
Chapter 11
C �-Algebras Associated with a-adic Numbers

Tron Omland

Abstract By a crossed product construction, we produce a family of (stabilized)
Cuntz-Li algebras associated with the a-adic numbers. Moreover, we present an
a-adic duality theorem.
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11.1 Introduction

In [1] Cuntz introduces the C �-algebra QN associated with the ax C b-semigroup
over the natural numbers, that is ZÌN

�, where N� acts on Z by multiplication. It is
defined as the universal C �-algebra generated by isometries fsngn2N� and a unitary
u satisfying the relations

smsn D smn; snu D unsn; and
n�1X

kD0

uksns�
n u�k D 1 for m; n 2 N

�:

Furthermore, QN is shown to be simple and purely infinite and can also be obtained
as a semigroup crossed product

C. OZ/ Ì .Z Ì N
�/
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for the natural ax C b-semigroup action of Z Ì N
� on the finite integral adeles

OZ D Q
p prime Zp (i.e. OZ is the profinite completion of Z). Its stabilization QN is

isomorphic to the ordinary crossed product

C0.Af / Ì .Q Ì Q
�C/

where Q�C denotes the multiplicative group of positive rationals and Af denotes the
finite adeles, i.e. the restricted product

Q0
p prime Qp DQ

p prime.Qp;Zp/. The action
of Q Ì Q

�C on Af is the natural axC b-action. This crossed product is the minimal
automorphic dilation of the semigroup crossed product above (see Laca [8]).

Replacing N
� with Z

� gives rise to the C �-algebra QZ of the ring Z. This
approach is generalized to certain integral domains by Cuntz and Li [3] and then
to more general rings by Li [10].

In [9] Larsen and Li define the 2-adic ring algebra of the integers Q2, attached to
the semigroup Z Ì j2i, where j2i D f2i W i � 0g � N

� acts on Z by multiplication.
It is the universal C �-algebra generated by an isometry s2 and a unitary u satisfying
the relations

s2uk D u2ks2 and s2s�
2 C us2s�

2 u� D 1:

The algebra Q2 shares many structural properties with QN. It is simple, purely
infinite and has a semigroup crossed product description. Its stabilization Q2 is
isomorphic to its minimal automorphic dilation, which is the crossed product

C0.Q2/ Ì
�
ZŒ 1

2
� Ì h2i�:

Here ZŒ 1
2
� denotes the ring extension of Z by 1

2
, h2i the subgroup of the positive

rationals Q
�C generated by 2 and the action of ZŒ 1

2
� Ì h2i on Q2 is the natural

axC b-action.
Both Af and Q2 are examples of groups of so-called a-adic numbers, defined

by a doubly infinite sequence a D .: : : ; a�2; a�1; a0; a1; a2; : : : / with ai � 2 for all
i 2 Z. Our goal is to construct C �-algebras associated with the a-adic numbers and
show that these algebras provide a family of examples that under certain conditions
share many structural properties with Q2, QN and also the ring C �-algebras of
Cuntz and Li.

Our approach is inspired by [5], that is, we begin with a crossed product
by a group and use the classical theory of C �-dynamical systems to prove our
results, instead of the generators and relations as in the papers of Cuntz, Li and
Larsen. Therefore, our construction only gives analogs of the stabilized algebras
QN and Q2.

Even though the C �-algebras associated with a-adic numbers are closely related
to the ring C �-algebras of Cuntz and Li, they are not a special case of these
(except in the finite adeles case). Also, our approach does not fit in general into
the framework of [5].
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One of the main results in the paper is Theorem 3, which is a general a-adic
duality theorem that encompasses the 2-adic duality theorem [9, Theorem 7.5] and
the analogous result of Cuntz [1, Theorem 6.5]. In the proof, we only apply crossed
product techniques, and not the groupoid equivalence as in [9].

11.2 The a-adic Numbers

Let a D .: : : ; a�2; a�1; a0; a1; a2; : : : / be a doubly infinite sequence of natural
numbers with ai � 2 for all i 2 Z. Let the sequence a be arbitrary, but fixed.

