlier sections are used to determine intersection of pyramids and

qj =

⎧⎪⎨⎪⎩
[j +maxdi=1 xil, j + xjh] if mind

i=1 xil + θ ≥ 1−maxdi=1 xil

[j + xjl, j +mind
i=1 xih] if mind

i=1 xih + θ < 1−maxdi=1 xih

[j + xjl, j + xjh] otherwise

(9)

ranges within pyramids to find the points in the query rectangle. Finally, the
refine step is performed to filter out false positives as before.

4 The iMinMax(θ) Algorithm

The iMinMax(θ) algorithm maps a d-dimensional space to a one-dimensional
space, by indexing on the “edges”. The maximum or minimum value among all
the dimensions of a point is called an “edge” [8]. The iMinMax(θ) technique uses
either the Max edge or Min edge in the index keys for the points.

4.1 Index Creation

As with the PT, the data is normalized such that each data point x resides in
a unit d-dimensional space. A data point x is denoted as x = (x1, x2, . . . , xd)
where xi ∈ [0, 1] ∀i. Let xmax = maxdi=1 xi and xmin = mind

i=1 xi. Each point is
mapped to a single dimensional index value f(x) as follows:

f(x) =

{
dmin + xmin, if xmin + θ < 1− xmax

dmax + xmax, otherwise
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The parameter θ can be tuned to account for skewed data distributions in which
much of the data would otherwise be mapped to the same edge, resulting in a
less efficient search through the B+-tree. In the simple case when θ = 0, each
point is mapped to the axis of the closest edge which is appropriate for uniformly
distributed data. When θ > 0, the mapping function is biased toward the axis of
the maximum value, while θ < 0 biases it toward the axis of the minimum value.

4.2 Query Processing

Range queries are first transformed into d one-dimensional subqueries. The range
query interval for the jth dimension, denoted qj , is calculated by Equation 9.
The variables xil and xih represent the low and high bound, respectively, for
the range interval in the ith dimension. In the original iMinMax paper [8], they
prove that the union of the results from the d subqueries is guaranteed to return
the set of all points found within the range, while no smaller interval on the
subqueries can guarantee this. Moreover, they prove that at most d subqueries
must be performed. In fact, they prove that a subquery qi = [li, hi] need not be
evaluated if one of the following holds:

d

min
j=1

xjl + θ ≥ 1− d
max
j=1

xjl and hi <
d

max
j=1

xjl

d
min
j=1

xjh + θ < 1− d
max
j=1

xjh and li >
d

min
j=1

xjh

Fig. 4. Example iMinMax(θ) range query in 2 dimensions with θ = 0

This occurs when all the answers for a given subquery are along either the Max
or the Min edge. Thus, if either of these conditions hold, the answer set for qi is
guaranteed to be empty and can be ignored.

Fig. 4 shows the two subqueries generated by an example range query in 2
dimensions when θ = 0. Query 1 returns {P1, P2, P3} during the filter step
and then refines by removing P2. Likewise, Query 2 returns {P4, P5} and then
refines by removing P5.

4.3 Tuning the θ Parameter

A d-dimensional median point can be used to calculate the optimal θ, denoted
θopt. This d-dimensional median is calculated by first finding the median for
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each dimension. The combination of these d one-dimensional medians forms the
median point used to calculate θopt. The xmin and xmax of this median are then
used to calculate the optimal θ as

θopt = 1− xmax − xmin

4.4 Extending iMinMax(θ) with Multiple θ’s

In this section, we investigate an extension to the iMinMax(θ) algorithm that
incorporates multiple θ’s, instead of using only the single θ parameter. For this
extension, each dimension i will have its own unique parameter θi. The original
θ parameter attempts to create a balanced partition of the data, making the
median of the dataset a good choice from which to compute the θ parameter.
This median, however, is calculated by finding the median of each dimensions
individually. Instead of combining these medians into a single median and com-
puting a single θ parameter, each of these medians is now used individually to
compute each θi parameter.

This extension changes the mapping function when computing the single-
dimension index value of a point. Notice that the mapping function compares
only two dimensions at a time, the dimensions of the minimum and maximum
values. The multiple θi parameters account for potentially different skewness
across pairs of dimensions. Let θmin and θmax be the θi parameters for the
dimensions of the minimum and maximum values, respectively. The mapping
function now becomes:

f(x) =

{
dmin + xmin, if xmin + θmin < 1− xmax − θmax

dmax + xmax, otherwise

The mapping of the range subqueries and the criteria for subquery pruning are
modified similarly. The introduction of multiple θi parameters does not add
significant overhead to index creation, with the number of θi parameters scaling
linearly with the number of dimensions and with the mapping function only
requiring one additional term.

5 Experiments

In this section we first present the experiments and results of PT and proposed
extensions, followed by the experiments and results of iMinMax(θ) and proposed
extensions, respectively. The benefits of using medians and the influence of dif-
ferent approximate median methods is discussed for PT and the effects of tuning
the θ parameter and multiple θ’s are discussed for iMinMax(θ).

5.1 Pyramid Technique (PT)

For the PT, we performed two different experiments on skewed distributions. For
the first experiment, we measured the influence of approximate median methods
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on tree construction time and kNN query performance across different dimen-
sions. For this experiment a total of three data sets are created with 4, 8, and
16 dimensions and each data set has 500, 000 data points. For the second ex-
periment, we measured the influence of approximate median methods on kNN
query performance across different data set size. For this experiment a total of
three data sets are created with 500, 000, 750, 000, and 1, 000, 000 data points
and each data set has 16 dimensions.

The results (see Figs. 5, 6, and 7) for the PT show how different approximate
median methods influence tree construction time and kNN query performance.
Each of the figures for PT shows four lines representing the various methods (see
Table 1).

Table 1. Summary of experiments on Pyramid Indexing technique (Names of experi-
ment are used also as legends in Figs. 5, 6, 7)

Name Experiment Description

PT Pyramid Technique

HMPT Histogram-based approximate median PT

AMPT Approximate median PT

TMPT Brute force median PT

Fig. 5. Tree construction time over di-
mensionality of data space

Fig. 6. kNN query retrieval behaviour
over data space dimension

Fig. 7. kNN query retrieval time over database size

First, the benefit of using medians in PT and the influence of different ap-
proximate median methods is shown in Fig. 6 and 7 for kNN query on single
clustered data sets with different dimensions and on single clustered data sets
with different sizes. Each datapoint on the two graphs represents query retrieval
time averaged over 1, 000 kNN (k = 10) random queries. The centroid of the
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cluster is offset from the center of the space, while the original PT does not
account for this skewed distribution in the data. On the other hand, the other
methods compute the d-dimensional (approximate) median to be the center of
the data space.

This results in better space partitioning for the single-cluster datasets, because
data points in the data space are more evenly mapped to different pyramids (see
Fig. 3 (c)), thus improving the performance of the kNN queries. Moreover, from
the figures we can observe that AMPT performance is close to TMPT in com-
parison to HMPT. AMPT, with its high probability of finding an approximate
median within a very small neighborhood of the true median [1], leads to better
space partitioning, hence results in better performance. These results demon-
strate the benefit of using approximate median methods with PT on a single
skewed distribution.

However, computing the exact or approximate median increases the time to
build the index and we can observe this from Fig. 5. In order to reduce the time
to build index for extended PT, we should use an approximate median method
that is computationally less expensive.

5.2 iMinMax(θ)

For the iMinMax(θ), we performed two different experiments. For the first exper-
iment, we measured the influence of setting a θ value on range query performance
across different dimensions. For this experiment a total of three skewed distri-
bution data sets are created with 4, 8, and 16 dimensions and each data set has
500, 000 data points with single cluster. For the second experiment, we measured
the influence of calculating a unique θi for each dimension i on range query per-
formance across different dimensions. For this experiment a total of three data
sets are created with 4, 8, and 16 dimensions and each data set has 500, 000 data
points. Moreover, for this experiment all the data set have ten clusters and each
cluster has 50, 000 data points. To measure the performance of range queries,
two different range queries are generated. For the narrow range query we picked
1, 000 random query points from the data set and modified a single dimension
value of each point with +/- 0.01, and for the wide range query we selected 1, 000
random query points from the data set and modified half of the dimensions value
of each point with +/- 0.01.

The results (see Figs. 8 through 13) for the iMinMax(θ) show how different
values for the θ parameter (see Table 2) influence range query performance. The
results show that, by setting θ as calculated using either the exact or approximate
median, the performance improves upon the default θ = 0 as the number of
dimensions increases.

Effects of Tuning the θ Parameter. The benefit of tuning θ is shown in
Fig. 8 and 9 for the narrow range query and wide range query with the single-
cluster dataset. Each datapoint on the two graphs represents the query time
averaged over 1, 000 range queries each centered at random points drawn from
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Table 2. Summary of experiments on iMinMax(θ) Indexing technique (Names of ex-
periment are used also as legends in Figs. 8 through 13 )

Name Experiment Description

DEF
Default setting when θ = 0, which assumes that
the center of the space is the centroid of the
data

OPT
Single θ calculated by finding the exact median
of the dataset

APP
Single θ calculated by finding the approximate
median

MOPT
Multiple θ’s calculated by finding the exact me-
dian for each dimension separately

MAPP
Multiple θ’s calculated by finding the approxi-
mate median for each dimension separately

Fig. 8. Narrow range query retrieval time
on tuning θ for single cluster

Fig. 9. Wide range query retrieval time on
tuning θ for single cluster

the dataset. The centroid of the cluster is offset from the center of the space,
while the default θ = 0 does not account for this skewed distribution in the data.
On the other hand, the other methods that calculate either one or multiple θ’s are
able to account for the skewed distribution and and are able to better optimize
the range queries as the number of dimensions increases. With this dataset,
the medians for the different dimensions do not vary significantly, and thus the
difference between the single and multiple θ’s is minimal.

