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Preface

In May 2012, 42 mathematicians congregated in the beautiful seclusion offered by
Gjoégv, a small community on the Faroese island Eysturoy, to create a productive
scientific event centered between the mathematical fields of operator algebras and
dynamical systems. Experiencing both the force of the Atlantic Ocean and the
tranquil beauty of sunny pastures, the participants enjoyed the hospitality of the
Gjdargardur guest house as well as of the University of the Faroe Islands for almost
a week, exchanging mathematical ideas and results at lectures as well as at more
informal occasions.

The conference marked the conclusion of a 3-year program made possible by
the generous support of the NordForsk program funded by the Nordic Research
Council, involving 60 mathematicians in Denmark, the Faroe Islands, Norway,
and Sweden. The Gjogv meeting was also generously supported by the Faroese
Research Council and the University of the Faroe Islands as well as by the Centre
for Symmetry and Deformation at the University of Copenhagen. The organizers
of the conference were the group leaders of the nodes of the NordForsk network,
namely, Toke Meier Carlsen [Trondheim], Sgren Eilers [Copenhagen], Nadia Larsen
[Oslo], Gunnar Restorff [Térshavn], Sergei Silvestrov [Visteras/Lund], Wojciech
Szymanski [Odense], Klaus Thomsen [Aarhus], and Lyudmila Turowska [Gothen-
burg], with Restorff acting as the local organizer in charge of the rather nontrivial
logistics for this memorable event.

Apart from members of the network, senior and junior alike, the organizing
committee invited five external speakers:

¢ (Claire Anantharaman-Delaroche [Orléans]
» Siegfried Echterhoff [Miinster]

* Wolfgang Krieger [Heidelberg]

¢ Efren Ruiz [Hilo, Hawaii]

¢ Dana Williams [Dartmouth]
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Fig. 1 The grass-roofed guesthouse Gjdargardur

The interplay between operator algebras and dynamical systems, the scientific
focus of both the NordForsk network and the conference, is a topic of dramatic
current interest. These two areas benefited from the genius of John von Neumann
in their early days, but have developed independently over the decades following
World War II. The network aimed to steer the force resulting from the leading
international position of Nordic mathematics in the area of operator algebras in the
direction of the exciting cross field at the boundary of dynamics and functional
analysis, the main goal being to understand and analyze C*-algebras and von
Neumann algebras associated to dynamics, as well as to develop the relevant
concepts in dynamics.

This volume documents some of the substantial progress made by the network,
which existed for almost 3 years prior to the closing conference. However, the
network’s impact on Nordic mathematics will be felt for some time, in particular
due to the strong scientific ties forged between the NordForsk network members
and the eight nodes as a result of conferences such as the one in Gjégv and the
many personal visits by researchers in the network to other nodes.

There are many ways in which operator algebra and dynamics interact and during
the existence of the NordForsk network several or perhaps even most of these
interactions were explored at meetings or focused visits. The individual chapters
of this proceedings volume illustrate several of these interactions. Chapter 1 deals
with von Neumann algebras arising from discrete measured groupoids, Chap. 2 with
purely infinite Cuntz-Krieger algebras, and Chap. 3 with filtered K -theory over finite
topological spaces, whereas C*-algebras associated to shift spaces (or subshifts)
is the topic of Chap.4. Graph C*-algebras are studied in Chaps.5 and 7, and in
Chap. 6 irrational extended rotation algebras are shown to be C *-alloys. Chapter 8
deals with free probability and Chap. 9 with renewal systems, whereas KMS-states
of Cuntz-algebras are used in Chap. 10 to give a new proof of the Grothendieck
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Fig. 2 Group photo of the participants.

Back row: Wolfgang Krieger [Heidelberg], Sgren Eilers [Copenhagen], Hannes Thiel [Copen-
hagen/Miinster], Tron Omland [Trondheim], Johan Oinert [Copenhagen], Sigurd Segtnan [Oslo],
Sgren Knudby [Copenhagen], Séren Moller [Odense], Nadia Larsen [Oslo], Klaus Thomsen
[Aarhus], James Gabe [Copenhagen], Tim de Laat [Copenhagen], Efren Ruiz [Hawaii Hilo], Jonas
Andersen Seebach [Aarhus], Sara E. Arklint [Copenhagen], Fredrik Ekstrom [Lund], Johan Richter
[Lund].

Middle row: Maria Ramirez-Solano [Copenhagen], Gunnar Restorft [Térshavn], Dana Williams
[Dartmouth], Sergei Silvestrov [Visterds], Magnus Landstad [Trondheim], Toke Meier Carlsen
[Trondheim], Eduard Ortega [Trondheim], Rasmus Bentmann [Copenhagen], Rune Johansen
[Copenhagen], Adam P.W. Sgrensen [Copenhagen/Wollongong], Steven Deprez [Copenhagen],
Alexander Stolin [Gothenburg].

Front row: George A. Elliott [Copenhagen/Toronto], Erling Stgrmer [Oslo], Rui Palma [Oslo],
Siegfried Echterhoff [Miinster], Claire Ananthataman-Delaroche [Orléans], Martin Wanvik
[Trondheim], Wojciech Szymanski [Odense], Jesper With Mikkelsen [Odense], Lyudmila Tur-
owska [Gothenburg], Jyotishman Bhowmick [Oslo], Asger Tornquist [Copenhagen]

theorem for jointly completely bounded bilinear forms on C *-algebras. In Chap. 11,
Cuntz-Li algebras associated with the a-adic numbers are constructed as crossed
products, and in Chap. 12, crossed products of injective endomorphisms (the so-
called Stacey crossed products) are studied. In Chap. 13, another type of operator
algebras associated to dynamical systems, namely, C*-completions of the Hecke
algebra of a Hecke pair, is studied, whereas Chap. 14 gives an overview on how
operator algebras can be used to study wavelets. Finally, Chap.15 deals with
semiprojective C *-algebras, and in Chap. 16, the topological dimension of type I
C *-algebras is studied.
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Fig. 3 View from the pass Skdvadalsskard south of the village Gjégv

Fig. 4 View of the village Gjogv

We extend our deep-felt thanks to all the people who made this volume
possible—authors, referees, and the technical staff at Springer—as well as the
Nordic Research Council, the Faroese Research Council, the University of the Faroe
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Fig. 5 The sail-vessel
Nordlysid seen out through
the opening of a grotto on the
west shore of the island
Hestur during a boat trip.
After the boat trip, an official
reception was held by the
University of the Faroe
Islands in Térshavn followed
up by a public lecture about
mathematics by Sgren Eilers

Islands, and the Centre for Symmetry and Deformation in Copenhagen for providing
essential funding for the closing conference.

Trondheim, Norway Toke Meier Carlsen
Copenhagen, Denmark Seren Eilers
Torshavn, Faroe Islands Gunnar Restorff
Visteras, Sweden Sergei Silvestrov

June 2013
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Chapter 1
The Haagerup Property for Discrete Measured
Groupoids

Claire Anantharaman-Delaroche

Abstract We define the Haagerup property in the general context of countable
groupoids equipped with a quasi-invariant measure. One of our objectives is to
complete an article of Jolissaint devoted to the study of this property for probability
measure preserving countable equivalence relations. Our second goal, concerning
the general situation, is to provide a definition of this property in purely geometric
terms, whereas this notion had been introduced by Ueda in terms of the associated
inclusion of von Neumann algebras. Our equivalent definition makes obvious the
fact that treeability implies the Haagerup property for such groupoids and that it is
not compatible with Kazhdan’s property (T).

Keywords Haagerup property ¢ Groupoid ¢ Kazhdan property (T) ¢ The von

Neumann algebra of a measured groupoid

Mathematics Subject Classification (2010): 46155, 37A15, 22A22, 20F65.

1.1 Introduction

Since the seminal paper of Haagerup [15], showing that free groups have the (now
so-called) Haagerup property, or property (H), this notion plays an increasingly
important role in group theory (see the book [10]). A similar property (H) has been
introduced for finite von Neumann algebras [11, 12] and it was proved in [11] that a

C. Anantharaman-Delaroche (D<)

Laboratoire MAPMO — UMRG6628, Fédération Denis Poisson (FDP — FR2964), CNRS/Université
d’Orléans, B. P. 6759, F-45067 Orléans Cedex 2, France

e-mail: claire.anantharaman @univ-orleans.fr
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2 C. Anantharaman-Delaroche

countable group I" has property (H) if and only if its von Neumann algebra L(I")
has property (H).

Later, given a von Neumann subalgebra A of a finite von Neumann algebra M,
a property (H) for M relative to A has been considered [9,25] and proved to be very
useful. It is in particular one of the crucial ingredients used by Popa [25], to provide
the first example of a I I; factor with trivial fundamental group.

A discrete (also called countable) measured groupoid (G, ;) with set of units X
(see Sect. 1.2.1) gives rise to an inclusion A C M, where A = L*°(X,pn)and M =
L(G, p) is the von Neumann algebra of the groupoid. This inclusion is canonically
equipped with a conditional expectation E4 : M — A. Although M is not always a
finite von Neumann algebra, there is still a notion of property (H) relative to A and
E 4 (see [32]). However, to our knowledge, this property has not been translated in
terms only involving (G, i), as in the group case. A significant exception concerns
the case where G = Z is a countable equivalence relation on X, preserving the
probability measure u, i.e. a type I, equivalence relation [18].

Our first goal is to extend the work of Jolissaint [18] in order to cover the general
case of countable measured groupoids, and in particular the case of group actions
leaving a probability measure quasi-invariant. Although it is not difficult to guess
the right definition of property (H) for (G, i) (see Definition 8), it is more intricate
to prove the equivalence of this notion with the fact that L(G, ) has property (H)
relative to L°(X, ).

We begin in Sect. 1.2 by introducing the basic notions and notation relative to
countable measured groupoids. In particular we discuss the Tomita-Takesaki theory
for their von Neumann algebras. This is essentially a reformulation of the pioneering
results of P. Hahn [16] in a way that fits better for our purpose. In Sect. 1.3 we
discuss in detail several facts about the von Neumann algebra of the Jones’ basic
construction for an inclusion A C M of von Neumann algebras, assuming that A4 is
abelian. We also recall here the notion of relative property (H) in this setting.

In Sects. 1.4 and 1.5, we study the relations between positive definite functions
on our groupoids and completely positive maps on the corresponding von Neumann
algebras. These results are extensions of well known results for groups and of results
obtained by Jolissaint in [18] for equivalence relations, but additional difficulties
must be overcome. After this preliminary work, it is immediate (Sect. 1.6) to show
the equivalence of our definition of property (H) for groupoids with the definition
involving operator algebras (Theorem 1).

Our main motivation originates from the reading of Ueda’s paper [32] and
concerns treeable groupoids. This notion was introduced by Adams for probability
measure preserving countable equivalence relations [1]. Treeable groupoids may be
viewed as the groupoid analogue of free groups. So a natural question, raised by
C.C. Moore in his survey [22, p. 277] is whether a treeable equivalence relation
must have the Haagerup property. In fact, this problem is solved in [32] using
operator algebras techniques. In Ueda’s paper, the notion of treeing is translated
in an operator algebra framework regarding the inclusion L*°(X, u) C L(G, ),
and it is proved that this condition implies that L (G, ) has the Haagerup property
relative to L°(X, ).
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Our approach is opposite. For us, it seems more natural to compare these two
notions, treeability and property (H), purely at the level of the groupoid. Indeed, the
definition of treeability is more nicely read at this level: roughly speaking, it means
that there is a measurable way to endow each fibre of the groupoid with a structure
of tree (see Definition 13). The direct proof that treeability implies property (H) is
given in Sect. 1.7 (Theorem 3).

Using our previous work [6] on groupoids with property (T), we prove in
Sect. 1.8 that, under an assumption of ergodicity, this property is incompatible with
the Haagerup property (Theorem 5). As a consequence, we recover the result of
Jolissaint [18, Proposition 3.2] stating that if I" is a Kazhdan countable group which
acts ergodically on a Lebesgue space (X, i) and leaves the probability measure p
invariant, then the orbit equivalence relation (%, ) has not the Haagerup property
(Corollary 3). A fortiori, (Zr, i) is not treeable, a result due to Adams and Spatzier
[2, Theorem 18] and recovered in a different way by Ueda.

This text is an excerpt from the survey [7] which was not intended for publication.

1.2 The von Neumann Algebra of a Measured Groupoid

1.2.1 Preliminaries on Countable Measured Groupoids

Our references for measured groupoids are [8, 16,27]. Let us recall that a groupoid
is a set G endowed with a product (y, ') > yy’ defined on a subset G of G x G,
called the set of composable elements, and with an inverse map y > y !, satisfying
the natural properties expected for a product and an inverse such as associativity. For
every y € G, we have that (y~!,y) € G® and if (y,y") € G®, then y~'(yy’) =
(y"'y)y =y (and similarly (yy")y'™" = y(y'y'™") = y). Wesetr(y) = yy~',
s(y) = y~ly and G© = r(G) = s(G). The maps r and s are called respectively
the range and the source map. The pair (y, y’) is composable if and only if s(y) =
r(y’) and then we have r(yy’) = r(y) and s(yy’) = s(y’). The set G is called
the unit space of G. Indeed, its elements are units in the sense that y s(y) = y and
r(y)y =v.

The fibres corresponding to r, s : G — G© are denoted respectively by G* =
r~!(x) and G, = s~'(x). Given a subset A of G, the reduction of G to A is
the groupoid G|, = r~'(4) N s7'(A4). Two elements x, y of G are said to be
equivalent if G* N G, # 0. We denote by % this equivalence relation. Given
A C GO, its saturation [A] is the set s(r~'(A)) of all elements in G© that are
equivalent to some element of A. When A = [A], we say that A is invariant.

A Borel groupoid is a groupoid G endowed with a standard Borel structure such
that the range, source, inverse and product are Borel maps, where G @ has the Borel
structure induced by G x G and G has the Borel structure induced by G. We say
that G is countable (or discrete) if the fibres G* (or equivalently G, ) are countable.
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In the sequel, we only consider such groupoids. We always denote by X the
set GO of units of G. A bisection S is a Borel subset of G such that the
restrictions of r and s to S are injective. A useful fact, consequence of a theorem
of Lusin-Novikov, states that, since r and s are countable-to-one Borel maps
between standard Borel spaces, there exists a countable partition of G into bisections
(see [20, Theorem 18.10]).

Let  be a probability measure on X = G©). We define a o-finite measure v on
G by the formula

/de—/ 3 F()/)) dpe(x) (1.1)

{yeG:s(y)=x}

for every non-negative Borel function ¥ on G. The fact that x > 3 ¢ . ()1 F(¥)
is Borel is proved as in [14, Theorem 2] by using a countable partition of G by Borel
subsets on which s is injective.

We say that u is quasi-invariant if v is equivalent to it image v~ under
y + ! In other terms, for every bisection S, one has w(s(S)) = 0 if and
only if pL(r (S)) = 0. This notion only depends on the measure class of . We set
§ = 4—. Whenever v = v~!

, we say that u is invariant.

Definition 1. A countable (or discrete) measured groupoid' (G, i) is a countable
Borel groupoid G with a quasi-invariant probability measure i on X = G©.,

In the rest of this paper, G will always be equipped with the corresponding
o-finite measure v defined in (1.1).

Example 1. (a) Let I’ ~, X be a (right) action of a countable group I" on a
standard Borel space X, and assume that the action preserves the class of a
probability measure p. Let G = X x I" be the semi-direct product groupoid.
We have r(x,t) = x and s(x,t) = xtz. The product is given by the formula
(x,8)(xs,t) = (x, st). Equipped with the quasi-invariant measure i, (G, ) is
a countable measured groupoid. As a particular case, we find the group G = I”
when X is reduced to a point.

(b) Another important family of examples concerns countable measured equiva-
lence relations. A countable Borel equivalence relation # C X x X on a
standard Borel space X is a Borel subset of X x X whose equivalence classes
are finite or countable. It has an obvious structure of Borel groupoid with
r(x,y) = x, s(x,y) = y and (x,y)(x,z) = (x,z). When equipped with
a quasi-invariant probability measure p, we say that (%, ) is a countable
measured equivalence relation. Here, quasi-invariance also means that for every
Borel subset A C X, we have u(4) = 0 if and only if the measure of the
saturation s(r~!(A)) of A is still 0.

In [8], a countable measured groupoid is called r-discrete. Another difference is that we have
swapped here the definitions of v and v™!
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The orbit equivalence relation associated with an action I ~, (X, ) is
denoted (Z, ).

A general groupoid is a combination of an equivalence relation and groups.
Indeed, let (G, ) be a countable measured groupoid. Let ¢ = (7,s) be the map
y > (r(y),s(y)) from G into X x X. The range of c is the graph %Z¢ of
the equivalence relation induced on X by G. Moreover (Zg, |t) is a countable
measured equivalence relation. The kernel of the groupoid homomorphism c is
the subgroupoid {y € G : s(y) = r(y)}. For every x € X, the subset
G(x) = s7'(x) N r~(x), endowed with the induced operations, is a group, called
the isotropy group at x. So the kernel of ¢ is the bundle of groups x — G(x) over
X, called the isotropy bundle, and G appears as an extension of the equivalence
relation Z by this bundle of groups.

A reduction (G),, j4|,,;) such that U is conull in X is called inessential. Since we
are working in the setting of measured spaces, it will make no difference to replace
(G, ) by any of its inessential reductions.

1.2.2 The von Neumann Algebra of (G, )

If f : G — Cis a Borel function, we set

1Al =max 3 {x = D> 1 /I . |x—> > 10

r(y)=x o s()=x o

Let /(G) be the set of functions such that || f||; < +oo. It only depends on the
measure class of . We endow 1(G) with the (associative) convolution product

(S = Y. fg= Y., forHem)= Y. fagbi'y.

Yin2=y s(y)=s(y2) r(y)=r(y)

and the involution f*(y) = f(y~).

We have 1(G) C L'(G,v) N L®(G,v) C L*(G,v), with || f||; < || f]l; when
f € I(G). Therefore |-||; is a norm on /(G ), where two functions which coincide
v-almost everywhere are identified. It is easily checked that /(G) is complete for
this norm. Moreover for f, g € I(G) we have || f * g|; < || fl;llgll;. Therefore
(Z(G), |I:ll;) is a Banach *-algebra.

This variant of the Banach algebra /(G) introduced by Hahn [16] has been
considered by Renault in [29, p. 50]. Its advantage is that it does not involve the
Radon-Nikodym derivative §.

For f € I1(G) we define a bounded operator L( f) on L*(G,v) by

(LNEY) = *OW) = Y. fEQ). (12)

Y1iy2=y
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We have |[L(/)I| < [ fll;, L(f)* = L(f*)and L(f)L(g) = L(f*g).Hence,
L is a representation of /(G), called the left regular representation.

Definition 2. The von Neumann algebra of the countable measured groupoid
(G, ) is the von Neumann subalgebra L(G,u) of Z(L*(G,v)) generated by
L(I(G)). It will also be denoted by M in the rest of the paper.

Note that L?(G, v) is a direct integral of Hilbert spaces :

L2G.v) = / % 26 du().
X

We define on L?(G, v) a structure of L>®(X)-module by (f£)(y) = f os(y)E(y),
where f € L%°(X) and £ € L?*(G,v). In fact L®°(X) is the algebra of
diagonalizable operators with respect to the above disintegration of L>(G, v).

Obviously, the representation L commutes with this action of L*°(X). It follows
that the elements of L (G, u) are decomposable operators ([13, Theorem 1, p. 164]).
We have L(f) = f;e L,(f)du(x), where L,(f) : £2(G,) — €*(G,) is defined
as in (1.2), but for &£ € £%(G,).

Let C, = {1/n < § <n}. Then (C,) is an increasing sequence of measurable
subsets of G with U,C, = G (up to null sets). We denote by I,,(G) the set
of elements in /(G) taking value O outside C, and we set Ioo(G) = U, I,(G).
Obviously, I5(G) is an involutive subalgebra of I(G). It is easily checked that
I5(G) is dense into L?(G, v) and that L(G, p) is generated by L(Io(G)).

The von Neumann algebra L°°(X) is isomorphic to a subalgebra of /o,(G), by
giving to f € L (X) the value 0 outside X C G. Note that, for £ € L*(G,v),

(L) = for(y)E®m).

In this way, A = L°°(X) appears as a von Neumann subalgebra of M.

Obviously, the pair A C M only depends on the measure class of i, up to unitary
equivalence.

We view I(G) as a subspace of L?(G, v). The characteristic function 1y of X C
G is a norm one vector in L?(G, v). Let ¢ be the normal state on M defined by

o(T) = (1x, T1x)2G.0)-
For f € I(G),wehave o(L(f)) = fX f(x)du(x), and therefore, for f, g € I1(G),

P(L(f)"L(8) = (f.&)12G.m)- (1.3)

Lemma 1. Let g be a Borel function on G such that §$~'/*g = f € I(G) (for
instance g € Ioo(G)). Then &€ > £ * g is a bounded operator on L*>(G,v). More
precisely, we have

1€+ glly < 1/ 1EN-

Proof. Straightforward. O
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We set R(g)(§) = & x g. We have L(f) o R(g) = R(g) o L(f) for every
g € Ix(G) and f € I(G). We denote by R(G, t) the von Neumann algebra
generated by R(10(G)).

Lemma 2. The vector 1y is cyclic and separating for L(G, u), and therefore ¢ is
a faithful state.

Proof. Immediate from the fact that L(f) and R(g) commute for f, g € I(G),
with L(f)1x = f and R(g)1x = g, and from the density of /o, (G) into L*(G, v).
O

The von Neumann algebra L(G, ) is on standard form on L2(G, v), canonically
identified with L2(M, ¢) (see (1.3)). We identify M with a dense subspace of
L*(G,v) by T T = T (1x). The modular conjugation J and the one-parameter
modular group o relative to the vector 1y (and ¢) have been computed in [16]. With
our notations, we have

VEe L*(G.v). (JE©) =8
and
VT € L(G, ), o(T)=8"T§".

Here, for ¢ € R, the function § acts on L*(G, v) by pointwise multiplication and
defines a unitary operator. Note that for f € L(G, ), we have §"L(f)§~" =
L(8" f). In particular, o acts trivially on A. Therefore (see [31]), there exists a
unique faithful conditional expectation E4 : M — A such that ¢ = ¢ o E 4, and for
T € M, we have

EA(T) = es(D),

where e 4 is the orthogonal projection from L?(G, v) onto L?(X, ). If we view the
elements of M as functions on G, then E 4 is the restriction map to X. The triple
(M, A, E 4) only depends on the class of u, up to equivalence.

For f € I(G) and £ € L*(G,v) we observe that

(JL(f)J)E = R(g)E =E*g with g=68"7f* (1.4)

1.3 Basic Facts on the Module L*(M) 4

We consider, in an abstract setting, the situation we have met above. Let A C M be
a pair of von Neumann algebras, where A = L°°(X, u) is abelian. We assume the
existence of a normal faithful conditional expectation E4 : M — A and we set ¢ =
7,0 E 4, where 7, is the state on A defined by the probability measure . Recall that
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M is on standard form on the Hilbert space L?(M, ¢) of the Gelfand-Naimark-Segal
construction associated with ¢. We view L?(M, ¢) as a left M -module and a right
A-module. Identifying> M with a subspace of L?>(M, ¢), we know that E 4 is the
restriction to M of the orthogonal projection e : L*(M, ) — L*(A, 1,,).

For further use, we make the following observation

Vm € M,Ya € A, ma = Ja*Jm = ma = ma. (1.5)

Indeed, if S is the closure of the map m +— m* andif S = JAY2 = A2 ] is
its polar decomposition, then every a € A commutes with A since it is invariant
under 0. Then (1.5) follows easily. Note that (1.4) gives a particular case of this
remark.

1.3.1 The Commutant (M, e 1) of the Right Action

The algebra of all operators which commute with the right action of A is the von
Neumann algebra of the basic construction for A C M. It is denoted (M, e )
since it is generated by M and e4. The linear span of {m e m;:m|,m, € M}
is a x-subalgebra which is weak operator dense in (M, e4). Moreover (M, e4) is a
semi-finite von Neumann algebra, carrying a canonical normal faithful semi-finite
trace Tr,, (depending on the choice of 1), defined by

Tr(mieqms) = / E (moymy)dp = @(momy).
X

(for these classical results, see [19, 24]). We shall give more information on this
trace in Lemma 4 and its proof. We need some preliminaries.

Definition 3. A vector £ € L*>(M, ¢) is A-bounded if there exists ¢ > 0 such that
léall, < cty(a*a)l/? forevery a € A.

We denote by L2(M, ¢)°, or £*(M, ¢), the subspace of A-bounded vectors.
It contains M. We also recall the obvious fact that T + T'(1,) is an isomorphism
from the space B(L*(A, t,) 4, L*(M, ¢)4) of bounded (right) A-linear operators
T : L*(A,t,) — L*(M, ¢) onto £*(M, ). For & € £*(M, ), we denote by L
the corresponding operator from L2(A, 7, into L?(M, ¢). In particular, form € M,

we have L,, = M It is easy to see that £2(M, ¢) is stable under the actions
'rll

of (M,e4) and A, and that L1¢, = T o Lgoa for T € (M,ey), § € L*(M,¢),
aeA.

2When necessary, we shall write /7 the element m € M, when viewed in L? (M, @), in order to
stress this fact.
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For £,n € £*(M, ¢), the operator L;‘L,7 € B(L*(A,t,)) is in A, since it
commutes with 4. We set (§,n), = L;Ln. In particular, we have (m;,my), =
E 4(mTmy) for mi,m, € M. The A-valued inner product (§,7n), = L;L,, gives to
Z%(M, @) the structure of a self-dual Hilbert right A-module [23]. It is a normed
space with respect to the norm [|&| g2(5y = ({5, €) 4 ||11/2. Note that

161 T2 0y = T (5. 6).0) < IEN 2 ary-

On the algebraic tensor product £%(M, ¢) ® L*(A) a positive hermitian form is
defined by

E® fn®g) =/ng<s,n>Adu.

The Hilbert space .£?(M, ¢) ®4 L*(A) obtained by separation and completion
is isomorphic to L2(M, ¢) as a right A-module by £ ® f + &£f. Moreover the
von Neumann algebra %(£?*(M,¢)4) of bounded A-linear endomorphisms of
£*(M, ¢) is isomorphic to (M,e4) by T + T ® 1. We shall identify these two
von Neumann algebras (see [23, 30] for details on these facts).

Definition 4. An orthonormal basis of the A-module L*(M, ¢) is a family (£;) of
elements of £?(M, ¢) such that ), § A = L*(M, ¢) and (g,-, gj)A = §; jp; forall
i, j, where the p; are projections in A.

Itis easily checked that Ly L;‘i is the orthogonal projection on & A, and that these
projections are mutually orthogonal with ), L, Lé’fi =1.

Using a generalization of the Gram-Schmidt orthonormalization process, one
shows the existence of orthonormal bases (see [23]).

Lemma 3. Let (&) be an orthonormal basis of the A-module L*(M, ¢). For every
£ € L2(M, @), we have (weak* convergence)

(E.E) g =D (E.E) (6. E) . (1.6)

Proof. Indeed

(E)q=LfLe =LY LgLI)Le =Y (LFLe)(LELe) = Y (E.E)4(6i.6) 4-

1

Lemma 4. Let (§;)ic; be an orthonormal basis of the A-module L>(M, ¢).

1. Forevery x € (M,e4), we have

Tra(x) = 3 wul(E X&) = D (6 xE) 2oy (1.7)

1
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2. span {LSL; (Ene LM, (p)} is contained in the ideal of definition of Tr,, and
we have, for £,1 € L*(M, ),

Try(LeLy) = tu(LyLe) = 7 ((n. ) 4)- (1.8)

Proof. 1. The map U : L*(M,¢) = @®;&A — @, p; L*(A) defined by U(&;a) =
pia is an isomorphism which identifies L?(M, ¢) to the submodule p(£*(I) ®
L?*(A)) of £>(I) ® L*(A), with p = @; p;. The canonical trace on (M, e,) is
transfered to the restriction to p(%’(ﬁz(l ))@A) p of the trace Tr ® 7, defined on
T = [T.,] € (B()®A))4 by (Tr ® 1,)(T) = 3., 1,(Ty). It follows that

1

Try(x) = ) w(UxU*)i) = ) (& xXE) 2y = ) (&, xE) ).

2. Taking x = LEL;k in 1, the equality TrM(LgL;) = 7,((&, &) 4) follows from
Egs. (1.6) and (1.7). Formula (1.8) is deduced by polarization. O

1.3.2 Compact Operators

In a semi-finite von Neumann algebra N, there is a natural notion of ideal of
compact operators, namely the norm-closed ideal .# (N ) generated by its finite
projections (see [25, Sect. 1.3.2] or [26]).

Concerning N = (M, e4), there is another natural candidate for the space of
compact operators. First, we observe that given £, € Z*(M, ¢), the operator
LEL; € (M, e4) plays the role of a rank one operator in ordinary Hilbert spaces:
indeed, if « € Z*(M, @), we have (LeLy)(@) = &(n,a),. In particular, for
my,my € M, we note that meqm, is a “rank one operator” since mje m, =
Ly, L”;;. We denote by J# ({(M, e 4)) the norm closure into (M, e4) of

span {LEL; cEne LM, (p)}.

It is a two-sided ideal of (M, e4).
For every £ € £?(M, ¢), we have Lges € (M, e4). Since

LEL; = (LgeA)(L,]eA)*

we see that Z ((M,ey)) is the norm closed two-sided ideal generated by e, in
(M, e4). The projection e4 being finite (because Tr, (e4) = 1), we have

H (M, eq)) CI((M,ey)).
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The subtle difference between 2 ((M,e4)) and .#((M,e4)) is studied in
[25, Sect. 1.3.2]. We recall in particular that for every T € #({M,e4)) and every
e > 0, there is a projection p € A such that 7, (1 — p) < eand TJpJ € JZ ((M, e4))
(see [25, Proposition 1.3.3 (3)]).?

1.3.3 The Relative Haagerup Property

Let @ be a unital completely positive map from M into M suchthat E4 0 ® = E 4.
Then for m € M, we have

1@(m)|)5 = @(P(m)*D(m)) < e(@(m*m)) = p(m*m) = |m|.

It follows that @ extends to a contraction @ of L*>(M,¢). Whenever @ is
A-bimodular, @ commutes with the right action of 4 (due to (1.5)) and so belongs to
(M, e4). It also commutes with the left action of A and so belongs to A’ N (M, e4).

Definition 5. We say that M has the Haagerup property (or property (H)) relative
to A and E 4 if there exists a net (@;) of unital A-bimodular completely positive
maps from M to M such that

1. €A°®i = FE foralli;
2. &, € H((M,ey)) foralli;
3. lim; ||®;(x) — x|, = O forevery x € M.

This notion is due to Boca [9]. In [25], Popa uses a slightly different formulation.

Lemma S. In the previous definition, we may equivalently assume that, for every i,
D, € I((M,en))

Proof. This fact is explained in [25]. Let @ be a unital A-bimodular completely
positive map from M to M such that E4 o @ = E4 and @ < F((M,eq)).
As already said, by [25, Proposition 1.3.3 (3)], for every ¢ > O, there is a
projection p in A with 7,(1 — p) < ¢ and éJpJ € JH ((M,e4)). Thus we have
pqupJ € J ((M,e4)). Moreover, this operator is associated with the completely
positive map @, : m € M +— @(pmp), since

(pbJpJ)ih) = pd(mp) = pd(ip) = p®(mp) = B(pmp).

Then, @" = @, + (1 — p) E 4 is unital, satisfies £4 0o @’ = E 4 and still provides an
element of # ({M, e 4)). This modification allows to prove that if Definition 5 holds
with # ((M, e,)) replaced by .#({M, e,)), then the relative Haagerup property is
satisfied (see [25, Proposition 2.2 (1)]). ]

3In [25], 7 ({(M, e 4)) is denoted 7, ({M, e 4)).



12 C. Anantharaman-Delaroche

1.3.4 Back to L*(G,v)4

We apply the facts just reminded to M = L(G, ), which is on standard form
on L>(G,v) = L*(M,¢). This Hilbert space is viewed as a right A-module: for
£ € L*(G, ) and f € A, the action is given by £f o's.

It is easily seen that #%(M, @) is the space of £ € L?*(G,v) such that x >
Zs(y);x |€(p)|? is in L%°(X). Moreover, for £, ) € £*(M, ¢) we have

Ema= D E@m).

s(y)=x

For simplicity of notation, we shall often identify f € I(G) C L?*(G,v) with
the operator L( f).* For instance, for f, g € 1(G), the operator L(f) o L(g) is also
written f * g, and for T € B(L*(G, ), we write T o f instead of T o L(f).

Let S C G be a bisection. Its characteristic function 15 is an element of I(G)
and a partial isometry in M since

15 %15 =145y, and 1s x 15 = 1,(5).

Let G = LIS, be a countable partition of G into Borel bisections. Another
straightforward computation shows that (1g,), is an orthonormal basis of the right
A-module L>(M, ¢).

By Lemma 4, for x € (M, e4), we have

Try(x) = Y (Ls,, X1s,) 1240)-

n

In particular, whenever x is the multiplication operator m( ) by some bounded
non-negative Borel function f, we get

Tr, (m(f)) = /G £ dv. (1.9)

1.4 From Completely Positive Maps to Positive Definite
Functions

Recall that if G is a countable group, and @ : L(G) — L(G) is a completely
positive map, then ¢ +— Fg(t) = w(P(u;)u)) is a positive definite function
on G, where 7 is the canonical trace on L(G) and u,, t € G, are the canonical

4The reader should not confuse L(f) : L*(G,v) — L2*(G,v) with its restriction L; :
L*(4,t,) = L*(G,v).
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unitaries in L(G). We want to extend this classical fact to the groupoid case.
This was achieved by Jolissaint [18] for countable probability measure preserving
equivalence relations.

Let (G,u) be a countable measured groupoid and M = L(G,p).
Let @ : M — M be a normal A-bimodular unital completely positive map. Let
G = S, be a partition into Borel bisections. We define Fp : G — C by

Fo(y) = E4(@(1s,) o 15,) o r(y), (1.10)

where S, is the bisection which contains y.
That Fg does not depend (up to null sets) on the choice of the partition is a
consequence of the following lemma.

Lemma 6. Let S| and S, be two Borel bisections. Then
E (@(15) 0 1;1) = E (®2(1s,) © lzz)

almost everywhere on r (S N S3).

Proof. Denote by e the characteristic function of # (S1NS>). Then ex1s, = exls, =
15,ns,. Thus we have

eE4(@(1s)) 0 15 )e = E4(P(e * 15,) o (15, * e))
= E4(®P(e x15,) (likq2 xe)) = eE (P(1s,) 0 1§2)e.
O

We now want to show that Fg is a positive definite function in the following
sense. We shall need some preliminary facts.

Definition 6. A Borel function F : G — C is said to be positive definite if there
exists a p-null subset N of X = G© such that for every x ¢ N, and every
V1. vk € G, the k x k matrix [F(y;'y;)] is non-negative.

Definition 7. We say that a Borel bisection S is admissible if there exists a constant
¢ > Osuch that 1/c < §(y) < ¢ almost everywhere on S.

In other terms, 15 € I (G) and so the convolution to the right by 15 defines a
bounded operator R(1s) on L?(M, ¢), by (1.4).

Lemma 7. Let S be a Borel bisectionﬂﬂet TAG M. We have ﬁ =14 * T.
Moreover, if S is admissible, we have T o 1g = T * 1g.

Proof. First, we observe that KO\T =1so0T(y) =1g % T.

On the other hand, given f € I(G), we have L(f)(lAg) = f x lg. So, if (f)
is a sequence in /(G) such that lim, L(f,) = T in the strong operator topology,
we have

Tolg =T(s) =limL(f,)(1s) = lim £, * Lg
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in L?(G,v). But, when S is admissible, the convolution to the right by 1y is the

bounded operator R(1s). Noticing that lim,, || f, — T H = 0, it follows that
2

Tolg =limf, x1g =T * 1. o

Lemma 8. Let T € M, and let S be an admissible bisection. Then

LIs(P)EA(T 015)(s(y)) = 1s(¥) E4(1s 0 T)(r(y))

for almost every y.
Proof. We have
(Tolg)(x)= > Tls() =Tk
Viy2=x

whenever x € 5(S), where y; is the unique element of S with s(y;) = x. Otherwise
(T o15)(x) =0.
On the other hand,

(IsoT)(x) =T
whenever x € r(S), where y; is the unique element of S with (y;) = x. Otherwise
(15 o T)(x) = 0. Our statement follows immediately. O
Lemma 9. Fy is a positive definite function.

Proof. We assume that Fgp is defined by Eq.(1.10) through a partition under
admissible bisections. We set S;; = S7'S; = {y™'y' : y € i,y € S;}. Note that
15, * 15, = 1s;. Moreover, the Sj; are admissible bisections. We set

Zin = {x € 1SN S0) 1 Ea(@(1s) 0 15)(x) # Ea(@(Ls,) 0 15, )()}

and Z = U; j n Zjj. Itis a null set by Lemma 6.
By Lemma 8, for every i there is a null set £; C r(S;) such that for y € S; with
r(y) ¢ E; and for every j, we have

Eq(P(1s,) 0 15, 015)(s(y) = Ea(ls; 0 @(Ls,) o 15 )(r(y))

We set E = U; E;. Let Y be the saturation of Z U E. It is a null set, since u is
quasi-invariant.

Letx ¢ Y,and yy,..., yx € G*. Assume that )/i_l)/j € S,;lS,,j N S,,. We have
r(y7'y;) = s(y;) ¢ Y since r(y;) = x ¢ Y. Therefore,

Fo(y;'vj) = Ea(@(Ls,,) 0 15, o 1s,)(s(r))-
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Buty; € Sy, withr(y;)) =x ¢ Y, s0
Ex(@(Ls,, )0 15, o015, )(s() = Ealls,, 0 @(1s,, ) o 15, )(r(n).

Given Ay, ..., A, € C, we have

k k k
> AA Fa(r7'y)) = Ea( Yo (ails,) 0 @15, 015, )0 (A;15,)*)(x) 2 0.

i,j=1 i=1 j=1
O
Obviously, if @ is unital, Fp takes value 1 almost everywhere on X.
Proposition 1. We now assume that @ is unital, with E4 o ® = E4 and P €
H ((M, ey4)). Then, for every ¢ > 0, we have
v({|Fa| > €}) < +oo.

Proof. Let (S,) be a partition of G into Borel bisections. Given ¢ > 0 we choose
Elv--- 7$ks 771»--- 7”]( € fz(Ms(p) SuChthat

k
®—> LyLk| <e/2.

i=1

We view & — Zf;l LE,-L;I- as an element of Z(Z*(M, ¢)4) and we apply it to
15, € £*(M, ¢). Then

k
O(1s,) — > Enils,),

i=1

= 5/2||1Sn ”fZ(M) <eg/2.
ZL2(M)

Using the Cauchy-Schwarz inequality (£, )4 (£, 7) 4, < ||.§||h2%2(M)(n, n) 4> We get

k
D(1s,) — Z & (ni,1s,) 4

i=1

=

<eg/2.
L2(M)

k
<1sn, B(1s,)— Y & mi, lsn>A>
i=1 A

We have, for almost every y € S, and x = s(y),
[Fo(y)| = |EA(¢(IS,1) ° 1§n)(r()’))| = |EA(1§n °¢(18n))(x)| = |(15,17¢(15,7))A(X)|

=

k
<1sn LP(1s,) = Eilni.1s, )A> (x)
A

i=1

k
+y ’(lsn,éi(ﬁis lSn)A)A(x)"
i=1
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The first term is < /2 for almost every x € s(S,). As for the second term, we have,
almost everywhere,

(s, &) 4 ) (i 15,) 4 ()| = 11Ei L2 an [ (i 1s,) 4 () .

Hence, we get

k
|Fo)| < /24 Y &l z20n (0 15,) 4 ()]

i=1

for almost every y € S,,.
We want to estimate

v({| Fol > e}) = Y v({y € Sy : [Fa(y)] > &}).

n

For almost every y € S, such that | Fp (y)| > €, we see that

k
> e g2 n [ (0215, 45D | > €/2.

i=1
Therefore

k
v({|Fo| > &}) < Zv(% v €Sut Y NEillsean| (i 1s,) 45| > 8/2})

n i=1

k
< Zu({x € (S0t D il s | (i 1s,) 4 (0)| > e/Z} )

i=1

Now,

k k k
S & gm0 15,) 4] < O 11812200 (O [0 15,) 40 [) 2.
i=1 i=1

i=1

2
We set ¢ = 1, i3z and fu(x) = 35—y |(mi.15,) 4(x)|". We have

k k
S A@ =33 )0 =303 [ 1s,) )|

n i=l i=1 n

k
Z 7]1 , 771 (X) =< Z ||r)l ||f2(M)y
i=1 i=1
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since, by Lemma 3 (or directly here),

(i) a = 3 ds) (L, = D (i 1) o

k k

k 2
We setd = Zi=1 | 7: “f/z(M)'
We have

v({|Fol > &) <) pu({x € 5(S)) : cfulx) > (6/2)°)).

We seta = ¢! (g/2)%. Denote by i (x) the number of indices n such that f; (x) > .
Then i(x) < N, where N is the integer part of d /«a. We denote by & = {P,} the
set of subsets of N whose cardinal is < N. Then there is a partition X = U, B,
into Borel subsets such that

Vx € B,, P,={neN: f(x)>a}
We have

v({[Fo| > &) <) plix € By Ns(Sy) : fu(x) > a})
<Y (D u(x € Buns(Sy) : fulx) > a}))

<> mix € By Ns(S): fux) > ) < ) Nu(By) = N

m nepPy,

|

1.5 From Positive Definite Functions to Completely Positive
Maps

Again, we want to extend a well known result in the group case, namely that, given
a positive definite function F on a countable group G, there is a normal completely
positive map @ : L(G) — L(G), well defined by the formula @ (u;) = F(t)u, for
everyt € G.

We need some preliminaries. For the notion of representation used below, see for
instance [6, Sect. 3.1].

Lemma 10. Let F be a positive definite function on (G, jt). There exists a repre-
sentation w of G on a measurable field % = {# (x)}.cy of Hilbert spaces, and a
measurable section & : x — £(x) € J (x) such that

F(y) =(§or(y).n(y)§os(y))



18 C. Anantharaman-Delaroche

almost everywhere, that is F is the coefficient of the representation m, associated
with §.

Proof. This classical fact may be found in [28]. The proof is straightforward, and
similar to the classical GNS construction in the case of groups. Let V(x) the space of
finitely supported complex-valued functions on G*, endowed with the semi-definite
positive hermitian form

(fg)e= > Ffg)FOr v

71,72€G*
We denote by % (x) the Hilbert space obtained by separation and completion of
V(x), and 7(y) : A (s(y)) — H (r(y)) is defined by (= (y) /)(y1) = f(r~'y0).
The Borel structure on the field {# (x)},cy is provided by the Borel functions on

G whose restriction to the fibres G* are finitely supported. Finally, £ is the characte-
ristic function of X, viewed as a Borel section. O

Now we assume that F(x) = 1 for almost every x € X, and thus £ is a unit
section. We consider the measurable field {EZ(GX) ® A (x)}x <x - Note that

C(Gy) ® H (x) = £(Gy, H (x)).
Let f € £2(Gy). We define Sy(f) € £2(Gy, # (x)) by
Sy () = fr(y)*Eor(y)

for y € G,. Then

Y- ISs DO = 1 lec.-

s(y)=x

The field (Sy)yex of operators defines an isometry
®
S:L*G,v) — / C(Gy, H (x)) dp(x),
X

by
S(Hy) = f)m(y)*Eor(y).
Note that f;B 02(Gy, # (x))du(x) is a right A-module, by

(ma)x = nxa(x) 1y € Gy > n(y)a o s(y).
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Of course, S commutes with the right actions of A. We also observe that, as a
right A-module, L2(M,¢) ®4 [y # (x)du(x) and [ €2(G,, . (x)) du(x) are
canonically isomorphic under the map

D
(@i tos, VL e LA(M.g).Vn e /X H(x) du().

where (¢nos), is the function y € G, > {(y)nos(y)in £2(G,, # (x)). It follows
that M acts on f;B 02(Gy, # (x))du(x) by m +— m ® Id. In particular, for f €

1(G), we see that L(f) ® Id, viewed as an operator on f;B (G, H (x))dp(x),
is acting as

(L(H )Ny = Y frn(a) € A (s(y)).

Yin2=y

Lemma 11. For f € I(G), we have S*(L(f) ® 1d)S = L(F).

Proof. A straightforward computation shows that forn € || ;B (G, (x))dp(x),
we have

(S* () = (w(Y)*Eor(y). "I()’))%(s(y))-

Moreover, given i € L*(G, v), we have

(LHBISh) () = D fSH) = Y fh(y)m(ya)*Eor ().

Yiy2=y Yiy2=y

Hence,

(S™(L(f) ®1d)S h)(y) = <ﬂ()/)*§ or(y), D fh(y)m(y2)*Eo r()/z)>

Y1iy2=y

<s or(y). Y. fh(y)m(y)E o r<y2)>

=y
= Y Fah(m)Eor(n). m(y)E o r(y)
2=y
= Y FGDF@Dh(y) = (LEHDY). o
2=y

Proposition 2. Let F : G — C be a Borel positive definite function on G such that
F, = 1. Then there exists a unique normal completely positive map @ from M into
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M such that ®(L(f)) = L(Ff) for every f € I(G). Morever, @ is A-bimodular,
unitaland E4 o ® = E 4.

Proof. The uniqueness is a consequence of the normality of @, combined with the
density of L(/(G)) into M. With the notation of the previous lemma, for m € M
we put ®(m) = S* (m ®Id )S . Obviously, @ satisfies the required conditions. 0O

Remark 1. We keep the notation of the previous proposition. A straightforward
computation shows that F is the positive definite function Fg constructed from .

Proposition 3. Let F be a Borel positive definite function on G such that F|, = 1.
We assume that for every ¢ > 0, we have v({|F| > €}) < +oo. Let @ be the
completely positive map defined by F. Then ) belongs to the norm closed ideal
F((M, ea)) generated by the finite projections of (M, e 4).

Proof. We observe that T = @ is the multiplication operator m(F) by F. We need
to show that for every ¢+ > 0, the spectral projection e;(|7’|) of |T| relative to
]¢, 400 is finite. This projection is the multiplication operator by f; = 1 100 | F]|.
By (1.9), we have

Tr,(m(f) = v(fi) = v({[F| > 1}) < Fo0. o

1.6 Characterizations of the Relative Haagerup Property

We keep the same notation as in the previous section.
Theorem 1. The following conditions are equivalent:

1. M has the Haagerup property relative to A and E 4.
2. There exists a sequence (Fy,) of positive definite functions on G such that

(a) (Fu)|y = 1 almost everywhere ;
(b) Foreverye > 0, v({|F,| > ¢}) < 400
(c¢) lim, F,, = 1 almost everywhere.

Proof. 1 = 2. Let (®,) a sequence of unital completely positive maps M — M
satisfying conditions /, 2, 3 of Definition 5. We set F,, = Fg,. By Proposition 1 we
know that condition b of 2 above is satisfied. It remains to check ¢. Form € M,
we have

@5 (m) —mll3 = /X E4((Py(m) —m)*(@u(m) — m))(x) dp(x).

Let G = U, S, be a partition of G by Borel bisections. There is a null subset ¥ of
X such that, for every k and for y € Sy N r~'(X \ Y) we have

Fa(y) =1 = E4(15, o @, (15,))(s(y)) — Ea(1g, o 15)(s(¥)).
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Thus

|F(p) = 117 = |Ea(1}, o (@(15) — 1s)) ()|
< EA((¢n (lSk) - lSk)*((pn (lSk) - lSk))(s(V))-

It follows that

L 1R =115 a0 = [ Ea@015) = 1507 @,(15) = 1)) e
¢ 5(Sk)
< |®.(1s,) — 15,]|3 — 0.

So there is a subsequence of (| F;,(y) — 1|), which goes to 0 almost everywhere
on Sk. Using the Cantor diagonal process, we get the existence of a subsequence
(Fup )k of (Fy,), such that limy F;,, = 1 almost everywhere, which is enough for our
purpose.

2 = ]. Assume the existence of a sequence (F},), of positive definite functions
on G, satisfying the three conditions of 2. Let @, be the completely positive map
defined by F;. Let us show that for every m € M, we have

lim ||®,(m) —m], = 0.
n
We first consider the case m = L(f) with f € I(G). Then we have

@n (L) = L2 = I1L{(F = DNy = 1(Fa =D fll; >0

by the Lebesgue dominated convergence theorem.
Letnow m € M. Then

[@n (m) —mlly < [[@n(m — L2 + [1Pu(L() = LI + L) = ml,.

We conclude by a classical approximation argument, since

[@n(m — LD, < L) = mll,.

Together with Propositions 2, 3 and Lemma 5, this proves /. O
This theorem justifies the following definition.

Definition 8. We say that a countable measured groupoid (G, i) has the Haagerup
property (or has property (H)) if there exists a sequence (F,) of positive definite
functions on G such that

1. (F,)|;, = 1 almost everywhere ;
2. Forevery ¢ > 0, v({| F,| > €}) < +0o0;
3. lim, F, = 1| almost everywhere.
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We observe that, by Theorem 1, this notion only involves the conditional
expectation E4 and therefore only depends on the measure class of p. This fact
does not seem to be obvious directly from the above Definition 8.

Of course, we get back the usual definition for a countable group. The other
equivalent definitions for groups also extend to groupoids as we shall see now.

Definition 9. A real conditionally negative definite function on G is a Borel
function ¥ : G — R such that

1. ¥(x) = 0foreveryx € GO ;

2. ¥(y) =v(y~!) foreveryy € G ;

3. For every x € G, every y;....,y, € G and every real numbers A, ..., A,
with Y7, A; = 0, then

D vy <o.

ij=1

Such a function is non-negative.

Definition 10. Let (G, 1) be a countable measured groupoid. A real conditionally
negative definite function on (G, p) is a Borel function ¥ : G — R such that there
exists a co-null subset U of G© with the property that the restriction of ¥ to the
inessential reduction G|, satisfies the conditions of the previous definition.

We say that v is proper if for every ¢ > 0, we have v({{y < c}) < +o0.

Theorem 2. The groupoid (G, 1) has the Haagerup property if and only if there
exists a real conditionally negative definite function V¥ on (G, t) such that

Ve >0, v({{y¥ <c}) < +oo.

Proof. We follow the steps of the proof given by Jolissaint [18] for equivalence
relations and previously by Akemann-Walter [3] for groups. Let ¥ be a proper
conditionally negative definite function. We set F,, = exp(—v/n). Then (F,) is
a sequence of positive definite functions which goes to 1 pointwise. Moreover, we
have F,(y) > c if and only if ¥/ (y) < —nInc. Therefore (G, i) has the Haagerup
property.

Conversely, let (F,,) be a sequence of positive definite functions on G satisfying
conditions a, b, ¢ of Theorem 1. We choose sequences (&) and (g,) of positive
numbers such («,) is increasing with lim, @, = —+o00, (g,) is decreasing with
lim, &, = 0, and such that Y a,(e,)"/? < +o0.

Let G = US, be any partition of G into Borel bisections. Taking if necessary a
subsequence of (F,), we may assume that for every n,

> / |1 — F, 1, dv < &2,
G

1<k<n
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It follows that

/ R — F,) 1o,y s, dv 5/ 11— Fu 10,5 dv
G G

<e.
We set E, = {y € Ui<k=nSk 1 [R(1 = F,(¥))| = (e,)"/*} and E = MUy E,.
Since v(E,) <&, and ), &, < +00, we see that v(E) = 0.
Letussety =) a,R(1 — F,)on G \ E and ¥ = 0 on E. We claim that the
series converges pointwise. Indeed, let y € G \ E. There exists m such that

Y € Ui<i<mSi) N (Mp=m Ey).

Thus, |R(1 — F,(y))| < (e,)"/? for n > m, which shows our claim.

It remains to show that v is proper. Let ¢ > 0, and let y € G \ E with ¥ (y) < c.
Then we have R(1 — F,(y)) < c¢/a, for every n and therefore R F,, (y) > 1 —c/w,.
Let n be large enough such that 1 — ¢/« > 1/2. Then, if ¥ (y) < ¢, we have

IFn()’)| >RE,(y)>1—c/a, > 1/2
and thus
v({y < c}) = v({|Ful = 1/2}) < +o0. o

Definition 11. Let = be a representation of (G, 1) on a measurable field Z =
{ (x)},cx of Hilbert spaces. A w-cocycle is a Borel section b of the pull-back
bundle r : r*¢ = {(y,§): € € #(r(y))} — G for which there exists an
inessential reduction (G, , 1|,,) such that we have, for composable y1, y» € G|,

b(y1y2) = b(y1) + 7w (y1)b(y2).

We say that b is proper if for every ¢ > 0, we have v({||b|| < ¢}) < +o0, where
|16(y)| denotes the Hilbert norm of b(y) in 2 (r(y)).

Let b be a m-cocycle. It is easily seen that y — |b(y)||* is conditionally
negative definite. Moreover, every real conditionally negative definite is of this form
(see [6, Proposition 5.21]).

Corollary 1. The groupoid (G, jt) has the Haagerup property if and only if it
admits a proper w-cocycle for some representation .

Example 2. Let I' ~, (X, ) be an action of a countable group I" which leaves
quasi-invariant the probability measure u. If I" has the property (H), then (X x I, )
inherits this property. Indeed, if ¥ : I’ — R is a proper conditionally negative
definite function, then ¥ : (x,s) — ¥ (s) is a proper conditionally negative definite
function on (X x I', ). Conversely, when the action is free, preserves p and is such
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that (X x I, ) has property (H), then I" has property (H) [18, Proposition 3.3].
However, free non-singular actions of groups not having property (H) can generate
semi-direct product groupoids with this property. Such actions can even be amenable
(see for instance [8, Examples 5.2.2]).

Interesting examples are provided by treeable groupoids, as we shall see now.
For instance, the free product of the type I1; hyperfinite equivalence relation by
itself, being treeable [5, Proposition 2.4], has the Haagerup property. Note also that
property (H) passes to subgroupoids.

1.7 Treeable Countable Measured Groupoids Have
Property (H)

The notion of treeable countable measured equivalence relation has been introduced
by Adams in [1]. Its obvious extension to the case of countable measured groupoids
is exposed in [6]. We recall here the main definitions. Let O be a Borel subset of a
countable Borel groupoid G. We set Q° = X and forn > 1, we set

O"={yeG:3y,....va€ 0.V =V1-"Vu}-

Definition 12. A graphing of G is a Borel subset Q of G such that 0 = 07!,
ONX=0andU,>0" =G.

A graphing defines a structure of G-bundle of graphs on X: the set of vertices is
G and

E={(1.12) €GxG:r(y) =r().y;'v: € 0}

is the set of edges. In particular, for every x € X, the fibre G* is a graph, its set or
edges being E N (G* x G*). Moreover, for y € G, the map y; — yy; induces an
isomorphism of graphs from G*) onto G, Thus, a graphing is an equivariant
Borel way of defining a structure of graph on each fibre G*. These graphs are
connected since U,>0 Q0" = G.

When the graphs G* are trees for every x € X, the graphing Q is called a treeing.

Definition 13. A countable Borel groupoid G is said to be treeable if there is a
graphing which gives to 7 : G — X a structure of G-bundle of trees.
A countable measured groupoid (G, p) is said to be treeable if there exists an
inessential reduction G|, which is a treeable Borel groupoid in the above sense.
Equipped with such a structure, (G, i) is said to be a treed measured groupoid.

Consider the case where G is a countable group and Q is a symmetric set of
generators. The corresponding graph structure on G is the Cayley graph defined
by Q.If Q = S U S~ ! with S NS~ = @, then Q is a treeing if and only if S is a
free subset of generators of G (and thus G is a free group).
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As made precise in [4, Proposition 3.9], treeable groupoids are the analogue of
free groups and therefore the following theorem is no surprise.

Theorem 3 (Ueda). Let (G, ) be a countable measured groupoid which is
treeable. Then (G, |4) has the Haagerup property.

Let Q be a treeing of (G, ). We endow G* with the length metric d, defined by
dx(y1,y2) = min {n eN: )/1_1)/2 € Q”}

The map (y1.y2) € {(y1.y2) : 7(y1) = r(y2)} = dr() (11, v2) is Borel.
We set ¥ (y) = d,)(r(y), y). Itis areal conditionally negative definite function

on G. Indeed, given yy,...,y, € G* and Ay,..., A, € Rsuchthat ) /_, A; =0,
we have

DM ) = Y Midjdan (i) v ) = Y Aididi(yi ) <0,

ij=1 ij=1 ij=1

since the length metric on a tree is conditionally negative definite (see [17, p. 69]
for instance).

We begin by proving Theorem 3 in the case where Q is bounded, i.e. there exists
k > 0 such that §Q* < k for almost every x € X.

Lemma 12. Assume that Q is bounded. For every ¢ > 0 we have v({{y <c})
< +o0.

Proof. We have

Wiy <)) = /Xﬁ{y 50 = xade(ry ™) < ¢} dp().

If k is such that §O* < k for almost every x € X, the cardinal of the ball in G* of
center x and radius ¢ is smaller than k€. It follows that v({yy < c}) < k°. O

In view of the proof in the general case, we make a preliminary observation.
Whenever Q is bounded, G is the union of the increasing sequence ({{ < k})ren
of Borel subsets with v({y < k}) < +o00. Moreover, setting F,, = exp(—y/n),
we have lim, F;, = 1 uniformly on each subset {{y < k}. Indeed, if ¥ (y) < k,
we get

J
0<1-F() <) 1y < u exp (k/n).

Jog!
SR n

Proof of Theorem 3. The treeing Q is no longer supposed to be bounded. Let G =
LIS be a partition of G into Borel bisections. For every integer n we set

Q; = kan(Q n Sk) and Qn = Q; U (Q;l)_l
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Note that (Q,) is an increasing sequence of Borel symmetric and bounded subsets
of O with U, 9, = Q. Let G, be the subgroupoid of G generated by Q,, that is
G, = Ukonﬁ, where we put QS = X.

We observe that Q,, is a treeing for G,,. Denote by v, the associated conditionally
negative definite function on G,,. Since Q,—; C Q,, we have

(1//")‘01171 = 1;”n—l .

Given two integers k and N, we set
Akv =1y € G : Yu(y) < N}
Then, obviously we have
Ay CAkpiy and  Agn C Ak N1

In particular, (Akx)r is an increasing sequence of Borel subsets of G with
UrArie = G.

We fix k. We set Fr,(y) = exp(—v¢«(y)/n) if y € Gy and Fr,(y) = 0
if y ¢ Gy. By Lemma 13 to follow, Fj, is positive definite on G. Since Qj
is bounded, Lemma 12 implies that for every ¢ > 0, and for every n, we have
V({Frn > €}) < +o00. Moreover, lim,, Fi, = 1 uniformly on each Ay y, N > 1,
as previously noticed.

We choose, step by step, a strictly increasing sequence (n;);>1 of integers such
that for every k,

sup 1 — Fin (y) < 1/k.

Y €Ak Kk

Then the sequence (F,, )x of positive definite functions satisfies the required
conditions showing that (G, p) has property (H). O

Lemma 13. Let H be a subgroupoid of a groupoid G with G© = H©O_ Let F be
a positive definite function on H and extend F to G by setting F(y) =0ify ¢ H.
Then F is positive definite on G.

Proof. Letyy,...,y, € G*¥andlet Ay, ..., A, € C. We want to show that

Yo MAF ) = 0.

ij=1

We assume that this inequality holds for every number k < n of indices. For k = n,
this inequality is obvious if forevery i # j we have y;"'y; ¢ H.Otherwise, up to a
permutation of indices, we take j = 1 and we assume that 2, ...,/ are the indices i
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suchthaty'y; € H.Then,if 1 <i,j <lwehavey 'y; = (y7'y)(y;'y;) € H
andfori <1 < j wehave y'y; ¢ H. It follows that

n 1
STMAFQT ) =Y M FGT )+ Y M F ).

ij=1 ij=1 ij>1

where the first term of the right hand side is > 0. As for the second term, it is also
> 0 by the induction assumption. O

1.8 Properties (T) and (H) Are Not Compatible

Property (T) for group actions and equivalence relations has been introduced by
Zimmer in [33]. Its extension to measured groupoids is immediate. We say that
(G, ) has property (T) if whenever a representation of (G, i) almost has unit
invariant sections, it actually has a unit invariant section (see [6, Definitions 4.2, 4.3]
for details). We have proved in [6, Theorem 5.22] the following characterization of
property (T).

Theorem 4. Let (G, i) be an ergodic countable measured groupoid. The following
conditions are equivalent:

1. (G, ) has property (T) ;

2. For every real conditionally negative definite function ¥ on G, there exists a
Borel subset E of X, with (E) > 0, such that the restriction of ¥ to G|, is
bounded.

Theorem 5. Let (G, 1) be an ergodic countable measured groupoid. We assume
that (GO, ) is a diffuse standard probability space. Then (G, [t) cannot have
simultaneously properties (T) and (H).

Proof. Assume that (G, ) has both properties (H) and (T). There exists a Borel
conditionally negative definite function v such that for every ¢ > 0, we have
v({y¥ < c}) < 4o0. Moreover, there exists a Borel subset E of X, with u(E) > 0,
such that the restriction of v to G|, is bounded. Then, we have

/E Hy () = x.r(y) € E}du(x) < +oo.

Therefore, for almost every x € E, we have #f{y : s(y) = x,r(y) € E} < 4o0.
Replacing if necessary E by a smaller subset we may assume the existence of N > 0
such that for every x € E,

fly :s(yv) =x,r(y) € E} < N.
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Since (G|, i|;) is ergodic, we may assume that all the fibres of this groupoid
have the same finite cardinal. Therefore, this groupoid is proper and so the
quotient Borel space E/(G,) is countably separated (see [8, Lemma 2.1.3]).
A classical argument (see [34, Proposition 2.1.10]) shows that (), is supported by
an equivalence class, that is by a finite subset of £. But this contradicts the fact that
the measure is diffuse. O

In the following corollaries, we always assume that (X, u) is a diffuse standard
probability measure space.

Corollary 2. Let (G, ) be a countable ergodic measured groupoid with the
property that (%, |t) has property (H) (e.g. is treeable). Then (G, 1) has not

property (T).

Proof. If (G, u) had property (T) then (Z¢, ) would have the same property by
[6, Theorem 5.18]. But this is impossible by Theorem 5. O

This allows to retrieve results of Jolissaint [18, Proposition 3.2] and Adams-
Spatzier [2, Theorem 1.8].

Corollary 3. Let I’ ~, (X, i) be an ergodic probability measure preserving action
of a countable group I' having property (T). Then (Zr, L) has not property (H)
and in particular is not treeable.

Proof. Indeed, under the assumptions of the corollary, the semi-direct product
groupoid (X x I, u) has property (T) by [33, Proposition 2.4], and we apply the
previous corollary. O

Corollary 4. Let (#Z,u) be a type 11, equivalence relation on X having
property (H). Then its full group [#)] does not contain any countable subgroup
I" which acts ergodically on (X, ) and has property (T).

Proof. If [#] contains such a subgroup, then (%, 1) has property (T), and also
property (H) as a subequivalence relation of %, in contradiction with Corollary 2.
0

Problem 1. Since by Dye’s theorem (%, u) is entirely determined by its full
group [21, Theorem 4.1], it would be interesting to characterize property (H) in
terms of this full group.
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Chapter 2
Do Phantom Cuntz-Krieger Algebras Exist?