We use Hewitt and Ross [4, Sects. 10 and 25] as our reference and define the
a-adic numbers ˝ as the group of sequences

(
x D .xi / 2

1Y

iD�1
f0; 1; : : : ; ai � 1g W xi D 0 for i < j for some j 2 Z

)

under addition with carry, that is, the sequences have a first nonzero entry and
addition is defined inductively. Its topology is generated by the subgroups f�j W
j 2 Zg, where

�j D fx 2 ˝ W xi D 0 for i < j g:

This turns ˝ into a totally disconnected, locally compact Hausdorff abelian group.
The group � of a-adic integers is defined as � D �0. It is a compact, open
subgroup, and a maximal compact ring in ˝ with product given by multiplication
with carry. On the other hand, ˝ itself is not a ring in general (see (11.4) in
Sect. 11.5).

Define the a-adic rationals N as the additive subgroup of Q given by

N D
�

j

a�1 � � �a�k

W j 2 Z; k � 1

�
:

In fact, all noncyclic additive subgroups of Q containing Z are of this form
(see Lemma 2 below). There is an injective homomorphism

� W N ,! ˝

determined by

�
�
� 1

a�1 � � �a�k

�	

�j

D ıjk:
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Moreover, �.N / is the dense subgroup of ˝ comprising the sequences with only
finitely many nonzero entries. This map restricts to an injective ring homomorphism
denoted by the same symbol

� W Z ,! �

with dense range. Henceforth, we will suppress the � and identify N and Z with their
image in ˝ and �, respectively.

Now let U be the family of all subgroups of N of the form m
n
Z, where m and

n are natural numbers such that m divides a0 � � �aj for some j � 0 and n divides
a�1 � � �a�k for some k � 1. Then U

1. is downward directed, that is, for all U; V 2 U there exists W 2 U such that
W � U \ V ,

2. is separating, that is,

\

U 2U

U D feg;

3. has finite quotients, that is, jU=V j <1 whenever U; V 2 U and V � U ,

and the same is also true for

V D fU \ Z W U 2 U g:

In fact, both U and V are closed under intersections, since

m

n
Z \ m0

n0 Z D
lcm .m; m0/
gcd .n; n0/

Z: (11.1)

It is a consequence of (1)–(3) above that the collection of subgroups U induces a
locally compact Hausdorff topology on N . Denote the Hausdorff completion of N

with respect to this topology by N . Then

N Š lim �
U 2U

N=U:

Next, let U0 D Z and for j � 1 define Uj D a0 � � �aj �1Z and set

W D fUj W j � 0g � V � U :

Note that W is also separating and closed under intersections. The closure of Uj in
˝ is �j , so

˝=�j Š N=Uj and �=�j Š Z=Uj for all j � 0:
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Next, let

�j W ˝ ! N=Uj

denote the quotient map for j � 0, and identify �j .x/ with the truncated sequence
x.j �1/, where x.j / is defined for all j 2 Z by

.x.j //i D
(

xi for i � j;

0 for i > j:

We find it convenient to use the standard construction of the inverse limit of the
system fN=Uj ; .mod aj /g:

lim �
j �0

N=Uj D
(

x D .xi / 2
1Y

iD0

N=Ui W xi D xiC1 .mod ai /

)
;

and then the product � W ˝ ! lim �j �0
N=Uj of the truncation maps �j , given by

�.x/ D .�0.x/; �1.x/; �2.x/; : : : / D .x.�1/; x.0/; x.1/; : : : /;

is an isomorphism.
Furthermore, we note that W is cofinal in U . Indeed, for all U D m

n
Z 2 U ,

if we choose j � 0 such that m divides a0 � � �aj then we have W 3 Uj C1 � U .
Therefore,

˝ Š lim �
j �0

N=Uj Š lim �
U 2U

N=U Š N ;

and similarly

� Š lim �
j �0

Z=Uj Š lim �
V 2V

Z=V Š Z:

In particular, � is a profinite group. In fact, every profinite group coming from a
completion of Z occurs this way (see also Lemma 2).

