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Preface

In May 2012, 42 mathematicians congregated in the beautiful seclusion offered by
Gjógv, a small community on the Faroese island Eysturoy, to create a productive
scientific event centered between the mathematical fields of operator algebras and
dynamical systems. Experiencing both the force of the Atlantic Ocean and the
tranquil beauty of sunny pastures, the participants enjoyed the hospitality of the
Gjáargarður guest house as well as of the University of the Faroe Islands for almost
a week, exchanging mathematical ideas and results at lectures as well as at more
informal occasions.

The conference marked the conclusion of a 3-year program made possible by
the generous support of the NordForsk program funded by the Nordic Research
Council, involving 60 mathematicians in Denmark, the Faroe Islands, Norway,
and Sweden. The Gjógv meeting was also generously supported by the Faroese
Research Council and the University of the Faroe Islands as well as by the Centre
for Symmetry and Deformation at the University of Copenhagen. The organizers
of the conference were the group leaders of the nodes of the NordForsk network,
namely, Toke Meier Carlsen [Trondheim], Søren Eilers [Copenhagen], Nadia Larsen
[Oslo], Gunnar Restorff [Tórshavn], Sergei Silvestrov [Västerås/Lund], Wojciech
Szymaǹski [Odense], Klaus Thomsen [Aarhus], and Lyudmila Turowska [Gothen-
burg], with Restorff acting as the local organizer in charge of the rather nontrivial
logistics for this memorable event.

Apart from members of the network, senior and junior alike, the organizing
committee invited five external speakers:

• Claire Anantharaman-Delaroche [Orléans]
• Siegfried Echterhoff [Münster]
• Wolfgang Krieger [Heidelberg]
• Efren Ruiz [Hilo, Hawaii]
• Dana Williams [Dartmouth]

v
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Fig. 1 The grass-roofed guesthouse Gjáargarður

The interplay between operator algebras and dynamical systems, the scientific
focus of both the NordForsk network and the conference, is a topic of dramatic
current interest. These two areas benefited from the genius of John von Neumann
in their early days, but have developed independently over the decades following
World War II. The network aimed to steer the force resulting from the leading
international position of Nordic mathematics in the area of operator algebras in the
direction of the exciting cross field at the boundary of dynamics and functional
analysis, the main goal being to understand and analyze C �-algebras and von
Neumann algebras associated to dynamics, as well as to develop the relevant
concepts in dynamics.

This volume documents some of the substantial progress made by the network,
which existed for almost 3 years prior to the closing conference. However, the
network’s impact on Nordic mathematics will be felt for some time, in particular
due to the strong scientific ties forged between the NordForsk network members
and the eight nodes as a result of conferences such as the one in Gjógv and the
many personal visits by researchers in the network to other nodes.

There are many ways in which operator algebra and dynamics interact and during
the existence of the NordForsk network several or perhaps even most of these
interactions were explored at meetings or focused visits. The individual chapters
of this proceedings volume illustrate several of these interactions. Chapter 1 deals
with von Neumann algebras arising from discrete measured groupoids, Chap. 2 with
purely infinite Cuntz-Krieger algebras, and Chap. 3 with filteredK-theory over finite
topological spaces, whereas C �-algebras associated to shift spaces (or subshifts)
is the topic of Chap. 4. Graph C �-algebras are studied in Chaps. 5 and 7, and in
Chap. 6 irrational extended rotation algebras are shown to be C �-alloys. Chapter 8
deals with free probability and Chap. 9 with renewal systems, whereas KMS-states
of Cuntz-algebras are used in Chap. 10 to give a new proof of the Grothendieck
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Fig. 2 Group photo of the participants.
Back row: Wolfgang Krieger [Heidelberg], Søren Eilers [Copenhagen], Hannes Thiel [Copen-
hagen/Münster], Tron Omland [Trondheim], Johan Öinert [Copenhagen], Sigurd Segtnan [Oslo],
Søren Knudby [Copenhagen], Sören Möller [Odense], Nadia Larsen [Oslo], Klaus Thomsen
[Aarhus], James Gabe [Copenhagen], Tim de Laat [Copenhagen], Efren Ruiz [Hawaii Hilo], Jonas
Andersen Seebach [Aarhus], Sara E. Arklint [Copenhagen], Fredrik Ekström [Lund], Johan Richter
[Lund].
Middle row: Maria Ramirez-Solano [Copenhagen], Gunnar Restorff [Tórshavn], Dana Williams
[Dartmouth], Sergei Silvestrov [Västerås], Magnus Landstad [Trondheim], Toke Meier Carlsen
[Trondheim], Eduard Ortega [Trondheim], Rasmus Bentmann [Copenhagen], Rune Johansen
[Copenhagen], Adam P.W. Sørensen [Copenhagen/Wollongong], Steven Deprez [Copenhagen],
Alexander Stolin [Gothenburg].
Front row: George A. Elliott [Copenhagen/Toronto], Erling Størmer [Oslo], Rui Palma [Oslo],
Siegfried Echterhoff [Münster], Claire Ananthataman-Delaroche [Orléans], Martin Wanvik
[Trondheim], Wojciech Szymaǹski [Odense], Jesper With Mikkelsen [Odense], Lyudmila Tur-
owska [Gothenburg], Jyotishman Bhowmick [Oslo], Asger Törnquist [Copenhagen]

theorem for jointly completely bounded bilinear forms on C �-algebras. In Chap. 11,
Cuntz-Li algebras associated with the a-adic numbers are constructed as crossed
products, and in Chap. 12, crossed products of injective endomorphisms (the so-
called Stacey crossed products) are studied. In Chap. 13, another type of operator
algebras associated to dynamical systems, namely, C �-completions of the Hecke
algebra of a Hecke pair, is studied, whereas Chap. 14 gives an overview on how
operator algebras can be used to study wavelets. Finally, Chap. 15 deals with
semiprojective C �-algebras, and in Chap. 16, the topological dimension of type I
C �-algebras is studied.
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Fig. 3 View from the pass Skúvadalsskarð south of the village Gjógv

Fig. 4 View of the village Gjógv

We extend our deep-felt thanks to all the people who made this volume
possible—authors, referees, and the technical staff at Springer—as well as the
Nordic Research Council, the Faroese Research Council, the University of the Faroe
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Fig. 5 The sail-vessel
Norðlýsið seen out through
the opening of a grotto on the
west shore of the island
Hestur during a boat trip.
After the boat trip, an official
reception was held by the
University of the Faroe
Islands in Tórshavn followed
up by a public lecture about
mathematics by Søren Eilers

Islands, and the Centre for Symmetry and Deformation in Copenhagen for providing
essential funding for the closing conference.

Trondheim, Norway Toke Meier Carlsen
Copenhagen, Denmark Søren Eilers
Tórshavn, Faroe Islands Gunnar Restorff
Västerås, Sweden Sergei Silvestrov
June 2013
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Chapter 1
The Haagerup Property for Discrete Measured
Groupoids

Claire Anantharaman-Delaroche

Abstract We define the Haagerup property in the general context of countable
groupoids equipped with a quasi-invariant measure. One of our objectives is to
complete an article of Jolissaint devoted to the study of this property for probability
measure preserving countable equivalence relations. Our second goal, concerning
the general situation, is to provide a definition of this property in purely geometric
terms, whereas this notion had been introduced by Ueda in terms of the associated
inclusion of von Neumann algebras. Our equivalent definition makes obvious the
fact that treeability implies the Haagerup property for such groupoids and that it is
not compatible with Kazhdan’s property (T).

Keywords Haagerup property • Groupoid • Kazhdan property (T) • The von
Neumann algebra of a measured groupoid

Mathematics Subject Classification (2010): 46L55, 37A15, 22A22, 20F65.

1.1 Introduction

Since the seminal paper of Haagerup [15], showing that free groups have the (now
so-called) Haagerup property, or property (H), this notion plays an increasingly
important role in group theory (see the book [10]). A similar property (H) has been
introduced for finite von Neumann algebras [11,12] and it was proved in [11] that a

C. Anantharaman-Delaroche (�)
Laboratoire MAPMO – UMR6628, Fédération Denis Poisson (FDP – FR2964), CNRS/Université
d’Orléans, B. P. 6759, F-45067 Orléans Cedex 2, France
e-mail: claire.anantharaman@univ-orleans.fr

T.M. Carlsen et al. (eds.), Operator Algebra and Dynamics, Springer Proceedings
in Mathematics & Statistics 58, DOI 10.1007/978-3-642-39459-1__1,
© Springer-Verlag Berlin Heidelberg 2013

1

mailto:claire.anantharaman@univ-orleans.fr


2 C. Anantharaman-Delaroche

countable group � has property (H) if and only if its von Neumann algebra L.� /
has property (H).

Later, given a von Neumann subalgebra A of a finite von Neumann algebra M ,
a property (H) forM relative to A has been considered [9,25] and proved to be very
useful. It is in particular one of the crucial ingredients used by Popa [25], to provide
the first example of a II1 factor with trivial fundamental group.

A discrete (also called countable) measured groupoid .G;�/ with set of units X
(see Sect. 1.2.1) gives rise to an inclusionA �M , where A D L1.X;�/ andM D
L.G;�/ is the von Neumann algebra of the groupoid. This inclusion is canonically
equipped with a conditional expectationEA WM ! A. AlthoughM is not always a
finite von Neumann algebra, there is still a notion of property (H) relative to A and
EA (see [32]). However, to our knowledge, this property has not been translated in
terms only involving .G;�/, as in the group case. A significant exception concerns
the case where G D R is a countable equivalence relation on X , preserving the
probability measure �, i.e. a type II1 equivalence relation [18].

Our first goal is to extend the work of Jolissaint [18] in order to cover the general
case of countable measured groupoids, and in particular the case of group actions
leaving a probability measure quasi-invariant. Although it is not difficult to guess
the right definition of property (H) for .G;�/ (see Definition 8), it is more intricate
to prove the equivalence of this notion with the fact that L.G;�/ has property (H)
relative to L1.X;�/.

We begin in Sect. 1.2 by introducing the basic notions and notation relative to
countable measured groupoids. In particular we discuss the Tomita-Takesaki theory
for their von Neumann algebras. This is essentially a reformulation of the pioneering
results of P. Hahn [16] in a way that fits better for our purpose. In Sect. 1.3 we
discuss in detail several facts about the von Neumann algebra of the Jones’ basic
construction for an inclusion A �M of von Neumann algebras, assuming that A is
abelian. We also recall here the notion of relative property (H) in this setting.

In Sects. 1.4 and 1.5, we study the relations between positive definite functions
on our groupoids and completely positive maps on the corresponding von Neumann
algebras. These results are extensions of well known results for groups and of results
obtained by Jolissaint in [18] for equivalence relations, but additional difficulties
must be overcome. After this preliminary work, it is immediate (Sect. 1.6) to show
the equivalence of our definition of property (H) for groupoids with the definition
involving operator algebras (Theorem 1).

Our main motivation originates from the reading of Ueda’s paper [32] and
concerns treeable groupoids. This notion was introduced by Adams for probability
measure preserving countable equivalence relations [1]. Treeable groupoids may be
viewed as the groupoid analogue of free groups. So a natural question, raised by
C.C. Moore in his survey [22, p. 277] is whether a treeable equivalence relation
must have the Haagerup property. In fact, this problem is solved in [32] using
operator algebras techniques. In Ueda’s paper, the notion of treeing is translated
in an operator algebra framework regarding the inclusion L1.X;�/ � L.G;�/,
and it is proved that this condition implies that L.G;�/ has the Haagerup property
relative to L1.X;�/.
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Our approach is opposite. For us, it seems more natural to compare these two
notions, treeability and property (H), purely at the level of the groupoid. Indeed, the
definition of treeability is more nicely read at this level: roughly speaking, it means
that there is a measurable way to endow each fibre of the groupoid with a structure
of tree (see Definition 13). The direct proof that treeability implies property (H) is
given in Sect. 1.7 (Theorem 3).

Using our previous work [6] on groupoids with property (T), we prove in
Sect. 1.8 that, under an assumption of ergodicity, this property is incompatible with
the Haagerup property (Theorem 5). As a consequence, we recover the result of
Jolissaint [18, Proposition 3.2] stating that if � is a Kazhdan countable group which
acts ergodically on a Lebesgue space .X;�/ and leaves the probability measure �
invariant, then the orbit equivalence relation .R� ; �/ has not the Haagerup property
(Corollary 3). A fortiori, .R� ; �/ is not treeable, a result due to Adams and Spatzier
[2, Theorem 18] and recovered in a different way by Ueda.

This text is an excerpt from the survey [7] which was not intended for publication.

1.2 The von Neumann Algebra of a Measured Groupoid

1.2.1 Preliminaries on Countable Measured Groupoids

Our references for measured groupoids are [8, 16, 27]. Let us recall that a groupoid
is a set G endowed with a product .�; � 0/ 7! �� 0 defined on a subset G.2/ of G�G,
called the set of composable elements, and with an inverse map � 7! ��1, satisfying
the natural properties expected for a product and an inverse such as associativity. For
every � 2 G, we have that .��1; �/ 2 G.2/ and if .�; � 0/ 2 G.2/, then ��1.�� 0/ D
.��1�/� 0 D � 0 (and similarly .�� 0/� 0�1 D �.� 0� 0�1/ D � ). We set r.�/ D ���1,
s.�/ D ��1� and G.0/ D r.G/ D s.G/. The maps r and s are called respectively
the range and the source map. The pair .�; � 0/ is composable if and only if s.�/ D
r.� 0/ and then we have r.�� 0/ D r.�/ and s.�� 0/ D s.� 0/. The set G.0/ is called
the unit space of G. Indeed, its elements are units in the sense that � s.�/ D � and
r.�/� D � .

The fibres corresponding to r; s W G ! G.0/ are denoted respectively by Gx D
r�1.x/ and Gx D s�1.x/. Given a subset A of G.0/, the reduction of G to A is
the groupoid GjA D r�1.A/ \ s�1.A/. Two elements x; y of G.0/ are said to be
equivalent if Gx \ Gy 6D ;. We denote by RG this equivalence relation. Given
A � G.0/, its saturation ŒA� is the set s.r�1.A// of all elements in G.0/ that are
equivalent to some element of A. When A D ŒA�, we say that A is invariant.

A Borel groupoid is a groupoidG endowed with a standard Borel structure such
that the range, source, inverse and product are Borel maps, whereG.2/ has the Borel
structure induced by G �G and G.0/ has the Borel structure induced by G. We say
that G is countable (or discrete) if the fibres Gx (or equivalentlyGx) are countable.
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In the sequel, we only consider such groupoids. We always denote by X the
set G.0/ of units of G. A bisection S is a Borel subset of G such that the
restrictions of r and s to S are injective. A useful fact, consequence of a theorem
of Lusin-Novikov, states that, since r and s are countable-to-one Borel maps
between standard Borel spaces, there exists a countable partition ofG into bisections
(see [20, Theorem 18.10]).

Let � be a probability measure on X D G.0/. We define a �-finite measure � on
G by the formula

Z
G

F d� D
Z
X

� X
f�2GWs.�/Dxg

F.�/
�

d�.x/ (1.1)

for every non-negative Borel function F on G. The fact that x 7!P
f� Ws.�/Dxg F.�/

is Borel is proved as in [14, Theorem 2] by using a countable partition ofG by Borel
subsets on which s is injective.

We say that � is quasi-invariant if � is equivalent to it image ��1 under
� 7! ��1. In other terms, for every bisection S , one has �.s.S// D 0 if and
only if �.r.S// D 0. This notion only depends on the measure class of �. We set
ı D d��1

d� . Whenever � D ��1, we say that � is invariant.

Definition 1. A countable (or discrete) measured groupoid1 .G;�/ is a countable
Borel groupoidG with a quasi-invariant probability measure � on X D G.0/.

In the rest of this paper, G will always be equipped with the corresponding
�-finite measure � defined in (1.1).

Example 1. (a) Let � Õ X be a (right) action of a countable group � on a
standard Borel space X , and assume that the action preserves the class of a
probability measure �. Let G D X Ì � be the semi-direct product groupoid.
We have r.x; t/ D x and s.x; t/ D xt. The product is given by the formula
.x; s/.xs; t/ D .x; st/. Equipped with the quasi-invariant measure �, .G;�/ is
a countable measured groupoid. As a particular case, we find the groupG D �
when X is reduced to a point.

(b) Another important family of examples concerns countable measured equiva-
lence relations. A countable Borel equivalence relation R � X � X on a
standard Borel space X is a Borel subset of X � X whose equivalence classes
are finite or countable. It has an obvious structure of Borel groupoid with
r.x; y/ D x, s.x; y/ D y and .x; y/.x; z/ D .x; z/. When equipped with
a quasi-invariant probability measure �, we say that .R; �/ is a countable
measured equivalence relation. Here, quasi-invariance also means that for every
Borel subset A � X , we have �.A/ D 0 if and only if the measure of the
saturation s.r�1.A// of A is still 0.

1In [8], a countable measured groupoid is called r-discrete. Another difference is that we have
swapped here the definitions of � and ��1.
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The orbit equivalence relation associated with an action � Õ .X;�/ is
denoted .R� ; �/.

A general groupoid is a combination of an equivalence relation and groups.
Indeed, let .G;�/ be a countable measured groupoid. Let c D .r; s/ be the map
� 7! .r.�/; s.�// from G into X � X . The range of c is the graph RG of
the equivalence relation induced on X by G. Moreover .RG; �/ is a countable
measured equivalence relation. The kernel of the groupoid homomorphism c is
the subgroupoid f� 2 G W s.�/ D r.�/g. For every x 2 X , the subset
G.x/ D s�1.x/ \ r�1.x/, endowed with the induced operations, is a group, called
the isotropy group at x. So the kernel of c is the bundle of groups x 7! G.x/ over
X , called the isotropy bundle, and G appears as an extension of the equivalence
relation RG by this bundle of groups.

A reduction .GjU ; �jU / such that U is conull in X is called inessential. Since we
are working in the setting of measured spaces, it will make no difference to replace
.G;�/ by any of its inessential reductions.

1.2.2 The von Neumann Algebra of .G; �/

If f W G ! C is a Borel function, we set

kf kI D max

8<
:
������x 7!

X
r.�/Dx

jf .�/j
������1

;

������x 7!
X
s.�/Dx

jf .�/j
������1

9=
; :

Let I.G/ be the set of functions such that kf kI < C1. It only depends on the
measure class of �. We endow I.G/ with the (associative) convolution product

.f � g/.�/ D
X

�1�2D�
f .�1/g.�2/ D

X
s.�/Ds.�2/

f .���12 /g.�2/ D
X

r.�1/Dr.�/
f .�1/g.�

�1
1 �/:

and the involution f �.�/ D f .��1/.
We have I.G/ � L1.G; �/ \ L1.G; �/ � L2.G; �/, with kf k1 � kf kI when

f 2 I.G/. Therefore k�kI is a norm on I.G/, where two functions which coincide
�-almost everywhere are identified. It is easily checked that I.G/ is complete for
this norm. Moreover for f , g 2 I.G/ we have kf � gkI � kf kIkgkI . Therefore
.I.G/; k�kI / is a Banach �-algebra.

This variant of the Banach algebra I.G/ introduced by Hahn [16] has been
considered by Renault in [29, p. 50]. Its advantage is that it does not involve the
Radon-Nikodym derivative ı.

For f 2 I.G/ we define a bounded operator L.f / on L2.G; �/ by

.L.f /�/.�/ D .f � �/.�/ D
X

�1�2D�
f .�1/�.�2/: (1.2)
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We have kL.f /k � kf kI ,L.f /� D L.f �/ andL.f /L.g/ D L.f �g/. Hence,
L is a representation of I.G/, called the left regular representation.

Definition 2. The von Neumann algebra of the countable measured groupoid
.G;�/ is the von Neumann subalgebra L.G;�/ of B.L2.G; �// generated by
L.I.G//. It will also be denoted by M in the rest of the paper.

Note that L2.G; �/ is a direct integral of Hilbert spaces :

L2.G; �/ D
Z ˚
X

`2.Gx/ d�.x/:

We define on L2.G; �/ a structure of L1.X/-module by .f �/.�/ D f ı s.�/�.�/,
where f 2 L1.X/ and � 2 L2.G; �/. In fact L1.X/ is the algebra of
diagonalizable operators with respect to the above disintegration of L2.G; �/.

Obviously, the representationL commutes with this action of L1.X/. It follows
that the elements ofL.G;�/ are decomposable operators ([13, Theorem 1, p. 164]).
We have L.f / D R ˚

X Lx.f / d�.x/, where Lx.f / W `2.Gx/ ! `2.Gx/ is defined
as in (1.2), but for � 2 `2.Gx/.

Let Cn D f1=n � ı � ng. Then .Cn/ is an increasing sequence of measurable
subsets of G with [nCn D G (up to null sets). We denote by In.G/ the set
of elements in I.G/ taking value 0 outside Cn and we set I1.G/ D [nIn.G/.
Obviously, I1.G/ is an involutive subalgebra of I.G/. It is easily checked that
I1.G/ is dense into L2.G; �/ and that L.G;�/ is generated by L.I1.G//.

The von Neumann algebra L1.X/ is isomorphic to a subalgebra of I1.G/, by
giving to f 2 L1.X/ the value 0 outside X � G. Note that, for � 2 L2.G; �/,

.L.f /�/.�/ D f ı r.�/�.�/:
In this way, A D L1.X/ appears as a von Neumann subalgebra of M .

Obviously, the pairA �M only depends on the measure class of�, up to unitary
equivalence.

We view I.G/ as a subspace of L2.G; �/. The characteristic function 1X of X �
G is a norm one vector in L2.G; �/. Let ' be the normal state onM defined by

'.T / D h1X ; T 1XiL2.G;�/:
For f 2 I.G/, we have '.L.f // D R

X
f .x/ d�.x/, and therefore, for f; g 2 I.G/,

'.L.f /�L.g// D hf; giL2.G;�/: (1.3)

Lemma 1. Let g be a Borel function on G such that ı�1=2g D f 2 I.G/ (for
instance g 2 I1.G/). Then � 7! � � g is a bounded operator on L2.G; �/. More
precisely, we have

k� � gk2 � kf kIk�k2:

Proof. Straightforward. ut
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We set R.g/.�/ D � � g. We have L.f / ı R.g/ D R.g/ ı L.f / for every
g 2 I1.G/ and f 2 I.G/. We denote by R.G;�/ the von Neumann algebra
generated by R.I1.G//.

Lemma 2. The vector 1X is cyclic and separating for L.G;�/, and therefore ' is
a faithful state.

Proof. Immediate from the fact that L.f / and R.g/ commute for f; g 2 I1.G/,
withL.f /1X D f andR.g/1X D g, and from the density of I1.G/ intoL2.G; �/.

ut
The von Neumann algebraL.G;�/ is on standard form onL2.G; �/, canonically

identified with L2.M; '/ (see (1.3)). We identify M with a dense subspace of
L2.G; �/ by T 7! OT D T .1X/. The modular conjugation J and the one-parameter
modular group � relative to the vector 1X (and ') have been computed in [16]. With
our notations, we have

8� 2 L2.G; �/; .J �/.�/ D ı.�/1=2�.��1/

and

8T 2 L.G;�/; �t .T / D ıitT ı�it:

Here, for t 2 R, the function ıit acts on L2.G; �/ by pointwise multiplication and
defines a unitary operator. Note that for f 2 L.G;�/, we have ıitL.f /ı�it D
L.ıitf /. In particular, � acts trivially on A. Therefore (see [31]), there exists a
unique faithful conditional expectationEA WM ! A such that ' D ' ıEA, and for
T 2M , we have

2EA.T / D eA. OT /;

where eA is the orthogonal projection from L2.G; �/ onto L2.X;�/. If we view the
elements of M as functions on G, then EA is the restriction map to X . The triple
.M;A;EA/ only depends on the class of �, up to equivalence.

For f 2 I.G/ and � 2 L2.G; �/ we observe that

.JL.f /J /� D R.g/� D � � g with g D ı1=2f �: (1.4)

1.3 Basic Facts on the Module L2.M/A

We consider, in an abstract setting, the situation we have met above. Let A �M be
a pair of von Neumann algebras, where A D L1.X;�/ is abelian. We assume the
existence of a normal faithful conditional expectationEA WM ! A and we set ' D
	� ıEA, where 	� is the state onA defined by the probability measure�. Recall that
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M is on standard form on the Hilbert spaceL2.M; '/ of the Gelfand-Naimark-Segal
construction associated with '. We view L2.M; '/ as a left M -module and a right
A-module. Identifying2 M with a subspace of L2.M; '/, we know that EA is the
restriction to M of the orthogonal projection eA W L2.M; '/! L2.A; 	�/.

For further use, we make the following observation

8m 2M;8a 2 A; Oma D Ja�J Om D cma D m Oa: (1.5)

Indeed, if S is the closure of the map Om 7! cm� and if S D J
1=2 D 
�1=2J is
its polar decomposition, then every a 2 A commutes with 
 since it is invariant
under �' . Then (1.5) follows easily. Note that (1.4) gives a particular case of this
remark.

1.3.1 The Commutant hM; eAi of the Right Action

The algebra of all operators which commute with the right action of A is the von
Neumann algebra of the basic construction for A � M . It is denoted hM; eAi
since it is generated by M and eA. The linear span of fm1eAm2 W m1;m2 2M g
is a �-subalgebra which is weak operator dense in hM; eAi. Moreover hM; eAi is a
semi-finite von Neumann algebra, carrying a canonical normal faithful semi-finite
trace Tr� (depending on the choice of �), defined by

Tr�.m1eAm2/ D
Z
X

EA.m2m1/ d� D '.m2m1/:

(for these classical results, see [19, 24]). We shall give more information on this
trace in Lemma 4 and its proof. We need some preliminaries.

Definition 3. A vector � 2 L2.M; '/ is A-bounded if there exists c > 0 such that
k�ak2 � c	�.a�a/1=2 for every a 2 A.

We denote by L2.M; '/0, or L 2.M; '/, the subspace of A-bounded vectors.
It contains M . We also recall the obvious fact that T 7! T .1A/ is an isomorphism
from the space B.L2.A; 	�/A; L2.M; '/A/ of bounded (right) A-linear operators
T W L2.A; 	�/ ! L2.M; '/ onto L 2.M; '/. For � 2 L 2.M; '/, we denote by L�
the corresponding operator fromL2.A; 	�/ intoL2.M; '/. In particular, form 2 M ,
we have Lm D mj

L2.A;	�/
. It is easy to see that L 2.M; '/ is stable under the actions

of hM; eAi and A, and that LT �a D T ı L� ı a for T 2 hM; eAi, � 2 L 2.M; '/,
a 2 A.

2When necessary, we shall write Om the element m 2 M , when viewed in L2.M; '/, in order to
stress this fact.
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For �; � 2 L 2.M; '/, the operator L�� L� 2 B.L2.A; 	�// is in A, since it
commutes with A. We set h�; �iA D L�� L�. In particular, we have hm1;m2iA D
EA.m

�
1m2/ for m1;m2 2 M . The A-valued inner product h�; �iA D L�� L� gives to

L 2.M; '/ the structure of a self-dual Hilbert right A-module [23]. It is a normed
space with respect to the norm k�kL 2.M/ D kh�; �iAk1=2A . Note that

k�k2L2.M/ D 	�.h�; �iA/ � k�k2L 2.M/:

On the algebraic tensor product L 2.M; '/ˇL2.A/ a positive hermitian form is
defined by

h� ˝ f; �˝ gi D
Z
X

f gh�; �iA d�:

The Hilbert space L 2.M; '/ ˝A L2.A/ obtained by separation and completion
is isomorphic to L2.M; '/ as a right A-module by � ˝ f 7! �f . Moreover the
von Neumann algebra B.L 2.M; '/A/ of bounded A-linear endomorphisms of
L 2.M; '/ is isomorphic to hM; eAi by T 7! T ˝ 1. We shall identify these two
von Neumann algebras (see [23, 30] for details on these facts).

Definition 4. An orthonormal basis of the A-module L2.M; '/ is a family .�i / of
elements of L 2.M; '/ such that

P
i �iA D L2.M; '/ and

˝
�i ; �j

˛
A
D ıi;j pj for all

i; j , where the pj are projections in A.

It is easily checked thatL�iL
�
�i

is the orthogonal projection on �iA, and that these
projections are mutually orthogonal with

P
i L�i L

�
�i
D 1.

Using a generalization of the Gram-Schmidt orthonormalization process, one
shows the existence of orthonormal bases (see [23]).

Lemma 3. Let .�i / be an orthonormal basis of the A-module L2.M; '/. For every
� 2 L 2.M; '/, we have (weak* convergence)

h�; �iA D
X
i

h�; �i iAh�i ; �iA: (1.6)

Proof. Indeed

h�; �iA D L�

� L� D L�

� .
X
i

L�i L
�

�i
/L� D

X
i

.L�

� L�i /.L
�

�i
L�/ D

X
i

h�; �i iAh�i ; �iA:

ut
Lemma 4. Let .�i /i2I be an orthonormal basis of the A-module L2.M; '/.

1. For every x 2 hM; eAiC we have

Tr�.x/ D
X
i

	�.h�i ; x�i iA/ D
X
i

h�i ; x�i iL2.M/: (1.7)
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2. span
n
L�L

�
� W �; � 2 L 2.M; '/

o
is contained in the ideal of definition of Tr� and

we have, for �; � 2 L 2.M; '/,

Tr�.L�L
�
� / D 	�.L��L�/ D 	�.h�; �iA/: (1.8)

Proof. 1. The map U W L2.M; '/ D ˚i �iA ! ˚ipiL2.A/ defined by U.�ia/ D
pia is an isomorphism which identifies L2.M; '/ to the submodule p.`2.I / ˝
L2.A// of `2.I / ˝ L2.A/, with p D ˚ipi . The canonical trace on hM; eAi is
transfered to the restriction to p

�
B.`2.I //˝A�p of the trace Tr ˝ 	�, defined on

T D ŒTi;j � 2 .B.`2.I /˝A//C by .Tr˝ 	�/.T / DPi 	�.Tii/. It follows that

Tr�.x/ D
X
i

	�..UxU
�/ii/ D

X
i

h�i ; x�i iL2.M/ D
X
i

	�.h�i ; x�i iA/:

2. Taking x D L�L
�
� in 1, the equality Tr�.L�L�� / D 	�.h�; �iA/ follows from

Eqs. (1.6) and (1.7). Formula (1.8) is deduced by polarization. ut

1.3.2 Compact Operators

In a semi-finite von Neumann algebra N , there is a natural notion of ideal of
compact operators, namely the norm-closed ideal I .N / generated by its finite
projections (see [25, Sect. 1.3.2] or [26]).

Concerning N D hM; eAi, there is another natural candidate for the space of
compact operators. First, we observe that given �; � 2 L 2.M; '/, the operator
L�L

�
� 2 hM; eAi plays the role of a rank one operator in ordinary Hilbert spaces:

indeed, if ˛ 2 L 2.M; '/, we have .L�L�� /.˛/ D �h�; ˛iA. In particular, for
m1;m2 2 M , we note that m1eAm2 is a “rank one operator” since m1eAm2 D
Lm1L

�
m�

2
. We denote by K .hM; eAi/ the norm closure into hM; eAi of

span
n
L�L

�
� W �; � 2 L 2.M; '/

o
:

It is a two-sided ideal of hM; eAi.
For every � 2 L 2.M; '/, we have L�eA 2 hM; eAi. Since

L�L
�
� D .L�eA/.L�eA/�

we see that K .hM; eAi/ is the norm closed two-sided ideal generated by eA in
hM; eAi. The projection eA being finite (because Tr�.eA/ D 1), we have

K .hM; eAi/ � I .hM; eAi/:
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The subtle difference between K .hM; eAi/ and I .hM; eAi/ is studied in
[25, Sect. 1.3.2]. We recall in particular that for every T 2 I .hM; eAi/ and every
" > 0, there is a projection p 2 A such that 	�.1�p/ � " and TJpJ 2 K .hM; eAi/
(see [25, Proposition 1.3.3 (3)]).3

1.3.3 The Relative Haagerup Property

Let ˚ be a unital completely positive map fromM intoM such that EA ı˚ D EA.
Then for m 2 M , we have

k˚.m/k22 D '.˚.m/�˚.m// � '.˚.m�m// D '.m�m/ D kmk22:

It follows that ˚ extends to a contraction O̊ of L2.M; '/. Whenever ˚ is
A-bimodular, O̊ commutes with the right action ofA (due to (1.5)) and so belongs to
hM; eAi. It also commutes with the left action of A and so belongs to A0 \ hM; eAi.
Definition 5. We say that M has the Haagerup property (or property (H)) relative
to A and EA if there exists a net .˚i / of unital A-bimodular completely positive
maps fromM to M such that

1. EA ı ˚i D EA for all i ;
2. b̊i 2 K .hM; eAi/ for all i ;
3. limi k˚i.x/ � xk2 D 0 for every x 2M .

This notion is due to Boca [9]. In [25], Popa uses a slightly different formulation.

Lemma 5. In the previous definition, we may equivalently assume that, for every i ,b̊
i 2 I .hM; eAi/

Proof. This fact is explained in [25]. Let ˚ be a unital A-bimodular completely
positive map from M to M such that EA ı ˚ D EA and O̊ 2 I .hM; eAi/.
As already said, by [25, Proposition 1.3.3 (3)], for every " > 0, there is a
projection p in A with 	�.1 � p/ < " and O̊ JpJ 2 K .hM; eAi/. Thus we have
p O̊ JpJ 2 K .hM; eAi/. Moreover, this operator is associated with the completely
positive map ˚p W m 2M 7! ˚.pmp/, since

.p O̊ JpJ/. Om/ D p O̊ .cmp/ D p O̊ .cmp/ D p2˚.mp/ D 2˚.pmp/:

Then, ˚ 0 D ˚p C .1�p/EA is unital, satisfies EA ı˚ 0 D EA and still provides an
element of K .hM; eAi/. This modification allows to prove that if Definition 5 holds
with K .hM; eAi/ replaced by I .hM; eAi/, then the relative Haagerup property is
satisfied (see [25, Proposition 2.2 (1)]). ut

3In [25], K .hM; eAi/ is denoted I0.hM; eAi/.
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1.3.4 Back to L2.G; �/A

We apply the facts just reminded to M D L.G;�/, which is on standard form
on L2.G; �/ D L2.M; '/. This Hilbert space is viewed as a right A-module: for
� 2 L2.G;�/ and f 2 A, the action is given by �f ı s.

It is easily seen that L 2.M; '/ is the space of � 2 L2.G; �/ such that x 7!P
s.�/Dx j�.�/j2 is in L1.X/. Moreover, for �; � 2 L 2.M; '/ we have

h�; �iA D
X
s.�/Dx

�.�/�.�/:

For simplicity of notation, we shall often identify f 2 I.G/ � L2.G; �/ with
the operatorL.f /.4 For instance, for f; g 2 I.G/, the operatorL.f / ıL.g/ is also
written f � g, and for T 2 B.L2.G;�//, we write T ı f instead of T ı L.f /.

Let S � G be a bisection. Its characteristic function 1S is an element of I.G/
and a partial isometry in M since

1�S � 1S D 1s.S/; and 1S � 1�S D 1r.S/:

Let G D tSn be a countable partition of G into Borel bisections. Another
straightforward computation shows that .1Sn/n is an orthonormal basis of the right
A-moduleL2.M; '/.

By Lemma 4, for x 2 hM; eAiC we have

Tr�.x/ D
X
n

h1Sn; x1SniL2.M/:

In particular, whenever x is the multiplication operator m.f / by some bounded
non-negative Borel function f , we get

Tr�.m.f // D
Z
G

f d�: (1.9)

1.4 From Completely Positive Maps to Positive Definite
Functions

Recall that if G is a countable group, and ˚ W L.G/ ! L.G/ is a completely
positive map, then t 7! F˚.t/ D 	.˚.ut /u�t / is a positive definite function
on G, where 	 is the canonical trace on L.G/ and ut , t 2 G, are the canonical

4The reader should not confuse L.f / W L2.G; �/ ! L2.G; �/ with its restriction Lf W
L2.A; 	�/! L2.G; �/.
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unitaries in L.G/. We want to extend this classical fact to the groupoid case.
This was achieved by Jolissaint [18] for countable probability measure preserving
equivalence relations.

Let .G;�/ be a countable measured groupoid and M D L.G;�/.
Let ˚ WM !M be a normal A-bimodular unital completely positive map. Let
G D tSn be a partition into Borel bisections. We define F˚ W G ! C by

F˚.�/ D EA.˚.1Sn/ ı 1�Sn/ ı r.�/; (1.10)

where Sn is the bisection which contains � .
That F˚ does not depend (up to null sets) on the choice of the partition is a

consequence of the following lemma.

Lemma 6. Let S1 and S2 be two Borel bisections. Then

EA.˚.1S1/ ı 1�S1/ D EA.˚.1S2/ ı 1�S2/

almost everywhere on r.S1 \ S2/.
Proof. Denote by e the characteristic function of r.S1\S2/. Then e�1S1 D e�1S2 D
1S1\S2 . Thus we have

eEA.˚.1S1/ ı 1�S1/e D EA
�
˚.e � 1S1/ ı .1�S1 � e/

�
D EA

�
˚.e � 1S2/ ı .1�S2 � e/

� D eEA.˚.1S2/ ı 1�S2/e:

ut
We now want to show that F˚ is a positive definite function in the following

sense. We shall need some preliminary facts.

Definition 6. A Borel function F W G ! C is said to be positive definite if there
exists a �-null subset N of X D G.0/ such that for every x … N , and every
�1; : : : ; �k 2 Gx , the k � k matrix ŒF .��1i �j /� is non-negative.

Definition 7. We say that a Borel bisection S is admissible if there exists a constant
c > 0 such that 1=c � ı.�/ � c almost everywhere on S .

In other terms, 1S 2 I1.G/ and so the convolution to the right by 1S defines a
bounded operatorR.1S/ on L2.M; '/, by (1.4).

Lemma 7. Let S be a Borel bisection and let T 2 M . We have 21S ı T D 1S � OT .
Moreover, if S is admissible, we have 2T ı 1S D OT � 1S .

Proof. First, we observe that 21S ı T D 1S ı T .1X/ D 1S � OT .
On the other hand, given f 2 I.G/, we have L.f /.b1S/ D f � 1S . So, if .fn/

is a sequence in I.G/ such that limn L.fn/ D T in the strong operator topology,
we have

2T ı 1S D T .b1S/ D lim
n
L.fn/.b1S / D lim

n
fn � 1S
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in L2.G; �/. But, when S is admissible, the convolution to the right by 1S is the

bounded operatorR.1S/. Noticing that limn

���fn � OT
���
2
D 0, it follows that

2T ı 1S D lim
n
fn � 1S D OT � 1S : ut

Lemma 8. Let T 2M , and let S be an admissible bisection. Then

1S.�/EA.T ı 1S/.s.�// D 1S.�/EA.1S ı T /.r.�//

for almost every � .

Proof. We have

.2T ı 1S/.x/ D
X

�1�2Dx
OT .�1/1S.�2/ D OT .��12 /

whenever x 2 s.S/, where �2 is the unique element of S with s.�2/ D x. Otherwise
.T ı 1S/.x/ D 0.

On the other hand,

.21S ı T /.x/ D OT .��11 /

whenever x 2 r.S/, where �1 is the unique element of S with r.�1/ D x. Otherwise
.21S ı T /.x/ D 0. Our statement follows immediately. ut
Lemma 9. F˚ is a positive definite function.

Proof. We assume that F˚ is defined by Eq. (1.10) through a partition under
admissible bisections. We set Sij D S�1i Sj D

˚
��1� 0 W � 2 Si ; � 0 2 Sj

�
. Note that

1�Si � 1Sj D 1Sij . Moreover, the Sij are admissible bisections. We set

Zijm D
n
x 2 r.Sij \ Sm/ W EA.˚.1Sij/ ı 1�Sij

/.x/ 6D EA.˚.1Sm/ ı 1�Sm/.x/
o

and Z D [i;j;mZijm. It is a null set by Lemma 6.
By Lemma 8, for every i there is a null set Ei � r.Si / such that for � 2 Si with

r.�/ … Ei and for every j , we have

EA.˚.1Sij/ ı 1�Sj ı 1Si /.s.�// D EA.1Si ı ˚.1Sij/ ı 1�Sj /.r.�//

We set E D [iEi . Let Y be the saturation of Z [ E . It is a null set, since � is
quasi-invariant.

Let x … Y , and �1; : : : ; �k 2 Gx . Assume that ��1i �j 2 S�1ni Snj \ Sm. We have
r.��1i �j / D s.�i / … Y since r.�i / D x … Y . Therefore,

F˚.�
�1
i �j / D EA.˚.1Sninj / ı 1�Snj ı 1Sni /.s.�i //:
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But �i 2 Sni with r.�i / D x … Y , so

EA.˚.1Sninj / ı 1�Snj ı 1Sni /.s.�i // D EA.1Sni ı ˚.1Sni nj / ı 1�Snj /.r.�i //:

Given �1; : : : ; �k 2 C, we have

kX
i;jD1

�i�j F˚.�
�1
i �j / D EA

� kX
iD1
.�i1Sni /ı˚.1�Sni ı1Snj /ı

kX
jD1

.�j1Snj /
�
�
.x/ 	 0:

ut
Obviously, if ˚ is unital, F˚ takes value 1 almost everywhere on X .

Proposition 1. We now assume that ˚ is unital, with EA ı ˚ D EA and O̊ 2
K .hM; eAi/. Then, for every " > 0, we have

�.fjF˚ j > "g/ < C1:

Proof. Let .Sn/ be a partition of G into Borel bisections. Given " > 0 we choose
�1; : : : ; �k ; �1; : : : ; �k 2 L 2.M; '/ such that

����� O̊ �
kX
iD1

L�i L
�
�i

����� � "=2:

We view O̊ �Pk
iD1 L�i L��i as an element of B.L 2.M; '/A/ and we apply it to

1Sn 2 L 2.M; '/. Then

�����˚.1Sn/ �
kX
iD1

�i h�i ; 1SniA
�����

L 2.M/

� "=2k1SnkL 2.M/ � "=2:

Using the Cauchy-Schwarz inequality h�; �i�Ah�; �iA � k�k2L 2.M/h�; �iA, we get

�����
*

1Sn; ˚.1Sn/�
kX
iD1

�i h�i ; 1SniA
+

A

����� �
�����˚.1Sn/ �

kX
iD1

�i h�i ; 1SniA
�����

L 2.M/

� "=2:

We have, for almost every � 2 Sn and x D s.�/,

jF˚.�/j D
ˇ̌
EA.˚.1Sn/ ı 1�Sn/.r.�//

ˇ̌ D ˇ̌EA.1�Sn ı ˚.1Sn //.x/
ˇ̌ D ˇ̌˝1Sn ; ˚.1Sn/˛A.x/

ˇ̌

�
ˇ̌
ˇ̌
ˇ̌
*

1Sn ; ˚.1Sn/ �
kX
iD1

�i
˝
�i ; 1Sn

˛
A

+

A

.x/

ˇ̌
ˇ̌
ˇ̌C

kX
iD1

ˇ̌
ˇ˝1Sn ; �i ˝�i ; 1Sn ˛A

˛
A
.x/
ˇ̌
ˇ:
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The first term is� "=2 for almost every x 2 s.Sn/. As for the second term, we have,
almost everywhere,

ˇ̌h1Sn ; �i iA.x/h�i ; 1SniA.x/
ˇ̌ � k�ikL 2.M/

ˇ̌h�i ; 1SniA.x/
ˇ̌
:

Hence, we get

jF˚.�/j � "=2C
kX
iD1
k�ikL 2.M/

ˇ̌h�i ; 1SniA.s.�//
ˇ̌

for almost every � 2 Sn.
We want to estimate

�.fjF˚ j > "g/ D
X
n

�.f� 2 Sn W jF˚.�/j > "g/:

For almost every � 2 Sn such that jF˚.�/j > ", we see that

kX
iD1
k�ikL 2.M/

ˇ̌h�i ; 1SniA.s.�//
ˇ̌
> "=2:

Therefore

�.fjF˚ j > "g/ �
X
n

�
�(
� 2 Sn W

kX
iD1
k�ikL 2.M/

ˇ̌h�i ; 1SniA.s.�//
ˇ̌
> "=2

) �

�
X
n

�
�(
x 2 s.Sn/ W

kX
iD1
k�ikL 2.M/

ˇ̌h�i ; 1SniA.x/
ˇ̌
> "=2

)�
:

Now,

kX
iD1
k�ikL 2.M/

ˇ̌h�i ; 1SniA.x/
ˇ̌ � .

kX
iD1
k�ik2L 2.M//

1=2
� kX
iD1

ˇ̌h�i ; 1SniA.x/
ˇ̌2�1=2

:

We set c DPk
iD1 k�ik2L 2.M/ and fn.x/ DPk

iD1
ˇ̌h�i ; 1SniA.x/

ˇ̌2
. We have

X
n

fn.x/ D
X
n

kX
iD1

ˇ̌h�i ; 1SniA.x/
ˇ̌2 D

kX
iD1

X
n

ˇ̌h�i ; 1SniA.x/
ˇ̌2

D
kX
iD1
h�i ; �i iA.x/ �

kX
iD1
k�ik2L 2.M/;
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since, by Lemma 3 (or directly here),

h�i ; �i iA D
X
k

h�i ; 1Sk iAh1Sk ; �i iA D
X
k

ˇ̌h�i ; 1Sk iA
ˇ̌2
:

We set d DPk
iD1 k�ik2L 2.M/.

We have

�.fjF˚ j > "g/ �
X
n

�.
˚
x 2 s.Sn/ W cfn.x/ > ."=2/2

�
/:

We set ˛ D c�1."=2/2. Denote by i.x/ the number of indices n such that fn.x/ > ˛.
Then i.x/ � N , where N is the integer part of d=˛. We denote by P D fPng the
set of subsets of N whose cardinal is � N . Then there is a partition X D tmBm
into Borel subsets such that

8x 2 Bm; Pm D fn 2 N W fn.x/ > ˛g:

We have

�.fjF˚ j > "g/ �
X
n;m

�.fx 2 Bm \ s.Sn/ W fn.x/ > ˛g/

�
X
m

�X
n

�.fx 2 Bm \ s.Sn/ W fn.x/ > ˛g/
�

�
X
m

X
n2Pm

�.fx 2 Bm \ s.Sn/ W fn.x/ > ˛g/ �
X
m

N�.Bm/ D N

ut

1.5 From Positive Definite Functions to Completely Positive
Maps

Again, we want to extend a well known result in the group case, namely that, given
a positive definite function F on a countable groupG, there is a normal completely
positive map ˚ W L.G/ ! L.G/, well defined by the formula ˚.ut / D F.t/ut for
every t 2 G.

We need some preliminaries. For the notion of representation used below, see for
instance [6, Sect. 3.1].

Lemma 10. Let F be a positive definite function on .G;�/. There exists a repre-
sentation 
 of G on a measurable field K D fK .x/gx2X of Hilbert spaces, and a
measurable section � W x 7! �.x/ 2 K .x/ such that

F.�/ D h� ı r.�/; 
.�/� ı s.�/i
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almost everywhere, that is F is the coefficient of the representation 
 , associated
with �.

Proof. This classical fact may be found in [28]. The proof is straightforward, and
similar to the classical GNS construction in the case of groups. Let V.x/ the space of
finitely supported complex-valued functions onGx , endowed with the semi-definite
positive hermitian form

hf; gix D
X

�1;�22Gx
f .�1/g.�2/F.�

�1
1 �2/:

We denote by K .x/ the Hilbert space obtained by separation and completion of
V.x/, and 
.�/ W K .s.�// ! K .r.�// is defined by .
.�/f /.�1/ D f .��1�1/.
The Borel structure on the field fK .x/gx2X is provided by the Borel functions on
G whose restriction to the fibresGx are finitely supported. Finally, � is the characte-
ristic function of X , viewed as a Borel section. ut

Now we assume that F.x/ D 1 for almost every x 2 X , and thus � is a unit
section. We consider the measurable field

˚
`2.Gx/˝K .x/

�
x2X . Note that

`2.Gx/˝K .x/ D `2.Gx;K .x//:

Let f 2 `2.Gx/. We define Sx.f / 2 `2.Gx;K .x// by

Sx.f /.�/ D f .�/
.�/�� ı r.�/

for � 2 Gx . Then

X
s.�/Dx

kSx.f /.�/k2K .x/ D kf k`2.Gx/:

The field .Sx/x2X of operators defines an isometry

S W L2.G; �/!
Z ˚
X

`2.Gx;K .x// d�.x/;

by

S.f /.�/ D f .�/
.�/�� ı r.�/:

Note that
R ˚
X
`2.Gx;K .x// d�.x/ is a right A-module, by

.�a/x D �xa.x/ W � 2 Gx 7! �.�/a ı s.�/:
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Of course, S commutes with the right actions of A. We also observe that, as a
right A-module, L 2.M; '/ ˝A

R ˚
X K .x/ d�.x/ and

R ˚
X `2.Gx;K .x// d�.x/ are

canonically isomorphic under the map

� ˝ � 7! �� ı s; 8� 2 L 2.M; '/;8� 2
Z ˚
X

K .x/ d�.x/;

where .��ı s/x is the function � 2 Gx 7! �.�/�ı s.�/ in `2.Gx;K .x//. It follows
that M acts on

R ˚
X
`2.Gx;K .x// d�.x/ by m 7! m ˝ Id . In particular, for f 2

I.G/, we see that L.f / ˝ Id , viewed as an operator on
R ˚
X
`2.Gx;K .x// d�.x/,

is acting as

..L.f /˝ Id /�/.�/ D
X

�1�2D�
f .�1/�.�2/ 2 K .s.�//:

Lemma 11. For f 2 I.G/, we have S�
�
L.f /˝ Id

�
S D L.Ff /.

Proof. A straightforward computation shows that for � 2 R ˚X `2.Gx;K .x// d�.x/,
we have

.S��/.�/ D h
.�/�� ı r.�/; �.�/iK .s.�//:

Moreover, given h 2 L2.G; �/, we have

�
.L.f /˝Id /S h

�
.�/ D

X
�1�2D�

f .�1/.S h/.�2/ D
X

�1�2D�
f .�1/h.�2/
.�2/

��ır.�2/:

Hence,

�
S�.L.f /˝ Id /S h

�
.�/ D

*

.�/�� ı r.�/;

X
�1�2D�

f .�1/h.�2/
.�2/
�� ı r.�2/

+

D
*
� ı r.�/;

X
�1�2D�

f .�1/h.�2/
.�1/� ı r.�2/
+

D
X

�1�2D�
f .�1/h.�2/h� ı r.�1/; 
.�1/� ı r.�2/i

D
X

�1�2D�
f .�1/F.�1/h.�2/ D .L.Ff /h/.�/: ut

Proposition 2. Let F W G ! C be a Borel positive definite function onG such that
FjX D 1. Then there exists a unique normal completely positive map ˚ fromM into
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M such that ˚.L.f // D L.Ff / for every f 2 I.G/. Morever, ˚ is A-bimodular,
unital and EA ı ˚ D EA.

Proof. The uniqueness is a consequence of the normality of ˚ , combined with the
density of L.I.G// into M . With the notation of the previous lemma, for m 2 M
we put ˚.m/ D S��m˝ Id

�
S . Obviously, ˚ satisfies the required conditions. ut

Remark 1. We keep the notation of the previous proposition. A straightforward
computation shows that F is the positive definite function F˚ constructed from ˚ .

Proposition 3. Let F be a Borel positive definite function on G such that FjX D 1.
We assume that for every " > 0, we have �.fjF j > "g/ < C1. Let ˚ be the
completely positive map defined by F . Then O̊ belongs to the norm closed ideal
I .hM; eAi/ generated by the finite projections of hM; eAi.
Proof. We observe that T D O̊ is the multiplication operator m.F / by F . We need
to show that for every t > 0, the spectral projection et .jT j/ of jT j relative to
�t;C1Œ is finite. This projection is the multiplication operator by ft D 1�t;C1ŒıjF j.
By (1.9), we have

Tr�.m.ft // D �.ft / D �.fjF j > tg/ < C1: ut

1.6 Characterizations of the Relative Haagerup Property

We keep the same notation as in the previous section.

Theorem 1. The following conditions are equivalent:

1. M has the Haagerup property relative to A and EA.
2. There exists a sequence .Fn/ of positive definite functions on G such that

(a) .Fn/jX D 1 almost everywhere ;
(b) For every " > 0, �.fjFnj > "g/ < C1 ;
(c) limn Fn D 1 almost everywhere.

Proof. 1) 2. Let .˚n/ a sequence of unital completely positive maps M ! M

satisfying conditions 1, 2, 3 of Definition 5. We set Fn D F˚n . By Proposition 1 we
know that condition b of 2 above is satisfied. It remains to check c. For m 2 M ,
we have

k˚n.m/�mk22 D
Z
X

EA..˚n.m/�m/�.˚n.m/�m//.x/ d�.x/:

Let G D tnSn be a partition of G by Borel bisections. There is a null subset Y of
X such that, for every k and for � 2 Sk \ r�1.X n Y / we have

Fn.�/� 1 D EA.1�Sk ı ˚n.1Sk //.s.�//� EA.1�Sk ı 1Sk /.s.�//:
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Thus

jFn.�/� 1j2 D
ˇ̌
EA.1�Sk ı .˚n.1Sk /� 1Sk //.s.�//

ˇ̌2
� EA..˚n.1Sk /� 1Sk /

�.˚n.1Sk /� 1Sk //.s.�//:

It follows that
Z
G

jFn � 1j21Sk d� �
Z
s.Sk/

EA..˚n.1Sk / � 1Sk /
�.˚n.1Sk / � 1Sk //.x/ d�.x/

� k˚n.1Sk / � 1Skk22 ! 0:

So there is a subsequence of .jFn.�/� 1j/n which goes to 0 almost everywhere
on Sk . Using the Cantor diagonal process, we get the existence of a subsequence
.Fnk /k of .Fn/n such that limk Fnk D 1 almost everywhere, which is enough for our
purpose.

2) 1. Assume the existence of a sequence .Fn/n of positive definite functions
on G, satisfying the three conditions of 2. Let ˚n be the completely positive map
defined by Fn. Let us show that for everym 2 M , we have

lim
n
k˚n.m/�mk2 D 0:

We first consider the case m D L.f / with f 2 I.G/. Then we have

k˚n.L.f //� L.f /k2 D kL..Fn � 1/f /k2 D k.Fn � 1/f k2 ! 0

by the Lebesgue dominated convergence theorem.
Let now m 2M . Then

k˚n.m/�mk2 � k˚n.m �L.f //k2 C k˚n.L.f //� L.f /k2 C kL.f / �mk2:

We conclude by a classical approximation argument, since

k˚n.m � L.f //k2 � kL.f / �mk2:

Together with Propositions 2, 3 and Lemma 5, this proves 1. ut
This theorem justifies the following definition.

Definition 8. We say that a countable measured groupoid .G;�/ has the Haagerup
property (or has property (H)) if there exists a sequence .Fn/ of positive definite
functions on G such that

1. .Fn/jX D 1 almost everywhere ;
2. For every " > 0, �.fjFnj > "g/ < C1 ;
3. limn Fn D 1 almost everywhere.
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We observe that, by Theorem 1, this notion only involves the conditional
expectation EA and therefore only depends on the measure class of �. This fact
does not seem to be obvious directly from the above Definition 8.

Of course, we get back the usual definition for a countable group. The other
equivalent definitions for groups also extend to groupoids as we shall see now.

Definition 9. A real conditionally negative definite function on G is a Borel
function  W G ! R such that

1.  .x/ D 0 for every x 2 G.0/ ;
2.  .�/ D  .��1/ for every � 2 G ;
3. For every x 2 G.0/, every �1; : : : ; �n 2 Gx and every real numbers �1; : : : ; �n

with
Pn

iD1 �i D 0, then

nX
i;jD1

�i�j .�
�1
i �j / � 0:

Such a function is non-negative.

Definition 10. Let .G;�/ be a countable measured groupoid. A real conditionally
negative definite function on .G;�/ is a Borel function  W G ! R such that there
exists a co-null subset U of G.0/ with the property that the restriction of  to the
inessential reductionGjU satisfies the conditions of the previous definition.

We say that  is proper if for every c > 0, we have �.f � cg/ < C1.

Theorem 2. The groupoid .G;�/ has the Haagerup property if and only if there
exists a real conditionally negative definite function  on .G;�/ such that

8c > 0; �.f � cg/ < C1:

Proof. We follow the steps of the proof given by Jolissaint [18] for equivalence
relations and previously by Akemann-Walter [3] for groups. Let  be a proper
conditionally negative definite function. We set Fn D exp.� =n/. Then .Fn/ is
a sequence of positive definite functions which goes to 1 pointwise. Moreover, we
have Fn.�/ > c if and only if  .�/ < �n ln c. Therefore .G;�/ has the Haagerup
property.

Conversely, let .Fn/ be a sequence of positive definite functions on G satisfying
conditions a, b, c of Theorem 1. We choose sequences .˛n/ and ."n/ of positive
numbers such .˛n/ is increasing with limn ˛n D C1, ."n/ is decreasing with
limn "n D 0, and such that

P
n ˛n."n/

1=2 < C1.
Let G D tSn be any partition of G into Borel bisections. Taking if necessary a

subsequence of .Fn/, we may assume that for every n,

X
1�k�n

Z
G

j1 � Fnj21Sk d� � "2n:
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It follows that
Z
G

<.1 � Fn
�2

1[1�k�nSk d� �
Z
G

j1 � Fnj21[1�k�nSk d�

� "2n:

We setEn D
˚
� 2 [1�k�nSk W j<.1 � Fn.�//j 	 ."n/1=2

�
andE D \l[n�l En.

Since �.En/ � "n and
P

n "n < C1, we see that �.E/ D 0.
Let us set  DP

n ˛n<.1 � Fn/ on G n E and  D 0 on E . We claim that the
series converges pointwise. Indeed, let � 2 G n E . There exists m such that

� 2 .[1�i�mSi/ \ .\n�mEc
n/:

Thus, j<.1 � Fn.�//j � ."n/1=2 for n 	 m, which shows our claim.
It remains to show that  is proper. Let c > 0, and let � 2 G nE with  .�/ � c.

Then we have<.1�Fn.�// � c=˛n for every n and therefore<Fn.�/ 	 1� c=˛n.
Let n be large enough such that 1 � c=˛n 	 1=2. Then, if  .�/ � c, we have

jFn.�/j 	 <Fn.�/ 	 1 � c=˛n 	 1=2

and thus

�.f � cg/ � �.fjFnj 	 1=2g/ < C1: ut

Definition 11. Let 
 be a representation of .G;�/ on a measurable field K D
fK .x/gx2X of Hilbert spaces. A 
-cocycle is a Borel section b of the pull-back
bundle r W r�K D f.�; �/ W � 2 K .r.�//g ! G for which there exists an
inessential reduction .GjU ; �jU / such that we have, for composable �1; �2 2 GjU ,

b.�1�2/ D b.�1/C 
.�1/b.�2/:

We say that b is proper if for every c > 0, we have �.fkbk � cg/ < C1, where
kb.�/k denotes the Hilbert norm of b.�/ in K .r.�//.

Let b be a 
-cocycle. It is easily seen that � 7! kb.�/k2 is conditionally
negative definite. Moreover, every real conditionally negative definite is of this form
(see [6, Proposition 5.21]).

Corollary 1. The groupoid .G;�/ has the Haagerup property if and only if it
admits a proper 
-cocycle for some representation 
 .

Example 2. Let � Õ .X;�/ be an action of a countable group � which leaves
quasi-invariant the probability measure�. If � has the property (H), then .XÌ�;�/
inherits this property. Indeed, if  W � ! R is a proper conditionally negative
definite function, then Q W .x; s/ 7!  .s/ is a proper conditionally negative definite
function on .X Ì�;�/. Conversely, when the action is free, preserves � and is such
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that .X Ì �;�/ has property (H), then � has property (H) [18, Proposition 3.3].
However, free non-singular actions of groups not having property (H) can generate
semi-direct product groupoids with this property. Such actions can even be amenable
(see for instance [8, Examples 5.2.2]).

Interesting examples are provided by treeable groupoids, as we shall see now.
For instance, the free product of the type II1 hyperfinite equivalence relation by
itself, being treeable [5, Proposition 2.4], has the Haagerup property. Note also that
property (H) passes to subgroupoids.

1.7 Treeable Countable Measured Groupoids Have
Property (H)

The notion of treeable countable measured equivalence relation has been introduced
by Adams in [1]. Its obvious extension to the case of countable measured groupoids
is exposed in [6]. We recall here the main definitions. Let Q be a Borel subset of a
countable Borel groupoidG. We set Q0 D X and for n 	 1, we set

Qn D f� 2 G W 9�1; : : : ; �n 2 Q; � D �1 � � ��ng:

Definition 12. A graphing of G is a Borel subset Q of G such that Q D Q�1,
Q \ X D ; and [n�0Qn D G.

A graphing defines a structure of G-bundle of graphs on X : the set of vertices is
G and

E D ˚.�1; �2/ 2 G �G W r.�1/ D r.�2/; ��11 �2 2 Q
�

is the set of edges. In particular, for every x 2 X , the fibre Gx is a graph, its set or
edges being E \ .Gx � Gx/. Moreover, for � 2 G, the map �1 7! ��1 induces an
isomorphism of graphs from Gs.�/ onto Gr.�/. Thus, a graphing is an equivariant
Borel way of defining a structure of graph on each fibre Gx . These graphs are
connected since [n�0Qn D G.

When the graphsGx are trees for every x 2 X , the graphingQ is called a treeing.

Definition 13. A countable Borel groupoid G is said to be treeable if there is a
graphing which gives to r W G ! X a structure of G-bundle of trees.

A countable measured groupoid .G;�/ is said to be treeable if there exists an
inessential reductionGjU which is a treeable Borel groupoid in the above sense.

Equipped with such a structure, .G;�/ is said to be a treed measured groupoid.

Consider the case where G is a countable group and Q is a symmetric set of
generators. The corresponding graph structure on G is the Cayley graph defined
by Q. If Q D S [ S�1 with S \ S�1 D ;, then Q is a treeing if and only if S is a
free subset of generators of G (and thus G is a free group).
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As made precise in [4, Proposition 3.9], treeable groupoids are the analogue of
free groups and therefore the following theorem is no surprise.

Theorem 3 (Ueda). Let .G;�/ be a countable measured groupoid which is
treeable. Then .G;�/ has the Haagerup property.

LetQ be a treeing of .G;�/. We endowGx with the length metric dx defined by

dx.�1; �2/ D min
˚
n 2 N W ��11 �2 2 Qn

�
:

The map .�1; �2/ 2 f.�1; �2/ W r.�1/ D r.�2/g 7! dr.�1/.�1; �2/ is Borel.
We set  .�/ D dr.�/.r.�/; �/. It is a real conditionally negative definite function

on G. Indeed, given �1; : : : ; �n 2 Gx and �1; : : : ; �n 2 R such that
Pn

iD1 �i D 0,
we have

nX
i;jD1

�i�j .�
�1
i �j / D

nX
i;jD1

�i�j ds.�i /.s.�i /; �
�1
i �j / D

nX
i;jD1

�i�j dx.�i ; �j / � 0;

since the length metric on a tree is conditionally negative definite (see [17, p. 69]
for instance).

We begin by proving Theorem 3 in the case whereQ is bounded, i.e. there exists
k > 0 such that ]Qx � k for almost every x 2 X .

Lemma 12. Assume that Q is bounded. For every c > 0 we have �.f � cg/
< C1.

Proof. We have

�.f � cg/ D
Z
X

]
˚
� W s.�/ D x; dx.x; ��1/ � c

�
d�.x/:

If k is such that ]Qx � k for almost every x 2 X , the cardinal of the ball in Gx of
center x and radius c is smaller than kc . It follows that �.f � cg/ � kc . ut

In view of the proof in the general case, we make a preliminary observation.
Whenever Q is bounded, G is the union of the increasing sequence .f � kg/k2N
of Borel subsets with �.f � kg/ < C1. Moreover, setting Fn D exp.� =n/,
we have limn Fn D 1 uniformly on each subset f � kg. Indeed, if  .�/ � k,
we get

0 � 1 � Fn.�/ �
X
j�1

1

nj
 .�/j

j Š
� k

n
exp .k=n/:

Proof of Theorem 3. The treeing Q is no longer supposed to be bounded. Let G D
tSk be a partition of G into Borel bisections. For every integer n we set

Q0n D [k�n.Q \ Sk/ and Qn D Q0n [ .Q0n/�1:
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Note that .Qn/ is an increasing sequence of Borel symmetric and bounded subsets
of Q with [nQn D Q. Let Gn be the subgroupoid of G generated by Qn, that is
Gn D [k�0Qk

n , where we put Q0
n D X .

We observe thatQn is a treeing forGn. Denote by n the associated conditionally
negative definite function on Gn. Since Qn�1 � Qn, we have

. n/jGn�1
�  n�1:

Given two integers k and N , we set

Ak;N D f� 2 Gk W  k.�/ � N g:

Then, obviously we have

Ak;N � AkC1;N and Ak;N � Ak;NC1:

In particular, .Ak;k/k is an increasing sequence of Borel subsets of G with
[kAk;k D G.

We fix k. We set Fk;n.�/ D exp.� k.�/=n/ if � 2 Gk and Fk;n.�/ D 0

if � … Gk . By Lemma 13 to follow, Fk;n is positive definite on G. Since Qk

is bounded, Lemma 12 implies that for every " > 0, and for every n, we have
�.fFk;n 	 "g/ < C1. Moreover, limn Fk;n D 1 uniformly on each Ak;N , N 	 1,
as previously noticed.

We choose, step by step, a strictly increasing sequence .ni /i�1 of integers such
that for every k,

sup
�2Ak;k

1 � Fk;nk .�/ � 1=k:

Then the sequence .Fk;nk /k of positive definite functions satisfies the required
conditions showing that .G;�/ has property (H). ut
Lemma 13. Let H be a subgroupoid of a groupoid G with G.0/ D H.0/. Let F be
a positive definite function on H and extend F to G by setting F.�/ D 0 if � … H .
Then F is positive definite on G.

Proof. Let �1; : : : ; �n 2 Gx and let �1; : : : ; �n 2 C. We want to show that

nX
i;jD1

�i�j F.�
�1
i �j / 	 0:

We assume that this inequality holds for every number k < n of indices. For k D n,
this inequality is obvious if for every i 6D j we have ��1i �j … H . Otherwise, up to a
permutation of indices, we take j D 1 and we assume that 2; : : : ; l are the indices i
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such that ��1i �1 2 H . Then, if 1 � i; j � l we have ��1i �j D .��1i �1/.�
�1
1 �j / 2 H

and for i � l < j we have ��1i �j … H . It follows that

nX
i;jD1

�i�jF.�
�1
i �j / D

lX
i;jD1

�i�jF.�
�1
i �j /C

X
i;j>l

�i�jF.�
�1
i �j /;

where the first term of the right hand side is 	 0. As for the second term, it is also
	 0 by the induction assumption. ut

1.8 Properties (T) and (H) Are Not Compatible

Property (T) for group actions and equivalence relations has been introduced by
Zimmer in [33]. Its extension to measured groupoids is immediate. We say that
.G;�/ has property (T) if whenever a representation of .G;�/ almost has unit
invariant sections, it actually has a unit invariant section (see [6, Definitions 4.2, 4.3]
for details). We have proved in [6, Theorem 5.22] the following characterization of
property (T).

Theorem 4. Let .G;�/ be an ergodic countable measured groupoid. The following
conditions are equivalent:

1. .G;�/ has property (T) ;
2. For every real conditionally negative definite function  on G, there exists a

Borel subset E of X , with �.E/ > 0, such that the restriction of  to GjE is
bounded.

Theorem 5. Let .G;�/ be an ergodic countable measured groupoid. We assume
that .G.0/; �/ is a diffuse standard probability space. Then .G;�/ cannot have
simultaneously properties (T) and (H).

Proof. Assume that .G;�/ has both properties (H) and (T). There exists a Borel
conditionally negative definite function  such that for every c > 0, we have
�.f � cg/ < C1. Moreover, there exists a Borel subset E of X , with �.E/ > 0,
such that the restriction of  to GjE is bounded. Then, we have

Z
E

]f� W s.�/ D x; r.�/ 2 Eg d�.x/ < C1:

Therefore, for almost every x 2 E , we have ]f� W s.�/ D x; r.�/ 2 Eg < C1.
Replacing if necessaryE by a smaller subset we may assume the existence ofN > 0

such that for every x 2 E ,

]f� W s.�/ D x; r.�/ 2 Eg � N:
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Since .GjE ; �jE / is ergodic, we may assume that all the fibres of this groupoid
have the same finite cardinal. Therefore, this groupoid is proper and so the
quotient Borel space E=.GjE / is countably separated (see [8, Lemma 2.1.3]).
A classical argument (see [34, Proposition 2.1.10]) shows that �jE is supported by
an equivalence class, that is by a finite subset of E . But this contradicts the fact that
the measure is diffuse. ut

In the following corollaries, we always assume that .X;�/ is a diffuse standard
probability measure space.

Corollary 2. Let .G;�/ be a countable ergodic measured groupoid with the
property that .RG; �/ has property (H) (e.g. is treeable). Then .G;�/ has not
property (T).

Proof. If .G;�/ had property (T) then .RG; �/ would have the same property by
[6, Theorem 5.18]. But this is impossible by Theorem 5. ut

This allows to retrieve results of Jolissaint [18, Proposition 3.2] and Adams-
Spatzier [2, Theorem 1.8].

Corollary 3. Let � Õ .X;�/ be an ergodic probability measure preserving action
of a countable group � having property (T). Then .R� ; �/ has not property (H)
and in particular is not treeable.

Proof. Indeed, under the assumptions of the corollary, the semi-direct product
groupoid .X Ì �;�/ has property (T) by [33, Proposition 2.4], and we apply the
previous corollary. ut
Corollary 4. Let .R; �/ be a type II1 equivalence relation on X having
property (H). Then its full group ŒR� does not contain any countable subgroup
� which acts ergodically on .X;�/ and has property (T).

Proof. If ŒR� contains such a subgroup, then .R� ; �/ has property (T), and also
property (H) as a subequivalence relation of R, in contradiction with Corollary 2.

ut
Problem 1. Since by Dye’s theorem .R; �/ is entirely determined by its full
group [21, Theorem 4.1], it would be interesting to characterize property (H) in
terms of this full group.
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Chapter 2
Do Phantom Cuntz-Krieger Algebras Exist?

Sara E. Arklint

Abstract If phantom Cuntz-Krieger algebras do not exist, then purely infinite
Cuntz-Krieger algebras can be characterized by outer properties. In this survey
paper, a summary of the known results on non-existence of phantom Cuntz-Krieger
algebras is given.

Keywords Cuntz-Krieger algebras • Graph C �-algebras • Purely infinite C �-
algebras • K-theory • Filtered K-theory • Primitive ideal space
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2.1 Introduction

The Cuntz-Krieger algebras were introduced by Joachim Cuntz and Wolfgang
Krieger in 1980, cf. [8], and are a generalization of the Cuntz algebras. Given a
nondegenerate n � n matrix A with entries in f0; 1g, its associated Cuntz-Krieger
algebraOA is defined as the universal C �-algebra generated by n partial isometries
s1; : : : ; sn satisfying the relations

1 D s1s�1 C � � � C sns�n ;

s�i si D
nX

jD1
Aij sj s

�
j for all i D 1; : : : n:

S.E. Arklint (�)
Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5,
DK-2100 Copenhagen Ø, Denmark
e-mail: arklint@math.ku.dk

T.M. Carlsen et al. (eds.), Operator Algebra and Dynamics, Springer Proceedings
in Mathematics & Statistics 58, DOI 10.1007/978-3-642-39459-1__2,
© Springer-Verlag Berlin Heidelberg 2013

31

mailto:arklint@math.ku.dk


32 S.E. Arklint

The Cuntz-Krieger algebras arise from shifts of finite type, and it has been shown
that the Cuntz-Krieger algebras are exactly the graph algebras C �.E/ arising from
finite directed graphs E with no sinks, [3].

Neither of the two equivalent definitions of Cuntz-Krieger algebras give an outer
characterization of Cuntz-Krieger algebras; i.e., neither give a way of determining
whether a C �-algebra is a Cuntz-Krieger algebra, unless it is constructed from a
graph or a shift of finite type.

A Cuntz-Krieger algebra is purely infinite if and only if it has real rank zero,
cf. [11], and in the following we will mainly restrict to real rank zero Cuntz-Krieger
algebras since we will rely on classification results that only hold in the purely
infinite case. The Cuntz-Krieger algebra OA is purely infinite if and only if A
satisfies Cuntz’s condition (II), and equivalently the Cuntz-Krieger algebra C �.E/
is purely infinite if and only if the graph E satisfies condition (K), cf. [11].

The notion of C �-algebras over a topological space is useful for defining
phantom Cuntz-Krieger algebras and for defining filtered K-theory, and in [12],
Eberhard Kirchberg proved some very powerful classification results for O1-
absorbing C �-algebras over a space X using KK.X/-theory. A C �-algebra A over
the finite T0-space X is a C �-algebra equipped with a lattice-preserving map from
the open sets of X to the ideals in A, denoted U 7! A.U /, satisfying A.;/ D 0 and
A.X/ D A, and extended to locally closed subsets as A.U n V / D A.U /=A.V /. In
particular, a C �-algebra with finitely many ideals is a C �-algebra over its primitive
ideal space.

Definition 1. A C �-algebra A with primitive ideal space X looks like a purely
infinite Cuntz-Krieger algebra if

1. A is unital, purely infinite, nuclear, separable, and of real rank zero,
2. X is finite,
3. For all x 2 X , the group K�.A.x// is finitely generated, the group K1.A.x// is

free, and rankK0.A.x// D rankK1.A.x//,
4. For all x 2 X , A.x/ is in the bootstrap class of Rosenberg and Schochet.

A C �-algebra that looks like a purely infinite Cuntz-Krieger algebra but is not
isomorphic to a Cuntz-Krieger algebra, is called a phantom Cuntz-Krieger algebra.

All purely infinite Cuntz-Krieger algebras look like purely infinite Cuntz-Krieger
algebras. It is not known whether all C �-algebra s that look like purely infinite
Cuntz-Krieger algebras are Cuntz-Krieger algebras. If it is established that they are,
i.e., that phantom Cuntz-Krieger algebras do not exist, then the above definition
gives a characterization of the purely infinite Cuntz-Krieger algebras.

An example to point out the relevance of such a characterization is given by
Proposition 1. If phantom Cuntz-Krieger algebras do not exist, the proposition
determines exactly when an extension of purely infinite Cuntz-Krieger algebras is a
purely infinite Cuntz-Krieger algebra.

By a result of Lawrence G. Brown and Gert K. Pedersen, Theorem 3.14 of [7], an
extension of real rank zero C �-algebras has real rank zero if and only if projections
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in the quotient lift to projections in the extension. Hence, if a C �-algebra A with
primitive ideal space X has real rank zero, then K0.A.Y n U // ! K1.A.U //

vanishes for all Y and U where Y is a locally closed subsets of X and U is an
open subsets of Y . Using this, an induction argument shows that for a C �-algebra
that looks like a purely infinite Cuntz-Krieger algebra, (3) and (4) of Definition 1
hold for all locally closed subsets Y of X .

Proposition 1. Consider a unital extension 0! I ! A! A=I ! 0 and assume
that A=I is a purely infinite Cuntz-Krieger algebra and that I is stably isomorphic
to a purely infinite Cuntz-Krieger algebra. Then A looks like a purely infinite Cuntz-
Krieger algebra if and only if the induced map K0.A=I /! K1.I / vanishes.

Proof. By Theorem 3.14 of [7], the C �-algebra A is of real rank zero if and only
if the induced map K0.A=I /! K1.I / vanishes. It is well-known or easy to check
that the other properties stated in Definition 1 are closed under extensions. ut

2.2 Special Cases

One of the first places one would look for phantom Cuntz-Krieger algebras is
among the matrix algebras over purely infinite Cuntz-Krieger algebras. Clearly, if
OA is a purely infinite Cuntz-Krieger algebra, then Mn.OA/ looks like a purely
infinite Cuntz-Krieger algebra for all n. Since Mn.OA/ is a graph algebra, one then
immediately asks if a graph algebra can be a phantom Cuntz-Krieger algebra. It
turns out that it cannot.

Theorem 1 ([3]). Let E be a directed graph and assume that its graph algebra
C �.E/ is unital and satisfies rankK0.C

�.E// D rankK1.C
�.E//. Then C �.E/ is

isomorphic to a Cuntz-Krieger algebra.

Theorem 2 ([3]). Let A be a unital C �-algebra and assume that A is stably
isomorphic to a Cuntz-Krieger algebra. Then A is isomorphic to a Cuntz-Krieger
algebra.

As a small corollary to the work of Eberhard Kirchberg on KK.X/-theory,
phantom Cuntz-Krieger algebras cannot have vanishingK-theory.

Theorem 3 ([12]). Let A and B be unital, nuclear, separable C �-algebras with
primitive ideal space X . Then A˝O2 and B ˝O2 are isomorphic.

Corollary 1. Let A be a C �-algebra that looks like a purely infinite Cuntz-Krieger
algebra, and assume that K�.A/ D 0. Then A is a Cuntz-Krieger algebra.

Proof. Let X denote the finite primitive ideal space of A. Since K�.A/ D 0 and A
looks like a purely infinite Cuntz-Krieger algebra, K�.A.x// D 0 for all x 2 X .
So for all x 2 X , A.x/ is O2-absorbing since it is a UCT Kirchberg algebra with
vanishing K-theory. By applying Theorem 4.3 of [15] finitely many times, we see
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that A itself is O2-absorbing. Let OB be a Cuntz-Krieger algebra with primitive
ideal space X and with OB.x/ (stably) isomorphic to O2 for all x 2 X . Then by
Theorem 3, A is isomorphic to OB . ut

2.3 Using Filtered K -Theory

Via K-theoretic classification results it can be established that a phantom Cuntz-
Krieger algebra cannot have a so-called accordion space as its primitive ideal space.
We will first restrict to the cases where the primitive ideal space has at most two
points in order to describe the historical development and due to the importance and
powerfulness of the results needed. The most crucial result is by Eberhard Kirchberg
who showed in [12] that for stable, purely infinite, nuclear, separable C �-algebras
A and B with finite primitive ideal space X , any KK.X/-equivalence between A
and B lifts to a �-isomorphism.

Simple C �-algebras that look like purely infinite Cuntz-Krieger algebras are
UCT Kirchberg algebras, hence the classification result by Eberhard Kirchberg and
N. Christoffer Phillips applies. For a unital C �-algebra A with unit 1A, denote by
Œ1A� the class of 1A inK0.A/. For unitalC �-algebrasA andB an isomorphism from
.K�.A/; Œ1A�/ to .K�.B/; Œ1B�/ is defined as a pair .�0; �1/ of group isomorphisms
�i WKi.A/! Ki.B/, i D 0; 1, for which �0.Œ1A�/ D �0.Œ1B �/.
Theorem 4 ([13]). Let A and B be unital, simple, purely infinite, nuclear, sepa-
rable C �-algebras in the bootstrap class. If .K�.A/; Œ1A�/ and .K�.B/; Œ1B�/ are
isomorphic, then A and B are isomorphic.

The range ofK� for graph algebras has been determined by Wojciech Szymański,
and his result has been extended by Søren Eilers, Takeshi Katsura, Mark Tomforde,
and James West to include the class of the unit.

Theorem 5 ([9]). LetG and F be finitely generated groups, let g 2 G, and assume
that F is free and that rankG D rankF . Then there exists a simple, purely infinite
Cuntz-Krieger algebraOA realising .G ˚ F; g/ as .K�.OA/; Œ1OA�/.

Corollary 2. Simple phantom Cuntz-Krieger algebras do not exist.

Proof. Let A be a simple C �-algebra that looks like a purely infinite Cuntz-Krieger
algebra. By Theorem 5, there exists a Cuntz-Krieger algebra OB of real rank zero
for which .K�.A/; Œ1A�/ Š .K�.OB/; Œ1OB �/. Since A and OB are UCT Kirchberg
algebras, it follows from Theorem 4 that A andOB are isomorphic. ut

For C �-algebras with exactly one nontrivial ideal, the suitable invariant seems to
be the induced six-term exact sequence in K-theory.

Definition 2. Let Xsix denote the space f1; 2g with f2g open and f1g not open. For
a C �-algebra A with primitive ideal space Xsix, Ksix.A/ is defined as the cyclic
six-term exact sequence
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K0.A.2//
i

�� K0.A/
r

�� K0.A.1//

ı��
K1.A.1//

ı

��

K1.A/
r

�� K1.A.2//
i

��

induced by the extension 0 ! A.2/ ! A ! A.1/ ! 0. For unital C �-alge-
bras A and B with primitive ideal space Xsix, an isomorphism from .Ksix.A/; Œ1A�/

to .Ksix.B/; Œ1B�/ is defined as a triple .�f2g� ; �
Xsix� ; �

f1g� / of graded isomorphisms
�Y� WK�.A.Y // ! K�.B.Y //, Y 2 ff2g; Xsix; f1gg, that commute with the maps i ,

r , and ı and satisfies �
Xsix
0 .Œ1A�/ D Œ1B�.

This invariant was originally introduced by Mikael Rørdam to classify stable
extensions of UCT Kirchberg algebras. Alexander Bonkat established a UCT for
Ksix (that was later generalized by Ralf Meyer and Ryszard Nest), and by combining
his UCT with the result of Eberhard Kirchberg (and a meta theorem by Søren
Eilers, Gunnar Restorff and Efren Ruiz in [10] to achieve unital and not stable
isomorphism) one obtains the following theorem.

Theorem 6 ([6,12]). LetA andB be unital, purely infinite, nuclear, separableC �-
algebras with primitive ideal space Xsix, and assume that A.x/ and B.x/ are in the
bootstrap class for all x 2 f1; 2g. Then .Ksix.A/; Œ1A�/ Š .Ksix.B/; Œ1B�/ implies
A Š B .

The range of Ksix for graph algebras has been determined by Søren Eilers,
Takeshi Katsura, Mark Tomforde, and James West.

Theorem 7 ([9]). Let a six-term exact sequence

G1 �� G2 �� G3

0

��
E W

F3

��

F2�� F1:��

be given with G1;G2;G3 and F1; F2; F3 finitely generated groups, and let g 2 G2.
Assume that the groups F1; F2; F3 are free, and that rankGi D rankFi for all
i D 1; 2; 3. Then there exists a purely infinite Cuntz-Krieger algebra OA with
primitive ideal space Xsix realising .E ; g/ as .Ksix.OA/; Œ1OA�/.

Corollary 3. Phantom Cuntz-Krieger algebras with exactly one nontrivial ideal do
not exist.

The generalization of the invariant Ksix to larger primitive ideal spaces is called
filtered K-theory or filtrated K-theory and was introduced by Gunnar Restorff
and by Ralf Meyer and Ryszard Nest. Filtered K-theory consists of the six-term
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exact sequences induced by all extensions of subquotients. A smaller invariant, the
reduced filtered K-theory FKR originally defined by Gunnar Restorff to classify
purely infinite Cuntz-Krieger algebras, has so far proven suitable for classifying
C �-algebras that look like purely infinite Cuntz-Krieger algebras.

LetX be a finite T0-space. For x 2 X , we denote by ffxg the smallest open subset
of X containing x, and we define Q@.x/ as ffxg n fxg. For x; y 2 X we write y ! x

when y 2 Q@.x/ and there is no z 2 Q@.x/ for which y 2 Q@.z/.
Definition 3. For a C �-algebra A with primitive ideal space X , its reduced filtered
K-theory FKR.A/ consists of the groups and maps

K1.A.x//
ı

�� K0.A.Q@.x///
i

�� K0.A.ffxg//

induced by the extension 0 ! A.Q@.x// ! A.ffxg/ ! A.x/ ! 0, for all x 2 X ,
together with the groups and maps

K0.A.efyg/
i

�� K0.A.Q@.x///

induced by the extension 0 ! A.efyg/ ! A.Q@.x// ! A.Q@.x/ nefyg/ ! 0, for all
x; y 2 X with y ! x.