Sara E. Arklint

Abstract If phantom Cuntz-Krieger algebras do not exist, then purely infinite
Cuntz-Krieger algebras can be characterized by outer properties. In this survey
paper, a summary of the known results on non-existence of phantom Cuntz-Krieger
algebras is given.
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2.1 Introduction

The Cuntz-Krieger algebras were introduced by Joachim Cuntz and Wolfgang
Krieger in 1980, cf. [8], and are a generalization of the Cuntz algebras. Given a
nondegenerate n X n matrix A with entries in {0, 1}, its associated Cuntz-Krieger
algebra O, is defined as the universal C *-algebra generated by n partial isometries
S1,...,Sy satisfying the relations
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The Cuntz-Krieger algebras arise from shifts of finite type, and it has been shown
that the Cuntz-Krieger algebras are exactly the graph algebras C*(E) arising from
finite directed graphs E with no sinks, [3].

Neither of the two equivalent definitions of Cuntz-Krieger algebras give an outer
characterization of Cuntz-Krieger algebras; i.e., neither give a way of determining
whether a C *-algebra is a Cuntz-Krieger algebra, unless it is constructed from a
graph or a shift of finite type.

A Cuntz-Krieger algebra is purely infinite if and only if it has real rank zero,
cf. [11], and in the following we will mainly restrict to real rank zero Cuntz-Krieger
algebras since we will rely on classification results that only hold in the purely
infinite case. The Cuntz-Krieger algebra Oy4 is purely infinite if and only if A4
satisfies Cuntz’s condition (II), and equivalently the Cuntz-Krieger algebra C *(E)
is purely infinite if and only if the graph E satisfies condition (K), cf. [11].

The notion of C*-algebras over a topological space is useful for defining
phantom Cuntz-Krieger algebras and for defining filtered K-theory, and in [12],
Eberhard Kirchberg proved some very powerful classification results for Ouo-
absorbing C *-algebras over a space X using K K(X)-theory. A C*-algebra A over
the finite Tp-space X is a C*-algebra equipped with a lattice-preserving map from
the open sets of X to the ideals in A, denoted U + A(U), satisfying A(#) = 0 and
A(X) = A, and extended to locally closed subsets as A(U \ V) = A(U)/A(V). In
particular, a C *-algebra with finitely many ideals is a C *-algebra over its primitive
ideal space.

Definition 1. A C*-algebra A with primitive ideal space X looks like a purely
infinite Cuntz-Krieger algebra if

1. A is unital, purely infinite, nuclear, separable, and of real rank zero,

2. X is finite,

3. For all x € X, the group K.(A(x)) is finitely generated, the group K;(A(x)) is
free, and rankKo(A(x)) = rankK;(A(x)),

4. For all x € X, A(x) is in the bootstrap class of Rosenberg and Schochet.

A C*-algebra that looks like a purely infinite Cuntz-Krieger algebra but is not
isomorphic to a Cuntz-Krieger algebra, is called a phantom Cuntz-Krieger algebra.

All purely infinite Cuntz-Krieger algebras look like purely infinite Cuntz-Krieger
algebras. It is not known whether all C*-algebra s that look like purely infinite
Cuntz-Krieger algebras are Cuntz-Krieger algebras. If it is established that they are,
i.e., that phantom Cuntz-Krieger algebras do not exist, then the above definition
gives a characterization of the purely infinite Cuntz-Krieger algebras.

An example to point out the relevance of such a characterization is given by
Proposition 1. If phantom Cuntz-Krieger algebras do not exist, the proposition
determines exactly when an extension of purely infinite Cuntz-Krieger algebras is a
purely infinite Cuntz-Krieger algebra.

By aresult of Lawrence G. Brown and Gert K. Pedersen, Theorem 3.14 of [7], an
extension of real rank zero C *-algebras has real rank zero if and only if projections
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in the quotient lift to projections in the extension. Hence, if a C*-algebra A with
primitive ideal space X has real rank zero, then Ko(A(Y \ U)) — K;(A(U))
vanishes for all ¥ and U where Y is a locally closed subsets of X and U is an
open subsets of Y. Using this, an induction argument shows that for a C *-algebra
that looks like a purely infinite Cuntz-Krieger algebra, (3) and (4) of Definition 1
hold for all locally closed subsets Y of X.

Proposition 1. Consider a unital extension0) — I — A — A/l — 0 and assume
that A/ is a purely infinite Cuntz-Krieger algebra and that I is stably isomorphic
to a purely infinite Cuntz-Krieger algebra. Then A looks like a purely infinite Cuntz-
Krieger algebra if and only if the induced map Ko(A/1) — K,(I) vanishes.

Proof. By Theorem 3.14 of [7], the C *-algebra A is of real rank zero if and only
if the induced map K((A/I) — K;(I) vanishes. It is well-known or easy to check
that the other properties stated in Definition 1 are closed under extensions. O

2.2 Special Cases

One of the first places one would look for phantom Cuntz-Krieger algebras is
among the matrix algebras over purely infinite Cuntz-Krieger algebras. Clearly, if
O, is a purely infinite Cuntz-Krieger algebra, then M, (O,4) looks like a purely
infinite Cuntz-Krieger algebra for all n. Since M, (0,) is a graph algebra, one then
immediately asks if a graph algebra can be a phantom Cuntz-Krieger algebra. It
turns out that it cannot.

Theorem 1 ([3]). Let E be a directed graph and assume that its graph algebra
C*(E) is unital and satisfies rankKo(C*(E)) = rankK{(C*(E)). Then C*(E) is
isomorphic to a Cuntz-Krieger algebra.

Theorem 2 ([3]). Let A be a unital C*-algebra and assume that A is stably
isomorphic to a Cuntz-Krieger algebra. Then A is isomorphic to a Cuntz-Krieger
algebra.

As a small corollary to the work of Eberhard Kirchberg on K K(X)-theory,
phantom Cuntz-Krieger algebras cannot have vanishing K -theory.

Theorem 3 ([12]). Let A and B be unital, nuclear, separable C*-algebras with
primitive ideal space X. Then A @ O, and B ® O, are isomorphic.

Corollary 1. Let A be a C*-algebra that looks like a purely infinite Cuntz-Krieger
algebra, and assume that K«(A) = 0. Then A is a Cuntz-Krieger algebra.

Proof. Let X denote the finite primitive ideal space of A. Since K«(A) = 0 and A
looks like a purely infinite Cuntz-Krieger algebra, K+(A(x)) = 0 for all x € X.
So for all x € X, A(x) is O,-absorbing since it is a UCT Kirchberg algebra with
vanishing K-theory. By applying Theorem 4.3 of [15] finitely many times, we see
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that A itself is O,-absorbing. Let Op be a Cuntz-Krieger algebra with primitive
ideal space X and with Op(x) (stably) isomorphic to O, for all x € X. Then by
Theorem 3, A is isomorphic to Op. O

2.3 Using Filtered K -Theory

Via K-theoretic classification results it can be established that a phantom Cuntz-
Krieger algebra cannot have a so-called accordion space as its primitive ideal space.
We will first restrict to the cases where the primitive ideal space has at most two
points in order to describe the historical development and due to the importance and
powerfulness of the results needed. The most crucial result is by Eberhard Kirchberg
who showed in [12] that for stable, purely infinite, nuclear, separable C *-algebras
A and B with finite primitive ideal space X, any K K(X)-equivalence between A
and B lifts to a *-isomorphism.

Simple C *-algebras that look like purely infinite Cuntz-Krieger algebras are
UCT Kirchberg algebras, hence the classification result by Eberhard Kirchberg and
N. Christoffer Phillips applies. For a unital C *-algebra A with unit 1,4, denote by
[14] the class of 14 in Ko(A). For unital C *-algebras A and B an isomorphism from
(K«(A), [14]) to (K«(B),[1p]) is defined as a pair (¢, ¢p1) of group isomorphisms
¢i: Ki(4) — Ki(B), i = 0.1, for which ¢o([14]) = o([1 5))-

Theorem 4 ([13]). Let A and B be unital, simple, purely infinite, nuclear, sepa-
rable C*-algebras in the bootstrap class. If (K«(A),[14]) and (K«(B),[1g]) are
isomorphic, then A and B are isomorphic.

The range of K for graph algebras has been determined by Wojciech Szymarski,
and his result has been extended by Sgren Eilers, Takeshi Katsura, Mark Tomforde,
and James West to include the class of the unit.

Theorem 5 ([9]). Let G and F be finitely generated groups, let g € G, and assume
that F is free and that rankG = rankF. Then there exists a simple, purely infinite
Cuntz-Krieger algebra O 4 realising (G @ F, g) as (K«(04),[10,]).

Corollary 2. Simple phantom Cuntz-Krieger algebras do not exist.

Proof. Let A be a simple C *-algebra that looks like a purely infinite Cuntz-Krieger
algebra. By Theorem 5, there exists a Cuntz-Krieger algebra Op of real rank zero
for which (K« (A4), [14]) = (K«(Og),[1og]). Since A and Op are UCT Kirchberg
algebras, it follows from Theorem 4 that A and Op are isomorphic. O

For C*-algebras with exactly one nontrivial ideal, the suitable invariant seems to
be the induced six-term exact sequence in K -theory.

Definition 2. Let X, denote the space {1, 2} with {2} open and {1} not open. For
a C*-algebra A with primitive ideal space Xgx, Ksix(A) is defined as the cyclic
six-term exact sequence



2 Do Phantom Cuntz-Krieger Algebras Exist? 35

Ko(A(2) —— Ko(4d) —— Ko(A(1)

5 ) I

Ki(A() = Ki(4) =< Ki(A(2))

induced by the extension 0 — A(2) - A — A(1) — 0. For unital C *-alge-
bras A and B with primitive ideal space X, an isomorphism from (K (A4), [14])
to (Ksix(B), [15]) is defined as a triple (qbiZ}, qbf six ¢i1}) of graded isomorphisms
¢Y Ki(A(Y)) = Ku(B(Y)), Y € {{2}, Xqx {1}}, that commute with the maps i,
r, and § and satisfies qbé(SiX([lA]) = [1g].

This invariant was originally introduced by Mikael Rgrdam to classify stable
extensions of UCT Kirchberg algebras. Alexander Bonkat established a UCT for
Kix (that was later generalized by Ralf Meyer and Ryszard Nest), and by combining
his UCT with the result of Eberhard Kirchberg (and a meta theorem by Sgren
FEilers, Gunnar Restorff and Efren Ruiz in [10] to achieve unital and not stable
isomorphism) one obtains the following theorem.

Theorem 6 ([6,12]). Let A and B be unital, purely infinite, nuclear, separable C*-
algebras with primitive ideal space Xix, and assume that A(x) and B(x) are in the
bootstrap class for all x € {1,2}. Then (Ksix(A),[14]) = (Kix(B), [18]) implies
A= B.

The range of K for graph algebras has been determined by Sgren Eilers,
Takeshi Katsura, Mark Tomforde, and James West.

Theorem 7 ([9]). Let a six-term exact sequence

G G G;

F V) F.

be given with Gy, Gy, G and F), F,, F3 finitely generated groups, and let g € G,.
Assume that the groups F\, F,, F3 are free, and that rankG; = rankF; for all
i = 1,2,3. Then there exists a purely infinite Cuntz-Krieger algebra O4 with
primitive ideal space Xy realising (&, g) as (Ksix(04), [10,]).

Corollary 3. Phantom Cuntz-Krieger algebras with exactly one nontrivial ideal do
not exist.

The generalization of the invariant Kx to larger primitive ideal spaces is called
filtered K-theory or filtrated K-theory and was introduced by Gunnar Restorff
and by Ralf Meyer and Ryszard Nest. Filtered K-theory consists of the six-term
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exact sequences induced by all extensions of subquotients. A smaller invariant, the
reduced filtered K-theory FK4 originally defined by Gunnar Restorff to classify
purely infinite Cuntz-Krieger algebras, has so far proven suitable for classifying
C*-algebras that look like purely infinite Cuntz-Krieger algebras.

Let X be a finite To-space. For x € X, we denote by {x} the smallest open subset
of X containing x, and we define a(x) as {x} \ {x}. Forx,y € X we write y — x
when y € 9(x) and there is no z € d(x) for which y € 3(z).

Definition 3. For a C*-algebra A with primitive ideal space X, its reduced filtered
K -theory FK 4 (A) consists of the groups and maps

Ki(AQ) —— Ko(A((x) —— Ko(A(TD)

induced by the extension 0 — A(é(x)) — A({x’v}) — A(x) — 0, forall x € X,
together with the groups and maps

Ko(AD) —— Ko(AG(x)

induced by the extension 0 — A({y}) — A(3(x)) — A@(x) \ {y}) — 0, for all
x,y € X with y — x.

Example 1. Let X = {1,2,3} be given the topology {@, {3},{3,2},{3,1}, X}.
Then for a C *-algebra A with primitive ideal space X, its reduced filtered K-theory
FK#(A) consists of the groups and maps

K1(A(2)) 5 l_ Ko(A({3.1}))
\ /
. Ko(A(3)) ,-
/ \
K1 (A(1)) Ko(A({3.2}))

together with the group K;(A(3)).
It is shown in [2] that if A is a C *-algebra of real rank zero with primitive ideal

space X, then the sequence

B KU@N S P koA > Ko(4) — 0

y—=x,y—>x/ x€X
xx'ex

18 exact.
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Definition 4. For a unital C *-algebra A of real rank zero with primitive ideal space
X, 1(A) is defined as the unique element in

P A [ D KD

xeX y—x,y—>x/
xx'€ex

that is mapped to [14]. For A and B unital C*-algebras of real rank zero with
primitive ideal space X, an isomorphism from (FK5(A), 1(A4)) to (FK%(B), 1(B))
is defined as a family of isomorphisms

iy Ki(A(x) = Ki(B(x))
7., Ko(4(3(x)) = Ko(B((x))

¢ Ko(A({x}) — Ko(B({x})

(where ¢§(x) = ¢?y~} when 5(x) = 5_}:) for all x € X that commute with the maps

i and § and maps 1(A4) to 1(B).

Using Theorem 7, Rasmus Bentmann, Takeshi Katsura, and the author have
established the range of reduced filtered K-theory FKg for graph algebras, cf. [2].
They also show in [2] that if a C*-algebra has as its primitive ideal space an
accordion space, cf. Definition 5, or one of the spaces defined in Definition 6, and
looks like a purely infinite Cuntz-Krieger algebra, then there exists a purely infinite
Cuntz-Krieger algebra with the same primitive ideal space and filtered K-theory. It
is not known if this holds for other types of primitive ideal spaces.

Theorem 8 ([2]). Let B be a C*-algebra that looks like a purely infinite Cuntz-
Krieger algebra. Then there exists a Cuntz-Krieger algebra O4 of real rank
zero with Prim(O,4) = Prim(B) for which (FK%(04),[10,]) is isomorphic to
(FK(B). [15]).

Definition 5. A finite, connected Ty-space X is called an accordion space if the
following holds:

* Forall x € X there are at most two elements y € X for which y — x,
* There is at least two elements x € X for which there is exactly one element
y € X for which y — x.

The notion of accordion spaces was introduced by Rasmus Bentmann in [4].
Intuitively, a space is an accordion space if and only if the Hasse diagram of the
ordering defined by y < x when y € {x}, looks like an accordion. All finite,
linear spaces are accordion spaces, and the following five spaces are examples of
connected spaces that are not accordion spaces.
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Definition 6. Define a topology on the space 2~ = {1, 2, 3, 4} by definingU € .2
to be open if U is empty or 4 € U. Define 2 °P as having the opposite topology.
Then 2" and 2 °P have Hasse diagrams

1 3

2 4
NS /PN
4 1 2

3

respectively. Define a topology on the space % = {1, 2, 3,4} by defining U C %
to be open if U € {@,{4}} or if {3,4} C U. Define #°P as having the opposite
topology. Then % and % °P have Hasse diagrams

1 2 4

NS }

3

3
} /N
4 1 2

respectively. Finally, define a topology on the space & = {1, 2, 3.4} as the open sets
being {0, {4}, {3,4},{2,4},{2, 3,4}, Z}. Then 2 has Hasse diagram

1
/N

2 3
NS

4 .

Ralf Meyer and Ryszard Nest showed in [14] that if X is a finite, linear space,
then filtered K-theory is a complete invariant for all stable, purely infinite, nuclear,
separable C*-algebras A with primitive ideal space X that satisfy that A(x) are in
the bootstrap class for all x € X. They also gave a counter-example to completeness
of filtered K-theory for the space 2. Using their methods, Rasmus Bentmann and
Manuel Kohler showed in [5] that filtered K-theory is a complete invariant for such
C *-algebras exactly when their primitive ideal space X is an accordion space.

However, Gunnar Restorff, Efren Ruiz, and the author showed in [1] that for the
spaces 2, Z°°P, %, and #°P, filtered K-theory is a complete invariant for such
C*-algebras if one adds the assumption of real rank zero. And in [2], Rasmus
Bentmann, Takeshi Katsura, and the author showed that for the space Z, reduced
filtered K-theory is a complete invariant for C*-algebras that look like purely
infinite Cuntz-Krieger algebras. It is also shown in [2] that for C *-algebras that look
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like purely infinite Cuntz-Krieger algebras and have either an accordion space or one
of the spaces defined in Definition 6 as primitive ideal space, any isomorphism on
reduced filtered K-theory can be lifted to an isomorphism on filtered K -theory.

The five spaces of Definition 6 are so far the only non-accordion spaces for
which such results have been achieved. However, combining these results with
Theorem 3.3 of [10] gives the following theorem, cf. [2].

Theorem 9 ([1, 2, 5, 14]). Let X be either an accordion space or one of the
spaces defined in Definition 6. Let A and B be C*-algebras that look like purely
infinite Cuntz-Krieger algebras and both have X as primitive ideal space. Then
(FK%(A),1(A)) = (FK%(B), 1(B)) implies A =~ B.

Corollary 4. Let X be either an accordion space or one of the spaces defined in
Definition 6. Then phantom Cuntz-Krieger algebras with primitive ideal space X do
not exist.

2.4 Summary

The results stated in this article, are recaptured in the following theorem.

Theorem 10. Let A be a C*-algebra that looks like a purely infinite Cuntz-Krieger
algebra. If A satisfies either of the following conditions,

e Aisa graph algebra,

¢ Ki«(4) =0,

e Prim(A) is an accordion space,

e Prim(A) is one of the five four-point spaces of Definition 6,

then A is isomorphic to a Cuntz-Krieger algebra.

In general, it is unknown whether phantom Cuntz-Krieger algebras exist.
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Chapter 3
Projective Dimension in Filtrated K-Theory

Rasmus Bentmann

Abstract Under mild assumptions, we characterise modules with projective res-
olutions of length n € N in the target category of filtrated K-theory over a finite
topological space in terms of two conditions involving certain Tor-groups. We show
that the filtrated K-theory of any separable C *-algebra over any topological space
with at most four points has projective dimension 2 or less. We observe that this
implies a universal coefficient theorem for rational equivariant KK-theory over these
spaces. As a contrasting example, we find a separable C*-algebra in the bootstrap
class over a certain five-point space, the filtrated K-theory of which has projective
dimension 3. Finally, as an application of our investigations, we exhibit Cuntz-
Krieger algebras which have projective dimension 2 in filtrated K-theory over their
respective primitive spectrum.

Keywords K-theory ¢ Filtered K-theory ¢ Ideal-related KK-theory * Universal
coefficient theorem

Mathematics Subject Classification (2010): 46180, 19K35, 46M20.

3.1 Introduction

A far-reaching classification theorem in [7] motivates the computation of
Eberhard Kirchberg’s ideal-related Kasparov groups KK(X; A, B) for separable
C*-algebras A and B over a non-Hausdorff topological space X by means of
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K-theoretic invariants. We are interested in the specific case of finite spaces here.
In [10, 11], Ralf Meyer and Ryszard Nest laid out a theoretic framework that allows
for a generalisation of Jonathan Rosenberg’s and Claude Schochet’s universal
coefficient theorem [16] to the equivariant setting. Starting from a set of generators
of the equivariant bootstrap class, they define a homology theory with a certain
universality property, which computes KK(X)-theory via a spectral sequence.
In order for this universal coefficient spectral sequence to degenerate to a short
exact sequence, it remains to be checked by hand that objects in the range of the
homology theory admit projective resolutions of length 1 in the Abelian target
category.

Generalising earlier results from [3, 11, 15] the verification of the condition
mentioned above for filtrated K-theory was achieved in [2] for the case that
the underlying space is a disjoint union of so-called accordion spaces. A finite
connected Tp-space X is an accordion space if and only if the directed graph
corresponding to its specialisation pre-order is a Dynkin quiver of type A. Moreover,
it was shown in [2, 11] that, if X is a finite Tp-space which is not a disjoint union
of accordion spaces, then the projective dimension of filtrated K-theory over X is
not bounded by 1 and objects in the equivariant bootstrap class are not classified
by filtrated K-theory. The assumption of the separation axiom 7y is not a loss of
generality in this context (see [9, §2.5]).

There are two natural approaches to tackle the problem arising for non-accordion
spaces: one can either try to refine the invariant—this has been done with some
success in [11] and [1]; or one can hold onto the invariant and try to establish
projective resolutions of length 1 on suitable subcategories or localisations of the
category RR(X), in which X -equivariant KK-theory is organised. The latter is the
course we pursue in this note. We state our results in the next section.

3.2 Statement of Results

The definition of filtrated K-theory and related notation are recalled in Sect. 3.3.

Proposition 1. Let X be a finite topological space. Assume that the ideal N T ) C
N T*(X) is nilpotent and that the decomposition N T*(X) = N Ty X N T g
holds. Fix n € N. For an A 7*(X)-module M, the following assertions are
equivalent:

1. M has a projective resolution of length n.
2. The Abelian group Torn”y NN T, M) is free and the Abelian group

Tor;l/t-/l—(l?*(X) ('/VySSs M) vanishes.

The basic idea of this paper is to compute the Tor-groups above by writing down
projective resolutions for the fixed right-module .47 .

Let Z,, be the (m + 1)-point space on the set {1,2,...,m+1}suchthatY C Z,,
isopenifandonlyif Y > m+1orY = 0. A C*-algebraover Z,, is a C *-algebra A
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with a distinguished ideal such that the corresponding quotient decomposes as a
direct sum of m orthogonal ideals. Let S be the set {1,2, 3,4} equipped with the
topology {0, 4,24, 34,234, 1234}, where we write 24 := {2,4} etc. A C*-algebra
over S is a C *-algebra together with two distinguished ideals which need not satisfy
any further conditions; see [9, Lemma 2.35].

Proposition 2. Let X be a topological space with at most 4 points. Let M =
FK(A) for some C **-algebra A over X. Then M has a projective resolution of
length 2 and Tor‘zA/y (N T, M) =0.

«
Moreover, we can find explicit formulas for TorlA/ TN T, M); for instance,

Tor]”y*(ZS)(f/V T ss» M) is isomorphic to the homology of the complex
: (_ii_oi ?) : Gii)
P M4 BRI P M1234\ k) —— M(1234) . (3.1)
j=1 k=1

A similar formula holds for the space S; see (3.6).

The situation simplifies if we consider rational KK(X)-theory, whose morphism
groups are given by KK(X; A4, B) ® Q; see [6]. This is a Q-linear triangulated
category which can be constructed as a localisation of RR(X); the corresponding
localisation of filtrated K-theory is given by A — FK(A4) ® Q and takes values in
the category of modules over the Q-linear category .4/ .7*(X) ® Q.

Proposition 3. Ler X be a topological space with at most 4 points. Let A and B be
C*-algebras over X. If A belongs to the equivariant bootstrap class %B(X), then
there is a natural short exact universal coefficient sequence

Ext!) s+ )00 (FKst1(4) ® Q. FKy(B) ® Q) > KK« (X; 4, B) ® Q

— Hom_y 7+ (x)00(FK«(4) ® Q,FK«(B) ® Q) .

In [6], a long exact sequence is constructed which in our setting, by the above
proposition, reduces the computation of KK« (X; A, B), up to extension problems,
to the computation of a certain torsion theory KK« (X; 4, B; Q/Z).

The next proposition says that the upper bound of 2 for the projective dimension
in Proposition 2 does not hold for all finite spaces.

Proposition 4. There is an N T *(Z4)-module M of projective dimension 2 with
free entries and Tor‘;/y : (N T s, M) # 0. The module M ®yz, 7./ k has projective
dimension 3 for every k € N>y. Both M and M ®z Z/k can be realised as the
filtrated K-theory of an object in the equivariant bootstrap class #(X).

As an application of Proposition 2 we investigate in Sect. 3.10 the obstruction
term Tor‘l” 7™ (/7 4, FK(A)) for certain Cuntz-Krieger algebras with four-point
primitive ideal spaces. We find:
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Proposition 5. There is a Cuntz-Krieger algebra with primitive ideal space
homeomorphic to Zz which fulfills Cuntz’s condition (II) and has projective
dimension 2 in filtrated K-theory over Z3. The analogous statement for the space S
holds as well.

The relevance of this observation lies in the following: if Cuntz-Krieger algebras
had projective dimension at most 1 in filtrated K-theory over their primitive ideal
space, this would lead to a strengthened version of Gunnar Restorff’s classification
result [14] with a proof avoiding reference to results from symbolic dynamics.

3.3 Preliminaries

Let X be a finite topological space. A subset Y C X is called locally closed if it
is the difference U \ V of two open subsets U and V' of X; in this case, U and V
can always be chosen such that V' C U. The set of locally closed subsets of X is
denoted by LC(X). By LC(X)*, we denote the set of non-empty, connected locally
closed subsets of X.

Recall from [9] that a C*-algebra over X is pair (A, V) consisting of a
C*-algebra A and a continuous map ¥:Prim(4) — X. A C*-algebra (A4, V)
over X is called tight if the map y is a homeomorphism. A C*-algebra (A4, )
over X comes with distinguished subquotients A(Y') forevery Y € LC(X).

There is an appropriate version KK(X) of bivariant K-theory for C *-algebras
over X (see [7,9]). The corresponding category, denoted by RR(X), is equipped
with the structure of a triangulated category (see [12]); moreover, there is an
equivariant analogue Z(X) € KRKR(X) of the bootstrap class [9].

Recall that a triangulated category comes with a class of distinguished candidate
triangles. An anti-distinguished triangle is a candidate triangle which can be
obtained from a distinguished triangle by reversing the sign of one of its three
morphisms. Both distinguished and anti-distinguished triangles induce long exact
Hom-sequences.

As defined in [11], for ¥ € LC(X), we let FKy(4) := K«(A(Y)) denote the
7,/ 2-graded K-group of the subquotient of A associated to Y. Let 4.7 (X) be the
Z,/2-graded pre-additive category whose object set is LC(X) and whose space of
morphisms from Y to Z is A7 «(X)(Y, Z)—the Z/2-graded Abelian group of all
natural transformations FKy = FKy. Let 4.7 *(X) be the full subcategory with
object set LC(X)*. We often abbreviate 47 *(X) by A4 T ™.

Every open subset of a locally closed subset of X gives rise to an extension of
distinguished subquotients. The corresponding natural maps in the associated six-
term exact sequence yield morphisms in the category .4".7, which we briefly denote
by i, r and$.

A (left-)module over A 7 (X) is a grading-preserving, additive functor from
N T (X) to the category Ab%/? of Z/2-graded Abelian groups. A morphism of
A7 (X)-modules is a natural transformation of functors. Similarly, we define
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left-modules over 4.7 *(X). By Moo (JV T*(X ))C we denote the category of
countable .47 * (X)-modules.

Filtrated K-theory is the functor RR(X) — 9Mod(A T ™ (X))C which takes a
C*-algebra A over X to the collection (K* (A(Y))) Y equipped with the

obvious .47 * (X )-module structure.

Let /' T C A T* be the ideal generated by all natural transformations
between different objects, and let A T C A T ™ be the subgroup spanned by
the identity transformations id}, for objects ¥ € LC(X)*. The subgroup .4 T is
in fact a subring of .#".7* isomorphic to Z-C()* We say that .#".7* decomposes
as semi-direct product A .T* = N Ty x N T if AT as an Abelian group is
the inner direct sum of A7 and AT ; see [2, 11]. We do not know if this fails
for any finite space.

We define right-modules over .4 7 *(X) as contravariant, grading-preserving,
additive functors 4 .7 *(X) — Ab%/2. If we do not specify between left and right,
then we always mean left-modules. The subring A T C AT " is regarded as
an ./ .7 *-right-module by the obvious action: The ideal A4 Ty C A T acts
trivially, while .47 acts via right-multiplication in .47 == ZXC)" For an
N T*-module M, we set Mg := M/ N Ty - M.

For Y € LC(X)* we define the free A T *-left-module on Y by
Py(Z)y:=N/NT(X,Z) for all Z € LC(X)* and similarly for morphisms
Z — Z'in A J*. Analogously, we define the free A T *-right-module on Y
by Qy(Z) := ¥/ T(Z,Y) for all Z € LC(X)*. An 4 7 *-left/right-module
is called free if it is isomorphic to a direct sum of degree-shifted free left/right-
modules on objects Y € LC(X)*. It follows directly from Yoneda’s Lemma that
free .47 *-left/right-modules are projective.

An /7 -module M is called exact if the Z/2-graded chain complexes

Y €LC(X

Y\U U
\ Y\U

s M) S My D M\ U) 2% M) -

are exact for all U, Y € LC(X) with U openin Y. An .47 *-module M is called
exact if the corresponding .47 -module is exact (see [2]).

We use the notation C €€ € to denote that C is an object in a category %

In [11], the functors FKy are shown to be representable, that is, there are objects
Py €€ KR(X) and isomorphisms of functors FKy = KK.(X; %y, ). We let FK
denote the stable cohomological functor on £2(X) represented by the same set of
objects {#Zy | Y € LC(X)*}; it takes values in 4.7 *-right-modules. We warn
that KK« (X; A, Zy) does not identify with the K-homology of A(Y). By Yoneda’s
lemma, we have FK(%Zy) =~ Py and fl\((%y) ~ Qy.

We occasionally use terminology from [10, 11] concerning homological algebra
in RR(X) relative to the ideal J := ker(FK) of morphisms in RR(X) inducing
trivial module maps on FK. An object A €€ RKRR(X) is called J-projective if
J(A,B) = 0 for every B € KRR(X). We recall from [10] that FK restricts to
an equivalence of categories between the subcategories of J-projective objects in
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RKR(X) and of projective objects in WOD(JV T*(X ))c. Similarly, the functor FK
induces a contravariant equivalence between the J-projective objects in RR(X) and
projective A7 *-right-modules.

3.4 Proof of Proposition 1

Recall the following result from [11].

Lemma 1 ([11, Theorem 3.12]). Let X be a finite topological space. Assume
that the ideal N Ty C N T*(X) is nilpotent and that the decomposition

NTNX) = N Ty ) N T holds. Let M be an N T*(X)-module. The
following assertions are equivalent:

1. M is a free &/ T*(X)-module.
2. M is a projective N T *(X)-module.

3. M is a free Abelian group and Tor'ljyy*(x)(ﬂfss, M) =0.

Now we prove Proposition 1. We consider the case n = 1 first. Choose an
epimorphism f: P — M for some projective module P, and let K be its kernel. M
has a projective resolution of length 1 if and only if K is projective. By Lemma 1,
this is equivalent to K being a free Abelian group and Tor'lA/ 7 (N T, K)=0.
We have Tor," 7" (A T, K) = 0 if and only if Tor," 7" (AN T, M) = 0
because these groups are isomorphic. We will show that K is free if and only if
Tor‘l” 7 (N T ss» M) is free. The extension K > P —» M induces the following
long exact sequence:

0— Tor," 7" (N T M) > Ky — Py — My — 0.

Assume that K is free. Then its subgroup Tor‘l'A/ 7 (N T, M) is free as well.
Conversely, if Tor‘l” 7 (N T, M) is free, then K is an extension of free Abelian
groups and thus free. Notice that Py is free because P is projective. The general
case n € N follows by induction using an argument based on syzygies as above.
This completes the proof of Proposition 1.

3.5 Free Resolutions for 4.7

The 4.7 *-right-module ./ .7 ¢, decomposes as a direct sum @Yem( X)* Sy of the
simple submodules Sy which are givenby Sy (Y) = Z and Sy(Z) =0forZ # Y.
We obtain

TOI';V_?*(JVQ“’M)Z @ TOI.ZV-_?(SY’M)'
YeLC(X)*
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Our task is then to write down projective resolutions for the 4.7 *-right-
modules Sy. The first step is easy: we map Qy onto Sy by mapping the class
of the identity in Qy (Y) to the generator of Sy (Y). Extended by zero, this yields
an epimorphism Qy — Sy.

In order to surject onto the kernel of this epimorphism, we use the indecompos-
able transformations in .4".7* whose range is Y. Denoting these by n;: W; — Y,
1 <1 < n, we obtain the two step resolution

n
(M n2 = Mn)
P ow Qy —» Sy .

i=1

In the notation of [11], the map @/_, Ow, — Qy corresponds to a morphism
¢: Ry — @i, Zw, of J-projectives in RR(X). If the mapping cone Cy of ¢ is

again J-projective, the distinguished triangle ¥ Cy — Zy i) PBr_, Zw, — Cy
yields the projective resolution

o> Oy = Oy[1] > P Ow[1] > Or[1] - 0y > D Ow; — Qv — Sy .

i=1 i=1
where Q4 = FK(Cy). We denote periodic resolutions like this by

O
0y = @, 0m —= 0y > 5y .

If the mapping cone Cy is not J-projective, the situation has to be investigated
individually. We will see examples of this in Sects.3.7 and 3.9. The resolutions
we construct in these cases exhibit a certain six-term periodicity as well. However,
they begin with a finite number of “non-periodic steps” (one in Sect.3.7 and
two in Sect.3.9), which can be considered as a symptom of the deficiency of
the invariant filtrated K-theory over non-accordion spaces from the homological
viewpoint. We remark without proof that the mapping cone of the morphism
&%y — D)_, Zw, is J-projective for every ¥ € LC(X)* if and only if X is
a disjoint union of accordion spaces.

3.6 Tensor Products with Free Right-Modules

Lemma 2. Let M be an N T *-left-module. There is an isomorphism Qy ® y 5+
M = M(Y) of Z/2-graded Abelian groups which is naturalin Y €€ N T*.

Proof. This is a simple consequence of Yoneda’s lemma and the tensor-hom
adjunction.
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Lemma 3. Let
Y o B
2%(3) d %(1) d %(2) d %(3)

be a distinguished or anti-distinguished triangle in RR(X), where
%0 =P %y @ Py
j=1 k=1

for 1 < i <3, min € Nand Y,Zi € LC(X)* Set Q¢) = FK(Z)).
If M = FK(A) for some A €€ RR(X), then the induced sequence

o™ ®idy B*®idy
O0n® oM —— Q00 ® y+ M —— 03 @ 7+ M

y*®idp[1] T l y* ®idy

03 Qg M[1] =— Q@)@ ygx M[1] =<— Q) ® 47+ M[1]
B* ®idpy[1] o* ®idy[1]

3.2)

is exact.

Proof. Using the previous lemma and the representability theorem, we naturally
identify Q@) ® y 7+ M = KK«(X;%), A). Since, in triangulated categories,
distinguished or anti-distinguished triangles induce long exact Hom-sequences, the
sequence (3.2) is thus exact.

3.7 Proof of Proposition 2

We may restrict to connected Tp-spaces. In [9], a list of isomorphism classes of
connected Ty-spaces with three or four points is given. If X is a disjoint union of
accordion spaces, then the assertion follows from [2]. The remaining spaces fall into
two classes:

1. All connected non-accordion four-point 7y-spaces except for the pseudocircle;
2. The pseudocircle (see Sect. 3.7.2).

The spaces in the first class have the following in common: If we fix two of them, say
X, Y, then there is an ungraded isomorphism @: A4 .7 *(X) — A4 7 *(Y) between
the categories of natural transformations on the respective filtrated K-theories such
that the induced equivalence of ungraded module categories
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B Mod™ (N T*(Y)), — Mod™™ (N T*(X)),

restricts to a bijective correspondence between exact ungraded .47 * (¥)-modules
and exact ungraded .#".7 * (X )-modules. Moreover, the isomorphism @ restricts to
an isomorphism from A7 «(X) onto A7 (Y) and one from A7 (X)) onto
AT (Y). In particular, the assertion holds for X if and only if it holds for Y.

The above is a consequence of the investigations in [1,2, 11]; the same kind of
relation was found in [2] for the categories of natural transformations associated to
accordion spaces with the same number of points. As a consequence, it suffices to
verify the assertion for one representative of the first class—we choose Z3;—and for
the pseudocircle.

3.7.1 Resolutions for the Space Z;

We refer to [11] for a description of the category .47 *(Z3), which in partic-
ular implies, that the space Z3 satisfies the conditions of Proposition 1. Using
the extension triangles from [11, (2.5)], the procedure described in Sect.3.5
yields the following projective resolutions induced by distinguished triangles as in
Lemma 3:

O

/_ . .
01[1] 04 Q4 — S, and similarly for Sy4, S34;

/—o\
Qnau[l] —— 0i[1] & O:[1] @ Q3[l] —— Q4 — S4;
Q234 e Q1234 e Q1 — Sl s and s1mllarly for Sz, S3.

Next we will deal with the modules S x4, where 1 < j < k < 3. We observe
that there is a Mayer-Vietoris type exact sequence of the form

o\
04 ‘—>/Q,~4—@ Ors —— Qjia - (3.3)

Lemma 4. The candidate triangle X%y — Rjka — Kjs ® Hxa — K
corresponding to the periodic part of the sequence (3.3) is distinguished or anti-
distinguished (depending on the choice of signs for the maps in (3.3)).

Proof. We give the proof for j = 1 and k = 2. The other cases follow from cyclicly
permuting the indices 1, 2 and 3. We denote the morphism Z)24 — Z14 ® Fra
by ¢ and the corresponding map Q4 & Q24 — Q124 in (3.3) by ¢*. It suffices
to check that lfl\((Cone(/,) and Q4 correspond, possibly up to a sign, to the same

element in Exttl T ()0 (ker(<p*), coker(¢*)[1]). We have coker(¢*) = Sj»4 and an
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extension Syx[1] > Q4 —» ker(¢*). Since Hom(Qy4, S124[1]) = Si24(4)[1] = 0
and Ext!(Qy4, S124[1]) = 0 because Q, is projective, the long exact Ext-sequence
yields Ext! (ker(w*),coker(qo*)[l]) =~ Hom(S124[1], S124[1]) = Z. Considering the

sequence of transformations 3 i) 124 5 1234 5 3, it is straight-forward to check
that such an extension corresponds to one of the generators =1 € Z if and only if
its underlying module is exact. This concludes the proof because both fl\((Cone(p)
and Q are exact.

Hence we obtain the following projective resolutions induced by distinguished
or anti-distinguished triangles as in Lemma 3:

0\

Qs — Qju® Qs —— Qjia —> Sjia -

To summarize, by Lemma 3, Torn”y* (Sy,M)=0forY # 1234 and n > 1.
As we know from [11], the subset 1234 of Z3 plays an exceptional role. In the

notation of [11] (with the direction of the arrows reversed because we are dealing

with right-modules), the kernel of the homomorphism Q124 @ Q134 ® Q234 M)

0 1234 is of the form

/><\/\

0<—0<—Zl]<—o—Z2
~ >< /NS
Z[1]

It is the image of the module homomorphism

i =i 0
(47 7)
0 i —i

O014® 024 ® Q34— Q124D Q134 @ O34, (3.4)

the kernel of which, in turn, is of the form

0~ 7Z[1] Z[1]

XN N

Z[1] ~— Z[1?) =~— Z[l] <o— Z.

X N

0 — Z[1] Z[1]
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A surjection from Q4 @ Q1234[1] onto this module is given by ( 512 L, é 6), where

) 11234 = 83 ) r123 4+- The kernel of this homomorphism has the form

Z[] —— Z[1]

/ >< \ / \
ZN =— 7Z[1] 1]<—0<—0<—o—0
\ >< / \ /

Z[1] ~—— 7Z[1]

This module is isomorphic to Syz,,s4[1], where Syz,,3,4 := ker(Qi234 —> Si234).
Therefore, we end up with the projective resolution

4/_0_\
04® Quoaull] —= Q1 ® 024D Q34 —— Q124 ® Q134 ® Q3¢ — Q1234 —> S1234 -
3.5)

The homomorphism from Q24 ® Q134 ® Q234 to Q4 ® Qi234[1] is given by
00 5334
i1l i

Lemma 5. The candidate triangle in RR(X) corresponding to the periodic part of
the sequence (3.5) is distinguished or anti-distinguished (depending on the choice
of signs for the maps in (3.5)).

4 . sh 02
where 833, 1= 85 0 ryy,.

Proof. The argument is analogous to the one in the proof of Lemma 4. Again, we
consider the group Ext! W Tz (ker(qo*), coker(¢*)[1]) where ¢* now denotes the
map (3.4). We have coker(¢*) = Syz,,;, and an extension Q4 > ker(¢*) —>
S1234[1]. Using long exact sequences, we obtain

Ext' (ker(¢*), coker(p*)[1]) 2 Ext' (S1234[1]. Syzy534[1])
= Hom(S1234[1], S1234[1]) = Z

Again, an extension corresponds to a generator if and only if its underlying module
is exact.
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By the previous lemma and Sect. 3.6, computing the tensor product of this complex
with M and taking homology shows that Tor” 7" (N T,M) = 0forn > 2

and that Tor; V" (N T, M) is equal to Tor1 (S 1234, M) and isomorphic to the
homology of the complex (3.1).

Example 1. For the filtrated K-module with projective dimension 2 constructed in
[11, §5] we get Tor{" 7" (N T . M) = Z] k.

Remark 1. As explicated in the beginning of this section, the category 4.7 *(S)
corresponding to the four-point space S defined in the introduction is isomorphic in
an appropriate sense to the category .4 .7 *(Z3). As has been established in [1], the
indecomposable morphisms in .47 *(S) are organised in the diagram

12 —o— 34
5 /
123 —o— 4 1234
N\, V / \ /
13 —o— 24

In analogy to (3.1), we have that Tor'ljyg*(s) (AN T, M) is isomorphic to the
homology of the complex

MI2)[1] & M4) & M13)[1] —2" "% M(34) @ M(1)[1] & M(24)
50 M@34), (6

where M = FK(A) for some separable C *- algebra A over X.

3.7.2 Resolutions for the Pseudocircle

Let C, = {1, 2,3, 4} with the partial order defined by 1 < 3,1 < 4,2 < 3,2 < 4.
The topology on C; is thus given by {0, 3,4, 34,134,234, 1234}. Hence the non-
empty, connected, locally closed subsets are

LC(Cy)* = {3,4,134,234,1234,13,14,23,24,124,123,1,2} .
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/
\ - 123 \;> 1 7
4 23/ 23 ™ 124 \2 Zo—> 4

\\
24
Fig. 3.1 Indecomposable natural transformations in .47 *(C,)

The partial order on C, corresponds to the directed graph

The space C, is the only Ty-space with at most four points with the property
that its order complex (see [11, Definition 2.6]) is not contractible; in fact, it is
homeomorphic to the circle S'. Therefore, by the representability theorem [11, §2.1]
we find

N T (Ca, Ca) = KKu(X; By, By) = K%y (C2)) = K* (S = Z @ Z[1]

that is, there are non-trivial odd natural transformations FK¢, = FKc,. These are

generated, for instance, by the composition C, 5 5 35 C,. This follows
from the description of the category .47 * (C,) below. Note that 88 o 88 vanishes
because it factors through rl; 0 i3 = 0.

Figure 3.1 displays a set of indecomposable transformations generating the
category A4 7 *(C,) determined in [1, §6.3.2], where also a list of relations
generating the relations in the category .47 *(C,) can be found. From this, it is
straight-forward to verify that the space C, satisfies the conditions of Proposition 1.
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Proceeding as described in Sect.3.5, we find projective resolutions of the
following form (we omit explicit descriptions of the boundary maps):

O

/__ T
O123[1] —— OQ1[1]® Q2[1]] —— Q3 — S3, and similarly for Sy;

o\
O1[1] ——= Q03® Q4 —> Qi34 —> Si34, and similarly for Sy34;
-
Q4 — Q133 — Q13— S13, and similarly for S14, S»3, Sa4;

/0\
03® Q4 —— Q134D 0234 —— Q1234 —> S1234 ;

K—/_—o—\
04® 0123[1] —— Q134 ® 0234 —— Q1234 ® Q13D 023 —> Q123 — S123 »

and similarly for S}24;

O-

e
0234® Q1] — Q1234 ® 023 ® Q24 —— Q13® Q14 —> Q1 — 51,

and similarly for S,. Again, the periodic part of each of these resolutions is induced
by an extension triangle, a Mayer-Vietoris triangle as in Lemma 4 or a more exotic
(anti-)distinguished triangle as in Lemma 5 (we omit the analogous computation
here).

We get Tor'f/'fj* (Sy,M) = 0 forevery Y € LC(Cy)* \ {123,124,1,2}, and
further Tor‘,{yy* (Sy,M) =0forall Y € LC(Cy)* and n > 2. Therefore,

Tor/ 7 (N T M)= P Tor/" 7 (Sy.M).
Y e{123,124,1,2}

The four groups Tor{yg* (Sy,M) with Y € {123,124,1,2} can be described
explicitly as in Sect.3.7.1 using the above resolutions. This finishes the proof of
Proposition 2.

3.8 Proof of Proposition 3

We apply the Meyer-Nest machinery to the homological functor FK ® Q on
the triangulated category £R(X) ® Q. We need to show that every 47" ® Q
module of the form M = FK(A) ® Q has a projective resolution of length 1.
It is easy to see that analogues of Propositions 1 and 2 hold. In particular, the

term Tor‘Z'A/'y*@Q(c/V T s ® Q, M) always vanishes. Here we use that Q is a flat
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Z-module, so that tensoring with Q turns projective .4".7 *-module resolutions into
projective .47 * ® Q-module resolutions. Moreover, the freeness condition for the

Q-module Tor| T ®Q(JV§SS ® Q, M) is empty since Q is a field.

3.9 Proof of Proposition 4

The computations to determine the category 4.7 *(Z,) are very similar to those for
the category .47 *(Z3) which were carried out in [11]. We summarise its structure
in Fig. 3.2. The relations in .4#".7 *(Z4) are generated by the following:

» The hypercube with vertices 5, 15,25, ..., 12345 is a commuting diagram;
* The following compositions vanish:

123555 12345 5 4, 12455 12345 5 3,
134555 12345 552, 234555 12345 5 1,
§ i $ i $ i $ i
l1-5—>15, 2—>5—-25, 3—-5—>35, 4—>5—>45;

e The sum of the four maps 12345 — 5 via 1, 2, 3, and 4 vanishes.

This implies that the space Z,4 satisfies the conditions of Proposition 1.

In the following, we will define an exact .4 .7 *-left-module M and compute
Tor‘z” 7™ (S12345, M). By explicit computation, one finds a projective resolution of
the simple .4 .7 *-right-module S12345 of the following form (again omitting explicit
formulas for the boundary maps):

—
05 ® P Qiozss\i[l] — D le ® Qus[l] — P Qjis

I<i<4 1<i<4 1<j<k=<4
@ Q12345\i Q12345 S12345.
1<i<4

Notice that this sequence is periodic as a cyclic six-term sequence except for the
first rwo steps.
Consider the exact .#".7 *-left-module M defined by the exact sequence

i =i 00
=i 0 i 0
i 0 i —i 0
i i 0 —i

(z) 8 0 i 3.7

0 — Piyzes —> @ VSTEVEN: @ Pjps —> M .

1<i<4 1<j<k<4

i

olo~al




56 R. Bentmann

235

\V%

345

Fig. 3.2 Indecomposable natural transformations in 4.7 *(Z,)

We have @), ; <, M(15) & M(12345)[1] = 0@ Z°, @< <4 M(jk5) = Z°, and
M(5) & @, M(12345\ i)[1] = Z[1] & Z[1]*. Since

B M5 & M(12345)[1] B M((kS)
1<i<4 1<j<k<d4

T

MG ® @ M(12345\i)[1]

1<i<4

is exact, a rank argument shows that the map

P Mus) o M12345)[1] > @ M(jk5)

1<i<4 1<j<k<4

is zero. On the other hand, the kernel of the map
0

0 i

-1

0

( )
P mks) 21T M(12345\ i)

1<j<k<4 1<i<4

ool ~
| co~
~olo
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is non-trivial; it consists precisely of the elements in

P M= P Z[ld]ks]

1<j<k<4 I<j<k=<4

which are multiples of ([id’ kS])1<J <k<a. This shows Tor2 (S12345, M) =~
Hence, by Proposition 1, the module M has projective dimension at least 2. On the
other hand, (3.7) is a resolution of length 2. Therefore, the projective dimension
of M is exactly 2.

Let k € Nx, and define My = M ®; Z/ k. Since Tor;" 7" (Sio345. M) = Z/ k
is non-free, Proposition 1 shows that M has at least projective dimension 3. On the
other hand, if we abbreviate the resolution (3.7) for M by

0= PO % p& L pa 4y (3.8)

a projective resolution of length 3 for M is given by

(&) (¢ %) P g pO LK)

0— PO 24 pO) @P(4) p® — M, ,
where k denotes multiplication by k.

It remains to show that the modules M and M), can be realised as the filtrated K-
theory of objects in Z(X). It suffices to prove this for the module M since tensoring
with the Cuntz algebra 04 then yields a separable C*- algebra with filtrated K-
theory M} by the Kiinneth Theorem.

The projective resolution (3.8) can be written as

0 — FK(P?) 22 g pty B2V BP0 - M,

because of the equivalence of the category of projective .47 *-modules and the
category of J-projective objects in RR(X). Let N be the cokernel of the module
map FK( f2). Using [11, Theorem 4.11], we obtain an object A €€ H(X) with
FK(A) = N. We thus have a commutative diagram of the form

FK(f2) FK(/1)
0 —— FK(P?) —— FK(P!) FK(P%) —> M .

~ 7

FK(A)

Since A belongs to the bootstrap class Z(X) and FK(A) has a projective resolution
of length 1, we can apply the universal coefficient theorem to lift the homomorphism
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y to an element f € KK(X:A4, PY). Now we can argue as in the proof of
[11, Theorem 4.11]: since f is J-monic, the filtrated K-theory of its mapping cone
is isomorphic to coker(y) = M. This completes the proof of Proposition 4.

3.10 Cuntz-Krieger Algebras with Projective Dimension 2

In this section we exhibit a Cuntz-Krieger algebra A which is a tight C*-algebra
over the space Z3 and for which the odd part of Tor‘l'A/'rj*(Z") (</V T sss FK(A))_
denoted Tor‘l’dd in the following—is not free. By Proposition 2 this C *-algebra has
projective dimension 2 in filtrated K-theory.

In the following we will adhere to the conventions for graph algebras and

adjacency matrices from [4]. Let E be the finite graph with vertex set E® =

{v1, V2, ..., vg} and edges corresponding to the adjacency matrix
32 0 0 0
23
By 0 0 0 11 32 0 0
X1 B 0 0 11 12 (3.9)
X, 0 B, O 11 0 32 0 '
X3 0 0 Bj 11 12
(1) (2)

11

12

Since this is a finite graph with no sinks and no sources, the associated graph
C*- algebra C*(E) is in fact a Cuntz-Krieger algebra (we can replace E with its
edge graph; see [13, Remark 2.8]). Moreover, the graph E is easily seen to fulfill
condition (K) because every vertex is the base of two or more simple cycles. As
a consequence, the adjacency matrix of the edge graph of E fulfills condition (II)
from [5]. In fact, condition (K) is designed as a generalisation of condition (II): see,
for instance, [8].

Applying [13, Theorem 4.9]—and carefully translating between different graph
algebra conventions—we find that the ideals of C*(E) correspond bijectively
and in an inclusion-preserving manner to the open subsets of the space Z3. By
[9, Lemma 2.35], we may turn A into a tight C*- algebra over Z3 by declaring
A4 = Ty AQL4Y) = Lo sy AG2,4)) = Ty vse as well as
A({3.4}) = I{y, v,.07.05) Where Is denotes the ideal corresponding to the saturated
hereditary subset S.

It is known how to compute the six-term sequence in K-theory for an extension
of graph C*- algebras: see [4]. Using this and Proposition 2, Tor‘l’“ld is the homology
of the complex
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i —i 0
(—iOi)
0 i —i
—_

ker(¢h) ker(1) —% ker(¢) | (3.10)

B, X! X} X}

. By X!\ (B} X,\ (B X [ oB 0o
where ¢ = diag (( o5 ) o) \os)): 2=0omo]:
00 0 B

. B, X! X! B, X! X! B} X} X!
¢1 = diag oB o), oB o],[oBo ,
0 0 B} 0 0 B 0 0 B

and B} = B}i—((l)?) = (%%) andB} = B; —((1)?) = (%{)forl <j <3 We
obtain a commutative diagram
%o
ker(¢o) = (Z%%)®*) —— im(¢o)
I l S S

ker(¢) —— (Z%92)®63) L-> im(¢1) 3.1D)

8K l 4 81

ker(¢y) —— (282)®*D B im(¢,) ,

where f and g have the block forms

id 0 —id 0 0 0

0 id 0 0 0 0

T O id00id 0 0id0 0
=" 00 9 g=(0id00id0000

9 Qa0 00 0] 00id0000id0 | >

o 0 0 0 0 i 00000id00id

0 0 0 id 0 0

0 0 0 0 0 —id

and fK = flker(qbo)a f] = flim(¢0), gk = glker(zpl), gr = glim(¢1)- Notice that f
and g are defined in a way such that the restrictions f [xer(g,) and g |ker(g,) are exactly
the maps from (3.10) in the identification made above.

We abbreviate the above short exact sequence of cochain complexes (3.11) as
Ke > Zo —» I,. The part H'(Z,) — H°(ls) — H!(K.) — H'(Z.) in the
corresponding long exact homology sequence can be identified with

ker(gx)

ker(f) ﬂ ker(f7) — —

—0.
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Hence

. ker(gx) _ ker(fy) _ ker(f) N im(do)
—im(fk)  go(ker(f))  ¢o(ker(f))

We have ker(f) = {(v,0,v,0,v,0) | v € Z?} C (Z9?)®C),

From the concrete form (3.9) of the adjacency matrix, we find that ker(f) N
im(¢y) is the free cyclic group generated by (1,1,0,0,1,1,0,0,1,1,0,0), while
bo (ker(f)) is the subgroup generated by (2,2,0,0,2,2,0,0,2,2,0,0). We see that
Tor)! = 7/2 is not free.

Now we briefly indicate how to construct a similar counterexample for the
space S. Consider the integer matrix

odd
Tor}

B, 0 0 0 3) o o 0
X By 0 0 2) 3 o 0
Xu 0 B 0|7 2 o (3 o

w0 () () (1)

The corresponding graph F fulfills condition (K) and has no sources or sinks. The
associated graph C *- algebra C *(F) is therefore a Cuntz-Krieger algebra satisfying
condition (I). It is easily read from the block structure of the edge matrix that the
primitive ideal space of C*(F') is homeomorphic to S. We are going to compute the
even part of Tor’lA/ 7S (JV T s, FK(C*(F ))). Since the nice computation methods
from the previous example do not carry over, we carry out a more ad hoc calculation.

By Remark 1, the even part of our Tor-term is isomorphic to the homology of the
complex

coker(B}

| By Xiy Xi
o—> coker| 0 B o0 ,

0 0 B
/

’ t ’ t
ker ( By X3 ) —o> coker ( By X“)

0 B 0 B
_(Xis X{u)
0 Xi

X A
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where column-wise direct sums are taken. Here B] = B| — ((1) (1)) = (i i) and
B/ = B} — (1) = (2) for2 < j < 4. This complex can be identified with

010
000
—202
010
000

L2®LI2®T ——— (Z)2)* D Z & (Z/2)*

S}

(10010
01100)
00101
—_—_

the homology of which is isomorphic to Z/2; a generator is given by the class of
0,1,1,0,1) € (Z/2)*> ® Z & (Z/2)>. This concludes the proof of Proposition 5.

/2y,
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Chapter 4
An Introduction to the C *-Algebra
of a One-Sided Shift Space

Toke Meier Carlsen

Abstract This paper gives an introduction to the C*-algebra of a one-sided shift
space. Focus will be given to the fundamental structure of the C*-algebra of a
one-sided shift space, but some of the most important results about C *-algebras
associated to shift spaces will also be presented.
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4.1 Introduction

I will in this paper give an introduction to C *-algebras associated to shift spaces
(also called subshifts). The paper also contains an appendix about C *-algebras,
Morita equivalence and K-theory of C *-algebras which hopefully will provide a
reader without any knowledge of operator algebra with the necessary background
for reading this paper.

C *-algebras associated to shift spaces were introduced by Kengo Matsumoto
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The approach I will take in this paper, is a little bit different from Matsumoto’s
original approach. One notable difference is that I will associate C *-algebras to
one-sided shift spaces, whereas Matsumoto associated C *-algebras to two-sided
shift spaces, but there are other differences as well. See [15, Sect. 7] for a discussion
of the relationship between the different C *-algebras that have been associated to
shift spaces.

The focus of this paper is the fundamental structure of the C *-algebra of a
one-sided shift space, but I will also describe some of the most important results
about C *-algebras associated to shift spaces. In Sect. 4.2 one-sided shift spaces are
defined and representations of one-sided shift spaces are introduced and studied.
In Sect.4.3 the C*-algebra of a one-sided shift space is introduced and studied,
and in Sect.4.4 the gauge action of the C*-algebra of a one-sided shift space is
studied. In Sect.4.5 it is proved that the C *-algebra of a one-sided shift space is
a conjugacy invariant. Finally, it is in Sect.4.6 briefly explained that the Morita
equivalence class of the C*-algebra of a one-sided shift space is a flow invariant,
and in Sect.4.7 the K-theory of the C*-algebra of a one-sided shift space is
described. As mentioned above, the paper contains an appendix which hopefully
will provide a reader without any knowledge of operator algebra with the necessary
background for reading this paper. This appendix contains a section which very
briefly introduces C *-algebras, a section which very briefly introduce Morita
equivalence of C *-algebras, and a section which very briefly introduce the K -theory
of C *-algebras.

It should be noticed that parts of this paper are taken from the notes [9] which
I wrote for the summer school “Symbolic dynamics and homeomorphisms of the
Cantor set” at the University of Copenhagen, 23—27 June 2008.

4.2 Representations of One-Sided Shift Spaces

Let a be a finite set endowed with the discrete topology. We will call this set the
alphabet and its elements letters. Let a0 be the infinite product space [T2ya
endowed with the product topology. The transformation o on a™° given by

(0(x)), = xit1, i € No,

is called the (one-sided) shift. Let X be a shift invariant closed subset of a™ (by shift
invariant we mean that o6(X) C X, not necessarily o(X) = X). The topological
dynamical system (X, o|x) is called a one-sided shift space (or a one-sided subshift).

Example 1. If a is an alphabet, then a™° itself is a shift space. We call a™¢ the full
one-sided a-shift.
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We will denote o)x by ox or ¢ for simplicity, and on occasion the alphabet a by
ax. We denote the n-fold composition of ¢ with itself by ¢”, and we denote the
preimage of a set X under 6” by 07" (X).

A finite sequence u = (uy, ..., uy) of elements u; € ais called a finite word. The
length of u is k and is denoted by |u|. For each k € N, we let a* be the set of all
words with length k, and we let L* (X) be the set of all words with length k appearing
in some x € X. We let L°(X) = a° denote the set {€} consisting of the empty word
¢ which has length 0. We set L;(X) = | J;_, L¥(X) and L(X) = (22, L*(X), and
likewise a; = U]lc=0 af and a* = (J32, af. The set L(X) is called the language of
X. Note that L(X) € a* for every shift space.

If u € a* with |u| > 0, then we will by u; denote the first letter (the leftmost)
letter of u, by u; the second letter of u, and so on till u),) which denotes the last (the
rightmost) letter of u. Thus u = ujuy - - - u),).

We will often denote an element x = (x,),en, of aMo by

xoxl e s
and if u € a*, then we will by ux denote the sequence
Uiy -+ .M‘u‘xoxl e,

We will also often for a sequence x belonging to either a0 or aZ and for integers
k < [ belonging to the appropriate index set denote xgxx41---X;—1 by X[ and
regard it as an element of a*. Similarly, x}x o[ Will denote the element

Xk Xk+1"""

of al¥o,

Definition 1. Let X be a one-sided shift space. We let /°°(X) be the C *-algebra
of bounded functions on X. We define two maps o : [*°(X) — [*°(X) and .Z :
[®(X) = [°°(X) by for f € [°°(X) and x € X letting

1 .
@(f)(x) = f(o(x)) and Z(f)(x) = (Wzyeou{x}) f) it € oX).

if x ¢ o(X),

where #0~!({x}) denotes the number of elements of 0 ~!({x}) (which is finite).

Definition 2. Let X be a one-sided shift space over the alphabet a. For every pair
(u, v) of words in a*, we let C(u, v) denote the subset

{vx € X | x,ux € X}

of X which consists of those elements which begins with a v and which satisfies that
the element obtained by replacing the beginning v with u also is an element of X.
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We let Zx be the C*-subalgebra of [°°(X) generated by {lcq.v) | u,v € a*}
where 1¢(,,) denotes the characteristic function of C(u, v).

Proposition 1. Let X be a one-sided shift space over the alphabet a. Then we
have:

1. C(X) € Y.
2. Dx is the closure of

n

*

Span l—[lc(ui,vi) | Ul,..., Uy, V1,..., 05 €0
i=l1

3. Dx is closed under o and L (i.e., [ € Ix = a(f),Z(f) € Dx).
4. If Z is a C*-subalgebra of [°°(X) that is closed under o and £ and contains
C(X), then 9x C .

Proof. 1. For u € a* we have that Z(u) := C(e,u) = {ux € X | x € X} is
a clopen subset of X, and thus that 1,4, € C(X). Since {Z(u) | u € a*}
separates the points of X, it follows from the Stone-Weierstrass Theorem that
the C*-subalgebra of [*°(X) generated by {lzw) | u € a*} is equal to C(X).
Thus C(X) € .

2. By definition %x is the smallest C*-subalgebra of /°°(X) which contains
{lcwy) | u,v € a*}. Itis not difficult to check that the closure of

n
*
Span l_llc(uisvi) | Uiy...,Uy,V1,...,0, €0

i=1

satisfies this condition.

3. Since « is a *-homomorphism, and .Z is linear and continuous, it is enough
to prove that (1 c(u.v)) € Zx forall u, v € a*, and that L ([ 1/, 1cw ) € Zx for
all ug, ..., u,,vy,...,v, €a*, soletus do that:

If u, v € a*, then we have

a(lewn) = Z Lewwa) € DX.

aca

If A,B C Xsuchthat 14,13 € 9x,then14up = 14+ 15 — 1415 € Dx. Thus
Ionxy = IU“EGH Clue) € Px . It follows that the function 1 — 1,x) + ZaEu Lc(a,e
also belongs to Zx. Let us denote it by . We have for x € X that

#o 7' ({x)) ifx € 0(X),

h(x) =
=1, if x ¢ o (X).
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Thus 4 is invertible, and it follows from Fact 8 that A~' € Zx. So the function
ooy — 1+ h~! belongs to Zx. Let us denote it by d. We have for x € X that

l .
d(x) = e veen) if x € 0(X),
0 if x ¢ o(X).
Ifui,...,uy,v1,...,v, € a*, then either ]_[;1=1 Lew vy = 0, all the v;’s are equal

to the empty word, or all the non-empty v;’s begin with the same letter a’. In the
first case Z([1/—; 1cw.v;)) = 0, in the second case we have

Z (l_[ IC(ui,vi)) =d (Zl_[ 1C(uia,e)) € -@X7

i=1 acaj=1

and in the third case we have

n
= (l_[ lcuq,v,-)) = dlcw.o [ [1ew.wnonn [ | lewae € 2

i=1 iel iel’

where I ={i € {1,2,....n}|v; #e}and I’ ={i € {1,2,...,n} | v; =€}
4. Let & be a C*-subalgebra of [°°(X) that is closed under @ and . and
contains C(X). For n € Ny let g, be the function

1=2"(1) + Y (L (lw))

Then g, € 2, and for every x € X we have

1 .
() = ) Gy X €0t (X),
1 if x ¢ 0"(X).
Thus, g, is invertible. It follows from Fact 8 that g, ! and hence f, := g, ! +
Z"(1) — 1 belong to 2. For every x € X we have f,(x) = #07"({x}). Thus if

u,v € a*, then legy = lz(v)a‘“‘(ﬁu\fw'(lz(u))) e 4. Since P is generated by
{1y | u, v € a*}, it follows that Zx € 2. O

Remark 1. 1t follows from [19, Theorem 1] that C(X) = % if and only if X is of
finite type.

