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The Law of Large Numbers for the Free
Multiplicative Convolution
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Abstract In classical probability the law of large numbers for the multiplicative
convolution follows directly from the law for the additive convolution. In free
probability this is not the case. The free additive law was proved by D. Voiculescu in
1986 for probability measures with bounded support and extended to all probability
measures with first moment by J.M. Lindsay and V. Pata in 1997, while the free
multiplicative law was proved only recently by G. Tucci in 2010. In this paper
we extend Tucci’s result to measures with unbounded support while at the same
time giving a more elementary proof for the case of bounded support. In contrast
to the classical multiplicative convolution case, the limit measure for the free
multiplicative law of large numbers is not a Dirac measure, unless the original
measure is a Dirac measure. We also show that the mean value of ln x is additive
with respect to the free multiplicative convolution while the variance of ln x is not
in general additive. Furthermore we study the two parameter family .�˛;ˇ/˛;ˇ�0 of
measures on .0;1/ for which the S -transform is given by S�˛;ˇ .z/ D .�z/ˇ.1 C
z/�˛ , 0 < z < 1.

Keywords Free probability • Free multiplicative law • Law of large numbers •
Free convolution

Mathematics Subject Classification (2010): 46L54, 60F05.

U. Haagerup (�)
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5,
DK-2100 Copenhagen Ø, Denmark
e-mail: haagerup@math.ku.dk

S. Möller
Department of Mathematics and Computer Science, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark
e-mail: moeller@imada.sdu.dk

T.M. Carlsen et al. (eds.), Operator Algebra and Dynamics, Springer Proceedings
in Mathematics & Statistics 58, DOI 10.1007/978-3-642-39459-1__8,
© Springer-Verlag Berlin Heidelberg 2013

157

mailto:haagerup@math.ku.dk
mailto:moeller@imada.sdu.dk


158 U. Haagerup and S. Möller

8.1 Introduction

In classical probability the weak law of large numbers is well known (see for
instance [14, Corollary 5.4.11]), both for additive and multiplicative convolution
of Borel measures on R, respectively, Œ0;1/.

Going from classical probability to free probability, one could ask if similar
results exist for the additive and multiplicative free convolutions � and � as
defined by D. Voiculescu in [16] and [17] and extended to unbounded probability
measures by H. Bercovici and D. Voiculescu in [4]. The law of large numbers for
the free additive convolution of measures with bounded support is an immediate
consequence of D. Voiculescu’s work in [16] and J. M. Lindsay and V. Pata proved
it for measures with first moment in [11, Corollary 5.2].

Theorem 1 ([11, Corollary 5.2]). Let � be a probability measure on R with
existing mean value ˛, and let  nWR ! R be the map  n.x/ D 1

n
x. Then

P n.�� � � � � �
„ ƒ‚ …

n times

/ ! ı˛

where convergence is weak and ıx denotes the Dirac measure at x 2 R.

Here P�.�/ denotes the image measure of � under � for a Borel measurable
function �WR ! R, respectively, Œ0;1/ ! Œ0;1/.

In classical probability the multiplicative law follows directly from the additive
law. This is not the case in free probability, here a multiplicative law requires
a separate proof. This has been proved by G.H. Tucci in [15, Theorem 3.2] for
measures with bounded support using results on operator algebras from [6] and [8].
In this paper we give an elementary proof of Tucci’s theorem which also shows that
the theorem holds for measures with unbounded support.

Theorem 2. Let � be a probability measure on Œ0;1/ and let �nW Œ0;1/ ! Œ0;1/

be the map �n.x/ D x
1
n . Set ı D �.f0g/. If we denote

�n D P�n.�n/ D P�n.�� � � � � �
„ ƒ‚ …

n times

/

then �n converges weakly to a probability measure � on Œ0;1/. If � is a Dirac
measure on Œ0;1/ then � D �. Otherwise � is the unique measure on Œ0;1/

characterised by �
�h

0; 1
S�.t�1/

i�

D t for all t 2 .ı; 1/ and �.f0g/ D ı. The support

of the measure � is the closure of the interval

.a; b/ D
 
�Z 1

0

x�1d�.x/
��1

;

Z 1

0

xd�.x/

!

;

where 0 � a < b � 1.
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Note that unlike the additive case, the multiplicative limit distribution is only
a Dirac measure if � is a Dirac measure. Furthermore S� and hence (by [17,
Theorem 2.6]) � can be reconstructed from the limit measure.

We start by recalling some definitions and proving some preliminary results
in Sect. 8.2, which then in Sect. 8.3 are used to prove Theorem 2. In Sect. 8.4 we
prove some further formulas in connection with the limit law, which we in Sect. 8.5
apply to the two parameter family .�˛;ˇ/˛;ˇ�0 of measures on .0;1/ for which the

S -transform is given by S�˛;ˇ .z/ D .�z/ˇ

.1Cz/˛ , 0 < z < 1.

8.2 Preliminaries

We start with recalling some results we will use and proving some technical tools
necessary for the proof of Theorem 2. At first we recall the definition and some
properties of Voiculescu’s S -transform for measures on Œ0;1/ with unbounded
support as defined by H. Bercovici and D. Voiculescu in [4].

Definition 1 ([4, Sect. 6]). Let � be a probability measure on Œ0;1/ and assume
that ı D �.f0g/ < 1. We define  �.u/ D R1

0
tu
1�tu d�.t/ and denote its inverse

in a neighbourhood of .ı � 1; 0/ by ��. Now we define the S -transform of � by
S�.z/ D zC1

z ��.z/ for z 2 .ı � 1; 0/.

Lemma 1 ([4, Proposition 6.8]). Let � be a probability measure on Œ0;1/ with
ı D �.f0g/ < 1 then S� is decreasing on .ı� 1; 0/ and positive. Moreover, if ı > 0
we have S�.z/ ! 1 if z ! ı � 1.

Lemma 2. Let � be a probability measure on Œ0;1/ with ı D �.f0g/ < 1. Assume
that � is not a Dirac measure, then S 0

�.z/ < 0 for z 2 .ı � 1; 0/. In particular S� is
strictly decreasing on .ı � 1; 0/.

Proof. For u 2 .�1; 0/,

 0
�.u/ D

Z 1

0

t

.1 � ut/2
d�.t/ > 0: (8.1)

Moreover limu!0�  �.u/ D 0 and limu!�1  �.u/ D ı � 1. Hence  � is a strictly
increasing homeomorphism of .�1; 0/ onto .ı � 1; 0/. For u 2 .�1; 0/, we have

S�. �.u// D  �.u/C 1

 �.u/
� u:

Hence

d

du

�

lnS�. �.u//
� D �  0

�.u/

 �.u/. �.u/C 1/
C 1

u
D  �.u/. �.u/C 1/� u 0

�.u/

u �.u/. �.u/C 1/

(8.2)
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where the denominator is positive and the nominator is equal to

�Z 1

0

ut

1 � ut
d�.t/

�

�
�Z 1

0

1

1 � ut
d�.t/

�

�
Z 1

0

ut

.1 � ut/2
d�.t/

D u

2

Z 1

0

Z 1

0

s C t

.1 � us/.1 � ut/
d�.s/d�.t/

� u

2

Z 1

0

Z 1

0

�

s

.1 � us/2
C t

.1 � ut/2

�

d�.s/d�.t/

D �u2

2

Z 1

0

Z 1

0

.s � t/2
.1 � us/2.1 � ut/2

d�.s/d�.t/

where we have used that

.s C t/.1 � us/.1 � ut/� s.1 � ut/2 � t.1 � us/2 D �u.s � t/2:

Since � is not a Dirac measure,

.� � �/ �˚.s; t/ 2 Œ0;1/2 W s ¤ t
��

> 0

and thus

Z 1

0

Z 1

0

.s � t/2

.1 � us/2.1 � ut/2
d�.s/d�.t/ > 0

which shows that the right hand side of (8.2) is strictly positive. Hence

d

dz

�

lnS�.z/
�

< 0

for z 2 .ı � 1; 0/, which proves the lemma. ut
Remark 1. Furthermore, by [4, Proposition 6.1] and [4, Proposition 6.3]  � and
�� are analytic in a neighbourhood of .�1; 0/, respectively, .�1; 0/, hence S� is
analytic in a neighbourhood of .ı � 1; 0/.