Example 1. Let X D f1; 2; 3g be given the topology f;; f3g; f3; 2g; f3; 1g; Xg.
Then for a C �-algebraAwith primitive ideal spaceX , its reduced filteredK-theory
FKR.A/ consists of the groups and maps

K1.A.2//
ı

����
���

�
K0.A.f3; 1g//

K0.A.3//

i ��������

i

����
���

�

K1.A.1//

ı 		������
K0.A.f3; 2g//

together with the groupK1.A.3//.

It is shown in [2] that if A is a C �-algebra of real rank zero with primitive ideal
space X , then the sequence

M
y!x;y!x0

x;x0

2X

K0.A.efyg// .i i �i i /�!
M
x2X

K0.A.ffxg// .i/�! K0.A/ �! 0

is exact.
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Definition 4. For a unitalC �-algebraA of real rank zero with primitive ideal space
X , 1.A/ is defined as the unique element in

M
x2X

K0.A.ffxg//
� M

y!x;y!x0

x;x0

2X

K0.A.efyg//

that is mapped to Œ1A�. For A and B unital C �-algebras of real rank zero with
primitive ideal space X , an isomorphism from .FKR.A/; 1.A// to .FKR.B/; 1.B//

is defined as a family of isomorphisms

�1fxgWK1.A.x//! K1.B.x//

�0Q@.x/WK0.A.Q@.x//! K0.B.Q@.x//
�0efxgWK0.A.ffxg//! K0.B.ffxg//

(where �0Q@.x/ D �0efyg when Q@.x/ Defyg) for all x 2 X that commute with the maps

i and ı and maps 1.A/ to 1.B/.

Using Theorem 7, Rasmus Bentmann, Takeshi Katsura, and the author have
established the range of reduced filtered K-theory FKR for graph algebras, cf. [2].
They also show in [2] that if a C �-algebra has as its primitive ideal space an
accordion space, cf. Definition 5, or one of the spaces defined in Definition 6, and
looks like a purely infinite Cuntz-Krieger algebra, then there exists a purely infinite
Cuntz-Krieger algebra with the same primitive ideal space and filtered K-theory. It
is not known if this holds for other types of primitive ideal spaces.

Theorem 8 ([2]). Let B be a C �-algebra that looks like a purely infinite Cuntz-
Krieger algebra. Then there exists a Cuntz-Krieger algebra OA of real rank
zero with Prim.OA/ Š Prim.B/ for which .FKR.OA/; Œ1OA�/ is isomorphic to
.FKR.B/; Œ1B�/.

Definition 5. A finite, connected T0-space X is called an accordion space if the
following holds:

• For all x 2 X there are at most two elements y 2 X for which y ! x,
• There is at least two elements x 2 X for which there is exactly one element
y 2 X for which y ! x.

The notion of accordion spaces was introduced by Rasmus Bentmann in [4].
Intuitively, a space is an accordion space if and only if the Hasse diagram of the
ordering defined by y � x when y 2 ffxg, looks like an accordion. All finite,
linear spaces are accordion spaces, and the following five spaces are examples of
connected spaces that are not accordion spaces.
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Definition 6. Define a topology on the space X D f1; 2; 3; 4g by definingU 
X
to be open if U is empty or 4 2 U . Define X op as having the opposite topology.
Then X and X op have Hasse diagrams

1 2 3 4

4



����
�� ������

1

������
2

��

3



����

respectively. Define a topology on the space Y D f1; 2; 3; 4g by defining U 
 Y
to be open if U 2 f;; f4gg or if f3; 4g 
 U . Define Y op as having the opposite
topology. Then Y and Y op have Hasse diagrams

1 2 4

3



����
������

3

��

4

��

1

������
2



����

respectively. Finally, define a topology on the space D D f1; 2; 3:4g as the open sets
being f;; f4g; f3; 4g; f2; 4g; f2; 3; 4g;Dg. Then D has Hasse diagram

1

2

������
3



����

4

������


����

:

Ralf Meyer and Ryszard Nest showed in [14] that if X is a finite, linear space,
then filtered K-theory is a complete invariant for all stable, purely infinite, nuclear,
separable C �-algebras A with primitive ideal space X that satisfy that A.x/ are in
the bootstrap class for all x 2 X . They also gave a counter-example to completeness
of filtered K-theory for the space X . Using their methods, Rasmus Bentmann and
Manuel Köhler showed in [5] that filteredK-theory is a complete invariant for such
C �-algebras exactly when their primitive ideal space X is an accordion space.

However, Gunnar Restorff, Efren Ruiz, and the author showed in [1] that for the
spaces X , X op, Y , and Y op, filtered K-theory is a complete invariant for such
C �-algebras if one adds the assumption of real rank zero. And in [2], Rasmus
Bentmann, Takeshi Katsura, and the author showed that for the space D , reduced
filtered K-theory is a complete invariant for C �-algebras that look like purely
infinite Cuntz-Krieger algebras. It is also shown in [2] that forC �-algebras that look
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like purely infinite Cuntz-Krieger algebras and have either an accordion space or one
of the spaces defined in Definition 6 as primitive ideal space, any isomorphism on
reduced filtered K-theory can be lifted to an isomorphism on filtered K-theory.

The five spaces of Definition 6 are so far the only non-accordion spaces for
which such results have been achieved. However, combining these results with
Theorem 3.3 of [10] gives the following theorem, cf. [2].

Theorem 9 ([1, 2, 5, 14]). Let X be either an accordion space or one of the
spaces defined in Definition 6. Let A and B be C �-algebras that look like purely
infinite Cuntz-Krieger algebras and both have X as primitive ideal space. Then
.FKR.A/; 1.A// Š .FKR.B/; 1.B// implies A Š B .

Corollary 4. Let X be either an accordion space or one of the spaces defined in
Definition 6. Then phantom Cuntz-Krieger algebras with primitive ideal spaceX do
not exist.

2.4 Summary

The results stated in this article, are recaptured in the following theorem.

Theorem 10. Let A be a C �-algebra that looks like a purely infinite Cuntz-Krieger
algebra. If A satisfies either of the following conditions,

• A is a graph algebra,
• K�.A/ D 0,
• Prim.A/ is an accordion space,
• Prim.A/ is one of the five four-point spaces of Definition 6,

then A is isomorphic to a Cuntz-Krieger algebra.

In general, it is unknown whether phantom Cuntz-Krieger algebras exist.
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Chapter 3
Projective Dimension in Filtrated K-Theory

Rasmus Bentmann

Abstract Under mild assumptions, we characterise modules with projective res-
olutions of length n 2 N in the target category of filtrated K-theory over a finite
topological space in terms of two conditions involving certain Tor-groups. We show
that the filtrated K-theory of any separable C �-algebra over any topological space
with at most four points has projective dimension 2 or less. We observe that this
implies a universal coefficient theorem for rational equivariant KK-theory over these
spaces. As a contrasting example, we find a separable C �-algebra in the bootstrap
class over a certain five-point space, the filtrated K-theory of which has projective
dimension 3. Finally, as an application of our investigations, we exhibit Cuntz-
Krieger algebras which have projective dimension 2 in filtrated K-theory over their
respective primitive spectrum.

Keywords K-theory • Filtered K-theory • Ideal-related KK-theory • Universal
coefficient theorem

Mathematics Subject Classification (2010): 46L80, 19K35, 46M20.

3.1 Introduction

A far-reaching classification theorem in [7] motivates the computation of
Eberhard Kirchberg’s ideal-related Kasparov groups KK.X IA;B/ for separable
C �-algebras A and B over a non-Hausdorff topological space X by means of
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K-theoretic invariants. We are interested in the specific case of finite spaces here.
In [10,11], Ralf Meyer and Ryszard Nest laid out a theoretic framework that allows
for a generalisation of Jonathan Rosenberg’s and Claude Schochet’s universal
coefficient theorem [16] to the equivariant setting. Starting from a set of generators
of the equivariant bootstrap class, they define a homology theory with a certain
universality property, which computes KK.X/-theory via a spectral sequence.
In order for this universal coefficient spectral sequence to degenerate to a short
exact sequence, it remains to be checked by hand that objects in the range of the
homology theory admit projective resolutions of length 1 in the Abelian target
category.

Generalising earlier results from [3, 11, 15] the verification of the condition
mentioned above for filtrated K-theory was achieved in [2] for the case that
the underlying space is a disjoint union of so-called accordion spaces. A finite
connected T0-space X is an accordion space if and only if the directed graph
corresponding to its specialisation pre-order is a Dynkin quiver of type A. Moreover,
it was shown in [2, 11] that, if X is a finite T0-space which is not a disjoint union
of accordion spaces, then the projective dimension of filtrated K-theory over X is
not bounded by 1 and objects in the equivariant bootstrap class are not classified
by filtrated K-theory. The assumption of the separation axiom T0 is not a loss of
generality in this context (see [9, §2.5]).

There are two natural approaches to tackle the problem arising for non-accordion
spaces: one can either try to refine the invariant—this has been done with some
success in [11] and [1]; or one can hold onto the invariant and try to establish
projective resolutions of length 1 on suitable subcategories or localisations of the
category KK.X/, in which X -equivariant KK-theory is organised. The latter is the
course we pursue in this note. We state our results in the next section.

3.2 Statement of Results

The definition of filtrated K-theory and related notation are recalled in Sect. 3.3.

Proposition 1. LetX be a finite topological space. Assume that the ideal N T nil �
N T �.X/ is nilpotent and that the decomposition N T �.X/ D N T nil ÌN T ss

holds. Fix n 2 N. For an N T �.X/-module M , the following assertions are
equivalent:

1. M has a projective resolution of length n.
2. The Abelian group TorN T �.X/

n .N T ss;M / is free and the Abelian group

TorN T �.X/
nC1 .N T ss;M / vanishes.

The basic idea of this paper is to compute the Tor-groups above by writing down
projective resolutions for the fixed right-module N T ss.

LetZm be the .mC1/-point space on the set f1; 2; : : : ; mC1g such that Y 
 Zm
is open if and only if Y 3 mC1 or Y D ;. A C �-algebra overZm is a C �-algebraA
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with a distinguished ideal such that the corresponding quotient decomposes as a
direct sum of m orthogonal ideals. Let S be the set f1; 2; 3; 4g equipped with the
topology f;; 4; 24; 34; 234; 1234g, where we write 24 :D f2; 4g etc. A C �-algebra
over S is a C �-algebra together with two distinguished ideals which need not satisfy
any further conditions; see [9, Lemma 2.35].

Proposition 2. Let X be a topological space with at most 4 points. Let M D
FK.A/ for some C �-algebra A over X . Then M has a projective resolution of
length 2 and TorN T �

2 .N T ss;M / D 0.
Moreover, we can find explicit formulas for TorN T �

1 .N T ss;M /; for instance,

TorN T �.Z3/
1 .N T ss;M / is isomorphic to the homology of the complex

3M
jD1

M.j4/

	
i �i 0�i 0 i
0 i �i




��������!
3M

kD1
M.1234 n k/ . i i i /����!M.1234/ : (3.1)

A similar formula holds for the space S ; see (3.6).

The situation simplifies if we consider rational KK.X/-theory, whose morphism
groups are given by KK.X IA;B/ ˝ Q; see [6]. This is a Q-linear triangulated
category which can be constructed as a localisation of KK.X/; the corresponding
localisation of filtrated K-theory is given by A 7! FK.A/˝ Q and takes values in
the category of modules over the Q-linear category N T �.X/˝Q.

Proposition 3. Let X be a topological space with at most 4 points. Let A and B be
C �-algebras over X . If A belongs to the equivariant bootstrap class B.X/, then
there is a natural short exact universal coefficient sequence

Ext1
N T �.X/˝Q

�
FK�C1.A/˝Q;FK�.B/˝Q

�
� KK�.X IA;B/˝Q

� HomN T �.X/˝Q

�
FK�.A/˝Q;FK�.B/˝Q

�
:

In [6], a long exact sequence is constructed which in our setting, by the above
proposition, reduces the computation of KK�.X IA;B/, up to extension problems,
to the computation of a certain torsion theory KK�.X IA;BIQ=Z/.

The next proposition says that the upper bound of 2 for the projective dimension
in Proposition 2 does not hold for all finite spaces.

Proposition 4. There is an N T �.Z4/-module M of projective dimension 2 with
free entries and TorN T �

2 .N T ss;M / ¤ 0. The module M ˝Z Z=k has projective
dimension 3 for every k 2 N�2. Both M and M ˝Z Z=k can be realised as the
filtrated K-theory of an object in the equivariant bootstrap class B.X/.

As an application of Proposition 2 we investigate in Sect. 3.10 the obstruction
term TorN T �

1

�
N T ss;FK.A/

�
for certain Cuntz-Krieger algebras with four-point

primitive ideal spaces. We find:
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Proposition 5. There is a Cuntz-Krieger algebra with primitive ideal space
homeomorphic to Z3 which fulfills Cuntz’s condition (II) and has projective
dimension 2 in filtrated K-theory overZ3. The analogous statement for the space S
holds as well.

The relevance of this observation lies in the following: if Cuntz-Krieger algebras
had projective dimension at most 1 in filtrated K-theory over their primitive ideal
space, this would lead to a strengthened version of Gunnar Restorff’s classification
result [14] with a proof avoiding reference to results from symbolic dynamics.

3.3 Preliminaries

Let X be a finite topological space. A subset Y 
 X is called locally closed if it
is the difference U n V of two open subsets U and V of X ; in this case, U and V
can always be chosen such that V 
 U . The set of locally closed subsets of X is
denoted by LC.X/. By LC.X/�, we denote the set of non-empty, connected locally
closed subsets of X .

Recall from [9] that a C �-algebra over X is pair .A; / consisting of a
C �-algebra A and a continuous map  WPrim.A/ ! X . A C �-algebra .A; /
over X is called tight if the map  is a homeomorphism. A C �-algebra .A; /
over X comes with distinguished subquotients A.Y / for every Y 2 LC.X/.

There is an appropriate version KK.X/ of bivariant K-theory for C �-algebras
over X (see [7, 9]). The corresponding category, denoted by KK.X/, is equipped
with the structure of a triangulated category (see [12]); moreover, there is an
equivariant analogue B.X/ 
 KK.X/ of the bootstrap class [9].

Recall that a triangulated category comes with a class of distinguished candidate
triangles. An anti-distinguished triangle is a candidate triangle which can be
obtained from a distinguished triangle by reversing the sign of one of its three
morphisms. Both distinguished and anti-distinguished triangles induce long exact
Hom-sequences.

As defined in [11], for Y 2 LC.X/, we let FKY .A/ :D K�
�
A.Y /

�
denote the

Z=2-graded K-group of the subquotient of A associated to Y . Let N T .X/ be the
Z=2-graded pre-additive category whose object set is LC.X/ and whose space of
morphisms from Y to Z is N T �.X/.Y;Z/—the Z=2-graded Abelian group of all
natural transformations FKY ) FKZ . Let N T �.X/ be the full subcategory with
object set LC.X/�. We often abbreviate N T �.X/ by N T �.

Every open subset of a locally closed subset of X gives rise to an extension of
distinguished subquotients. The corresponding natural maps in the associated six-
term exact sequence yield morphisms in the category N T , which we briefly denote
by i , r and ı.

A (left-)module over N T .X/ is a grading-preserving, additive functor from
N T .X/ to the category AbZ=2 of Z=2-graded Abelian groups. A morphism of
N T .X/-modules is a natural transformation of functors. Similarly, we define
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left-modules over N T �.X/. By Mod
�
N T �.X/

�
c we denote the category of

countable N T �.X/-modules.
Filtrated K-theory is the functor KK.X/ ! Mod

�
N T �.X/

�
c which takes a

C �-algebra A over X to the collection
�
K�.A.Y //

�
Y2LC.X/� equipped with the

obvious N T �.X/-module structure.
Let N T nil � N T � be the ideal generated by all natural transformations

between different objects, and let N T ss � N T � be the subgroup spanned by
the identity transformations idYY for objects Y 2 LC.X/�. The subgroup N T ss is
in fact a subring of N T � isomorphic to ZLC.X/� . We say that N T � decomposes
as semi-direct product N T � D N T nil ÌN T ss if N T � as an Abelian group is
the inner direct sum of N T nil and N T ss; see [2,11]. We do not know if this fails
for any finite space.

We define right-modules over N T �.X/ as contravariant, grading-preserving,
additive functors N T �.X/! AbZ=2. If we do not specify between left and right,
then we always mean left-modules. The subring N T ss � N T � is regarded as
an N T �-right-module by the obvious action: The ideal N T nil � N T � acts
trivially, while N T ss acts via right-multiplication in N T ss Š ZLC.X/� . For an
N T �-moduleM , we set Mss :DM=N T nil �M .

For Y 2 LC.X/� we define the free N T �-left-module on Y by
PY .Z/ :D N T .Y;Z/ for all Z 2 LC.X/� and similarly for morphisms
Z ! Z0 in N T �. Analogously, we define the free N T �-right-module on Y
by QY .Z/ :D N T .Z; Y / for all Z 2 LC.X/�. An N T �-left/right-module
is called free if it is isomorphic to a direct sum of degree-shifted free left/right-
modules on objects Y 2 LC.X/�. It follows directly from Yoneda’s Lemma that
free N T �-left/right-modules are projective.

An N T -moduleM is called exact if the Z=2-graded chain complexes

� � � !M.U /
iYU�!M.Y /

r
Y nU
Y���!M.Y n U /

ıU
Y nU���!M.U /Œ1�! � � �

are exact for all U; Y 2 LC.X/ with U open in Y . An N T �-module M is called
exact if the corresponding N T -module is exact (see [2]).

We use the notation C 22 C to denote that C is an object in a category C .
In [11], the functors FKY are shown to be representable, that is, there are objects

RY 22 KK.X/ and isomorphisms of functors FKY Š KK�.X IRY ; /. We let cFK
denote the stable cohomological functor on KK.X/ represented by the same set of
objects fRY j Y 2 LC.X/�g; it takes values in N T �-right-modules. We warn
that KK�.X IA;RY / does not identify with the K-homology of A.Y /. By Yoneda’s
lemma, we have FK.RY / Š PY and cFK.RY / Š QY .

We occasionally use terminology from [10, 11] concerning homological algebra
in KK.X/ relative to the ideal I :D ker.FK/ of morphisms in KK.X/ inducing
trivial module maps on FK. An object A 22 KK.X/ is called I-projective if
I.A;B/ D 0 for every B 22 KK.X/. We recall from [10] that FK restricts to
an equivalence of categories between the subcategories of I-projective objects in
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KK.X/ and of projective objects in Mod
�
N T �.X/

�
c. Similarly, the functor cFK

induces a contravariant equivalence between the I-projective objects in KK.X/ and
projective N T �-right-modules.

3.4 Proof of Proposition 1

Recall the following result from [11].

Lemma 1 ([11, Theorem 3.12]). Let X be a finite topological space. Assume
that the ideal N T nil � N T �.X/ is nilpotent and that the decomposition
N T �.X/ D N T nil Ì N T ss holds. Let M be an N T �.X/-module. The
following assertions are equivalent:

1. M is a free N T �.X/-module.
2. M is a projective N T �.X/-module.

3. Mss is a free Abelian group and TorN T �.X/
1 .N T ss;M / D 0.

Now we prove Proposition 1. We consider the case n D 1 first. Choose an
epimorphism f WP �M for some projective moduleP , and letK be its kernel.M
has a projective resolution of length 1 if and only if K is projective. By Lemma 1,
this is equivalent to Kss being a free Abelian group and TorN T �

1 .N T ss; K/ D 0.
We have TorN T �

1 .N T ss; K/ D 0 if and only if TorN T �

2 .N T ss;M / D 0

because these groups are isomorphic. We will show that Kss is free if and only if
TorN T �

1 .N T ss;M / is free. The extension K � P � M induces the following
long exact sequence:

0! TorN T �

1 .N T ss;M /! Kss ! Pss !Mss ! 0 :

Assume that Kss is free. Then its subgroup TorN T �

1 .N T ss;M / is free as well.
Conversely, if TorN T �

1 .N T ss;M / is free, thenKss is an extension of free Abelian
groups and thus free. Notice that Pss is free because P is projective. The general
case n 2 N follows by induction using an argument based on syzygies as above.
This completes the proof of Proposition 1.

3.5 Free Resolutions for N T ss

The N T �-right-module N T ss decomposes as a direct sum
L

Y2LC.X/� SY of the
simple submodules SY which are given by SY .Y / Š Z and SY .Z/ D 0 forZ ¤ Y .
We obtain

TorN T �

n .N T ss;M / D
M

Y2LC.X/�
TorN T

n .SY ;M/ :
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Our task is then to write down projective resolutions for the N T �-right-
modules SY . The first step is easy: we map QY onto SY by mapping the class
of the identity in QY .Y / to the generator of SY .Y /. Extended by zero, this yields
an epimorphismQY � SY .

In order to surject onto the kernel of this epimorphism, we use the indecompos-
able transformations in N T � whose range is Y . Denoting these by �i WWi ! Y ,
1 � i � n, we obtain the two step resolution

nM
iD1

QWi

. �1 �2 ��� �n /��������! QY � SY :

In the notation of [11], the map
Ln

iD1 QWi ! QY corresponds to a morphism
�WRY ! Ln

iD1 RWi of I-projectives in KK.X/. If the mapping cone C� of � is

again I-projective, the distinguished triangle ˙C� ! RY

��! Ln
iD1RWi ! C�

yields the projective resolution

� � � ! QY ! Q�Œ1�!
nM
iD1

QWi Œ1�! QY Œ1�! Q� !
nM
iD1

QWi ! QY � SY ;

whereQ� D FK.C�/. We denote periodic resolutions like this by

Q�
�� Ln

iD1 QWi
�� QY ! SY :

ı
��

If the mapping cone C� is not I-projective, the situation has to be investigated
individually. We will see examples of this in Sects. 3.7 and 3.9. The resolutions
we construct in these cases exhibit a certain six-term periodicity as well. However,
they begin with a finite number of “non-periodic steps” (one in Sect. 3.7 and
two in Sect. 3.9), which can be considered as a symptom of the deficiency of
the invariant filtrated K-theory over non-accordion spaces from the homological
viewpoint. We remark without proof that the mapping cone of the morphism
�WRY ! Ln

iD1RWi is I-projective for every Y 2 LC.X/� if and only if X is
a disjoint union of accordion spaces.

3.6 Tensor Products with Free Right-Modules

Lemma 2. Let M be an N T �-left-module. There is an isomorphism QY ˝N T �

M Š M.Y / of Z=2-graded Abelian groups which is natural in Y 22 N T �.

Proof. This is a simple consequence of Yoneda’s lemma and the tensor-hom
adjunction.
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Lemma 3. Let

˙R.3/

��! R.1/

˛�! R.2/

ˇ�! R.3/

be a distinguished or anti-distinguished triangle in KK.X/, where

R.i/ D
miM
jD1

RY ij
˚

niM
kD1

˙RZik

for 1 � i � 3, mi; ni 2 N and Y ij ; Z
i
k 2 LC.X/�. Set Q.i/ D cFK.R.i//.

If M D FK.A/ for some A 22 KK.X/, then the induced sequence

Q.1/ ˝N T � M
˛�˝idM

�� Q.2/ ˝N T � M
ˇ�˝idM

�� Q.3/ ˝N T � M

��˝idM
��

Q.3/ ˝N T � MŒ1�

��˝idM Œ1�

��

Q.2/ ˝N T � MŒ1�
ˇ�˝idM Œ1�

�� Q.1/ ˝N T � MŒ1�
˛�˝idM Œ1�

��

(3.2)

is exact.

Proof. Using the previous lemma and the representability theorem, we naturally
identify Q.i/ ˝N T � M Š KK�.X IR.i/; A/. Since, in triangulated categories,
distinguished or anti-distinguished triangles induce long exact Hom-sequences, the
sequence (3.2) is thus exact.

3.7 Proof of Proposition 2

We may restrict to connected T0-spaces. In [9], a list of isomorphism classes of
connected T0-spaces with three or four points is given. If X is a disjoint union of
accordion spaces, then the assertion follows from [2]. The remaining spaces fall into
two classes:

1. All connected non-accordion four-point T0-spaces except for the pseudocircle;
2. The pseudocircle (see Sect. 3.7.2).

The spaces in the first class have the following in common: If we fix two of them, say
X , Y , then there is an ungraded isomorphism˚ WN T �.X/! N T �.Y / between
the categories of natural transformations on the respective filtrated K-theories such
that the induced equivalence of ungraded module categories
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˚�WModungr�N T �.Y /
�

c !Modungr�N T �.X/
�

c

restricts to a bijective correspondence between exact ungraded N T �.Y /-modules
and exact ungraded N T �.X/-modules. Moreover, the isomorphism ˚ restricts to
an isomorphism from N T ss.X/ onto N T ss.Y / and one from N T nil.X/ onto
N T nil.Y /. In particular, the assertion holds for X if and only if it holds for Y .

The above is a consequence of the investigations in [1, 2, 11]; the same kind of
relation was found in [2] for the categories of natural transformations associated to
accordion spaces with the same number of points. As a consequence, it suffices to
verify the assertion for one representative of the first class—we chooseZ3—and for
the pseudocircle.

3.7.1 Resolutions for the Space Z3

We refer to [11] for a description of the category N T �.Z3/, which in partic-
ular implies, that the space Z3 satisfies the conditions of Proposition 1. Using
the extension triangles from [11, (2.5)], the procedure described in Sect. 3.5
yields the following projective resolutions induced by distinguished triangles as in
Lemma 3:

Q1Œ1� �� Q4
�� Q14 ! S14 ;

ı��
and similarly for S24, S34;

Q1234Œ1� �� Q1Œ1�˚Q2Œ1�˚Q3Œ1� �� Q4 ! S4 I
ı



Q234
�� Q1234

�� Q1 ! S1 ;

ı��
and similarly for S2, S3.

Next we will deal with the modules Sjk4, where 1 � j < k � 3. We observe
that there is a Mayer-Vietoris type exact sequence of the form

Q4
�� Qj4 ˚Qk4

�� Qjk4

ı
��

: (3.3)

Lemma 4. The candidate triangle ˙R4 ! Rjk4 ! Rj 4 ˚ Rk4 ! R4

corresponding to the periodic part of the sequence (3.3) is distinguished or anti-
distinguished (depending on the choice of signs for the maps in (3.3)).

Proof. We give the proof for j D 1 and k D 2. The other cases follow from cyclicly
permuting the indices 1, 2 and 3. We denote the morphism R124 ! R14 ˚ R24

by ' and the corresponding map Q14 ˚ Q24 ! Q124 in (3.3) by '�. It suffices
to check that cFK.Cone'/ and Q4 correspond, possibly up to a sign, to the same
element in Ext1

N T �.Z3/op

�
ker.'�/; coker.'�/Œ1�

�
. We have coker.'�/ Š S124 and an



50 R. Bentmann

extension S124Œ1�� Q4 � ker.'�/. Since Hom.Q4; S124Œ1�/ Š S124.4/Œ1� D 0

and Ext1.Q4; S124Œ1�/ D 0 because Q4 is projective, the long exact Ext-sequence
yields Ext1

�
ker.'�/; coker.'�/Œ1�

� Š Hom.S124Œ1�; S124Œ1�/ Š Z. Considering the

sequence of transformations 3
ı�! 124

i�! 1234
r�! 3, it is straight-forward to check

that such an extension corresponds to one of the generators ˙1 2 Z if and only if
its underlying module is exact. This concludes the proof because both cFK.Cone'/
andQ4 are exact.

Hence we obtain the following projective resolutions induced by distinguished
or anti-distinguished triangles as in Lemma 3:

Q4
�� Qj4 ˚Qk4

�� Qjk4! Sjk4

ı
��

:

To summarize, by Lemma 3, TorN T �

n .SY ;M/ D 0 for Y ¤ 1234 and n 	 1.
As we know from [11], the subset 1234 of Z3 plays an exceptional role. In the

notation of [11] (with the direction of the arrows reversed because we are dealing

with right-modules), the kernel of the homomorphismQ124 ˚Q134 ˚Q234

. i i i /����!
Q1234 is of the form

Z

����
��
��
��

0��

��		
		
		
		

ZŒ1�

��












Z2 Z�� 0

��		
		
		
		



��������

0��

��		
		
		
		

����������

ZŒ1��� Z2 :ı��

ı��
��

�����
�

ı




��





Z

����������

0��



��������

ZŒ1�

����������

It is the image of the module homomorphism

Q14 ˚Q24 ˚Q34

	
i �i 0�i 0 i
0 i �i




��������! Q124 ˚Q134 ˚Q234; (3.4)

the kernel of which, in turn, is of the form

0

��		
		
		
		

ZŒ1���

��












ZŒ1�

����
��
��
��

Z 0�� ZŒ1�

��












����������

ZŒ1�3��

����
��
��
��

����������

ZŒ1��� Z :ı��

ı��
��

�����
�

ı����

������

0



��������

ZŒ1���

����������

ZŒ1�

����������
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A surjection from Q4 ˚ Q1234Œ1� onto this module is given by
�

i i i
ı141234 0 0

�
, where

ı141234 :D ı143 ı r31234. The kernel of this homomorphism has the form

ZŒ1�

����
��
��
��

ZŒ1���

����
��
��
��

0

��		
		
		
		

ZŒ1� ZŒ1��� ZŒ1�

����
��
��
��

����������

0��

��












����������

0�� 0 :ı��

ı��
��

����
��

ı���



����

ZŒ1�

����������

ZŒ1���

����������

0

����������

This module is isomorphic to Syz1234Œ1�, where Syz1234 :D ker.Q1234 � S1234/.
Therefore, we end up with the projective resolution

Q4 ˚Q1234Œ1� �� Q14 ˚Q24 ˚Q34
�� Q124 ˚Q134 ˚Q234

��
ı��

Q1234 ! S1234 :

(3.5)

The homomorphism fromQ124 ˚Q134 ˚Q234 to Q4 ˚Q1234Œ1� is given by

	
0 0 �ı4234
i i i



;

where ı4234 :D ı42 ı r2234.
Lemma 5. The candidate triangle in KK.X/ corresponding to the periodic part of
the sequence (3.5) is distinguished or anti-distinguished (depending on the choice
of signs for the maps in (3.5)).

Proof. The argument is analogous to the one in the proof of Lemma 4. Again, we
consider the group Ext1

N T �.Z3/op

�
ker.'�/; coker.'�/Œ1�

�
where '� now denotes the

map (3.4). We have coker.'�/ Š Syz1234 and an extension Q4 � ker.'�/ �
S1234Œ1�. Using long exact sequences, we obtain

Ext1
�
ker.'�/; coker.'�/Œ1�

� Š Ext1.S1234Œ1�;Syz1234Œ1�/

Š Hom.S1234Œ1�; S1234Œ1�/ Š Z:

Again, an extension corresponds to a generator if and only if its underlying module
is exact.



52 R. Bentmann

By the previous lemma and Sect. 3.6, computing the tensor product of this complex
with M and taking homology shows that TorN T �

n .N T ss;M / D 0 for n 	 2

and that TorN T �

1 .N T ss;M / is equal to TorN T �

1 .S1234;M/ and isomorphic to the
homology of the complex (3.1).

Example 1. For the filtrated K-module with projective dimension 2 constructed in
[11, §5] we get TorN T �

1 .N T ss;M / Š Z=k.

Remark 1. As explicated in the beginning of this section, the category N T �.S/
corresponding to the four-point space S defined in the introduction is isomorphic in
an appropriate sense to the category N T �.Z3/. As has been established in [1], the
indecomposable morphisms in N T �.S/ are organised in the diagram

12 ı
ı

��

r

���
��

��
��

�
34

i

��














2

i

���
��

��
��

��

123

r
����������

ı
ı

��

r

��














4

���

i

�����

��� i

���
�

1 ı
ı
�� 234

r

  ���������
i

��

r

!!�
��

��
��

��
1234

r
�� 123 :

13

r
����������

ı
ı

�� 24

i
����������

3

i
""����������

In analogy to (3.1), we have that TorN T �.S/
1 .N T ss;M / is isomorphic to the

homology of the complex

M.12/Œ1�˚M.4/˚M.13/Œ1�

	
ı �r 0�i 0 i
0 r �ı




��������!M.34/˚M.1/Œ1�˚M.24/
. i ı i /����!M.234/ ; (3.6)

whereM D FK.A/ for some separable C �- algebra A over X .

3.7.2 Resolutions for the Pseudocircle

Let C2 D f1; 2; 3; 4g with the partial order defined by 1 < 3, 1 < 4, 2 < 3, 2 < 4.
The topology on C2 is thus given by f;; 3; 4; 34; 134; 234; 1234g. Hence the non-
empty, connected, locally closed subsets are

LC.C2/
� D f3; 4; 134; 234; 1234; 13; 14; 23; 24; 124; 123; 1; 2g :
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Fig. 3.1 Indecomposable natural transformations in N T �.C2/

The partial order on C2 corresponds to the directed graph

4 2

3 1 :

� �

� �

��
��

##�
�

$$�������
��

The space C2 is the only T0-space with at most four points with the property
that its order complex (see [11, Definition 2.6]) is not contractible; in fact, it is
homeomorphic to the circle S1. Therefore, by the representability theorem [11, §2.1]
we find

N T �.C2; C2/ Š KK�.X IRC2;RC2/ Š K�
�
RC2.C2/

� Š K�
�
S
1
� Š Z˚ ZŒ1� ;

that is, there are non-trivial odd natural transformations FKC2 ) FKC2 . These are

generated, for instance, by the composition C2
r�! 1

ı�! 3
i�! C2. This follows

from the description of the category N T �.C2/ below. Note that ıC2C2 ı ıC2C2 vanishes
because it factors through r113 ı i 133 D 0.

Figure 3.1 displays a set of indecomposable transformations generating the
category N T �.C2/ determined in [1, §6.3.2], where also a list of relations
generating the relations in the category N T �.C2/ can be found. From this, it is
straight-forward to verify that the space C2 satisfies the conditions of Proposition 1.
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Proceeding as described in Sect. 3.5, we find projective resolutions of the
following form (we omit explicit descriptions of the boundary maps):

Q123Œ1� �� Q1Œ1�˚Q2Œ1� �� Q3 ! S3 ;

ı��
and similarly for S4;

Q1Œ1� �� Q3 ˚Q4
�� Q134 ! S134 ;

ı��
and similarly for S234;

Q4
�� Q134

�� Q13 ! S13 ;

ı
��

and similarly for S14, S23, S24;

Q3 ˚Q4
�� Q134 ˚Q234

�� Q1234 ! S1234 I
ı



Q4 ˚Q123Œ1� �� Q134 ˚Q234
�� Q1234 ˚Q13 ˚Q23 ! Q123 ! S123 ;

ı��

and similarly for S124;

Q234 ˚Q1Œ1� �� Q1234 ˚Q23 ˚Q24
�� Q123 ˚Q124 ! Q1 ! S1 ;

ı��

and similarly for S2. Again, the periodic part of each of these resolutions is induced
by an extension triangle, a Mayer-Vietoris triangle as in Lemma 4 or a more exotic
(anti-)distinguished triangle as in Lemma 5 (we omit the analogous computation
here).

We get TorN T �

1 .SY ;M/ D 0 for every Y 2 LC.C2/
� n f123; 124; 1; 2g, and

further TorN T �

n .SY ;M/ D 0 for all Y 2 LC.C2/
� and n 	 2. Therefore,

TorN T �

1 .N T ss;M / Š
M

Y2f123;124;1;2g
TorN T �

1 .SY ;M/ :

The four groups TorN T �

1 .SY ;M/ with Y 2 f123; 124; 1; 2g can be described
explicitly as in Sect. 3.7.1 using the above resolutions. This finishes the proof of
Proposition 2.

3.8 Proof of Proposition 3

We apply the Meyer-Nest machinery to the homological functor FK ˝ Q on
the triangulated category KK.X/ ˝ Q. We need to show that every N T � ˝ Q

module of the form M D FK.A/ ˝ Q has a projective resolution of length 1.
It is easy to see that analogues of Propositions 1 and 2 hold. In particular, the
term TorN T �˝Q

2 .N T ss ˝ Q;M / always vanishes. Here we use that Q is a flat
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Z-module, so that tensoring with Q turns projective N T �-module resolutions into
projective N T �˝Q-module resolutions. Moreover, the freeness condition for the
Q-module TorN T �˝Q

1 .N T ss ˝Q;M / is empty since Q is a field.

3.9 Proof of Proposition 4

The computations to determine the category N T �.Z4/ are very similar to those for
the category N T �.Z3/ which were carried out in [11]. We summarise its structure
in Fig. 3.2. The relations in N T �.Z4/ are generated by the following:

• The hypercube with vertices 5; 15; 25; : : : ; 12345 is a commuting diagram;
• The following compositions vanish:

1235
i�! 12345

r�! 4 ; 1245
i�! 12345

r�! 3 ;

1345
i�! 12345

r�! 2 ; 2345
i�! 12345

r�! 1 ;

1
ı�! 5

i�! 15 ; 2
ı�! 5

i�! 25 ; 3
ı�! 5

i�! 35 ; 4
ı�! 5

i�! 45 I

• The sum of the four maps 12345! 5 via 1, 2, 3, and 4 vanishes.

This implies that the space Z4 satisfies the conditions of Proposition 1.
In the following, we will define an exact N T �-left-module M and compute

TorN T �

2 .S12345;M/. By explicit computation, one finds a projective resolution of
the simple N T �-right-moduleS12345 of the following form (again omitting explicit
formulas for the boundary maps):

Q5 ˚L
1�i�4

Q12345ni Œ1�
L

1�l�4
Ql5 ˚Q12345Œ1�

L
1�j<k�4

Qjk5

L
1�i�4

Q12345ni Q12345 S12345:

ı

Notice that this sequence is periodic as a cyclic six-term sequence except for the
first two steps.

Consider the exact N T �-left-moduleM defined by the exact sequence

0! P12345

 
i
i
i
i

!

���!
M
1�i�4

P12345ni

0
BB@
i �i 0 0�i 0 i 0
0 i �i 0
i 0 0 �i
0 �i 0 i
0 0 i �i

1
CCA

�����������!
M

1�j<k�4
Pjk5�M :

(3.7)
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Fig. 3.2 Indecomposable natural transformations in N T �.Z4/

We have
L

1�l�4 M.l5/˚M.12345/Œ1�Š 0˚Z3,
L

1�j<k�4 M.jk5/ Š Z6, and
M.5/˚L1�i�4 M.12345 n i/Œ1� Š ZŒ1�˚ ZŒ1�8. Since

L
1�l�4

M.l5/˚M.12345/Œ1� �� L
1�j<k�4

M.jk5/

ı
��

M.5/˚ L
1�i�4

M.12345 n i/Œ1�

%%���������������

is exact, a rank argument shows that the map

M
1�l�4

M.l5/˚M.12345/Œ1�!
M

1�j<k�4
M.jk5/

is zero. On the other hand, the kernel of the map

M
1�j<k�4

M.jk5/

0
@ i �i 0 i 0 0�i 0 i 0 �i 0
0 i �i 0 0 i
0 0 0 �i i �i

1
A

���������������!
M
1�i�4

M.12345 n i/
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is non-trivial; it consists precisely of the elements in

M
1�j<k�4

M.jk5/ Š
M

1�j<k�4
ZŒidjk5jk5�

which are multiples of .Œidjk5jk5�/1�j<k�4. This shows TorN T �

2 .S12345;M/ Š Z.
Hence, by Proposition 1, the module M has projective dimension at least 2. On the
other hand, (3.7) is a resolution of length 2. Therefore, the projective dimension
of M is exactly 2.

Let k 2 N�2 and define Mk D M ˝Z Z=k. Since TorN T �

2 .S12345;Mk/ Š Z=k

is non-free, Proposition 1 shows thatMk has at least projective dimension 3. On the
other hand, if we abbreviate the resolution (3.7) for M by

0! P .5/ ˛�! P .4/ ˇ�! P .3/�M ; (3.8)

a projective resolution of length 3 for Mk is given by

0! P .5/

�
k
˛

�
��! P .5/ ˚ P .4/

�
˛ �k
0 ˇ

�
�����! P .4/ ˚ P .3/ . ˇ k /���! P .3/�Mk ;

where k denotes multiplication by k.
It remains to show that the modulesM andMk can be realised as the filtrated K-

theory of objects in B.X/. It suffices to prove this for the moduleM since tensoring
with the Cuntz algebra OkC1 then yields a separable C �- algebra with filtrated K-
theoryMk by the Künneth Theorem.

The projective resolution (3.8) can be written as

0! FK.P 2/
FK.f2/����! FK.P 1/

FK.f1/����! FK.P 0/�M;

because of the equivalence of the category of projective N T �-modules and the
category of I-projective objects in KK.X/. Let N be the cokernel of the module
map FK.f2/. Using [11, Theorem 4.11], we obtain an object A 22 B.X/ with
FK.A/ Š N . We thus have a commutative diagram of the form

0 �� FK.P 2/
FK.f2/

�� FK.P 1/
FK.f1/

��

&& &&�
��

��
��

��
FK.P 0/ �� �� M :

FK.A/

''

�
''���������

Since A belongs to the bootstrap class B.X/ and FK.A/ has a projective resolution
of length 1, we can apply the universal coefficient theorem to lift the homomorphism
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� to an element f 2 KK.X IA;P 0/. Now we can argue as in the proof of
[11, Theorem 4.11]: since f is I-monic, the filtrated K-theory of its mapping cone
is isomorphic to coker.�/ Š M . This completes the proof of Proposition 4.

3.10 Cuntz-Krieger Algebras with Projective Dimension 2

In this section we exhibit a Cuntz-Krieger algebra A which is a tight C �-algebra

over the space Z3 and for which the odd part of TorN T �.Z3/
1

�
N T ss;FK.A/

�
—

denoted Torodd
1 in the following—is not free. By Proposition 2 this C �-algebra has

projective dimension 2 in filtrated K-theory.
In the following we will adhere to the conventions for graph algebras and

adjacency matrices from [4]. Let E be the finite graph with vertex set E0 D
fv1; v2; : : : ; v8g and edges corresponding to the adjacency matrix

0
BB@
B4 0 0 0

X1 B1 0 0

X2 0 B2 0

X3 0 0 B3

1
CCA :D

0
BBBBBBBBBBB@

	
3 2

2 3



0 0 0

	
1 1

1 1


 	
3 2

1 2



0 0

	
1 1

1 1



0

	
3 2

1 2



0

	
1 1

1 1



0 0

	
3 2

1 2




1
CCCCCCCCCCCA

: (3.9)

Since this is a finite graph with no sinks and no sources, the associated graph
C �- algebra C �.E/ is in fact a Cuntz-Krieger algebra (we can replace E with its
edge graph; see [13, Remark 2.8]). Moreover, the graph E is easily seen to fulfill
condition (K) because every vertex is the base of two or more simple cycles. As
a consequence, the adjacency matrix of the edge graph of E fulfills condition (II)
from [5]. In fact, condition (K) is designed as a generalisation of condition (II): see,
for instance, [8].

Applying [13, Theorem 4.9]—and carefully translating between different graph
algebra conventions—we find that the ideals of C �.E/ correspond bijectively
and in an inclusion-preserving manner to the open subsets of the space Z3. By
[9, Lemma 2.35], we may turn A into a tight C �- algebra over Z3 by declaring
A.f4g/ D Ifv1;v2g, A.f1; 4g/ D Ifv1;v2;v3;v4g, A.f2; 4g/ D Ifv1;v2;v5;v6g as well as
A.f3; 4g/ D Ifv1;v2;v7;v8g, where IS denotes the ideal corresponding to the saturated
hereditary subset S .

It is known how to compute the six-term sequence in K-theory for an extension
of graph C �- algebras: see [4]. Using this and Proposition 2, Torodd

1 is the homology
of the complex
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ker.�0/

	
i �i 0�i 0 i
0 i �i




��������! ker.�1/
. i i i /����! ker.�2/ ; (3.10)

where �0 D diag
��

B0

4 X
t
1

0 B0

1

�
;
�
B0

4 X
t
2

0 B0

2

�
;
�
B0

4 X
t
3

0 B0

3

��
; �2 D

0
@
B0

4 X
t
1 X

t
2 X

t
3

0 B0

1 0 0

0 0 B0

2 0

0 0 0 B0

3

1
A ;

�1 D diag

  
B0

4 X
t
1 X

t
2

0 B0

1 0

0 0 B0

2

!
;

 
B0

4 X
t
1 X

t
3

0 B0

1 0

0 0 B0

3

!
;

 
B0

4 X
t
2 X

t
3

0 B0

2 0

0 0 B0

3

!!
;

and B 04 D Bt
4 �

�
1 0
0 1

� D �
2 2
2 2

�
and B 0j D Bt

j �
�
1 0
0 1

� D �
2 1
2 1

�
for 1 � j � 3. We

obtain a commutative diagram

ker.�0/

fK

��

�� �� .Z˚2/˚.2�3/

f

��

�0
�� �� im.�0/

fI

��
ker.�1/

gK

��

�� �� .Z˚2/˚.3�3/

g

��

�1
�� �� im.�1/

gI

��
ker.�2/ �� �� .Z˚2/˚.4�1/

�2
�� �� im.�2/ ;

(3.11)

where f and g have the block forms

f D

0
BBB@

id 0 �id 0 0 0
0 id 0 0 0 0
0 0 0 �id 0 0�id 0 0 0 id 0
0 �id 0 0 0 0
0 0 0 0 0 id
0 0 id 0 �id 0
0 0 0 id 0 0
0 0 0 0 0 �id

1
CCCA ; g D

	
id 0 0 id 0 0 id 0 0
0 id 0 0 id 0 0 0 0
0 0 id 0 0 0 0 id 0
0 0 0 0 0 id 0 0 id



;

and fK :D f jker.�0/, fI :D f jim.�0/, gK :D gjker.�1/, gI :D gjim.�1/. Notice that f
and g are defined in a way such that the restrictions f jker.�0/ and gjker.�1/ are exactly
the maps from (3.10) in the identification made above.

We abbreviate the above short exact sequence of cochain complexes (3.11) as
K� � Z� � I�. The part H0.Z�/ ! H0.I�/ ! H1.K�/ ! H1.Z�/ in the
corresponding long exact homology sequence can be identified with

ker.f /
�0�! ker.fI /! ker.gK/

im.fK/
! 0 :
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Hence

Torodd
1 Š

ker.gK/

im.fK/
Š ker.fI /

�0
�
ker.f /

� Š ker.f /\ im.�0/

�0
�
ker.f /

� :

We have ker.f / D f.v; 0; v; 0; v; 0/ j v 2 Z2g � .Z˚2/˚.2�3/.
From the concrete form (3.9) of the adjacency matrix, we find that ker.f / \

im.�0/ is the free cyclic group generated by .1; 1; 0; 0; 1; 1; 0; 0; 1; 1; 0; 0/, while
�0
�
ker.f /

�
is the subgroup generated by .2; 2; 0; 0; 2; 2; 0; 0; 2; 2; 0; 0/. We see that

Torodd
1 Š Z=2 is not free.
Now we briefly indicate how to construct a similar counterexample for the

space S . Consider the integer matrix

0
BB@
B4 0 0 0

X43 B3 0 0

X42 0 B2 0

X41 X31 X21 B1

1
CCA :D

0
BBBBB@

�
3
�

0 0 0�
2
� �

3
�

0 0�
2
�

0
�
3
�

0	
2

0


 	
1

0


 	
1

0


 	
2 1

1 2




1
CCCCCA
:

The corresponding graph F fulfills condition (K) and has no sources or sinks. The
associated graphC �- algebraC �.F / is therefore a Cuntz-Krieger algebra satisfying
condition (II). It is easily read from the block structure of the edge matrix that the
primitive ideal space of C �.F / is homeomorphic to S . We are going to compute the

even part of TorN T �.S/
1

�
N T ss;FK.C �.F //

�
. Since the nice computation methods

from the previous example do not carry over, we carry out a more ad hoc calculation.
By Remark 1, the even part of our Tor-term is isomorphic to the homology of the

complex

ker
�
B0

2 X
t
21

0 B0

1

�
ı

�
Xt42 X

t
41

0 Xt31

�

��

�r

((��
���

��
���

���
coker

�
B0

4 X
t
43

0 B0

3

�

i

))  
   

   
  

coker.B 04/

!!!!!!

�i
**!!!!!

���
��� i

((��
���

ker.B 01/ ı

0
@
Xt41
Xt31
Xt21

1
A
�� coker

 
B0

4 X
t
43 X

t
42

0 B0

3 0

0 0 B0

2

!
;

ker
�
B0

3 X
t
31

0 B0

1

�
r

**!!!!!!!!!!!!!

ı

�
�
Xt43 X

t
41

0 Xt21

�
�� coker

�
B0

4 X
t
42

0 B0

2

�
i ++""""""""""
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where column-wise direct sums are taken. Here B 01 D Bt
1 �

�
1 0
0 1

� D �
1 1
1 1

�
and

B 0j D Bt
j �

�
1
� D �2� for 2 � j � 4. This complex can be identified with

Z˚ Z=2˚ Z

0
B@
0 1 0
0 0 0�2 0 2
0 1 0
0 0 0

1
CA

�������! .Z=2/2 ˚ Z˚ .Z=2/2
	
1 0 0 1 0
0 1 1 0 0
0 0 1 0 1




��������! .Z=2/3 ;

the homology of which is isomorphic to Z=2; a generator is given by the class of
.0; 1; 1; 0; 1/ 2 .Z=2/2 ˚ Z˚ .Z=2/2. This concludes the proof of Proposition 5.
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Chapter 4
An Introduction to the C �-Algebra
of a One-Sided Shift Space

Toke Meier Carlsen

Abstract This paper gives an introduction to the C �-algebra of a one-sided shift
space. Focus will be given to the fundamental structure of the C �-algebra of a
one-sided shift space, but some of the most important results about C �-algebras
associated to shift spaces will also be presented.

Keywords C �-algebras of shift spaces • C �-algebras of subshifts

Mathematics Subject Classification (2010): 46L05, 37B10, 46L80, 46L55.

4.1 Introduction

I will in this paper give an introduction to C �-algebras associated to shift spaces
(also called subshifts). The paper also contains an appendix about C �-algebras,
Morita equivalence and K-theory of C �-algebras which hopefully will provide a
reader without any knowledge of operator algebra with the necessary background
for reading this paper.
C �-algebras associated to shift spaces were introduced by Kengo Matsumoto

in [25] as a generalization of Cuntz-Krieger algebras (cf. [17]), and all the major
results about them are essentially due to him. C �-algebras associated to shift spaces
have been studied by Matsumoto and his collaborators in [20, 22, 23, 26–28, 30–
35, 37], and I have together with various collaborators contributed in [2, 7, 10–16].
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The approach I will take in this paper, is a little bit different from Matsumoto’s
original approach. One notable difference is that I will associate C �-algebras to
one-sided shift spaces, whereas Matsumoto associated C �-algebras to two-sided
shift spaces, but there are other differences as well. See [15, Sect. 7] for a discussion
of the relationship between the different C �-algebras that have been associated to
shift spaces.

The focus of this paper is the fundamental structure of the C �-algebra of a
one-sided shift space, but I will also describe some of the most important results
about C �-algebras associated to shift spaces. In Sect. 4.2 one-sided shift spaces are
defined and representations of one-sided shift spaces are introduced and studied.
In Sect. 4.3 the C �-algebra of a one-sided shift space is introduced and studied,
and in Sect. 4.4 the gauge action of the C �-algebra of a one-sided shift space is
studied. In Sect. 4.5 it is proved that the C �-algebra of a one-sided shift space is
a conjugacy invariant. Finally, it is in Sect. 4.6 briefly explained that the Morita
equivalence class of the C �-algebra of a one-sided shift space is a flow invariant,
and in Sect. 4.7 the K-theory of the C �-algebra of a one-sided shift space is
described. As mentioned above, the paper contains an appendix which hopefully
will provide a reader without any knowledge of operator algebra with the necessary
background for reading this paper. This appendix contains a section which very
briefly introduces C �-algebras, a section which very briefly introduce Morita
equivalence ofC �-algebras, and a section which very briefly introduce theK-theory
of C �-algebras.

It should be noticed that parts of this paper are taken from the notes [9] which
I wrote for the summer school “Symbolic dynamics and homeomorphisms of the
Cantor set” at the University of Copenhagen, 23–27 June 2008.

4.2 Representations of One-Sided Shift Spaces

Let a be a finite set endowed with the discrete topology. We will call this set the
alphabet and its elements letters. Let aN0 be the infinite product space

Q1
nD0 a

endowed with the product topology. The transformation � on aN0 given by

�
�.x/

�
i
D xiC1; i 2 N0;

is called the (one-sided) shift. Let X be a shift invariant closed subset of aN0 (by shift
invariant we mean that �.X/ 
 X, not necessarily �.X/ D X). The topological
dynamical system .X; �jX/ is called a one-sided shift space (or a one-sided subshift).

Example 1. If a is an alphabet, then aN0 itself is a shift space. We call aN0 the full
one-sided a-shift.
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We will denote �jX by �X or � for simplicity, and on occasion the alphabet a by
aX . We denote the n-fold composition of � with itself by �n, and we denote the
preimage of a set X under �n by ��n.X/.

A finite sequence u D .u1; : : : ; uk/ of elements ui 2 a is called a finite word. The
length of u is k and is denoted by juj. For each k 2 N, we let ak be the set of all
words with length k, and we let Lk.X/ be the set of all words with length k appearing
in some x 2 X. We let L0.X/ D a0 denote the set f�g consisting of the empty word
� which has length 0. We set Ll .X/ D Sl

kD0 Lk.X/ and L.X/ D S1
kD0 Lk.X/, and

likewise al D Sl
kD0 ak and a� D S1

kD0 ak . The set L.X/ is called the language of
X. Note that L.X/ 
 a� for every shift space.

If u 2 a� with juj > 0, then we will by u1 denote the first letter (the leftmost)
letter of u, by u2 the second letter of u, and so on till ujuj which denotes the last (the
rightmost) letter of u. Thus u D u1u2 � � � ujuj.

We will often denote an element x D .xn/n2N0 of aN0 by

x0x1 � � � ;

and if u 2 a�, then we will by ux denote the sequence

u1u2 � � � ujujx0x1 � � � :

We will also often for a sequence x belonging to either aN0 or aZ and for integers
k < l belonging to the appropriate index set denote xkxkC1 � � �xl�1 by xŒk;lŒ and
regard it as an element of a�. Similarly, xŒk;1Œ will denote the element

xkxkC1 � � �

of aN0 .

Definition 1. Let X be a one-sided shift space. We let l1.X/ be the C �-algebra
of bounded functions on X. We define two maps ˛ W l1.X/ ! l1.X/ and L W
l1.X/! l1.X/ by for f 2 l1.X/ and x 2 X letting

˛.f /.x/ D f .�.x// and L .f /.x/ D
(

1
#��1.fxg/

P
y2��1.fxg/ f .y/ if x 2 �.X/;

0 if x … �.X/;

where #��1.fxg/ denotes the number of elements of ��1.fxg/ (which is finite).

Definition 2. Let X be a one-sided shift space over the alphabet a. For every pair
.u; v/ of words in a�, we let C.u; v/ denote the subset

fvx 2 X j x; ux 2 Xg

of X which consists of those elements which begins with a v and which satisfies that
the element obtained by replacing the beginning v with u also is an element of X.
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We let DX be the C �-subalgebra of l1.X/ generated by f1C.u;v/ j u; v 2 a�g
where 1C.u;v/ denotes the characteristic function of C.u; v/.

Proposition 1. Let X be a one-sided shift space over the alphabet a. Then we
have:

1. C.X/ 
 DX .
2. DX is the closure of

span

(
nY
iD1

1C.ui ;vi / j u1; : : : ; un; v1; : : : ; vn 2 a�
)
:

3. DX is closed under ˛ and L (i.e., f 2 DX H) ˛.f /;L .f / 2 DX).
4. If X is a C �-subalgebra of l1.X/ that is closed under ˛ and L and contains
C.X/, then DX 
X .

Proof. 1. For u 2 a� we have that Z.u/ WD C.�; u/ D fux 2 X j x 2 Xg is
a clopen subset of X, and thus that 1Z.u/ 2 C.X/. Since fZ.u/ j u 2 a�g
separates the points of X, it follows from the Stone-Weierstrass Theorem that
the C �-subalgebra of l1.X/ generated by f1Z.u/ j u 2 a�g is equal to C.X/.
Thus C.X/ 
 DX .

2. By definition DX is the smallest C �-subalgebra of l1.X/ which contains
f1C.u;v/ j u; v 2 a�g. It is not difficult to check that the closure of

span

(
nY
iD1

1C.ui ;vi / j u1; : : : ; un; v1; : : : ; vn 2 a�
)
:

satisfies this condition.
3. Since ˛ is a �-homomorphism, and L is linear and continuous, it is enough

to prove that ˛.1C.u;v// 2 DX for all u; v 2 a�, and that L .
Qn
iD1 1C.ui ;vi // 2 DX for

all u1; : : : ; un; v1; : : : ; vn 2 a�, so let us do that:
If u; v 2 a�, then we have

˛.1C.u;v// D
X
a2a

1C.u;va/ 2 DX :

If A;B 
 X such that 1A; 1B 2 DX , then 1A[B D 1A C 1B � 1A1B 2 DX . Thus
1�n.X/ D 1S

u2an C.u;�/ 2 DX . It follows that the function 1 � 1�.X/ CPa2a 1C.a;�/
also belongs to DX . Let us denote it by h. We have for x 2 X that

h.x/ D
(

#��1.fxg/ if x 2 �.X/;
1 if x … �.X/:
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Thus h is invertible, and it follows from Fact 8 that h�1 2 DX . So the function
1�.X/ � 1C h�1 belongs to DX . Let us denote it by d . We have for x 2 X that

d.x/ D
(

1
#��1.fxg/ if x 2 �.X/;
0 if x … �.X/:

If u1; : : : ; un; v1; : : : ; vn 2 a�, then either
Qn
iD1 1C.ui ;vi / D 0, all the vi ’s are equal

to the empty word, or all the non-empty vi ’s begin with the same letter a0. In the
first case L .

Qn
iD1 1C.ui ;vi // D 0, in the second case we have

L

 
nY
iD1

1C.ui ;vi /

!
D d

 X
a2a

nY
iD1

1C.ui a;�/

!
2 DX ;

and in the third case we have

L

 
nY
iD1

1C.ui ;vi /

!
D d1C.a0;�/

Y
i2I
1C.ui ;.vi /2.vi /3:::.vi /

jvi j
/

Y
i2I 0

1C.ui a;�/ 2 DX

where I D fi 2 f1; 2; : : : ; ng j vi ¤ �g and I 0 D fi 2 f1; 2; : : : ; ng j vi D �g.
4. Let X be a C �-subalgebra of l1.X/ that is closed under ˛ and L and

contains C.X/. For n 2 N0 let gn be the function

1 �L n.1/C
X
u2an

�
L n.1z.u//

�2
:

Then gn 2 X , and for every x 2 X we have

gn.x/ D
(

1
#��n.fxg/ if x 2 �n.X/;
1 if x … �n.X/:

Thus, gn is invertible. It follows from Fact 8 that g�1n and hence fn WD g�1n C
L n.1/ � 1 belong to X . For every x 2 X we have fn.x/ D #��n.fxg/. Thus if
u; v 2 a�, then 1C.u;v/ D 1Z.v/˛

jvj.fjujL juj.1z.u/// 2 X . Since DX is generated by
f1C.u;v/ j u; v 2 a�g, it follows that DX 
X . ut
Remark 1. It follows from [19, Theorem 1] that C.X/ D DX if and only if X is of
finite type.

Definition 3. Let X be a one-sided shift space over the alphabet a. For w 2 a� we
let �w be the map from l1.X/ to l1.X/ given by

�w.f /.x/ D
(
f .wx/ if wx 2 X;

0 if wx … X;

for f 2 l1.X/ and x 2 X.
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Lemma 1. Let X be a one-sided shift space over the alphabet a and let w 2 a�.
Then �w is a �-homomorphism and �w.DX/ 
 DX .

Proof. It is easy to check that �w is a �-homomorphism. Since DX is generated
by f1C.u;v/ j u; v 2 a�g and �w is a �-homomorphism, it is enough to check that
�w.1C.u;v// 2 DX for all u; v 2 a�, and this follows from the fact that

�w.1C.u;v// D

8̂
<̂
ˆ̂:
1C.w;�/1C.uw0;�/ if w D vw0;
1C.w;�/1C.u;v0/ if wv0 D v;
0 otherwise.

ut
Definition 4. Let X be a one-sided shift space over the alphabet a. By a repre-
sentation of X on a C �-algebra X we mean a pair .�; .tu/u2a�/ where � is a
�-homomorphism from DX to X and .tu/u2a� is a family of elements of X such
that

1. tutv D tuv,
2. �.1C.u;v// D tvt�u tut�v
for all u; v 2 a�.

We denote by C �..�; .tu/u2a�// the C �-subalgebra of X generated by
ftu j u 2 a�g.

Let X be a one-sided shift space over the alphabet a and let H be a Hilbert
space with an orthonormal basis .ex/x2X with the same cardinality as X (we can
for example let H be l2.X/ and ex D ıx).

For every u 2 a�, let Tu be the bounded operator on H defined by

Tu.ex/ D
(
eux if ux 2 X;

0 if ux … X;
(4.1)

and let � W DX ! B.H/ be the �-homomorphism defined by

�.f /.ex/ D f .x/ex: (4.2)

It is easy to check that .�; .Tu/u2a�/ is a representation of X. Thus we have:

Proposition 2. Let X be a one-sided shift space over the alphabet a and let H be
a Hilbert space with an orthonormal basis .ex/x2X with the same cardinality as X.
For every u 2 a�, let Tu be the bounded operator on H defined by (4.1), and let
� W DX ! B.H/ be the �-homomorphism defined by (4.2). Then .�; .Tu/u2a�/ is a
representation of X on B.H/.
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4.3 The C �-Algebra of a One-Sided Shift Space

In this section, the C �-algebra of a one-sided shift space will be introduced. This
will be done via the following theorem which says that every one-sided shift space
has a universal representation.

Theorem 1 (cf. [10, Remark 7.3] and [15, Theorem 10]). Let X be a one-sided
shift space over the alphabet a. There exists a C �-algebra OX and a representation
.�; .su/u2a�/ of X on OX satisfying:

1. C �.�; .su/u2a�/ D OX .
2. If .�; .tu/u2a�/ is a representation of X on a C �-algebra X , then there exist a
�-homomorphism  .�;.tu/u2a�

/ W OX ! X such that  .�;.tu/u2a�
/ ı � D � and

 .�;.tu/u2a�
/.su/ D tu for every u 2 a�.

The C �-algebra OX , which is called the C �-algebra of X, can be constructed
in different ways, for example as the C �-algebra of a groupoid (see [8]), as the
C �-algebra of a C �-correspondence (see [10] and [16]), or as one of Ruy Exel’s
crossed productC �-algebras of an endomorphism and a transfer operator (see [15]).

Throughout these notes we will let .�; .su/u2a�/ denote the representation of X
on OX mentioned in Theorem 1.

Remark 2. Since OX is generated by a countable family, it is separable.

Lemma 2. Let X be a one-sided shift space over the alphabet a. The �-homomor-
phism � W DX ! OX is injective.

Proof. Notice that the �-homomorphism � W DX ! B.H/ from Proposition 2 is
injective. It follows from Theorem 1 that there exists a �-homomorphism W OX !
B.H/ such that  ı � D �. It follows that � is injective. ut

We will from now on view DX as a subalgebra of OX and suppress �. This allows
us to state and prove the following lemma and propositions about the fundamental
structure of OX .

Lemma 3. Let X be a one-sided shift space over the alphabet a. We then have:

1. s� D s�� D s2� D 1X is a unit for OX .
2. If u 2 a�, then sus

�
u D 1C.�;u/.

3. If u 2 a�, then su is a partial isometry (i.e., sus
�
u su D su and s�u sus

�
u D s�u ).

4. If u; v 2 a� and juj D jvj, then we have

s�u sv D
(
1C.u;�/ if u D v;
0 if u ¤ v:

Proof. 1. Since �� D �, it follows from 1 of Definition 4 that s2� D s� .
It follows from 2 of Definition 4 that s�s�� s�s�� D 1C.�;�/ which is a projection,
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so s�s�� D s�s�� s�s�� according to Fact 7. It follows that .s� � s�s�� /.s� � s�s�� /� D 0
and thus that s� D s�s�� D s�s�� s�s�� D 1C.�;�/ D 1X which is a projection.

Let u 2 a�. Since �u D u� D u, it follows from 1 of Definition 4 that s�su D
sus� D su. Since s� is self-adjoint, it follows that it is a unit for OX .

2. If u 2 a�, then sus
�
u D sus

�
� s�s

�
u D 1C.�;u/.

3. It follows from 2 that sus
�
u is a projection and thus that su is a partial isometry.

4. Let u; v 2 a� with juj D jvj. If u ¤ v then C.�; u/ \ C.�; v/ D ; and so
s�u sv D s�u sus

�
u svs

�
v sv D s�u 1C.�;u/1C.�;v/sv D 0. If u D v, then s�u sv D s�u su D

s�s
�
u sus

�
� D 1C.u;�/. ut

Proposition 3. Let X be a one-sided shift space over the alphabet a, let n 2 N0, let
w 2 an and let f 2 DX . Then we have:

1. �w.f / D s�w fsw.
2. s�wf D �w.f /s

�
w.

3. ˛n.f / DPu2an su fs�u .
4. swf D ˛n.f /sw.
5.
P

u;v2an sus
�
v svs

�
u is equal to the function x 7! #��n.f�n.x/g/ and is thus

invertible.
6. L n.f / D .Pu2an su/

�.
P

u;v2an sus
�
v svs

�
u /
�1f .

P
u2an su/.

Proof. 1. It is clear that the map f 7! s�wfsw is linear and �-preserving. If f; g 2 DX ,
then it follows from Lemma 3 and the fact that DX is commutative that we have

s�wfsws
�
wgsw D s�wf 1C.�;w/gsw D s�w1C.�;w/fgsw D s�wsws

�
wfgsw D s�wfgsw;

which shows that the map f 7! s�wfsw is also multiplicative and thus is a
�-homomorphism. According to Lemma 1, �w is a �-homomorphism, and since
DX is generated by f1C.u;v/ j u; v 2 a�g, it therefore suffices to check that
�w.1C.u;v// D s�w1C.u;v/sw for u; v 2 a�, so let us do that:

It is easy to check that

�w.1C.u;v// D

8̂
<̂
ˆ̂:
1C.w;�/1C.uw0;�/ if w D vw0;
1C.w;�/1C.u;v0/ if wv0 D v;
0 otherwise.

It follows from Lemma 3 that if s�wsv ¤ 0, then either w D vw0 for some w0 2 a�,
or v D wv0 for some v0 2 a�. In the first case we have

s�wsvs�u sus
�
v sw D s�w0

1C.v;�/1C.u;�/1C.v;�/sw0 D s�w0

1C.v;�/1C.w0;�/1C.u;�/sw0

D s�w0

s�v svs�w0

sw0s�u susw0 D s�vw0

svw0s�uw0

suw0 D 1C.w;�/1C.uw0;�/;
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and the second case we have

s�wsvs�u sus
�
v sw D s�wswsv0s�u sus

�
v0

s�wsw D 1C.w;�/1C.u;v0/:

Thus �w.1C.u;v// D s�w1C.u;v/sw as wanted.
2. It follows from 1, Lemma 3 and the fact that DX is commutative that we have

s�wf D s�wsws
�
wf D s�w1C.�;w/f D s�wf 1C.�;w/ D s�wfsws

�
w D �w.f /s

�
w:

3. The map f 7! P
u2an su fs�u is clearly linear and �-preserving. If f; g 2 DX ,

then it follows from Lemma 3 and the fact that DX is commutative that we have

 X
u2an

su fs�u

! X
v2an

svgs�v

!
D
X
u2an

suf 1C.u;�/gs
�
u D

X
u2an

su fg1C.u;�/s
�
u D

X
u2an

su fgs�u ;

which proves that the map f 7!P
u2an su fs�u is multiplicative, and thus a �-homo-

morphism. Since ˛n is also a �-homomorphism and DX is generated by f1C.u;v/ j
u; v 2 a�g, it therefore suffices to check that ˛n.1C.u0;v0// DP

u2an su1C.u0;v0/s
�
u for

u0; v0 2 a�, and that can be done in the following way:

X
u2an

su1C.u0;v0/s
�
u D

X
u2an

susv0s�u0

su0s�v0

s�u

D
X
u2an

suv0s�u0

su0s�uv0

D
X
u2an

1C.u0;uv0/ D ˛n.1C.u0;v0//:

4. It follows from 3, Lemma 3 and the fact that DX is commutative that we have

swf D sws�wswf D sw1C.w;�/f D swf 1C.w;�/ D swfs�wsw D
X
u2an

su fs�u sw D ˛n.f /sw:

5. Follows from Lemma 3 and 3.
6. If u; v 2 an and u ¤ v, then it follows from Lemma 3 and the fact that DX is

commutative, that we have

s�u

 X
u;v2an

sus
�
v svs

�
u

!�1
f sv D s�u 1C.�;u/

 X
u;v2an

sus
�
v svs

�
u

!�1
f 1C.�;v/sv

D s�u
 X

u;v2an
sus
�
v svs

�
u

!�1
f 1C.�;u/1C.�;v/sv D 0:
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Hence it follows from 1 to 5 that we have

 X
u2an

su

!�  X
u;v2an

sus
�
v svs

�
u

!�1
f

 X
u2an

su

!

D
X
w2an

0
@s�w

 X
u;v2an

sus
�
v svs

�
u

!�1
fsw

1
A

D
X
w2an

�w

 X
u;v2an

sus
�
v svs

�
u

!�1
f D L n.f /:

ut
Proposition 4. Let X be a one-sided shift space over the alphabet a. Then OX is
the closure of

spanfsu fs�v j u; v 2 a�; f 2 DXg:

Proof. Let us by X denote spanfsu fs�v j u; v 2 a�; f 2 DXg. Since
fsu j u 2 a�g 
X , it suffices to prove that X is a �-subalgebra of OX . It is
obvious that X is closed under addition and conjugation, so it suffices to prove that
if u; v; u0; v0 2 a� and f; f 0 2 DX , then su fs�v su0f 0s�v0

2X , so let us do that:
Let us first assume that jvj 	 ju0j. It follows from Lemma 3 that if

su fs�v su0f 0s�v0

¤ 0, then there exists a w 2 a� such that v D u0w, and in that
case it follows from Proposition 3 that we have

su fs�v su0f 0s�v0

D su fs�ws�u0

su0f 0s�v0

D su fs�w1C.u0 ;�/f
0s�v0

D suf �w.1C.u0;�/f
0/s�ws�v0

2X :

That su fs�v su0f 0s�v0

2X if jvj � ju0j, then follows by taking the adjoint. ut

4.4 The Gauge Action

In this section, the gauge action of OX will be introduced and studied, and the gauge
invariant uniqueness theorem for OX will be described.

An automorphism of a C �-algebra X is a �-isomorphism from X onto itself.
We will by Aut.X / denote the set of automorphisms of X . The set Aut.X /

becomes a group when equipped with composition. An action of a group G on
a C �-algebra X is a homomorphism from G to Aut.X /. We say that an action
˛ W G ! Aut.X / of a topological group G is strongly continuous if for every
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convergent sequence .gn/n2N in G and every x 2 X , the sequence ˛.gn/.x/
converges to ˛.limn!1 gn/.x/.

We will by T denote the group fz 2 C j jzj D 1g. The following lemma will be
useful for checking if an action of T on a C �-algebra is strongly continuous.

Lemma 4. Let a be an alphabet. If X is a C �-algebra generated by a family
.xu/u2a� and ˛ W T ! X is an action such that ˛.z/.xu/ D zjujxu for every z 2 T

and every u 2 a�, then ˛ is strongly continuous.

Proof. Let X be the set of elements x of X such that if .zn/n2N converges to z in
T, then ˛.zn/.x/ converges to ˛z.x/ in X . It is straightforward to check that X is
a C �-subalgebra of X , and since we for every u 2 a� have xu 2 X , it follows that
X DX . ut
Proposition 5 (cf. [10, Remark 3.2], [15, Sect. 9] and [25, p. 361]). Let X be a
one-sided shift space over the alphabet a. Then there exists a strongly continuous
action z 7! �z of T on OX such that �z.su/ D zjujsu and �z.f / D f for every z 2 T,
u 2 a� and f 2 DX .

Proof. Let z 2 T. It is easy to check that .�; .zjujsu/u2a�/ is a representation of X
on OX . Thus there exists a �-homomorphism �z W OX ! OX such that �z.su/ D
zjujsu and �z.f / D f for every u 2 a� and every f 2 DX .

If z1; z2 2 T and u 2 a�, then we have

�z1

�
�z2.su/

� D �z1.z
juj
2 su/ D zjuj1 zjuj2 su D .z1z2/jujsu D �z1z2 .su/:

Since OX is generated by fsu j u 2 a�g, it follows that �z1 ı �z2 D �z1z2 . We have in
particular that �z ı �z�1 D �z�1 ı �z D �1 D IdOX for every z 2 T, so �z 2 Aut.OX/,
and z 7! �z is an action of T on OX . That this action is strongly continuous follows
from Lemma 4. ut

The action of T on OX from Proposition 5 is called the gauge action of OX . Since
� is strongly continuous, it follows that we for every x 2 OX have that the function
z 7! �z.x/ is a continuous function from T to OX . Thus we can make sense out of
the integral

Z
T

�z.x/dz

(cf. [40, Lemma C.3.]).

Proposition 6 (cf. [15, Sect. 9] and [25, p. 361]). Let X be a one-sided shift space
over the alphabet a. If we for every x 2 OX let

E.x/ D
Z
T

�z.x/dz;
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then E is a linear contraction (i.e., jjE.x/jj � jjxjj for all x 2 OX) from OX to
itself such that

E.su fs�v / D
(
su fs�v if juj D jvj;
0 if juj ¤ jvj

for u; v 2 a� and f 2 DX .

Proof. It is clear that E is linear. If � W T! OX is continuous, then kR
T
f .z/dzk �R

T
kf .z/kdz (see [40, Lemma C.3.]), and if x 2 OX , then k�z.x/k D kxk for every

z 2 T since �z is an automorphism, so we have

kE.x/k D
����
Z
T

�z.x/dz

���� �
Z
T

k�z.x/kdz D
Z
T

kxkdz D kxk:

Let u; v 2 a� and f 2 DX . If juj D jvj, then �z.su fs�v / D su fs�v for every
z 2 T, so E.su fs�v / D su fs�v . If juj ¤ jvj, then we have for every z 2 T that
�z.su fs�v / D znsu fs�v where n D juj � jvj ¤ 0, and since

R
T

zndz D 0, it follows that
E.su fs�v / D 0. ut

The map E from Proposition 6 is a so-called faithful conditional expectation.

Definition 5. Let X be a one-sided shift space. We let FX denote the fixed-point
algebra

fx 2 OX j 8z 2 T W �z.x/ D xg
of the gauge action � of OX .

Notice that FX is a C �-subalgebra of OX .

Proposition 7. Let X be a one-sided shift space over the alphabet a. Then we have
that FX is equal to the closure of

spanfsu fs�v j u; v 2 a�; juj D jvj; f 2 DXg;
and that E.OX/ D FX .

Proof. Let X denote the closure of spanfsu fs�v j u; v 2 a�; juj D jvj; f 2 DXg.
It is clear that X 
 FX , and that x D E.x/ 2 E.OX/ for every x 2 FX . It follows
from Propositions 4 and 6 that E.OX/ D X . Thus we have E.OX/ D X 
FX 

E.OX/ from which the conclusion follows. ut

The following gauge-invariant uniqueness theorem will be proved in [6].

Theorem 2. Let X be a one-sided shift space, X a C �-algebra and � W OX !X
a surjective �-homomorphism. Then the following two statements are equivalent:

1. The �-homomorphism � W OX !X is a �-isomorphism.
2. The restriction of � to DX is injective and there exists an action Q� W T! Aut.X /

such that Q�z.�.su// D zjuj�.su/ for every z 2 T and every u 2 a�.
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4.5 One-Sided Conjugation

In this section, it will be proved that the C �-algebra OX of a one-sided shift space X
is invariant under conjugacy. This has been proved in [10] and [15], and in a special
case in [28], but the technique used to prove this statement here is different from the
one used in [10] and [15] and will allow us to get a slightly stronger result than the
one presented in [10].

Definition 6. Let X1 and X2 be one-sided shift spaces. We say that X1 and X2 are
conjugate if there exists a homeomorphism� W X1 ! X2 such that �ı�X1 D �X2 ı�.
We call such a homeomorphism a conjugacy.

Definition 7. Let X be a one-sided shift space over the alphabet a. We will by �X

denote the map

x 7!
 X
a2a

s�a

!
x

 X
b2a

sb

!

from FX to FX .

Theorem 3 (cf. [10, Theorem 8.6], [15, Theorem 23], [25, Proposition 5.8] and
[28, Lemma 4.5]). Let X1 and X2 be one-sided shift spaces. If X1 and X2 are
conjugate, then there exists a �-isomorphism  from OX1 to OX2 such that

1.  .C.X1// D C.X2/,
2.  .DX1 / D DX2 ,
3.  .FX1 / D FX2 ,
4.  ı ˛ D ˛ ı  ,
5.  ıL D L ı  ,
6.  ı �z D �z ı  for every z 2 T,
7.  ı �X1 D �X2 ı  .

Proof. Let � be a conjugacy between X2 and X1, and let ˚ be the map between the
bounded functions on X1 and the bounded functions on X2 defined by

f 7! f ı �:

Then ˚.C.X1// D C.X2/, ˚ ı ˛ D ˛ ı˚ and ˚ ıL D L ı˚ , so it follows from
Proposition 1 that ˚.DX1 / D DX2 .

Let a1 be the alphabet of X1 and a2 the alphabet of X2. For u 2 a�1 and v 2
a�2 with juj D jvj let D.u; v/ D fx 2 X2 j vx 2 X2; �.vx/ D u�.x/g and
Z.u/ D C.�; u/. Then we have that 1D.u;v/ D �v.˚.1Z.u/// 2 DX2 . For u 2 a�1 let
tu DP

v2ajuj

2

sv1D.u;v/. We will show that .˚; .tu/u2a�

1
/ is a representation of X1 on

OX2 . If u1; u2 2 a�1 and v1; v2 2 a�2 with ju1j D jv1j and ju2j D jv2j, then we have

1D.u1u2;v1v2/ D �v2
�
�v1
�
˚.1Z.u1//

�
˚.1Z.u2//

�
;
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so it follows from Proposition 3 that we have

1D.u1;v1/sv21D.u2;v2/ D �v1
�
˚.1Z.u1//

�
sv2�v2

�
˚.1Z.u2//

�

D sv2�v2
�
�v1
�
˚.1Z.u1//

�
˚.1Z.u2//

�

D sv21D.u1u2;v1v2/:

It follows that if u1; u2 2 a�1 , then we have

tu1 tu2 D
X

v12aju1j

2

sv11D.u1;v1/
X

v22aju2j

2

sv21D.u2;v2/ D

X
v12aju1j

2

X
v22aju2j

2

sv1sv21D.u1u2;v1v2/ D tu1u2 :

We also have that

tu1 t
�
u2 tu2 t

�
u1

D
X

v12aju1j

2

sv11D.u1;v1/
X

v22aju2j

2

1D.u2;v2/s
�
v2

X
v32aju2j

2

sv31D.u2;v3/
X

v42aju1j

2

1D.u1;v4/s
�
v4

D
X

v12aju1j

2

X
v22aju2j

2

X
v42aju1j

2

sv11D.u1;v1/1D.u2;v2/1C.v2;�/1D.u2;v2/1D.u1;v4/s
�
v4

D
X

v12aju1j

2

X
v22aju2j

2

X
v42aju1j

2

sv11D.u1;v1/1D.u2;v2/1D.u1;v4/s
�
v4

D
X

v12aju1j

2

X
v22aju2j

2

sv11D.u1;v1/1D.u2;v2/s
�
v1

D
X

v12aju1j

2

X
v22aju2j

2

˛jv1 j.1D.u1;v1/1D.u2;v2//sv1 s�v1

D
X

v12aju1j

2

X
v22aju2j

2

˛jv1 j.1D.u1;v1/1D.u2;v2//1Z.v1/

D ˚.1C.u2;u1//:

Thus .˚; .tu/u2a�

1
/ is a representation of X1 on OX2 . It follows that there exists a

�-homomorphism from OX1 to OX2 such that  .su/ D tu DP
v2ajuj

2
sv1D.u;v/ for

every u 2 a�1 and  .f / D ˚.f / for every f 2 DX1 .
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For u 2 a�1 and v 2 a�2 , let QD.v; u/ D fx 2 X1 j ux 2 X1; ��1.ux/ D v��1.x/g.
In a manner similar to the preceding paragraph, one can prove that there exists a
�-homomorphism � from OX2 to OX1 such that  .sv/ DPu2ajvj

1
su1 QD.v;u/ for every

v 2 a�2 and �.f / D ˚�1.f / for every f 2 DX2 . If u; u0 2 a�1 with juj D ju0j,
then

P
v2ajuj

2
1 QD.v;u0/˚

�1.1D.u;v// D 0 if u ¤ u0, and
P

v2ajuj

2
1 QD.v;u0/˚

�1.1D.u;v// D
1C.u;�/ if u D u0. It follows that if u 2 a�1 , then we have

� . .su// D �
	X
v2ajuj

2

sv1D.u;v/



D

X
v2ajuj

2

X
u02ajvj

1

su01 QD.v;u0/˚
�1.1D.u;v//

D su1C.u;�/ D sus
�
u su D su:

In a similar way, one can show that  .�.sv// D sv for every v 2 a�2 . Thus � is the
inverse of  , and  is an isomorphism.

Since  .f / D ˚.f / for f 2 DX1 , it follows that  has the properties 1, 2, 4
and 5. If z 2 T and u 2 a�1 , then we have

 
�
�z.su/

� D  .zjujsu/ D zjuj
X
v2ajuj

2

sv1D.u;v/ D �z

0
B@X
v2ajuj

2

sv1D.u;v/

1
CA D �z . .su// :

It follows that  has property 6. It follows from this and Proposition 5 that  also
has property 3.

Let v 2 a�2 . Then we have that
P

u2ajvj

1
1D.u;v/ D 1C.v;�/. Thus we have for every

x 2 FX1 that

 
�
�X1 .x/

� D  
 	X

a2a1
s�a


x

	X
b2a1

sb


!

D
X
a2a1

X
b2a1

X
c2a2

X
d2a2

1D.a;c/s
�
c  .x/sd 1D.b;d/

D
X
c2a2

X
d2a2

1C.c;�/s
�
c  .x/sd 1C.d;�/

D
X
c2a2

X
d2a2

s�c  .x/sd D �X2

�
 .x/

�
:

This proves that  has property 7. ut
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4.6 Two-Sided Conjugacy and Flow Equivalence

Let a be a finite alphabet and let aZ be the infinite product space
Q
n2Z a endowed

with the product topology. The transformation 	 on aZ given by

�
	.x/

�
i
D xiC1; i 2 Z;

is called the two-sided shift. Let � be a closed subset of aZ such that 	.�/ D �.
The topological dynamical system .�; 	j�/ is called a two-sided shift space. We will
denote 	j� by 	� or just 	 for simplicity.

Given a two-sided shift space� we can construct a one-sided shift space, namely

f.xn/n2N0 j .xn/n2Z 2 �g:

We will denote this one-sided shift space by X� .
Let �1 and �2 be two two-sided shift spaces. We say that �1 and �2 are

(topological) conjugate if there exists a homeomorphism  W �1 ! �2 such that
 ı 	�1 D 	�2 .

The following theorem will be proved in [6].

Theorem 4. Let �1 and �2 be two two-sided shift spaces which are conjugate.
Then OX�1 and OX�2 are Morita equivalent (cf. Sect. 4.7).

This theorem was essentially proved in [33] under the assumption �1 and �2

both satisfy two conditions called (I) and (E), and later in [36] under the assumption
of (I).

