
Chapter 3
Projective Dimension in Filtrated K-Theory

Rasmus Bentmann

Abstract Under mild assumptions, we characterise modules with projective res-
olutions of length n 2 N in the target category of filtrated K-theory over a finite
topological space in terms of two conditions involving certain Tor-groups. We show
that the filtrated K-theory of any separable C �-algebra over any topological space
with at most four points has projective dimension 2 or less. We observe that this
implies a universal coefficient theorem for rational equivariant KK-theory over these
spaces. As a contrasting example, we find a separable C �-algebra in the bootstrap
class over a certain five-point space, the filtrated K-theory of which has projective
dimension 3. Finally, as an application of our investigations, we exhibit Cuntz-
Krieger algebras which have projective dimension 2 in filtrated K-theory over their
respective primitive spectrum.
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3.1 Introduction

A far-reaching classification theorem in [7] motivates the computation of
Eberhard Kirchberg’s ideal-related Kasparov groups KK.X IA;B/ for separable
C �-algebras A and B over a non-Hausdorff topological space X by means of
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K-theoretic invariants. We are interested in the specific case of finite spaces here.
In [10,11], Ralf Meyer and Ryszard Nest laid out a theoretic framework that allows
for a generalisation of Jonathan Rosenberg’s and Claude Schochet’s universal
coefficient theorem [16] to the equivariant setting. Starting from a set of generators
of the equivariant bootstrap class, they define a homology theory with a certain
universality property, which computes KK.X/-theory via a spectral sequence.
In order for this universal coefficient spectral sequence to degenerate to a short
exact sequence, it remains to be checked by hand that objects in the range of the
homology theory admit projective resolutions of length 1 in the Abelian target
category.

Generalising earlier results from [3, 11, 15] the verification of the condition
mentioned above for filtrated K-theory was achieved in [2] for the case that
the underlying space is a disjoint union of so-called accordion spaces. A finite
connected T0-space X is an accordion space if and only if the directed graph
corresponding to its specialisation pre-order is a Dynkin quiver of type A. Moreover,
it was shown in [2, 11] that, if X is a finite T0-space which is not a disjoint union
of accordion spaces, then the projective dimension of filtrated K-theory over X is
not bounded by 1 and objects in the equivariant bootstrap class are not classified
by filtrated K-theory. The assumption of the separation axiom T0 is not a loss of
generality in this context (see [9, §2.5]).

There are two natural approaches to tackle the problem arising for non-accordion
spaces: one can either try to refine the invariant—this has been done with some
success in [11] and [1]; or one can hold onto the invariant and try to establish
projective resolutions of length 1 on suitable subcategories or localisations of the
category KK.X/, in which X -equivariant KK-theory is organised. The latter is the
course we pursue in this note. We state our results in the next section.

3.2 Statement of Results

The definition of filtrated K-theory and related notation are recalled in Sect. 3.3.

Proposition 1. LetX be a finite topological space. Assume that the ideal N T nil �
N T �.X/ is nilpotent and that the decomposition N T �.X/ D N T nil Ì N T ss

holds. Fix n 2 N. For an N T �.X/-module M , the following assertions are
equivalent:

1. M has a projective resolution of length n.
2. The Abelian group TorN T �.X/

n .N T ss;M / is free and the Abelian group

TorN T �.X/
nC1 .N T ss;M / vanishes.

The basic idea of this paper is to compute the Tor-groups above by writing down
projective resolutions for the fixed right-module N T ss.

LetZm be the .mC1/-point space on the set f1; 2; : : : ; mC1g such that Y � Zm
is open if and only if Y 3 mC1 or Y D ;. A C �-algebra overZm is a C �-algebraA
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with a distinguished ideal such that the corresponding quotient decomposes as a
direct sum of m orthogonal ideals. Let S be the set f1; 2; 3; 4g equipped with the
topology f;; 4; 24; 34; 234; 1234g, where we write 24 :D f2; 4g etc. A C �-algebra
over S is a C �-algebra together with two distinguished ideals which need not satisfy
any further conditions; see [9, Lemma 2.35].

Proposition 2. Let X be a topological space with at most 4 points. Let M D
FK.A/ for some C �-algebra A over X . Then M has a projective resolution of
length 2 and TorN T �

2 .N T ss;M / D 0.
Moreover, we can find explicit formulas for TorN T �

1 .N T ss;M /; for instance,

TorN T �.Z3/
1 .N T ss;M / is isomorphic to the homology of the complex

3M

jD1
M.j4/

�
i �i 0�i 0 i
0 i �i

�

��������!
3M

kD1
M.1234 n k/ . i i i /����! M.1234/ : (3.1)

A similar formula holds for the space S ; see (3.6).

The situation simplifies if we consider rational KK.X/-theory, whose morphism
groups are given by KK.X IA;B/ ˝ Q; see [6]. This is a Q-linear triangulated
category which can be constructed as a localisation of KK.X/; the corresponding
localisation of filtrated K-theory is given by A 7! FK.A/˝ Q and takes values in
the category of modules over the Q-linear category N T �.X/˝ Q.

Proposition 3. Let X be a topological space with at most 4 points. Let A and B be
C �-algebras over X . If A belongs to the equivariant bootstrap class B.X/, then
there is a natural short exact universal coefficient sequence

Ext1
N T �.X/˝Q

�
FK�C1.A/˝ Q;FK�.B/˝ Q

�
� KK�.X IA;B/˝ Q

� HomN T �.X/˝Q

�
FK�.A/˝ Q;FK�.B/˝ Q

�
:

In [6], a long exact sequence is constructed which in our setting, by the above
proposition, reduces the computation of KK�.X IA;B/, up to extension problems,
to the computation of a certain torsion theory KK�.X IA;BIQ=Z/.