Lemma 3 ([4, Corollary 6.6]). Let � and � be probability measures on Œ0;1/,
none of them being ı0, then we have S��� D S�S� .

Next we have to determine the image of S�. Here we closely follow the argument
given for measures with compact support by F. Larsen and the first author in [6,
Theorem 4.4].

Lemma 4. Let � be a probability measure on Œ0;1/ not being a Dirac measure,
then S�..ı � 1; 0// D .b�1; a�1/, where a, b and ı are defined as in Theorem 2.
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Proof. First assume ı D 0. Observe that for u ! 1 we have

Z 1

0

u

1C ut
d�.t/ !

Z 1

0

1

t
d�.t/ D a�1 and

Z 1

0

ut

1C ut
d�.t/ ! 1:

Hence

� �.�u/

u. �.�u/C 1/
D
�Z

1

0

ut

1C ut
d�.t/

��Z
1

0

u

1C ut
d�.t/

�
�1

! a for u ! 1:

Similarly, for u ! 0 we have

Z 1

0

t

1C ut
d�.t/ !

Z 1

0

td�.t/ D b and
Z 1

0

1

1C ut
d�.t/ ! 1:

Hence

� �.�u/

u. �.�u/C 1/
D
R1
0

t
1Cut d�.t/

R1
0

1
1Cut d�.t/

! b for u ! 0:

As �� is the inverse of  � we have

S�. �.�u// D  �.�u/C 1

 �.�u/
��. �.�u// D u. �.�u/C 1/

� �.�u/
:

By (8.1) and Lemma 2  � is strictly increasing and continuous and S� is strictly
decreasing and continuous so S�. �..�1; 0/// D S�..�1; 0// D .b�1; a�1/.

If now ı > 0 we have by Lemma 1 that S�.z/ ! 1 for z ! ı � 1, so in this
case continuity gives us S�..ı � 1; 0// D .b�1;1/, which is as desired as a D 0 in
this case. ut

8.3 Proof of the Main Result

Let � be a probability measure on Œ0;1/ and let � be as defined in Theorem 2. If �
is a Dirac measure, then �n D � for all n and hence �n ! � D � weakly, so the
theorem holds in this case. In the following we can therefore assume that � is not
a Dirac measure. We start by assuming further that �.f0g/ D 0, and will deal with
the case �.f0g/ > 0 in Remark 2.

Lemma 5. For all t 2 .0; 1/ and all n � 1 we have

Z 1

0

�

1C 1 � t
t
S�.t � 1/nxn

��1
d�n.x/ D t:
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Proof. Let t 2 .0; 1/ and set z D t � 1. By Definition 1 we have

z C 1 D  �n.��n.z//C 1

D
Z 1

0

��n.z/x

1 � ��n.z/x
d�n.x/C 1

D
Z 1

0

1

1 � ��n.z/x
d�n.x/

D
Z 1

0

�

1 � z

z C 1
S�n.z/x

��1
d�n.x/

D
Z 1

0

�

1 � z

z C 1
S�.z/

nx

��1
d�n.x/:

In the last equality we use multiplicativity of the S -transform from Lemma 3.
Now substitute t D z C 1 and afterwards yn D x and use the definition of �n to

get

t D
Z 1

0

�

1C 1 � t
t
S�.t � 1/nx

��1
d�n.x/

D
Z 1

0

�

1C 1 � t
t
S�.t � 1/nyn

��1
d�n.y/: ut

Now, using this lemma, we can prove the following characterisation of the weak
limit of �n.

Lemma 6. For all t 2 .0; 1/ we have t D limn!1 �n

�h

0; 1
S�.t�1/

i�

.

Proof. Fix t 2 .0; 1/ and let t 0 2 .0; t/. Then

t 0 D
Z 1

0

�

1C 1 � t 0

t 0
S�.t

0 � 1/nxn
��1

d�n.x/

�
Z 1

0

�

1C 1 � t

t
S�.t

0 � 1/nxn
��1

d�n.x/

�
Z 1

S�.t�1/

0

1d�n.x/C
Z 1

1
S�.t�1/

�

1C 1 � t

t
S�.t

0 � 1/nxn
��1

d�n.x/

�
Z 1

S�.t�1/

0

1d�n.x/C
Z 1

1
S�.t�1/

�

1C 1 � t

t

�

S�.t
0 � 1/

S�.t � 1/

�n��1
d�n.x/

� �n

�	

0;
1

S�.t � 1/


�

C
�

1C 1 � t
t

�

S�.t
0 � 1/

S�.t � 1/

�n��1
:
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Here the first inequality holds as t 0 � t while S�.t 0 � 1/nxn > 0, the second holds
as 1C 1�t

t
S�.t

0 � 1/nxn � 0, and the last because �n is a probability measure.

By Lemma 2, S�.t � 1/ is strictly decreasing, and hence S�.t
0�1/

S�.t�1/ > 1. This
implies

lim
n!1

�

1C 1 � t

t

�

S�.t
0 � 1/

S�.t � 1/
�n��1

D 0:

And hence

t 0 � lim inf
n!1 �n

�	

0;
1

S�.t � 1/

�

:

As this holds for all t 0 2 .0; t/ we have

t � lim inf
n!1 �n

�	

0;
1

S�.t � 1/

�

: (8.3)

On the other hand if t 00 2 .t; 1/ we get

t 00 D
Z 1

0

�

1C 1 � t 00

t 00
S�.t

00 � 1/nxn
��1

d�n.x/

�
Z 1

0

�

1C 1 � t

t
S�.t

00 � 1/nxn
��1

d�n.x/

�
Z 1

S.t�1/

0

�

1C 1 � t

t
S�.t

00 � 1/nxn
��1

d�n.x/

�
Z 1

S.t�1/

0

�

1C 1 � t

t

S�.t
00 � 1/n

S�.t � 1/n

��1
d�n.x/

� �n

�	

0;
1

S�.t � 1/


�

�
�

1C 1 � t

t

�

S�.t
00 � 1/

S�.t � 1/
�n��1

:

Here the first inequality holds as t 00 > t while S�.t 00 � 1/xn � 0, and the second to
last inequality holds as S�.t � 1/ is decreasing.