The assumption in Theorem 4 that �1 and �2 are conjugate, can in fact be
weakened to the assumption that �1 and �2 are flow equivalent (we refer to
[5, 18, 39] and [24, Sect. 13.6] for the definition of flow equivalence). This was first
proved by Matsumoto in [35] under the assumption that both the two two-sided shift
spaces satisfy condition (I), and will be proved in [6] without this assumption.

4.7 The K -Theory of C �-Algebras Associated to Shift Spaces

Since K0.X / and K1.X / are invariants of a C �-algebra X , it follows from
the previous section that K0.OX/, K1.OX/ and K0.FX/ are invariants of X (FX

is an AF-algebra so K1.FX/ D 0 for any one-sided shift space X, cf. [6],
[25, Lemma 2.1] and [28, Lemma 4.1]). In this section, we will present formulas
based on l-past equivalence for these invariants. This was done in [27, 28, 35]
by Matsumoto for the case of one-sided shift spaces of the form X�, where �
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is a two-sided shift space and generalized to the general case in [15] and [16]
(it should be noted that [15, Theorem 26] is not correct as stated. The error has
been rectified in [16]). I will not here prove the formulas for K0.OX/, K1.OX/

and K0.FX/, but only establish the necessary setup and state the theorems which
give the formulas. The interested reader can find proofs of these theorems in the
above mentioned references.

From these formulas, one can directly prove that K0.OX/, K1.OX/ and K0.FX/

are invariants of X without involving C �-algebras. This is done (for one-sided shift
spaces of the form X�, where � is a two-sided shift space) in Matsumoto’s very
interesting paper [29], where also other invariants of shift spaces are presented.

Let X be a one-sided shift space. We will for each l 2 N0 define an equivalence
relation on X called l-past equivalence. These equivalence relations were introduced
by Matsumoto in [28]. For k 2 N0 and x 2 X let Pk.x/ D fu 2 ak j ux 2 Xg.
If x; y 2 X and l 2 N0, then we say that x and y are l-past equivalent and write
x �l y if

Sl
kD0 Pk.x/ D Sl

kD0 Pk.y/. Notice that since ak is finite for each
k 2 N0, we have for each l 2 N0 only finitely many l-past equivalence classes.
We let m.l/ be this number of l-past equivalence classes, and we denote the l-past
equivalence classes by el1; e

l
2; : : : ; e

l
m.l/. For each l 2 N0; j 2 f1; 2; : : : ; m.l/g and

i 2 f1; 2; : : : ; m.l C 1/g, let

Il .i; j / D
(
1 if elC1i 
 elj
0 otherwise.

Let F be a finite set and i0 2 F . Then we denote by ei0 the element in ZF for which

ei0.i/ D
�
1 if i D i0
0 otherwise.

Let 0 � k � l . Then we have that x �l y H) Pk.x/ D Pk.y/. We can
therefore for i 2 f1; 2; : : : ; m.l/g define Pk.E

l
i / to be Pk.x/ for some x 2 El

i .
Let Ml

k be defined by

Ml
k D

˚
i 2 f1; 2 : : : ; m.l/g jPk.e

l
i / ¤ ;

�
:

Notice that if X is of the form X� for some two-sided shift space � (this is
equivalent to �.X/ D X), then Ml

k D f1; 2; : : : ; m.l/g for all 0 � k � l .
If j 2Ml

k and Il .i; j / D 1, then i 2MlC1
k , so there exists a positive linear map

from ZM
l
k to ZM

lC1
k given by

ej 7!
X

i2MlC1
k

Il .i; j /ei :

We denote this map by I lk .
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For a subset e of X and a u 2 a�, let ue D fux 2 X j x 2 eg. For each
l 2 N0; j 2 f1; 2; : : : ; m.l/g; i 2 f1; 2; : : : ; m.l C 1/g and a 2 a, let

Al.i; j; a/ D
(
1 if ; ¤ aelC1i 
 elj
0 otherwise.

Let 0 � k � l . If j 2 Ml
k and if there exists an a 2 a such that Al.i; j; a/ D 1,

then i 2MlC1
kC1. Thus there exists a positive linear map from ZM

l
k to Z

M
lC1
kC1 given by

ej 7!
X

i2MlC1
kC1

X
a2a

Al.i; j; a/ei :

We denote this map by Alk .

Lemma 5. Let 0 � k � l . Then the following diagram commutes:

ZM
l
k

I lk
��

Alk ��

ZM
lC1
k

A
lC1
k��

Z
M
lC1
kC1

I
lC1
kC1

�� ZM
lC2
kC1 :

Proof. Let j 2 Ml
k , h 2 MlC2

kC1 and a 2 a. If ; ¤ aelC2h 
 elj , then there exists

exactly one i 2 MlC1
k such that elC1i 
 elj and ; ¤ aelC2h 
 elC1i ; and there exists

exactly one i 0 2 MlC1
kC1 such that elC2h 
 elC1i 0 and ; ¤ aelC1i 0 
 elj . If aelC2h D ;

or aelC2h ª elj , then there does not exist an i 2 MlC1
k such that elC1i 
 elj and

; ¤ aelC2h 
 elC1i ; and there does not exist an i 0 2 MlC1
kC1 such that elC2h 
 elC1i 0

and ; ¤ aelC1i 0 
 elj . Hence we have

X
i2MlC1

k

AlC1.h; i; a/Il .i; j / D
X

i2MlC1
kC1

IlC1.h; i/Al.i; j; a/:

It follows from this that

AlC1k .I lk.ej // D AlC1k

0
B@ X
i2MlC1

k

Il .i; j /ei

1
CA

D
X

h2MlC2
kC1

X
a2a

AlC1.h; i; a/
X

i2MlC1
k

Il .i; j /eh
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D
X

h2MlC2
kC1

X
i2MlC1

kC1

X
a2a

IlC1.h; i/Al .i; j; a/eh

D I lC1kC1

0
B@ X
i2MlC1

kC1

X
a2a

Al.i; j; a/ei

1
CA

D I lC1kC1.A
l
k.ej //

for every j 2Ml
k . Thus the diagram commutes. ut

For k 2 N0, the inductive limit lim�!.Z
Ml
k ; .ZC/Ml

k ; I lk/ will be denoted

.ZXk ;Z
C
Xk
/. It follows from Lemma 5 that the family fAlkgl�k induces a positive,

linear map Ak from ZXk to ZXkC1
.

Let 0 � k < l . Denote by ılk the linear map from Z
Ml
k to Z

Ml
kC1 given by

ej 7!
(
ej if j 2Ml

kC1;
0 if j …Ml

kC1;

for j 2 Ml
k . It is easy to check that the following diagram

ZM
l
k

ılk
��

I lk ��

Z
Ml
kC1

I l
kC1��

Z
M
lC1
k

ı
lC1
k

�� ZM
lC1
kC1

commutes.
Thus the family fılkgl�k induces a positive, linear map from ZXk to ZXkC1

which
we denote by ık . Since the diagram

ZM
l
k

ılk
��

Alk ��

Z
Ml
kC1

Al
kC1��

Z
M
lC1
kC1

ı
lC1
kC1

�� ZM
lC1
kC2
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commutes for every 0 � k < l , the diagram

ZXk

ık
��

Ak

��

ZXkC1

AkC1

��
ZXkC1

ıkC1

�� ZXkC2

commutes.
We denote the inductive limit lim�!.ZXk ;Z

C
Xk
; Ak/ by .
X ; 


C
X /. Since the previ-

ous diagram commutes, the family fıkgk2N0 induces a positive, linear map from
X

to 
X which we denote by ıX .
We are now ready to describe the K-theory of FX and of OX .

Theorem 5 (cf. [15, Theorem 25], [25, Theorem 3.11] and [28, Theorem 4.11]).
Let X be a one-sided shift space. Then there exists an isomorphism � W K0.FX/!

X which satisfies that �.KC0 .FX// D 
CX and that � ı .�X/0 D ıX ı �.

For every l 2 N0 denote by Bl the linear map from Zm.l/ to Zm.lC1/ given by

ej 7!
m.lC1/X
iD1

 
Il .i; j / �

X
a2a

Al.i; j; a/

!
ei :

One can easily check that the following diagram commutes for every l 2 N0:

Zm.l/
Bl

��

I l0
��

Zm.lC1/

I
lC1
0��

Zm.lC1/
BlC1

�� Zm.lC2/:

Hence the family fBlgl2N0 induces a linear map B from ZX0 to ZX0 .

Theorem 6 (cf. [16, Theorem 1] and [25, Theorem 4.9]). Let X be a one-sided
shift space. Then

K0.OX/ Š ZX0=BZX0 ;

and

K1.OX/ Š ker.B/:
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Appendix

I will in this section give a (very short) introduction to C �-algebras, Morita
equivalence of C �-algebras and K-theory for C �-algebras which hopefully will
provide a reader without any knowledge of operator algebra with the necessary
background for reading this paper.

I will not give any proofs at all. The interested reader is referred to for example
[1, 3, 4, 38, 40–42] for more details.

C �-Algebras

Definition 8. A C �-algebra is an algebra X over the complex numbers equipped
with a map x 7! x� and a norm k�k satisfying:

1. X is complete with respect to k�k.
2. kxyk � kxkkyk for x; y 2X .
3. .x�/� D x for x 2 X .
4. .xy/� D y�x� for x; y 2X .
5. .�x/� D �x� for � 2 C and x 2X .
6. .x C y/� D x� C y� for x; y 2X .
7. kx�k D kxk for x 2X .
8. kx�xk D kxk2 for x 2 X .

The map x 7! x� is called an involution. A C �-algebra is called unital if it has a
algebraic unit (i.e, X is unital if there exists a 1 2 X such that 1x D x1 D x

for all x 2 X ). All the C �-algebras we will meet in this paper (except here in the
appendix) are unital.

An algebra equipped with a norm satisfying condition 1 and 2 is called a Banach
algebra. A Banach algebra equipped with an involution satisfying condition 3–7 is
called a Banach �-algebra. Condition 8 is often called the C �-identity. Although
this condition at first glance seems to be a mild condition it is in fact very strong
because it ties together the algebraic structure of the C �-algebra and its topology.
One can for example show that if X is an algebra equipped with an involution
satisfying condition 3–6, then there is at most one norm which makes X a C �-
algebra.

A map � W X1 ! X2 between C �-algebras is called a �-homomorphism if it
satisfies

1. �.axC by/ D a�.x/C b�.y/ for x; y 2X1 and a; b 2 C,
2. �.xy/ D �.x/�.y/ for x; y 2X ,
3. �.x�/ D .�.x//� for x 2 X .
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A �-homomorphism which is invertible is called a �-isomorphism, and if
there exists a �-isomorphism between two C �-algebras, then they are said to be
isomorphic.

If � W X1 ! X2 is a �-homomorphism, then k�.x/k � kxk for all x 2
X1, and � is injective if and only if k�.x/k D kxk for all x 2 X1 (see for
example [38, Theorem 2.1.7] for a proof of this). Thus a �-homomorphism is
automatically continuous, and a �-isomorphism is automatically isometric. This is
another example of how the algebraic structure of a C �-algebra and its topology are
closely related.

Example 2. Let H be a Hilbert space. Then the algebra B.H/ of bounded operators
is a C �-algebra where T � of an bounded operator T 2 B.H/ is the adjoint of T ,
and the norm kT k is the operator norm supfkT �k j � 2 H; k�k � 1g.

Definition 9. A projection in a C �-algebra X is a p 2 X satisfying
p2 D p� D p. A partial isometry is a s 2X satisfying ss�s D s.

It is easy to see that if s is a partial isometry, then ss� (and s�s) is a projection.
One can prove (see for example [38, Theorem 2.3.3]) that if s is an element of a
C �-algebra such that ss� is a projection, then s is a partial isometry.

Using functional calculus (see for example [38, p. 43] or [41, Sect. 1.2.4]) and the
uniqueness of a positive square root of a positive element in a C �-algebra (see [38,
Theorem 2.2.1]) one can prove the following fact:

Fact 7. Let s be an element of a C �-algebra X . If ss�ss� is a projection, then
ss� D ss�ss� and s is a partial isometry.

Definition 10. A C �-subalgebra of a C �-algebra X is a closed subalgebra Y of
X such that x 2 Y H) x� 2 Y .

A C �-subalgebra Y is a C �-algebra in itself with the operations it inherits
from X . It is a famous theorem by Gelfand and Naimark that every C �-algebra
is isomorphic to some C �-subalgebra of the C �-algebra of bounded operators on
some Hilbert space.

Example 3. Let X be a set. The algebra of bounded functions from X to C is a
C �-algebra where the involution f � of an f 2 l1.X/ is defined by f �.x/ D f .x/
for all x 2 X , and the norm kf k of f is supfjf .x/j j x 2 Xg. Notice that l1.X/
is abelian.

If X is a locally compact Hausdorff space, then the algebra C0.X/ of continuous
functions on X vanishing at infinity is a C �-subalgebra of l1.X/.

It is another famous theorem by Gelfand and Naimark that every abelian
C -algebra is isomorphic to C0.X/ for some locally compact Hausdorff space X .

We are going to need (in the proof of Proposition 1) the following fact which
follows from [38, Theorem 2.1.11]:
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Fact 8. Let X be a unital C �-algebra. If Y is a C �-subalgebra of X which
contains the unit of X , and y 2 Y is invertible in X , then its inverse y�1 belongs
to Y .

When X is C �-algebra and X is some subset of X , then there exists a
C �-subalgebra Y of X which contains X and which is contained in any other
C �-subalgebra of X that containsX . The C �-subalgebra Y is just the intersection
of every C �-subalgebra of X that containsX . We call Y the C �-subalgebra of X
generated by X and denote it by C �.X/.

Morita Equivalence

By an ideal of a C �-algebra we mean a closed two-sided ideal. I.e., an ideal of a
C �-algebra X is a closed subset I of X such that �aC�b; xa; ax 2 I for a; b 2 I ,
�; � 2 C and x 2 X . An ideal I of a C �-algebra is automatically closed under
involution, i.e., if x 2 I , then x� 2 I . Thus every ideal of a C �-algebra is also a
C �-subalgebra.

A nonzero ideal of a C �-algebra X is said to be essential if it has nonzero
intersection with every other nonzero ideal of X .

There exists for every C �-algebra X a, up to isomorphism, unique maximal
unital C �-algebra M.X / which contains X as an essential ideal. The C �-algebra
M.X / is known as the multiplier algebra of X , cf. [38, Theorem 3.1.8] and [40,
Theorem 2.47]. If X itself is unital, then M.X / D X .

It is easy to check that if p is a projection in the multiplier algebra M.X / of a
the C �-algebra X , then pX p WD fpxp j x 2X g is a C �-subalgebra of X . Such
a C �-subalgebra is called a corner. The projection p is said to be full and the corner
pX p is said to be a full corner if there is no proper ideal of X which contains p.

Two projections p; q 2 M.X / are said to be complementary if p C q D 1. If p
and q are complementary, then pq D 0 and thus pX p \ qX q D f0g. In this
situation, the two corners pX p and qX are also called complementary.

Morita equivalence is an equivalence relations between C �-algebras. I will
not give the definition of Morita equivalence here, but instead use the following
characterization of Morita equivalence.

Theorem 9 (Cf. [40, Theorem 3.19]). Two C �-algebras X1 and X2 are Morita
equivalent if and only if there is a C �-algebra X with complementary full corners
isomorphic to X1 and X2, respectively.

It follows directly that Morita equivalence is weaker than isomorphism. It is not
difficult to show that if pX p is a full corner of a C �-algebra, then pX p and X
are Morita equivalent.
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K -Theory for C �-Algebras

K-theory for C �-algebras is a pair of covariant functors K0 and K1 both defined
on the category of C �-algebras. The functor K0 associates to each C �-algebra
X a pair .KC0 .X /;K0.X // consisting of an abelian group K0.X / and a sub-
semigroupKC0 .X / of K0.X / (i.e., KC0 .X / 
 K0.X / and g; h 2 KC0 .X / H)
g C h 2 KC0 .X /), and associates to each �-homomorphism � W X1 ! X2 a
group homomorphismK0.�/ W K0.X1/! K0.X2/ satisfying K0.�/.K

C
0 .X1// 


KC0 .X2/. The functorK1 associates to eachC -algebra X an abelian groupK1.X /

and to each a �-homomorphism � W X1 ! X2 a group homomorphism K1.�/ W
K1.X1/! K1.X2/.

That K0 and K1 are functors means that K0.Id X / D IdK0.X / andK1.Id X / D
IdK1.X / for every C �-algebra X , and that K0.�1 ı �2/ D K0.�1/ ı K0.�2/ and
K1.�1 ı �2/ D K1.�1/ ı K1.�2/ for all �-homomorphisms �1 W X1 ! X2 and
�2 WX2 !X3. Thus if two C �-algebras are isomorphic, thenK0.X1/ andK0.X2/

are isomorphic as groups, and so are K1.X1/ and K1.X2/. In fact, K0.X1/ and
K0.X2/ are isomorphic by an isomorphism which mapsKC0 .X1/ ontoKC0 .X2/.

If pX p is a full corner of a C �-algebra X and � denotes the inclusion of pX p

into X , then K0.�/ and K1.�/ are both isomorphisms, and the isomorphism K0.�/

mapsKC0 .pX p/ ontoKC0 .X /, see [21, Proposition B.3]. Thus if twoC �-algebras
are Morita equivalent, then K1.X1/ and K1.X2/ are isomorphic as groups, and
K0.X1/ and K0.X2/ are isomorphic as groups by an isomorphism which maps
KC0 .X1/ onto KC0 .X2/.
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5.1 Introduction

The class of graph C �-algebras (cf. [34] and the references therein) has proven
to be an important and interesting venue for classification theory by K-theoretical
invariants; in particular with respect to C �-algebras with finitely many ideals, and
in 2009, the authors formulated the following working conjecture:
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Conjecture 1. GraphC �-algebrasC �.E/with finitely many ideals are classified up
to stable isomorphism by their filtered, orderedK-theory FKCPrim.C�.E// .C

�.E//.

Here, the filtered, ordered K-theory is simply the collection of all K0- and
K1-groups of subquotients of the C �-algebra in question, taking into account all the
natural transformations among them (details will be given below). The conjecture
addresses the possibility of a classification result that is not strong (cf. [21]) in the
sense that we do not expect every possible isomorphism at the level of the invariant
to lift to the C �-algebras.

The conjecture remains open and we are forthwith optimistic about its veracity,
although some of the results which have been obtained, as we shall see, seem to
indicate that an added condition of finitely generated K-theory could be needed.
In the present paper we will discuss the status of this conjecture for graph algebras
with four or fewer primitive ideals; if the number is three or fewer we can present
a complete classification under the condition of finitely generatedK-theory, but for
the number four there are many cases still eluding our methods. Adding, in some
cases, the condition of finitely generatedK-theory – or even stronger, that the graph
algebra is unital – we may solve 103 of the 125 cases, leaving less than one fifth of
the cases open. Our main contribution in the present paper concerns the class of fan
spaces, which has not been accessible through the methods we have used earlier, but
we will also go through those results in our two papers [15] and [13] which apply
here.

5.1.1 Tempered Primitive Ideal Spaces

Invoking an idea from [18] we organize our overview using a tempered ideal space
of the C �-algebra in question. This is defined for any C �-algebra with only finitely
many ideals as the pair .Prim.A/; 	/ where 	 W Prim.A/! f0; 1g is defined as

	.I/ D
(
0 K0.I=I0/C 6D K0.I=I0/

1 K0.I=I0/C D K0.I=I0/

with I0 the maximal proper ideal of I (this exists by the fact that I is prime and
contains only finitely many ideals). We set

X� D fx 2 X j 	.x/ D 0g X� D fx 2 X j 	.x/ D 1g:

To be able to work systematically with these objects, we now give them a
combinatorial description.

Definition 1. Let A be a C �-algebra. We let Prim.A/ denote the primitive
ideal space of A, equipped with the usual hull-kernel topology, also called the
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Jacobson topology. We always identify the open sets of Prim.A/, O.Prim.A//, and
the lattice of ideals of A, I.A/, using the lattice isomorphism

U 7!
\

p2Prim.A/nU
p:

When U is an open set we write A.U / for the corresponding ideal of A. When
U � V are both open, so that U n V is locally closed, we write A.U n V / for the
subquotient A.U /=A.V /.

Note that whenever X� or X� are locally closed, standard results in graph
C �-algebra theory give that A.X�/ and A.X�/ areAF algebras and O1-absorbing
algebras, respectively.

Definition 2. Let X be a topological space. The specialization preorder 
 on X is
defined by x 
 y if and only if x 2 fyg.

A topological space satisfies the T0 separation axiom if and only if its specializa-
tion preorder is a partial order.

Definition 3. A subset H of a preordered set .X;�/ is called hereditary if x � y
2 H implies x 2 H .

Definition 4. Let .X;�/ be a preordered set. The Alexandrov topology of X is the
topology with the closed sets being the hereditary sets.

A topological set is called an Alexandrov space if it carries the Alexandrov
topology of some preordered set. The preorder is necessarily the specialization
preorder. A topological space is an Alexandrov space if and only if arbitrary
intersections of open sets are open.

Since we are dealing with C �-algebras with finite primitive ideal spaces, these
are all Alexandrov spaces satisfying the T0 separation axiom. Consequently, we can
equivalently consider all partial orders on finite sets. The tempered primitive ideal
space for a C �-algebra with n primitive ideals may hence be uniquely described
using a partial order on f1; : : : ; ng and a map in f0; 1gf1;:::;ng.

The transitive reduction of a relation R on a set X is a minimal relation S on X
having the same transitive closure as R. In general neither existence nor uniqueness
are guaranteed, but if the transitive closure of R is antisymmetric and finite, there
is a unique transitive reduction. We will illustrate our (finite) topological spaces
with graphs of the transitive reduction of the specialization order, where we write
an arrow x ! y if and only if x is less than y in the transitive reduction of the
specialization order (similar to the Hasse diagram).1 The value of 	 will be indicated
by colors of the vertices of the graph; white for 0 and black for 1.

We obtain a unique signature for each tempered ideal space as follows. Consider
the adjacency matrix of the graph of the specialization order and recall that

1See Remark 1 for a discussion about the direction of the arrows.
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(by transitivity and antisymmetry) we can always permute the vertices so that the
adjacency matrix becomes an upper triangular matrix. Since the relation is reflexive,
we will have ones in the diagonal, so without loss of information we may write the
values of 	 there. To each such upper triangular matrix

A D

2
666664

t1 a1;2 a1;n�1 a1;n

t2 a2;3 a2;n
: : :

: : :

tn�1 an�1;n
tn

3
777775

we associate two binary numbers

a D a1;2a1;3 � � �a1;na2;3a2;4 � � �a2;n � � �an�1;n
and

t D t1 � � � tn
In general, there are several such binary numbers associated with a specialization
order by means of permuting the vertices. We choose the order of the vertices
to obtain the smallest possible pair .a; t/ ordered lexicographically as the unique
identifier for this specific tempered ideal structure. In the interest of conserving
space we write hexadecimal expansion of the numbers when referring to a certain
structure. We write n.a and n.a.t to indicate signatures and tempered signatures,
respectively, defined this way (where n and a are numbers written in decimal
expansions and t is a number written in hexadecimal expansion).

If a primitive ideal space is disconnected, we may classify the C �-algebras
associated to each component individually. We will hence assume throughout that
the C �-algebras have connected primitive ideal space (when considering graph
algebras, a necessary, but not sufficient, condition for this is that the underlying
graphs are connected considered as undirected graphs). Determining the number of
connectedT0-spaces with n points is hard for most n; the number has been computed
up to n D 16 in [6]. But for small n even the number of tempered ideal spaces
can readily be found by naive enumeration, by first counting all spaces and then
performing inverse Euler transform to obtain those that are connected:

jPrim.A/j 1 2 3 4 5 6

Number of spaces 1 2 5 16 63 318
Number of connected spaces 1 1 3 10 44 238
Number of tempered spaces 2 10 62 510 5,292 69,364
Number of connected tempered spaces 2 4 20 125 1,058 11,549
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We will restrict our attention to j Prim.A/j � 4 and hence have 15 (connected)
primitive ideal spaces2 which may be given temperatures in a total of 151 different
ways to concern ourselves with:

1.0 ❏ [L],[A]

2.1 ❏ ❏ [L],[A]

3.7 ❏ ❏ ❏ [L],[A]

4.E ❏ ❏ ❏ ❏ [A]

4.F ❏ ❏ ❏ ❏ [A]

4.39 ❏ ❏ ❏ ❏ [A]

4.3F ❏ ❏ ❏ ❏ [L],[A]

3.3 ❏ ❏ ❏ [A],[F]

3.6 ❏ ❏ ❏ [A],[F]

4.A

❏ ❏ ❏

❏ [F]

4.38 ❏ ❏ ❏

❏

[F]

4.1F ❏

❏

❏

❏

[Y]

4.3E ❏

❏

❏

❏

[Y]

4.1E ❏

❏

❏

❏

[O]

4.3B ❏

❏

❏

❏

[O]

where ❏ just indicates that it is either� or�.
We call a finite T0 space linear ([L]) if its partial order is total. Following [4]

we call it an accordion space ([A]) if the symmetrization of the space is the
symmetrization of a linear space. We call it a fan space ([F]) when there is a smallest
or largest element in the preorder, so that when this is removed, what remains is a
disjoint union of linear spaces. The remaining spaces we organize as [Y]-spaces and
[O]-spaces as indicated. In Sect. 5.6 below we summarize our results subject to this
organization.

Remark 1. Usually, when representing a relation R with a directed graph, we have
an edge from x to y if and only if x R y. This is the convention we use here as
well. However, in the literature on filtered K-theory, there are a number of papers
choosing the opposite convention. Among these are the papers [1, 2, 4, 29, 30],
although it is explicitly mentioned in [1], that it is the Hasse diagram of the opposite
relation that is considered.

2The space 4.E was forgotten on page 230 of [29]
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Apart from being more natural, the convention used in this present paper is
in better accordance with graph C �-algebra theory, as the directed graph used is
naturally isomorphic to the graph of the connected components of the underlying
graph for, e.g., purely infinite Cuntz-Krieger algebras and fits better with the work
of Boyle and Huang. Therefore it is very important to check which convention is
being used before applying results.

5.1.2 The Invariant

Let A be a C �-algebra with finitely many ideals and set X D Prim.A/. Note that
for any locally closed subset Y D U n V of X , we have two groupsK0.A.Y // and
K1.A.Y //. Moreover, for any three open subsets U 
 V 
 W of X , we have a six
term exact sequence

K0.A.Y1//
�0

�� K0.A.Y2//

0

�� K0.A.Y3//

@0

��
K1.A.Y3//

@1

��

K1.A.Y2//

1

�� K1.A.Y1//
�1

��

where Y1 D V nU , Y2 D W nU , and Y3 D W n V . The filtered, orderedK-theory
FKCX .A/ of A is the collection of all K-groups thus occurring, equipped with order
on K0 and the natural transformations f��; 
�; @�g.

Consequently, if also Prim.B/ D X, we write FKCX .A/ Š FKCX .B/ if for each
locally closed subset Y of X , there exist group isomorphisms

˛Y� W K�.A.Y //! K�.B.Y //

preserving all natural transformations in such a way that all ˛Y0 are also order
isomorphisms. All components of this invariant are readily computable [8], and
often, much of it is redundant. We will not pursue that issue here.

The filtered K-theory FKX.A/ of A is defined analogously by disregarding the
order structure on K0. The filtered (ordered)K-theory over a finite T0-space X can
also be used for C �-algebras over X without being tight.3

3Although this is not exactly the same definition as the filtrated K-theory in [30], it is known to be
the same for all the cases where we have a UCT. For more on this invariant and C�-algebras over
X the reader is referred to [30] and the references therein.
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5.1.3 Graph C �-Algebras

A graph .E0;E1; r; s/ consists of a countable set E0 of vertices, a countable set E1

of edges, and maps r W E1 ! E0 and s W E1 ! E0 identifying the range and
source of each edge. If E is a graph, the graph C �-algebra C �.E/ is the universal
C �-algebra generated by mutually orthogonal projections fpv W v 2 E0g and partial
isometries fse W e 2 E1g with mutually orthogonal ranges satisfying

1. s�e se D pr.e/ for all e 2 E1

2. ses�e � ps.e/ for all e 2 E1

3. pv DPfe2E1Ws.e/Dvg ses�e for all v with 0 < js�1.v/j <1.

The countability hypothesis ensures that all our graphC �-algebras are separable,
which is a necessary hypothesis for many of the classification results. We will be
mainly interested in graph C �-algebras with real rank zero. For a graph E , we have
that the real rank of C �.E/ is zero if and only if E is satisfying Condition (K), i.e.,
no vertex of E is the base point of exactly one simple cycle (see Theorem 3.5 of
[23]). Moreover, by Proposition 3.3 of [23], every graph C �-algebra with finitely
many ideals has real rank zero. Thus, every graph C �-algebra with finitely many
ideals has a norm-full projection, and by Brown [7], every graph C �-algebra with
finitely many ideals is stably isomorphic to a unital C �-algebra.

Throughout the paper we will use the following facts about graph C �-algebras
without further mention.

Theorem 1. Let C �.E/ be a unital graph C �-algebra with E satisfying Condi-
tion (K).

1. Every ideal of C �.E/ is stably isomorphic to a unital graph C �-algebra.
2. Every sub-quotient of C �.E/ is stably isomorphic to a unital graph C �-algebra.
3. The K-groups of every sub-quotient of C �.E/ are finitely generated.
4. Every non-unital simple sub-quotient of C �.E/ that is an AF-algebra is isomor-

phic to K.

Proof. As in the proof of Theorem 5.7 (4) of [37] (see also Proposition 3.4 of [3]),
every ideal of a graph C �-algebra satisfying Condition (K) is Morita equivalent to
C �.F /, where F 0 
 E0. Hence, 1 holds since a graph C �-algebra C �.E/ is unital
if and only if E0 is finite. 2 follows from 1 and Corollary 3.5 of [3]. 3 follows from
2 and Theorem 3.1 of [9].

Suppose C �.F / is a simple unital AF-algebra. Then F has no cycles. Since
C �.F / is unital, F 0 is finite. Therefore, F has a sink. By Corollary 2.15 of [10],
every singular vertex must be reached by any other vertex since C �.F / is simple.
Thus, F must be a finite graph. Hence, C �.F / Š Mn. From this observation, 4
follows from 1 and 2 since any non-unital simple C �-algebra stably isomorphic to
K is isomorphic to K.

See [34] and the references therein for more on graph C �-algebras.
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5.2 General Theory

We first describe the situations in which the graph algebras can be classified using
widely applicable results.

5.2.1 The AF Case

The AF case corresponds to temperatures that are constantly 0. We incur these at the
tempered signatures 1.0.0, 2.1.0, 3.3.0, 3.6.0, 3.7.0, 4.A.0, 4.E.0, 4.F.0, 4.1E.0,
4.1F.0, 4.38.0, 4.39.0, 4.3B.0, 4.3E.0, and 4.3F.0. Of course the classification
question is resolved by Elliott’s theorem:

Theorem 2 ([20]). AF algebras are classified up to stable isomorphism by their
orderedK0-group.

5.2.2 The Purely Infinite Case

Recall that there are three notions of pure infiniteness for non-simple C �-algebras,
namely pure infiniteness, strong pure infiniteness, and O1-absorption, introduced
by E. Kirchberg and M. Rørdam; cf. [26] and [27].

Corollary 1. For each nuclear, separable C �-algebra A with finite primitive ideal
space, the following are equivalent:

1. A is purely infinite,
2. A is strongly purely infinite,
3. A is O1-absorbing, i.e., A˝ O1 Š A.

Proof. It follows from Theorem 9.1 and Corollary 9.2 of [27] that 3 implies 2,
that 2 implies 1, and that the three coincide in the simple case. It follows from
Proposition 3.5 of [27], that pure infiniteness passes to ideals and subquotients. Thus
it follows from [38] that 1 implies 3.

The purely infinite case (the O1-absorbing case) corresponds to temperatures
that are constantly 1. We incur these at the tempered signatures 1.0.1, 2.1.3, 3.3.7,
3.6.7, 3.7.7, 4.A.F, 4.E.F, 4.F.F, 4.1E.F, 4.1F.F, 4.38.F, 4.39.F, 4.3B.F, 4.3E.F,
and 4.3F.F. As we will outline below, all but the case 4.1E.F are resolved through
the recent work of many hands.

The isomorphism result of Kirchberg (cf. [24] and [25]) reduces the classification
problem of nuclear and strongly purely infinite C �-algebras which are also in
the bootstrap class to an isomorphism problem in ideal-related KK-theory. Since
all purely infinite graph C �-algebras fall in this class we may hence confirm
Conjecture 1 in the purely infinite case by providing a universal coefficient theorem
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which allows the lifting of isomorphisms at the level of filtered K-theory to
invertible KKX -classes. This, however, is not known to be possible in general.
Indeed, Meyer and Nest in [30] showed that there are purely infinite C �-algebras
over the space 4.A which fails to have this property, but since the examples provided
there cannot possibly come from graph algebras, the question remains open in
that setting. The work of Bentmann and Köhler established that general UCTs
are available precisely when the space X is an accordion space, and Arklint with
the second and third named authors provided UCTs for other spaces, including
4.A, under the added assumption that the C �-algebra has real rank zero, which is
automatic here. Specializing even further, Arklint, Bentmann and Katsura provided
a UCT which applies for our space 4.3B under the added assumption that the C �-
algebra has real rank zero and that the K1 groups of all subquotients are free, which
also is automatic here. The space 4.1E remains open. In conclusion:

Theorem 3. Purely infinite, separable, nuclearC �-algebras A with finite primitive
ideal spaceX in the bootstrap class of Meyer and Nest (i.e., all simple subquotients
are in the bootstrap class of Rosenberg and Schochet) are classified up to stable
isomorphism by their filtered K-theory FKX .�/ in the cases

1. X is an accordion space [1.0, 2.1, 3.3, 3.6, 3.7, 4.E, 4.F, 4.39, 4.3F] [4, 24,
25, 30, 33, 35, 36]

2. X is one of the spaces 4.A, 4.38, 4.1F, 4.3E and rr.A/ D 0 [1]
3. X is the space 4.3B, rr.A/ D 0, andK1.J=I/ is free for any I G J E A [2]

5.2.3 The Separated Case

The classification problem for the two mixed cases with j Prim.A/j D 2 not covered
by the results mentioned above – the tempered signatures 2.1.1 and 2.1.2 – were
resolved in [19] drawing heavily on [13]. In [15], we generalized this to more
complicated cases having the separation property which is automatic in the two-
point case, as detailed below. The idea is to find an ideal I such that I is AF and
A=I is O1-absorbing, or vice versa. We do not know in general how to prove
classification in this case, but under certain added assumptions related to the notion
of fullness, this leads to results that may be used to resolve the cases of tempered
signature 3.7.1, 3.7.3, 4.F.1, 4.1F.1, 4.1F.3, 4.3B.1, 4.3F.1, 4.3F.3, 4.3F.7 by
Proposition 1 below and 3.7.4, 3.7.6, 4.39.8, 4.3B.8, 4.3E.8, 4.3E.C, 4.3F.8,
4.3F.C, 4.3F.E by Proposition 2.

Definition 5. Let n > 1 be a given integer. Then we let Xn denote the partially
ordered set (actually totally ordered) Xn D f1; 2; : : : ; ng with the usual order. For
a; b 2 Xn with a � b, we let Œa; b� denote the set fx 2 Xn W a � x � bg.
Proposition 1. Let A1 and A2 be separable, nuclear, C �-algebras over Xn in the
bootstrap class of Meyer and Nest (i.e., every simple subquotient is in the bootstrap
class of Rosenberg and Schochet). SupposeAi .f1g/ is anAF algebra and Ai .Œ2; n�/
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is a tight stable O1-absorbing C �-algebra over Œ2; n�, and Ai .f2g/ is an essential
ideal of Ai .Œ1; 2�/. Then A1˝K Š A2˝K if and only if there exists an isomorphism
˛ W FKXn .A1/! FKXn .A2/ such that ˛f1g is positive.

Proposition 2. Let A1 and A2 be graph C �-algebras satisfying Condition (K).
Suppose Ai is a C �-algebra over Xn such that Ai .fng/ is an AF algebra, for every
ideal I of Ai we have that I 
 Ai .fng/ or Ai .fng/ 
 I, and Ai .Œ1; n�1�/ is a tight,
O1-absorbing C �-algebra over Œ1; n � 1�. Then A1 ˝ K Š A2 ˝ K if and only if
there exists an isomorphism ˛ W FKXn .A1/! FKXn .A2/ such that ˛fng is positive.

5.3 Fan Spaces

In this section, we develop methods to deal mainly with the spaces 3.3, 3.6, 4.A,
4.38. We observe the following in [15]

Lemma 1. Let E be a graph such that C �.E/ has finitely many ideals and assume
that I G J E C �.E/ are ideals. Then

1. C �.E/˝K has the corona factorization property.
2. .J=I/˝K is of the form C �.F /˝K for some graph F .
3. .J=I/˝K has the corona factorization property.

The graph F above can be chosen as a subgraph of the Drinen-Tomforde
desingularization of E [10].

Definition 6. For eachC �-algebraA, we let M .A/ and Q.A/ denote the multiplier
algebra and the corona algebra of A, respectively.

For each extension

e W 0! B! E! A! 0;

we let �e W A! Q.B/ denote the Busby map of the extension.
Moreover, for each surjective (or, more generally, proper) �-homomorphism ' W

A ! B, we let Q' W M .A/ ! M .B/ and ' W Q.A/ ! Q.B/ denote the unique
extension to the multiplier algebras and the induced �-homomorphism between the
corona algebras, respectively (cf. Sect. 2.1 of [12]).

Lemma 2. Let .Bi /i2I be a family of C �-algebras (small enough for direct sums
and products to exist). Let 
j W Li2I Bi ! Bj denote the canonical projection,
for each j 2 I . Then there is a canonical isomorphism

Q
i2I e
i WM .

L
i2I Bi /!Q

i2I M .Bi / which has the unique extensionf
j WM .
L

i2I Bi /!M .Bj / of 
j
as the j ’th coordinate map.

Consequently, if I is finite, there is an induced isomorphism

Y
i2I

i W Q.

M
i2I

Bi /!
Y
i2I

Q.Bi /;
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and it induces homomorphisms 
j W Q.Li2I Bi / ! Q.Bj / as the j ’th coordi-
nate map. In this case, the direct product coincides with the direct sum.

Proof. Here we view the multiplier algebras as the algebras of double centralizers
(cf. pp. 39 and 81–82 in [31]). Let .�1; �2/ be a double centralizer on

L
i2I Bi

(i.e., an arbitrary element of M .
L

i2I Bi /). Using an approximate unit, it is easy
to see that �1 and �2 restricted to Bj map into Bj itself. In this way we get
a canonical �-homomorphism from M .

L
i2I Bi / to M .Bj /. By the universal

property of the direct product, we get a �-homomorphism ' from M .
L

i2I Bi /

to
Q
i2I M .Bi /, where the j ’th coordinate map clearly is an extension of 
j to the

multiplier algebras, and hence it is the extension f
j of 
j . Clearly, ' is injective. It
is also easy to show that ' is surjective by constructing the preimage.

Therefore, if I is finite, the direct product of the short exact sequences

0 �� Bj
�� M .Bj / �� Q.Bj / �� 0

is canonically isomorphic to

0 �� L
i2I Bi

�� M .
L

i2I Bi / �� Q.
L

i2I Bi / �� 0 :

5.3.1 Primitive Ideal Space with n Maximal Elements

Assumption 1. For this subsection, let n > 1 be a fixed integer, and let Xi D Xli
for i D 1; 2; : : : ; n, where l1; l2; : : : ; ln are fixed positive integers. Let, moreover,

X D fmg tX1 t X2 t � � � t Xn
and define a partial order on X as follows. The elementm is the least element of X ,
and for each i D 1; 2; : : : ; n, if x; y 2 Xi then x � y in X if and only if x � y in
Xi . There are no other relations between the elements of X .

Lemma 3. Let A be a tight C �-algebra over X and let k 2 f1; 2; : : : ; ng be given.
Consider the extensions

e W 0! A.X n fmg/! A! A.fmg/! 0

and

e � 
k W 0! A.Xk/! A.Xk [ fmg/! A.fmg/! 0;

where 
k W A.X n fmg/! A.Xk/ is the canonical quotient �-homomorphism.
Then �e�
k D 
k ı �e, and 
k ı �e is injective.



100 S. Eilers et al.

Proof. Note that the diagram

e W 0 �� A.X n fmg/ ��


k

��

A ��

��

A.fmg/ �� 0

e � 
k W 0 �� A.Xk/ �� A.Xk [ fmg/ �� A.fmg/ �� 0

is commutative. Since 
k is surjective, by Theorem 2.2 of [12], 
k ı �e D �e�
k .
Also note, that Corollary 4.3 of [12] justifies the notation e � 
k . Suppose 
k ı �e
is not injective, then 
k ı �e D 0 since A.fmg/ is a simple C �-algebra. Hence,
A.Xk [ fmg/ Š A.Xk/˚ A.fmg/. Since A.Xk [ fmg/ Š A=A.X n .Xk [ fmg//,
then there exist proper ideals I and J of A such that I C J D A and I \ J D
A.X n .Xk [ fmg//. But this contradicts the fact that A is a tight C �-algebra over
X . Hence, 
k ı �e is injective.

Lemma 4. Let A be a tight C �-algebra over X . Then

e W 0! A.X n fmg/! A! A.fmg/! 0

is full if and only if e � 
k is full for all k D 1; 2; : : : ; n.

Proof. By Lemma 3, �e�
k D 
k ı �e. Thus, if e is a full extension, then e � 
k
is a full extension since 
k is surjective. Suppose e � 
k is a full extension for all
k D 1; 2; : : : ; n. Note that A.X n fmg/ is

Ln
jD1 A.Xj / and thus from Lemma 2 it

follows that the j ’th coordinate map of
�Ln

iD1 
i
� ı �e is exactly 
j ı �e D �e�
j

(according to Lemma 3). Since
Ln

iD1 
i is an isomorphism and since e �
k is a full
extension for all k D 1; 2; : : : ; n, we have that e is a full extension. That this direct
sum of full extensions is again full can easily be shown by first cutting down to each
coordinate.

The signatures 3.6.1, 3.6.5, 4.39.1, 4.39.3, 4.39.4, 4.39.5, 4.39.7, 4.38.1,
4.38.3, 4.38.7 are covered by the following theorem.

Theorem 4. Let A and B be graph C �-algebras that are tight C �-algebras over
X . Assume that there exists an isomorphism ˛ W FKCX .A/ ! FKCX .B/. Assume,
moreover, that A.fmg/ is an AF algebra and that X� is hereditary. Then A˝K Š
B˝K.

Proof. We may assume that A and B are stable C �-algebras. Note that for each
x 2 X , A.fxg/ is an AF algebra if and only if B.fxg/ is an AF algebra, and
A.fxg/ is O1-absorbing if and only if B.fxg/ is O1-absorbing (since there exists
a positive isomorphism from K0.A.fxg// to K0.B.fxg//). Specifically, B.fmg/ is
an AF algebra. First we assume that X� ¤ ; and X� n fmg ¤ ;.

Note that A.X�/ and B.X�/ are AF algebras. Since

˛X�
W K0.A.X�//! K0.B.X�//
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is a positive isomorphism, there exists an isomorphism ˇ W A.X�/ ! B.X�/
such that K0.ˇ/ D ˛X�

(by Elliott’s classification result [20]). Since A.X�/ and
B.X�/ are AF algebras and ˇ is an X�-equivariant isomorphism, we have that
K0.ˇY / D ˛Y for all Y 2 LC.X/ such that Y 
 X�. In particular,K0.ˇfxg/ D ˛fxg
for all x 2 X�.

Let Xmin
� be the set of minimal elements of X�, and for each a; b 2 X let

Œa;1/ D fx 2 X W a � xg ;
Œa; b/ D fx 2 X W a � x < bg :

Let x 2 Xmin
� be given. Let ix 2 f1; 2; : : : ; ng be the unique number such that

x 2 Xix . Note that Xix t fmg D Œm; x/[ Œx;1/, which we will denote by QXix . Let,
moreover,

eAx W 0! A.Œx;1//! A. QXix/! A.Œm; x//! 0;

and

eBx W 0!B.Œx;1//!B. QXix /!B.Œm; x//! 0:

Since ˛ W FKCX .A/ ! FKCX .B/ is an isomorphism, we also have an isomorphism
˛ QXix W FKCQXix

�
A. QXix /

�! FKCQXix
�
B. QXix /

�
. So by Theorem 4.14 of [30], Kirchberg

[25], and Theorem 3.3 of [15], there exists an isomorphism 'x W A.Œx;1// !
B.Œx;1// such that K�.'x/ D ˛Œx;1/, and

�
�eBx ı ˇŒm;x/


 D �'x ı �eAx



in KK1.A.Œm; x//;B.Œx;1///, since KK.ˇŒm;x// is the unique lifting of ˛Œm;x/.
As in the proof of Proposition 6.3 of [15], Corollary 5.3 of [15] implies

that �eAx and �eBx are full extensions, and thus also the extensions with Busby
maps �eBx ı ˇŒm;x/ and 'x ı �eAx are full. Since the extensions are non-unital
and B.Œx;1// satisfies the corona factorization property, there exists a unitary
ux 2M .B.Œx;1/// such that

�eBx ı ˇŒm;x/ D Ad.ux/ ı 'x ı �eAx
where ux is the image of ux in the corona algebra (this follows from [22] and [28]).
Hence, by Theorem 2.2 of [12], there exists an isomorphism �x W A. QXix /!B. QXix /
such that .Ad.ux/ ı 'x; �x; ˇŒm;x// is an isomorphism from eAx to eBx . Let

eA W 0! A.X n fmg/! A! A.fmg/! 0;

and

eB W 0!B.X n fmg/! B! B.fmg/! 0:
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Since A. QXix / and B. QXix / have linear ideal lattices, this induces an isomorphism

eA � 
ix W 0 �� A.Xix /

 x

��

�� A. QXix /

��

�� A.fmg/
ˇ

fmg

��

�� 0;

eB � 
ix W 0 �� B.Xix / �� B. QXix / �� B.fmg/ �� 0:

So now by construction,

 x ı �eA�
ix D �eB�
ix ı ˇfmg;

for all x 2 Xmin
� , and

ˇXj ı �eA�
j D �eB�
j ı ˇfmg;

for all j D 1; 2; : : : ; n satisfying that A.Xj / is an AF algebra. Now we define an
isomorphism � from A.X n fmg/ to B.X n fmg/ as the direct sum of the  x’s and
ˇXj ’s. We get that (from Lemmas 2 and 3)

� ı �eA D � ı
0
@ nM
jD1

�eA�
j

1
A D

nM
jD1

�j ı �eA�
j

D
nM

jD1
�eB�
j ı ˇfmg D

0
@ nM
jD1

�eB�
j

1
A ı ˇfmg D �eB ı ˇfmg;

where the �j ’s denote the corresponding x’s and ˇXj ’s. Hence, by Theorem 2.2 of
[12], A Š B.

IfX� D ; the result is due to Elliott’s classification result [20], and ifX� D fmg
the theorem follows easily by making modifications to the above proof.

Remark 2. Let A and B be graph C �-algebras that are C �-algebras overX , so that
A.Xi/ and B.Xi / are tight C �-algebras over Xi , for i D 1; 2; : : : ; n. Assume that

0! A.Xi/=A.Xinfxi g/! A.Xi[fmg/=A.Xinfxi g/! A.Xi[fmg/=A.Xi/! 0

is essential whenever A.Xi/ is O1-absorbing, where xi is the greatest element of
Xi . Assume that there exists an isomorphism ˛ W FKCX .A/ ! FKCX .B/. Assume
moreover, that A.fmg/ is an AF algebra and that the set of x 2 X for which A.fxg/
is an AF algebra is hereditary. Then A˝K Š B˝K. This follows from the proof
above.
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The above extensions are essential, e.g., if A.fxig/ is the least ideal of
A.fxi ;mg/, for all i D 1; 2; : : : ; n, and the remark applies to the cases4

1. 4.E.1, where we view the algebra A that is tight over the space 4.E as a C �-
algebra over a b ! c as indicated by the assignment b ! a b ! c.

2. 4.1E.1 and 4.1E.3, where we view the algebra A that is tight over the space
4.1E as a C �-algebra over a b ! c as indicated by the assignment

b

a

c

b

3. 4.3E.1, where we view the algebra A that is tight over the space 4.3E as a C �-
algebra over a b ! c as indicated by the assignment

c

b

a

b

The following proposition follows from the results in [19].

Proposition 3. Let A be a graph C �-algebra with exactly one nontrivial ideal I. If
A is not an AF algebra, then 0 ! I ˝ K ! A ˝ K ! A=I˝ K ! 0 is a full
extension.

Using the UCT for accordion spaces (see [30] and [4]) and for many other four-
point spaces under the added assumption of real rank zero as described in [1], the
cases 3.6.2, 3.6.3, 4.38.8, 4.38.9, 4.38.B, can be classified using the following
theorem.

Theorem 5. Let A and B be graph C �-algebras that are tight C �-algebras over
X , with Xi being a singleton, for each i D 1; 2; : : : ; n. Suppose there exists an
isomorphism ˛ W FKCX .A/ ! FKCX .B/ which lifts to an invertible element in
KK.X IA;B/. Then A˝K Š B˝K.

Proof. If A.fmg/ is an AF algebra, the result follows from Theorem 4. Suppose
A.fmg/ is an O1-absorbing simple C �-algebra and that A and B are stable C �-
algebras. Then by Lemma 3 and Proposition 3, 
i ı �eA W A.fmg/ ! Q.A.Xi//
and 
i ı �eB W B.fmg/ ! Q.B.Xi// are full extensions, for all i D 1; 2; : : : ; n.
Hence, by Lemma 4, �eA and �eB are full extensions. The theorem now follows
from the results of [15].

4Here we specify how we view the algebras as algebras over a  b ! c by providing a
continuous map from the primitive ideal space to fa; b; cg



104 S. Eilers et al.

5.3.2 Primitive Ideal Space with n Minimal Elements

Assumption 2. For this subsection, let n > 1 be a fixed integer, and let Xi D Xli
for i D 1; 2; : : : ; n, where l1; l2; : : : ; ln are fixed positive integers. Let, moreover,

X D fM g t X1 t X2 t � � � t Xn
and define a partial order onX as follows. The elementM is the greatest element of
X , and for each i D 1; 2; : : : ; n, if x; y 2 Xi then x � y in X if and only if x � y
in Xi . There are no other relations between the elements of X .

Lemma 5. Let A be a tightC �-algebra overX and let Y 2 O.X�nfM g/ be given.
Consider the extensions

e W 0! A.fM g/! A! A.X n fM g/! 0

and

�A;Y � e W 0! A.fM g/! A.Y [ fM g/! A.Y /! 0

where �A;Y W A.Y /! A.X nfM g/ is the usual embedding. Then ��A;Y �e D �eı �A;Y .

Proof. Note that the diagram

0 �� A.fM g/ �� A.Y [ fM g/ ��

��

A.Y / ��

�A;Y

��

0

0 �� A.fM g/ �� A �� A.X n fM g/ �� 0

commutes. Hence, by Theorem 2.2 of [12], ��A;Y �e D �e ı �A;Y .

Lemma 6. Suppose the following diagram of C �-algebras with short exact rows is
commutative

0 �� B
�1

�� E1

1

��

'1

��

A1 ��

'2

��

0

0 �� B
�2

�� E2

2

�� A2 �� 0:

1. If '2.A1/ is a hereditary sub-C �-algebra of A2, then '1.E1/ is a hereditary sub-
C �-algebra of E2.

2. If '2.A1/ is full in A2, then '1.E1/ is full in E2.
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Proof. We first prove 1. Let x 2 E1 and y 2 E2 such that 0 � y � '1.x/. Since
'2.A1/ is a hereditary sub-C �-algebra of A2, we have that there exists z 2 '1.E1/
such that 
2.y/ D 
2.z/. Thus, y � z 2 B. Since the map on the ideals is the
identity, we have that y � z 2 '1.E1/. Hence, y 2 '1.E1/. Therefore, '1.E1/ is a
hereditary sub-C �-algebra of E2.

We now prove 2. Let x 2 E2. Since '2.A1/ is full in A2, there exists y in the
ideal of E2 generated by '1.E1/ such that x � y 2 B. Since the map on the ideals
is the identity, we have that y � z 2 '1.E1/. Hence, x is in the ideal of E2 generated
by '1.E1/.

Lemma 7. Let e W 0 ! I ! A ! Ln
kD1 Ak ! 0 be an extension and let

�k W Ak !Ln
kD1 Ak be the inclusion. Suppose �e ı �k is full for each k. Then �e is

full.

Proof. Let .a1; a2; : : : ; an/ be a nonzero positive element in
Ln

kD1 Ak . Without loss
of generality, we may assume that a1 ¤ 0. Note that ideal in Q.I/ generated by
�e.a1; : : : ; an/ contains the ideal in Q.I/ generated by �e ı �1.a1/. Since �e ı �k is
full, we have that the ideal in Q.I/ generated by �e ı �1.a1/ is Q.I/. Thus, the ideal
in Q.I/ generated by �e.a1; : : : ; an/ is Q.I/.

The following result applies to the cases 3.3.1, 3.3.5, 4.F.6, 4.F.8, 4.F.E, 4.A.2,
4.A.F, 4.A.E.

Theorem 6. Let A and B be graphC �-algebras that are tightC �-algebras overX
such that each of A.Xi/, B.Xi / are eitherAF algebras or O1-absorbing. Suppose
there exists an isomorphism ˛ W FKCX .A/ ! FKCX .B/ and A.fM g/ is an AF
algebra. Then A˝K Š B˝K.

Proof. We may assume that A and B are stable C �-algebras. Note that for each
x 2 X , A.fxg/ is an AF algebra if and only if B.fxg/ is an AF algebra, and
A.fxg/ is O1-absorbing if and only if B.fxg/ is O1-absorbing (since there exists
a positive isomorphism from K0.A.fxg// to K0.B.fxg/). Specifically, B.fM g/ is
an AF algebra. First we assume that X� ¤ ; and X� n fM g ¤ ;.

Note that ˛X�
W K0.A.X�// ! K0.B.X�// is a positive isomorphism and

that A.X�/ and B.X�/ are AF algebras. Thus there exists an isomorphism
ˇ W A.X�/ ! B.X�/ such that K0.ˇ/ D ˛X�

(by Elliott’s classification result
[20]). Since A.X�/ and B.X�/ are AF algebras and ˇ is an X�-equivariant
isomorphism, we have that K0.ˇY / D ˛Y for all Y 2 LC.X/ such that Y 
 X�.
In particular,K0.ˇfxg/ D ˛fxg for all x 2 X�.

Let

eA W 0! A.fM g/! A! A.X n fM g/! 0;

and

eB W 0! B.fM g/! B! B.X n fM g/! 0:
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Since ˇ is an X�-equivariant isomorphism, by Lemma 5 above and Theorem 2.2 of
[12], for Y 2 O.X� n fM g/

ˇfM g ı �eA ı �A;Y D �eB ı �B;Y ı ˇY
for all Y 2 O.X� n fM g/, where �A;Y W A.Y /! A.X n fM g/ and �B;Y WB.Y /!
B.X n fM g/ are the canonical embeddings.

Since the given ˛ induces an isomorphism from FKCX�[fM g .A.X� [ fM g// to

FKCX�[fM g .B.X� [ fM g//, by Lemma 5, Theorem 2.3 of [13], Theorem 4.14
of [30], Kirchberg [25], and Theorem 3.3 of [15], there exists an X�-equivariant
isomorphism  W A.X�/! B.X�/ such that K�. / D ˛X�

and

ŒˇfM g ı �eA ı �A;X�
� D Œ�eB ı �B;X�

ı  �

in KK1.A.X�/;B.fM g//. By Corollary 5.6 of [15], �eA ı �A;Xi and �eB ı �B;Xi are
full extensions for each i D 1; 2; : : : ; n with Xi being O1-absorbing (i.e., Xi 

X�). Thus, both �eA ı �A;X�

and �eB ı �B;X�
are full extensions since, respectively,

A.X�/ D
L

i2f1;2;:::;ng;Xi	X�
A.Xi/ and B.X�/ D

L
i2f1;2;:::;ng;Xi	X�

B.Xi /.

Hence, ˇfM g ı �eA ı �A;X�
and �eB ı �B;X�

ı  are full extensions.
Let 
A;X�nfM g W A.X nfM g/! A.X�nfM g/, 
A;X�

W A.X nfM g/! A.X�/,

B;X�nfM g W B.X n fM g/ ! B.X� n fM g/, 
B;X�

W B.X n fM g/ ! B.X�/
be the canonical projections. Note that the range of �eA ı �A;X�nfM g and the range
of �eA ı �A;X�

are orthogonal and the range of �eB ı �B;X�nfM g and the range of
�eB ı �B;X�

are orthogonal. Moreover,

�eA D �eA ı �A;X�nfM g ı 
A;X�nfM g C �eA ı �A;X�
ı 
A;X�

�eB D �eB ı �B;X�nfM g ı 
B;X�nfM g C �eB ı �B;X�
ı 
B;X�

:

We claim that there exist full hereditary sub-C �-algebras E1 and E2 of A and B,
respectively, such that E1 Š E2. Then by Theorem 2.8 of [7], A˝K Š B˝K.

Choose full projections p1; q1 2 A.X�/ and p2; q2 2 A.X� n fM g/ such that
p1 C p2 is orthogonal to q1 C q2 in A.X n fM g/ (to do this, we use stability, and
that graph algebras with finitely many ideals satisfies Condition (K) and hence are
of real rank zero). Therefore, �eA.p1 C p2/ ¤ 1Q.A.fM g// since �eA.p1 C p2/ is
orthogonal to �eA.q1 C q2/. Set e1 D  .p1/, e2 D ˇX�nfM g.p2/, f1 D  .q1/, and
f2 D ˇX�nfM g.q2/. Then e1 C e2 and f1 C f2 are nonzero orthogonal projections.
So, �eB.e1 C e2/ ¤ 1Q.B.fM g//.

Set e D ˇfM g ı �eA ı �A;X�nfM g.p2/ D �eB ı �B;X�nfM g ı ˇX�nfM g.p2/ and
set f D .1Q.B.fM g// � e/. Let j� W p1A.X�/p1 ! A.X�/ and j� W p2A.X� n
fM g/p2! A.X� n fM g/ be the usual embeddings. Note that

eˇfM g ı �eA ı �A;� ı j�.x/ D ˇfM g ı �eA ı �A;� ı j�.x/e D 0
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and

e
�
�eB ı �B;X�

ı  ı j�.x/
�

D ��eB ı �B;X�nfM g ı ˇX�nfM g.p2/
� � ��eB ı �B;X�

ı  ı j�.x/
� D 0

as well as

�
�eB ı �B;X�

ı ı j�.x/
�
e

D ��eB ı �B;X�
ı  ı j�.x/

� � ��eB ı �B;X�nfM g ı ˇX�nfM g.p2/
� D 0

for all x 2 p1A.X�/p1. Hence, we have injective homomorphisms ˇfM g ı �eA ı
�A;� ı j� and �eB ı �B;X�

ı  ı j� from p1A.X�/p1 to fQ.B.fM g//f .
Since B.fM g/ is an AF algebra, by Corollary 2.11 of [39] f lifts to a

projection f 0 in M .B.fM g//. Note that there exists an isomorphism � from
f 0M .B.fM g//f 0 to M .f 0B.fM g/f 0/ that is the identity on f 0B.fM g/f 0 (see
II.7.3.14, p. 147 of [5]). Thus, we have an isomorphism � from fQ.B.fM g//f to
Q.f 0B.fM g/f 0/ such that the diagram

0 �� f 0B.fM g/f 0 �� f 0M .B.fM g//f 0 ��

�

��

fQ.B.fM g//f ��

�

��

0

0 �� f 0B.fM g/f 0 �� M .f 0B.fM g/f 0/ �� Q.f 0B.fM g/f 0/ �� 0

is commutative. By Corollary 5.6 of [15], �eA ı �A;Xi and �eB ı �B;Xi are full
extensions for each i D 1; 2; : : : ; n with Xi being O1-absorbing (i.e., Xi 
 X�).
Thus, by Lemma 7, �eA ı �A;X�

and �eB ı �B;X�
are full extensions since A.X�/ DL

i2f1;2;:::;ng;Xi	X�
A.Xi/ and B.X�/ D

L
i2f1;2;:::;ng;Xi	X�

B.Xi /.

Hence, ˇfM g ı �eA ı �A;X�
and �eB ı �B;X�

ı  are full extensions. Thus,

ˇfM g ı �eA ı �A;X�
.p1/ is a norm-full projection in Q.B.fM g//. Since ˇfM g ı

�eA ı �A;X�
.p1/ � f , we have that f is a norm-full projection in Q.B.fM g//. By

Lemma 3.3 of [16], we have that f 0 is a norm-full projection in M .B.fM g// since
B.fM g/ has an approximate identity consisting of projections. Since B.fM g/ is an
AF algebra, by Lemma 3.10 of [13], B.fM g/ has the corona factorization property.
Thus, f 0 is Murray-von Neumann equivalent to 1M .B.fM g//. Thus, f 0B.fM g/f 0 Š
B.fM g/ which implies that f 0B.fM g/f 0 is a stable C �-algebra since B.fM g/ is
a stable C �-algebra.

Let � be the embedding of f 0B.fM g/f 0 into B.fM g/, Q� be the embedding of
f 0M .B.fM g//f 0 into M .B.fM g//, and � be the embedding of fQ.B.fM g//f
into Q.B.fM g//. Note that the following diagram
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0 �� f 0B.fM g/f 0 ��

�

��

f 0M .B.fM g//f 0 ��

Q�

��

fQ.B.fM g//f ��

�

��

0

0 �� B.fM g/ �� M .B.fM g// �� Q.B.fM g// �� 0

is commutative. Note that the range of �eB ı �B;X�
ı  ı j� and the range of

ˇfM g ı �eA ı �A;X�
ı j� are contained in fQ.B.fM g//f . Let e1 be the extension

defined by � ı ��1 ı ˇfM g ı �eA ı �A;X�
ı j� and let e2 be the extension defined by

� ı ��1 ı �eB ı �B;X�
ı ı j�. Then

� ı ��1 ı �e1 D ˇfM g ı �eA ı �A;X�
ı j� and � ı ��1 ı �e2 D �eB ı �B;X�

ı  ı j�

Since �eA.p1 C p2/ ¤ 1Q.A.fM g// and �eB.e1 C e2/ ¤ 1Q.B.fM g// and since
ˇfM g and  are isomorphisms, we have that ˇfM g ı �eA ı �A;X�

ı j�.p1/ ¤ f

and �eB ı �B;X�
ı  ı j�.p1/ ¤ f . Thus, �e1 .p1/ and �e2 .p1/ are not equal to

1Q.f 0B.fM g/f 0/. Therefore, e1 and e2 are non-unital full extensions. Since

ŒˇfM g ı �eA ı �A;X�
� D Œ�eB ı �B;X�

ı  �

in KK1.A.X�/;B.fM g//, since � induces an element in KK.f 0B.fM g/f 0;
B.fM g// which is invertible, and since � is an isomorphism, we have that Œ�e1 � D
Œ�e2 � in KK1.p1A.X�/p1; f

0B.fM g/f 0/. Since f 0B.fM g/f 0 Š B.fM g/, we
have that f 0B.fM g/f 0 has the corona factorization property. Thus, there exists a
unitary u0 in M .f 0B.fM g/f 0/ such that

Ad.u0/ ı �e1 D �e2 ;

where u0 is the image of u0 in Q.f 0B.fM g/f 0/. Let u D Q� ı ��1.u0/. Then u is a
partial isometry in M .B.fM g// such that u�u D f 0 D uu� and

Ad.u/ ı ˇfM g ı �eA ı �A;X�
ı j� D �eB ı �B;X�

ı  ı j�

where u is the image of u in Q.B.fM g//. Set v D uC 1M .B.fM g// � f 0 and let v
be the image of v in Q.B.fM g//. Note that v D uC e and

Ad.v/ ı ˇfM g ı �eA ı �A;X�nfM g ı j� D ˇfM g ı �eA ı �A;X�nfM g ı j�

Ad.v/ ı ˇfM g ı �eA ı �A;X�
ı j� D �eB ı �B;X�

ı  ı j�:
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Let a1 2 p1A.X�/p1 and a2 2 p2A.X� n fM g/p2. Then

v
�
ˇfM g ı �eA ı �A;X�

ı j�.a1/C ˇfM g ı �eA ı �A;X�nfM g ı j�.a2/
�
v�

D �eB ı �B;X�
ı  ı j�.a1/C ˇfM g ı �eA ı �A;X�nfM g ı j�.a2/

D �eB ı �B;X�
ı  ı j�.a1/C �eB ı �B;X�nfM g ı ˇX�nfM g ı j�.a2/

D �eB ı . ı j�.a1/C ˇX�nfM g ı j�.a2//:

Hence,

Ad.v/ıˇfM gı�eA ı.�A;X�
ıj�C�A;X�nfM gıj�/ D �eB ı. ıj�CˇX�nfM gıj�/:

(5.1)

Note that the Busby invariant of the extension

0! A.fM g/! E1! .p1 C p2/ .A.X�/˚ A.X� n fM g// .p1 C p2/! 0

is given by �eA ı .�A;X�
ı j� C �A;X�nfM g ı j�/ and the Busby invariant of the

extension

0! B.fM g/! E2 ! .e1 C e2/ .B.X�/˚B.X� n fM g// .e1 C e2/! 0

is given by �eB ı .�� C ��/, where �� W e1B.X�/e1 ! B.X�/ and �� W
e2B.X� n fM g/e2 ! B.X� n fM g/ are the natural embeddings. Hence, by
Eq. (5.1), Theorem 2.2 of [12], and the five lemma, E1 Š E2. By Lemma 6, E1
is isomorphic to a full hereditary sub-C �-algebra of A and E2 is isomorphic to a full
hereditary sub-C �-algebra of B. We have just proved the claim.

If X� D ; the result is due to Elliott’s classification result [20], and if X� n
fM g D ; the theorem follows easily by making modifications to the above proof.

Remark 3. Let A and B be graph C �-algebras satisfying Condition (K) that are
C �-algebras overX such that each of A.Xi/;B.Xi / are eitherAF algebras or O1-
absorbing and such that A.Xi/ and B.Xi / are tight C �-algebras overXi , whenever
A.Xi/ and B.Xi/ are O1-absorbing. Assume that there exists an isomorphism ˛ W
FKCX .A/ ! FKCX .B/. Assume moreover, that A.fM g/ is an AF algebra and that
for every ideal I of A, we have that I 
 A.fM g/ or A.fM g/ 
 I. Then A˝K Š
B˝ K. This follows from the proof above together with Corollary 5.6 of [15] and
applies to the cases5

1. 4.1E.4 and 4.1E.C, where we view the algebra A that is tight over the space
4.1E as a C �-algebra over a! b  c as indicated by the assignment

5Here we specify how we view the algebras as algebras over a ! b  c by providing a
continuous map from the primitive ideal space to fa; b; cg
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c

b

b

a

2. 4.1F.4 and 4.1F.C, where we view the algebra A that is tight over the space 4.1F
as a C �-algebra over a! b  c as indicated by the assignment

b

c

b

a

The following result resolves the cases 3.3.2, 3.3.3, 4.A.1, 4.A.3, 4.A.7.

Theorem 7. Let A and B be graph C �-algebras that are tight C �-algebras over
X , with Xi being a singleton, for each i D 1; 2; : : : ; n. Suppose there exists an
isomorphism ˛ W FKCX .A/! FKCX .B/ such that ˛ lifts to an invertible element in
KK.X IA;B/. Then A˝K Š B˝K.

Proof. Note that we may assume that A and B are stable C �-algebras. If A.fM g/ is
anAF algebra, then the theorem follows from Theorem 6. Suppose A.fM g/ is O1-
absorbing. Then B.fM g/ is O1-absorbing. Hence, by Proposition 3 and Lemma 7,
the extensions

0! A.fM g/! A! A.X n fM g/! 0;

0! B.fM g/! B! B.X n fM g/! 0

are full extensions. The theorem now follows from the results of Theorem 4.6 of
[15].

5.4 A Pullback Technique

The main idea of this section is to write the algebra as a pullback of extensions we
can classify coherently. The problem is that classification usually does not give us
unique isomorphisms on the algebra level. But when the quotient is an AF algebra
we can in certain cases use that the KK-class of the isomorphism is unique. The
main idea here is similar to the main idea of Sect. 5.3.

Lemma 8. For each i D 1; 2, let there be given C �-algebras Ai , Bi , and Ci
together with �-homomorphisms ˛i W Ai ! Ci and ˇi W Bi ! Ci . Let Pi denote
the pullback of Ai and Bi along ˛i and ˇi , for each i D 1; 2.

Assume that there are isomorphisms 'A W A1 ! A2, 'B W B1 ! B2 and
'C W C1 ! C2, such that the following diagram commutes:
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A1

'A

��

˛1
�� C1

'C

��

B1

'B

��

ˇ1
��

A2
˛2

�� C2 B2:
ˇ2

��

Then we get a canonically induced isomorphism from P1 to P2.

Proof. The existence of the �-homomorphism from P1 to P2 follows from the
universal property of the pullback. That this �-homomorphism is an isomorphism
also follows from the universal property.

Lemma 9. Let I and J be ideals of a C �-algebra A satisfying I \ J D 0. Then A
is the pullback of A=J and A=I along the quotient maps A=J ! A=.I C J/ and
A=I! A=.IC J/.

Proof. This follows from Proposition 3.1 of [32] by noting that we have a
commuting diagram

I �� A

��

�� A=I

��
I �� A=J �� A=.IC J/

with short exact rows.

The signatures 4.E.4 and 4.E.5 are covered by the following theorem.

Theorem 8. Let A and B be graph C �-algebras that are tight over X , where X
is some finite T0 space. Assume that there exists an isomorphism ˛ W FKCX .A/ !
FKCX .B/. Assume, moreover, that we have disjoint open subsets O0 and O1 of X .
Let

Y0 D X nO1; Y1 D X nO0; and Z D X n .O0 [O1/:

Assume also Z ¤ ; and that A.Z/ is an AF algebra.
For each i D 0; 1, if A.Oi / is O1-absorbing, then we assume that:

1. There exist two disjoint clopen subsets Y 1i and Y 2i of Yi (with the subspace
topology) such that Yi D Y 1i [ Y 2i andOi 
 Y 1i .

2. The ideal lattice of A.Oi / is linear, i.e., Oi Š Xj for some j .
3. A.Oi / is an essential ideal of A.Y 1i /.
4. A.fmig/ is essential in A.fmig[ .Y 1i nOi//, wheremi is the least element ofOi .

Then A˝K Š B˝K.
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Proof. We may assume that A and B are stable C �-algebras. Note that for each
locally closed subset Y of X , A.Y / is an AF algebra if and only if B.Y / is an AF
algebra, and A.Y / is O1-absorbing if and only if B.Y / is O1-absorbing (since
there exists a positive isomorphism from K0.A.Y // to K0.B.Y //). Specifically
B.X n .O0 [O1// is an AF algebra.

Note that the diagram

0 ��

��

A.O1/

��

A.O1/

��
A.O0/ �� A

��

�� A.Y1/

��
A.O0/ �� A.Y0/ �� A.Z/

is commutative with short exact rows and columns, analogously for B.
If both A.O0/ and A.O1/ are AF algebras, then it follows from the permanence

properties of AF algebras that A is an AF algebra, and thus also B. In this case the
theorem follows from Elliott’s classification result [20].

Now assume that A.O0/ is an AF algebra and that A.O1/ is O1-absorbing. Let
Z1
1 D Z n Y 21 and Z2

1 D Y 21 . Then Z1
1 and Z2

1 are locally closed subsets of X , and
Z is the disjoint union of Z1

1 and Z2
1 . Since A.Y0/ and B.Y0/ are extensions of AF

algebras, these are themselves AF algebras. Since ˛Y0 W K0.A.Y0//! K0.B.Y0//
is a positive isomorphism, there exists an isomorphism ˇ W A.Y0/ ! B.Y0/ such
thatK0.ˇ/ D ˛Y0 (by Elliott’s classification result [20]). Since A.Y0/ and B.Y0/ are
AF algebras and ˇ is an Y0-equivariant isomorphism, we have that K0.ˇY / D ˛Y
for all Y 2 LC.X/ such that Y 
 Y0.

Let

eA W 0! A.O1/! A.Y 11 /! A.Z1/! 0;

and

eB W 0! B.O1/! B.Y 11 /!B.Z1/! 0:

Since ˛ W FKCX .A/ ! FKCX .B/ is an isomorphism, we also have an isomorphism
˛Y 11
W FKC

Y 11
.A/ ! FKC

Y 11
.B/. So by Theorem 4.14 of [30], Kirchberg [25], and

Theorem 3.3 of [15], there exists an isomorphism ' W A.O1/ ! B.O1/ such that
K�.'/ D ˛O1 , and

�
�eB ı ˇOZ1


 D Œ' ı �eA �
in KK1.A.Z1/;B.O1//, since KK.ˇZ1/ is the unique lifting of ˛Z1 .
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As in the proof of Proposition 6.3 of [15], Corollary 5.3 of [15] implies that �eA
and �eB are full extensions, and thus also the extensions with Busby maps �eB ıˇZ1
and ' ı �eA are full. Since the extensions are non-unital and B.O1/ satisfies the
corona factorization property, there exists a unitary u 2M .B.O1// such that

�eB ı ˇZ1 D Ad.u/ ı ' ı �eA

where u is the image of u in the corona algebra (this follows from [22] and [28]).
Hence, by Theorem 2.2 of [12], there exists an isomorphism � W A.Y 11 / ! B.Y 11 /
such that .Ad.u/ ı '; �; ˇZ11 / is an isomorphism from eA to eB.

Since the extension

0! A.O1/! A.Y1/! A.Z/! 0

is the direct sum of the extensions

0! A.O1/! A.Y 11 /! A.Z1/! 0

and

0! 0! A.Z2/! A.Z2/! 0

and analogously for B, we get an isomorphism from 0 ! A.O1/ ! A.Y1/ !
A.Z/ ! 0 to 0 ! B.O1/ ! B.Y1/ ! B.Z/ ! 0, which is equal to ˇZ on the
quotient. Now the theorem follows from Lemmas 9 and 8.

Now assume instead that both I and J are O1-absorbing. The proof is similar to
the case above. Instead of lifting ˛Y0 W K0.A.Y0// ! K0.B.Y0// to ˇ W A.Y0/ !
B.Y0/ we just lift ˛Z W K0.A.Z// ! K0.B.Z// to ˇ W A.Z/ ! B.Z/. Then we
do as above first for the extensions corresponding to the relative open subset O0 of
Y0 and then for the extensions corresponding to the relative open subset O1 of Y1.
As above, the theorem then follows from Lemmas 9 and 8.

5.5 Ad Hoc Methods

In this section we present arguments that resolve the classification question for some
examples of tempered ideal spaces which are not covered by the general results
above. Most of the results are based on knowing strong classification for smaller
ideal spaces, as explained below. Our results of this nature, presented in [17], are
of a rather limited scope, and require restrictions on the K-theory, requiring the
K-groups to be finitely generated, or even for the graph C �-algebra to be unital. We
will see this idea in use in a very clear form in the two open cases for three primitive
ideals (cf. Sect. 5.5.1) and in more complicated four-point cases.
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Our starting point is

Theorem 9. Let A1 and A2 be graph C �-algebras that are tight C �-algebras over
a finite T0-space X and let U 2 O.X/ be non-empty. Let ei be the extension 0 !
Ai .U /˝K! Ai ˝K! Ai .X n U /˝K! 0. Suppose

1. ei is a full extension;
2. There exists an invertible element ˛ 2 KK.X IA1;A2/; and
3. The induced invertible element ˛Y 2 KK.A1.Y / ˝ K;A2.Y / ˝ K/ lifts to an

isomorphism from A1.Y /˝K to A2.Y /˝K for Y D U and Y D X n U .

Then A1 ˝K Š A2 ˝K.

Proof. By 3, there exists an isomorphism 'Y W A1.Y /˝K! A2.Y /˝K for Y D U
and Y D X n U such that KK.'Y / D ˛Y . It follows from 1 that ei are essential, so
by Theorem 3.3 of [15], ˛XnU � Œ�e2 � D Œ�e1 ��˛U . Therefore, KK.'XnU /� Œ�e2 � D
Œ�e1 � � KK.'U /. Hence, by Proposition 6.1 and Lemma 4.5 of [15], we have that
A1 ˝K Š A2 ˝K.

Definition 7. For a T0 topological space X , we will consider classes CX of
separable, nuclearC �-algebras in the bootstrap category of Rosenberg and Schochet
N such that

1. Any element in CX is a C �-algebra over X ;
2. If A and B are in CX and there exists an invertible element ˛ in KK.X IA;B/

which induces an isomorphism from FKCX .A/ to FKCX .B/, then there exists an
isomorphism ' W A ! B such that KK.'/ D ˛X , where ˛X is the element in
KK.A;B/ induced by ˛.

Remark 4. Let X be a finite T0-space, let U be an open subset of X , and let CU
and CXnU be classes of C �-algebras satisfying the conditions of Definition 7. If A1
and A2 are separable C �-algebras such that A1.U /;A2.U / 2 CU and A1.X n U /;
A2.X n U / 2 CXnU , then 3 in Theorem 9 holds.

Let CX and CY be classes of C �-algebras satisfy the conditions in Definition 7.
Let CXtY be the classes of C �-algebras consisting of elements A˚B with A 2 CX
and B 2 CY . Then CXtY satisfies the conditions in Definition 7.

Remark 5. Here we will provide some examples of classes satisfying the conditions
in Definition 7.

1. By [25], the class all stable, nuclear, separable, O1-absorbing C �-algebras that
are tight over a finite T0-space satisfy the conditions in Definition 7.

By Corollary 3.10 and Theorem 3.13 of [17] and by the results of [11], the
following classes of C �-algebras satisfies the conditions in Definition 7.

2. Let CXn be the class of nuclear, separable, tight C �-algebras A over Xn such that
A is stable, A.fng/ is a Kirchberg algebra, A.Œ1; n � 1�/ is an AF-algebra, and
Ki.AŒY �/ is finitely generated for all Y 2 LC.Xn/.
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3. Let C 0X2 be the class of unital graph C �-algebras with exactly one non-trivial
ideal with the ideal being an AF algebra and the quotient O1-absorbing, simple
C �-algebras. Let CX2 be the class of C �-algebras A such that A Š B˝ K for
some B 2 C 0X2 .

By [20], the following class of C �-algebras satisfy the conditions in Definition 7.

4. Let CX be the class of stable AF-algebras overX .

5.5.1 Linear Spaces

This case is solved in [17], and the reader is referred there for details. However,
since this is the most basic case in which our approach via Theorem 9 is applied, we
will explain the methods for the benefit of the reader.

Lemma 10. Let A be a graph C �-algebra such that A is a tight C �-algebra
over Xn.

1. If A.fng/ and A.f1g/ are O1-absorbing and A.Œ2; n�1�/ is an AF-algebra, then

e W 0! A.Œ2; n�/˝K! A˝K! A.f1g/˝K! 0

is a full extension.
2. If A.Œk; n�/ and A.Œ1; k � 2�/ are AF-algebras and A.fk� 1g/ is O1-absorbing,

then

e W 0! A.Œk; n�/˝K! A˝K! A.Œ1; k � 1�/˝K! 0

is a full extension.
3. If A.Œk; n�/ and A.Œ1; k � 2�/ are AF-algebras and A.fk� 1g/ is O1-absorbing,

then

e W 0! A.Œk � 1; n�/˝K! A˝K! A.Œ1; k � 2�/˝K! 0

is a full extension.

Proof. In [17], we prove 1 and 2. We now prove 3. Note that

0! A.fk � 1g/˝K! A.Œk � 2; k � 1�/˝K! A.fk � 2g/˝K! 0

is full since this is an essential extension and A.fk � 1g/ is O1-absorbing. Since
A.Œk; n�/ is the largest AF-ideal of A.Œk � 1; n�/ and A.Œk � 1; n�/=A.Œk; n�/ D
A.fk � 1g/ is O1-absorbing, by Proposition 3.10 of [19] and Lemma 1.5 of [13],
0 ! A.Œk; n�/ ˝ K ! A.Œk � 1; n�/ ˝ K ! A.fk � 1g/ ˝ K ! 0 is full.
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By Proposition 3.2 of [14], 0 ! A.Œk � 1; n�/ ˝ K ! A.Œk � 2; n�/ ˝ K !
A.fk � 2g/˝K! 0 is full. Since A.fk � 2g/ D A.Œk � 2; n�/=A.Œk � 1; n�/ is an
essential of A=A.Œk � 1; n�/, the extension in 3 is full by Proposition 5.4 of [15].

To solve the cases 3.7.5 and 4.3F.9, we now argue as follows:

Theorem 10. Let A1 andA2 be graphC �-algebras that are tightC �-algebras over
Xn. Suppose

1. Ai .fng/ and Ai .f1g/ are O1-absorbing;
2. Ai .Œ2; n � 1�/ is an AF-algebra; and
3. The K-groups of Ai are finitely generated.

Then A1 ˝K Š A2 ˝K if and only if FKCXn .A1 ˝K/ Š FKCXn .A2 ˝K/.

Proof. Let ei be the extension

0! Ai .Œ2; n�/˝K! Ai ˝K! Ai .f1g/˝K! 0:

By Lemma 10, ei is a full extension. Thus, Assumption 1 of Theorem 9 holds.
Suppose ˛ W FKCXn .A1 ˝K/ ! FKCXn .A2 ˝K/ is an isomorphism. Lift ˛ to an
invertible element x 2KK.XnIA1 ˝ K;A2 ˝ K/, such a lifting exists by Theo-
rem 4.14 of [30]. Therefore, Assumption 2 of Theorem 9 holds.

Note now that x induces invertible elements rŒ2;n�Xn
.x/ in KK.Œ2; n�IA1.Œ2; n�/ ˝

K;A2.Œ2; n�/˝K/ and rŒ1�Xn
.x/ in KK.A.f1g/˝K;A2.f1g/˝K/. Note that Ai .Œ2; n�/

has a smallest ideal Ai .fng/ which is O1-absorbing and the quotient Ai .Œ2; n� 1�/
is an AF algebra. By Theorem 3.9 of [17], there exists an isomorphism ' W
A1.Œ2; n�/ ˝ K ! A2.Œ2; n�/ ˝ K such that KL.'/ is the (necessarily invertible)
element in KL.A1.Œ2; n�/;A2.Œ2; n�// induced by x. Since the K-theory of A1 is
finitely generated, KL.A1.Œ2; n�/;A2.Œ2; n�// D KK.A1.Œ2; n�/;A2.Œ2; n�//. Thus,
KK.'/ is the invertible element in KK.A1.Œ2; n�/;A2.Œ2; n�// induced by x. By the
Kirchberg-Phillips classification, there exists an isomorphism  W A1.f1g/˝ K !
A2.f1g/˝ K lifting rŒ1�Xn

.x/. We have just shown that Assumption 3 of Theorem 9
holds.

By Theorem 9, we can conclude that A1 ˝K Š A2 ˝K.

Similarly, one solves 3.7.2, 4.3F.2, and 4.3F.4 using

Theorem 11. Let A1 andA2 be graphC �-algebras that are tightC �-algebras over
Xn. Suppose

1. Ai .Œk; n�/ and Ai .Œ1; k � 2�/ are AF algebras;
2. Ai .fk � 1g/ is O1-absorbing; and
3. The K-groups of Ai are finitely generated.

Then A1 ˝K Š A2 ˝K if and only if FKCXn .A1 ˝K/ Š FKCXn .A2 ˝K/.

A proof is given in [17].
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5.5.2 Accordion Spaces

Lemma 11. Let A be a graph C �-algebra with signature 4.F.x, and let I be the
smallest ideal of A.

1. When x D 3;5;7;9;A;B;D, then the extension 0 ! I ˝ K ! A ˝ K !
A=I˝K! 0 is full.

2. When x D 2;4;C, then the extension 0! I˝ K! A˝ K! A=I˝ K! 0

is full provided that A is unital.