The next proposition says that the upper bound of 2 for the projective dimension
in Proposition 2 does not hold for all finite spaces.

Proposition 4. There is an N T �.Z4/-module M of projective dimension 2 with
free entries and TorN T �

2 .N T ss;M / ¤ 0. The module M ˝Z Z=k has projective
dimension 3 for every k 2 N�2. Both M and M ˝Z Z=k can be realised as the
filtrated K-theory of an object in the equivariant bootstrap class B.X/.

As an application of Proposition 2 we investigate in Sect. 3.10 the obstruction
term TorN T �

1

�
N T ss;FK.A/

�
for certain Cuntz-Krieger algebras with four-point

primitive ideal spaces. We find:
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Proposition 5. There is a Cuntz-Krieger algebra with primitive ideal space
homeomorphic to Z3 which fulfills Cuntz’s condition (II) and has projective
dimension 2 in filtrated K-theory overZ3. The analogous statement for the space S
holds as well.

The relevance of this observation lies in the following: if Cuntz-Krieger algebras
had projective dimension at most 1 in filtrated K-theory over their primitive ideal
space, this would lead to a strengthened version of Gunnar Restorff’s classification
result [14] with a proof avoiding reference to results from symbolic dynamics.

3.3 Preliminaries

Let X be a finite topological space. A subset Y � X is called locally closed if it
is the difference U n V of two open subsets U and V of X ; in this case, U and V
can always be chosen such that V � U . The set of locally closed subsets of X is
denoted by LC.X/. By LC.X/�, we denote the set of non-empty, connected locally
closed subsets of X .

Recall from [9] that a C �-algebra over X is pair .A; / consisting of a
C �-algebra A and a continuous map  W Prim.A/ ! X . A C �-algebra .A; /
over X is called tight if the map  is a homeomorphism. A C �-algebra .A; /
over X comes with distinguished subquotients A.Y / for every Y 2 LC.X/.

There is an appropriate version KK.X/ of bivariant K-theory for C �-algebras
over X (see [7, 9]). The corresponding category, denoted by KK.X/, is equipped
with the structure of a triangulated category (see [12]); moreover, there is an
equivariant analogue B.X/ � KK.X/ of the bootstrap class [9].

Recall that a triangulated category comes with a class of distinguished candidate
triangles. An anti-distinguished triangle is a candidate triangle which can be
obtained from a distinguished triangle by reversing the sign of one of its three
morphisms. Both distinguished and anti-distinguished triangles induce long exact
Hom-sequences.

As defined in [11], for Y 2 LC.X/, we let FKY .A/ :D K�
�
A.Y /

�
denote the

Z=2-graded K-group of the subquotient of A associated to Y . Let N T .X/ be the
Z=2-graded pre-additive category whose object set is LC.X/ and whose space of
morphisms from Y to Z is N T �.X/.Y;Z/—the Z=2-graded Abelian group of all
natural transformations FKY ) FKZ . Let N T �.X/ be the full subcategory with
object set LC.X/�. We often abbreviate N T �.X/ by N T �.

Every open subset of a locally closed subset of X gives rise to an extension of
distinguished subquotients. The corresponding natural maps in the associated six-
term exact sequence yield morphisms in the category N T , which we briefly denote
by i , r and ı.

A (left-)module over N T .X/ is a grading-preserving, additive functor from
N T .X/ to the category AbZ=2 of Z=2-graded Abelian groups. A morphism of
N T .X/-modules is a natural transformation of functors. Similarly, we define
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left-modules over N T �.X/. By Mod
�
N T �.X/

�
c we denote the category of

countable N T �.X/-modules.
Filtrated K-theory is the functor KK.X/ ! Mod

�
N T �.X/

�
c which takes a

C �-algebra A over X to the collection
�
K�.A.Y //

�
Y2LC.X/� equipped with the

obvious N T �.X/-module structure.
Let N T nil � N T � be the ideal generated by all natural transformations

between different objects, and let N T ss � N T � be the subgroup spanned by
the identity transformations idYY for objects Y 2 LC.X/�. The subgroup N T ss is
in fact a subring of N T � isomorphic to Z

LC.X/� . We say that N T � decomposes
as semi-direct product N T � D N T nil Ì N T ss if N T � as an Abelian group is
the inner direct sum of N T nil and N T ss; see [2,11]. We do not know if this fails
for any finite space.

We define right-modules over N T �.X/ as contravariant, grading-preserving,
additive functors N T �.X/ ! AbZ=2. If we do not specify between left and right,
then we always mean left-modules. The subring N T ss � N T � is regarded as
an N T �-right-module by the obvious action: The ideal N T nil � N T � acts
trivially, while N T ss acts via right-multiplication in N T ss Š Z

LC.X/� . For an
N T �-moduleM , we set Mss :D M=N T nil �M .

For Y 2 LC.X/� we define the free N T �-left-module on Y by
PY .Z/ :D N T .Y;Z/ for all Z 2 LC.X/� and similarly for morphisms
Z ! Z0 in N T �. Analogously, we define the free N T �-right-module on Y
by QY .Z/ :D N T .Z; Y / for all Z 2 LC.X/�. An N T �-left/right-module
is called free if it is isomorphic to a direct sum of degree-shifted free left/right-
modules on objects Y 2 LC.X/�. It follows directly from Yoneda’s Lemma that
free N T �-left/right-modules are projective.