Again as S�.t � 1/ is strictly decreasing we have S�.t
00�1/

S�.t�1/ < 1, hence

lim
n!1

�

1C 1 � t
t

�

S�.t
00 � 1/

S�.t � 1/
�n��1

D 1:

This implies

t 00 � lim sup
n!1

�n

�	

0;
1

S�.t � 1/

�

:
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As this holds for all t 00 2 .t; 1/ we have

t � lim sup
n!1

�n

�	

0;
1

S�.t � 1/


�

: (8.4)

Combining (8.3) and (8.4) we get

t D lim
n!1 �n

�	

0;
1

S�.t � 1/


�

as desired. ut
For proving weak convergence of �n to � it remains to show that �n vanishes in

limit outside of the support of �.

Lemma 7. For all x � a and y � b we have �n.Œ0; x�/ ! 0, respectively,
�n.Œ0; y�/ ! 1.

Proof. To prove the first convergence, let t � a and s 2 .0; 1/. Now we have that
t � 1

S�.s�1/ from Lemma 4 and hence

lim sup
n!1

�n.Œ0; t �/ � lim sup
n!1

�n

�	

0;
1

S�.s � 1/

�

D s:

Here the inequality holds because �n is a positive measure and the equality comes
from Lemma 6. As this holds for all s 2 .0; 1/ we have lim supn!1 �n.Œ0; t �/ � 0

and hence lim supn!1 �n.Œ0; t �/ D 0 by positivity of the measure.
For the second convergence we proceed in the same manner, by letting t � b and

s 2 .0; 1/. Now we have that t � 1
S�.s�1/ from Lemma 4 and hence

lim inf
n!1 �n.Œ0; t �/ � lim inf

n!1 �n

�	

0;
1

S�.s � 1/


�

D s:

Again the inequality holds because �n is a positive measure and the equality comes
from Lemma 6. As this holds for all s 2 .0; 1/ we have lim supn!1 �n.Œ0; t �/ � 1

and hence lim supn!1 �n.Œ0; t �/ D 1 as �n is a probability measure. ut
Lemmas 6 and 7 now prove Theorem 2 without any assumptions on bounded

support as weak convergence of measures is equivalent to point-wise convergence
of distribution functions for all but countably many x 2 Œ0;1/.

Remark 2. In the case ı D �.f0g/ > 0, S� is only defined on .ı � 1; 0/ and
S�.z/ ! 1 when z ! ı � 1. This implies that Lemma 5 only holds for t 2 .ı; 1/,
with a similar proof. Similarly, Lemma 6 only holds for t 2 .ı; 1/, and in the proof
we have to assume t 0 2 .ı; t/. Similarly, in the proof of Lemma 7 we have to assume



8 The Law of Large Numbers for the Free Multiplicative Convolution 165

s 2 .ı; 1/. Moreover, in Lemma 7 the statement, 0 � x � a implies �n.Œ0; x�/ ! 0

for n ! 1, should be changed to a D 0 and �n.f0g/ D ı D �.f0g/ for all n 2 N.

Using our result we can prove the following corollary, generalizing a theorem
([8, Theorem 2.2]) by H. Schultz and the first author.

Let .M ; �/ be a finite von Neumann algebra M with a normal faithful tracial
state � . In [7, Proposition 3.9] the definition of Brown’s spectral distribution
measure �T was extended to all operators T 2 M�, where M� is the set of
unbounded operators affiliated with M for which �.lnC.jT j// < 1.

Corollary 1. If T is an R-diagonal in M� then P�.�.T �/nT n/ ! P .�T / weakly,
where  .z/ D jzj2, z 2 C, and �n.x/ D x1=n for x � 0.

Proof. By [7, Proposition 3.9] we have ��n
T �T D �.T �/nT n and by Theorem 2 we

have P�.��n
T �T / ! � weakly. On the other hand observe that � D P .�T / by [7,

Theorem 4.17] which gives the result. ut
Remark 3. In [8, Theorem 1.5] it was shown that P�n.�.T �/nT n/ ! P .�T / weakly
for all bounded operators T 2 M . It would be interesting to know, whether this
limit law can be extended to all T 2 M�.

8.4 Further Formulas for the S -Transform

In this section we present some further formulas for the S -transform of measures
on Œ0;1/, obtained by similar means as in the preceding sections and use those to
investigate the difference between the laws of large numbers for classical and free
probability. From now on we assume �.f0g/ D 0. Therefore � can be considered
as a probability measure on .0;1/.

We start with a technical lemma which will be useful later.

Lemma 8. We have the following identities

Z 1

0

ln2
�

t

1 � t

�

dt D 	2

3
Z 1

0

ln2 tdt D 2

Z 1

0

ln2.1 � t/dt D 2

Z 1

0

ln t ln.1 � t/dt D 2 � 	2

6
:
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Proof. For the first identity we start with the substitution x D t
1�t which gives us

t D x
1Cx and dt D dx

.1Cx/2 and hence

Z 1

0

ln2
�

t

1 � t

�

dt D
Z 1

0

ln2 x

.1C x/2
dx

D d2

d˛2

Z 1

0

x˛

.1C x/2
dx

ˇ

ˇ

ˇ

ˇ

˛D0

D d2

d˛2
B.1C ˛; 1 � ˛/

ˇ

ˇ

ˇ

ˇ

˛D0

D d2

d˛2
	˛

sin.	˛/

ˇ

ˇ

ˇ

ˇ

˛D0

D d2

d˛2

�

1 � .	˛/2

3Š
C � � �

��1ˇˇ
ˇ

ˇ

ˇ

˛D0

D d2

d˛2

�

1C 	2

6
˛2 C � � �

�ˇ

ˇ

ˇ

ˇ

˛D0
D 	2

3

where B.�; �/ denotes the Beta function. The second and the third identity follow
from the substitution t 7! exp.�x/, respectively, 1 � t 7! exp.�x/.

Finally, the last identity follows by observing

	2

3
D
Z 1

0

ln2
�

t

1 � t
�

dt

D
Z 1

0

ln2 t C ln2.1 � t/ � 2 ln t ln.1 � t/dt

D 4 � 2

Z 1

0

ln t ln.1 � t/dt

which gives the desired result. ut
Now we prove two propositions calculating the expectations of lnx and ln2 x

both for � and � expressed by the S -transform of �.

Proposition 1. Let � be a probability measure on .0;1/ and let � be as defined in
Theorem 2. Then

R1
0 jln xj d�.x/ < 1 if and only if

R 1

0

ˇ

ˇlnS�.t � 1/
ˇ

ˇ dt < 1 and
if and only if

R1
0 jlnxj d�.x/ < 1. If these integrals are finite, then

Z 1

0

ln xd�.x/ D �
Z 1

0

lnS�.t � 1/dt D
Z 1

0

ln xd�.x/:



8 The Law of Large Numbers for the Free Multiplicative Convolution 167

Proof. For x > 0, put lnC x D max.lnx; 0/ and ln� x D max.� ln x; 0/. Then one
easily checks that

lnC x � ln.x C 1/ � lnC x C ln 2

and by replacing x by 1
x

it follows that

ln� x � ln

�

x C 1

x

�

� ln� x C ln 2:

Hence
Z 1

0

lnC xd�.x/ < 1 ,
Z 1

0

ln.x C 1/d�.x/ < 1

and

Z 1

0

ln� xd�.x/ < 1 ,
Z 1

0

ln

�

x C 1

x

�

d�.x/ < 1:

We prove next that

Z 1

0

ln.x C 1/d�.x/ D
Z 1

0

ln� u 0
�.�u/du (8.5)

and

Z 1

0

ln

�

x C 1

x

�

d�.x/ D
Z 1

0

lnC u 0
�.�u/du: (8.6)