The following is a consequence of (11.1) and should serve as motivation for
our U .

Lemma 1 ([6, Lemma 1.1]). Every open subgroup of ˝ is of the form

[

U 2C

U



228 T. Omland

for some increasing chain C in U . In particular, every compact open subgroup of
˝ is of the form U for some U 2 U .

Whenever any confusion is possible, we write ˝a, �a, Na, etc. for the structures
associated with the sequence a. If b is another sequence such that Ua D Ub ,
we write a � b. In this case also Na D Nb. It is not hard to verify that a � b

if and only if there is an isomorphism ˝a ! ˝b restricting to an isomorphism
�a ! �b . The groups ˝a and ˝b can nevertheless be isomorphic even if a 6� b

(see Example 3 below). In this regard, we have the following result, which is a
consequence of Proposition 2.

Theorem 1 ([6, Corollary 5.4]). We have that ˝a Š ˝b if and only if there exists
a .Ua; Ub/-continuous isomorphism Na ! Nb .

Example 1. Let p be a prime and assume a D .: : : ; p; p; p; : : : /. Then ˝ Š Qp

and � Š Zp , i.e. the usual p-adic numbers and p-adic integers.

Example 2. Let a D .: : : ; 4; 3; 2; 3; 4; : : : /, i.e. ai D a�i D i C 2 for i � 0. Then
˝ Š Af and � Š OZ, because every prime occurs infinitely often among both the
positive and the negative tail of the sequence a (see the paragraph after Lemma 2).

Example 3. Let ai D 2 for i ¤ 0 and a0 D 3, so that

N D ZŒ 1
2
� and U D f2i

Z; 2i 3Z W i 2 Zg:
Then ˝ contains torsion elements. Indeed, let

x D .: : : ; 0; 1; 1; 0; 1; 0; 1; : : : /; so that 2x D .: : : ; 0; 2; 0; 1; 0; 1; 0; : : : /;

where the first nonzero entry is x0. Then 3x D 0 and f0; x; 2xg forms a subgroup
of ˝ isomorphic with Z=3Z. Hence ˝ 6Š Q2 since Q2 is a field.

Furthermore, let b be given by bi D aiC1, that is, bi D 2 for i ¤ �1 and
b�1 D 3. Then

Nb D 1
3
ZŒ 1

2
� and Ub D f2i

Z; 2i 1
3
Z W i 2 Zg:

We have ˝a Š ˝b , but a 6� b since �a 6Š �b . Note also that the equation 3x D 1

has no solution in ˝a, but two solutions in ˝b , and these are

1
3
2 Nb and y D .: : : ; 0; 1; 1; 0; 1; 0; 1; : : : /; where the first nonzero entry is y0:

11.3 The a-adic Algebras

We now want to define a multiplicative action on ˝ , of some suitable subset of N ,
that is compatible with the natural multiplicative action of Z on ˝ . Let S consist
of all s 2 Q

�C such that the map U ! U given by U 7! sU is well-defined
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and bijective. Clearly, the map U 7! sU is injective if it is well-defined and it is
surjective if the map U 7! s�1U is well-defined. Define a subset P of the prime
numbers by

P D fp prime W p divides ak for infinitely many k < 0 and infinitely many k � 0g:

It is not hard to see that S coincides with the subgroup hP i of Q�C generated by P .
Moreover, S is the largest subgroup of Q

�C that acts continuously on N . Indeed,
the action is well-defined since all q 2 N belongs to some U 2 U . If q C U is a
basic open set in N , then its inverse image under multiplication by s, s�1.qCU / D
s�1q C s�1U , is also open in N as s�1U 2 U . By letting S be discrete, it follows
that the action is continuous.

We will not always be interested in the action of the whole group S on N ,
but rather a subgroup of S . So henceforth, let H denote any subgroup of S .
Furthermore, let G be the semidirect product of N by H , i.e. G D N ÌH where H

acts on N by multiplication. This means that there is a well-defined ax C b-action
of G on N given by

.r; h/ � q D r C hq for q; r 2 N and h 2 H:

This action is continuous with respect to U , and can therefore be extended to an
action of G on ˝ , by uniform continuity.