Definition 3. Let X be a one-sided shift space over the alphabet a. For w € a* we
let A,, be the map from /°°(X) to /°°(X) given by

flwx) ifwx eX,

WO =000 g x

for f € [°°(X) and x € X.
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Lemma 1. Let X be a one-sided shift space over the alphabet a and let w € a*.
Then A, is a x-homomorphism and A,,(2x) € Px.

Proof. 1t is easy to check that A,, is a x-homomorphism. Since Zx is generated
by {lcww) | #,v € a*} and A,, is a x-homomorphism, it is enough to check that
Aw(lcwyy) € Dx for all u, v € a*, and this follows from the fact that

1C(w,e) 1C(uw’,e) ifw= UW/,
Aw(lC(u,v)) =4 leweolewy) ifwv’ = v,

0 otherwise.

|

Definition 4. Let X be a one-sided shift space over the alphabet a. By a repre-
sentation of X on a C*-algebra 2~ we mean a pair (¢, (f,)uecq*) Where ¢ is a
x-homomorphism from %P to 2" and (t,),eq* is a family of elements of 2 such
that

1. t,t, = ty,
2. ¢(1C(u,v)) = tvtu*tut:
forall u,v € a*.

We denote by C*((¢, (t,)uca*)) the C*-subalgebra of 2~ generated by
{t.|uea*}

Let X be a one-sided shift space over the alphabet a and let H be a Hilbert
space with an orthonormal basis (ey)yex With the same cardinality as X (we can
for example let H be /2(X) and e, = §,).

For every u € a*, let T, be the bounded operator on H defined by

T.(e,) = e ifux e X, @.1)
o 0 if ux ¢ X, .

and let ¢ : Zx — Z(H) be the x-homomorphism defined by

P(f)ex) = f(x)ex. (4.2)

It is easy to check that (¢, (T,),eq*) is a representation of X. Thus we have:

Proposition 2. Let X be a one-sided shift space over the alphabet a and let H be
a Hilbert space with an orthonormal basis (ex)xex with the same cardinality as X.
For every u € a*, let T, be the bounded operator on H defined by (4.1), and let
¢ 1 Dx — HB(H) be the x-homomorphism defined by (4.2). Then (¢, (T,)ueca*) is a
representation of X on #(H).
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4.3 The C*-Algebra of a One-Sided Shift Space

In this section, the C *-algebra of a one-sided shift space will be introduced. This
will be done via the following theorem which says that every one-sided shift space
has a universal representation.

Theorem 1 (cf. [10, Remark 7.3] and [15, Theorem 10]). Ler X be a one-sided
shift space over the alphabet a. There exists a C*-algebra Ox and a representation
(t, (Su)uca*) of X on O satisfying:

1. C*(t, (Su)ueax) = Ox.

2. If (¢, (t)ueca*) is a representation of X on a C*-algebra &', then there exist a
*-homomorphism V(. (1,),c.x) : Ox — 2 such that Yy ,),cox) © L = ¢ and
V((t)ye ox) (Su) = 1y for every u € a*.

The C*-algebra Ox, which is called the C*-algebra of X, can be constructed
in different ways, for example as the C *-algebra of a groupoid (see [8]), as the
C*-algebra of a C*-correspondence (see [10] and [16]), or as one of Ruy Exel’s
crossed product C *-algebras of an endomorphism and a transfer operator (see [15]).

Throughout these notes we will let (¢, (s,),eq*) denote the representation of X
on Ox mentioned in Theorem 1.

Remark 2. Since O is generated by a countable family, it is separable.
Lemma 2. Let X be a one-sided shift space over the alphabet a. The x-homomor-
phism 1 : Dx — Ox is injective.

Proof. Notice that the x-homomorphism ¢ : Zx — Z(H) from Proposition 2 is
injective. It follows from Theorem 1 that there exists a x-homomorphismy : Ox —
A(H) such that ¥y ot = ¢. It follows that ¢ is injective. O

We will from now on view Zx as a subalgebra of 0% and suppress ¢. This allows
us to state and prove the following lemma and propositions about the fundamental
structure of Ox.

Lemma 3. Let X be a one-sided shift space over the alphabet a. We then have:

1 se=s) = 552 = lx is a unit for Ox.
2. Ifu € a*, then SMSLT = lc(g,u).
3. Ifu € a*, then s, is a partial isometry (i.e., 5,5, 8, = S, and s, 5,5, = S).

4. Ifu,v € a* and |u| = |v|, then we have
1 ifu=v,
Sysy = Clwe) ifu
0 ifu#v.
Proof. 1. Since €ee = ¢, it follows from 1 of Definition 4 that sf = S

It follows from 2 of Definition 4 that s.s¥scs) = lcee Which is a projection,



70 T.M. Carlsen

SO Se8F = Ses)ses) according to Fact 7. It follows that (s¢ — Ses))(Se — SesP)* =0
and thus that s¢ = s¢8F = 5e875es) = lee) = 1x which is a projection.

Let u € a*. Since eu = ue = u, it follows from 1 of Definition 4 that s.s, =
SuSe = s,,. Since s is self-adjoint, it follows that it is a unit for Ox.

2.If u € a*, then 5,8} = $,575¢8) = lc(ew-

3. It follows from 2 that s,s)" is a projection and thus that s, is a partial isometry.

4. Let u,v € a* with |u] = |v]. If u # v then C(€,u) N C(e,v) = @ and so
SrSy = SrsuSysySasy = Splcewlcensy = 0.Ifu = v, then s)'s, = s)s, =
SeSysusy = lewe)- O

Proposition 3. Let X be a one-sided shift space over the alphabet a, let n € Ny, let
w e a" and let | € Dx. Then we have:

1 A(f) = st fs,,.

st = alh)se.

" (f) =D uear Sufs)

swf =a"(f)sy.

Y uvear SuSy SuSy s equal to the function x > #o07"({c"(x)}) and is thus

invertible.
6. gn(f) = (ZuEu” s”)*(Zu,vea” SMS:SUS:)_If(ZMGa” S”)'

Proof. 1.1tis clear that the map f > s fs,, is linear and *-preserving.If f, g € 9x,
then it follows from Lemma 3 and the fact that 9y is commutative that we have

BRI

svtfswsvtgsw = S:;flc(qu)gsw = S;IC(&W)fgsw = s;sws:;fgsw = s:fgsw’

which shows that the map f > s)fs, is also multiplicative and thus is a
x-homomorphism. According to Lemma 1, 4, is a *-homomorphism, and since
PDx is generated by {lcw., | u,v € a*}, it therefore suffices to check that
Aw(Lewwy) = Silcwy)sw foru, v € a*, so let us do that:

It is easy to check that

1C(w,e)IC(l,M’,e) ifw= UW/,
Aw(leww) = 3 lewolewyy —iEwv' =,

0 otherwise.

It follows from Lemma 3 that if 55, # 0, then either w = vw’ for some w’ € a*,
or v = wv’ for some v’ € a*. In the first case we have

S;SUS:SMS:SW = S:/1C(U,e)IC(u,e)IC(v,e)sw’ = S:/1C(U,e)IC(W’,G)1C(u,e)SW’

* K * * * *
= 8,8y SuS,ySw Sy, SuSw = Sy Sow’ Sy Suw’ = 1C(w,e)1C(uw/,e)a
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and the second case we have
* * * * * * k
S SuSy SuSy Sw = 8., SwSv/ S, SuSy SuSw = Loy lcway-

Thus Ay(Lcw)) = S5 1cw.v)Sw as wanted.
2. It follows from 1, Lemma 3 and the fact that 9y is commutative that we have

smf =smswSu [ =sulcew S = Spfleew = sufsusy = Aw(f)sg.

3. Themap f + Y c.n Sufs) is clearly linear and *-preserving. If f, g € x,
then it follows from Lemma 3 and the fact that 9y is commutative that we have

(Z sufs:) (Z Svgs:) = Z Suflewe sy = Z sufglee sy = Z sufesy,

u€a vE€a” u€a u€a u€a

which proves that the map f +— Y . S.fs; is multiplicative, and thus a *-homo-
morphism. Since o” is also a *-homomorphism and %x is generated by {1c(,v) |
u,v € a*}, it therefore suffices to check that &" (e v)) = Y ,eqn Sulcw v)s; for
u', v’ € a*, and that can be done in the following way:

E Sulew v)sy = E SuSy! S Su Sy S

u€a u€a

* *
= Z Suv/ Sy Suw' Sy = Z 1C(l/,uv’) = Oln(l(:(u/,v/))-

uca u€a”

4. It follows from 3, Lemma 3 and the fact that 9x is commutative that we have

swf = Swsct-swf = SWIC(w,e)f = SwfIC(w,e) = Swfsikusw = Z Sufs;ksw =a"(f)sw.

u€a”

5. Follows from Lemma 3 and 3.
6. If u,v € a" and u # v, then it follows from Lemma 3 and the fact that P is
commutative, that we have

—1 -1
o ( Z sus:svs:) Ssv =85 Legew ( Z sus:svs:) S Lc(ew)so

u,veA” u,veA”

-1
= S: ( Z SMS:SUS:) fIC(e,u)1C(e,v)Sv =0.

u,v€A”
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Hence it follows from 1 to 5 that we have

* —1
* *
(E su) (E susvsvsu) f(g su)
uca” u,vea” uca”
—1
* * *
=E SW(E susvsvsu) 5,

wea u,vea”

-1
= ZAW( Z s,,s;‘svs:) f=2"(f).

wea” u,v€A”

|

Proposition 4. Let X be a one-sided shift space over the alphabet a. Then Ox is
the closure of

span{s, fs; | u,v € a*, f € Ix}.

Proof. Let us by % denote span{s,fs; | w,v € a* f € Dx}. Since
{su|ue€a*} CZ, it suffices to prove that £ is a *-subalgebra of Ox. It is
obvious that 2" is closed under addition and conjugation, so it suffices to prove that
ifu,v,u',v" € a*and f, f' € Dx, then s, fs}s, f's), € 2, solet us do that:

Let us first assume that |v| > |u/|. It follows from Lemma 3 that if
sufsysw f'sY # 0, then there exists a w € a* such that v = u'w, and in that
case it follows from Proposition 3 that we have

sufsysw 15t = sufspstisw /sy = sufsilcw .o f sy = sufAwlcw .o f)susy € X

That s, fs; s, f's% € Z if |v| < |u/], then follows by taking the adjoint. O

4.4 The Gauge Action

In this section, the gauge action of Ox will be introduced and studied, and the gauge
invariant uniqueness theorem for Ox will be described.

An automorphism of a C*-algebra 2" is a *-isomorphism from 2" onto itself.
We will by Aut(2") denote the set of automorphisms of Z". The set Aut(.Z")
becomes a group when equipped with composition. An action of a group G on
a C*-algebra 2 is a homomorphism from G to Aut(.Z"). We say that an action
a: G — Aut(Z") of a topological group G is strongly continuous if for every
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convergent sequence (g,)seny in G and every x € 2, the sequence a(gy,)(x)
converges to o (lim, 00 gn) (X).

We will by T denote the group {z € C | |z| = 1}. The following lemma will be
useful for checking if an action of T on a C *-algebra is strongly continuous.

Lemma 4. Let a be an alphabet. If 2" is a C*-algebra generated by a family
(Xuear and o = T — 2 is an action such that a(z)(x,) = z"x, for everyz € T
and every u € a*, then « is strongly continuous.

Proof. Let X be the set of elements x of 2" such that if (z,),en converges to z in
T, then a(z,)(x) converges to o (x) in 2. It is straightforward to check that X is
a C*-subalgebra of Z°, and since we for every u € a* have x, € X, it follows that
X=2. O

Proposition 5 (cf. [10, Remark 3.2], [15, Sect.9] and [25, p. 361]). Let X be a
one-sided shift space over the alphabet a. Then there exists a strongly continuous
action z — y. of T on Ox such that y.(s,) = 2"s, and y.(f) = f for everyz € T,
uea*and f € Dx.

Proof. Let z € T. It is easy to check that (¢, (z1"ls,),eq) is a representation of X
on Ox. Thus there exists a x-homomorphism y, : Ox — Ox such that y.(s,) =
s, and y.(f) = f forevery u € a* and every f € %x.

If 71,20 € T and u € a*, then we have

lul |ul

)’m(yzz(su)) = )’zl(zlzulsu) =21 % Su= (z122)

‘u‘su = ymzz(su)-

Since O is generated by {s, | u € a*}, it follows that y,, o y,, = y;,.,- We have in
particular that y, 0 y,—1 = y,—1 0y, = y; = ldg, foreveryz € T, so y, € Aut(0x),
and z > Y, is an action of T on Ox. That this action is strongly continuous follows
from Lemma 4. O

The action of T on Ox from Proposition 5 is called the gauge action of Ox. Since
y is strongly continuous, it follows that we for every x € Ox have that the function
Z + y,(x) is a continuous function from T to &x. Thus we can make sense out of

the integral
/ y-(x)dz
T
(cf. [40, Lemma C.3.]).

Proposition 6 (cf. [15, Sect. 9] and [25, p. 361]). Let X be a one-sided shift space
over the alphabet a. If we for every x € Ox let

E(x) = /T ().
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then E is a linear contraction (i.e., ||E(x)|| < ||x|| for all x € Ox) from Ox to
itself such that

Esfit) = {(S)ufSZf if ul = [vl.

if Jul # [v]
foru,v € a* and f € Dx.

Proof. Itis clear that E is linear. If ¢ : T — O is continuous, then | [, f(z)dz|| <
Jpll f(2)ldz (see [40, Lemma C.3.]), and if x € Ox, then [|y.(x)| = |lx]| for every
z € T since Y, is an automorphism, so we have

< / 1ya(oldz = [ lelldz = J1x].
T T

Let u,v € a* and f € Px. If [u| = |v|, then y,(s.fs)) = s.fs; for every
z € T, s0 E(sufs)) = sufsy. If u| # |v]|, then we have for every z € T that
Vo (sufs) = Z"sufs; where n = |u| — |v| # 0, and since [} z"dz = 0, it follows that
E(sufs%) = 0. O

IEG)] = H [ v

The map E from Proposition 6 is a so-called faithful conditional expectation.

Definition 5. Let X be a one-sided shift space. We let .#x denote the fixed-point
algebra

{x € Ox |VzeT:y,(x) =x}
of the gauge action y of Ox.

Notice that % is a C *-subalgebra of 0.

Proposition 7. Let X be a one-sided shift space over the alphabet a. Then we have
that %y is equal to the closure of

span{s, fsy | u,v € a*, |u| = |v|, f € Dx},

and that E(Ox) = Fx.

Proof. Let 2 denote the closure of span{s, fs; | u,v € a*, |u| = |v|, f € Dx}.
Itis clear that 27 C %x, and that x = E(x) € E(Ox) forevery x € %x. It follows
from Propositions 4 and 6 that E(0x) = % . Thus we have E(Ox) = Z C 9x C
E(0Ox) from which the conclusion follows. O

The following gauge-invariant uniqueness theorem will be proved in [6].

Theorem 2. Let X be a one-sided shift space, & a C*-algebra and ¢ : Ox — X
a surjective x-homomorphism. Then the following two statements are equivalent:

1. The x-homomorphism ¢ : Ox — Z is a *-isomorphism.
2. The restriction of ¢ to Dx is injective and there exists an action y : T — Aut(Z")
such that §.(¢(s,)) = 2" ¢ (s,) for every z € T and every u € a*.
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4.5 One-Sided Conjugation

In this section, it will be proved that the C *-algebra Ox of a one-sided shift space X
is invariant under conjugacy. This has been proved in [10] and [15], and in a special
case in [28], but the technique used to prove this statement here is different from the
one used in [10] and [15] and will allow us to get a slightly stronger result than the
one presented in [10].

Definition 6. Let X; and X; be one-sided shift spaces. We say that X; and X, are
conjugate if there exists a homeomorphism ¢ : X; — X, such that ooy, = ox,0¢.
We call such a homeomorphism a conjugacy.

Definition 7. Let X be a one-sided shift space over the alphabet a. We will by Ax

denote the map
X (Zs:) X (Zsb)
aca bea
from . to Fx.

Theorem 3 (cf. [10, Theorem 8.6], [15, Theorem 23], [25, Proposition 5.8] and
[28, Lemma 4.5]). Let X; and X, be one-sided shift spaces. If X; and X, are
conjugate, then there exists a x-isomorphism  from Ox, to Ox, such that

Ly (C(Xy)) = C(Xp),

2. Y(Dx)) = Dxo

3. Y (Fx) = Fx,,

4. yoa=aoy,

S Yo ="Lovy,

6. Yoy, =y, 0 foreveryz €T,
7. Y odx, = Ax, 0 Y.

Proof. Let ¢ be a conjugacy between X, and X, and let @ be the map between the
bounded functions on X; and the bounded functions on X, defined by

f=fod.

Then @(C(X;)) = C(X3),Poa=ao® and ® 0o ¥ = £ o P, so it follows from
Proposition 1 that @(Zx,) = Px,.

Let a; be the alphabet of X; and a, the alphabet of X,. For u € af and v €
ay with [u| = |v| let D(u,v) = {x € X5 | vx € Xy, ¢(vx) = u¢p(x)} and
Z(u) = C(€,u). Then we have that 1 pgvy) = Ay (@(1zw)) € Dx,. Foru € af let
t, = Zveay Sy 1 p@,v). We will show that (@, (fu)ueaj") is a representation of X; on

Ox,. X ui,up € af and vy, v, € a with |u;| = |v1| and |uz| = |v2], then we have

lD(uluz,vlvz) = /\vz (Avl (¢(IZ(M1)))¢(1Z(L12)))5
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so it follows from Proposition 3 that we have
1D(Ml 1)5v, 1D(Mz,vz) = Avl (d)(l Z(Ml)))svzkvz (d)(l Z(Mz)))

= Sy, Av, (A’Ul (qj(lz(ul)))@(lz(uz)))

= Su, L D@z v1v2) -

It follows that if u;, u> € af, then we have

llu, = Z Svi 1Dy Z S0y 1D(uy00) =
lup [up|
Z Z 80180, 1 D(uug. vrv2) = Luyuy -

vi€a, v2€a,
Juq | lup|
vi€a,  12€a,

We also have that
tuy by tunt

*
uj

= Y sulbwen Y. 1bwemss, Y. Sulbww D Ipww)ss,

vl€a|2l11| szCllz”z‘ v3€a‘2u2| v4€a|2””
— *
= > DIDCHE VYNNG PYPRY Perupss PYMS PIRC
Ulealzull UZEu‘zuzl U4Eu‘2ul|
_ *
= E E : E : Sy 1D(M1.,v1)1D(Mzsvz)1D(M1,v4)sv4
Ulealzull UzEu\2“2| U4Eu‘2u1|

= Z Z SUIID(MlsUI)lD(uLUZ)SlTl

lup | lup|
vleazl v2€a22

= Y Y U pwm)sus;,

vlealz”ll UzEu‘zuzl

= > > d"bwanlpwem)lzen

vlealz“ll UzEu‘zuzl

®(1C(u2,u1))'

Thus (@, (fu)eqr) 1s a representation of X on O, . It follows that there exists a
x-homomorphism y from O, to Ox, such that Y (s,) =1, = calt! Sv L D(u,v) for
veay

every u € aj and ¥ (f) = @(f) forevery f € %x,.
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Foru € af and v € a},let D(v,u) = {x € X; | ux € X;, ¢! (ux) = vop~!(x)}.
In a manner similar to the preceding paragraph, one can prove that there exists a

*-homomorphism 7 from Ox, to Ox, such that ¥ (s,) = cqll Syl Dlwa) for every

u 1 s
v € a} and p(f) = @7'(f) forevery f € Dx,. If u,u’ € af with [u| = ||,
then Zv&a‘zul lﬁ(y,u/)¢_l(lD(u,v)) =0ifu 7é u/’ and Zvealzu‘ lﬁ(v,u/)d)_l(lD(u,v)) =

Lo if u = . It follows that if u € af, then we have

p (W(sy) = p( Z sle(u,v)) = Z Z Su/lf)(vﬁu/)¢_l(lD(u,v))

UEu‘zul vealzu‘ u’Eu‘lvl

*
= Sulce) = SuS, Su = Su.

In a similar way, one can show that ¥ (p(s,)) = s, for every v € aj. Thus p is the
inverse of ¥, and ¥ is an isomorphism.

Since ¥ (f) = @(f) for f € P, it follows that ¢ has the properties 1, 2, 4
and 5.1f z € T and u € af, then we have

Kﬁ(Vz(Su)) = Ip(z‘u‘su) = Z‘u‘ Z Svlpuwy = ¥z Z Solpawy | = v: (W(su)).

vealzu‘ UEu‘zul

It follows that ¥ has property 6. It follows from this and Proposition 5 that ¢ also
has property 3.

Let v € a3. Then we have that Zueaw I1p@v) = lcw,e)- Thus we have for every
X € Fx, that

¥ (Ax () = 1/f<(2: SZ)X(Z Sb))

acag bea;

= Z Z Z Z 1p@.e)Se ¥ (x)Salpep.a)

a€a) pea) c€ax deay

=2 lcweosi ¥ (X)salcwe

cEay deay

=YD S ()sa = Ax (V(0)).

ceEax deay

This proves that ¥ has property 7. O
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4.6 Two-Sided Conjugacy and Flow Equivalence

Let a be a finite alphabet and let a” be the infinite product space [, <, @ endowed
with the product topology. The transformation T on aZ given by

(t(x)), = Xi+1. i €L,

is called the rwo-sided shift. Let A be a closed subset of aZ such that 7(A) = A.
The topological dynamical system (A, 7)) is called a two-sided shift space. We will
denote 114 by T4 or just T for simplicity.

Given a two-sided shift space A we can construct a one-sided shift space, namely

{(xn)neNo | (Xn)nez € A},

We will denote this one-sided shift space by X, .

Let A} and A, be two two-sided shift spaces. We say that A; and A, are
(topological) conjugate if there exists a homeomorphism ¥ : A} — A, such that
YV ota = T4,

The following theorem will be proved in [6].

Theorem 4. Let Ay and A, be two two-sided shift spaces which are conjugate.
Then Ox,, and Ox,, are Morita equivalent (cf. Sect.4.7).

This theorem was essentially proved in [33] under the assumption A; and A,
both satisfy two conditions called (I) and (E), and later in [36] under the assumption
of (I).

The assumption in Theorem 4 that A; and A, are conjugate, can in fact be
weakened to the assumption that A; and A, are flow equivalent (we refer to
[5,18,39] and [24, Sect. 13.6] for the definition of flow equivalence). This was first
proved by Matsumoto in [35] under the assumption that both the two two-sided shift
spaces satisfy condition (I), and will be proved in [6] without this assumption.

4.7 The K -Theory of C*-Algebras Associated to Shift Spaces

Since Ko(Z') and K (Z") are invariants of a C*-algebra 27, it follows from
the previous section that Ko(Ox), K1(Ox) and Ko(Fx) are invariants of X (Fx
is an AF-algebra so K (%#x) = 0 for any one-sided shift space X, cf. [6],
[25, Lemma 2.1] and [28, Lemma 4.1]). In this section, we will present formulas
based on [-past equivalence for these invariants. This was done in [27, 28, 35]
by Matsumoto for the case of one-sided shift spaces of the form X ,, where A
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is a two-sided shift space and generalized to the general case in [15] and [16]
(it should be noted that [15, Theorem 26] is not correct as stated. The error has
been rectified in [16]). I will not here prove the formulas for Ko(Ox), Ki(Ox)
and Ky(Fx), but only establish the necessary setup and state the theorems which
give the formulas. The interested reader can find proofs of these theorems in the
above mentioned references.

From these formulas, one can directly prove that Ko(0x), K1(0x) and Ko(%x)
are invariants of X without involving C *-algebras. This is done (for one-sided shift
spaces of the form X ,, where A is a two-sided shift space) in Matsumoto’s very
interesting paper [29], where also other invariants of shift spaces are presented.

Let X be a one-sided shift space. We will for each [ € N define an equivalence
relation on X called [ -past equivalence. These equivalence relations were introduced
by Matsumoto in [28]. For k € Ny and x € X let Z(x) = {u € a* | ux € X}.
If x,y € X and ! € Ny, then we say that x and y are l-past equivalent and write
x ~; yif U/i:o Pr(x) = U/i:o 2 (). Notice that since a* is finite for each
k € Ny, we have for each [ € Ny only finitely many /-past equivalence classes.
We let m (/) be this number of /-past equivalence classes, and we denote the /-past
equivalence classes by e/, e}, ... ,efn(,). Foreach/ e Ny, j € {1,2,...,m(l)} and
ie{l,2,....,m( + 1)}, let

lLife[*' c ¢/
0 otherwise.

Il(lv.]): {

Let F be a finite set and iy € F. Then we denote by e;, the element in Z! for which

1ifi =i
0 otherwise.

eio(i) = {

Let 0 < k < [. Then we have that x ~; vy — Pi(x) = Pr(y). We can
therefore for i € {1,2,...,m(l)} define Z(E!) to be P (x) for some x € E!.
Let M| be defined by

Ml={iel{l,2....m()} | Pi(el) # 0}
Notice that if X is of the form X, for some two-sided shift space A (this is
equivalent to o (X) = X), then M,i ={1,2,...,m(l)} forall0 < k <.

Ifje M]g and [;(i, j) = 1,theni € M,i‘H, so there exists a positive linear map

from ZMi to ZM: " given by

ej> Y LG, j)e

iemt!

We denote this map by / ]i
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For a subset e of X and a u € a*, let ue = {ux € X | x € e}. For each
leNy, jel{l,2,....m)}, i €{1,2,...,m(l + 1)} and a € a,let

. I+1 = !
Lif @ # ae;™ Ce

A, j,a) = .
G, j.a) 0 otherwise.

Let0 <k <[l.Ifj € M,i and if there exists an a € a such that 4;(i, j,a) =1,

. . .. . ! [+
theni € M/ T! Thus there exists a positive linear map from ZYx to ZMit1 given by

k+1°
ej — Z ZAl(i,j,a)ei.

. I+1 a€a
’EMk+1

: !
We denote this map by 4.

Lemma 5. Let 0 < k < [. Then the following diagram commutes:

Il
1 k 141
IMe — o M,

I 141
Ay l l Ak
I+1

I+1 k+1 I+2
ZMk-‘rl _ ZMk-‘rl .

Proof Let j € M!, h € M]fif anda € a. If § # aeil+2 c elj, then there exists
exactly one i € M,i“ such that eﬂ“ C e’j and @ # aeil+2 C ef“; and there exists

y I+1 ) I+1 I+1 ! I+2 _
exactly one i’ € M, 1, such thate;,™ C e, and @ # ae;;”" C ;. Ifae,™” =0

or aeil+2 Z e’j, then there does not exist ani € M, ,i“ such that e£+1 - e’j and

3 # aei“ C ef“; and there does not exist an i’ € M]ijj such that eil“ C eﬁ,“

and 0 # aeﬁ'l C eé-. Hence we have

Yo A b, )= Y I A, j.a).

. I1+1 . 141
iEM,; 1EMkJrl

It follows from this that

AT U = AT D0 L. e

ieM/™!
= Y Y Aahisa) Y LG, je
hem1; 4€ iemt!
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= Y 3 YA o

heMT3iemT] 4€°

= I,fﬂ Z ZAl(i,j,a)ei

. I+1 a€a
1€EMy )

= I} (A (e)))

forevery j e M ]f Thus the diagram commutes. O

For k € Ny, the inductive limit lim(ZM¢, (Z )™, I}) will be denoted
(Zx, , Z;(Fk). It follows from Lemma 5 that the family {Ai};zk induces a positive,
linear map Ay from Zy, to Zx, ,.

Let 0 < k < [. Denote by 8}( the linear map from ZME to ZMit given by

. . l
ej"’{ej ?fj.eMle’
0 ifj ¢Mk+1,

forj eM ,i It is easy to check that the following diagram

[
M/ K M}
ZMe ——> 7 k+1

1
l Tt
I+1

8
I+1 k I+1
M s gMig

commutes.
Thus the family {811{}121( induces a positive, linear map from Zy, to Zx,_, which
we denote by §x. Since the diagram

8[
I k [
M —~ 7Mi

I I
Ay l l A
141

141 k41 I+1
Mt — 5 Mt
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commutes for every 0 < k < [, the diagram

S
Ly, — ZXk-H

Ak l l Ak+1
41

ZXk+1 > Zxk+2

k

commutes.
We denote the inductive limit lim(Zy,, Z;(Fk , Ar) by (Ax, Aj(' ). Since the previ-

ous diagram commutes, the family {§; }ren, induces a positive, linear map from Ax
to Ax which we denote by 8x.
We are now ready to describe the K-theory of .#x and of 0.

Theorem 5 (cf. [15, Theorem 25], [25, Theorem 3.11] and [28, Theorem 4.11]).
Let X be a one-sided shift space. Then there exists an isomorphism ¢ : Ko(Fx) —
Ayx which satisfies that ¢(K6" (Fx)) = A)"(' and that ¢ o (Ax)o = 8x © ¢.

For every [ € Ny denote by B’ the linear map from Z"”") to Z"(+1 given by
m(i+1)
ej — Z (Ig(i,j) —ZA;(i,j,a)) e;.
i=1 a€a

One can easily check that the following diagram commutes for every [ € Ny:

B!
7m0 S gmi+)

I I+1
IO l l I()

141
Zm(l-l—l) N Zm(l+2)'

Hence the family { B’ }1en, induces a linear map B from Zy,, to Zx,.

Theorem 6 (cf. [16, Theorem 1] and [25, Theorem 4.9]). Let X be a one-sided
shift space. Then

Ko(Ox) = Zx,/BZx,,
and

K (0Ox) = ker(B).
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Appendix

I will in this section give a (very short) introduction to C*-algebras, Morita
equivalence of C*-algebras and K-theory for C*-algebras which hopefully will
provide a reader without any knowledge of operator algebra with the necessary
background for reading this paper.

I will not give any proofs at all. The interested reader is referred to for example
[1,3,4,38,40-42] for more details.

C*-Algebras

Definition 8. A C*-algebra is an algebra 2~ over the complex numbers equipped
with a map x — x* and a norm ||-|| satisfying:

1. 2 is complete with respect to |-
2. eyl < lixllliyll for x,y € 2.

3. (x*)* =xforx e Z.

4. (xy)* = y*x*forx,y e 2.

5. (Ax)* = Ax*forA e Candx € 2.
6. (x+y)*=x*+y*forx,ye 2.
7. lx*|| = ||x]|| forx € 2.

8. ||x*x| = ||x||* forx € 2.

The map x — x™* is called an involution. A C *-algebra is called unital if it has a
algebraic unit (i.e, 2 is unital if there exists a 1 € £ such that 1x = x1 = x
for all x € Z7). All the C *-algebras we will meet in this paper (except here in the
appendix) are unital.

An algebra equipped with a norm satisfying condition 1 and 2 is called a Banach
algebra. A Banach algebra equipped with an involution satisfying condition 3-7 is
called a Banach *-algebra. Condition 8 is often called the C*-identity. Although
this condition at first glance seems to be a mild condition it is in fact very strong
because it ties together the algebraic structure of the C*-algebra and its topology.
One can for example show that if 2" is an algebra equipped with an involution
satisfying condition 3-6, then there is at most one norm which makes 2" a C*-
algebra.

A map ¢ : 2] — 2, between C*-algebras is called a x-homomorphism if it
satisfies

1. ¢p(ax + by) = a¢p(x) + bp(y) forx,y € Z1anda,b € C,

2. ¢(xy) = p(x)p(y) forx,y € 2,
3. ¢(x*) = (p(x))* forx € 2.
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A x-homomorphism which is invertible is called a *-isomorphism, and if
there exists a x-isomorphism between two C *-algebras, then they are said to be
isomorphic.

If ¢ : 27 — 23 is a x-homomorphism, then ||¢(x)| < |x| for all x €
Z1, and ¢ is injective if and only if ||¢(x)| = x| for all x € 2] (see for
example [38, Theorem 2.1.7] for a proof of this). Thus a x-homomorphism is
automatically continuous, and a *-isomorphism is automatically isometric. This is
another example of how the algebraic structure of a C *-algebra and its topology are
closely related.

Example 2. Let H be a Hilbert space. Then the algebra %8(H) of bounded operators
is a C*-algebra where T* of an bounded operator T € %(H) is the adjoint of T,
and the norm || T|| is the operator norm sup{||7n|| | n € H, ||n|| < 1}.

Definition 9. A projection in a C*-algebra 2 is a p € 2 satisfying
p* = p* = p. A partial isometryis as € 2 satisfying ss*s = s.

It is easy to see that if s is a partial isometry, then ss* (and s*s) is a projection.
One can prove (see for example [38, Theorem 2.3.3]) that if s is an element of a
C *-algebra such that ss* is a projection, then s is a partial isometry.

Using functional calculus (see for example [38, p. 43] or [41, Sect. 1.2.4]) and the
uniqueness of a positive square root of a positive element in a C *-algebra (see [38,
Theorem 2.2.1]) one can prove the following fact:

Fact7. Let s be an element of a C*-algebra 2. If ss*ss* is a projection, then
ss* = ss*ss* and s is a partial isometry.

Definition 10. A C*-subalgebra of a C*-algebra 2" is a closed subalgebra % of
Z suchthatx e % — x* e ¥.

A C*-subalgebra % is a C*-algebra in itself with the operations it inherits
from Z2. It is a famous theorem by Gelfand and Naimark that every C *-algebra
is isomorphic to some C *-subalgebra of the C*-algebra of bounded operators on
some Hilbert space.

Example 3. Let X be a set. The algebra of bounded functions from X to C is a
C*-algebra where the involution f* of an f € [°°(X) is defined by f*(x) = f(x)
for all x € X, and the norm || f|| of f is sup{| f(x)| | x € X}. Notice that /°*°(X)
is abelian.

If X is a locally compact Hausdorff space, then the algebra Cy(X) of continuous

functions on X vanishing at infinity is a C *-subalgebra of /*°(X).

It is another famous theorem by Gelfand and Naimark that every abelian
C-algebra is isomorphic to Cy(X) for some locally compact Hausdorff space X .

We are going to need (in the proof of Proposition 1) the following fact which
follows from [38, Theorem 2.1.11]:
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Fact 8. Let 2" be a unital C*-algebra. If % is a C*-subalgebra of 2~ which
contains the unit of 2", and y € % is invertible in 2, then its inverse y~! belongs
to .

When 2 is C*-algebra and X is some subset of 27, then there exists a
C*-subalgebra % of 2 which contains X and which is contained in any other
C*-subalgebra of Z" that contains X . The C*-subalgebra ¢ is just the intersection
of every C *-subalgebra of 2" that contains X . We call % the C*-subalgebra of 2
generated by X and denote it by C*(X).

Morita Equivalence

By an ideal of a C*-algebra we mean a closed two-sided ideal. L.e., an ideal of a
C*-algebra 2 is a closed subset [ of 2" suchthat Aa+ yb,xa,ax € I fora,b € I,
A,y € Cand x € 2. Anideal I of a C*-algebra is automatically closed under
involution, i.e., if x € I, then x* € [. Thus every ideal of a C*-algebra is also a
C*-subalgebra.

A nonzero ideal of a C*-algebra 2 is said to be essential if it has nonzero
intersection with every other nonzero ideal of .Z".

There exists for every C *-algebra 2~ a, up to isomorphism, unique maximal
unital C*-algebra M (.Z") which contains 2~ as an essential ideal. The C *-algebra
M(Z") is known as the multiplier algebra of 2, cf. [38, Theorem 3.1.8] and [40,
Theorem 2.47]. If 2 itself is unital, then M(Z") = 2 .

It is easy to check that if p is a projection in the multiplier algebra M(Z") of a
the C *-algebra 2", then pZ p := {pxp | x € £} is a C*-subalgebra of 2. Such
a C*-subalgebra is called a corner. The projection p is said to be full and the corner
p A p is said to be a full corner if there is no proper ideal of .2~ which contains p.

Two projections p,q € M(Z") are said to be complementaryif p +q = 1.1f p
and ¢ are complementary, then pg = 0 and thus p.Z'p N ¢ Z'q = {0}. In this
situation, the two corners p.2 p and ¢ 2 are also called complementary.

Morita equivalence is an equivalence relations between C *-algebras. I will
not give the definition of Morita equivalence here, but instead use the following
characterization of Morita equivalence.

Theorem 9 (Cf. [40, Theorem 3.19]). Two C*-algebras 27 and 25 are Morita
equivalent if and only if there is a C*-algebra 2" with complementary full corners
isomorphic to 21 and 23, respectively.

It follows directly that Morita equivalence is weaker than isomorphism. It is not
difficult to show that if p.2 p is a full corner of a C *-algebra, then p2 p and 2~
are Morita equivalent.
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K-Theory for C*-Algebras

K-theory for C*-algebras is a pair of covariant functors Ky and K; both defined
on the category of C™*-algebras. The functor K, associates to each C*-algebra
Z a pair (KS'(S&”), Ko(Z')) consisting of an abelian group Ko(Z") and a sub-
semigroup K" (Z') of Ko(2) (i.e., K (2) C Ko(2) and g, h € K (2) =
g+h e KS'(%”)), and associates to each x-homomorphism ¢ : 27 — 25 a
group homomorphism Ko (¢) : Ko(Z1) — Ko(22) satisfying Ko((ﬁ)(KJ(%)) c
KJ' (23). The functor K associates to each C -algebra 2" an abelian group K (.Z")
and to each a x-homomorphism ¢ : 27 — %23 a group homomorphism K;(¢) :
Ki(21) — Ki(25).

That Ky and K are functors means that Ko(Id 2") = Idk,(2) and K1(Id Z) =
Idk, (2 for every C*-algebra 2, and that Ko(¢1 o ¢») = Ko(¢1) o Ko(¢>) and
Ki(¢1 o ¢p2) = Ki(¢1) o Ki(¢hp) for all x-homomorphisms ¢ : 27 — 25 and
¢ : 25 — A5. Thusif two C *-algebras are isomorphic, then Ko(Z27) and Ko(22)
are isomorphic as groups, and so are K;(%Z]) and K;(Z23). In fact, Ko(%21) and
K (%>) are isomorphic by an isomorphism which maps K(;F (Z1) onto K(;F (23).

If pZ p is a full corner of a C *-algebra 2" and ¢ denotes the inclusion of p .2 p
into 2", then Ky(¢) and K,(¢) are both isomorphisms, and the isomorphism Ky (¢)
maps KJ' (pZ p) onto KJ(S&”), see [21, Proposition B.3]. Thus if two C *-algebras
are Morita equivalent, then K;(27) and K;(%>) are isomorphic as groups, and
Ko(Z1) and Ko(Z>) are isomorphic as groups by an isomorphism which maps
K (21) onto K7 (23).
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Chapter 5
Classification of Graph C *-Algebras
with No More than Four Primitive Ideals
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Abstract We describe the status quo of the classification problem of graph
C *-algebras with four primitive ideals or less.
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5.1 Introduction

The class of graph C*-algebras (cf. [34] and the references therein) has proven
to be an important and interesting venue for classification theory by K-theoretical
invariants; in particular with respect to C*-algebras with finitely many ideals, and
in 2009, the authors formulated the following working conjecture:
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Conjecture 1. Graph C *-algebras C *(E) with finitely many ideals are classified up
to stable isomorphism by their filtered, ordered K -theory FK;—rim(C*( ) (C*(E)).

Here, the filtered, ordered K-theory is simply the collection of all Ky- and
K -groups of subquotients of the C *-algebra in question, taking into account all the
natural transformations among them (details will be given below). The conjecture
addresses the possibility of a classification result that is not strong (cf. [21]) in the
sense that we do not expect every possible isomorphism at the level of the invariant
to lift to the C *-algebras.

The conjecture remains open and we are forthwith optimistic about its veracity,
although some of the results which have been obtained, as we shall see, seem to
indicate that an added condition of finitely generated K-theory could be needed.
In the present paper we will discuss the status of this conjecture for graph algebras
with four or fewer primitive ideals; if the number is three or fewer we can present
a complete classification under the condition of finitely generated K -theory, but for
the number four there are many cases still eluding our methods. Adding, in some
cases, the condition of finitely generated K -theory — or even stronger, that the graph
algebra is unital — we may solve 103 of the 125 cases, leaving less than one fifth of
the cases open. Our main contribution in the present paper concerns the class of fan
spaces, which has not been accessible through the methods we have used earlier, but
we will also go through those results in our two papers [15] and [13] which apply
here.

5.1.1 Tempered Primitive Ideal Spaces

Invoking an idea from [18] we organize our overview using a tempered ideal space
of the C *-algebra in question. This is defined for any C *-algebra with only finitely
many ideals as the pair (Prim(2(), t) where 7 : Prim(2) — {0, 1} is defined as

0 Ko(3/J0)+ # Ko(T/T0)

7(J) =
1 Ko(3/30)+ = Ko(3/T0)

with Jy the maximal proper ideal of J (this exists by the fact that J is prime and
contains only finitely many ideals). We set

Xop={xe€ X |t(x) =0} Xm={xeX|tlx) =1}

To be able to work systematically with these objects, we now give them a
combinatorial description.

Definition 1. Let 2[ be a C*-algebra. We let Prim(2() denote the primitive
ideal space of 2, equipped with the usual hull-kernel topology, also called the
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Jacobson topology. We always identify the open sets of Prim(2(), O(Prim(2()), and
the lattice of ideals of 2, I(2(), using the lattice isomorphism

U+ ﬂ p.

pEPm(2)\U

When U is an open set we write 2(U) for the corresponding ideal of 2[. When
U D V are both open, so that U \ V is locally closed, we write (U \ V) for the
subquotient 2A(U) /2A(V).

Note that whenever Xg or Xg are locally closed, standard results in graph
C *-algebra theory give that 2((X) and (X m) are A F algebras and & ,-absorbing
algebras, respectively.

Definition 2. Let X be a topological space. The specialization preorder < on X is
defined by x < y if and only if x € {y}.

A topological space satisfies the 7y separation axiom if and only if its specializa-
tion preorder is a partial order.

Definition 3. A subset H of a preordered set (X, <) is called hereditary if x < y
€ H implies x € H.

Definition 4. Let (X, <) be a preordered set. The Alexandrov topology of X is the
topology with the closed sets being the hereditary sets.

A topological set is called an Alexandrov space if it carries the Alexandrov
topology of some preordered set. The preorder is necessarily the specialization
preorder. A topological space is an Alexandrov space if and only if arbitrary
intersections of open sets are open.

Since we are dealing with C*-algebras with finite primitive ideal spaces, these
are all Alexandrov spaces satisfying the Ty separation axiom. Consequently, we can
equivalently consider all partial orders on finite sets. The tempered primitive ideal
space for a C*-algebra with n primitive ideals may hence be uniquely described

The transitive reduction of a relation R on a set X is a minimal relation S on X
having the same transitive closure as R. In general neither existence nor uniqueness
are guaranteed, but if the transitive closure of R is antisymmetric and finite, there
is a unique transitive reduction. We will illustrate our (finite) topological spaces
with graphs of the transitive reduction of the specialization order, where we write
an arrow x — y if and only if x is less than y in the transitive reduction of the
specialization order (similar to the Hasse diagram).! The value of t will be indicated
by colors of the vertices of the graph; white for 0 and black for 1.

We obtain a unique signature for each tempered ideal space as follows. Consider
the adjacency matrix of the graph of the specialization order and recall that

ISee Remark 1 for a discussion about the direction of the arrows.
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(by transitivity and antisymmetry) we can always permute the vertices so that the
adjacency matrix becomes an upper triangular matrix. Since the relation is reflexive,
we will have ones in the diagonal, so without loss of information we may write the
values of t there. To each such upper triangular matrix

hap din—1 din
h a3 an
A=
tn—l An—1.n
Iy

we associate two binary numbers
a=apa13- - A1pa23024° Ay p " dp—1n
and
t =1ty 1y,

In general, there are several such binary numbers associated with a specialization
order by means of permuting the vertices. We choose the order of the vertices
to obtain the smallest possible pair (a,t) ordered lexicographically as the unique
identifier for this specific tempered ideal structure. In the interest of conserving
space we write hexadecimal expansion of the numbers when referring to a certain
structure. We write n.a and n.a.t to indicate signatures and tempered signatures,
respectively, defined this way (where n and a are numbers written in decimal
expansions and t is a number written in hexadecimal expansion).

If a primitive ideal space is disconnected, we may classify the C*-algebras
associated to each component individually. We will hence assume throughout that
the C*-algebras have connected primitive ideal space (when considering graph
algebras, a necessary, but not sufficient, condition for this is that the underlying
graphs are connected considered as undirected graphs). Determining the number of
connected 7p-spaces with n points is hard for most #; the number has been computed
up to n = 16 in [6]. But for small n even the number of tempered ideal spaces
can readily be found by naive enumeration, by first counting all spaces and then
performing inverse Euler transform to obtain those that are connected:

| Prim (20)| 1 2 3 4 5 6

Number of spaces 1 2 5 16 63 318
Number of connected spaces 1 1 3 10 44 238
Number of tempered spaces 2 10 62 510 5,292 69,364
Number of connected tempered spaces 2 4 20 125 1,058 11,549
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We will restrict our attention to | Prim(2()| < 4 and hence have 15 (connected)
primitive ideal spaces> which may be given temperatures in a total of 151 different
ways to concern ourselves with:

10 0 [L1IA] 33 | A1 7R
iy 0—0 [L1IA] 36 | A0 |A]R
a7 A—0—0 Iy, A2 .
AE O— QO«——oO——0Q [A] \é/
4F |Q@—Q«—0«—0O [A] A 0 -
439 |Q—0—0—0 [ I
43F | A—0—0—0 [[ 4] 48|22 2w
o Q
e
41F | 970 |y
a—0
a
43 | 9 H I
a—0
LT
41 | 9 =H | |0
a—0
ol
438 | 974 | 0

where [ just indicates that it is either [J or l.

We call a finite Ty space linear ([L]) if its partial order is total. Following [4]
we call it an accordion space ([A]) if the symmetrization of the space is the
symmetrization of a linear space. We call it a fan space ([F]) when there is a smallest
or largest element in the preorder, so that when this is removed, what remains is a
disjoint union of linear spaces. The remaining spaces we organize as [ Y]-spaces and
[O]-spaces as indicated. In Sect. 5.6 below we summarize our results subject to this
organization.

Remark 1. Usually, when representing a relation R with a directed graph, we have
an edge from x to y if and only if x R y. This is the convention we use here as
well. However, in the literature on filtered K-theory, there are a number of papers
choosing the opposite convention. Among these are the papers [1, 2, 4, 29, 30],
although it is explicitly mentioned in [1], that it is the Hasse diagram of the opposite
relation that is considered.

2The space 4.E was forgotten on page 230 of [29]
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Apart from being more natural, the convention used in this present paper is
in better accordance with graph C*-algebra theory, as the directed graph used is
naturally isomorphic to the graph of the connected components of the underlying
graph for, e.g., purely infinite Cuntz-Krieger algebras and fits better with the work
of Boyle and Huang. Therefore it is very important to check which convention is
being used before applying results.

5.1.2 The Invariant

Let 2 be a C*-algebra with finitely many ideals and set X = Prim(2(). Note that
for any locally closed subset Y = U \ V of X, we have two groups Ko(2((Y)) and
K (2(Y)). Moreover, for any three open subsets U C V' C W of X, we have a six
term exact sequence

Ko(@U(Y1) —— Ko(@A(Ys) — Ko(A(Y3))

a |+

Ki(U(Yy) <— Ki(A(¥) ~— Ki@(1)

where Y = V\U, Y, = W\ U,and Y; = W\ V. The filtered, ordered K -theory
FK;(F (2A) of A is the collection of all K-groups thus occurring, equipped with order
on Ky and the natural transformations {t«, 7, 0x}.

Consequently, if also Prim(*8) = X, we write FK;(F ) = FKj(' (®B) if for each
locally closed subset Y of X, there exist group isomorphisms

oy 1 Ke(U(Y)) — K+(B(Y))

preserving all natural transformations in such a way that all o} are also order
isomorphisms. All components of this invariant are readily computable [8], and
often, much of it is redundant. We will not pursue that issue here.

The filtered K-theory FKx(2l) of 2 is defined analogously by disregarding the
order structure on Kj. The filtered (ordered) K -theory over a finite Ty-space X can
also be used for C *-algebras over X without being tight.?

3 Although this is not exactly the same definition as the filtrated K-theory in [30], it is known to be
the same for all the cases where we have a UCT. For more on this invariant and C *-algebras over
X the reader is referred to [30] and the references therein.
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5.1.3 Graph C*-Algebras

A graph (E°, E', r, s) consists of a countable set E° of vertices, a countable set E!
of edges, and maps r : E! — E®ands : E! — E° identifying the range and
source of each edge. If E is a graph, the graph C*-algebra C*(E) is the universal
C *-algebra generated by mutually orthogonal projections {p, : v € E°} and partial
isometries {s, : e € E'} with mutually orthogonal ranges satisfying

1. s¥se = prey foralle € E!
2. SesF < pyey foralle € E!
3. Do = D feeEls(e)=u} SeS,  forall v with 0 < Is71(v)| < oo.

The countability hypothesis ensures that all our graph C *-algebras are separable,
which is a necessary hypothesis for many of the classification results. We will be
mainly interested in graph C *-algebras with real rank zero. For a graph E, we have
that the real rank of C *(E) is zero if and only if E is satisfying Condition (K), i.e.,
no vertex of E is the base point of exactly one simple cycle (see Theorem 3.5 of
[23]). Moreover, by Proposition 3.3 of [23], every graph C *-algebra with finitely
many ideals has real rank zero. Thus, every graph C *-algebra with finitely many
ideals has a norm-full projection, and by Brown [7], every graph C *-algebra with
finitely many ideals is stably isomorphic to a unital C *-algebra.

Throughout the paper we will use the following facts about graph C *-algebras
without further mention.

Theorem 1. Let C*(E) be a unital graph C*-algebra with E satisfying Condi-
tion (K).

1. Every ideal of C*(E) is stably isomorphic to a unital graph C*-algebra.

2. Every sub-quotient of C*(E) is stably isomorphic to a unital graph C *-algebra.

3. The K-groups of every sub-quotient of C*(E) are finitely generated.

4. Every non-unital simple sub-quotient of C*(E) that is an AF-algebra is isomor-
phic to K.

Proof. As in the proof of Theorem 5.7 (4) of [37] (see also Proposition 3.4 of [3]),
every ideal of a graph C *-algebra satisfying Condition (K) is Morita equivalent to
C*(F), where F° C E°. Hence, 1 holds since a graph C *-algebra C *(E) is unital
if and only if E° is finite. 2 follows from 1 and Corollary 3.5 of [3]. 3 follows from
2 and Theorem 3.1 of [9].

Suppose C*(F) is a simple unital AF-algebra. Then F has no cycles. Since
C*(F) is unital, F° is finite. Therefore, F has a sink. By Corollary 2.15 of [10],
every singular vertex must be reached by any other vertex since C*(F) is simple.
Thus, F must be a finite graph. Hence, C*(F) =~ M,. From this observation, 4
follows from 1 and 2 since any non-unital simple C *-algebra stably isomorphic to
K is isomorphic to K.

See [34] and the references therein for more on graph C *-algebras.
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5.2 General Theory

We first describe the situations in which the graph algebras can be classified using
widely applicable results.

5.2.1 The AF Case

The AF case corresponds to temperatures that are constantly 0. We incur these at the
tempered signatures 1.0.0, 2.1.0, 3.3.0, 3.6.0, 3.7.0, 4.A.0, 4.E.0, 4.F.0, 4.1E.O,
4.1F.0, 4.38.0, 4.39.0, 4.3B.0, 4.3E.O, and 4.3F.0. Of course the classification
question is resolved by Elliott’s theorem:

Theorem 2 ([20]). AF algebras are classified up to stable isomorphism by their
ordered K-group.

5.2.2 The Purely Infinite Case

Recall that there are three notions of pure infiniteness for non-simple C *-algebras,
namely pure infiniteness, strong pure infiniteness, and Oso-absorption, introduced
by E. Kirchberg and M. Rgrdam; cf. [26] and [27].

Corollary 1. For each nuclear, separable C*-algebra 24 with finite primitive ideal
space, the following are equivalent:

1. A is purely infinite,
2. A is strongly purely infinite,
3. A is Oxo-absorbing, i.e., A Q O = 2.

Proof. Tt follows from Theorem 9.1 and Corollary 9.2 of [27] that 3 implies 2,
that 2 implies 1, and that the three coincide in the simple case. It follows from
Proposition 3.5 of [27], that pure infiniteness passes to ideals and subquotients. Thus
it follows from [38] that 1 implies 3.

The purely infinite case (the 0 -absorbing case) corresponds to temperatures
that are constantly 1. We incur these at the tempered signatures 1.0.1,2.1.3, 3.3.7,
3.6.7,3.7.7,4AF,4EF 4FF,41E.F,4.1FF,4.38.F, 4.39.F, 4.3B.F, 4.3E.F,
and 4.3F.F. As we will outline below, all but the case 4.1E.F are resolved through
the recent work of many hands.

The isomorphism result of Kirchberg (cf. [24] and [25]) reduces the classification
problem of nuclear and strongly purely infinite C*-algebras which are also in
the bootstrap class to an isomorphism problem in ideal-related KK-theory. Since
all purely infinite graph C*-algebras fall in this class we may hence confirm
Conjecture 1 in the purely infinite case by providing a universal coefficient theorem
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which allows the lifting of isomorphisms at the level of filtered K-theory to
invertible KK x-classes. This, however, is not known to be possible in general.
Indeed, Meyer and Nest in [30] showed that there are purely infinite C *-algebras
over the space 4.A which fails to have this property, but since the examples provided
there cannot possibly come from graph algebras, the question remains open in
that setting. The work of Bentmann and Kohler established that general UCTs
are available precisely when the space X is an accordion space, and Arklint with
the second and third named authors provided UCTs for other spaces, including
4.A, under the added assumption that the C*-algebra has real rank zero, which is
automatic here. Specializing even further, Arklint, Bentmann and Katsura provided
a UCT which applies for our space 4.3B under the added assumption that the C *-
algebra has real rank zero and that the K groups of all subquotients are free, which
also is automatic here. The space 4.1E remains open. In conclusion:

Theorem 3. Purely infinite, separable, nuclear C *-algebras 2 with finite primitive
ideal space X in the bootstrap class of Meyer and Nest (i.e., all simple subquotients
are in the bootstrap class of Rosenberg and Schochet) are classified up to stable
isomorphism by their filtered K -theory FKx (=) in the cases

1. X is an accordion space [1.0, 2.1, 3.3, 3.6, 3.7, 4.E, 4.F, 4.39, 4.3F] [4, 24,
25,30,33,35,36]

2. X is one of the spaces 4.A, 4.38, 4.1F, 4.3E and rr(A) =0 [1]

3. X isthe space 4.3B, r1(2) = 0, and K(J/7J) is free forany I < J <A [2]

5.2.3 The Separated Case

The classification problem for the two mixed cases with | Prim(2()| = 2 not covered
by the results mentioned above — the tempered signatures 2.1.1 and 2.1.2 — were
resolved in [19] drawing heavily on [13]. In [15], we generalized this to more
complicated cases having the separation property which is automatic in the two-
point case, as detailed below. The idea is to find an ideal J such that J is AF and
A/T is Osc-absorbing, or vice versa. We do not know in general how to prove
classification in this case, but under certain added assumptions related to the notion
of fullness, this leads to results that may be used to resolve the cases of tempered
signature 3.7.1, 3.7.3, 4.F.1, 4.1F.1, 4.1F3, 4.3B.1, 4.3F.1, 4.3F.3, 4.3F.7 by
Proposition 1 below and 3.7.4, 3.7.6, 4.39.8, 4.3B.8, 4.3E.8, 4.3E.C, 4.3F.8,
4.3F.C, 4.3F.E by Proposition 2.

Definition 5. Let n > 1 be a given integer. Then we let X, denote the partially
ordered set (actually totally ordered) X, = {1,2,...,n} with the usual order. For
a,b e X, witha < b, we let [a, b] denote the set {x € X, : a < x < b}.

Proposition 1. Let ; and 21, be separable, nuclear, C*-algebras over X, in the
bootstrap class of Meyer and Nest (i.e., every simple subquotient is in the bootstrap
class of Rosenberg and Schochet). Suppose 21; ({1}) is an AF algebra and 2; ([2, n])
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is a tight stable Oso-absorbing C*-algebra over [2,n], and A; ({2}) is an essential
ideal of A ([1,2]). Then A, QK = A, K if and only if there exists an isomorphism
o : FKx, () — FKx, (22) such that agyy is positive.

Proposition 2. Ler 20, and U, be graph C*-algebras satisfying Condition (K).
Suppose A; is a C*-algebra over X, such that ; ({n}) is an AF algebra, for every
ideal 3 of A; we have that 3 € 2, ({n}) or A; ({n}) < 7, and A; ([1,n—1]) is a tight,
Ooo-absorbing C*-algebra over [1,n — 1]. Then 21 ® K =~ 2, ® K if and only if
there exists an isomorphism o : FKx, (A1) — FKx, (22) such that ag,y is positive.

5.3 Fan Spaces

In this section, we develop methods to deal mainly with the spaces 3.3, 3.6, 4.A,
4.38. We observe the following in [15]

Lemma 1. Let E be a graph such that C*(E) has finitely many ideals and assume
that 3«13 < C*(E) are ideals. Then

1. C*(E) ® K has the corona factorization property.
2. (3/9) ® Kis of the form C*(F) ® K for some graph F.
3. (3/3) ® K has the corona factorization property.

The graph F above can be chosen as a subgraph of the Drinen-Tomforde
desingularization of E [10].

Definition 6. For each C *-algebra2l, we let .Z () and 2(2l) denote the multiplier
algebra and the corona algebra of 2, respectively.
For each extension

e :0—>B—->¢—->A—0,

we let 77, : A — 2(®8) denote the Busby map of the extension.

Moreover, for each surjective (or, more generally, proper) *-homomorphism ¢ :
A — B, weletp : 4 () - #(B) and ¢ : 2(2A) — 2(*B) denote the unique
extension to the multiplier algebras and the induced *-homomorphism between the
corona algebras, respectively (cf. Sect. 2.1 of [12]).

Lemma 2. Let (B;);e; be a family of C*-algebras (small enough for direct sums
and products to exist). Let w; 1 @,;c; Bi — B denote the canonical projection,
foreach j € I. Then there is a canonical isomorphism [ [;¢; i + M (D, ¢; Bi) —
[1;e; # (B:) which has the unique extension 7w; : M (P,c; Bi) = A (B;) of 7;
as the j’'th coordinate map.

Consequently, if 1 is finite, there is an induced isomorphism

[[7:2eP3)—[]20m).

i€l i€l i€l
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and it induces homomorphisms w; : 2(P;c; Bi) — 2(B;) as the j'th coordi-
nate map. In this case, the direct product coincides with the direct sum.

Proof. Here we view the multiplier algebras as the algebras of double centralizers
(cf. pp. 39 and 81-82 in [31]). Let (p;, p2) be a double centralizer on P, ., B;
(i.e., an arbitrary element of .# (€D, c; B;)). Using an approximate unit, it is easy
to see that p; and p, restricted to ®5; map into 5; itself. In this way we get
a canonical *-homomorphism from .Z(P;.; Bi) to .#(B;). By the universal
property of the direct product, we get a *-homomorphism ¢ from .# (D, ; B:)
to [[;e; -4 (*B;), where the j’th coordinate map clearly is an extension of 7; to the
multiplier algebras, and hence it is the extension 7; of ;. Clearly, ¢ is injective. It
is also easy to show that ¢ is surjective by constructing the preimage.
Therefore, if [ is finite, the direct product of the short exact sequences

is canonically isomorphic to

0 —— @ie] B, —— ///(@ia B;) — Q(@fe[ B) — 0.

5.3.1 Primitive Ideal Space with n Maximal Elements

Assumption 1. For this subsection, let n > 1 be a fixed integer, and let X; = X,
fori =1,2,...,n,where l, [, ..., I, are fixed positive integers. Let, moreover,

X:{m}l_lel_leLl"'l_an
and define a partial order on X as follows. The element m is the least element of X,

and foreachi = 1,2,...,n,ifx,y € X; thenx < yin X ifand only if x < y in
X;. There are no other relations between the elements of X .

Lemma 3. Let 2 be a tight C*-algebra over X and letk € {1,2,...,n} be given.
Consider the extensions

e : 0> AX \{m}) - A—A{m}) -0
and
e g 0= A(Xy) = A(Xy U {m}) — A({m}) — 0,

where 1y, A(X \ {m}) — A(Xy) is the canonical quotient x-homomorphism.
Then Ne.r, = Tk © Ne, and Ty 0 1, is injective.
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Proof. Note that the diagram

e : 0 —— AX\ {m}) A A({m}) —— 0

|- | |

e-me 2 0 2A(X) AXx Uim}) —— A({m}) — 0

is commutative. Since 7 is surjective, by Theorem 2.2 of [12], Tk © ne = Neury -
Also note, that Corollary 4.3 of [12] justifies the notation ¢ - m;. Suppose Ty © 1,
is not injective, then 7y o n. = 0 since A({m}) is a simple C *-algebra. Hence,
A(Xy U {m}) = A(Xy) @ A({m}). Since A(X U {m}) = A/AX \ (Xi U {m})),
then there exist proper ideals J and J of A such that T+ J = Jand TN J =
A(X \ (Xx U {m})). But this contradicts the fact that 2 is a tight C *-algebra over
X . Hence, 7k o 1, is injective.

Lemma 4. Let A be a tight C*-algebra over X. Then
e 0=>AX \{m}) = A—=A{m}) = 0

is full if and only if ¢ - 7y is full forallk = 1,2,...,n.

Proof. By Lemma 3, n¢.r, = 7k o 1. Thus, if ¢ is a full extension, then e - 7
is a full extension since Ty is surjective. Suppose ¢ - my is a full extension for all
k =1,2,...,n. Note that (X \ {m}) is @’ _, 2(X ;) and thus from Lemma 2 it
follows that the j’th coordinate map of (@?:1 ﬁi) o 7, is exactly 77 0 e = Ten,
(according to Lemma 3). Since @?:1 7, is an isomorphism and since ¢ - 7% is a full
extension for all k = 1,2, ..., n, we have that ¢ is a full extension. That this direct
sum of full extensions is again full can easily be shown by first cutting down to each
coordinate.

The signatures 3.6.1, 3.6.5, 4.39.1, 4.39.3, 4.39.4, 4.39.5, 4.39.7, 4.38.1,
4.38.3, 4.38.7 are covered by the following theorem.

n
Jj=1

Theorem 4. Let 2 and B be graph C*-algebras that are tight C*-algebras over
X. Assume that there exists an isomorphism o : FK}' &) — FK}' (*B). Assume,
moreover, that A({m}) is an AF algebra and that X1 is hereditary. Then A @ K =
B @K

Proof. We may assume that 2 and ‘B are stable C *-algebras. Note that for each
x € X, A({x}) is an AF algebra if and only if B({x}) is an AF algebra, and
2A({x}) is O -absorbing if and only if B({x}) is O -absorbing (since there exists
a positive isomorphism from Ko(2(({x})) to Ko(®B({x}))). Specifically, B({m}) is
an AF algebra. First we assume that Xg # @ and Xg \ {m} # 0.