Recall from (8.1), that

 0
�.�u/ D

Z 1

0

t

.1C ut/2
d�.t/; u > 0:

Hence by Tonelli’s theorem

Z 1

0

lnC u 0
�.�u/du D

Z 1

1

ln u 0
�.�u/du D

Z 1

0

Z 1

1

x

.1C ux/2
ln udud�.x/

and similarly,

Z 1

0

ln� u 0
�.�u/du D

Z 1

0

Z 1

0

x

.1C ux/2
ln

�

1

u

�

dud�.x/:
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By partial integration, we have

Z 1

1

x

.1C ux/2
ln udu D

	

� ln u

1C ux
C ln

�

u

1C ux

�
uD1

uD1
D ln

�

x C 1

x

�

and similarly,

Z 1

0

x

.1C ux/2
ln

�

1

u

�

du D
	

ln u

1C ux
� ln

�

u

1C ux

�
uD1

uD0

D
	

ux

1C ux
ln u C ln.1C ux/


uD1

uD0
D ln.x C 1/

which proves (8.5) and (8.6). Therefore

Z 1

0

jlnxj d�.x/ < 1 ,
Z 1

0

jln uj 0
�.�u/du < 1

and substituting x D  �.�u/C 1 we get

Z
1

0

jln uj 0

�.�u/du D
Z 1

0

ˇ

ˇln
����.t � 1/

�ˇ

ˇ dt D
Z 1

0

ˇ

ˇ

ˇ

ˇ
ln

�

t

1 � t

�

C lnS�.t � 1/
ˇ

ˇ

ˇ

ˇ
dt:

Since
R 1

0

ˇ

ˇln
�

t
1�t
�ˇ

ˇ dt < 1 it follows that

Z 1

0

jln uj 0
�.�u/du < 1 ,

Z 1

0

ˇ

ˇlnS�.t � 1/
ˇ

ˇ dt < 1:

If � is not a Dirac measure, the substitution x D S�.t � 1/�1; 0 < t < 1

gives t D �..0; x�/ for a < x < b, where as before a D �R1
0
x�1d�.x/

��1
and

b D R1
0
xd�.x/. The measure � is concentrated on the interval .a; b/. Hence

Z
1

0

jln xj d�.x/ D
Z b

a

jlnxj d�.x/ D
Z 1

0

ˇ

ˇ

ˇ

ˇ
ln

�

1

S�.t � 1/
�ˇ

ˇ

ˇ

ˇ
dt D

Z 1

0

ˇ

ˇlnS�.t � 1/ˇˇ dt:

This proves the first statement in Proposition 1. If all three integrals in that
statement are finite, we get

Z 1

0

ln xd�.x/ D
Z 1

0

ln.x C 1/d�.x/�
Z 1

0

ln

�

x C 1

x

�

d�.x/

D
Z 1

0

�

ln� u � lnC u
�

 0
�.�u/du D �

Z 1

0

ln u 0
�.�u/du:
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By the substitution t D  �.�u/C 1 we get

Z 1

0

ln
����.t � 1/

�

dt D
Z 1

0

�

ln
�

1 � t

t

�

C lnS�.t � 1/

�

dt D
Z 1

0

lnS�.t � 1/dt:

Hence
R1
0

lnxd�.x/ D � R 1
0

lnS�.t � 1/dt . Moreover, by the substitution x D
S�.t � 1/�1; 0 < t < 1 we get

Z 1

0

ln xd�.x/ D
Z 1

0

ln

�

1

S�.t � 1/
�

dt D
Z 1

0

ln xd�.x/:

Finally, if � D ıx, x 2 .0;1/, this identity holds trivially, because � D ıx and
S�.z/ D 1

x
; 0 < z < 1. ut

Corollary 2. Let �1 and �2 be probability measures on .0;1/. If E�1.lnx/ and
E�2.ln x/ exist then E�1��2.lnx/ also exists and

E�1��2.lnx/ D E�1.ln x/C E�2.lnx/

where E�.f / D R1
0 f .x/d�.x/.

Proof. The statement follows directly from Proposition 1 and multiplicativity of the
S -transform. ut

For further use, we define the map 
 for a probability measure � on .0;1/ by


.�/ D
Z 1

0

ln

�

1 � t

t

�

lnS�.t � 1/dt:

Note that 
.�/ is well-defined and non-negative for all probability measures on
.0;1/ because

ln
�

1�t
t

�

lnS�.t � 1/ D ln
�

1�t
t

�

ln

 

S�.t � 1/

S�.� 1
2
/

!

C ln
�

1�t
t

�

S�
�� 1

2

�

; (8.7)

where the first term on the right hand side is non-negative for all t 2 .0; 1/ and the
second term is integrable with integral 0.

Lemma 9. Let � be a probability measure on .0;1/, then

0 � 
.�/ � 	p
3

�Z 1

0

ln2 S�.t � 1/dt

�1=2

:

Furthermore, 
.�/ D 0 if and only if � is a Dirac measure. Moreover, equality

holds in the right inequality if and only if S�.z/ D
�

z
1Cz

��

for some � > 0 and in
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this case 
.�/ D � 	
2

3
. Additionally, if �1; �2 are probability measures on .0;1/

we have 
.�1 � �2/ D 
.�1/C 
.�2/.

Proof. We already have observed 
 � 0. For the second inequality observe that


.�/2 �
�Z 1

0

ln2
�

1 � t

t

�

dt

��Z 1

0

ln2 S�.t � 1/dt

�

by the Cauchy-Schwarz-inequality, where the first term equals 	2

3
by Lemma 8.

If � D ıa for some a > 0 we have S�.z/ D 1
a

, hence lnS�.t � 1/ is constant so
the oddity of ln. 1�t

t
/ gives us 
.�/ D 0. On the other hand, if 
.�/ D 0, the first

term in (8.7) has to integrate to 0, but by symmetry of ln
�

1�t
t

�

and the fact that S�
is decreasing, this implies that S� must be constant, hence � is a Dirac measure.

Equality in the second inequality, by the Cauchy-Schwarz inequality happens
precisely if lnS�.t � 1/ D � ln. 1�t

t
/ for some � > 0 which is the case if and only

if S�.t � 1/ D �

1�t
t

��
, and in this case 
.�/ D � 	

2

3
by Lemma 8.

For the last formula we use multiplicity of the S -transform to get


.�1 � �2/ D
Z 1

0

ln

�

1 � t

t

�

lnS�1��2.t � 1/dt

D
Z 1

0

ln

�

1 � t

t

�

�

lnS�1.t � 1/C lnS�2.t � 1/
�

dt

D 
.�1/C 
.�2/: ut

Proposition 2. Let � be a probability measure on .0;1/, and let � be defined as
in Theorem 2. Then

Z 1

0

ln2 xd�.x/ D
Z 1

0

ln2 S�.t � 1/dt C 2
.�/

Z 1

0

ln2 xd�.x/ D
Z 1

0

ln2 S�.t � 1/dt

V�.lnx/ D V�.ln x/C 2
.�/

as equalities of numbers in Œ0;1�, where V� .ln x/ denotes the variance of ln x with
respect to a probability measure � on .0;1/. Moreover,

0 � 
.�/ � 	p
3
V�.ln x/

1
2 :

Proof. We first prove the following identity

Z 1

0

ln2 u 0
�.�u/du D

Z 1

0

ln2 xd�.x/C 	2

3
: (8.8)
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Since  0.�u/ D R1
0

x
.1Cux/2

dx, we get by Tonelli’s theorem, that

Z 1

0

ln2 u 0
�.�u/du D

Z 1

0

�Z 1

0

ln2 u
x

.1C ux/2
du

�

d�.x/

D
Z 1

0

�Z 1

0

ln2
� v

x

� dv

.1C v/2

�

d�.x/:

Note next that
Z 1

0

ln2
�v

x

� dv

.1C v/2
D c0 C c1 ln x C c2 ln2 x

where c0 D R1
0

ln2 v
.1Cv/2 dv, c1 D �2 R1

0
ln v

.1Cv/2 dv, and c2 D R1
0

1
.1Cv/2 dv D 1.