Proposition 1 ([6, Proposition 2.4]). Assume P ¤ ¿ and let H be a nontrivial
subgroup of S . Then the action of G D N Ì H on ˝ is minimal, locally contractive
and topologically free.

Definition 1. Suppose P ¤ ¿. If H is a nontrivial subgroup of S , we define the
C �-algebra Q D Q.a; H/ by

Q D C0.˝/ Ì˛aff G;

where

˛aff
.n;h/.f /.x/ D f .h�1 � .x � n//:

Remark 1. The bar-notation on Q is used so that it agrees with the notation for
stabilized Cuntz-Li algebras in [1] and [9].

Theorem 2 ([6, Corollary 2.8]). The C �-algebra Q is simple and purely infinite.
Moreover, Q is a nonunital Kirchberg algebra in the UCT class.

Example 4. If a D .: : : ; 2; 2; 2; : : : / and H D S D h2i, then Q is the algebra Q2

of Larsen and Li [9]. More generally, if p is a prime, a D .: : : ; p; p; p; : : : / and
H D S D hpi, we are in the setting of Example 1 and get algebras similar to Q2.
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If a D .: : : ; 4; 3; 2; 3; 4; : : : / and H D S D Q
�C, then we are in the setting of

Example 2. In this case Q is the algebra QN of Cuntz [1].
Both these algebras are special cases of the most well-behaved situation, namely

where H D S and ai 2 H for all i 2 Z. The algebras arising this way are
completely determined by the set (finite or infinite) of primes P , and are precisely
the kind of algebras that fit into the framework of [5]. The cases described above are
the two extremes, where P consists of either one single prime or all primes.

If a � b, then Sa D Sb and Q.a; H/ D Q.b; H/ for all H � Sa D Sb .
Suppose ˝a Š ˝b . Then Sa D Sb as well, and for all H � Sa D Sb , we have
that Q.a; H/ Š Q.b; H/. Indeed, by Theorem 1 there exists an isomorphism ' W
˝a ! ˝b restricting to an isomorphism Na ! Nb . Therefore, the map

'� W Cc.Na Ì H; C0.˝a//! Cc.Nb Ì H; C0.˝b//

given by

'�.f /.n; h/.x/ D f .'�1.n/; h/.'�1.x//

determines an isomorphism Q.a; H/ Š Q.b; H/.

Example 5. Let a and b be the sequences from Example 3. Then Q.a; H/ Š
Q.b; H/ for all H � Sa D Sb D h2i.
Example 6. If a D .: : : ; 2; 2; 2; : : : / and b D .: : : ; 4; 4; 4; : : : /, then a � b.
Hence, for all nontrivial H � S D h2i we have Q.a; H/ D Q.b; H/. However,
if H D h4i, then Q.a; S/ 6Š Q.a; H/, as remarked after Question 1.

In light of this example, it could also be interesting to investigate the axCb-action
on ˝ of other subgroups G0 of N Ì S . It follows from the proof of Proposition 1
that the action of G0 on ˝ is minimal, locally contractive and topologically free if
and only if G0 DM Ì H , where M � N is dense in ˝ and H � S is nontrivial.

Moreover, it can be shown that a proper subgroup M of N is dense in ˝ if and
only if M D qN for some q � 2 such that q and ai are relatively prime for all i 2 Z.
This property is also invariant under isomorphisms, i.e. if ˝a Š ˝b and q � 2, then
qNa is dense in ˝a if and only if qNb is dense in ˝b (see Sect. 11.5). However, if
M is such a subgroup of N that is dense in ˝ and H � S , then

C0.˝/ Ì˛aff .N Ì H/ Š C0.˝/ Ì˛aff .M Ì H/: (11.2)