Note that 21(Xg) and B(Xg) are AF algebras. Since

axy ¢ Ko(A(Xo)) — Ko(B(Xp))
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is a positive isomorphism, there exists an isomorphism g : A(Xg) — B(Xn)
such that Ko(8) = axy (by Elliott’s classification result [20]). Since 4(Xg) and
$B(Xo) are AF algebras and B is an Xg-equivariant isomorphism, we have that
Ko(By) = ay forallY € LC(X) suchthat Y € Xp. In particular, Ko(Byy) = oty
for all x € Xn.

Let X :i“ be the set of minimal elements of X, and foreach a, b € X let

[a,00) ={x € X : a<x},
[a,b) ={xe X : a <x <b}.
Letx € Xﬁi“ be given. Let iy € {1,2,...,n} be the unique number such that

x € X; . Note that X; UL {m} = [m,x) U [x, co), which we will denote by )Z,-x. Let,
Mmoreover,

20— A([x, 00)) — Ql()?ix) — A([m, x)) — 0,

X

and
¢® 10— B([x,0)) - B(X;,) = B(m,x)) — 0.

Since « : FK; ) — FK}' (*B) is an isomorphism, we also have an isomorphism
ag FK; (A(X;,)) — FK; (B(X;,)). So by Theorem 4.14 of [30], Kirchberg
[25], and Theorem 3.3 of [lS]i there exists an isomorphism ¢* : 2A([x, 00)) —
B([x, 00)) such that K« (¢*) = o[x,00), and

[ne;B © ,B[mx)] = [JO r’e;"l]

in KK'(A([m, x)), B([x, 00))), since KK (Bjm.x)) is the unique lifting of opy x).
As in the proof of Proposition 6.3 of [15], Corollary 5.3 of [15] implies
that 7.2 and 7.» are full extensions, and thus also the extensions with Busby

maps 7.3 © Py and @* o nex are full. Since the extensions are non-unital
and B([x, 00)) satisfies the corona factorization property, there exists a unitary
uy € M (B([x,00))) such that

Nes © Bmx) = Ad(ix) 0 9 0 2

where u, is the image of u, in the corona algebra (this follows fr0m~[22] and [2§]).
Hence, by Theorem 2.2 of [12], there exists an isomorphism 1* : A(X;, ) — B(X;,)
such that (Ad(izy) © @, 7", Bym.x)) is an isomorphism from ¢ to ¢ Let

e 10— AX \ {m}) > A — A({m}) — 0,
and

¢ 10— BX\ {m)) > B - B({m}) — 0.
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Since (X i) and B(X, i) have linear ideal lattices, this induces an isomorphism

e 0 — AX;,) — AX;,) — A({m}) — 0,
L A L L Bimy
B 0 — BX;,) — B(X;,) — B({m}) — 0.

So now by construction,
Wx © 77te~”,~1 = ne%-mx ° IB{m}7

forall x € Xg™", and

ﬂ_X‘jo nem'ﬂj = ne%vrj Oﬁ{m},

forall j = 1,2,...,n satisfying that 20(X ;) is an AF algebra. Now we define an
isomorphism 6 from 2A(X \ {m}) to B(X \ {m}) as the direct sum of the ¥*’s and
Bx,’s. We get that (from Lemmas 2 and 3)

goneQ[ZEO @nemn @9 O N2y

n
@ eBoyr; :B{m} = @ Nes. T ° IB{m} =13 © ﬂ{m}’
j=1

j=1

where the 6;’s denote the corresponding ¥*’s and By, ’s. Hence, by Theorem 2.2 of
[12], A = *B.

If Xm = @ the result is due to Elliott’s classification result [20], and if X = {m}
the theorem follows easily by making modifications to the above proof.

Remark 2. Let 2 and ®B be graph C*-algebras that are C *-algebras over X, so that
2A(X;) and B(X;) are tight C *-algebras over X;, fori = 1,2,...,n. Assume that

0 — A(X;) /AX; \{x;: }) = A(X;Uim}) /A(X; \{xi }) — A(X;U{m}) /A(X;) — 0

is essential whenever 21(X;) is Os-absorbing, where x; is the greatest element of
X;. Assume that there exists an isomorphism o : FK; &) — FK; (*B). Assume
moreover, that 2(({m}) is an A F algebra and that the set of x € X for which 2A({x})
is an AF algebra is hereditary. Then 2 ® K = B ® K. This follows from the proof
above.
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The above extensions are essential, e.g., if A({x;}) is the least ideal of
A({x;,m}), foralli = 1,2,...,n, and the remark applies to the cases”

1. 4.E.1, where we view the algebra 2 that is tight over the space 4.E as a C*-
algebra over a <— b — c as indicated by the assignmentb — a < b — c.

2. 41E.1 and 4.1E.3, where we view the algebra 2 that is tight over the space
4 1E as a C*-algebra over a <— b — ¢ as indicated by the assignment

!

QO — >
S— Q

3. 4.3E.1, where we view the algebra 2l that is tight over the space 4.3E as a C*-
algebra over a <— b — ¢ as indicated by the assignment

b —
7

o —

a

The following proposition follows from the results in [19].

Proposition 3. Let 2 be a graph C*-algebra with exactly one nontrivial ideal J. If
2 is not an AF algebra, then) - JQK - AR K — A/TQ K — 0 is a full
extension.

Using the UCT for accordion spaces (see [30] and [4]) and for many other four-
point spaces under the added assumption of real rank zero as described in [1], the
cases 3.6.2, 3.6.3, 4.38.8, 4.38.9, 4.38.B, can be classified using the following
theorem.

Theorem 5. Let A and B be graph C*-algebras that are tight C*-algebras over
X, with X; being a singleton, for each i = 1,2,...,n. Suppose there exists an
isomorphism o FK}' & — FK}' (®B) which lifts to an invertible element in
KK(X;A,8). Then A @K =B @ K

Proof. If A({m}) is an AF algebra, the result follows from Theorem 4. Suppose
A({m}) is an Ou-absorbing simple C *-algebra and that 2( and B are stable C *-
algebras. Then by Lemma 3 and Proposition 3, 7; o n.a : A({m}) — 2(X;))
and 7w; o n,» : B(m}) - 2(B(X;)) are full extensions, foralli = 1,2,...,n.
Hence, by Lemma 4, 1.2 and 5,2 are full extensions. The theorem now follows
from the results of [15].

“Here we specify how we view the algebras as algebras over ¢ <— b —> ¢ by providing a
continuous map from the primitive ideal space to {a, b, ¢}
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5.3.2 Primitive Ideal Space with n Minimal Elements

Assumption 2. For this subsection, let 7 > 1 be a fixed integer, and let X; = X;,
fori =1,2,...,n, where ly, 1, ...,1, are fixed positive integers. Let, moreover,

X=MjUuX,UX,U---UX,
and define a partial order on X as follows. The element M is the greatest element of

X,and foreachi = 1,2,...,n,ifx,y € X;thenx < yin X ifandonlyif x <y
in X;. There are no other relations between the elements of X.

Lemma 5. Let 2 be a tight C*-algebra over X andletY € Q(Xg\{M}) be given.
Consider the extensions

e 0=>A{M}) > A->AX\{M}) =0
and
tgy-¢e: 0>AM}) - AY U{M}) - A4(Y)—0

where toy @ A(Y) — A(X \{M}) is the usual embedding. Then 1,y .. = NeOlay.
Proof. Note that the diagram

0 — A(M}) — A U{M}) —— AF) ——= 0

| ! =

0 —— A({M}) 2 AX\{M}) — 0

commutes. Hence, by Theorem 2.2 of [12], 7,y y.e = Ne O L2(y-

Lemma 6. Suppose the following diagram of C *-algebras with short exact rows is
commutative

0 B ¢ 24 0
T
L )
0 B &, Ay 0

1. If 92(24y) is a hereditary sub-C*-algebra of s, then ¢1(&,) is a hereditary sub-
C*-algebra of &,.
2. If @2(Ry) is full in Ay, then ¢1(&y) is full in &,.
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Proof. We first prove 1. Let x € & and y € &, suchthat 0 < y < ¢;(x). Since
@2(2Ly) is a hereditary sub-C *-algebra of 2l,, we have that there exists z € ¢ (&)
such that m3(y) = m2(z). Thus, y — z € ‘B. Since the map on the ideals is the
identity, we have that y — z € ¢;(€;). Hence, y € ¢;(&;). Therefore, ¢ (€;) is a
hereditary sub-C *-algebra of &,.

We now prove 2. Let x € &,. Since ¢,(2;) is full in 2, there exists y in the
ideal of &, generated by ¢; (&) such that x — y € ‘B. Since the map on the ideals
is the identity, we have that y — z € ¢;(&;). Hence, x is in the ideal of &, generated

by ¢1(&1).

Lemma7. Lete : 0 > J — A — P;_, A — 0 be an extension and let
U A = Bj—; Ak be the inclusion. Suppose 1. o . is full for each k. Then 1. is
Sull.

Proof. Let (ay,as,...,a,) be anonzero positive element in @Z=1 ;.. Without loss
of generality, we may assume that a; # 0. Note that ideal in 2(J) generated by
ne(ai,...,a,) contains the ideal in 2(J) generated by 1, o t;(a;). Since 7, o ik is
full, we have that the ideal in 2(J) generated by 71, o ¢1(a;) is £(J). Thus, the ideal
in 2(3J) generated by n.(ai, ..., a,) is 2(J).

The following result applies to the cases 3.3.1, 3.3.5, 4.F.6,4.F.8, 4. FE, 4 A2,
4.A.F, 4. AE.

Theorem 6. Let A and B be graph C*-algebras that are tight C *-algebras over X
such that each of A(X;), *B(X;) are either AF algebras or Ou-absorbing. Suppose
there exists an isomorphism o : FK; @A) — FK; (B) and A({M}) is an AF
algebra. Then A @ K = B @ K.

Proof. We may assume that 2 and ‘B are stable C *-algebras. Note that for each
x € X, A({x}) is an AF algebra if and only if B({x}) is an AF algebra, and
2A({x}) is O -absorbing if and only if B({x}) is O -absorbing (since there exists
a positive isomorphism from Ko(2A({x})) to Ko(*B({x})). Specifically, B({M}) is
an AF algebra. First we assume that Xg # @ and Xpg \ {M} # 0.

Note that ay @ Ko((Xn)) — Ko(B(Xp)) is a positive isomorphism and
that 2A(Xg) and B(Xg) are AF algebras. Thus there exists an isomorphism
B : A(Xo) — B(Xp) such that Ko(B) = axy (by Elliott’s classification result
[20]). Since A(Xp) and B(Xg) are AF algebras and B is an Xp-equivariant
isomorphism, we have that Ko(By) = ay forall Y € LC(X) such that Y € Xp.
In particular, Ko(Byyy) = oyyy forall x € Xp.

Let

e 1 0=>A{M}) - A —->AX\{M}) =0,
and

en 1 0= BAMY) — B — B(X \ {M}) — 0.
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Since f is an Xg-equivariant isomorphism, by Lemma 5 above and Theorem 2.2 of
[12],forY € O(Xg \ {M})

Biary © Ne © Loty = Ney 0Ly © By

forallY € O(Xg\ {M}), where toy : A(Y) - AX \ {M}) and sy : B ) —
$B(X \ {M}) are the canonical embeddings.
Since the given « induces an isomorphism from FK}'.U oy A(XmU {M})) to

FK;.U{M} (B(Xm U{M})), by Lemma 5, Theorem 2.3 of [13], Theorem 4.14
of [30], Kirchberg [25], and Theorem 3.3 of [15], there exists an Xg-equivariant
isomorphism ¥ : 2A(Xm) — B(Xm) such that K« () = axg and

[IB{M} O Teg © LQLX.] = [Neq © L3 xg © V]

in KK'(A(Xm), B({M})). By Corollary 5.6 of [15], ey © tarx; and 7ey 0 Ls.x, are
full extensions for eachi = 1,2,...,n with X; being O -absorbing (i.e., X; <
Xwm). Thus, both 1¢y 0t xg and 77, 0 L3 xg are full extensions since, respectively,
A(Xm) = @ie{l,z,...,n},X,-gX. 2(X;) and B(Xm) = @ie{l,Z,...,n},X,-gX. B(X;).
Hence, E{M} O Neg Ol xg aNd Ney O Ls xg © ¥ are full extensions.

Let oy xp\(uy + X \{M }) — A(Xp\{M}), mo, xg : AX\{M}) — A(Xm),
7 xp\imy - BX \{M}) — B(Xp \ {M}), 75 xg : BX \{M}) > B(Xm)
be the canonical projections. Note that the range of 7¢y © to x\{m} and the range
Of ey © Lo xg are orthogonal and the range of ¢y © L x\(m} and the range of
Neg © L3 xg are orthogonal. Moreover,

Negw = Meg O LAX\IM} © TTAX\IM} T Neg © L2, xg © 7T2AXg

New = Ness © LB X\ (M} © TB X\ (M} T e O LB, Xg O TB xg-

We claim that there exist full hereditary sub-C *-algebras &) and &, of 2 and B,
respectively, such that & = &,. Then by Theorem 2.8 of [7], A ® K = B ® K.

Choose full projections p;,q; € A(Xm) and p2,q> € A(Xg \ {M}) such that
p1 + p2 is orthogonal to g1 + ¢, in A(X \ {M}) (to do this, we use stability, and
that graph algebras with finitely many ideals satisfies Condition (K) and hence are
of real rank zero). Therefore, ney (p1 + p2) # 1o@my) since Ney (p1 + p2) is
orthogonal to 1¢, (1 + q2). Set ey = Y (p1), e2 = Bx\im3(p2), i = ¥(q1), and
f2 = Bxp\im3(q2)- Then e + ey and fi + f, are nonzero orthogonal projections.
S0, Negs (€1 + €2) # Lowwmy)-

Set e = Byuy © New © taxg\im}(P2) = New © L xp\(M} © Bxg\my(p2) and
set [ = (lomqmy) —e)- Let jm @ p1A(Xm)p1 — A(Xm) and jg : pA(Xo \
{M})p, — A(Xg \ {M}) be the usual embeddings. Note that

eBary © llea © toum © jm(X) = Biagy 0 Mg 0 tam 0 jm(x)e =0
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and

¢ (Mo © L3 xg © Y © jm(x))

= (Megs © ts xg\(m3} © Bx\im3(P2)) - (e © Los xg © ¥ © jm(x)) =0

as well as

(New © L. xg 0 ¥ 0 jm(x)) €

= (nE% o L‘B,X. o W o .].(-x)) : (nE% o L%,XD\{M} o ,BXD\{M}(pZ)) =0

for all x € p;A(Xm)p:. Hence, we have injective homomorphisms E{M} O Negy ©
tom© jmand ey Oty xg © Y © jm from piA(Xm)p1 to f2(BEMY)) f.

Since B({M}) is an AF algebra, by Corollary 2.11 of [39] f lifts to a
projection f’ in .#(B({M})). Note that there exists an isomorphism y from
A (BEMY)) f o A(f"BEMY})f') that is the identity on f'B(M?}) [’ (see
11.7.3.14, p. 147 of [5]). Thus, we have an isomorphism y from f2(B({M})) f to
2(f"B(M}) f) such that the diagram

0 — ["BUMY S —— [ ABEMY) [ — f2BUAM})f — 0

| | X

0 — ["BUMY S —— A(f"BEMY ) — 2(/"BEM})f) —= 0

is commutative. By Corollary 5.6 of [15], ney © torx; and 7ey © tos x, are full
extensions for eachi = 1,2,...,n with X; being O-absorbing (i.e., X; C Xm).
Thus, by Lemma 7, 1¢y 0 to xg and 1oy 03 xg are full extensions since A(Xm) =
@ie{l,z,...,n},XigX. 21(X;) and B(Xm) = @ie{l,Z,...,n},XigX. B(X;).

Hence, E{M} O Neg O tuxg aNd 7ey © Lo xg © ¥ are full extensions. Thus,
E{M} O Tey © Lo xg(p1) is a norm-full projection in 2(B({M })). Since E{M} o
NMew © Lot xg(P1) < f, we have that f is a norm-full projection in 2(B({M })). By
Lemma 3.3 of [16], we have that f” is a norm-full projection in .# (B ({M })) since
$B({M}) has an approximate identity consisting of projections. Since B({M }) is an
AF algebra, by Lemma 3.10 of [13], B({ M }) has the corona factorization property.
Thus, f” is Murray-von Neumann equivalentto 1 (s (my)). Thus, f/B(M}) [/ =
B({M}) which implies that f"B({M}) f’ is a stable C *-algebra since B({M}) is
a stable C *-algebra.

Let ¢ be the embedding of f"B({M?})f’ into B({M}), [ be the embedding of
[l (BEMY})) f into A (B({M})), and T be the embedding of f 2(B({M}))f
into 2(B({M })). Note that the following diagram
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0 — ["BUMY S —— [l AaABEMY) [ — f2BAMY)f —= 0

N

0 —— B{EM}) —— A B{M}) —— 2B{M})) — 0

is commutative. Note that the range of 7.y © (s xg © ¥ © jm and the range of
E{M} O Neg © LA X O_j. are contained in f 2(*B({M})) f. Let ¢, be the extension
defined by y o7 ! o Biay © Neo © Lo xg © Jm and let es be the extension defined by
Y0l ' oney ol xg oV o jm. Then

1 1

1oV one, = Biuyonen otaxgojm and To¥ ' one, =Ney ol xg Vo jm
_Since Ney (p1 + p2) # Loquy) and fes (61 + €2) # 1o my) and since
Bimy and ¥ are isomorphisms, we have that By, 0 ey © taxg © jm(p1) # f

and 7eg, O Lp xg © Y © jm(p1) # f. Thus, n.,(p1) and n.,(p1) are not equal to
Lo(rra(my) r7)- Therefore, e and e, are non-unital full extensions. Since

[IB{M} O Teg © LQLX.] = [Neq © I3 xg © V]

in KK'(A(Xm), B({M})), since ¢ induces an element in KK(fB({M})f’,
$B({M})) which is invertible, and since ¥ is an isomorphism, we have that [n,,] =
[ne,] in KK' (pi24(Xm) p1, f'BUMY) f'). Since f'BEM}) f' = B({M}), we
have that f"B({M}) f’ has the corona factorization property. Thus, there exists a
unitary ' in . (f'B({M?}) f') such that

Ad(w) © n¢1 = ntzs

where u' is the image of «’ in 2(f'B({M})f’). Letu = oy~ '(u). Then u is a
partial isometry in . (B({M })) such that u*u = f’ = uu* and

Ad(#) 0 Byary © Neg © Lot X © /B = Nesy © L xg © ¥ © jm

where 7 is the image of u in 2(B({M})). Setv = u + 1 4 (wmy) — f andlet v
be the image of v in 2(*B({M })). Note that v = u + e and

Ad(D) 0 Byary © Mea © Lo xp\(M} © JO = Byagy © Meay © Lot xg\(M} © JO

Ad(D) 0 Byary © Neg © Lot xg © JB = e © L xg © ¥ © jm.
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Leta; € p1A(Xm)p1 and a; € p,A(Xo \ {M }) p2. Then

v (E{M} O Meg © Lot xgg © jm(@1) + Biary © Mea © Lo xp\(M} © jD(Gz)) v*

=Ty Ols xg ©V o jmlar) + E{M} O Neg © Lot xp\(M} © Jo(a2)
= Neg Ols xg © Y 0 jm(a1) + Neg © L xg\(M} © Bxg\imy © jo(az)

= New © (Y 0 jm(a@1) + Bx\imy © jolaz)).

Hence,

Ad(D) 0By 0Meq © (121, xg © Jm+ L2 x\(130J0) = Negs © (Y0 jm+ Bx\ury0jo)-
(5.1)

Note that the Busby invariant of the extension
0—A({M}) — &1 — (p1 + p2) AU Xm) @ A(XD \ {M})) (p1 + p2) = 0

is given by 7¢y © (Lot xg © jm + taxg\(m} © jo) and the Busby invariant of the
extension

0—>BAM}) - & — (e1 +e2) (B(Xm) ® B(Xo \ {M})) (e1 +€2) >0

is given by 1.y o (km + ko), where km : e;’B(Xm)ey — B(Xm) and «g
eB(Xo \ {M})e; — B(Xg \ {M}) are the natural embeddings. Hence, by
Eq.(5.1), Theorem 2.2 of [12], and the five lemma, & =~ &,. By Lemma 6, &
is isomorphic to a full hereditary sub-C *-algebra of 2 and &5 is isomorphic to a full
hereditary sub-C *-algebra of B. We have just proved the claim.

If Xm = @ the result is due to Elliott’s classification result [20], and if X \
{M} = @ the theorem follows easily by making modifications to the above proof.

Remark 3. Let 2 and B be graph C *-algebras satisfying Condition (K) that are
C *-algebras over X such that each of 20(X;), B(X;) are either AF algebras or -
absorbing and such that 2(X;) and B (X;) are tight C *-algebras over X;, whenever
2A(X;) and B(X;) are O-absorbing. Assume that there exists an isomorphism « :
FK; &) — FK}' (®B). Assume moreover, that A({M}) is an AF algebra and that
for every ideal J of 2, we have that 7 € A({M }) or A({M}) € J. Then A ® K =
B8 ® K. This follows from the proof above together with Corollary 5.6 of [15] and
applies to the cases’

1. 4.1E.4 and 4.1E.C, where we view the algebra 2l that is tight over the space
4 1E as a C*-algebra over a — b < ¢ as indicated by the assignment

SHere we specify how we view the algebras as algebras over ¢ — b <— ¢ by providing a
continuous map from the primitive ideal space to {a, b, ¢}
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2. 4.1F.4 and 4.1F.C, where we view the algebra 2 that is tight over the space 4.1F
as a C*-algebra over a — b < ¢ as indicated by the assignment

c

Se—Q

e
— b

The following result resolves the cases 3.3.2, 3.3.3, 4.A.1,4.A.3, 4.A.7.

Theorem 7. Let 2 and B be graph C*-algebras that are tight C*-algebras over
X, with X; being a singleton, for each i = 1,2,...,n. Suppose there exists an
isomorphism « : FK}' &) — FK}' (®B) such that « lifts to an invertible element in
KK(X;2A,8). ThenA @ K =~ B ® K.

Proof. Note that we may assume that 2 and 98 are stable C *-algebras. If A({M }) is
an AF algebra, then the theorem follows from Theorem 6. Suppose A({M }) is Ooo-
absorbing. Then *B({M }) is Ox-absorbing. Hence, by Proposition 3 and Lemma 7,
the extensions

0—>A(M}) > A —->A(X \{M}) — 0,
0—>B({M}) > B —>BX\{M}) =0

are full extensions. The theorem now follows from the results of Theorem 4.6 of
[15].

5.4 A Pullback Technique

The main idea of this section is to write the algebra as a pullback of extensions we
can classify coherently. The problem is that classification usually does not give us
unique isomorphisms on the algebra level. But when the quotient is an A F algebra
we can in certain cases use that the KK-class of the isomorphism is unique. The
main idea here is similar to the main idea of Sect. 5.3.

Lemma 8. For each i = 1,2, let there be given C*-algebras U;, *B;, and &;
together with *-homomorphisms o; : A; — €; and B; : B; — €;. Let °B; denote
the pullback of A; and *B; along «; and B;, for eachi = 1,2.

Assume that there are isomorphisms g : A1 — A, o : B — B, and
@e : € — &, such that the following diagram commutes:



5 Classification of Graph C*-Algebras with No More than Four Primitive Ideals 111

a) B

ﬂ1—>¢1<—%1

o B2
Q[z —— Q:Z -~ %2.

Then we get a canonically induced isomorphism from B, to *Bs.

Proof. The existence of the x-homomorphism from 3; to B3, follows from the
universal property of the pullback. That this *-homomorphism is an isomorphism
also follows from the universal property.

Lemma 9. Let J and J be ideals of a C*-algebra U satisfying INJ = 0. Then A
is the pullback of /3 and /T along the quotient maps A/J — A/ (T + J) and
A/T — A/(T +J).

Proof. This follows from Proposition 3.1 of [32] by noting that we have a
commuting diagram

J 2A A/J
J A/3 A/T+J)

with short exact rows.
The signatures 4.E.4 and 4.E.5 are covered by the following theorem.

Theorem 8. Let A and B be graph C*-algebras that are tight over X, where X
is some finite Ty space. Assume that there exists an isomorphism o : FK"X' ®) —
FK; (!B). Assume, moreover, that we have disjoint open subsets Oy and O of X.
Let

Y():X\Ol, Y]ZX\O(), and ZZX\(O()UOl).

Assume also Z # @ and that A(Z) is an AF algebra.
Foreachi = 0,1, if A(O;) is Oxo-absorbing, then we assume that:

1. There exist two disjoint clopen subsets Y,' and Y? of Y; (with the subspace
topology) such that Y; = Y, UY? and O; C Y.

The ideal lattice of A(O;) is linear, i.e., O; = X; for some j.

2(0;) is an essential ideal of 2A(Y').

4. A({m;}) is essential in A({m; } U (Y;' \ O;)), where m; is the least element of O;.
Then A QK =B ® K.

“wN
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Proof. We may assume that 2 and ‘B are stable C *-algebras. Note that for each
locally closed subset Y of X, A(Y) is an AF algebra if and only if B(Y) isan AF
algebra, and A(Y) is Oxo-absorbing if and only if B(Y) is Oxo-absorbing (since
there exists a positive isomorphism from Ky(2((Y)) to Ko(®5(Y))). Specifically
B(X \ (Op U Oy))isan AF algebra.

Note that the diagram
0 —— A(0) == A(0y)
2A(0o) 2A (Y1)

| ]

A(0p) —— AYo)) —— A(Z)

is commutative with short exact rows and columns, analogously for B.

If both 2A(0yp) and A(O,) are AF algebras, then it follows from the permanence
properties of A F algebras that 2 is an A F algebra, and thus also ®B. In this case the
theorem follows from Elliott’s classification result [20].

Now assume that 2((Oy) is an AF algebra and that 2(0;) is O-absorbing. Let
VA 11 =Z\ le and Z 12 = le. Then Z 11 and Z 12 are locally closed subsets of X, and
Z is the disjoint union of le and le. Since 2A(Yy) and B(Y)) are extensions of AF
algebras, these are themselves AF algebras. Since ay, : Ko(2A(Yy)) = Ko(B(Yo))
is a positive isomorphism, there exists an isomorphism 8 : A(Yy) — B(Y,) such
that Ko(8) = ay, (by Elliott’s classification result [20]). Since 2((Y,) and B(Yy) are
AF algebras and B is an Yj-equivariant isomorphism, we have that Ko(By) = ay
forall Y € LC(X) such that Y C Y.

Let

¢d 10— A0) = AW - A ZY — 0,
and
¢® 10— B(0) — B - B(Z") —o0.

Since « : FK}' &) — FK}' (®B) is an isomorphism, we also have an isomorphism
ay FK;’1 ) — FK;,'1 (®B). So by Theorem 4.14 of [30], Kirchberg [25], and
1 1

Theorem 3.3 of [15], there exists an isomorphism ¢ : 2A(0;) — B(0;) such that
K«(p) = ap,, and

[ne‘B 013021] = Woﬁeﬂ]

in KK'(A(Z"),B(0,)), since KK(B 1) is the unique lifting of a 1.
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As in the proof of Proposition 6.3 of [15], Corollary 5.3 of [15] implies that 7,
and 7. are full extensions, and thus also the extensions with Busby maps 7,2 o1
and @ o 5.« are full. Since the extensions are non-unital and 25(0)) satisfies the
corona factorization property, there exists a unitary u € .# (5(0,)) such that

Nes © ﬂZl = Ad(ﬁ) an Me2t

where u is the image of u in the corona algebra (this follows from [22] and [28]).
Hence, by Theorem 2.2 of [12], there exists an isomorphism 7 : A(Y') — B(Y}")
such that (Ad(u) o ¢, 1, ,3211) is an isomorphism from ¢ to ¢®.

Since the extension

0—2A(0) - AY) > AZ)—>0
is the direct sum of the extensions
0 — 2A(0) — AY) — AZ") -0
and
0—0—2A(Z%) - AZ>) -0

and analogously for 98, we get an isomorphism from 0 — A(0;) — A(Y;) —
A(Z) - 0to 0 — B(0;) — B(Y)) — B(Z) — 0, which is equal to Sz on the
quotient. Now the theorem follows from Lemmas 9 and 8.

Now assume instead that both J and J are O-absorbing. The proof is similar to
the case above. Instead of lifting ay, : Ko(2A(Yy)) — Ko(B(Yy)) to B : A(Yy) —
B(Yy) we just lift ez : Ko(R(Z)) — Ko(B(Z)) to B : A(Z) — B(Z). Then we
do as above first for the extensions corresponding to the relative open subset Oy of
Yy and then for the extensions corresponding to the relative open subset O; of Y.
As above, the theorem then follows from Lemmas 9 and 8.

5.5 Ad Hoc Methods

In this section we present arguments that resolve the classification question for some
examples of tempered ideal spaces which are not covered by the general results
above. Most of the results are based on knowing strong classification for smaller
ideal spaces, as explained below. Our results of this nature, presented in [17], are
of a rather limited scope, and require restrictions on the K-theory, requiring the
K -groups to be finitely generated, or even for the graph C *-algebra to be unital. We
will see this idea in use in a very clear form in the two open cases for three primitive
ideals (cf. Sect.5.5.1) and in more complicated four-point cases.
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Our starting point is

Theorem 9. Let 2| and A, be graph C *-algebras that are tight C *-algebras over
a finite Ty-space X and let U € Q(X) be non-empty. Let ¢; be the extension 0 —
U)K - A K - A;(X \U) ® K — 0. Suppose

1. ¢; is a full extension;

2. There exists an invertible element a € KK(X;24,2,); and

3. The induced invertible element ay € KK(;(Y) ® K,2,(Y) ® K) lifts to an
isomorphism from A1(Y) @ Kto,(Y) K forY =U andY = X \ U.

Then2; @ K ~ 2, @ K.

Proof. By 3, there exists an isomorphism ¢y : 2 (Y)®K — 2,(Y)®KforY = U
and Y = X \ U such that KK(¢y) = ay. It follows from 1 that ¢; are essential, so
by Theorem 3.3 of [15], ax\u X [1¢,] = [1¢,] X oy . Therefore, KK (¢ x\v) X [1¢,] =
[7¢,] x KK(py). Hence, by Proposition 6.1 and Lemma 4.5 of [15], we have that
A QK =2, ® K.

Definition 7. For a T, topological space X, we will consider classes %x of
separable, nuclear C *-algebras in the bootstrap category of Rosenberg and Schochet
A such that

1. Any element in @y is a C *-algebra over X;

2. If 2 and B are in €y and there exists an invertible element o in KK(X; 2, B)
which induces an isomorphism from FK}' 20 to FK; (®B), then there exists an
isomorphism ¢ : 20 — ‘B such that KK(¢) = oy, where ay is the element in
KK (%, B) induced by «.

Remark 4. Let X be a finite Ty-space, let U be an open subset of X, and let 6y
and Gx\y be classes of C*-algebras satisfying the conditions of Definition 7. If 2(,
and 2, are separable C *-algebras such that 2, (U),,(U) € 6y and (X \ U),
2,(X \ U) € €x\v, then 3 in Theorem 9 holds.

Let ¥y and 6y be classes of C *-algebras satisfy the conditions in Definition 7.
Let ¥xuy be the classes of C *-algebras consisting of elements 24 & 5 with 2 € €y
and B € %y. Then €xLy satisfies the conditions in Definition 7.

Remark 5. Here we will provide some examples of classes satisfying the conditions
in Definition 7.

1. By [25], the class all stable, nuclear, separable, O-absorbing C *-algebras that
are tight over a finite Ty-space satisfy the conditions in Definition 7.

By Corollary 3.10 and Theorem 3.13 of [17] and by the results of [11], the
following classes of C *-algebras satisfies the conditions in Definition 7.

2. Let %%, be the class of nuclear, separable, tight C *-algebras 2 over X, such that
2 is stable, 2({n}) is a Kirchberg algebra, 2(([1,n — 1]) is an AF-algebra, and
K; ([Y]) is finitely generated for all Y € LC(X,).
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3. Let ‘5)’(2 be the class of unital graph C*-algebras with exactly one non-trivial
ideal with the ideal being an A F' algebra and the quotient Ju,-absorbing, simple
C *-algebras. Let %, be the class of C *-algebras 2 such that A =~ B ® K for
some B € 6 .

By [20], the following class of C *-algebras satisfy the conditions in Definition 7.
4. Let €y be the class of stable AF-algebras over X.

5.5.1 Linear Spaces

This case is solved in [17], and the reader is referred there for details. However,
since this is the most basic case in which our approach via Theorem 9 is applied, we
will explain the methods for the benefit of the reader.

Lemma 10. Ler 2 be a graph C*-algebra such that U is a tight C*-algebra
over X,.

1. If A({n}) and A({1}) are Ouo-absorbing and A([2,n—1]) is an AF-algebra, then
e 0> AR IK - AQK - A({1}H) K — 0

is a full extension.
2. If A([k, n]) and A([1, k —2]) are AF-algebras and A({k — 1}) is Ox-absorbing,
then

¢:0—>Alk,n) K> AQK - A([1,k - 1) ®K -0
is a full extension.

3. If A([k, n]) and A([1, k — 2]) are AF-algebras and A({k — 1}) is Ox-absorbing,
then

e 0> Ak -1Ln) K-> AQK - A([1,k -2])) ® K - 0

is a full extension.

Proof. In[17], we prove 1 and 2. We now prove 3. Note that
0->Ak—1H) K-> Ak -2,k 1) QK - A({k -2}) ® K— 0

is full since this is an essential extension and 2A({k — 1}) is Osc-absorbing. Since
A([k,n]) is the largest AF-ideal of A([k — 1,n]) and A([k — 1,n])/A([k,n]) =
A({k — 1}) is Oso-absorbing, by Proposition 3.10 of [19] and Lemma 1.5 of [13],
0 - A(k,n]) ® K - A(k — L,n]) ® K - 2A({k — 1}) ® K — 0 is full.
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By Proposition 3.2 of [14], 0 — 2A([k — 1,n]) ® K — A(k —2,7)) ® K —
Ak —2}) ® K — 01is full. Since A({k — 2}) = A([k — 2,n])/A([k — 1,n]) is an
essential of 2A/A([k — 1, n]), the extension in 3 is full by Proposition 5.4 of [15].

To solve the cases 3.7.5 and 4.3F.9, we now argue as follows:

Theorem 10. Let A, and 2, be graph C *-algebras that are tight C *-algebras over
Xy. Suppose

1. A;({n}) and A; ({1}) are Ox-absorbing;
2. A;([2,n — 1)) is an AF-algebra; and
3. The K-groups of 2; are finitely generated.

Then 2 ® K = 2, ® K if and only if FKS (% ® K) = FKY (2, ® K).

Proof. Let ¢; be the extension

By Lemma 10, ¢; is a full extension. Thus, Assumption 1 of Theorem 9 holds.
Suppose « : FK;{H A4 ®K) — FK;{H (2, ® K) is an isomorphism. Lift ¢ to an
invertible element x € KK(X,;2; ® K, 2, ® K), such a lifting exists by Theo-
rem 4.14 of [30]. Therefore, Assumption 2 of Theorem 9 holds.

Note now that x induces invertible elements r>[(2n ’"](x) in KK([2,n];20([2,n]) ®
K. 2([2,n]) ®K) and ry (x) in KK(A({1}) ® K, Ax({1}) ® K). Note that 2; (|2, n])
has a smallest ideal 2(; ({rn}) which is O-absorbing and the quotient 2, ([2,n — 1])
is an AF algebra. By Theorem 3.9 of [17], there exists an isomorphism ¢ :
A1([2,n]) ® K — 2A([2,n]) ® K such that KL(¢) is the (necessarily invertible)
element in KL(2(;([2, n]),A>([2,n])) induced by x. Since the K-theory of 2; is
finitely generated, KL(2L,([2, n]),A2([2,n])) = KK ([2,n]),2A2([2,n])). Thus,
KK () is the invertible element in KK (2(;([2,n]),242([2, n])) induced by x. By the
Kirchberg-Phillips classification, there exists an isomorphism ¥ : 2;({1}) ® K —
A, ({1}) ® K lifting r)[(lj (x). We have just shown that Assumption 3 of Theorem 9
holds.

By Theorem 9, we can conclude that 2} ® K = 2, ® K.

Similarly, one solves 3.7.2, 4.3F.2, and 4.3F.4 using

Theorem 11. Ler 2y and 2, be graph C*-algebras that are tight C *-algebras over
Xy. Suppose

1. A;([k,n]) and A; ([1,k — 2]) are AF algebras;
2. A;({k — 1}) is Ooo-absorbing; and
3. The K-groups of U; are finitely generated.

Then 2, ® K = 2, ® K if and only if FKS (A ® K) = FKY (2, ® K).
A proof is given in [17].
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5.5.2 Accordion Spaces

Lemma 11. Let 2 be a graph C*-algebra with signature 4.F.X, and let J be the
smallest ideal of 2.

1. When x = 83,5,7,9, A, B, D, then the extension0 — JQK — A K —
A/T QK — 0 is full.

2. When x = 2,4, C, then the extension) - TQK -> AQK - A/TQK — 0
is full provided that 2 is unital.

Proof. First note that the extension0 > JQ K - AQK — A/TQ K — 0is
essential. Hence, in the case 4.F.x for x = 3,5,7, 9, B, D the extension is full since
J®K is a simple, purely infinite, stable C *-algebra, which implies that 2(T®K) is
simple. If A is unital and Y is the space 4.F.x for x = 2, 4, and C, then the extension
is full since in this case J = K and 2(K) is simple. We are left with showing the
extension is full for the case 4.F.A. This case follows from Proposition 5.4 and
Corollary 5.6 of [15].

Lemma 12. Let 2 be a graph C*-algebra with tempered signature 4.3F.x for
X=5,6,A,D. Then the ideal lattice of A is 0 < J; < T, < T3 < A and the
extension) > T, @ K > AQK — /T, ® K — 0 is full.

Proof. We will show thate : 0 > 7, @ K —> J3; ® K — 73/7, ® K — 0 is a full
extension. By Lemma 10, ¢ is a full extension for X = 5, A, D. Consider the case
X = 6. Note that J, and J3/7; are isomorphic to non-AF graph C *-algebras with
exactly one nontrivial ideal. Therefore, by Proposition 3,

071 K- 7, K— 7,/ K—> 0
0—>7/019K—>73/71 K—> 73/, K — 0

are full extensions. By Proposition 3.2 of [14], ¢ is a full extension. The lemma now
follows from Proposition 5.4 of [15].

Lemma 13. Ler A be a graph C*-algebra with tempered signature 4.39.x for
xX=26,9, A B,C,D, or E. Let J be the greatest proper ideal of .

1. If A is unital, then the extension) - TQK - AQK — A/TQ K — 0 is full.
2. When x = 9, B, C, D, the extension) - TQK - AQK - A/TQK — 0 is
full,

Proof. Suppose 2 is unital. Using the general theory of graph C*-algebras with
this specific ideal structure, we have that J is stable. Since 2(/J is simple and unital,
the conclusion now follows from Lemma 1.5 and Proposition 1.6 of [13]. We now
prove the extension 0 - J® K — AR K — A/TJ ® K — 0 is always full
for the spaces 4.39.x with x = 9, B, C, D. Note that 7 = J; & J, with J; simple
and J, a tight C*-algebra over X,. By Lemma 4.5 of [17] and Corollaries 5.3 and
5.6 of [15], we have 0 - T, Q K — /7, K — (2/7) ® K — 0 is full.
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Since 2(/J, ® K is a non-AF graph C *-algebra with exactly one nontrivial ideal,
the extension 0 — J; @ K — /7, @ K — /7 ® K — 0 is a full extension
(cf. Proposition 3). Thus, by Lemma4,0 > T K > A K - 2A/TQ K — 0 is
full.

Using the above lemmas and the Universal Coefficient Theorem of Bentmann
and Kohler [4], we get the following cases:

Corollary 2. Let A and B be graph C*-algebras that are tight over a finite
accordion space X. Assume that there exists an isomorphism from FK}' &) to

FKY (B). If

1. A and B both have tempered signature 4.F.7, 4.F.9, 4.39.B, 4.39.C, or

2. A and ‘B both have finitely generated K-theory and have tempered signature
4.F.3 4.F.A 4.F.B 4.39.9, 4.39.D, 4.3F.5, 4.3F.D, or

3. U and B both are unital and have tempered signature 4.F.2, 4.F.4, 4.F.5, 4.F.C,
4.F.D, 4.39.2 4.39.6, 4.39.A 4.39.E, 4.3F.6, 4.3F.A

thenA QK =B K

Proof. By the above lemmas, all the extensions are full. Note that the specified
ideal and quotient for each space belongs to classes of C *-algebras satisfying the
conditions in Definition 7. Hence, the result now follows from Theorem 9 and the
UCT for accordion spaces.

5.5.3 Y-Shaped Spaces

Lemma 14. Let 2 be a graph C *-algebra with tempered signature 4.1F.X for x =
2,5,6,7 or D, and let 3| be the smallest ideal of 2 and let T, be the ideal of A
containing J; such that J, /7, is simple.

1. When x = 2,6, 7, or D, the extension 0 - 7, QK - AQ®K — A/7, K — 0
is full.

2. When x = 5, the extension 0 > J, @ K > AR K — 2A/J, ® K — 0 is full if
A is unital.

Proof. LetJ; and J, be the maximal ideals of 2 containing J,. Suppose X = 2,6, 7,
or D. Then, by Lemma 10, Proposition 3.2 of [14], and Corollaries 5.3 and 5.6 of
[15,0 > 5, K - J; ® K — J¢/T» ® K — 0 is full. Hence, by Lemma 7,
0> K—->AQRK — 2/7, K — 0is full.

Suppose that the signature is 4.1F.5 and 2 is unital. Assume that J;/J, is an
AF-algebra and J,/7J, is purely infinite. By Lemma 10,0 — 7, @ K —» J, ®
K — J2/7, ® K — 0 is full. Since 2 is a unital graph C*-algebra, we have that
J,/31 = K. Therefore, 0 — 7,/71 @ K - J1/71 K - J1/7, ® K — 0 is
full. Since J, is stably isomorphic to a non-AF graph C*-algebra with exactly one
nontrivial ideal, by Proposition 3,0 - 71 @ K > 7, K — 7,/7; K — 0 is
full. By Proposition 3.2 of [14],
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0> RK—->J1 K-> J,/1K—0

is full. Hence, by Lemma 7,0 —> 5, @ K > A ® K — 2(/7, ® K — 0 is full.

Lemma 15. Let 2 be a graph C*-algebra with tempered signature 4.3E.X for
X= 34,59 B orD, and let 3| and T, be the minimal ideals of 2.

1. When x = 3,4,5,B,D, the extension 0 — (J1 ® 7)) K - A K —
A/ (T, ® T2) @ K — 0 is a full extension.

2. When x = 9, and U is unital, then 0 — (J1 ® 7)) @ K > AQ K — A/ (T, &
J2) ® K — 0 is a full extension.

Proof. Suppose X = 4,5, B, or D. Let J be the ideal of 2 containing (J; & J;) such
that 3/(J; & J,) is simple. Note that the push forward extension of the extension
0> J0197)K - IT®K — 7/(J; & J;) ® K — 0 via the coordinate
projection (J; @ J,) — J; is a full extension since it is isomorphic to a non-AF
graph C *-algebras with exactly one nontrivial ideal. Therefore, by Lemma 4, 0 —
G197)®K - T®K — J/(J1 & J,) ® K — 0 is a full extension. By
Proposition 5.4 of [15],0 - (31 7)) R K > AQK - A/(T1 ®T2) K — 0
is a full extension since J/(J; & J,) ® K is an essential ideal of /(7 & J,) ® K.

We now prove the extension is full for the case X = 3. Note that in this case
J, ® K and 7, ® K are purely infinite, simple C *-algebras. Let J be the ideal
of 2 containing (J; & J;) such that J/(J; & J,) is simple. By Lemmas 3 and 4,
0> Ji®n)®K—->IT®K — J3/(J; ®J2) ® K — 0is a full extension. The
conclusion now follows from Proposition 5.4 of [15] since J/(J; & J;) ® K is an
essential ideal of 2/(J; & J,) ® K.

Suppose x = 9 and 2 is unital. Then J; is either K or a stable, purely infinite,
simple C *-algebra. Let J be the ideal containing J; @ J, such that 3/(J; & J,) is
simple. Note that the signature of J is 3.6. By Lemma 3, the push forward extension
of the extension0 - (J; &) K - IR K — J/(J; & J,) ® K — 0 via the
coordinate projection (J; & J,) ® K — J; ® K is essential, and hence full since
2(J; ® K) is simple. Thus, by Lemma 4,0 — (J; ® 7)) 8 K > 1 K —
J3/(31 ® J) ® K — 0 is full. By Proposition 5.4 of [15],0 — (J; ® J,) ® K —
ARK — A/ (T D T2) ® K — 0 is a full extension since J/(J; & J,) is an essential
ideal of 2L/ (J; & 7).

Lemma 16. Let 2 be a graph C*-algebra with tempered signature 4.3E.7. Let J be
the ideal of U such that A/ 7 is simple. Then ) - JQK — AQK — A/TRK — 0
is a full extension.

Proof. Let J; and J, be the minimal ideals of 2l which is contained in J. Since
J/(J, 4+ J) is a non-unital, purely infinite, simple C *-algebra, we have that 0 —
J/(31+73) QK — A/(J1 + 7)) ® K — A/T ® K — 0 is a full extension. The
conclusion of the lemma now follows from Corollary 5.3 of [15].

Lemma 17. Let 2 be a graph C*-algebra with tempered signature 4.1F.E. Let J
be the smallest ideal of U. Then0 - T K - AR K — A/TR K — 0is a full
extension.
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Proof. Let J; be the ideal of 2 such that J; contains J and J;/7 is simple. Since
J, is stably isomorphic to a non-AF graph C*-algebra with exactly one nontrivial
ideal, we have that 0 > T® K — J; ® K — 7, /7 ® K — 0 is full. Since J; /7 is
an essential ideal of 2(/7J, the conclusion of the lemma follows from Proposition 5.4
of [15].

Using the above lemmas and the results of [1], we get the following:

Corollary 3. Let 2 and B be graph C*-algebras with signature either 4.1F or
4.3E, and assume that there exists an isomorphism from FK; &) to FK; (B). If

1. A and B both have tempered signature 4.1F.7, 4.1FE, 4.3E.3 4.3E.7, or
4.3E.D, or

2. A and ‘B both have finitely generated K-theory and have tempered signature
4.1F.D, 4.3E.4 or 4.3E.5, or

3. A and B both are unital and have tempered signature 4.1F.2, 4.1F.5, 4.1F.6,
4.3E.9 or 4.3E.B,

thenA QK =B K

Proof. By the above lemmas, all the extensions are full. Note that the specified
ideal and quotient for each space belongs to classes of C*-algebras satisfying the
conditions in Definition 7. Hence, the result now follows from Theorem 9.

5.5.4 O-Shaped Spaces

Lemma 18. Let 2 be a graph C*-algebra that is a tight C*-algebra over the O-
shaped space 4.3B.7. Let J be the smallest ideal of 2 and let 3, and J, be the ideals
of A which contain 3 and 3 /T is simple. Then 0 — (J; + ) @ K > AR K —
A/ (T1 + T2) ® K — 0 is a full extension.

Proof. Note that /7 is a tight C *-algebra over the space 3.6.5. Then by Lemma 4,
0> 01 4+73)/IK—->A/T®K — 24/(J, + J2) ® K — 0 is a full extension
since J1/J and J,/7 are purely infinite, simple C *-algebras. Also, since J is an
essential ideal of J; + J, and since J is a purely infinite, simple C *-algebra, we
have that 0 > T® K — (71 + 7)) ® K — (J; + 72)/T ® K — 0 is a full
extension. The conclusion of the lemma now follows from Proposition 3.2 of [14]
since A/(J; + J>) is simple.

Lemma 19. Let U be a graph C*-algebra that is a tight C*-algebra over the O-
shaped space 4.3B.E. Let J be the smallest ideal of U. Then 0 — JQK — ARK —
A/T @ K — 0 is a full extension.

Proof. Let J, and J, be the ideals of 21 which contain J and J;/J is simple.
Since J; ® K is isomorphic to a graph C*-algebra with exactly one non-trivial
ideal and J; ® K is not an AF algebra, by Proposition 3, we have that 0 —
TOK - 7, ® K - 7J;/TJ ® K — 0 is a full extension. By Lemma 7,
0>TQK—> (J1+7) K - (J; + 72)/T ® K — 0 is a full extension.
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The conclusion of the lemma now follows from Proposition 5.4 of [13] since
(31 + J2)/3 ® K is an essential ideal of (/7.

Using the above lemmas and the results of [2], we get the following cases:

Corollary 4. Let A and B be graph C*-algebras that are tight over a O-shaped
space X . Assume that there exists an isomorphism from FK}' &) to FK}' (B). If A
and B both have tempered signature 4.3B.7 or 4.3B.E, then A K =~ B ® K.

Proof. By the above lemmas, all the extensions are full. Note that the specified
ideal and quotient for each space belongs to classes of C *-algebras satisfying the
conditions in Definition 7. Hence, the result now follows from Theorem 9.

5.6 Summary of Results

In this final section, we index our results. Cases that are open are indicated by “?”.
Cases that are solved in general are marked by “,/”, and if we need to impose
conditions of finitely generated K -theory or unitality, this is indicated by “./ fg. OF
“J/17, respectively.

5.6.1 One Point Spaces

Having nothing new to add, we include the simple case only for completeness.

| 1.0.x |

|:]| +/| Theorem 2, p. 96
I| +/| Theorem 3, p. 97

o

—_

5.6.2 Two Point Spaces

This case was solved in [19], so again we include it only for completeness.

| 2.1.x |

0 O——0O
1 O—mn

Theorem 2, p. 96

Proposition 1, p. 97

Proposition 2, p. 98

v
v
of B—0O V]
3 B—N +/| Theorem3, p.97
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5.6.3 Three Point Spaces

We resolve the case of three primitive ideal spaces here, up to a condition of finite
generation which must be imposed in the cases of signature 3.7.2 and 3.7.5. We do
not know if this condition is necessary.

3.3.x 3.6.x
ol O—0O«—0 /| Theorem 2, p. 96 o/d«—0O—0O /| Theorem 2, p. 96
1| O0—0«—n /|Theorem 6, p. 105 {d«—0-—n +/|Theorem 4, p. 100
o U—— B0\ /ITheorem 7, p. 110 o| U—M—0U| /ITheorem 5, p. 103
g d—m—n /|Theorem 7, p. 110 g d«—m—="n +/|Theorem 5, p. 103
5| B—0——M® | /ITheorem 6, p. 105 5| M——0L——® | /ITheorem 4, p. 100
7/ M—B—® | /| Theorem 3, p. 97 7 @—Ho—H" +/| Theorem 3, p. 97

| 3.7.x |

o| O—0O—0O Vi Theorem 2, p. 96

1| O—0—nm +/ | Proposition 1, p. 97

o | O—m—0 v o | Theorem 11,p. 116

3| U—E—8~ ™A Proposition 1, p. 97

4 —0—0 Vi Proposition 2, p. 98

5| BI—0O—N v/ o | Theorem 10, p. 116

6 —E—0 Vi Proposition 2, p. 98

7| BI—HE1—N Vi Theorem 3, p. 97

5.6.4 Four Point Spaces

In this section, we present our results for the case of four primitive ideals. As will
be obvious below, the strength of our results varies dramatically with the nature
of the spaces. In general, we can say quite a lot about all spaces apart from 4.E,
4.1E, and 4.3B. It may be interesting to note what makes these spaces difficult to
handle; indeed the case 4.E is an accordion space in which a general UCT is known
to hold, but it differs from the other accordion spaces by having poor separation
properties when it comes to establishing fullness. The O-shaped spaces are also
hard to separate fully, but have the added difficulty that no general UCT is known
for them.
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5.6.4.1 Accordion Spaces
4.E.x 4.Fx
O—0«—0—0/|Theorem2, U——0Oe—D0«—D0| / |Theorem?2,
p. 96 p. 96
O—— ®«—D0——0| /IRemark 2, O—— B D0«—D0| / Iproposition 1,
p. 102 p.97
O—o«—ma——o|, O—— DOm0 / |Corollary 2,
p. 118
Oo—m—a—0o|, O—no——m—0 /14 |Corollary 2,
p. 118
O——0«—0O——® | /ITheorem 8, OU—0Oc—D0«—n /1 |Corollary 2,
p. 111 p. 118
U—— B <——D0O——® | /ITheorem 8, U—8—0«—n +/1 |Corollary 2,
p. 111 p. 118
O—0¢<—m—n|, O—0¢«<—m<——n »/ |Theorem 6,
p. 105
O—mE—m—nm|, O—E——m—M® | / coollary?2,
p. 118
B—0O0«—0O0——0|, B— O« U0/ / |Theorem6,
p. 105
m om0 ——o|, B— B0/ / |cCorollary 2,
p. 118
E—O0—a—0o|, B—O«—m<——0 /1 |Corollary 2,
p. 118
—E—8—0|, — E—Ea—0 / 1. |Corollary 2,
p. 118
(e pa— — B— O/ / |corollary2,
p. 118
E—E—0O0—nm|, E— B0/ / Icomollary 2,
p. 118
E—O«—m—Hn|, B—Oc— B/ |/ ITheorem 6,
p. 105
B— B B— W /ITheorem 3, B—R— B8/ Theorem3,
p. 97 p. 97
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4.39.x 4.3F.x
O«—oO——o——0Q4d /. |Theorem 2, o——0no >0 a +/ |Theorem 2,
p. 96 p. 96
O——O0—0—m| / |Theorem4, U——0O——0U0——® |/ Iproposition 1,
p. 100 p. 97
o o u L, |corollary 2, O——H—— W01/, [Theorem 11,
p. 118 p. 116
O«—O0—m—n / |Theorem 4, o——0no >l u +/ |Proposition 1,
p. 100 p. 97
B——0O—0—=0| / [Theorem 4, o—n d o  f¢ [Theorem 11,
p. 100 p. 116
B—0O—0——"8| / Theorem4, o—n >0 u «/ f¢.|Corollary 2,
p. 100 p. 118
E<——0O0——m—0 Vi |Corollary 2, Oo—n >l o /1 |Corollary 2,
p. 118 p. 118
B——0—um—n / |Theorem 4, o—n u u +/ |Proposition 1,
p. 100 p. 97
O«—®——0——=0| / Iproposition 2, ||8| @ —— 0 ——0——=D01 _/ |proposition 2,
p. 98 p. 98
de—m—0—n / s |Corollary 2, B—0 o u «/ 14 [Theorem 10,
p. 118 p. 116
O«——m—um—0 4 |Corollary 2, u—0 u o /1 |Corollary 2,
p. 118 p. 118
D—®—®—®| / Comollary 2, u o u n o
p. 118
E<——N—0——0O0 V. |Corollary 2, E—n >0 a +/ |Proposition 2,
p. 118 p. 98
E<——NE—0—n 1 |Corollary 2, "—n >0 u «/ 1 |Corollary 2,
p. 118 p. 118
B—E—®B—0| / |Corollary2, "—0n >l U| / [Proposition 2,
p. 118 p. 98
E<——HEH—HE1—0n / |Theorem 3, E—n >l u +/ |Theorem 3,
p.97 p. 97
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5.6.4.2 Fan Spaces
4.Ax 4.38.x
O O O O
\ 1 / Theorem 2, / 1 \ Theorem 2,
0 m p. 96 o o p. 96
O O O O
\ ! / Theorem 7, / 1 \ Theorem 4,
1 = p. 110 o = p- 100
O O ] O
\ 1 / Theorem 6, / 1 \ Theorem 4,
2 O p. 105 " = p. 100
O O ] O
\ ! / Theorem 7, / 1 \ Theorem 4,
3 u p. 110 " = p. 100
O | ] |
\ 1 / Theorem 6, / 1 \ Theorem 5,
6 U p. 105 o g p. 103
O | ] |
\ ! / Theorem 7, / 1 \ Theorem 5,
7 u p. 110 N p. 103
| | ] |
\ ! / Theorem 6, / ! \ Theorem 3,
E - p. 105 " = p. 103
| | ] |
\ ! / Theorem 3, / ! \ Theorem 3,
F u p.97 u u p. 97
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5.6.4.3 Y -Shaped Spaces

4.1F.x 4.3E.x

o o O—0
|/ 7

o| U—D 4 Theorem 2, p. 96 ot O 4 Theorem 2, p. 96
o o O—0
|/ e

1| E—m +/ | Proposition 1, p. 97 1|0 = Vi Remark 2, p. 102
o o O—0
|/ e

o| M—=0 | / | corollary3,p.120 | |3| ® B |/ | Corollary 3, p. 120
o o O—m
|/ 7

3| E—H +/ | Proposition 1, p. 97 4 0 O v rg. | Corollary 3, p. 120
O m O—m
|/ e

4| B=0 1 / | Remark3,p.100 | (5| 0 B |/ | Corollary 3, p. 120
O m O—m
|/ 7

5| U—H /1 | Corollary 3, p. 120 7| @ ® +/ | Corollary 3, p. 120
O m H—0
|/ 7

6| M—D /1 | Corollary 3, p. 120 g| U O +/ | Proposition 2, p. 98
O m H—0
|/ 7

7| ®—N +/ | Corollary 3, p. 120 | ® /1 | Corollary 3, p. 120
H B m—-0
|/ e

c| U0 | | Remark 3,p.109 | (B| ™ B |/ | Corollary 3, p. 120
H B H—N
|/ 7

p| bU—mH v r¢. | Corollary 3, p. 120 clt O +/ | Proposition 2, p. 98
H B H— N
|/ 7

g| ®—0 +/ | Corollary 3, p. 120 p|tU ® +/ | Corollary 3, p. 120
H B H— N
|/ 7

F| @—N Vi Theorem 3, p. 97 F|l W N Vi Theorem 3, p. 97
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5.6.4.4 O-Shaped Spaces

4.3B.x

1
O—0O

/| Theorem 2, p. 96

O—0
Lol
O—m

+/ | Proposition 1, p. 97

O—0
!
m—O

O—0
1
N

O—m

m—0O

O—m

E— N

+/ | Corollary 4, p. 121

m—0
L
O—0O

+/ | Proposition 2, p. 98

m—0
Lol
O—m

m—0
I
-0

| 4.1E.x

O—0O
L1

o | O<0O +/ | Theorem 2, p. 96
O—0
U

1| B0 | /| Remark 2, p. 102
O—m
U

3| B0 +/ | Remark 2, p. 102
O—0O
L1

4| O—N +/ | Remark 3, p. 109
O—0
U

5| W—m
O—m
U

7| -0 |,
H—-0O
L1

c| O<mn +/ | Remark 3, p. 109
H—-0O
L1

p| WM~ |,
H— N
U

F| ®—® |,

m—0
1
N

TR
!
m—O

4/ | Corollary 4, p. 121

(R
Lol
E—N

+/ | Theorem 3,p. 97
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Chapter 6
Remarks on the Pimsner-Voiculescu Embedding

George A. Elliott and Zhuang Niu

Abstract Irrational extended rotation algebras are shown to be C*-alloys in the
sense of Exel (C R Math Acad Sci Soc R Can (2012), arXiv:1204.0486).
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6.1 Introduction

In [16], Pimsner and Voiculescu showed that the irrational rotation C*-algebra Ag
can be embedded in an AF C*-algebra. This construction has been studied (and
generalized) extensively; see for instance [13], [17], and [14].

In [9], the authors described a more canonical form of the Pimsner-Voiculescu
embedding (avoiding the infinitely many choices implicit in the original construc-
tion), at least for a generic set of 0 € R\ Q. In any case, i.e., forany 6 € R\ Q, the
C*-algebra Ag was shown in [9] to embed naturally in a C*-algebra generated by
two commutative AF algebras, which in the present note we shall show forms what
Exel has called an alloy of these two algebras.

It might be remarked, incidentally, that the fact proved in [7] that Ap is an AT
algebra can also be used to construct an embedding of Ay in an AF algebra, using
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classification theory for simple AT algebras (which implies that any simple AT
algebra can be embedded in an AF algebra with the same ordered Ky-group—
see [6]).

Another application of the fact that Ag is AT is to re-derive and generalize
the uniqueness result for approximate homomorphisms from Ag into a finite-
dimensional C*-algebra used in [16] (and studied and extended in [14], [17],
and [8]). (This uniqueness result was somewhat special in that it considered
only approximate homomorphisms defined by (direct sums of) what might be
called Voiculescu pairs of unitary matrices—powers of the matrices introduced by
Voiculescu in [19].)

Namely, one has uniqueness for arbitrary approximate homomorphisms from Ag
into a finite-dimensional C*-algebra: any two such maps—defined (let us say) as
pairs of unitary elements of the codomain algebra with approximately the same
commutation relation as the two canonical unitary generators of Ap—, which
in the natural sense agree K-theoretically on the approximate Rieffel projection
(cf. [11, 13]) must be approximately unitarily equivalent. (Presumably, this holds
for more general codomain algebras, with a more inclusive invariant, as it does
for exact homomorphisms; see e.g. [12].) To see this, it is sufficient to consider
exact homomorphisms into an asymptotic sequence algebra [ | B,/ € B, with the
B’s finite-dimensional, which agree exactly on Ky (here, we are using the result of
[15] that the Ko-group of Ay is generated by the classes of the unit and the Rieffel
projection). Then, using just that the domain is a real rank zero AT algebra, and
that a circle algebra (continuous matrix-valued functions on the circle) is weakly
semiprojective (i.e., has stable relations), we see that the problem is reduced to
showing that, if A4 is the real rank zero inductive limit of a sequence of (direct sums
of) circle algebras, Ay — A, — ---, in which (because of real rank zero—cf. [5])
we may suppose that for each i the compositions of the map 4; — A;4; with
any two irreducible representations of A, in the same connected component are
approximately unitarily equivalent, then any two (exact) homomorphisms of A;
into a finite-dimensional C*-algebra which agree on K are approximately unitarily
equivalent on A;—which is immediate.

Neither of the techniques that we have just described (using [7]) would yield
as elementary an embedding construction as in [16], as both use facts concerning
the ordered Ky-group of Ag (which were not known until after the work of Rieffel
in [18] and Pimsner and Voiculescu in [15] and [16])—for instance that it is the
ordered Ky-group of an AF algebra (because it is totally ordered—see [2], [3],
[4], and [1]). Let us just remark that, using just the original Pimsner-Voiculescu
uniqueness theorem, interpreted as a special case of the more general uniqueness
theorem established in the preceding paragraph, with the comparison between the
two maps stated in terms of the Rieffel-Loring K-class, and with purely qualitative
estimates (no specific relation between epsilon and delta—the required summability
obtained simply by passing to a subsequence), a one-sided intertwining argument
embedding Ag into an AF algebra with Ko-group Z + Z60 can be constructed (taking
the unit into a projection with class 1 € Z + Z#6, and the Rieffel projection into a
projection with class 8), knowing only that such an AF algebra exists.
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6.2 C*-Blends and C *-Alloys

C*-blends and C*-alloys were introduced by Ruy Exel in [10] to describe a situation
in which two C*-algebras may be said to act on each other. Let us recall:

Definition 1 (3.1 of [10]). Consider a quintuple y = (4, B, i, j, X), where A, B
and X are C*-algebras, and

i:A—>M(X) and j:B — M(X)

are *-homomorphisms of A and B into the multiplier algebra of X. Also consider
the linear maps

i®j:a®be ARB > i(a)j(h) € M(X),
and

j®i:b®ac BRA— j(b)i(a) € M(X),
where ® denotes the algebraic tensor product.