An N T -moduleM is called exact if the Z=2-graded chain complexes

� � � ! M.U /
iYU�! M.Y /

r
Y nU
Y���! M.Y n U /

ıU
Y nU���! M.U /Œ1� ! � � �

are exact for all U; Y 2 LC.X/ with U open in Y . An N T �-module M is called
exact if the corresponding N T -module is exact (see [2]).

We use the notation C 22 C to denote that C is an object in a category C .
In [11], the functors FKY are shown to be representable, that is, there are objects

RY 22 KK.X/ and isomorphisms of functors FKY Š KK�.X I RY ; /. We let cFK
denote the stable cohomological functor on KK.X/ represented by the same set of
objects fRY j Y 2 LC.X/�g; it takes values in N T �-right-modules. We warn
that KK�.X IA;RY / does not identify with the K-homology of A.Y /. By Yoneda’s
lemma, we have FK.RY / Š PY and cFK.RY / Š QY .

We occasionally use terminology from [10, 11] concerning homological algebra
in KK.X/ relative to the ideal I :D ker.FK/ of morphisms in KK.X/ inducing
trivial module maps on FK. An object A 22 KK.X/ is called I-projective if
I.A;B/ D 0 for every B 22 KK.X/. We recall from [10] that FK restricts to
an equivalence of categories between the subcategories of I-projective objects in
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KK.X/ and of projective objects in Mod
�
N T �.X/

�
c. Similarly, the functor cFK

induces a contravariant equivalence between the I-projective objects in KK.X/ and
projective N T �-right-modules.

3.4 Proof of Proposition 1

Recall the following result from [11].

Lemma 1 ([11, Theorem 3.12]). Let X be a finite topological space. Assume
that the ideal N T nil � N T �.X/ is nilpotent and that the decomposition
N T �.X/ D N T nil Ì N T ss holds. Let M be an N T �.X/-module. The
following assertions are equivalent:

1. M is a free N T �.X/-module.
2. M is a projective N T �.X/-module.

3. Mss is a free Abelian group and TorN T �.X/
1 .N T ss;M / D 0.

Now we prove Proposition 1. We consider the case n D 1 first. Choose an
epimorphism f WP � M for some projective moduleP , and letK be its kernel.M
has a projective resolution of length 1 if and only if K is projective. By Lemma 1,
this is equivalent to Kss being a free Abelian group and TorN T �

1 .N T ss; K/ D 0.
We have TorN T �

1 .N T ss; K/ D 0 if and only if TorN T �

2 .N T ss;M / D 0

because these groups are isomorphic. We will show that Kss is free if and only if
TorN T �

1 .N T ss;M / is free. The extension K � P � M induces the following
long exact sequence:

0 ! TorN T �

1 .N T ss;M / ! Kss ! Pss ! Mss ! 0 :

Assume that Kss is free. Then its subgroup TorN T �

1 .N T ss;M / is free as well.
Conversely, if TorN T �

1 .N T ss;M / is free, thenKss is an extension of free Abelian
groups and thus free. Notice that Pss is free because P is projective. The general
case n 2 N follows by induction using an argument based on syzygies as above.
This completes the proof of Proposition 1.

3.5 Free Resolutions for N T ss

The N T �-right-module N T ss decomposes as a direct sum
L

Y2LC.X/� SY of the
simple submodules SY which are given by SY .Y / Š Z and SY .Z/ D 0 forZ ¤ Y .
We obtain

TorN T �

n .N T ss;M / D
M

Y2LC.X/�
TorN T

n .SY ;M/ :
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Our task is then to write down projective resolutions for the N T �-right-
modules SY . The first step is easy: we map QY onto SY by mapping the class
of the identity in QY .Y / to the generator of SY .Y /. Extended by zero, this yields
an epimorphismQY � SY .

In order to surject onto the kernel of this epimorphism, we use the indecompos-
able transformations in N T � whose range is Y . Denoting these by �i WWi ! Y ,
1 � i � n, we obtain the two step resolution

nM

iD1
QWi

. �1 �2 ��� �n /��������! QY � SY :

In the notation of [11], the map
Ln

iD1 QWi ! QY corresponds to a morphism
�W RY ! Ln

iD1 RWi of I-projectives in KK.X/. If the mapping cone C� of � is

again I-projective, the distinguished triangle ˙C� ! RY

��! Ln
iD1RWi ! C�

yields the projective resolution

� � � ! QY ! Q�Œ1� !
nM

iD1
QWi Œ1� ! QY Œ1� ! Q� !

nM

iD1
QWi ! QY � SY ;

whereQ� D FK.C�/. We denote periodic resolutions like this by

Q�
�� Ln

iD1 QWi
�� QY ! SY :

ı
��

If the mapping cone C� is not I-projective, the situation has to be investigated
individually. We will see examples of this in Sects. 3.7 and 3.9. The resolutions
we construct in these cases exhibit a certain six-term periodicity as well. However,
they begin with a finite number of “non-periodic steps” (one in Sect. 3.7 and
two in Sect. 3.9), which can be considered as a symptom of the deficiency of
the invariant filtrated K-theory over non-accordion spaces from the homological
viewpoint. We remark without proof that the mapping cone of the morphism
�W RY ! Ln

iD1RWi is I-projective for every Y 2 LC.X/� if and only if X is
a disjoint union of accordion spaces.

3.6 Tensor Products with Free Right-Modules

Lemma 2. Let M be an N T �-left-module. There is an isomorphism QY ˝N T �

M Š M.Y / of Z=2-graded Abelian groups which is natural in Y 22 N T �.