The reason for the isomorphism (11.2) is the following. If

Q D fp prime W p does not divide any ai g;
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then multiplication by a prime p is an automorphism of ˝ if and only if p 2 P [Q.
Indeed, if p 2 Q, then pU D pU D U for all U 2 U . Thus, 1

p
2 ˝ when p 2 Q

and it is possible to embed the subgroup

NQ D f n
q
W n 2 N; q 2 hQig � Q

in ˝ , where hQi denotes the multiplicative subgroup of Q�C generated by Q.
We complete this discussion by considering the axCb-action on ˝ of potentially

larger groups than N ÌS . The largest subgroup of QÌQ
�C that can act on ˝ through

an axC b-action is NQ Ì hP [Qi. However, the only groups N � M � NQ that
give rise to the duality theorems in the next section are of the form M D 1

q
N for

q 2 hQi (see Remark 2). Moreover, S is the largest subgroup of hP [Qi that acts
on M , and of course, (11.2) also holds for all H � S in this case.

Finally, we remark that one may also involve the roots of unity of Q
� in the

multiplicative action, that is, replace H with f˙h W h 2 H g D f˙1g �H as in [3].
The associated algebras will then be of the form Q ÌZ=2Z. However, we restrict to
the action of the torsion-free part of Q� in this paper.

11.4 The a-Adic Duality Theorem

For any a, let a� be the sequence given by a�
i D a�i . In particular, .a�/� D a.

We now fix a and write ˝ and ˝� for the a-adic and a�-adic numbers, respectively.
Let x 2 ˝ and y 2 ˝� and for j 2 N put

zj D e2� ix.j /y.j /=a0 ;

where the sequences x.j / and y.j / are treated as their corresponding rational
numbers in N . It can be checked that zj is eventually constant. We now define
the pairing ˝ �˝� ! T by

hx; yi˝ D lim
j !1 e2� ix.j /y.j /=a0 :

The pairing is a continuous homomorphism in each variable separately and gives an
isomorphism ˝� ! Ő . Indeed, this map coincides with the one in [4, 25.1].

The injection � W N ! R � ˝ given by q 7! .q; q/ has discrete range, and N

may be considered as a closed subgroup of R�˝ . Similarly, N � may be considered
as a closed subgroup of R �˝�.

Remark 2. Subgroups M ofQ such that N �M � NQ also embed densely into ˝ .
For example, Q itself can be embedded densely into Qp for all primes p. On the
other hand, it is not hard to see that the image of the diagonal map Q! R � Qp is
not closed in this case. More generally, a subgroup M of Q embeds densely into ˝
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such that the image of the diagonal map M ! R �˝ is closed if and only if M is
of the form 1

q
N for q 2 hQi.

By applying the facts about the pairing of ˝ and ˝� stated above, the pairing of
R �˝ and R �˝� given by

h.u; x/; .v; y/i D e�2� iuv=a0 lim
j !1 e2� ix.j /y.j /=a0 D hu; viRhx; yi˝

defines an isomorphism R � ˝� ! 2R �˝ that restricts to an isomorphism
�.N �/! �.N /?. Thus, we get the following theorem.

Theorem 3 ([6, Theorem 3.3]). We have that

.R �˝�/=N � Š2R �˝=N ? Š ON ;

where the isomorphism ! W .R �˝�/=N � ! ON is given by

!
�
.v; y/CN ��

.q/ D h.q; q/; .v; y/i for .v; y/ 2 R �˝� and q 2 N:

Remark 3. In general, note that P � D P so S� D S . Hence, every subgroup
H � S acting on N and ˝ also acts on N � and ˝�. In particular Q.a; H/ is
well-defined if and only if Q.a�; H/ is.

Theorem 4 ([6, Theorem 4.1]). Assume that P ¤ ¿ and that H is a nontrivial
subgroup of S . Set G D N Ì H and G� D N � Ì H . Then there is a Morita
equivalence

C0.˝/ Ì˛aff G �M C0.R/ Ì˛aff G�;

where the action on each side is the axC b-action.