The system y was said in [10] to be

1. A C*-blend if the ranges of i ® j and j ® i are contained in X and are dense,
and
2. A C#*-alloy if, in addition to (1), the mapsi ® j and j ® i are injective.

Besides crossed-product C*-algebras, several examples of C*-blends were studied
in [10]. In this note, we provide additional examples. We shall show that the
irrational extended rotation algebras introduced in [9] are C*-blends, and that they
are in fact C*-alloys.

6.3 Irrational Extended Rotation Algebras are C *-Alloys

Consider the C*-algebra C(T) as the canonical sub-C*-algebra of L°°(T), and
denote by o the automorphism of L*°(T) induced by translation by €27

@ = f(€7%).

Note that C(T) is invariant under the action of o.

Let {pi}iea, and {q;}ica, be two collections of subintervals of T, and denote
again by p; and g, the spectral projections of the canonical unitary f(z) = zin
L% (T) corresponding to the subintervals p; and g;.

Let us consider the following two commutative C*-algebras:

C(£2,) := C*(C(T) U{o ™™ (p:); i € A1,k € Z}) CL>®(T)
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and
C(£2,) := CX(C(T) U {0*(¢;): j € As.k € Z}) SLO(T)
where §2, and £2, denote the spectra of these algebras. Denote by u and v the

canonical generators of C(T) inside C(£2,) and C(§2,), respectively.

Definition 2. For an irrational number 6, and two given collections of subintervals
{pi}iea, and {g,}jea, of the unit circle T, we shall refer to the universal C*-algebra
generated by C(§2,) and C(£2,) with respect to the relations

1. uy = 2%y,

2. uo*(q;)u* = o**1(q;) forany j € A, and k € Z, and
3. vo ¥ (p)v* = o F(p;) foranyi € Ay and k € Z

as the (irrational) extended rotation algebra, and denote it by %y = B ({pi}. {q;})-

It is clear from the definition that the commutative C*-algebras C(£2,) and C(2,)
can be alternatively described as

C(2,) = C¥u, v pv*i i € Ak € Z} € By
and
C(82,) := C*{v,ufqu™; j € Ay k € Z} C By,

respectively. In what follows, we shall call any finite product of {v=™* p;v*; i €
Ay, k € Z} a spectral projection in C(£2,) and any finite product of {u¥q;u™*; j €
Ag, k € 7} a spectral projection in C(£2,).

Lemma 1. For any continuous function f with norm one on the spectrum of u, and
for any € > 0, there is § > 0 such that if g is a continuous function with norm one
on the spectrum of v with Supp(g) contained in an open interval of length at most
S, then

1 F e < s+/|f|2,

where the integral is over the circle with normalized Lebesgue measure.

Proof. Choose a polynomial P = c_, 77" +-+-+c_1z ' +co+ciz+ 2+ ¢
such that

|P@ =177 @] <e/2.

C():/P

Note that
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and thus

<¢g/2.

CO_/|f|2

Since 6 is irrational, there exists § > 0 such that

wigu)gv) =0, —-n<i<n,i#0,

for any continuous function g on the spectrum of v with Supp(g) contained in an
open interval of length at most §. Then

gu'g() =0, —n<i<n,i#0,
and hence
gW)Pw)g(v) = cog*(v).
Therefore, if ||g|| = 1, then

1/ = ) 111 e )]

= lg)P)g)| + /2
= Hcogz(v)H +¢e/2

< </|f|2> |2 +¢

e+ [ 177,

Lemma 2. For any spectral projections p € C(£2,) and q € C(§2,), one has that

as desired.

pq € C(QU) : C(‘Qu)

Proof. Fix an arbitrary ¢ > 0 for the time being.
One has decompositions

p=rfwW+ f~+ f+

and

g=8W)+g-+g+
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with f and g positive and continuous, and f_ and f} positive and with only one
point of discontinuity on the spectrum of u, and g_ and g4 positive and with only
one point of discontinuity on the spectrum of v.

Moreover, one may assume that each of Supp(f-) and Supp(f5) is inside an
open interval with length at most £/2.

Choose continuous functions f_ and f such that

fo=f<1 and fp<fy<L,
and each of Supp( f_) and Supp( f+) is contained inside an open interval with length
at most . B B
With § chosen as in Lemma 1 with respect to both f_ and f5, and the fixed &,
choose g_ and g4 such that each of Supp(g—) and Supp(g+) is in an open interval

with length at most §/2.
Note that

g =+ -+ fr)g+g-+g+)
=flg+g-+gs)+(f~+ fr)g+ f~g-+ f-g+ + frg— + f+&+-

Consider the element f_g_. Choose a positive continuous function g_ such that
g-=8-=1,
and Supp(g-) is contained in an open interval with length at most 8. Then,
| f-g-1? = | /g2 f-] < | /~@-P S| =
e | < e e | = | ie |
By Lemma 1, one has
~ 2 ~
|Fe] <o+ [
< g4 e =2
and hence
If-g-]| < V2e.
Similarly,

fog+ <2 frg- <~2e and frgy <2
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and so

lpg — (f(g + 8- +g+) + (f~ + fr)g) < 4V2e.

Since f and g are continuous, one has (as by Proposition 3.4 of [10], a crossed
product is a C*-blend)

f(g+g-+g+)€C(2,)-C(£2,) and (f-+ fi)g € C(§2,) - C($2,).
Hence,
dist(pq, C(£2,) - C(£2,)) < 4+/2¢.

Since ¢ is arbitrary, one has pg € C(£2,) - C(£2,), as desired.
Theorem 1. The irrational extended rotation algebra By is a C*-blend of C(82,)
and C(82,); that is,
C($2,) - C(£2,) = By = C(£2,) - C(8£2y).
Proof. 1t is sufficient to prove C(£2,) - C(£2,) = Py, as the second equality follows
on taking adjoints. Fix an arbitrary word

SN AN BN AW |

W piqipygs - prdy € Po,

where w' is a word in {u,u*, v,v*}, p! is a spectral projection of u, and ¢/ is a
spectral projection of v.

By Lemma 2, piq; € C(£2,) - C(§2,), and hence w' p'q| p5q5--- phq, is in the
closure of the vector space spanned by the words

wiasniawi n_n

w gy P243 * Prdy

with w” a word in {u, u*, v, v*}, p/’ a spectral projection of u, and ¢/ a spectral
projection of v (but still with the same n).
Repeating this procedure, one obtains eventually

SN S S A |

W P41 P35+ Pudy € C($2y) - C(£2,).
This shows that
By = C(82,) - C(£2,),

as desired.



138 G.A. Elliott and Z. Niu

Now, let us show further that %y is a C*-alloy of C(§2,) and C(£2,) if either
{Pi}iea, or{q;}jea, is a collection of half-open intervals with the same orientation.
First, let us prove the corresponding statement for crossed-product C*-algebras.

Theorem 2. Let A be a unital C*-algebra and let o be an automorphism of A. Then
(A,C(T), A x5 Z)

is a C*-alloy.

Proof. Recall that by Proposition 3.4 of [10], any crossed product is a C*-blend.
Let

a=> b ®c e AQC(T).
i=1
Denote by
E:Ax,Z— A
the canonical conditional expectation. Note that
E(dledz) = dlE(e)dz and E(e) e Cl1

for any dy,d, € A and e € C(T).
Suppose that

Zb,-c,- =0¢€ Ax,Z.
i=l1

Without loss of generality, one may assume that {b,,b,,...,b,} are linearly
independent. Noting that

n
Zb,-ciukzOeAva, kEZ,
i=1

where u is the canonical unitary, and applying the conditional expectation to both
sides, one has

n
ZbiE(Ciuk) = 0, k € Z.
i=1
Since E(c;u*) € Cl and {b;, b, ..., b,} are linearly independent, one has
E(c,-uk) =0, keZ,1<i<n,

and hence (by Fourier theory for C(T)) c; = c; =+ =¢, = 0.S0a = 0.
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The same argument shows that if Y/, ¢;b; = 0, then a = 0. This shows that
(4, C(T), A x5 Z)

is a C*-alloy.

Theorem 3. Let 0 be an irrational number, and assume that {p;}ica, 0r{q;} ea,
is a collection of half-open intervals with the same orientation. Then

(C($2,), C(820), Bp)

is a C*-alloy.

Proof. By Theorem 1, the extended rotation algebra % is a C*-blend of C($2,)
and C(§2,). We only have to show that the multiplication maps are one-to-one. The
argument is similar to that of Theorem 2. (We do not actually use Theorem 2.)

Let us prove the theorem in the case that {g;, j € A;} are half-open intervals
with the same orientation. The other case can be proved in the same way. Note that
in this case, an element of C(§2,,) is zero if and only if all its Fourier coefficients are
Zero.

Set

¢ =) ai ®b € C(2)RC(R,).
i=1
By Proposition 3.4 of [9], there is a canonical conditional expectation
E, : By — C(£2,)
such that
E.(d1eds) = diE,(e)d, and E(e) € Cl

for any dy,d, € C(£2,) and e € C(£2,).

Suppose that Y 7_, a;b; = 0. Without loss of generality, one may assume
that {a;,as,...,a,} are linearly independent. Then the same argument as that of
Theorem 2 shows that

E.(bjv) =0, keZ 1<i<n.

Hence (by Fourier theory for L*(T)), by = by = --- = b, = 0,and so ¢ = 0.
The same argument also shows that if ) '_, b;a; = 0, then one also has that
¢ =0.S0

(C(‘Qu)v C(‘Qv)7 %0)

is a C*-alloy.
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Remark 1. By Corollary 5.8 of [9], if there are nonzero minimal projections in each
of C(£2,) and C(£2,), then they are orthogonal. Hence, in this case, the C*-algebra
(C(£2,),C(£2,), Bp) is not a C*-alloy.
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Chapter 7
Graph C *-Algebras with a 77 Primitive
Ideal Space

James Gabe

Abstract We give necessary and sufficient conditions which a graph should satisfy
in order for its associated C *-algebra to have a 7 primitive ideal space. We
give a description of which one-point sets in such a primitive ideal space are
open, and use this to prove that any purely infinite graph C *-algebra with a T
(in particular Hausdorff) primitive ideal space, is a cp-direct sum of Kirchberg
algebras. Moreover, we show that graph C *-algebras with a 7} primitive ideal space
canonically may be given the structure of a C (N)-algebra, and that isomorphisms of
their N-filtered K -theory (without coefficients) lift to E (N)-equivalences, as defined
by Dadarlat and Meyer.

Keywords Graph C *-algebras ¢ Primitive ideal space * Filtered K-theory

Mathematics Subject Classification (2010): 46155, 461.35, 46M15, 19K35.

7.1 Introduction

When classifying non-simple C *-algebras a lot of focus has been on C*-algebras
with finitely many ideals. However, Dadarlat and Meyer recently proved in [2]
a Universal Multicoefficient Theorem in equivariant E-theory for separable C *-
algebras over second countable, zero-dimensional, compact Hausdorff spaces. In
particular, together with the strong classification result of Kirchberg [7], this shows
that any separable, nuclear, Ox-absorbing C *-algebra with a zero-dimensional,
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compact Hausdorff primitive ideal space, for which all simple subquotients are in
the classical bootstrap class, is strongly classified by its filtered total K-theory. This
suggests and motivates the study of C *-algebras with infinitely many ideals, in the
eyes of classification.

In this paper we consider graph C *-algebras with a T primitive ideal space,
i.e. a primitive ideal space in which every one-point set is closed. Clearly our main
interest are such graph C*-algebras with infinitely many ideals, since any finite
T space is discrete. In Sect. 7.2 we recall the definition of graph C *-algebras and
many of the related basic concepts. In particular, we give a complete description
of the primitive ideal space of a graph C*-algebra. In Sect.7.3 we find necessary
and sufficient condition which a graph should satisfy in order for the induced C *-
algebra to have a T primitive ideal space. In Sect. 7.4 we prove that a lot of subsets
of such primitive ideal spaces are both closed and open. In particular, we give a
complete description of when one-point sets are open. We use this to show that
any purely infinite graph C *-algebra with a T} primitive ideal space is a co-direct
sum of Kirchberg algebras. Moreover, we show that any graph C*-algebra with a
Ty primitive ideal space may be given a canonical structure of a (not necessarily
continuous) C(N)- algebra, where N is the one-point compactification of N. As an
ending remark, we prove that N-filtered K - theory classifies these C N)- algebras up
to E(N)-equivalence, as defined by Dadarlat and Meyer in [2].

7.2 Preliminaries

We recall the definition of a graph C*-algebra and many related definitions and
properties. Let £ = (E°, E',r,s) be a countable directed graph, i.e. a graph with
countably many vertices E°, countably many edges E' and a range and source map
r,s: E' — E° respectively. A vertex v € E° is called a sink if s~!'(v) = @ and
an infinite emitter if [s~'(v)] = oo. A graph with no infinite emitters is called
row-finite.

We define the graph C *-algebra of E, C*(E), to be the universal C *-algebra
generated by a family of mutually orthogonal projections {p, : v € E°} and partial
isometries with mutually orthogonal ranges {s. : ¢ € E'}, subject to the following
Cuntz-Krieger relations

1. s¥s, = pr(e) fore € E',
2. Se8¥ < pse) fore € E,
3. Po =D et S8, forv € E® such that 0 < [s~'(v)| < oo.

By universality there is a gauge action y: T — Aut(C *(E)) such that y,(p,) =
Py and y.(s,) = zs, forv € E°,e € E' and z € T. An ideal in C*(E) is said to be
gauge-invariant if is invariant under y. All ideals are assumed to be two-sided and
closed.

If ,...,q, are edges such that r(o;) = s(aj4+;) fori = 1,...,n — 1, then
we say that « = (oy,...,®,) is a path, with source s(¢) = s(«;) and range
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r(a) = r(oy,). A loop is a path of positive length such that the source and range
coincide, and this vertex is called the base of the loop. A loop « is said to have an
exit, if there exist e € E' andi = 1,...,n such that s(e) = s(o;) but e # ;.
A loop « is called simple if s(o;) # s(a;) fori # j. A graph E is said to have
condition (K) if each vertex v € E° is the base of no (simple) loop or is the base of
at least two simple loops. It turns out that a graph E has condition (K) if and only if
every ideal in C*(FE) is gauge-invariant if and only if C*(E) has real rank zero.

For v,w € E° we write v > w if there is a path o with s(o) = v and 7 (&) = w.
A subset H of E? is called hereditary if v > w and v € H implies that w € H.
A subset H of E is called saturated if whenever v € E° satisfies 0 < |s~'(v)| < oo
and r(s~'(v)) € H thenv € H.If X is a subset of E° then we let X H(X)
denote the smallest hereditary and saturated set containing X. If H is hereditary
and saturated we define

Hfg ={ve ENH :|s7'(v)] =ocoand 0 < |s"'(v) N r Y (E°\H)| < o0},
H? ={ve EO\H :|s7'(v)] = oo and s~ (v) N r Y (E°\H) = 0}.

By [1, Theorem 3.6] there is a one-to-one correspondence between pairs (H, B),
where H C E° is hereditary and saturated and B C Hg‘, and the gauge-invariant
ideals of C*(E). In fact, this is a lattice isomorphism when the different sets are
given certain lattice structures. The ideal corresponding to (H, B) is denoted Jy
and if B = () we denote it by Jy.

A non-empty subset M C EC is called a maximal tail if the following three
conditions are satisfied.

1.Ifve ESwe Mandv > wthenv € M.

2. Ifv € M and 0 < |s~!(v)| < oo then there exists e € E! such that s(e) = v
and r(e) € M.

3. For every v,w € M there exists y € M suchthatv > yandw > y.

Note that E®\ M is hereditary by 1 and saturated by 2. Moreover, by 3 it follows that

(E°\M)? is either empty or consists of exactly one vertex. We let .# (E) denote

the set of all maximal tails in £, and let .#, (E) denote the set of all maximal tails M

in E such that each loop in M has an exitin M. We let 4, (E) = .# (E)\A,(E).
If X € E° then define

RX)={we ENX :wZ#vforallv e X}.

Note that if M is a maximal tail, then 2(M) = E°\M. For a vertex v € E°,
E°\£(v) is a maximal tail if and only if v is a sink, an infinite emitter or if v is the
base of a loop.

We define the set of breaking vertices to be

BV(E)={ve E°: |s7'(v)] =occand 0 < |s~ ' (v)\r 1 (£2(v))| < o0}.

Hence an infinite emitter v is a breaking vertex if and only if v € £ (v)in.
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We should warn the reader that it is customary to say that the elements of H g‘é‘
are called breaking vertices of H, where H is hereditary and saturated. In these
terms, a vertex v € E%is a breaking vertex, i.e. v € BV(E), if and only if v
is a breaking vertex of §2(v). But beware, a vertex which is a breaking vertex of
some hereditary and saturated set need not be a breaking vertex in general. In order
to avoid confusion we will only use the term breaking vertex as a name for the
elements in BV(E).

In [6] they define for each N € .#,(E) and t € T a (primitive) ideal Ry, and
prove that there is a bijection

My (E)UBV(E) U (M (E) x T) - PrimC*(E)
given by

My(E) 3 M = Joon o
BV(E) 3 v = Jou) oui\
M (E)xT > (N,t) — Ryy.

In [6], Hong and Szymanski give a complete description of the hull-kernel
topology on PrimC*(E) in terms of the maximal tails and breaking vertices. In
order to describe this we use the following notation. Whenever M € .#;(E) there
is a unique (up to cyclic permutation) simple loop L = («y, ..., a,) in M such that
M = {v e E°: v > s(a;) for some i}, and we denote by L?M the set of vertices
{s(ctr),...,s(ay)}. Y C A, (E) we let

Yoin :={U €Y :forall U' € Y,U’ # U there is no path from L?/ to L?j/},
Yoo :={U €Y :forall V € Yy, there is no path from L?/ to L(‘),}.
Due to a minor mistake in [6] the description of the topology is however not

entirely correct. We will give a correct description below and explain what goes
wrong in the original proof in Remark 1.

Theorem 1 (Hong-Szymanski). Let E be a countable directed graph. Let X C
My (E),W < BV(E),Y C M (E), and let D(U) C T for each U € Y. If
M e #,(E),v e BV(E),N € #.(E), and z € T, then the following hold.

1. M € X if and only if one of the following three conditions holds.

a MeX,
b. M CJX and 2(M)?, = @,
. M CUX and s~ (2(M)2) nr~' (U X)| = c.

2. veXifandonlyifvelJX and|s™ (v) N r~' (U X)| = oc.
3. (N,z2) € X ifandonlyif N C |J X.
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. M € W ifand only if either

a. M C E\,cw 2(w) and 2(M)?, = @, or
b. M C EO\N,ew 2w) and |s~1(2(M)2)) N rH(E\ N, e 2(W))| = oco.

. v € W ifand only if either

a. veW,or
b. v e E% Myew £2(w) and |s~1(v) N r~Y(E% Nyew 2(w))| = oo.

. (N,2) € Wifand onlyif N € E°\ (i 2(w).
. M is in the closure of {(U,t) : U € Y,t € D(U)} if and only if one of the
following four conditions holds.

a. M C Yoo and 2(M)?, = 0,

b. M C Yoo and |s~(2(M)2) N r~ (U Yoo)| = 0,
c. M C | Yminand 2(M)?, = 0,

d. M C\JYminand |s~(2(M)2) 0 r=' (U Yiuin)| = 00

. v is in the closure of {(U,t) : U € Y,t € D(U)} if and only if either

a. v e|JYeoand |s7'(v) N r Y Yoo)| = 00, or
b. v € | Ymin and |s~ (v) N r~ (U Yin)| = o0

. (N, z2) is in the closure of {(U,t) : U € Y,t € D(U)} if and only one of the
following three conditions holds.

a. N €Y,

b. N ¢ Ymin and N - UYminr
c. N € Yyinandz € D(N).

Before explaining what goes wrong in the original proof we give an example that

illustrates the mistake in the original theorem.

Example 1. Let E denote the graph

V< U —> w,

ie. E® = {u, v, w} and u emits infinitely to both v and w. This has the maximal tails

{u}, {u, v}, {u, w}. Note that

Jotuop.2quopis = Joy  and - Jown oquin = Jwa-

Since Jg,y € Jypy it follows that {u} € {{u, v}}.
The original theorem [6, Theorem 3.4] states that {u} € {{u, v}} if and only if

{u} € {u, v} and s_l([?({u})go) N r~ (2 ({u, v})) is finite.
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However,

sTHR{uDg) N (2w, v})) = 57" () N~ (wh)

is infinite, which is a contradiction.

In the proof of the original theorem they prove, correctly, what in the above
example corresponds to the statement {u} € {{u, v}} if and only if u ¢ {w}I0. Itis
the latter statement which they reformulate incorrectly, as is described in the remark
below.

Remark 1. The minor mistake in the original proof of Theorem 1 is an error which
occurs in the proofs of Lemma 3.3 and Theorem 3.4 of [6]. We will explain what
goes wrong. Suppose that M is a maximal tail, K is a hereditary and saturated set
such that K € (M), and that B € K. Note that B\H(Z(M)go C (M) U
(M) Hence if w € 2(M)?, then Jx  C o). if and only if w ¢ B,
since w ¢ 2(M) U £2(M)f. In the cases we consider we have that w € B if
and only if w € KM Now it is claimed that w ¢ KA if and only if s~'(w) N
r~1(K) is finite. However, this is not the case. If both s~ (w)Nr~' (K) and s~ (w) N
r~1(E®\K) are infinite then w ¢ K. The correct statement would be that w ¢ K[
if and only if [s~'(w) N r 1 (EO\K)| = o0.

A similar thing occurs in the case where v € BV(E). Here we have, in the cases
we consider, that Jx p € J.Q(u),:z(v)gg\{v} if and only if v ¢ Kgg. Again, the correct
statement becomes v ¢ K1 if and only if [s~!(v) N r~(E*\K)| = oo.

After changing these minor mistakes, one obtains Theorem 1 above.

7.3 T; Primitive Ideal Space

Recall that a topological space is said to satisfy the separation axiom 77 if every
one-point set is closed. In particular, every Hausdorff space is a 77 space. For a C *-
algebra A the primitive ideal space PrimA is 7} exactly if every primitive ideal is a
maximal ideal. All of our ideals are assumed to be two-sided and closed.

As shown in [1], every gauge-invariant primitive ideal of a graph C *-algebra
may be represented by a maximal tail or by a breaking vertex. The following lemma
shows that we only need to consider maximal tails.

Lemma 1. Let E be a graph such that Prim(C *(E)) is T. Then E has no breaking
vertices.

Proof. Suppose E has a breaking vertex v. Then

Tow 2w\ a4 Jow) om)

are primitive ideals of C*(FE), the former being a proper ideal of the latter by [1,
Corollary 3.10]. Hence
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Tow.ewi € VUew.ew\o)

and thus C*(E) can not have a T; primitive ideal space. O

It turns out that it might be helpful to consider gauge-invariant ideals which are
maximal in the following sense.

Definition 1. Let E be a countable directed graph and let J be a proper ideal of
C*(E). We say that J is a maximal gauge-invariant ideal if J is gauge-invariant
and if J and C*(E) are the only gauge-invariant ideals containing J.

The following theorem gives a complete description of the graphs whose induced
C *-algebras have a T primitive ideal space.

Theorem 2. Let E be a countable directed graph. The following are equivalent.

1. C*(E) has a Ty primitive ideal space,
2. E has no breaking vertices, and whenever M and N are maximal tails such that
M is a proper subset of N, then .Q(M)go is non-empty, and

ls7HR(M)2) N r Y (N)] < oo,

3. E has no breaking vertices, and J o yr) oy is a maximal gauge-invariant ideal
in C*(E) for any maximal tail M,

4. E has no breaking vertices, and the map M+ Jgor) oy i a bijective map
from the set of maximal tails of E onto the set of all maximal gauge-invariant
ideals of C*(E).

The last condition in 2 of the theorem may look complicated but it is easy to
describe. It says, that if M & N are maximal tails then M must contain an infinite
emitter v which only emits edges out of M, and only emits finitely many edges
to N. Note that this is equivalent to v € £2(N)fin.

Proof. We start by proving 1 < 2. By Lemma 1 we may restrict to the case where
E has no breaking vertices. The proof is just a translation of Theorem 1 into our
setting. We have four cases.

Case 1: Let M, N € .#,(E). By Theorem 1 we have M € {NY} if and only if
one of the following three holds: (i) M = N, (ii)) M € N and .Q(M)go = 0,
(iii) M € N, 2(M)?, # 0 and

ls™H(R2(M)E) N r~ (V)] = oo,

We eliminate the possibilities (ii) and (iif) exactly by imposing the conditions
in 2.

Case2: Let (M, z) € A4, (E)xTand N € .#,(E).By Theorem 1, (M,z) € {N}
if and only if M C N. Since M € .#,(E) it follows that 2(M)?, = @ and thus
the conditions in 2 says M € N.
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Case 3: Let (N,t) € A (E) xT and M € .#,(E). Note that {N }pin = {N}
and {N}s = 0. By Theorem 1 we have M € {(N,t)} if and only if one of the
following two holds: (i) M € N and 2(M)%, = @, (ii) M C N, 2(M)?2, # 0
and

lsTH(R2(M)%) N r T (N)| = co.

Conditions (i) and (if) do not hold exactly when assuming the conditions of 2.

Case 4: Let (M, z), (N,t) € #.(E) x T. By Theorem 1 we have (M,z) €
{(N,t)} if and only if either M & N, or M = N and z = ¢. Note that
condition 9a of the theorem can never be satisfied. Since the maximal tail M satisfies
R(M)?, = @ the conditions of 2 say M C N if and only if M = N thus finishing
1& 2.

We will prove 1 = 3. In order to simplify matters, we replace E with its
desingularisation F' (see [4]) thus obtaining a row-finite graph without sinks.
Since E has no breaking vertices by Lemma 1, there is a canonical one-to-one
correspondence between .# (E) and .# (F') and a lattice isomorphism between the
ideal lattices of C*(E) and C*(F) such that M" +— M implies Jomr.emni
Ja(m). Inthis case Joyy7) a1 @ maximal gauge-invariant ideal if and only if
Jo(m) 1s a maximal gauge-invariant ideal and thus it suffices to prove that Jo () is
a maximal gauge-invariant ideal in C*(F) for M € .# (F).

Suppose Joy € Ju for some hereditary and saturated set H # F 0 Since F
is row-finite without sinks we may find an infinite path o in F\ H. Let

N ={veF :v>s(x;)forsome j}

which is a maximal tail such that N € FO\H.Hence 2(M) € H € £2(N) which
implies N € M. Since F is row-finite, 2(N )go is empty, and thus since 1 & 2,
M = N.Hence H = £2(M) and thus 1 = 3.

We will prove 3 = 4. Again, we let F be the desingularisation of £ and note
that 4 holds for F if and only if it holds for E. Note that 3 implies that the map in 4
is well-defined, and this is clearly injective. Let H be a hereditary and saturated set
in F such that Jy is a maximal gauge-invariant ideal in C*(F). As above, we may
find a maximal tail M such that H € §2(M ) which implies Jy € Jour). Since Jy
is a maximal gauge-invariant ideal, H = £2(M) which proves surjectivity of the
map and finishes 3 = 4.

For 4 = 1 we may again replace E by its desingularisation F. Since 1 < 2
and F is row-finite, 1 is equivalent to the following: if M € N are maximal tails
then M = N, since 2(M )20 = @ for every maximal tail M. Let M C N be
maximal tails in F. Then Jov) € Jo(m) are maximal gauge-invariant ideals and
thus N = M, which finishes the proof. O

Definition 2. Let E be a countable directed graph. If E satisfies one (and hence
all) of the conditions in Theorem 2, then we say that E is a T} graph.
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For row-finite graphs the above theorem simplifies significantly.
Corollary 1. Let E be a row-finite graph. The following are equivalent.

1. EisaT graph,

2. If M C N are maximal tails, then M = N,

3. Joum) is a maximal gauge-invariant ideal in C*(E) for any maximal tail M,

4. The map M — Jom) is a bijective map from the set of maximal tails of E onto
the set of all maximal gauge-invariant ideals of C*(E),

Proof. Since E is row-finite it has no breaking vertices and §2(M )go is empty for
any maximal tail M. Hence it follows from Theorem 2. O

We will end this section by constructing a class of graph C*-algebras, all of
which have a non-discrete 77 primitive ideal space.

Example 2. Let B be a simple AF-algebra and let F' be a Bratteli diagram of B as
in [3], such that the vertex set F is partitioned into vertex sets F? = {wl, ... wkn}
and every edge with a source in F has range in Fn0 1-Let G1, Gy, ... be asequence
of graphs all of which have no non-trivial hereditary and saturated sets. Construct a
graph E as follows:

oo
E°=F'ul Jay.
n=1
o0 oo
E' = FIUUG; U U{e,ll,...e],f”}
n=1 n=1

where the range and source maps do not change on F' U [ J72, G} and where
s(en) = wy and r(en) € GY.

Using that F and each G, have no non-trivial hereditary and saturated sets we
get that the maximal tails of E are

n
M, =|JF UGy,
k=1
o0
Mo = F) = F".
k=1

Hence no maximal tail is contained in another and thus the primitive ideal space of
C*(E) is T). For any of these maximal tails M, each vertex in M emits only finitely
many edges to £2(M) and thus (M) is empty. The quotients C*(E)/Jo(m,)
are Morita equivalent C*(G,) and C*(E)/Jewm.) = C*(F) which is Morita
equivalent to B.
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If, in addition, eacp G, has condition (K) then one can verify that PrimC*(FE)
is homeomorphic to N = N U {oo}, the one-point compactification of N. Such a
homeomorphism may be given by

N SN > JQ(M”) S PI'lmC*(E)

7.4 Clopen Maximal Gauge-Invariant Ideals

Whenever a subset of a topological space is both closed and open, then we say
that the set is clopen. In this section we give a description of which one-point sets
in the primitive ideal space of a T} graph are clopen. In fact, we describe which
maximal gauge-invariant ideals in the primitive ideal space correspond to clopen
sets. We use this description to show that every purely infinite graph C *-algebra
with a 7' primitive ideal space is a cy-direct sum of Kirchberg algebras. Moreover,
we prove that graph C*-algebras with a 77 primitive ideal space are canonically
C(N)-algebras, which are classified up to E(N)-equivalence by their N-filtered
K-theory.

In order to describe the clopen maximal gauge-invariant ideals, we need a notion
of when a maximal tail distinguishes itself from all other maximal ideals in a certain
way.

Definition 3. Let E be a 7 graph and let M be a maximal tail in E. We say that M
is isolated if either

1. M contains a vertex which is not contained in any other maximal tail, or
2. 2(M)?, is non-empty and

IsTh QM) )y nr! N || < oo.
o
NE%M(E)

where .# (E) denotes the set of all maximal tails N such that M C N.

This definition may look strange but it turns out that a maximal tail corresponds
to a clopen maximal gauge-invariantideal if and only if it is isolated, see Theorem 3.

Remark 2. For a row-finite 7; graph E the above definition simplifies, since
M )20 is empty for any maximal tail M. Hence, in this case, a maximal tail
is isolated if and only if it contains a vertex which is not contained in any other
maximal tail.

Example 3. Consider the two graphs



7 Graph C*-Algebras with a 7} Primitive Ideal Space 151

S T

The latter graph is the desingularisation of the former but without changing sinks
to tails. The maximal tails of the former graph are given by N, = {w,v,} and
Noo = {w}. The maximal tails of the latter graph are

Mn = {Wla--- s Why vn}a

Moo = {Wl,WZ,...}.

Hence both graphs are easily seen to be 7} graphs. All the maximal tails N, and M,
forn € N are easily seen to be isolated, and by Remark 2, M, is not isolated. Since
2(Nwo) = {w} and

[s7tw)y nrt U N||l=
NeMyos (E)

we note that N, is not isolated. In fact, by Corollary 4 below, N, would be isolated
if and only if M, was isolated.

The latter graph is an example of a graph in Example 2, with B = C and
each G, consisting of one vertex and no edges. Since the graph has condition
(K), the primitive ideal space is homeomorphic to N =NU {00}, the one-point
compactification of N, by the map

N SNt JQ(M”).

It turns out that many maximal tails are isolated, as can be seen in the following
lemma.

Lemma 2. Let E be a T\ graph and let M be a maximal tail which contains a sink
or a loop. Then M is isolated.

Proof. Letv € M be the sink or the base of aloop in M, and note that .Q(v)go = .
If N is a maximal tail such that v € N then E°\£2(v) € N and since Q(v)go
is empty, N = E°\Q(v) by Theorem 2. Hence v is not contained in any other
maximal tail than M and thus M is isolated. O

The following is the main theorem of this section, mainly due to all the corollaries
following it.

Theorem 3. Let E be a countable directed graph for which the primitive ideal
space of C*(E) is Ty, and let M be a maximal tail in E. Then
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{p € PimC™(E) : Jour) oy S P} € PrimC*(E)

is a clopen set if and only if M is isolated.
In particular, if M € .#,(E), then the one-point set

{JQ(M),Q(M)gg} C PrimC*(E)
is clopen if and only if M is isolated, and if M € .4 (E) then
{Ry; :t € T} € PrimC*(E)

is a clopen set homeomorphic to the circle S'.

Proof. To ease notation define
Uy = {p € PrimC*(E) : Joup) ooy S P}

By definition Uy, is closed. By [6, Lemma 2.6] it follows that if J is a gauge-
invariant ideal, M € #;(E) andt € T, then J C Ry, if and only if J C
Jomy.oonim- We will use this fact several times throughout the proof, without
mentioning it.

Suppose Uy is clopen. If M € .#;(E) then M contains a loop and is thus
isolated by Lemma 2. Hence we may suppose that M € .#, (E) for which it follows
that Un = {J g1y i - Since Uy is open there is a unique ideal J such that

Joon.eonm} = {p € PimC*(E) : J £ p}.

Suppose J is not gauge-invariant. Then we can find a z € T such that y,(J) # J.
Note that y.(J) € v:(Voun.eanin) = Jowmr).enyi - Further, for an arbitrary p €
PrimC*(E)\{JQ(M)’Q(M)g%}, we have y,(J) C y,(p), since J C p. Since y, fixes
Joon.eoni it induces a bijection from PrimC* (E)\{Jsr) o(ain } to itself and
thus y;(J) < p for any primitive ideal p # Jg 37y o(aryin - However, this contradicts
the uniqueness of J, and thus J must be gauge-invariant.

Since J is gauge-invariant, / = Jy p for a hereditary and saturated set H and
B C HI" If H € §£2(M) then any vertex v € H such that v € M is not contained
in any other maximal tail, since Ju g € Jg ) (v for any maximal tail N = M.
Hence we may restrict to the case where H € £2(M). Since Ju.g & J o). oy »
B € 2(M)U (M) 1tis easily observed that B\2(M)?2, € (M) U (M)
and hence it follows that £2(M )go = {w} for some vertex w and that w € B. Recall
that .4y (E) = {N € .#(E): M C N}. Since w € HI" we have

Is~'ow) N r Y (EO\H)| < 00

and since e 4,5y N S E°\H it follows that
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s e Nl < oo

NeMy (E)

Thus M is isolated.

Now suppose that M is an isolated maximal tail. If M contains a vertex v
which is not contained in any other maximal tail, then Jspw) € J, Q(M).2(M) and
JsHw) C JQ(N)’Q(N)‘% for any maximal tail N # M. Hence

Uy = {p € PrimC*(E) : Jsuw) € p}

and thus Uy, is clopen. Now suppose that every vertex of M is contained in some
other maximal tail. Let H = (\yc_4,, (&) $2(N) which is hereditary and saturated.
Since M is isolated, $2(M )20 = {w} for some vertex w. Moreover, since M is
isolated and E°\H = Uyec 4, (z) N it follows that w € HZI. Hence Jy g &
Joun.eoni and Jy 6 S Jo vy oy forany N € .y (E) by Theorem 2. Now,
as above, Jxuw) S Jon) o forany N & 4y (E) and Jsuo € Jovy o
for N € 4 (E). Hence

Uy =10 :Jupy L3040 Izme € b}

is the intersection of two open sets, and is thus clopen.
For the ‘in particular’ part note that if M € .#,(E) then Uy = {J o) o(m)fn }-
If M € #;(E) then M contains a loop and is thus isolated by Lemma 2. Hence

is clopen. By Theorem 1 it follows that this set is homeomorphic to the circle S'.
O

Corollary 2. Let E be a Ty graph and p € PrimC *(E) be a primitive ideal. Then
{p} is clopen if and only if p = Jqo 1) oy for an isolated maximal tail M €
Ay (E).

Corollary 3. Let E be a Ty graph and suppose that every maximal tail in E is
isolated. Then

PimC*(E)= | | »u || '

Me., Me.d,

is a disjoint union, where * is a one-point topological space and S" is the circle.
In particular, if E in addition has condition (K) then PrimC *(E) is discrete.

If two graphs E and F have Morita equivalent C *-algebras, then the correspond-
ing ideal lattices are canonically isomorphic. Hence, if E and F have no breaking
vertices, there is an induced one-to-one correspondence between the maximal tails
in E and F. The following corollary is immediate from Theorem 3.
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Corollary 4. Let E and F be Ty graphs such that C*(E) and C*(F) are Morita
equivalent. Then a maximal tail in E is isolated if and only if the corresponding
maximal tail in F is isolated.

Our main application of the above theorem is the following corollary.

Corollary 5. Any purely infinite graph C*-algebra with a T\ (in particular Haus-
dorff) primitive ideal space is isomorphic to a cy-direct sum of Kirchberg algebras.

Proof. Let E be a Ty graph such that C*(E) is purely infinite. By [5, Theorem 2.3]
E has condition (K) and every maximal tail in E contains a loop, and is thus isolated
by Lemma 2. By Corollary 3 the primitive ideal space PrimC *(E) is discrete. Hence
C*(E) is the cp-direct sum of all its simple ideals, which are Kirchberg algebras.

O

We also have another application of the above theorem.

Corollary 6. Let A be a graph C*-algebra for which the primitive ideal space is
Ti. Let J be the ideal generated by all the direct summands in A corresponding to
A/‘]Q(M)YQ(M)g“o where M is an isolated maximal tail. Then A/ J is an AF-algebra.

Proof. Note that the ideal is well-defined by Theorem 3, since J 37y o(pryin s @
direct summand in A4 for every isolated maximal tail M. By Corollary 4 it suffices
to prove this up to Morita equivalence. Hence we may assume that there is a row-
finite graph E such that C*(E) = A. Let VV denote the set of all vertices which are
contained in exactly one maximal tail. For any isolated maximal tail M, the direct
summand in A4 which corresponds to A/Jo () is Jsuw) Where v is any vertex in
M which is not contained in any other maximal tail. Hence J = Jxp(v) since this
is the smallest ideal containing all Jx () forv € V. By Lemma 2 any vertex which
is the base of a loop, is in V. Hence the graph E\ X H (V') contains no loops and
thus A/J = C*(E\X H(V)) is an AF-algebra. O

Remark 3. By an analogous argument as given in the proof of Corollary 6, we get
the following result. Let A be a real rank zero graph C *-algebra for which the
primitive ideal space is 71. Then A contains a (unique) purely infinite ideal J such
that A/J is an AF-algebra.

In fact, we could define V' in the proof of Corollary 6 to be the set of all vertices
which are the base of some loop. Then J = Jyp(y) would be the direct sum of
all simple purely infinite ideals in 4, and A/J would again be an AF-algebra. Note
that this ideal, in general, is not the same as the one defined in Corollary 6.

Remark 4. Let N = N U {oo} be the one-point compactification of N. We may
give any graph C*-algebra A with a T} primitive ideal space a canonical structure
ofaC (N)-algebra. In fact, list all of the direct summands in A corresponding to
A/ J gy 2y for M an isolated maximal tail, as Ji, J5, ... By letting

n—1

A({n}) = J,, and A(n.n +1,....00}) = A/ P Ji.
k=1
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then A gets the structure of a C*-algebra over N which is the same as a (not
necessarily continuous) C N)- algebra (see e.g. [8]). This structure is unique up to
an automorphism functor o on ¢*alg(N), the category of C N)- algebras, where
o : N — N is a homeomorphism. Moreover, by Corollary 6, the fibre A is an
AF-algebra.

Using the structure of a C N)- -algebra we may construct an N-filtered K - theory
functor as in [2]. In fact, let C(N,Z) be the ring of locally constant maps N —
Z.1f Aisa C (N) algebra then the K-theory K.(A) has the natural structure as a
Z/2-graded C (N, Z)-module. Similarly, let A be the ring of Bockstein operations,
and let C(N, A) be the ring of locally constant maps N — A. If 4 is a C(N)-algebra
then the total K-theory K(A) has the natural structure as a C (N, A)-module. It is
this latter invariant, that Dadarlat and Meyer proved a UMCT for. We refer the reader
to [2] for a more detailed definition.

We end this paper by showing that for 7} graph C*-algebras given C N)-
algebra structures as in Remark 4, an isomorphism of N-filtered K -theory (without
coefficients) lifts to an E (N)-equivalence. Note that this is not true in general by [2,
Example 6.14].

Proposition 1. Let A and B be graph C *-algebras with T\ primitive ideal spaces,
and suppose that these have the structure of C (N)-algebras as in Remark 4. Then
K+(A) = K.(B) as Z/2-graded C(N,Z)-modules if and only if A and B are
E (N)-equivalent.

In addition, if A and B are continuous C(N)-algebras, then K«(A) = K«(B) as
7./2-graded C (N, Z)-modules if and only if A and B are K K(N)-equivalent.

Proof. Clearly an E (N)-equivalence induces an isomorphism of N-filtered K-
theory. Suppose that ¢ = (¢o, $1): K«(A) — Ku«(B) is an isomorphism of
7./ 2-graded C(N, Z)-modules. By the UMCT of Dadarlat and Meyer [2, Theorem
6.11], it suffices to lift ¢ to an isomorphism of N-filtered total K-theory. Since the
K;-groups are free, Ko(D;Z/n) = Ko(D) ® Z/n for D € {A, B}. Hence define

¢ = o ®idyn: Ko(A;Z/n) — Ko(B;Z/n)

which are isomorphisms for each n € N. Since the fibres A, and By, are AF-
algebras by Corollary 6, K| (Aso; Z/n) = Ki(Bwo;Z/n) = 0 foreachn € N. Since
the map Ko(D;Z/n) — Ko(Doo; Z/n) is clearly surjective, and K(Doo;Z/n) =
0, it follows by six-term exactness that

K(D:Z/n) = Ki(D(N): Z/n) = @) K1(Di: Z/n)
keN

for D € {A, B} and n € N. Since ¢: K«(A) — K.(B) is an isomorphism of Z/2-
graded C (N, Z)-modules, ¢ restricts to an isomorphism ¢y x: K« (Agx) — Ku(By)
for each k € N. By the UCT of Rosenberg and Schochet [9] we may lift these
isomorphisms to invertible K K -elements, and in particular also to isomorphisms of
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the total K-theory ¢« x: K(Ax) — K(By). Here we used that the fibres are graph
C *-algebras and thus satisfy the UCT (see e.g. [10, Remark A.11.13]). Now define
the group isomorphisms ¢ K,(4) - K,(B) to be the isomorphism induced by
¢o and each ¢y, and ¢ K, (A) — K ,(B) to be the composition

K (4) = DK, (40 22, = @ K\(Bo) = K, (B),

keN keN

where K, (D) = K;(D) & D, ey Ki(D; Z/n). 1t is straight forward to check that
¢ = @0’ 91):£(A) — K(B) is an isomorphism of C (N, A)-modules.

If A and B are continuous C (N)-algebras then E (N)- and KK (N)-theory agree
by [2, Theorem 5.4]. O
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Chapter 8
The Law of Large Numbers for the Free
Multiplicative Convolution

Uffe Haagerup and Soren Moller

Abstract In classical probability the law of large numbers for the multiplicative
convolution follows directly from the law for the additive convolution. In free
probability this is not the case. The free additive law was proved by D. Voiculescu in
1986 for probability measures with bounded support and extended to all probability
measures with first moment by J.M. Lindsay and V. Pata in 1997, while the free
multiplicative law was proved only recently by G. Tucci in 2010. In this paper
we extend Tucci’s result to measures with unbounded support while at the same
time giving a more elementary proof for the case of bounded support. In contrast
to the classical multiplicative convolution case, the limit measure for the free
multiplicative law of large numbers is not a Dirac measure, unless the original
measure is a Dirac measure. We also show that the mean value of In x is additive
with respect to the free multiplicative convolution while the variance of In x is not
in general additive. Furthermore we study the two parameter family ((q ) g0 Of
measures on (0, oo) for which the S-transform is given by Sy, ,(z) = (—2%( +
)%, 0<z<1.
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8.1 Introduction

In classical probability the weak law of large numbers is well known (see for
instance [14, Corollary 5.4.11]), both for additive and multiplicative convolution
of Borel measures on R, respectively, [0, co).

Going from classical probability to free probability, one could ask if similar
results exist for the additive and multiplicative free convolutions H and X as
defined by D. Voiculescu in [16] and [17] and extended to unbounded probability
measures by H. Bercovici and D. Voiculescu in [4]. The law of large numbers for
the free additive convolution of measures with bounded support is an immediate
consequence of D. Voiculescu’s work in [16] and J. M. Lindsay and V. Pata proved
it for measures with first moment in [11, Corollary 5.2].

Theorem 1 ([11, Corollary 5.2]). Let u be a probability measure on R with
existing mean value o, and let ,: R — R be the map ¥, (x) = %x. Then

Va(uB---Bp) - 8
N e’

n times

where convergence is weak and 8 denotes the Dirac measure at x € R.

Here ¢ (i) denotes the image measure of 4 under ¢ for a Borel measurable
function ¢: R — R, respectively, [0, 00) — [0, 00).

In classical probability the multiplicative law follows directly from the additive
law. This is not the case in free probability, here a multiplicative law requires
a separate proof. This has been proved by G.H. Tucci in [15, Theorem 3.2] for
measures with bounded support using results on operator algebras from [6] and [8].
In this paper we give an elementary proof of Tucci’s theorem which also shows that
the theorem holds for measures with unbounded support.

Theorem 2. Let p be a probability measure on [0, 00) and let ¢, [0, 00) — [0, 00)
be the map ¢, (x) = xn. Set§ = w({0}). If we denote

Vn Z(Z.Sn(:un) Z(ﬁn(ﬂg"'gﬂ)
%/_/

then v, converges weakly to a probability measure v on [0,00). If  is a Dirac
measure on [0,00) then v = . Otherwise v is the unique measure on [0,00)

characterised by v ([0, ﬁ]) =t forallt € (§,1)andv({0}) = 8. The support
i
of the measure v is the closure of the interval

00 -1 e
(a,b>=<(/0 x_ldu(x)) , /0 xdu(x)),

where 0 <a < b < co.
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Note that unlike the additive case, the multiplicative limit distribution is only
a Dirac measure if p is a Dirac measure. Furthermore S, and hence (by [17,
Theorem 2.6]) i can be reconstructed from the limit measure.

We start by recalling some definitions and proving some preliminary results
in Sect. 8.2, which then in Sect. 8.3 are used to prove Theorem 2. In Sect. 8.4 we
prove some further formulas in connection with the limit law, which we in Sect. 8.5
apply to the two parameter family (i« g)« >0 0f measures on (0, co) for which the

_ (=f

W,O<Z<l.

S-transform is given by S, ,(z)

8.2 Preliminaries

We start with recalling some results we will use and proving some technical tools
necessary for the proof of Theorem 2. At first we recall the definition and some
properties of Voiculescu’s S-transform for measures on [0, c0) with unbounded
support as defined by H. Bercovici and D. Voiculescu in [4].

Definition 1 ([4, Sect.6]). Let i be a probability measure on [0, co0) and assume
that § = u({0}) < 1. We define ¥, (1) = fooo -du(?) and denote its inverse
in a neighbourhood of (§ — 1,0) by x,. Now we define the S-transform of u by
Su(z) = “yu(z) forz € (8 — 1,0).

Lemma 1 ([4, Proposition 6.8]). Let (1 be a probability measure on [0, 00) with
8§ = n({0}) < 1then S, is decreasing on (8§ — 1, 0) and positive. Moreover, if § > 0
we have S, (z) — oo ifz > §— 1.

Lemma 2. Let i be a probability measure on [0, 00) with § = u({0}) < 1. Assume
that  is not a Dirac measure, then S[L (z) < O0forz e (§—1,0). Inparticular S,, is
strictly decreasing on (6§ — 1,0).

Proof. For u € (—o0,0),

/ _ oo z
wﬂ(u)_/o —(l_m)zd,u(l‘)>0. (8.1)

Moreover lim, - ¥, (1) = 0 and lim, oo ¥, (1) = 6 — 1. Hence v, is a strictly
increasing homeomorphism of (—oo, 0) onto (§ — 1, 0). For u € (—o0, 0), we have

WM(”) +1
S U)=—-u
Ly = P
Hence
a v () U U@ W) + 1) — ud, ()
— (InS u))) =— a - = =
qu M Su W) = = T 1 U @) (U0 + D)

(8.2)
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where the denominator is positive and the nominator is equal to

([ o) ([ o) - [ o
/ / (1- ,js;r(f )dN(S)d,u(t)
2 / / ( - MS)2 ( —tm)z) du(s)dp(z)

(s —1)?
= __/ / 0= )2 (1 — a2 HOAR )

where we have used that

(s + )1 —us)(1 — ut) — s(1 — ut)® — t (1 — us)*> = —u(s —1)*.
Since p is not a Dirac measure,

(nx p) ({(s.1) €0,00)% : s #1}) >0

and thus

o0 o0 B 2
/0 /0 (1-— b(,ss)z(tl)_ a2 dp(s)du(r) > 0

which shows that the right hand side of (8.2) is strictly positive. Hence
d
d_Z (ln SIL(Z)) <0

for z € (§ — 1, 0), which proves the lemma.

O

Remark 1. Furthermore, by [4, Proposition 6.1] and [4, Proposition 6.3] ¥, and
Xy are analytic in a neighbourhood of (—o0, 0), respectively, (—1,0), hence S, is

analytic in a neighbourhood of (§ — 1, 0).

Lemma 3 ([4, Corollary 6.6]). Let i and v be probability measures on [0, 00),

none of them being 8o, then we have Sz, = S, S,.

Next we have to determine the image of S,,. Here we closely follow the argument
given for measures with compact support by F. Larsen and the first author in [6,

Theorem 4.4].

Lemma 4. Let |4 be a probability measure on [0, c0) not being a Dirac measure,

then S, ((§ —1,0)) = (b~',a™"), where a, b and § are defined as in Theorem 2.
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Proof. First assume § = 0. Observe that for u — oo we have

/oo “ d(t)—>/oold ()=a' and /oo M) — 1
- =da an .
0 l—l—ut'u 0 Z‘“ 0 l—l—ut'u

Hence

_Ilfu(_u) _ © ut o u —1
m - (/o 1 —|—mdﬂ([)> (/o 1 —I—utd'u(t)) —a foru— oo.

Similarly, for u — 0 we have

—du(t) —» tdu(t) = b d ——du(t 1.
/0 —au) /0 W) =b an /0 ) —

Hence

—Yu(—u) _ IOOO l-iurd“(t)

= b f 0.
e B By o H T S

As x, is the inverse of ¥, we have

Y (—u) + 1

u(u(—u) +1)
% (—u) '

Su(l/fu(_“)) = v (_u)
"

X;L(W;L(_”)) =

By (8.1) and Lemma 2 v, is strictly increasing and continuous and S, is strictly
decreasing and continuous so S, (¥, ((—00,0))) = S,((—1,0)) = (b~1,a™ ).

If now § > 0 we have by Lemma 1 that S,(z) — oo for z — § — 1, so in this
case continuity gives us S, ((§ — 1,0)) = (b, 00), which is as desired as a = 0 in
this case. O

8.3 Proof of the Main Result

Let u be a probability measure on [0, co) and let v be as defined in Theorem 2. If u
is a Dirac measure, then v, = u for all n and hence v, — v = u weakly, so the
theorem holds in this case. In the following we can therefore assume that p is not
a Dirac measure. We start by assuming further that ©({0}) = 0, and will deal with
the case u({0}) > 0 in Remark 2.

Lemma 5. Forallt € (0,1) and all n > 1 we have

/oo 1—1¢ -1
(1 TREILE - 1)”x") dv, (x) = 1.
0 t
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Proof. Lett € (0,1) and set z =t — 1. By Definition 1 we have
2+ 1=, (@) +1

_ 0 Xun(Z)x

o0 1
= /0 (= s @ Hr )

~ -1
:/0 (I—Z_’_LISW(Z))C) dpe, (x)

o -1
= /(; (1 — Zf_ ISM(Z)nX) dpy (x).

In the last equality we use multiplicativity of the S-transform from Lemma 3.
Now substitute t = z + 1 and afterwards y” = x and use the definition of v, to
get

00 —1
‘ =/0 (1 + ;Sﬂ(t - 1)"x) djun (x)
/oo 1—1 n.n -
= | (1 + TSM(t - D"y ) dv, (). O

Now, using this lemma, we can prove the following characterisation of the weak
limit of v,.

Lemma 6. For all t € (0, 1) we have t = Tim, oo v, ([0, 52 |).
n

Proof. Fixt € (0,1) and let ' € (0,¢). Then

% 1—1¢ !
t = / (1 + Su(t' — 1)”x") dv, (x)
0

Z/
o0 1—1¢ !
< / (1 + TS“([/ - 1)"x”) dv, (x)
0
S0 o0
5/ 1dv,,(x)+/
0 S0=h

e oo 1—1 (S, =)\
5/ u )1dvn(X)+/ 1 (1+ t (Su( 1)) ) dv, (x)
0 Spa=0 ;A(t_ )

1 1=t (S, —1)\"\ '
E”’1([0’Su<r—1>D+(1+ t (Sm—l))) |

1—1 l n.,.n -
1+ TS,L(I —1)'x dv,(x)
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Here the first inequality holds as ¢ < ¢ while S, (" — 1)"x" > 0, the second holds
as 1 + %L’SM(Z’ — 1)"x" > 0, and the last because v, is a probability measure.
S,('—1)

By Lemma 2, §,(t — 1) is strictly decreasing, and hence S0 1. This
implies
L=t (St =D\
lim 1+ p7 = 1) =0.
n—00 t S, (t=1)
And hence

1
/ . .
=t ([0 50 ])

As this holds for all ¢’ € (0,7) we have

o 1

On the other hand if ¢ € (¢, 1) we get

4

o) —1
t// — /(; (1 + TSM(t// _ 1)nxn) dvn(x)
* 1—1 ” n.n -
> | 1+ TS,L(I —1)"x dv,(x)

S(+_l) 1—1 " n..n B
> 1+ —S5,0"—-1)"x dv,(x)
0

t

Sy =18, =1\
/(; (1 + T—Sﬂ(l _ 1)n ) dv,,(x)
1 L=t (S, (" =D\
ZW(PWAP4J)(H'z (&a—n))

Here the first inequality holds as ¢ > ¢ while S, (t” — 1)x" > 0, and the second to
last inequality holds as S, (# — 1) is decreasing.

v

S, (t"—1)
S.a—1)

, 1—t (S, —1)\"\ '
1 1 = =1.
13&(+'r (&a—n))

Again as S, (¢ — 1) is strictly decreasing we have < 1, hence

This implies

1
t"” > limsup v, (|:O, —:|) )
=y S —1)
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As this holds for all ” € (¢, 1) we have

. 1

Combining (8.3) and (8.4) we get

. 1
- ([ 5=5)

as desired. O

For proving weak convergence of v, to v it remains to show that v, vanishes in
limit outside of the support of v.

Lemma 7. For all x < a and y > b we have v,([0,x]) — 0, respectively,
v, ([0, y]) — 1.

Proof. To prove the first convergence, let t < a and s € (0, 1). Now we have that

t < # from Lemma 4 and hence
u(s—1)

lim sup v, ([0,¢]) < limsup v, ([ ;}) =y.

07
n—>00 n—00 Su(s—=1)

Here the inequality holds because v,, is a positive measure and the equality comes
from Lemma 6. As this holds for all s € (0, 1) we have limsup,,_, ., v, ([0,¢]) < 0
and hence lim sup, _, ., v, ([0, 7]) = O by positivity of the measure.

For the second convergence we proceed in the same manner, by letting > b and

s € (0,1). Now we have that r > ﬁ from Lemma 4 and hence

1
imint (0.1) = tmint (0.5 ) =

Again the inequality holds because v, is a positive measure and the equality comes
from Lemma 6. As this holds for all s € (0, 1) we have limsup,,_, o, v, ([0, ¢]) > 1
and hence lim sup,_, ,, v, ([0,7]) = 1 as v, is a probability measure. O

Lemmas 6 and 7 now prove Theorem 2 without any assumptions on bounded
support as weak convergence of measures is equivalent to point-wise convergence
of distribution functions for all but countably many x € [0, c0).

Remark 2. In the case § = u({0}) > 0, S, is only defined on (6 — 1,0) and
S,.(z) = oo when z — § — 1. This implies that Lemma 5 only holds for ¢ € (8, 1),
with a similar proof. Similarly, Lemma 6 only holds for z € (8, 1), and in the proof
we have to assume ¢’ € (8, ¢). Similarly, in the proof of Lemma 7 we have to assume
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s € (8, 1). Moreover, in Lemma 7 the statement, 0 < x < @ implies v, ([0, x]) — 0
for n — oo, should be changed to ¢ = 0 and v, ({0}) = = v({0}) foralln € N.

Using our result we can prove the following corollary, generalizing a theorem
([8, Theorem 2.2]) by H. Schultz and the first author.

Let (.#, t) be a finite von Neumann algebra .# with a normal faithful tracial
state t. In [7, Proposition 3.9] the definition of Brown’s spectral distribution
measure 7 was extended to all operators T € .#*, where .#* is the set of
unbounded operators affiliated with .# for which (In*(|T|)) < oo.

Corollary 1. If T is an R-diagonal in .#* then d’(,U«(T*)”T”) — Yr(ur) weakly,
where Y (z) = |z|% z € C, and ¢, (x) = x'/" for x > 0.

Proof. By [7, Proposition 3.9] we have M?L’T = p(r*y» and by Theorem 2 we
have q'b(p,?ﬁT) — v weakly. On the other hand observe that v = v (ur) by [7,
Theorem 4.17] which gives the result. O

Remark 3. In [8, Theorem 1.5] it was shown that ¢, (=) = Vr(ur) weakly
for all bounded operators 7 € .. It would be interesting to know, whether this
limit law can be extended to all T € .Z4.

8.4 Further Formulas for the S -Transform

In this section we present some further formulas for the S-transform of measures
on [0, 00), obtained by similar means as in the preceding sections and use those to
investigate the difference between the laws of large numbers for classical and free
probability. From now on we assume p({0}) = 0. Therefore i can be considered
as a probability measure on (0, co).

We start with a technical lemma which will be useful later.

Lemma 8. We have the following identities

1 2

t
/ m(——)ar =21
0 1—1¢ 3

1

/ In®tdr =2
0

1
/ In*(1 —¢)dt =2

0

1 72
/ Intln(1—#)dt =2 — —.
0 6
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Proof. For the first identity we start with the substitution x = ﬁ which gives us

= x = _dx
=113 and dr = ESIE

1
/ In? (L) dt
A 1—1

and hence

/°° In? x
— = dx
0 (1 +)C)2

2 [*® x
- | = 4
do? /0 (1+x)?2 x

d2
= dT‘(zB(l —i—ot,l—ot)

o

a=0

a=0

_ &  rno
~ do?sin(ra) |,—,
G

do? 3!

a=0

a2 ( 72 2
= — 1 + —u + . .) —_

do? 6 weo 3

where B(-,-) denotes the Beta function. The second and the third identity follow
from the substitution ¢ > exp(—x), respectively, 1 — ¢ — exp(—x).
Finally, the last identity follows by observing

2 1
t
”-:/m2 —ar
3 Jo 1—1

1
= / It +In(1 — ) —2Inz In(1 — £)dt
0

1
= 4—2/ Int In(1 — ¢)dt
0

which gives the desired result. O

Now we prove two propositions calculating the expectations of Inx and In? x
both for u and v expressed by the S-transform of p.

Proposition 1. Let u be a probability measure on (0, 00) and let v be as defined in
Theorem 2. Then [;° |Inx|du(x) < oo if and only iffo1 [In S, (t —1)|dt < oo and
if and only iffooo [In x| dv(x) < oco. If these integrals are finite, then

0o 1 00
/0 Inxdu(x) = —/0 InS,(t—1)dt :/0 In xdv (x).
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Proof. For x > 0, put InT x = max(In x, 0) and In~ x = max(—In x, 0). Then one
easily checks that

InT x <In(x+1) <InTx+1In2

and by replacing x by % it follows that

1

InT x < ln()C + ) <In"x+1In2.
X
Hence
o0 o0
/ Int xdu(x) < 00 & / In(x 4+ 1)du(x) < oo
0 0
and

o0 o0 1
/ In~ xdu(x) < 0o & / In (x + )d,u(x) < 00.
0 0 X

We prove next that

/oo In(x + Ddu(x) = /ooln_ uyy;, (—u)du (8.5)
0 0

and

o0 X +1 o0 ,
/0 ln( . )du(x) = /0 In™ wy) (—u)du. (8.6)

Recall from (8.1), that

! _ oo t
(ST —/0 e SONNE

Hence by Tonelli’s theorem

00 N - B 00 - B 00 poo X
/0 In™ uy,, ( u)du—/1 Inuy, ( u)du—/0 / —(1+ux)2 In ududp (x)

1

and similarly,

0o _ , _ 00 1 X 1
/0 In M'WM(—M)dM = /0 /0 m In (;) dudp,(x)
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By partial integration, we have

o0 X Inu u = x+1
—— hudu=|——+1n =1In
1 (1 + ux)? 1+ ux 14 ux) |,— x

and similarly,

box 1 Inu u u=l
———In|{ - |du= —1In
o (14 ux)? u 1+ ux 14+ux) |,—

u=1

= |: i Inu + In(1 + ux):| =In(x + 1)
1+ ux =0

which proves (8.5) and (8.6). Therefore

o0 o0
/ [In x| du(x) < oo & / |Inu| ¥, (—u)du < oo
0 0

and substituting x = v, (—u) + 1 we get

] 1 1
/ [Inul ), (—u)du = f |In (—xu(t = 1)| dr = f 1n(1 ! [) + InS,(t —1)|dr.
0 0 0 -
Since [ |In (15)] df < oo it follows that
00 1
/0 |Inul ¥}, (—u)du < 0o & /0 |In S, (1 — )| dt < oo.
If p is not a Dirac measure, the substitution x = S,(r — 1)7,0 < 7 < 1

gives t = v((0,x]) fora < x < b, where as before a = (fooo x‘ld,uv(x))_1 and
b= fooo xdu(x). The measure v is concentrated on the interval (a, b). Hence

oo b
/0 [In x| dv(x) =/a |lnx|dv(x):/01 In (ﬁ)

This proves the first statement in Proposition 1. If all three integrals in that
statement are finite, we get

/oolnxd,u(x) = /ooln(x + Ddp(x) — /ooln (x + 1) du(x)
0 0 0 X

o0

= /Ooo (ln_ u—Int u) w;(—u)du = —/0 In m//l;(—u)du,

1
dt =f [In S, (r —1)|dr.
0
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By the substitution t = ¥, (—u) + 1 we get

1 1 1—1¢ !
/Oln(—xﬂ(t—l))dt=/0 (ln( . )+1nSM(t—l))dt=/O InS, @t — 1)dr.

Hence [;° Inxdpu(x) = — fol In S, (¢t — 1)dz. Moreover, by the substitution x =
Syt =110 <t <1weget

o] 1 1 o]
/0 1nxdp,(x)=/0 In (m) dr :/0 In xdv(x).