Proof. This is a simple consequence of Yoneda’s lemma and the tensor-hom
adjunction.
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Lemma 3. Let

˙R.3/

��! R.1/

˛�! R.2/

ˇ�! R.3/

be a distinguished or anti-distinguished triangle in KK.X/, where

R.i/ D
miM

jD1
RY ij

˚
niM

kD1
˙RZik

for 1 � i � 3, mi; ni 2 N and Y ij ; Z
i
k 2 LC.X/�. Set Q.i/ D cFK.R.i//.

If M D FK.A/ for some A 22 KK.X/, then the induced sequence

Q.1/ ˝N T � M
˛�˝idM

�� Q.2/ ˝N T � M
ˇ�˝idM

�� Q.3/ ˝N T � M

��˝idM
��

Q.3/ ˝N T � MŒ1�

��˝idM Œ1�

��

Q.2/ ˝N T � MŒ1�
ˇ�˝idM Œ1�

�� Q.1/ ˝N T � MŒ1�
˛�˝idM Œ1�

��

(3.2)

is exact.

Proof. Using the previous lemma and the representability theorem, we naturally
identify Q.i/ ˝N T � M Š KK�.X I R.i/; A/. Since, in triangulated categories,
distinguished or anti-distinguished triangles induce long exact Hom-sequences, the
sequence (3.2) is thus exact.

3.7 Proof of Proposition 2

We may restrict to connected T0-spaces. In [9], a list of isomorphism classes of
connected T0-spaces with three or four points is given. If X is a disjoint union of
accordion spaces, then the assertion follows from [2]. The remaining spaces fall into
two classes:

1. All connected non-accordion four-point T0-spaces except for the pseudocircle;
2. The pseudocircle (see Sect. 3.7.2).

The spaces in the first class have the following in common: If we fix two of them, say
X , Y , then there is an ungraded isomorphism˚ W N T �.X/ ! N T �.Y / between
the categories of natural transformations on the respective filtrated K-theories such
that the induced equivalence of ungraded module categories
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˚�WModungr�N T �.Y /
�

c ! Modungr�N T �.X/
�

c

restricts to a bijective correspondence between exact ungraded N T �.Y /-modules
and exact ungraded N T �.X/-modules. Moreover, the isomorphism ˚ restricts to
an isomorphism from N T ss.X/ onto N T ss.Y / and one from N T nil.X/ onto
N T nil.Y /. In particular, the assertion holds for X if and only if it holds for Y .

The above is a consequence of the investigations in [1, 2, 11]; the same kind of
relation was found in [2] for the categories of natural transformations associated to
accordion spaces with the same number of points. As a consequence, it suffices to
verify the assertion for one representative of the first class—we chooseZ3—and for
the pseudocircle.

3.7.1 Resolutions for the Space Z3

We refer to [11] for a description of the category N T �.Z3/, which in partic-
ular implies, that the space Z3 satisfies the conditions of Proposition 1. Using
the extension triangles from [11, (2.5)], the procedure described in Sect. 3.5
yields the following projective resolutions induced by distinguished triangles as in
Lemma 3:

Q1Œ1� �� Q4
�� Q14 ! S14 ;

ı��
and similarly for S24, S34;

Q1234Œ1� �� Q1Œ1�˚Q2Œ1�˚Q3Œ1� �� Q4 ! S4 I
ı��

Q234
�� Q1234

�� Q1 ! S1 ;

ı��
and similarly for S2, S3.

Next we will deal with the modules Sjk4, where 1 � j < k � 3. We observe
that there is a Mayer-Vietoris type exact sequence of the form

Q4
�� Qj4 ˚Qk4

�� Qjk4

ı
��

: (3.3)

Lemma 4. The candidate triangle ˙R4 ! Rjk4 ! Rj 4 ˚ Rk4 ! R4

corresponding to the periodic part of the sequence (3.3) is distinguished or anti-
distinguished (depending on the choice of signs for the maps in (3.3)).

Proof. We give the proof for j D 1 and k D 2. The other cases follow from cyclicly
permuting the indices 1, 2 and 3. We denote the morphism R124 ! R14 ˚ R24

by ' and the corresponding map Q14 ˚ Q24 ! Q124 in (3.3) by '�. It suffices
to check that cFK.Cone'/ and Q4 correspond, possibly up to a sign, to the same
element in Ext1

N T �.Z3/op

�
ker.'�/; coker.'�/Œ1�

�
. We have coker.'�/ Š S124 and an
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extension S124Œ1� � Q4 � ker.'�/. Since Hom.Q4; S124Œ1�/ Š S124.4/Œ1� D 0

and Ext1.Q4; S124Œ1�/ D 0 because Q4 is projective, the long exact Ext-sequence
yields Ext1

�
ker.'�/; coker.'�/Œ1�

� Š Hom.S124Œ1�; S124Œ1�/ Š Z. Considering the

sequence of transformations 3
ı�! 124

i�! 1234
r�! 3, it is straight-forward to check

that such an extension corresponds to one of the generators ˙1 2 Z if and only if
its underlying module is exact. This concludes the proof because both cFK.Cone'/
andQ4 are exact.