Effects of Multiple θi’s. The benefit of calculating a unique θi for each di-
mension i is shown in Figs. 10 and 11 for the narrow range query and for the
wide range query with the ten-cluster dataset. Again, each datapoint on the two
graphs represents the query time averaged over 1, 000 range queries each cen-
tered at random points drawn from the dataset. For this dataset, the medians
of different dimensions vary by a difference of up to 41% of the space. This time
the differences between the single θ and multiple θ’s become more apparent. By
maintaining a θi for each dimension, the MOPT and MAPP methods perform
as well or better than the OPT and APP methods using the single θ.

On the other hand, calculating the exact or approximate median does not
add significant time complexity to the creation and population of the B+-tree,
as shown by Figs. 12 and 13 for the single-cluster and ten-cluster datasets. These
results demonstrate the benefit of calculating θ from the median of the dataset
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Fig. 10. Narrow range query retrieval
time on calculating a unique θi for ten
cluster

Fig. 11. Wide range query retrieval
time on calculating a unique θi for ten
cluster

Fig. 12. Tree construction time over
dimensionality of data space for single
cluster

Fig. 13. Tree construction time over
dimensionality of data space for ten
cluster

with a skewed distribution and the benefit of calculating θi from the median of
each dimension i of the dataset when the magnitude of the skew varies across
different dimensions.

6 Conclusions

From the experiments with the PT (Figs. 6 and 7), it is demonstrated that using
the d-dimensional median to be the center of the data space and mapping the
given skewed data set to the canonical data space [0, 1]d results in better space
partitioning, thus improving the performance of query retrieval time. Further-
more the influence of computational complexity (Fig. 5) and closeness to median
of approximate median methods is demonstrated from the experiments.

From the experiments with the iMinMax(θ) algorithm (Figs. 8 and 9), it is
demonstrated that deriving the θ parameter from the median offers improved
range query performance over the default parameter setting for skewed datasets.
Furthermore, calculating a unique θi for each dimension i (Figs. 10 and 11) can
improve the performance of range queries for datasets with skewness that varies
across different dimensions with little extra computational effort.

In this paper, we have shown experimentally for both PT and iMinMax(θ)
algorithm, that by using the median (approximate) of the skewed distributions
in the data, we can partition the data space into different partitions with propor-
tionate number of points in each partition. Effectiveness is expected to increase
as the dimensionality and data volume increases for skewed data distributions.



Extending High-Dimensional Indexing Techniques Pyramid and iMinMax(θ) 267

In future works, we plan to evaluate the performance of PT and iMinMax(θ)
with their extensions on larger data sets, and more dimensions. We also, plan
to compare our proposed extensions of PT and iMinMax(θ) algorithms with the
approach described by Günnemann et al. in [6], as they also address indexing
high-dimensional data that have skewed distributions.
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Abstract. The attribute information of individuals, such as occupation, skill, 
faith, hobbies and interests, etc, and the structure information amongst individ-
uals, such as mutual relationships between individuals, are two key aspects of 
information that are used to study individuals and communities in social net-
works. Considering only the attribute information or the structure relationship 
alone is insufficient for determining meaningful communities. In this paper, we 
report an on-going study, we propose an approach that incorporates the struc-
ture information of a network and the attribute information of individuals by 
cooperative games, and game theory is introduced to support strategic decision 
making in deciding how to recognize communities in social networks, such 
networks are featured by large number of members, dynamic and with varied 
ways of connections. This approach provides a model to rationally and logically 
detect communities in social networks. The Shapley Value in cooperative 
games is adopted to measure the preference and the contribution of individuals 
to a specific topic and to the connection closeness of a coalition. We then pro-
posed an iterative formula for computing the Shapley Value to improve the 
computation efficiency, related theoretical analysis has also been performed. 
Finally, we further developed an algorithm to detect meaningful communities. 

Keywords: social networks, community detection, game theory, Shapley Value. 

1 Introduction 

Community detection is an important issue in social network analysis, because com-
munities, i.e. groups of individuals that are densely interconnected but only sparely 
connected with the rest of the network (Boccaletti et al. 2006; Guimera and Amaral 
2005), are supposed to play special roles in the structure-function relationship (Shi et 
al. 2012), and thus the detected communities can be used in collaborative recommen-
dation, information spreading, knowledge sharing, and other applications, which can 
benefit us greatly (Zhao et al. 2012).  

Based on the prosperity that a community should have more internal than external 
connections, community detection aims at dividing the individuals of a network into 
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some groups, such that the connections inside these groups are dense and the connec-
tions that run between individuals in different groups are sparse, therefore most exist-
ing studies on community detection mainly focus on the structure information of net-
works and overlook the attribute information of individuals. Communities detected by 
these works can reflect the strength of social relation, but they often lack unambi-
guous meanings, for example, members within a community may have different top-
ics of interest (Zhao et al. 2012). On the contrary, classical clustering in data mining 
and machine learning paradigms aims at grouping individuals into classes or clusters 
by analyzing the attribute information of individuals, so that the minimal similarity 
between individuals within a cluster is higher than the maximal similarity between 
individuals in different clusters (Han and Kamber 2000). Clusters identified by clas-
sical clustering often have unambiguous meanings, for example, each cluster has one 
common topic, but these clusters can not reflect the strength of social relations. In 
fact, in the context of social networks, both the structure information and the attribute 
information are important for community detection (Zhao et al. 2012). Taking the 
attribute information or the structure information alone is insufficient in determining 
meaningful communities, because these manners may result in that the detected 
communities either have sparse connections between members within the same group, 
or lack unambiguous meanings. 

In this paper, we propose a game theory based approach for detecting meaningful 
communities in social networks. This approach incorporates the structure information 
of networks and the attribute information of individuals. Game theory (Nash 1951) is 
a mathematical framework that describes interactions between multiple players (i.e. 
individuals) and allows for reasoning about their outcomes. In the context of social 
networks, the co-operations co-exist with the conflicts amongst individuals, because 
individuals with similar interests are more likely to cooperate with each other, but an 
individual’s influence in a network is dependent on itself as well as others. This inter-
active and cooperative information can be analyzed by applying game theory. 

Game theory is divided into two branches, called the non-cooperative (Nash 1951) 
and the cooperative (Zlotkin and Rosenschein 1994) branches. The non-cooperative 
game specifies various actions that are available to the players while the cooperative 
game (Zlotkin and Rosenschein 1994) describes the payoff that result when the play-
ers come together in different combinations. In a cooperative game, each combination 
of players is called a coalition, and a player’s contribution to a coalition can be meas-
ured by the Shapley Value (Shapley 1953). It is a classical normative solution concept 
that provides a unique and fair solution to the cooperative game. In the context of 
social networks, meaningful communities are groups of individuals that are densely 
interconnected and have unanimity topics. Therefore, communities can be described 
by coalitions, and each individual’s contribution to the closeness of connection and its 
preference to a specific topic can be evaluated by the Shapley Value.  

It is known that the computation of the Shapley Value may be very hard even if the 
number of players is quite small. However, the number of individuals is large and the 
number of combinational coalitions is very large, the computation of Shapley Values 
for each player with respect to various coalitions is a problem. To improve the com-
putation efficiency, we proposed an iterative formula for computing the Shapley  
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Value. Related theoretical analysis has also been performed. Based on the iterative 
formula, the Shapley Values for each player can be easily computed when we merge 
small-size coalitions into large-size coalitions. 

To find the desired communities, i.e. coalitions in which the Shapley Value of 
every player is larger than those of the players in other coalitions, we propose an algo-
rithm to combine small-size coalitions to large-size coalitions step by step. This man-
ner of recursive combination can naturally reveal overlapped (Li et al. 2008) and hie-
rarchical (Ravasz et al. 2002) structures of networks. The former means that vertices 
simultaneously belong to several groups, and the later means that communities are 
recursively grouped into a hierarchical structure. 

The rest of the paper is organized as follows. Related work is introduced in section 
2 and the game theory based approach for community detection is proposed in section 
3. Section 4 concludes the paper. 

2 Related Work 

In data mining and machine learning paradigms, classical clustering has been re-
searched for many years, so there are many clustering methods have been proposed 
from various perspectives, such as k-means, BIRCH, DBSCAN, STING and EM (Han 
et al. 2000). In the context of social networks, McCallum et al. (2005) presented the 
Author-Recipient-Topic model to discover the discussion topics; Tian et al. (Tian et 
al. 2008) proposed OLAP-style aggregation strategies to partition the graph according 
to attribute similarity. These methods were established mainly on the attribute infor-
mation owned by the data objects themselves, instead of the relationship amongst 
them. 

Many community detection algorithms, such as the Kernighan-Lin algorithm (Ker-
nighan and Lin, 1970), fast algorithm (Newman 2004), nonnegative matrix factoriza-
tion (NMF) algorithms (Wang et al. 2011), the metagraph factorization algorithms 
(Lin et al. 2011), and multi-objective evolutionary algorithm (Shi et al. 2012), detect 
communities by analyzing topological structure of networks. These algorithms did not 
take overlap or hierarchy of communities into account. Palla et al. (2005) proposed 
clique percolation method (CPM) to find overlapping communities, and Clauset et al. 
(2008) described the hierarchical organization of a graph by introducing a class of 
hierarchical random graphs. Ahn et al. (2010) reveal hierarchical and overlapping 
relationships simultaneously by reinventing communities as groups of links rather 
than nodes. However, these methods do not involve the attribute information. 