Finally, if u = 8y, x € (0, 00), this identity holds trivially, because v = §, and
S‘,(z):%,0<z<l. O

Corollary 2. Let (11 and u, be probability measures on (0,00). If E,, (Inx) and
E,, (In x) exist then E,,, &, (Inx) also exists and

Eﬂlgﬂz(lnx) = ]EMI (Inx) + EMz (Inx)

where B, (f) = [;° f(x)du(x).

Proof. The statement follows directly from Proposition 1 and multiplicativity of the
S-transform. O

For further use, we define the map p for a probability measure p on (0, 0o) by

1
,o(,u):/0 ln(lt_t)lnS,L(t—l)dt.

Note that p(u) is well-defined and non-negative for all probability measures on
(0, o0) because

I e RECEEN G RS
Su(=3)

where the first term on the right hand side is non-negative for all # € (0, 1) and the
second term is integrable with integral 0.

Lemma9. Let u be a probability measure on (0, 00), then

1/2
0<p(p) < % (/Ollnz Sult — 1)dt) :

Furthermore, p(it) = 0 if and only if i is a Dirac measure. Moreover, equality

holds in the right inequality if and only if S, (z) = (ﬁ)yfor some y > 0 and in
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this case p(u) = y%z. Additionally, if 1, (1o are probability measures on (0, 00)
we have p(p1 & p2) = p(p1) + p(p2).

Proof. We already have observed p > 0. For the second inequality observe that

p()* < (/01 In? (;) dr) (/01 In® S, (t — l)dt)

by the Cauchy-Schwarz-inequality, where the first term equals ”72 by Lemma 8.

If 4 = 8, for some a > 0 we have S, (z) = 5, hence In §, (¢ — 1) is constant so
the oddity of ln(l%’) gives us p(p) = 0. On the other hand, if p(i) = 0, the first
term in (8.7) has to integrate to 0, but by symmetry of In (:£) and the fact that S,
is decreasing, this implies that S, must be constant, hence y is a Dirac measure.

Equality in the second inequality, by the Cauchy-Schwarz inequality happens
precisely if In S, (r — 1) =y ln(lt;’) for some y > 0 which is the case if and only
if S, —-1)= (?)y, and in this case p(u) = y%z by Lemma 8.

For the last formula we use multiplicity of the S-transform to get

1 _
p(r X wo) :/o ln(l

1 _
Z/ ln(ltZ)(lnS,Ll(t—1)+1nS,L2(t—1))dt
0

= p(r1) + p(p2). o

t
) In S50, (t — 1)dr

Proposition 2. Let 1 be a probability measure on (0, 00), and let v be defined as
in Theorem 2. Then

00 1
/ In® xdu(x) = / In® S, (¢ — 1)dt + 2p()
0 0

o0 1
/ In® xdv(x) = / In? S, (t — 1)dt

0 0
Vu(nx) =V,(Inx) 4+ 2p(n)

as equalities of numbers in [0, 00|, where V,(In x) denotes the variance of In x with
respect to a probability measure o on (0, 00). Moreover,

0<p(p) < %Vvanx)%.

Proof. We first prove the following identity

]T2

/ In* uyy), (—u)du = / In? xdu(x) + (8.8)
0 0 3
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Since ¥/ (—u) = fooo mdx, we get by Tonelli’s theorem, that

/OOO In? uyy, (—u)du = /Ooo (/Oooln2 umdu) du(x)

:/0 (/0 In® (%) a jlrvu)2)d”(x)'

Note next that

® L, dv )
In (—) s = co+cilnx +cIn" x
0 x/ (1+v)
2
where co = [i° dipdv, of = =2 [ qimpdv, and ¢ = [ qrpdv = 1

Moreover, by the substitution v = % one gets ¢c; = —c; and hence ¢; = 0. Finally,

by the substitution v = -=,0 <7 < 1 and Lemma 8,

1 2
t
coz/ln2 —— dt:ﬂ—.
0 1—t¢ 3

2 _ ({2 77_2
/0 In uwu(—u)du—/o (ln x + 3 )du(x)

which proves (8.8). Next by the substitution # = v/, (—u) + 1, we have

Hence

[ele] 1
/ In” ), (—u)du = / In® (—y,.(t —1))dt = (8.9)
0 0
1
/ (In =L +1n.S,(c — 1))’ dr.
0

Since ¢ — In (?) is square integrable on (0, 1) the right hand side of (8.9) is finite
if and only if

1
/ In (S,(r — 1))* dr < oo,
0

Hence by (8.8) and (8.9) this condition is equivalent to

o0
/ In? xdp(x) < oo,
0
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so to prove the first equation in Proposition 2 is suffices to consider the case, where
the two above integrals are finite. In that case p(i1) < oo by Lemma 9. Thus by
Lemma 8 and the definition of p(u),

2

2
/l (m(l_’) —i—lnSM(t—l)) dr = /llnz(SM(t—l))dt+2p(,u)+n_.
0 t 0 3

Hence by (8.8) and (8.9)

o) 1
/ In® xdu(x) = / In? (S, (r — 1)) dr + 2p(p).
0 0
The second equality in Proposition 2

o0 1
/ In® xdv(x) = / In? S, (t — 1)dt
0 0

follows from the substitution x = S, (¢ —1)~! in case p is not a Dirac measure, and
it is trivially true for Dirac measures. By the first two equalities in Proposition 2, we
have

/ - In? xdpu(x) = / - In® xdv(x) + 2p(1). (8.10)
0 0

If both sides of this equality are finite, then by Proposition 1,

/Ooolnxdu(x) = /Ooolnxdv(x)

where both integrals are well-defined. Combined with (8.10) we get
Vu(nx) =V, (Inx) +2p(n) (8.11)

and if [;° In? xdu(x) = +oo, both sides of (8.11) must be infinite by (8.10).

As the S-transform behaves linearly when scaling the probability distribution
in the sense that the image measure p, of u under x — cx for ¢ > 0 gives us
Su. (z) = ¢71S,(z) we have for p that

1
p(ie) = /0 In (1 t_t) In(c™'S,,(t — 1))dr

1 _ 1 _
=/ 1n(1 t)lnS,L(t—l)dt+/ 1n(1
0 ! 0

t
) c7ldt = p(u) + 0
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by anti-symmetry of the second term around ¢ = % Using this for ¢ =
exp (E, (Inx)), we get

(w) = p( <l(/1(1n5(t—1)—E (lnx))zdt)%
p() = p(HUe _\/g A w v

1
(/ (In S, = 1) = 2B, (nx)? + E, (Inx)?) dt)
0

V3

T

V3

(V,(Inx))? . o

Now we can use the preceding lemmas to investigate the different behavior of
the multiplicative law of large numbers in classical and free probability. Note that
in classical probability for a family of identically distributed independent random
variables (X;)?, we have the identity V(In([T/2, X;)) = nV(nX;). In free
probability by Propositions 1 and 2 we have instead

VMXI” (ln l‘)

[els) S 2
= / In” (™) (1) — (/ lntd(ux")(t))
0 0

1 0
= / In® S, =, (t — 1)dz + 20(u®") — (—/ InS, = (Z)dZ)
0 1

2

1 0 2
= n2/ In? S, (t = 1)dz+2np(p) — n’ (/ In S,L(z)dz)
0 —1
=n’V,(Inx) + 2np(p).

Hence Vuxn (Int) = nV,(nt) + n(n — 1)V,(Int) > nV,(n¢) forn > 2if p is
not a Dirac measure and V,(Inz) < oo, which shows that the variance of In¢ is not
in general additive.

Lemma 10. Let 1 be a probability measure on (0, 00) and let v be defined as in
Theorem 2. Then

00 _sin(ry) (11—t -
/0 xVdu(x) = o /0( ; SM(I—I)) dr

for—1 <y < 1and

[od) 1
/0 xVdv(x) :/0 St —1)77dt

fory € R as equalities of numbers in [0, o].



174 U. Haagerup and S. Moller

Proof. By Tonelli’s theorem followed by the substitution u = yx we get

Yl (—y)dy = ™ L2 dydu(x)
/0 / / 1+ yx)

- /0 X7 /0 (li—u)zdud,u(x)

o0
— B -y147y) / (),
0

where B(s,1) = [;° (1+ )H, —____du is the Beta function. But B(1 —y,1 + y) = ““(”V)
by well-known properties of B. Substitute now x = —y,(—z)andz=1—1¢to get

00 B , _ 1 - B 1 1—¢ y
/0 X Vwﬂ(—x)dx —/(; (_X;/,(_Z)) dZ —/(; (TSM(I - 1)) dl,

which gives the first identity. The second identity follows from the substitution x =
S, (t — 1)~! and the properties of v from Theorem 2. O

8.5 Examples

In this section we will investigate a two parameter family of distributions for which
there can be made explicit calculations.

Proposition 3. Let o, B > 0. There exists a probability measure 1o on (0, 00)
which S-transform is given by

(—2)”
(1 +2)2°

Sﬂa,ﬁ (Z) =

Furthermore, these measures form a two-parameter semigroup, multiplicative under
X induced by multiplication of (a, B) € [0, 00) X [0, 00).

Proof. Note first that @ = 8 = 0 gives S,,, = 1, which by uniqueness of the
S-transform results in poo = 81, hence we can in the following assume (o, 8) #
(0,0).

Define the function vy g: C \ [0, 1] = C by

Vo,p(2) = Bln(—z2) —aln(l +2)
forallz € C\ [0, 1].

In the following we for z € C denote by argz € [—m, 7] its argument. Assume
z=x+1iy and y > O then
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1
In(—z) = 5 In (x2 + yz) +iarg(—x —1iy)

where arg(—x —iy) < 0, which implies that In(C™) € C~. Similarly, if we assume
z=Xx 41y and y > 0 then

In(1+2z) = %m ((x + 1)? + y?) +iarg((x + 1) +1iy)

where arg((x + 1) +iy) > 0, which implies that —In(1 + C*) € C~ and hence
Vep(CT) C C. Furthermore, we observe that for all z € C, vy 4(2) = vq(2).
By [4, Theorem 6.13 (ii)] these results imply that there exists a unique X-infinitely
divisible measure (i, g with the S-transform

(=2
s @ = EX0(0(2) = exp(BIn(—2) — (1 +9) = ==
The semigroup property follows from multiplicativity of the S-transform. O

The existence of py0 was previously proven by T. Banica, S.T. Belinschi,
M. Capitaine and B. Collins in [2] as a special case of free Bessel laws. The case
Moo 18 known as a Boolean stable law from O. Arizmendi and T. Hasebe [1].

Furthermore, there is a clear relationship between the measures (i, g and pgq.

Lemma 11. Leta, > 0, (a, B) # (0,0) and let {:(0,00) — (0, 00) be the map
£(t) = 17" Then we have upy = ((jop), where ¢ denotes the image measure
under the map ¢.

Proof. Puto = é(,ua,ﬂ). Then by the proof of [7, Proposition 3.13],

1 _ (—2)* _5
Sues(—1—2)  (1+42)f "1

So(2) =

for0 <z < 1.Hence o = ugg. O

Lemma 12. Let (o, 8) # (0,0). Denote the limit measure corresponding to (Lo g
by vy g. Then vy g is uniquely determined by the formula

t()t
o () =

for0 <t <1, where Fy g(x) = vo,8((0, x]) is the distribution function of v g.
Proof. The lemma follows directly from Lemma 3 and Theorem 2. O

For  =0and o > O,
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Similarly, fora« = 0and 8 > 0

0<x<l1

F ={"
05() (1 —x)_%, x> 1.

Hence vg g is the Pareto distribution with scale parameter 1 and shape parameter %

Moreover, if @ = 8 > 0 we get Fyo(x) = (1 + x7/*)~! for x € (0, 00),
which we recognize as the image measure of the Burr distribution with parameters
(1,a™ ") (or equivalently the Fisk or log-logistic distribution (cf. [9, p. 54]) with
scale parameter 1 and shape parameter & ') under the map x > x~!

On the other hand, we can make some observations about the distribution ji4 g,
too. For the cases (o, 8) = (1,0) and («, 8) = (0, 1) we can recognize the measures
10 and 1o from their S-transform, as Sy, ,(z) = (1 + z)~! is the S-transform of
the free Poisson distributions with shape parameter 1 (cf. [18, p. 34]), which is
given by

1 X
Mo =~ L(0.4)(x)dx,

while S, (z) = —z according to Lemma 11 is the S-transform of the image of the
above free Poisson distribution under the map ¢ 1

1 v4x -1
Mo = w2 1(%’00)(x)dx,

which is the same as the free stable distribution with parameters « = 1/2 and
p = l as described by H. Bercovici, V. Pata and P. Biane in [3, Appendix A1]. More
generally, (1o g is the same as the free stable distribution vy, with @ = ﬂ# and

1
ol
_)/ b

|V

p = 1, because by [3, Appendix A4] v, is characterizedby X, ,(y) = (

._.

y € (—00,0), and it is easy to check that

Sve0(@) = iy (%ﬂ)—(—z)a = #01 @, 0<z<l0<a<l

From the above observations, we now can describe a construction of the measures
,U«m e

Proposition 4. Let m, n be nonnegative integers. Then the measure [Ly, » is given by

an—ﬂlmgﬂ

Proof. By multiplicativity of the S-transform we have that
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m n (_Z)n
Sﬂ%nxm%n (2) = S0 (@ Sy, )" = aro = Sy, (2),

which by uniqueness of the S-transform gives the desired result. O
Proposition 5. Foralla, >0

Eu,,(nx) =B —a

2
plitap) = =@+ B)

2
Vi, (InX) = (@ — B)> + %(aﬂ +a+p).

Proof. These formulas follow easily from Propositions 1 and 2 and Lemma 8. O

Furthermore, we also can calculate explicitly all fractional moments of i, g by
the following theorem.

Theorem 3. Let o, B > 0 and y € R then we have

00 sin(zy) F(Ity+tye)[(A—y=yf)  _ 1 _, _ _1
/ xyd,ua,ﬂ(-x) — Ty T (2+ya—yp) 1+«a 14 1+8 (8.12)
0 o0

otherwise
o0 r(1+y+ye) > _ L
/ dpgo(x) = ) TTMeHea V7 T (8.13)
0 ’ 00 otherwise
00 I(1—y=yB) <L
/ xVdpog(x) = ri-nre—yp V= 1+p (8.14)
0 ' (%9) otherwise.

Proof. Let first —1 < y < 1. Then (8.12)—(8.14) follow from Lemma 10 together
with the formula I'(1 + ) ['(1 —y) = % Since S, ,(z) = W is analytic in
a neighborhood of 0, 14 ¢ has finite moments of all orders. Therefore the functions

o0
s»—>/ X’ dpg0(x)
0

N I'l+s+sa)
r'ad+s)rre+ soa)

N

are both analytic in the half-plane fs > 0 and they coincide for s € (0, 1). Hence
they are equal for all s € C with fs > 0 which proves (8.13). By Lemma 11 (8.14)
follows from (8.13). O

Remark 4. By Theorem 3 (8.12) we have
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1. If 8 > 0, then fooo xdfte g(x) = oo. Hence sup(supp(ie,g)) = oo. Similarly, if
a > 0 then fooo x'dpe p(x) = oo. Hence inf(supp(uq,p)) = 0.
2. If B = 0, then by Stirling’s formula

o0 l a+1
: ” m_(@+])
sup(supp(ie.0)) = Olggo (/0 t dﬂa,o(l)) = 7

aOL

Hence by Lemma 11, we have fora = 0

. _ B
inf(supp(po.p)) = W
Note that sup(supp(itn.0)) = ("4';—,3”1, n € N was already proven by F. Larsen in

[10, Proposition 4.1] and it was proven by T. Banica, S. T. Belinschi, M. Capitane
and B. Collins in [2] that supp(ite0) = [O, (‘)‘4';—3,“1] Note that this also follows
from our Corollary 3.

If « = B it is also possible to calculate explicitly the density of pty 4. To do this
we require an additional lemma.

Lemma 13. For —1 <y < land —w < 0 < m we have

/4

sin 6 /°° 124 dr sin(fy)
o t242cos(B)t +1 sin(my)

Proof. Note first that by the substitution t = e* we have

o0 24 00 evx
/ ar =1 / L A—
o t2+2cos(O) +1 2 J_oo coshx + cos 6

The function

evr

cosh x + cos 6

is meromorphic with simple poles in x = +i(w — 6) + p27, p € Z. Apply now the
residue integral formula to this function on the boundary of

{zeC:—R <Rz <R,0<3Jz<2m}

and let R — oo. The result follows. |

The density of u, was computed by P. Biane [5, Sect. 5.4]. For completeness
we include a different proof based on Theorem 3 and Lemma 13.
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Theorem 4 ([5]). Let a > 0 then Ly has the density fyq(t)dt, where

sin (T)

wt ( a+1 + 2cos (T) + t_a+r1)

Jou(t) =

fort € (0,00). In particular j11 1 has the density (m/t(1 + t))~'dt and |15, has
the density

V3
————dt.
2w (1 4+ 13 4+ 13)

Proof. To prove this note that for [y| < ;7= +

o
oo ©  qin (Z— +1 y(e+1)
[0 e [ SRl Dy
0 0 n(y+ZCos(aLH)+y_l) y

(oz—i—l)sm( +1)/°° prt
T 0oy +2c:os( +1)y+1

dy

using the substitution y = X1, Now by Lemma 13 and Theorem 3 (8.12) we have

/ P foa()dx = / ” ditya () < 0.
0 0

This implies by unique analytic continuation that the same formula holds for all
y € Cwith [Ry| < . In particular

/ " fua(x)dx = [ " At ()

for all s € R, which shows that the image measures under x — Inx of f(x)dx
and [y 4 have the same characteristic function. Hence 1y o = fo.o(x)dx. O

Proposition 6. For all o, > 0, (a,8) # (0,0), the measure p,p has a
continuous density fo g(x), (x > 0), with respect to the Lebesgue measure on R and

hm Xfop(x) = hm xfaﬁ(x) =0. (8.15)

Proof. By the method of proof of Theorem 4, the integral

hop(s) = / X dpgp(x), seR
0
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can be obtained by replacing y by is in the formulas (8.12)—(8.14). Moreover,

hap(s) :/0 exp(ist)doy g (1)

where 0, g is the image measure of ji, g by the map x — logx, (x > 0). Hence
by standard Fourier analysis, we know that if i, 4 € L'(R) then 0,4 has a density
8a,p € Co(R) with respect to the Lebesgue measure on R and hence (14 g has density
Jap(x) = %gaﬁ (log x) for x > 0, which satisfies the condition (8.15). To prove
that i g € L'(R) forall &, 8 > 0, (a, B) # (0,0), we observe first that

Tz
I'l—-9I'l4+z=——, zeC\Z
sinmz

and hence by the functional equation of I"

wz(1 — 22
re-ore+9="4"9 _cc\z
sinwz
In particular, we have
IF1+is))P = —=_ seR
sinh s
1 2
IrQ2+is)? = M s €R.
sinh s

Applying these formulas to (8.12)—(8.14) with y replaced by is, we get
hap(s) = O (Is|7*?), fors — +oo
for all choices of or, B > 0, (v, B) # (0, 0). Thus by the continuity of A g it follows
that i, 3 € L'(R), which proves the proposition. O
Note that by Remark 4 it follows that f,o(x) can only be non-zero if x €

a+ .
(O, (‘“‘;—31) and fy g(x) can only be non-zero if x € ((ﬁflw

have seen, that po,4 coincides with the stable distribution vy, with & = 717 and
p = 1 we have from [3, Appendix 4] that

Theorem 5 ([3]). The map

oo) Since we

. sin ¢ sin® (B¢)
sinf T (B + 1))’ ﬂ

is a bijection of the interval (O, ,3L+1) onto ((ﬂ+1)l3+1 , )
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L 0<p< -2 (816)

sin ¢ sin (B¢) sinf *2((B + 1)¢)
Jop = B+1

sinf T1((B + 1)¢) wsinf T (Bg)

Proof We know that o5 = v SIENT the stable distribution with parameters o =

En] +1 and p = 1. Moreover, we have from [3, Proposition A1.4], that v, ; has density

Yq.1 on the interval (05(1 — )/ ) given by

Va1 (x) = — smH'a 0 sin"u (1 — )0),
where 6 € (0, ) is the only solution to the equation
X = sin"u 6 sini_l((l —a)0)sinab.

It is now easy to check that fog(x) = ¥ —— (x) has the form (8.16) by using the

substitution ¢ = O

0
BF1
Corollary 3. The map

sin®t (o + 1))

> —, < < —
¢ sin ¢ sin® («¢p) ¢ a+1
is a bijection of the interval (0, T) onto (O (a+;3a+1) and

7 sin® (o + 1)¢)’ <¢<a+1‘

sin®* (o + 1)) _ sin” ¢ sin® ! (ag)
Juao sing sin®(ag) |

Proof. Since 4 o is the image measure of (19, by the map ¢ %, (t > 0), we have

1 1
fuo®) = 5 foa (;) >0,

The corollary now follows from Theorem 5 by elementary calculations. O
We next use Biane’s method to compute the density f, g forall o, 8 > 0.
Theorem 6. Let a, B > 0. Then for each x > 0 there are unique real numbers
é1, d2 > 0 for which
T=(a+ Do+ B+ 1) (8.17)
a+l ¢

= s1nﬁ+l o sinf~ (1 + P2). (8.18)
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Moreover

. B2

sin" "y 4

Sy (x) = TSt sin® P~ (g1 + o). (8.19)
Proof. As [iq g has the S-transform S, ,(z) = ((1:2; we by Definition 1 observe
that
_(_Z)ﬂ+l (_Z)ﬁ+l
Xllu,ﬁ (Z) = W whence 1//#01,,6 —W =z

for z in some complex neighborhood of (—1, 0). Now it is known that

1
Gy (7) =1 (14 yu())
for every probability measure on (0, co). Hence

(1 +Z)a+1 (_Z)ﬂ+1
Cas (_ Pt )= “a+oe (820

for z in a complex neighborhood of (—1, 0).
Let H denote the upper half plane in C:

H ={zeC:3z>0}.
Forz € H, put
¢1 = ¢1(z) = arg(l +z) € (0, 7)
¢ = ¢2(2) = 7 —arg(z) € (0, 7).

Basic trigonometry applied to the triangle with vertices —1, 0 and z, shows that
¢1 + ¢ < 7w and

sing; _ singy  sin(w — 1 — o)
lzZl |14z 1 '

Hence

sin sin
o= — S g 1=

sin(¢1 + ¢») sin(¢1 + ¢2)

from which
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sin ¢ i and % — sin ¢ sin ¢

= TS + )¢ YT Sin(gr £ )

It follows that @:z — (¢1(2), $2(z)) is a diffeomorphism of H onto the triangle
T = {(¢1.¢) € R?: ¢, ¢ > 0,9, + ¢ < 7} with inverse

sin ¢ —itn
sin(¢; + ¢»)

Put Hop = {z € H : (a+1)¢1(2)+(B+1)¢2(z) < w}. Then Hyp = @' (Tup)
where Ty g = {(¢1,¢2) € T : (@ + D1 + (B + D)o < 7}.
In particular H, g is an open connected subset of H . Put

D (p1, ) = — . (P19 €T

(1 +Z)a+l N
F(z) = o Jz > 0.
Then
a+1
Fy = 11 |+|ﬁzll @+ D91 Q)+ B+ a0 ) 8.21)
Z

so for z € Hyp, SF(z) < 0. Therefore G, ,(F(z)) is a well-defined analytic
function on H, g, and since (—1, 0) is contained in the closure of H, g it follows
from (8.20)

1+z
F(z)

for z in some open subset of H, g and thus by analyticity it holds for all z € H, g.
Let x > 0 and assume that ¢, ¢, > O satisfy (8.17) and (8.18). Put

Gy (F2) = (8.22)

sin ¢ —ig

— -1 T T (b LA
= @ (¢17 ¢2) - Sin(d)l + ¢2)

Then by (8.21)

F(z) =

1+ z*t" ( sin ¢ )”‘+1 (sin(¢1 + ¢2))ﬂ+1 _
zlf+1 \sin(¢) + ¢2) sin ¢ B

Since [« g has a continuous density fo g on (0, 00) by Proposition 6, the inverse
Stieltjes transform gives

1 1
=—— 1 SG =— i SG .
fa'ﬁ(X) T w—>xl,nﬁlw>0 ’ Hap (W) T w—>x1,I£I‘slw<0\S Ha.p (W)
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For0 <t < 1,putz, = @ (t¢1,1¢,). Then
z € 7' (Tup) = Hup.

Thus JIF(z;) < 0. Moreover, z; — z and F(z;) — F(z) = x fort — 17. Hence by
(8.22),

1 1 1 3 i i
Jup(x) = — lim 3Gy, (F(z) = — lim 3 (Zf + ) - _ _shbising,
T t—>1— : T t—>1"

F(z)) wx wxsin(@ + ¢»)

which proves (8.19). To complete the proof of Theorem 6, we only need to prove
the existence and uniqueness of ¢, ¢ > 0. Assume that ¢, ¢, satisfy (8.17) then

T—0 0

P =T +1

for a unique 6 € (0, 7). Moreover,

dgy 1 do» 1
— = and — = ——.
dé a+1 do +1
Hence, expressing u = % sinf = (¢, + ¢,) as a function u(6) of 6, we get
du(6) ) ) )
@+ DB+ D = B+ D cotdy + @ + 1P cotd = 2a = B cotl@r + )

_ A1, ¢2)
sin ¢ sin ¢, sin(¢p; + ¢»)

where
A(¢1.¢2) = (@ + 1) sing; cos ¢ + (B + 1) cos ¢y sing)” + (a0 — B)* sin® ¢, sin’ .

For a # B A(¢1,¢2) > (a — B)?sin® ¢y sin® gy > 0 and for @ = B A(¢y, ) =
(a+1)?sin(¢; +¢2) > 0. Hence u(6) is a differentiable, strictly increasing function
of 6, and it is easy to check that

lim u(d) =0 and lim u(f) = oco.
f—0t 0—>m—

Hence u(6) is a bijection of (0,7) onto (0, 00), which completes the proof of
Theorem 6. O

Remark 5. It is much more complicated to express the densities fy g(x) directly
as functions of x. This has been done for § = 0, « € N by K. Penson and
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K.

Zyczkowski in [13] and extended to the case @ € Q' by W. Miotkowski,

K. Penson and K. Zyczkowski in [12, Theorem 3.1].
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Chapter 9
Is Every Irreducible Shift of Finite Type Flow
Equivalent to a Renewal System?

Rune Johansen

Abstract Is every irreducible shift of finite type flow equivalent to a renewal
system? For the first time, this variation of a classic problem formulated by Adler
is investigated, and several partial results are obtained in an attempt to find the
range of the Bowen—Franks invariant over the set of renewal systems of finite type.
In particular, it is shown that the Bowen—Franks group is cyclic for every member
of a class of renewal systems known to attain all entropies realised by shifts of finite
type, and several classes of renewal systems with non-trivial values of the invariant
are constructed.

Keywords Reneweal systems ¢ Symbolic dynamics e Shift spaces ¢ Subshifts e
Sofic shifts « Bowen—Franks group ¢ Flow equivalence * Fischer cover

Mathematics Subject Classification (2010): 37B10.

9.1 Introduction

Here, a short introduction to the basic definitions and properties of shift spaces is
given to make the present paper self-contained. For a thorough treatment of shift
spaces see [12]. Let .7 be a finite set with the discrete topology. The full shift over
4/ consists of the space 7% endowed with the product topology and the shift map
o: 7% — /" defined by 0(x); = x;41 forall i € Z. Let o/* be the collection
of finite words (also known as blocks) over o7. For w € «7*, |w| will denote the
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length of w. A subset X C &7 is called a shift space if it is invariant under the shift
map and closed. For each .% C &7*, define X to be the set of bi-infinite sequences
in 7% which do not contain any of the forbidden words from .%. A subset X C o/”
is a shift space if and only if there exists .# C &* such that X = Xz (cf. [12,
Proposition 1.3.4]). X is said to be a shift of finite type (SFT) if this is possible for a
finite set .%.

The language of a shift space X is denoted #(X) and it is defined to be the
set of all words which occur in at least one x € X. The shift space X is said to be
irreducible if there for every u, w € B(X) exists v € ZA(X) such that uvw € B(X).
For each x € X, define the left-ray of x to be x~ = -.-x_px_; and define the
right-ray of x to be x* = xox;x,---. The sets of all left-rays and all right-rays
are, respectively, denoted X~ and X *. Given a word or ray x, rl(x) and 11(x) will
denote respectively the right-most and the left-most letter of x.

A directed graph is a quadruple E = (E°, E', r,s) consisting of countable sets
E° and E', and maps r,s: E' — E°. A path A = e ---e, is a sequence of edges
such that r(e;) = s(e; 1) foralli € {1,...n—1}. The vertices in E° are considered
to be paths of length 0. For each n € Ny, the set of paths of length n is denoted E”,
and the set of all finite paths is denoted E*. Extend the maps r and s to E* by
defining s(e;---e,) = s(e;) and r(e;---e,) = r(e,). A directed graph E is said
to be irreducible (or transitive) if there for each pair of vertices u, v € E° exists a
path A € E* with s(A) = u and r(1) = v. For a directed graph E, the edge shift
(Xg.og) is defined by Xg = {x € (E")? | r(x;) = s(x;41) foralli € Z}.

A bijective, continuous and shift commuting map between two shift spaces is
called a conjugacy, and when such a map exists, the two shift spaces are said
to be conjugate. Flow equivalence is a weaker equivalence relation generated by
conjugacy and symbol expansion [13]. Let A be the adjacency matrix of a directed
graph E, then BF(A) = Z"/Z"(1d —A) is called the Bowen—Franks group of A and
it is an invariant of conjugacy of edge shifts. Let £ and F be finite directed graphs
for which the edge shifts Xz and Xy are irreducible and not flow equivalent to the
trivial shift with one element, and let Ag and Af be the corresponding adjacency
matrices. Then Xz and Xf are flow equivalent if and only BF(Ag) ~ BF(AF) and
the signs sgndet A and sgndet Ar are equal [3]. Every SFT is conjugate to an
edge shift, so this gives a complete flow equivalence invariant of irreducible SFTs.
The pair consisting of the Bowen—Franks group and the sign of the determinant
is called the signed Bowen—Franks group, and it is denoted BF 4. This invariant is
easy to compute and easy to compare which makes it appealing to consider flow
equivalence rather than conjugacy.

A labelled graph (E, %) over an alphabet <7 consists of a directed graph £ and
a surjective labelling map .Z: E' — .&/. Given a labelled graph (E,.%), define
the shift space (X(g,#).0) by setting X(z.») = {(Z(x;)); € #% | x € Xg}, The
labelled graph (E,.Z) is said to be a presentation of the shift space X ¢), and a
representative of a word w € B(X(g,¢)) is apath A € E* such that £ (1) = w with
the natural extension of .. Representatives of rays are defined analogously. Let
(E, ) be alabelled graph presenting X . For each v € E°, define the predecessor
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set of v to be the set of left-rays in X which have a presentation terminating at v.
This is denoted PZ (v), or just Poo(v) when (E, £) is understood from the context.
The presentation (E, %) is said to be predecessor-separated if PE(u) # PE(v)
when u,v € E® and u # v.

A function : X; — X, between shift spaces X and X, is said to be a factor
map if it is continuous, surjective, and shift commuting. A shift space is called
sofic [16] if it is the image of an SFT under a factor map. Every SFT is sofic, and
a sofic shift which is not an SFT is called strictly sofic. Fischer proved that a shift
space is sofic if and only if it can be presented by a finite labelled graph [2]. A sofic
shift space is irreducible if and only if it can be presented by an irreducible labelled
graph (see [12, Sect. 3.1]).

Let (E,.Z) be a finite labelled graph which presents the sofic shift space
X(E,2), and let m¢: Xg — X(g, ) be the factor map induced by the labelling map
#:E' — o7, then the SFT X[ is called a cover of the sofic shift X(,2), and g is
called the covering map.

Let X be a shift space over an alphabet 7. A presentation (E, .£) of X is said to
be left-resolving if no vertex in E° receives two edges with the same label. Fischer
proved [2] that up to labelled graph isomorphism every irreducible sofic shift has a
unique left-resolving presentation with fewer vertices than any other left-resolving
presentation. This is called the left Fischer cover of X, and it is denoted (F, ZF).

For xT € X, define the predecessor set of x™ to be the set of left-rays which
may precede xT in X, that is Poo(x1) = {3y~ € X~ | y"x+ € X} (see [10,
Sects. I and III] and [12, Exercise 3.2.8] for details). The follower set of a left-ray
X~ € X~ is defined analogously. The left Krieger cover of the sofic shift space X is
the labelled graph (K, %kx) where K* = {Poo(x") | x* € X T}, and where there
is an edge labelled ¢ € </ from P € K°to P’ € KU if and only if there exists
xT € XT such that P = Pso(axT) and P’ = Poo(xT). A word v € Z(X) is said
to be intrinsically synchronising if uvw € 9(X) whenever u and w are words such
that uv, vw € Z(X). A ray is said to be intrinsically synchronising if it contains
an intrinsically synchronising word as a factor. If a right-ray x* is intrinsically
synchronising, then there is precisely one vertex in the left Fischer cover where a
presentation of x™ can start, and this vertex can be identified with the predecessor
set Poo(x™) as a vertex in the Krieger cover. In this way, the left Fischer cover can
be identified with the irreducible component of the left Krieger cover generated by
the vertices that are predecessor sets of intrinsically synchronising right-rays [11,
Lemma 2.7], [12, Exercise 3.3.4]. The interplay between the structure of the Fischer
and Krieger covers is examined in detail in [8].

Let o7 be an alphabet, let L C /™ be a finite list of words over .27, and define
A(L) to be the set of factors of elements of L*. Then Z(L) is the language of a
shift space X(L) which is said to be the renewal system generated by L. L is said to
be the generating list of X(L). A renewal system is an irreducible sofic shift since
it can be presented by the labelled graph obtained by writing the generating words
on loops starting and ending at a common vertex. This graph is called the standard
loop graph presentation of X(L), and because of this presentation, renewal systems
are called loop systems or flower automata in automata theory (e.g. [1]).
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Simple examples show that not every sofic shift—or every SFI—is a renewal
system [12, pp. 433], and these results naturally raise the following question, which
was first asked by Adler: Is every irreducible shift of finite type conjugate to a
renewal system? This question has been the motivation of most of the work done
on renewal systems [4-6,9, 14, 15, 17]. The analogous question for sofic shifts has
a negative answer [17]. The aim of the present work has been to answer another
natural variation of Adler’s question: Is every irreducible SFT flow equivalent to
a renewal system? To answer this question, it is sufficient to find the range of the
Bowen-Franks invariant over the set of SFT renewal systems and check whether it
is equal to the range over the set of irreducible SFTs. It is easy to check that a group
G is the Bowen—Franks group of an irreducible SFT if and only if it is a finitely
generated abelian group and that any combination of sign and Bowen—Franks group
can be achieved by the Bowen—Franks invariant. Hence, the overall strategy of the
investigation of the flow equivalence question has been to attempt to construct all
these combinations of groups and signs. However, it is difficult to construct renewal
systems attaining many of the values of the invariant. In fact, it is non-trivial to
construct an SFT renewal system that is not flow equivalent to a full shift [7].

Section 9.2 concerns the left Fischer covers of renewal systems and gives
conditions under which the Fischer covers of complicated renewal systems can be
constructed from simpler building blocks with known presentations. Section 9.3
gives a flow classification of a class of renewal systems introduced in [6], while
Sect. 9.4 uses the results of the previous two sections to construct classes of renewal
systems with interesting values of the Bowen—Franks invariant.

9.2 Fischer Covers of Renewal Systems

In the attempt to find the range of the Bowen—Franks invariant over the set of SFT
renewal systems, it is useful to be able to construct complicated renewal systems
from simpler building blocks, but in general, it is non-trivial to study the structure
of the renewal system X(L; U L;) even if the renewal systems X(L;) and X(L,)
are well understood. The goal of this section is to describe the structure of the
left Fischer covers of renewal systems in order to give conditions under which the
Fischer cover of X(L; U L;) can be constructed when the Fischer covers of X(L)
and X(L,) are known.

Let L be a generating list and define Py(L) = {...w_ow_jwy |w; € L} <
X(L)~. Py(L) is the predecessor set of the central vertex in the standard loop
graph of X(L), but it is not necessarily the predecessor set of a right-ray in
X(L)™, so it does not necessarily correspond to a vertex in the left Fischer cover
of X(L). If p € HAB(X(L)) is a prefix of some word in L, define Py(L)p =
{...woow_iwop | w; € L} C X(L)~.

Let L be a generating list. A triple (n,, g,1) where np,/ € N and g is an ordered
list of words g1, ..., gx € L with Zf;l |gi| = np +1 —11is said to be a partitioning
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of the factor vy, u,+1—1] € HB(X(L)) of v = gi---gk. The beginning of the
partitioning is the word vy1 ,,,—1), and the end is the word vy,, 4, |v|)- A partitioning of
aright-ray x™ € X(L)% is a pair p = (np, (g;)ien) Where n, € Nand g; € L such
that wxt = g1 g, --- when w is the beginning consisting of the n, — 1 first letters of
the concatenation g; g» - - - . Partitionings of left-rays are defined analogously.

Let L € /* be a finite list, and let w € Z(X(L)) U X(L)" be an allowed
word or right-ray. Then w is said to be left-bordering if there exists a partitioning of
w with empty beginning, and strongly left-bordering if every partitioning of w has
empty beginning. Right-bordering words and left-rays are defined analogously.

Definition 1. Let L C o/* be finite, and let (F,.%F) be the left Fischer cover
of X(L). A vertex P € F° is said to be a (universal) border point for L if
there exists a (strongly) left-bordering x* € X™* such that P = Py(x™).
An intrinsically synchronising word w € L* is said to be a generator of the border
point Poo (W) = Poo(W™), and it is said to be a minimal generator of P if no prefix
of w is a generator of P.

The border points add information to the Fischer cover about the structure of the
generating lists, and this information will be useful for studying X(L; U L,) when
the Fischer covers of X(L;) and X(L;) are known. If P is a (universal) border point
of L and there is no ambiguity about which list is generating X = X(L), then the
terminology will be abused slightly by saying that P is a (universal) border point of
X or simply of the left Fischer cover.

Lemma 1. Let L be a finite list generating a renewal system with left Fischer cover

(F, ZF).

1. If P € F is a border point, then Py(L) C P, and if P is universal then P =
Py(L).

2. If P1, P, € F° are border points and if w; € L* is a generator of Py, then there
exists a path with label wy from P to P;.

3. If Py € F'is a border point and w € L*, then there exists a unique border point

P, € FOwitha path labelled w from P, to P;.

If X(L) is an SFT, then every border point of L has a generator.

5. If L has a strongly right-bordering word w, then x* € X(L)" is left-bordering
if and only if Poo(x ™) is a border point.

Proof. (1) Choose a left-bordering x™ € X(L)™ such that P = Poo(x™) and note
that y~x* € X(L) for each y~ € Py(L). (2) Choose a left-bordering x ™ € X(L)*
such that Py = Peo(x™). Then Poo(wixT) = P; since wix+ € X(L)T and wy is
intrinsically synchronising, so there is a path labelled w| from P; to P,. (3) Choose
a left-bordering x* € X(L)™ such that P = P, (x™). Since w € L*, the right-
ray wx™ is also left-bordering. (4) Let P = Py (x™) for some left-bordering
xT € X(L)T, and choose an intrinsically synchronising prefix w € L* of x™T.
Then Py (xT) = Poo(W), so wis a generator of P. (5) If Poo(x™) is a border point,
then wx* € X(L)™T, so x* must be left-bordering. The other implication holds by
definition.

A
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b
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a

Fig. 9.1 Left Fischer cover of the SFT renewal system X(L) generated by L = {aa,aaa,b}
discussed in Example 1. The border points are coloured grey

In particular, the universal border point is unique when it exists. A predecessor set
Poo(x™) can be a border point even though x is not left-bordering.

Example 1. Consider the list L = {aa, aaa, b} and the renewal system X(L). It is
straightforward to check that X(L) = Xz for the set of forbidden words .# =
{bab}, so this is an SFT. For this shift, there are three distinct predecessor sets:

Py= Poo(b---)=1{+-x_1x0 € X(L) | xo = b or x_1x9 = aa},
Py = Pyo(a"b--+) = Poo(a®™) = X(L)™, n>2,
Pz = Poo(ab) = {---x_1x0 (S] X(L)_ I Xo = a}.

The information contained in these equations is sufficient to draw the left Krieger
cover, and each set is the predecessor set of an intrinsically synchronising right-ray,
so the left Fischer cover can be identified with the left Krieger cover. This graph is
shown in Fig. 9.1. Here, Py is a universal border point because any right-ray starting
with a b is strongly left bordering. The generating word b is a minimal generator
of Py. The vertex P; is a border point because a”b - - - is left bordering for all n > 2.
The word aa is a minimal generator of P;, and aab is a non-minimal generator. The
vertex P, is not a border point since there is no infinite concatenation x* of words
from L such that x™ = ab---. Another way to see this is to note that every path
terminating at P, has a as a suffix, so that Py is not a subset of P, which together
with Lemma 1 implies that P, is not a border point. Note also that Lemma 1 means
that there must be paths labelled b from P to the two border points, and similarly,
paths labelled aa and aab from P; to the two border points.

Consider two renewal systems X(L;) and X(Lj). The sum X(L,) + X(L») is
the renewal system X(L; U L,). Generally, it is non-trivial to construct the Fischer
cover of such a sum even if the Fischer covers of the summands are known.

Definition 2. Let L be a generating list with universal border point Py and let
(F, ZF) be the left Fischer cover of X(L). L is said to be left-modular if for all
A€ F* withr(X) = Py, Lr(A) € L* if and only if s(A) is a border point. Right-
modular generating lists are defined analogously.

It is straightforward to check that the list considered in Example 1 is left-modular.
When L is left-modular and there is no doubt about which generating list is used,
the renewal system X(L) will also be said to be left-modular.
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Fig. 9.2 The labelled graph (F4, Zy). In (Fi,. %), v emits an edge labelled a to P;, so in
(F4.,.2Zy), the corresponding vertex emits edges labelled a to every vertex corresponding to a
border point P € FY

Lemma 2. If L is a generating list with a strongly left-bordering word w; and a
strongly right-bordering word w,, then it is both left- and right-modular.

Proof. Let (F, %r) be the left Fischer cover of X(L), let P € F° be a border
point, and choose x* € X(L)™ such that w;x™ € X(L)*. Assume that there is a
path from P to Py(L) = Peo(w;x™") with label w. The word w, has a partitioning
with empty end, so there is a path labelled w, terminating at P. It follows that
wwwixT € X(L)t, sow € L*. By symmetry, L is also right-modular.

For i € {1,2}, let L; be a left-modular generating list and let X; = X(L;)
have alphabet <7, and left Fischer cover (F;, %;). Let P; € Fi0 be the universal
border point of L;. Assume that @] N o/ = @. The left Fischer cover of X| + X,
will turn out to be the labelled graph (F;,.Z;) obtained by taking the union of
(F1,2A) and (F>, %), identifying the two universal border points P; and P, and
adding certain connecting edges. To do this formally, introduce a new vertex P
and define F{ = (F) U F U {P})\ {Py, P,}. Define maps f;: F’ — F such
that for v € F? \ {P;}, f;(v) is the vertex in FJOr corresponding to v and such that
fi(P;) = Py.Foreache € F, define an edge ¢’ € F| such that s(e’) = f;(s(e)),
r(e') = fi(r(e)), and Zy(¢) = Z(e). Foreach e € F! with r(e) = Py and
each non-universal border point P € F?, draw an additional edge ¢/ € F }r with
s(e) = fi(s(e)), r(e’) = fo(P), and L4 (e') = £ (e). Draw analogous edges for
each e € F, with r(e) = P, and every non-universal border point P € F}. This
construction is illustrated in Fig. 9.2.

Proposition 1. If L| and L, are left-modular generating lists with disjoint alpha-
bets, then Ly U L, is left-modular, the left Fischer cover of X(L1 U L,) is the graph
(F4, %) constructed above, and the vertex P4 € F—? is the universal border point
Ole @] Lz.
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Proof. By construction, the labelled graph (F5, .2 ) is irreducible, left-resolving,
and predecessor-separated, so it is the left Fischer cover of some sofic shift X
[12, Corollary 3.3.19]. Given w € LT, there is a path with label w in the left
Fischer cover of X; from some border point P € F 10 to the universal border point
Py by Lemma 1. Hence, there is also a path labelled w in (F4,.Z4) from the
vertex corresponding to P to the vertex Py . This means that for every border point
Qe FZO, (F+,.Z+) contains a path labelled w from the vertex corresponding to P
to the vertex corresponding to Q. By symmetry, it follows that every element of
(Lx U Ly)* has a presentation in (F, %} ). Hence, X(L, U L,) C X4.

Assume that awb € %(X ;) witha,b € o/ and w € «7,*. Then there must be a
path labelled w in (F, %4 ) from a vertex corresponding to a border point P of L,
to P4. By construction, this is only possible if there is also a path labelled w from P
to P, in (F>,.%), but L, is left-modular, so this means that w € L; . By symmetry,
X(L; U Ly) = X4, and P4 is the universal border point by construction.

Let X be a shift space over the alphabet 27. Given @ € </, k € N, and new
symbols ay,...,ar ¢ < consider the map f,x: (o7 \ {a}) U{ai,...,ar} - o
defined by f,x(a;) =aforeachl <i <k and f,x(b) = b whenb € o7\ {a}. Let
For: ((A\{a})Ulay,... ar})* — o7* be the natural extension of f, . If w € &7*
contains / copies of the symbol a, then the preimage F a_kl ({w}) is the set consisting

of the k! words that can be obtained by replacing the as by the symbols aj, . . ., .

Definition 3. Let X = Xz be a shift space over the alphabet <7, let a € 7, let
ai,...,ar ¢ <, and let F,; be defined as above. Then the shift space X, =
X FSN (%) is said to be the shift obtained from X by fragmenting a into ay, .. ., ai.

Note that this construction does not depend on the choice of .# representing X,
in particular, Z(X, %) = Fu_kl (#(X)). Furthermore, X, is an SFT if and only
if X is an SFT. If X is an irreducible sofic shift, then the left and right Fischer
and Krieger covers of X, are obtained by replacing each edge labelled a in the
corresponding cover of X by k edges labelled ay, . .., ax. Note that X and X, ; are
not generally conjugate or even flow equivalent. If X = X(L) is a renewal system,
then X, « is the renewal system generated by the list L, = Fu_kl (L).

Remark 1. Let A be the symbolic adjacency matrix of the left Fischer cover of an
SFT renewal system X(L) with alphabet 7. Given a € & and k € N, define
f:o/ — Nby f(a) =k and f(b) = 1 for b # a. Extend f to the set of finite
formal sums over .2 in the natural way and consider the integer matrix f(A). Then
f(A) is the adjacency matrix of the underlying graph of the left Fischer cover of
X(Lg k). For lists over disjoint alphabets, it follows immediately from the definitions
that fragmentation and addition commute.



9 Is Every Irreducible Shift of Finite Type Flow Equivalent to a Renewal System? 195
9.3 Entropy and Flow Equivalence

Hong and Shin [6] have constructed a class H of lists generating SFT renewal
systems such that logA is the entropy of an SFT if and only if there exists
L € H with h(X(L)) = logA, and this is arguably the most powerful general
result known about the invariants of SFT renewal systems. In the following, the
renewal systems generated by lists from H will be classified up to flow equivalence.
As demonstrated in [7], it is difficult to construct renewal systems with non-cyclic
Bowen-Franks groups and/or positive determinants directly, and this classification
will yield hitherto unseen values of the invariant.

The construction of the class H of generating lists considered in [6] will be
modified slightly since some of the details of the original construction are invisible
up to flow equivalence. In particular, several words from the generating lists can be
replaced by single symbols by using symbol reduction. Additionally, there are extra
conditions on some of the variables in [6] which will be omitted here since the larger
class can be classified without extra work.

Letr > 2andletn;,...,n,,cy,...,c,,d, N € N,andlet W be the set consisting
of the following words:

¢ o =g fOI'lfifCl
. 5[,‘256,',1"'(‘)2,‘,"1 fOI'lfifCl
* Vkir = Vkigd Vi for2 <k <rand1 <i <c
. ocil)/zﬁ,-z---)/,,,-rﬂleorlfij <cjandl1 <[/ <d
N~ .
* B @i yai ey, forl <i; <c;and1 <1 <d.

The set of generating lists of this form will be denoted B.

Remark 2. Symbol reduction can be used to reduce the words «;, &;, Yk, and
,BZN to single letters [7, Lemmas 2.15 and 2.23], so up to flow equivalence, the list
W € B considered above can be replaced by the list W’ consisting of the one-letter
words «;, &;, and yi; as well as the words

o Vo, Ve Brforl <i; <cjand1 </ <d
o Bidiya, o yri forl <ij <cjand1 <] <d.

Furthermore, if
L=Aa,a.ay:--yp.pay--y} Ui |2 <k <r}, ©.1)

then X(W’) can be obtained from X(L) by fragmenting o to «y,..., ¢, B to
Bi1,--., B and so on. Let R be the set of generating lists of the form given in (9.1).

Next consider generating lists Wi, ..., W,, € B with disjoint alphabets, and let
W = |Jj_, W;. Let W be a finite set of words that do not share any letters with
each other or with the words from W, and consider the generating list W U w.

Let H be the set of generating lists that can be constructed in this manner. Let
W be a Perron number. Then there exists L € H such that X(L) is an SFT and

h(X(L)) = log 4 [6].
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Al
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Fig. 9.3 Left Fischer cover of X(L) for L defined in (9.2). An edge labelled x from a vertex P to
a vertex Q represents a collection of edges from P to Q such that Q receives an edge with each
label from the set U,<;<,{y;} U {a. @}, i.e. the collection fills the gaps left by the edges which
are labelled explicitly. The border points are coloured grey

Remark 3. If W U W € H as above, then symbol reduction can be used to show
that X(W U W) is flow equivalent to the renewal system generated by the union
of W and |W| new letters [7, Lemma 2.23], i.e. X(W U W) is flow equivalent to a
fragmentation of X(W U {a}) when a ¢ o/ (X(W)).

Consider a generating list L € H and p € N. For each letter a € <«7(X(L)),
introduce new letters ay,...,a, ¢ 4/ (X(L)), and let L denote the generating list
obtained by replacing each occurrence of a in L by the word a; - --a,. Let H denote
the set of generating lists that can be obtained from H in this manner. Let A be
a weak Perron number. Then there exists L. € H such that X(L) is an SFT and
h(X(L)) = log A [6].

Remark 4. If L is obtained from L € H as above, then X(L) ~pg X(Z)~since the
modification can be achieved using symbol expansion of each a € o7 (X(L)).

The next step is to prove that the building blocks in the class R introduced in
Remark 2 are left-modular, and to construct the Fischer covers of the corresponding
renewal systems. As the following lemmas show, this will allow a classification of
the renewal systems generated by lists from H via addition and fragmentation. The
first result follows immediately from Remarks 1 to 4.

Lemma 3. For each L € H, there exist Ly, ..., L,, € R such that X(L) is flow
equivalent to a fragmentation ofX(U’;':O L), where Ly = {a} for some a that does
notoccurin Ly,..., L,,.

Lemma 4. If L € R, then L is left-modular, X(L) is an SFT, and the left Fischer
cover of X(L) is the labelled graph shown in Fig. 9.3.
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Proof. Let

L={a,a,ay,---y:B,Bays--y,} Uiy |2<k <r}eR. 9.2)

The word ay, - -y, BB&Y2 - - -y, is strongly left- and right-bordering, so L is left-
and right-modular by Lemma 2. Let Py = Po(L). If x* € X(L)™* does not have a
suffix of a product of the generating words ay, - - -y, and B&y, - -y, as a prefix,
then x 7 is strongly left-bordering, so P (x*) = P,. Hence, to determine the rest of
the predecessor sets and thereby the vertices of the left Fischer cover, it is sufficient
to consider right-rays that do have such a prefix.

Consider first x* € X(L)* such that BxT € X(L)T. The letter B must come
from either ay,---y,B or Bays---y:, so the beginning of a partitioning of fxT
must be either empty or equal to «ys - - - y,. Assume first that every partitioning of
BxT has beginning ay, - - - y, (i.e. that @y - - - y, is not a prefix of x™). In this case,
Bxt must be preceded by ay; - - - ¥, and the corresponding predecessor sets are:

Poo(ays -y, fxT) = Py
Poo(y2---y,BxT) = Poa = Py
9.3)
Poo(y:BxT) = Poayr -+ yr1 = Prey
Poo(,Bx+) = POO‘VZ o Vr=1Vr = P .

Assume now that there exists a partitioning of Bx* with empty beginning

(e.g. xT = Bay,---y>). The first word used in such a partitioning must be
Béay,---yr. Replacing this word by the concatenation of the generating words
ays -y, B, & ya,...,yr creates a partitioning of Bxt with beginning ay, - - y,,

so in this case:

Poo(aVZ"'Vr:Bx+) =P
Pos(y2++-y,BxT) = PyU P = Py

POO(VI‘,BX+) = PO U P()O{)/z---)/r_l = P0
Poo(,Bx+) =Py U P()O{)/z---)/r_l)/r =P.

The argument above proves that there are no right-rays such that every partitioning
of Bx™T has empty beginning.

It only remains to investigate right-rays that have a suffix of fay,---y, as a
prefix. A partitioning of a right-ray y,x* may have empty beginning (e.g. x* =
¥70), beginning ayy -+ y,—1 (e.g. x* = BBayy---y, -+ or xt = Bays---y°),
or beginning Bays -+ y,—1 (e.g. xT = y>). Note that there is a partitioning with
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empty beginning if and only if there is a partitioning with beginning &y, - - - yr—1.
If there exists a partitioning of y,xt with beginning ay; - -+ y,—1, then 8 must be
a prefix of xT, so the right-ray y,x™ has already been considered above. Hence,
it suffices to consider the case where there exists a partitioning of y,x ™ with empty
beginning and a partitioning with beginning &y, - - - y,—; but no partitioning with
beginning ay; - - - y»—1. In this case, the predecessor sets are

Poo(yrxt) = Py U PoBayr--y,—1 = Par

Poo(VZ"')/rx+): POUPO,B&: Py
Poo(&VZ"')’rer): PyU Py = Py

Poo(Bays-+- 1) = PyU Poay -+, = Py .

Now all right-rays have been investigated, so there are exactly 2r + 1 vertices in
the left Krieger cover of X(L). The vertex Py is the universal border point, and the
vertices P,41,..., Py, are border points, while none of the vertices Py, ..., P, are
border points. This gives the information needed to draw the left Fischer cover.

In [6] it is proved that all renewal systems in the class B are SFTs. That proof will
also work for the related class R considered here, but the result also follows easily
from the structure of the left Fischer cover constructed above [7, Lemma 5.46].

Lemma 5. Let L € R and let Xy be a renewal system obtained from X(L) by
fragmentation. Then the Bowen—Franks group of X 7 is cyclic, and the determinant
is given by (9.4).

Proof. Let L € R be defined by (9.2). The symbolic adjacency matrix of the left
Fischer cover of X(L) (shown in Fig.9.3) is

w0 00y +B& y -y v
0[0y,---00
0(0 0 00
2k oo 0
000 0y,

4_|Aloo-00] 0 BB p B
0 0O ao0---0 0 ’
0 0 0y 0 0
0 0O 00 0 0

0

0 0 00 0 Yroi
Vr Yeo YrVrc Ve Vr
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where y = o + & + Z}(_:lz Yk, & =y —a,and y, = y — yi. Index the rows and
columns of 4 by 0, ..., 2r in correspondence with the names used for the vertices
above, and note that the column sums of the columns 0,7 + 1,..., 2r are all equal

toa +&+ B+ D, V-

If X, is a fragmentation of X(L), then the (non-symbolic) adjacency matrix
Ay of the underlying graph of the left Fischer cover of X is obtained from A
by replacing o, &, B, 2, . .., y» by positive integers (see Remark 1). To put Id —A4 /
into Smith normal form, begin by adding each row from number r 4+ 1 to 2r — 1 to

the first row, and subtract the first column from column r + 1, ..., 2r to obtain

1—y|l—a 0 00|-B0-.---0 —1
0 1 =y -0 0
0 |0 1 0 0
0O |0 O 1 —y,

Id—Afs v -({0 0 -0 1|8 0 ---0 O

0 1 —@---0 0
0 0 1 0 O
: 0 : :
0 0 0 1 —yr—1

—Vr 0 0 ---0 1

Using row and column addition, this matrix can be further reduced to

1—y—5bl0---0[0-- ¢
0 1---0
: 0
> 0 0 1
0 1---0
: 0 oL
—v, 0---1

b=afy -y

t=ay,--y—1(b—p)—1.

Hence, the Bowen—Franks group of X ¢ is cyclic, and the determinant is

det(Id—A) = 1—0{—6{—Zyk—(a +@)Bya Y Had@Bya vt (9.4

k=2
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Theorem 1. For each L € H, the renewal system X(L) has cyclic Bowen—Franks
group and determinant given by (9.5).

Proof. By Lemma 3, there exist Li,...,L, € R, Ly = {a} for some
letter a that does not appear in any of the lists, and a fragmentation Y, of
Y = X(U?:o L;) such that Yy ~pg X(L). For 1 < j < m,let L; =
{o & vjnsajvio-virBisBidjvia---vir, | 2 < k < rj},r; € N. Each
L; is left-modular by Lemma 4, so Y is an SFT, and the left Fischer cover of Y
can be constructed using the technique from Sect. 9.2: Identify the universal border
points in the left Fischer covers of X(Ly), ..., X(L,,), and draw additional edges
to the border points corresponding to the edges terminating at the universal border
points in the individual left Fischer covers. Hence, the symbolic adjacency matrix
A of the left Fischer cover of Y is

% aj 0 - 0 |ly4+pB; & - yj, ||V
0 0 yj2-- 0
0 0 0 0
: : oo 0
0 0 0 Yir
i B, 0O 0 ---0 0 B, - B Bi
=lo 0 56]' 0
0 0 0 0
: 0 . . .
0 0 0 Virj—1

Vijrj Viri Virg =0 Virj Virj

where 1 < j <m,y =a+ 3, (Oéj +a; + Z;’:_Zl J/j,k), @) =y—a;, and
V]/‘,k = y — ¥ k. This matrix has blocks of the same form as in the m = 1 case
considered in Lemma 4. The jth block is shown together with the first row and
column of the matrix—which contain the connections between the jth block and
the universal border point Py—and together with an extra column representing an
arbitrary border point in a different block. Such a border point in another block will
receive edges from the jth block with the same sources and labels as the edges that
start in the jth block and terminate at the universal border point Py.

Let Y be a fragmentation of Y. Then the (non-symbolic) adjacency matrix A s
of the underlying graph of the left Fischer cover of Y is obtained by replacing the
entries of A by positive integers as described in Remark 1. In order to put Id —A4 ¢
into Smith normal form, first add rows r; + 1 to 2r; — 1 in the jth block to the first
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row for each j, and then subtract the first column from every column corresponding
to a border point in any block. In this way, Id —A4 ¢ is transformed into:

1—y| |~¢; 0 -« 0 |- 0 -~ -1
0 1 —Vij2 0

0 0 1 0

0

0 0 0 ~Vir;

—B; 0 0 1 | 0 0
0 1 —q; - 0
0 0 1 0

0

0 0 0 =y
—Vjr; 0 0o --.- 1

By using row and column addition, and by disregarding rows and columns where
the only non-zero entry is a diagonal 1, Id —A can be further reduced to

S ity -ty bj:aj/g]yjlyj,rj
s 100

v 010 tj=a;yj2 - Vjr-1lbj =) —1.

_ym’rmoo... 1 SZI_J/—Z;”=1b]

Hence, the Bowen—Franks group is cyclic and the determinant is

det(d—Ay) =1—y+ Y (yjrt; —b;) . 9.5)

J=1

With the results of [6], this gives the following result.

Corollary 1. When log A is the entropy of an SFT, there exists an SFT renewal
system X (L) with cyclic Bowen—Franks group such that h(X(L)) = log A.
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9.4 Towards the Range of the Bowen-Franks Invariant

In the following, it will be proved that the range of the Bowen—Franks invariant over
the class of SFT renewal systems contains a large class of pairs of signs and finitely
generated abelian groups. First, the following special case will be used to show that
every integer is the determinant of an SFT renewal system.

Example 2. Consider the generating list

L={a,aa,vyayB, Bay}. (9.6)

By Lemma 4, L is left-modular, X(L) is an SFT, and the symbolic adjacency matrix
of the left Fischer cover of X(L) is

at+o+alaOlata+a+pat+a
0 |0y 0 0
A= g oo 0 B 9.7)
0 00 0 a
Y 00 Y Y

By fragmenting X(L), it is possible to construct an SFT renewal system for which
the (non-symbolic) adjacency matrix of the underlying graph of the left Fischer
cover has this form with a, o, &, 8,y € N as described in Remark 1. Let A ; be such
a matrix. This is a special case of the shift spaces considered in Theorem 1, so the
Bowen-Franks group is cyclic and the determinant is det(Id—A4 ) = Baday? —
afy —afy —a—a—y—a+1.

Theorem 2. Any k € 7Z is the determinant of an SFT renewal system with cyclic

Bowen—Franks group.

Proof. Consider the renewal system from Example 2 in the casex = & = § = 1,
where the determinant is det(Id —A s) = y*> — 3y — a — 1, and note that the range
of this polynomial is Z.

All renewal systems considered until now have had cyclic Bowen—Franks groups,
so the next goal is to construct a class of renewal systems exhibiting non-cyclic
groups. Letk > 2, & = {ay,...,a;},and let ny,...,n; > 2 with max;{n;} > 2.
The goal is to define a generating list, L, for which X(L) = Xz with # = {a]"}.
Foreach 1 <i <k, define

Li={ajal | j#iand0 <l <n; —1}
Ufamajal |m#j #iand0 <l <n; —1}. (9.8)
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N e e

Fig. 9.4 Part of the left Fischer cover of Xgiag(n,
and j. The border points are coloured grey

Lemma 6. Define the renewal system Xgiag(n,
Xz with F = {a}"}, 50 Xaiagn,
the left Fischer cover of Xgiag(n,

o) as above. Then Xgiag(n,,...ny) =
...np) 18 an SFT. The symbolic adjacency matrix of
) B8 the matrix in (9.10).

Proof. Note that for each i, a;’ ¢ B(Xdiagn, ...
n; — 1 and j # i the word a jall- has a partitioning in Xgiag(n,

beginning and end. Hence, a,-la{zal-3 .

Hap e all-:"l’ has a partitioning with empty beginning
and end wheneveri; #i;41,1 <l; <n;; foralll < j <m,and0 </, <n;, —1.
Given iy,...,im € {l,...,k} with i; # i;4; and m > 2, the word a;,a;, --- a;,
has a partitioning with empty beginning and end. Hence, every word that does
not contain one of the words !’ has a partitioning, so Xgiag(n,,..ny;) = Xz for
F ={a}"}.
To find the left Fischer cover of Xiag(n,,....n;)» it is first necessary to determine the
predecessor sets. Given 1 <i <k and j # i

ny)) by construction. For 1 < [ <
ne) With empty

Poo(aizaj ) ={x" € X(iag(nl nk)lx—n,~+2 ceXo # a?i_z} 9.9

Only the first of these predecessor sets is a border point. Equation 9.9 gives all the
information necessary to draw the left Fischer cover of Xgiag(s,....n;). A part of the
left Fischer cover is shown in Fig. 9.4, and the corresponding symbolic adjacency
matrix is:
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ni—l1 ny—1 ni—1

0---00 |a; - aa ap ---apap
a--00|0--00 0---00

a -+ dy Ay 0---00 ay -+ ax Ay

(9.10)

Ak -+ Ak A |Ag -+ Af Ak 0---00
0O---001]0---00 ap - 00

Let A be the (non-symbolic) adjacency matrix of the underlying graph of the
left Fischer cover of Xgiag(n;.....n;) constructed above. Then it is possible to do the
following transformation by row and column addition

1 1—-nyl—n3---1—n; x 1 1---1
1—n1 1 1—n3---1—nk —n1n20---0

Id—A~ |1—-m11=—n, 1 - 1—ng|as|—mn1 0n3---0 ,
l—-n1l—ny1—n3--- 1 —ny 0 0 ---ny

where x = 1 — (k — 1)n,. The determinant of this matrix is

k k

Z 1
det(Id—A)annk <x+ E) = —n|ny---Ng (k_l_ E _) <0

. n; i

i=2

n
i=1 "

The inequality is strict since k—1— Zf;l L % -

it is straightforward to compute the Bowen—Franks group of Xiag(n,
not been possible to derive a general closed form for this group.