Hence we obtain the following projective resolutions induced by distinguished
or anti-distinguished triangles as in Lemma 3:

Q4
�� Qj4 ˚Qk4

�� Qjk4 ! Sjk4

ı
��

:

To summarize, by Lemma 3, TorN T �

n .SY ;M/ D 0 for Y ¤ 1234 and n � 1.
As we know from [11], the subset 1234 of Z3 plays an exceptional role. In the

notation of [11] (with the direction of the arrows reversed because we are dealing

with right-modules), the kernel of the homomorphismQ124 ˚Q134 ˚Q234

. i i i /����!
Q1234 is of the form

Z

		��
��
��
��

0��



��
��
��
��

ZŒ1�

		��
��
��
��

Z
2

Z�� 0



��
��
��
��

����������

0��

����
��
��
��



��������

ZŒ1��� Z
2 :ı��

ı��
��

�����
�

ı���

������

Z

����������

0��

����������

ZŒ1�

��								

It is the image of the module homomorphism

Q14 ˚Q24 ˚Q34

�
i �i 0�i 0 i
0 i �i

�

��������! Q124 ˚Q134 ˚Q234; (3.4)

the kernel of which, in turn, is of the form

0



��
��
��
��

ZŒ1���

		��
��
��
��

ZŒ1�

��












Z 0�� ZŒ1�

		��
��
��
��

��								

ZŒ1�3��

��












����������

ZŒ1��� Z :ı��

ı��
��

�����
�

ı





��





0

����������

ZŒ1���

��								

ZŒ1�

����������
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A surjection from Q4 ˚ Q1234Œ1� onto this module is given by
�

i i i
ı141234 0 0

�
, where

ı141234 :D ı143 ı r31234. The kernel of this homomorphism has the form

ZŒ1�

��












ZŒ1���

��












0

����
��
��
��

ZŒ1� ZŒ1��� ZŒ1�

��












����������

0��

����
��
��
��

��								

0�� 0 :ı��

ı��
��



��
��

ı���

������

ZŒ1�

����������

ZŒ1���

����������

0



��������

This module is isomorphic to Syz1234Œ1�, where Syz1234 :D ker.Q1234 � S1234/.
Therefore, we end up with the projective resolution

Q4 ˚Q1234Œ1� �� Q14 ˚Q24 ˚Q34
�� Q124 ˚Q134 ˚Q234

��
ı��

Q1234 ! S1234 :

(3.5)

The homomorphism fromQ124 ˚Q134 ˚Q234 to Q4 ˚Q1234Œ1� is given by

�
0 0 �ı4234
i i i

�
;

where ı4234 :D ı42 ı r2234.
Lemma 5. The candidate triangle in KK.X/ corresponding to the periodic part of
the sequence (3.5) is distinguished or anti-distinguished (depending on the choice
of signs for the maps in (3.5)).

Proof. The argument is analogous to the one in the proof of Lemma 4. Again, we
consider the group Ext1

N T �.Z3/op

�
ker.'�/; coker.'�/Œ1�

�
where '� now denotes the

map (3.4). We have coker.'�/ Š Syz1234 and an extension Q4 � ker.'�/ �
S1234Œ1�. Using long exact sequences, we obtain

Ext1
�
ker.'�/; coker.'�/Œ1�

� Š Ext1.S1234Œ1�;Syz1234Œ1�/

Š Hom.S1234Œ1�; S1234Œ1�/ Š Z:

Again, an extension corresponds to a generator if and only if its underlying module
is exact.
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By the previous lemma and Sect. 3.6, computing the tensor product of this complex
with M and taking homology shows that TorN T �

n .N T ss;M / D 0 for n � 2

and that TorN T �

1 .N T ss;M / is equal to TorN T �

1 .S1234;M/ and isomorphic to the
homology of the complex (3.1).

Example 1. For the filtrated K-module with projective dimension 2 constructed in
[11, §5] we get TorN T �

1 .N T ss;M / Š Z=k.

Remark 1. As explicated in the beginning of this section, the category N T �.S/
corresponding to the four-point space S defined in the introduction is isomorphic in
an appropriate sense to the category N T �.Z3/. As has been established in [1], the
indecomposable morphisms in N T �.S/ are organised in the diagram

12 ı
ı

��

r

���
��

��
��

�
34

i

���
��

��
��

�
2

i

���
��

��
��

��

123

r
����������

ı
ı

��

r

���
��

��
��

�
4

���

i

�����

��� i

���
�

1 ı
ı
�� 234

r

�����������
i

��

r

���
��

��
��

��
1234

r
�� 123 :

13

r
����������

ı
ı

�� 24

i
����������

3

i
������������

In analogy to (3.1), we have that TorN T �.S/
1 .N T ss;M / is isomorphic to the

homology of the complex

M.12/Œ1�˚M.4/˚M.13/Œ1�

�
ı �r 0�i 0 i
0 r �ı

�

��������! M.34/˚M.1/Œ1�˚M.24/

. i ı i /����! M.234/ ; (3.6)

whereM D FK.A/ for some separable C �- algebra A over X .

3.7.2 Resolutions for the Pseudocircle

Let C2 D f1; 2; 3; 4g with the partial order defined by 1 < 3, 1 < 4, 2 < 3, 2 < 4.
The topology on C2 is thus given by f;; 3; 4; 34; 134; 234; 1234g. Hence the non-
empty, connected, locally closed subsets are

LC.C2/
� D f3; 4; 134; 234; 1234; 13; 14; 23; 24; 124; 123; 1; 2g :
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Fig. 3.1 Indecomposable natural transformations in N T �.C2/

The partial order on C2 corresponds to the directed graph

4 2

3 1 :

� �

� �

��
��

���
�

���������
��

The space C2 is the only T0-space with at most four points with the property
that its order complex (see [11, Definition 2.6]) is not contractible; in fact, it is
homeomorphic to the circle S1. Therefore, by the representability theorem [11, §2.1]
we find

N T �.C2; C2/ Š KK�.X I RC2;RC2/ Š K�
�
RC2.C2/

� Š K� �
S
1
� Š Z ˚ ZŒ1� ;

that is, there are non-trivial odd natural transformations FKC2 ) FKC2 . These are

generated, for instance, by the composition C2
r�! 1

ı�! 3
i�! C2. This follows

from the description of the category N T �.C2/ below. Note that ıC2C2 ı ıC2C2 vanishes
because it factors through r113 ı i 133 D 0.