The works that combined attribute information and structure information include 
the group detection algorithm (GDA) (Kubica et al. 2002), the group-topic (GT) mod-
el (Wang et al. 2005), and the topic oriented community detection approach (Zhao et 
al. 2012). In addition to the relations between individuals, the GDA also considered 
attributes of an individual, while the GT model considered the attributes of the rela-
tions (for example, the text associated with the relations). The topic oriented commu-
nity detection approach clustered topics of individuals before analyzing topological 
structures of networks. Although the attribute information we used in this paper is the 
preference of each individual to topics, but unlike the topic oriented community  
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detection approach, we incorporate attribute information and structure information 
rather than deal with them separately. 

As an important branch of game theory, cooperative game theory has been used in 
various applications, such as the multi-objective categorization (Liu et al. 2011), the 
analysis of communications in wireless networks (Saad et al. 2009), the cooperation 
in mobile social networks (Niyato et al. 2011), and the measurement of the impor-
tance of individual nodes in networks (Gomez et al. 2003; Suri and Narahari 2008; 
Moretti et al. 2010), etc. In these researches, different problems are solved based on 
cooperative game theory. 

To improve the computation efficiency of the Shapley Value, Owen (1972) pro-
posed the multi-linear extension method, Fatima et al. (2008) proposed the linear 
approximation method, Castro et al. (2009) develop a polynomial method based on 
sampling theory to estimate the Shapley Value, Ieong and Shoham (2005) proposed 
concise representations for coalitional games, and Karthik et al. (2010) presented the 
study of the Shapley Value for network centrality. Based on these methods, one can 
gain efficient Shapley Value computation. 

3 A Game Theory Based Approach for Meaningful Community 
Detection 

In this section, after briefly giving the definitions of cooperative games and the Shap-
ley Value, we introduce a game theory based approach for meaningful community 
detection, and we then develop the iterative formula for computing Shapley Value and 
present an algorithm to detect communities. 

3.1 Cooperative Games and the Shapley Value 

A cooperative game is a game where groups of players may enforce cooperative be-
haviour; therefore the game is a competition between coalitions of players, rather than 
between individual players. By cooperation, players gain more payoff than those 
players on their own. A cooperative game consists of two elements: (i) a set of play-
ers, and (ii) a characteristic function. Their meaning is presented in the definition 1. 

Definition 1. Cooperative games (Liu et al. 2007). A cooperative game is a pair 

),( vN , where },...,2,1{ nN =  denotes a finite set of players and Rv N →2:  is 

the characteristic function, assigning a real value to each NS ⊆ . S  (i.e. a group 
of players) is called a coalition and )(Sv  is called the payoff of this coalition. )(Sv  

represents the value created when the members of S come together and interact. In 
general, v  satisfies:  

 (1) 0)( =Φv . 

(2) Superadditivity, i.e. NSS ⊆∀ 21, , if Φ=∩ 21 SS , then 

)()()( 2121 SSvSvSv +≤+ . This means that the value of a union of disjoint 

coalitions is no less than the sum of the coalitions' separate values.  
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(3) Monotonicity, i.e. if NSS ⊆21, , 21 SS ⊆ , then )()( 12 SvSv ≥ . This means 

that larger coalitions gain more. 

In cooperative games, an important issue is how to allocate the payoff among the 
players in some fair way. Players will leave a coalition if they receive fewer payoffs 
than they expect to gain from the coalition. The Shapley Value (Shapley 1953) is a 
widely used value division scheme in the theory of coalitional games, because it pro-
vides a unique and fair solution. 

Definition 2. The Shapley Value (Shapley 1953). The Shapley Value of player i  in 
coalition NS ⊆ with respect to ),( vN  is given by formula (1): 

 })]{()([
|!|

|)!||(|)!1|(|
),(,

}|{

iWvWv
S

WSW
iSSHSi

WiSW
v −−−−=∈∀ 

∈⊆

 (1) 

Where || S  (resp. ||W ) is the cardinality of the set || S  (resp. ||W ), 

}){()( iWvWv −−  defines the marginal contribution of player i  to the coalition 

||W , 
|!|

|)!||(|)!1|(|

S

WSW −−  denotes the probability distribution function of all sub-

sets of S . Therefore, ),( iSSHv  reflects how much that player i  contributes to 

the coalition S and denotes the average of player i ’s marginal contribution to all 
possible coalitions. A player who never adds much has a small Shapley Value, while 
a player that always makes a significant contribution has a high Shapley Value. 

),( iSSHv  satisfies the following three axioms:  

(1) The order of the players in S  does not influence ),( iSSHv . 

(2) )(),( SviSSH
i

v = . 

(3) For any ),( vN  and )',( vN , ),(),(),( )'(' iSSHiSSHiSSH vvvv +=+ . 

3.2 A Cooperative Game Model for Community Detection 

Definition 3. A cooperative game model for community detection. Let 
},...,2,1{ nN =  be the set of all individuals in a social network, 

NjiaA nnij ∈= × ,,)( be the adjacency matrix, where Njiaij ∈= ,,1  if a relationship 

exists between vertex i  and j , otherwise Njiaij ∈= ,,0 , },...,,{ 21 mtttT =  be 

the set of finite topics, TtNipP mnit ∈∈= × ,,)(  be the preference matrix, where itp  

be the preference of player i  with respect to the t-th topic, then the cooperative game 
model for community detection is defined as ),( vNCCG = , where players partici-

pating the cooperative game are individuals in N , a coalition S  is a group of 

players, i.e. NS ⊆ , and the characteristic function )(Svt  with respecting to the 

topic t ( Tt ∈ ) is defined by following formula (2): 
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Where 
∈

=
Nj

ijaid )( , it is the degree of individual i . If 0)( =id  or ji = , then 

0
)(

=
id

aij . 0)( ≥Svt
 because 0

)(
≥

id

aij  and 0≥itp . )(Svt  incorporates the 

structure information and the attribute information by assigning a ‘payoff’ to each 
subset (coalition) of individuals in N . The payoff of a coalition represents the over-
all magnitude of the correlation between members of the coalition and of the mem-
bers’ preference to the t-th topic. 

Example 1. A simple social network, shown in Fig.1, consists of 6 individuals ( 
vertices : they represent 2 teachers (vertex 1,4) and 4 students (vertex 2,3,5,6) in a 
department), 7 relationships (edges: colleague relations between vertex 1 and 4; 
teachers and students relations between vertex 1 and 2, 1 and 3, 4 and 5, 4 and 6; 

schoolmate relations between vertex 2 and 3, 5 and 6), and 2 topics( 1t : data mining; 

2t : artificial intelligence). Matrix P measures research interests of individuals on 

data mining and artificial intelligence. The measurement values can be obtained by 
analyzing attribute information of individuals, such as major, publications, atten-
dant conferences, visited web sites, etc. Parts of the values of characteristic func-
tions with respect to 2 topics are given in Tab.1. 
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5 6

},{ 21 ttT =  

1t  

2t  
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115.0005.0

005.0115.0TP

 

Fig. 1. A simple social network 

Table 1. Parts of the values of characteristic functions with respect to topic 1t  and 2t  

 
})2,1({

1t
v })4,1({

1t
v  })3,2,1({

1t
v })4,2,1({

1t
v })4,3,2({

1t
v })4,3,2,1({

1t
v  

2.33 1.67 5.17 3.5 3.5 6.33 

…… …… …… …… …… …… 

})2,1({
2t

v })4,1({
2t

v  })3,2,1({
2t

v })4,2,1({
2t

v })4,3,2({
2t

v })4,3,2,1({
2t

v  

1.33 1.67 3.17 2.27 1.5 4.33 

…… …… …… …… …… …… 
 

)(Svt  satisfies the Theorem 1~3. 
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Theorem 1. )(Svt  satisfies Superadditive, i.e. NSS ⊆∀ 21, , if  Φ=∩ 21 SS , 

then )()()( 2121 SSvSvSv ttt +≤+ . 

Proof: Let Njjii nm ∈,...,,..., 11 , },...,,{ 21 mtttTt =∈ , 
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Theorem 2. )(Svt  satisfies monotonicity, i.e. if NSS ⊆21 , , 21 SS ⊆ , 

then )()( 12 SvSv tt ≥ . 
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Theorem 1~3 mean that the larger the coalition S  is, the higher )(Svt  is. 

3.3 Efficient Computation of the Shapley Value for Community Detection 

Based on the characteristic function defined in the formula (2), we can compute the 
Shapley Value for each player to measure its contribution to a coalition. However, the 
direct computation of the Shapley Value by using the formula (1) is very hard, espe-
cially in large networks because the number of combinatorial coalitions is very large. 
In this section, we develop an iterative formula for computing the Shapley Value to 
improve the computation efficiency. 
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Theorem 4. Given a coalitional game model for community detection ),( vN ,  

NSS ⊆∀ 21, , 21 SSS += , then the Shapley Value of player 1Si ∈  and 2Sj ∈  in 

coalition S  with respect to ),( vN  can be compute by formula (3): 
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(3) Let },...,{},...,,,...,{ 1111111 −− +==′′ nnm jjSjjiiS , }{2 njS =′′′ , then 
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The proof for 2),,( SjjSSHt ∈  is similar to above, so we do not give the de-

tails. 