1 > 0. Given concrete ny, ..., ng,
np)» but it has

Proposition 2. Letny,...,nx > 2withn;|n;— for2 <i <kandn, > 2. Letm =
niny(k—1=Y"5_, L), then BFt Raiag(n, ... ) = —Z/mLZBL/n:2&---®L/ni L.

=17
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Proof. By the arguments above, Xdgiag(n,....n;) 1S conjugate to an edge shift with
adjacency matrix A such that the following transformation can be carried out by
row and column addition

y 1 1.1 010---0
On, 0 --- 0 m0O .0
Id—=A4~~|00n3---0]s]00n3---0

00 0 - ng 000 - ng

where y = —n (k e ch: 1/ n,-). It follows that the Smith normal form of
Id —A is diag(m, ns, . .., ng), and det(Id —A4) < 0.

Let G be a finite direct sum of finite cyclic groups. Then Proposition 2 shows
that G is a subgroup of the Bowen—Franks group of some SFT renewal system,
but it is still unclear whether G itself is also the Bowen—Franks group of a renewal
system since the term Z/mZ in the statement of Proposition 2 is determined by
the other terms. Furthermore, the groups constructed in Proposition 2 are all finite.
Other techniques can be used to construct renewal systems with groups such as
Z/(n+1)® Z[7, Ex.5.54].

The determinants of all the renewal systems with non-cyclic Bowen—Franks
groups considered above were negative or zero, so the next goal is to construct a
class of SFT renewal systems with positive determinants and non-cyclic Bowen—
Franks groups.

Lemma 7. Let Ly be the generating list of Xaiag(n,,...ny) as defined in (9.8), and
let (Fq, %) be the left Fischer cover of Xgiag(n,,...ny)- Let Ly be a left-modular
generating list for which X(L,,) is an SFT with left Fischer cover (Fy,, %y). For
Ly+m = Lg U Ly, Uf‘zl {aiw | w € Ly}, X(Lg+m) is an SET for which the left
Fischer cover is obtained by adding the following connecting edges to the disjoint
union of (Fyq, %£y) and (F,,, %) (sketched in Fig. 9.5):

e Foreach1 <i <k andeache € F2 withr(e) = Py(Ly,) draw an edge e; with
s(e;) = s(e) andr(e;) = Polaja;j ...) labelled Z,,(e).

e Foreach 1 < i < k and each border point P € F,S draw an edge labelled a;
from Py (a;a; ...) to P.

Proof. Let (Fyqm, Zi+m) be the labelled graph defined in the lemma and sketched
in Fig.9.5. The graph is left-resolving, predecessor-separated, and irreducible by
construction, so it is the left Fischer cover of some sofic shift X [12, Corol-
lary 3.3.19]. The first goal is to prove that X = X(Lgj+n). By the argu-

li lp

ments used in the proof of Lemma 6, any word of the form aj,wna; a;, ... a;

where w, € Ly, p € N,i; # i;jy1andl; < n; for 1 < j < p,
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(Fa, Za)
aij Wii
Po(ajaj-+) P(ayaj )
LN
ai; “ ai aj
/
a Wm\A
Po(Lm) P

Fig. 9.5 Construction of the left Fischer cover considered in Lemma 7. Here, w),a = w,, € L},
and w;a,-/ = wy € B(Xdiag(n:...n)) With1l(wy) 7 a;. Border points are coloured grey

and 1 < [, < n;, — 1 has a partitioning with empty beginning and end in
X(Lg+m). Hence, B(X(Lj+m)) is the set of factors of concatenations of words from
left-modular, a path A € F,; with r(1) = Py(L,,) has .Z,(A) € L;, if and only
if s(1) is a border point in F,,,. Hence, the language recognised by the left Fischer
cover (Fg4m, ZLi+m) is precisely the language of X(Lgj4m)-

It remains to show that (Fy4,,,-Zy+m) presents an SFT. Let 1 < i < k and
let « € Z(X(Ly)), then any labelled path in (Fy4,, Zy+m) With a; o as a prefix
must start at Peo(a;a; ---). Similarly, if there is a path A € F;+m with aa; as a
prefix of £+, (1), then there must be unique vertex v emitting an edge labelled o«
to Py(L), and s(A) = v. Let x € X(F,,,.%,4.)- If there is no upper bound on set
of i € Z such that x; € {ay,...,ax} and x;41 € &/ (X(L,,)) or vice versa, then
the arguments above and the fact that the graph is left-resolving prove that there is
only one path in (Fy4,,-Zi+m) labelled x. If there is an upper bound on the set
considered above, then a presentation of x is eventually contained in either F,; or
F,,. It follows that the covering map of (Fy4, Zi+m) 1S injective, so it presents an
SFT.

Example 3. The next step is to use Lemma 7 to construct renewal systems that share
features with both Xgiag(s,.....n;) and the renewal systems considered in Example 2.
Given ny,...,n; > 2 with max; n; > 2, consider the list L, defined in (9.8)
which generates the renewal system Xgiag(n,,....n,)> and the list L from (9.6). L is left-
modular, and X(L) is an SFT, so Lemma 7 can be used to find the left Fischer cover
of the SFT renewal system X4 generatedby L4 = Ly U L Uf.‘zl {aiw | w € L},
and the corresponding symbolic adjacency matrix is
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bla0Ob+Ba+a/b 0---0 Of--|b 0---0 O
0|0y O 0O (00---00 00---00
100 0 B B O0O---00 B 0O---00
0|00 O a |0 0---00 00---00
y|00 vy y |y 0---0 0 y 0---0 0
61100 aq aq 00 00 ap ap - a) ay
0|00 O 0 |a; O 00 00 00
A+=000 0 0 (00 00 00 0o}
0|00 O 0 (00 a; 0 00 00
a0 0 ay arp l|ag ai--- ai ag 00 00
0|00 O 0 0 00 agx 0 00
0|00 O 0 (00 00 00 00
0|00 O 0 (00 00 00 ar 0

where b

a + o 4+ a. Let Y4 be a renewal system obtained from X4 by a

fragmentation of a, o, &, 8, and y. Then the (non-symbolic) adjacency matrix of
the left Fischer cover of Y, is obtained from the matrix A4 above by replacing
ai,...,ai by 1, and replacing a, o, &, B, and y by positive integers. Let B4 be
a matrix obtained in this manner. By doing row and column operations as in the
construction that leads to the proof Proposition 2, and by disregarding rows and
columns where the only non-zero entry is a diagonal 1, it follows that

—bl-¢ 0 -b—B—-a—a|l =b —b - —b
0|1 -y 0 0 0 0 - 0
-0 1 0 - | =B B B
0 [0 0 1 —a 0 0 -+ 0
Id—By~» |70 0 —y T—-y| -y —v -y
10 0 -1 —1 1 l—ny-l—ny
-1l0 0 -1 -1 |1—-n; 1 1—ny
—-1]0 0 -1 —1 [l=n1=ny-- 1

Add the third row to the first and subtract the first column from columns 4, ...,k +4
as in the proof of Lemma 5 and choose the variables a, «, &, B, and y as in the proof
of Theorem 2. Assuming that n;|n;_; for2 <i < k, this matrix can be reduced to
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Id—B.i_'\/'—)
x =1 =1 =1 - =1 X =Y =100
2x—1| 0 —ny —nz -+ —ng 2x—1—(k—-1n;, 0 0 --- 0
0 —ny njp 0 0 0 0 ny 0 0
0 |-n1 0 ns o |™] o 0 0ny 0"
0 |-n1 0 O ng 0 0 00 Ny
where x € Z is arbitrary. Hence, the determinant is
“on
det(Id —By) = na -+ ng ((2x -n> Ay — 1)n1) , 9.11)
i=1 i

and there exists an abelian group G with at most two generators such that
the Bowen—Franks group of the corresponding SFT is G & Z/n3Z & --- &
Z/niZ. For x = 0, the determinant is negative and the Bowen—Franks group is
2/ (X5 M2 L/ ® - ® L) ni L.

i=1 pn;

This gives the first example of SFT renewal systems that simultaneously have
positive determinants and non-cyclic Bowen—Franks groups.

Theorem 3. Given ny,...,n; > 2 withn;|n;—; for 2 < i < k there exist abelian
groups G+ with at most two generators and SFT renewal systems X(L+) such that
BF+(X(L+)) =2G+ @ Z/mZ & --- & Z/ni Z.

Proof. Consider the renewal system from Example 3. Given the other variables,
(9.11) shows that x can be chosen such that the determinant has either sign.

The question raised by Adler, and the related question concerning the flow
equivalence of renewal systems are still unanswered, and a significant amount of
work remains before they can be solved. However, there is hope that the techniques
developed in Sect.9.2 and the special classes of renewal systems considered in
Sect. 9.4 can act as a foundation for the construction of a class of renewal systems
attaining all the values of the Bowen—Franks invariant realised by irreducible SFTs.
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Chapter 10
On the Grothendieck Theorem for Jointly
Completely Bounded Bilinear Forms

Tim de Laat

Abstract We show how the proof of the Grothendieck Theorem for jointly
completely bounded bilinear forms on C *-algebras by Haagerup and Musat can be
modified in such a way that the method of proof is essentially C *-algebraic. To this
purpose, we use Cuntz algebras rather than type III factors. Furthermore, we show
that the best constant in Blecher’s inequality is strictly greater than one.

Keywords Noncommutative Grothendieck Theorem ¢ Completely bounded
bilinear forms ¢ Blecher’s inequality * Operator spaces ¢ Cuntz-algebras e
KMS-states
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10.1 Introduction

In [10], Grothendieck proved his famous Fundamental Theorem on the metric
theory of tensor products. He also conjectured a noncommutative analogue of
this theorem for bounded bilinear forms on C *-algebras. This noncommutative
Grothendieck Theorem was proved by Pisier assuming a certain approximability
condition on the bilinear form [16]. The general case was proved by Haagerup [11].
Effros and Ruan conjectured a “sharper” analogue of this theorem for bilinear forms
on C *-algebras that are jointly completely bounded (rather than bounded) [9]. More
precisely, they conjectured the following result, with universal constant K = 1.
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Theorem 1 (JCB Grothendieck Theorem). Ler A, B be C*-algebras, and let u :
A x B — C be a jointly completely bounded bilinear form. Then there exist states
fi, fron Aand g, g, on B such that foralla € Aand b € B,

ju@,b)| = Klulles (fi(@a*) g15*b)* + fa(a*a) g2(6b%)1 ).

where K is a constant.

We call this Grothendieck Theorem for jointly completely bounded bilinear forms
on C*-algebras the JCB Grothendieck Theorem. 1t is often referred to as the Effros-
Ruan conjecture.

In [18], Pisier and Shlyakhtenko proved a version of Theorem 1 for exact operator
spaces, in which the constant K depends on the exactness constants of the operator
spaces. They also proved the conjecture for C *-algebras, assuming that at least one
of them is exact, with universal constant K = 23,

Haagerup and Musat proved the general conjecture (for C *-algebras),
i.e., Theorem 1, with universal constant K = 1 [12]. They used certain type III
factors in the proof. Since the conjecture itself is purely C*-algebraic, it would
be more satisfactory to have a proof that relies on C*-algebras. In this note,
we show how the proof of Haagerup and Musat can be modified in such a way
that essentially only C *-algebraic arguments are used. Indeed, in their proof, one
tensors the C *-algebras on which the bilinear form is defined with certain type III
factors, whereas we show that it also works to tensor with certain simple nuclear
C*-algebras admitting KMS states instead. We then transform the problem back
to the (classical) noncommutative Grothendieck Theorem, as was also done by
Haagerup and Musat.

Recently, Regev and Vidick gave a more elementary proof of both the
JCB Grothendieck Theorem for C*-algebras and its version for exact operator
spaces [19]. Their proof makes use of methods from quantum information theory
and has the advantage that the transformation of the problem to the (classical)
noncommutative Grothendieck Theorem is more explicit and based on finite-
dimensional techniques. Moreover, they obtain certain new quantitative estimates.

For an extensive overview of the different versions of the Grothendieck Theorem,
as well as their proofs and several applications, we refer to [17].

This text is organized as follows. In Sect. 10.2, we recall two different notions of
complete boundedness for bilinear forms on operator spaces. In Sect. 10.3, we recall
some facts about Cuntz algebras and their KMS states. This is needed for the proof
of the JCB Grothendieck Theorem, which is given in Sect. 10.4 (with a constant
K > 1) by using (single) Cuntz algebras. We explain how to obtain K = 1 in
Sect. 10.5. In Sect. 10.6, we show that using a recent result by Haagerup and Musat
on the best constant in the noncommutative little Grothendieck Theorem, we are
able to improve the best constant in Blecher’s inequality.
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10.2 Bilinear Forms on Operator Spaces

Recall that an operator space E is a closed linear subspace of Z(H) for some
Hilbert space H. For n > 1, the embedding M,(E) C M,(#A(H)) =~ AB(H")
gives rise to a norm |||, on M, (E). In particular, C *-algebras are operator spaces.
A linear map T : E — F between operator spaces induces a linear map 7, :
M,(E) — M,(F) for each n € N, defined by T, ([x;]) = [T (x;)] for all x =
[x;] € M, (E). The map T is called completely bounded if the completely bounded
norm || T||cp := sup,; || 7| is finite.

There are two common ways to define a notion of complete boundedness for
bilinear forms on operator spaces. For the first one, we refer to [5]. Let E and F
be operator spaces contained in C*-algebras A and B, respectively, and let u :
E x F — C be a bounded bilinear form. Let u(,) : M,,(E) x M,(F) — M, (C) be
the map defined by ([a;]. [by]) + [Dj=; u(aw. biy)]-

Definition 1. The bilinear form u is called completely bounded it

lluller == sup [lugnl|
n>1

is finite. We put ||u||,, = oo if u is not completely bounded.

Equivalently (see Sect. 3 of [12] or the Introduction of [18]), u is completely
bounded if there exists a constant C > 0 and states f on A and g on B such
that foralla € E andb € F,

lu(a, b)| < Cf(aa*)?g(b*h)?, (10.1)

and ||u/|.» is the smallest constant C such that (10.1) holds.

For the second notion, we refer to [3,9]. Let E and F be operator spaces
contained in C*-algebras A and B, respectively, and let u : E x F — C
be a bounded bilinear form. Then there exists a unique bounded linear operator
u: E — F* such that

u(a,b) = (u(a),b)

foralla € E and b € F, where (., .) denotes the pairing between F and its dual.

Definition 2. The bilinear form u is called jointly completely bounded if the map
i: E — F* is completely bounded, and we set

”““jch = ||£l||Cb

We put ||u||jc, = oo if u is not jointly completely bounded.
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Equivalently, if we define maps u,, : M,,(E) ® M,,(F) - M,(C) ® M, (C) by

k / k 1
U Zai®ci,ij®dj =ZZu(a,~,bj)ci®dj
i=1

j=l1 i=1j=1

foray,...,ax € A, by,...,b; € B,and cy,...,ck,dy,...,d; € M,(C), then we
have ||uljcs = sup, > [lun]|.

10.3 KMS States on Cuntz Algebras

For 2 < n < oo, let 0, denote the Cuntz algebra generated by n isometries, as
introduced by Cuntz in [6], in which one of the main results is that the algebras &,

are simple. We now recall some results by Cuntz. If « = («j,...,a;) denotes
a multi-index of length k = [(a), where ; € {1,...,n} for all j, we write
Se = Sq; ... Se., and we put §o = 1. It follows that for every nonzero word M

in {S;}/_, U{S*}/_,, there are unique multi-indices p and v such that M = S, ).
For k > 1, let ZX be the C*-algebra generated by {S,S* | [(n) = I(v) = k},
and let 37,? = CIl. It follows that ﬁf is *-isomorphic to M,«(C), and, as a
consequence, ZX C .Z¥*1. The C*-algebra %, generated by | Jie, -7~ is a UHF-
algebra of type n®°.
If we write &, for the algebra generated algebraically by Si,...,S,,
Sy, ..., Sy, each element A in &, has a unique representation

N N
A= (SH A+ Ao+ ) ASY,
k=1 k=1

where N € Nand 4y € &, N .%,. The maps F,; : &, — F, (k € Z) defined
by F, x(A) = A extend to norm-decreasing maps F, ; : 0, — Z,. It follows that
F, o is a conditional expectation.

The existence of a unique KMS state on each Cuntz algebra was proved by
Olesen and Pedersen [15]. Firstly, we give some background on C*-dynamical
systems.

Definition 3. A C*-dynamical system (A4, R, p) consists of a C*-algebra A and a
representation p : R — Aut(A), such that each map ¢ + p;(a), a € A, is norm
continuous.

C*-dynamical systems can be defined in more general settings. In particular, one
can replace R with arbitrary locally compact groups.

Let A denote the dense *-subalgebra of A consisting of analytic elements,
i.e., a € A? if the function ¢t — p,(a) has a (necessarily unique) extension to an
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entire operator-valued function. This extension is implicitly used in the following
definition.

Definition 4. Let (4, R, p) be a C *-dynamical system. An invariant state ¢ on A4,
i.e., a state for which ¢ o p, = ¢ for all ¢ € R, is a KMS state if

¢ (pi+i(a)b) = ¢ (bp:(a))

foralla € A%, b€ Aandt € R.

This definition is similar to the one introduced by Takesaki (see [20],
Definition 13.1). It corresponds to ¢ being a §-KMS state for p—, with § = 1
according to the conventions of [4] and [15]. In the latter, the following two results
were proved (see Lemma 1 and Theorem 2 therein). We restate these results slightly
according to the conventions of Definition 4.

Proposition 1 (Olesen-Pedersen). For all t € R and the generators {Si}}_, of
Oy, define p!'(Sk) = n''S. Then p}' extends uniquely to a *-automorphism of 0,
for every t € R in such a way that (0,,R, p") becomes a C*-dynamical system.
Moreover, %, is the fixed-point algebra of p" in 0,, and &, C (Oy)".

Lett, = ®;2, %Tr denote the unique tracial state on .%,,.

Proposition 2 (Olesen-Pedersen). For n > 2, the C*-dynamical system given by
(0, R, p") has exactly one KMS state, namely ¢, = 1, o Fy .

For a C*-algebra A, let % (A) denote its unitary group. The following result was
proved by Archbold [1]. It implies the Dixmier property for 0,.

Proposition 3 (Archbold). Forall x € 0,

O (x)1p, € conviuxu* |u € %(yn)}ll-ll'

As a corollary, we obtain the following (well-known) fact (see also [7]).

Corollary 1. The relative commutant of %, in 0, is trivial, i.e.,
(%) no, =Cl.

Proof. Let x € (%,) N 0,. By Proposition 3, we know that for every ¢ > 0, there
exists a finite convex combination Y /L, A;u;xu’, where u; € % (%,), such that
[ 30 Ajuixuf —dn(x)1g,|| < e.Since x € (F,) NO,, wehave Y 'L Ajujxu =
Yoy Aixuzut = x. Hence, || x — ¢y (x)14,|| < . This implies that x € C1.

Proposition 3 can be extended to finite sets in &,, as described in the following
lemma, by similar methods as in [8], Part III, Chap. 5. For an invertible element v
in a C*-algebra A, we define ad(v)(x) = vxv~! forall x € A.
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Lemma 1. Let {xy,...,x;} be a subset of U, and let ¢ > 0. Then there exists a
convex combination « of elements in {ad(u) | u € % (F,)} such that

lo(xi) — ¢u(xi)lg, || <& foralli =1,... k.
Moreover, there exists a net {«;}je; C conv{ad(u) | u € % (%)} such that
11}11 lloej (x) = @u(xX) 15,1 = 0

forall x € O),.

Proof. Suppose that |la'(x;) — ¢u(xi)lg,| < € fori = 1,....,k — 1.
By Proposition 3, we can find a convex combination & such that

llé (e (xic)) = u (@' (i), || < e

Note that ¢, (o' (xr)) = ¢u(xx) and 1, = &(14,). By the fact that ||&(x)|| < ||x]|
for all x € 0,, we conclude that o = & o o' satisfies ||a(x;) — ¢u(xi)1g,|| < & for
i=1,....k.

Let J denote the directed set consisting of pairs (F, 17), where F is a finite subset
of 0, and n € (0, 1), with the ordering given by (Fi,n;) <X (Fo,m) if F{ C F,
and n; > n,. By the first assertion, this gives rise to a net {«; } j; with the desired
properties.

10.4 Proof of the JCB Grothendieck Theorem

In this section, we explain the proof of the Grothendieck Theorem for jointly
completely bounded bilinear forms on C *-algebras. As mentioned in Sect. 10.1,
the proof is along the same lines as the proof by Haagerup and Musat, but we tensor
with Cuntz algebras instead of type III factors.

Applying the GNS construction to the pair (&, ¢,,), we obtain a x-representation
7, of O, on the Hilbert space H,, = L*(0,, ¢,), with cyclic vector &,, such that
dn(x) = (mu(x)én,6n) 1, - We identify O, with its GNS representation. Note that
¢, extends in a normal way to the von Neumann algebra &/, which also acts on H, .
This normal extension is a KMS state for a W*-dynamical system with & as the
underlying von Neumann algebra (see Corollary 5.3.4 of [4]). The commutant &, of
0, is also a von Neumann algebra, and using Tomita-Takesaki theory (see [4,20]),
we obtain, via the polar decomposition of the closure of the operator Sx§&, = x*§,,
a conjugate-linear involution J : H,, — H, satisfying J&,J C O},

Lemma 2. Fork € Z, we have

OF ={x e 0, | pf(x) =n"™MxVi R} = {x € Oy | pn(xy) = n *(yx)Vy € O,}.
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The proof of this lemma is analogous to Lemma 1.6 of [21]. Note that ﬁ,? = S,
and that for all k € Z, we have 0% # {0}.

Lemma 3. Forevery k € Z, there exists a ¢y € O, such that

k _k
(]5,,(6’;:6']() =n2, ¢n(ckc]>:) =n 2,

and, moreover, {cxJci J €y, E,) = 1.
The proof is similar to the proof of Lemma 2.1 of [12].

Proposition 4. Let A, B be C*-algebras, and let u : A x B — C be a jointly
completely bounded bilinear form. There exists a bounded bilinear form i on
(A ®min On) X (B ®min J 0, J) given by

wa®c,b ®d) =u(a,b){cdt,, &,)

foralla € A,be B,ce 0,andd € JO,J. Moreover, |it]| < ||u|jcp-

The C*-algebra JO,J is just a copy of &,. This result is analogous to
Proposition 2.3 of [12], and the proof is the same. Note that we use
I cidilai2o,g = | Xizici ® dillo,@uin,s forallc,....cc € O,
and dy,...,dy € JO,J. This equality is elementary, since &), is simple and
nuclear. In the proof of Haagerup and Musat, one takes the tensor product of A and
a certain type III factor M and the tensor product of B with the commutant M’ of
M, respectively. Note that J 0, J C 0.

One can formulate analogues of Lemmas 2.4, 2.5 and Proposition 2.6 of [12].
They can be proved in the same way as there, and one explicitly needs the existence
and properties of KMS states on the Cuntz algebras (see Sect. 10.3). The analogue
of Proposition 2.6 gives the “transformation” of the JCB Grothendieck Theorem to
the noncommutative Grothendieck Theorem for bounded bilinear forms.

Using Lemma 2.7 of [12], we arrive at the following conclusion, which is the
analogue of [12], Proposition 2.8.

Proposition 5. Let K(n) = +/ (n% + n_%)/Z, andletu: A x B — C be a jointly

completely bounded bilinear form on C*-algebras A, B. Then there exist states
S ) on Aand g, g5 on B such that foralla € A and b € B,

jua, b)] = K)lul (£ (aa*)3 g} (5*b) + f3'(@*a)> g3 (bb™)? ).

The above proposition is the JCB Grothendieck Theorem. However, the (universal)
constant and states depend on n. This is because the noncommutative Grothendieck
Theorem gives states on A Qi O, and B Qi J O, J , which clearly depend on 7,
and these states are used to obtain the states on A and B. The best constant we
obtain in this way comes from the case n = 2, which yields the constant K(2) =

V(22 +272)/2 ~ 1.03.
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10.5 The Best Constant

In order to get the best constant K = 1, we consider the C*-dynamical system
(A,R,p), with A = 0> ® O3 and p, = p?> ® p;. It is straightforward to check that
it has a KMS state, namely ¢ = ¢ ® ¢s. It is easy to see that F = F, @ %3 is
contained in the fixed point algebra. (Actually, it is equal to the fixed point algebra,
but we do not need this.) These assertions follow by the fact that the algebraic tensor
product of &, and 03 is dense in &, ® . Note that p is not periodic.

Applying the GNS construction to the pair (4, ¢), we obtain a x-representation
7 of A on the Hilbert space H, = L?(A, ¢), with cyclic vector £, such that ¢ (x) =
(m(x)&, &) u,. We identify A with its GNS representation. Using Tomita-Takesaki
theory, we obtain a conjugate-linear involution J : H, — H, satisfying JAJ C A’
(see also Sect. 10.4).

It follows directly from Proposition 3 that ¢ (x)14 € conv{uxu* |u € % (%)}
for all x € A. Also, the analogue of Lemma 1 follows in a similar way, as well as
the fact that %' N A = C1.

It is elementary to check that

Ajpi={xeA|p(x) =A"xVi e R} ={x € A| p(xy) = A*¢p(yx)Vy € G,}.
Let A := {2739 | p,q € Z}N(0,1).Forall A € A and k € Z, we have A, ;. # {0}.
This leads, analogous to Lemma 3, to the following result.

Lemma 4. Let A € A. For every k € Z there exists a c) x € A such that

k
2

B aein) =275, pleaanci) = A
and

{erxJerx JE, &) = 1.

In this way, by the analogues of Lemmas 2.4, 2.5 and Proposition 2.6 of [12], we
obtain the following result, which is the analogue of [12], Proposition 2.8.

Proposition 6. Let A € A, andlet C(X) = \/(A2 + A"2)/2. Letu: Ax B — C

be a jointly completely bounded bilinear form. Then there exist states fll, le on A
and gll, g% on B such that foralla € Aand b € B,

u@. )| = COulls (£ (@) gt 00! + £ a*a) ghb™)?)

Note that C(1) > 1 for A € A. Let (4,),en be a sequence in A converging to
1. By the weak*-compactness of the unit balls (47 ), and (B}); of A} and B},
respectively, the Grothendieck Theorem for jointly completely bounded bilinear
forms with K = 1 follows in the same way as in the “Proof of Theorem 1.1”
in [12].
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Remark 1. By Kirchberg’s second “Geneva Theorem” (see [14] for a proof),
we know that 0, ® 05 =~ 0,. This implies that the best constant in Theorem 1
can also be obtained by tensoring with the single Cuntz algebra &, but considered
with a different action that defines the C *-dynamical system. Since the explicit form
of the isomorphism is not known, we cannot adjust the action accordingly.

10.6 A Remark on Blecher’s Inequality

In [2], Blecher stated a conjecture about the norm of elements in the algebraic
tensor product of two C *-algebras. Equivalently, the conjecture can be formulated
as follows (see Conjecture 0.2” of [18]). For a bilinear form u : A x B — C, put
u'(b,a) = u(a,b).

Theorem 2 (Blecher’s inequality). There is a constant K such that any jointly
completely bounded bilinear form u : A x B — C on C*-algebras A and B
decomposes as a sum u = uy + up of completely bounded bilinear forms on A X B,
and us o + ity oo < K 1l

A version of this conjecture for exact operator spaces and a version for pairs of
C*-algebras, one of which is assumed to be exact, were proved by Pisier and
Shlyakhtenko [18]. They also showed that the best constant in Theorem 2 is greater
than or equal to 1. Haagerup and Musat proved that Theorem 2 holds with K = 2
[12, Sect. 3]. We show that the best constant is actually strictly greater than 1.

In the following, let OH(/) denote Pisier’s operator Hilbert space based on £2(1)
for some index set /. Recall the noncommutative little Grothendieck Theorem.

Theorem 3 (Noncommutative little Grothendieck Theorem). Letr A be a
C*-algebra, and let T : A — OH(I) be a completely bounded map. Then there
exists a universal constant C > 0 and states fi and f, on A such that for all a € A,

|Tal| < C||T |les fi(aa®)? fo(a*a)?.

For a completely bounded map 7' : A — OH(/), denote by C(T") the smallest con-
stant C > O for which there exist states f, f> on A such that for all @ € A, we have
|Tal| < Ch (aa*)%fz(a*a)%. In [12], Haagerup and Musat proved that C(T) <
V2||T ||e»- Pisier and Shlyakhtenko proved in [18] that | T||, < C(T) for all T :
A — OH([I). Haagerup and Musat proved that for a certain 7' : M3(C) — OH(3),
the inequality is actually strict, i.e., ||T ||, < C(T) [13, Sect. 7]. We can now apply
this knowledge to improve the best constant in Theorem 2.

Theorem 4. The best constant K in Theorem 2 is strictly greater than 1.

Proof. Let A be a C*-algebra, andlet T : A — OH(/) be a completely bounded
map for which ||T ||, < C(T). Define the map V = T*JT from A to A* = 4",
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where J : OH(I) — OH(/)* is the canonical complete isomorphism and T* :
OH(I)* — A* is the adjoint of T. Hence, V is completely bounded. It follows
that V = i for some jointly completely bounded bilinear form u: A x A — C.
Moreover, |uljcs = |V |lev = |T||%,, where the last equality follows from the
proof of Corollary 3.4 in [18]. By Blecher’s inequality, i.e., Theorem 2, we have
a decomposition u = u; + u, such that [uy[|cp + [tbller < K ||ulljcp-

By the second characterization of completely bounded bilinear forms (in the
Christensen-Sinclair sense) in Sect. 10.2, we obtain

ui(a.b)| < luillo fi(aa*) 2 g1(b*b)*,  |uz(a.b)| < llublleo f(a*a)? g2 (bb*)?.
It follows that
Jua. b)] < llurllop f(aa®)2 g1 (0*b)? + [yl fo(a* @) g2 (bb*)2.
Let g;(a) = gi(a*) fori = 1,2, and define states

Fo bl ik gy o e bl f

et llen + Nlusles llutlles + Nluslleo

We obtain

IT@)IP = lu(@.@)| < |l fi(aa*)? g, (@*a)? + llublles fr(a*a) g (aa*)?
< (lurlles fi + b lesZ2)@a®) (s |68y + lldhlles f2) (@ @)
< (lurllop + Nl lleo) / (aa®)2 g (a*a)?.
Hence, ||u1||cp + |[tb]lcs = C(T)? > | T||%, = ||uljco. This proves the theorem.
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Chapter 11
C *-Algebras Associated with a-adic Numbers

Tron Omland

Abstract By a crossed product construction, we produce a family of (stabilized)
Cuntz-Li algebras associated with the a-adic numbers. Moreover, we present an
a-adic duality theorem.

Keywords C*-dynamical system * Cuntz-Li algebras ¢ a-adic numbers
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11.1 Introduction

In [1] Cuntz introduces the C *-algebra Zy associated with the ax + b-semigroup
over the natural numbers, that is Z x N*, where N* acts on Z by multiplication. It is
defined as the universal C *-algebra generated by isometries {s, },enx and a unitary
u satisfying the relations

n—1
SmSn = Spn, Spu = u"s,, and E uksns;u_k =1 form,n e N*.
k=0

Furthermore, 2y is shown to be simple and purely infinite and can also be obtained
as a semigroup crossed product

C(Z) x (Z x N¥)
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for the natural ax + b-semigroup action of Z x N* on the finite integral adeles

Z = T1, prime Zp (ie. Z is the profinite completion of Z). Its stabilization Dy is
isomorphic to the ordinary crossed product

Co(r) x (Qx Q%)

where Q7 denotes the multiplicative group of positive rationals and .7y denotes the
finite adeles, i.e. the restricted product ]_[/p prime @0 = [, prime (Qp Z)p). The action
of Q x Q% on &7y is the natural ax + b-action. This crossed product is the minimal
automorphic dilation of the semigroup crossed product above (see Laca [8]).

Replacing N* with Z* gives rise to the C*-algebra 27, of the ring Z. This
approach is generalized to certain integral domains by Cuntz and Li [3] and then
to more general rings by Li [10].

In [9] Larsen and Li define the 2-adic ring algebra of the integers 2,, attached to
the semigroup Z x |2), where |2) = {2/ : i > 0} C N* acts on Z by multiplication.
It is the universal C *-algebra generated by an isometry s, and a unitary u satisfying
the relations

souf = u**s,  and $285 + usysyu™ = 1.

The algebra 2, shares many structural properties with Zy. It is simple, purely
infinite and has a semigroup crossed product description. Its stabilization 2, is
isomorphic to its minimal automorphic dilation, which is the crossed product

Co(Q2)  (Z[3] = (2)).

Here Z[%] denotes the ring extension of Z by %, (2) the subgroup of the positive
rationals Q7 generated by 2 and the action of Z[%] x (2) on Q, is the natural
ax + b-action.

Both 7 and QQ, are examples of groups of so-called a-adic numbers, defined
by a doubly infinite sequencea = (...,a—y,a—y,ap,ai,as,...) with a; > 2 for all
i € Z. Our goal is to construct C *-algebras associated with the a-adic numbers and
show that these algebras provide a family of examples that under certain conditions
share many structural properties with 2,, Zy and also the ring C*-algebras of
Cuntz and Li.

Our approach is inspired by [5], that is, we begin with a crossed product
by a group and use the classical theory of C*-dynamical systems to prove our
results, instead of the generators and relations as in the papers of Cuntz, Li and
Larsen. Therefore, our construction only gives analogs of the stabilized algebras
@N and @2.

Even though the C *-algebras associated with a-adic numbers are closely related
to the ring C*-algebras of Cuntz and Li, they are not a special case of these
(except in the finite adeles case). Also, our approach does not fit in general into
the framework of [5].
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One of the main results in the paper is Theorem 3, which is a general a-adic
duality theorem that encompasses the 2-adic duality theorem [9, Theorem 7.5] and
the analogous result of Cuntz [1, Theorem 6.5]. In the proof, we only apply crossed
product techniques, and not the groupoid equivalence as in [9].

11.2 The a-adic Numbers

Leta = (...,a—,a—1,a9,a;,as,...) be a doubly infinite sequence of natural
numbers with a; > 2 for all i € Z. Let the sequence a be arbitrary, but fixed.

We use Hewitt and Ross [4, Sects. 10 and 25] as our reference and define the
a-adic numbers £2 as the group of sequences

o
x =(x;) € l_[ {0,1,...,a; — 1} : x; = 0fori < j for some j € Z

1=—00

under addition with carry, that is, the sequences have a first nonzero entry and
addition is defined inductively. Its topology is generated by the subgroups {A; :
j € Z}, where

Aj={xef:x; =0fori < j}.

This turns §2 into a totally disconnected, locally compact Hausdorff abelian group.
The group A of a-adic integers is defined as A = Ay. It is a compact, open
subgroup, and a maximal compact ring in £2 with product given by multiplication
with carry. On the other hand, §2 itself is not a ring in general (see (11.4) in
Sect. 11.5).

Define the a-adic rationals N as the additive subgroup of Q given by

J
a—y---a—g

cjeZ k=1 .

In fact, all noncyclic additive subgroups of Q containing Z are of this form
(see Lemma 2 below). There is an injective homomorphism

t:N =

determined by
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Moreover, ((N) is the dense subgroup of §2 comprising the sequences with only
finitely many nonzero entries. This map restricts to an injective ring homomorphism
denoted by the same symbol

17— A

with dense range. Henceforth, we will suppress the ¢ and identify N and Z with their
image in £2 and A, respectively.

Now let 7% be the family of all subgroups of N of the form °Z, where m and
n are natural numbers such that m divides ag ---a; for some j > 0 and n divides
a_y---a_y forsome k > 1. Then %

1. is downward directed, that is, for all U, V € % there exists W € % such that
wcunv,
2. is separating, that is,

(U=t}

Uew

3. has finite quotients, that is, |[U/ V| < oo whenever U,V € % and V C U,

and the same is also true for
Y ={UNZ:Uec}
In fact, both % and ¥ are closed under intersections, since
m m'_ lem(m,m’)

—7ZN —2Z=———"-7. 11.1
n n’ ged (n,n’) ( )

It is a consequence of (1)—(3) above that the collection of subgroups % induces a

locally compact Hausdorff topology on N. Denote the Hausdorff completion of N
with respect to this topology by N. Then

Next, let Uy = Z and for j > 1 define U; = ag---a;—1Z and set
W ={U;:j=0,C¥V Cu.

Note that % is also separating and closed under intersections. The closure of U; in
£2is Aj, s0

2/A; =N/U; and A/A; =Z/U; forallj>0.
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Next, let
T; 2 —>N/UJ

denote the quotient map for j > 0, and identify 7;(x) with the truncated sequence
xU=D, where x\/) is defined for all j € Z by

(-x(j))i _ )i fori < j,
0 fori > j.

We find it convenient to use the standard construction of the inverse limit of the
system {N/U;, (moda;)}:

o0
1(11_1(1)N/U,»= x=(x)e[[N/Ui:xi =xiq1 (moda)y
iz i=0

and then the product 7 : 2 — 1(i£1j 0 N/U; of the truncation maps 7, given by

T(x) = (10(x), 11 (x), 12 (x),...) = (xCV, x@ xD ),

is an isomorphism.
Furthermore, we note that 7 is cofinal in % . Indeed, for all U = %Z c Y,
if we choose j > 0 such that m divides ag---a; then we have ' > U; 4 C U.
Therefore,

Q=1imN/U; =~ lim N/JU =N,
<— <—
j=0 Uew

and similarly

Ax1limZ/U; = lim Z/V = Z.
<— <—
j=>0 vey

In particular, A is a profinite group. In fact, every profinite group coming from a
completion of Z occurs this way (see also Lemma 2).
The following is a consequence of (11.1) and should serve as motivation for

our % .
Lemma 1 ([6, Lemma 1.1]). Every open subgroup of §2 is of the form
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for some increasing chain € in % . In particular, every compact open subgroup of
$2 is of the form U for some U € % .

Whenever any confusion is possible, we write §2,, A,, N,, etc. for the structures
associated with the sequence a. If b is another sequence such that %, = %,
we write a ~ b. In this case also N, = Nj,. It is not hard to verify that a ~ b
if and only if there is an isomorphism §2, — £2, restricting to an isomorphism
A, — Ap. The groups £2, and £2;, can nevertheless be isomorphic even if a £ b
(see Example 3 below). In this regard, we have the following result, which is a
consequence of Proposition 2.

Theorem 1 ([6, Corollary 5.4]). We have that §2, =~ $§2p if and only if there exists
a (U, Up)-continuous isomorphism N, — Np.

Example 1. Let p be a prime and assume a = (..., p,p,p,...). Then 2 = Q,
and A = Z,, i.e. the usual p-adic numbers and p-adic integers.

Example 2. Leta :A(. ..,4,3,2,3,4,...),i.e.a; =a—; =i+ 2fori > 0. Then
§2 = ofr and A = Z, because every prime occurs infinitely often among both the
positive and the negative tail of the sequence a (see the paragraph after Lemma 2).

Example 3. Leta; = 2 fori # 0 and ay = 3, so that
N =271 and % ={2'Z,23Z:i€Z}.
Then §2 contains torsion elements. Indeed, let
x=(..,0,1,1,0,1,0,1,...), sothat 2x =¢(...,0,2,0,1,0,1,0,...),

where the first nonzero entry is xo. Then 3x = 0 and {0, x, 2x} forms a subgroup
of £2 isomorphic with Z/37Z. Hence §2 2 Q, since Q; is a field.

Furthermore, let b be given by b; = a;4+, thatis, b; = 2 fori # —1 and
b_1 = 3. Then

Ny =1Z[}] and % ={2'2.2'1Z:i e Z}.

We have 2, =~ 25, buta £ b since A, % Ap. Note also that the equation 3x = 1
has no solution in £2,,, but two solutions in §2p, and these are

% €Ny and y =(...,0,1,1,0,1,0,1,...), where the first nonzero entry is yy.

11.3 The a-adic Algebras

We now want to define a multiplicative action on £2, of some suitable subset of N,
that is compatible with the natural multiplicative action of Z on 2. Let S consist
of all s € QX such that the map % — % given by U + sU is well-defined
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and bijective. Clearly, the map U +— sU is injective if it is well-defined and it is
surjective if the map U + s~'U is well-defined. Define a subset P of the prime
numbers by

P = {p prime : p divides a; for infinitely many k < 0 and infinitely many k > 0}.

It is not hard to see that S coincides with the subgroup (P) of Q% generated by P.
Moreover, S is the largest subgroup of Q7 that acts continuously on N. Indeed,
the action is well-defined since all ¢ € N belongsto some U € . 1f g + U is a
basic open set in N, then its inverse image under multiplication by s, s ™' (¢ + U) =
s7'q + 57U, is also openin N as s~'U € % . By letting S be discrete, it follows
that the action is continuous.

We will not always be interested in the action of the whole group S on N,
but rather a subgroup of S. So henceforth, let H denote any subgroup of S.
Furthermore, let G be the semidirect product of N by H,i.e. G = N x H where H
acts on N by multiplication. This means that there is a well-defined ax 4 b-action
of G on N given by

(r,h)-q=r+hqg forq,r € Nandh c H.
This action is continuous with respect to %/, and can therefore be extended to an

action of G on £2, by uniform continuity.

Proposition 1 ([6, Proposition 2.4]). Assume P # @ and let H be a nontrivial
subgroup of S. Then the action of G = N x H on §2 is minimal, locally contractive
and topologically free.

Definition 1. Suppose P # &.If H is a nontrivial subgroup of S, we define the
C*-algebra 2 = 2(a, H) by
2 = Co(£2) g G,

where

o (f)(x) = f(R" - (x —n)).

Remark 1. The bar-notation on 2 is used so that it agrees with the notation for
stabilized Cuntz-Li algebras in [1] and [9].

Theorem 2 ([6, Corollary 2.8]). The C*-algebra 2 is simple and purely infinite.
Moreover, 2 is a nonunital Kirchberg algebra in the UCT class.

Example 4. Ifa =(...,2,2,2,...)and H = § = (2), then 2 is the algebra 2,
of Larsen and Li [9]. More generally, if p is a prime,a = (..., p, p, p, .. .)_and
H = S = (p), we are in the setting of Example 1 and get algebras similar to 2;.
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Ifa=¢(..,4,3,2,3,4,...)and H = S = @i, then we are in the setting of
Example 2. In this case D is the algebra @N of Cuntz [1].

Both these algebras are special cases of the most well-behaved situation, namely
where H = S and a; € H for all i € Z. The algebras arising this way are
completely determined by the set (finite or infinite) of primes P, and are precisely
the kind of algebras that fit into the framework of [5]. The cases described above are
the two extremes, where P consists of either one single prime or all primes.

Ifa ~ b, then S, = S and 2(a, H) = 2(b,H) forall H C S, = S,.
Suppose 2, = £25. Then S, = S}, as well, and for all H C S, = S5, we have
that 2(a, H) = 2(b, H). Indeed, by Theorem 1 there exists an isomorphism ¢ :
£2, — §2p restricting to an isomorphism N, — Nj,. Therefore, the map

@ 1 Co(Ng x H, Co(£2,)) = C.(Np x H, Cy(82))
given by

e([) ) (x) = flo™ (), (e~ (x))

determines an isomorphism 2(a, H) = 2(b, H).

Example 5. Let a and b be the sequences from Example 3. Then Q(a.H) =
2(b,H) forall H C S, =S, = (2).

Example6. If a = (...,2,2,2,...) and b = (..,4,4,4,...), thena ~ b.
Hence, for all nontrivial H C S = (2) we have 2(a, H) = 2(b, H). However,
if H = (4), then 2(a, S) % 2(a, H), as remarked after Question 1.

In light of this example, it could also be interesting to investigate the ax+b-action
on §2 of other subgroups G’ of N x S. It follows from the proof of Proposition 1
that the action of G’ on £2 is minimal, locally contractive and topologically free if
and only if G’ = M x H, where M C N is dense in £2 and H C S is nontrivial.

Moreover, it can be shown that a proper subgroup M of N is dense in £2 if and
only if M = gN for some g > 2 such that ¢ and a; are relatively prime for alli € Z.
This property is also invariant under isomorphisms, i.e. if £2, = 25 and g > 2, then
gN, is dense in §2, if and only if gN, is dense in §2, (see Sect. 11.5). However, if
M is such a subgroup of N that is dense in §2 and H C S, then

Co(82) Xgarr (N x H) = Cyp(82) Xpar (M x H). (11.2)
The reason for the isomorphism (11.2) is the following. If

Q = {p prime : p does not divide any a; },
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then multiplication by a prime p is an automorphismof §2 if and only if p € PUQ.
Indeed, if p € Q, then pU = pU = U forall U € % . Thus, % € 2 when p € QO
and it is possible to embed the subgroup

No={4:neN.ge(0)}cQ

in £2, where (Q) denotes the multiplicative subgroup of Q% generated by Q.

We complete this discussion by considering the ax -+ b-action on £2 of potentially
larger groups than N xS The largest subgroup of Q@ x Q7 that can act on §2 through
an ax + b-actionis Ng x (P U Q). However, the only groups N C M C Ny that
give rise to the duality theorems in the next section are of the form M = %N for
q € (Q) (see Remark 2). Moreover, S is the largest subgroup of (P U Q) that acts
on M, and of course, (11.2) also holds for all H C S in this case.

Finally, we remark that one may also involve the roots of unity of Q* in the
multiplicative action, that is, replace H with {+h : h € H} = {£1} x H asin [3].
The associated algebras will then be of the form 2 x Z/27Z. However, we restrict to
the action of the torsion-free part of Q* in this paper.

11.4 The a-Adic Duality Theorem

For any a, let a* be the sequence given by a = a—;. In particular, (¢*)* = a.
We now fix a and write §2 and £2* for the a-adic and a*-adic numbers, respectively.

Letx € 2 and y € 2* and for j € N put

z; = o2y ao.
where the sequences xU) and y"/) are treated as their corresponding rational
numbers in N. It can be checked that z; is eventually constant. We now define
the pairing 2 x 2* — T by
(¥, y)o = lim o270 fag.
] —>00

The pairing is a continuous homomorphism in each variable separately and gives an
isomorphism £2* — £2. Indeed, this map coincides with the one in [4, 25.1].

The injection ¢t : N — R x £2 given by g — (g, q) has discrete range, and N

may be considered as a closed subgroup of R x £2. Similarly, N * may be considered
as a closed subgroup of R x 2*.

Remark 2. Subgroups M of Q suchthat N C M C Ny also embed densely into £2.
For example, Q itself can be embedded densely into Q, for all primes p. On the
other hand, it is not hard to see that the image of the diagonal map Q — R x Q,, is
not closed in this case. More generally, a subgroup M of Q embeds densely into £2
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such that the image of the diagonal map M — R x §2 is closed if and only if M is
of the form éN forgq € (Q).
By applying the facts about the pairing of £2 and £2* stated above, the pairing of
R x £2 and R x £2* given by

(1, x), (v, y)) = e~ 2riw/ao0 Jim @27/ a0 — (4 vy (x, y)g
j—>oo

defines an isomorphism R x £2* — R x §2 that restricts to an isomorphism
t(N*) = ((N)*. Thus, we get the following theorem.
Theorem 3 ([6, Theorem 3.3]). We have that

Rx 2*)/N*=2Rx /Nt =N,
where the isomorphism @ : (R x 2%)/N* — N is given by

o((, ) + N*)(q) = ((¢.9). (v.y)) for(v,y) €eRx 2% andq € N.

Remark 3. In general, note that P* = P so §* = §. Hence, every subgroup
H C § acting on N and £ also acts on N* and £2*. In particular 2(a, H) is
well-defined if and only if 2(a*, H) is.

Theorem 4 ([6, Theorem 4.1]). Assume that P # @ and that H is a nontrivial
subgroup of S. Set G = N x H and G* = N* x H. Then there is a Morita
equivalence

Co(£2) xgatt G ~p1 Co(R) Xpart G*,

where the action on each side is the ax + b-action.

We give an outline of the proof that involves a few classical results in the theory
of crossed products. To simplify the notation in the proof, we switch the stars, and
seek a Morita equivalence between Cy($2) .t G* and Co(R) Xt G. Our strategy
is to first find a Morita equivalence

C()(T/.Q) A1t N ~M C()(N\T) At .Q,

where T = R x £2, that is equivariant for actions « and 8 of H on Co(T/£2) x N
and Co(N\T) xy £2, respectively, and then find isomorphisms

(Co(T/$2) 5t N) 3ty H = Co(R) xqur G,
Co(N\T) 3 2) x5 H = Co(2%) 31 G*.
s
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Recall that N and 2 sit inside T as closed subgroups. All the groups are abelian,
and therefore, by “Green’s symmetric imprimitivity theorem” (for example [12,
Corollary 4.11]) we get a Morita equivalence

Co(T/82) ¥y N ~p Co(N\T) x £2 (11.3)

via an imprimitivity bimodule X that is a completion of C.(T). Here N acts on the
leftof T/2byn-((t,y)-2) = (n+t,n+y)-$2 and £2 acts on the right of N\T
by (N - (¢,y))-x = N - (¢,y + x), and the induced actions on Cy-functions are
given by

1,(/)(p-2)= f(-n-(p-2))
1t (g)(N - p) = g((N - p) - x)

forn e N, f e Co(T/2),peT,x € 2,and g € Co(N\T).

Moreover, H acts by multiplication on N, hence on £2, and also on R. Thus H
acts diagonallyon T = R x 2 by h - (t,x) = (ht, h - x).

One can then show that the Morita equivalence (11.3) is equivariant for the
actions o, B, and y of H on C.(N,Co(T/82)), C.(£2,Co(T\N), and C.(T)
given by

an()m)((t, ) - 2) = f(hm)((ht, k- y) - 2),
Br(@)(X)(N - (2, y)) = 8(h)g(h - x)(N - (ht, - y)),
1
yu(€) (1, y) = 8(h)2§(ht.h - y),

where § is the modular function for the multiplicative action of H on 2.
The next step is now to show that

(C()(T/.Q) Nt N) Xog H =~ (C()(R) Nt N) Ny H

= (Co(R) > N) o H

>~ Co(R) Xt (N x H).
The first isomorphism is induced from 7/$2 =, R and then we get the correct
" by composing o’ with the automorphism 4 + hA~! of H. The last isomorphism
is a consequence of a result regarding decomposition of iterated crossed products

(see [12, Corollary 3.11]).
The other part requires more work, and the aim is to get through the steps

(Co(N\T) 3 2) 35 H = (Co(N*) »n Q) 35 H
= (C()(Q*) Ayt N*) Xlﬂ” H
= CO(Q*) X jaff (N"< x H).
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Here, the first isomorphism is induced from the w in Theorem 3. For the second
isomorphism, we need the “subgroup of dual group theorem” (see [6, Appendix A]).
Finally, the third isomorphism is, similarly as above, a consequence of the “iterated
crossed products decomposition”.

Remark 4. The C*-algebras Cy(§2) Xzt G and Co(R) Xzt G* will actually be
isomorphic by Zhang’s dichotomy: a separable, simple, purely infinite C *-algebra
is either unital or stable.

If a is defined by a; = 2 for all i and H = (2), then this result coincides with
[9, Theorem 7.5], and if a is the sequence described in Example 2, it coincides with
[1, Theorem 6.5].

11.5 Invariants and Isomorphism Results

Let P be the set of prime numbers. A supernatural number is a function
A:P— NU{0,o00}

such that ) pep A(p) = co. Denote the set of supernatural numbers by S. It may
sometimes be useful to consider a supernatural number as an infinite formal product
A = 21(2)3/\(3)51(5)7/\(7) el

If A is a supernatural number and p is a prime, let pA denote the supernatural
number given by (pA)(p) = A(p) + 1 (with the convention that co + 1 = 00)
and (pA)(¢q) = A(q) if p # ¢. The definition of pA extends to all natural numbers
p by prime factorization.

Let A and o be two supernatural numbers associated with the sequence « in the
following way:

A(p) = sup{i : p' divides ag...a; forsome j > 0} € N U {0, 00}

o(p) =sup{i : p' dividesa_, ...a_; forsome k > 1} € NU {0, oo}

Lemma 2. Let a and b be two sequences. The following hold:

1. A, = Ay ifand only if A, = Ap.
2. N, = Ny ifandonly if o, = 0p.
3. U, = U if and only if both A, = Ap and 9, = ©p.

Indeed, from [4, Theorem 25.16] we have
A= [ z,x ] z/p*Pz
pEAT(00) PEATI(N)

and hence (1) holds. It is not difficult to see that condition (2) and (3) also hold.
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This means that there is a one-to-one correspondence between supernatural
numbers and noncyclic subgroups of QQ containing Z, and also between supernatural
numbers and Hausdorff completions of Z.

Condition (3) is equivalent to a ~ b, and more generally, the following result
clarifies when £2, and £2; are isomorphic.

Proposition 2 ([6, Proposition 5.2]). Let a and b be two sequences. Then §2, =
82y if and only if there are natural numbers p and q such that

(...,a—p,qa_;,pag,ar,...) ~ (...,b_a,pb_;,qby, b1, ...).

That is, 2, = $2 if and only if there are p,q € N such that pA, = qAp and
qQa = DQb-
Hence, if 2, = §2p,then N, =~ Ny, P, = P, so S, = Spand Q, = Qp.

Corollary 1 ([6, Proposition 5.7]). The group of a-adic numbers S2 is self-dual if
and only if there are natural numbers p and q such that pA = qo.

For two pairs of supernatural numbers (11, 01) and (A, 02), we write (A1, 01) ~
(A2, 02) if there exist natural numbers p and ¢ such that pA; = g1, and go; = po>.
Then the set of isomorphism classes of a-adic numbers coincides with Sx S/ ~ and
the self-dual ones coincide with the diagonal, i.e. are of the form [(4, A)].

Set Up ={2ZeU neSy={Uec%:UC Z[{% : p € P}]}. Then the
open subgroup

R=z[{z:pePl]=J U
Uewp

in £2 is the maximal open (and closed) ring contained in §2. In particular, the a-adic
numbers £2 can be given the structure of a topological (commutative) ring with
multiplication inherited from N C Q if and only if [11, E. Herman, 12.3.35]

N=ghz (:Z[{%:peP}]) (11.4)

i.e.if and only if 2 = R.

Moreover, by Theorem 4 and Remark 4, it should be clear that @(a, H) ~
9(b,K) if Nf =~ N} and H = K, although the isomorphism is in general not
canonical. Hence, for every sequence a, there is a sequence b such that £2;, is a ring
and 2(a, H) = 2(b, H), since one can always pick b so that £2, = R,. (Warning:
9(b, H) is still not a ring algebra in the sense of [10].) If both £2, and £2; are rings,
then £2, = §2; as topological rings if and only if a ~ b.

Example 7. Let a and b be the sequences of Examples 3 and 5, and let H = (2).
Then 2(a, H) = 2(b, H) and these algebras are also isomorphic to 2,, but the
isomorphisms are not canonical.
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Question 1. Given two sequences a and b and subgroups H C S, and K C S.
Whenis 2(a, H) 2 2(b, K)?

To enlighten the question, consider the following situation. Leta = (n,n,n,...)
and H = (n), and note that H = § if and only if n is prime. Then Z(a, H) =
C(A) » . Gy (see next section) is the (E, 1) of [7, Example A.6]. Thus

(Ko(Z2(a. H)).[1]. Ki(2(a, H))) = (Z & Z/(n — 1)Z,(0,1), Z).

Moreover, since all Z2(a, H) are Kirchberg algebras in the UCT class, they are
classifiable by K-theory.

In future work we hope to be able to compute the K-theory of 2(a, H) using
the following strategy. Since Cy(§2) x N is stably isomorphic to the Bunce-Deddens
algebra C(A) x Z, its K -theory is well-known, in fact

(Ko(C(4) x Z),[1], Ki(C(4) x Z)) = (N*,1,Z).

As H is a free abelian group, we can apply the Pimsner-Voiculescu six-term exact
sequence by adding the action of one generator of H at a time. For this to work
out, we will need to apply Theorem 4 and use homotopy arguments to compute the
action of H on the K-groups (see also [2, Remark 3.16]).

11.6 The “Unstabilized” a-Adic Algebras

Fix a sequence a and a nontrivial subgroup H C S and set 2 = 2(a, H). Let
H be the semigroup H N N* and for each U € %, let Gy denote the semigroup
U x H; with multiplication inherited from G. Moreover, forn € N let p,4+y be
the projection in 2 corresponding to the projection Xnaw in Co(£2).

Assume U,V € % and V C U, so U = rZ for some r and set k = |U/V|.
Then

k—1 k—1
Us=|]ir+V sothat py =) piiv. (11.5)
j=0 j=0

Proposition 3. The following hold:

1. puy is a full projection in 2.
2. The full corner py 2py is isomorphic to the semigroup crossed product

_ ’ . (x —n 'xen+m,
CU) g Gy, @iy f(x) = (f)’( (x—n) if

else.
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Proof. Note first that if py € @py@ for some V € %, then gp,4+nv € @py@
for all g and (n,h) € G. Therefore, it suffices to check that py € 2py 2 for all
VeZ.

Pick V. = rZ € % and choose W e % with W C U N V (for example
W =UnNYV).Letk = |V/W]|, then by (11.5)

k—1 k—1

pv = pirtw = Y_Gr.Dpw(=jr. 1)

J=0 j=0
€ span{gpg’ : g,¢ € G, p projection in 2 with p < pu}
C span 2py 2

asppyp = pif p =< pu.
For the second part, we just remark that for f € Cy(£2) and (n,h) € G,

pu f(n, h)py = pUﬂ(n+hU)f(nah) = f\ﬁn(ww)(",h),

which is nonzero only if n € U U hU. O

The minimal automorphic dilation of C (U) x4 Gy does not necessarily take us
back to 2. In fact, it gives

Co(H{'U) pur (H{'U x H)
where

H'U={}:neUheH= ) U= |JU={m:neU.heH}
h€H+ heH

Therefore, one gets 2 back precisely when N = H;l U. For example, if U = Z
one gets 2 back in the settings of Larsen and Li and also Cuntz, since H = S and
(11.4) holds in these cases.

In general, however, we get that

D~y Co(HT'U) 3gur (Hy'U x H)
which due to Remark 4 means that these are noncanonically isomorphic as well.
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Chapter 12
The Structure of Stacey Crossed Products
by Endomorphisms

Eduard Ortega and Enrique Pardo

Abstract We describe simplicity and purely infiniteness (in simple case) of the
Stacey crossed product A xg N in terms of conditions of the C *-dynamical system

(4.8).

Keywords C*-crossed products ¢ Purely infinite C*-algebras ¢ Cuntz-Pimsner
algebras
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12.1 Introduction

In [5], Cuntz defined the fundamental Cuntz algebras &, in terms of generators and
relations. He also represented these algebras as crossed products of a UHF-algebra
by an endomorphism, and in a subsequent paper [6] he realized this construction
as a full corner of an ordinary crossed product. However Cuntz did not explain
what kind of crossed product by an endomorphism was. Later, Paschke [18] gave an
elegant generalization of Cuntz’s result, and described the crossed product of a unital
C*-algebra by an endomorphism 8 : A — A, written A xg N, as the C *-algebra
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generated by A and an isometry Vo, such that VooaVE = f(a). Endomorphisms of
C *-algebras appeared elsewhere (cf. [3,7] and the references given there), and led
Stacey to give a modern description of their crossed products in terms of covariant
representations and universal properties [24]. He also verified that the candidate
proposed in [5] had the required property (see [2] and [4] for further study and
generalization of the Stacey’s crossed product).

More recently, constructions such as Exel crossed products raised hopes to extend
the scope of crossed products to describe broad classes of C*-algebras. In this
setting it is worth considering the recent work of an Huef and Raeburn [9], who
show that:

1. The relative Cuntz-Pimsner algebra of an Exel system is isomorphic to a Stacey
crossed product of its core algebra.
2. Any Stacey crossed product is an Exel crossed product.

In particular, they give a presentation of any graph C *-algebra (over a row-finite
graph) C*(E) as a Stacey crossed product C*(E)? xg, N by an endomorphism of
the core, extending the work of Kwasniewski on finite graphs [14].

Cuntz’s representation of the &, as crossed products by an endomorphism
aimed to prove the simplicity of these C*-algebras. Paschke gave conditions
on the C*-algebra A and on the isometry to obtain a simple crossed product
[18, Proposition 2.1], later improved in [4, Corollary 2.6]. Finally, Schweizer
gave the most powerful result about the simplicity of the Stacey crossed product
[23, Theorem 4.1]. Namely, if A is a unital C*-algebra and f is an injective
*-endomorphism, then A xg N is simple and B(1) is a full projection in A if and
only if 8" is outer for every n > 0 and there are no non-trivial ideals I of A with
B(I) < I. Certainly, in most cases the simplicity appears in connection with the
pure infiniteness property, first introduced by Cuntz in the simple case, and then
extended to general C *-algebras by Kirchberg and Rgrdam [12]. Then we can
use the Kirchberg-Phillips classification theorems to model Kirchberg algebras as
crossed products.

The aim of this work is to study the simplicity of non-unital crossed products, as
well as to give sufficient conditions to decide when a simple Stacey crossed product
is purely infinite. Our fundamental technique is seeing the Stacey crossed product
A xg N as a full corner of a crossed product by an automorphism P(As Xg., Z)P
(see [6,24]), where P is a full projection of the multipliers that is invariant under the
canonical gauge-action. Therefore, we can define the associated Connes Spectrum
of the endomorphism in a similar way we do it for an automorphism (see [10, 15,
16]) and construct a parallel Connes spectrum theory for endomorphisms. Hence,
following the results of Olesen and Pedersen [16, 17], we characterize simplicity for
the Stacey crossed product A4 xg N. Secondly, we will deal with the characterization
of pure infiniteness for simple Stacey crossed products. For, by using ideas from
[10,21], we give sufficient conditions on A and the endomorphism f in order to
guarantee that A xg N is simple and purely infinite. The main difference between
these results and ours is that we do not ask the C*-algebra A to be simple.
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12.2 Simple Stacey Crossed Product

The pair (A4, B), where A is a C*-algebra and B : A — A an (injective)
endomorphism, is called a C *-dynamical system.

Definition 1. We say that (;r, V) is a Stacey covariant representation of (A, B) if
w A — HB(H) is a non-degenerated representation and V' is an isometry of
HB(F) such that w(B(a)) = Va(a)V* for every a € A. We denote by C* (i, V)
the C *-algebra generated by {w(A)V"(V")*},.m>o0.

Stacey showed in [24] that there exists a C*-algebra that is generated by a
universal Stacey covariant representation (Loo, Vo). We call AXgN := C* (100, Vo)
the Stacey crossed product of A by the endomorphism .

Remark 1. Observe that, if 8 is an automorphism then Vi is a unitary, and hence
A xg Nis the usual crossed product A xg Z.