Figure 3.1 displays a set of indecomposable transformations generating the
category N T �.C2/ determined in [1, §6.3.2], where also a list of relations
generating the relations in the category N T �.C2/ can be found. From this, it is
straight-forward to verify that the space C2 satisfies the conditions of Proposition 1.
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Proceeding as described in Sect. 3.5, we find projective resolutions of the
following form (we omit explicit descriptions of the boundary maps):

Q123Œ1� �� Q1Œ1�˚Q2Œ1� �� Q3 ! S3 ;

ı��
and similarly for S4;

Q1Œ1� �� Q3 ˚Q4
�� Q134 ! S134 ;

ı��
and similarly for S234;

Q4
�� Q134

�� Q13 ! S13 ;

ı
��

and similarly for S14, S23, S24;

Q3 ˚Q4
�� Q134 ˚Q234

�� Q1234 ! S1234 I
ı��

Q4 ˚Q123Œ1� �� Q134 ˚Q234
�� Q1234 ˚Q13 ˚Q23 ! Q123 ! S123 ;

ı��

and similarly for S124;

Q234 ˚Q1Œ1� �� Q1234 ˚Q23 ˚Q24
�� Q123 ˚Q124 ! Q1 ! S1 ;

ı��

and similarly for S2. Again, the periodic part of each of these resolutions is induced
by an extension triangle, a Mayer-Vietoris triangle as in Lemma 4 or a more exotic
(anti-)distinguished triangle as in Lemma 5 (we omit the analogous computation
here).

We get TorN T �

1 .SY ;M/ D 0 for every Y 2 LC.C2/
� n f123; 124; 1; 2g, and

further TorN T �

n .SY ;M/ D 0 for all Y 2 LC.C2/
� and n � 2. Therefore,

TorN T �

1 .N T ss;M / Š
M

Y2f123;124;1;2g
TorN T �

1 .SY ;M/ :

The four groups TorN T �

1 .SY ;M/ with Y 2 f123; 124; 1; 2g can be described
explicitly as in Sect. 3.7.1 using the above resolutions. This finishes the proof of
Proposition 2.

3.8 Proof of Proposition 3

We apply the Meyer-Nest machinery to the homological functor FK ˝ Q on
the triangulated category KK.X/ ˝ Q. We need to show that every N T � ˝ Q

module of the form M D FK.A/ ˝ Q has a projective resolution of length 1.
It is easy to see that analogues of Propositions 1 and 2 hold. In particular, the
term TorN T �˝Q

2 .N T ss ˝ Q;M / always vanishes. Here we use that Q is a flat
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Z-module, so that tensoring with Q turns projective N T �-module resolutions into
projective N T � ˝Q-module resolutions. Moreover, the freeness condition for the
Q-module TorN T �˝Q

1 .N T ss ˝ Q;M / is empty since Q is a field.

3.9 Proof of Proposition 4

The computations to determine the category N T �.Z4/ are very similar to those for
the category N T �.Z3/ which were carried out in [11]. We summarise its structure
in Fig. 3.2. The relations in N T �.Z4/ are generated by the following:

• The hypercube with vertices 5; 15; 25; : : : ; 12345 is a commuting diagram;
• The following compositions vanish:

1235
i�! 12345

r�! 4 ; 1245
i�! 12345

r�! 3 ;

1345
i�! 12345

r�! 2 ; 2345
i�! 12345

r�! 1 ;

1
ı�! 5

i�! 15 ; 2
ı�! 5

i�! 25 ; 3
ı�! 5

i�! 35 ; 4
ı�! 5

i�! 45 I

• The sum of the four maps 12345 ! 5 via 1, 2, 3, and 4 vanishes.

This implies that the space Z4 satisfies the conditions of Proposition 1.
In the following, we will define an exact N T �-left-module M and compute

TorN T �

2 .S12345;M/. By explicit computation, one finds a projective resolution of
the simple N T �-right-moduleS12345 of the following form (again omitting explicit
formulas for the boundary maps):

Q5 ˚L
1�i�4

Q12345ni Œ1�
L

1�l�4
Ql5 ˚Q12345Œ1�

L
1�j<k�4

Qjk5

L
1�i�4

Q12345ni Q12345 S12345:

ı

Notice that this sequence is periodic as a cyclic six-term sequence except for the
first two steps.

Consider the exact N T �-left-moduleM defined by the exact sequence

0 ! P12345

 
i
i
i
i

!

���!
M

1�i�4
P12345ni

0

BB@

i �i 0 0�i 0 i 0
0 i �i 0
i 0 0 �i
0 �i 0 i
0 0 i �i

1

CCA

�����������!
M

1�j<k�4
Pjk5 � M :

(3.7)
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Fig. 3.2 Indecomposable natural transformations in N T �.Z4/

We have
L

1�l�4 M.l5/˚M.12345/Œ1� Š 0˚Z
3,
L

1�j<k�4 M.jk5/ Š Z
6, and

M.5/˚L
1�i�4 M.12345 n i/Œ1� Š ZŒ1�˚ ZŒ1�8. Since

L
1�l�4

M.l5/˚M.12345/Œ1� �� L
1�j<k�4

M.jk5/

ı
��

M.5/˚ L
1�i�4

M.12345 n i/Œ1�

  ���������������

is exact, a rank argument shows that the map

M

1�l�4
M.l5/˚M.12345/Œ1� !