Proof. First note that the extension 0 ! I ˝ K ! A ˝ K ! A=I ˝ K ! 0 is
essential. Hence, in the case 4.F.x for x D 3;5;7;9;B;D the extension is full since
I˝K is a simple, purely infinite, stable C �-algebra, which implies that Q.I˝K/ is
simple. IfA is unital and Y is the space 4.F.x for x D 2;4, and C, then the extension
is full since in this case I Š K and Q.K/ is simple. We are left with showing the
extension is full for the case 4.F.A. This case follows from Proposition 5.4 and
Corollary 5.6 of [15].

Lemma 12. Let A be a graph C �-algebra with tempered signature 4.3F.x for
x D 5;6;A;D. Then the ideal lattice of A is 0 E I1 E I2 E I3 E A and the
extension 0! I2 ˝K! A˝K! A=I2 ˝K! 0 is full.

Proof. We will show that e W 0 ! I2 ˝ K! I3 ˝ K! I3=I2 ˝ K! 0 is a full
extension. By Lemma 10, e is a full extension for x D 5;A;D. Consider the case
x D 6. Note that I2 and I3=I1 are isomorphic to non-AF graph C �-algebras with
exactly one nontrivial ideal. Therefore, by Proposition 3,

0! I1 ˝K! I2 ˝K! I2=I1 ˝K! 0

0! I2=I1 ˝K! I3=I1 ˝K! I3=I2 ˝K! 0

are full extensions. By Proposition 3.2 of [14], e is a full extension. The lemma now
follows from Proposition 5.4 of [15].

Lemma 13. Let A be a graph C �-algebra with tempered signature 4.39.x for
x D 2;6;9;A;B;C;D; or E. Let I be the greatest proper ideal of A.

1. If A is unital, then the extension 0! I˝K! A˝K! A=I˝K! 0 is full.
2. When x D 9;B;C;D, the extension 0! I˝K! A˝K! A=I˝ K! 0 is

full.

Proof. Suppose A is unital. Using the general theory of graph C �-algebras with
this specific ideal structure, we have that I is stable. Since A=I is simple and unital,
the conclusion now follows from Lemma 1.5 and Proposition 1.6 of [13]. We now
prove the extension 0 ! I ˝ K ! A ˝ K ! A=I ˝ K ! 0 is always full
for the spaces 4.39.x with x D 9;B;C;D. Note that I D I1 ˚ I2 with I1 simple
and I2 a tight C �-algebra over X2. By Lemma 4.5 of [17] and Corollaries 5.3 and
5.6 of [15], we have 0 ! I2 ˝ K ! A=I1 ˝ K ! .A=I/ ˝ K ! 0 is full.
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Since A=I2 ˝ K is a non-AF graph C �-algebra with exactly one nontrivial ideal,
the extension 0 ! I1 ˝ K ! A=I2 ˝ K ! A=I ˝ K ! 0 is a full extension
(cf. Proposition 3). Thus, by Lemma 4, 0! I˝K! A˝K! A=I˝K! 0 is
full.

Using the above lemmas and the Universal Coefficient Theorem of Bentmann
and Köhler [4], we get the following cases:

Corollary 2. Let A and B be graph C �-algebras that are tight over a finite
accordion space X . Assume that there exists an isomorphism from FKCX .A/ to
FKCX .B/. If

1. A and B both have tempered signature 4.F.7, 4.F.9, 4.39.B, 4.39.C, or
2. A and B both have finitely generated K-theory and have tempered signature

4.F.3, 4.F.A, 4.F.B, 4.39.9, 4.39.D, 4.3F.5, 4.3F.D, or
3. A and B both are unital and have tempered signature 4.F.2, 4.F.4, 4.F.5, 4.F.C,

4.F.D, 4.39.2, 4.39.6, 4.39.A, 4.39.E, 4.3F.6, 4.3F.A,

then A˝K Š B˝K.

Proof. By the above lemmas, all the extensions are full. Note that the specified
ideal and quotient for each space belongs to classes of C �-algebras satisfying the
conditions in Definition 7. Hence, the result now follows from Theorem 9 and the
UCT for accordion spaces.

5.5.3 Y -Shaped Spaces

Lemma 14. Let A be a graph C �-algebra with tempered signature 4.1F.x for x D
2;5;6;7, or D, and let I1 be the smallest ideal of A and let I2 be the ideal of A
containing I1 such that I2=I1 is simple.

1. When x D 2;6;7, or D, the extension 0! I2˝K! A˝K! A=I2˝K! 0

is full.
2. When x D 5, the extension 0! I2 ˝K! A˝ K! A=I2 ˝ K! 0 is full if

A is unital.

Proof. Let J1 and J2 be the maximal ideals of A containing I2. Suppose x D 2;6;7,
or D. Then, by Lemma 10, Proposition 3.2 of [14], and Corollaries 5.3 and 5.6 of
[15], 0 ! I2 ˝ K ! J` ˝ K ! J`=I2 ˝ K ! 0 is full. Hence, by Lemma 7,
0! I2 ˝K! A˝K! A=I2 ˝K! 0 is full.

Suppose that the signature is 4.1F.5 and A is unital. Assume that J1=I2 is an
AF-algebra and J2=I2 is purely infinite. By Lemma 10, 0 ! I2 ˝ K ! J2 ˝
K ! J2=I2 ˝ K ! 0 is full. Since A is a unital graph C �-algebra, we have that
I2=I1 Š K. Therefore, 0 ! I2=I1 ˝ K ! J1=I1 ˝ K ! J1=I2 ˝ K ! 0 is
full. Since I2 is stably isomorphic to a non-AF graph C �-algebra with exactly one
nontrivial ideal, by Proposition 3, 0 ! I1 ˝ K ! I2 ˝ K ! I2=I1 ˝ K ! 0 is
full. By Proposition 3.2 of [14],
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0! I2 ˝K! J1 ˝K! J1=I2 ˝K! 0

is full. Hence, by Lemma 7, 0! I2 ˝K! A˝K! A=I2 ˝K! 0 is full.

Lemma 15. Let A be a graph C �-algebra with tempered signature 4.3E.x for
x D 3;4;5;9;B, or D, and let I1 and I2 be the minimal ideals of A.

1. When x D 3;4;5;B;D, the extension 0 ! .I1 ˚ I2/ ˝ K ! A ˝ K !
A=.I1 ˚ I2/˝K! 0 is a full extension.

2. When x D 9, and A is unital, then 0 ! .I1 ˚ I2/˝ K ! A˝ K ! A=.I1 ˚
I2/˝K! 0 is a full extension.

Proof. Suppose x D 4;5;B, or D. Let I be the ideal of A containing .I1˚I2/ such
that I=.I1 ˚ I2/ is simple. Note that the push forward extension of the extension
0 ! .I1 ˚ I2/ ˝ K ! I ˝ K ! I=.I1 ˚ I2/ ˝ K ! 0 via the coordinate
projection .I1 ˚ I2/ ! Ii is a full extension since it is isomorphic to a non-AF
graph C �-algebras with exactly one nontrivial ideal. Therefore, by Lemma 4, 0 !
.I1 ˚ I2/ ˝ K ! I ˝ K ! I=.I1 ˚ I2/ ˝ K ! 0 is a full extension. By
Proposition 5.4 of [15], 0! .I1 ˚ I2/˝K! A˝K! A=.I1 ˚ I2/˝K! 0

is a full extension since I=.I1 ˚ I2/˝K is an essential ideal of A=.I1 ˚ I2/˝K.
We now prove the extension is full for the case x D 3. Note that in this case

I1 ˝ K and I2 ˝ K are purely infinite, simple C �-algebras. Let I be the ideal
of A containing .I1 ˚ I2/ such that I=.I1 ˚ I2/ is simple. By Lemmas 3 and 4,
0 ! .I1 ˚ I2/˝ K ! I˝ K ! I=.I1 ˚ I2/ ˝ K ! 0 is a full extension. The
conclusion now follows from Proposition 5.4 of [15] since I=.I1 ˚ I2/ ˝ K is an
essential ideal of A=.I1 ˚ I2/˝K.

Suppose x D 9 and A is unital. Then Ii is either K or a stable, purely infinite,
simple C �-algebra. Let I be the ideal containing I1 ˚ I2 such that I=.I1 ˚ I2/ is
simple. Note that the signature of I is 3.6. By Lemma 3, the push forward extension
of the extension 0 ! .I1 ˚ I2/˝ K ! I˝ K ! I=.I1 ˚ I2/˝ K ! 0 via the
coordinate projection .I1 ˚ I2/ ˝ K ! Ii ˝ K is essential, and hence full since
Q.Ii ˝ K/ is simple. Thus, by Lemma 4, 0 ! .I1 ˚ I2/ ˝ K ! I ˝ K !
I=.I1 ˚ I2/˝ K ! 0 is full. By Proposition 5.4 of [15], 0 ! .I1 ˚ I2/ ˝ K !
A˝K! A=.I1˚I2/˝K! 0 is a full extension since I=.I1˚I2/ is an essential
ideal of A=.I1 ˚ I2/.

Lemma 16. Let A be a graphC �-algebra with tempered signature 4.3E.7. Let I be
the ideal of A such that A=I is simple. Then 0! I˝K! A˝K! A=I˝K! 0

is a full extension.

Proof. Let I1 and I2 be the minimal ideals of A which is contained in I. Since
I=.I1 C I2/ is a non-unital, purely infinite, simple C �-algebra, we have that 0 !
I=.I1 C I2/˝ K ! A=.I1 C I2/˝ K ! A=I˝ K ! 0 is a full extension. The
conclusion of the lemma now follows from Corollary 5.3 of [15].

Lemma 17. Let A be a graph C �-algebra with tempered signature 4.1F.E. Let I
be the smallest ideal of A. Then 0! I˝K ! A˝ K! A=I˝ K! 0 is a full
extension.
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Proof. Let I1 be the ideal of A such that I1 contains I and I1=I is simple. Since
I1 is stably isomorphic to a non-AF graph C �-algebra with exactly one nontrivial
ideal, we have that 0! I˝K! I1 ˝K! I1=I˝K! 0 is full. Since I1=I is
an essential ideal of A=I, the conclusion of the lemma follows from Proposition 5.4
of [15].

Using the above lemmas and the results of [1], we get the following:

Corollary 3. Let A and B be graph C �-algebras with signature either 4.1F or
4.3E, and assume that there exists an isomorphism from FKCX .A/ to FKCX .B/. If

1. A and B both have tempered signature 4.1F.7, 4.1F.E, 4.3E.3, 4.3E.7, or
4.3E.D, or

2. A and B both have finitely generated K-theory and have tempered signature
4.1F.D, 4.3E.4 or 4.3E.5, or

3. A and B both are unital and have tempered signature 4.1F.2, 4.1F.5, 4.1F.6,
4.3E.9 or 4.3E.B,

then A˝K Š B˝K.

Proof. By the above lemmas, all the extensions are full. Note that the specified
ideal and quotient for each space belongs to classes of C �-algebras satisfying the
conditions in Definition 7. Hence, the result now follows from Theorem 9.

5.5.4 O-Shaped Spaces

Lemma 18. Let A be a graph C �-algebra that is a tight C �-algebra over the O-
shaped space 4.3B.7. Let I be the smallest ideal of A and let I1 and I2 be the ideals
of A which contain I and Ik=I is simple. Then 0 ! .I1 C I2/˝ K ! A˝ K !
A=.I1 C I2/˝K! 0 is a full extension.

Proof. Note that A=I is a tightC �-algebra over the space 3.6.5. Then by Lemma 4,
0! .I1 C I2/=I˝ K! A=I˝ K! A=.I1 C I2/˝ K ! 0 is a full extension
since I1=I and I2=I are purely infinite, simple C �-algebras. Also, since I is an
essential ideal of I1 C I2 and since I is a purely infinite, simple C �-algebra, we
have that 0 ! I ˝ K ! .I1 C I2/ ˝ K ! .I1 C I2/=I ˝ K ! 0 is a full
extension. The conclusion of the lemma now follows from Proposition 3.2 of [14]
since A=.I1 C I2/ is simple.

Lemma 19. Let A be a graph C �-algebra that is a tight C �-algebra over the O-
shaped space 4.3B.E. Let I be the smallest ideal of A. Then 0! I˝K! A˝K!
A=I˝K! 0 is a full extension.

Proof. Let I1 and I2 be the ideals of A which contain I and Ik=I is simple.
Since Ik ˝ K is isomorphic to a graph C �-algebra with exactly one non-trivial
ideal and Ik ˝ K is not an AF algebra, by Proposition 3, we have that 0 !
I ˝ K ! Ik ˝ K ! Ik=I ˝ K ! 0 is a full extension. By Lemma 7,
0 ! I ˝ K ! .I1 C I2/ ˝ K ! .I1 C I2/=I ˝ K ! 0 is a full extension.
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The conclusion of the lemma now follows from Proposition 5.4 of [13] since
.I1 C I2/=I˝K is an essential ideal of A=I.

Using the above lemmas and the results of [2], we get the following cases:

Corollary 4. Let A and B be graph C �-algebras that are tight over a O-shaped
space X . Assume that there exists an isomorphism from FKCX .A/ to FKCX .B/. If A
and B both have tempered signature 4.3B.7 or 4.3B.E, then A˝K Š B˝K.

Proof. By the above lemmas, all the extensions are full. Note that the specified
ideal and quotient for each space belongs to classes of C �-algebras satisfying the
conditions in Definition 7. Hence, the result now follows from Theorem 9.

5.6 Summary of Results

In this final section, we index our results. Cases that are open are indicated by “?”.
Cases that are solved in general are marked by “

p
”, and if we need to impose

conditions of finitely generatedK-theory or unitality, this is indicated by “
p
f:g:” or

“
p

1”, respectively.

5.6.1 One Point Spaces

Having nothing new to add, we include the simple case only for completeness.

1.0.x

0 �
p

Theorem 2, p. 96
1 �

p
Theorem 3, p. 97

5.6.2 Two Point Spaces

This case was solved in [19], so again we include it only for completeness.

2.1.x

0 � � p
Theorem 2, p. 96

1 � � p
Proposition 1, p. 97

2 � � p
Proposition 2, p. 98

3 � � p
Theorem 3, p. 97
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5.6.3 Three Point Spaces

We resolve the case of three primitive ideal spaces here, up to a condition of finite
generation which must be imposed in the cases of signature 3.7.2 and 3.7.5. We do
not know if this condition is necessary.

3.3.x 3.6.x

0 � � � p
Theorem 2, p. 96 0 � � � p

Theorem 2, p. 96

1 � � � p
Theorem 6, p. 105 1 � � � p

Theorem 4, p. 100

2 � � � p
Theorem 7, p. 110 2 � � � p

Theorem 5, p. 103

3 � � � p
Theorem 7, p. 110 3 � � � p

Theorem 5, p. 103

5 � � � p
Theorem 6, p. 105 5 � � � p

Theorem 4, p. 100

7 � � � p
Theorem 3, p. 97 7 � � � p

Theorem 3, p. 97

3.7.x

0 � � � p
Theorem 2, p. 96

1 � � � p
Proposition 1, p. 97

2 � � � p
f:g: Theorem 11, p. 116

3 � � � p
Proposition 1, p. 97

4 � � � p
Proposition 2, p. 98

5 � � � p
f:g: Theorem 10, p. 116

6 � � � p
Proposition 2, p. 98

7 � � � p
Theorem 3, p. 97

5.6.4 Four Point Spaces

In this section, we present our results for the case of four primitive ideals. As will
be obvious below, the strength of our results varies dramatically with the nature
of the spaces. In general, we can say quite a lot about all spaces apart from 4.E,
4.1E, and 4.3B. It may be interesting to note what makes these spaces difficult to
handle; indeed the case 4.E is an accordion space in which a general UCT is known
to hold, but it differs from the other accordion spaces by having poor separation
properties when it comes to establishing fullness. The O-shaped spaces are also
hard to separate fully, but have the added difficulty that no general UCT is known
for them.
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5.6.4.1 Accordion Spaces

4.E.x 4.F.x

0 � � � � p
Theorem 2,
p. 96

0 � � � � p
Theorem 2,
p. 96

1 � � � � p
Remark 2,
p. 102

1 � � � � p
Proposition 1,
p. 97

2 � � � � ? 2 � � � � p
1 Corollary 2,

p. 118

3 � � � � ? 3 � � � � p
f:g: Corollary 2,

p. 118

4 � � � � p
Theorem 8,
p. 111

4 � � � � p
1 Corollary 2,

p. 118

5 � � � � p
Theorem 8,
p. 111

5 � � � � p
1 Corollary 2,

p. 118

6 � � � � ? 6 � � � � p
Theorem 6,
p. 105

7 � � � � ? 7 � � � � p
Corollary 2,
p. 118

8 � � � � ? 8 � � � � p
Theorem 6,
p. 105

9 � � � � ? 9 � � � � p
Corollary 2,
p. 118

A � � � � ? A � � � � p
f:g: Corollary 2,

p. 118

B � � � � ? B � � � � p
f:g: Corollary 2,

p. 118

C � � � � ? C � � � � p
1 Corollary 2,

p. 118

D � � � � ? D � � � � p
1 Corollary 2,

p. 118

E � � � � ? E � � � � p
Theorem 6,
p. 105

F � � � � p
Theorem 3,
p. 97

F � � � � p
Theorem 3,
p. 97
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4.39.x 4.3F.x

0 � � � � p
Theorem 2,
p. 96

0 � � � � p
Theorem 2,
p. 96

1 � � � � p
Theorem 4,
p. 100

1 � � � � p
Proposition 1,
p. 97

2 � � � � p
1 Corollary 2,

p. 118
2 � � � � p

f:g: Theorem 11,
p. 116

3 � � � � p
Theorem 4,
p. 100

3 � � � � p
Proposition 1,
p. 97

4 � � � � p
Theorem 4,
p. 100

4 � � � � p
f:g: Theorem 11,

p. 116

5 � � � � p
Theorem 4,
p. 100

5 � � � � p
f:g: Corollary 2,

p. 118

6 � � � � p
1 Corollary 2,

p. 118
6 � � � � p

1 Corollary 2,
p. 118

7 � � � � p
Theorem 4,
p. 100

7 � � � � p
Proposition 1,
p. 97

8 � � � � p
Proposition 2,
p. 98

8 � � � � p
Proposition 2,
p. 98

9 � � � � p
f:g: Corollary 2,

p. 118
9 � � � � p

f:g: Theorem 10,
p. 116

A � � � � p
1 Corollary 2,

p. 118
A � � � � p

1 Corollary 2,
p. 118

B � � � � p
Corollary 2,
p. 118

B � � � � ?

C � � � � p
Corollary 2,
p. 118

C � � � � p
Proposition 2,
p. 98

D � � � � p
f:g: Corollary 2,

p. 118
D � � � � p

f:g: Corollary 2,
p. 118

E � � � � p
1 Corollary 2,

p. 118
E � � � � p

Proposition 2,
p. 98

F � � � � p
Theorem 3,
p. 97

F � � � � p
Theorem 3,
p. 97



5 Classification of Graph C�-Algebras with No More than Four Primitive Ideals 125

5.6.4.2 Fan Spaces

4.A.x 4.38.x

0

� � �

� p Theorem 2,
p. 96 0 � � �

�

p Theorem 2,
p. 96

1

� � �

� p Theorem 7,
p. 110 1 � � �

�

p Theorem 4,
p. 100

2

� � �

� p Theorem 6,
p. 105 3 � � �

�

p Theorem 4,
p. 100

3

� � �

� p Theorem 7,
p. 110 7 � � �

�

p Theorem 4,
p. 100

6

� � �

� p Theorem 6,
p. 105 8 � � �

�

p Theorem 5,
p. 103

7

� � �

� p Theorem 7,
p. 110 9 � � �

�

p Theorem 5,
p. 103

E

� � �

� p Theorem 6,
p. 105 B � � �

�

p Theorem 5,
p. 103

F

� � �

� p Theorem 3,
p. 97 F � � �

�

p Theorem 3,
p. 97
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5.6.4.3 Y -Shaped Spaces

4.1F.x 4.3E.x

0 �

�

�

�

p
Theorem 2, p. 96 0 �

�

�

�

p
Theorem 2, p. 96

1 �

�

�

�

p
Proposition 1, p. 97 1 �

�

�

�

p
Remark 2, p. 102

2 �

�

�

�

p
1 Corollary 3, p. 120 3 �

�

�

�

p
Corollary 3, p. 120

3 �

�

�

�

p
Proposition 1, p. 97 4 �

�

�

�

p
f:g: Corollary 3, p. 120

4 �

�

�

�

p
Remark 3, p. 109 5 �

�

�

�

p
f:g: Corollary 3, p. 120

5 �

�

�

�

p
1 Corollary 3, p. 120 7 �

�

�

�

p
Corollary 3, p. 120

6 �

�

�

�

p
1 Corollary 3, p. 120 8 �

�

�

�

p
Proposition 2, p. 98

7 �

�

�

�

p
Corollary 3, p. 120 9 �

�

�

�

p
1 Corollary 3, p. 120

C �

�

�

�

p
Remark 3, p. 109 B �

�

�

�

p
1 Corollary 3, p. 120

D �

�

�

�

p
f:g: Corollary 3, p. 120 C �

�

�

�

p
Proposition 2, p. 98

E �

�

�

�

p
Corollary 3, p. 120 D �

�

�

�

p
Corollary 3, p. 120

F �

�

�

�

p
Theorem 3, p. 97 F �

�

�

�

p
Theorem 3, p. 97
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5.6.4.4 O-Shaped Spaces

4.1E.x

0 �

�

�

�

p
Theorem 2, p. 96

1 �

�

�

�

p
Remark 2, p. 102

3 �

�

�

�

p
Remark 2, p. 102

4 �

�

�

�

p
Remark 3, p. 109

5 �

�

�

�

?

7 �

�

�

�

?

C �

�

�

�

p
Remark 3, p. 109

D �

�

�

�

?

F �

�

�

�

?

4.3B.x

0 �

�

�

�

p
Theorem 2, p. 96

1 �

�

�

�

p
Proposition 1, p. 97

2 �

�

�

�

?

3 �

�

�

�

?

6 �

�

�

�

?

7 �

�

�

�

p
Corollary 4, p. 121

8 �

�

�

�

p
Proposition 2, p. 98

9 �

�

�

�

?

A �

�

�

�

?

B �

�

�

�

?

E �

�

�

�

p
Corollary 4, p. 121

F �

�

�

�

p
Theorem 3, p. 97
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6.1 Introduction

In [16], Pimsner and Voiculescu showed that the irrational rotation C*-algebra A�
can be embedded in an AF C*-algebra. This construction has been studied (and
generalized) extensively; see for instance [13], [17], and [14].

In [9], the authors described a more canonical form of the Pimsner-Voiculescu
embedding (avoiding the infinitely many choices implicit in the original construc-
tion), at least for a generic set of � 2 R nQ. In any case, i.e., for any � 2 R nQ, the
C*-algebra A� was shown in [9] to embed naturally in a C*-algebra generated by
two commutative AF algebras, which in the present note we shall show forms what
Exel has called an alloy of these two algebras.

It might be remarked, incidentally, that the fact proved in [7] that A� is an AT

algebra can also be used to construct an embedding of A� in an AF algebra, using
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classification theory for simple AT algebras (which implies that any simple AT

algebra can be embedded in an AF algebra with the same ordered K0-group—
see [6]).

Another application of the fact that A� is AT is to re-derive and generalize
the uniqueness result for approximate homomorphisms from A� into a finite-
dimensional C*-algebra used in [16] (and studied and extended in [14], [17],
and [8]). (This uniqueness result was somewhat special in that it considered
only approximate homomorphisms defined by (direct sums of) what might be
called Voiculescu pairs of unitary matrices—powers of the matrices introduced by
Voiculescu in [19].)

Namely, one has uniqueness for arbitrary approximate homomorphisms from A�
into a finite-dimensional C*-algebra: any two such maps—defined (let us say) as
pairs of unitary elements of the codomain algebra with approximately the same
commutation relation as the two canonical unitary generators of A�—, which
in the natural sense agree K-theoretically on the approximate Rieffel projection
(cf. [11, 13]) must be approximately unitarily equivalent. (Presumably, this holds
for more general codomain algebras, with a more inclusive invariant, as it does
for exact homomorphisms; see e.g. [12].) To see this, it is sufficient to consider
exact homomorphisms into an asymptotic sequence algebra

Q
Bn=

L
Bn, with the

B’s finite-dimensional, which agree exactly on K0 (here, we are using the result of
[15] that the K0-group of A� is generated by the classes of the unit and the Rieffel
projection). Then, using just that the domain is a real rank zero AT algebra, and
that a circle algebra (continuous matrix-valued functions on the circle) is weakly
semiprojective (i.e., has stable relations), we see that the problem is reduced to
showing that, if A is the real rank zero inductive limit of a sequence of (direct sums
of) circle algebras, A1 ! A2 ! � � � , in which (because of real rank zero—cf. [5])
we may suppose that for each i the compositions of the map Ai ! AiC1 with
any two irreducible representations of AiC1 in the same connected component are
approximately unitarily equivalent, then any two (exact) homomorphisms of AiC1
into a finite-dimensional C*-algebra which agree on K0 are approximately unitarily
equivalent on Ai—which is immediate.

Neither of the techniques that we have just described (using [7]) would yield
as elementary an embedding construction as in [16], as both use facts concerning
the ordered K0-group of A� (which were not known until after the work of Rieffel
in [18] and Pimsner and Voiculescu in [15] and [16])—for instance that it is the
ordered K0-group of an AF algebra (because it is totally ordered—see [2], [3],
[4], and [1]). Let us just remark that, using just the original Pimsner-Voiculescu
uniqueness theorem, interpreted as a special case of the more general uniqueness
theorem established in the preceding paragraph, with the comparison between the
two maps stated in terms of the Rieffel–Loring K0-class, and with purely qualitative
estimates (no specific relation between epsilon and delta—the required summability
obtained simply by passing to a subsequence), a one-sided intertwining argument
embeddingA� into an AF algebra with K0-group ZCZ� can be constructed (taking
the unit into a projection with class 1 2 Z C Z� , and the Rieffel projection into a
projection with class �), knowing only that such an AF algebra exists.
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6.2 C �-Blends and C �-Alloys

C*-blends and C*-alloys were introduced by Ruy Exel in [10] to describe a situation
in which two C*-algebras may be said to act on each other. Let us recall:

Definition 1 (3.1 of [10]). Consider a quintuple � D .A;B; i; j; X/, where A, B
and X are C*-algebras, and

i W A! M.X/ and j W B ! M.X/

are *-homomorphisms of A and B into the multiplier algebra of X . Also consider
the linear maps

i ~ j W a˝ b 2 A P̋ B 7! i.a/j.b/ 2 M.X/;

and

j ~ i W b ˝ a 2 B P̋ A 7! j.b/i.a/ 2 M.X/;

where P̋ denotes the algebraic tensor product.
The system � was said in [10] to be

1. A C*-blend if the ranges of i ~ j and j ~ i are contained in X and are dense,
and

2. A C*-alloy if, in addition to (1), the maps i ~ j and j ~ i are injective.

Besides crossed-product C*-algebras, several examples of C*-blends were studied
in [10]. In this note, we provide additional examples. We shall show that the
irrational extended rotation algebras introduced in [9] are C*-blends, and that they
are in fact C*-alloys.

6.3 Irrational Extended Rotation Algebras are C �-Alloys

Consider the C*-algebra C.T/ as the canonical sub-C*-algebra of L1.T/, and
denote by � the automorphism of L1.T/ induced by translation by e2
i� :

f .z/ 7! f .e2
i�z/:

Note that C.T/ is invariant under the action of � .
Let fpi gi2�1 and fqj gi2�2 be two collections of subintervals of T, and denote

again by pi and qj the spectral projections of the canonical unitary f .z/ D z in
L1.T/ corresponding to the subintervals pi and qj .

Let us consider the following two commutative C*-algebras:

C.˝u/ WD C*.C.T/ [ f��k.pi /I i 2 �1; k 2 Zg/ 
 L1.T/
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and

C.˝v/ WD C*.C.T/ [ f�k.qj /I j 2 �2; k 2 Zg/ 
 L1.T/

where ˝u and ˝v denote the spectra of these algebras. Denote by u and v the
canonical generators of C.T/ inside C.˝u/ and C.˝v/, respectively.

Definition 2. For an irrational number � , and two given collections of subintervals
fpigi2�1 and fqj gj2�2 of the unit circle T, we shall refer to the universal C*-algebra
generated by C.˝u/ and C.˝v/ with respect to the relations

1. uv D e2
i�vu,
2. u�k.qj /u� D �kC1.qj / for any j 2 �2 and k 2 Z, and
3. v��k.pi /v� D ��k�1.pi / for any i 2 �1 and k 2 Z

as the (irrational) extended rotation algebra, and denote it by B� DB� .fpi g; fqj g/.
It is clear from the definition that the commutative C*-algebras C.˝u/ and C.˝v/

can be alternatively described as

C.˝u/ WD C*fu; v�kpivk I i 2 �1; k 2 Zg 
 B�

and

C.˝v/ WD C*fv; ukqj u�kI j 2 �2; k 2 Zg 
 B� ;

respectively. In what follows, we shall call any finite product of fv�kpivk I i 2
�1; k 2 Zg a spectral projection in C.˝u/ and any finite product of fukqju�k I j 2
�2; k 2 Zg a spectral projection in C.˝v/.

Lemma 1. For any continuous function f with norm one on the spectrum of u, and
for any " > 0, there is ı > 0 such that if g is a continuous function with norm one
on the spectrum of v with Supp.g/ contained in an open interval of length at most
ı, then

kf .u/g.v/k2 < "C
Z
jf j2 ;

where the integral is over the circle with normalized Lebesgue measure.

Proof. Choose a polynomialP D c�nz�nC� � �Cc�1z�1Cc0Cc1zCc2z2C� � � cnzn

such that ���P.u/� jf j2 .u/
��� < "=2:

Note that

c0 D
Z
P
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and thus
����c0 �

Z
jf j2

���� < "=2:

Since � is irrational, there exists ı > 0 such that

.u�ig.v/ui /g.v/ D 0; �n � i � n; i ¤ 0;

for any continuous function g on the spectrum of v with Supp.g/ contained in an
open interval of length at most ı. Then

g.v/ui g.v/ D 0; �n � i � n; i ¤ 0;

and hence

g.v/P.u/g.v/ D c0g
2.v/:

Therefore, if kgk D 1, then

kf .u/g.v/k2 D
���g.v/ jf j2 .u/g.v/

���
� kg.v/P.u/g.v/k C "=2
D ��c0g2.v/��C "=2
< .

Z
jf j2/ ��g2.v/��C "

� "C
Z
jf j2 ;

as desired.

Lemma 2. For any spectral projections p 2 C.˝u/ and q 2 C.˝v/, one has that

pq 2 C.˝v/ � C.˝u/:

Proof. Fix an arbitrary " > 0 for the time being.
One has decompositions

p D f .u/C f� C fC
and

q D g.v/C g� C gC
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with f and g positive and continuous, and f� and fC positive and with only one
point of discontinuity on the spectrum of u, and g� and gC positive and with only
one point of discontinuity on the spectrum of v.

Moreover, one may assume that each of Supp.f�/ and Supp.fC/ is inside an
open interval with length at most "=2.

Choose continuous functions Qf� and QfC such that

f� � Qf� � 1 and fC � QfC � 1;

and each of Supp. Qf�/ and Supp. QfC/ is contained inside an open interval with length
at most ".

With ı chosen as in Lemma 1 with respect to both Qf� and QfC, and the fixed ",
choose g� and gC such that each of Supp.g�/ and Supp.gC/ is in an open interval
with length at most ı=2.

Note that

pq D .f C f� C fC/.g C g� C gC/
D f .g C g� C gC/C .f� C fC/g C f�g� C f�gC C fCg� C fCgC:

Consider the element f�g�. Choose a positive continuous function Qg� such that

g� � Qg� � 1;

and Supp. Qg�/ is contained in an open interval with length at most ı. Then,

kf�g�k2 D
��f�g2�f�

�� � ��f�. Qg�/2f��� D
�� Qg�.f�/2 Qg��� �

��� Qg�. Qf�/2 Qg�
��� D

��� Qf� Qg�
���2 :

By Lemma 1, one has

��� Qf� Qg�
���2 � "C

Z
. Qf�/2

� "C " D 2";

and hence

kf�g�k �
p
2":

Similarly,

f�gC �
p
2"; fCg� �

p
2"; and fCgC �

p
2";



6 Remarks on the Pimsner-Voiculescu Embedding 137

and so

kpq � .f .g C g� C gC/C .f� C fC/g/k � 4
p
2":

Since f and g are continuous, one has (as by Proposition 3.4 of [10], a crossed
product is a C*-blend)

f .g C g� C gC/ 2 C.˝v/ � C.˝u/ and .f� C fC/g 2 C.˝v/ � C.˝u/:

Hence,

dist.pq;C.˝v/ � C.˝u// � 4
p
2":

Since " is arbitrary, one has pq 2 C.˝v/ � C.˝u/; as desired.

Theorem 1. The irrational extended rotation algebra B� is a C*-blend of C.˝u/

and C.˝v/; that is,

C.˝v/ � C.˝u/ D B� D C.˝u/ � C.˝v/:

Proof. It is sufficient to prove C.˝v/ � C.˝u/ D B� , as the second equality follows
on taking adjoints. Fix an arbitrary word

w0p01q01p02q02 � � �p0nq0n 2 B� ;

where w0 is a word in fu; u�; v; v�g, p0i is a spectral projection of u, and q0i is a
spectral projection of v.

By Lemma 2, p01q01 2 C.˝v/ � C.˝u/, and hence w0p01q01p02q02 � � �p0nq0n is in the
closure of the vector space spanned by the words

w00q001 p002 q002 � � �p00nq00n
with w00 a word in fu; u�; v; v�g, p00i a spectral projection of u, and q00i a spectral
projection of v (but still with the same n).

Repeating this procedure, one obtains eventually

w0p01q01p02q02 � � �p0nq0n 2 C.˝v/ � C.˝u/:

This shows that

B� D C.˝v/ � C.˝u/;

as desired.
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Now, let us show further that B� is a C*-alloy of C.˝u/ and C.˝v/ if either
fpigi2�1 or fqj gj2�1 is a collection of half-open intervals with the same orientation.
First, let us prove the corresponding statement for crossed-product C*-algebras.

Theorem 2. LetA be a unital C*-algebra and let � be an automorphism ofA. Then

.A;C.T/; A Ì� Z/

is a C*-alloy.

Proof. Recall that by Proposition 3.4 of [10], any crossed product is a C*-blend.
Let

a D
nX
iD1

bi ˝ ci 2 A P̋ C.T/:

Denote by

E W A Ì� Z! A

the canonical conditional expectation. Note that

E.d1ed2/ D d1E.e/d2 and E.e/ 2 C1

for any d1; d2 2 A and e 2 C.T/.
Suppose that

nX
iD1

bici D 0 2 A Ì� Z:

Without loss of generality, one may assume that fb1; b2; : : : ; bng are linearly
independent. Noting that

nX
iD1

bi ciu
k D 0 2 A Ì� Z; k 2 Z;

where u is the canonical unitary, and applying the conditional expectation to both
sides, one has

nX
iD1

biE.ciu
k/ D 0; k 2 Z:

Since E.ciuk/ 2 C1 and fb1; b2; : : : ; bng are linearly independent, one has

E.ciu
k/ D 0; k 2 Z; 1 � i � n;

and hence (by Fourier theory for C.T/) c1 D c2 D � � � D cn D 0. So a D 0.
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The same argument shows that if
Pn

iD1 ci bi D 0, then a D 0. This shows that

.A;C.T/; A Ì� Z/

is a C*-alloy.

Theorem 3. Let � be an irrational number, and assume that fpi gi2�1 or fqj gj2�1
is a collection of half-open intervals with the same orientation. Then

.C.˝u/;C.˝v/;B� /

is a C*-alloy.

Proof. By Theorem 1, the extended rotation algebra B� is a C*-blend of C.˝u/

and C.˝v/. We only have to show that the multiplication maps are one-to-one. The
argument is similar to that of Theorem 2. (We do not actually use Theorem 2.)

Let us prove the theorem in the case that fqj ; j 2 �1g are half-open intervals
with the same orientation. The other case can be proved in the same way. Note that
in this case, an element of C.˝v/ is zero if and only if all its Fourier coefficients are
zero.

Set

c D
nX
iD1

ai ˝ bi 2 C.˝u/ P̋ C.˝v/:

By Proposition 3.4 of [9], there is a canonical conditional expectation

Eu W B� ! C.˝u/

such that

Eu.d1ed2/ D d1Eu.e/d2 and E.e/ 2 C1

for any d1; d2 2 C.˝u/ and e 2 C.˝v/.
Suppose that

Pn
iD1 aibi D 0. Without loss of generality, one may assume

that fa1; a2; : : : ; ang are linearly independent. Then the same argument as that of
Theorem 2 shows that

Eu.biv
k/ D 0; k 2 Z; 1 � i � n:

Hence (by Fourier theory for L2.T/), b1 D b2 D � � � D bn D 0, and so c D 0.
The same argument also shows that if

Pn
iD1 biai D 0, then one also has that

c D 0. So

.C.˝u/;C.˝v/;B� /

is a C*-alloy.
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Remark 1. By Corollary 5.8 of [9], if there are nonzero minimal projections in each
of C.˝u/ and C.˝v/, then they are orthogonal. Hence, in this case, the C*-algebra
.C.˝u/;C.˝v/;B� / is not a C*-alloy.
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Chapter 7
Graph C �-Algebras with a T1 Primitive
Ideal Space

James Gabe

Abstract We give necessary and sufficient conditions which a graph should satisfy
in order for its associated C �-algebra to have a T1 primitive ideal space. We
give a description of which one-point sets in such a primitive ideal space are
open, and use this to prove that any purely infinite graph C �-algebra with a T1
(in particular Hausdorff) primitive ideal space, is a c0-direct sum of Kirchberg
algebras. Moreover, we show that graphC �-algebras with a T1 primitive ideal space
canonically may be given the structure of a C. QN/-algebra, and that isomorphisms of
their QN-filteredK-theory (without coefficients) lift toE. QN/-equivalences, as defined
by Dadarlat and Meyer.

Keywords Graph C �-algebras • Primitive ideal space • Filtered K-theory
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7.1 Introduction

When classifying non-simple C �-algebras a lot of focus has been on C �-algebras
with finitely many ideals. However, Dadarlat and Meyer recently proved in [2]
a Universal Multicoefficient Theorem in equivariant E-theory for separable C �-
algebras over second countable, zero-dimensional, compact Hausdorff spaces. In
particular, together with the strong classification result of Kirchberg [7], this shows
that any separable, nuclear, O1-absorbing C �-algebra with a zero-dimensional,
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compact Hausdorff primitive ideal space, for which all simple subquotients are in
the classical bootstrap class, is strongly classified by its filtered totalK-theory. This
suggests and motivates the study of C �-algebras with infinitely many ideals, in the
eyes of classification.

In this paper we consider graph C �-algebras with a T1 primitive ideal space,
i.e. a primitive ideal space in which every one-point set is closed. Clearly our main
interest are such graph C �-algebras with infinitely many ideals, since any finite
T1 space is discrete. In Sect. 7.2 we recall the definition of graph C �-algebras and
many of the related basic concepts. In particular, we give a complete description
of the primitive ideal space of a graph C �-algebra. In Sect. 7.3 we find necessary
and sufficient condition which a graph should satisfy in order for the induced C �-
algebra to have a T1 primitive ideal space. In Sect. 7.4 we prove that a lot of subsets
of such primitive ideal spaces are both closed and open. In particular, we give a
complete description of when one-point sets are open. We use this to show that
any purely infinite graph C �-algebra with a T1 primitive ideal space is a c0-direct
sum of Kirchberg algebras. Moreover, we show that any graph C �-algebra with a
T1 primitive ideal space may be given a canonical structure of a (not necessarily
continuous) C. QN/-algebra, where QN is the one-point compactification of N. As an
ending remark, we prove that QN-filteredK-theory classifies these C. QN/-algebras up
to E. QN/-equivalence, as defined by Dadarlat and Meyer in [2].

7.2 Preliminaries

We recall the definition of a graph C �-algebra and many related definitions and
properties. Let E D .E0;E1; r; s/ be a countable directed graph, i.e. a graph with
countably many vertices E0, countably many edgesE1 and a range and source map
r; sWE1 ! E0 respectively. A vertex v 2 E0 is called a sink if s�1.v/ D ; and
an infinite emitter if js�1.v/j D 1. A graph with no infinite emitters is called
row-finite.

We define the graph C �-algebra of E , C �.E/, to be the universal C �-algebra
generated by a family of mutually orthogonal projections fpv W v 2 E0g and partial
isometries with mutually orthogonal ranges fse W e 2 E1g, subject to the following
Cuntz-Krieger relations

1. s�e se D pr.e/ for e 2 E1,
2. ses�e � ps.e/ for e 2 E1,
3. pv DPe2s�1.v/ ses�e for v 2 E0 such that 0 < js�1.v/j <1.

By universality there is a gauge action � WT ! Aut.C �.E// such that �z.pv/ D
pv and �z.se/ D zse for v 2 E0; e 2 E1 and z 2 T. An ideal in C �.E/ is said to be
gauge-invariant if is invariant under � . All ideals are assumed to be two-sided and
closed.

If ˛1; : : : ; ˛n are edges such that r.˛i / D s.˛iC1/ for i D 1; : : : ; n � 1, then
we say that ˛ D .˛1; : : : ; ˛n/ is a path, with source s.˛/ D s.˛1/ and range
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r.˛/ D r.˛n/. A loop is a path of positive length such that the source and range
coincide, and this vertex is called the base of the loop. A loop ˛ is said to have an
exit, if there exist e 2 E1 and i D 1; : : : ; n such that s.e/ D s.˛i / but e ¤ ˛i .
A loop ˛ is called simple if s.˛i / ¤ s.˛j / for i ¤ j . A graph E is said to have
condition (K) if each vertex v 2 E0 is the base of no (simple) loop or is the base of
at least two simple loops. It turns out that a graph E has condition (K) if and only if
every ideal in C �.E/ is gauge-invariant if and only if C �.E/ has real rank zero.

For v;w 2 E0 we write v 	 w if there is a path ˛ with s.˛/ D v and r.˛/ D w.
A subset H of E0 is called hereditary if v 	 w and v 2 H implies that w 2 H .
A subsetH ofE0 is called saturated if whenever v 2 E0 satisfies 0 < js�1.v/j <1
and r.s�1.v// 
 H then v 2 H . If X is a subset of E0 then we let ˙H.X/
denote the smallest hereditary and saturated set containing X . If H is hereditary
and saturated we define

H fin1 D fv 2 E0nH W js�1.v/j D 1 and 0 < js�1.v/ \ r�1.E0nH/j <1g;
H;1 D fv 2 E0nH W js�1.v/j D 1 and s�1.v/ \ r�1.E0nH/ D ;g:

By [1, Theorem 3.6] there is a one-to-one correspondence between pairs .H;B/,
where H 
 E0 is hereditary and saturated and B 
 H fin1 , and the gauge-invariant
ideals of C �.E/. In fact, this is a lattice isomorphism when the different sets are
given certain lattice structures. The ideal corresponding to .H;B/ is denoted JH;B
and if B D ; we denote it by JH .

A non-empty subset M 
 E0 is called a maximal tail if the following three
conditions are satisfied.

1. If v 2 E0;w 2M and v 	 w then v 2M .
2. If v 2 M and 0 < js�1.v/j < 1 then there exists e 2 E1 such that s.e/ D v

and r.e/ 2M .
3. For every v;w 2M there exists y 2M such that v 	 y and w 	 y.

Note thatE0nM is hereditary by 1 and saturated by 2. Moreover, by 3 it follows that
.E0nM/;1 is either empty or consists of exactly one vertex. We let M .E/ denote
the set of all maximal tails inE , and let M� .E/ denote the set of all maximal tailsM
in E such that each loop in M has an exit inM . We let M	 .E/ DM .E/nM�.E/.

If X 
 E0 then define

˝.X/ D fw 2 E0nX W w � v for all v 2 Xg:
Note that if M is a maximal tail, then ˝.M/ D E0nM . For a vertex v 2 E0,
E0n˝.v/ is a maximal tail if and only if v is a sink, an infinite emitter or if v is the
base of a loop.

We define the set of breaking vertices to be

BV.E/ D fv 2 E0 W js�1.v/j D 1 and 0 < js�1.v/nr�1.˝.v//j <1g:

Hence an infinite emitter v is a breaking vertex if and only if v 2 ˝.v/fin1.
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We should warn the reader that it is customary to say that the elements of H fin1
are called breaking vertices of H , where H is hereditary and saturated. In these
terms, a vertex v 2 E0 is a breaking vertex, i.e. v 2 BV.E/, if and only if v
is a breaking vertex of ˝.v/. But beware, a vertex which is a breaking vertex of
some hereditary and saturated set need not be a breaking vertex in general. In order
to avoid confusion we will only use the term breaking vertex as a name for the
elements in BV.E/.

In [6] they define for each N 2 M	 .E/ and t 2 T a (primitive) ideal RN;t , and
prove that there is a bijection

M� .E/ t BV.E/ t .M	 .E/ � T/! PrimC �.E/

given by

M�.E/ 3M 7! J˝.M/;˝.M/fin
1

BV.E/ 3 v 7! J˝.v/;˝.v/fin
1

nfvg
M	 .E/ � T 3 .N; t/ 7! RN;t :

In [6], Hong and Szymaǹski give a complete description of the hull-kernel
topology on PrimC �.E/ in terms of the maximal tails and breaking vertices. In
order to describe this we use the following notation. Whenever M 2 M	 .E/ there
is a unique (up to cyclic permutation) simple loop L D .˛1; : : : ; ˛n/ inM such that
M D fv 2 E0 W v 	 s.˛i / for some ig, and we denote by L0M the set of vertices
fs.˛1/; : : : ; s.˛n/g. If Y 
M	 .E/ we let

Ymin WD fU 2 Y W for all U 0 2 Y;U 0 ¤ U there is no path from L0U to L0U 0

g;
Y1 WD fU 2 Y W for all V 2 Ymin there is no path from L0U to L0V g:

Due to a minor mistake in [6] the description of the topology is however not
entirely correct. We will give a correct description below and explain what goes
wrong in the original proof in Remark 1.

Theorem 1 (Hong-Szymaǹski). Let E be a countable directed graph. Let X 

M� .E/;W 
 BV.E/; Y 
 M	 .E/, and let D.U / 
 T for each U 2 Y . If
M 2M� .E/; v 2 BV.E/;N 2M	 .E/, and z 2 T, then the following hold.

1. M 2 X if and only if one of the following three conditions holds.

a. M 2 X ,
b. M 
SX and˝.M/;1 D ;,
c. M 
SX and js�1.˝.M/;1/ \ r�1.

S
X/j D 1.

2. v 2 X if and only if v 2SX and js�1.v/\ r�1.SX/j D 1.
3. .N; z/ 2 X if and only if N 
SX .
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4. M 2 W if and only if either

a. M 
 E0nTw2W ˝.w/ and˝.M/;1 D ;, or
b. M 
 E0nTw2W ˝.w/ and js�1.˝.M/;1/\ r�1.E0nTw2W ˝.w//j D 1.

5. v 2 W if and only if either

a. v 2 W , or
b. v 2 E0nTw2W ˝.w/ and js�1.v/ \ r�1.E0nTw2W ˝.w//j D 1.

6. .N; z/ 2 W if and only if N 
 E0nTw2W ˝.w/.
7. M is in the closure of f.U; t/ W U 2 Y; t 2 D.U /g if and only if one of the

following four conditions holds.

a. M 
SY1 and˝.M/;1 D ;,
b. M 
SY1 and js�1.˝.M/;1/ \ r�1.

S
Y1/j D 1,

c. M 
SYmin and˝.M/;1 D ;,
d. M 
SYmin and js�1.˝.M/;1/\ r�1.

S
Ymin/j D 1.

8. v is in the closure of f.U; t/ W U 2 Y; t 2 D.U /g if and only if either

a. v 2SY1 and js�1.v/ \ r�1.SY1/j D 1, or
b. v 2SYmin and js�1.v/ \ r�1.SYmin/j D 1.

9. .N; z/ is in the closure of f.U; t/ W U 2 Y; t 2 D.U /g if and only one of the
following three conditions holds.

a. N 
SY1,
b. N … Ymin and N 
SYmin,
c. N 2 Ymin and z 2 D.N/.
Before explaining what goes wrong in the original proof we give an example that

illustrates the mistake in the original theorem.

Example 1. Let E denote the graph

v u,� -, w;

i.e.E0 D fu; v;wg and u emits infinitely to both v and w. This has the maximal tails
fug; fu; vg; fu;wg. Note that

J˝.fu;vg/;˝.fu;vg/fin
1

D Jfwg and J˝.fug/;˝.fug/fin
1

D Jfv;wg:

Since Jfwg 
 Jfv;wg it follows that fug 2 ffu; vgg.
The original theorem [6, Theorem 3.4] states that fug 2 ffu; vgg if and only if

fug 
 fu; vg and s�1.˝.fug/;1/\ r�1.˝.fu; vg// is finite:
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However,

s�1.˝.fug/;1/ \ r�1.˝.fu; vg// D s�1.fug/\ r�1.fwg/
is infinite, which is a contradiction.

In the proof of the original theorem they prove, correctly, what in the above
example corresponds to the statement fug 2 ffu; vgg if and only if u … fwgfin1. It is
the latter statement which they reformulate incorrectly, as is described in the remark
below.

Remark 1. The minor mistake in the original proof of Theorem 1 is an error which
occurs in the proofs of Lemma 3.3 and Theorem 3.4 of [6]. We will explain what
goes wrong. Suppose that M is a maximal tail, K is a hereditary and saturated set
such that K 
 ˝.M/, and that B 
 Kfin1. Note that Bn˝.M/;1 
 ˝.M/ [
˝.M/fin1. Hence if w 2 ˝.M/;1 then JK;B 
 J˝.M/;˝.M/fin

1

if and only if w … B ,
since w … ˝.M/ [ ˝.M/fin1. In the cases we consider we have that w 2 B if
and only if w 2 Kfin1. Now it is claimed that w … Kfin1 if and only if s�1.w/ \
r�1.K/ is finite. However, this is not the case. If both s�1.w/\r�1.K/ and s�1.w/\
r�1.E0nK/ are infinite then w … Kfin1. The correct statement would be that w … Kfin1
if and only if js�1.w/ \ r�1.E0nK/j D 1.

A similar thing occurs in the case where v 2 BV.E/. Here we have, in the cases
we consider, that JK;B 
 J˝.v/;˝.v/fin

1

nfvg if and only if v … Kfin1. Again, the correct
statement becomes v … Kfin1 if and only if js�1.v/\ r�1.E0nK/j D 1.

After changing these minor mistakes, one obtains Theorem 1 above.

7.3 T1 Primitive Ideal Space

Recall that a topological space is said to satisfy the separation axiom T1 if every
one-point set is closed. In particular, every Hausdorff space is a T1 space. For a C �-
algebra A the primitive ideal space PrimA is T1 exactly if every primitive ideal is a
maximal ideal. All of our ideals are assumed to be two-sided and closed.

As shown in [1], every gauge-invariant primitive ideal of a graph C �-algebra
may be represented by a maximal tail or by a breaking vertex. The following lemma
shows that we only need to consider maximal tails.

Lemma 1. LetE be a graph such that Prim.C �.E// is T1. ThenE has no breaking
vertices.

Proof. Suppose E has a breaking vertex v. Then

J˝.v/;˝.v/fin
1

nfvg and J˝.v/;˝.v/fin
1

are primitive ideals of C �.E/, the former being a proper ideal of the latter by [1,
Corollary 3.10]. Hence
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J˝.v/;˝.v/fin
1

2 fJ˝.v/;˝.v/fin
1

nfvgg

and thus C �.E/ can not have a T1 primitive ideal space. ut
It turns out that it might be helpful to consider gauge-invariant ideals which are

maximal in the following sense.

Definition 1. Let E be a countable directed graph and let J be a proper ideal of
C �.E/. We say that J is a maximal gauge-invariant ideal if J is gauge-invariant
and if J and C �.E/ are the only gauge-invariant ideals containing J .

The following theorem gives a complete description of the graphs whose induced
C �-algebras have a T1 primitive ideal space.

Theorem 2. Let E be a countable directed graph. The following are equivalent.

1. C �.E/ has a T1 primitive ideal space,
2. E has no breaking vertices, and wheneverM and N are maximal tails such that
M is a proper subset of N , then ˝.M/;1 is non-empty, and

js�1.˝.M/;1/\ r�1.N /j <1;

3. E has no breaking vertices, and J˝.M/;˝.M/fin
1

is a maximal gauge-invariant ideal
in C �.E/ for any maximal tail M ,

4. E has no breaking vertices, and the map M 7! J˝.M/;˝.M/fin
1

is a bijective map
from the set of maximal tails of E onto the set of all maximal gauge-invariant
ideals of C �.E/.

The last condition in 2 of the theorem may look complicated but it is easy to
describe. It says, that if M ¨ N are maximal tails then M must contain an infinite
emitter v which only emits edges out of M , and only emits finitely many edges
to N . Note that this is equivalent to v 2 ˝.N/fin1.

Proof. We start by proving 1, 2. By Lemma 1 we may restrict to the case where
E has no breaking vertices. The proof is just a translation of Theorem 1 into our
setting. We have four cases.

Case 1: Let M;N 2 M�.E/. By Theorem 1 we have M 2 fN g if and only if
one of the following three holds: .i/ M D N , .ii/ M ¨ N and ˝.M/;1 D ;,
.iii/ M ¨ N , ˝.M/;1 ¤ ; and

js�1.˝.M/;1/\ r�1.N /j D 1:

We eliminate the possibilities .ii/ and .iii/ exactly by imposing the conditions
in 2.

Case 2: Let .M; z/ 2M	 .E/�T andN 2M� .E/. By Theorem 1, .M; z/ 2 fN g
if and only if M 
 N . Since M 2 M	 .E/ it follows that ˝.M/;1 D ; and thus
the conditions in 2 says M ª N .
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Case 3: Let .N; t/ 2 M	 .E/ � T and M 2 M� .E/. Note that fN gmin D fN g
and fN g1 D ;. By Theorem 1 we have M 2 f.N; t/g if and only if one of the
following two holds: .i/ M 
 N and ˝.M/;1 D ;, .i i/ M 
 N , ˝.M/;1 ¤ ;
and

js�1.˝.M/;1/\ r�1.N /j D 1:

Conditions .i/ and .ii/ do not hold exactly when assuming the conditions of 2.
Case 4: Let .M; z/; .N; t/ 2 M	 .E/ � T. By Theorem 1 we have .M; z/ 2

f.N; t/g if and only if either M ¨ N , or M D N and z D t . Note that
condition 9a of the theorem can never be satisfied. Since the maximal tailM satisfies
˝.M/;1 D ; the conditions of 2 say M 
 N if and only if M D N thus finishing
1, 2.

We will prove 1 ) 3. In order to simplify matters, we replace E with its
desingularisation F (see [4]) thus obtaining a row-finite graph without sinks.
Since E has no breaking vertices by Lemma 1, there is a canonical one-to-one
correspondence between M .E/ and M .F / and a lattice isomorphism between the
ideal lattices of C �.E/ and C �.F / such that M 0 7! M implies J˝.M 0/;˝.M 0/fin

1

7!
J˝.M/. In this case J˝.M 0/;˝.M 0/fin

1

is a maximal gauge-invariant ideal if and only if
J˝.M/ is a maximal gauge-invariant ideal and thus it suffices to prove that J˝.M/ is
a maximal gauge-invariant ideal in C �.F / for M 2M .F /.

Suppose J˝.M/ 
 JH for some hereditary and saturated set H ¤ F 0. Since F
is row-finite without sinks we may find an infinite path ˛ in F nH . Let

N D fv 2 F W v 	 s.˛j / for some j g

which is a maximal tail such that N 
 F 0nH . Hence˝.M/ 
 H 
 ˝.N/ which
implies N 
 M . Since F is row-finite, ˝.N/;1 is empty, and thus since 1 , 2,
M D N . Hence H D ˝.M/ and thus 1) 3.

We will prove 3 ) 4. Again, we let F be the desingularisation of E and note
that 4 holds for F if and only if it holds for E . Note that 3 implies that the map in 4
is well-defined, and this is clearly injective. Let H be a hereditary and saturated set
in F such that JH is a maximal gauge-invariant ideal in C �.F /. As above, we may
find a maximal tailM such thatH 
 ˝.M/which implies JH 
 J˝.M/. Since JH
is a maximal gauge-invariant ideal, H D ˝.M/ which proves surjectivity of the
map and finishes 3) 4.

For 4 ) 1 we may again replace E by its desingularisation F . Since 1 , 2

and F is row-finite, 1 is equivalent to the following: if M 
 N are maximal tails
then M D N , since ˝.M/;1 D ; for every maximal tail M . Let M 
 N be
maximal tails in F . Then J˝.N/ 
 J˝.M/ are maximal gauge-invariant ideals and
thus N DM , which finishes the proof. ut
Definition 2. Let E be a countable directed graph. If E satisfies one (and hence
all) of the conditions in Theorem 2, then we say that E is a T1 graph.
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For row-finite graphs the above theorem simplifies significantly.

Corollary 1. Let E be a row-finite graph. The following are equivalent.

1. E is a T1 graph,
2. If M 
 N are maximal tails, then M D N ,
3. J˝.M/ is a maximal gauge-invariant ideal in C �.E/ for any maximal tail M ,
4. The map M 7! J˝.M/ is a bijective map from the set of maximal tails of E onto

the set of all maximal gauge-invariant ideals of C �.E/,

Proof. Since E is row-finite it has no breaking vertices and ˝.M/;1 is empty for
any maximal tail M . Hence it follows from Theorem 2. ut

We will end this section by constructing a class of graph C �-algebras, all of
which have a non-discrete T1 primitive ideal space.

Example 2. Let B be a simple AF-algebra and let F be a Bratteli diagram of B as
in [3], such that the vertex set F 0 is partitioned into vertex sets F 0

n D fw1n; : : : ;wknn g
and every edge with a source in F 0

n has range in F 0
nC1. LetG1;G2; : : : be a sequence

of graphs all of which have no non-trivial hereditary and saturated sets. Construct a
graph E as follows:

E0 D F 0 [
1[
nD1

G0
n;

E1 D F 1 [
1[
nD1

G1
n [

1[
nD1
fe1n; : : : eknn g

where the range and source maps do not change on F 1 [ S1nD1 G1
n and where

s.e
j
n / D wjn and r.ejn / 2 G0

n.
Using that F and each Gn have no non-trivial hereditary and saturated sets we

get that the maximal tails of E are

Mn D
n[

kD1
F 0
k [G0

n;

M1 D
1[
kD1

F 0
k D F 0:

Hence no maximal tail is contained in another and thus the primitive ideal space of
C �.E/ is T1. For any of these maximal tailsM , each vertex inM emits only finitely
many edges to ˝.M/ and thus ˝.M/fin1 is empty. The quotients C �.E/=J˝.Mn/

are Morita equivalent C �.Gn/ and C �.E/=J˝.M
1

/ D C �.F / which is Morita
equivalent to B .
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If, in addition, each Gn has condition (K) then one can verify that PrimC �.E/
is homeomorphic to QN D N [ f1g, the one-point compactification of N. Such a
homeomorphism may be given by

QN 3 n 7! J˝.Mn/ 2 PrimC �.E/:

7.4 Clopen Maximal Gauge-Invariant Ideals

Whenever a subset of a topological space is both closed and open, then we say
that the set is clopen. In this section we give a description of which one-point sets
in the primitive ideal space of a T1 graph are clopen. In fact, we describe which
maximal gauge-invariant ideals in the primitive ideal space correspond to clopen
sets. We use this description to show that every purely infinite graph C �-algebra
with a T1 primitive ideal space is a c0-direct sum of Kirchberg algebras. Moreover,
we prove that graph C �-algebras with a T1 primitive ideal space are canonically
C. QN/-algebras, which are classified up to E. QN/-equivalence by their QN-filtered
K-theory.

In order to describe the clopen maximal gauge-invariant ideals, we need a notion
of when a maximal tail distinguishes itself from all other maximal ideals in a certain
way.

Definition 3. LetE be a T1 graph and letM be a maximal tail inE . We say thatM
is isolated if either

1. M contains a vertex which is not contained in any other maximal tail, or
2. ˝.M/;1 is non-empty and

js�1.˝.M/;1/ \ r�1
0
@ [
N2MM .E/

N

1
A j <1:

where MM.E/ denotes the set of all maximal tails N such that M 
 N .

This definition may look strange but it turns out that a maximal tail corresponds
to a clopen maximal gauge-invariant ideal if and only if it is isolated, see Theorem 3.

Remark 2. For a row-finite T1 graph E the above definition simplifies, since
˝.M/;1 is empty for any maximal tail M . Hence, in this case, a maximal tail
is isolated if and only if it contains a vertex which is not contained in any other
maximal tail.

Example 3. Consider the two graphs
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w

����
��
��
��

�� ���
��

��
��

�

����
���

���
���

���
�� w1 ��

��

w2 ��

��

w3 ��

��

� � � :

v1 v2 v3 � � � v1 v2 v3

The latter graph is the desingularisation of the former but without changing sinks
to tails. The maximal tails of the former graph are given by Nn D fw; vng and
N1 D fwg. The maximal tails of the latter graph are

Mn D fw1; : : : ;wn; vng;
M1 D fw1;w2; : : : g:

Hence both graphs are easily seen to be T1 graphs. All the maximal tailsNn andMn

for n 2 N are easily seen to be isolated, and by Remark 2,M1 is not isolated. Since
˝.N1/ D fwg and

js�1.w/\ r�1
0
@ [
N2MN

1

.E/

N

1
A j D 1

we note thatN1 is not isolated. In fact, by Corollary 4 below,N1 would be isolated
if and only if M1 was isolated.

The latter graph is an example of a graph in Example 2, with B D C and
each Gn consisting of one vertex and no edges. Since the graph has condition
(K), the primitive ideal space is homeomorphic to QN D N [ f1g, the one-point
compactification of N, by the map

QN 3 n 7! J˝.Mn/:

It turns out that many maximal tails are isolated, as can be seen in the following
lemma.

Lemma 2. Let E be a T1 graph and let M be a maximal tail which contains a sink
or a loop. Then M is isolated.

Proof. Let v 2M be the sink or the base of a loop inM , and note that˝.v/;1 D ;.
If N is a maximal tail such that v 2 N then E0n˝.v/ 
 N and since ˝.v/;1
is empty, N D E0n˝.v/ by Theorem 2. Hence v is not contained in any other
maximal tail than M and thusM is isolated. ut

The following is the main theorem of this section, mainly due to all the corollaries
following it.

Theorem 3. Let E be a countable directed graph for which the primitive ideal
space of C �.E/ is T1, and let M be a maximal tail in E . Then
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fp 2 PrimC �.E/ W J˝.M/;˝.M/fin
1


 pg 
 PrimC �.E/

is a clopen set if and only if M is isolated.
In particular, if M 2M� .E/, then the one-point set

fJ˝.M/;˝.M/fin
1

g 
 PrimC �.E/

is clopen if and only if M is isolated, and if M 2M	 .E/ then

fRM;t W t 2 Tg 
 PrimC �.E/

is a clopen set homeomorphic to the circle S1.

Proof. To ease notation define

UM WD fp 2 PrimC �.E/ W J˝.M/;˝.M/fin
1


 pg:

By definition UM is closed. By [6, Lemma 2.6] it follows that if J is a gauge-
invariant ideal, M 2 M	 .E/ and t 2 T, then J 
 RM;t if and only if J 

J˝.M/;˝.M/fin

1

. We will use this fact several times throughout the proof, without
mentioning it.

Suppose UM is clopen. If M 2 M	 .E/ then M contains a loop and is thus
isolated by Lemma 2. Hence we may suppose thatM 2M� .E/ for which it follows
that UM D fJ˝.M/;˝.M/fin

1

g. Since UM is open there is a unique ideal J such that

fJ˝.M/;˝.M/fin
1

g D fp 2 PrimC �.E/ W J ª pg:

Suppose J is not gauge-invariant. Then we can find a z 2 T such that �z.J / ¤ J .
Note that �z.J / ª �z.J˝.M/;˝.M/fin

1

/ D J˝.M/;˝.M/fin
1

. Further, for an arbitrary p 2
PrimC �.E/nfJ˝.M/;˝.M/fin

1

g, we have �z.J / 
 �z.p/, since J 
 p. Since �z fixes
J˝.M/;˝.M/fin

1

it induces a bijection from PrimC �.E/nfJ˝.M/;˝.M/fin
1

g to itself and
thus �z.J / 
 p for any primitive ideal p ¤ J˝.M/;˝.M/fin

1

. However, this contradicts
the uniqueness of J , and thus J must be gauge-invariant.

Since J is gauge-invariant, J D JH;B for a hereditary and saturated set H and
B 
 H fin1 . If H ª ˝.M/ then any vertex v 2 H such that v 2 M is not contained
in any other maximal tail, since JH;B 
 J˝.N/;˝.N/fin

1

for any maximal tailN ¤ M .
Hence we may restrict to the case whereH 
 ˝.M/. Since JH;B ª J˝.M/;˝.M/fin

1

,

B ª ˝.M/[˝.M/fin1. It is easily observed that Bn˝.M/;1 
 ˝.M/[˝.M/fin1
and hence it follows that ˝.M/;1 D fwg for some vertex w and that w 2 B . Recall
that MM.E/ D fN 2M .E/ WM 
 N g. Since w 2 H fin1 we have

js�1.w/ \ r�1.E0nH/j <1

and since
S
N2MM .E/

N 
 E0nH it follows that
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js�1.w/ \ r�1.
[

N2MM .E/

N /j <1:

ThusM is isolated.
Now suppose that M is an isolated maximal tail. If M contains a vertex v

which is not contained in any other maximal tail, then J˙H.v/ ª J˝.M/;˝.M/fin
1

and
J˙H.v/ 
 J˝.N/;˝.N/fin

1

for any maximal tail N ¤M . Hence

UM D fp 2 PrimC �.E/ W J˙H.v/ ª pg

and thus UM is clopen. Now suppose that every vertex of M is contained in some
other maximal tail. Let H D T

N2MM .E/
˝.N / which is hereditary and saturated.

Since M is isolated, ˝.M/;1 D fwg for some vertex w. Moreover, since M is
isolated and E0nH D S

N2MM .E/
N it follows that w 2 H fin1 . Hence JH;fwg ª

J˝.M/;˝.M/fin
1

and JH;fwg 
 J˝.N/;˝.N/fin
1

for anyN 2MM.E/ by Theorem 2. Now,
as above, J˙H.w/ 
 J˝.N/;˝.N/fin

1

for anyN …MM.E/ and J˙H.w/ ª J˝.N/;˝.N/fin
1

for N 2MM.E/. Hence

UM D fp W JH;fwg ª pg \ fp W J˙H.w/ ª pg

is the intersection of two open sets, and is thus clopen.
For the ‘in particular’ part note that ifM 2M� .E/ then UM D fJ˝.M/;˝.M/fin

1

g.
If M 2M	 .E/ then M contains a loop and is thus isolated by Lemma 2. Hence

UM D fRM;t W t 2 Tg

is clopen. By Theorem 1 it follows that this set is homeomorphic to the circle S1.
ut

Corollary 2. Let E be a T1 graph and p 2 PrimC �.E/ be a primitive ideal. Then
fpg is clopen if and only if p D J˝.M/;˝.M/fin

1

for an isolated maximal tail M 2
M� .E/.

Corollary 3. Let E be a T1 graph and suppose that every maximal tail in E is
isolated. Then

PrimC �.E/ Š
G

M2M�

? t
G

M2M	

S1

is a disjoint union, where ? is a one-point topological space and S1 is the circle.
In particular, if E in addition has condition (K) then PrimC �.E/ is discrete.

If two graphsE and F have Morita equivalentC �-algebras, then the correspond-
ing ideal lattices are canonically isomorphic. Hence, if E and F have no breaking
vertices, there is an induced one-to-one correspondence between the maximal tails
in E and F . The following corollary is immediate from Theorem 3.
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Corollary 4. Let E and F be T1 graphs such that C �.E/ and C �.F / are Morita
equivalent. Then a maximal tail in E is isolated if and only if the corresponding
maximal tail in F is isolated.

Our main application of the above theorem is the following corollary.

Corollary 5. Any purely infinite graph C �-algebra with a T1 (in particular Haus-
dorff) primitive ideal space is isomorphic to a c0-direct sum of Kirchberg algebras.

Proof. Let E be a T1 graph such that C �.E/ is purely infinite. By [5, Theorem 2.3]
E has condition (K) and every maximal tail inE contains a loop, and is thus isolated
by Lemma 2. By Corollary 3 the primitive ideal space PrimC �.E/ is discrete. Hence
C �.E/ is the c0-direct sum of all its simple ideals, which are Kirchberg algebras.

ut
We also have another application of the above theorem.

Corollary 6. Let A be a graph C �-algebra for which the primitive ideal space is
T1. Let J be the ideal generated by all the direct summands in A corresponding to
A=J˝.M/;˝.M/fin

1

whereM is an isolated maximal tail. Then A=J is an AF-algebra.

Proof. Note that the ideal is well-defined by Theorem 3, since J˝.M/;˝.M/fin
1

is a
direct summand in A for every isolated maximal tail M . By Corollary 4 it suffices
to prove this up to Morita equivalence. Hence we may assume that there is a row-
finite graph E such that C �.E/ D A. Let V denote the set of all vertices which are
contained in exactly one maximal tail. For any isolated maximal tail M , the direct
summand in A which corresponds to A=J˝.M/ is J˙H.v/ where v is any vertex in
M which is not contained in any other maximal tail. Hence J D J˙H.V / since this
is the smallest ideal containing all J˙H.v/ for v 2 V . By Lemma 2 any vertex which
is the base of a loop, is in V . Hence the graph En˙H.V / contains no loops and
thus A=J D C �.En˙H.V // is an AF-algebra. ut
Remark 3. By an analogous argument as given in the proof of Corollary 6, we get
the following result. Let A be a real rank zero graph C �-algebra for which the
primitive ideal space is T1. Then A contains a (unique) purely infinite ideal J such
that A=J is an AF-algebra.

In fact, we could define V in the proof of Corollary 6 to be the set of all vertices
which are the base of some loop. Then J D J˙H.V / would be the direct sum of
all simple purely infinite ideals in A, and A=J would again be an AF-algebra. Note
that this ideal, in general, is not the same as the one defined in Corollary 6.

Remark 4. Let QN D N [ f1g be the one-point compactification of N. We may
give any graph C �-algebra A with a T1 primitive ideal space a canonical structure
of a C. QN/-algebra. In fact, list all of the direct summands in A corresponding to
A=J˝.M/;˝.M/fin

1

for M an isolated maximal tail, as J1; J2; : : : . By letting

A.fng/ D Jn; and A.fn; nC 1; : : : ;1g/ D A=
n�1M
kD1

Jk;
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then A gets the structure of a C �-algebra over QN which is the same as a (not
necessarily continuous) C. QN/-algebra (see e.g. [8]). This structure is unique up to
an automorphism functor �� on C�alg. QN/, the category of C. QN/-algebras, where
� W QN ! QN is a homeomorphism. Moreover, by Corollary 6, the fibre A1 is an
AF-algebra.

Using the structure of a C. QN/-algebra we may construct an QN-filtered K-theory
functor as in [2]. In fact, let C. QN;Z/ be the ring of locally constant maps QN !
Z. If A is a C. QN/-algebra then the K-theory K�.A/ has the natural structure as a
Z=2-graded C. QN;Z/-module. Similarly, let � be the ring of Böckstein operations,
and let C. QN; �/ be the ring of locally constant maps QN! �. IfA is a C. QN/-algebra
then the total K-theory K.A/ has the natural structure as a C. QN; �/-module. It is
this latter invariant, that Dadarlat and Meyer proved a UMCT for. We refer the reader
to [2] for a more detailed definition.

We end this paper by showing that for T1 graph C �-algebras given C. QN/-
algebra structures as in Remark 4, an isomorphism of QN-filtered K-theory (without
coefficients) lifts to an E. QN/-equivalence. Note that this is not true in general by [2,
Example 6.14].

Proposition 1. Let A and B be graph C �-algebras with T1 primitive ideal spaces,
and suppose that these have the structure of C. QN/-algebras as in Remark 4. Then
K�.A/ Š K�.B/ as Z=2-graded C. QN;Z/-modules if and only if A and B are
E. QN/-equivalent.

In addition, if A andB are continuousC. QN/-algebras, thenK�.A/ Š K�.B/ as
Z=2-graded C. QN;Z/-modules if and only if A and B are KK. QN/-equivalent.

Proof. Clearly an E. QN/-equivalence induces an isomorphism of QN-filtered K-
theory. Suppose that � D .�0; �1/WK�.A/ ! K�.B/ is an isomorphism of
Z=2-graded C. QN;Z/-modules. By the UMCT of Dadarlat and Meyer [2, Theorem
6.11], it suffices to lift � to an isomorphism of QN-filtered total K-theory. Since the
K1-groups are free, K0.DIZ=n/ D K0.D/˝ Z=n forD 2 fA;Bg. Hence define

�n0 D �0 ˝ idZ=nWK0.AIZ=n/! K0.BIZ=n/

which are isomorphisms for each n 2 N. Since the fibres A1 and B1 are AF -
algebras by Corollary 6,K1.A1IZ=n/ D K1.B1IZ=n/ D 0 for each n 2 N. Since
the map K0.DIZ=n/! K0.D1IZ=n/ is clearly surjective, and K1.D1IZ=n/ D
0, it follows by six-term exactness that

K1.DIZ=n/ Š K1.D.N/IZ=n/ Š
M
k2N

K1.Dk IZ=n/

forD 2 fA;Bg and n 2 N. Since ��WK�.A/! K�.B/ is an isomorphism of Z=2-
graded C. QN;Z/-modules, �� restricts to an isomorphism ��;k WK�.Ak/ ! K�.Bk/
for each k 2 N. By the UCT of Rosenberg and Schochet [9] we may lift these
isomorphisms to invertibleKK-elements, and in particular also to isomorphisms of
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the total K-theory ��;k WK.Ak/ ! K.Bk/. Here we used that the fibres are graph
C �-algebras and thus satisfy the UCT (see e.g. [10, Remark A.11.13]). Now define
the group isomorphisms �

0
WK0.A/ ! K0.B/ to be the isomorphism induced by

�0 and each �n0 , and �
1
WK1.A/! K1.B/ to be the composition

K1.A/ Š
M
k2N

K1.Ak/

L
k �1;k�����!

M
k2N

K1.Bk/ Š K1.B/;

where Ki.D/ D Ki.D/ ˚Ln2NKi.DIZ=n/. It is straight forward to check that
� D .�

0
; �

1
/WK.A/! K.B/ is an isomorphism of C. QN; �/-modules.

If A and B are continuous C. QN/-algebras then E. QN/- and KK. QN/-theory agree
by [2, Theorem 5.4]. ut
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Chapter 8
The Law of Large Numbers for the Free
Multiplicative Convolution

Uffe Haagerup and Sören Möller

Abstract In classical probability the law of large numbers for the multiplicative
convolution follows directly from the law for the additive convolution. In free
probability this is not the case. The free additive law was proved by D. Voiculescu in
1986 for probability measures with bounded support and extended to all probability
measures with first moment by J.M. Lindsay and V. Pata in 1997, while the free
multiplicative law was proved only recently by G. Tucci in 2010. In this paper
we extend Tucci’s result to measures with unbounded support while at the same
time giving a more elementary proof for the case of bounded support. In contrast
to the classical multiplicative convolution case, the limit measure for the free
multiplicative law of large numbers is not a Dirac measure, unless the original
measure is a Dirac measure. We also show that the mean value of ln x is additive
with respect to the free multiplicative convolution while the variance of ln x is not
in general additive. Furthermore we study the two parameter family .�˛;ˇ/˛;ˇ�0 of
measures on .0;1/ for which the S -transform is given by S�˛;ˇ .z/ D .�z/ˇ.1 C
z/�˛ , 0 < z < 1.

Keywords Free probability • Free multiplicative law • Law of large numbers •
Free convolution
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8.1 Introduction

In classical probability the weak law of large numbers is well known (see for
instance [14, Corollary 5.4.11]), both for additive and multiplicative convolution
of Borel measures on R, respectively, Œ0;1/.

Going from classical probability to free probability, one could ask if similar
results exist for the additive and multiplicative free convolutions � and � as
defined by D. Voiculescu in [16] and [17] and extended to unbounded probability
measures by H. Bercovici and D. Voiculescu in [4]. The law of large numbers for
the free additive convolution of measures with bounded support is an immediate
consequence of D. Voiculescu’s work in [16] and J. M. Lindsay and V. Pata proved
it for measures with first moment in [11, Corollary 5.2].

Theorem 1 ([11, Corollary 5.2]). Let � be a probability measure on R with
existing mean value ˛, and let  nWR! R be the map  n.x/ D 1

n
x. Then

P n.�� � � �� �„ ƒ‚ …
n times

/! ı˛

where convergence is weak and ıx denotes the Dirac measure at x 2 R.

Here P�.�/ denotes the image measure of � under � for a Borel measurable
function �WR! R, respectively, Œ0;1/! Œ0;1/.

In classical probability the multiplicative law follows directly from the additive
law. This is not the case in free probability, here a multiplicative law requires
a separate proof. This has been proved by G.H. Tucci in [15, Theorem 3.2] for
measures with bounded support using results on operator algebras from [6] and [8].
In this paper we give an elementary proof of Tucci’s theorem which also shows that
the theorem holds for measures with unbounded support.

Theorem 2. Let � be a probability measure on Œ0;1/ and let �nW Œ0;1/! Œ0;1/
be the map �n.x/ D x 1

n . Set ı D �.f0g/. If we denote

�n D P�n.�n/ D P�n.�� � � �� �„ ƒ‚ …
n times

/

then �n converges weakly to a probability measure � on Œ0;1/. If � is a Dirac
measure on Œ0;1/ then � D �. Otherwise � is the unique measure on Œ0;1/
characterised by �

�h
0; 1

S�.t�1/
i�
D t for all t 2 .ı; 1/ and �.f0g/ D ı. The support

of the measure � is the closure of the interval

.a; b/ D
 	Z 1

0

x�1d�.x/

�1

;

Z 1
0

xd�.x/

!
;

where 0 � a < b � 1.
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Note that unlike the additive case, the multiplicative limit distribution is only
a Dirac measure if � is a Dirac measure. Furthermore S� and hence (by [17,
Theorem 2.6]) � can be reconstructed from the limit measure.

We start by recalling some definitions and proving some preliminary results
in Sect. 8.2, which then in Sect. 8.3 are used to prove Theorem 2. In Sect. 8.4 we
prove some further formulas in connection with the limit law, which we in Sect. 8.5
apply to the two parameter family .�˛;ˇ/˛;ˇ�0 of measures on .0;1/ for which the

S -transform is given by S�˛;ˇ .z/ D .�z/ˇ

.1Cz/˛ , 0 < z < 1.

8.2 Preliminaries

We start with recalling some results we will use and proving some technical tools
necessary for the proof of Theorem 2. At first we recall the definition and some
properties of Voiculescu’s S -transform for measures on Œ0;1/ with unbounded
support as defined by H. Bercovici and D. Voiculescu in [4].

Definition 1 ([4, Sect. 6]). Let � be a probability measure on Œ0;1/ and assume
that ı D �.f0g/ < 1. We define  �.u/ D

R1
0

tu
1�tu d�.t/ and denote its inverse

in a neighbourhood of .ı � 1; 0/ by ��. Now we define the S -transform of � by
S�.z/ D zC1

z ��.z/ for z 2 .ı � 1; 0/.
Lemma 1 ([4, Proposition 6.8]). Let � be a probability measure on Œ0;1/ with
ı D �.f0g/ < 1 then S� is decreasing on .ı� 1; 0/ and positive. Moreover, if ı > 0
we have S�.z/!1 if z! ı � 1.

Lemma 2. Let � be a probability measure on Œ0;1/ with ı D �.f0g/ < 1. Assume
that � is not a Dirac measure, then S 0�.z/ < 0 for z 2 .ı � 1; 0/. In particular S� is
strictly decreasing on .ı � 1; 0/.
Proof. For u 2 .�1; 0/,

 0�.u/ D
Z 1
0

t

.1 � ut/2
d�.t/ > 0: (8.1)

Moreover limu!0�  �.u/ D 0 and limu!�1  �.u/ D ı � 1. Hence  � is a strictly
increasing homeomorphism of .�1; 0/ onto .ı � 1; 0/. For u 2 .�1; 0/, we have

S�. �.u// D  �.u/C 1
 �.u/

� u:

Hence

d

du

�
lnS�. �.u//

� D �  0�.u/
 �.u/. �.u/C 1/ C

1

u
D  �.u/. �.u/C 1/� u 0�.u/

u �.u/. �.u/C 1/
(8.2)
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where the denominator is positive and the nominator is equal to

	Z 1
0

ut

1 � ut
d�.t/



�
	Z 1

0

1

1 � ut
d�.t/



�
Z 1
0

ut

.1 � ut/2
d�.t/

D u

2

Z 1
0

Z 1
0

s C t
.1 � us/.1 � ut/

d�.s/d�.t/

� u

2

Z 1
0

Z 1
0

	
s

.1 � us/2
C t

.1 � ut/2



d�.s/d�.t/

D �u2

2

Z 1
0

Z 1
0

.s � t/2
.1 � us/2.1 � ut/2

d�.s/d�.t/

where we have used that

.s C t/.1 � us/.1 � ut/� s.1 � ut/2 � t.1 � us/2 D �u.s � t/2:

Since � is not a Dirac measure,

.� � �/ �˚.s; t/ 2 Œ0;1/2 W s ¤ t�� > 0
and thus

Z 1
0

Z 1
0

.s � t/2
.1 � us/2.1 � ut/2

d�.s/d�.t/ > 0

which shows that the right hand side of (8.2) is strictly positive. Hence

d

dz

�
lnS�.z/

�
< 0

for z 2 .ı � 1; 0/, which proves the lemma. ut
Remark 1. Furthermore, by [4, Proposition 6.1] and [4, Proposition 6.3]  � and
�� are analytic in a neighbourhood of .�1; 0/, respectively, .�1; 0/, hence S� is
analytic in a neighbourhood of .ı � 1; 0/.
Lemma 3 ([4, Corollary 6.6]). Let � and � be probability measures on Œ0;1/,
none of them being ı0, then we have S��� D S�S� .

Next we have to determine the image of S�. Here we closely follow the argument
given for measures with compact support by F. Larsen and the first author in [6,
Theorem 4.4].

Lemma 4. Let � be a probability measure on Œ0;1/ not being a Dirac measure,
then S�..ı � 1; 0// D .b�1; a�1/, where a, b and ı are defined as in Theorem 2.
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Proof. First assume ı D 0. Observe that for u!1 we have

Z 1
0

u

1C ut
d�.t/!

Z 1
0

1

t
d�.t/ D a�1 and

Z 1
0

ut

1C ut
d�.t/! 1:

Hence

� �.�u/

u. �.�u/C 1/ D
	Z

1

0

ut

1C ut
d�.t/


	Z
1

0

u

1C ut
d�.t/



�1

! a for u!1:

Similarly, for u! 0 we have

Z 1
0

t

1C ut
d�.t/!

Z 1
0

td�.t/ D b and
Z 1
0

1

1C ut
d�.t/! 1:

Hence

� �.�u/

u. �.�u/C 1/ D
R1
0

t
1Cut d�.t/R1

0
1

1Cut d�.t/
! b for u! 0:

As �� is the inverse of  � we have

S�. �.�u// D  �.�u/C 1
 �.�u/

��. �.�u// D u. �.�u/C 1/
� �.�u/

:

By (8.1) and Lemma 2  � is strictly increasing and continuous and S� is strictly
decreasing and continuous so S�. �..�1; 0/// D S�..�1; 0// D .b�1; a�1/.