Example 2. Parts of the Shapley Values of players of Fig.1 are given in Tab.2. 

Table 2. Parts of the Shapley Values of players of Fig.1 in different coalitions 

 
)},1({

1
iSHt )},3,2({

1
iSHt  )},3,2,1({

1
iSHt  )},4,3,2,1({

1
iSHt  

1=i  2=i  3=i  1=i 2=i 3=i 1=i 2=i 3=i  4=i  

0.5 1.50 1.50 1.33 1.92 1.92 1.66 1.92 1.92 0.83 

)},4({
2

iSHt )},6,5({
2

iSHt  )},6,5,4({
2

iSHt  )},6,5,4,1({
2

iSHt  

4=i  5=i  6=i  4=i 5=i 6=i 1=i 4=i 5=i  6=i  

0.5 1.50 1.50 1.33 1.92 1.92 0.83 1.66 1.92 1.92 
 

3.4 The Definition of a Community 

In the context of social networks, meaningful communities are groups of individuals 
that are densely interconnected and have unanimity topics. The feature that individu-
als are densely interconnected can be revealed based on the structure information of 
networks, while the feature of unanimity topics can be revealed by the attribute  
information of individuals. In this paper, the characteristic functions of coalitions 
defined in the formula (2) incorporate the structure information and the attribute in-
formation, and the Shapley Value of each player represents its contribution to the 
coalition cohesion and topic consistency. If a player can get higher Shapley Value in 
a coalition than in other coalitions, the player is willing to join this coalition; on the 
contrary, if a player gets lower Shapley Value in a coalition than in other coalitions, 
the player will leave this coalition and join another coalition. Therefore, a commu-
nity can be defined by the member’s Shapley Value in a coalition. 

Definition 4. A community. A community is a coalition in which there is no one 
member receives lower Shapley Value than that he/she receives from other coali-
tions, i.e. a coalition S  is called a community if ),(),(, ' iSSHiSSHi tt ′≥∀  

holds, where TttSSNS ∈≤⊆ ',|,||'|,' , and t  may be same as 't . 
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Example 3. In the Example 2, coalition }3,2,1{  is a community in which members 

closely connected and have the same interested topics (data mining). But coalition 
}4,3,2,1{  is not a community, because )4},6,5,4({)4},4,3,2,1({

21 tt SHSH < , it 

indicates that player 4 would join coalition }6,5,4{  rather than join coalition 

}4,3,2,1{ . 

3.5 The Algorithm for Detecting Meaningful Communities 

Theorem 4 means that if we combine any two small-size coalitions with a same topic 
to a large-size coalition, then the Shapley Value w.r.t. the large-size coalition will not 
be lesser than those of small-size coalitions. Therefore, we can expand coalitions by 
iteratively increasing the size of groups until further increase leads to lower Shapley 
Values for the members. In this section, we present an algorithm to detect communi-
ties by combining coalition level after level. For the first level, players in 

},...,2,1{ nN =  form n coalitions with respect to a topic. For level l, a large-size 

coalition is formed by adding a player to a coalition of level l-1, such combination can 
produce higher Shapley Value for the new member with respect to the same topic. 
The combination procedure will stop when the new player gets less Shapley Value 
from the combined coalition than those it gets from other small-size coalitions. The 
algorithm is described as follows:   
 

Community Detection Algorithm 

Input:  

},...,2,1{ nN = , the set of players (individuals) 

NjiaA nnij ∈= × ,,)( , the adjacency matrix 

},...,,{ 21 mtttT = , the set of finite topics 

TtNipP mnit ∈∈= × ,,)( , the preference matrix 

Output: communities  
Local variables: 

l , a level number 
tr , a coalition number with respect to the topic t  

lS , the set of all coalitions in l -level 
t
lS , the set of coalitions with respect to the topic t  in l -

level 
t

rl tS
,
,the rt-th coalition in 

t
lS  

iZ , the current maximal Shapley Value that player i gets 

CS ,the set of communities 
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Steps: 
Step 1. Initialization 

Φ=CS ; 1=l  ; Φ=lS ; 

For 1=i  to n  
    0=iZ ;  

End for 
For each topic Tt ∈   

    Φ=t
lS ; 

   For 1=i  to n  
}{, iS t

il = ; }{ ,
t

il
t
l

t
l SSS ∪= ; ),max( iiti ZpZ = ; 

    End for 
t
lll SSS ∪= ; 

  End for 
Step 2. Form large-size coalitions  
Repeat 

1+= ll ; Φ=lS ； 

For each topic Tt ∈       

0=tr ; Φ=t
lS ; 

End for 
While Φ≠−1lS  

  Φ=−1lS ; 

For each topic Tt ∈  
  if Φ≠−

t
lS 1

  

 then 
      )),((maxarg),( ,1,1

, ,11,1

jSSSHyx t
j

t
ilt

SNjSS t
il

t
l

t
il

∪= −
−∈∈ −−−

; y is a player 

whose Shapley Value is maximal in the coalition t
xlS ,1−        

         if 
y

t
xlt ZyySSH >∪− ))},{( ,1

     

then 

             1+= tt rr ; }{,1,
ySS t

xl
t

rl t ∪= − ; }{
,

t

rl

t
l

t
l tSSS ∪= ;  

               t

rl

t

rlty tt SyySSHZ
,,

),,( ∈∀= ;          

           end if 
         }{ ,111

t
xl

t
l

t
l SSS −−− −= ; 

       end if 
        t

lll SSS 111 −−− ∪= ; 

end for 
t
lll SSS ∪= ; 



 A Game Theory Based Approach for Community Detection in Social Networks 279 

end while 

Until ( nl =  or Φ=lS ) 

Step 3. generate communities 
      

Tt

t
lSCS

∈

=    

Step 4. output CS  

The number of the repeat loop is n, the most number of while loop is also n, there 
are m topics, and the computational complexity for searching x and y is O(n2), 
therefore, the computational complexity of the above algorithm is 

)()( 42 mnOnmnnO =××× . A player may belong to different communities with re-

spect to different topics, and the process for expanding a coalition reveals hierarchical 
structures of networks.  

4 Conclusion 

In this paper, we have proposed an approach for detecting meaningful communities in 
social networks. This approach incorporates the structure information of a network 
and the attribute information of individuals, by adopting the Shapley Value in cooper-
ative games to measure the preference and the contribution of individuals to a specific 
topic and to the connection closeness of a coalition. To improve the computation effi-
ciency, an iterative formula for computing the Shapley Value is proposed, and the 
related theoretical analysis has also been performed. Then a community detection 
algorithm is developed. We have implemented the algorithms proposed and tests are 
currently conducted to evaluate various features. 
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Abstract. Web databases are now pervasive. Query result pages are dynamically
generated from these databases in response to user-submitted queries. A query
result page contains a number of data records, each of which consists of data items
and their labels. In this paper, we focus on the data alignment problem, in which
individual data items and labels from different data records on a query page are
aligned into separate columns, each representing a group of semantically similar
data items or labels from each of these data records. We present a new approach
to the data alignment problem, in which learning classifiers are trained using
supervised learning to align data items and labels. Previous approaches to this
problem have relied on heuristics and manually-crafted rules, which are difficult
to be adapted to new page layouts and designs. In contrast we are motivated to
develop learning classifiers which can be easily adapted. We have implemented
the proposed learning classifier-based approach in a software prototype, rAligner,
and our experimental results have shown that the approach is highly effective.

1 Introduction

Web sites that rely on structured databases for their content are ubiquitous. Users re-
trieve information from these databases by submitting HTML query forms. Query re-
sults are displayed on a web page, but in a proprietary presentation format, dictated by
the web site designer. We call these pages query result pages. Automatic data extraction
is the process of extracting automatically a set of data records and the data items that the
records contain, from a query result page. Such structured data can then be integrated
with data from other data sources and presented to the user in a single cohesive view in
response to their query.

Figure 1 illustrates a typical query result page from waterstones.com. On this page
each book is presented as a data record, which contains a set of data items and their la-
bels. For example, the book titles, ‘The Kitchen...’ and ‘Slow Cooking...’, are examples
of data items in each record while ‘Format’ and ‘Published’ are examples of labels in
each data record. Sometimes, data items and their labels are not separated. For example,
in ‘RRP £30.00’ and ‘RRP £20.00’ data items and their labels are mixed together. We
refer to each of these examples as an embedded. So we now consider that a data record
contains a set of data items, labels and embeddeds. To ease discussion, we sometimes
simply refer to all three of them as elements of a data record.

G. Gottlob et al. (Eds.): BNCOD 2013, LNCS 7968, pp. 282–291, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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In [1] we present a visual approach to data record extraction, which identifies the
boundaries of each record on a query result page. The next step of automatic data record
extraction from query result pages is to align the elements of each record into different
columns and label these columns.

Fig. 1. A Query Result Page from waterstones.com

Previous approaches to data alignment [9,15] rely on manually-crafted rules. It has
been observed that there are design conventions and common patterns across data
records in query result pages, which can be represented by manually-crafted rules for
data alignment. However, these approaches have a number of limitations.

First, there is no standardised convention for the placement or presentation style of
labels or data items on a query result page. The vast range of layout conventions and
page designs means that it is difficult to pinpoint precisely which features are important,
or how particular features depend on each other. This makes the design of heuristics and
rules for alignment very difficult as these tend to end up overly complex in order to deal
with the vast range of data items and labels found on query result pages. As a result, it
is difficult to design high quality, generalised heuristics or rules that work well across
different domains. Second, rules for data alignment are manually crafted on the basis of
the query result pages that are available when the rules are created. When page design
conventions change, these rules can become obsolete.