Moreover, by the substitution v D 1
w one gets c1 D �c1 and hence c1 D 0. Finally,

by the substitution v D t
1�t ; 0 < t < 1 and Lemma 8,

c0 D
Z 1

0

ln2
�

t

1 � t
�

dt D 	2

3
:

Hence

Z 1

0

ln2 u �.�u/du D
Z 1

0

�

ln2 x C 	2

3

�

d�.x/

which proves (8.8). Next by the substitution t D  �.�u/C 1, we have

Z 1

0

ln2 u 0
�.�u/du D

Z 1

0

ln2
����.t � 1/

�

dt D (8.9)

Z 1

0

�

ln 1�t
t

C lnS�.t � 1/�2 dt:

Since t 7! ln
�

1�t
t

�

is square integrable on .0; 1/ the right hand side of (8.9) is finite
if and only if

Z 1

0

ln
�

S�.t � 1/
�2

dt < 1:

Hence by (8.8) and (8.9) this condition is equivalent to

Z 1

0

ln2 xd�.x/ < 1;
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so to prove the first equation in Proposition 2 is suffices to consider the case, where
the two above integrals are finite. In that case 
.�/ < 1 by Lemma 9. Thus by
Lemma 8 and the definition of 
.�/,

Z 1

0

�

ln

�

1 � t
t

�

C lnS�.t � 1/

�2

dt D
Z 1

0

ln2
�

S�.t � 1/
�

dt C 2
.�/C 	2

3
:

Hence by (8.8) and (8.9)

Z 1

0

ln2 xd�.x/ D
Z 1

0

ln2
�

S�.t � 1/� dt C 2
.�/:

The second equality in Proposition 2

Z 1

0

ln2 xd�.x/ D
Z 1

0

ln2 S�.t � 1/dt

follows from the substitution x D S�.t �1/�1 in case � is not a Dirac measure, and
it is trivially true for Dirac measures. By the first two equalities in Proposition 2, we
have

Z 1

0

ln2 xd�.x/ D
Z 1

0

ln2 xd�.x/C 2
.�/: (8.10)

If both sides of this equality are finite, then by Proposition 1,

Z 1

0

ln xd�.x/ D
Z 1

0

lnxd�.x/

where both integrals are well-defined. Combined with (8.10) we get

V�.ln x/ D V�.lnx/C 2
.�/ (8.11)

and if
R1
0 ln2 xd�.x/ D C1, both sides of (8.11) must be infinite by (8.10).

As the S -transform behaves linearly when scaling the probability distribution
in the sense that the image measure �c of � under x 7! cx for c > 0 gives us
S�c .z/ D c�1S�.z/ we have for 
 that


.�c/ D
Z 1

0

ln

�

1 � t

t

�

ln.c�1S�.t � 1//dt

D
Z 1

0

ln

�

1 � t

t

�

lnS�.t � 1/dt C
Z 1

0

ln

�

1 � t

t

�

c�1dt D 
.�/C 0
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by anti-symmetry of the second term around t D 1
2
. Using this for c D

exp .E�.lnx//, we get


.�/ D 
.�c/ � 	p
3

�Z 1

0

�

lnS�.t � 1/� E� .lnx/
�2

dt

�
1
2

D 	p
3

�Z 1

0

�

lnS�.t � 1/2 � 2E� .lnx/2 C E� .lnx/
2
�

dt

�
1
2

D 	p
3
.V�.lnx//

1
2 : ut

Now we can use the preceding lemmas to investigate the different behavior of
the multiplicative law of large numbers in classical and free probability. Note that
in classical probability for a family of identically distributed independent random
variables .Xi/1iD1 we have the identity V.ln.

Qn
iD1 Xi// D nV.lnX1/. In free

probability by Propositions 1 and 2 we have instead

V��n .ln t/

D
Z 1

0

ln2 td.��n/.t/ �
�Z 1

0

ln td.��n/.t/

�2

D
Z 1

0

ln2 S��n.t � 1/dz C 2
.��n/ �
�

�
Z 0

�1
lnS��n.z/dz

�2

D n2
Z 1

0

ln2 S�.t � 1/dz C 2n
.�/� n2
�Z 0

�1
lnS�.z/dz

�2

D n2V�.lnx/C 2n
.�/:

Hence V��n.ln t/ D nV�.ln t/ C n.n � 1/V�.ln t/ > nV�.ln t/ for n � 2 if � is
not a Dirac measure and V�.ln t/ < 1, which shows that the variance of ln t is not
in general additive.

Lemma 10. Let � be a probability measure on .0;1/ and let � be defined as in
Theorem 2. Then

Z 1

0

x�d�.x/ D sin.	�/

	�

Z 1

0

�

1 � t

t
S�.t � 1/

���
dt

for �1 < � < 1 and

Z 1

0

x�d�.x/ D
Z 1

0

S�.t � 1/��dt

for � 2 R as equalities of numbers in Œ0;1�.
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Proof. By Tonelli’s theorem followed by the substitution u D yx we get

Z 1

0

y�� 0
�.�y/dy D

Z 1

0

Z 1

0

y��x
.1C yx/2

dyd�.x/

D
Z 1

0

x�
Z 1

0

u��

.1C u/2
dud�.x/

D B.1 � �; 1C �/

Z 1

0

x�d�.x/;

where B.s; t/ D R1
0

us�1

.1Cu/sCt du is the Beta function. But B.1 � �; 1C �/ D sin.	�/
	�

by well-known properties of B . Substitute now x D ���.�z/ and z D 1 � t to get

Z 1

0

x�� 0
�.�x/dx D

Z 1

0

����.�z/
���

dz D
Z 1

0

�

1 � t
t
S�.t � 1/

���
dt;

which gives the first identity. The second identity follows from the substitution x D
S�.t � 1/�1 and the properties of � from Theorem 2. ut

8.5 Examples

In this section we will investigate a two parameter family of distributions for which
there can be made explicit calculations.

Proposition 3. Let ˛; ˇ � 0. There exists a probability measure �˛;ˇ on .0;1/

which S -transform is given by

S�˛;ˇ .z/ D .�z/ˇ

.1C z/˛
:

Furthermore, these measures form a two-parameter semigroup, multiplicative under
� induced by multiplication of .˛; ˇ/ 2 Œ0;1/ � Œ0;1/.

Proof. Note first that ˛ D ˇ D 0 gives S�0;0 D 1, which by uniqueness of the
S -transform results in �0;0 D ı1, hence we can in the following assume .˛; ˇ/ ¤
.0; 0/.