If now ı > 0 we have by Lemma 1 that S�.z/ ! 1 for z ! ı � 1, so in this
case continuity gives us S�..ı � 1; 0// D .b�1;1/, which is as desired as a D 0 in
this case. ut

8.3 Proof of the Main Result

Let � be a probability measure on Œ0;1/ and let � be as defined in Theorem 2. If �
is a Dirac measure, then �n D � for all n and hence �n ! � D � weakly, so the
theorem holds in this case. In the following we can therefore assume that � is not
a Dirac measure. We start by assuming further that �.f0g/ D 0, and will deal with
the case �.f0g/ > 0 in Remark 2.

Lemma 5. For all t 2 .0; 1/ and all n 	 1 we have

Z 1
0

	
1C 1 � t

t
S�.t � 1/nxn


�1
d�n.x/ D t:
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Proof. Let t 2 .0; 1/ and set z D t � 1. By Definition 1 we have

zC 1 D  �n.��n.z//C 1

D
Z 1
0

��n.z/x

1 � ��n.z/x
d�n.x/C 1

D
Z 1
0

1

1 � ��n.z/x
d�n.x/

D
Z 1
0

	
1 � z

zC 1S�n.z/x

�1

d�n.x/

D
Z 1
0

	
1 � z

zC 1S�.z/
nx


�1
d�n.x/:

In the last equality we use multiplicativity of the S -transform from Lemma 3.
Now substitute t D zC 1 and afterwards yn D x and use the definition of �n to

get

t D
Z 1
0

	
1C 1 � t

t
S�.t � 1/nx


�1
d�n.x/

D
Z 1
0

	
1C 1 � t

t
S�.t � 1/nyn


�1
d�n.y/: ut

Now, using this lemma, we can prove the following characterisation of the weak
limit of �n.

Lemma 6. For all t 2 .0; 1/ we have t D limn!1 �n
�h
0; 1

S�.t�1/
i�

.

Proof. Fix t 2 .0; 1/ and let t 0 2 .0; t/. Then

t 0 D
Z 1
0

	
1C 1 � t 0

t 0
S�.t

0 � 1/nxn

�1

d�n.x/

�
Z 1
0

	
1C 1 � t

t
S�.t

0 � 1/nxn

�1

d�n.x/

�
Z 1

S�.t�1/

0

1d�n.x/C
Z 1

1
S�.t�1/

	
1C 1 � t

t
S�.t

0 � 1/nxn

�1

d�n.x/

�
Z 1

S�.t�1/

0

1d�n.x/C
Z 1

1
S�.t�1/

	
1C 1 � t

t

	
S�.t

0 � 1/
S�.t � 1/


n
�1
d�n.x/

� �n
	�
0;

1

S�.t � 1/
�

C
	
1C 1 � t

t

	
S�.t

0 � 1/
S�.t � 1/


n
�1
:
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Here the first inequality holds as t 0 � t while S�.t 0 � 1/nxn > 0, the second holds
as 1C 1�t

t
S�.t

0 � 1/nxn 	 0, and the last because �n is a probability measure.

By Lemma 2, S�.t � 1/ is strictly decreasing, and hence S�.t
0�1/

S�.t�1/ > 1. This
implies

lim
n!1

	
1C 1 � t

t

	
S�.t

0 � 1/
S�.t � 1/


n
�1
D 0:

And hence

t 0 � lim inf
n!1 �n

	�
0;

1

S�.t � 1/
�

:

As this holds for all t 0 2 .0; t/ we have

t � lim inf
n!1 �n

	�
0;

1

S�.t � 1/
�

: (8.3)

On the other hand if t 00 2 .t; 1/ we get

t 00 D
Z 1
0

	
1C 1 � t 00

t 00
S�.t

00 � 1/nxn

�1

d�n.x/

	
Z 1
0

	
1C 1 � t

t
S�.t

00 � 1/nxn

�1

d�n.x/

	
Z 1

S.t�1/

0

	
1C 1 � t

t
S�.t

00 � 1/nxn

�1

d�n.x/

	
Z 1

S.t�1/

0

	
1C 1 � t

t

S�.t
00 � 1/n

S�.t � 1/n

�1

d�n.x/

	 �n
	�
0;

1

S�.t � 1/
�

�
	
1C 1 � t

t

	
S�.t

00 � 1/
S�.t � 1/


n
�1
:

Here the first inequality holds as t 00 > t while S�.t 00 � 1/xn 	 0, and the second to
last inequality holds as S�.t � 1/ is decreasing.

Again as S�.t � 1/ is strictly decreasing we have S�.t
00�1/

S�.t�1/ < 1, hence

lim
n!1

	
1C 1 � t

t

	
S�.t

00 � 1/
S�.t � 1/


n
�1
D 1:

This implies

t 00 	 lim sup
n!1

�n

	�
0;

1

S�.t � 1/
�

:
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As this holds for all t 00 2 .t; 1/ we have

t 	 lim sup
n!1

�n

	�
0;

1

S�.t � 1/
�

: (8.4)

Combining (8.3) and (8.4) we get

t D lim
n!1 �n

	�
0;

1

S�.t � 1/
�


as desired. ut
For proving weak convergence of �n to � it remains to show that �n vanishes in

limit outside of the support of �.

Lemma 7. For all x � a and y 	 b we have �n.Œ0; x�/ ! 0, respectively,
�n.Œ0; y�/! 1.

Proof. To prove the first convergence, let t � a and s 2 .0; 1/. Now we have that
t � 1

S�.s�1/ from Lemma 4 and hence

lim sup
n!1

�n.Œ0; t �/ � lim sup
n!1

�n

	�
0;

1

S�.s � 1/
�

D s:

Here the inequality holds because �n is a positive measure and the equality comes
from Lemma 6. As this holds for all s 2 .0; 1/ we have lim supn!1 �n.Œ0; t �/ � 0
and hence lim supn!1 �n.Œ0; t �/ D 0 by positivity of the measure.

For the second convergence we proceed in the same manner, by letting t 	 b and
s 2 .0; 1/. Now we have that t 	 1

S�.s�1/ from Lemma 4 and hence

lim inf
n!1 �n.Œ0; t �/ 	 lim inf

n!1 �n

	�
0;

1

S�.s � 1/
�

D s:

Again the inequality holds because �n is a positive measure and the equality comes
from Lemma 6. As this holds for all s 2 .0; 1/ we have lim supn!1 �n.Œ0; t �/ 	 1
and hence lim supn!1 �n.Œ0; t �/ D 1 as �n is a probability measure. ut

Lemmas 6 and 7 now prove Theorem 2 without any assumptions on bounded
support as weak convergence of measures is equivalent to point-wise convergence
of distribution functions for all but countably many x 2 Œ0;1/.
Remark 2. In the case ı D �.f0g/ > 0, S� is only defined on .ı � 1; 0/ and
S�.z/!1 when z! ı � 1. This implies that Lemma 5 only holds for t 2 .ı; 1/,
with a similar proof. Similarly, Lemma 6 only holds for t 2 .ı; 1/, and in the proof
we have to assume t 0 2 .ı; t/. Similarly, in the proof of Lemma 7 we have to assume
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s 2 .ı; 1/. Moreover, in Lemma 7 the statement, 0 � x � a implies �n.Œ0; x�/! 0

for n!1, should be changed to a D 0 and �n.f0g/ D ı D �.f0g/ for all n 2 N.

Using our result we can prove the following corollary, generalizing a theorem
([8, Theorem 2.2]) by H. Schultz and the first author.

Let .M ; 	/ be a finite von Neumann algebra M with a normal faithful tracial
state 	 . In [7, Proposition 3.9] the definition of Brown’s spectral distribution
measure �T was extended to all operators T 2 M
, where M
 is the set of
unbounded operators affiliated with M for which 	.lnC.jT j// <1.

Corollary 1. If T is an R-diagonal in M
 then P�.�.T �/nT n/ ! P .�T / weakly,
where  .z/ D jzj2, z 2 C, and �n.x/ D x1=n for x 	 0.

Proof. By [7, Proposition 3.9] we have ��n
T �T D �.T �/nT n and by Theorem 2 we

have P�.��n
T �T / ! � weakly. On the other hand observe that � D P .�T / by [7,

Theorem 4.17] which gives the result. ut
Remark 3. In [8, Theorem 1.5] it was shown that P�n.�.T �/nT n/ ! P .�T / weakly
for all bounded operators T 2 M . It would be interesting to know, whether this
limit law can be extended to all T 2M
.

8.4 Further Formulas for the S -Transform

In this section we present some further formulas for the S -transform of measures
on Œ0;1/, obtained by similar means as in the preceding sections and use those to
investigate the difference between the laws of large numbers for classical and free
probability. From now on we assume �.f0g/ D 0. Therefore � can be considered
as a probability measure on .0;1/.

We start with a technical lemma which will be useful later.

Lemma 8. We have the following identities

Z 1

0

ln2
	

t

1 � t



dt D 
2

3
Z 1

0

ln2 tdt D 2
Z 1

0

ln2.1 � t/dt D 2
Z 1

0

ln t ln.1 � t/dt D 2 � 

2

6
:
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Proof. For the first identity we start with the substitution x D t
1�t which gives us

t D x
1Cx and dt D dx

.1Cx/2 and hence

Z 1

0

ln2
	

t

1 � t



dt D
Z 1
0

ln2 x

.1C x/2 dx

D d2

d˛2

Z 1
0

x˛

.1C x/2 dx

ˇ̌
ˇ̌
˛D0

D d2

d˛2
B.1C ˛; 1 � ˛/

ˇ̌
ˇ̌
˛D0

D d2

d˛2

˛

sin.
˛/

ˇ̌
ˇ̌
˛D0

D d2

d˛2

	
1 � .
˛/

2

3Š
C � � �


�1ˇ̌ˇ̌
ˇ
˛D0

D d2

d˛2

	
1C 
2

6
˛2 C � � �


ˇ̌
ˇ̌
˛D0
D 
2

3

where B.�; �/ denotes the Beta function. The second and the third identity follow
from the substitution t 7! exp.�x/, respectively, 1 � t 7! exp.�x/.

Finally, the last identity follows by observing


2

3
D
Z 1

0

ln2
	

t

1 � t



dt

D
Z 1

0

ln2 t C ln2.1 � t/ � 2 ln t ln.1 � t/dt

D 4 � 2
Z 1

0

ln t ln.1 � t/dt

which gives the desired result. ut
Now we prove two propositions calculating the expectations of lnx and ln2 x

both for � and � expressed by the S -transform of �.

Proposition 1. Let � be a probability measure on .0;1/ and let � be as defined in
Theorem 2. Then

R1
0 jln xj d�.x/ <1 if and only if

R 1
0

ˇ̌
lnS�.t � 1/

ˇ̌
dt <1 and

if and only if
R1
0 jlnxj d�.x/ <1. If these integrals are finite, then

Z 1
0

ln xd�.x/ D �
Z 1

0

lnS�.t � 1/dt D
Z 1
0

ln xd�.x/:
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Proof. For x > 0, put lnC x D max.lnx; 0/ and ln� x D max.� ln x; 0/. Then one
easily checks that

lnC x � ln.x C 1/ � lnC x C ln 2

and by replacing x by 1
x

it follows that

ln� x � ln

	
x C 1
x



� ln� x C ln 2:

Hence
Z 1
0

lnC xd�.x/ <1,
Z 1
0

ln.x C 1/d�.x/ <1

and

Z 1
0

ln� xd�.x/ <1,
Z 1
0

ln

	
x C 1
x



d�.x/ <1:

We prove next that

Z 1
0

ln.x C 1/d�.x/ D
Z 1
0

ln� u 0�.�u/du (8.5)

and

Z 1
0

ln

	
x C 1
x



d�.x/ D

Z 1
0

lnC u 0�.�u/du: (8.6)

Recall from (8.1), that

 0�.�u/ D
Z 1
0

t

.1C ut/2
d�.t/; u > 0:

Hence by Tonelli’s theorem

Z 1
0

lnC u 0�.�u/du D
Z 1
1

ln u 0�.�u/du D
Z 1
0

Z 1
1

x

.1C ux/2
ln udud�.x/

and similarly,

Z 1
0

ln� u 0�.�u/du D
Z 1
0

Z 1

0

x

.1C ux/2
ln

	
1

u



dud�.x/:
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By partial integration, we have

Z 1
1

x

.1C ux/2
ln udu D

�
� ln u

1C ux
C ln

	
u

1C ux


�uD1

uD1
D ln

	
x C 1
x




and similarly,

Z 1

0

x

.1C ux/2
ln

	
1

u



du D

�
ln u

1C ux
� ln

	
u

1C ux


�uD1

uD0

D
�

ux

1C ux
ln uC ln.1C ux/

�uD1

uD0
D ln.x C 1/

which proves (8.5) and (8.6). Therefore

Z 1
0

jlnxj d�.x/ <1,
Z 1
0

jln uj 0�.�u/du <1

and substituting x D  �.�u/C 1 we get

Z
1

0

jln uj 0

�.�u/duD
Z 1

0

ˇ̌
ln
����.t � 1/�ˇ̌ dt D

Z 1

0

ˇ̌
ˇ̌ln
	

t

1 � t


C lnS�.t � 1/

ˇ̌
ˇ̌ dt:

Since
R 1
0

ˇ̌
ln
�
t
1�t
�ˇ̌

dt <1 it follows that

Z 1
0

jln uj 0�.�u/du <1,
Z 1

0

ˇ̌
lnS�.t � 1/

ˇ̌
dt <1:

If � is not a Dirac measure, the substitution x D S�.t � 1/�1; 0 < t < 1

gives t D �..0; x�/ for a < x < b, where as before a D �R1
0
x�1d�.x/

��1
and

b D R1
0
xd�.x/. The measure � is concentrated on the interval .a; b/. Hence

Z
1

0

jln xj d�.x/ D
Z b

a

jlnxj d�.x/ D
Z 1

0

ˇ̌
ˇ̌ln
	

1

S�.t � 1/

ˇ̌
ˇ̌ dt D

Z 1

0

ˇ̌
lnS�.t � 1/

ˇ̌
dt:

This proves the first statement in Proposition 1. If all three integrals in that
statement are finite, we get

Z 1
0

ln xd�.x/ D
Z 1
0

ln.x C 1/d�.x/�
Z 1
0

ln

	
x C 1
x



d�.x/

D
Z 1
0

�
ln� u � lnC u

�
 0�.�u/du D �

Z 1
0

ln u 0�.�u/du:
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By the substitution t D  �.�u/C 1 we get

Z 1

0

ln
����.t � 1/� dt D

Z 1

0

	
ln
	
1 � t
t



C lnS�.t � 1/



dt D

Z 1

0

lnS�.t � 1/dt:

Hence
R1
0

lnxd�.x/ D � R 1
0

lnS�.t � 1/dt . Moreover, by the substitution x D
S�.t � 1/�1; 0 < t < 1 we get

Z 1
0

ln xd�.x/ D
Z 1

0

ln

	
1

S�.t � 1/



dt D
Z 1
0

ln xd�.x/:

Finally, if � D ıx, x 2 .0;1/, this identity holds trivially, because � D ıx and
S�.z/ D 1

x
; 0 < z < 1. ut

Corollary 2. Let �1 and �2 be probability measures on .0;1/. If E�1.lnx/ and
E�2.ln x/ exist then E�1��2.lnx/ also exists and

E�1��2.lnx/ D E�1.ln x/C E�2.lnx/

where E�.f / D
R1
0 f .x/d�.x/.

Proof. The statement follows directly from Proposition 1 and multiplicativity of the
S -transform. ut

For further use, we define the map � for a probability measure � on .0;1/ by

�.�/ D
Z 1

0

ln

	
1 � t
t



lnS�.t � 1/dt:

Note that �.�/ is well-defined and non-negative for all probability measures on
.0;1/ because

ln
�
1�t
t

�
lnS�.t � 1/ D ln

�
1�t
t

�
ln

 
S�.t � 1/
S�.� 12 /

!
C ln

�
1�t
t

�
S�
�� 1

2

�
; (8.7)

where the first term on the right hand side is non-negative for all t 2 .0; 1/ and the
second term is integrable with integral 0.

Lemma 9. Let � be a probability measure on .0;1/, then

0 � �.�/ � 
p
3

	Z 1

0

ln2 S�.t � 1/dt

1=2

:

Furthermore, �.�/ D 0 if and only if � is a Dirac measure. Moreover, equality

holds in the right inequality if and only if S�.z/ D
�

z
1Cz

��
for some � > 0 and in



170 U. Haagerup and S. Möller

this case �.�/ D � 

2

3
. Additionally, if �1; �2 are probability measures on .0;1/

we have �.�1 � �2/ D �.�1/C �.�2/.
Proof. We already have observed � 	 0. For the second inequality observe that

�.�/2 �
	Z 1

0

ln2
	
1 � t
t



dt


	Z 1

0

ln2 S�.t � 1/dt



by the Cauchy-Schwarz-inequality, where the first term equals 
2

3
by Lemma 8.

If � D ıa for some a > 0 we have S�.z/ D 1
a

, hence lnS�.t � 1/ is constant so
the oddity of ln. 1�t

t
/ gives us �.�/ D 0. On the other hand, if �.�/ D 0, the first

term in (8.7) has to integrate to 0, but by symmetry of ln
�
1�t
t

�
and the fact that S�

is decreasing, this implies that S� must be constant, hence � is a Dirac measure.
Equality in the second inequality, by the Cauchy-Schwarz inequality happens

precisely if lnS�.t � 1/ D � ln. 1�t
t
/ for some � > 0 which is the case if and only

if S�.t � 1/ D
�
1�t
t

��
, and in this case �.�/ D � 
2

3
by Lemma 8.

For the last formula we use multiplicity of the S -transform to get

�.�1 � �2/ D
Z 1

0

ln

	
1 � t
t



lnS�1��2.t � 1/dt

D
Z 1

0

ln

	
1 � t
t


 �
lnS�1.t � 1/C lnS�2.t � 1/

�
dt

D �.�1/C �.�2/: ut

Proposition 2. Let � be a probability measure on .0;1/, and let � be defined as
in Theorem 2. Then

Z 1
0

ln2 xd�.x/ D
Z 1

0

ln2 S�.t � 1/dt C 2�.�/
Z 1
0

ln2 xd�.x/ D
Z 1

0

ln2 S�.t � 1/dt

V�.lnx/ D V�.ln x/C 2�.�/
as equalities of numbers in Œ0;1�, where V� .ln x/ denotes the variance of ln x with
respect to a probability measure � on .0;1/. Moreover,

0 � �.�/ � 
p
3
V�.ln x/

1
2 :

Proof. We first prove the following identity

Z 1
0

ln2 u 0�.�u/du D
Z 1
0

ln2 xd�.x/C 
2

3
: (8.8)
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Since  0.�u/ D R10 x
.1Cux/2

dx, we get by Tonelli’s theorem, that

Z 1
0

ln2 u 0�.�u/du D
Z 1
0

	Z 1
0

ln2 u
x

.1C ux/2
du



d�.x/

D
Z 1
0

	Z 1
0

ln2
� v
x

� dv

.1C v/2



d�.x/:

Note next that
Z 1
0

ln2
�v
x

� dv

.1C v/2 D c0 C c1 ln x C c2 ln2 x

where c0 D
R1
0

ln2 v
.1Cv/2 dv, c1 D �2

R1
0

ln v
.1Cv/2 dv, and c2 D

R1
0

1
.1Cv/2 dv D 1.

Moreover, by the substitution v D 1
w one gets c1 D �c1 and hence c1 D 0. Finally,

by the substitution v D t
1�t ; 0 < t < 1 and Lemma 8,

c0 D
Z 1

0

ln2
	

t

1 � t



dt D 
2

3
:

Hence

Z 1
0

ln2 u �.�u/du D
Z 1
0

	
ln2 x C 
2

3



d�.x/

which proves (8.8). Next by the substitution t D  �.�u/C 1, we have

Z 1
0

ln2 u 0�.�u/du D
Z 1

0

ln2
����.t � 1/� dt D (8.9)

Z 1

0

�
ln 1�t

t
C lnS�.t � 1/

�2
dt:

Since t 7! ln
�
1�t
t

�
is square integrable on .0; 1/ the right hand side of (8.9) is finite

if and only if

Z 1

0

ln
�
S�.t � 1/

�2
dt <1:

Hence by (8.8) and (8.9) this condition is equivalent to

Z 1
0

ln2 xd�.x/ <1;
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so to prove the first equation in Proposition 2 is suffices to consider the case, where
the two above integrals are finite. In that case �.�/ < 1 by Lemma 9. Thus by
Lemma 8 and the definition of �.�/,

Z 1

0

	
ln

	
1 � t
t



C lnS�.t � 1/


2
dt D

Z 1

0

ln2
�
S�.t � 1/

�
dt C 2�.�/C 
2

3
:

Hence by (8.8) and (8.9)

Z 1
0

ln2 xd�.x/ D
Z 1

0

ln2
�
S�.t � 1/

�
dt C 2�.�/:

The second equality in Proposition 2

Z 1
0

ln2 xd�.x/ D
Z 1

0

ln2 S�.t � 1/dt

follows from the substitution x D S�.t �1/�1 in case � is not a Dirac measure, and
it is trivially true for Dirac measures. By the first two equalities in Proposition 2, we
have

Z 1
0

ln2 xd�.x/ D
Z 1
0

ln2 xd�.x/C 2�.�/: (8.10)

If both sides of this equality are finite, then by Proposition 1,

Z 1
0

ln xd�.x/ D
Z 1
0

lnxd�.x/

where both integrals are well-defined. Combined with (8.10) we get

V�.ln x/ D V�.lnx/C 2�.�/ (8.11)

and if
R1
0 ln2 xd�.x/ D C1, both sides of (8.11) must be infinite by (8.10).

As the S -transform behaves linearly when scaling the probability distribution
in the sense that the image measure �c of � under x 7! cx for c > 0 gives us
S�c .z/ D c�1S�.z/ we have for � that

�.�c/ D
Z 1

0

ln

	
1 � t
t



ln.c�1S�.t � 1//dt

D
Z 1

0

ln

	
1 � t
t



lnS�.t � 1/dt C

Z 1

0

ln

	
1 � t
t



c�1dt D �.�/C 0
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by anti-symmetry of the second term around t D 1
2
. Using this for c D

exp .E�.lnx//, we get

�.�/ D �.�c/ � 
p
3

	Z 1

0

�
lnS�.t � 1/� E� .lnx/

�2
dt


 1
2

D 
p
3

	Z 1

0

�
lnS�.t � 1/2 � 2E� .lnx/2 C E� .lnx/

2
�

dt


 1
2

D 
p
3
.V�.lnx//

1
2 : ut

Now we can use the preceding lemmas to investigate the different behavior of
the multiplicative law of large numbers in classical and free probability. Note that
in classical probability for a family of identically distributed independent random
variables .Xi/1iD1 we have the identity V.ln.

Qn
iD1 Xi// D nV.lnX1/. In free

probability by Propositions 1 and 2 we have instead

V��n .ln t/

D
Z 1
0

ln2 td.��n/.t/ �
	Z 1

0

ln td.��n/.t/


2

D
Z 1

0

ln2 S��n.t � 1/dzC 2�.��n/ �
	
�
Z 0

�1
lnS��n.z/dz


2

D n2
Z 1

0

ln2 S�.t � 1/dzC 2n�.�/� n2
	Z 0

�1
lnS�.z/dz


2

D n2V�.lnx/C 2n�.�/:
Hence V��n.ln t/ D nV�.ln t/ C n.n � 1/V�.ln t/ > nV�.ln t/ for n 	 2 if � is
not a Dirac measure and V�.ln t/ <1, which shows that the variance of ln t is not
in general additive.

Lemma 10. Let � be a probability measure on .0;1/ and let � be defined as in
Theorem 2. Then

Z 1
0

x�d�.x/ D sin.
�/


�

Z 1

0

	
1 � t
t
S�.t � 1/


��
dt

for �1 < � < 1 and

Z 1
0

x�d�.x/ D
Z 1

0

S�.t � 1/��dt

for � 2 R as equalities of numbers in Œ0;1�.
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Proof. By Tonelli’s theorem followed by the substitution u D yx we get

Z 1
0

y�� 0�.�y/dy D
Z 1
0

Z 1
0

y��x
.1C yx/2 dyd�.x/

D
Z 1
0

x�
Z 1
0

u��

.1C u/2
dud�.x/

D B.1 � �; 1C �/
Z 1
0

x�d�.x/;

where B.s; t/ D R1
0

us�1

.1Cu/sCt du is the Beta function. But B.1 � �; 1C �/ D sin.
�/

�

by well-known properties of B . Substitute now x D ���.�z/ and z D 1 � t to get

Z 1
0

x�� 0�.�x/dx D
Z 1

0

����.�z/
���

dz D
Z 1

0

	
1 � t
t
S�.t � 1/


��
dt;

which gives the first identity. The second identity follows from the substitution x D
S�.t � 1/�1 and the properties of � from Theorem 2. ut

8.5 Examples

In this section we will investigate a two parameter family of distributions for which
there can be made explicit calculations.

Proposition 3. Let ˛; ˇ 	 0. There exists a probability measure �˛;ˇ on .0;1/
which S -transform is given by

S�˛;ˇ .z/ D
.�z/ˇ

.1C z/˛
:

Furthermore, these measures form a two-parameter semigroup, multiplicative under
� induced by multiplication of .˛; ˇ/ 2 Œ0;1/ � Œ0;1/.
Proof. Note first that ˛ D ˇ D 0 gives S�0;0 D 1, which by uniqueness of the
S -transform results in �0;0 D ı1, hence we can in the following assume .˛; ˇ/ ¤
.0; 0/.

Define the function v˛;ˇ WC n Œ0; 1�! C by

v˛;ˇ.z/ D ˇ ln.�z/ � ˛ ln.1C z/

for all z 2 C n Œ0; 1�.
In the following we for z 2 C denote by arg z 2 Œ�
; 
� its argument. Assume

z D x C iy and y > 0 then
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ln.�z/ D 1

2
ln
�
x2 C y2�C i arg.�x � iy/

where arg.�x � iy/ < 0, which implies that ln.CC/ 
 C�. Similarly, if we assume
z D x C iy and y > 0 then

ln.1C z/ D 1

2
ln
�
.x C 1/2 C y2�C i arg..x C 1/C iy/

where arg..x C 1/ C iy/ > 0, which implies that � ln.1 C CC/ 
 C� and hence
v˛;ˇ.C

C/ 
 C�. Furthermore, we observe that for all z 2 C, v˛;ˇ.Nz/ D v˛;ˇ.z/.
By [4, Theorem 6.13 (ii)] these results imply that there exists a unique�-infinitely
divisible measure �˛;ˇ with the S -transform

S�˛;ˇ .z/ D exp.v.z// D exp.ˇ ln.�z/ � ˛ ln.1C z// D .�z/ˇ

.1C z/˛
:

The semigroup property follows from multiplicativity of the S -transform. ut
The existence of �˛;0 was previously proven by T. Banica, S.T. Belinschi,

M. Capitaine and B. Collins in [2] as a special case of free Bessel laws. The case
�˛;˛ is known as a Boolean stable law from O. Arizmendi and T. Hasebe [1].

Furthermore, there is a clear relationship between the measures �˛;ˇ and �ˇ;˛ .

Lemma 11. Let ˛; ˇ 	 0, .˛; ˇ/ ¤ .0; 0/ and let �W .0;1/ ! .0;1/ be the map
�.t/ D t�1. Then we have �ˇ;˛ D P�.�˛;ˇ/, where P� denotes the image measure
under the map �.

Proof. Put � D P�.�˛;ˇ/. Then by the proof of [7, Proposition 3.13],

S�.z/ D 1

S�˛;ˇ .�1 � z/
D .�z/˛

.1C z/ˇ
D S�ˇ;˛

for 0 < z < 1. Hence � D �ˇ;˛ . ut
Lemma 12. Let .˛; ˇ/ ¤ .0; 0/. Denote the limit measure corresponding to �˛;ˇ
by �˛;ˇ . Then �˛;ˇ is uniquely determined by the formula

F˛;ˇ

	
t˛

.1 � t/ˇ


D t

for 0 < t < 1, where F˛;ˇ.x/ D �˛;ˇ..0; x�/ is the distribution function of �˛;ˇ .

Proof. The lemma follows directly from Lemma 3 and Theorem 2. ut
For ˇ D 0 and ˛ > 0,

F˛;0.x/ D
(
x
1
˛ ; 0 < x < 1

1; x 	 1:
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Similarly, for ˛ D 0 and ˇ > 0

F0;ˇ.x/ D
(
0; 0 < x < 1

.1 � x/� 1
ˇ ; x 	 1:

Hence �0;ˇ is the Pareto distribution with scale parameter 1 and shape parameter 1
ˇ

.

Moreover, if ˛ D ˇ > 0 we get F˛;˛.x/ D .1 C x�1=˛/�1 for x 2 .0;1/,
which we recognize as the image measure of the Burr distribution with parameters
.1; ˛�1/ (or equivalently the Fisk or log-logistic distribution (cf. [9, p. 54]) with
scale parameter 1 and shape parameter ˛�1) under the map x 7! x�1.

On the other hand, we can make some observations about the distribution �˛;ˇ ,
too. For the cases .˛; ˇ/ D .1; 0/ and .˛; ˇ/ D .0; 1/we can recognize the measures
�1;0 and �0;1 from their S -transform, as S�1;0.z/ D .1C z/�1 is the S -transform of
the free Poisson distributions with shape parameter 1 (cf. [18, p. 34]), which is
given by

�1;0 D 1

2


r
4 � x
x

1.0;4/.x/dx;

while S�0;1.z/ D �z according to Lemma 11 is the S -transform of the image of the
above free Poisson distribution under the map t 7! t�1,

�0;1 D 1

2


p
4x � 1
x2

1. 14 ;1/.x/dx;

which is the same as the free stable distribution with parameters ˛ D 1=2 and
� D 1 as described by H. Bercovici, V. Pata and P. Biane in [3, Appendix A1]. More
generally, �0;ˇ is the same as the free stable distribution v˛;� with ˛ D 1

ˇC1 and

� D 1, because by [3, Appendix A4] v˛;1 is characterized by˙v˛;1.y/ D
� �y
1�y

� 1
˛�1

,

y 2 .�1; 0/, and it is easy to check that

Sv˛;0.z/ D ˙v˛;0

	
z

1C z



D .�z/

1
˛�1 D S�

0; 1˛ �1
.z/; 0 < z < 1; 0 < ˛ < 1:

From the above observations, we now can describe a construction of the measures
�m;n.

Proposition 4. Letm; n be nonnegative integers. Then the measure�m;n is given by

�m;n D ��m
1;0 � ��n

0;1 :

Proof. By multiplicativity of the S -transform we have that
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S
��m
1;0 ���n

0;1
.z/ D S�1;0.z/mS�0;1 .z/n D

.�z/n

.1C z/m
D S�m;n.z/;

which by uniqueness of the S -transform gives the desired result. ut
Proposition 5. For all ˛; ˇ 	 0

E�˛;ˇ .lnx/ D ˇ � ˛

�.�˛;ˇ/ D 
2

6
.˛ C ˇ/

V�˛;ˇ .lnx/ D .˛ � ˇ/2 C

2

3
.˛ˇ C ˛ C ˇ/:

Proof. These formulas follow easily from Propositions 1 and 2 and Lemma 8. ut
Furthermore, we also can calculate explicitly all fractional moments of �˛;ˇ by

the following theorem.

Theorem 3. Let ˛; ˇ > 0 and � 2 R then we have

Z 1
0

x�d�˛;ˇ.x/ D
(

sin.
�/

�

� .1C�C�˛/� .1����ˇ/
� .2C�˛��ˇ/ � 1

1C˛ < � <
1

1Cˇ
1 otherwise

(8.12)

Z 1
0

x�d�˛;0.x/ D
(

� .1C�C�˛/
� .1C�/� .2C�˛/ � > � 1

1C˛
1 otherwise

(8.13)

Z 1
0

x�d�0;ˇ.x/ D
(

� .1����ˇ/
� .1��/� .2��ˇ/ � < 1

1Cˇ
1 otherwise.

(8.14)

Proof. Let first �1 < � < 1. Then (8.12)–(8.14) follow from Lemma 10 together
with the formula � .1C�/� .1��/ D 
�

sin.
�/ . Since S�˛;0 .z/ D 1
.zC1/˛ is analytic in

a neighborhood of 0, �˛;0 has finite moments of all orders. Therefore the functions

s 7!
Z 1
0

xsd�˛;0.x/

s 7! � .1C s C s˛/
� .1C s/� .2C s˛/

are both analytic in the half-plane <s > 0 and they coincide for s 2 .0; 1/. Hence
they are equal for all s 2 C with <s > 0 which proves (8.13). By Lemma 11 (8.14)
follows from (8.13). ut
Remark 4. By Theorem 3 (8.12) we have
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1. If ˇ > 0, then
R1
0 xd�˛;ˇ.x/ D 1. Hence sup.supp.�˛;ˇ// D 1. Similarly, if

˛ > 0 then
R1
0 x�1d�˛;ˇ.x/ D1. Hence inf.supp.�˛;ˇ// D 0.

2. If ˇ D 0, then by Stirling’s formula

sup.supp.�˛;0// D lim
0!1

	Z 1
0

tnd�˛;0.t/


 1
n

D .˛ C 1/˛C1
˛˛

:

Hence by Lemma 11, we have for ˛ D 0

inf.supp.�0;ˇ// D ˇˇ

.ˇ C 1/ˇC1 :

Note that sup.supp.�n;0// D .nC1/nC1

nn
; n 2 N was already proven by F. Larsen in

[10, Proposition 4.1] and it was proven by T. Banica, S. T. Belinschi, M. Capitane

and B. Collins in [2] that supp.�˛;0/ D
h
0;

.˛C1/˛C1

˛˛

i
. Note that this also follows

from our Corollary 3.

If ˛ D ˇ it is also possible to calculate explicitly the density of �˛;˛ . To do this
we require an additional lemma.

Lemma 13. For �1 < � < 1 and �
 < � < 
 we have

sin �




Z 1
0

t�

t2 C 2 cos.�/t C 1dt D sin.��/

sin.
�/
:

Proof. Note first that by the substitution t D ex we have

Z 1
0

t�

t2 C 2 cos.�/t C 1dt D 1

2

Z 1
�1

e�x

coshx C cos �
dx:

The function

z 7! e�x

coshx C cos �

is meromorphic with simple poles in x D ˙i.
 ��/Cp2
 , p 2 Z. Apply now the
residue integral formula to this function on the boundary of

fz 2 C W �R � <z � R; 0 � =z � 2
g

and let R!1. The result follows. ut
The density of �˛;˛ was computed by P. Biane [5, Sect. 5.4]. For completeness

we include a different proof based on Theorem 3 and Lemma 13.
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Theorem 4 ([5]). Let ˛ > 0 then �˛;˛ has the density f˛;˛.t/dt , where

f˛;˛.t/ D
sin
�



˛C1

�

t
�
t

1
˛C1 C 2 cos

�


˛C1

�C t� 1
˛C1

�

for t 2 .0;1/. In particular �1;1 has the density .

p
t.1 C t//�1dt and �2;2 has

the density

p
3

2
.1C t 23 C t 43 /
dt:

Proof. To prove this note that for j� j < 1
1C˛

Z 1
0

x�f˛;˛.x/dx D
Z 1
0

sin
�


˛C1

�
.˛ C 1/y�.˛C1/



�
y C 2 cos

�


˛C1

�C y�1�
dy

y

D .˛ C 1/ sin
�


˛C1

�



Z 1
0

y�.˛C1/

y2 C 2 cos
�



˛C1

�
y C 1dy

using the substitution y D x 1
˛C1 . Now by Lemma 13 and Theorem 3 (8.12) we have

Z 1
0

x�f˛;˛.x/dx D
Z 1
0

x�d�˛;˛.x/ <1:

This implies by unique analytic continuation that the same formula holds for all
� 2 C with j<� j < 1

˛C1 . In particular

Z 1
0

xisf˛;˛.x/dx D
Z 1
0

xisd�˛;˛.x/

for all s 2 R, which shows that the image measures under x 7! ln x of f˛;˛.x/dx
and �˛;˛ have the same characteristic function. Hence �˛;˛ D f˛;˛.x/dx. ut
Proposition 6. For all ˛; ˇ 	 0, .˛; ˇ/ ¤ .0; 0/, the measure �˛;ˇ has a
continuous density f˛;ˇ.x/, .x > 0/, with respect to the Lebesgue measure on R and

lim
x!0C

xf˛;ˇ.x/ D lim
x!1 xf˛;ˇ.x/ D 0: (8.15)

Proof. By the method of proof of Theorem 4, the integral

h˛;ˇ.s/ D
Z 1
0

xisd�˛;ˇ.x/; s 2 R
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can be obtained by replacing � by is in the formulas (8.12)–(8.14). Moreover,

h˛;ˇ.s/ D
Z 1
0

exp.ist/d�˛;ˇ.t/

where �˛;ˇ is the image measure of �˛;ˇ by the map x 7! logx, .x > 0/. Hence
by standard Fourier analysis, we know that if h˛;ˇ 2 L1.R/ then �˛;ˇ has a density
g˛;ˇ 2 C0.R/with respect to the Lebesgue measure on R and hence�˛;ˇ has density
f˛;ˇ.x/ D 1

x
g˛;ˇ.logx/ for x > 0, which satisfies the condition (8.15). To prove

that h˛;ˇ 2 L1.R/ for all ˛; ˇ 	 0, .˛; ˇ/ ¤ .0; 0/, we observe first that

� .1 � z/� .1C z/ D 
z

sin
z
; z 2 C n Z

and hence by the functional equation of �

� .2 � z/� .2C z/ D 
z.1 � z2/

sin
z
; z 2 C n Z:

In particular, we have

j� .1C is/j2 D 
s

sinh
s
; s 2 R

j� .2C is/j2 D 
s.1C s2/
sinh
s

; s 2 R:

Applying these formulas to (8.12)–(8.14) with � replaced by is, we get

h˛;ˇ.s/ D O
�jsj�3=2� ; for s ! ˙1

for all choices of ˛; ˇ 	 0, .˛; ˇ/ ¤ .0; 0/. Thus by the continuity of h˛;ˇ it follows
that h˛;ˇ 2 L1.R/, which proves the proposition. ut

Note that by Remark 4 it follows that f˛;0.x/ can only be non-zero if x 2�
0;

.˛C1/˛C1

˛˛

�
and f0;ˇ.x/ can only be non-zero if x 2

�
ˇˇ

.ˇC1/ˇC1 ;1
�

. Since we

have seen, that �0;ˇ coincides with the stable distribution v˛;� with ˛ D 1
ˇC1 and

� D 1 we have from [3, Appendix 4] that

Theorem 5 ([3]). The map

� 7! sin � sinˇ.ˇ�/

sinˇC1..ˇ C 1/�/ ; 0 < � <



ˇ C 1

is a bijection of the interval
�
0; 


ˇC1
�

onto
�

ˇˇ

.ˇC1/ˇC1 ;1
�

and
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f�0;ˇ

 
sin � sinˇ.ˇ�/

sinˇC1..ˇ C 1/�/

!
D sinˇC2..ˇ C 1/�/


 sinˇC1.ˇ�/
; 0 < � <




ˇ C 1: (8.16)

Proof. We know that �0;ˇ D v 1
ˇC1 ;1

, the stable distribution with parameters ˛ D
1

ˇC1 and � D 1. Moreover, we have from [3, Proposition A1.4], that v˛;1 has density

 ˛;1 on the interval
�
˛.1 � ˛/1=˛�1;1� given by

 ˛;1.x/ D 1



sin1C

1
˛ � sin�

1
˛ ..1 � ˛/�/;

where � 2 .0; 
/ is the only solution to the equation

x D sin�
1
˛ � sin

1
˛�1..1 � ˛/�/ sin ˛�:

It is now easy to check that f0;ˇ.x/ D  1
ˇC1 ;1

.x/ has the form (8.16) by using the

substitution � D �
ˇC1 . ut

Corollary 3. The map

� 7! sin˛C1..˛ C 1/�/
sin� sin˛.˛�/

; 0 < � <



˛ C 1

is a bijection of the interval
�
0; 


˛C1
�

onto
�
0;

.˛C1/˛C1

˛˛

�
and

f�˛;0

 
sin˛C1..˛ C 1/�/

sin � sin˛.˛�/

!
D sin2 � sin˛�1.˛�/

 sin˛..˛ C 1/�/ ; 0 < � <




˛ C 1:

Proof. Since �˛;0 is the image measure of �0;˛ by the map t 7! 1
t
, .t > 0/, we have

f˛;0.x/ D 1

x2
f0;˛

	
1

x



; x > 0:

The corollary now follows from Theorem 5 by elementary calculations. ut
We next use Biane’s method to compute the density f˛;ˇ for all ˛; ˇ > 0.

Theorem 6. Let ˛; ˇ > 0. Then for each x > 0 there are unique real numbers
�1; �2 > 0 for which


 D .˛ C 1/�1 C .ˇ C 1/�2 (8.17)

x D sin˛C1 �2
sinˇC1 �1

sinˇ�˛.�1 C �2/: (8.18)
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Moreover

f�˛;ˇ .x/ D
sinˇC2 �1

 sin˛ �2

sin˛�ˇ�1.�1 C �2/: (8.19)

Proof. As �˛;ˇ has the S -transform S�˛;ˇ .z/ D .�z/ˇ

.1Cz/˛ we by Definition 1 observe
that

��˛;ˇ .z/ D
�.�z/ˇC1

.1C z/˛C1
whence  �˛;ˇ

	
� .�z/ˇC1

.1C z/˛C1



D z

for z in some complex neighborhood of .�1; 0/. Now it is known that

G�

	
1

t



D t �1C  �.t/�

for every probability measure on .0;1/. Hence

G�˛;ˇ

	
� .1C z/˛C1

.�z/ˇC1



D � .�z/ˇC1

.1C z/˛
(8.20)

for z in a complex neighborhood of .�1; 0/.
Let H denote the upper half plane in C:

H D fz 2 C W =z > 0g:

For z 2 H , put

�1 D �1.z/ D arg.1C z/ 2 .0; 
/
�2 D �2.z/ D 
 � arg.z/ 2 .0; 
/:

Basic trigonometry applied to the triangle with vertices �1, 0 and z, shows that
�1 C �2 < 
 and

sin �1
jzj D

sin�2
j1C zj D

sin.
 � �1 � �2/
1

:

Hence

jzj D sin �1
sin.�1 C �2/ and j1C zj D sin�2

sin.�1 C �2/
from which
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z D � sin�1
sin.�1 C �2/e

i�2 and =z D sin�1 sin �2
sin.�1 C �2/ :

It follows that ˚ W z 7! .�1.z/; �2.z// is a diffeomorphism of H onto the triangle
T D f.�1; �2/ 2 R2 W �1; �2 > 0; �1 C �2 < 
g with inverse

˚�1.�1; �2/ D � sin �1
sin.�1 C �2/e

�i�2 ; .�1; �2/ 2 T:

PutH˛;ˇ D fz 2 H W .˛C1/�1.z/C.ˇC1/�2.z/ < 
g. ThenH˛;ˇ D ˚�1
�
T˛;ˇ

�
where T˛;ˇ D f.�1; �2/ 2 T W .˛ C 1/�1 C .ˇ C 1/�2 < 
g:

In particularH˛;ˇ is an open connected subset ofH . Put

F.z/ D � .1C z/˛C1

.�z/ˇC1
; =z > 0:

Then

F.z/ D j1C zj˛C1
jzjˇC1 ei..˛C1/�1.z/C.ˇC1/�2.z/�
/ (8.21)

so for z 2 H˛;ˇ , =F.z/ < 0. Therefore G�˛;ˇ .F.z// is a well-defined analytic
function on H˛;ˇ , and since .�1; 0/ is contained in the closure of H˛;ˇ it follows
from (8.20)

G�˛;ˇ .F.z// D
1C z

F.z/
(8.22)

for z in some open subset of H˛;ˇ and thus by analyticity it holds for all z 2 H˛;ˇ .
Let x > 0 and assume that �1; �2 > 0 satisfy (8.17) and (8.18). Put

z D ˚�1.�1; �2/ D � sin �1
sin.�1 C �2/e

�i�2 :

Then by (8.21)

F.z/ D j1C zj˛C1
jzjˇC1 D

	
sin�2

sin.�1 C �2/

˛C1 	 sin.�1 C �2/

sin �1


ˇC1
D x:

Since �˛;ˇ has a continuous density f˛;ˇ on .0;1/ by Proposition 6, the inverse
Stieltjes transform gives

f˛;ˇ.x/ D � 1



lim
w!x;=w>0

=G�˛;ˇ .w/ D
1



lim

w!x;=w<0
=G�˛;ˇ .w/:
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For 0 < t < 1, put zt D ˚�1.t�1; t�2/. Then

zt 2 ˚�1
�
T˛;ˇ

� D H˛;ˇ:

Thus =F.zt / < 0. Moreover, zt ! z and F.zt /! F.z/ D x for t ! 1�. Hence by
(8.22),

f˛;ˇ.x/ D 1



lim
t!1�

=G�˛;ˇ .F .zt // D
1



lim
t!1�

=
	

zt C 1
F.zt /



D =z


x
D sin�1 sin�2

x sin.�1 C �2/

which proves (8.19). To complete the proof of Theorem 6, we only need to prove
the existence and uniqueness of �1; �2 > 0. Assume that �1; �2 satisfy (8.17) then

�1 D 
 � �
˛ C 1 and �2 D �

ˇ C 1
for a unique � 2 .0; 
/. Moreover,

d�1
d�
D � 1

˛ C 1 and
d�2
d�
D 1

ˇ C 1:

Hence, expressing u D sin˛C1 �2

sinˇC1 �1
sinˇ�˛.�1 C �2/ as a function u.�/ of � , we get

.˛ C 1/.ˇ C 1/du.�/

d�
D .ˇ C 1/2 cot�1 C .˛ C 1/2 cot�2 � 2.˛ � ˇ/2 cot.�1 C �2/

D A.�1; �2/

sin�1 sin�2 sin.�1 C �2/

where

A.�1; �2/ D ..˛ C 1/ sin�1 cos�2 C .ˇ C 1/ cos �1 sin�2/
2 C .˛ � ˇ/2 sin2 �1 sin2 �2:

For ˛ ¤ ˇ A.�1; �2/ 	 .˛ � ˇ/2 sin2 �1 sin2 �2 > 0 and for ˛ D ˇ A.�1; �2/ D
.˛C1/2 sin.�1C�2/ > 0. Hence u.�/ is a differentiable, strictly increasing function
of � , and it is easy to check that

lim
�!0C

u.�/ D 0 and lim
�!
�

u.�/ D1:

Hence u.�/ is a bijection of .0; 
/ onto .0;1/, which completes the proof of
Theorem 6. ut
Remark 5. It is much more complicated to express the densities f˛;ˇ.x/ directly
as functions of x. This has been done for ˇ D 0, ˛ 2 N by K. Penson and
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K. Życzkowski in [13] and extended to the case ˛ 2 QC by W. Młotkowski,
K. Penson and K. Życzkowski in [12, Theorem 3.1].
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Chapter 9
Is Every Irreducible Shift of Finite Type Flow
Equivalent to a Renewal System?

Rune Johansen

Abstract Is every irreducible shift of finite type flow equivalent to a renewal
system? For the first time, this variation of a classic problem formulated by Adler
is investigated, and several partial results are obtained in an attempt to find the
range of the Bowen–Franks invariant over the set of renewal systems of finite type.
In particular, it is shown that the Bowen–Franks group is cyclic for every member
of a class of renewal systems known to attain all entropies realised by shifts of finite
type, and several classes of renewal systems with non-trivial values of the invariant
are constructed.

Keywords Reneweal systems • Symbolic dynamics • Shift spaces • Subshifts •
Sofic shifts • Bowen–Franks group • Flow equivalence • Fischer cover

Mathematics Subject Classification (2010): 37B10.

9.1 Introduction

Here, a short introduction to the basic definitions and properties of shift spaces is
given to make the present paper self-contained. For a thorough treatment of shift
spaces see [12]. Let A be a finite set with the discrete topology. The full shift over
A consists of the space A Z endowed with the product topology and the shift map
� WA Z ! A Z defined by �.x/i D xiC1 for all i 2 Z. Let A � be the collection
of finite words (also known as blocks) over A . For w 2 A �, jwj will denote the
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length of w. A subset X 
 A Z is called a shift space if it is invariant under the shift
map and closed. For each F 
 A �, define XF to be the set of bi-infinite sequences
in A Z which do not contain any of the forbidden words from F . A subsetX 
 A Z

is a shift space if and only if there exists F 
 A � such that X D XF (cf. [12,
Proposition 1.3.4]).X is said to be a shift of finite type (SFT) if this is possible for a
finite set F .

The language of a shift space X is denoted B.X/ and it is defined to be the
set of all words which occur in at least one x 2 X . The shift space X is said to be
irreducible if there for every u;w 2 B.X/ exists v 2 B.X/ such that uvw 2 B.X/.
For each x 2 X , define the left-ray of x to be x� D � � �x�2x�1 and define the
right-ray of x to be xC D x0x1x2 � � � . The sets of all left-rays and all right-rays
are, respectively, denoted X� and XC. Given a word or ray x, rl.x/ and ll.x/ will
denote respectively the right-most and the left-most letter of x.

A directed graph is a quadruple E D .E0;E1; r; s/ consisting of countable sets
E0 and E1, and maps r; sWE1 ! E0. A path � D e1 � � � en is a sequence of edges
such that r.ei / D s.eiC1/ for all i 2 f1; : : : n�1g. The vertices inE0 are considered
to be paths of length 0. For each n 2 N0, the set of paths of length n is denoted En,
and the set of all finite paths is denoted E�. Extend the maps r and s to E� by
defining s.e1 � � � en/ D s.e1/ and r.e1 � � � en/ D r.en/. A directed graph E is said
to be irreducible (or transitive) if there for each pair of vertices u; v 2 E0 exists a
path � 2 E� with s.�/ D u and r.�/ D v. For a directed graph E , the edge shift
.XE; �E/ is defined by XE D

˚
x 2 .E1/Z j r.xi / D s.xiC1/ for all i 2 Z

�
.

A bijective, continuous and shift commuting map between two shift spaces is
called a conjugacy, and when such a map exists, the two shift spaces are said
to be conjugate. Flow equivalence is a weaker equivalence relation generated by
conjugacy and symbol expansion [13]. Let A be the adjacency matrix of a directed
graphE , then BF.A/ D Zn=Zn.Id�A/ is called the Bowen–Franks group of A and
it is an invariant of conjugacy of edge shifts. Let E and F be finite directed graphs
for which the edge shifts XE and XF are irreducible and not flow equivalent to the
trivial shift with one element, and let AE and AF be the corresponding adjacency
matrices. Then XE and XF are flow equivalent if and only BF.AE/ ' BF.AF / and
the signs sgn detAE and sgn detAF are equal [3]. Every SFT is conjugate to an
edge shift, so this gives a complete flow equivalence invariant of irreducible SFTs.
The pair consisting of the Bowen–Franks group and the sign of the determinant
is called the signed Bowen–Franks group, and it is denoted BFC. This invariant is
easy to compute and easy to compare which makes it appealing to consider flow
equivalence rather than conjugacy.

A labelled graph .E;L / over an alphabet A consists of a directed graph E and
a surjective labelling map L WE1 ! A . Given a labelled graph .E;L /, define
the shift space .X.E;L /; �/ by setting X.E;L / D

˚
.L .xi //i 2 A Z j x 2 XE

�
, The

labelled graph .E;L / is said to be a presentation of the shift space X.E;L /, and a
representative of a word w 2 B.X.E;L // is a path � 2 E� such that L .�/ D w with
the natural extension of L . Representatives of rays are defined analogously. Let
.E;L / be a labelled graph presenting X . For each v 2 E0, define the predecessor
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set of v to be the set of left-rays in X which have a presentation terminating at v.
This is denoted PE1.v/, or just P1.v/ when .E;L / is understood from the context.
The presentation .E;L / is said to be predecessor-separated if PE1.u/ ¤ PE1.v/
when u; v 2 E0 and u ¤ v.

A function 
WX1 ! X2 between shift spaces X1 and X2 is said to be a factor
map if it is continuous, surjective, and shift commuting. A shift space is called
sofic [16] if it is the image of an SFT under a factor map. Every SFT is sofic, and
a sofic shift which is not an SFT is called strictly sofic. Fischer proved that a shift
space is sofic if and only if it can be presented by a finite labelled graph [2]. A sofic
shift space is irreducible if and only if it can be presented by an irreducible labelled
graph (see [12, Sect. 3.1]).

Let .E;L / be a finite labelled graph which presents the sofic shift space
X.E;L /, and let 
L WXE ! X.E;L / be the factor map induced by the labelling map
L WE1 ! A , then the SFT XE is called a cover of the sofic shift X.E;L /, and 
L is
called the covering map.

LetX be a shift space over an alphabet A . A presentation .E;L / ofX is said to
be left-resolving if no vertex in E0 receives two edges with the same label. Fischer
proved [2] that up to labelled graph isomorphism every irreducible sofic shift has a
unique left-resolving presentation with fewer vertices than any other left-resolving
presentation. This is called the left Fischer cover of X , and it is denoted .F;LF /.

For xC 2 XC, define the predecessor set of xC to be the set of left-rays which
may precede xC in X , that is P1.xC/ D fy� 2 X� j y�xC 2 Xg (see [10,
Sects. I and III] and [12, Exercise 3.2.8] for details). The follower set of a left-ray
x� 2 X� is defined analogously. The left Krieger cover of the sofic shift spaceX is
the labelled graph .K;LK/ where K0 D fP1.xC/ j xC 2 XCg, and where there
is an edge labelled a 2 A from P 2 K0 to P 0 2 K0 if and only if there exists
xC 2 XC such that P D P1.axC/ and P 0 D P1.xC/. A word v 2 B.X/ is said
to be intrinsically synchronising if uvw 2 B.X/ whenever u and w are words such
that uv; vw 2 B.X/. A ray is said to be intrinsically synchronising if it contains
an intrinsically synchronising word as a factor. If a right-ray xC is intrinsically
synchronising, then there is precisely one vertex in the left Fischer cover where a
presentation of xC can start, and this vertex can be identified with the predecessor
set P1.xC/ as a vertex in the Krieger cover. In this way, the left Fischer cover can
be identified with the irreducible component of the left Krieger cover generated by
the vertices that are predecessor sets of intrinsically synchronising right-rays [11,
Lemma 2.7], [12, Exercise 3.3.4]. The interplay between the structure of the Fischer
and Krieger covers is examined in detail in [8].

Let A be an alphabet, let L 
 A � be a finite list of words over A , and define
B.L/ to be the set of factors of elements of L�. Then B.L/ is the language of a
shift space X.L/ which is said to be the renewal system generated by L. L is said to
be the generating list of X.L/. A renewal system is an irreducible sofic shift since
it can be presented by the labelled graph obtained by writing the generating words
on loops starting and ending at a common vertex. This graph is called the standard
loop graph presentation of X.L/, and because of this presentation, renewal systems
are called loop systems or flower automata in automata theory (e.g. [1]).
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Simple examples show that not every sofic shift—or every SFT—is a renewal
system [12, pp. 433], and these results naturally raise the following question, which
was first asked by Adler: Is every irreducible shift of finite type conjugate to a
renewal system? This question has been the motivation of most of the work done
on renewal systems [4–6, 9, 14, 15, 17]. The analogous question for sofic shifts has
a negative answer [17]. The aim of the present work has been to answer another
natural variation of Adler’s question: Is every irreducible SFT flow equivalent to
a renewal system? To answer this question, it is sufficient to find the range of the
Bowen–Franks invariant over the set of SFT renewal systems and check whether it
is equal to the range over the set of irreducible SFTs. It is easy to check that a group
G is the Bowen–Franks group of an irreducible SFT if and only if it is a finitely
generated abelian group and that any combination of sign and Bowen–Franks group
can be achieved by the Bowen–Franks invariant. Hence, the overall strategy of the
investigation of the flow equivalence question has been to attempt to construct all
these combinations of groups and signs. However, it is difficult to construct renewal
systems attaining many of the values of the invariant. In fact, it is non-trivial to
construct an SFT renewal system that is not flow equivalent to a full shift [7].

Section 9.2 concerns the left Fischer covers of renewal systems and gives
conditions under which the Fischer covers of complicated renewal systems can be
constructed from simpler building blocks with known presentations. Section 9.3
gives a flow classification of a class of renewal systems introduced in [6], while
Sect. 9.4 uses the results of the previous two sections to construct classes of renewal
systems with interesting values of the Bowen–Franks invariant.

9.2 Fischer Covers of Renewal Systems

In the attempt to find the range of the Bowen–Franks invariant over the set of SFT
renewal systems, it is useful to be able to construct complicated renewal systems
from simpler building blocks, but in general, it is non-trivial to study the structure
of the renewal system X.L1 [ L2/ even if the renewal systems X.L1/ and X.L2/
are well understood. The goal of this section is to describe the structure of the
left Fischer covers of renewal systems in order to give conditions under which the
Fischer cover of X.L1 [ L2/ can be constructed when the Fischer covers of X.L1/
and X.L2/ are known.

Let L be a generating list and define P0.L/ D f: : :w�2w�1w0 j wi 2 Lg 

X.L/�. P0.L/ is the predecessor set of the central vertex in the standard loop
graph of X.L/, but it is not necessarily the predecessor set of a right-ray in
X.L/C, so it does not necessarily correspond to a vertex in the left Fischer cover
of X.L/. If p 2 B.X.L// is a prefix of some word in L, define P0.L/p D
f: : :w�2w�1w0p j wi 2 Lg 
 X.L/�.

Let L be a generating list. A triple .nb; g; l/ where nb; l 2 N and g is an ordered
list of words g1; : : : ; gk 2 L with

Pk
iD1jgi j 	 nbC l �1 is said to be a partitioning
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of the factor vŒnb;nbCl�1� 2 B.X.L// of v D g1 � � �gk . The beginning of the
partitioning is the word vŒ1;nb�1�, and the end is the word vŒnbCl;jvj�. A partitioning of
a right-ray xC 2 X.L/C is a pair p D .nb; .gi /i2N/ where nb 2 N and gi 2 L such
that wxC D g1g2 � � � when w is the beginning consisting of the nb � 1 first letters of
the concatenation g1g2 � � � . Partitionings of left-rays are defined analogously.

Let L 
 A � be a finite list, and let w 2 B.X.L// [ X.L/C be an allowed
word or right-ray. Then w is said to be left-bordering if there exists a partitioning of
w with empty beginning, and strongly left-bordering if every partitioning of w has
empty beginning. Right-bordering words and left-rays are defined analogously.

Definition 1. Let L 
 A � be finite, and let .F;LF / be the left Fischer cover
of X.L/. A vertex P 2 F 0 is said to be a (universal) border point for L if
there exists a (strongly) left-bordering xC 2 XC such that P D P1.xC/.
An intrinsically synchronising word w 2 L� is said to be a generator of the border
point P1.w/ D P1.w1/, and it is said to be a minimal generator of P if no prefix
of w is a generator of P .

The border points add information to the Fischer cover about the structure of the
generating lists, and this information will be useful for studying X.L1 [ L2/ when
the Fischer covers of X.L1/ and X.L2/ are known. If P is a (universal) border point
of L and there is no ambiguity about which list is generating X D X.L/, then the
terminology will be abused slightly by saying that P is a (universal) border point of
X or simply of the left Fischer cover.

Lemma 1. LetL be a finite list generating a renewal system with left Fischer cover
.F;LF /.

1. If P 2 F 0 is a border point, then P0.L/ 
 P , and if P is universal then P D
P0.L/.

2. If P1; P2 2 F 0 are border points and if w1 2 L� is a generator of P1, then there
exists a path with label w1 from P1 to P2.

3. If P1 2 F 0 is a border point and w 2 L�, then there exists a unique border point
P2 2 F 0 with a path labelled w from P2 to P1.

4. If X.L/ is an SFT, then every border point of L has a generator.
5. If L has a strongly right-bordering word w, then xC 2 X.L/C is left-bordering

if and only if P1.xC/ is a border point.

Proof. (1) Choose a left-bordering xC 2 X.L/C such that P D P1.xC/ and note
that y�xC 2 X.L/ for each y� 2 P0.L/. (2) Choose a left-bordering xC 2 X.L/C
such that P2 D P1.xC/. Then P1.w1xC/ D P1 since w1xC 2 X.L/C and w1 is
intrinsically synchronising, so there is a path labelled w1 from P1 to P2. (3) Choose
a left-bordering xC 2 X.L/C such that P D P1.xC/. Since w 2 L�, the right-
ray wxC is also left-bordering. (4) Let P D P1.xC/ for some left-bordering
xC 2 X.L/C, and choose an intrinsically synchronising prefix w 2 L� of xC.
Then P1.xC/ D P1.w/, so w is a generator of P . (5) If P1.xC/ is a border point,
then wxC 2 X.L/C, so xC must be left-bordering. The other implication holds by
definition.
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P0 P1
P2

b
b

aa

a

Fig. 9.1 Left Fischer cover of the SFT renewal system X.L/ generated by L D faa; aaa; bg
discussed in Example 1. The border points are coloured grey

In particular, the universal border point is unique when it exists. A predecessor set
P1.xC/ can be a border point even though xC is not left-bordering.

Example 1. Consider the list L D faa; aaa; bg and the renewal system X.L/. It is
straightforward to check that X.L/ D XF for the set of forbidden words F D
fbabg, so this is an SFT. For this shift, there are three distinct predecessor sets:

P0 D P1.b � � � / D f� � �x�1x0 2 X.L/� j x0 D b or x�1x0 D aag;
P1 D P1.anb � � � / D P1.a1/ D X.L/�; n 	 2;
P2 D P1.ab � � � / D f� � �x�1x0 2 X.L/� j x0 D ag:

The information contained in these equations is sufficient to draw the left Krieger
cover, and each set is the predecessor set of an intrinsically synchronising right-ray,
so the left Fischer cover can be identified with the left Krieger cover. This graph is
shown in Fig. 9.1. Here, P0 is a universal border point because any right-ray starting
with a b is strongly left bordering. The generating word b is a minimal generator
of P0. The vertexP1 is a border point because anb � � � is left bordering for all n 	 2.
The word aa is a minimal generator of P1, and aab is a non-minimal generator. The
vertex P2 is not a border point since there is no infinite concatenation xC of words
from L such that xC D ab � � � . Another way to see this is to note that every path
terminating at P2 has a as a suffix, so that P0 is not a subset of P2 which together
with Lemma 1 implies that P2 is not a border point. Note also that Lemma 1 means
that there must be paths labelled b from P0 to the two border points, and similarly,
paths labelled aa and aab from P1 to the two border points.

Consider two renewal systems X.L1/ and X.L2/. The sum X.L1/ C X.L2/ is
the renewal system X.L1 [ L2/. Generally, it is non-trivial to construct the Fischer
cover of such a sum even if the Fischer covers of the summands are known.

Definition 2. Let L be a generating list with universal border point P0 and let
.F;LF / be the left Fischer cover of X.L/. L is said to be left-modular if for all
� 2 F � with r.�/ D P0, LF .�/ 2 L� if and only if s.�/ is a border point. Right-
modular generating lists are defined analogously.

It is straightforward to check that the list considered in Example 1 is left-modular.
When L is left-modular and there is no doubt about which generating list is used,
the renewal system X.L/ will also be said to be left-modular.
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Fig. 9.2 The labelled graph .F
C

;L
C

/. In .F1;L1/, v emits an edge labelled a to P1, so in
.F

C

;L
C

/, the corresponding vertex emits edges labelled a to every vertex corresponding to a
border point P 2 F 0

2

Lemma 2. If L is a generating list with a strongly left-bordering word wl and a
strongly right-bordering word wr , then it is both left- and right-modular.

Proof. Let .F;LF / be the left Fischer cover of X.L/, let P 2 F 0 be a border
point, and choose xC 2 X.L/C such that wl xC 2 X.L/C. Assume that there is a
path from P to P0.L/ D P1.wlxC/ with label w. The word wr has a partitioning
with empty end, so there is a path labelled wr terminating at P . It follows that
wrwwlxC 2 X.L/C, so w 2 L�. By symmetry, L is also right-modular.

For i 2 f1; 2g, let Li be a left-modular generating list and let Xi D X.Li /
have alphabet Ai and left Fischer cover .Fi ;Li /. Let Pi 2 F 0

i be the universal
border point of Li . Assume that A1 \A2 D ;. The left Fischer cover of X1 C X2
will turn out to be the labelled graph .FC;LC/ obtained by taking the union of
.F1;L1/ and .F2;L2/, identifying the two universal border points P1 and P2, and
adding certain connecting edges. To do this formally, introduce a new vertex PC
and define F 0C D .F 0

1 [ F 0
2 [ fPCg/ n fP1; P2g. Define maps fi WF 0

i ! F 0C such
that for v 2 F 0

i n fPig, fi .v/ is the vertex in F 0C corresponding to v and such that
fi .Pi / D PC. For each e 2 F 1

i , define an edge e0 2 F 1C such that s.e0/ D fi .s.e//,
r.e0/ D fi .r.e//, and LC.e0/ D Li .e/. For each e 2 F 1

1 with r.e/ D P1 and
each non-universal border point P 2 F 0

2 , draw an additional edge e0 2 F 1C with
s.e0/ D f1.s.e//, r.e0/ D f2.P /, and LC.e0/ D L1.e/. Draw analogous edges for
each e 2 F 1

2 with r.e/ D P2 and every non-universal border point P 2 F 0
1 . This

construction is illustrated in Fig. 9.2.

Proposition 1. If L1 and L2 are left-modular generating lists with disjoint alpha-
bets, then L1 [L2 is left-modular, the left Fischer cover of X.L1 [L2/ is the graph
.FC;LC/ constructed above, and the vertex PC 2 F 0C is the universal border point
of L1 [ L2.
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Proof. By construction, the labelled graph .FC;LC/ is irreducible, left-resolving,
and predecessor-separated, so it is the left Fischer cover of some sofic shift XC
[12, Corollary 3.3.19]. Given w 2 L�1 , there is a path with label w in the left
Fischer cover of X1 from some border point P 2 F 0

1 to the universal border point
P1 by Lemma 1. Hence, there is also a path labelled w in .FC;LC/ from the
vertex corresponding to P to the vertex PC. This means that for every border point
Q 2 F 0

2 , .FC;LC/ contains a path labelled w from the vertex corresponding to P
to the vertex corresponding to Q. By symmetry, it follows that every element of
.LX [ LY /� has a presentation in .FC;LC/. Hence, X.L1 [ L2/ � XC.

Assume that awb 2 B.XC/ with a; b 2 A1 and w 2 A �2 . Then there must be a
path labelled w in .FC;LC/ from a vertex corresponding to a border point P of L2
to PC. By construction, this is only possible if there is also a path labelled w from P

to P2 in .F2;L2/, but L2 is left-modular, so this means that w 2 L�2 . By symmetry,
X.L1 [ L2/ D XC, and PC is the universal border point by construction.

Let X be a shift space over the alphabet A . Given a 2 A , k 2 N, and new
symbols a1; : : : ; ak … A consider the map fa;k W .A n fag/ [ fa1; : : : ; akg ! A
defined by fa;k.ai / D a for each 1 � i � k and fa;k.b/ D b when b 2 A nfag. Let
Fa;k W ..A nfag/[fa1; : : : ; akg/� ! A � be the natural extension of fa;k . If w 2 A �
contains l copies of the symbol a, then the preimage F �1a;k .fwg/ is the set consisting
of the kl words that can be obtained by replacing the as by the symbols a1; : : : ; ak .

Definition 3. Let X D XF be a shift space over the alphabet A , let a 2 A , let
a1; : : : ; ak … A , and let Fa;k be defined as above. Then the shift space Xa;k D
XF�1

a;k .F / is said to be the shift obtained from X by fragmenting a into a1; : : : ; ak .

Note that this construction does not depend on the choice of F representing X ,
in particular, B.Xa;k/ D F �1a;k .B.X//. Furthermore, Xa;k is an SFT if and only
if X is an SFT. If X is an irreducible sofic shift, then the left and right Fischer
and Krieger covers of Xa;k are obtained by replacing each edge labelled a in the
corresponding cover of X by k edges labelled a1; : : : ; ak . Note that X and Xa;k are
not generally conjugate or even flow equivalent. If X D X.L/ is a renewal system,
then Xa;k is the renewal system generated by the list La;k D F�1a;k .L/.
Remark 1. Let A be the symbolic adjacency matrix of the left Fischer cover of an
SFT renewal system X.L/ with alphabet A . Given a 2 A and k 2 N, define
f WA ! N by f .a/ D k and f .b/ D 1 for b ¤ a. Extend f to the set of finite
formal sums over A in the natural way and consider the integer matrix f .A/. Then
f .A/ is the adjacency matrix of the underlying graph of the left Fischer cover of
X.La;k/. For lists over disjoint alphabets, it follows immediately from the definitions
that fragmentation and addition commute.
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9.3 Entropy and Flow Equivalence

Hong and Shin [6] have constructed a class H of lists generating SFT renewal
systems such that log� is the entropy of an SFT if and only if there exists
L 2 H with h.X.L// D log�, and this is arguably the most powerful general
result known about the invariants of SFT renewal systems. In the following, the
renewal systems generated by lists fromH will be classified up to flow equivalence.
As demonstrated in [7], it is difficult to construct renewal systems with non-cyclic
Bowen–Franks groups and/or positive determinants directly, and this classification
will yield hitherto unseen values of the invariant.

The construction of the class H of generating lists considered in [6] will be
modified slightly since some of the details of the original construction are invisible
up to flow equivalence. In particular, several words from the generating lists can be
replaced by single symbols by using symbol reduction. Additionally, there are extra
conditions on some of the variables in [6] which will be omitted here since the larger
class can be classified without extra work.

Let r 	 2 and let n1; : : : ; nr ; c1; : : : ; cr ; d;N 2 N, and letW be the set consisting
of the following words:

• ˛i D ˛i;1 � � �˛i;n1 for 1 � i � c1
• Q̨ i D Q̨ i;1 � � � Q̨i;n1 for 1 � i � c1
• �k;ik D �k;ik ;1 � � ��k;ik;nk for 2 � k � r and 1 � ik � ck
• ˛i1�2;i2 � � ��r;ir ˇNl for 1 � ij � cj and 1 � l � d
• ˇNl Q̨ i1�2;i2 � � ��r;ir for 1 � ij � cj and 1 � l � d .

The set of generating lists of this form will be denoted B .

Remark 2. Symbol reduction can be used to reduce the words ˛i , Q̨ i , �k;ik , and
ˇNl to single letters [7, Lemmas 2.15 and 2.23], so up to flow equivalence, the list
W 2 B considered above can be replaced by the list W 0 consisting of the one-letter
words ˛i , Q̨i , and �k;i as well as the words

• ˛i1�2;i2 � � ��r;ir ˇl for 1 � ij � cj and 1 � l � d
• ˇl Q̨ i1�2;i2 � � � �r;ir for 1 � ij � cj and 1 � l � d .

Furthermore, if

L D f˛; Q̨ ; ˛�2 � � ��rˇ; ˇ Q̨�2 � � ��rg [ f�k j 2 � k � rg ; (9.1)

then X.W 0/ can be obtained from X.L/ by fragmenting ˛ to ˛1; : : : ; ˛c1 , ˇ to
ˇ1; : : : ; ˇl and so on. Let R be the set of generating lists of the form given in (9.1).

Next consider generating lists W1; : : : ;Wm 2 B with disjoint alphabets, and let
W D Sm

jD1 Wj . Let QW be a finite set of words that do not share any letters with

each other or with the words from W , and consider the generating list W [ QW .
Let QH be the set of generating lists that can be constructed in this manner. Let
� be a Perron number. Then there exists QL 2 QH such that X. QL/ is an SFT and
h.X. QL// D log� [6].
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P0

P1 P2 ··· Pr−1 Pr

Pr+1 Pr+2 ··· P2r

x

α

γ2 γ3 γr−1 γr

β

β

β

β ;x

α̃ γ2 γr−1

γr
γr

γr

γr

x x

Fig. 9.3 Left Fischer cover of X.L/ for L defined in (9.2). An edge labelled x from a vertex P to
a vertex Q represents a collection of edges from P to Q such that Q receives an edge with each
label from the set

S
2�j�rf�j g [ f˛; Q̨g, i.e. the collection fills the gaps left by the edges which

are labelled explicitly. The border points are coloured grey

Remark 3. If W [ QW 2 QH as above, then symbol reduction can be used to show
that X.W [ QW / is flow equivalent to the renewal system generated by the union
of W and j QW j new letters [7, Lemma 2.23], i.e. X.W [ QW / is flow equivalent to a
fragmentation of X.W [ fag/ when a … A .X.W //.

Consider a generating list QL 2 QH and p 2 N. For each letter a 2 A .X. QL//,
introduce new letters a1; : : : ; ap … A .X. QL//, and let L denote the generating list
obtained by replacing each occurrence of a in QL by the word a1 � � �ap . LetH denote
the set of generating lists that can be obtained from QH in this manner. Let � be
a weak Perron number. Then there exists L 2 H such that X.L/ is an SFT and
h.X.L// D log� [6].

Remark 4. If L is obtained from QL 2 QH as above, then X.L/ �FE X. QL/ since the
modification can be achieved using symbol expansion of each a 2 A .X. QL//.

The next step is to prove that the building blocks in the class R introduced in
Remark 2 are left-modular, and to construct the Fischer covers of the corresponding
renewal systems. As the following lemmas show, this will allow a classification of
the renewal systems generated by lists fromH via addition and fragmentation. The
first result follows immediately from Remarks 1 to 4.

Lemma 3. For each L 2 H , there exist L1; : : : ; Lm 2 R such that X.L/ is flow
equivalent to a fragmentation of X.

Sm
jD0 Lj /, whereL0 D fag for some a that does

not occur in L1; : : : ; Lm.

Lemma 4. If L 2 R, then L is left-modular, X.L/ is an SFT, and the left Fischer
cover of X.L/ is the labelled graph shown in Fig. 9.3.
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Proof. Let

L D f˛; Q̨ ; ˛�2 � � ��rˇ; ˇ Q̨�2 � � ��rg [ f�k j 2 � k � rg 2 R : (9.2)

The word ˛�2 � � ��rˇˇ Q̨�2 � � ��r is strongly left- and right-bordering, so L is left-
and right-modular by Lemma 2. Let P0 D P0.L/. If xC 2 X.L/C does not have a
suffix of a product of the generating words ˛�2 � � ��rˇ and ˇ Q̨�2 � � ��r as a prefix,
then xC is strongly left-bordering, soP1.xC/ D P0. Hence, to determine the rest of
the predecessor sets and thereby the vertices of the left Fischer cover, it is sufficient
to consider right-rays that do have such a prefix.

Consider first xC 2 X.L/C such that ˇxC 2 X.L/C. The letter ˇ must come
from either ˛�2 � � ��rˇ or ˇ Q̨�2 � � ��r , so the beginning of a partitioning of ˇxC
must be either empty or equal to ˛�2 � � ��r . Assume first that every partitioning of
ˇxC has beginning ˛�2 � � ��r (i.e. that Q̨�2 � � ��r is not a prefix of xC). In this case,
ˇxC must be preceded by ˛�2 � � ��r , and the corresponding predecessor sets are:

P1.˛�2 � � ��rˇxC/ D P0
P1.�2 � � ��rˇxC/ D P0˛ D P1

::: (9.3)

P1.�rˇxC/ D P0˛�2 � � ��r�1 D Pr�1
P1.ˇxC/ D P0˛�2 � � ��r�1�r D Pr :

Assume now that there exists a partitioning of ˇxC with empty beginning
(e.g. xC D ˇ Q̨�2 � � ��1r ). The first word used in such a partitioning must be
ˇ Q̨�2 � � ��r . Replacing this word by the concatenation of the generating words
˛�2 � � ��rˇ, Q̨ ; �2; : : : ; �r creates a partitioning of ˇxC with beginning ˛�2 � � ��r ,
so in this case:

P1.˛�2 � � ��rˇxC/ D P0
P1.�2 � � ��rˇxC/ D P0 [ P0˛ D P0

:::

P1.�rˇxC/ D P0 [ P0˛�2 � � ��r�1 D P0
P1.ˇxC/ D P0 [ P0˛�2 � � ��r�1�r D P0 :

The argument above proves that there are no right-rays such that every partitioning
of ˇxC has empty beginning.

It only remains to investigate right-rays that have a suffix of ˇ Q̨�2 � � ��r as a
prefix. A partitioning of a right-ray �rxC may have empty beginning (e.g. xC D
�1r ), beginning ˛�2 � � ��r�1 (e.g. xC D ˇˇ Q̨�2 � � ��r � � � or xC D ˇ Q̨�2 � � ��1r ),
or beginning ˇ Q̨�2 � � ��r�1 (e.g. xC D �1r /. Note that there is a partitioning with
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empty beginning if and only if there is a partitioning with beginning ˇ Q̨�2 � � ��r�1.
If there exists a partitioning of �rxC with beginning ˛�2 � � ��r�1, then ˇ must be
a prefix of xC, so the right-ray �rxC has already been considered above. Hence,
it suffices to consider the case where there exists a partitioning of �rxC with empty
beginning and a partitioning with beginning ˇ Q̨�2 � � ��r�1 but no partitioning with
beginning ˛�2 � � ��r�1. In this case, the predecessor sets are

P1.�rxC/ D P0 [ P0ˇ Q̨�2 � � ��r�1 D P2r
:::

P1.�2 � � ��rxC/ D P0 [ P0ˇ Q̨ D PrC2
P1. Q̨�2 � � ��rxC/ D P0 [ P0ˇ D PrC1
P1.ˇ Q̨�2 � � ��rxC/ D P0 [ P0˛�2 � � ��r D P0 :

Now all right-rays have been investigated, so there are exactly 2r C 1 vertices in
the left Krieger cover of X.L/. The vertex P0 is the universal border point, and the
vertices PrC1; : : : ; P2r are border points, while none of the vertices P1; : : : ; Pr are
border points. This gives the information needed to draw the left Fischer cover.

In [6] it is proved that all renewal systems in the classB are SFTs. That proof will
also work for the related class R considered here, but the result also follows easily
from the structure of the left Fischer cover constructed above [7, Lemma 5.46].

Lemma 5. Let L 2 R and let Xf be a renewal system obtained from X.L/ by
fragmentation. Then the Bowen–Franks group of Xf is cyclic, and the determinant
is given by (9.4).

Proof. Let L 2 R be defined by (9.2). The symbolic adjacency matrix of the left
Fischer cover of X.L/ (shown in Fig. 9.3) is

A D

0
BBBBBBBBBBBBBBBBBBBBBB@

� ˛ 0 � � � 0 0 � C ˇ Q̨ 0 � 02 � � � � 0r�2 � 0r�1
0 0 �2 � � � 0 0
0 0 0 0 0
:::
:::

: : :
::: 0

0 0 0 0 �r
ˇ 0 0 � � � 0 0 0 ˇ ˇ � � � ˇ ˇ

0 0 Q̨ 0 � � � 0 0

0 0 0 �2 0 0

0 0 0 0 0 0
::: 0

:::
: : :

:::

0 0 0 0 0 �r�1
�r �r �r �r � � � �r �r

1
CCCCCCCCCCCCCCCCCCCCCCA

;
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where � D ˛ C Q̨ CPr�1
kD2 �k , Q̨ 0 D � � Q̨ , and � 0k D � � �k. Index the rows and

columns of A by 0; : : : ; 2r in correspondence with the names used for the vertices
above, and note that the column sums of the columns 0; r C 1; : : : ; 2r are all equal
to ˛ C Q̨ C ˇ CPr

kD2 �k .
If Xf is a fragmentation of X.L/, then the (non-symbolic) adjacency matrix

Af of the underlying graph of the left Fischer cover of Xf is obtained from A

by replacing ˛; Q̨ ; ˇ; �2; : : : ; �r by positive integers (see Remark 1). To put Id�Af
into Smith normal form, begin by adding each row from number r C 1 to 2r � 1 to
the first row, and subtract the first column from column r C 1; : : : ; 2r to obtain

Id�Af  

0
BBBBBBBBBBBBBBBBBBBB@

1 � � �˛ 0 � � � 0 0 �ˇ 0 � � � 0 �1
0 1 ��2 � � � 0 0

0 0 1 0 0
:::

:::
: : :

::: 0

0 0 0 1 ��r
�ˇ 0 0 � � � 0 1 ˇ 0 � � � 0 0

0 1 � Q̨ � � � 0 0

0 0 1 0 0
::: 0

:::
: : :

:::

0 0 0 1 ��r�1
��r 0 0 � � � 0 1

1
CCCCCCCCCCCCCCCCCCCCA

:

Using row and column addition, this matrix can be further reduced to

 

0
BBBBBBBBBBB@

1� � � b 0 � � � 0 0 � � � t
0 1 � � � 0
:::

:::
: : :

::: 0

0 0 � � � 1
0 1 � � � 0
::: 0

:::
: : :

:::

��r 0 � � � 1

1
CCCCCCCCCCCA

b D ˛ˇ�2 � � ��r

t D Q̨�2 � � ��r�1.b � ˇ/ � 1 :

Hence, the Bowen–Franks group of Xf is cyclic, and the determinant is

det.Id�A/ D 1� ˛� Q̨ �
rX

kD2
�k � .˛C Q̨ /ˇ�2 � � ��r C ˛ Q̨ˇ.�2 � � ��r/2 : (9.4)
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Theorem 1. For each L 2 H , the renewal system X.L/ has cyclic Bowen–Franks
group and determinant given by (9.5).

Proof. By Lemma 3, there exist L1; : : : ; Lm 2 R, L0 D fag for some
letter a that does not appear in any of the lists, and a fragmentation Yf of
Y D X.

Sm
jD0 Lj / such that Yf �FE X.L/. For 1 � j � m, let Lj D

f˛j ; Q̨j ; �j;k; ˛j �j;2 � � ��j;rj ˇj ; ˇj Q̨j �j;2 � � ��j;rj j 2 � k � rj g; rj 2 N. Each
Lj is left-modular by Lemma 4, so Y is an SFT, and the left Fischer cover of Y
can be constructed using the technique from Sect. 9.2: Identify the universal border
points in the left Fischer covers of X.L0/; : : : ;X.Lm/, and draw additional edges
to the border points corresponding to the edges terminating at the universal border
points in the individual left Fischer covers. Hence, the symbolic adjacency matrix
A of the left Fischer cover of Y is

A D

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

� ˛j 0 � � � 0 � C ˇj Q̨ 0j � � � � 0j;rj�1 � � � � 0i;k
: : :

0 0 �j;2 � � � 0
0 0 0 0
:::

:::
: : :

::: 0

0 0 0 �j;r
ˇj 0 0 � � � 0 0 ˇj � � � ˇj ˇj

0 0 Q̨j � � � 0

0 0 0 0
::: 0

:::
: : :

:::

0 0 0 �j;rj�1
�j;rj �j;rj �j;rj � � � �j;rj �j;rj

: : :

: : :

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

where 1 � j � m, � D a CPm
jD1

�
˛j C Q̨j CPrj�1

kD2 �j;k
�

, Q̨ 0j D � � Q̨j , and

� 0j;k D � � �j;k . This matrix has blocks of the same form as in the m D 1 case
considered in Lemma 4. The j th block is shown together with the first row and
column of the matrix—which contain the connections between the j th block and
the universal border point P0—and together with an extra column representing an
arbitrary border point in a different block. Such a border point in another block will
receive edges from the j th block with the same sources and labels as the edges that
start in the j th block and terminate at the universal border point P0.