In this paper, we propose a learning classifier-based approach to data alignment,
which can overcome the limitations described above. Our approach uses two learning
classifiers to align data items and labels across data records on query result pages. In
this approach, data alignment is done in two phases. In the training phase, a learning
classifier is trained with a set of training examples, each of which is represented by a
set of automatically extracted features. In the prediction phase, the classifier is used to
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determine either whether two elements on a query result page are semantically similar,
and hence can be grouped together, or whether a group of semantically similar elements
are a group of data items, labels or embeddeds.

2 Related Work

Extracting structured data, such as the data found in data records on a query result
page, has received a great deal of attention. Early approaches to the problem of data
extraction [2,7] aim to build site-specific wrappers to extract data from the correspond-
ing sites. For each wrapper, a set of extraction rules are either proposed by a human
expert or automatically induced from a set of labeled examples. Users label examples
of everything they want to extract on an example web page from which a wrapper is
built. Consequently, data could only be extracted from pages generated using the same
template as the example page.

Later approaches to data extraction develop automated algorithms that extract data
directly rather than site-specific wrappers. These approaches can be classified by their
requirement for domain knowledge.

Domain independent approaches [8,10,12,14], have no requirement for domain
knowledge or user intervention in the extraction process. They rely on the appearance
of repeated structures in the HTML mark-up or in the visual organisation of a web
page. Data items are extracted and aligned by manually specified rules and heuristics
based on observations of the repeated structures. These fixed heuristic rules are brit-
tle, even a small change to the design or mark-up of a page can break them. Crucially,
this means that these approaches to alignment are predicated on the observations on the
query result pages that were available at the time when the approaches were developed.
Should the design trends for query result pages change, and then the algorithms must
be refactored manually.

In contrast, we are motivated to use a learning-based approach, which is predicated
on a number of independent features. Should the design trends change we simply mod-
ify or replace our training set of query result pages accordingly. Furthermore, should
we discover new features that could be helpful for alignment we can add these to our
learning-based approach and rebuild automatically our classifiers to include them. In
short, a learning-based approach affords us flexibility that is not achievable when deal-
ing with a fixed set of heuristic rules.

Domain independent data extraction approaches [8,10,12,14] are also vulnerable to
noise (such as adverts) appearing in the structure of the web page. To address this lim-
itation, recent domain dependent approaches [3,4,5] couple together structural analysis
of pages with automatic annotation. The intuition here is that the annotation step identi-
fies the structures on the page that contain the data items, and isolates them from those
structures containing noise. This increases extraction accuracy as the algorithms can
focus on extracting data, rather than dealing with noise.

Of these, AMBER [5] is the most effective, likely because it tightly couples structural
analysis with automated annotations. [3] and [4] both employ a shallower coupling and
as a consequence are less able to deal with significant noise. All three approaches rely
on some form of domain knowledge or user input to aid the annotation component.
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Our approach differs from these three approaches in two ways. First, we rely on our
previous work, rExtractor [1], to correctly extract each data record (and thus the data
items) from a query result page. rExtractor is very effective at isolating data from noise
on query result pages. Second, our approach is domain independent. Our learning-based
classifiers are built automatically from a large training set containing web pages from
multiple domains. While it is possible to introduce a degree of domain level tuning
(by supplying a training set which contains web pages taken from a single domain)
this is not our preference as our approach is designed to negate the need for domain
dependence.

3 Learning Classifiers for Aligning Data Items and Labels

The brittle nature of heuristic rules employed by previous data extraction approaches
motivated us to consider this problem as a learning task. Given a query result page, we
use our previous work rExtractor [1] to segment each data record on the page and rep-
resent the elements contained as a set of visual blocks. For each block we can extract a
number of features, which can be used to 1) characterise the block itself or 2) charac-
terise the relationship between blocks. We would like to learn which of these features
are significant for alignment and classification of the block contents.

3.1 Automatically Extracting Features of Visual Blocks

Automatic feature extraction employs a collection of algorithms to extract a feature
vector for each visual block. The goal of each algorithm is to extract a particular type
of feature which represents the visual, structural or content characteristics of the block.

Visual Features. The visual appearance of each visual block displayed on the query
result page is determined by its visual properties. There are 160 individual visual prop-
erties that can be applied to each visual block by the web page designer. These range
from properties such as font size and colour, to more obscure properties such as opacity.

The intuition is that the designer uses the same visual appearance for each visual
block in the same group of elements in each data record. For instance, as shown in
Figure 1, the visual block that contains the book title has the same visual appearance
in both data records. This observation is likely to hold because data records on query
result pages are generated by template. There are cases where there are differences be-
tween some of the visual properties of two visual blocks in the same similarity group.
For example, some designers use alternating background colours to create a visual dis-
tinction between rows of data records. Accordingly, our approach considers each of the
160 visual properties as an independent feature. It is left up to the classifier to determine
which of the visual properties characterises the similarity between two visual blocks.

Identity Features. Each visual block is rendered from a node in the Document Object
Model (DOM) of the query result page. Typically, such a node has an ID, node name
and class name assigned to it, each of which is a text string. We call each of these an
identity feature. For example, as shown in Figure 1, the visual block that contains the
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label ‘Format’ has been assigned the ID ‘productFormat’, while the visual block that
contains the label ‘Published’ has been assigned the ID ‘datePublished’.

The intuition is that the designer uses the same identify features for visual blocks in
the same similarity group. Again, this observation is likely to hold because data records
on query result pages are generated by template. In this example, as the visual blocks
which contain the two different groups of labels ‘Format’ and ‘Published’ have the
same visual appearance, their identify features become the discriminating features for
alignment.

Visual Block Content Similarity Feature. This feature characterises whether two
visual blocks contain similar contents. The intuition is that if two visual blocks contain
similar contents, they should be probably aligned into the same similarity group. For
example, a visual block from one record may contain the text ‘You Save: £6.00’ and
another visual block from another record may contain the text ‘You Save: £10.00’.
Both blocks contain very similar contents and therefore should be aligned into the same
similarity group. Our approach uses the widely used cosine coefficient [11] which is a
effective technique to compute numeric similarity between the string contents of two
visual blocks.

Definition 1. For two visual blocks A and B, let Af = (A1, A2, ..., An) and Bf =
(B1, B2, ..., Bn) be the term frequency vectors of the characters contained in the string
contents of A and B respectively. The cosine similarity between A and B is defined as
follows:

cosineSimilarity(A,B) =
Af · Bf

‖Af‖ ‖Bf‖ =

∑n
i=1 Ai ×Bi√∑n

i=1(Ai)2 ×
√∑n

i=1(Bi)2

A real value ranging between 0 and 1 represents the cosine similarity between the string
contents of A and B with 1 meaning the exactly the same and 0 indicating the opposite,
and in-between values indicating an intermediate degree of similarity.

Formatting Features. Text styles and decorations are often good indicators of what a
visual block contains, that is, whether it contains a label, data item or embedded. For
instance, a visual block that contains an underlined text may be a label. The full set of
text properties for a visual block are used as formatting features, including colour, di-
rection, letter-spacing, line-height, text-align, text-decoration, text-indent, text-shadow,
text-transform, vertical-align, white-space and word-spacing.

Punctuation Features. Separators are often good indicators of whether a visual block
contains an embedded. For instance, a visual block that contains a separator such as a
colon may be an embedded. For example, as shown in Figure 1, the first record contains
a visual block with text contents ‘You Save: £10.00’. This visual block is an embedded,
that is, it is a combination of a label and a data item. In this example, the colon acts as a
separator between the label, ‘You Save’, and the data item, ‘£10.00’. Given a similarity
group, these features are used to represent whether a set of separators appear in the con-
tents of a representative visual block from the group. The contents of the representative
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visual block are scanned against a preset list of separators, which have been selected as
they are commonly used by designers to delimit a label and a data item. The selected
separators are {; , :, |,−}. Each separator is represented as a binary feature, with the
value of 1 for the appearance of the separator and the value of 0 otherwise.

Longest Common Substring Features. The presence of the same substring in the
contents of each visual block in a similarity group is another indicator of whether the
group contains a set of embeddeds. For instance, a similarity group that has a common
substring may indicate that the group contains a group of embeddeds which share the
same label but contain different data items. Our approach only considers substrings that
appear as common prefixes or suffixes of the contents of the visual blocks.

3.2 Learning Classifiers

Our approach to aligning labels and data items on a query result page employs two
learning classifiers. The first classifier is for determining whether two visual blocks are
semantically similar and hence should be aligned into the same similarity group. The
second classifier is for determining the type of a similarity group, that is, whether it is a
group of labels, data items or embeddeds.

Creating Feature Vectors. For the first classifier, a feature vector V1 is created for
a pair of visual blocks, A and B. The first features in V1 represent whether each pair
of the corresponding visual features in A and B match. The remaining features in V1

represent whether the corresponding identity features of A and B match respectively
and the visual block content similarity between A and B.

For the second classifier, a feature vector V2 is created for each similarity group. A
representative visual block is chosen from the group. The formatting and punctuation
features of the representative block represents the corresponding features of the group,
which are included in the feature vector. In addition, the two longest common substring
features of the group are also included in the feature vector for the group.