We give an outline of the proof that involves a few classical results in the theory
of crossed products. To simplify the notation in the proof, we switch the stars, and
seek a Morita equivalence between C0.˝

�/Ì˛aff G� and C0.R/Ì˛aff G. Our strategy
is to first find a Morita equivalence

C0.T=˝/ Ìlt N �M C0.NnT / Ìrt ˝;

where T D R�˝ , that is equivariant for actions ˛ and ˇ of H on C0.T=˝/ Ìlt N

and C0.NnT / Ìrt ˝ , respectively, and then find isomorphisms

�
C0.T=˝/ Ìlt N

�
Ì˛ H Š C0.R/ Ì˛aff G;

�
C0.NnT / Ìrt ˝

�
Ìˇ H Š C0.˝

�/ Ì˛aff G�:
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Recall that N and ˝ sit inside T as closed subgroups. All the groups are abelian,
and therefore, by “Green’s symmetric imprimitivity theorem” (for example [12,
Corollary 4.11]) we get a Morita equivalence

C0.T=˝/ Ìlt N �M C0.NnT / Ìrt ˝ (11.3)

via an imprimitivity bimodule X that is a completion of Cc.T /. Here N acts on the
left of T=˝ by n � ..t; y/ �˝/ D .nC t; nC y/ �˝ and ˝ acts on the right of NnT
by .N � .t; y// � x D N � .t; y C x/, and the induced actions on C0-functions are
given by

ltn.f /.p �˝/ D f
��n � .p �˝/

�

rtx.g/.N � p/ D g
�
.N � p/ � x�

for n 2 N , f 2 C0.T=˝/, p 2 T , x 2 ˝ , and g 2 C0.NnT /.
Moreover, H acts by multiplication on N , hence on ˝ , and also on R. Thus H

acts diagonally on T D R �˝ by h � .t; x/ D .ht; h � x/.
One can then show that the Morita equivalence (11.3) is equivariant for the

actions ˛, ˇ, and � of H on Cc.N; C0.T=˝//, Cc.˝; C0.T nN /, and Cc.T /

given by

˛h.f /.n/
�
.t; y/ �˝� D f .hn/

�
.ht; h � y/ �˝�

;

ˇh.g/.x/
�
N � .t; y/

� D ı.h/g.h � x/
�
N � .ht; h � y/

�
;

�h.	/.t; y/ D ı.h/
1
2 	.ht; h � y/;

where ı is the modular function for the multiplicative action of H on ˝ .
The next step is now to show that

�
C0.T=˝/ Ìlt N

�
Ì˛ H Š �

C0.R/ Ìlt N
�

Ì˛0 H

Š �
C0.R/ Ìlt N

�
Ì˛00 H

Š C0.R/ Ì˛aff .N Ì H/:

The first isomorphism is induced from T=˝
Š�! R and then we get the correct

˛00 by composing ˛0 with the automorphism h 7! h�1 of H . The last isomorphism
is a consequence of a result regarding decomposition of iterated crossed products
(see [12, Corollary 3.11]).

The other part requires more work, and the aim is to get through the steps

�
C0.NnT / Ìrt ˝

�
Ìˇ H Š �

C0.bN
�/ Ìrt ˝

�
Ìˇ0 H

Š �
C0.˝

�/ Ìrt N ��
Ìˇ00 H

Š C0.˝
�/ Ì˛aff .N � Ì H/:
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Here, the first isomorphism is induced from the ! in Theorem 3. For the second
isomorphism, we need the “subgroup of dual group theorem” (see [6, Appendix A]).
Finally, the third isomorphism is, similarly as above, a consequence of the “iterated
crossed products decomposition”.

Remark 4. The C �-algebras C0.˝/ Ì˛aff G and C0.R/ Ì˛aff G� will actually be
isomorphic by Zhang’s dichotomy: a separable, simple, purely infinite C �-algebra
is either unital or stable.

If a is defined by ai D 2 for all i and H D h2i, then this result coincides with
[9, Theorem 7.5], and if a is the sequence described in Example 2, it coincides with
[1, Theorem 6.5].