Let Yf be a fragmentation of Y . Then the (non-symbolic) adjacency matrix Af
of the underlying graph of the left Fischer cover of Yf is obtained by replacing the
entries of A by positive integers as described in Remark 1. In order to put Id�Af
into Smith normal form, first add rows rj C 1 to 2rj � 1 in the j th block to the first
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row for each j , and then subtract the first column from every column corresponding
to a border point in any block. In this way, Id�Af is transformed into:

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1 � � �˛j 0 � � � 0 �ˇj 0 � � � �1
: : :

0 1 ��j;2 � � � 0

0 0 1 0
:::

:::
: : :

::: 0

0 0 0 ��j;rj
�ˇj 0 0 � � � 1 ˇj 0 � � � 0

0 1 � Q̨j � � � 0

0 0 1 0
::: 0

:::
: : :

:::

0 0 0 ��j;rj�1
��j;rj 0 0 � � � 1

: : :

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

:

By using row and column addition, and by disregarding rows and columns where
the only non-zero entry is a diagonal 1, Id�A can be further reduced to

0
BBBBB@

S t1 t2 � � � tm
��1;r1 1 0 0

��2;r2 0 1 0
:::

: : :
:::

��m;rm 0 0 � � � 1

1
CCCCCA

bj D ˛j ˇj �j;2 � � ��j;rj

tj D Q̨j �j;2 � � ��j;r�1.bj � ˇj / � 1

S D 1 � � �Pm
jD1 bj

:

Hence, the Bowen–Franks group is cyclic and the determinant is

det.Id�Af / D 1� � C
mX
jD1

�
�j;rj tj � bj

�
: (9.5)

With the results of [6], this gives the following result.

Corollary 1. When log� is the entropy of an SFT, there exists an SFT renewal
system X.L/ with cyclic Bowen–Franks group such that h.X.L// D log�.
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9.4 Towards the Range of the Bowen–Franks Invariant

In the following, it will be proved that the range of the Bowen–Franks invariant over
the class of SFT renewal systems contains a large class of pairs of signs and finitely
generated abelian groups. First, the following special case will be used to show that
every integer is the determinant of an SFT renewal system.

Example 2. Consider the generating list

L D fa; ˛; Q̨ ; �; ˛�ˇ; ˇ Q̨�g : (9.6)

By Lemma 4,L is left-modular, X.L/ is an SFT, and the symbolic adjacency matrix
of the left Fischer cover of X.L/ is

A D

0
BBBBB@

aC ˛ C Q̨ ˛ 0 aC ˛ C Q̨ C ˇ aC ˛
0 0 � 0 0

ˇ 0 0 0 ˇ

0 0 0 0 Q̨
� 0 0 � �

1
CCCCCA
: (9.7)

By fragmenting X.L/, it is possible to construct an SFT renewal system for which
the (non-symbolic) adjacency matrix of the underlying graph of the left Fischer
cover has this form with a; ˛; Q̨ ; ˇ; � 2 N as described in Remark 1. LetAf be such
a matrix. This is a special case of the shift spaces considered in Theorem 1, so the
Bowen–Franks group is cyclic and the determinant is det.Id�Af / D ˇ˛ Q̨�2 �
˛ˇ� � Q̨ˇ� � ˛ � Q̨ � � � aC 1.

Theorem 2. Any k 2 Z is the determinant of an SFT renewal system with cyclic
Bowen–Franks group.

Proof. Consider the renewal system from Example 2 in the case ˛ D Q̨ D ˇ D 1,
where the determinant is det.Id�Af / D �2 � 3� � a � 1, and note that the range
of this polynomial is Z.

All renewal systems considered until now have had cyclic Bowen–Franks groups,
so the next goal is to construct a class of renewal systems exhibiting non-cyclic
groups. Let k 	 2, A D fa1; : : : ; akg, and let n1; : : : ; nk 	 2 with maxi fni g > 2.
The goal is to define a generating list, L, for which X.L/ D XF with F D fanii g.
For each 1 � i � k, define

Li D faj ali j j ¤ i and 0 < l < ni � 1g
[ famaj ali j m ¤ j ¤ i and 0 < l < ni � 1g : (9.8)

Define L D Sk
iD1 Li ¤ ;, and Xdiag.n1;:::;nk/ D X.L/.
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P∞
(
ani−1i

)
P∞

(
ani−2i

)
··· P∞ (ai)

P∞
(
anj−1j

)
P∞

(
anj−2j

)
··· P∞ (a j)

ai ai ai

a j a j a j

ai

aiai
a j

a ja j

Fig. 9.4 Part of the left Fischer cover of Xdiag.n1;:::;nk/. The entire graph can be found by varying i
and j . The border points are coloured grey

Lemma 6. Define the renewal system Xdiag.n1;:::;nk/ as above. Then Xdiag.n1;:::;nk/ D
XF with F D fanii g, so Xdiag.n1;:::;nk/ is an SFT. The symbolic adjacency matrix of
the left Fischer cover of Xdiag.n1;:::;nk/ is the matrix in (9.10).

Proof. Note that for each i , anii … B.Xdiag.n1;:::;nk// by construction. For 1 < l <

ni � 1 and j ¤ i the word aj ali has a partitioning in Xdiag.n1;:::;nk/ with empty
beginning and end. Hence, ai1a

l2
i2
a
l3
i3
� � �almim has a partitioning with empty beginning

and end whenever ij ¤ ijC1, 1 < lj < nij for all 1 < j < m, and 0 < lm < nim�1.
Given i1; : : : ; im 2 f1; : : : ; kg with ij ¤ ijC1 and m 	 2, the word ai1ai2 � � �aim
has a partitioning with empty beginning and end. Hence, every word that does
not contain one of the words anii has a partitioning, so Xdiag.n1;:::;nk/ D XF for
F D fanii g.

To find the left Fischer cover of Xdiag.n1;:::;nk/, it is first necessary to determine the
predecessor sets. Given 1 � i � k and j ¤ i

P1.ai aj � � � / D fx� 2 X�diag.n1;:::;nk/
jx�niC1 � � �x0 ¤ ani�1i g

P1.a2i aj � � � / D fx� 2 X�diag.n1;:::;nk/
jx�niC2 � � �x0 ¤ ani�2i g (9.9)

:::

P1.ani�1i aj � � � / D fx� 2 X�diag.n1;:::;nk/
jx0 ¤ ai g:

Only the first of these predecessor sets is a border point. Equation 9.9 gives all the
information necessary to draw the left Fischer cover of Xdiag.n1;:::;nk/. A part of the
left Fischer cover is shown in Fig. 9.4, and the corresponding symbolic adjacency
matrix is:
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n1�1‚ …„ ƒ n2�1‚ …„ ƒ nk�1‚ …„ ƒ0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 � � � 0 0
a1 � � � 0 0
: : :

0 � � � a1 0

a1 � � � a1 a1
0 � � � 0 0
: : :

0 � � � 0 0

� � �
a1 � � � a1 a1
0 � � � 0 0
: : :

0 � � � 0 0

a2 � � � a2 a2
0 � � � 0 0
: : :

0 � � � 0 0

0 � � � 0 0
a2 � � � 0 0
: : :

0 � � � a2 0

� � �
a2 � � � a2 a2
0 � � � 0 0
: : :

0 � � � 0 0
:::

:::
: : :

:::

ak � � � ak ak
0 � � � 0 0

: : :

0 � � � 0 0

ak � � � ak ak
0 � � � 0 0

: : :

0 � � � 0 0

� � �
0 � � � 0 0
ak � � � 0 0
: : :

0 � � � ak 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

: (9.10)

Let A be the (non-symbolic) adjacency matrix of the underlying graph of the
left Fischer cover of Xdiag.n1;:::;nk/ constructed above. Then it is possible to do the
following transformation by row and column addition

Id�A 

0
BBBBB@

1 1 � n2 1 � n3 � � � 1� nk
1 � n1 1 1 � n3 � � � 1� nk
1 � n1 1 � n2 1 � � � 1� nk
:::

:::
:::

: : :
:::

1 � n1 1 � n2 1 � n3 � � � 1

1
CCCCCA
 

0
BBBBB@

x 1 1 � � � 1
�n1 n2 0 � � � 0
�n1 0 n3 � � � 0
:::

:::
:::
: : :

:::

�n1 0 0 � � � nk

1
CCCCCA
;

where x D 1 � .k � 1/n1. The determinant of this matrix is

det.Id�A/ D n2 � � �nk
 
x C

kX
iD2

n1

ni

!
D �n1n2 � � �nk

 
k � 1 �

kX
iD1

1

ni

!
< 0 :

The inequality is strict since k�1�Pk
iD1 1

ni
> k

2
�1 	 0. Given concrete n1; : : : ; nk ,

it is straightforward to compute the Bowen–Franks group of Xdiag.n1;:::;nk/, but it has
not been possible to derive a general closed form for this group.

Proposition 2. Let n1; : : : ; nk 	 2 with ni jni�1 for 2 � i � k and n1 > 2. Letm D
n1n2.k�1�Pk

iD1 1
ni
/, then BFC.Xdiag.n1;:::;nk// D �Z=mZ˚Z=n3Z˚� � �˚Z=nkZ.
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Proof. By the arguments above, Xdiag.n1;:::;nk/ is conjugate to an edge shift with
adjacency matrix A such that the following transformation can be carried out by
row and column addition

Id�A 

0
BBBBB@

y 1 1 � � � 1
0 n2 0 � � � 0
0 0 n3 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � nk

1
CCCCCA
 

0
BBBBB@

0 1 0 � � � 0
m 0 0 � � � 0
0 0 n3 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � nk

1
CCCCCA
;

where y D �n1
�
k � 1 �Pk

iD1 1=ni
�

. It follows that the Smith normal form of

Id�A is diag.m; n3; : : : ; nk/, and det.Id�A/ < 0.

Let G be a finite direct sum of finite cyclic groups. Then Proposition 2 shows
that G is a subgroup of the Bowen–Franks group of some SFT renewal system,
but it is still unclear whether G itself is also the Bowen–Franks group of a renewal
system since the term Z=mZ in the statement of Proposition 2 is determined by
the other terms. Furthermore, the groups constructed in Proposition 2 are all finite.
Other techniques can be used to construct renewal systems with groups such as
Z=.nC 1/˚ Z [7, Ex. 5.54].

The determinants of all the renewal systems with non-cyclic Bowen–Franks
groups considered above were negative or zero, so the next goal is to construct a
class of SFT renewal systems with positive determinants and non-cyclic Bowen–
Franks groups.

Lemma 7. Let Ld be the generating list of Xdiag.n1;:::;nk/ as defined in (9.8), and
let .Fd ;Ld / be the left Fischer cover of Xdiag.n1;:::;nk/. Let Lm be a left-modular
generating list for which X.Lm/ is an SFT with left Fischer cover .Fm;Lm/. For
LdCm D Ld [ Lm [kiD1 faiw j w 2 Lmg, X.LdCm/ is an SFT for which the left
Fischer cover is obtained by adding the following connecting edges to the disjoint
union of .Fd ;Ld / and .Fm;Lm/ (sketched in Fig. 9.5):

• For each 1 � i � k and each e 2 F 0
m with r.e/ D P0.Lm/ draw an edge ei with

s.ei / D s.e/ and r.ei / D P1.ai aj : : :/ labelled Lm.e/.
• For each 1 � i � k and each border point P 2 F 0

m draw an edge labelled ai
from P1.aiaj : : :/ to P .

Proof. Let .FdCm;LdCm/ be the labelled graph defined in the lemma and sketched
in Fig. 9.5. The graph is left-resolving, predecessor-separated, and irreducible by
construction, so it is the left Fischer cover of some sofic shift X [12, Corol-
lary 3.3.19]. The first goal is to prove that X D X.LdCm/. By the argu-

ments used in the proof of Lemma 6, any word of the form ai0wmai1a
li
i2
: : : a

lp
ip

where wm 2 L�m, p 2 N, ij ¤ ijC1 and lj < nij for 1 < j < p,
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P∞(a ia j ···) P∞(a i′a j′ ···)

P0(Lm) P

aia i

a i w′
d

a i′

w′
mα

α

(Fm; m)

(Fd ; d)

Fig. 9.5 Construction of the left Fischer cover considered in Lemma 7. Here, w0

m˛ D wm 2 L�

m

and w0

d ai 0 D wd 2 B.Xdiag.n1;:::;nk// with ll.wd / ¤ ai . Border points are coloured grey

and 1 � lp < nip � 1 has a partitioning with empty beginning and end in
X.LdCm/. Hence, B.X.LdCm// is the set of factors of concatenations of words from˚
wmaiwd j wm 2 L�m; 1 � i � k;wd 2 B.Xdiag.n1;:::;nk//; ll.wd / ¤ ai

�
. Since Lm is

left-modular, a path � 2 F �m with r.�/ D P0.Lm/ has Lm.�/ 2 L�m if and only
if s.�/ is a border point in Fm. Hence, the language recognised by the left Fischer
cover .FdCm;LdCm/ is precisely the language of X.LdCm/.

It remains to show that .FdCm;LdCm/ presents an SFT. Let 1 � i � k and
let ˛ 2 B.X.Lm//, then any labelled path in .FdCm;LdCm/ with ai˛ as a prefix
must start at P1.ai aj � � � /. Similarly, if there is a path � 2 F �dCm with ˛ai as a
prefix of LdCm.�/, then there must be unique vertex v emitting an edge labelled ˛
to P0.L/, and s.�/ D v. Let x 2 X.FdCm;LdCm/. If there is no upper bound on set
of i 2 Z such that xi 2 fa1; : : : ; akg and xiC1 2 A .X.Lm// or vice versa, then
the arguments above and the fact that the graph is left-resolving prove that there is
only one path in .FdCm;LdCm/ labelled x. If there is an upper bound on the set
considered above, then a presentation of x is eventually contained in either Fd or
Fm. It follows that the covering map of .FdCm;LdCm/ is injective, so it presents an
SFT.

Example 3. The next step is to use Lemma 7 to construct renewal systems that share
features with both Xdiag.n1;:::;nk/ and the renewal systems considered in Example 2.
Given n1; : : : ; nk 	 2 with maxj nj > 2, consider the list Ld defined in (9.8)
which generates the renewal system Xdiag.n1;:::;nk/, and the listL from (9.6).L is left-
modular, and X.L/ is an SFT, so Lemma 7 can be used to find the left Fischer cover
of the SFT renewal system XC generated by LC D Ld [ L [kiD1 faiw j w 2 Lg,
and the corresponding symbolic adjacency matrix is
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AC D

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

b ˛ 0 b C ˇ aC ˛ b 0 � � � 0 0 � � � b 0 � � � 0 0

0 0 � 0 0 0 0 � � � 0 0 0 0 � � � 0 0

ˇ 0 0 0 ˇ ˇ 0 � � � 0 0 ˇ 0 � � � 0 0

0 0 0 0 Q̨ 0 0 � � � 0 0 0 0 � � � 0 0

� 0 0 � � � 0 � � � 0 0 � 0 � � � 0 0

a1 0 0 a1 a1 0 0 0 0 a1 a1 � � � a1 a1
0 0 0 0 0 a1 0 0 0 0 0 0 0
:::
:::
:::

:::
:::

: : :
: : :

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 a1 0 0 0 0 0
:::

: : :

ak 0 0 ak ak ak ak � � � ak ak 0 0 0 0

0 0 0 0 0 0 0 0 0 ak 0 0 0
:::
:::
:::

:::
:::

: : :
: : :

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 ak 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

;

where b D a C ˛ C Q̨ . Let YC be a renewal system obtained from XC by a
fragmentation of a, ˛, Q̨ , ˇ, and � . Then the (non-symbolic) adjacency matrix of
the left Fischer cover of YC is obtained from the matrix AC above by replacing
a1; : : : ; ak by 1, and replacing a, ˛, Q̨ , ˇ, and � by positive integers. Let BC be
a matrix obtained in this manner. By doing row and column operations as in the
construction that leads to the proof Proposition 2, and by disregarding rows and
columns where the only non-zero entry is a diagonal 1, it follows that

Id�BC 

0
BBBBBBBBBBBBBB@

1 � b �˛ 0 �b � ˇ �a � ˛ �b �b � � � �b
0 1 �� 0 0 0 0 � � � 0

�ˇ 0 1 0 �ˇ �ˇ �ˇ � � � �ˇ
0 0 0 1 � Q̨ 0 0 � � � 0

�� 0 0 �� 1 � � �� �� � � � ��
�1 0 0 �1 �1 1 1 � n2 � � � 1 � nk
�1 0 0 �1 �1 1 � n1 1 1 � nk
:::

:::
:::

:::
:::

:::
: : :

:::

�1 0 0 �1 �1 1 � n1 1 � n2 � � � 1

1
CCCCCCCCCCCCCCA

:

Add the third row to the first and subtract the first column from columns 4; : : : ; kC4
as in the proof of Lemma 5 and choose the variables a, ˛, Q̨ , ˇ, and � as in the proof
of Theorem 2. Assuming that ni jni�1 for 2 � i � k, this matrix can be reduced to
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Id�BC 0
BBBBBBBB@

x �1 �1 �1 � � � �1
2x � 1 0 �n2 �n3 � � � �nk
0 �n1 n2 0 0

0 �n1 0 n3 0
:::

:::
: : :

:::

0 �n1 0 0 � � � nk

1
CCCCCCCCA
 

0
BBBBBBBB@

x �Pk
iD1

n1
ni
�1 0 � � � 0

2x � 1 �.k � 1/n1 0 0 � � � 0
0 0 n2 0 0

0 0 0 n3 0
:::

:::
: : :

:::

0 0 0 0 � � � nk

1
CCCCCCCCA
;

where x 2 Z is arbitrary. Hence, the determinant is

det.Id�BC/ D n2 � � �nk
 
.2x � 1/

kX
iD1

n1

ni
� x.k � 1/n1

!
; (9.11)

and there exists an abelian group G with at most two generators such that
the Bowen–Franks group of the corresponding SFT is G ˚ Z=n3Z ˚ � � � ˚
Z=nkZ. For x D 0, the determinant is negative and the Bowen–Franks group is
Z
ı�Pk

iD1
n2n1
ni

�
Z˚ Z=n3Z˚ � � � ˚ Z=nkZ.

This gives the first example of SFT renewal systems that simultaneously have
positive determinants and non-cyclic Bowen–Franks groups.

Theorem 3. Given n1; : : : ; nk 	 2 with ni jni�1 for 2 � i � k there exist abelian
groups G˙ with at most two generators and SFT renewal systems X.L˙/ such that
BFC.X.L˙// D ˙G˙ ˚ Z=n1Z˚ � � � ˚ Z=nkZ.

Proof. Consider the renewal system from Example 3. Given the other variables,
(9.11) shows that x can be chosen such that the determinant has either sign.

The question raised by Adler, and the related question concerning the flow
equivalence of renewal systems are still unanswered, and a significant amount of
work remains before they can be solved. However, there is hope that the techniques
developed in Sect. 9.2 and the special classes of renewal systems considered in
Sect. 9.4 can act as a foundation for the construction of a class of renewal systems
attaining all the values of the Bowen–Franks invariant realised by irreducible SFTs.
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Chapter 10
On the Grothendieck Theorem for Jointly
Completely Bounded Bilinear Forms

Tim de Laat

Abstract We show how the proof of the Grothendieck Theorem for jointly
completely bounded bilinear forms on C �-algebras by Haagerup and Musat can be
modified in such a way that the method of proof is essentially C �-algebraic. To this
purpose, we use Cuntz algebras rather than type III factors. Furthermore, we show
that the best constant in Blecher’s inequality is strictly greater than one.

Keywords Noncommutative Grothendieck Theorem • Completely bounded
bilinear forms • Blecher’s inequality • Operator spaces • Cuntz-algebras •
KMS-states
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10.1 Introduction

In [10], Grothendieck proved his famous Fundamental Theorem on the metric
theory of tensor products. He also conjectured a noncommutative analogue of
this theorem for bounded bilinear forms on C �-algebras. This noncommutative
Grothendieck Theorem was proved by Pisier assuming a certain approximability
condition on the bilinear form [16]. The general case was proved by Haagerup [11].
Effros and Ruan conjectured a “sharper” analogue of this theorem for bilinear forms
onC �-algebras that are jointly completely bounded (rather than bounded) [9]. More
precisely, they conjectured the following result, with universal constant K D 1.
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Theorem 1 (JCB Grothendieck Theorem). Let A;B be C �-algebras, and let u W
A � B ! C be a jointly completely bounded bilinear form. Then there exist states
f1; f2 on A and g1; g2 on B such that for all a 2 A and b 2 B ,

ju.a; b/j � Kkukjcb

�
f1.aa�/

1
2 g1.b

�b/
1
2 C f2.a�a/ 12 g2.bb�/

1
2

�
;

where K is a constant.

We call this Grothendieck Theorem for jointly completely bounded bilinear forms
on C �-algebras the JCB Grothendieck Theorem. It is often referred to as the Effros-
Ruan conjecture.

In [18], Pisier and Shlyakhtenko proved a version of Theorem 1 for exact operator
spaces, in which the constantK depends on the exactness constants of the operator
spaces. They also proved the conjecture for C �-algebras, assuming that at least one
of them is exact, with universal constant K D 2 32 .

Haagerup and Musat proved the general conjecture (for C �-algebras),
i.e., Theorem 1, with universal constant K D 1 [12]. They used certain type III
factors in the proof. Since the conjecture itself is purely C �-algebraic, it would
be more satisfactory to have a proof that relies on C �-algebras. In this note,
we show how the proof of Haagerup and Musat can be modified in such a way
that essentially only C �-algebraic arguments are used. Indeed, in their proof, one
tensors the C �-algebras on which the bilinear form is defined with certain type III
factors, whereas we show that it also works to tensor with certain simple nuclear
C �-algebras admitting KMS states instead. We then transform the problem back
to the (classical) noncommutative Grothendieck Theorem, as was also done by
Haagerup and Musat.

Recently, Regev and Vidick gave a more elementary proof of both the
JCB Grothendieck Theorem for C �-algebras and its version for exact operator
spaces [19]. Their proof makes use of methods from quantum information theory
and has the advantage that the transformation of the problem to the (classical)
noncommutative Grothendieck Theorem is more explicit and based on finite-
dimensional techniques. Moreover, they obtain certain new quantitative estimates.

For an extensive overview of the different versions of the Grothendieck Theorem,
as well as their proofs and several applications, we refer to [17].

This text is organized as follows. In Sect. 10.2, we recall two different notions of
complete boundedness for bilinear forms on operator spaces. In Sect. 10.3, we recall
some facts about Cuntz algebras and their KMS states. This is needed for the proof
of the JCB Grothendieck Theorem, which is given in Sect. 10.4 (with a constant
K > 1) by using (single) Cuntz algebras. We explain how to obtain K D 1 in
Sect. 10.5. In Sect. 10.6, we show that using a recent result by Haagerup and Musat
on the best constant in the noncommutative little Grothendieck Theorem, we are
able to improve the best constant in Blecher’s inequality.
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10.2 Bilinear Forms on Operator Spaces

Recall that an operator space E is a closed linear subspace of B.H/ for some
Hilbert space H . For n 	 1, the embedding Mn.E/ � Mn.B.H// Š B.Hn/

gives rise to a norm k:kn on Mn.E/. In particular, C �-algebras are operator spaces.
A linear map T W E ! F between operator spaces induces a linear map Tn W
Mn.E/ ! Mn.F / for each n 2 N, defined by Tn.Œxij�/ D ŒT .xij/� for all x D
Œxij� 2Mn.E/. The map T is called completely bounded if the completely bounded
norm kT kcb WD supn�1 kTnk is finite.

There are two common ways to define a notion of complete boundedness for
bilinear forms on operator spaces. For the first one, we refer to [5]. Let E and F
be operator spaces contained in C �-algebras A and B , respectively, and let u W
E � F ! C be a bounded bilinear form. Let u.n/ WMn.E/ �Mn.F /!Mn.C/ be
the map defined by .Œaij�; Œbij�/ 7!

�Pn
kD1 u.aik; bkj/



.

Definition 1. The bilinear form u is called completely bounded if

kukcb WD sup
n�1
ku.n/k

is finite. We put kukcb D1 if u is not completely bounded.

Equivalently (see Sect. 3 of [12] or the Introduction of [18]), u is completely
bounded if there exists a constant C 	 0 and states f on A and g on B such
that for all a 2 E and b 2 F ,

ju.a; b/j � Cf .aa�/
1
2 g.b�b/

1
2 ; (10.1)

and kukcb is the smallest constant C such that (10.1) holds.
For the second notion, we refer to [3, 9]. Let E and F be operator spaces

contained in C �-algebras A and B , respectively, and let u W E � F ! C

be a bounded bilinear form. Then there exists a unique bounded linear operator
Qu W E ! F � such that

u.a; b/ D hQu.a/; bi

for all a 2 E and b 2 F , where h:; :i denotes the pairing between F and its dual.

Definition 2. The bilinear form u is called jointly completely bounded if the map
Qu W E ! F � is completely bounded, and we set

kukjcb WD kQukcb:

We put kukjcb D 1 if u is not jointly completely bounded.
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Equivalently, if we define maps un WMn.E/˝Mn.F /!Mn.C/˝Mn.C/ by

un

0
@ kX
iD1

ai ˝ ci ;
lX

jD1
bj ˝ dj

1
A D

kX
iD1

lX
jD1

u.ai ; bj /ci ˝ dj

for a1; : : : ; ak 2 A, b1; : : : ; bl 2 B , and c1; : : : ; ck ; d1; : : : ; dl 2 Mn.C/, then we
have kukjcb D supn�1 kunk.

10.3 KMS States on Cuntz Algebras

For 2 � n < 1, let On denote the Cuntz algebra generated by n isometries, as
introduced by Cuntz in [6], in which one of the main results is that the algebras On

are simple. We now recall some results by Cuntz. If ˛ D .˛1; : : : ; ˛k/ denotes
a multi-index of length k D l.˛/, where ˛j 2 f1; : : : ; ng for all j , we write
S˛ D S˛1 : : : S˛k , and we put S0 D 1. It follows that for every nonzero word M
in fSigniD1

SfS�i gniD1, there are unique multi-indices� and � such thatM D S�S�� .
For k 	 1, let F k

n be the C �-algebra generated by fS�S�� j l.�/ D l.�/ D kg,
and let F 0

n D C1. It follows that F k
n is �-isomorphic to Mnk.C/, and, as a

consequence, F k
n � F kC1

n . The C �-algebra Fn generated by
S1
kD0F k

n is a UHF-
algebra of type n1.

If we write Pn for the algebra generated algebraically by S1; : : : ; Sn,
S�1 ; : : : ; S�n , each element A in Pn has a unique representation

A D
NX
kD1

.S�1 /kA�k C A0 C
NX
kD1

AkS
k
1 ;

where N 2 N and Ak 2 Pn \Fn. The maps Fn;k W Pn ! Fn (k 2 Z) defined
by Fn;k.A/ D Ak extend to norm-decreasing maps Fn;k W On ! Fn. It follows that
Fn;0 is a conditional expectation.

The existence of a unique KMS state on each Cuntz algebra was proved by
Olesen and Pedersen [15]. Firstly, we give some background on C �-dynamical
systems.

Definition 3. A C �-dynamical system .A;R; �/ consists of a C �-algebra A and a
representation � W R ! Aut.A/, such that each map t 7! �t .a/, a 2 A, is norm
continuous.

C �-dynamical systems can be defined in more general settings. In particular, one
can replace R with arbitrary locally compact groups.

Let Aa denote the dense �-subalgebra of A consisting of analytic elements,
i.e., a 2 Aa if the function t 7! �t .a/ has a (necessarily unique) extension to an
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entire operator-valued function. This extension is implicitly used in the following
definition.

Definition 4. Let .A;R; �/ be a C �-dynamical system. An invariant state � on A,
i.e., a state for which � ı �t D � for all t 2 R, is a KMS state if

�.�tCi .a/b/ D �.b�t .a//

for all a 2 Aa, b 2 A and t 2 R.

This definition is similar to the one introduced by Takesaki (see [20],
Definition 13.1). It corresponds to � being a ˇ-KMS state for ��t with ˇ D 1

according to the conventions of [4] and [15]. In the latter, the following two results
were proved (see Lemma 1 and Theorem 2 therein). We restate these results slightly
according to the conventions of Definition 4.

Proposition 1 (Olesen-Pedersen). For all t 2 R and the generators fSkgnkD1 of
On, define �nt .Sk/ D nitSk . Then �nt extends uniquely to a �-automorphism of On

for every t 2 R in such a way that .On;R; �
n/ becomes a C �-dynamical system.

Moreover, Fn is the fixed-point algebra of �n in On, and Pn � .On/
a.

Let 	n D ˝1kD1 1nTr denote the unique tracial state on Fn.

Proposition 2 (Olesen-Pedersen). For n 	 2, the C �-dynamical system given by
.On;R; �

n/ has exactly one KMS state, namely �n D 	n ı Fn;0.
For a C �-algebra A, let U .A/ denote its unitary group. The following result was
proved by Archbold [1]. It implies the Dixmier property for On.

Proposition 3 (Archbold). For all x 2 On,

�n.x/1On 2 convfuxu� j u 2 U .Fn/gk:k:

As a corollary, we obtain the following (well-known) fact (see also [7]).

Corollary 1. The relative commutant of Fn in On is trivial, i.e.,

.Fn/
0 \ On D C1:

Proof. Let x 2 .Fn/
0 \ On. By Proposition 3, we know that for every " > 0, there

exists a finite convex combination
Pm

iD1 �iuixu�i , where ui 2 U .Fn/, such that
kPm

iD1 �iuixu�i ��n.x/1Onk < ". Since x 2 .Fn/
0\On, we have

Pm
iD1 �iuixu�i DPm

iD1 �ixuiu�i D x. Hence, kx � �n.x/1Onk < ". This implies that x 2 C1.

Proposition 3 can be extended to finite sets in On, as described in the following
lemma, by similar methods as in [8], Part III, Chap. 5. For an invertible element v
in a C �-algebra A, we define ad.v/.x/ D vxv�1 for all x 2 A.
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Lemma 1. Let fx1; : : : ; xkg be a subset of On, and let " > 0. Then there exists a
convex combination ˛ of elements in fad.u/ j u 2 U .Fn/g such that

k˛.xi /� �n.xi /1Onk < " for all i D 1; : : : ; k:

Moreover, there exists a net f˛j gj2J � convfad.u/ j u 2 U .Fn/g such that

lim
j
k˛j .x/ � �n.x/1Onk D 0

for all x 2 On.

Proof. Suppose that k˛0.xi / � �n.xi /1Onk < " for i D 1; : : : ; k � 1.
By Proposition 3, we can find a convex combination Q̨ such that

k Q̨ .˛0.xk//� �n.˛0.xk//1Onk < ":

Note that �n.˛0.xk// D �n.xk/ and 1On D Q̨ .1On/. By the fact that k Q̨ .x/k � kxk
for all x 2 On, we conclude that ˛ D Q̨ ı ˛0 satisfies k˛.xi / � �n.xi /1Onk < " for
i D 1; : : : ; k.

Let J denote the directed set consisting of pairs .F; �/, where F is a finite subset
of On and � 2 .0; 1/, with the ordering given by .F1; �1/ � .F2; �2/ if F1 � F2
and �1 	 �2. By the first assertion, this gives rise to a net f˛j gj2J with the desired
properties.

10.4 Proof of the JCB Grothendieck Theorem

In this section, we explain the proof of the Grothendieck Theorem for jointly
completely bounded bilinear forms on C �-algebras. As mentioned in Sect. 10.1,
the proof is along the same lines as the proof by Haagerup and Musat, but we tensor
with Cuntz algebras instead of type III factors.

Applying the GNS construction to the pair .On; �n/, we obtain a �-representation

n of On on the Hilbert space H
n D L2.On; �n/, with cyclic vector �n, such that
�n.x/ D h
n.x/�n; �niH
n . We identify On with its GNS representation. Note that
�n extends in a normal way to the von Neumann algebra O 00n , which also acts onH
n .
This normal extension is a KMS state for a W �-dynamical system with O 00n as the
underlying von Neumann algebra (see Corollary 5.3.4 of [4]). The commutant O 0n of
On is also a von Neumann algebra, and using Tomita-Takesaki theory (see [4, 20]),
we obtain, via the polar decomposition of the closure of the operator Sx�n D x��n,
a conjugate-linear involution J W H
n ! H
n satisfying JOnJ � O 0n.

Lemma 2. For k 2 Z, we have

Ok
n WD fx 2 On j �nt .x/ D n�iktx8t 2 Rg D fx 2 On j �n.xy/ D n�k�n.yx/8y 2 Ong:
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The proof of this lemma is analogous to Lemma 1.6 of [21]. Note that O0
n D Fn,

and that for all k 2 Z, we have Ok
n ¤ f0g.

Lemma 3. For every k 2 Z, there exists a ck 2 On such that

�n.c
�
k ck/ D n

k
2 ; �n.ckc

�
k / D n�

k
2 ;

and, moreover, hckJckJ �n; �ni D 1.

The proof is similar to the proof of Lemma 2.1 of [12].

Proposition 4. Let A;B be C �-algebras, and let u W A � B ! C be a jointly
completely bounded bilinear form. There exists a bounded bilinear form Ou on
.A˝min On/ � .B ˝min JOnJ / given by

Ou.a˝ c; b ˝ d/ D u.a; b/hcd�n; �ni
for all a 2 A, b 2 B , c 2 On and d 2 JOnJ . Moreover, kOuk � kukjcb.

The C �-algebra JOnJ is just a copy of On. This result is analogous to
Proposition 2.3 of [12], and the proof is the same. Note that we use
kPk

iD1 cidikB.L2.On;�n// D k
Pk

iD1 ci ˝ dikOn˝minJOnJ for all c1; : : : ; ck 2 On

and d1; : : : ; dk 2 JOnJ . This equality is elementary, since On is simple and
nuclear. In the proof of Haagerup and Musat, one takes the tensor product of A and
a certain type III factor M and the tensor product of B with the commutant M 0 of
M , respectively. Note that JOnJ � O 0n.

One can formulate analogues of Lemmas 2.4, 2.5 and Proposition 2.6 of [12].
They can be proved in the same way as there, and one explicitly needs the existence
and properties of KMS states on the Cuntz algebras (see Sect. 10.3). The analogue
of Proposition 2.6 gives the “transformation” of the JCB Grothendieck Theorem to
the noncommutative Grothendieck Theorem for bounded bilinear forms.

Using Lemma 2.7 of [12], we arrive at the following conclusion, which is the
analogue of [12], Proposition 2.8.

Proposition 5. Let K.n/ D
q
.n

1
2 C n� 12 /=2, and let u W A � B ! C be a jointly

completely bounded bilinear form on C �-algebras A;B . Then there exist states
f n
1 ; f

n
2 on A and gn1 ; g

n
2 on B such that for all a 2 A and b 2 B ,

ju.a; b/j � K.n/kukjcb

�
f n
1 .aa�/

1
2 gn1 .b

�b/
1
2 C f n

2 .a
�a/

1
2 gn2 .bb�/

1
2

�
:

The above proposition is the JCB Grothendieck Theorem. However, the (universal)
constant and states depend on n. This is because the noncommutative Grothendieck
Theorem gives states on A˝min On and B ˝min JOnJ , which clearly depend on n,
and these states are used to obtain the states on A and B . The best constant we
obtain in this way comes from the case n D 2, which yields the constant K.2/ Dq
.2

1
2 C 2� 12 /=2 � 1:03.
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10.5 The Best Constant

In order to get the best constant K D 1, we consider the C �-dynamical system
.A;R; �/, with A D O2 ˝ O3 and �t D �2t ˝ �3t . It is straightforward to check that
it has a KMS state, namely � D �2 ˝ �3. It is easy to see that F D F2 ˝F3 is
contained in the fixed point algebra. (Actually, it is equal to the fixed point algebra,
but we do not need this.) These assertions follow by the fact that the algebraic tensor
product of O2 and O3 is dense in O2 ˝ O3. Note that � is not periodic.

Applying the GNS construction to the pair .A; �/, we obtain a �-representation

 of A on the Hilbert spaceH
 D L2.A; �/, with cyclic vector �, such that �.x/ D
h
.x/�; �iH
 . We identify A with its GNS representation. Using Tomita-Takesaki
theory, we obtain a conjugate-linear involution J W H
 ! H
 satisfying JAJ � A0
(see also Sect. 10.4).

It follows directly from Proposition 3 that �.x/1A 2 convfuxu� j u 2 U .F /gk:k
for all x 2 A. Also, the analogue of Lemma 1 follows in a similar way, as well as
the fact that F 0 \ A D C1.

It is elementary to check that

A�;k WD fx 2 A j �t .x/ D �iktx8t 2 Rg D fx 2 A j �.xy/ D �k�.yx/8y 2 Ong:
Let� WD f2p3q j p; q 2 Zg\ .0; 1/. For all � 2 � and k 2 Z, we have A�;k ¤ f0g.
This leads, analogous to Lemma 3, to the following result.

Lemma 4. Let � 2 �. For every k 2 Z there exists a c�;k 2 A such that

�.c��;kc�;k/ D ��
k
2 ; �.c�;kc

�
�;k/ D �

k
2

and

hc�;kJc�;kJ �; �i D 1:

In this way, by the analogues of Lemmas 2.4, 2.5 and Proposition 2.6 of [12], we
obtain the following result, which is the analogue of [12], Proposition 2.8.

Proposition 6. Let � 2 �, and let C.�/ D
q
.�

1
2 C �� 12 /=2. Let u W A � B ! C

be a jointly completely bounded bilinear form. Then there exist states f �
1 ; f

�
2 on A

and g�1 ; g
�
2 on B such that for all a 2 A and b 2 B ,

ju.a; b/j � C.�/kukjcb

�
f �
1 .aa�/

1
2 g�1 .b

�b/
1
2 C f �

2 .a
�a/

1
2 g�2 .bb�/

1
2

�
:

Note that C.�/ > 1 for � 2 �. Let .�n/n2N be a sequence in � converging to
1. By the weak*-compactness of the unit balls .A�C/1 and .B�C/1 of A�C and B�C,
respectively, the Grothendieck Theorem for jointly completely bounded bilinear
forms with K D 1 follows in the same way as in the “Proof of Theorem 1.1”
in [12].
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Remark 1. By Kirchberg’s second “Geneva Theorem” (see [14] for a proof),
we know that O2 ˝ O3 Š O2. This implies that the best constant in Theorem 1
can also be obtained by tensoring with the single Cuntz algebra O2, but considered
with a different action that defines the C �-dynamical system. Since the explicit form
of the isomorphism is not known, we cannot adjust the action accordingly.

10.6 A Remark on Blecher’s Inequality

In [2], Blecher stated a conjecture about the norm of elements in the algebraic
tensor product of two C �-algebras. Equivalently, the conjecture can be formulated
as follows (see Conjecture 0:20 of [18]). For a bilinear form u W A � B ! C, put
ut .b; a/ D u.a; b/.

Theorem 2 (Blecher’s inequality). There is a constant K such that any jointly
completely bounded bilinear form u W A � B ! C on C �-algebras A and B
decomposes as a sum u D u1C u2 of completely bounded bilinear forms on A�B ,
and ku1kcb C kut2kcb � Kkukjcb.

A version of this conjecture for exact operator spaces and a version for pairs of
C �-algebras, one of which is assumed to be exact, were proved by Pisier and
Shlyakhtenko [18]. They also showed that the best constant in Theorem 2 is greater
than or equal to 1. Haagerup and Musat proved that Theorem 2 holds with K D 2

[12, Sect. 3]. We show that the best constant is actually strictly greater than 1.
In the following, let OH.I / denote Pisier’s operator Hilbert space based on `2.I /

for some index set I . Recall the noncommutative little Grothendieck Theorem.

Theorem 3 (Noncommutative little Grothendieck Theorem). Let A be a
C �-algebra, and let T W A ! OH.I / be a completely bounded map. Then there
exists a universal constantC > 0 and states f1 and f2 on A such that for all a 2 A,

kTak � CkT kcbf1.aa�/
1
4 f2.a

�a/
1
4 :

For a completely bounded map T W A! OH.I /, denote by C.T / the smallest con-
stant C > 0 for which there exist states f1, f2 on A such that for all a 2 A, we have
kTak � Cf1.aa�/ 14 f2.a�a/

1
4 . In [12], Haagerup and Musat proved that C.T / �p

2kT kcb. Pisier and Shlyakhtenko proved in [18] that kT kcb � C.T / for all T W
A ! OH.I /. Haagerup and Musat proved that for a certain T WM3.C/! OH.3/,
the inequality is actually strict, i.e., kT kcb < C.T / [13, Sect. 7]. We can now apply
this knowledge to improve the best constant in Theorem 2.

Theorem 4. The best constantK in Theorem 2 is strictly greater than 1.

Proof. Let A be a C �-algebra, and let T W A ! OH.I / be a completely bounded
map for which kT kcb < C.T /. Define the map V D T �JT from A to A� D A

�
,
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where J W OH.I / ! OH.I /� is the canonical complete isomorphism and T � W
OH.I /� ! A� is the adjoint of T . Hence, V is completely bounded. It follows
that V D Qu for some jointly completely bounded bilinear form u W A � A! C.
Moreover, kukjcb D kV kcb D kT k2cb, where the last equality follows from the
proof of Corollary 3.4 in [18]. By Blecher’s inequality, i.e., Theorem 2, we have
a decomposition u D u1 C u2 such that ku1kcb C kut2kcb � Kkukjcb.

By the second characterization of completely bounded bilinear forms (in the
Christensen-Sinclair sense) in Sect. 10.2, we obtain

ju1.a; b/j � ku1kcbf1.aa�/
1
2 g1.b

�b/
1
2 ; ju2.a; b/j � kut2kcbf2.a

�a/
1
2 g2.bb�/

1
2 :

It follows that

ju.a; b/j � ku1kcbf1.aa�/
1
2 g1.b

�b/
1
2 C kut2kcbf2.a

�a/
1
2 g2.bb�/

1
2 :

Let gi .a/ D gi .a�/ for i D 1; 2, and define states

Qf D ku1kcbf1 C kut2kcbg2

ku1kcb C kut2kcb
and Qg D ku1kcbg1 C kut2kcbf2

ku1kcb C kut2kcb
:

We obtain

kT .a/k2 D ju.a; a/j � ku1kcbf1.aa�/
1
2 g1.a

�a/
1
2 C kut2kcbf2.a

�a/
1
2 g2.aa�/

1
2

� .ku1kcbf1 C kut2kcbg2/.aa�/ 12 .ku1kcbg1 C kut2kcbf2/.a
�a/ 12

� .ku1kcb C kut2kcb/ Qf .aa�/
1
2 Qg.a�a/ 12 :

Hence, ku1kcb C kut2kcb 	 C.T /2 > kT k2cb D kukjcb. This proves the theorem.
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Chapter 11
C �-Algebras Associated with a-adic Numbers

Tron Omland

Abstract By a crossed product construction, we produce a family of (stabilized)
Cuntz-Li algebras associated with the a-adic numbers. Moreover, we present an
a-adic duality theorem.

Keywords C �-dynamical system • Cuntz-Li algebras • a-adic numbers
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11.1 Introduction

In [1] Cuntz introduces the C �-algebra QN associated with the ax C b-semigroup
over the natural numbers, that is ZÌN
, where N
 acts on Z by multiplication. It is
defined as the universal C �-algebra generated by isometries fsngn2N� and a unitary
u satisfying the relations

smsn D smn; snu D unsn; and
n�1X
kD0

uksns
�
n u�k D 1 form; n 2 N


:

Furthermore, QN is shown to be simple and purely infinite and can also be obtained
as a semigroup crossed product

C. OZ/ Ì .Z Ì N
/
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for the natural ax C b-semigroup action of Z Ì N
 on the finite integral adeles
OZ D Q

p prime Zp (i.e. OZ is the profinite completion of Z). Its stabilization QN is
isomorphic to the ordinary crossed product

C0.Af / Ì .Q ÌQ
C/

where Q
C denotes the multiplicative group of positive rationals and Af denotes the
finite adeles, i.e. the restricted product

Q0
p prime Qp DQp prime.Qp;Zp/. The action

of Q ÌQ
C on Af is the natural axC b-action. This crossed product is the minimal
automorphic dilation of the semigroup crossed product above (see Laca [8]).

Replacing N
 with Z
 gives rise to the C �-algebra QZ of the ring Z. This
approach is generalized to certain integral domains by Cuntz and Li [3] and then
to more general rings by Li [10].

In [9] Larsen and Li define the 2-adic ring algebra of the integers Q2, attached to
the semigroup Z Ì j2i, where j2i D f2i W i 	 0g � N
 acts on Z by multiplication.
It is the universal C �-algebra generated by an isometry s2 and a unitary u satisfying
the relations

s2u
k D u2ks2 and s2s

�
2 C us2s

�
2 u� D 1:

The algebra Q2 shares many structural properties with QN. It is simple, purely
infinite and has a semigroup crossed product description. Its stabilization Q2 is
isomorphic to its minimal automorphic dilation, which is the crossed product

C0.Q2/ Ì
�
ZŒ 1

2
� Ì h2i�:

Here ZŒ 1
2
� denotes the ring extension of Z by 1

2
, h2i the subgroup of the positive

rationals Q
C generated by 2 and the action of ZŒ 1
2
� Ì h2i on Q2 is the natural

axC b-action.
Both Af and Q2 are examples of groups of so-called a-adic numbers, defined

by a doubly infinite sequence a D .: : : ; a�2; a�1; a0; a1; a2; : : : / with ai 	 2 for all
i 2 Z. Our goal is to construct C �-algebras associated with the a-adic numbers and
show that these algebras provide a family of examples that under certain conditions
share many structural properties with Q2, QN and also the ring C �-algebras of
Cuntz and Li.

Our approach is inspired by [5], that is, we begin with a crossed product
by a group and use the classical theory of C �-dynamical systems to prove our
results, instead of the generators and relations as in the papers of Cuntz, Li and
Larsen. Therefore, our construction only gives analogs of the stabilized algebras
QN and Q2.

Even though the C �-algebras associated with a-adic numbers are closely related
to the ring C �-algebras of Cuntz and Li, they are not a special case of these
(except in the finite adeles case). Also, our approach does not fit in general into
the framework of [5].
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One of the main results in the paper is Theorem 3, which is a general a-adic
duality theorem that encompasses the 2-adic duality theorem [9, Theorem 7.5] and
the analogous result of Cuntz [1, Theorem 6.5]. In the proof, we only apply crossed
product techniques, and not the groupoid equivalence as in [9].

11.2 The a-adic Numbers

Let a D .: : : ; a�2; a�1; a0; a1; a2; : : : / be a doubly infinite sequence of natural
numbers with ai 	 2 for all i 2 Z. Let the sequence a be arbitrary, but fixed.

We use Hewitt and Ross [4, Sects. 10 and 25] as our reference and define the
a-adic numbers˝ as the group of sequences

(
x D .xi / 2

1Y
iD�1

f0; 1; : : : ; ai � 1g W xi D 0 for i < j for some j 2 Z

)

under addition with carry, that is, the sequences have a first nonzero entry and
addition is defined inductively. Its topology is generated by the subgroups f�j W
j 2 Zg, where

�j D fx 2 ˝ W xi D 0 for i < j g:

This turns ˝ into a totally disconnected, locally compact Hausdorff abelian group.
The group 
 of a-adic integers is defined as 
 D �0. It is a compact, open
subgroup, and a maximal compact ring in ˝ with product given by multiplication
with carry. On the other hand, ˝ itself is not a ring in general (see (11.4) in
Sect. 11.5).

Define the a-adic rationalsN as the additive subgroup of Q given by

N D
�

j

a�1 � � �a�k W j 2 Z; k 	 1
�
:

In fact, all noncyclic additive subgroups of Q containing Z are of this form
(see Lemma 2 below). There is an injective homomorphism

� W N ,! ˝

determined by

	
�
� 1

a�1 � � �a�k
�

�j
D ıjk:
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Moreover, �.N / is the dense subgroup of ˝ comprising the sequences with only
finitely many nonzero entries. This map restricts to an injective ring homomorphism
denoted by the same symbol

� W Z ,! 


with dense range. Henceforth, we will suppress the � and identifyN and Z with their
image in ˝ and 
, respectively.

Now let U be the family of all subgroups of N of the form m
n
Z, where m and

n are natural numbers such that m divides a0 � � �aj for some j 	 0 and n divides
a�1 � � �a�k for some k 	 1. Then U

1. is downward directed, that is, for all U; V 2 U there exists W 2 U such that
W � U \ V ,

2. is separating, that is,

\
U2U

U D feg;

3. has finite quotients, that is, jU=V j <1 whenever U; V 2 U and V � U ,

and the same is also true for

V D fU \ Z W U 2 U g:

In fact, both U and V are closed under intersections, since

m

n
Z \ m

0

n0
Z D lcm .m;m0/

gcd .n; n0/
Z: (11.1)

It is a consequence of (1)–(3) above that the collection of subgroups U induces a
locally compact Hausdorff topology on N . Denote the Hausdorff completion of N
with respect to this topology by N . Then

N Š lim �
U2U

N=U:

Next, let U0 D Z and for j 	 1 define Uj D a0 � � �aj�1Z and set

W D fUj W j 	 0g � V � U :

Note that W is also separating and closed under intersections. The closure of Uj in
˝ is �j , so

˝=�j Š N=Uj and 
=�j Š Z=Uj for all j 	 0:
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Next, let

	j W ˝ ! N=Uj

denote the quotient map for j 	 0, and identify 	j .x/ with the truncated sequence
x.j�1/, where x.j / is defined for all j 2 Z by

.x.j //i D
(
xi for i � j;
0 for i > j:

We find it convenient to use the standard construction of the inverse limit of the
system fN=Uj ; .mod aj /g:

lim �
j�0

N=Uj D
(
x D .xi / 2

1Y
iD0

N=Ui W xi D xiC1 .mod ai /

)
;

and then the product 	 W ˝ ! lim �j�0 N=Uj of the truncation maps 	j , given by

	.x/ D .	0.x/; 	1.x/; 	2.x/; : : : / D .x.�1/; x.0/; x.1/; : : : /;

is an isomorphism.
Furthermore, we note that W is cofinal in U . Indeed, for all U D m

n
Z 2 U ,

if we choose j 	 0 such that m divides a0 � � �aj then we have W 3 UjC1 � U .
Therefore,

˝ Š lim �
j�0

N=Uj Š lim �
U2U

N=U Š N;

and similarly


 Š lim �
j�0

Z=Uj Š lim �
V 2V

Z=V Š Z:

In particular, 
 is a profinite group. In fact, every profinite group coming from a
completion of Z occurs this way (see also Lemma 2).

The following is a consequence of (11.1) and should serve as motivation for
our U .

Lemma 1 ([6, Lemma 1.1]). Every open subgroup of ˝ is of the form

[
U2C

U
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for some increasing chain C in U . In particular, every compact open subgroup of
˝ is of the form U for some U 2 U .

Whenever any confusion is possible, we write˝a, 
a, Na, etc. for the structures
associated with the sequence a. If b is another sequence such that Ua D Ub ,
we write a � b. In this case also Na D Nb. It is not hard to verify that a � b

if and only if there is an isomorphism ˝a ! ˝b restricting to an isomorphism

a ! 
b . The groups ˝a and ˝b can nevertheless be isomorphic even if a 6� b

(see Example 3 below). In this regard, we have the following result, which is a
consequence of Proposition 2.

Theorem 1 ([6, Corollary 5.4]). We have that ˝a Š ˝b if and only if there exists
a .Ua;Ub/-continuous isomorphism Na ! Nb .

Example 1. Let p be a prime and assume a D .: : : ; p; p; p; : : : /. Then ˝ Š Qp

and
 Š Zp , i.e. the usual p-adic numbers and p-adic integers.

Example 2. Let a D .: : : ; 4; 3; 2; 3; 4; : : : /, i.e. ai D a�i D i C 2 for i 	 0. Then
˝ Š Af and 
 Š OZ, because every prime occurs infinitely often among both the
positive and the negative tail of the sequence a (see the paragraph after Lemma 2).

Example 3. Let ai D 2 for i ¤ 0 and a0 D 3, so that

N D ZŒ 1
2
� and U D f2iZ; 2i 3Z W i 2 Zg:

Then˝ contains torsion elements. Indeed, let

x D .: : : ; 0; 1; 1; 0; 1; 0; 1; : : : /; so that 2x D .: : : ; 0; 2; 0; 1; 0; 1; 0; : : : /;
where the first nonzero entry is x0. Then 3x D 0 and f0; x; 2xg forms a subgroup
of ˝ isomorphic with Z=3Z. Hence ˝ 6Š Q2 since Q2 is a field.

Furthermore, let b be given by bi D aiC1, that is, bi D 2 for i ¤ �1 and
b�1 D 3. Then

Nb D 1
3
ZŒ 1

2
� and Ub D f2iZ; 2i 13Z W i 2 Zg:

We have ˝a Š ˝b , but a 6� b since 
a 6Š 
b . Note also that the equation 3x D 1

has no solution in ˝a, but two solutions in ˝b , and these are

1
3
2 Nb and y D .: : : ; 0; 1; 1; 0; 1; 0; 1; : : : /; where the first nonzero entry is y0:

11.3 The a-adic Algebras

We now want to define a multiplicative action on ˝ , of some suitable subset of N ,
that is compatible with the natural multiplicative action of Z on ˝ . Let S consist
of all s 2 Q
C such that the map U ! U given by U 7! sU is well-defined
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and bijective. Clearly, the map U 7! sU is injective if it is well-defined and it is
surjective if the map U 7! s�1U is well-defined. Define a subset P of the prime
numbers by

P D fp prime W p divides ak for infinitely many k < 0 and infinitely many k 	 0g:

It is not hard to see that S coincides with the subgroup hP i of Q
C generated by P .
Moreover, S is the largest subgroup of Q
C that acts continuously on N . Indeed,
the action is well-defined since all q 2 N belongs to some U 2 U . If q C U is a
basic open set in N , then its inverse image under multiplication by s, s�1.qCU / D
s�1q C s�1U , is also open in N as s�1U 2 U . By letting S be discrete, it follows
that the action is continuous.

We will not always be interested in the action of the whole group S on N ,
but rather a subgroup of S . So henceforth, let H denote any subgroup of S .
Furthermore, let G be the semidirect product ofN byH , i.e.G D N ÌH whereH
acts on N by multiplication. This means that there is a well-defined ax C b-action
of G on N given by

.r; h/ � q D r C hq for q; r 2 N and h 2 H:

This action is continuous with respect to U , and can therefore be extended to an
action of G on ˝ , by uniform continuity.

Proposition 1 ([6, Proposition 2.4]). Assume P ¤ ¿ and let H be a nontrivial
subgroup of S . Then the action ofG D N ÌH on˝ is minimal, locally contractive
and topologically free.

Definition 1. Suppose P ¤ ¿. If H is a nontrivial subgroup of S , we define the
C �-algebra Q D Q.a;H/ by

Q D C0.˝/ Ì˛aff G;

where

˛aff
.n;h/.f /.x/ D f .h�1 � .x � n//:

Remark 1. The bar-notation on Q is used so that it agrees with the notation for
stabilized Cuntz-Li algebras in [1] and [9].

Theorem 2 ([6, Corollary 2.8]). The C �-algebra Q is simple and purely infinite.
Moreover, Q is a nonunital Kirchberg algebra in the UCT class.

Example 4. If a D .: : : ; 2; 2; 2; : : : / and H D S D h2i, then Q is the algebra Q2

of Larsen and Li [9]. More generally, if p is a prime, a D .: : : ; p; p; p; : : : / and
H D S D hpi, we are in the setting of Example 1 and get algebras similar to Q2.



230 T. Omland

If a D .: : : ; 4; 3; 2; 3; 4; : : : / and H D S D Q
C, then we are in the setting of
Example 2. In this case Q is the algebra QN of Cuntz [1].

Both these algebras are special cases of the most well-behaved situation, namely
where H D S and ai 2 H for all i 2 Z. The algebras arising this way are
completely determined by the set (finite or infinite) of primes P , and are precisely
the kind of algebras that fit into the framework of [5]. The cases described above are
the two extremes, where P consists of either one single prime or all primes.

If a � b, then Sa D Sb and Q.a;H/ D Q.b;H/ for all H � Sa D Sb .
Suppose ˝a Š ˝b . Then Sa D Sb as well, and for all H � Sa D Sb , we have
that Q.a;H/ Š Q.b;H/. Indeed, by Theorem 1 there exists an isomorphism ' W
˝a ! ˝b restricting to an isomorphismNa ! Nb . Therefore, the map

'� W Cc.Na ÌH;C0.˝a//! Cc.Nb ÌH;C0.˝b//

given by

'�.f /.n; h/.x/ D f .'�1.n/; h/.'�1.x//

determines an isomorphism Q.a;H/ Š Q.b;H/.

Example 5. Let a and b be the sequences from Example 3. Then Q.a;H/ Š
Q.b;H/ for all H � Sa D Sb D h2i.
Example 6. If a D .: : : ; 2; 2; 2; : : : / and b D .: : : ; 4; 4; 4; : : : /, then a � b.
Hence, for all nontrivial H � S D h2i we have Q.a;H/ D Q.b;H/. However,
if H D h4i, then Q.a; S/ 6Š Q.a;H/, as remarked after Question 1.

In light of this example, it could also be interesting to investigate the axCb-action
on ˝ of other subgroups G0 of N Ì S . It follows from the proof of Proposition 1
that the action of G0 on ˝ is minimal, locally contractive and topologically free if
and only if G0 DM ÌH , whereM � N is dense in ˝ andH � S is nontrivial.

Moreover, it can be shown that a proper subgroup M of N is dense in ˝ if and
only ifM D qN for some q 	 2 such that q and ai are relatively prime for all i 2 Z.
This property is also invariant under isomorphisms, i.e. if˝a Š ˝b and q 	 2, then
qNa is dense in ˝a if and only if qNb is dense in ˝b (see Sect. 11.5). However, if
M is such a subgroup of N that is dense in ˝ andH � S , then

C0.˝/ Ì˛aff .N ÌH/ Š C0.˝/ Ì˛aff .M ÌH/: (11.2)

The reason for the isomorphism (11.2) is the following. If

Q D fp prime W p does not divide any ai g;
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then multiplication by a prime p is an automorphism of˝ if and only if p 2 P [Q.
Indeed, if p 2 Q, then pU D pU D U for all U 2 U . Thus, 1

p
2 ˝ when p 2 Q

and it is possible to embed the subgroup

NQ D f nq W n 2 N; q 2 hQig � Q

in ˝ , where hQi denotes the multiplicative subgroup of Q
C generated by Q.
We complete this discussion by considering the axCb-action on˝ of potentially

larger groups thanN ÌS . The largest subgroup of QÌQ
C that can act on˝ through
an axC b-action is NQ Ì hP [Qi. However, the only groups N � M � NQ that
give rise to the duality theorems in the next section are of the form M D 1

q
N for

q 2 hQi (see Remark 2). Moreover, S is the largest subgroup of hP [Qi that acts
on M , and of course, (11.2) also holds for all H � S in this case.

Finally, we remark that one may also involve the roots of unity of Q
 in the
multiplicative action, that is, replaceH with f˙h W h 2 H g D f˙1g �H as in [3].
The associated algebras will then be of the form QÌZ=2Z. However, we restrict to
the action of the torsion-free part of Q
 in this paper.

11.4 The a-Adic Duality Theorem

For any a, let a� be the sequence given by a�i D a�i . In particular, .a�/� D a.
We now fix a and write˝ and˝� for the a-adic and a�-adic numbers, respectively.

Let x 2 ˝ and y 2 ˝� and for j 2 N put

zj D e2
 ix.j /y.j /=a0 ;

where the sequences x.j / and y.j / are treated as their corresponding rational
numbers in N . It can be checked that zj is eventually constant. We now define
the pairing˝ �˝� ! T by

hx; yi˝ D lim
j!1 e

2
 ix.j /y.j /=a0 :

The pairing is a continuous homomorphism in each variable separately and gives an
isomorphism˝� ! Ő . Indeed, this map coincides with the one in [4, 25.1].

The injection � W N ! R � ˝ given by q 7! .q; q/ has discrete range, and N
may be considered as a closed subgroup of R�˝ . Similarly,N � may be considered
as a closed subgroup of R �˝�.
Remark 2. SubgroupsM ofQ such thatN �M � NQ also embed densely into˝ .
For example, Q itself can be embedded densely into Qp for all primes p. On the
other hand, it is not hard to see that the image of the diagonal map Q! R � Qp is
not closed in this case. More generally, a subgroupM of Q embeds densely into ˝
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such that the image of the diagonal map M ! R �˝ is closed if and only if M is
of the form 1

q
N for q 2 hQi.

By applying the facts about the pairing of ˝ and ˝� stated above, the pairing of
R �˝ and R �˝� given by

h.u; x/; .v; y/i D e�2
 iuv=a0 lim
j!1 e

2
 ix.j /y.j /=a0 D hu; viRhx; yi˝

defines an isomorphism R � ˝� ! 2R �˝ that restricts to an isomorphism
�.N �/! �.N /?. Thus, we get the following theorem.

Theorem 3 ([6, Theorem 3.3]). We have that

.R �˝�/=N � Š2R �˝=N? Š ON;

where the isomorphism ! W .R �˝�/=N � ! ON is given by

!
�
.v; y/CN ��.q/ D h.q; q/; .v; y/i for .v; y/ 2 R �˝� and q 2 N:

Remark 3. In general, note that P � D P so S� D S . Hence, every subgroup
H � S acting on N and ˝ also acts on N � and ˝�. In particular Q.a;H/ is
well-defined if and only if Q.a�;H/ is.

Theorem 4 ([6, Theorem 4.1]). Assume that P ¤ ¿ and that H is a nontrivial
subgroup of S . Set G D N Ì H and G� D N � Ì H . Then there is a Morita
equivalence

C0.˝/ Ì˛aff G �M C0.R/ Ì˛aff G�;

where the action on each side is the axC b-action.

We give an outline of the proof that involves a few classical results in the theory
of crossed products. To simplify the notation in the proof, we switch the stars, and
seek a Morita equivalence between C0.˝�/Ì˛aff G� and C0.R/Ì˛aff G. Our strategy
is to first find a Morita equivalence

C0.T=˝/ Ìlt N �M C0.NnT / Ìrt ˝;

where T D R�˝ , that is equivariant for actions ˛ and ˇ ofH on C0.T=˝/ Ìlt N

and C0.NnT / Ìrt ˝ , respectively, and then find isomorphisms

�
C0.T=˝/ Ìlt N

�
Ì˛ H Š C0.R/ Ì˛aff G;�

C0.NnT / Ìrt ˝
�
Ìˇ H Š C0.˝�/ Ì˛aff G�:
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Recall thatN and˝ sit inside T as closed subgroups. All the groups are abelian,
and therefore, by “Green’s symmetric imprimitivity theorem” (for example [12,
Corollary 4.11]) we get a Morita equivalence

C0.T=˝/ Ìlt N �M C0.NnT / Ìrt ˝ (11.3)

via an imprimitivity bimoduleX that is a completion of Cc.T /. Here N acts on the
left of T=˝ by n � ..t; y/ �˝/ D .nC t; nC y/ �˝ and˝ acts on the right of NnT
by .N � .t; y// � x D N � .t; y C x/, and the induced actions on C0-functions are
given by

ltn.f /.p �˝/ D f
��n � .p �˝/�

rtx.g/.N � p/ D g
�
.N � p/ � x�

for n 2 N , f 2 C0.T=˝/, p 2 T , x 2 ˝ , and g 2 C0.NnT /.
Moreover, H acts by multiplication on N , hence on ˝ , and also on R. Thus H

acts diagonally on T D R �˝ by h � .t; x/ D .ht; h � x/.
One can then show that the Morita equivalence (11.3) is equivariant for the

actions ˛, ˇ, and � of H on Cc.N;C0.T=˝//, Cc.˝;C0.T nN/, and Cc.T /

given by

˛h.f /.n/
�
.t; y/ �˝� D f .hn/

�
.ht; h � y/ �˝�;

ˇh.g/.x/
�
N � .t; y/� D ı.h/g.h � x/�N � .ht; h � y/�;
�h.�/.t; y/ D ı.h/ 12 �.ht; h � y/;

where ı is the modular function for the multiplicative action ofH on ˝ .
The next step is now to show that

�
C0.T=˝/ Ìlt N

�
Ì˛ H Š

�
C0.R/ Ìlt N

�
Ì˛0 H

Š �C0.R/ Ìlt N
�
Ì˛00 H

Š C0.R/ Ì˛aff .N ÌH/:

The first isomorphism is induced from T=˝
Š�! R and then we get the correct

˛00 by composing ˛0 with the automorphism h 7! h�1 of H . The last isomorphism
is a consequence of a result regarding decomposition of iterated crossed products
(see [12, Corollary 3.11]).

The other part requires more work, and the aim is to get through the steps

�
C0.NnT / Ìrt ˝

�
Ìˇ H Š

�
C0.bN

�/ Ìrt ˝
�
Ìˇ0 H

Š �C0.˝�/ Ìrt N
�� Ìˇ00 H

Š C0.˝�/ Ì˛aff .N � ÌH/:
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Here, the first isomorphism is induced from the ! in Theorem 3. For the second
isomorphism, we need the “subgroup of dual group theorem” (see [6, Appendix A]).
Finally, the third isomorphism is, similarly as above, a consequence of the “iterated
crossed products decomposition”.

Remark 4. The C �-algebras C0.˝/ Ì˛aff G and C0.R/ Ì˛aff G� will actually be
isomorphic by Zhang’s dichotomy: a separable, simple, purely infinite C �-algebra
is either unital or stable.

If a is defined by ai D 2 for all i and H D h2i, then this result coincides with
[9, Theorem 7.5], and if a is the sequence described in Example 2, it coincides with
[1, Theorem 6.5].

11.5 Invariants and Isomorphism Results

Let P be the set of prime numbers. A supernatural number is a function

� W P! N [ f0;1g
such that

P
p2P �.p/ D 1. Denote the set of supernatural numbers by S. It may

sometimes be useful to consider a supernatural number as an infinite formal product

� D 2�.2/3�.3/5�.5/7�.7/ � � � :
If � is a supernatural number and p is a prime, let p� denote the supernatural
number given by .p�/.p/ D �.p/ C 1 (with the convention that 1 C 1 D 1)
and .p�/.q/ D �.q/ if p ¤ q. The definition of p� extends to all natural numbers
p by prime factorization.

Let � and % be two supernatural numbers associated with the sequence a in the
following way:

�.p/ D sup fi W pi divides a0 : : : aj for some j 	 0g 2 N [ f0;1g
%.p/ D sup fi W pi divides a�1 : : : a�k for some k 	 1g 2 N [ f0;1g

Lemma 2. Let a and b be two sequences. The following hold:

1. 
a Š 
b if and only if �a D �b .
2. Na D Nb if and only if %a D %b .
3. Ua D Ub if and only if both �a D �b and %a D %b .

Indeed, from [4, Theorem 25.16] we have


 Š
Y

p2��1.1/
Zp �

Y
p2��1.N/

Z=p�.p/Z

and hence (1) holds. It is not difficult to see that condition (2) and (3) also hold.
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This means that there is a one-to-one correspondence between supernatural
numbers and noncyclic subgroups of Q containingZ, and also between supernatural
numbers and Hausdorff completions of Z.

Condition (3) is equivalent to a � b, and more generally, the following result
clarifies when ˝a and ˝b are isomorphic.

Proposition 2 ([6, Proposition 5.2]). Let a and b be two sequences. Then ˝a Š
˝b if and only if there are natural numbers p and q such that

.: : : ; a�2; qa�1; pa0; a1; : : : / � .: : : ; b�2; pb�1; qb0; b1; : : : /:

That is, ˝a Š ˝b if and only if there are p; q 2 N such that p�a D q�b and
q%a D p%b .

Hence, if ˝a Š ˝b , then Na Š Nb, Pa D Pb so Sa D Sb and Qa D Qb.

Corollary 1 ([6, Proposition 5.7]). The group of a-adic numbers ˝ is self-dual if
and only if there are natural numbers p and q such that p� D q%.

For two pairs of supernatural numbers .�1; %1/ and .�2; %2/, we write .�1; %1/ �
.�2; %2/ if there exist natural numbersp and q such that p�1 D q�2 and q%1 D p%2.
Then the set of isomorphism classes of a-adic numbers coincides with S�S= � and
the self-dual ones coincide with the diagonal, i.e. are of the form Œ.�; �/�.

Set UP D fmnZ 2 U W n 2 Sg D fU 2 U W U � ZŒf 1
p
W p 2 P g�g. Then the

open subgroup

R D ZŒf 1
p
W p 2 P g� D

[
U2UP

U

in˝ is the maximal open (and closed) ring contained in ˝ . In particular, the a-adic
numbers ˝ can be given the structure of a topological (commutative) ring with
multiplication inherited from N � Q if and only if [11, E. Herman, 12.3.35]

N D
[
h2S

hZ
�
D Z

hn
1
p
W p 2 P

oi�
(11.4)

i.e. if and only if ˝ D R.
Moreover, by Theorem 4 and Remark 4, it should be clear that Q.a;H/ Š

Q.b;K/ if N �a Š N �b and H D K , although the isomorphism is in general not
canonical. Hence, for every sequence a, there is a sequence b such that ˝b is a ring
and Q.a;H/ Š Q.b;H/, since one can always pick b so that˝b D Ra. (Warning:
Q.b;H/ is still not a ring algebra in the sense of [10].) If both˝a and˝b are rings,
then ˝a Š ˝b as topological rings if and only if a � b.

Example 7. Let a and b be the sequences of Examples 3 and 5, and let H D h2i.
Then Q.a;H/ Š Q.b;H/ and these algebras are also isomorphic to Q2, but the
isomorphisms are not canonical.
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Question 1. Given two sequences a and b and subgroups H � Sa and K � Sb .
When is Q.a;H/ 6Š Q.b;K/?

To enlighten the question, consider the following situation. Let a D .n; n; n; : : : /
and H D hni, and note that H D S if and only if n is prime. Then Q.a;H/ D
C.
/ Ì˛aff GZ (see next section) is the O.En;1/ of [7, Example A.6]. Thus

.K0.Q.a;H//; Œ1�;K1.Q.a;H/// Š .Z˚ Z=.n � 1/Z; .0; 1/;Z/:

Moreover, since all Q.a;H/ are Kirchberg algebras in the UCT class, they are
classifiable byK-theory.

In future work we hope to be able to compute the K-theory of Q.a;H/ using
the following strategy. Since C0.˝/ÌN is stably isomorphic to the Bunce-Deddens
algebra C.
/ Ì Z, its K-theory is well-known, in fact

.K0.C.
/ Ì Z/; Œ1�;K1.C.
/ Ì Z// Š .N �; 1;Z/:

As H is a free abelian group, we can apply the Pimsner-Voiculescu six-term exact
sequence by adding the action of one generator of H at a time. For this to work
out, we will need to apply Theorem 4 and use homotopy arguments to compute the
action of H on the K-groups (see also [2, Remark 3.16]).

11.6 The “Unstabilized” a-Adic Algebras

Fix a sequence a and a nontrivial subgroup H � S and set Q D Q.a;H/. Let
HC be the semigroup H \ N
 and for each U 2 U , let GU denote the semigroup
U Ì HC with multiplication inherited from G. Moreover, for n 2 N let pnCU be
the projection in Q corresponding to the projection �nCU in C0.˝/.

Assume U; V 2 U and V � U , so U D rZ for some r and set k D jU=V j.
Then

U D
k�1G
jD0

jrC V so that pU D
k�1X
jD0

pjrCV : (11.5)

Proposition 3. The following hold:

1. pU is a full projection in Q.
2. The full corner pUQpU is isomorphic to the semigroup crossed product

C.U / Ì˛aff GU ; ˛aff
.n;h/f .x/ D

(
f .h�1 � .x � n// if x 2 nC hU;

0 else.
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Proof. Note first that if pV 2 QpUQ for some V 2 U , then gpnChV 2 QpUQ
for all g and .n; h/ 2 G. Therefore, it suffices to check that pV 2 QpUQ for all
V 2 U .

Pick V D rZ 2 U and choose W 2 U with W � U \ V (for example
W D U \ V ). Let k D jV=W j, then by (11.5)

pV D
k�1X
jD0

pjrCW D
k�1X
jD0

.jr; 1/pW .�jr; 1/

2 spanfgpg0 W g; g0 2 G;p projection in Q with p � pU g
� span QpUQ

as ppUp D p if p � pU .
For the second part, we just remark that for f 2 C0.˝/ and .n; h/ 2 G,

pUf .n; h/pU D pU\.nChU/f .n; h/ D fjU\.nChU/.n; h/;

which is nonzero only if n 2 U [ hU. ut
The minimal automorphic dilation of C.U / Ì˛aff GU does not necessarily take us
back to Q. In fact, it gives

C0.H
�1C U / Ì˛aff .H�1C U ÌH/

where

H�1C U D f n
h
W n 2 U; h 2 HCg D

[
h2H

C

h�1U D
[
h2H

hU D fhn W n 2 U; h 2 H g:

Therefore, one gets Q back precisely when N D H�1C U . For example, if U D Z

one gets Q back in the settings of Larsen and Li and also Cuntz, since H D S and
(11.4) holds in these cases.

In general, however, we get that

Q �M C0.H
�1C U / Ì˛aff .H�1C U ÌH/

which due to Remark 4 means that these are noncanonically isomorphic as well.
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Chapter 12
The Structure of Stacey Crossed Products
by Endomorphisms

Eduard Ortega and Enrique Pardo

Abstract We describe simplicity and purely infiniteness (in simple case) of the
Stacey crossed product A �ˇ N in terms of conditions of the C �-dynamical system
.A; ˇ/.

Keywords C �-crossed products • Purely infinite C �-algebras • Cuntz-Pimsner
algebras
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12.1 Introduction

In [5], Cuntz defined the fundamental Cuntz algebras On in terms of generators and
relations. He also represented these algebras as crossed products of a UHF-algebra
by an endomorphism, and in a subsequent paper [6] he realized this construction
as a full corner of an ordinary crossed product. However Cuntz did not explain
what kind of crossed product by an endomorphism was. Later, Paschke [18] gave an
elegant generalization of Cuntz’s result, and described the crossed product of a unital
C �-algebra by an endomorphism ˇ W A ! A, written A �ˇ N, as the C �-algebra
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generated byA and an isometry V1, such that V1aV �1 D ˇ.a/. Endomorphisms of
C �-algebras appeared elsewhere (cf. [3, 7] and the references given there), and led
Stacey to give a modern description of their crossed products in terms of covariant
representations and universal properties [24]. He also verified that the candidate
proposed in [5] had the required property (see [2] and [4] for further study and
generalization of the Stacey’s crossed product).

More recently, constructions such as Exel crossed products raised hopes to extend
the scope of crossed products to describe broad classes of C �-algebras. In this
setting it is worth considering the recent work of an Huef and Raeburn [9], who
show that:

1. The relative Cuntz-Pimsner algebra of an Exel system is isomorphic to a Stacey
crossed product of its core algebra.

2. Any Stacey crossed product is an Exel crossed product.

In particular, they give a presentation of any graph C �-algebra (over a row-finite
graph) C �.E/ as a Stacey crossed product C �.E/� �ˇE N by an endomorphism of
the core, extending the work of Kwaśniewski on finite graphs [14].

Cuntz’s representation of the On as crossed products by an endomorphism
aimed to prove the simplicity of these C �-algebras. Paschke gave conditions
on the C �-algebra A and on the isometry to obtain a simple crossed product
[18, Proposition 2.1], later improved in [4, Corollary 2.6]. Finally, Schweizer
gave the most powerful result about the simplicity of the Stacey crossed product
[23, Theorem 4.1]. Namely, if A is a unital C �-algebra and ˇ is an injective
�-endomorphism, then A �ˇ N is simple and ˇ.1/ is a full projection in A if and
only if ˇn is outer for every n > 0 and there are no non-trivial ideals I of A with
ˇ.I / 
 I . Certainly, in most cases the simplicity appears in connection with the
pure infiniteness property, first introduced by Cuntz in the simple case, and then
extended to general C �-algebras by Kirchberg and Rørdam [12]. Then we can
use the Kirchberg-Phillips classification theorems to model Kirchberg algebras as
crossed products.

The aim of this work is to study the simplicity of non-unital crossed products, as
well as to give sufficient conditions to decide when a simple Stacey crossed product
is purely infinite. Our fundamental technique is seeing the Stacey crossed product
A �ˇ N as a full corner of a crossed product by an automorphism P.A1 �ˇ

1

Z/P

(see [6,24]), where P is a full projection of the multipliers that is invariant under the
canonical gauge-action. Therefore, we can define the associated Connes Spectrum
of the endomorphism in a similar way we do it for an automorphism (see [10, 15,
16]) and construct a parallel Connes spectrum theory for endomorphisms. Hence,
following the results of Olesen and Pedersen [16,17], we characterize simplicity for
the Stacey crossed productA�ˇN. Secondly, we will deal with the characterization
of pure infiniteness for simple Stacey crossed products. For, by using ideas from
[10, 21], we give sufficient conditions on A and the endomorphism ˇ in order to
guarantee that A �ˇ N is simple and purely infinite. The main difference between
these results and ours is that we do not ask the C �-algebra A to be simple.
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12.2 Simple Stacey Crossed Product

The pair .A; ˇ/, where A is a C �-algebra and ˇ W A ! A an (injective)
endomorphism, is called a C �-dynamical system.

Definition 1. We say that .
; V / is a Stacey covariant representation of .A; ˇ/ if

 W A ! B.H / is a non-degenerated representation and V is an isometry of
B.H / such that 
.ˇ.a// D V
.a/V � for every a 2 A. We denote by C �.
; V /
the C �-algebra generated by f
.A/V n.V m/�gn;m�0.

Stacey showed in [24] that there exists a C �-algebra that is generated by a
universal Stacey covariant representation .�1; V1/. We callA�ˇN WD C �.�1; V1/
the Stacey crossed product of A by the endomorphism ˇ.

Remark 1. Observe that, if ˇ is an automorphism then V1 is a unitary, and hence
A �ˇ N is the usual crossed product A �ˇ Z.

By universality of A �ˇ N, given z 2 T, we define an automorphism in A �ˇ N
by the rule �z.a/ D a and �z.V1/ D zV1 for every a 2 A. It defines the gauge
action � W T ! Aut.A �ˇ N/. An ideal I of A �ˇ N is said to be gauge invariant
if �z.I / D I for every z 2 T. We define a canonical faithful conditional expectation
E W A �ˇ N �! B as E.x/ WD R

T
�z.x/d z for every x 2 A �ˇ N, where B WD

spanfV �n1 aV n1 W a 2 A; n 	 0g.
We say that the endomorphism ˇ W A �! A is extendible if, given any strictly

convergent sequence fxngn�0 � A, then the sequence fˇ.xn/gn�0 converges in the
strict topology (i.e., ˇ extends to Ǒ W M.A/ �! M.A/). Observe that, if ˇ is
injective, then Ǒ.a/ 2 A implies that a 2 A. Indeed, let fang be a sequence that
converges in the strict topology and such that fˇ.an/g converges in norm topology.
Since ˇ is isometric (ˇ is injective) then fang converges in the norm topology too.

We define the inductive system fAi; 'i gi�1 given by Ai WD A and 'i D ˇ for
every i 	 1. Let A1 WD lim�! fAi ; 'ig. For any i 	 1, 'i;1 W Ai �! A1 denotes
the (injective) canonical map. The diagram

A

ˇ

��

ˇ
�� A

ˇ

��

ˇ
�� A

ˇ

��

ˇ
�� � � �

A
ˇ

�� A
ˇ

�� A
ˇ

�� � � �

gives rise to the dilated automorphism ˇ1 W A1 �! A1. We call .A1; ˇ1/ the
dilation of .A; ˇ/.

Observe that, if ˇ is an extendible endomorphism, then given any i 	 1 we have
that 'i;1 extends to b'i:1 WM.A/ �!M.A1/.
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Proposition 1 (cf. [23, Proposition 3.3]). If A is a C �-algebra and ˇ W A �! A

is an extendible and injective endomorphism, then A �ˇ N Š P.A1 �ˇ
1

Z/P ,
where P D b'1;1.1M.A// 2 M.A1 �ˇ

1

Z/. Moreover, P is a full projection, so
that A �ˇ N is strongly Morita equivalent to A1 �ˇ

1

Z.

The isomorphism given in the above proposition sends V1 (the isometry ofA�ˇ
N) to PU1P (whereU1 is the generating unitary ofA1�ˇ

1

Z), and a to '1;1.a/
for every a 2 A. Therefore, from now on we will identify A�ˇ N with P.A1 �ˇ

1

Z/P . If � 0 W T �! Aut .A1 �ˇ
1

Z/ is the canonical gauge action, since � 0z.P / D
P for every z 2 T, it restricts to the gauge action � ofA�ˇN. Thus, we will identify
� with � 0.

Therefore, by Morita equivalence there exists a bijection between the ideals I of
A1 �ˇ

1

Z and the ideals J of A �ˇ N, given by

I 7�! PIP and J 7�! .A1 �ˇ
1

Z/J.A1 �ˇ
1

Z/ :

So, from the above comment the following results comes.

Lemma 1. If A is a C �-algebra and ˇ W A �! A is an extendible and injective
endomorphism, then there exists an order preserving bijection between gauge
invariant ideals of A �ˇ N and A1 �ˇ

1

Z.

Now, we will describe the gauge invariant ideals in terms of the C �-dynamical
system .A; ˇ/.

Definition 2. Let A be a C �-algebra and let ˇ W A ! A an endomorphism. We
say that an ideal I of A is ˇ-invariant if I D ˇ�1.I /. A is ˇ-simple if there are no
non-trivial ˇ-invariant ideals.

Proposition 2. If A is a C �-algebra and ˇ W A �! A is an injective endomor-
phism, then the map I 7�! I1, where I1 WD P

n2N 'n;1.I /, defines an order
preserving bijection between the ˇ-invariant ideals of A and the ˇ1-invariant
ideals of A1.

Proof. Let I be an ideal of A such that ˇ�1.I / D I . Let us define I1 WDP
n2N 'n;1.I /, which is an ideal of A1. Since ˇ.I / 
 I we have that ˇ1.I1/ 


I1. Then, given x 2 I and n 2 N we have that 'n;1.x/ D 'nC1;1.ˇ.x// D
ˇ1.'nC1;1.x//, so ˇ1.I1/ D I1. Conversely, given K an ideal of A1 let us
consider the ideal '�11;1.K/. Observe that '�11;1.K/ ¤ 0 because ˇ is injective.
Given x 2 '�11;1.K/ we have that '1;1.ˇ.x// D ˇ1.'1;1.x// 2 K , and then
ˇ.x/ 2 '�11;1.K/. Now let x 2 A be such that ˇ.x/ 2 '�11;1.K/, so '1;1.ˇ.x// 2 K .
But then ˇ�11 .'1;1.ˇ.x/// D '1;1.x/ 2 K and hence x 2 '�11;1.K/.

Finally, since ˇ�1.I / D I , given n 2 N we have that

'�1n;1.'nC1;1.I // D '�1n;1.ˇ�1.I // D '�1n;1.I /

the bijection follows.
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We would like to remark that our definition of invariant ideal slightly differs from
the one given by Adji in [1] for two reasons. First, because we only are interested in
actions by injective endomorphisms. And second, because we are just looking for
simple crossed products (hence without any gauge invariant ideal), while Adji looks
for a characterization of the gauge invariant ideals as another crossed product.

In the following, we will give necessary and sufficient conditions for the
simplicity of a Stacey crossed product. The main technical device we use is the
Connes spectrum of an endomorphism. This is just a reformulation of the Connes
spectrum for automorphisms (see [10,15]). We will see that for nice endomorphisms
(extendible and hereditary image) the Connes spectrum of ˇ and that of the
associated automorphism ˇ1 coincide. Therefore, we will be able to use results
by Olesen and Pedersen to determine the conditions for the simplicity of the Stacey
crossed products.

Definition 3. Let A be a C �-algebra and let ˇ W A ! A be an endomorphism.
Then we say that:

1. ˇ is inner if there exists an isometryW 2M.A/ such that ˇ D Ad W .
2. ˇ is outer if it is not inner.

Recall [8, Definition 2.1] that an automorphism ˛ of a C �-algebra A is said to
be properly outer if for every nonzero ˛-invariant two-sided ideal I of A and for
every unitary multiplier u of I , k˛jI � AdujI k D 2. By [17, Theorem 10.4] the
notion of ˛njI being outer for every n 2 N and every ˛-invariant ideal I is weaker
than the properly outer notion. It is known that if the action is properly outer then
the automorphism is outer pointwise. However, this was proved by Kishimoto [13]
and Olesen and Pedersen [17] in the case that the C �-algebra is ˛-simple. It is not
known, at least to the knowledge of the authors, if they are equivalent, at least by
Z-actions.