Training Classifiers. In order to train the first learning classifier, we create a training
dataset, T1, which contains a certain number of pairs of visual blocks between two
data records on the same query result page. We first choose two records from the query
result page with the top two numbers of visual blocks. We then pair up the visual blocks,
each from one of the two chosen data records to create a set of visual block pairs. For
each pair of visual blocks, a feature vector is created, and the pair is manually tagged
as either positive or negative, depending whether or not they are semantically similar.
Each training example is represented as a triple of the form:

((A,B), V1, L)

where (A,B) represents a pair of visual blocks, V1 is the feature vector for the pair, and
L is the manually tagged class label.

To train the second classifier, we create a training dataset, T2, which contain a certain
number of similarity groups of visual blocks. Each similarity group is manually tagged
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as containing labels, data items or embeddeds based on their display on the rendered
query result page. Each training example is represented as a triple of the form:

(G, V2, L)

where G represents a similarity group of visual blocks, V2 is the feature vector for the
group, and L is the manually tagged group type label.

4 Using Classifiers to Align Data Items and Labels

In the alignment stage, for a given query result page, we use two trained classifiers: one
is for clustering each visual block that represents a data item, label or embedded into a
similarity group, and another is for determining the type of each similarity group.

4.1 Using First Classifier as Similarity Function

We use the first classifier as a similarity function, Similarity(A,B), which takes a
pair of visual blocks, A and B, as input and determines whether they are semantically
similar. Each pair of visual blocks is represented by a feature vector which is taken
as input by the first classifier and the classifier produces as output a Boolean value to
indicate whether two visual blocks are semantically similar.

4.2 Aligning Data Items and Labels

Our approach implements a single-pass, clustering-based approach to alignment. As
shown in Algorithm 1, each visual block in each record is aligned into a strict partition,
which uses the first classifier as similarity function. The algorithm processes all of the
visual blocks in the first record, followed by the second record and so on (lines 3 and
4). For each visual block the algorithm decides whether it is similar to a visual block
in one of the existing clusters (line 6). If so, the block is added to the cluster (line 7);
Otherwise, a new cluster is created to contain the visual block itself (line 9). Finally, a
set of clusters, S, is returned (line 10).

Algorithm 1. Alignment Algorithm
1: Input: a set of data records, R, from a query result page.
2: Output: clusters of aligned visual blocks, S.
3: for all r ∈ R do
4: for each visual block b ∈ r do
5: for each cluster s ∈ S do
6: if there exits b′ ∈ s such that Similarity(b, b′) then
7: s ← s ∪ {b}
8: else
9: S ← S ∪ {b}

10: return S
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5 Experimental Evaluation

In order to select the best learning technique to build each classifier, we use two datasets
to evaluate experimentally a number of learning techniques. For each classifier, we
perform a 10-fold cross-validation on each technique to assess how well it performs.

5.1 Datasets

We use two datasets, DS1 and DS2. DS1 is used to evaluate and select a learning tech-
nique for the first classifier. DS2, derived from the results of the first classifier, is used to
evaluate and select a learning technique for the second classifier. As there is no standard
dataset for analysis of data record alignment techniques, we have created these datasets.
DS1 comprises of 7,600 classification instances derived from query result pages from
51 distinct web sites taken from the third-party testbed presented in [13] in addition to
149 query result pages taken from the testbed used in [1].

Table 1. Results for First Classifier

Technique Recall Precision F-Measure
J48 Decision Tree 0.970 0.971 0.97
Logistic 0.970 0.971 0.97
IB1 0.970 0.970 0.97
SVM 0.967 0.970 0.969
Naı̈ve Bayes 0.927 0.952 0.933

Table 2. Results for Second Classifier

Technique Recall Precision F-Measure
Naı̈ve Bayes 0.877 0.88 0.877
Logistic 0.867 0.865 0.865
IB1 0.854 0.854 0.854
SVM 0.83 0.837 0.82
J48 Decision Tree 0.813 0.818 0.813

5.2 Selection of Learning Techniques

We use WEKA [6] to evaluate the performance of different learning techniques. For
each classifier, we considered: J48 Decision Tree, Logistic, IB1, SVM and Naı̈ve Bayes.
In Tables 1 and 2 we present the recall, precision and f-measure (exclusive of errors
made by rExtractor) for each learning technique on both classifiers.

Selection of First Classifier. As shown in Table 1, the J48 Decision Tree, Logistic, IB1
and SVM learning techniques all exhibit uniformly high weighted average scores for re-
call, precision and f-measure for the first classifier. Only by inspecting the raw statistics
of correctly and incorrectly classified instances are we able to determine that J48 Deci-
sion Tree is statistically the most effective learning technique for the first classifier as it
has the highest number of correctly classified instances.

As Table 1 shows, Naı̈ve Bayes is the least effective learning technique for the first
classifier. A limitation of the Naı̈ve Bayes technique may explain this disparity of per-
formance. Naı̈ve Bayes assumes that all of the features are independent, which for the
first classifier is not always the case. For instance, making an assessment based on a
feature such as a visual property match or an identity feature match in isolation is not
always enough to determine if two blocks should be aligned. In contrast, decision trees
are an effective technique when dealing with correlated features.
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Run-time analysis of each algorithm reveals that Naı̈ve Bayes is the most efficient
algorithm followed by J48 which executes 4.5 times faster than Logistic, 15 times faster
than IB1 and 2 times faster than SVM.

Detailed Analysis of First Classifier. The failure to align two blocks from two differ-
ent data records, which are semantically similar, into the same similarity group is the
most common error made by the first classifier. This can occur, for instance, if each data
record contains two blocks that have the same visual properties and identity features. In
this case, the block content similarity becomes the only remaining discriminating fea-
ture for alignment. This may still work if two blocks from two different data records,
which are semantically similar, have high block content similarity. However, if the block
content similarity turns out too low, the classifier would fail to determine if the blocks
are semantically similar. For example, two blocks from two data records containing two
dates‘13/09/2012’ and ‘22/10/2012’ have low block content similarity and hence would
not be aligned into the same similarity group even though they both represent dates.

Selection of Second Classifier. As shown in Table 2, Naı̈ve Bayes is the most effective
learning technique for the second classifier. Interestingly, unlike the first classifier, the
J48 Decision Tree is the least effective learning technique, for two reasons. First, there is
no single feature that can be used by the second classifier to split effectively the outcome
of the tree. Second, there are also fewer correlated features, therefore, a multi-layer
decision tree, such as the J48 Decision Tree, which is effective at modelling correlated
features, is less effective. For this particular classifier, it is much better to consider all
of the features independently, a task to which Naı̈ve Bayes is ideally suited.

Detailed Analysis of Second Classifier. The most common error made by the second
classifier is the misclassification of a group of data items as a group of embeddeds.
This happens when the string contents of the data items each contain a long common
substring, but do not completely match. If these conditions are met, the classifier incor-
rectly assumes that the data item is composed of a label and a data item, and therefore
assigns the embedded classification type to the group. This arrangement can happen le-
gitimately on a query result page. For example, a user searching for a manufacturer, such
as ‘Dyson’ could see results such as: ‘Dyson DC27’, ‘Dyson DC40’, ‘Dyson DC24’.

6 Conclusions

This paper presents a novel, machine learning-based, approach to the automatic align-
ment of the contents of data records from a query result page. Our approach first au-
tomatically extracts a number of features which characterise the contents of the data
records. Next, we create two feature vectors which are used to build two classifiers.
The first classifier aligns the elements of the data records into similarity groups, while
the second classifies each similarity group. Finally, for each classifier we evaluate ex-
perimentally a number of competing learning techniques and, on the basis of the ex-
perimental results, select the most effective learning technique for each classifier. Our
experimental results show that the proposed learning techniques are highly effective.
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Abstract. Data extraction from the web is notoriously hard. Of the
types of resources available on the web, weblogs are becoming increas-
ingly important due to the continued growth of the blogosphere, but
remain poorly explored. Past approaches to data extraction from we-
blogs have often involved manual intervention and suffer from low scal-
ability. This paper proposes a fully automated information extraction
methodology based on the use of web feeds and processing of HTML.
The approach includes a model for generating a wrapper that exploits
web feeds for deriving a set of extraction rules automatically. Instead
of performing a pairwise comparison between posts, the model matches
the values of the web feeds against their corresponding HTML elements
retrieved from multiple weblog posts. It adopts a probabilistic approach
for deriving a set of rules and automating the process of wrapper gen-
eration. An evaluation of the model is conducted on a dataset of 2,393
posts and the results (92% accuracy) show that the proposed technique
enables robust extraction of weblog properties and can be applied across
the blogosphere for applications such as improved information retrieval
and more robust web preservation initiatives.

Keywords: Web Information Extraction, Automatic Wrapper Induc-
tion, Weblogs.

1 Introduction

The problem of web information extraction dates back to the early days of the
web and is fascinating and genuinely hard. The web, and the blogosphere as
a constituent part, correspond to a massive, publicly accessible unstructured
data source. Although exact numbers of weblogs are not known, it is evident
that the size of the blogosphere is large. In 2008 alone the Internet company
Technorati reported to be tracking more than 112 million weblogs, with around
900 thousand blog posts added every 24 hours1. In Britain alone, 25% of Internet

1 http://technorati.com/blogging/article/state-of-the-blogosphere-

introduction/
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users maintain weblogs or personal websites [5] that are read by estimated 77%
of Web users. Hence, the volume of information published on weblogs justifies
the attention of information retrieval, preservation and socio-historical research
communities.

The scale is not the only challenge for capturing weblog resources. The het-
erogeneous nature of these resources, the large numbers of third party elements
and advertisements, the rapid changes, the propagation of user-generated content
and the diversity of inter-relations across the resources are among the common
characteristics of the blogosphere. These characteristics amplify the complexity
of capturing, processing and transforming these web resources into structured
data. The successful extraction of weblog properties is of paramount importance
for improving the quality of numerous applications, such as analytics, informa-
tion retrieval and preservation.