11.5 Invariants and Isomorphism Results

Let P be the set of prime numbers. A supernatural number is a function


 W P! N [ f0;1g
such that

P
p2P 
.p/ D 1. Denote the set of supernatural numbers by S. It may

sometimes be useful to consider a supernatural number as an infinite formal product


 D 2
.2/3
.3/5
.5/7
.7/ � � � :
If 
 is a supernatural number and p is a prime, let p
 denote the supernatural
number given by .p
/.p/ D 
.p/ C 1 (with the convention that 1 C 1 D 1)
and .p
/.q/ D 
.q/ if p ¤ q. The definition of p
 extends to all natural numbers
p by prime factorization.

Let 
 and % be two supernatural numbers associated with the sequence a in the
following way:


.p/ D sup fi W pi divides a0 : : : aj for some j � 0g 2 N [ f0;1g
%.p/ D sup fi W pi divides a�1 : : : a�k for some k � 1g 2 N [ f0;1g

Lemma 2. Let a and b be two sequences. The following hold:

1. �a Š �b if and only if 
a D 
b .
2. Na D Nb if and only if %a D %b .
3. Ua D Ub if and only if both 
a D 
b and %a D %b .

Indeed, from [4, Theorem 25.16] we have

� Š
Y

p2
�1.1/

Zp �
Y

p2
�1.N/

Z=p
.p/
Z

and hence (1) holds. It is not difficult to see that condition (2) and (3) also hold.
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This means that there is a one-to-one correspondence between supernatural
numbers and noncyclic subgroups of Q containingZ, and also between supernatural
numbers and Hausdorff completions of Z.

Condition (3) is equivalent to a � b, and more generally, the following result
clarifies when ˝a and ˝b are isomorphic.

Proposition 2 ([6, Proposition 5.2]). Let a and b be two sequences. Then ˝a Š
˝b if and only if there are natural numbers p and q such that

.: : : ; a�2; qa�1; pa0; a1; : : : / � .: : : ; b�2; pb�1; qb0; b1; : : : /:

That is, ˝a Š ˝b if and only if there are p; q 2 N such that p
a D q
b and
q%a D p%b .

Hence, if ˝a Š ˝b , then Na Š Nb, Pa D Pb so Sa D Sb and Qa D Qb.

Corollary 1 ([6, Proposition 5.7]). The group of a-adic numbers ˝ is self-dual if
and only if there are natural numbers p and q such that p
 D q%.

For two pairs of supernatural numbers .
1; %1/ and .
2; %2/, we write .
1; %1/ �
.
2; %2/ if there exist natural numbers p and q such that p
1 D q
2 and q%1 D p%2.
Then the set of isomorphism classes of a-adic numbers coincides with S�S= � and
the self-dual ones coincide with the diagonal, i.e. are of the form Œ.
; 
/�.

Set UP D fm
n
Z 2 U W n 2 Sg D fU 2 U W U � ZŒf 1

p
W p 2 P g�g. Then the

open subgroup

R D ZŒf 1
p
W p 2 P g� D

[

U 2UP

U

in ˝ is the maximal open (and closed) ring contained in ˝ . In particular, the a-adic
numbers ˝ can be given the structure of a topological (commutative) ring with
multiplication inherited from N � Q if and only if [11, E. Herman, 12.3.35]

N D
[

h2S

hZ
�
D Z

hn
1
p
W p 2 P

oi�
(11.4)

i.e. if and only if ˝ D R.
Moreover, by Theorem 4 and Remark 4, it should be clear that Q.a; H/ Š

Q.b; K/ if N �
a Š N �

b and H D K , although the isomorphism is in general not
canonical. Hence, for every sequence a, there is a sequence b such that ˝b is a ring
and Q.a; H/ Š Q.b; H/, since one can always pick b so that ˝b D Ra. (Warning:
Q.b; H/ is still not a ring algebra in the sense of [10].) If both ˝a and ˝b are rings,
then ˝a Š ˝b as topological rings if and only if a � b.