Definition 4. Let A be a C �-algebra, let ˇ W A ! A be an extendible injective
endomorphism and let � W T �! Aut .A �ˇ N/ be the gauge action. We define the
Connes spectrum of ˇ as

T.ˇ/ WD ft 2 T W �t .I / \ I ¤ 0 for every 0 ¤ I C A �ˇ Ng :

Remark 2. Observe that T.ˇ/ is a closed subgroup of T, since � is strongly
continuous. Hence can only be f1g, T or a finite subgroup.

This definition of the Connes spectrum coincides with the one given by
Olesen [15] and Olesen and Pedersen [16] when ˇ is an automorphism.

Now, using that the bijection between ideals of A�ˇ N and those of A1 �ˇ
1

Z,
and the fact that the canonical gauge action � W T �! Aut .A1 �ˇ

1

Z/ restricts
to the gauge action of A �ˇ N (since �z.P / D P for every z 2 T), the following
lemma easily follows.
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Lemma 2. If A is a C �-algebra and ˇ W A ! A is an extendible injective
endomorphism, then T.ˇ/ D T.ˇ1/.

In order to use this results in our context, the following Lemma is essential.

Lemma 3. Let A be a C �-algebra, and let ˇ W A ! A be an injective extendible
endomorphism such that ˇ.A/ is a hereditary sub-C �-algebra of A. Then given any
ˇ-invariant ideal I of A we have that I Š PI1P .

Proof. Recall that P D b'1;1.1M.A// D .P1; P2; P3; : : :/ 2 M.A1/, where we

define Pn D Ǒn�1.1M.A// for every n 2 N. It is enough to check that given any
n 2 N and a 2 I , then P'n;1.a/P D b'n;1.PnaPn/ 2 '1;1.I /. Observe that since
ˇ.A/ is a hereditary sub-C �-algebra of A we have that ˇn.A/ D ˇn.A/Aˇn.A/

for every n 2 N. But since PnaPn 2 ˇn�1.A/Iˇn�1.A/ 
 ˇn�1.A/ \ I , and
ˇ�1.I / D I , we have that

P'n;1.a/P 2 'n;1.ˇn�1.I // D '1;1.I /;

as desired.

Remark 3. Combining [16, Lemma 6.1], the bijection stated in Proposition 2, the
Morita equivalence between A �ˇ N and A1 �ˇ

1

Z, Lemmas 1 and 3, we have
a bijection between the ˇ-invariant ideals of A and the gauge invariant ideals of
A �ˇ N defined by I 7! .A �ˇ N/I.A �ˇ N/, with inverseK 7! K \ A:
Remark 4. If .A; ˇ/ is a C �-dynamical system with ˇ extendible and ˇ.A/ being
a hereditary sub-C �-algebra of A, then it follows that V �1AV1 
 A. Indeed, let
a 2 A. By Lemma 3 there exists b 2 A such that V1V �1aV1V �1 D V1bV �1,
and hence V1aV �1 D b, as desired. Therefore, the conditional expectation can be
defined as E W A �ˇ N! A.

Now, let us recall a result following from [15].

Theorem 1. Let A be a C �-algebra and let ˇ W A ! A be an extendible injective
endomorphism with ˇ.A/ being a hereditary sub-C �-algebra of A. Let us consider
the following statements:

1. T.ˇn/ D T for every n > 0.
2. Given a 2 A Q (the unitization of A) and any B hereditary sub-C �-algebra of A,

for every n > 0 we have that

inf fkxaˇn.x/k W 0 � x 2 B with kxk D 1g D 0 :

3. ˇn is outer for every n > 0.

Then, .1/) .2/) .3/. Moreover, if A is ˇ-simple, then .3/) .1/ (and thus they
are all equivalent).
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Proof. .1/ ) .2/ This is [17, Theorem 10.4 and Lemma 7.1]. If T.ˇn/ D T then
T.ˇn1/ D T for every n > 0, so ˇn1 is properly outer for every n > 0. Since any
hereditary sub-C �-algebra B of A is also a hereditary sub-C �-algebra of A1, (see
Lemma 3), we can apply [17, Proof of Lemma 7.1] to B . Thus, since ˇn1jA D ˇn,
we have the result.
.2/ ) .3/ Suppose that ˇn D Ad W for an isometry W 2 M.A/. Fix " > 0,

and take b 2 AC with kbk D 1. Set c WD f".b/, where f".t/ W Œ0; 1� �! RC is
the continuous function that is f".0/ D 0, constant 1 for t 	 " and linear otherwise.
Then, we have that xc D cx D x for every x 2 .b � "/CA.b � "/C. Hence, given
any 0 � x 2 .b � "/CA.b � "/C with kxk D 1, we have that

kx.cW �/ˇn.x/k2 D kx.cW �/WxW �k2 D kxcxW �k2

D kx2W �k2 D kx2W �Wx2k D kx4k D kxk4 D 1 ;

which contradicts the hypothesis, since cW � 2 A.
Now, suppose thatA is ˇ-simple. We will prove that .3/) .1/. By [17, Theorem

10.4] we have that T.ˇ1/ D T if and only if T.ˇn1/ D T for every n 2 N.
Let us suppose that T.ˇ/ D T.ˇ1/ ¤ T. Hence, T.ˇ1/ is a finite subgroup,
and thus the complement T.ˇ1/? ¤ f0g. Therefore, by [17, Theorem 4.5], for
every 0 ¤ k 2 T.ˇ1/? we have that ˇk1 D Ad U , where U 2 M.A1/. But
then, by Lemma 3, V D PUP 2 M.A/ is an isometry such that ˇk D Ad V , a
contradiction.

Corollary 1. Let A be a C �-algebra and let ˇ W A! A be an extendible injective
endomorphism with ˇ.A/ being a hereditary sub-C �-algebra of A. Then A �ˇ N is
simple if and only if A is ˇ-simple and ˇn is outer for every n > 0.

Proof. A �ˇ N is simple if and only if A1 �ˇ
1

Z is simple if and only if A1 is
ˇ1-simple and T.ˇ1/ D T [16, Theorem 6.5] if and only if A is ˇ-simple and
T.ˇ/ D T. Therefore, by Theorem 1 we have that A is ˇ-simple and T.ˇ/ D T if
and only if A is ˇ-simple and ˇn is outer for every n > 0.

To apply classification results to these crossed products, it will be necessary to
compute the K-theory of the crossed product by an endomorphism.

Lemma 4 (cf. [21, Corollary 2.2]). Let A be a separable C �-algebra and let
ˇ W A �! A be an injective extendible endomorphism such that ˇ.A/ is a
full hereditary sub-C �-algebra of A. Then, we have the following six-term exact
sequence

K0.A/
id�K0.ˇ/

�� K0.A/ �� K0.A �ˇ N/

��
K1.A �ˇ N/

��

K1.A/�� K1.A/
id�K1.ˇ/
��

:
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Proof. First, recall that A �ˇ N is strongly Morita equivalent to A �ˇ
1

Z, so their
K-groups are isomorphic. Thus, we can use the Pimsner-Voiculescu six-term exact
sequence forA�ˇ

1

Z. Since ˇ.A/ is a hereditary sub-C �-algebra ofA, we have that
A Š PA1P by Lemma 3. Moreover, as ˇ.A/ is a full subalgebra, it follows that
P is a full projection, whence A and A1 are strongly Morita equivalent. Hence,
K�.A/ Š K�.A1/. Finally, by continuity of the K-theory functor, we have the
desired result.

12.3 Purely Infinite Simple Crossed Products

In Theorem 1 we have given necessary and sufficient conditions on the endomor-
phism ˇ for the simplicity of the C �-algebra A �ˇ N. If A is a unital C �-algebra
and ˇ.1/ ¤ 1, then A�ˇ N contains a proper isometry, and if in addition A�ˇ N is
simple, we have that it is a properly infinite C �-algebra. We will see that for a broad
class of unital real rank zero C �-algebras, say A, we have that A �ˇ N turns out
to be purely infinite. Our results generalize and unify similar results given in [21]
and [10].

Recall Cuntz’s definition: a unital simple C �-algebra A is purely infinite if given
any non-zero element a in A there exist x; y in A such that xay D 1. Equivalently,
a unital simple C �-algebra is purely infinite if and only if has real rank zero and
every projection is infinite [25].

Lemma 5. Let A be a unital C �-algebra, let ˇ W A �! A be an injective
endomorphism, and suppose that does not exist any proper ideal I of A such
that ˇ.I / 
 I . Then, given any non-zero a 2 AC there exists n 2 N such that
aC ˇ.a/C � � � C ˇn.a/ is a full positive element in A.

Proof. Consider the ideal I WD span fxˇn.a/y W n 	 0; x; y 2 Ag ¤ 0. It clearly
satisfies ˇ.I / 
 I and then, by hypothesis, we have that I D A. Therefore we can
write

1 D
kX
iD1

xiˇ
ni .a/yi

where xi ; yi 2 A and ni 2 N for every i 2 f1; : : : ; kg. Then, taking n D maxifni g,
we have the desired result.

Let T .A/ be the set of tracial states of A, which is a compact space with
the �-weak topology. We say that A has strict comparison if: (i) T .A/ ¤ ;;
(ii) Whenever p 2 AqA such that 	.p/ < 	.q/ for every 	 2 T .A/, we have
that p . q. For example, every unital exact and stably finite C �-algebra that is
Z -stable has strict comparison [22, Corollary 4.10].

The following lemma is a slight modification of [21, Lemma 3.2].



12 The Structure of Stacey Crossed Products by Endomorphisms 247

Lemma 6 (cf. [21, Lemma 3.2]). Let A be a unital C �-algebra that either has
strict comparison or is purely infinite. Let ˇ W A �! A be an injective
endomorphism such that ˇ.1/ ¤ 1 and let A �ˇ N D C �.�1; V1/. If there
does not exist any proper ideal I of A such that ˇ.I / 
 I , then for every full
projection p 2 A there exist a partial isometry u 2 A and m 2 N such that
.V �1/mu�puV m1 D .V �1/mV m1 D 1.

Proof. We need to prove that there exists m 2 N such that V m1.V m1/� . p. If that
holds, then there exists a partial isometry u 2 A such that u�u D V m1.V �1/m and
uu� � p. Therefore .V �1/mu�puV m1 D .V �1/m.V m1.V �1/m/V m1 D 1, so we are
done.

Observe that if A is purely infinite then p is a properly infinite full projection.
So, we have that V1V �1 2 ApA D A. Hence, V1V �1 . p, so that m D 1 holds.

Now suppose that A has strict comparison. Then T .A/ is non-empty and
compact. So, given any k 2 N we set

˛ D inf f	.p/ W 	 2 T .A/g and �k D sup f	.V k1.V �1/k/ W 	 2 T .A/g :

Observe that, since p is full, we have that ˛ > 0. Now, we claim that there exists
n 2 N such that �n < 1. Indeed, it is enough to prove that there exists n 2 N such
that 1 � V n1.V �1/n is a full projection. Let us construct the ideal

I WD span fx.V l1.V �1/l � V lC11 .V �1/lC1/y W l 	 0; x; y 2 Ag ¤ 0 :

It is clear that ˇ.I / 
 I . Therefore, by Lemma 5, there exists n 2 N such that

.1 � V1V �1/C � � � C ˇn�1.1 � V1V �1/ D .1 � V1V �1/C � � � C .V n�11 .V �1/n�1

�V n1.V �1/n/ D 1 � V n1.V �1/n ;

is a full projection. Therefore �n < 1. By the same argument as in the proof of [21,
Lemma 3.2], we have that 	.V nl1 .V �1/nl / � �ln for every l 2 N. Then, there exists
l 2 N such that 	.V nl1 .V �1/nl / � �ln < ˛ � 	.p/. Since A has strict comparison,
we have that V nl1 .V �1/nl . p.

Lemma 7. Let A be a C �-algebra of real rank zero, and let ˇ W A ! A be an
extendible injective endomorphism with ˇ.A/ being hereditary such that T.ˇ/ D T.
Then, given any a 2 A� and any B hereditary sub-C �-algebra of A we have that

inffkpaˇ.p/k W p is a non-zero projection of Bg D 0 :

Proof. Let a 2 AC and let B be a hereditary sub-C �-algebra of A. Given " > 0,
by Theorem 1 there exists x 2 BC with kxk D 1 such that kxaˇ.x/k < "=2.
Given ı > 0, let fı W Œ0; 1� �! Œ0; 1� be such that f .t/ D 1 for every t 2 Œ1 �
ı=2; 1� and such that jfı.t/ � t j < ı for every 0 � t � 1. Take ı > 0 such that
kfı.x/aˇ.fı.x//k < ". Let C D fy 2 B W fı.x/y D yfı.x/ D yg ¤ 0. Notice
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thatC is a hereditary sub-C �-algebra ofB . SinceC has real rank zero, there exists a
non-zero projection p 2 C , and by construction pfı.x/ D fı.x/p D p. Therefore

kpaˇ.p/k D kpfı.x/aˇ.fı.x/p/k � kfı.x/aˇ.fı.x//k < " :

Corollary 2. Let A be a C �-algebra of real rank zero, and let ˇ W A �! A be an
extendible injective endomorphism with ˇ.A/ being hereditary such thatT.ˇn/ D T

for every n > 0. Then, given any " > 0, a1; : : : ; ak 2 A� and n1; : : : ; nk 2 N and a
projection p 2 A, there exists a projection q 2 pAp such that

kqaiˇni .q/k < " for every i 2 f1; : : : ; kg :

Let A be a C �-algebra. Then, we define the following technical condition:

.�/ Given any n 2 N and p 2 A there exist p1; : : : ; pn 2 A non-zero pairwise

orthogonal subprojections of p with p 2 ApiA for all i 2 f1; : : : ; ng :

For example, every Z -stable or purely infinite C �-algebra of real rank zero
satisfies condition .�/ [19, Theorem 5.8].

Proposition 3. Let A be a unital C �-algebra of real rank zero satisfying .�/, let
ˇ W A �! A be an injective endomorphism such that ˇ.A/ is a hereditary sub-C �-
algebra of A, and let A�ˇ N D C �.�1; V1/. If does not exist any proper ideal I of
A such that ˇ.I / 
 I , then given any non-zero projection p 2 A there exist a full
projection q 2 A and c 2 A �ˇ N such that q D cpc�.
Proof. By Lemma 5 there exists n 2 N such that p C ˇ.p/ C � � � C ˇn.p/ is a
full positive element of A. Since A satisfies .�/ there exist non-zero orthogonal
projections p0; : : : ; pn 2 A such that p0 C � � � C pn � p with p 2 ApiA for all
i 2 f0; : : : ; ng. Observe that p C ˇ.p/C � � � C ˇn.p/ lies in the ideal generated by
q0 WD p0 C ˇ.p1/C � � � C ˇn.pn/, so q0 is also a full positive element of A. Denote
p0i WD ˇi .pi / for every i 2 f0; : : : ; ng. Now we are going to use induction on n to
construct a projection q 2 A such that p00C� � �Cp0n 2 AqA. The case n D 0 is clear.
Now, suppose that there exists a projection qk�1 such that p00C� � �Cp0k�1 2 Aqk�1A.

Using the Riesz decomposition of V.A/ [26] we have p0k � ak ˚ bk such that
ak . qk�1 and bk . 1 � qk�1. Let vk be the partial isometry such that v�k vk � p0k
and vkv�k � 1� qk�1. If we define the projection qk WD qk�1 C vkv�k , then we have
that p01 C � � � C p0k 2 AqkA. Therefore the projection q WD qn is full. If we define
c WD p0 C v1V1p1 C � � � C vnV n1pn, then we have that

cpc� D cc� D p0 C v1ˇ.p1/v�1 C � � � C vnˇn.pn/v�n D q ;

as desired.
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Theorem 2. Let A be a unital C �-algebra of real rank zero satisfying .�/ that
has strict comparison, let ˇ W A �! A be an injective endomorphism such that
ˇ.1/ ¤ 1 and ˇ.A/ is a hereditary sub-C �-algebra of A. If A �ˇ N is simple and
ˇ.1/ is a full projection of A, then A �ˇ N is purely infinite simple C �-algebra.

Proof. It is enough to prove that given a positive element x 2 A �ˇ N there exist
a; b 2 A �ˇ N such that axb D 1. Let E W A �ˇ N �! A be the canonical faithful
conditional expectation. So, 0 ¤ E.x/ D c 2 AC. Then, for kck > " > 0 we have
that the hereditary sub-C �-algebra .c � "/CA.c � "/C 
 c1=2Ac1=2 has real rank
zero. Hence, there exists a non-zero projection p D c1=2yc1=2 2 c1=2Ac1=2. Then,
q D y1=2cy1=2 is a projection, and E.y1=2xy1=2/ D y1=2cy1=2 D q. Thus, we can
assume that E.x/ D q is a non-zero projection. Given 1=2 > " > 0, there exists
x0 D .V �/md�m C � � � C q C � � � C dmV m, with dj 2 AC for every j , such that
kx � x0k < ". By Corollary 1, Theorem 1 and Corollary 2, there exists a non-zero
projection p 2 qAq such that

kpdiˇi .p/k < "=2m and kˇi .p/d�ipk < "=2m

for every i 2 f1; : : : ; mg. Therefore

kpxp � pk � kpxp � px0pk C kpx0p � pk � "C " < 1 :

Then, pxp is invertible in p.A �ˇ N/p, whence there exists y 2 p.A �ˇ N/p

such that ypxp D p. Since we are assuming that A �ˇ N is simple and ˇ.1/ is a
full projection, [23, Theorem 4.1] implies that there are no non-trivial ideals I of
A such that ˇ.I / 
 I . Thus, by Proposition 3, there exist c 2 A �ˇ N and a full
projection q 2 A such that cpc� D q.

By Lemma 6, there exist m 2 N and a partial isometry u 2 A with the property
that .V �1/mu�quV m1 D 1 and therefore

.V �1/mu�.cypxpc�/uV m1 D .V �1/mu�cpc�uV m1 D .V �1/mu�quV m1 D 1 :

Thus, if we set a WD .V �1/mu�cyp and b WD pc�uV m1 we have axb D 1, as desired.

When A is a purely infinite C �-algebra, we generalize the result of [10].

Corollary 3. Let A be a unital purely infinite C �-algebra of real rank zero, let
ˇ W A �! A be an injective endomorphism such that ˇ.1/ ¤ 1 is a full projection
and ˇ.A/ is a hereditary sub-C �-algebra of A. Then A �ˇ N is a simple purely
infinite C �-algebra if and only if A �ˇ N is simple.

Proof. The proof works in the same way as that of Theorem 2, but keeping in mind
that Lemma 6 and condition .�/ are also satisfied for purely infinite C �-algebras.

Example 1. This is a generalization of Cuntz’s construction of the algebras On [5].
Let Um be them1 UHF algebra

N1
nD1 Mm.C/, and let B D Um˚ � � �˚Um be the

direct sum of n copies of Um, that is a nuclear unital C �-algebra of real rank zero
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absorbing Z , and hence has strict comparison and satisfies condition .�/. Let us
consider the endomorphism ˇ W B �! B given by ˇ.x1; : : : ; xn/ D .P1˝x2; P2˝
x3 � � � ; Pn ˝ x1/ for every .x1; : : : ; xn/ 2 B , where P1; � � � ; Pn 2 Mm.C/ are rank
1 projections. Hence, ˇ is injective. Observe that ˇ.1/ ¤ 1 is a full projection of B .
It is clear that B is ˇ-simple and ˇk is outer for any k > 0, since B is a unital finite
C �-algebra. Hence,B�ˇN is simple by Theorem 1, and thus applying Theorem 2 it
is also a purely infinite C �-algebra; in particular it is a Kirchberg algebra. Now, we
use the modification of the Pimsner-Voiculescu six-term exact given in Lemma 4,

K0.B/
Id�K0.ˇ/

�� K0.B/ �� K0.B �ˇ N/

��
K1.B �ˇ N/

��

K1.B/�� K1.B/
Id�K1.ˇ/
��

Notice that the induced map K0.ˇ/ W ZŒ1=m�n �! ZŒ1=m�n is given by

K0.ˇ/.x1; : : : ; xn/ D .x2=m; : : : ; xn=m; x1=m/ ;

for every .x1; : : : ; xn/ 2 ZŒ1=m�n. Then, we can easily compute K0.B �ˇ
N/ D Z=.mn � 1/Z and K1.B �ˇ N/ D 0. Hence, using the Kirchberg-Phillips
classification theorems [11, 20], we conclude that B �ˇ N is stably isomorphic to
the Cuntz algebra Omn .
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Chapter 13
Quasi-symmetric Group Algebras
and C �-Completions of Hecke Algebras

Rui Palma

Abstract We show that for a Hecke pair .G; � / theC �-completionsC �.L1.G; � //
and pC �.G/p of its Hecke algebra coincide whenever the group algebra L1.G/
satisfies a spectral property which we call “quasi-symmetry”, a property that is
satisfied by all Hermitian groups and all groups with subexponential growth. We
generalize in this way a result of Kaliszewski et al. (Proc Edinb Math Soc (2)
51(3):657–695, 2008). Combining this result with our earlier results in (Palma,
J Funct Anal 264:2704–2731, 2013) and a theorem of Tzanev (J Oper Theory
50(1):169–178, 2003) we establish that the full Hecke C �-algebra exists and
coincides with the reduced one for several classes of Hecke pairs, particularly all
Hecke pairs .G; � / where G is a nilpotent group. As a consequence, the category
equivalence studied by Hall (Hecke C �-algebras. Ph.D. thesis, The Pennsylvania
State University, 1999) holds for all such Hecke pairs. We also show that the
completions C �.L1.G; � // and pC �.G/p do not always coincide, with the Hecke
pair .SL2.Qq/; SL2.Zq// providing one such example.
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13.1 Introduction

A Hecke pair .G; � / consists of a group G and a subgroup � 
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left cosets. Examples of Hecke subgroups include finite subgroups, finite-index
subgroups and normal subgroups. It is many times insightful to think of Hecke
subgroups as subgroups which are “almost normal”. The Hecke algebra H .G; � /

of a Hecke pair .G; � / is a �-algebra of complex-valued functions over the set
of double cosets � nG=� , with suitable convolution product and involution. It
generalizes the notion of the group algebra C.G=� / of the quotient group when
� is a normal subgroup.

A natural example of a Hecke pair .G; � / is that of a locally compact totally
disconnected group G and a compact open subgroup � . These type of examples
are, in some sense, the general case, since we can always reduce to this case
via a construction called the Schlichting completion: given a Hecke pair .G; � /
we can associate to it a new Hecke pair .G; � / where G is locally compact
totally disconnected, � is compact and open and the corresponding Hecke algebras
H .G; � / and H .G; � / are canonically isomorphic.

For operator algebraists the interest in the subject of Hecke algebras was largely
raised by the work of Bost and Connes [2] on phase transitions in number theory and
their work has led several authors to study C �-algebras which arise as completions
of Hecke algebras. There are several canonical C �-completions of a Hecke algebra
H .G; � / which one can consider (see [17] and [11]): the enveloping C �-algebra
of H .G; � /, denoted by C �.G; � /; the enveloping C �-algebra of the Banach
�-algebra L1.G; � /, denoted by C �.L1.G; � //; the canonical corner pC �.G/p,
where p is the characteristic function of � ; and C �r .G; � /, which is the C �-algebra
generated by the left regular representation of H .G; � /. The question of when does
C �.G; � / exist and when do some of these completions coincide has been studied
by several authors ([2, 6, 11, 14, 17], to name a few).

An important question raised by Hall [6] where C �-completions of Hecke
algebras came to play an important role was if for a Hecke pair .G; � / there is
a correspondence between unitary representations of G generated by the � -fixed
vectors and nondegenerate �-representations of H .G; � /, analogous to the known
correspondence between representations of a group and of its group algebra. When-
ever such a correspondence holds we say that .G; � / satisfies Hall’s equivalence.
It is known that Hall’s equivalence does not hold in general [6], and in fact a
theorem of Kaliszewski et al. [11] shows that Hall’s equivalence holds precisely
when C �.G; � / exists and C �.G; � / Š C �.L1.G; � // Š pC �.G/p, which has
been shown to be the case for several classes of Hecke pairs.

The primary goal of this article is to give a sufficient condition for the
isomorphism C �.L1.G; � // Š pC �.G/p to hold and to combine this result with
the results of [14] in order to establish Hall’s equivalence for several classes of
Hecke pairs, including all Hecke pairs .G; � / where G is a nilpotent group. We
will also show that the two C �-completions C �.L1.G; � // and pC �.G/p are
in general different, with .SL2.Qq/; SL2.Zq// providing an example for which
C �.L1.G; � // © pC �.G/p.

The problem of deciding for which Hecke pairs the completions C �.L1.G; � //
andpC �.G/p coincide is partially understood. Several properties of the pair .G; � /
are known to force these two completions to coincide, and in this regard we recall
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a result by Kaliszewski et al. [11] which states that C �.L1.G; � // Š pC �.G/p
whenever the Schlichting completion G is a Hermitian group (meaning that every
self-adjoint element f 2 L1.G/ has real spectrum). We will generalize their
result in Sect. 13.3 in a way that covers also all Hecke pairs for which G or G
has subexponential growth. For that we introduce the notion of a quasi-symmetric
group algebra: a locally compact group G will be said to have a quasi-symmetric
group algebra if for any f 2 Cc.G/ the spectrum of f � � f relative to L1.G/
is in R

C
0 . It follows directly from the Shirali-Ford theorem [16] that Hermitian

groups have a quasi-symmetric group algebra and it is a consequence of the work
of Hulanicki [7,8] that this is also the case for groups of subexponential growth. We
show that C �.L1.G; � // Š pC �.G/p whenever the Schlichting completionG has
a quasi-symmetric group algebra.

Besides strictly generalizing Kaliszewski, Landstad and Quigg’s result, as there
are groups of subexponential growth which are not Hermitian, our result is easier
to apply in practice since many times we can use it without any knowledge about
the Schlichting completionG, which is often hard to compute. In fact we will show
that if G has subexponential growth then so does G, which means that knowledge
about the original groupG is sufficient for applying our result. The relation between
Hermitianness and subexponential growth will be discussed in Sect. 13.4.

By combining our result on quasi-symmetric group algebras with the results of
[14] and also a theorem of Tzanev [17], we are able to establish in Sect. 13.5 that
C �.G; � / exists and C �.G; � / Š C �.L1.G; � // Š pC �.G/p Š C �r .G; � /
for several classes of Hecke pairs, including all Hecke pairs .G; � / where G is a
nilpotent group. Consequently, it follows that Hall’s equivalence holds for all such
classes of Hecke pairs.

It is natural to ask if there are examples of Hecke pairs for which we have
C �.L1.G; � // © pC �.G/p. According to [11], Tzanev claims in private commu-
nication with the authors that the Hecke pair .PSL3.Qq/; PSL3.Zq// is such that
C �.L1.G; � // © pC �.G/p, but no proof has been published and no other example
seems to be known, as far as we know. We prove in Sect. 13.6 thatC �.L1.G; � // ©
pC �.G/p for the Hecke pair .PSL2.Qq/; PSL2.Zq//, as suggested in [11], but
following a different approach which does not use the representation theory of
PSL2.Qq/.

The author is thankful to his adviser Nadia Larsen for the very helpful discus-
sions, suggestions and comments during the elaboration of this work.

13.2 Preliminaries

13.2.1 Hecke Pairs and Hecke Algebras

We will mostly follow [12] and [11] in what regards Hecke pairs and Hecke algebras
and refer to these references for more details.
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Definition 1. LetG be a group and� a subgroup. The pair .G; � / is called a Hecke
pair if every double coset �g� is the union of finitely many right (and left) cosets.
In this case, � will be called a Hecke subgroup of G.

Given a Hecke pair .G; � / we will denote by L and R, respectively, the left and
right coset counting functions, i.e.

L.g/ WD j�g� =� j <1 and R.g/ WD j� n�g� j <1 :

We recall that L and R are � -biinvariant functions which satisfy L.g/ D R.g�1/
for all g 2 G. Moreover, the function
 W G ! QC given by


.g/ WD L.g/

R.g/
;

is a group homomorphism, usually called the modular function of .G; � /.

Definition 2. The Hecke algebra H .G; � / is the �-algebra of finitely supported
C-valued functions on the double coset space � nG=� with the product and
involution defined by

.f1 � f2/.� g� / WD
X

h� 2G=�
f1.� h� /f2.� h

�1g� / ;

f �.� g� / WD 
.g�1/f .� g�1� / :

Remark 1. Some authors, including Krieg [12], do not include the factor 
 in the
involution. Here we adopt the convention of [11] in doing so, as it gives rise to a
more naturalL1-norm. We note, nevertheless, that there is no loss (or gain) in doing
so, because these two different involutions give rise to �-isomorphic Hecke algebras.

Given a Hecke pair .G; � /, the subgroup R� WD T
g2G g� g�1 is a normal

subgroup of G contained in � . A Hecke pair .G; � / is called reduced if R� D feg.
As it is known, the pair .Gr ; �r/ WD .G=R� ; � =R� / is a reduced Hecke pair and
the Hecke algebras H .G; � / Š H .Gr ; �r / are canonically isomorphic. For this
reason the pair .Gr ; �r/ is called the reduction of .G; � /, and the isomorphism of
the corresponding Hecke algebras shows that it is enough to consider reduced Hecke
pairs, a convention used by several authors. We will not use this convention however,
since we aim at achieving general results based on properties of the original Hecke
pair .G; � /, and not its reduction.

A natural example of a Hecke pair .G; � / is given by a totally disconnected
locally compact groupG and a compact open subgroup � . It is known that this type
of examples are, in some sense, the general case: there is a canonical construction
which associates to a given reduced Hecke pair .G; � / a new Hecke pair .G; � /
with the following properties:
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1. G is a totally disconnected locally compact group;
2. � is a compact open subgroup;
3. The pair .G; � / is reduced;
4. There is a canonical embedding � W G ! G such that �.G/ is dense in G and
�.� / is dense in � . Moreover, ��1.� / D � .

The pair .G; � / satisfies a well-known uniqueness property and is called the
Schlichting completion of .G; � /. For the details of this construction the reader is
referred to [17] and [11] (see also [4] for a slightly different approach). We shall
make a quick review of some known facts and we refer to the previous references
for all the details.

Henceforward we will not write explicitly the canonical homomorphism � ,
and we will instead see G as a dense subgroup of G, identified with the image
�.G/. The Schlichting completion .G; � / of a reduced Hecke pair .G; � /
satisfies the following additional property:

5. There are canonical bijectionsG=� ! G=� and � nG=� ! � nG=� given by
g� ! g� and �g� ! � g� , respectively.

If a Hecke pair .G; � / is not reduced, its Schlichting completion .G; � / is
defined as the completion .Gr ; �r / of its reduction. There is then a canonical map
with dense image G ! G which factors throughGr , and this map is an embedding
if and only if .G; � / is reduced, i.e. G Š Gr .

Following [11], we consider the normalized Haar measure � on G (so that
�.� / D 1) and define the Banach �-algebra L1.G/ with the usual convolution
product and involution. We denote by p the characteristic function of � , i.e.
p WD �� , which is a projection in Cc.G/ 
 L1.G/. Recalling [17] or [11], we
always have canonical �-isomorphisms:

H .G; � / ŠH .Gr ; �r / ŠH .G; � / Š pCc.G/p : (13.1)

The modular function 
 of a reduced Hecke pair .G; � /, defined by (13.2.1), is
simply the modular function of the groupG restricted to G.

13.2.2 L1- and C �-Completions

There are several ways of defining a L1-norm in a Hecke algebra. One approach is
to simply take the L1-norm from L1.G/, since the isomorphisms in (13.1) enables
us to see the Hecke algebra as a subalgebra of L1.G/. The completion of H .G; � /

with respect to this L1-norm is isomorphic to the corner pL1.G/p. Alternatively,
one may take the following definition:

Definition 3. The L1-norm on H .G; � /, denoted k � kL1 , is given by

kf kL1 WD
X

�g� 2� nG=�
jf .� g� /jL.g/ :
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We will denote by L1.G; � / the completion of H .G; � / under this norm.

As observed in [17] or [11], the two L1-norms described above are the same. In
fact we have canonical �-isomorphisms

L1.G; � / Š L1.G; � / Š pL1.G/p :

There are several canonical C �-completions of H .G; � /. These are:

• C �r .G; � / – Called the reduced Hecke C �-algebra, it is the completion of
H .G; � / under the C �-norm arising from the left regular representation (see
[17]).

• pC �.G/p – The corner of the full group C �-algebra C �.G/.
• C �.L1.G; � // – The enveloping C �-algebra of L1.G; � /.
• C �.G; � / – The enveloping C �-algebra (if it exists!) of H .G; � /. When it

exists, it is usually called the full Hecke C �-algebra.

The various C �-completions of H .G; � / are related in the following way,
through canonical surjective maps:

C �.G; � /Ü C �.L1.G; � // �! pC �.G/p �! C �r .G; � / :

As was pointed out by Hall in [6, Proposition 2.21], the full Hecke C �-algebra
C �.G; � / does not have to exist in general. Nevertheless, its existence has been
established for several classes of Hecke pairs (see, for example, [6, 11] or [14]).

The question of whether some of these completions are actually the same has
also been explored in the literature [2, 11, 14, 17]. We review here some of the main
results.

The question of when one has the isomorphism pC �.G/p Š C �r .G; � / was
clarified by Tzanev, in [17, Proposition 5.1], to be a matter of amenability. As
pointed out in [11], there was a mistake in Tzanev’s article (where it is assumed
without proof that C �.L1.G; � // Š pC �.G/p is always true) which carries over
to the cited Proposition 5.1. Nevertheless, Tzanev’s proof holds if one just replaces
C �.L1.G; � // with pC �.G/p, so that the correct statement of (a part of) his result
becomes:

Theorem 1 (Tzanev). pC �.G/p Š C �r .G; � / if and only if G is amenable.

A result concerning the isomorphism C �.L1.G; � // Š pC �.G/p was obtained
by Kaliszewski, Landstad and Quigg in [11, Theorem 6.14], where they showed that
this isomorphism holds when G is a Hermitian group.

In [14] we established the existence of C �.G; � / and also the isomorphism
C �.G; � / Š C �.L1.G; � // for several classes of Hecke pairs, recovering also
various results in the literature in a unified approach.

Another important result of [11] regarding the existence of C �.G; � / and the
simultaneous isomorphisms C �.G; � / Š C �.L1.G; � // Š pC �.G/p will be
discussed in the next subsection.



13 Quasi-symmetric Group Algebras and C�-Completions of Hecke Algebras 259

13.2.3 Representation Theory

As it is well-known, for any group G there is a canonical bijective correspondence
(i.e. category equivalence) between unitary representations of G and nondegenerate
�-representations of the group algebra C.G/. Hall [6] asked whether something
analogous was true for Hecke pairs, and the following definition is necessary in
order to understand Hall’s question:

Definition 4. Let G be a group and � 
 G a subgroup. A unitary representation

 W G ! U.H / is said to be generated by its � -fixed vectors if 
.G/H � D H ,
where H � D f� 2H W 
.�/� D � ; for all � 2 � g.

The question Hall posed in [6] is the following:

Question 1 (Hall’s equivalence). Let .G; � / be a Hecke pair. Is there a category
equivalence between nondegenerate �-representations of H .G; � / and unitary
representations of G generated by the � -fixed vectors?

Whenever there is an affirmative answer to this question, we shall say the Hecke
pair .G; � / satisfies Hall’s equivalence. In the work of Hall [6] and the subsequent
work of Glöckner and Willis [4], Hall’s equivalence was studied and proven to
hold under a certain form of positivity for some �-algebraic bimodules. A more
complete approach was further developed by Kaliszewski, Landstad and Quigg in
[11], where Hall’s equivalence, positivity for certain �-algebraic bimodules, and
C �-completions of Hecke algebras were all shown to be related. We briefly describe
here the approach and results of [11] and the reader is referred to this reference for
more details.

Let .G; � / be the Schlichting completion of a Hecke pair .G; � /. Following [11,
Sect. 5], we have an inclusion of two imprimitivity bimodules (in Fell’s sense):

Cc.G/pCc.G/

�
Cc.G/p

�
H .G;� /


 L1.G/pL1.G/

�
L1.G/p

�
L1.G;� /

;

where the left and right inner products, hiL and hiR, on these bimodules are given
by multiplication within L1.G/ by

hf ; giL D f � g� ; hf ; giR D f � � g :
A �-representation 
 of H .G; � / is said to be hiR-positive if


.hf ; f iR/ 	 0 ; for all f 2 Cc.G/p : (13.2)

Similarly, a �-representation 
 of L1.G; � / is said to be hiR-positive when
condition (13.2) holds for all f 2 L1.G/p.

In [11, Corollary 6.19] it is proven that, for a reduced pair .G; � /, there exists a
category equivalence between unitary representations ofG generated by the � -fixed
vectors and the hiR-positive representations of H .G; � /. This is in fact true for
non-reduced Hecke pairs .G; � / as well, as follows from the following observation:
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Proposition 1. Let .G; � / be a Hecke pair and .Gr ; �r/ its reduction. There exists
a category equivalence between unitary representations of G generated by the
� -fixed vectors and unitary representations ofGr generated by the �r -fixed vectors.

The correspondence is as follows: a representation 
 W Gr ! U.H / is mapped
to the representation 
 ı q, where q W G ! Gr is the quotient map. Its inverse map
takes a representation � W G ! U.H / to the representation Q� of Gr on the same
Hilbert space, given by Q�.Œg�/ WD �.g/.
Proof. First we observe that the assignment 
 7! 
 ı q does indeed produce a
unitary representation of G generated by the � -fixed vectors. This is obvious since
the spaces of fixed vectors H �r and H � for 
 and 
 ıq, respectively, are the same.

Secondly, for the inverse assignment, we need to check that Q� is well-defined,
which amounts to show that �.g/ D �.gh/ for any g 2 G and h 2 R� . For any
s 2 G and � 2H � we have

�.gh/�.s/� D �.g/�.s/�.s�1hs/�
D �.g/�.s/� ;

because s�1hs 2 R� 
 � . Hence, �.gh/ D �.g/ on the space 
.G/H � . Since �
is assumed to be generated by the � -fixed vectors, it follows that �.gh/ D �.g/.

It is also easy to see that Q� is generated by the �r -fixed vectors and it is clear
from the definitions that these assignments are inverse of one another.

We now have to say a few words about the intertwiners of representations,
i.e. the morphisms in the categories we are considering. It follows immediately
from the definitions that if we have an intertwiner V W H1 ! H2 between two
representations 
1 W Gr ! B.H1/ and 
2 W Gr ! B.H2/, then V itself is an
intertwiner between 
1 ı q and 
2 ı q and moreover the composition laws are
satisfied. The exact same thing happens for the assignment � ! Q�, so that we
have in fact an isomorphism of categories, and therefore, in particular, a category
equivalence. ut

In the light of Kaliszewski, Landstad and Quigg’s result, for a Hecke pair .G; � /
for which all �-representations of H .G; � / are hiR-positive, there exists a category
equivalence between unitary representations of G generated by the � -fixed vectors
and nondegenerate �-representations of H .G; � /. In other words, Hall’s equiva-
lence holds when all �-representations of H .G; � / are hiR-positive. Furthermore,
the authors of [11] show also the following relation between hiR-positivity and
C �-completions of Hecke algebras:

Theorem 2 ([11, Corollary 6.11]). Let .G; � / be a Hecke pair.

1. Every �-representation of H .G; � / is hiR-positive if and only ifC �.G; � / exists
and C �.G; � / Š C �.L1.G; � // Š pC �.G/p.

2. Every �-representation of L1.G; � / is hiR-positive if and only if C �.L1.G; � //
Š pC �.G/p.
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13.2.4 Groups of Subexponential Growth

Let G be a locally compact group with a Haar measure �. For a compact
neighbourhood V of e, the limit superior

lim sup
n!1

�.V n/
1
n (13.3)

will be called the growth rate of V . Since 0 < �.V / � �.V n/ for all n 2 N it is
clear that the growth rate of V is always greater or equal to one.

Definition 5. A locally compact group G is said to be of subexponential growth if
lim supn!1�.V n/

1
n D 1 for all compact neighbourhoods V of e. Otherwise it is

said to be of exponential growth.

The class of groups with subexponential growth is closed under taking closed
subgroups [5, Théorème I.2] and quotients [5, Théorème I.3]. We observe that even
though in [5] the author is only working with compactly generated groups, the
proofs of these results are general and hold for any locally compact group.

It is known that if G has subexponential growth as a discrete group, then it
has subexponential growth with respect to any other locally compact topology [8,
Theorem 3.1]. The following is a slight generalization of this result, and the proof
is done along similar lines:

Proposition 2. LetH be a dense subgroup of a locally compact groupH . IfH has
subexponential growth as a discrete group, thenH has subexponential growth in its
locally compact topology.

Proof. LetA 
 H be a compact neighbourhood of e. First we claim thatHA D H .
Since A is a neighbourhood of feg, there is an open set U 
 A such that e 2 U . To
show that HA D H , let g 2 H . Since H is dense in H and g.U \ U�1/ is open,
it follows that there exists h 2 H \ g.U \ U�1/. Thus, there exists s 2 U \ U�1
such that h D gs, or equivalently, g D hs�1. Since s�1 2 U \ U�1 we then have
g 2 hU , and thus g 2 hA. HenceH D HA.

From the previous observation it follows that fhAgh2H is a covering of the
compact set AA, and since A has non-empty interior there must exist a finite set
F � H such that AA 
 FA. Hence, we have An 
 F n�1A, for all n 	 2. Without
loss of generality we can assume that F contains the identity element. Now using
the fact that H has subexponential growth we obtain

lim sup
n!1

�
�
An
� 1
n � lim sup

n!1
�.F n�1A/

1
n � lim sup

n!1
jF n�1j 1n ��A� 1n D 1 :

ut
Corollary 1. Let .G; � / be a discrete Hecke pair. If G (or Gr ) has subexponential
growth, then so does G.
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Proof. If G has subexponential growth than so does any of its quotients, so in
particularGr also has subexponential growth. If Gr has subexponential growth then
so does G by Proposition 2. ut

Groups with subexponential growth are always unimodular [15, Proposi-
tion 12.5.8] and amenable [15, Sect. 12.6.18].

The class of groups with subexponential growth includes all locally nilpotent
groups and all FC�-groups [15, Theorem 12.5.17]. In particular, all abelian and all
compact groups have subexponential growth.

13.3 Quasi-symmetric Group Algebras

Given a �-algebra A and an element a 2 A we will use throughout this chapter the
notations �A.a/ to denote the spectrum of a relative to A, and RA.a/ to denote the
spectral radius of a relative to A.

Recall, for example from [15], that a �-algebra A is said to be:

• Hermitian if �A.a/ 
 R, for any self-adjoint element a D a� of A.
• Symmetric if �A.a�a/ 
 R

C
0 , for any a 2 A.

It is an easy fact that symmetry implies Hermitianness. The two properties are
equivalent for Banach �-algebras, as asserted by the Shirali-Ford theorem [16].

Recall also that a locally compact group G is called Hermitian if L1.G/ is
a Hermitian (equivalently, symmetric) Banach �-algebra. The class of Hermitian
groups satisfies some known closure properties, some of which we list below:

1. The class of Hermitian groups is closed under taking open subgroups and
quotients [15, Theorem 12.5.18].

2. Let 1 ! H ! G ! G=H ! 1 be an extension of locally compact groups. If
H is Hermitian and G=H is finite, then G is Hermitian [15, Theorem 12.5.18].

The class of groups we are going to consider in this work arises by relaxing the
condition of symmetry on the group algebra:

Definition 6. LetG be a locally compact group. We will say that the group algebra
L1.G/ is quasi-symmetric if �L1.G/.f

� � f / 
 R
C
0 for any compactly supported

continuous function f .

Clearly, Hermitian groups have a quasi-symmetric group algebra. Another
important class of groups with this property is that of groups with subexponential
growth, which comes as a consequence of the work of Hulanicki (for discrete groups
this was established in [7]):

Proposition 3. If G is a locally compact group with subexponential growth, then
L1.G/ is quasi-symmetric.
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Proof. Let � W L1.G/! B.L2.G// denote the left regular representation ofL1.G/.
Hulanicki proved in [8] that if G has subexponential growth then

RL1.G/.f / D k�.f /k ; (13.4)

for any self-adjoint continuous function f of compact support. Moreover, Barnes
showed in [1] (a result which he credited to Hulanicki [9]) that if A is a Banach
�-algebra, B 
 A a �-subalgebra and if 
 W A ! B.H / is a faithful
�-representation such that

RA.b/ D k
.b/k ;
for all self-adjoint elements b D b� in B , then �A.b/ D �B.H /.
.b// for every
b 2 B .

Considering A and B to be L1.G/ and Cc.G/ respectively, we see from (13.4)
that by taking 
 to be �we immediately get that �L1.G/.f

��f / D �B.L2.G//.�.f ��
f // D �B.L2.G//

�
�.f /��.f /

�
for any f 2 Cc.G/. Thus, since B.L2.G// is a

C �-algebra, we have that �L1.G/.f
� � f / 
 R

C
0 for f 2 Cc.G/, i.e. L1.G/ is

quasi-symmetric. ut
The following result is the main result in this section and explains the reason for

considering quasi-symmetric group algebras in the context of C �-completions of
Hecke pairs.

Theorem 3. Let .G; � / be a Hecke pair. IfG has a quasi-symmetric group algebra,
then

C �.L1.G; � // Š pC �.G/p :
In particular, there is a category equivalence between �-representations of
L1.G; � / and unitary representations of G generated by the � -fixed vectors.

Lemma 1. Let .G; � / be a Hecke pair and f 2 pL1.G/p. We have that
�pL1.G/p.f / 
 �L1.G/.f /.

Proof. Let us denote by L1.G/� the minimal unitization of L1.G/ and let 1 2
L1.G/� be its unit. Let � 2 C and suppose that f � �1 is invertible in L1.G/�. We
want to prove that f ��p is invertible in pL1.G/p. Invertibility of f ��1 inL1.G/�

means that there exist g 2 L1.G/ and ˇ 2 C such that 1 D .f � �1/.g C ˇ1/.
Hence we have

p D p.f � �1/.gC ˇ1/p D .pf � �p/.gp C ˇp/
D .fp � �p/.gp C ˇp/ D .f � �p/p.gp C ˇp/
D .f � �p/.pgp C ˇp/ :

Hence, f � �p is invertible in pL1.G/p and this finishes the proof. ut
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Proof (Theorem 3). Due to the canonical isomorphism L1.G; � / Š pL1.G/p,
it is enough to prove that C �.pL1.G/p/ Š pC �.G/p. By [11, Corollary 6.11]
we only need to show that every �-representation of pL1.G/p is hiR-positive. Let

 W pL1.G/p ! B.H / be a �-representation and f 2 L1.G/p. Let fgngn2N be a
sequence of functions in Cc.G/p such that gn ! f in L1.G/. Then, we also have
g�n � gn ! f � � f in L1.G/. It is a standard fact that

�B.H /.
.g
�
n � gn// 
 �pL1.G/p.g�n � gn/ ;

and by Lemma 1 we have �pL1.G/p.g
�
n � gn/ 
 �L1.G/.g

�
n � gn/. Moreover, since

L1.G/ is quasi-symmetric we have that �L1.G/.g
�
n � gn/ 
 R

C
0 . All these inclusions

combined give

�B.H /.
.g
�
n � gn// 
 �pL1.G/p.g�n � gn/ 
 �L1.G/.g�n � gn/ 
 R

C
0 ;

and therefore 
.g�n � gn/ is a positive operator for every n 2 N. Thus, the
limit 
.f � � f / D lim
.g�n � gn/ is also a positive operator. In other words,

.hf; f iR/ 	 0. ut

As a consequence we immediately recover Kaliszewski, Landstad and Quigg’s
result on Hermitian groups and also that C �.L1.G; � // Š pC �.G/p Š C �r .G; � /
for Hecke pairs arising from groups of subexponential growth:

Corollary 2 ([11, Theorem 6.14]). Let .G; � / be a Hecke pair. If G is Hermitian,
then C �.L1.G; � // Š pC �.G/p.

Corollary 3. Let .G; � / be a Hecke pair. If one of the groups G, Gr or G has
subexponential growth, then C �.L1.G; � // Š pC �.G/p Š C �r .G; � /.
Proof. By Corollary 1, if G or Gr has subexponential growth, then so does G in its
totally disconnected locally compact topology. Since G has subexponential growth,
we have that L1.G/ is quasi-symmetric and therefore C �.L1.G; � // Š pC �.G/p
by Theorem 3. The isomorphism pC �.G/p Š C �r .G; � / follows from Tzanev’s
theorem (Theorem 1 in the present work), due to the fact that subexponential growth
implies amenability of the groupG. ut

13.4 Further Remarks on Groups with a Quasi-symmetric
Group Algebra

The classes of Hermitian groups and groups with subexponential growth are in
general different. On one side, there are examples of Hermitian groups which do
not have subexponential growth, such as the affine group of the real line Aff.R/ WD
RÌR�, with its usual topology as a (connected) Lie group, as shown by Leptin [13].
On the other side, there are examples of groups with subexponential growth which
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are not Hermitian, such as the Fountain-Ramsay-Williamson group [3], which is the
discrete group with the presentation

˝fuj gj2N j u2j D e and uiujukuj D ujukujui 8i; j < k 2 N
˛
:

Fountain, Ramsay and Williamson showed that this group is not Hermitian despite
being locally finite (thus, having subexponential growth). Another such example
was given by Hulanicki in [10].

Using these examples we can show that the class of groups with a quasi-
symmetric group algebra is strictly larger than the union of the classes of Hermitian
groups and groups with subexponential growth. In that regard we have the following
result:

Proposition 4. Let H be a Hermitian locally compact group with exponential
growth and let L be a discrete locally finite group which is not Hermitian. The
locally compact group G WD H � L has a quasi-symmetric group algebra, but it is
neither Hermitian nor has subexponential growth.

An example of such a group is given by takingH WD Aff.R/ andL the Fountain-
Ramsay-Williamson group.

Proof. Let us first prove that G WD H � L has a quasi-symmetric group algebra.
Given a function f 2 Cc.G/, the product f � � f also has compact support, and
sinceL is discrete, the support of f ��f must lie inside some set of the formH�F ,
where F 
 L is a finite set. Since L is locally finite, F generates a finite subgroup
hF i 
 G. Now H � hF i is an open subgroup of G, so that

L1.H � hF i/ 
 L1.G/ :

The groupH �hF i is Hermitian, being a finite extension of a Hermitian group, and
therefore �L1.H
hF i/.f � � f / 
 R

C
0 . This implies that

�L1.G/.f
� � f / 
 �L1.H
hF i/.f � � f / 
 R

C
0 ;

which shows that G is quasi-symmetric.
This group is not Hermitian, because it has a quotient (L) which is not Hermitian,

and it does not have subexponential growth because it has a quotient (H ) which does
not have subexponential growth. ut

Since in the present work we are directly concerned with totally disconnected
groups (because of the Schlichting completion), it would be interesting to know if
there are examples of totally disconnected groups with a quasi-symmetric group
algebra, but which are not Hermitian nor have subexponential growth. We do
not know the answer to this question. The example considered in Proposition 4
is of course not totally disconnected since Aff.R/ is a connected group. But in
view of Proposition 4, it would suffice to answer affirmatively the following more
fundamental problem:
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Question 2. Is there any Hermitian, totally disconnected group, with exponential
growth?

As we pointed out above, there are examples of locally compact groups (even
connected ones) which are Hermitian and have exponential growth, such as Aff.R/,
but the question of whether this can happen in the totally disconnected setting is,
as far as we understand, still open. In the discrete case, Palmer [15] claims that
all examples of discrete groups which are known to be Hermitian actually have
subexponential growth (even more, polynomial growth).

On the other side, a negative answer to the above question would mean that any
Hermitian totally disconnected group necessarily has subexponential growth and
is therefore amenable, and thus would bring new evidence for the long standing
conjecture that all Hermitian groups are amenable [15], which is known to be true
in the connected case [15, Theorem 12.5.18 (e)]. In fact, a negative answer to 2
in the discrete case alone would, through the theory of extensions, imply that all
Hermitian groups with an open connected component are amenable.

The fact that we do not know of any totally disconnected group with a quasi-
symmetric group algebra which does not have subexponential growth is not a
drawback in any way. In fact, the class of groups with subexponential growth is
already very rich by itself and will be used to give meaningful examples in Hecke
C �-algebra theory and Hall’s equivalence in the next section.

13.5 Hall’s Equivalence

Combining the results of [14] on the existence of C �.G; � / and the isomorphism
C �.G; � / Š C �.L1.G; � //, with the results on this paper on groups of subexpo-
nential growth and also Tzanev’s theorem, we are able to establish that

C �.G; � / Š C �.L1.G; � // Š pC �.G/p Š C �r .G; � / ;
for several classes of Hecke pairs, including all Hecke pairs .G; � / where G is a
nilpotent group. As a consequence, [11, Corollary 6.11] (Theorem 2 in the present
work) yields that Hall’s equivalence is satisfied for all such classes of Hecke pairs.

Proposition 5. If a group G satisfies one of the following generalized nilpotency
properties:

• G is finite-by-nilpotent, or
• G is hypercentral, or
• All subgroups of G are subnormal,

then for any Hecke subgroup � 
 G we have that C �.G; � / exists and

C �.G; � / Š C �.L1.G; � // Š pC �.G/p Š C �r .G; � / :
In particular, Hall’s equivalence holds with respect to any Hecke subgroup.
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Proof. As discussed in [14, Classes 5.8, 5.9, 5.5] for every Hecke pair .G; � / where
G satisfies one of the aforementioned properties we have that the full Hecke C �-
algebra exists and C �.G; � / Š C �.L1.G; � //.

We claim that if G has one of the three properties above, it must have
subexponential growth. IfG is finite-by-nilpotent, then by definitionG is a nilpotent
extension of a finite group, and since nilpotent groups have subexponential growth,
then so does G. If G is hypercentral or all subgroups of G are subnormal, then
it is known that G is locally nilpotent and therefore must have subexponential
growth (see [7]). Consequently, by Corollary 3 we must have C �.L1.G; � // Š
pC �.G/p Š C �r .G; � /. ut

If we restrict ourselves to finite subgroups � 
 G we get a similar result for
other classes of groups:

Proposition 6. If a group G satisfies one of the following properties:

• G is an FC -group, or
• G is locally nilpotent, or
• G is locally finite,

then for any finite subgroup � 
 G we have that C �.G; � / exists and

C �.G; � / Š C �.L1.G; � // Š pC �.G/p Š C �r .G; � / :

In particular, Hall’s equivalence holds with respect to any finite subgroup.

Proof. As discussed in [14, Classes 5.10, 5.11, 5.12] for every groupG that satisfies
one of the aforementioned properties we have that, for any finite subgroup � , the
full Hecke C �-algebra exists and we have C �.G; � / Š C �.L1.G; � //. Also if G
has one of the three properties above, it must have subexponential growth (for FC -
and locally nilpotent groups see [7], and for locally finite groups it is obvious).
Consequently, by Corollary 3 we must have C �.L1.G; � // Š pC �.G/p Š
C �r .G; � /. ut
Remark 2. The results above show that Hall’s equivalence holds for any Hecke pair
.G; � / where G satisfies a certain generalized nilpotency property. An analogous
result for the class of solvable groups cannot hold. In [17, Example 3.4] Tzanev gave
an example of a Hecke pair .G; � / where G is solvable but for which C �.G; � /
does not exist, and consequently Hall’s equivalence does not hold. The example
consists of the infinite dihedral groupG WD ZÌ .Z=2Z/ together with � WD Z=2Z.

13.6 A Counter-Example

In the previous sections we have established a sufficient condition for the iso-
morphism C �.L1.G; � // Š pC �.G/p to hold, namely whenever G has a
quasi-symmetric group algebra. A natural question to ask is the following: is
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it even possible that C �.L1.G; � // © pC �.G/p? We will now show that
C �.L1.G; � // © pC �.G/p for the Hecke pair .PSL2.Qq/; PSL2.Zq//, where q
denotes a prime number and Qq, Zq denote respectively the field of q-adic numbers
and the ring of q-adic integers. It was already asked in [11, Example 11.8] if
C �.L1.G; � // © pC �.G/p for this Hecke pair and a strategy to achieve this result
was designed. Our approach is nevertheless different from the approach suggested
in [11] since we make no use of the representation theory of PSL2.Qq/.

As we remarked in the introduction, Tzanev has claimed that the Hecke pair
.PSL3.Qq/; PSL3.Zq// gives another example, but no proof has been published.

Theorem 4. Let q be a prime number and Qq and Zq denote respectively the field
of q-adic numbers and the ring of q-adic integers. For the Hecke pair .G; � / WD
.PSL2.Qq/; PSL2.Zq// we have that C �.L1.G; � // © pC �.G/p .

Proof. For ease of reading and so that no confusion arises between the prime
number q and the projection p, we will throughout this proof denote the projection
p by P . Thus, our goal is to prove that C �.L1.G; � // © PC �.G/P .

The pair .PSL2.Qq/; PSL2.Zq// coincides with its own Schlichting completion
(see [11]) and is the reduction of the pair .SL2.Qq/; SL2.Zq//. For ease of reading
we will work with the pair .SL2.Qq/; SL2.Zq// in this proof.

The structure of the Hecke algebra H .G; � / is well-known, and for convenience
we will mostly refer to Hall [6, Sect. 2.1.2.1] whenever we need to. Letting

xn WD
	
qn 0

0 q�n


;

it is known ([6, Proposition 2.9]) that every double coset � s� can be uniquely
represented as � xn� for some n 2 N.

For each 0 � k � q � 1 let us denote by yk 2 G the matrix

yk WD
	
q k

0 q�1


;

and let us take g 2 L1.G/P as the element g WD y0P C y1P C � � � C yq�1P , and
f WD P C g. We then have

f �f D .P C g/�.P C g/ D P C g�P C Pg C g�g

D P C
q�1X
kD0

Py�1k P C
q�1X
kD0

PykP C
q�1X
i;jD0

Py�1i yjP

D .q C 1/P C
q�1X
kD0

Py�1k P C
q�1X
kD0

PykP C
q�1X
i;jD0
i¤j

Py�1i yj P :
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As it is know (see for example [6, Propositions 2.10 and 2.12]), in H .G; � / the
modular function is trivial and each double coset is self-adjoint. Hence we can write

f �f D .q C 1/P C 2
q�1X
kD0

PykP C 2
q�1X
i;jD0
i<j

Py�1i yjP :

We now notice that, from [6, Proposition 2.9], we have �yk� D � x1� , and
therefore PykP D Px1P . Moreover, for 0 � i < j � q � 1, we have that

y�1i yj D
	
1 .j � i/q�1
0 1



;

and again from [6, Proposition 2.9] we conclude that Py�1i yj P D Px1P . Hence,
we get

f �f D .q C 1/ P C 2q Px1P C 2.q � 1/q
2

Px1P

D .q C 1/ P C .q2 C q/ Px1P :

It is well known that H .G; � / is commutative (see for example [6, Sect. 2.2.3.2])
and all of its characters have been explicitly described. Following [11,
Example 11.8] the characters of H .G; � / are precisely all the functions

z WH .G; � /! C such that


z.PxmP / D 1 � qz

.q C 1/.1 � z/

� z

q

�m C q � z

.q C 1/.1� z/

� 1
qz

�m
;

for a given complex number z 2 Cnf1g (the expression for 
1 is different and the
reader should check [11, Example 11.8] for the correct definition, but we will not
need it here). Kaliszewski et al. [11, Example 11.8] have also determined that the
characters 
z which extend to �-representations of L1.G; � / are precisely those
with z 2 Œ�q;�1=q� [ Œ1=q; q�.

We will now consider the �-representation 
�q of L1.G; � / and show that

�q.f �f / < 0. First we notice that


�q.Px1P / D 1 � q.�q/
.q C 1/.1� .�q//

��q
q

�
C q � .�q/
.q C 1/.1� .�q//

� 1

q.�q/
�

D � 1C q2
.q C 1/2 �

2

.q C 1/2q

D �q
3 C q C 2
.q C 1/2q :
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Hence we get


�q.f �f / D 
�q
�
.q C 1/ P C .q2 C q/ Px1P

�

D q C 1 � .q2 C q/q
3 C q C 2
.q C 1/2q

D q C 1 � q
3 C q C 2
q C 1 :

To prove that 
�q.f �f / < 0 is then equivalent to show that .qC1/2 < q3CqC2,
or equivalently, 0 < q3 � q2 � qC 1, for any prime number q. This follows from an
elementary calculus argument as follows: letting F.x/ D x3 � x2 � xC 1, we have
that F 00.x/ D 6x � 2 is always greater than 0 for x 	 2 (the first prime number).
Hence, F 0.x/ D 3x2 � 2x � 1 is growing for x 	 2. Since F 0.2/ > 0, it follows
that F 0.x/ is always greater than 0 for x 	 2. Thus, F.x/ is growing in this interval,
and since F.2/ > 0, it follows that F.q/ > 0, for any prime q.

Since 
�q.f �f / < 0 it then follows that not all representations of L1.G; � / are
hiR-positive and consequently C �.L1.G; � // © PC �.G/P . ut

As a particular consequence of the above theorem, it follows that PSL2.Qq/

does not have a quasi-symmetric group algebra. Also, together with Hall’s result
[6, Proposition 2.21] and the fact that PSL2.Qq/ is not amenable, we can say that
for this Hecke pair C �.G; � / does not exist and C �.L1.G; � // © pC �.G/p ©
C �r .G; � /.

As we have seen in this chapter, the isomorphism C �.L1.G; � // Š pC �.G/p
holds whenever G, Gr or G has subexponential growth. We would like know if
the same is true or if one counter-example can be found for the class of amenable
groups:

Question 3. If G is amenable does it follow that C �.L1.G; � // Š pC �.G/p?
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Chapter 14
Dynamics, Wavelets, Commutants and Transfer
Operators Satisfying Crossed Product Type
Commutation Relations

Sergei Silvestrov

Abstract An overview is provided of several recent results, constructions and
publications relating dynamical systems, wavelets, transfer operators satisfying
covariance commutation relations associated to non-invertible dynamics, defining
generalizations of crossed product operator algebras to non-invertible dynamics or
actions by semigroups, ideals in the corresponding crossed product type algebras
and commutants of elements and subsets in the algebras and in their representations.
Some open directions and open problems on this rich interplay motivated by these
constructions and results are also indicated.

Keywords Dynamical system • Crossed product algebra • Commutant • Ideal •
Wavelet representation • Quadrature mirror filter • Cantor set

Mathematics Subject Classification (2010): 42C40, 28A80, 47L65, 37A30

14.1 Introduction

The interplay between dynamical systems and operator theory and operator algebras
is now a well developed subject [13,17,22,42,72,74,86,87]. The interplay between
topological properties of the dynamical system (or more general actions of groups)
such as minimality, transitivity, freeness and others on the one hand, and properties
of ideals, subalgebras and representations of the corresponding crossed product
C �-algebra on the other hand has been a subject of intensive investigations at least
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since the 1960s. In the recent years, substantial efforts are made in establishing
broad interplay betweenC �-algebras and non-invertible dynamical systems, actions
of semigroups, equivalence relations, (semi-)groupoids, correspondences (see for
example [1,3,4,10–12,14–16,18,19,23,26–28,31,37,39–41,44,50–52,61,72,77–
79, 88], and references therein).

This interplay and its implications for operator representations of the correspond-
ing crossed product algebras, spectral and harmonic analysis, non-commutative
analysis and non-commutative geometry are fundamental for the mathematical
foundations of quantum mechanics, quantum field theory, string theory, integrable
systems, lattice models, quantization, symmetry analysis and, as it has become clear
recently, in wavelet analysis and its applications in signal and image processing
(see [11,22,48,58–60,72,74,89] and references therein). In particular, the operator
theoretic approach to wavelet theory has been extremely productive [10–12,19,43].
The connections between irreducible covariant representations, ergodic shifts on
solenoids, fixed points of transfer (or Ruelle) operators, as well as the related
investigations on interplay between decompositions or reducible representations,
centers and commutants in corresponding crossed product algebras and periodicity
and aperiodicity, freeness, minimality, transitivity, ergodicity and related properties
of the corresponding topological dynamical system, are of major importance in these
contexts.

Wavelets are functions that generate orthonormal bases under certain actions of
translation and dilation operators. They have the advantage over Fourier series that
they are better localized. More precisely, in the theory of wavelets, orthonormal
bases for L2.R/ are constructed by applying dilation and translation operators, in
a certain order, to a given vector  called the wavelet. Thus from the start, in
this construction, there are two unitary operators, the dilation operator U and the
translation operator T on L2.R/,

Uf .x/ D 1p
2
f
�x
2

�
; Tf .x/ D f .x � 1/; .x 2 R; f 2 L2.R// (14.1)

satisfying a covariance relation with the action defined by the non-invertible map
z 7! z2 on the complex plane C or on the unit circle T or on the real line R:

UT U�1 D T 2: (14.2)

Since T is a unitary operator, its spectrum is a subset of the unit circle T. Using
Borel functional calculus, one can define a representation of L1.T/ on L2.R/, by

.f / D f .T /; .f 2 L1.R//; which means in particular that 
.zn/ D T n

and for polynomials 
.
P

k akzk/ D P
k akT

k: The representation satisfies the
covariance relation:

U
.f /U�1 D 
.f .z2//; .f 2 L1.T// (14.3)
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Crossed product W �-algebras or covariant representations of crossed product
C �-algebras of functions by a group action (invertible dynamics) are defined by
such relation except that in the context of Wavelets, the dynamics (the action) on
the space of definition of the functions is not invertible, meaning that the action by
the group Z is replaced by the action of a semigroup of non-negative integers put in
correspondence with forward iterations of the acting non-invertible map. A natural
general way to include the information about the inverse iterations given by inverse
branches (pre-images) into such crossed-product algebra structure is to attach to it
the transfer operators averaging in some ways the values of the functions over all the
pre-images of the acting non-invertible map. This turns out to be vary fruitful and
relevant for investigation of dynamics and wavelets using the operator approach, and
is also the framework used in the Exel’s crossed product algebras by a semigroup.

In the paradigmatic classical example from wavelet analysis described above a
wavelet is a function  2 L2.R/ with the property that

˚
2j=2 .2j � �k/ W j; k 2 Z

�
(14.4)

is an orthonormal basis for L2.R/ (see for example Daubechies’ classical book [21]
for details). Using the operatorsU and T , the family defined in (14.4) can be written
as
˚
U jT k W j; k 2 Z

�
: The main general technique of constructing wavelets

is by a multiresolution analysis (multiresolution). A multiresolution analysis or
multiresolution is a sequence .Vn/n2Z of closed subspaces of L2.R/ with the
following properties:

1. Vn 
 VnC1 for all n 2 Z;
2. UVnC1 D Vn for all n 2 Z;
3. [nVn is dense in L2.R/ and \nVn D f0g;
4. There exists a function ' 2 L2.R/ called the scaling function, such that fT k' W
k 2 Zg is an orthonormal basis for V0.

The subspaces Vn correspond to various resolution levels. Once a multiresolution
analysis is given, the wavelet can be found in the detail space:W0 WD V1 � V0. It is
a function  with the property that fT k W k 2 Zg is an orthonormal basis for W0.
The multiresolution is constructed easily from the scaling function '. Since U' is
in V�1 
 V0, it can be written as a combination of translates of '. This gives the
scaling equation for the function ':

U' D
X
k2Z

akT
k': (14.5)

Starting from a quadrature-mirror-filter (QMF) m0 2 L1.T/ that satisfies the
QMF-condition

1

2

X
w2Dz

jm0.w/j2 D 1; .z 2 T/; (14.6)
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the low-pass condition m0.1/ D
p
2, and perhaps some regularity (Lipschitz, etc.),

the scaling function ' associated to the QMFm0 is constructed by an infinite product
formula for its Fourier transform

O'.x/ D
1Y
nD1

m0

�
e2
i

x
2n
�

p
2

;

where Of denotes the Fourier transform Of .x/ D R
R
f .t/e�2
itx dt , .x 2 R/, of the

function f .
The scaling function satisfies the scaling equation, which in terms of the

representation 
 can be written as

U' D 
.m0/'; (14.7)

with the low-pass filter m0.z/ DPk2Z akzk , .z 2 T/, which is the starting point for
the construction of the multiresolution analysis. A multiresolution associated to ' is
generated as a sequence of subspaces Vn, n 2 Z:

V0 D spanfT k' j k 2 Zg D spanf
.f /' j f 2 L1.T/g;

Vn D U�nV0; .n 2 Z/

satisfying the scaling equation Vn 
 VnC1 and

[
n2Z

Vn D L2.R/: (14.8)

Withm0 carefully chosen, one can obtain orthonormal scaling function ', i.e., such
that its translates are orthogonal

˝
T k' ; T l'

˛ D ıkl for k; l 2 Z. Equivalently

h
.f /' ; 'i D
Z
T

f d�; .f 2 L1.T//: (14.9)

Given the orthonormal scaling function and the multiresolution, the wavelet is
obtained by considering the detail spaceW0 WD V1�V0. Analyzing the multiplicity
of the representation 
 on the spaces V0 and V1, one can see that there is a
function  such that fT k j k 2 Zg is an orthonormal basis for W0. The set
fUnT k j n; k 2 Zg is an orthonormal basis for L2.R/, and thus  is a wavelet.
Since one is aiming at scaling functions whose translates are orthogonal, a necessary
condition on m0 is the quadrature mirror filter (QMF) condition (14.6).

Wavelet representations were introduced in [24, 31, 49] in an attempt to apply
the multiresolution techniques of wavelet theory [21] to a larger class of problems
where self-similarity, or refinement is the central phenomenon. They were used to
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construct wavelet bases and multiresolutions on fractal measures and Cantor sets
[29] or on solenoids [25]. Wavelet representations can be defined axiomatically as
follows. LetX be a compact metric space and let r W X ! X be a Borel measurable
function which is onto and finite-to-one, i.e., 0 < #r�1.x/ < 1 for all x 2 X . Let
� be a strongly invariant measure on X , i.e.

Z
X

f d� D
Z
X

1

#r�1.x/
X
r.y/Dx

f .y/ d�.x/; .f 2 L1.X// (14.10)

Let m0 2 L1.X/ be a QMF filter, i.e.,

1

#r�1.x/
X
r.y/Dx

jm0.y/j2 D 1 for �-a.e. x 2 X (14.11)

Theorem 1 ([31]). There exists a Hilbert space H , a unitary operatorU on H , a
representation 
 of L1.X/ on H and an element ' of H such that

1. (Covariance) U
.f /U�1 D 
.f ı r/ for all f 2 L1.X/.
2. (Scaling equation) U' D 
.m0/'

3. (Orthogonality) h
.f /' ; 'i D R f d� for all f 2 L1.X/.
4. (Density) fU�n
.f /' j n 2 N; f 2 L1.X/g is dense in H .

Moreover they are unique up to isomorphism.

Definition 2. The quadruple .H ; U; 
; '/ in Theorem 1 is called the wavelet
representation associated to m0.

The issues of reducibility, irreducibility and decompositions of wavelet repre-
sentations are central for analysis and constructions of multiresolutions, wavelets,
bases, corresponding harmonic analysis and their applications. The commutant of
representation plays important role in these contexts. The paradigmatic classical
wavelet representation 
 on L2.R/, defined via Borel functional calculus by the
dilation and translation operators described above, is associated to the map r.z/ D z2

on T. The measure � is the Haar measure on the circle, andm0 can be any low-pass
QMF filter which produces an orthogonal scaling function (see [21]). For example,
the Haar filter m0.z/ D .1 C z/=

p
2 produces the Haar scaling function '. This

representation is reducible. The commutant was computed in [43] and the direct
integral decomposition was presented in [57]. Some low-pass filters, such as the
stretched Haar filter m0.z/ D .1 C z3/=

p
2 give rise to non-orthogonal scaling

functions. In this case super-wavelets appear, and the wavelet representation is
realized on a direct sum of finitely many copies ofL2.R/. This representation is also
reducible and its direct integral decomposition is similar to the one for L2.R/ (see
[9,25]). For the QMF filter m0 D 1 the representation can be realized on a solenoid
and in this case it is irreducible [25]. The result holds even for more general maps
r , if they are ergodic (see [33]).
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The general theory of the decomposition of wavelet representations into irre-
ducible components was given in [25], but there is a large class of examples where
it is not known whether these representations are irreducible or not.

The wavelet representation associated to the map r.z/ D z3 on the unit circle T

with the Haar measure � and the QMF filter m0.z/ D .1 C z2/=
p
2 is strongly

connected to the middle-third Cantor set C (see [30]). This representation is
reducible [34]. A wavelet representation whose scaling function is the Sierpinski
gasket is constructed in [20] by d’Andrea, Merrill and Packer. They also present
some numerical experiments showing how this multiresolution behaves under the
usual wavelet compression algorithm. In [8, 55, 56] the wavelet representations are
given a more operator theoretic flavor. A groupoid approach is presented in [45].
General multiresolution theories are considered in [5–8].

14.2 Wavelet Representations, Solenoids
and Symbolic Dynamics

Wavelet representations can be realized on the solenoid associated to the underlying
dynamics [31], that is in terms of the symbolic dynamics of the orbit space. The
solenoid associated to the map r is defined as the set of all inverse iteration paths
(backward orbits) for the dynamical system generated by r :

X1 WD
˚
.x0; x1; : : : / 2 XN j r.xnC1/ D xn for all n 	 0� (14.12)

also sometimes being convenient to view as the forward orbits of the iterated
function system generated by the pre-image maps (inverse maps) of r . Given the
map r W X 7! X , the map r1 W X1 ! X1 defined by

r1.x0; x1; : : : / D .r.x0/; x0; x1; : : : / for all .x0; x1; : : : / 2 X1 (14.13)

is a measurable automorphism on X1 with respect to the �-algebra generated by
cylinder sets. Let c.x/ WD #r�1.r.x// and W.x/ D jm0.x/j2=c.x/ for all x 2 X .
Then

X
r.y/Dx

W.y/ D 1; .x 2 X/; (14.14)

and W.y/ can be interpreted as the transition probability from x to one of the roots
y of the equation x D r.y/ (pre-images of x under r). The path measure Px on the
fibers ˝x WD f.x0; x1; : : : / 2 X1 j x0 D xg with x 2 X , defined on cylinder sets
for any z1; : : : ; zn 2 X by

Px.f.xn/n�0 2 ˝x j x1 D z1; : : : ; xn D zng/ D W.z1/ : : : W.zn/; (14.15)
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can be interpreted as the probability of the random walk to go from x to zn through
the points x1 D z1; : : : ; xn D zn, and defines the measure �1 on X1 via the
condition

Z
f d�1 D

Z
X

Z
˝x

f .x; x1; : : : / dPx.x; x1; : : : / d�.x/ (14.16)

for bounded measurable functions on X1. Consider now the Hilbert space H WD
L2.X1; �1/. Let �m.x0; x1; : : : / D xm for m 	 0 be the projection map �m W
X1 ! X onto the mth coordinate. Then in particular �0 W X1 ! X is the
projection map �0.x0; x1; : : : / D x0 onto the initial 0th coordinate (x0-coordinate)
and the relation between the maps r; r1; �0 is described by the commutative diagram

X1
r
1! X1

�0 # # �0
X

r! X

; �0 ı r1 D r ı �0

meaning that the projection �0 is an intertwining map for the maps r and r1. Define
the operator

U� D .m0 ı �0/ � ı r1; .� 2 L2.X1; �1// (14.17)

and the representation of L1.X/ on H


.f /� D .f ı �0/ �; .f 2 L1.X/; � 2 L2.X1; �1// (14.18)

and let ' D 1 be the constant function 1 on X1. If m0 is non-singular, i.e., �.fx 2
X jm0.x/ D 0g/ D 0, then the data .H ; U; 
; '/ forms the wavelet representation
associated to m0 (see [31]).

14.3 Commutants and Reducibility of Wavelet
Representations and Fixed Points
of the Transfer Operators

Irreducibility and reducibility of wavelet representations as well as decomposition
theorems (generalized spectral theorems) involve the study of the commutant of the
representation. There are actually several equivalent ways to formulate the problem
of reducibility or irreducibility of the wavelet representations yielding different
approaches and insights. The commutant of the wavelet representations, i.e., the set
of operators that commute with both the “dilation” operatorU and the “translation”
operators 
.f /, has a simple description, and the operators in the commutant are
in one-to-one correspondence with bounded fixed points of the transfer operator.
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The commutant of the classical wavelet representation on L2.R/ was computed
in [19]. The commutant for other choices of filters, such as m0 D 1 or for the
wavelet representation associated to the Cantor set and connection to reducibility
or irreducibility of wavelet representations have been considered for example in
[33]. Some of the results pertaining to irreducibility and reducibility of the wavelet
representations and commutant are presented in the next several theorems.

Theorem 3 ([31]). Suppose m0 is non-singular. Then there is a one-to-one corre-
spondence between the following data:

1. Operators S in the commutant of fU;
g.
2. Cocycles, i.e., functions f 2 L1.X1; �1/ such that f ı r1 D f , �1-a.e.
3. Harmonic functions h 2 L1.X/ for the transfer operator Rm0 , i.e., Rm0h D h,

where

Rm0f .x/ D
1

#r�1.x/
X
r.y/Dx

jm0.y/j2f .y/:

The correspondence 1$ 2 is given by S DMf where Mf is the multiplication
operator Mf � D f �, � 2 L2.X1; �1/. The correspondence from 2 to 3 is
given by

h.x/ D
Z
˝x

f .x; x1; : : : / dPx.x; x1; : : : /:

The correspondence from 3 to 2 is given by

f .x; x1; : : : / D lim
n!1h.xn/; for �1-a.e. .x; x1; : : : / in X1:

Using Theorem 3, the following criteria for irreducibility or reducibility of the
wavelet representation has been obtained in [33].

Theorem 4 ([33]). Suppose thatm0 is non-singular. The following affirmations are
equivalent:

1. The wavelet representation is irreducible, i.e., the commutant fU;
g0 is trivial.
2. The automorphism r1 on .X1; �1/ is ergodic.
3. The only bounded measurable harmonic functions for the transfer operator Rm0

are the constants.
4. There are no non-constant fixed points of the transfer operator h 2 Lp.X;�/,

for some p > 1 with the property that

sup
n2N

Z
X

jm.n/
0 .x/j2jh.x/jp d�.x/ <1 (14.19)
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where

m
.n/
0 .x/ D m0.x/m0.r.x// : : : m0.r

n�1.x//; .x 2 X/: (14.20)

5. If ' 0 2 L2.X1; �1/, satisfies the same scaling equation as ', i.e., U' 0 D

.m0/'

0, then ' 0 is a constant multiple of '.

The following theorem, proved in [34], shows that under some mild assumptions
the wavelet representations are reducible.

Theorem 5 ([34]). Suppose r W .X;�/ ! .X;�/ is ergodic. Assume jm0j is not
constant 1 �-a.e., is non-singular, i.e., �.fx j m0.x/ D 0g/ D 0, and log jm0j2 is in
L1.X/. Then the wavelet representation .H ; U; 
; '/ is reducible.

The proof in [34] uses Jensen’s inequality, Birkhoff’s ergodic theorem, Egorov’s
theorem and Borel-Cantelli’s lemma. As an application of this theorem yields a
solution of the problem posed by Judith Packer who formulated the following
question: is the wavelet representation associated to the middle third Cantor set
described in the introduction irreducible? The answer is that this representation is
reducible [34]. Using this result about reducibility of the wavelet representation in
combination with results from [33], one can get that there are non-trivial solutions
to refinement equations and non-trivial fixed points for transfer operators for m0

satisfying the conditions in Theorem 5. For m0 as in Theorem 5 and the associated
wavelet representation .H ; U; 
; '/, there exist solutions ' 0 2 H for the scaling
equation U' 0 D 
.m0/'

0 which are not constant multiples of ', and there exist
non-constant, bounded fixed points for the transfer operator (see [34])

Rm0f .x/ D
1

#r�1.x/
X
r.y/Dx

jm0.y/j2f .y/; .f 2 L1.X/; x 2 X/:

In the case jm0j D 1 not covered by Theorem 5, the corresponding representation
can be irreducible [35].

Theorem 6. Let m0 D 1 and let .L2.X1; �1/; U; 
; '/ be the associated wavelet
representation. The following affirmations are equivalent:

1. The automorphism r1 on .X1; �1/ is ergodic.
2. The wavelet representation is irreducible.
3. The only bounded functions which are fixed points for the transfer operator R1,

i.e.,

R1h.x/ WD 1

#r�1.x/
X
r.y/Dx

h.y/ D h.x/

are the constant functions.
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4. The only L2.X;�/-functions which are fixed points for the transfer operator R1,
are the constants.

5. The endomorphism r on .X;�/ is ergodic.

The study of invariant spaces for the wavelet representation fU;
g is equivalent
to the study of the invariant sets for the dynamical system r1 on .X1; �1/. Since
the operators in the commutant of fU;
g are multiplication operatorsMg, with g 2
L1.X1; �1/ and g D gır1 (see [31]), the orthogonal projection onto a subspace
K which is invariant under U and 
.f / for all f 2 L1.X/, is an operator in the
commutant and so it corresponds to a multiplication by a characteristic function
�A, where A is an invariant set for r1, i.e., A D r�11 .A/ D r1.A/, �1-a.e., and
K D L2.A;�1/. This can be used for example to show, that under the assumptions
of Theorem 5, there are no finite-dimensional invariant subspaces for the wavelet
representation (see [35] for the proof).

In [32] a decomposition problem has been investigated for a class of unitary
representations associated with wavelet analysis, wavelet representations in a wide
framework having applications to multi-scale expansions arising in dynamical
systems theory for non-invertible endomorphisms. A direct integral decomposition
for the general wavelet representation, and a solution of a question posed by Judith
Packer have been obtained, a detailed analysis of the measures contributing to
the decomposition into irreducible representations have been performed involving
results for associated Martin boundaries, wavelet filters, random walks, as well
as classes of harmonic functions. As described previously, with measures on the
solenoid .X1; r1/, built from .X; r/ the map r1 induces unitary operators U on
Hilbert space H and representations 
 of the algebra L1.X/ such that the pair
.U; r1/, together with the corresponding representation 
 forms a crossed-product
in the sense of C �-algebras, and the traditional wavelet representations fall within
this wider framework of .H ; U; 
/ covariant crossed products.

With Qm0 D 1 and Qmn D .m0 ı �0/ � .m0 ı �0 ı r1/ : : : .m0 ı �0 ı rn�11 / for n 	 1;
and

Qmn D 1

.m0 ı �0 ı r�11 / : : : .m0 ı �0 ı rn1/
; for n < 0;

the function Qm W X1 � Z ! C� defined by Qm.x; n/ D Qmn.x/ gives
a one-cocycle for the action of Z on X1 determined by r1, and U being
an isometry yields

R
� d�1 D R j Qmnj2� ı rn1 d�1 for n 2 Z and

� 2 L2.X1; �1/: For z D .z0; z1; : : : / in X1 consider the Hilbert space
Hz WD

˚
.�n/n2Z WPn2Z j�nj2j Qmn.z/j2 <1

�
; with inner product h� ; �iHz

WDP
n2Z �n�nj Qmn.z/j2: Since m0 is non-singular, the points z 2 X1, such that one of

the functions Qmn.z/ D 0, form a set of �1-measure zero.
Define the unitary operator

Uz.�n/n2Z D .m0 ı �0 ı rn1.z/�nC1/n2Z
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and the representation 
 of L1.X/:


z.f /.�n/n2Z D .f ı �0 ı rn1.z/�n/n2Z; .f 2 L1.X//:

The representation 
z is defined for bounded functions on X , not just essentially
bounded. The �-measure zero sets will affect the individual representations 
z

but not their direct integral (see below). For �1 almost every z 2 X1, the
triples ŒHz; Uz; 
z� form an irreducible representation [32]. The proof for this fact
demonstrates the importance and application of maximal commutativity of the
canonical subalgebras in crossed products and significance of the periodic points of
the dynamics in this context. Further on, in this work, the maximal commutativity of
such canonical subalgebras for crossed product type algebras and C �-algebras and
the interplay with properties of the dynamics connected to periodic and aperiodic
points will be addressed again. Meanwhile, returning to the proof, it is a matter of
simple computations to check that Uz is unitary, 
z is a representation and that the
crossed product type covariance commutation relations Uz
z.f /U

�1
z D 
z.f ı r/

hold for all f 2 L1.X/. To see that the representation is irreducible for �1-
a.e. z, take z to be non-periodic, i.e., rn1.z/ ¤ z for all n ¤ 0. Then f
z.f / W
f 2 L1.X/g forms a maximal abelian subalgebra with cyclic vector ı0 (see [85,
Corollary III.1.3]), where ı0.n/ D 1 for n D 0, and ı0.n/ D 0 otherwise. Then,
an operator A that commutes with Uz and 
z has to be of the form 
z.g/ for some
g 2 L1.X/. SinceA commutes withUz we have
z.gır/ D Uz
z.g/U

�1
z D 
z.g/.