Typically, the content of a weblog resides in a relational database. The au-
tomation supported by the blogging platform provides a common structure that
can be observed across the various weblog pages. More specifically, the weblog
post, which constitutes a building block of a weblog, comprises a set of proper-
ties, such as the title, author, publication date, post content and the categories
(or tags) assigned. Whilst the data structure is presented in a consistent way
across a certain weblog, it rarely appears identical across different weblogs, even
if the blogging platform remains the same. The main reason for the above in-
consistency is the fact that bloggers personalise the presentation of their weblog
arbitrarily, hence the resulting weblog exhibits a unique appearance. Moreover,
current techniques are not sufficient to meet the requirements of a weblog data
extraction framework which is a)fully automated, b)high granularity and c)high
quality.

One of the most prominent characteristics of weblogs is the existence of web
feeds. Web feeds, commonly provided as RSS, are machine interpretable, struc-
tured XML documents that allow access to (part of) the content of a website,
such as a weblog. In fact, this high quality, rigorous information contained in web
feeds has already been exploited in several applications (e.g. [13]). The solution
proposed here is influenced by the above idea of exploiting the web feeds and
attempts to overcome the limitation of fixed number of provided post-entities.
Intuitively, our approach is not to treat the web feeds as the only source of infor-
mation, but as a means that allows the self-supervised training and generation
of a wrapper automatically. During this self-supervised training session2, the
matching of the elements found between the web feeds and the weblog posts is
used to observe and record the position of the cross-matched elements. Based on
these observations, a set of rules is generated through an essentially probabilistic
approach. These rules are later applied throughout each weblog post (regardless
of its existence in the web feed).

2 The term self-supervised is inspired by and used in a similar way by Yates et al. in
order to describe their classifier induction [17]. Contrary to our approach, where we
focus on data values, their approach concerns the extraction of relational information
found in texts without using web feeds.
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This research makes the following main contributions:

– We use web feeds for training and generating a wrapper. The generated
wrapper is described in simple rules that are induced by following a proba-
bilistic approach. We provide a simple algorithm that is noise-tolerant and
takes into account the information collected about the location of HTML
elements found during training.

– We make use of CSS Classes as an attribute that can supplement the more
traditional XPath manipulation approach used to describe extraction rules.

– To the best of our knowledge, we are the first to propose a self-supervised
methodology that can be applied on any weblog and features unprecedented
levels of granularity, automation and accuracy. We support all of the above
through evaluation.

The paper is structured as follows. Section 2 describes the proposed model and
the methodology applied to extract the desired weblog properties. Section 3
evaluates the model, while Section 4 discusses the contribution of the approach
and presents related work. Finally, Section 5 presents the conclusions.

2 Proposed Model

We adopt the definition of a wrapper proposed by Baumgartner et al. where “a
wrapper is a program that identifies the desired data on target pages, extracts
the data and transforms it into a structured format” [3]. As discussed above,
our model aims to generate a fully automated wrapper for each weblog. The
approach is divided into three steps as follows.

2.1 Step 1: Feed Processing and Capturing of Post Properties

The input for executing the first step of the proposed model involves the ac-
quisition of the desired blog’s feed content. Similarly to standard RSS readers,
the model focuses on the entries that point to the weblog posts. For each entry,
we search and store the attributes of title, author, date published, summary and
permalink as the post properties.

2.2 Step 2: Generation of Filters

The second step includes the generation of filters. The naming convention we
use for the concept of a filter is similar to the one introduced in [2], where it is
described as the building block of patterns, which in turn describes a generalised
tree path in the HTML parse tree. Thus, adding a filter to a pattern extends the
set of extracted targets, whereas imposing a condition on a filter restricts the set
of targets. The same concept is used by XWRAP [11] in order to describe the
so-called “declarative information extraction rules”. These rules are described in
XPath-like expressions and point to regions of the HTML document that contain
data records.



Self-supervised Automated Wrapper Generation for Weblog Data Extraction 295

Following related work, we use the concept of a filter in order to identify
and describe specific data elements of an HTML weblog post. Unlike previous
work, where most of the tools deal with the absolute path only (for example
through partial tree alignment [18]), our filters comprise a tuple, which extends
existing approaches. Our approach overcomes irregularities appearing across ab-
solute path values by providing additional, alternate means of describing the
HTML element (namely our tuple also includes CSS Classes and HTML IDs).
By conducting an initial visual survey on weblogs, we hypothesize that espe-
cially CSS Classes may be used to provide an alternate and accurate way to
induce extraction rules, a feature that remains unexploited in most (if not all)
approaches until now. Our evaluation results support the above hypothesis.

In our approach, the filter is described using three basic attributes, as follows.

– Absolute Path: We use a notation similar to XPath’s absolute path to refer
to the position of the HTML element. The Absolute Path is described as a
sequence of edges, where each edge is defined as the name of the element and
the positional information of the element (index )3. This sequence of edges
starts from the root of the document and ends with the element containing
the value we are interested in. For example, the value /html[0]/body[1] refers
to the body element of an HTML document, since this is the second child
(hence, body[1]) of the root HTML element (html[0]).

– CSS Classes: “CSS (Cascading Style Sheets) is a simple mechanism for
adding style (e.g., fonts, colours, spacing) to web documents”4, first intro-
duced in 1996. It allows the separation of document content from document
presentation through the definition of a set of rules.

– HTML ID: The ID attribute specifies a unique identifier for an HTML ele-
ment of a document. It is commonly used in cases where CSS code needs to
refer to one unique element (e.g. the title of a post) or run JavaScript.

Figure 1 shows the structure of a filter with an annotated example. When point-
ing at a specific element, a set of HTML ID values and CSS Classes together
with a single-valued Absolute Path are used to describe and define the filter.
More specifically, when an element is identified, any HTML IDs or CSS Classes
applied on this element are added to the filter. Afterwards, an iterative selec-
tion of the parent element continues, adding HTML IDs and CSS Classes to the
sets, as long as the value of the parent element contains nothing but the value
identified. For the example illustrated in Figure 1, the value for the ID attribute
is single-date, for the CSS Classes the value is date and the Absolute Path is
html[0]/body[1]/div[1]/div[1]/div[0]/div[0]/div[1].

3 The positional information of an HTML element is crucial in a HTML document.
This is one of the reasons that HTML DOM trees are viewed as labelled ordered
trees in the literature (e.g., [7]).

4 http://www.w3.org/Style/CSS/
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Fig. 1. The structure of a filter. An example is annotated for the case of an element
containing a date value.

2.3 Step 3: Induction of Rules and Blog Data Extraction

After the completion of Step 2, a collection of filters is generated for each prop-
erty. When applied to the weblog posts from which they were extracted, they
link back to the HTML element of the matched property. However, due to mul-
tiple occurrences of values during the text matching process of Step 2, there are
cases where a value is found in more than one HTML element. This results in
generating filters equal to the number of values found. Not all of the collected
filters are suitable for extracting the data out of a weblog; the collection contains
diverse and sometimes “blurred” information that needs further processing.

In the case of weblog data extraction, there is neither prior knowledge of the lo-
cation of the elements to be identified, nor a definite, automated way to describe
them. We propose a case-based reasoning mechanism that assesses the informa-
tion found in filters. The aim of this mechanism is to generate rules through a
learning by example methodology, i.e., a general rule is extracted through the
observation of a set of instances. In our case, the instances correspond to the
weblog posts that lead to the generation of the filters during the previous step.
The rules are defined in the language used to describe the previously collected
filters. Therefore, they describe how to extract the weblog properties. Our ap-
proach deals with irregularities found in web documents (and filters thereof) in
an inherently probabilistic way.

During the step of the induction of rules, our aim is to account for each
attribute of each filter (Absolute Path, CSS Classes and HTML IDs), in order to
assess the usefuleness of each attribute value as a rule. Essentially, a rule is the
result of the transposition of a filter. This transposition can result in maximum
three rules. The rule is described by its type (one of the three different attribute
types of the filters), a value (the value of the corresponding filter’s attribute)
and a score, which is used to measure its expected accuracy. An important
consideration taken here is the fact that selecting a “best-match” filter (i.e. a
tuple of all three filter attributes) from the list of the filters or a combination of
values for each attribute (as a collection of “best-of” values for each attribute)
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may result in the elimination of the desired element (for example, the HTML ID
might increment for each weblog post and is therefore unique for every instance).
The approach adopted here is based on the assumption that a single attribute
(either the Absolute Path, or the CSS Classes or the HTML IDs) should suffice
for describing the extraction rule. In the evaluation section, we give evidence
why using a single attribute meets this expectation.

Algorithm 1. Rule induction algorithm

Inputs:
Collection of training posts P , Collection of candidate rules R

Outputs:
Rule with the highest score

for all Rules r ∈ R do � Initialize all scores
r.score ← 0

end for
Rule rs ← new Rule()
rs.score ← 0
for all Rules r ∈ R do

for all Posts p ∈ P do � Check if application r(p) of rule r, on post p succeeds
If r(p) =value-property of p then

r.score++
end for
r.score ← r.score

|P | � Normalize score values
If r.score > rs.score then � Check if this is the best rule so far

rs ← r
end for
return rs

To assess the rule that best describes the extraction process, a score is calcu-
lated for each rule. The score aims at keeping track of the effectiveness of the
rule, when applied across different posts of the weblog. As seen in Algorithm 1,
an iteration takes place for each of the candidate rules, which in turn is applied
on each of the training posts. For each successful match, the score of the rule is
increased by one5. After all posts have been checked, the value is divided by the
number of training posts against which the rule was validated, in order to rep-
resent a more meaningful, normalised measurement (i.e. the higher the better: 1
means that rule is successful for all posts, 0 means that it failed for each of the
posts applied). The rule having the highest score – if any – is returned.