M

1�j<k�4
M.jk5/

is zero. On the other hand, the kernel of the map

M

1�j<k�4
M.jk5/

0

@
i �i 0 i 0 0�i 0 i 0 �i 0
0 i �i 0 0 i
0 0 0 �i i �i

1

A

���������������!
M

1�i�4
M.12345 n i/
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is non-trivial; it consists precisely of the elements in

M

1�j<k�4
M.jk5/ Š

M

1�j<k�4
ZŒidjk5jk5�

which are multiples of .Œidjk5jk5�/1�j<k�4. This shows TorN T �

2 .S12345;M/ Š Z.
Hence, by Proposition 1, the module M has projective dimension at least 2. On the
other hand, (3.7) is a resolution of length 2. Therefore, the projective dimension
of M is exactly 2.

Let k 2 N�2 and define Mk D M ˝Z Z=k. Since TorN T �

2 .S12345;Mk/ Š Z=k

is non-free, Proposition 1 shows thatMk has at least projective dimension 3. On the
other hand, if we abbreviate the resolution (3.7) for M by

0 ! P .5/ ˛�! P .4/ ˇ�! P .3/ � M ; (3.8)

a projective resolution of length 3 for Mk is given by

0 ! P .5/

�
k
˛

�

��! P .5/ ˚ P .4/

�
˛ �k
0 ˇ

�

�����! P .4/ ˚ P .3/ . ˇ k /���! P .3/ � Mk ;

where k denotes multiplication by k.
It remains to show that the modulesM andMk can be realised as the filtrated K-

theory of objects in B.X/. It suffices to prove this for the moduleM since tensoring
with the Cuntz algebra OkC1 then yields a separable C �- algebra with filtrated K-
theoryMk by the Künneth Theorem.

The projective resolution (3.8) can be written as

0 ! FK.P 2/
FK.f2/����! FK.P 1/

FK.f1/����! FK.P 0/ � M;

because of the equivalence of the category of projective N T �-modules and the
category of I-projective objects in KK.X/. Let N be the cokernel of the module
map FK.f2/. Using [11, Theorem 4.11], we obtain an object A 22 B.X/ with
FK.A/ Š N . We thus have a commutative diagram of the form

0 �� FK.P 2/
FK.f2/

�� FK.P 1/
FK.f1/

��

!! !!�
��

��
��

��
FK.P 0/ �� �� M :

FK.A/

""

�
""���������

Since A belongs to the bootstrap class B.X/ and FK.A/ has a projective resolution
of length 1, we can apply the universal coefficient theorem to lift the homomorphism
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� to an element f 2 KK.X IA;P 0/. Now we can argue as in the proof of
[11, Theorem 4.11]: since f is I-monic, the filtrated K-theory of its mapping cone
is isomorphic to coker.�/ Š M . This completes the proof of Proposition 4.

3.10 Cuntz-Krieger Algebras with Projective Dimension 2

In this section we exhibit a Cuntz-Krieger algebra A which is a tight C �-algebra

over the space Z3 and for which the odd part of TorN T �.Z3/
1

�
N T ss;FK.A/

�
—

denoted Torodd
1 in the following—is not free. By Proposition 2 this C �-algebra has

projective dimension 2 in filtrated K-theory.
In the following we will adhere to the conventions for graph algebras and

adjacency matrices from [4]. Let E be the finite graph with vertex set E0 D
fv1; v2; : : : ; v8g and edges corresponding to the adjacency matrix

0

BB@

B4 0 0 0

X1 B1 0 0

X2 0 B2 0

X3 0 0 B3

1

CCA :D

0
BBBBBBBBBBB@

�
3 2

2 3

�
0 0 0

�
1 1

1 1

� �
3 2

1 2

�
0 0

�
1 1

1 1

�
0

�
3 2

1 2

�
0

�
1 1

1 1

�
0 0

�
3 2

1 2

�

1
CCCCCCCCCCCA

: (3.9)

Since this is a finite graph with no sinks and no sources, the associated graph
C �- algebra C �.E/ is in fact a Cuntz-Krieger algebra (we can replace E with its
edge graph; see [13, Remark 2.8]). Moreover, the graph E is easily seen to fulfill
condition (K) because every vertex is the base of two or more simple cycles. As
a consequence, the adjacency matrix of the edge graph of E fulfills condition (II)
from [5]. In fact, condition (K) is designed as a generalisation of condition (II): see,
for instance, [8].

Applying [13, Theorem 4.9]—and carefully translating between different graph
algebra conventions—we find that the ideals of C �.E/ correspond bijectively
and in an inclusion-preserving manner to the open subsets of the space Z3. By
[9, Lemma 2.35], we may turn A into a tight C �- algebra over Z3 by declaring
A.f4g/ D Ifv1;v2g, A.f1; 4g/ D Ifv1;v2;v3;v4g, A.f2; 4g/ D Ifv1;v2;v5;v6g as well as
A.f3; 4g/ D Ifv1;v2;v7;v8g, where IS denotes the ideal corresponding to the saturated
hereditary subset S .