Define the function v˛;ˇ WC n Œ0; 1� ! C by

v˛;ˇ.z/ D ˇ ln.�z/ � ˛ ln.1C z/

for all z 2 C n Œ0; 1�.
In the following we for z 2 C denote by arg z 2 Œ�	; 	� its argument. Assume

z D x C iy and y > 0 then
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ln.�z/ D 1

2
ln
�

x2 C y2
�C i arg.�x � iy/

where arg.�x � iy/ < 0, which implies that ln.CC/ � C
�. Similarly, if we assume

z D x C iy and y > 0 then

ln.1C z/ D 1

2
ln
�

.x C 1/2 C y2
�C i arg..x C 1/C iy/

where arg..x C 1/ C iy/ > 0, which implies that � ln.1 C C
C/ � C

� and hence
v˛;ˇ.C

C/ � C
�. Furthermore, we observe that for all z 2 C, v˛;ˇ.Nz/ D v˛;ˇ.z/.

By [4, Theorem 6.13 (ii)] these results imply that there exists a unique �-infinitely
divisible measure �˛;ˇ with the S -transform

S�˛;ˇ .z/ D exp.v.z// D exp.ˇ ln.�z/ � ˛ ln.1C z// D .�z/ˇ

.1C z/˛
:

The semigroup property follows from multiplicativity of the S -transform. ut
The existence of �˛;0 was previously proven by T. Banica, S.T. Belinschi,

M. Capitaine and B. Collins in [2] as a special case of free Bessel laws. The case
�˛;˛ is known as a Boolean stable law from O. Arizmendi and T. Hasebe [1].

Furthermore, there is a clear relationship between the measures �˛;ˇ and �ˇ;˛ .

Lemma 11. Let ˛; ˇ � 0, .˛; ˇ/ ¤ .0; 0/ and let W .0;1/ ! .0;1/ be the map
.t/ D t�1. Then we have �ˇ;˛ D P.�˛;ˇ/, where P denotes the image measure
under the map .

Proof. Put � D P.�˛;ˇ/. Then by the proof of [7, Proposition 3.13],

S�.z/ D 1

S�˛;ˇ .�1 � z/
D .�z/˛

.1C z/ˇ
D S�ˇ;˛

for 0 < z < 1. Hence � D �ˇ;˛ . ut
Lemma 12. Let .˛; ˇ/ ¤ .0; 0/. Denote the limit measure corresponding to �˛;ˇ
by �˛;ˇ . Then �˛;ˇ is uniquely determined by the formula

F˛;ˇ

�

t˛

.1 � t/ˇ
�

D t

for 0 < t < 1, where F˛;ˇ.x/ D �˛;ˇ..0; x�/ is the distribution function of �˛;ˇ .

Proof. The lemma follows directly from Lemma 3 and Theorem 2. ut
For ˇ D 0 and ˛ > 0,

F˛;0.x/ D
(

x
1
˛ ; 0 < x < 1

1; x � 1:
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Similarly, for ˛ D 0 and ˇ > 0

F0;ˇ.x/ D
(

0; 0 < x < 1

.1 � x/
� 1
ˇ ; x � 1:

Hence �0;ˇ is the Pareto distribution with scale parameter 1 and shape parameter 1
ˇ

.

Moreover, if ˛ D ˇ > 0 we get F˛;˛.x/ D .1 C x�1=˛/�1 for x 2 .0;1/,
which we recognize as the image measure of the Burr distribution with parameters
.1; ˛�1/ (or equivalently the Fisk or log-logistic distribution (cf. [9, p. 54]) with
scale parameter 1 and shape parameter ˛�1) under the map x 7! x�1.

On the other hand, we can make some observations about the distribution �˛;ˇ ,
too. For the cases .˛; ˇ/ D .1; 0/ and .˛; ˇ/ D .0; 1/we can recognize the measures
�1;0 and �0;1 from their S -transform, as S�1;0.z/ D .1C z/�1 is the S -transform of
the free Poisson distributions with shape parameter 1 (cf. [18, p. 34]), which is
given by

�1;0 D 1

2	

r

4 � x

x
1.0;4/.x/dx;

while S�0;1.z/ D �z according to Lemma 11 is the S -transform of the image of the
above free Poisson distribution under the map t 7! t�1,

�0;1 D 1

2	

p
4x � 1
x2

1. 14 ;1/.x/dx;

which is the same as the free stable distribution with parameters ˛ D 1=2 and

 D 1 as described by H. Bercovici, V. Pata and P. Biane in [3, Appendix A1]. More
generally, �0;ˇ is the same as the free stable distribution v˛;
 with ˛ D 1

ˇC1 and


 D 1, because by [3, Appendix A4] v˛;1 is characterized by˙v˛;1.y/ D
� �y
1�y

� 1
˛�1

,

y 2 .�1; 0/, and it is easy to check that

Sv˛;0.z/ D ˙v˛;0

�

z

1C z

�

D .�z/
1
˛�1 D S�

0; 1˛ �1
.z/; 0 < z < 1; 0 < ˛ < 1:

From the above observations, we now can describe a construction of the measures
�m;n.

Proposition 4. Letm; n be nonnegative integers. Then the measure�m;n is given by

�m;n D ��m
1;0 � ��n

0;1 :

Proof. By multiplicativity of the S -transform we have that
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S
��m
1;0 ���n

0;1
.z/ D S�1;0.z/

mS�0;1 .z/
n D .�z/n

.1C z/m
D S�m;n.z/;

which by uniqueness of the S -transform gives the desired result. ut
Proposition 5. For all ˛; ˇ � 0

E�˛;ˇ .lnx/ D ˇ � ˛


.�˛;ˇ/ D 	2

6
.˛ C ˇ/

V�˛;ˇ .lnx/ D .˛ � ˇ/2 C 	2

3
.˛ˇ C ˛ C ˇ/:

Proof. These formulas follow easily from Propositions 1 and 2 and Lemma 8. ut
Furthermore, we also can calculate explicitly all fractional moments of �˛;ˇ by

the following theorem.

Theorem 3. Let ˛; ˇ > 0 and � 2 R then we have

Z 1

0

x�d�˛;ˇ.x/ D
(

sin.	�/
	�

� .1C�C�˛/� .1����ˇ/
� .2C�˛��ˇ/ � 1

1C˛ < � <
1

1Cˇ
1 otherwise

(8.12)

Z 1

0

x�d�˛;0.x/ D
(

� .1C�C�˛/
� .1C�/� .2C�˛/ � > � 1

1C˛
1 otherwise

(8.13)

Z 1

0

x�d�0;ˇ.x/ D
(

� .1����ˇ/
� .1��/� .2��ˇ/ � < 1

1Cˇ
1 otherwise.

(8.14)

Proof. Let first �1 < � < 1. Then (8.12)–(8.14) follow from Lemma 10 together
with the formula � .1C�/� .1��/ D 	�

sin.	�/ . Since S�˛;0 .z/ D 1
.zC1/˛ is analytic in

a neighborhood of 0, �˛;0 has finite moments of all orders. Therefore the functions

s 7!
Z 1

0

xsd�˛;0.x/

s 7! � .1C s C s˛/

� .1C s/� .2C s˛/

are both analytic in the half-plane <s > 0 and they coincide for s 2 .0; 1/. Hence
they are equal for all s 2 C with <s > 0 which proves (8.13). By Lemma 11 (8.14)
follows from (8.13). ut
Remark 4. By Theorem 3 (8.12) we have
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1. If ˇ > 0, then
R1
0 xd�˛;ˇ.x/ D 1. Hence sup.supp.�˛;ˇ// D 1. Similarly, if

˛ > 0 then
R1
0 x�1d�˛;ˇ.x/ D 1. Hence inf.supp.�˛;ˇ// D 0.