This implies that g is constant on frn1.z/ W n 2 Zg, so A is a multiple of the identity.
A subset F of X1 is called a fundamental domain if, up to �1-measure zero:

[
n2Z

rn1.F / D X1 and rn1.F / \ rm1.F / D ; for n ¤ m:

For any dynamical system or action the question of existence and then construction
of fundamental domains are of fundamental importance. The next general theorem,
states the existence of such fundamental domain and provides a direct integral
decomposition for general wavelet representations into irreducibles in as clean form
as is realistically feasible, in particular completely solving a question posed by
Judith Packer, see e.g., [5–8, 73].

Theorem 7 ([32]). In the hypotheses of Theorem 5, there exists a fundamental
domain F . The wavelet representation associated to m0 has the following direct
integral decomposition:

ŒH ; U; 
� D
Z ˚

F
ŒHz; Uz; 
z� d�1.z/;

where the component representations ŒHz; Uz; 
z� in the decomposition are irre-
ducible for a.e., z in F , relative to �1.
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In [32], the measures in the decomposition were studied further using p-harmonic
functions, Green function or potential functions, trees and sub-trees in the orbit
spaces of the non-invertible dynamics, regular and periodic and aperiodic points,
transition probabilities and not reversible transition processes and random walks,
Martin boundaries, Martin compactification and Martin kernels. The proof of the
theorem in [32] is rather long and elaborate and thus is beyond of the scope of this
review. What can be however mentioned here about that proof is that it in particular
indicates one possible general way to construct the fundamental domains, but this
way is not very practical and the fundamental domains obtained in such a way are
typically not the most easily describable and not the most convenient for further
analysis and computations. Thus the problem of constructing better and easier to
handle fundamental domains for wavelet representations is open and is important
for gaining further insight into the structure and properties of the corresponding
wavelet representations and wavelet bases.

14.4 Maximal Commutativity of Subalgebras, Irreducibility
of Representations and Freeness and Minimality
of Dynamical Systems

As have been demonstrated in the previous section the property of the maximal
commutativity (maximal abelianess) of the canonical commutative subalgebra in
the crossed products and their representations play pivotal role in proving that
wavelet representations, or in general representations of covariance relations and
of crossed product algebras associated to dynamical systems, are irreducible under
appropriate conditions on the dynamics closely concerned with the periodicity and
aperiodicity in the orbit space of the dynamics [32]. Such properties as ergodicity,
minimality or freeness of the dynamics (action) therefore are highly relevant in
this context. In [2, 36, 38, 53, 54, 76, 80, 86, 87, 90], it was observed that the
property of topological freeness of the dynamics for a homeomorphism, or for
more general actions of groups (i.e., reversible dynamics), is equivalent or closely
linked to the position of the algebra of continuous functions inside the crossed
product C �-algebra, namely with whether it is a maximal abelian subalgebra or
not. Moreover, in these pioneering works the property of topological freeness of
the dynamics for a homeomorphism, or for more general actions of groups (i.e.,
reversible dynamics), has been shown also closely linked with the structure of the
ideals in the corresponding crossed product C �-algebra and in particular with the
existence of non-zero intersections between ideals and the algebra of continuous
functions embedded as a C �-subalgebra into the crossed product C �-algebra. This
interplay has been considered both for the universal crossed product C �-algebra
and for the reduced crossed product C �-algebra, the later providing one of the
important insights into the significance of those properties for representations of
the crossed product. In one of the novel recent developments, envisioned by the
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present author, it has been noticed that for reversible dynamical systems and crossed
product algebras [81–83] this important interplay holds and can be applied far
beyond context of C �-algebra crossed products, in algebraic, in Banach algebraic
and in other contexts possibly with suitable modification of the corresponding
properties of the involved dynamics and of subsets of the investigated crossed
product. In particular, in these works, first steps were made into approaching this
interplay for crossed products associated with non-free dynamics, via studying in
detail the relevant commutant of the canonical commutative subalgebra when it is
not maximal commutative as well as subalgebras of the relative commutant and
properties of dual of the commutative subalgebras in the crossed product algebras
and the associated dynamics on the spectra. It has been observed first in these works
that the relative commutant has the remarkable intersection property with non-zero
two-sided ideals, i.e., it intersects any two-sided ideal non-trivially for any non-
invertible dynamics. In a series of follow up works to [81–83], this novel approach,
results and ideas have been further explored and substantially expanded, deepened
and applied in various directions, for classical crossed product C �-algebras and
Banach �-algebras associated to invertible topological dynamics in [46, 47, 84],
and for various generalizations of crossed product algebras (strongly graded rings,
crystalline graded rings, crossed product type algebras, categorial crossed product,
Ore extension rings, etc.) in [62–71].

The author feels that one result from this fast developing direction deserves
especially attention of the readers in the context of this review. This is a result
(Theorem 10) which extends the classical motivating Theorem 8 about interplay
between maximal commutativity, intersection property with two-sided ideals and
topological freeness of the dynamical system, from crossed product C �-algebras
associated with actions by Z of homeomorphisms on topological spaces to crossed
product C �-algebras by semigroup actions of the topological dynamical systems
generated by covering maps on topological spaces (a broad class containing
many non-invertible maps). Moreover, the connection to certain properties of
representations of such generalized crossed products is also introduced in this
extended result, showing again clearly the importance of maximal commutativity
for investigation of representations of generalized crossed product algebras by non-
invertible actions defined using forward action and the transfer operators. The
Theorem 10 furthermore implies that in the context of non-invertible maps and
associated to them transfer operators the freeness properties of the dynamics as well
as the intersections properties of the canonical subalgebra with two-sided ideals are
highly relevant to investigation of representations. To present this result in proper
historic context, we start by presenting the classic motivating pivotal result for
crossed product C �-algebras by Z associated to homeomorphism on topological
spaces, established in its different parts in [2,38,53,54,86,87,90], and presented in
the following clear and convenient formulation first in [87, Theorem 5.4].

Theorem 8. The following three properties are equivalent for a compact Hausdorff
space X and a homeomorphism � of X :
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1. The non-periodic points of .X; �/ are dense in X ;
2. Any non-zero closed ideal I in the crossed product C �-algebra C.X/ Ì˛ Z

satisfies I \ C.X/ ¤ f0g;
3. C.X/ is a maximal abelian C �-subalgebra of C.X/ Ì˛ Z.

Let X be a compact Hausdorff space and let T W X ! X be a covering map,
i.e., T is continuous and surjective and there exists for every x 2 X an open
neighborhood V of x such that T �1.V / is a disjoint union of open sets .U˛/˛2I
satisfying that T restricted to each U˛ is a homeomorphism from U˛ onto V . Let ˛,
L and L be the maps from C.X/ to C.X/ given by

˛.f / D f ı T;
L.f /.x/ D

X
y2T�1.x/

f .y/;

L .f / D L.1X/�1L.f /;

These are well defined maps of C.X/ into C.X/ (see [41]). The operator L is
a transfer operator for ˛. Denote ˛.L.1X// by ind.E/ and for every k 	 1 let
Ik D ind.E/˛.ind.E// � � �˛k�1.ind.E//: Since L is a transfer operator for ˛,
one can associate the C �-algebra C.X/ Ì˛;L N to the dynamical system .X; T /,
where C.X/ Ì˛;L N is the crossed-product C �-algebra associated to the triple
.C.X/; ˛;L / according to [40]. In [41] this crossed product C �-algebra has been
characterized as a universal C �-algebra generated by a copy of C.X/ and an
isometry s subject to certain relations. Since T is a covering map there exists a finite
open covering fVigtiD1 of X such that the restriction of T to each Vi is injective. Let
fvigtiD1 be a partition of unit subordinate to fVi gtiD1 and let ui D .˛.L.1X//vi /1=2:
Theorem 9 ([41, Theorem 9.2]). The C �-algebra C.X/ Ì˛;L N is the universal
C �-algebra generated by a copy of C.X/ and an isometry s subject to the
relations

1. sf D ˛.f /s,
2. s�f s D L .f /,
3. 1 DPt

iD1 ui ss�ui ,

for all f 2 C.X/.
The following representation turns out to play important role in the context of the

Theorem 10. For a compact Hausdorff space X and a covering map T W X ! X ,
let H be a Hilbert space with an orthonormal basis .ex/x2X indexed by X . For f 2
C.X/, define the bounded operatorsMf and S on H by

Mf .ex/ D f .x/ex; x 2 X;

S.ex/ D .L.1X/.x//�1=2
X

y2T�1.fxg/
ey; x 2 X:
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It can be shown [15], that there exists a representation  of C.X/ Ì˛;L N on H
such that  .f / D Mf for every f 2 C.X/ and  .s/ D S , and furthermore,
ker. /\C.X/ D f0g: This intersection property of the kernel of the representation
makes clear the relevance of this representation to the intersection properties of the
ideals with the canonical subalgebra C.X/ and thus its important appearance in
Theorem 10. The notion of topological freeness for dynamical systems generated
by a homeomorphism can in a natural way be extended to possibly non-invertible
dynamical systems [41]. The dynamical system .X; T / is said to be topological
free if for every pair of nonnegative integers .k; l/ with k ¤ l , the set fx 2 X j
T k.x/ D T l .x/g has empty interior. The following Theorem 10 is the promised
extension Theorem 8 to possibly non-invertible dynamical systems generated by
covering maps on compact Hausdorff spaces and to the corresponding crossed
product C �-algebras C.X/ Ì˛;L N.

Theorem 10 ([15]). Let X be a compact Hausdorff space, and let T W X ! X be
a covering map. Then the following are equivalent:

1. .X; T / is topological free.
2. Every nontrivial ideal of C.X/ Ì˛;L N has a nontrivial intersection with C.X/.
3. The representation  is faithful.
4. C.X/ is a maximal abelian C �-subalgebra of C.X/ Ì˛;L N.

Note, that in comparison to Theorem 8, in Theorem 10 there is added a fourth
equivalent condition of faithfulness of the representation  of C.X/ Ì˛;L N. We
refer the reader to [15] for the details on the definition of this representation. If the
spaceX is infinite, and we consider dynamical systems generated by covering maps,
then the class of topologically free systems contains the subclass of irreducible
dynamical systems, defined as follows (see [41, Proposition 11.1]). Two points
x; y 2 X are said to be trajectory-equivalent x � y (see e.g. [4]) when there
are n;m 2 N such that T n.x/ D T m.y/. A subset Y 
 X is said to be invariant
if x � y 2 Y implies that x 2 Y . It is easy to see that Y is invariant if and
only if T �1.Y / D Y . The covering map T and the dynamical system it generates
is said to be irreducible when there is no closed (equivalently open) invariant set
other than ; and X (see e.g. [4]). Notice that irreducibility is weaker than the
condition of minimality defined in [23]. In [41], it was shown that, for dynamical
systems generated by covering maps of infinite spaces, irreducibility of the system
is equivalent to simplicity of C.X/ Ì˛;L N. Equivalence of simplicity of crossed
product C �-algebras and minimality for homeomorphism dynamics is a classic
result [75]. The most easy and neat conceptually proof of this result known to
the author is via specialization of Theorem 8 to minimal dynamical systems. The
situation is similar with Theorem 10 and proofs of the described above simplicity
criterium for C.X/ Ì˛;L N. In this sense, Theorem 10 can be also viewed as the
result on not necessarily simple C �-algebras. From the point of view of the problem
of description or classification of ideals in non-simple C �-algebras, Theorem 10
provides explicit conditions on the dynamics, or conditions on the canonical
commutative subalgebra which guaranty that it intersects any ideal in a non-empty
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way, thus providing each ideal with a non-empty ideal of the canonical commutative
subalgebra which can be in its turn used for generating and describing properties and
elements in the ideal in the crossed product. This correspondence, when it exists,
is very fruitful for explicit investigation of dynamical, topological or geometrical
structure of ideals and also for investigations of representations and their kernels
for the corresponding crossed product algebras. Theorem 10 also answers the
question of when there exists ideals without the intersection property. Namely,
this happens exactly when the dynamical system generated by the covering map is
not topological free, or equivalently when the canonical commutative subalgebra
is not maximal commutative. For non-free dynamical systems investigation of
ideals as well as extensions of the parts of Theorem 10 via description of the
commutants and subalgebras of the commutants and intersection properties of the
ideals with the commutants and their subalgebras is a very interesting open problem.
Extension of such results, and actually in the first place extensions of Theorem 10
to Banach and normed algebras, and interplay with wavelet analysis via properties
of wavelet representations and multiresolutions and detailed spectral analysis of
transfer operators and harmonic functions is an open direction of high interest. The
results and examples in [32–35] on the commutants of the wavelet representations
on fractal sets and solenoids associated to non-invertible dynamics can be viewed
as contributions in this direction.
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Chapter 15
On a Counterexample to a Conjecture
by Blackadar

Adam P.W. Sørensen

Abstract Blackadar conjectured that if we have a split short-exact sequence 0 !
I ! A! C! 0 where I is semiprojective then A must be semiprojective. Eilers
and Katsura have found a counterexample to this conjecture. Presumably Blackadar
asked that the extension be split to make it more likely that semiprojectivity of I
would imply semiprojectivity of A. But oddly enough, in all the counterexamples
of Eilers and Katsura the quotient map from A to A=I Š C is split. We will show
how to modify their examples to find a non-semiprojective C �-algebra B with a
semiprojective ideal J such that B=J is the complex numbers and the quotient map
does not split.

Keywords Semiprojective C �-algebras • Pullbacks of C �-algebras • Kirchberg
algebras

Mathematics Subject Classification (2010): 46L05, 46L80, 54C56, 55P55.

15.1 Introduction

Semiprojectivity is a lifting property for C �-algebras. It was introduced in [1] in a
successful attempt to transfer some of the power of shape theory for metric spaces
to the world of C �-algebras.

Definition 1. A C �-algebraA is semiprojective if whenever we have a C �-algebra
B containing an increasing sequence of ideals J1 
 J2 
 � � � , and a
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�-homomorphism �WA! B=[kJk , we can find an n 2 N and a �-homomorphism
 WA! B=Jn such that


n;1 ı  D �;

where 
n;1WB=Jn� B=[kJk is the natural quotient map.

Pictorially, A is semiprojective if we can always fill in the dashed arrow in the
following commutative diagram:

B

��
��

B=Jn

��
��

A
�

��

 
  #

#
#

#
#

B=[kJk:

The book [10] is the canonical source for information about semiprojectivity. See
also the more recent paper [3], the beginning of which has an expository nature.

Many of the main problems about semiprojectivity are concerned with the
permanence properties of semiprojective C �-algebras. In [1], Blackadar proves that
the direct sum of two unital semiprojective C �-algebras is again semiprojective,
and that if A is unital and semiprojective then Mn.A/ is also semiprojective. These
results were later extended from unital algebras to �-unital algebras, so in particular
to all separable algebras, by Loring in [9]. The results are a little stronger, in fact we
have for separable algebras that A ˚ B is semiprojective if and only if both A and
B are, and a separable unital algebraD is semiprojective if and only if M2.D/ is. It
is still an open problem if a non-unital A must be semiprojective whenever M2.A/

is. It is true if A is commutative, see [15, Corollary 6.9].
For a long time the following conjecture by Blackadar [3, Conjecture 4.5], which

was first asked as a question by Loring in [10], was one of the main questions
concerning the permanence properties of semiprojective C �-algebras:

Conjecture 1 (Blackadar). Let

0! A! B ! C! 0

be a split exact sequence of separable C �-algebras. If A is semiprojective then so
is B .

An important partial result was obtained in [5, Theorem 6.2.1]. It was used in [5]
to show that all the so called one-dimensional non-commutative CW complexes are
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semiprojective. Enders [6] has proved a form of converse to Conjecture 1, namely
that if 0! A! B ! C! 0 is an exact sequence of separable C �-algebras with
B semiprojective then A is semiprojective.

Recently Eilers and Katsura [4] have found a counterexample to Conjecture 1:

Theorem 1 (Eilers-Katsura). There exists a split short exact sequence of separa-
ble C �-algebras

0! A! B ! C! 0

where A is semiprojective but B is not.

The techniques used by Eilers and Katsura come from the world of graph
C �-algebras, and so only leads to split short exact sequences. Their work leaves
open the question of whether there is a non-split short exact sequence 0 ! A !
B ! C ! 0 with A semiprojective and B not semiprojective. In light of Eilers
and Katsura’s result we certainly expect such a sequence to exist, and indeed, as we
shall see in Theorem 3, it does.

This note is structured as follows: In Sect. 15.2 we prove two propositions that
will be our main tools, in Sect. 15.3 we prove the main theorem.

15.2 Toolbox

We will be working with pullbacks. Given two �-homomorphisms �WA ! D,
 WB ! D, we write, by standard abuse of notation, the pullback of A and B taken
over � and  as A ˚D B . That is A ˚D B D f.a; b/ 2 A ˚ B j �.a/ D  .b/g.
The pullback is universal for �-homomorphisms into A and B that agree after
compositions with � and  . For a detailed account of the theory of pullbacks (and
pushouts) see [12].

Our first tool will let us produce new short exact sequences from old ones. In
particular, it gives us a way to alter a split short exact sequence to make it non-split.

Proposition 1. Suppose we are given two short exact sequences

0! I ! A

! C! 0; (15.1)

and

0! J ! B
�! C! 0: (15.2)

Let P be the pullback of A and B taken over 
 and �. Then the following three
sequences are short exact:
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0! I ˚ J ! P ! C! 0; (15.3)

0! I ! P ! A! 0; and; (15.4)

0! J ! P ! B ! 0: (15.5)

Moreover (15.3) is split if and only if both (15.1) and (15.2) are split.

Proof. We begin by proving that (15.4) is exact. The map from P to A is simply
projection onto the first coordinate, which is a surjection since both 
 and � are
surjections. The kernel consists of pairs .a; b/ 2 P with a D 0, that is pairs .0; b/
where �.b/ D 0. Hence the kernel is 0 ˚ I Š I . A similar argument shows that
(15.5) is exact.

We now consider (15.3). The map from P to C takes a pair .a; b/ and sends it to

.a/.D �.b//. By the surjectivity of 
 and � we see that this is indeed a surjection.
The kernel of this map is pairs .a; b/ 2 P such that 
.a/ D 0 D �.b/, which is
exactly I ˚ J .

The universal property of the pullback ensures that if (15.1) and (15.2) both split
then (15.3) splits. On the other hand if we have a splitting from C to P , then simply
composing that with the coordinate projections will show that (15.1) and (15.2) both
split.

Remark 1. In the form of a diagram we have shown that if we are given sequences
(15.1) and (15.2) as in the above proposition, then the following diagram commutes
and has exact rows, columns and diagonal.

0

!!�
��

��
��

��
0

��

0

��
I ˚ J

!!�
��

��
��

��
J

��

J

��
0 �� I �� P

�� ##�
��

��
��

�
�� B

��

�� 0

0 �� I �� A

��

�� C

�� ##�
��

��
��

�
�� 0

0 0 0

Now that we have a tool to construct non-split extensions from a split and a non-
split one, we need a tool to tell us if the new extension is semiprojective.

For this purpose, we recall the definition and a property of compact ideals. We
refer to section two of [14] for details on compact ideals
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Definition 2. An ideal I in a C �-algebraA is called compact, if whenever we have
an increasing net of ideals .J˛/˛2� with I 
 S

˛ J˛ , then there is some ˛0 2 �
such that I 
 J˛0 .

It is not hard to see from the definition that an ideal generated by a projection is
compact.

Proposition 2 ([14, Corollary 2.2]). Let A be a C �-algebra and I an ideal in A.
The following are equivalent:

1. The ideal I is a compact ideal in A.
2. There is a positive a 2 I and an " > 0 such that .a � "/C generates I as an

ideal.

The following proposition is a generalization of [11, Proposition 5.19] (where the
ideal has to be the stabilization of a unital C �-algebra). The proofs are very similar,
but since [11] is in German, we include a short proof.

Proposition 3. Consider a short exact sequence

0! I ! A
�! Q! 0:

If I is a compact ideal and A is semiprojective then Q is semiprojective.

Proof. Suppose we are given B , an increasing sequence of ideals .Jk/ in B , and
a �-homomorphism �WQ ! B=J , where J D [kJk . For all k 2 N, we let

k;1WB=Jk ! B=J be the natural quotient map. By the semiprojectivity of A we
can find an n 2 N and a �-homomorphism WA! B=Jn such that 
n;1ı D �ı�.

Pick a positive a 2 I and a " > 0 such that I is generated as an ideal by .a�"/C.
We have �.a/ D 0, and therefore we have .
n;1ı /.a/ D 0. Hence, we can use [1,
Lemma 2.13] to deduce that there must be some l 	 n such that k.
n;l ı /.a/k < ",
where 
n;l denotes the quotient map from B=Jn to B=Jl . Therefore

.
n;l ı  /..a � "/C/ D ..
n;l ı  /.a/ � "/C D 0:

So .
n;l ı /.I / D 0, and we can conclude that 
n;l ı drops to a �-homomorphism
N WQ ! B=Jl with 
l;1 ı N D �. Thus N and l combine to show that Q is

semiprojective.

Our strategy is now the following: Find a non-split short exact sequence

0! J ! B ! C! 0;

such that J has a full projection. We will then use the construction in Proposition 1
on that and the Eilers-Katsura example, to produce a new non-split extension, which
we can show, using Proposition 3, has the desired properties.
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15.3 Constructing a Counterexample

We begin this section by constructing a non-split short exact sequence where the
ideal is semiprojective and contains a full projection, and the quotient is the complex
numbers. To prove that the constructed sequence is non-split we will use K-theory.
In particular, we will show that one of the boundary maps in the six-term exact
sequence is non-zero. SinceK1.C/ D 0, we need a semiprojective C �-algebra with
non-zeroK1-group. We will use a Kirchberg algebra.

Definition 3. A separable, simple, nuclear, purely infinite C �-algebra is called a
Kirchberg algebra. If it also satisfies the universal coefficient theorem, we call it a
UCT Kirchberg algebra.

Definition 4. Denote by P1 the unital UCT Kirchberg algebra withK0.P1/ Š 0
andK1.P1/ Š Z.

Building on the work of Blackadar [3] and Szymanski [17], Spielberg has shown
in [16, Theorem 3.12] that any UCT Kirchberg algebra with finitely generated
K-theory and torsion-freeK1-group is semiprojective. In particular, we have:

Theorem 2 (Spielberg). Let K denote the algebra of compact operators. The
Kirchberg algebra P1 ˝K is semiprojective.

We can now construct a non-split sequence with a semiprojective ideal that
contains a full projection.

Proposition 4. There exists a non-split short exact sequence

0! J ! E ! C! 0;

where J is separable, semiprojective, and contains a full projection.

Proof. Put J D P1 ˝K , which, as the stabilization of the unital algebra P1
contains a full projection. By Theorem 2, it is semiprojective. We will pick E
such that the boundary map in K-theory from K0.C/ to K1.J / is non-zero. Since
K-theory is split exact this implies that the sequence does not split.

Let M.J / denote the multiplier algebra of J . We have the following short exact
sequence:

0! J !M.J /!M.J /=J ! 0:

If we let �WK0.M.J /=J / ! K1.J / be the boundary map in the six-term
exact sequence arising from the above extension, then by Blackadar [2, Proposi-
tion 12.2.1] � is an isomorphism. In particular

K0.M.J /=J / Š K1.J / Š K1.P1/ Š Z:
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By Lin and Zhang [8, Theorem 2.2], the corona algebra M.J /=J has a continuous
scale and so by Lin [7, Theorem 3.2] it is simple and purely infinite. SinceM.J /=J
is also unital there is, by Blackadar [2, Corollary 6.11.8], a projection p 2M.J /=J
such that the class of p in K0.M.J /=J / is 1 2 Z. Define a �-homomorphism
	 WC ! M.J /=J by 	.�/ D �p, and notice that K0.	/ is an isomorphism of
groups.

Let E D M.J / ˚M.J /=J C where the pullback is taken over the quotient map
from the multiplier algebra to the corona algebra and 	 . We have the following
commutative diagram which has exact rows (see [18, Proposition 3.2.9]):

0 �� J �� E ��

��

C ��

	

��

0

0 �� J �� M.J / �� M.J /=J �� 0

Let ı denote the boundary map from K0.C/ to K1.J / in the six-term exact
sequence associated to the short exact sequence on top. By Rørdam et al. [13,
Proposition 12.2.1] the following square commutes:

K0.C/
ı

��

K0.	/

��

K1.J /

K0.M.J /=J /
�

�� K1.J /

Since � and K0.	/ are isomorphisms, we must have that ı is an isomorphism. In
particular, ı is non-zero, so the sequence

0! J ! E ! C! 0

does not split.

We can now prove our main theorem.

Theorem 3. There exists a non-split short exact sequence

0! K ! B ! C! 0;

such thatK is semiprojective but B is not.

Proof. Let

0! I ! A

! C! 0
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be a short exact sequence such that I is separable and semiprojective but A is
not semiprojective, e.g., one of the extensions constructed by Eilers and Katsura
(Theorem 1), and let

0! J ! E
�! C! 0 (15.6)

be the non-split extension constructed in Proposition 4.
Put B D A ˚C E where the pullback is taken over 
 and �. By Proposition 1,

we have the following two short exact sequences:

0! I ˚ J ! B ! C! 0; and; (15.7)

0! J ! B ! A! 0: (15.8)

Furthermore, (15.7) does not split as (15.6) does not split.
Since J has a full projection it is compact in B and since A is not semiprojective

Proposition 3 applied to (15.8) gives us that B is not semiprojective. To complete
the proof we putK D I ˚ J and notice that K is semiprojective, as it is the sum of
two separable semiprojective C �-algebras [9, Theorem 4.2].
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Chapter 16
The Topological Dimension of Type I
C �-Algebras

Hannes Thiel

Abstract While there is only one natural dimension concept for separable, metric
spaces, the theory of dimension in noncommutative topology ramifies into different
important concepts. To accommodate this, we introduce the abstract notion of a
noncommutative dimension theory by proposing a natural set of axioms. These
axioms are inspired by properties of commutative dimension theory, and they are for
instance satisfied by the real and stable rank, the decomposition rank and the nuclear
dimension.

We add another theory to this list by showing that the topological dimension,
as introduced by Brown and Pedersen, is a noncommutative dimension theory of
type I C �-algebras. We also give estimates of the real and stable rank of a type I
C �-algebra in terms of its topological dimension.

Keywords C �-algebras • Dimension theory • Stable rank • Real rank •
Topological dimension • Type I C �-algebras
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16.1 Introduction

The covering dimension of a topological space is a natural concept that extends our
intuitive understanding that a point is zero-dimensional, a line is one-dimensional
etc. While there also exist other dimension theories for topological spaces (e.g.,
small and large inductive dimension), they all agree for separable, metric spaces.
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This is in contrast to noncommutative topology where the concept of dimension
ramifies into different important theories, such as the real and stable rank, the
decomposition rank and the nuclear dimension. Each of these concepts has been
studied in its own right, and they have applications in many different areas. A low
dimension in each of these theories can be considered as a regularity property, and
such regularity properties play an important role in the classification program of
C �-algebras, see [11, 24, 28] and the references therein.

In Sect. 16.3 of this paper we introduce the abstract notion of a non-commutative
dimension theory as an assignment d WC ! N from a class of C �-algebras to the
extended natural numbers N D f0; 1; 2; : : : ;1g satisfying a natural set of axioms,
see Definition 1. These axioms are inspired by properties of the theory of covering
dimension, see Remark 1, and they hold for the theories mentioned above. Thus,
the proposed axioms do not define a unique dimension theory of C �-algebras, but
rather they collect the essential properties that such theories (should) satisfy.

Besides the very plausible axioms (D1)–(D4), we also propose (D5) which means
that the property of being at most n-dimensional is preserved under approximation
by sub-C �-algebras, see 3. This is the noncommutative analog of the notion of
“likeness”, see 4 and [27, 3.1–3.3]. This axiom implies that dimension does not
increase when passing to the limit of an inductive system of C �-algebras, i.e.,
d.lim�!Ai/ � lim infd.Ai /, see Proposition 2.

Finally, axiom (D6) says that every separable sub-C �-algebra C � A is
contained in a separable sub-C �-algebra D � A such that d.D/ � d.A/. This
is the noncommutative analog of Mardešić’s factorization theorem, which says that
every map f WX ! Y from a compact space X to a compact, metrizable space Y
can be factorized through a compact, metrizable space Z with dim.Z/ � dim.X/,
see Remark 1 and [17, Corollary 27.5, p. 159] or [13, Lemma 4].

In Sect. 16.4 we show that the topological dimension as introduced by Brown
and Pedersen [6], is a dimension theory in the sense of Definition 1 for the class of
type I C �-algebras. The idea of the topological dimension is to simply consider the
dimension of the primitive ideal space of a C �-algebra. This will, however, run into
problems if the primitive ideal space is not Hausdorff. One therefore has to restrict
to (locally closed) Hausdorff subsets, and taking the supremum over the dimension
of these Hausdorff subsets defines the topological dimension, see Definition 4.

In Sect. 16.5 we show how to estimate the real and stable rank of a type I
C �-algebra in terms of its topological dimension.

Section 16.5 of this article is based on the diploma thesis of the author [26], which
was written under the supervision of Wilhelm Winter at the University of Münster
in 2009. Sections 16.3 and 16.4 are based upon unpublished notes by the author for
the masterclass “The nuclear dimension of C �-algebras”, held at the University of
Copenhagen in November 2011.
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16.2 Preliminaries

We denote by C � the category of C �-algebras with �-homomorphism as
morphisms. In general, by a morphism between C �-algebras we mean a
�-homomorphism.

We write J C A to indicate that J is an ideal in A, and by an ideal of a
C �-algebra we understand a closed, two-sided ideal. Given a C �-algebra A, we
denote by AC the set of positive elements. We denote the minimal unitization of A
by QA. The primitive ideal space of A will be denoted by Prim.A/, and the spectrum
by OA. We refer the reader to Blackadar’s book [1], for details on the theory of
C �-algebras.

If F;G � A are two subsets of a C �-algebra, and " > 0, then we write F �" G
if for every x 2 F there exists some y 2 G such that kx � yk < ". Given elements
a; b in a C �-algebra, we write a D" b if ka � bk < ". Given a; b 2 AC, we write
a� b if b acts as a unit for a, i.e., ab D a, and we write a�" b if ab D" a.

We denote by K the C �-algebra of compact operators on an infinite-dimensional,
separable Hilbert space, and by N D f0; 1; 2; : : : ;1g the extended natural numbers.

1. As pointed out in [1, II.2.2.7, p. 61], the full subcategory of commutative
C �-algebras is dually equivalent to the category S P� whose objects are pointed,
compact Hausdorff spaces and whose morphisms are pointed, continuous maps.

For a locally compact, Hausdorff space X , let ˛X be its one-point compactifi-
cation. Let XC be the space with one additional point x1 attached, i.e., XC D
X t fx1g if X is compact, and XC D ˛X if X is not compact. In both cases, the
basepoint of XC is the attached point x1.

2. Let X be a space, and let U be a cover of X . The order of U , denoted by
ord.U /, is the largest integer k such that some point x 2 X is contained in k
different elements of U (and ord.U / D 1 if no such k exists). The covering
dimension of X , denoted by dim.X/, is the smallest integer n 	 0 such that every
finite, open cover of X can be refined by a finite, open cover that has order at most
n C 1 (and dim.X/ D 1 if no such n exists). We refer the reader to Chap. 2 of
Nagami’s book [17] for more details.

It was pointed out by Morita [16], that in general this definition of covering
dimension should be modified to consider only normal, finite, open covers. How-
ever, for normal spaces (e.g. compact spaces) every finite, open cover is normal, so
that we may use the original definition.

The local covering dimension of X , denoted by locdim.X/, is the smallest
integer n 	 0 such that every point x 2 X is contained in a closed neighborhood F
such that dim.F / � n (and locdim.X/ D 1 if no such n exists). We refer the reader
to [9] and [20, Chap. 5] for more information about the local covering dimension.

It is well-known that locdim.X/ D dim.˛X/ for a locally compact, Hausdorff
space X . We propose that the natural dimension of a pointed space .X; x1/ 2
S P� is dim.X/ D locdim.X nfx1g/. Then, for a commutativeC �-algebraA, the
natural dimension is locdim.Prim.A//.
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If G � X is an open subset of a locally compact space, then locdim.G/ �
locdim.X/, see [9, 4.1]. It was also shown by Dowker that this does not hold for the
usual covering dimension (of non-normal spaces).

3. A family of sub-C �-algebras Ai � A is said to approximate a C �-algebra A (in
the literature there also appears the formulation that the Ai “locally approximate”
A), if for every finite subset F � A, and every " > 0, there exists some i such that
F �" Ai . Let us mention some facts about approximation by subalgebras:

(a) If A1 � A2 � : : : � A is an increasing sequence of sub-C �-algebras with
A DSk Ak , then A is approximated by the family fAkg.

(b) If A is approximated by a family fAig, and J C A is an ideal, then J is
approximated by the family fAi \ J g. In particular, if A D S

k Ak , then
J DSk.Ak \ J /.

Similarly, A=J is approximated by the family fAi=.Ai \ J /g.
(c) If A is approximated by a family fAig, and B � A is a hereditary sub-

C �-algebra, then B might not be approximated by the family fAi \ Bg.
Nevertheless, B is approximated by algebras that are isomorphic to hereditary
sub-C �-algebras of the algebras Ai , see Proposition 4.

4. Let P be some property of C �-algebras. We say that a C �-algebra A is
P-like (in the literature there also appears the formulation A is “locally P”)
if A is approximated by subalgebras with property P , see [27, 3.1–3.3]. This is
motivated by the concept of P-likeness for commutative spaces, as defined in [15,
Definition 1] and further developed in [14].

We will work in the category S P� of pointed, compact spaces, see 1. Let P
be a non-empty class of spaces. Then, a space X 2 S P� is said to be P-like if
for every finite, open cover U of X there exists a (pointed) map f WX ! Y onto
some space Y 2 P and a finite, open cover V of Y such that U is refined by
f �1.V / D ff �1.V / j V 2 V g.

Note that we have used P to denote both a class of spaces and a property that
spaces might enjoy. These are just different viewpoints, as we can naturally assign
to a property the class of spaces with that property, and vice versa to each class of
spaces the property of lying in that class.

For commutative C �-algebras, the notion of P-likeness for C �-algebras coin-
cides with that for spaces. More precisely, it is shown in [27, Proposition 3.4] that
for a space .X; x1/ 2 S P� and a collection P � S P�, the following are
equivalent:

(a) .X; x1/ is P-like,
(b) C0.X n fx1g/ is approximated by sub-C �-algebras C0.Y n fy1g/ with

.Y; y1/ 2P .

We note that the definition of covering dimension can be rephrased as follows.
Let Pk be the collection of all k-dimensional polyhedra (polyhedra are defined by
combinatoric data, and their dimension is defined by this combinatoric data). Then
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a compact space X satisfies dim.X/ � k if and only if it is Pk-like. This motivates
(D5) in Definition 1 below.

5. For the definition of continuous trace C �-algebras we refer our reader to [1,
Definition IV.1.4.12, p. 333]. It is known that a C �-algebra A has continuous trace
if and only if its spectrum OA is Hausdorff and it satisfies Fell’s condition, i.e., for
every 
 2 OA there exists a neighborhood U � OA of 
 and some a 2 AC such that
�.a/ is a rank-one projection for each � 2 U , see [1, Proposition IV.1.4.18, p. 335].

6. A C �-algebra A is called a CCR algebra (sometimes called a liminal algebra)
if for each of its irreducible representations 
WA ! B.H/ we have that 
 takes
values inside the compact operatorsK.H/.

A composition series for a C �-algebra A is a collection of ideals J˛ C A,
indexed over all ordinal numbers ˛ � � for some �, such that A D J� and:

(a) If ˛ � ˇ, then J˛ � Jˇ ,
(b) If ˛ is a limit ordinal, then J˛ D S�<˛ J� .

The C �-algebras J˛C1=J˛ are called the successive quotients of the composition
series.

A C �-algebra is called a type I algebra (sometimes also called postliminal or
GCR algebra) if it has a composition series with successive quotients that are CCR
algebras. As it turns out, this is equivalent to having a composition series whose
successive quotients have continuous trace.

For information about type I C �-algebras and their rich structure we refer the
reader to Chap. IV.1 of Blackadar’s book [1], and Chap. 6 of Pedersen’s book [21].

16.3 Dimension Theories for C �-Algebras

In this section, we introduce the notion of a non-commutative dimension theory by
proposing a natural set of axioms that such theories should satisfy. These axioms
hold for many well-known theories, in particular the real and stable rank, the
decomposition rank and the nuclear dimension, see Remark 2, and this will also
be discussed more thoroughly in a forthcoming paper. In Sect. 16.4 we will show
that the topological dimension is a dimension theory for type I C �-algebras.

Our axioms of a non-commutative dimension theory are inspired by facts that the
theory of covering dimension satisfies, see Remark 1.

In Definition 2 we introduce the notion of Morita-invariance for dimension
theories. If a dimension theory is only defined on a subclass of C �-algebras, then
there is a natural extension of the theory to all C �-algebras, see Proposition 5.
We will show that this extension preserves Morita-invariance.

We denote by C � the category of C �-algebras, and we will use C to denote a
class of C �-algebras. We may think of C as a full subcategory of C �.
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Definition 1. Let C be a class of C �-algebras that is closed under �-isomorphisms,
and closed under taking ideals, quotients, finite direct sums, and minimal unitiza-
tions. A dimension theory for C is an assignment d WC ! N D f0; 1; 2; : : : ;1g
such that d.A/ D d.A0/ whenever A;A0 are isomorphic C �-algebras in C , and
moreover the following axioms are satisfied:

(D1) d.J / � d.A/ whenever J C A is an ideal in A 2 C ,
(D2) d.A=J / � d.A/ whenever J C A 2 C ,
(D3) d.A˚ B/ D maxfd.A/; d.B/g, whenever A;B 2 C ,
(D4) d. QA/ D d.A/, whenever A 2 C .
(D5) If A 2 C is approximated by subalgebras Ai 2 C with d.Ai/ � n, then

d.A/ � n.
(D6) GivenA 2 C and a separable sub-C �-algebraC � A, there exists a separable

C �-algebraD 2 C such that C � D � A and d.D/ � d.A/.
Note that we do not assume that C is closed under approximation by sub-C �-
algebra, so that the assumption A 2 C in (D5) is necessary. Moreover, in axiom
(D6), we do not assume that the separable subalgebra C lies in C .

Remark 1. The axioms in Definition 1 are inspired by well-known facts of the local
covering dimension of commutative spaces, see 2.

Axiom (D1) and (D2) generalize the fact that the local covering dimension
does not increase when passing to an open (resp. closed) subspace, see
[9, 4.1, 3.1], and axiom (D3) generalizes the fact that locdim.X t Y / D
maxflocdim.X/; locdim.Y /g. Axiom (D4) generalizes that locdim.X/ D
locdim.˛X/, where ˛X is the one-point compactification of X .

Axiom (D5) generalizes the fact that a (compact) space is n-dimensional if
it is Pn-like for the class Pn of n-dimensional spaces, see 4. Note also that
Proposition 2 generalizes the fact that dim.lim �Xi/ � lim infi dim.Xi/ for an inverse
system of compact spaces Xi .

Axiom (D6) is a generalization of the following factorization theorem, due to
Mardešić, see [17, Corollary 27.5, p. 159] or [13, Lemma 4]: Given a compact
space X and a map f WX ! Y to a compact, metrizable space Y , there exists
a compact, metrizable space Z and maps gWX ! Z; hWZ ! Y such that g is
onto, dim.Z/ � dim.X/ and f D h ı g. This generalizes (D6), since a unital,
commutative C �-algebra C.X/ is separable if and only if X is metrizable.

Axioms (D5) and (D6) are also related to the following concept which is due to
Blackadar [1, Definition II.8.5.1, p. 176]: A property P of C �-algebras is called
separably inheritable if:

1. For every C �-algebraA with property P and separable sub-C �-algebra C � A,
there exists a separable sub-C �-algebra D � A that contains C and has
property P .

2. Given an inductive system .Ak; 'k/ of separable C �-algebras with injective
connecting morphisms 'kWAk ! AkC1, if each Ak has property P , then does
the inductive limit lim�!Ak .
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Thus, for a dimension theory d , the property “d.A/ � n” is separably inheritable.
Axioms (D5) and (D6) imply that d.A/ � n if and only if A can be written as an

inductive limit (with injective connecting morphisms) of separable C �-algebras B
with d.B/ � n. This allows us to reduce essentially every question about dimension
theories to the case of separable C �-algebras.

By explaining the analogs of (D1)–(D6) for pointed, compact spaces, we have
shown the following:

Proposition 1. Let C �ab denote the class of commutative C �-algebras. Then, the
assignment d WC �ab ! N, d.A/ WD locdim.Prim.A//, is a dimension theory.

Remark 2. We do not suggest that the axioms of Definition 1 uniquely define a
dimension theory. This is clear since the axioms do not even rule out the assignments
that give each C �-algebra the same value.

More interestingly, the following are dimension theories for the class of all
C �-algebras:

1. The stable rank as defined by Rieffel [22, Definition 1.4].
2. The real rank as introduced by Brown and Pedersen [5].
3. The decomposition rank of Kirchberg and Winter [12, Definition 3.1].
4. The nuclear dimension of Winter and Zacharias [29, Definition 2.1].

Indeed, for the real and stable rank, (D1) and (D2) are proven in [10, Théorème 1.4]
and [22, Theorems 4.3, 4.4]. Axiom (D3) is easily verified, and (D4) holds by
definition. It is shown in [22, Theorem 5.1] that (D5) holds in the special case of
an approximation by a countable inductive limit, but the same argument works for
general approximations and also for the real rank. Finally, it is noted in [1, II.8.5.5,
p. 178] that (D6) holds.

For the nuclear dimension, axioms (D1), (D2), (D3), (D6) and (D4) follow
from Propositions 2.5, 2.3, 2.6 and Remark 2.11 in [29], and (D5) is easily
verified. For the decomposition rank, (D5) is also easily verified, and axiom (D6)
follows from [29, Proposition 2.6] adapted for c.p.c. approximations instead of c.p.
approximations. The other axioms (D1)–(D4) follow from Proposition 3.8, 3.11 and
Remark 3.2 of [12] for separableC �-algebras. Using axioms (D5) and (D6) this can
be extended to all C �-algebras.

Thus, the idea of Definition 1 is to collect the essential properties that many
different non-commutative dimension theories satisfy. Our way of axiomatizing
non-commutative dimension theories should therefore not be confused with the
work on axiomatizing the dimension theory of metrizable spaces, see e.g. [18] or
[7], since these works pursue the goal of finding axioms that uniquely characterize
covering dimension.

Proposition 2. Let d WC ! N be a dimension theory, and let .Ai ; 'i;j / be an
inductive system with Ai 2 C and such that the limit A WD lim�!Ai also lies in C .
Then d.A/ � lim infi d.Ai/.
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Proof. See [1, II.8.2.1, p. 156] for details about inductive systems and induc-
tive limits. For each i , let '1;i WAi ! A denote the natural morphism into the
inductive limit. Then the subalgebra '1;i .Ai/ � A is a quotient ofAi , and therefore
d.'1;i .Ai// � d.Ai/ by (D2). If J � I is cofinal, then A is approximated
by the collection of subalgebras .'1;i .Ai //i2J . It follows from (D5) that d.A/ is
bounded by supi2J d.Ai /. Since this holds for each cofinal subset J � I , we obtain:

d.A/ � inffsup
i2J

d.Ai/ j J � I cofinalg D lim inf
i

d.Ai /;

as desired. ut
Lemma 1. LetA be a C �-algebra, letB � A be a full, hereditary sub-C �-algebra,
and let C � A be a separable sub-C �-algebra. Then there exists a separable
sub-C �-algebraD � A containing C such that D \ B � D is full, hereditary.

Proof. The proof is inspired by the proof of [2, Proposition 2.2], see also
[1, Theorem II.8.5.6, p.178]. We inductively define separable sub-C �-algebras
Dk � A. Set D1 WD C , and assume Dk has been constructed. Let Sk WD
fxk1 ; xk2 ; : : :g be a countable, dense subset ofDk . Since B is full in A, there exist for
each i 	 1 finitely many elements aki;j ; c

k
i;j 2 A and bki;j 2 B such that

kxki �
X
j

aki;j b
k
i;j c

k
i;jk < 1=k:

Set DkC1 WD C �.Dk; a
k
i;j ; b

k
i;j ; c

k
i;j ; i; j 	 1/. Then define D WD S

k Dk , which
is a separable sub-C �-algebra of A containing C .

Note that D \ B � D is a hereditary sub-C �-algebra, and let us check that it is
also full. We need to show that the linear span of D.D \ B/D is dense in D. Let
d 2 D and " > 0 be given. Note that

S
k Sk is dense inD. Thus, we may find k and

i such that kd � xki k < "=2. We may assume k 	 2=". By construction, there are
elements aki;j ; c

k
i;j 2 DkC1 and bki;j 2 B \DkC1 such that kxki �

P
j a

k
i;j b

k
i;j c

k
i;j k <

1=k. It follows that the distance from d to the closed linear span ofD.D\B/D is at
most ". Since d and "were chosen arbitrarily, this shows thatD\B � D is full. ut
Proposition 3. Let d WC � ! N be a dimension theory. Then the following
statements are equivalent:

1. For all C �-algebras A;B: If B � A is a full, hereditary sub-C �-algebra, then
d.A/ D d.B/.

2. For allC �-algebrasA;B: IfA andB are Morita equivalent, then d.A/ D d.B/.
3. For all C �-algebras A: d.A/ D d.A˝K/.

Moreover, each of the statements is equivalent to the (a priori weaker) statement
where the appearing C �-algebras are additionally assumed to be separable.

If d satisfies the above conditions, and B � A is a (not necessarily full)
hereditary sub-C �-algebra, then d.B/ � d.A/.
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Proof. For each of the statements 1:, 2:, 3:, let us denote the statement where the
appearingC �-algebras are assumed to be separable by 1s:, 2s:, 3s: respectively. For
example:

3s: For all separable C �-algebras A: d.A/ D d.A˝K/.

The implications “1: ) 1s:”, “2: ) 2s:”, and “3: ) 3s:” are clear. The
implication “2s: ) 3s:” follows since A and A ˝ K are Morita equivalent, and
“1s:) 3s:” follows since A � A˝K is a full, hereditary sub-C �-algebra.

It remains to show the implication “3s: ) 1:”. Let A be a C �-algebra, and
let B � A be a full, hereditary sub-C �-algebra. We need to show d.A/ D
d.B/. To that end, we will construct separable sub-C �-algebras A0 � A and
B 0 � B that approximate A and B , respectively, and such that d.A0/ D d.B 0/ �
minfd.A/; d.B/g. Together with (D5), this implies d.A/ D d.B/.

So let F � A and G � B be finite sets. We may assume G � F . We want to
find A0 and B 0 with the mentioned properties and such that F � A0 and G � B 0.

We inductively define separable sub-C �-algebrasCk;Dk � A andEk � B such
that:

(a) Ck � Dk and Dk \ B � Dk is full,
(b) Dk \ B � Ek and d.Ek/ � d.B/,
(c) Ek;Dk � CkC1 and d.CkC1/ � d.A/.

We start with C1 WD C �.F / � A. IfCk has been constructed, we apply Lemma 1
to findDk satisfying .a/. IfDk has been constructed, we apply (D6) toDk \ B � B
to find Ek satisfying .b/. If Ek has been constructed, we apply axiom (D6) to
C �.Dk;Ek/ � A to find CkC1 satisfying .c/.

Then let A0 WD S
k Ck D

S
k Dk , and B 0 WD S

k.Dk \ B/ D S
k Ek . The

situation is shown in the following diagram:

Ck � Dk �

[

C �.Dk;Ek/�

[

CkC1 � : : : � A0

Dk \ B � Ek � : : : : : : � B 0

Let us verify that A0 and B 0 have the desired properties. First, since d.Ck/ �
d.A/ for all k, we get d.A0/ � d.A/ from (D5). Similarly, we get d.B 0/ � d.B/.
For each k we have that Dk \ B � Dk is a full, hereditary sub-C �-algebra, and
therefore the same holds for B 0 � A0. Since A0 and B 0 are separable (and hence
�-unital), we may apply Brown’s stabilization theorem [3, Theorem 2.8], and obtain
A0 ˝ K Š B 0 ˝ K. Together with the assumption 3s:, we obtain d.A0/ D d.A0 ˝
K/ D d.B 0 ˝ K/ D d.B 0/. This finishes the construction of A0 and B 0, and we
deduce d.A/ D d.B/ from (D5).

Lastly, if d satisfies condition 1:, and B � A is a (not necessarily full) hereditary
sub-C �-algebra, then B is full, hereditary in the ideal J C A generated by B .
By (D1) and condition 1: we have d.B/ D d.J / � d.A/. ut
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Definition 2. A dimension theory d WC � ! N is called Morita-invariant if it
satisfies the conditions of Proposition 3.

Given positive elements a; b in a C �-algebra, recall that we write a D� b if ka �
bk < � . We write a�� b if ab D� a.

Lemma 2. For every " > 0 there exists ı > 0 with the following property: Given
a C �-algebra A, and contractive elements a; b 2 AC with a Dı b, there exists a
partial isometry v 2 A�� such that:

1. v.a � ı/Cv� 2 bAb.
2. If d 2 AC is contractive with d �� a, then vdv� D4�C" d .

Proof. To simplify the proof, we will fix ı > 0 and verify the statement for " D ".ı/
with the property that ".ı/! 0 when ı ! 0.

Fix ı > 0. Let A be a C �-algebra, and let a; b 2 AC be contractive elements
such that a Dı b. Without loss of generality we may assume that A is unital.
It is well-known that there exists s 2 A such that s.a � ı/Cs� 2 bAb, see [23,
Proposition 2.4]. One could follow the proof to obtain an estimate similar to that in
statement 2: It is, however, easier to find v 2 A�� such that 1: and 2: hold, and for
our application in Proposition 4 it is sufficient that v lies in A��.

It follows from a Dı b that a � ı � b, and hence:

.a � ı/2C D .a � ı/1=2C .a � ı/.a � ı/1=2C � .a � ı/1=2C b.a � ı/1=2C :

Set z WD b1=2.a � ı/1=2C . Then:

jzj D ..a � ı/1=2C b.a � ı/1=2C /1=2; jz�j D .b1=2.a � ı/Cb1=2/1=2;

and we let z D vjzj be the polar decomposition of z, with v 2 A��. We claim
that v has the desired properties. First, note that v..a � ı/1=2C b.a � ı/1=2C /v� D
b1=2.a � ı/Cb1=2 2 bAb, and therefore also v.a � ı/Cv� 2 bAb, which verifies
property 1:

For property 2:, let us start by estimating the distance from a to z and jzj. It is
known that there exists an assignment � 7! "1.�/ with the following property:
Whenever x; y are positive, contractive elements of a C �-algebra, and x D� y, then
x1=2 D"1.�/ y1=2, and moreover "1.�/ ! 0 as � ! 0. We may assume � � "1.�/,
and we will use this to simplify some estimates below.

Then, using .a � ı/C Dı a and so .a � ı/1=2C D"1.ı/ a1=2 at the second step,

z D b1=2.a � ı/1=2C D"1.ı/ b1=2a1=2 D"1.ı/ a: (16.1)

For jzj we compute, using .a � ı/1=2C b.a � ı/1=2C D3"1.ı/ a2 at the second step,

jzj D ..a � ı/1=2C b.a � ı/1=2C /1=2 D"1.3"1.ı// .a2/1=2 D a: (16.2)
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Let d 2 AC be contractive with d �� a. Then ada D2� d , and we may estimate
the distance from vdv� to d as follows:

vdv� D2� vadav� (16.2)DD2"1.3"1.ı// vjzjd jzjv� D zd z
(16.1)DD4"1.ı/ ada D2� d:

Thus, kvdv� � dk � 4� C 2"1.3"1.ı//C 4"1.ı/, and this distance converges to
4� when ı ! 0. ut
Proposition 4. Let A be a C �-algebra, and let B � A be a hereditary sub-C �-
algebra. Assume A is approximated by sub-C �-algebras Ai � A ˝ K. Then B is
approximated by subalgebras that are isomorphic to hereditary sub-C �-algebras
of the algebras Ai , i.e., given a finite set F � B and " > 0, there exists a sub-
C �-algebra B 0 � B such that F �" B 0 and B 0 is isomorphic to a hereditary
sub-C �-algebra of Ai for some i .

Proof. Let F � B and " > 0 be given. We let � D "=36, which is justified by the
estimates that we obtain through the course of the proof. Without loss of generality,
we may assume that F consists of positive, contractive elements.

There exists b 2 BC such that b almost acts as a unit on the elements of F in the
sense that x �� b for all x 2 F . Let ı > 0 be the tolerance we get from Lemma 2
for � . We may assume ı � � , and to simplify the computations below we will often
estimate a distance by � , even if it could be estimated by ı.

By assumption, the algebras Ai approximate A. Thus, there exists i such that
there is a positive, contractive element a 2 Ai with a Dı b, and such that for each
x 2 F there exists a positive, contractive x0 2 Ai with x0 Dı x. Then:

x0.a � ı/C D3ı xb D� x Dı x0;

and so x0 �5� .a � ı/C, since ı � � . In general, if two positive, contractive
elements s; t satisfy s �� t , then s D2� tst �� t . Thus, if for each x 2 F we set
x00 WD .a � ı/Cx0.a � ı/C, then we obtain:

x D� x0 D10� x00 �5� .a � ı/C: (16.3)

Since a Dı b, we obtain from Lemma 2 a partial isometry v 2 A�� such that
v.a � ı/Cv� 2 bAb. Let A0 WD .a � ı/CAi.a � ı/C, which is a hereditary sub-
C �-algebra of Ai . The map x 7! vxv� defines an isomorphism fromA0 ontoB 0 WD
vA0v�. Since B is hereditary, B 0 is a sub-C �-algebra of B . Let us estimate the
distance from F to B 0.

For each x 2 F , we have computed in (16.3) that x00 �5� .a � ı/C, which
implies x00 �6� a. From statement 2: of Lemma 2 we deduce vx00v� D25� x00.
Altogether, the distance between x and vx00v� is at most 36� . Since vx00v� 2 B 0,
and since we chose � D "=36, we have F �" B 0, as desired. ut
Proposition 5. Let d WC ! N be a dimension theory. For any C �-algebra A
define:
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Qd.A/ WD inf

�
k 2 N j A is approximated by sub-C �-algebras B

with d.B/ � k
�
;

where we define the infimum of the empty set to be1 2 N.
Then Qd WC � ! N is a dimension theory that agrees with d on C .
If, moreover, C is closed under stable isomorphism, and d.A/ D d.A˝ K/ for

every (separable) A 2 C , then Qd is Morita-invariant.

Proof. If A 2 C , then clearly Qd.A/ � d.A/, and the converse inequality follows
from axiom (D5). Axioms (D1)–(D5) for Qd are easy to check.

Let us check axiom (D6) for Qd . Assume A is a C �-algebra, and assume C � A
is a separable sub-C �-algebra. Set n WD Qd.A/, which we may assume is finite. We
need to find a separable sub-C �-algebraD � A such that C � D and Qd.D/ � n.

We first note the following: For a finite set F � A, and " > 0 we can find a
separable sub-C �-algebra A.F; "/ � A with d.A.F; "// � n and F �" A.F; "/.
Indeed, by definition of Qd we can first find a sub-C �-algebraB � A with d.B/ � n
and a finite subset G � B such that F �" G. Applying (D6) to C �.G/ � B ,
we may find a separable sub-C �-algebra A.F; "/ � B with d.A.F; "// � n and
C �.G/ � A.F; "/, which implies F �" A.F; "/.

We will inductively define separable sub-C �-algebras Dk � A and countable
dense subsets Sk D fxk1 ; xk2 ; : : :g � Dk as follows: We start with D1 WD C and
choose any countable dense subset S1 � D1. If Dl and Sl have been constructed
for l � k, then set:

DkC1 WD C �.Dk;A.fxji j i; j � kg; 1=k// � A;

and choose any countable dense subset SkC1 D fxkC11 ; xkC12 ; : : :g � DkC1.
Set D WD S

k Dk � A, which is a separable C �-algebra containing C . Let us
check that Qd.D/ � n, which means that we have to show that D is approximated
by sub-C �-algebras B 2 C with d.B/ � n.

Note that fxji gi;j�1 is dense in D. Thus, if a finite subset F � D, and " > 0 is
given, we may find k such that F �"=2 fxji ji; j � kg, and we may assume k > 2=".
By construction, D contains the sub-C �-algebra B WD A.fxji j i; j � kg; 1=k/,
which satisfies d.B/ � n and fxji j i; j � kg �1=k B . Then F �" B , which
completes the proof that Qd.D/ � n.

Lastly, assume C is closed under stable isomorphism, and assume d.A/ D
d.A˝K/ for every separableA 2 C . This implies the following: IfA is a separable
C �-algebra in C , and B � A is a hereditary sub-C �-algebra, then B lies in C and
d.B/ � d.A/.

We want to check condition 3: of Proposition 3 for Qd . Thus, let a separable
C �-algebra A be given. We need to check Qd.A/ D Qd.A˝K/.

If Qd.A/ D 1, then clearly Qd.A ˝ K/ � Qd.A/. So assume n WD Qd.A/ < 1,
which means that A is approximated by algebras Ai � A with d.Ai / � n. Then
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A ˝ K is approximated by the subalgebras Ai ˝ K � A ˝ K, and d.Ai ˝ K/ D
d.Ai/ � n by assumption. Then Qd.A˝K/ � n D Qd.A/.

Conversely, if Qd.A ˝ K/ D 1, then Qd.A/ � Qd.A ˝ K/. So assume n WD
Qd.A˝K/ <1, which means that A˝K is approximated by algebrasAi � A˝K

with d.Ai / � n. Consider the hereditary sub-C �-algebra A˝ e1;1 � A˝K, which
is isomorphic to A. By Proposition 4, A ˝ e1;1 is approximated by subalgebras
Bj � A˝ e1;1 such that each Bj is isomorphic to a hereditary sub-C �-algebras of
Ai , for some i D i.j /. It follows d.Bj / � n, and then Qd.A/ D Qd.A˝ e1;1/ � n D
Qd.A˝K/. Together we get Qd.A/ D Qd.A˝K/, as desired. ut

16.4 Topological Dimension

One could try to define a dimension theory by simply considering the dimension of
the primitive ideal space of a C �-algebra. This will, however, run into problems if
the primitive ideal space is not Hausdorff. Brown and Pedersen [6], suggested a way
of dealing with this problem by restricting to (locally closed) Hausdorff subsets of
Prim.A/, and taking the supremum over the dimension of these Hausdorff subsets.
This defines the topological dimension of a C �-algebra, see Definition 4.

In this section we will show that the topological dimension is a dimension theory
in the sense of Definition 1 for the class of type I C �-algebras. It follows from the
work of Brown and Pedersen that axioms (D1)–(D4) are satisfied, and we verify
axiom (D5) in Proposition 8. We use transfinite induction over the length of a
composition series of the type I C �-algebra to verify axiom (D6), see Proposition 9.

See 6 for a short reminder on type I C �-algebras. For more details, we refer the
reader to Chap. IV.1 of Blackadar’s book [1], and Chap. 6 of Pedersen’s book [21].

Definition 3 (Brown and Pedersen [6, 2.2 (iv)]). Let X be a topological space.
We define:

1. A subset C � X is called locally closed if there is a closed set F � X and an
open set G � X such that C D F \G.

2. X is called almost Hausdorff if every non-empty closed subset F contains a
non-empty relatively open subset F \G (so F \G is locally closed inX ) which
is Hausdorff.

7. We could consider locally closed subsets as “well-placed” subsets. Then, being
almost Hausdorff means having enough “well-placed” Hausdorff subsets.

For a C �-algebra A, the locally closed subsets of Prim.A/ correspond to
ideals of quotients of A (equivalently to quotients of ideals of A) up to canonical
isomorphism, see [6, 2.2(iii)]. Therefore, the primitive ideal space of every type I
C �-algebra is almost Hausdorff, since every non-zero quotient contains a non-zero
ideal that has continuous trace, see [21, Theorem 6.2.11, p. 200], and the primitive
ideal space of a continuous trace C �-algebra is Hausdorff.
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Definition 4 (Brown and Pedersen [6, 2.2(v)]). Let A be a C �-algebra. If
Prim.A/ is almost Hausdorff, then the topological dimension of A, denoted by
topdim.A/, is:

topdim.A/ WD supflocdim.S/ j S � Prim.A/ locally closed, Hausdorffg:

We will now show that the topological dimension satisfies the axioms of
Definition 1. The following result immediately implies (D1)–(D4).

Proposition 6 (Brown and Pedersen [6, Proposition 2.3]). Let .J˛/˛�� be a
composition series for a C �-algebra A. Then Prim.A/ is almost Hausdorff if and
only if Prim.J˛C1=J˛/ is almost Hausdorff for each ˛ < �, and if this is the case,
then:

topdim.A/ D sup
˛<�

topdim.J˛C1=J˛/:

The following result is implicit in the papers of Brown and Pedersen, e.g. [6,
Theorem 5.6].

Proposition 7. Let A be a C �-algebra, and let B � A be a hereditary sub-C �-
algebra. If Prim.A/ is locally Hausdorff, then so is Prim.B/, and then topdim.B/ �
topdim.A/. If B is even full hereditary, then topdim.B/ D topdim.A/.

Proof. In general, if B � A is a hereditary sub-C �-algebra, then Prim.B/ is
homeomorphic to an open subset of Prim.A/. In fact, Prim.B/ is canonically
homeomorphic to the primitive ideal space of the ideal generated by B , and this
corresponds to an open subset of Prim.A/.

Note that being locally Hausdorff is a property that passes to locally closed
subsets, and so it passes from Prim.A/ to Prim.B/. Further, every locally closed,
Hausdorff subset S � Prim.B/ is also locally closed (and Hausdorff) in Prim.A/.
It follows topdim.B/ � topdim.A/.

If B is full, then Prim.B/ Š Prim.A/ and therefore topdim.B/ D topdim.A/.
ut

Lemma 3. Let A be a continuous trace C �-algebra, and let n 2 N. If A is
approximated by sub-C �-algebras with topological dimension at most n, then
topdim.A/ � n.

Proof. Since Prim.A/ is Hausdorff, we have topdim.A/ D locdim.Prim.A//.
Thus, it is enough to show that every x 2 Prim.A/ has a neighborhood U with
dim.U / � n. This will allow us to reduce the problem to the situation that A has a
global rank-one projection, i.e., that there exists a full, abelian projection p 2 A,
see [1, IV.1.4.20, p. 335], which we do as follows:

Let x 2 Prim.A/ be given. Since A has continuous trace, there exists an open
neighborhood U � Prim.A/ of x and an element a 2 AC such that �.a/ is a
rank-one projection for every � 2 U , see 5. Then there exists a closed, compact
neighborhood Y � Prim.A/ of x that is contained in U . Let J C A be the ideal
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corresponding to Prim.A/ nY . The image of a in the quotientA=J is a full, abelian
projection. Since A is approximated by subalgebras B � A with topdim.B/ � n,
A=J is approximated by the subalgebras B=.B \ J / with topdim.B=.B \ J // �
topdim.B/ � n. If we can show that this implies dim.Y / D topdim.A=J / � n,
then every point of Prim.A/ has a closed neighborhood of dimension � n, which
means topdim.A/ D locdim.Prim.A// � n.

We assume from now on that A has continuous trace with a full, abelian
projection p 2 A. Thus, pAp Š C.X/ where X WD Prim.A/ is a compact,
Hausdorff space. Assume A is approximated by subalgebras Ai � A with
topdim.Ai / � n. It follows from Proposition 4 that the hereditary sub-C �-algebra
pAp is approximated by subalgebras Bj such that each Bj is isomorphic to
a hereditary sub-C �-algebras of Ai , for some i D i.j /. By Proposition 7,
topdim.Bj / � topdim.Ai.j // � n for each j .

Thus, C.X/ is approximated by commutative subalgebras C.Xj / with
dim.Xj / D topdim.C.Xj // � n. It follows from Proposition 1 that dim.X/ � n,
as desired. ut
Proposition 8. Let A be a type I C �-algebra, and let n 2 N. If A is approximated
by sub-C �-algebras with topological dimension at most n, then topdim.A/ � n.

Proof. Let .J˛/˛�� be a composition series forA such that each successive quotient
has continuous trace, and assume A is approximated by subalgebras Ai � A with
topdim.Ai / � n.

Then J˛C1=J˛ is approximated by the subalgebras .Ai \J˛C1/=.Ai \J˛/, see 3.
Since topdim..Ai\J˛C1/=.Ai\J˛// � topdim.Ai / � n, we obtain from the above
Lemma 3 that topdim.J˛C1=J˛/ � n. By Proposition 6,

topdim.A/ D sup
˛<�

topdim.J˛C1=J˛/ � n;

as desired. ut
Remark 3. It is noted in [6, Remark 2.5(v)] that a weaker version of the above
Proposition 8 would follow from [25]. However, the statement is formulated as an
axiom there, and it is not clear that the formulated axioms are consistent and give a
dimension theory that agrees with the topological dimension.

We will now prove that the topological dimension of type I C �-algebras satisfies the
Mardešić factorization axiom (D6). We start with two lemmas.

Lemma 4. Let A be a continuous trace C �-algebra, and let C � A be a separable
sub-C �-algebra. Then there exists a separable, continuous trace sub-C �-algebra
D � A that contains C , and such that the inclusion C � D is proper, and
topdim.D/ � topdim.A/.

Proof. Let us first reduce to the case that A is �-unital, and the inclusion C � A

is proper. To this end, consider the hereditary sub-C �-algebra A0 WD CAC � A.
Since C is separable, it contains a strictly positive element which is then also
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strictly positive in A0. Moreover, having continuous trace passes to hereditary
sub-C �-algebras, see [21, Proposition 6.2.10, p. 199]. Thus, A0 is �-unital and
C � A0 is proper. Moreover, topdim.A0/ � topdim.A/ by Proposition 7.

Thus, by replacing A with CAC, we may assume from now on that A is �-unital
and that the inclusionC � A is proper. SetX WD Prim.A/. By Brown’s stabilization
theorem [3, Theorem 2.8], there exists an isomorphism ˚ WA ˝ K ! C0.X/˝ K.
Let eij 2 K be the canonical matrix units, and consider the following C �-algebra:

E WD C �.
[
i;j

e1i˚.C ˝K/ej1/ � C0.X/˝ e11:

The following diagram shows some of the C �-algebras and maps that we will
construct below:

A˝ e11
[

� A˝K

[

˚

Š
�� C0.X/˝K

[

D

[

� ˚�1.D0/

[
Š
�� C0.Z0/˝K

[

D D0

C ˝ e11 � C ˝K
Š
�� ˚.C ˝K/

Note that E is separable and commutative. Thus, there exists a separable
sub-C �-algebra C0.Y / � C0.X/ such that E D C0.Y / ˝ e11. We constructed E
such that ˚.C ˝K/ � C0.Y /˝K.

The inclusion C0.Y / � C0.X/ is induced by a pointed, continuous map
f WXC ! Y C, see 1. Recall that a compact, Hausdorff space M is metrizable if
and only if C.M/ is separable. Thus, Y C is compact, metrizable.

By Mardešić’s factorization theorem, see [17, Corollary 27.5, p. 159] or [13,
Lemma 4], there exists a compact, metrizable space Z with dim.Z/ � dim.X/ and
continuous (surjective) maps gWX ! Z and hWZ ! Y such that f D h ı g. Set
Z0 WD Z n fg.1/g, and note that g� induces an embedding C0.Z0/ � C0.X/.
Moreover, C0.Z0/ is separable, since Z is compact, metrizable.

Consider D0 WD C0.Z0/ ˝ K. We have that D0 is a separable, continuous trace
C �-algebra such that˚.C˝K/ � C0.Y /˝K � D0, and topdim.D0/ D dim.Z/ �
dim.X/ D topdim.A/. We think of C as included in C ˝K via C Š C ˝ e11. Set

D WD .1 QA ˝ e11/.˚�1.D0//.1 QA ˝ e11/;

which is a hereditary sub-C �-algebra of ˚�1.D0/ Š D0. Hence, D is a separable,
continuous trace C �-algebra with topdim.D/ � topdim.D0/ � topdim.A/.
By construction, C ˝ e11 � D, and this inclusion is proper since D � A ˝ e11
and the inclusion C ˝ e11 � A˝ e11 is proper. ut
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Lemma 5. Let A be a C �-algebra, let J C A be an ideal, and let C � A be a
sub-C �-algebra. AssumeK � J is a sub-C �-algebra that containsC \J and such
that the inclusion C \ J � K is proper. Then K is an ideal in the sub-C �-algebra
C �.K;C / � A generated by K and C . Moreover, there is a natural isomorphism
C �.K;C /=K Š C=.C \ J /.
Proof. Set B WD A=J and denote the quotient morphism by 
WA ! B . Set D WD

.C / � B . Clearly, C �.K;C / contains bothK and C , and it is easy to see that the
restriction of 
 to C �.K;C / maps onto D. The situation is shown in the following
commutative diagram, where the top and bottom rows are exact:

0 �� J �� A



�� B �� 0

K ��

[

C �.K;C /

[

�� D

[

0 �� C \ J
[

�� C

[

�� D

jj

�� 0

Let us show that K is an ideal in C �.K;C /. Since C �.K;C / is generated by
elements of K and C , it is enough to show that xy and yx lie in K whenever x 2 K
and y 2 K or y 2 C . For y 2 K that is clear, so assume y 2 C .

Since C \ J � K is proper, for any " > 0 there exists c 2 C \ J such that
kcxc � xk < ". Then kxy � cxcyk; kyx � ycxck < "kyk. Moreover, cxcy 2 K and
ycxc 2 K since cy; yc 2 C \J � K . For " > 0 was arbitrary, it follows xy; yx 2 K .
This shows that the middle row in the above diagram is also exact. ut
Proposition 9. Let A be a C �-algebra, let J C A be an ideal of type I, and let
C � A be a separable sub-C �-algebra. Then there exists a separable
sub-C �-algebraD � A such that C � D and topdim.D \ J / � topdim.J /.

Proof. Let .J˛/˛�� be a composition series for J with successive quotients that
have continuous trace. To simplify notation, we will writeBŒ˛; ˇ/ for .B\Jˇ/=.B\
J˛/ and BŒ˛;1/ for B=.B \ J˛/ whenever B � A is a subalgebra and ˛ � ˇ � �
are ordinals. In particular, AŒ0; ˇ/ D Jˇ and AŒ˛;1/ D A=J˛. We prove the
statement of the proposition by transfinite induction over �, which we carry out
in three steps.

Step 1: The statement holds for � D 0. This follows since J is assumed to have
a composition series with length 0 and so J D f0g and we can simply set D WD C .

Step 2: If the statement holds for a finite ordinal n, then it also holds for nC 1.
To prove this, assume J has a composition series .J˛/˛�nC1. Let d WD

topdim.J /. Given C � A separable, we want to find a separable subalgebraD � A
with C � D and topdim.DŒ0; nC 1// � d . The following commutative diagram,
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whose rows are short exact sequences, contains the algebras and maps that we will
construct below:

0 �� AŒ0; 1/ �� A �� AŒ1;1/ �� 0

0 �� EŒ0; 1/ ��

[

E ��

[

E 0 ��

[

0

0 �� C Œ0; 1/

[

�� C

[

�� C Œ1;1/ ��

[

0

Consider AŒ1;1/ together with the ideal AŒ1; nC 1/ D J Œ1; nC 1/. Note that
AŒ1; nC 1/ has the canonical composition series .AŒ1; ˛//1�˛�nC1 of length n. By
assumption of the induction, the statement holds for n, and so there is a separable
sub-C �-algebra E 0 � AŒ1;1/ such that C Œ1;1/ � E 0 and topdim.E 0 \ AŒ1; nC
1// � topdim.AŒ1; nC 1// � d . Find a separable sub-C �-algebra E � A such that
C � E and EŒ1;1/ D E 0.

We apply Lemma 4 to the inclusion EŒ0; 1/ � AŒ0; 1/ to find a separable
sub-C �-algebra K � AŒ0; 1/ containing EŒ0; 1/ and such that the inclusion
EŒ0; 1/ � K is proper, and topdim.K/ � topdim.AŒ0; 1// � d . Set D WD
C �.K;E/ � A, which is a separable C �-algebra with C � D. By Lemma 5,
D is an extension of E by K , and therefore Proposition 6 gives:

topdim.DŒ0; nC 1// D maxftopdim.DŒ0; 1//; topdim.DŒ1; nC 1//g
D maxftopdim.K/; topdim.E 0 \AŒ1; nC 1//g
� d:

Step 3: Assume � is a limit ordinal, and n is finite. If the statement holds for all
˛ < �, then it holds for �C n.

We will prove this by distinguishing the two sub-cases that � has cofinality at
most!, or cofinality bigger than !. We start the construction for both cases together.
Later we will treat them separately. Let d WD topdim.J /.

We will inductively define ordinals ˛k < � and sub-C �-algebras Dk;Ek � A

with the following properties:

1. ˛1 � ˛2 � : : :,
2. Dk � Ek and topdim.EkŒ�; �C n// � d ,
3. Ek � DkC1 and topdim.DkC1Œ0; ˛kC1// � d .

In both Cases 3a and 3b below, we construct Ek from Dk as follows: Given Dk ,
consider DkŒ�;1/ � AŒ�;1/ and the ideal AŒ�; �C n/ C AŒ�;1/ which has a
composition series of length n. Since n < �, we get by assumption of the induction
that there exists a separable subalgebra E 0k � AŒ�;1/ such that DkŒ�;1/ � E 0k
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and topdim.E 0k \AŒ�; �Cn// � d . Let Ek � A be any separable C �-algebra such
that Dk � Ek and EkŒ�;1/ D E 0k .

Case 3a: Assume � has cofinality at most !, i.e., there exist ordinals 0 D �0 <

�1 < �2 < : : : < � such that � D supk �k .
In this case, we let ˛k WD �k , and we set D0 WD C . Given Dk , we construct

Ek as described above. Given Ek , we get DkC1 satisfying 3: by assumption of the
induction.

Case 3b: Assume � has cofinality larger than !.
We start by setting ˛0 WD 0 and D0 WD C . Given Dk , we construct Ek as

described above. Given Ek , we define ˛kC1 as follows:

˛kC1 WD inff˛ j ˛k � ˛ � �; and EkŒ0; ˛/ D EkŒ0; �/g:

Since � has cofinality larger than ! and Ek is separable, we have ˛kC1 < �.
Hence, we get DkC1 satisfying 3: by assumption of the induction.

From now on we treat the Cases 3a and 3b together. SetD WD Sk Dk DSk Ek .
This is a separable sub-C �-algebra of A with C � D. Since DŒ�; � C n/ DS
k EkŒ�; �C n/ and topdim.EkŒ�; �Cn// � d for all k, we get topdim.DŒ�; �C

n// � d from Proposition 8.
One checks that DŒ0; �/ D S

k DkŒ0; ˛k/. Since topdim.DkŒ0; ˛k// � d for
all k, we get topdim.DŒ0; �// � d , again by Proposition 8.

Then Proposition 6 gives:

topdim.DŒ0; �C n// D maxftopdim.DŒ0; �//; topdim.DŒ�; �C n//g � d:

This completes the proof. ut
Corollary 1. The topological dimension of type I C �-algebras satisfies the
Mardešić factorization axiom (D6), i.e., given a type I C �-algebra A and a
separable sub-C �-algebra C � A, there exists a separable C �-algebra D � A

such that C � D � A and topdim.D/ � topdim.A/.

This following theorem is the main result of this paper. It follows immediately from
the above Corollary 1, Propositions 6 and 8.

Theorem 1. The topological dimension is a dimension theory in the sense of
Definition 1 for the class of type I C �-algebras.

8. Let us extend the topological dimension from the class of type I C �-algebras
to all C �-algebras, as defined in Proposition 5. This dimension theory topdimQ W
C � ! N is Morita-invariant since topdim.A/ D topdim.A ˝ K/ for any type I
C �-algebra A.

If topdimQ .A/ < 1, then A is in particular approximated by type I sub-C �-
algebras. This implies that A is nuclear, satisfies the universal coefficient theorem
(UCT), see [8, Theorem 1.1], and is not properly infinite. It is possible that this
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dimension theory is connected to the decomposition rank and nuclear dimension,
although the exact relation is not clear.

Let us show that the (extended) topological dimension behaves well with respect
to tensor products. First, if A;B are separable, type I C �-algebras, then Prim.A˝
B/ Š Prim.A/ � Prim.B/, see [1, IV.3.4.25, p. 390]. This implies:

topdim.A˝ B/ � topdim.A/C topdim.B/:

Next, assume A;B are C �-algebras with topdimQ .A/ D d1 < 1 and
topdimQ .B/ D d2 < 1. This means that A is approximated by separable, type I
algebras Ai � A with topdim.Ai / � d1, and similarly B is approximated by
separable, type I algebras Bj � B with topdim.Bj / � d2. Then A ˝ B is
approximated by the algebras Ai ˝ Bj , and we have seen that topdim.Ai ˝ Bj / �
d1 C d2. Thus:

topdimQ .A˝ B/ � topdimQ .A/C topdimQ .B/:

Note that we need not specify the tensor product, since topdimQ .A/ < 1 implies
that A is nuclear.

16.5 Dimension Theories of Type I C �-Algebras

In this section we study the relation of the topological dimension of type I
C �-algebras to other dimension theories. It was shown by Brown [4, Theorem 3.10],
how to compute the real and stable rank of a CCR algebra A in terms of the
topological dimension of certain canonical algebras Ak associated to A. We use
this to obtain a general estimate of the real and stable rank of a CCR algebra in
terms of its topological dimension, see Corollary 2. Using the composition series of
a type I C �-algebra, we will obtain similar (but weaker) estimates for general type I
C �-algebras, see Theorem 3.

Let A be a C �-algebra. We denote by rr.A/ its real rank, see [5], by sr.A/ its
stable rank, and by csr.A/ its connected stable rank, see [22, Definition 1.4, 4.7]
We denote by Ak the successive quotient of A that corresponds to the irreducible
representations of dimension k.

If t is a real number, we denote by btc the largest integer n � t , and by dte the
smallest integer n 	 t .
Theorem 2 (Brown [4, Theorem 3.10]). Let A be a CCR algebra with
topdim.A/ <1. Then:

1. If topdim.A/ � 1, then sr.A/ D 1.

2. If topdim.A/ > 1, then sr.A/ D supk�1 maxf
l

topdim.Ak/C2k�1
2k

m
; 2g.

3. If topdim.A/ D 0, then rr.A/ D 0.
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4. If topdim.A/ > 0, then rr.A/ D supk�1 maxf
l

topdim.Ak/
2k�1

m
; 1g.

We may draw the following conclusion:

Corollary 2. Let A be a CCR algebra. Then:

sr.A/ �
�

topdim.A/

2

�
C 1; (16.4)

csr.A/ �
�

topdim.A/C 1
2

�
C 1; (16.5)

rr.A/ � topdim.A/: (16.6)

Proof. If topdim.A/ D 1, then the statements hold. So we may assume
topdim.A/ <1, whence we may apply [4, Theorem 3.10], see Theorem 2.

Let us show (16.4). If topdim.A/ � 1, then sr.A/ D 1 � btopdim.A/=2cC 1 . If
d WD topdim.A/ 	 2, then we use topdim.Ak/ � d to compute:

sr.A/ � sup
k

maxf
�
d C 2k � 1

2k

�
; 2g � maxf

�
d C 1
2

�
; 2g �

�
d

2

�
C 1:

Now (16.5) follows from (16.4) since csr.A/ � sr.A˝ C.Œ0; 1�// in general, by
Nistor [19, Lemma 2.4], and topdim.A˝ C.Œ0; 1�// � topdim.A/C 1, see 8.

In order to show (16.6), we again use [4, Theorem 3.10], see Theorem 2. If
topdim.A/ D 0, then rr.A/ D 0 � topdim.A/ . If d WD topdim.A/ 	 1, then
we use topdim.Ak/ � d to compute:

rr.A/ � sup
k

maxf
�

d

2k � 1
�
; 1g � maxfdde ; 1g � d;

which completes the proof. ut
Remark 4. What makes type I C �-algebras so accessible is the presence of compo-
sition series with successive quotients that are easier to handle (i.e., of continuous
trace or CCR), see 6. They allow us to prove statements by transfinite induction,
for which one has to consider the case of a successor and limit ordinal. Let us see
that for statements about dimension theories one only needs to consider successor
ordinals.

Let .J˛/˛�� be a composition series, and d a dimension theory. If ˛ is a limit
ordinal, then J˛ D S�<˛ J� , and we obtain:

d.J˛/ �.D5/ sup
�<˛

d.J�/ �.D1/ sup
�<˛

d.J˛/;

and thus d.J˛/ D sup�<˛ d.J� /.
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Thus, any reasonable estimate about dimension theories that holds for � < ˛ will
also hold for ˛. It follows that we only need to consider a successor ordinal ˛, in
which case A D J˛ is an extension of B D J˛=J˛�1 by I D J˛�1. By assumption
the result is true for I and has to be proved for A (using that B has continuous trace
or is CCR). This idea is used to prove the next theorem.

Theorem 3. Let A be a type I C �-algebra. Then:

sr.A/ �
�

topdim.A/C 1
2

�
C 1; (16.7)

rr.A/ � topdim.A/C 2: (16.8)

Proof. Let .J˛/˛�� be a composition series for A such that the successive quotients
are CCR algebras. We will prove (16.7) by transfinite induction over �.

Set d WD topdim.A/. Assume the statement holds for some ordinal �, and let us
show it also holds for � C 1. Consider the ideal I WD J� inside A D J�C1. We
obtain the following, where the first estimate follows from [22, Theorem 4.11], and
the second estimate follows by assumption of the induction for I and Corollary 2
for the CCR algebra A=I :

sr.A/ � maxfsr.I /; sr.A=I /; csr.A=I /g

� maxf
�
d C 1
2

�
C 1;

�
d

2

�
C 1;

�
d C 1
2

�
C 1g

D
�
d C 1
2

�
C 1:

Let � be a limit ordinal, and assume the statement holds for ˛ < �. This means

that sr.J˛/ �
j

topdim.J˛/C1
2

k
C1 for all ˛ < �. As explained in Remark 4, we obtain

the desired estimate for � as follows:

sr.J�/ D sup
˛<�

sr.J˛/ � sup
˛<�

�
topdim.J˛/C 1

2

�
C 1 D

�
topdim.J�/C 1

2

�
C 1:

Finally, (16.8) follows from (16.7), using the estimate rr.A/ � 2sr.A/�1, which
holds for all C �-algebras, see [5, Proposition 1.2]. ut
Remark 5. It follows from [22, Proposition 1.7], Corollary 2, and Theorem 3 that
we may estimate the stable rank of a C �-algebra A in terms of its topological
dimension as follows:

1. sr.A/ D
j

topdim.A/
2

k
C 1, if A is commutative.

2. sr.A/ �
j

topdim.A/
2

k
C 1, if A is CCR.

3. sr.A/ �
j

topdim.A/C1
2

k
C 1, if A is type I.
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This also shows that the inequality for the stable rank in Corollary 2 cannot be
improved (the same is true for the estimates of real rank and connected stable rank).

To see that the estimate of Theorem 3 for the stable rank cannot be improved
either, consider the Toeplitz algebra T . We have sr.T / D 2, while topdim.T / D 1.
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