It is known how to compute the six-term sequence in K-theory for an extension
of graph C �- algebras: see [4]. Using this and Proposition 2, Torodd

1 is the homology
of the complex



3 Projective Dimension in Filtrated K-Theory 59

ker.�0/

�
i �i 0�i 0 i
0 i �i

�

��������! ker.�1/
. i i i /����! ker.�2/ ; (3.10)

where �0 D diag
��

B0

4 X
t
1

0 B0

1

�
;
�
B0

4 X
t
2

0 B0

2

�
;
�
B0

4 X
t
3

0 B0

3

��
; �2 D

0

@
B0

4 X
t
1 X

t
2 X

t
3

0 B0

1 0 0

0 0 B0

2 0

0 0 0 B0

3

1

A ;

�1 D diag

  
B0

4 X
t
1 X

t
2

0 B0

1 0

0 0 B0

2

!
;

 
B0

4 X
t
1 X

t
3

0 B0

1 0

0 0 B0

3

!
;

 
B0

4 X
t
2 X

t
3

0 B0

2 0

0 0 B0

3

!!
;

and B 0
4 D Bt

4 � �
1 0
0 1

� D �
2 2
2 2

�
and B 0

j D Bt
j � �

1 0
0 1

� D �
2 1
2 1

�
for 1 � j � 3. We

obtain a commutative diagram

ker.�0/

fK

��

�� �� .Z˚2/˚.2�3/

f

��

�0
�� �� im.�0/

fI

��
ker.�1/

gK

��

�� �� .Z˚2/˚.3�3/

g

��

�1
�� �� im.�1/

gI

��
ker.�2/ �� �� .Z˚2/˚.4�1/

�2
�� �� im.�2/ ;

(3.11)

where f and g have the block forms

f D

0

BBB@

id 0 �id 0 0 0
0 id 0 0 0 0
0 0 0 �id 0 0�id 0 0 0 id 0
0 �id 0 0 0 0
0 0 0 0 0 id
0 0 id 0 �id 0
0 0 0 id 0 0
0 0 0 0 0 �id

1

CCCA ; g D
�

id 0 0 id 0 0 id 0 0
0 id 0 0 id 0 0 0 0
0 0 id 0 0 0 0 id 0
0 0 0 0 0 id 0 0 id

�
;

and fK :D f jker.�0/, fI :D f jim.�0/, gK :D gjker.�1/, gI :D gjim.�1/. Notice that f
and g are defined in a way such that the restrictions f jker.�0/ and gjker.�1/ are exactly
the maps from (3.10) in the identification made above.

We abbreviate the above short exact sequence of cochain complexes (3.11) as
K� � Z� � I�. The part H0.Z�/ ! H0.I�/ ! H1.K�/ ! H1.Z�/ in the
corresponding long exact homology sequence can be identified with

ker.f /
�0�! ker.fI / ! ker.gK/

im.fK/
! 0 :
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Hence

Torodd
1 Š ker.gK/

im.fK/
Š ker.fI /

�0
�
ker.f /

� Š ker.f /\ im.�0/

�0
�
ker.f /

� :

We have ker.f / D f.v; 0; v; 0; v; 0/ j v 2 Z
2g � .Z˚2/˚.2�3/.

From the concrete form (3.9) of the adjacency matrix, we find that ker.f / \
im.�0/ is the free cyclic group generated by .1; 1; 0; 0; 1; 1; 0; 0; 1; 1; 0; 0/, while
�0
�
ker.f /

�
is the subgroup generated by .2; 2; 0; 0; 2; 2; 0; 0; 2; 2; 0; 0/. We see that

Torodd
1 Š Z=2 is not free.
Now we briefly indicate how to construct a similar counterexample for the

space S . Consider the integer matrix

0

BB@

B4 0 0 0

X43 B3 0 0

X42 0 B2 0

X41 X31 X21 B1

1

CCA :D

0
BBBBB@

�
3
�

0 0 0�
2
� �

3
�

0 0�
2
�

0
�
3
�

0�
2

0

� �
1

0

� �
1

0

� �
2 1

1 2

�

1
CCCCCA
:

The corresponding graph F fulfills condition (K) and has no sources or sinks. The
associated graphC �- algebraC �.F / is therefore a Cuntz-Krieger algebra satisfying
condition (II). It is easily read from the block structure of the edge matrix that the
primitive ideal space of C �.F / is homeomorphic to S . We are going to compute the

even part of TorN T �.S/
1

�
N T ss;FK.C �.F //

�
. Since the nice computation methods

from the previous example do not carry over, we carry out a more ad hoc calculation.
By Remark 1, the even part of our Tor-term is isomorphic to the homology of the

complex

ker
�
B0

2 X
t
21

0 B0

1

�
ı

�
Xt42 X

t
41

0 Xt31

�

��

�r

##��
���

��
���

���
coker

�
B0

4 X
t
43

0 B0

3

�

i

$$��
���

���
��

coker.B 0
4/

������

�i
%%�����

���
��� i

##��
���

ker.B 0
1/ ı

0

@
Xt41
Xt31
Xt21

1

A

�� coker

 
B0

4 X
t
43 X

t
42

0 B0

3 0

0 0 B0

2

!
;

ker
�
B0

3 X
t
31

0 B0

1

�

r

%%�������������

ı

�
�
Xt43 X

t
41

0 Xt21

�
�� coker

�
B0

4 X
t
42

0 B0

2

�

i &&����������
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where column-wise direct sums are taken. Here B 0
1 D Bt

1 � �
1 0
0 1

� D �
1 1
1 1

�
and

B 0
j D Bt

j � �
1
� D �

2
�

for 2 � j � 4. This complex can be identified with

Z ˚ Z=2˚ Z

0

B@

0 1 0
0 0 0�2 0 2
0 1 0
0 0 0

1

CA

�������! .Z=2/2 ˚ Z ˚ .Z=2/2

�
1 0 0 1 0
0 1 1 0 0
0 0 1 0 1

�

��������! .Z=2/3 ;

the homology of which is isomorphic to Z=2; a generator is given by the class of
.0; 1; 1; 0; 1/ 2 .Z=2/2 ˚ Z ˚ .Z=2/2. This concludes the proof of Proposition 5.
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