2. If ˇ D 0, then by Stirling’s formula

sup.supp.�˛;0// D lim
0!1

�Z 1

0

tnd�˛;0.t/

� 1
n

D .˛ C 1/˛C1

˛˛
:

Hence by Lemma 11, we have for ˛ D 0

inf.supp.�0;ˇ// D ˇˇ

.ˇ C 1/ˇC1 :

Note that sup.supp.�n;0// D .nC1/nC1

nn
; n 2 N was already proven by F. Larsen in

[10, Proposition 4.1] and it was proven by T. Banica, S. T. Belinschi, M. Capitane

and B. Collins in [2] that supp.�˛;0/ D
h

0;
.˛C1/˛C1

˛˛

i

. Note that this also follows

from our Corollary 3.

If ˛ D ˇ it is also possible to calculate explicitly the density of �˛;˛ . To do this
we require an additional lemma.

Lemma 13. For �1 < � < 1 and �	 < � < 	 we have

sin �

	

Z 1

0

t�

t2 C 2 cos.�/t C 1
dt D sin.��/

sin.	�/
:

Proof. Note first that by the substitution t D ex we have

Z 1

0

t�

t2 C 2 cos.�/t C 1
dt D 1

2

Z 1

�1
e�x

coshx C cos �
dx:

The function

z 7! e�x

coshx C cos �

is meromorphic with simple poles in x D ˙i.	 ��/Cp2	 , p 2 Z. Apply now the
residue integral formula to this function on the boundary of

fz 2 C W �R � <z � R; 0 � =z � 2	g

and let R ! 1. The result follows. ut
The density of �˛;˛ was computed by P. Biane [5, Sect. 5.4]. For completeness

we include a different proof based on Theorem 3 and Lemma 13.



8 The Law of Large Numbers for the Free Multiplicative Convolution 179

Theorem 4 ([5]). Let ˛ > 0 then �˛;˛ has the density f˛;˛.t/dt , where

f˛;˛.t/ D sin
�

	
˛C1

�

	t
�

t
1

˛C1 C 2 cos
�

	
˛C1

�C t�
1

˛C1

�

for t 2 .0;1/. In particular �1;1 has the density .	
p
t.1 C t//�1dt and �2;2 has

the density

p
3

2	.1C t
2
3 C t

4
3 /

dt:

Proof. To prove this note that for j� j < 1
1C˛

Z 1

0

x�f˛;˛.x/dx D
Z 1

0

sin
�

	
˛C1

�

.˛ C 1/y�.˛C1/

	
�

y C 2 cos
�

	
˛C1

�C y�1�
dy

y

D .˛ C 1/ sin
�

	
˛C1

�

	

Z 1

0

y�.˛C1/

y2 C 2 cos
�

	
˛C1

�

y C 1
dy

using the substitution y D x
1

˛C1 . Now by Lemma 13 and Theorem 3 (8.12) we have

Z 1

0

x�f˛;˛.x/dx D
Z 1

0

x�d�˛;˛.x/ < 1:

This implies by unique analytic continuation that the same formula holds for all
� 2 C with j<� j < 1

˛C1 . In particular

Z 1

0

xisf˛;˛.x/dx D
Z 1

0

xisd�˛;˛.x/

for all s 2 R, which shows that the image measures under x 7! ln x of f˛;˛.x/dx
and �˛;˛ have the same characteristic function. Hence �˛;˛ D f˛;˛.x/dx. ut
Proposition 6. For all ˛; ˇ � 0, .˛; ˇ/ ¤ .0; 0/, the measure �˛;ˇ has a
continuous density f˛;ˇ.x/, .x > 0/, with respect to the Lebesgue measure on R and

lim
x!0C

xf˛;ˇ.x/ D lim
x!1 xf˛;ˇ.x/ D 0: (8.15)

Proof. By the method of proof of Theorem 4, the integral

h˛;ˇ.s/ D
Z 1

0

xisd�˛;ˇ.x/; s 2 R
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can be obtained by replacing � by is in the formulas (8.12)–(8.14). Moreover,

h˛;ˇ.s/ D
Z 1

0

exp.ist/d�˛;ˇ.t/

where �˛;ˇ is the image measure of �˛;ˇ by the map x 7! logx, .x > 0/. Hence
by standard Fourier analysis, we know that if h˛;ˇ 2 L1.R/ then �˛;ˇ has a density
g˛;ˇ 2 C0.R/with respect to the Lebesgue measure on R and hence�˛;ˇ has density
f˛;ˇ.x/ D 1

x
g˛;ˇ.logx/ for x > 0, which satisfies the condition (8.15). To prove

that h˛;ˇ 2 L1.R/ for all ˛; ˇ � 0, .˛; ˇ/ ¤ .0; 0/, we observe first that

� .1 � z/� .1C z/ D 	z

sin	z
; z 2 C n Z

and hence by the functional equation of �

� .2 � z/� .2C z/ D 	z.1 � z2/

sin	z
; z 2 C n Z:

In particular, we have

j� .1C is/j2 D 	s

sinh	s
; s 2 R

j� .2C is/j2 D 	s.1C s2/

sinh	s
; s 2 R:

Applying these formulas to (8.12)–(8.14) with � replaced by is, we get

h˛;ˇ.s/ D O
�jsj�3=2� ; for s ! ˙1

for all choices of ˛; ˇ � 0, .˛; ˇ/ ¤ .0; 0/. Thus by the continuity of h˛;ˇ it follows
that h˛;ˇ 2 L1.R/, which proves the proposition. ut

Note that by Remark 4 it follows that f˛;0.x/ can only be non-zero if x 2
�

0;
.˛C1/˛C1

˛˛

�

and f0;ˇ.x/ can only be non-zero if x 2
�

ˇˇ

.ˇC1/ˇC1 ;1
�

. Since we

have seen, that �0;ˇ coincides with the stable distribution v˛;
 with ˛ D 1
ˇC1 and


 D 1 we have from [3, Appendix 4] that

Theorem 5 ([3]). The map

� 7! sin � sinˇ.ˇ�/

sinˇC1..ˇ C 1/�/
; 0 < � <

	

ˇ C 1

is a bijection of the interval
�

0; 	
ˇC1

�

onto
�

ˇˇ

.ˇC1/ˇC1 ;1
�

and
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f�0;ˇ

 

sin � sinˇ.ˇ�/

sinˇC1..ˇ C 1/�/

!

D sinˇC2..ˇ C 1/�/

	 sinˇC1.ˇ�/
; 0 < � <

	

ˇ C 1
: (8.16)

Proof. We know that �0;ˇ D v 1
ˇC1 ;1

, the stable distribution with parameters ˛ D
1

ˇC1 and 
 D 1. Moreover, we have from [3, Proposition A1.4], that v˛;1 has density

 ˛;1 on the interval
�

˛.1 � ˛/1=˛�1;1�

given by

 ˛;1.x/ D 1

	
sin1C

1
˛ � sin� 1

˛ ..1 � ˛/�/;

where � 2 .0; 	/ is the only solution to the equation

x D sin� 1
˛ � sin

1
˛�1..1 � ˛/�/ sin ˛�:

It is now easy to check that f0;ˇ.x/ D  1
ˇC1 ;1

.x/ has the form (8.16) by using the

substitution � D �
ˇC1 . ut

Corollary 3. The map

� 7! sin˛C1..˛ C 1/�/

sin� sin˛.˛�/
; 0 < � <

	

˛ C 1

is a bijection of the interval
�

0; 	
˛C1

�

onto
�

0;
.˛C1/˛C1

˛˛

�

and

f�˛;0

 

sin˛C1..˛ C 1/�/

sin � sin˛.˛�/

!