Figure 2 presents an overview of the approach described above. As already
discussed in detail, the proposed solution involves the execution of three steps.
The first step includes the task of reading and storing the weblog properties
found in the web feed. The second step includes training the wrapper through
the cross matching of information found in the web feed and the corresponding

5 A successful match between properties is a crucial issue in our approach and is
discussed in detail in Section 2.4.
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Fig. 2. Overview of the weblog data extraction approach

HTML documents. This step leads to the generation of information, captured
through the filters, which describes where the weblog data properties reside. The
final step transforms the filters into rules and calculates the rule scores in order
to select a rule for each of the desired properties.

2.4 Property Matching

The proposed method relies on the identification of an HTML element against a
specific value. Text matching can be used for achieving the above identification.
Generally, text matching is not a trivial task and can be classified into various
string matching types. More specifically, text matching may be complete, partial,
absolute or approximate. The matching of the elements is treated differently for
different properties, which is another contribution of this paper (details have
been omitted due to space limitations). For the title we look for absolute and
complete matchings, for the content we use the Jaro-Winkler metric [15] which
returns high similarity values when comparing the summary (feed) against the
actual content (web page), for the date we use the Stanford NER suite for
spotting and parsing the values [6], and for the author we use partial and absolute
matching with some boilerplate text (i.e. “Written By” and “Posted By”).

3 Evaluation

We evaluated our model against a collection of 240 weblogs (2,393 posts) for the
title, author, content and publication date. For the same collection, we used the
Google Blogger and WordPress APIs (in the limits of free quota) in order to
get valid and full data (i.e. full post content) and followed the 10-fold validation
technique [16]. As seen in Table 1, the prediction accuracy is high (mean value
92% ). For the case of the title, the accuracy is as high as 97.3% (65 misses).
For the case of the content, the accuracy is 95.9% (99 misses). Publication date
is 89.4% accurate (253 misses) and post author is 85.4% (264 misses). Table 1
summarizes the above results and presents the accuracy of Boilerpipe (77.4%) [8]
(Boilerpipe is presented in detail in Section 4). Concerning the extraction of the
title using Boilerpipe, the captured values are considered wrong, since the tool
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Table 1. Results of the evaluation showing the percentage of successfully extracted
properties. Number of misses are in parenthesis.

Title Content Publication Date Author

Proposed Model 97.3%(65) 95.9% (99) 89.4% (253) 85.4% (264)
Boilerpipe 0 77.4% (539) N/A N/A

extracts the title of the HTML document. For the case of the main content, our
model achieves 81.6% relative error reduction. Furthermore, the overall average
score for all rules is 0.89, which presumably indicates that the induction of the
selected rules is taking place at a high confidence level.

4 Discussion and Related Work

The concept of using web feeds for capturing data is not new. ArchivePress is
one of the weblog archiving projects that have developed solutions for harvesting
the content of weblog feeds [14]. The solution focuses solely on collecting the
structured content of weblog feeds that contain posts, comments and embedded
media. The solution provided by ArchivePress remains highly limited, due to
the fixed number of entries and partial content (i.e. post summary) found in
feeds. Another approach that attempts to exploit web feeds was developed by
Oita and Sellenart [13]. This approach is based on evaluating a web page and
matching it to the properties found in the corresponding web feed. The general
principle of cross-matching web feeds and pages constitutes the foundation of the
approach that we propose in this paper. However, because the approach by Oita
and Sellenart does not devise general extraction rules, it remains inapplicable for
capturing the data that are no longer available in the corresponding web feed.
Additionally, the performance of their approach for extracting distinct properties
such as title was reported as poor (no figures were provided in the paper).

To position our approach from a more general point of view (within the do-
main of earlier conducted work on web information extraction), we classify it
according to the taxonomy of data extraction tools by Laender [10]. More specifi-
cally, our approach can be associated with the Wrapper Induction andModelling-
Based approaches. Similarly to the wrapper induction tools, our approach gen-
erates extraction rules. However, unlike many wrapper induction tools, our ap-
proach is fully automated and does not rely on human-annotated examples.
Instead, it uses web feeds as a model that informs the process of generating ex-
traction rules and it therefore resembles the Modelling-Based approaches. Hence,
the approach presented in this paper can be positioned in relation to tools such
as WIEN [9], Stalker [12], RoadRunner [4] or NoDoSE [1].

WIEN is among the first tools aimed at automating the process of information
extraction from web resources. The term wrapper induction is, in fact, coined
by the authors [9] of the tool. However, as one of the earlier attempts, the use
of the tool is restricted to a specific structure of the page and the heuristics of
the presented data. Furthermore, it is not designed to work with nested struc-
ture of web data. The limitation of working with hierarchical data has been
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addressed by the Stalker tool [12]. However, the use of the Stalker tool requires
a supervised training data set that limits the degree of automation offered by
the system. An attempt to automate the process of wrapper induction was made
by Crescenzi et al. [4] and published along with the RoadRunner tool. The tool
analyses structurally pairs of similar resources and infers an unlabelled (i.e. no
property identified) schema for extracting the data. NoDoSE [1] represents a
different, modelling-based category of tools that requires an existing model that
defines the process of extraction. This is a semi-automatic approach due to the
necessary human input for developing models. However, additional tools, such
as a graphical user interface for marking resources, can be used for facilitating
human input. Hence, the review of the earlier work suggests that our approach,
as proposed in this paper, addresses a niche not served by the existing tools.

Among the generic solutions there are other technologies that aim at identi-
fying the main section (e.g. article) of a web page. The open source Boilerpipe
system is state-of-the-art and one of the most prominent tools for analysing the
content of a web page [8]. Boilerpipe makes use of the structural features, such
as HTML tags or sequences of tags forming subtrees, and employs methods that
stem from quantitative linguistics. Using measures, such as average word length
and average sentence length, Boilerpipe analyses the content of each web page
segment and identifies the main section by selecting the candidate with the high-
est score. As reported by Oita and Sellenart [13], the use of Boilerpipe delivers
relatively good precision (62.5%), but not as high as our approach.

Lastly, it is necessary to discuss the limitations of the proposed model and
future work. First of all, a requirement for the adoption of the model is the exis-
tence and integrity of web feeds. While web feeds are prominent characteristics
of weblogs, some weblogs are not configured to publish their updates through
feeds. In this case, the proposed model would not be appropriate to extract any
data. Additionally, a technique used to deceive anti-spam services is to report
false information in web feeds. In this case, the proposed model will signal a low
score on the rules – if any – generated (in fact, this limitation may be further
considered for spam detection). Another limitation concerns the extraction of
the date property. The date is currently processed for the English language only,
which may pose problems when matching the date in weblogs written in different
languages. An improvement would be to identify the language of the document
(e.g. with Apache Tika) and style the date following the locale of the identified
language. Concerning future work, the approach can be altered and deployed in
a supervised manner as well. In that case, the manual labelling of HTML ele-
ments will allow running the information extraction model on websites without
the requirement for web feeds. Finally, another idea worth considering is to keep
feeds for labelling data and to develop more robust ways of generating XPath
expressions. We intend to explore the above opportunities in the future.

5 Conclusions

In this paper, we have presented a method for fully automated weblog wrap-
per generation. The generated wrapper exhibits increased granularity, since it
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manages to identify and extract several weblog properties, such as the title,
author, publication date and main content of the post. This is accomplished
through the induction of rules, which are selected following a probabilistic ap-
proach based on their scoring. Devising these rules is based on the generation
of filters. The filters constitute a structure that, when applied to a web docu-
ment, singles out an HTML element. They are described in tuples, where each of
its element-attributes describes the HTML element in different forms (Absolute
Path, CSS Classes and HTML IDs). The overall approach is evaluated against a
real-world collection of weblogs and the results show that the wrappers generated
are robust and efficient in handling different types of weblogs.

Acknowledgments. This work was conducted as part of the BlogForever
project funded by the European Commission Framework Programme 7 (FP7),
grant agreement No.269963.

References

1. Adelberg, B.: NoDoSE–a tool for semi-automatically extracting structured and
semistructured data from text documents. SIGMOD Rec. 27(2), 283–294 (1998)

2. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with
Lixto. In: Proceedings of the 27th International Conference on Very Large Data
Bases, pp. 119–128. Morgan Kaufmann Publishers, San Francisco (2001)

3. Baumgartner, R., Gatterbauer, W., Gottlob, G.: Web data extraction system. In:
Encyclopedia of Database Systems, pp. 3465–3471. Springer (2009)

4. Crescenzi, V., Mecca, G., Merialdo, P.: Roadrunner: Towards automatic data ex-
traction from large web sites. In: Proceedings of the International Conference on
Very Large Data Bases, pp. 109–118 (2001)

5. Dutton, W., Blank, G.: Next generation users: The internet in Britain (2011)

6. Finkel, J., Grenager, T., Manning, C.: Incorporating non-local information into in-
formation extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics, pp. 363–370. Association
for Computational Linguistics (2005)

7. Geibel, P., Pustylnikov, O., Mehler, A., Gust, H., Kühnberger, K.-U.: Classification
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