Example 7. Let a and b be the sequences of Examples 3 and 5, and let H D h2i.
Then Q.a; H/ Š Q.b; H/ and these algebras are also isomorphic to Q2, but the
isomorphisms are not canonical.
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Question 1. Given two sequences a and b and subgroups H � Sa and K � Sb .
When is Q.a; H/ 6Š Q.b; K/?

To enlighten the question, consider the following situation. Let a D .n; n; n; : : : /

and H D hni, and note that H D S if and only if n is prime. Then Q.a; H/ D
C.�/ Ì˛aff GZ (see next section) is the O.En;1/ of [7, Example A.6]. Thus

.K0.Q.a; H//; Œ1�; K1.Q.a; H/// Š .Z˚ Z=.n � 1/Z; .0; 1/;Z/:

Moreover, since all Q.a; H/ are Kirchberg algebras in the UCT class, they are
classifiable by K-theory.

In future work we hope to be able to compute the K-theory of Q.a; H/ using
the following strategy. Since C0.˝/ÌN is stably isomorphic to the Bunce-Deddens
algebra C.�/ Ì Z, its K-theory is well-known, in fact

.K0.C.�/ Ì Z/; Œ1�; K1.C.�/ Ì Z// Š .N �; 1;Z/:

As H is a free abelian group, we can apply the Pimsner-Voiculescu six-term exact
sequence by adding the action of one generator of H at a time. For this to work
out, we will need to apply Theorem 4 and use homotopy arguments to compute the
action of H on the K-groups (see also [2, Remark 3.16]).

11.6 The “Unstabilized” a-Adic Algebras

Fix a sequence a and a nontrivial subgroup H � S and set Q D Q.a; H/. Let
HC be the semigroup H \ N

� and for each U 2 U , let GU denote the semigroup
U Ì HC with multiplication inherited from G. Moreover, for n 2 N let pnCU be
the projection in Q corresponding to the projection �nCU in C0.˝/.

Assume U; V 2 U and V � U , so U D rZ for some r and set k D jU=V j.
Then

U D
k�1G

j D0

jrC V so that pU D
k�1X

j D0

pjrCV : (11.5)

Proposition 3. The following hold:

1. pU is a full projection in Q.
2. The full corner pU QpU is isomorphic to the semigroup crossed product

C.U / Ì˛aff GU ; ˛aff
.n;h/f .x/ D

(
f .h�1 � .x � n// if x 2 nC hU;

0 else.
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Proof. Note first that if pV 2 QpU Q for some V 2 U , then gpnChV 2 QpU Q
for all g and .n; h/ 2 G. Therefore, it suffices to check that pV 2 QpU Q for all
V 2 U .

Pick V D rZ 2 U and choose W 2 U with W � U \ V (for example
W D U \ V ). Let k D jV=W j, then by (11.5)

pV D
k�1X

j D0

pjrCW D
k�1X

j D0

.jr; 1/pW .�jr; 1/

2 spanfgpg0 W g; g0 2 G; p projection in Q with p � pU g
� span QpU Q

as ppU p D p if p � pU .
For the second part, we just remark that for f 2 C0.˝/ and .n; h/ 2 G,

pU f .n; h/pU D pU \.nChU/f .n; h/ D fjU \.nChU/.n; h/;

which is nonzero only if n 2 U [ hU. ut
The minimal automorphic dilation of C.U / Ì˛aff GU does not necessarily take us
back to Q. In fact, it gives

C0.H
�1C U / Ì˛aff .H �1C U Ì H/

where

H �1C U D f n
h
W n 2 U; h 2 HCg D

[

h2HC

h�1U D
[

h2H

hU D fhn W n 2 U; h 2 H g:

Therefore, one gets Q back precisely when N D H �1C U . For example, if U D Z

one gets Q back in the settings of Larsen and Li and also Cuntz, since H D S and
(11.4) holds in these cases.

In general, however, we get that

Q �M C0.H
�1C U / Ì˛aff .H �1C U Ì H/

which due to Remark 4 means that these are noncanonically isomorphic as well.
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