D sin2 � sin˛�1.˛�/
	 sin˛..˛ C 1/�/

; 0 < � <
	

˛ C 1
:

Proof. Since �˛;0 is the image measure of �0;˛ by the map t 7! 1
t
, .t > 0/, we have

f˛;0.x/ D 1

x2
f0;˛

�

1

x

�

; x > 0:

The corollary now follows from Theorem 5 by elementary calculations. ut
We next use Biane’s method to compute the density f˛;ˇ for all ˛; ˇ > 0.

Theorem 6. Let ˛; ˇ > 0. Then for each x > 0 there are unique real numbers
�1; �2 > 0 for which

	 D .˛ C 1/�1 C .ˇ C 1/�2 (8.17)

x D sin˛C1 �2
sinˇC1 �1

sinˇ�˛.�1 C �2/: (8.18)
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Moreover

f�˛;ˇ .x/ D sinˇC2 �1
	 sin˛ �2

sin˛�ˇ�1.�1 C �2/: (8.19)

Proof. As �˛;ˇ has the S -transform S�˛;ˇ .z/ D .�z/ˇ

.1Cz/˛ we by Definition 1 observe
that

��˛;ˇ .z/ D �.�z/ˇC1

.1C z/˛C1 whence  �˛;ˇ

�

� .�z/ˇC1

.1C z/˛C1

�

D z

for z in some complex neighborhood of .�1; 0/. Now it is known that

G�

�

1

t

�

D t
�

1C  �.t/
�

for every probability measure on .0;1/. Hence

G�˛;ˇ

�

� .1C z/˛C1

.�z/ˇC1

�

D � .�z/ˇC1

.1C z/˛
(8.20)

for z in a complex neighborhood of .�1; 0/.
Let H denote the upper half plane in C:

H D fz 2 C W =z > 0g:

For z 2 H , put

�1 D �1.z/ D arg.1C z/ 2 .0; 	/
�2 D �2.z/ D 	 � arg.z/ 2 .0; 	/:

Basic trigonometry applied to the triangle with vertices �1, 0 and z, shows that
�1 C �2 < 	 and

sin �1
jzj D sin�2

j1C zj D sin.	 � �1 � �2/
1

:

Hence

jzj D sin �1
sin.�1 C �2/

and j1C zj D sin�2
sin.�1 C �2/

from which
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z D � sin�1
sin.�1 C �2/

ei�2 and =z D sin�1 sin �2
sin.�1 C �2/

:

It follows that ˚ W z 7! .�1.z/; �2.z// is a diffeomorphism of H onto the triangle
T D f.�1; �2/ 2 R

2 W �1; �2 > 0; �1 C �2 < 	g with inverse

˚�1.�1; �2/ D � sin �1
sin.�1 C �2/

e�i�2 ; .�1; �2/ 2 T:

PutH˛;ˇ D fz 2 H W .˛C1/�1.z/C.ˇC1/�2.z/ < 	g. ThenH˛;ˇ D ˚�1 �T˛;ˇ
�

where T˛;ˇ D f.�1; �2/ 2 T W .˛ C 1/�1 C .ˇ C 1/�2 < 	g:
In particularH˛;ˇ is an open connected subset ofH . Put

F.z/ D � .1C z/˛C1

.�z/ˇC1 ; =z > 0:

Then

F.z/ D j1C zj˛C1

jzjˇC1 ei..˛C1/�1.z/C.ˇC1/�2.z/�	/ (8.21)

so for z 2 H˛;ˇ , =F.z/ < 0. Therefore G�˛;ˇ .F.z// is a well-defined analytic
function on H˛;ˇ , and since .�1; 0/ is contained in the closure of H˛;ˇ it follows
from (8.20)

G�˛;ˇ .F.z// D 1C z

F.z/
(8.22)

for z in some open subset of H˛;ˇ and thus by analyticity it holds for all z 2 H˛;ˇ .
Let x > 0 and assume that �1; �2 > 0 satisfy (8.17) and (8.18). Put

z D ˚�1.�1; �2/ D � sin �1
sin.�1 C �2/

e�i�2 :

Then by (8.21)

F.z/ D j1C zj˛C1

jzjˇC1 D
�

sin�2
sin.�1 C �2/

�˛C1 � sin.�1 C �2/

sin �1

�ˇC1
D x:

Since �˛;ˇ has a continuous density f˛;ˇ on .0;1/ by Proposition 6, the inverse
Stieltjes transform gives

f˛;ˇ.x/ D � 1
	

lim
w!x;=w>0

=G�˛;ˇ .w/ D 1

	
lim

w!x;=w<0
=G�˛;ˇ .w/:
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For 0 < t < 1, put zt D ˚�1.t�1; t�2/. Then

zt 2 ˚�1 �T˛;ˇ
� D H˛;ˇ:

Thus =F.zt / < 0. Moreover, zt ! z and F.zt / ! F.z/ D x for t ! 1�. Hence by
(8.22),

f˛;ˇ.x/ D 1

	
lim
t!1�

=G�˛;ˇ .F .zt // D 1

	
lim
t!1�

=
�

zt C 1

F.zt /

�

D =z

	x
D sin�1 sin�2
	x sin.�1 C �2/

which proves (8.19). To complete the proof of Theorem 6, we only need to prove
the existence and uniqueness of �1; �2 > 0. Assume that �1; �2 satisfy (8.17) then

�1 D 	 � �

˛ C 1
and �2 D �

ˇ C 1

for a unique � 2 .0; 	/. Moreover,

d�1
d�

D � 1

˛ C 1
and

d�2
d�

D 1

ˇ C 1
:

Hence, expressing u D sin˛C1 �2

sinˇC1 �1
sinˇ�˛.�1 C �2/ as a function u.�/ of � , we get

.˛ C 1/.ˇ C 1/
du.�/

d�
D .ˇ C 1/2 cot�1 C .˛ C 1/2 cot�2 � 2.˛ � ˇ/2 cot.�1 C �2/

D A.�1; �2/

sin�1 sin�2 sin.�1 C �2/

where

A.�1; �2/ D ..˛ C 1/ sin�1 cos�2 C .ˇ C 1/ cos �1 sin�2/
2 C .˛ � ˇ/2 sin2 �1 sin2 �2:

For ˛ ¤ ˇ A.�1; �2/ � .˛ � ˇ/2 sin2 �1 sin2 �2 > 0 and for ˛ D ˇ A.�1; �2/ D
.˛C1/2 sin.�1C�2/ > 0. Hence u.�/ is a differentiable, strictly increasing function
of � , and it is easy to check that

lim
�!0C

u.�/ D 0 and lim
�!	�

u.�/ D 1:

Hence u.�/ is a bijection of .0; 	/ onto .0;1/, which completes the proof of
Theorem 6. ut
Remark 5. It is much more complicated to express the densities f˛;ˇ.x/ directly
as functions of x. This has been done for ˇ D 0, ˛ 2 N by K. Penson and
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K. Życzkowski in [13] and extended to the case ˛ 2 Q
C by W. Młotkowski,

K. Penson and K. Życzkowski in [12, Theorem 3.1].
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