By universality of A xg N, given z € T, we define an automorphism in 4 xg N
by the rule y;(a) = a and y,(Vo) = zV for every a € A. It defines the gauge
action y : T — Aut(A xg N). An ideal I of A xg N is said to be gauge invariant
if y,(I) = I for every z € T. We define a canonical faithful conditional expectation
E : AxgN — Bas E(x) := [, y.(x)dz for every x € A xg N, where B :=
span{V'aVl :a € A,n > 0}.

We say that the endomorphism § : A —> A is extendible if, given any strictly
convergent sequence {x,},>0 C A, then the sequence {f(x,)},>0 converges in the
strict topology (i.e., B extends to ,3 : M(A) —> M(A)). Observe that, if 8 is
injective, then ,3 (a) € A implies that a € A. Indeed, let {a,} be a sequence that
converges in the strict topology and such that {8(a,)} converges in norm topology.
Since B is isometric (B is injective) then {a, } converges in the norm topology too.

We define the inductive system {A4;, ¢; }i>1 given by A; := A and ¢; = B for
every i > 1. Let As := lim {A;,¢;}. Forany i > 1, ¢; 0 : Aj —> Ao denotes
the (injective) canonical map. The diagram

B B B
A A A
bbb
A A A

B B B

gives rise to the dilated automorphism Boo : Aoo —> Axo. We call (Aoo, Boo) the
dilation of (A, B).

Observe that, if § is an extendible endomorphism, then given any i > 1 we have
that ¢; oo extends to @ o0 : M(A) —> M(Awxo).
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Proposition 1 (cf. [23, Proposition 3.3]). If A is a C*-algebraand f : A — A
is an extendible and injective endomorphism, then A xg N = P(Aoc Xg,, Z)P,
where P = @1 oo(1m4)) € M(Aoo Xpo Z). Moreover, P is a full projection, so
that A xg N is strongly Morita equivalent 10 Aoo X g, Z.

The isomorphism given in the above proposition sends Vi, (the isometry of A xg
N) to PUs P (where U is the generating unitary of Aeo X g, Z), and a to ¢; oo (a)
for every a € A. Therefore, from now on we will identify A xg N with P (Ao X g
Z)P.If y' : T — Aut (Aoo Xp,, Z) is the canonical gauge action, since y/(P) =
P forevery z € T, it restricts to the gauge action y of A xgN. Thus, we will identify
y with /.

Therefore, by Morita equivalence there exists a bijection between the ideals I of
Ao Xpoo Z and the ideals J of A xg N, given by

I+— PIP and J — (Ao Xo Z)J (Ao Xpog Z) .

So, from the above comment the following results comes.

Lemma 1. If A is a C*-algebra and B : A —> A is an extendible and injective
endomorphism, then there exists an order preserving bijection between gauge
invariant ideals of A xg N and Ao X g, 7.

Now, we will describe the gauge invariant ideals in terms of the C*-dynamical
system (4, B).

Definition 2. Let A be a C*-algebra and let § : A — A an endomorphism. We
say that an ideal I of A is B-invariant if I = B~'(I). A is B-simple if there are no
non-trivial B-invariant ideals.

Proposition 2. If A is a C*-algebra and § : A —> A is an injective endomor-
phism, then the map I +—— I, where Iog = Y, oy ¥n.co(l), defines an order
preserving bijection between the B-invariant ideals of A and the Boo-invariant
ideals of Aco.

Proof. Let I be an ideal of A such that B~'(/) = I. Let us define /o
> en @n.oo(), which is an ideal of As. Since (1) C I we have that Boo(Io0)
Is. Then, given x € I and n € N we have that ¢, oo(X) = @n+1.00(B(xX))
Boo(@n+1.00(X)), 80 Boo(Iso) = Iso. Conversely, given K an ideal of A let us
consider the ideal ¢ o (K). Observe that (pféo (K) # 0 because f is injective.
Given x € ¢ L (K) we have that 1. (B(x)) = Boo(¢1.00(x)) € K, and then
B(x) € ¢; 4 (K).Now let x € A be such that (x) € (p[éo(K), S0 ¥1.00(B(x)) € K.
But then ,30_01 (@1.00(B(X))) = @1.00(x) € K and hence x € (pl_éo (K).
Finally, since 8~!(1) = I, given n € N we have that

Nl

Do @nt1.00(1)) = @ 5 (B7HI)) = ¢, 5 (1)

the bijection follows.
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We would like to remark that our definition of invariant ideal slightly differs from
the one given by Adji in [1] for two reasons. First, because we only are interested in
actions by injective endomorphisms. And second, because we are just looking for
simple crossed products (hence without any gauge invariant ideal), while Adji looks
for a characterization of the gauge invariant ideals as another crossed product.

In the following, we will give necessary and sufficient conditions for the
simplicity of a Stacey crossed product. The main technical device we use is the
Connes spectrum of an endomorphism. This is just a reformulation of the Connes
spectrum for automorphisms (see [10,15]). We will see that for nice endomorphisms
(extendible and hereditary image) the Connes spectrum of B and that of the
associated automorphism S, coincide. Therefore, we will be able to use results
by Olesen and Pedersen to determine the conditions for the simplicity of the Stacey
crossed products.

Definition 3. Let A be a C*-algebra and let B : A — A be an endomorphism.
Then we say that:

1. B is inner if there exists an isometry W € M(A) such that § = Ad W.
2. B is outer if it is not inner.

Recall [8, Definition 2.1] that an automorphism « of a C *-algebra A is said to
be properly outer if for every nonzero «-invariant two-sided ideal / of A and for
every unitary multiplier u of 7, ||a;; — Ad, ;|| = 2. By [17, Theorem 10.4] the
notion of oci’l being outer for every n € N and every «-invariant ideal I is weaker
than the properly outer notion. It is known that if the action is properly outer then
the automorphism is outer pointwise. However, this was proved by Kishimoto [13]
and Olesen and Pedersen [17] in the case that the C *-algebra is a-simple. It is not
known, at least to the knowledge of the authors, if they are equivalent, at least by
Z-actions.

Definition 4. Let A be a C*-algebra, let § : A — A be an extendible injective
endomorphism and let y : T — Aut (4 xg N) be the gauge action. We define the
Connes spectrum of 8 as

TB):={teT:y(I)NI #0forevery0 # [ <1 AxgN}.

Remark 2. Observe that T(8) is a closed subgroup of T, since y is strongly
continuous. Hence can only be {1}, T or a finite subgroup.

This definition of the Connes spectrum coincides with the one given by
Olesen [15] and Olesen and Pedersen [16] when B is an automorphism.

Now, using that the bijection between ideals of A xg N and those of Ao X4, Z,
and the fact that the canonical gauge action y : T — Aut (Ao Xpg,, Z) restricts
to the gauge action of A xg N (since y.(P) = P for every z € T), the following
lemma easily follows.
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Lemma 2. If A is a C*-algebra and B : A — A is an extendible injective
endomorphism, then T(B) = T(Boo).

In order to use this results in our context, the following Lemma is essential.

Lemma 3. Let A be a C*-algebra, and let § : A — A be an injective extendible
endomorphism such that B(A) is a hereditary sub-C *-algebra of A. Then given any
B-invariant ideal I of A we have that I = Pl P.

Proof. Recall that P = ¢ oo(1p(ay)) = (P1. P2, P3,...) € M(Ax), where we
define P, = ,3"_1(1 Mm(4)) for every n € N. It is enough to check that given any
n€Nanda € I,then Py, 0o(@)P = @n.00(PraPy,) € ¢1.00(I). Observe that since
B(A) is a hereditary sub-C *-algebra of A we have that 8"(4) = B"(A)AB"(A)
for every n € N. But since P,aP, € B 1(A)IB"~1(A) € B"'(A) NI, and
B~'(I) = I, we have that

Pnoo(@)P € gnoo(B"' (1)) = ¢1.00(1).

as desired.

Remark 3. Combining [16, Lemma 6.1], the bijection stated in Proposition 2, the
Morita equivalence between A xg N and Ao Xg,, Z, Lemmas 1 and 3, we have
a bijection between the B-invariant ideals of A and the gauge invariant ideals of
A xg N defined by I — (A xg N)I(A xg N), with inverse K — K N A.

Remark 4. 1f (A, B) is a C*-dynamical system with 8 extendible and B(A) being
a hereditary sub-C *-algebra of A, then it follows that V} AV C A. Indeed, let
a € A. By Lemma 3 there exists b € A such that Vo VEaVeoVy = VeobVE,
and hence VoaV} = b, as desired. Therefore, the conditional expectation can be
definedas £ : A xg N — A.

Now, let us recall a result following from [15].

Theorem 1. Let A be a C*-algebra and let § : A — A be an extendible injective
endomorphism with B(A) being a hereditary sub-C *-algebra of A. Let us consider
the following statements:

1. T(B") =T for everyn > 0.
2. Givena € A (the unitization of A) and any B hereditary sub-C *-algebra of A,
for everyn > 0 we have that

inf{||lxap"(x)|| :0 <x e Bwith||x|| =1} =0.

3. B" is outer for every n > 0.

Then, (1) = (2) = (3). Moreover; if A is B-simple, then (3) = (1) (and thus they
are all equivalent).
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Proof. (1) = (2) This is [17, Theorem 10.4 and Lemma 7.1]. If T(8") = T then
T(BL,) = T for every n > 0, so B is properly outer for every n > 0. Since any
hereditary sub-C *-algebra B of A is also a hereditary sub-C *-algebra of A, (see
Lemma 3), we can apply [17, Proof of Lemma 7.1] to B. Thus, since 1320|A = g",
we have the result.

(2) = (3) Suppose that " = Ad W for an isometry W € M(A). Fix ¢ > 0,
and take b € A4 with ||b|| = 1. Set ¢ := fe(b), where f.(¢) : [0,1] — Ry is
the continuous function that is f;(0) = 0, constant 1 for # > ¢ and linear otherwise.
Then, we have that xc = cx = x forevery x € (b —¢)+A(b — ¢)+. Hence, given
any 0 < x € (b — &)+ A(b — &)+ with | x|| = 1, we have that

Ix (W )B" (I = lIx (W) WxW*|? = [xex W™ ||?
= [ PWHP = 2w = x| = lx))t =1,

which contradicts the hypothesis, since cW* € A.

Now, suppose that A is §-simple. We will prove that (3) = (1). By [17, Theorem
10.4] we have that T(Bs) = T if and only if T(85,) = T for every n € N.
Let us suppose that T(8) = T(Beo) # T. Hence, T(S) is a finite subgroup,
and thus the complement T(Bo0)t # {0}. Therefore, by [17, Theorem 4.5], for
every 0 # k € T(Boo)’ we have that 85, = Ad U, where U € M(As). But
then, by Lemma 3, V' = PUP € M(A) is an isometry such that ,8" = AdV,a
contradiction.

Corollary 1. Let A be a C*-algebra and let B : A — A be an extendible injective
endomorphism with B(A) being a hereditary sub-C*-algebra of A. Then A xg N is
simple if and only if A is B-simple and B" is outer for every n > 0.

Proof. A xg Nis simple if and only if Aex Xg., Z is simple if and only if A is
Boo-simple and T(Bso) = T [16, Theorem 6.5] if and only if A is B-simple and
T(B) = T. Therefore, by Theorem 1 we have that A is §-simple and T(8) = T if
and only if A4 is B-simple and 8" is outer for every n > 0.

To apply classification results to these crossed products, it will be necessary to
compute the K-theory of the crossed product by an endomorphism.

Lemma 4 (cf. [21, Corollary 2.2]). Let A be a separable C*-algebra and let
B : A — A be an injective extendible endomorphism such that B(A) is a
full hereditary sub-C *-algebra of A. Then, we have the following six-term exact
sequence

id—Ko(p)
Ky(A) —— Kop(4) —— Ky(4 Xg N) .

T id—Ky(B) l

Kl(A Xp N) <~ Kl(A) Kl(A)




246 E. Ortega and E. Pardo

Proof. First, recall that A xg N is strongly Morita equivalent to A xg_, Z, so their
K -groups are isomorphic. Thus, we can use the Pimsner-Voiculescu six-term exact
sequence for A x g Z. Since B(A) is a hereditary sub-C *-algebra of A, we have that
A = PAs P by Lemma 3. Moreover, as 8(A) is a full subalgebra, it follows that
P is a full projection, whence A and A are strongly Morita equivalent. Hence,
K+«(A) = K«(Ax). Finally, by continuity of the K-theory functor, we have the
desired result.

12.3 Purely Infinite Simple Crossed Products

In Theorem 1 we have given necessary and sufficient conditions on the endomor-
phism f for the simplicity of the C*-algebra A xg N. If 4 is a unital C*-algebra
and B(1) # 1, then A xg N contains a proper isometry, and if in addition 4 xg N is
simple, we have that it is a properly infinite C *-algebra. We will see that for a broad
class of unital real rank zero C *-algebras, say A, we have that A xg N turns out
to be purely infinite. Our results generalize and unify similar results given in [21]
and [10].

Recall Cuntz’s definition: a unital simple C *-algebra A is purely infinite if given
any non-zero element a in A there exist x, y in A such that xay = 1. Equivalently,
a unital simple C*-algebra is purely infinite if and only if has real rank zero and
every projection is infinite [25].

Lemma 5. Let A be a unital C*-algebra, let B : A —> A be an injective
endomorphism, and suppose that does not exist any proper ideal I of A such
that B(I) C I. Then, given any non-zero a € Ay there exists n € N such that
a+ B(a) +---+ B"(a) is a full positive element in A.

Proof. Consider the ideal I := span {xf"(a)y : n > 0, x,y € A} # 0. It clearly
satisfies B(/) C I and then, by hypothesis, we have that I/ = A. Therefore we can
write

k
1= Z xi " (@) yi

i=1

where x;, y; € Aandn; € Nforeveryi € {1,...,k}. Then, taking n = max;{n;},
we have the desired result.

Let T(A) be the set of tracial states of A, which is a compact space with
the x-weak topology. We say that A has strict comparison if: (i) T(A) # @;
(ii) Whenever p € AgqA such that t(p) < t(q) for every T € T(A), we have
that p < ¢. For example, every unital exact and stably finite C*-algebra that is
% -stable has strict comparison [22, Corollary 4.10].

The following lemma is a slight modification of [21, Lemma 3.2].
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Lemma 6 (cf. [21, Lemma 3.2]). Ler A be a unital C*-algebra that either has
strict comparison or is purely infinite. Let B : A —> A be an injective
endomorphism such that B(1) # 1 and let A xg N = C*(l00, Vo). If there
does not exist any proper ideal 1 of A such that B(I) C 1, then for every full
projection p € A there exist a partial isometry u € A and m € N such that
(Vo) "u* puVyg = (Voo)" Vg = 1.
Proof. We need to prove that there exists m € N such that V2 (VZ)* < p. If that
holds, then there exists a partial isometry u € A such that u*u = VZ (V)™ and
uu* < p. Therefore (VE)"u*puVZl = (VE)"(VZVL)")VE = 1, so we are
done.

Observe that if A is purely infinite then p is a properly infinite full projection.
So, we have that Voo VE € ApA = A. Hence, Vyo VE < p,sothatm = 1 holds.

Now suppose that A has strict comparison. Then 7 (A) is non-empty and
compact. So, given any k € N we set

a=inf{z(p): 1t € T(A)} and Vi = sup {r(Vo];(Vo";)k) 1 eT(A)}.

Observe that, since p is full, we have that « > 0. Now, we claim that there exists
n € N such that y, < 1. Indeed, it is enough to prove that there exists n € N such
that 1 — V2L (VZ)" is a full projection. Let us construct the ideal

I=5pan (x (Voo (Vae)' = Vo '(Ve) ™y 1120, x,y € A} # 0.
It is clear that 8(I) C I. Therefore, by Lemma 5, there exists n € N such that

(1=VooVE) + -+ B 7M1= Voo VE) = (1 = Voo VE) + - + (VT (V)™
—VLVE) =1=-VLVE).

is a full projection. Therefore y,, < 1. By the same argument as in the proof of [21,
Lemma 3.2], we have that ‘C(Vé’ol (Vo";)”’ ) < y,’l for every [ € N. Then, there exists
! € N such that ‘C(V&I(V;)m) < y,’l < a < 7(p). Since A has strict comparison,
we have that Vég’(Vo”;)”’ < p.

Lemma 7. Let A be a C*-algebra of real rank zero, and let B : A — A be an
extendible injective endomorphism with B(A) being hereditary such that T(8) = T.
Then, given any a € A~ and any B hereditary sub-C *-algebra of A we have that

inf{||paB(p)|| : p is a non-zero projection of B} = 0.

Proof. Leta € AT and let B be a hereditary sub-C *-algebra of 4. Given & > 0,
by Theorem 1 there exists x € By with ||[x|| = 1 such that |xaB(x)| < &/2.
Given § > 0, let f; : [0,1] —> [0, 1] be such that f(t) = 1 foreveryt € [1 —
8/2,1] and such that | f5(¢) —¢| < & forevery 0 < ¢t < 1. Take § > O such that
[ fs(x)aB(fs(x)|| < e LetC ={y € B: fs(x)y = yfs(x) = y} # 0. Notice
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that C is a hereditary sub-C *-algebra of B. Since C has real rank zero, there exists a
non-zero projection p € C, and by construction pfs(x) = fs(x)p = p. Therefore

Ipap(P) = pfs(x)ap(fs(x)P)Il < I f5(x)ap(fs(e)I <.

Corollary 2. Let A be a C*-algebra of real rank zero, and let § : A —> A be an
extendible injective endomorphism with B(A) being hereditary such that T(f") = T
for everyn > 0. Then, givenany ¢ > 0, ay,...,ax € A~ andny,...,ny € Nanda
projection p € A, there exists a projection q € pAp such that

lga: B (@)| < ¢ foreveryi € {1,...,k}.
Let A be a C *-algebra. Then, we define the following technical condition:

(1) Given any n € N and p € A there exist py, ..., p, € A non-zero pairwise

orthogonal subprojections of p with p € Ap; A foralli € {1,...,n}.

For example, every Z -stable or purely infinite C*-algebra of real rank zero
satisfies condition (}) [19, Theorem 5.8].

Proposition 3. Let A be a unital C*-algebra of real rank zero satisfying (), let
B : A —> A be an injective endomorphism such that B(A) is a hereditary sub-C *-
algebra of A, and let A xg N = C*(to0, Vo). If does not exist any proper ideal I of
A such that B(I) C I, then given any non-zero projection p € A there exist a full
projection g € A and ¢ € A xg N such that g = cpc*.

Proof. By Lemma 5 there exists n € N such that p + B(p) + --- + B"(p) is a
full positive element of A. Since A satisfies (7) there exist non-zero orthogonal
projections po, ..., p, € A suchthat po + -+ p, < p with p € Ap; A for all
i €{0,...,n}. Observe that p + B(p) + --- + B"(p) lies in the ideal generated by
q = po+ B(p1) + -+ B"(pn), s0 ¢’ is also a full positive element of A. Denote
pl = B'(p;) forevery i € {0,...,n}. Now we are going to use induction on 7 to
construct a projectiong € A such that pj+---+p;, € AgA. The case n = 0 s clear.
Now, suppose that there exists a projection gx— such that pj+---+p;_, € Agr—1 A.

Using the Riesz decomposition of V(A4) [26] we have p; ~ ai @ by such that
ar S qr—1 and by < 1 — gi—1. Let vy be the partial isometry such that v;: v < p]/C
and vkvl’: < 1 — gx—,. If we define the projection gx := qx—; + vkv;, then we have
that p{ + --- 4+ p; € Agqx A. Therefore the projection ¢ := g, is full. If we define
¢:=po+viVoop1 + -+ v, VZ pn, then we have that

epc® =cc® = po+vif(pvf + -+ vaB" () =4q.,

as desired.
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Theorem 2. Let A be a unital C*-algebra of real rank zero satisfying (1) that
has strict comparison, let B : A —> A be an injective endomorphism such that
B(1) # 1 and B(A) is a hereditary sub-C*-algebra of A. If A xg N is simple and
B(1) is a full projection of A, then A xg N is purely infinite simple C *-algebra.

Proof. It is enough to prove that given a positive element x € A xg N there exist
a,b € AxgNsuchthataxb = 1.Let E : A xg N — A be the canonical faithful
conditional expectation. So, 0 # E(x) = ¢ € AL. Then, for | c|| > ¢ > 0 we have
that the hereditary sub-C *-algebra (¢ — &)+ A(c — &)+ < ¢'/>Ac'/? has real rank
zero. Hence, there exists a non-zero projection p = c'/?yc'/? € ¢'/2Ac'/?. Then,
g = y'/?cy'/? is a projection, and E(y'/?xy'/?) = y!/2¢y!/? = q. Thus, we can
assume that £(x) = ¢ is a non-zero projection. Given 1/2 > ¢ > 0, there exists
X =WH"d_py+--+q+---+d,V", withd; € A4 for every j, such that
|lx — x| < e. By Corollary 1, Theorem 1 and Corollary 2, there exists a non-zero
projection p € gAq such that

lpdip'(p)| <e/2m  and  ||B'(p)d—ipl <e/2m

forevery i € {1,...,m}. Therefore

Ipxp — pll < lpxp — px'pll + lpxX'p—pll <e+e<1.

Then, pxp is invertible in p(A xg N)p, whence there exists y € p(4 xg N)p
such that ypxp = p. Since we are assuming that A xg N is simple and (1) is a
full projection, [23, Theorem 4.1] implies that there are no non-trivial ideals I of
A such that 8(/) < I. Thus, by Proposition 3, there exist ¢ € A xg N and a full
projection g € A such that cpc* = q.

By Lemma 6, there exist m € N and a partial isometry u € A with the property
that (VE)"u*quV2 = 1 and therefore

(V) u* (cypxpe uVi = (Vi) u*epe*uVlh = (VEY"uw*quVl = 1.

Thus, if we seta := (V)" u*cyp and b := pc*uVZ we have axb = 1, as desired.
When A is a purely infinite C *-algebra, we generalize the result of [10].

Corollary 3. Let A be a unital purely infinite C*-algebra of real rank zero, let
B 1 A —> A be an injective endomorphism such that B(1) # 1 is a full projection
and B(A) is a hereditary sub-C*-algebra of A. Then A xg N is a simple purely
infinite C*-algebra if and only if A xg N is simple.

Proof. The proof works in the same way as that of Theorem 2, but keeping in mind
that Lemma 6 and condition (}) are also satisfied for purely infinite C *-algebras.

Example 1. This is a generalization of Cuntz’s construction of the algebras &), [5].
Let %, be the m°® UHF algebra ®;°:1 M, (C),and let B = %, @ -+ ® %y be the
direct sum of n copies of %, that is a nuclear unital C *-algebra of real rank zero
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absorbing %, and hence has strict comparison and satisfies condition (). Let us
consider the endomorphism 8 : B —> B givenby B(x1,...,x,) = (P1® X2, P, ®
x3--+, P, ® x1) for every (xy,...,x,) € B, where Py,---, P, € M,,(C) are rank
1 projections. Hence, f is injective. Observe that 8(1) # 1 is a full projection of B.
It is clear that B is B-simple and B¥ is outer for any k > 0, since B is a unital finite
C*-algebra. Hence, B xg N is simple by Theorem 1, and thus applying Theorem 2 it
is also a purely infinite C *-algebra; in particular it is a Kirchberg algebra. Now, we
use the modification of the Pimsner-Voiculescu six-term exact given in Lemma 4,

Id—Ko(B)

K()(B) K()(B) —_— K()(B Xﬂ N)

] 1d—K1(B) l

Notice that the induced map Ko(B) : Z[1/m]" — Z[1/m]" is given by
Ko(B)(x1.....xn) = (x2/m,....xq/m x1/m),

for every (xi,...,x,) € Z[1/m]". Then, we can easily compute Ko(B xg
N) = Z/(m" — 1)Z and K(B xg N) = 0. Hence, using the Kirchberg-Phillips
classification theorems [11,20], we conclude that B xg N is stably isomorphic to
the Cuntz algebra 0,,,».
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Chapter 13
Quasi-symmetric Group Algebras
and C*-Completions of Hecke Algebras

Rui Palma

Abstract We show that for a Hecke pair (G, I") the C *-completions C*(L' (G, I'))
and pC*(G)p of its Hecke algebra coincide whenever the group algebra L'(G)
satisfies a spectral property which we call “quasi-symmetry”, a property that is
satisfied by all Hermitian groups and all groups with subexponential growth. We
generalize in this way a result of Kaliszewski et al. (Proc Edinb Math Soc (2)
51(3):657-695, 2008). Combining this result with our earlier results in (Palma,
J Funct Anal 264:2704-2731, 2013) and a theorem of Tzanev (J Oper Theory
50(1):169-178, 2003) we establish that the full Hecke C*-algebra exists and
coincides with the reduced one for several classes of Hecke pairs, particularly all
Hecke pairs (G, I") where G is a nilpotent group. As a consequence, the category
equivalence studied by Hall (Hecke C *-algebras. Ph.D. thesis, The Pennsylvania
State University, 1999) holds for all such Hecke pairs. We also show that the
completions C*(L'(G, I")) and pC*(G) p do not always coincide, with the Hecke
pair (SL»(Qg), SL2(Z,)) providing one such example.

Keywords Hecke algebras * Hecke pairs * Hall’s equivalence ¢ C*-algebras

Mathematics Subject Classification (2010): 46L55, 20C08.

13.1 Introduction

A Hecke pair (G, I") consists of a group G and a subgroup I" € G, called a
Hecke subgroup, for which every double coset I"gI" is the union of finitely many

R. Palma (0)
University of Oslo, P.O. Box 1053, NO-0316 Oslo, Norway
e-mail: ruip@math.uio.no

T.M. Carlsen et al. (eds.), Operator Algebra and Dynamics, Springer Proceedings 253
in Mathematics & Statistics 58, DOI 10.1007/978-3-642-39459-1__13,
© Springer-Verlag Berlin Heidelberg 2013


mailto:ruip@math.uio.no

254 R. Palma

left cosets. Examples of Hecke subgroups include finite subgroups, finite-index
subgroups and normal subgroups. It is many times insightful to think of Hecke
subgroups as subgroups which are “almost normal”. The Hecke algebra 7€ (G, I")
of a Hecke pair (G, I") is a *-algebra of complex-valued functions over the set
of double cosets I"'\G/I", with suitable convolution product and involution. It
generalizes the notion of the group algebra C(G/I") of the quotient group when
I' is a normal subgroup.

A natural example of a Hecke pair (G, I') is that of a locally compact totally
disconnected group G and a compact open subgroup I". These type of examples
are, in some sense, the general case, since we can always reduce to this case
via a construction called the Schlichting completion: given a Hecke pair (G, I")
we can associate to it a new Hecke pair (G,T') where G is locally compact
totally disconnected, I" is compact and open and the corresponding Hecke algebras
H(G,T')and (G, T) are canonically isomorphic.

For operator algebraists the interest in the subject of Hecke algebras was largely
raised by the work of Bost and Connes [2] on phase transitions in number theory and
their work has led several authors to study C*-algebras which arise as completions
of Hecke algebras. There are several canonical C *-completions of a Hecke algebra
(G, I') which one can consider (see [17] and [11]): the enveloping C *-algebra
of #(G,TI'), denoted by C*(G, I'); the enveloping C*-algebra of the Banach
*_algebra L'(G, I'), denoted by C*(L'(G, I')); the canonical corner pC*(G)p,
where p is the characteristic function of T and C’ (G, I'), which is the C *-algebra
generated by the left regular representation of 5#°(G, I'). The question of when does
C*(G, I') exist and when do some of these completions coincide has been studied
by several authors ([2,6, 11, 14,17], to name a few).

An important question raised by Hall [6] where C*-completions of Hecke
algebras came to play an important role was if for a Hecke pair (G, I") there is
a correspondence between unitary representations of G generated by the I"-fixed
vectors and nondegenerate *-representations of 57 (G, I"), analogous to the known
correspondence between representations of a group and of its group algebra. When-
ever such a correspondence holds we say that (G, I") satisfies Hall’s equivalence.
It is known that Hall’s equivalence does not hold in general [6], and in fact a
theorem of Kaliszewski et al. [11] shows that Hall’s equivalence holds precisely
when C*(G, I') exists and C*(G,I') = C*(L'(G,I")) = pC*(G)p, which has
been shown to be the case for several classes of Hecke pairs.

The primary goal of this article is to give a sufficient condition for the
isomorphism C*(L'(G,T")) = pC*(G)p to hold and to combine this result with
the results of [14] in order to establish Hall’s equivalence for several classes of
Hecke pairs, including all Hecke pairs (G, I") where G is a nilpotent group. We
will also show that the two C*-completions C*(L'(G,I")) and pC*(G)p are
in general different, with (SL»(Qy), SL2(Z,)) providing an example for which
C*(LY(G,I) & pC*(G)p.

The problem of deciding for which Hecke pairs the completions C*(L'(G, I'))
and pC*(G) p coincide is partially understood. Several properties of the pair (G, I")
are known to force these two completions to coincide, and in this regard we recall
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a result by Kaliszewski et al. [11] which states that C*(L'(G,I')) = pC*(G)p
whenever the Schlichting completion G is a Hermitian group (meaning that every
self-adjoint element f € L'(G) has real spectrum). We will generalize their
result in Sect. 13.3 in a way that covers also all Hecke pairs for which G or G
has subexponential growth. For that we introduce the notion of a quasi-symmetric
group algebra: a locally compact group G will be said to have a quasi-symmetric
group algebra if for any f € C.(G) the spectrum of f*  f relative to L'(G)
is in Rg‘ . It follows directly from the Shirali-Ford theorem [16] that Hermitian
groups have a quasi-symmetric group algebra and it is a consequence of the work
of Hulanicki [7, 8] that this is also the case for groups of subexponential growth. We
show that C*(L'(G, I')) = pC*(G)p whenever the Schlichting completion G has
a quasi-symmetric group algebra.

Besides strictly generalizing Kaliszewski, Landstad and Quigg’s result, as there
are groups of subexponential growth which are not Hermitian, our result is easier
to apply in practice since many times we can use it without any knowledge about
the Schlichting completion G, which is often hard to compute. In fact we will show
that if G has subexponential growth then so does G, which means that knowledge
about the original group G is sufficient for applying our result. The relation between
Hermitianness and subexponential growth will be discussed in Sect. 13.4.

By combining our result on quasi-symmetric group algebras with the results of
[14] and also a theorem of Tzanev [17], we are able to establish in Sect. 13.5 that
C*(G,TI) exists and C*(G,I") = C*(L'(G,T")) = pC*(G)p = C*(G,TI)
for several classes of Hecke pairs, including all Hecke pairs (G, I") where G is a
nilpotent group. Consequently, it follows that Hall’s equivalence holds for all such
classes of Hecke pairs.

It is natural to ask if there are examples of Hecke pairs for which we have
C*(L'(G,I')) 2 pC*(G)p. According to [11], Tzanev claims in private commu-
nication with the authors that the Hecke pair (PSL3(Qy), PSL3(Z,)) is such that
C*(L'(G,I')) 2 pC*(G)p, butno proof has been published and no other example
seems to be known, as far as we know. We prove in Sect. 13.6 that C*(L' (G, I'")) %
pC*(G)p for the Hecke pair (PSL2(Qy), PSL>(Zy)), as suggested in [11], but
following a different approach which does not use the representation theory of
P SLZ(Q:{)-

The author is thankful to his adviser Nadia Larsen for the very helpful discus-
sions, suggestions and comments during the elaboration of this work.

13.2 Preliminaries

13.2.1 Hecke Pairs and Hecke Algebras

We will mostly follow [12] and [11] in what regards Hecke pairs and Hecke algebras
and refer to these references for more details.
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Definition 1. Let G be a group and I" a subgroup. The pair (G, I'") is called a Hecke
pair if every double coset I'gI” is the union of finitely many right (and left) cosets.
In this case, I" will be called a Hecke subgroup of G.

Given a Hecke pair (G, I") we will denote by L and R, respectively, the left and
right coset counting functions, i.e.

L(g):=|I"gl'/T"| < o0 and R(g):=|I'\I'gl'| < 0.

We recall that L and R are I"-biinvariant functions which satisfy L(g) = R(g™")
for all g € G. Moreover, the function A : G — Q™ given by

)
" R(g)’

is a group homomorphism, usually called the modular function of (G, I').

A(g)

Definition 2. The Hecke algebra (G, I') is the *-algebra of finitely supported
C-valued functions on the double coset space I'\G/I" with the product and
involution defined by

(fi*x f)Tgl) :

Y A@KD) f(Ih™'gl).

hreG/r

f*Irgr) = A(g™") f(Ig™'I).

Remark 1. Some authors, including Krieg [12], do not include the factor A in the
involution. Here we adopt the convention of [11] in doing so, as it gives rise to a
more natural L'-norm. We note, nevertheless, that there is no loss (or gain) in doing
s0, because these two different involutions give rise to *-isomorphic Hecke algebras.

Given a Hecke pair (G, I'), the subgroup R/ := ﬂgeG gl g™ ! is a normal
subgroup of G contained in I". A Hecke pair (G, I) is called reduced if R"" = {e}.
As it is known, the pair (G,, I) := (G/R",I'/R") is a reduced Hecke pair and
the Hecke algebras (G, ") = J#(G,, I';) are canonically isomorphic. For this
reason the pair (G,, I';) is called the reduction of (G, I'), and the isomorphism of
the corresponding Hecke algebras shows that it is enough to consider reduced Hecke
pairs, a convention used by several authors. We will not use this convention however,
since we aim at achieving general results based on properties of the original Hecke
pair (G, I'), and not its reduction.

A natural example of a Hecke pair (G, I") is given by a totally disconnected
locally compact group G and a compact open subgroup I". It is known that this type
of examples are, in some sense, the general case: there is a canonical construction
which associates to a given reduced Hecke pair (G, I") a new Hecke pair (G,T)
with the following properties:
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. G is a totally disconnected locally compact group;

. T is a compact open subgroup;

. The pair (G, I') is reduced;

. There is a canonical embedding § : G — G such that §(G) is dense in G and
6(I") is dense in I". Moreover, 0~ (I") = I.

The pair (G, I') satisfies a well-known uniqueness property and is called the
Schlichting completion of (G, I'). For the details of this construction the reader is
referred to [17] and [11] (see also [4] for a slightly different approach). We shall
make a quick review of some known facts and we refer to the previous references
for all the details.

Henceforward we will not write explicitly the canonical homomorphism 6,
and we will instead see G as a dense subgroup of G, identified with the image
6(G). The Schlichting completion (G, T") of a reduced Hecke pair (G, I")
satisfies the following additional property:

5. There are canonical bijections G/I" — G /T and I'\G/I" — I’'\G /T given by
gl — gI' and I'gl" — T gT, respectively.

AW N =

If a Hecke pair (G,TI") is not reduced, its Schlichting completion (G,T) is
defined as the completion (G_,, Fr) of its reduction. There is then a canonical map
with dense image G — G which factors through G,, and this map is an embedding
if and only if (G, I') is reduced, i.e. G = G,.

Following [11], we consider the normalized Haar measure @ on G (so that
w(I') = 1) and define the Banach *-algebra L'(G) with the usual convolution
product and involution. We denote by p the characteristic function of T, i.e.
p = xF, which is a projection in C.(G) € L'(G). Recalling [17] or [11], we
always have canonical *-isomorphisms:

H(G,T) = H(G,,T}) = #(G,T) = pC.(G)p. (13.1)

The modular function A of a reduced H(Eke pair (G, I'), defined by (13.2.1), is
simply the modular function of the group G restricted to G.

13.2.2 L'-and C*-Completions

There are several ways of defining a L!-norm in a Hecke algebra. One approach is
to simply take the L'-norm from L'(G), since the isomorphisms in (13.1) enables
us to see the Hecke algebra as a subalgebra of L'(G). The completion of (G, I")
with respect to this L'-norm is isomorphic to the corner pL'(G) p. Alternatively,
one may take the following definition:

Definition 3. The L'-norm on (G, T'), denoted || - || .1, is given by

Ifllr == Y. |fUIgM)|L(g).

rgrer\G/r
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We will denote by L!(G, I') the completion of 7 (G, I') under this norm.

As observed in [17] or [11], the two L'-norms described above are the same. In
fact we have canonical *-isomorphisms

LY (G, N = L'(G,T) = pL'(G)p.

There are several canonical C *-completions of .7 (G, I"). These are:

* Cr(G,I') — Called the reduced Hecke C*-algebra, it is the completion of
(G, I') under the C*-norm arising from the left regular representation (see
[171).

+ pC*(G)p — The corner of the full group C *-algebra C*(G).

* C*(L'(G,TI)) - The enveloping C *-algebra of L'(G, T").

* C*(G,I') — The enveloping C *-algebra (if it exists!) of 5#(G, I"). When it
exists, it is usually called the full Hecke C*-algebra.

The various C*-completions of 57(G, I") are related in the following way,
through canonical surjective maps:

C*(G,T') --» C*(L'(G,I")) — pC*(G)p — C*(G.T).

As was pointed out by Hall in [6, Proposition 2.21], the full Hecke C *-algebra
C*(G, I') does not have to exist in general. Nevertheless, its existence has been
established for several classes of Hecke pairs (see, for example, [6, 11] or [14]).

The question of whether some of these completions are actually the same has
also been explored in the literature [2, 11, 14, 17]. We review here some of the main
results.

The question of when one has the isomorphism pC*(G)p = Cr(G,TI') was
clarified by Tzanev, in [17, Proposition 5.1], to be a matter of amenability. As
pointed out in [11], there was a mistake in Tzanev’s article (where it is assumed
without proof that C*(L'(G, I")) = pC*(G)p is always true) which carries over
to the cited Proposition 5.1. Nevertheless, Tzanev’s proof holds if one just replaces
C*(L'(G,T')) with pC*(G)p, so that the correct statement of (a part of) his result
becomes:

Theorem 1 (Tzanev). pC*(G)p = C*(G,I") ifand only if G is amenable.

A result concerning the isomorphism C*(L'(G, I")) = pC*(G) p was obtained
by Kaliszewski, Landstad and Quigg in [11, Theorem 6.14], where they showed that
this isomorphism holds when G is a Hermitian group.

In [14] we established the existence of C*(G, ") and also the isomorphism
C*(G,I') = C*(L'(G,I')) for several classes of Hecke pairs, recovering also
various results in the literature in a unified approach.

Another important result of [11] regarding the existence of C*(G, I') and the
simultaneous isomorphisms C*(G,I") = C*(L'(G,I')) = pC*(G)p will be
discussed in the next subsection.
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13.2.3 Representation Theory

As it is well-known, for any group G there is a canonical bijective correspondence
(i.e. category equivalence) between unitary representations of G and nondegenerate
*-representations of the group algebra C(G). Hall [6] asked whether something
analogous was true for Hecke pairs, and the following definition is necessary in
order to understand Hall’s question:

Definition 4. Let G be a group and I" € G a subgroup. A unitary representation
7w : G — U(H) is said to be generated by its I -fixed vectors if w(G)7T = A,
where #T ={£ e n(y)E =§, forall y e I'}.

The question Hall posed in [6] is the following:

Question 1 (Hall’s equivalence). Let (G, ") be a Hecke pair. Is there a category
equivalence between nondegenerate *-representations of #(G,I") and unitary
representations of G generated by the I"-fixed vectors?

Whenever there is an affirmative answer to this question, we shall say the Hecke
pair (G, I') satisfies Hall’s equivalence. In the work of Hall [6] and the subsequent
work of Glockner and Willis [4], Hall’s equivalence was studied and proven to
hold under a certain form of positivity for some *-algebraic bimodules. A more
complete approach was further developed by Kaliszewski, Landstad and Quigg in
[11], where Hall’s equivalence, positivity for certain *-algebraic bimodules, and
C*-completions of Hecke algebras were all shown to be related. We briefly describe
here the approach and results of [11] and the reader is referred to this reference for
more details.

Let (G, I') be the Schlichting completion of a Hecke pair (G, I"). Following [11,
Sect. 5], we have an inclusion of two imprimitivity bimodules (in Fell’s sense):

_ -
CC(E)pCp(g)(C"(G)p),}f(ﬁ,f) S L‘(ﬁ)pL‘(ﬁ)(L (G)p)Ll(ET) ’

where the left and right inner products, (), and () g, on these bimodules are given
by multiplication within L'(G) by

(f.glL=1/r=g", (f.8)r=["*g.
A *-representation 7 of J#(G, I') is said to be () g-positive if

x((f., flr) =0, forall f e C.(G)p. (13.2)

Similarly, a *-representation 7 of L!(G,I") is said to be ()g-positive when
condition (13.2) holds for all f € L'(G)p.

In [11, Corollary 6.19] it is proven that, for a reduced pair (G, I"), there exists a
category equivalence between unitary representations of G generated by the I"-fixed
vectors and the () g-positive representations of .7(G, I'). This is in fact true for
non-reduced Hecke pairs (G, I") as well, as follows from the following observation:
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Proposition 1. Let (G, I') be a Hecke pair and (G, I'},) its reduction. There exists
a category equivalence between unitary representations of G generated by the
I' -fixed vectors and unitary representations of G, generated by the I',-fixed vectors.

The correspondence is as follows: a representation w : G, — U(J€) is mapped
to the representation w o q, where q : G — G, is the quotient map. Its inverse map
takes a representation p : G — U(F) to the representation p of G, on the same

Hilbert space, given by p([g]) := p(g).

Proof. First we observe that the assignment 7 — m o g does indeed produce a
unitary representation of G generated by the I"-fixed vectors. This is obvious since
the spaces of fixed vectors .7#/7 and .2#!" for  and 7 oq, respectively, are the same.

Secondly, for the inverse assignment, we need to check that p is well-defined,
which amounts to show that p(g) = p(gh) forany g € G and h € R’. For any
s € Gand & € s we have

p(gh)p(s)E = p(g)p(s)p(s~" hs)é
= p(g)p(s)§ .

because s~'hs € RT C I'. Hence, p(gh) = p(g) on the space 7 (G).#". Since p
is assumed to be generated by the I"-fixed vectors, it follows that p(gh) = p(g).

It is also easy to see that p is generated by the I,-fixed vectors and it is clear
from the definitions that these assignments are inverse of one another.

We now have to say a few words about the intertwiners of representations,
i.e. the morphisms in the categories we are considering. It follows immediately
from the definitions that if we have an intertwiner V : 7 — .7 between two
representations 7; : G, — B(JA) and 7, : G, — B(J%4), then V itself is an
intertwiner between m; o ¢ and m, o ¢ and moreover the composition laws are
satisfied. The exact same thing happens for the assignment p — p, so that we
have in fact an isomorphism of categories, and therefore, in particular, a category
equivalence. O

In the light of Kaliszewski, Landstad and Quigg’s result, for a Hecke pair (G, I")
for which all *-representations of 77°(G, I'") are () g-positive, there exists a category
equivalence between unitary representations of G generated by the I"-fixed vectors
and nondegenerate *-representations of J# (G, I"). In other words, Hall’s equiva-
lence holds when all *-representations of (G, I") are () g-positive. Furthermore,
the authors of [11] show also the following relation between () g-positivity and
C*-completions of Hecke algebras:

Theorem 2 ([11, Corollary 6.11]). Let (G, I") be a Hecke pair.
1. Every *-representation of (G, I') is () r-positive if and only if C *(G, I') exists
and C*(G,I') = C*(L'(G.,TI")) = pC*(G)p.

2. Every *-representation of L'(G, I) is () g-positive if and only if C*(L'(G, I"))
~ pC*(G)p.
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13.2.4 Groups of Subexponential Growth

Let G be a locally compact group with a Haar measure p. For a compact
neighbourhood V' of e, the limit superior

lim sup j¢ (V") (13.3)

n—o0

will be called the growth rate of V. Since 0 < (V) < w(V") foralln € Nitis
clear that the growth rate of V' is always greater or equal to one.

Definition 5. A locally compact group G is said to be of subexponential growth if

limsup,,_, o, ,u(V”)% = 1 for all compact neighbourhoods V of e. Otherwise it is
said to be of exponential growth.

The class of groups with subexponential growth is closed under taking closed
subgroups [5, Théoreme 1.2] and quotients [5, Théoreme 1.3]. We observe that even
though in [5] the author is only working with compactly generated groups, the
proofs of these results are general and hold for any locally compact group.

It is known that if G has subexponential growth as a discrete group, then it
has subexponential growth with respect to any other locally compact topology [8,
Theorem 3.1]. The following is a slight generalization of this result, and the proof
is done along similar lines:

Proposition 2. Let H be a dense subgroup of a locally compact group H.If H has
subexponential growth as a discrete group, then H has subexponential growth in its
locally compact topology.

Proof. Let A € H be a compact neighbourhood of e. First we claim that HA = H.
Since A is a neighbourhood of {e}, there is an open set U C A such thate € U. To
show that HA = H,let g € H. Since H is dense in H and g(U N U™!) is open,
it follows that there exists h € H N g(U N U™"). Thus, there exists s € U N U~
such that 7 = gs, or equivalently, g = hs™'. Since s™' € U N U™! we then have
g € hU,and thus g € hA. Hence H = HA.

From the previous observation it follows that {hA},cy is a covering of the
compact set AA, and since A has non-empty interior there must exist a finite set
F C H suchthat AA C FA. Hence, we have A" € F"~! A, for all n > 2. Without
loss of generality we can assume that F contains the identity element. Now using
the fact that H has subexponential growth we obtain

S =

1
lim sup 14 (A4")" flimsup,u(F"_lAﬁ < limsup|F"_1|%,u(A) = 1.

n—o0 n—o00 n—o0

|

Corollary 1. Let (GI ) be a discrete Hecke pair. If G (or G,) has subexponential
growth, then so does G.
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Proof. If G has subexponential growth than so does any of its quotients, so in
particular G, also has subexponential growth. If G, has subexponential growth then
so does G by Proposition 2. O

Groups with subexponential growth are always unimodular [15, Proposi-
tion 12.5.8] and amenable [15, Sect. 12.6.18].

The class of groups with subexponential growth includes all locally nilpotent
groups and all F'C~-groups [15, Theorem 12.5.17]. In particular, all abelian and all
compact groups have subexponential growth.

13.3 Quasi-symmetric Group Algebras

Given a *-algebra A and an element a € A we will use throughout this chapter the
notations 04 (a) to denote the spectrum of a relative to A, and R 4(a) to denote the
spectral radius of a relative to A.

Recall, for example from [15], that a *-algebra A is said to be:

* Hermitian if 0 4(a) C R, for any self-adjoint element a = a* of A.
o Symmetric if o4(a*a) C R}, foranya € A.

It is an easy fact that symmetry implies Hermitianness. The two properties are
equivalent for Banach *-algebras, as asserted by the Shirali-Ford theorem [16].

Recall also that a locally compact group G is called Hermitian if L'(G) is
a Hermitian (equivalently, symmetric) Banach *-algebra. The class of Hermitian
groups satisfies some known closure properties, some of which we list below:

1. The class of Hermitian groups is closed under taking open subgroups and
quotients [15, Theorem 12.5.18].

2. Letl - H - G — G/H — 1 be an extension of locally compact groups. If
H is Hermitian and G/H is finite, then G is Hermitian [15, Theorem 12.5.18].

The class of groups we are going to consider in this work arises by relaxing the
condition of symmetry on the group algebra:

Definition 6. Let G be a locally compact group. We will say that the group algebra
L'(G) is quasi-symmetric if o) (f** f) C R(')" for any compactly supported
continuous function f.

Clearly, Hermitian groups have a quasi-symmetric group algebra. Another
important class of groups with this property is that of groups with subexponential
growth, which comes as a consequence of the work of Hulanicki (for discrete groups
this was established in [7]):

Proposition 3. If G is a locally compact group with subexponential growth, then
L'(G) is quasi-symmetric.
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Proof. Let A : L'(G) — B(L?(G)) denote the left regular representation of L'(G).
Hulanicki proved in [8] that if G has subexponential growth then

Rpi)(f) = IADOI (13.4)

for any self-adjoint continuous function f of compact support. Moreover, Barnes
showed in [1] (a result which he credited to Hulanicki [9]) that if A is a Banach
*-algebra, B € A a *-subalgebra and if 7 : A — B(5) is a faithful
*-representation such that

Ry(b) = [[=@®)| .

for all self-adjoint elements b = b* in B, then 04(b) = o) (7w (b)) for every
b e B.

Considering 4 and B to be L'(G) and C,.(G) respectively, we see from (13.4)
that by taking 7 to be A we immediately get that o 1) (f** /) = 026 (A(f ™ *
) = o2y (A)*A(S)) for any f € Cc(G). Thus, since B(L*(G)) is a
C*-algebra, we have that o1(G)(f* * ) € Ry for f € C.(G), ie. L'(G) is
quasi-symmetric. |

The following result is the main result in this section and explains the reason for
considering quasi-symmetric group algebras in the context of C*-completions of
Hecke pairs.

Theorem 3. Let (G, I') be a Hecke pair. If G has a quasi-symmetric group algebra,
then

C*(LY(G,T")) = pC*(G)p.
In particular, there is a category equivalence between *-representations of
LY (G, I') and unitary representations of G generated by the I -fixed vectors.
Lemma 1. Let (G,I') be a Hecke pair and f € pL'(G)p. We have that

Proof. Let us denote by L'(G) the minimal unitization of L'(G) and let 1 €
L'(G)' be its unit. Let A € C and suppose that f — A1 is invertible in L' (G)". We
want to prove that f —Ap is invertible in pL'(G) p. Invertibility of f —Alin L'(G)T
means that there exist g € L'(G) and B € C such that 1 = (f — A1)(g + B1).
Hence we have

p=p(f—AD)(g+BDp = (pf —Aip)gp+ Bp)
= (fp—Ap)(gp +Bp) = (f —Ap)p(gp + Bp)
= (f —Ap)(pgp + Bp) -

Hence, f — Ap is invertible in pL'(G)p and this finishes the proof. O
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Proof (Theorem 3). Due to the canonical isomorphism L'(G,I") = pL'(G)p,
it is enough to prove that C*(pL'(G)p) = pC*(G)p. By [11, Corollary 6.11]
we only need to show that every *-representation of pL'(G)p is () z-positive. Let
7 : pL'(G)p — B() be a *-representation and f € L'(G)p. Let {g, }nen be a
sequence of functions in C.(G)p such that g, — f in L'(G). Then, we also have
g* % g, — f** fin L'(G). It is a standard fact that

o) ((8y * &) S 0,01, (80 * &n) s

and by Lemma 1 we have Ule(g)p(g;‘ * gn) S 011G (g * gn). Moreover, since
L'(G) is quasi-symmetric we have that o, , @) (&n *8n) S RSF . All these inclusions
combined give

UB(jf)(n(g;lI< * gn)) © O—le(E)p(g;lk * gn) C ULI(E)(g; * gn) C RY,

and therefore (g * g,) is a positive operator for every n € N. Thus, the
limit 7(f* % f) = limn(g) * g,) is also a positive operator. In other words,

7({f, f)r) = 0. O

As a consequence we immediately recover Kaliszewski, Landstad and Quigg’s
result on Hermitian groups and also that C*(L'(G, I')) =~ pC*(G)p =~ C*(G,TI")
for Hecke pairs arising from groups of subexponential growth:

Corollary 2 ([11, Theorem 6._14]). Let (G, I') be a Hecke pair. If@ is Hermitian,
then C*(L'(G,T")) = pC*(G)p.

Corollary 3. Let (G,I") be a Hecke pair. If one of the groups G, G, or G has
subexponential growth, then C*(L'(G,I")) =~ pC*(G)p =~ C*(G,T).

Proof. By Corollary 1, if G or G, has subexponential growth, then so does G in its
totally disconnected locally compact topology. Since G has subexponential growth,
we have that L'(G) is quasi-symmetric and therefore C*(L'(G,I")) = pC*(G)p
by Theorem 3. The isomorphism pC*(G)p = C*(G, I") follows from Tzanev’s
theorem (Theorem 1 in the present work), due to the fact that subexponential growth
implies amenability of the group G. O

13.4 Further Remarks on Groups with a Quasi-symmetric
Group Algebra

The classes of Hermitian groups and groups with subexponential growth are in
general different. On one side, there are examples of Hermitian groups which do
not have subexponential growth, such as the affine group of the real line Aff(R) :=
R xR*, with its usual topology as a (connected) Lie group, as shown by Leptin [13].
On the other side, there are examples of groups with subexponential growth which
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are not Hermitian, such as the Fountain-Ramsay-Williamson group [3], which is the
discrete group with the presentation

({uj}jeN | u? =e and wiujuu; = ujuuju; Vi, j <k EN).

Fountain, Ramsay and Williamson showed that this group is not Hermitian despite
being locally finite (thus, having subexponential growth). Another such example
was given by Hulanicki in [10].

Using these examples we can show that the class of groups with a quasi-
symmetric group algebra is strictly larger than the union of the classes of Hermitian
groups and groups with subexponential growth. In that regard we have the following
result:

Proposition 4. Let H be a Hermitian locally compact group with exponential
growth and let L be a discrete locally finite group which is not Hermitian. The
locally compact group G := H x L has a quasi-symmetric group algebra, but it is
neither Hermitian nor has subexponential growth.

An example of such a group is given by taking H := Aff(R) and L the Fountain-
Ramsay-Williamson group.

Proof. Let us first prove that G := H x L has a quasi-symmetric group algebra.
Given a function f € C.(G), the product f* % f also has compact support, and
since L is discrete, the support of f** f must lie inside some set of the form H x F,
where I C L is a finite set. Since L is locally finite, I generates a finite subgroup
(F) € G.Now H x (F) is an open subgroup of G, so that

L'(H x (F)) € L'(G).

The group H x (F) is Hermitian, being a finite extension of a Hermitian group, and
therefore o1y (py) (f* * f) C Rg’. This implies that

o)y (f* * f) Sopuxrn(f x ) C Ry,

which shows that G is quasi-symmetric.

This group is not Hermitian, because it has a quotient (L) which is not Hermitian,
and it does not have subexponential growth because it has a quotient (H) which does
not have subexponential growth. O

Since in the present work we are directly concerned with totally disconnected
groups (because of the Schlichting completion), it would be interesting to know if
there are examples of totally disconnected groups with a quasi-symmetric group
algebra, but which are not Hermitian nor have subexponential growth. We do
not know the answer to this question. The example considered in Proposition 4
is of course not totally disconnected since Aff(R) is a connected group. But in
view of Proposition 4, it would suffice to answer affirmatively the following more
fundamental problem:
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Question 2. Is there any Hermitian, totally disconnected group, with exponential
growth?

As we pointed out above, there are examples of locally compact groups (even
connected ones) which are Hermitian and have exponential growth, such as Aff(R),
but the question of whether this can happen in the totally disconnected setting is,
as far as we understand, still open. In the discrete case, Palmer [15] claims that
all examples of discrete groups which are known to be Hermitian actually have
subexponential growth (even more, polynomial growth).

On the other side, a negative answer to the above question would mean that any
Hermitian totally disconnected group necessarily has subexponential growth and
is therefore amenable, and thus would bring new evidence for the long standing
conjecture that all Hermitian groups are amenable [15], which is known to be true
in the connected case [15, Theorem 12.5.18 (e)]. In fact, a negative answer to 2
in the discrete case alone would, through the theory of extensions, imply that all
Hermitian groups with an open connected component are amenable.

The fact that we do not know of any totally disconnected group with a quasi-
symmetric group algebra which does not have subexponential growth is not a
drawback in any way. In fact, the class of groups with subexponential growth is
already very rich by itself and will be used to give meaningful examples in Hecke
C *-algebra theory and Hall’s equivalence in the next section.

13.5 Hall’s Equivalence

Combining the results of [14] on the existence of C*(G, I") and the isomorphism
C*(G,T') = C*(L"(G, I')), with the results on this paper on groups of subexpo-
nential growth and also Tzanev’s theorem, we are able to establish that

C*(G, N = C*(L'(G,I')) = pC*(G)p = C*(G,T),

for several classes of Hecke pairs, including all Hecke pairs (G, I") where G is a
nilpotent group. As a consequence, [11, Corollary 6.11] (Theorem 2 in the present
work) yields that Hall’s equivalence is satisfied for all such classes of Hecke pairs.

Proposition 5. If a group G satisfies one of the following generalized nilpotency
properties:

* G is finite-by-nilpotent, or
e G is hypercentral, or
e All subgroups of G are subnormal,

then for any Hecke subgroup I' € G we have that C*(G, I') exists and
C*(G,I') =C*(L'(G,IN)) = pC*(G)p = C*(G.T).

In particular, Hall’s equivalence holds with respect to any Hecke subgroup.
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Proof. As discussed in [14, Classes 5.8, 5.9, 5.5] for every Hecke pair (G, I") where
G satisfies one of the aforementioned properties we have that the full Hecke C*-
algebra exists and C*(G, I') = C*(L'(G, I")).

We claim that if G has one of the three properties above, it must have
subexponential growth. If G is finite-by-nilpotent, then by definition G is a nilpotent
extension of a finite group, and since nilpotent groups have subexponential growth,
then so does G. If G is hypercentral or all subgroups of G are subnormal, then
it is known that G is locally nilpotent and therefore must have subexponential
growth (see [7]). Consequently, by Corollary 3 we must have C*(L'(G, ")) =
pC*(G)p = C*(G,T). O

If we restrict ourselves to finite subgroups I"” € G we get a similar result for
other classes of groups:

Proposition 6. Ifa group G satisfies one of the following properties:

e G isan FC-group, or
* G is locally nilpotent, or
e G is locally finite,

then for any finite subgroup I' € G we have that C*(G, I') exists and
C*(G,I') = C*(L'(G,TIN)) = pC*(G)p = C*(G,T).

In particular, Hall’s equivalence holds with respect to any finite subgroup.

Proof. As discussed in [14, Classes 5.10,5.11, 5.12] for every group G that satisfies
one of the aforementioned properties we have that, for any finite subgroup I, the
full Hecke C *-algebra exists and we have C*(G,I") = C*(L'(G,I")). Also if G
has one of the three properties above, it must have subexponential growth (for F'C-
and locally nilpotent groups see [7], and for locally finite groups it is obvious).
Consequently, by Corollary 3 we must have C*(L'(G,I")) = pC*(G)p =
CX(G,T). O

Remark 2. The results above show that Hall’s equivalence holds for any Hecke pair
(G, I') where G satisfies a certain generalized nilpotency property. An analogous
result for the class of solvable groups cannot hold. In [17, Example 3.4] Tzanev gave
an example of a Hecke pair (G, I') where G is solvable but for which C*(G, I')
does not exist, and consequently Hall’s equivalence does not hold. The example
consists of the infinite dihedral group G := Z x (Z/2Z) together with I" := Z/27.

13.6 A Counter-Example

In the previous sections we have established a sufficient condition for the iso-
morphism C*(L'(G,I')) = pC*(G)p to hold, namely whenever G has a
quasi-symmetric group algebra. A natural question to ask is the following: is
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it even possible that C*(L'(G,I")) % pC*(G)p? We will now show that
C*(LY(G,I")) 2 pC*(G)p for the Hecke pair (PSL»(Q,), PSL2(Z,)), where ¢
denotes a prime number and Q,, Z, denote respectively the field of g-adic numbers
and the ring of g-adic integers. It was already asked in [11, Example 11.8] if
C*(L'(G,I')) 2 pC*(G)p for this Hecke pair and a strategy to achieve this result
was designed. Our approach is nevertheless different from the approach suggested
in [11] since we make no use of the representation theory of PSL>(Qj).

As we remarked in the introduction, Tzanev has claimed that the Hecke pair
(PSL3(Qq), PSL3(Z,)) gives another example, but no proof has been published.

Theorem 4. Let q be a prime number and Qg and Z, denote respectively the field
of q-adic numbers and the ring of q-adic integers. For the Hecke pair (G,I") :=
(PSL»(Qyq), PSL>(Zy)) we have that C*(L'(G, I")) % pC*(G)p.

Proof. For ease of reading and so that no confusion arises between the prime
number ¢ and the projection p, we will throughout this proof denote the projection
p by P. Thus, our goal is to prove that C*(L' (G, I")) ¢ PC*(G)P.

The pair (PSL»(Qy), PSL1(Z,)) coincides with its own Schlichting completion
(see [11]) and is the reduction of the pair (SL2(Qy), SL2(Zg)). For ease of reading
we will work with the pair (SL2(Qy), SL2(Z,)) in this proof.

The structure of the Hecke algebra (G, I") is well-known, and for convenience
we will mostly refer to Hall [6, Sect. 2.1.2.1] whenever we need to. Letting

_ (9" 0
e (0 61‘”) ’

it is known ([6, Proposition 2.9]) that every double coset I'sI" can be uniquely
represented as I'x, I" for some n € N.
For each 0 < k < g — 1 let us denote by yx € G the matrix

_(a k
e (0 q‘l) ’

and let us take g € L'(G)P as the element g := yoP + yi P +-+-+ y,—1 P, and
f = P + g. We then have

f*f=P+"(P+g = P+g"P+Pg+g'g
q—1 q—1 q—1

=P+) Py'P+) PuP+ Y Py'yP
k=0 k=0 i.j=0

q—1 q—1 q—1

=(@+DP+)Y_Py'P+> PyP+ Y PylyP.
k=0 k=0 i,_j;o
iF#]
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As it is know (see for example [6, Propositions 2.10 and 2.12]), in JZ(G, I") the
modular function is trivial and each double coset is self-adjoint. Hence we can write

q—1 q—1
f*f=@+DP+2) PyP+2 Py ly;P.
i J
k=0 i,j=0
i<j

We now notice that, from [6, Proposition 2.9], we have 'y, I" = ['x;I", and
therefore Py, P = Px; P. Moreover,for0 <i < j < g — 1, we have that

- 1(j—i)g™!
1y, —
yi y] (0 1 4

and again from [6, Proposition 2.9] we conclude that Py;'y; P = Px; P. Hence,
we get

(g —Dgq

f*f=@+1)P+2qPx;P+2 Px, P

=@+ 1P+ (q*+q) PxP.

It is well known that (G, I') is commutative (see for example [6, Sect. 2.2.3.2])
and all of its characters have been explicitly described. Following [11,
Example 11.8] the characters of (G, I") are precisely all the functions
w, . (G, ') — C such that

1-— m — 1\m
w(Pn?) = 55 (G) * Grnaa@)

for a given complex number z € C\{1} (the expression for m; is different and the
reader should check [11, Example 11.8] for the correct definition, but we will not
need it here). Kaliszewski et al. [11, Example 11.8] have also determined that the
characters 7, which extend to *-representations of L'(G, I") are precisely those
with z € [-¢,—1/q] U [1/q,q].

We will now consider the *-representation 7_, of L'(G,I") and show that
74 (f* f) < 0. First we notice that

1—q(—q) —q q—(—q) 1
(P P) = o C () G ha - coleca)
1447 2
T @+ 1?2 (@t
P Ha+2

(q+1)?%q
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Hence we get

ng(f*f)=n_4((g + 1) P+ (¢> +q) Px; P)

3
q +q+2
=q+1—(*+q9)——
(g + 1%
3
q°+q+2
a q+1

To prove that 7—, (f* f) < 0 is then equivalent to show that (¢ + 1)* < ¢*> +¢ +2,
or equivalently, 0 < ¢* —g* — g + 1, for any prime number ¢. This follows from an
elementary calculus argument as follows: letting F(x) = x* — x> — x + 1, we have
that F”(x) = 6x — 2 is always greater than O for x > 2 (the first prime number).
Hence, F'(x) = 3x% — 2x — 1 is growing for x > 2. Since F'(2) > 0, it follows
that F’(x) is always greater than O for x > 2. Thus, F(x) is growing in this interval,
and since F(2) > 0, it follows that F'(¢) > 0, for any prime g.

Since 7, (f* f) < 0 it then follows that not all representations of L'(G, I') are
() r-positive and consequently C*(L'(G,I")) 2 PC*(G)P. O

As a particular consequence of the above theorem, it follows that PSL,(Q,)
does not have a quasi-symmetric group algebra. Also, together with Hall’s result
[6, Proposition 2.21] and the fact that PSL,(Q,) is not amenable, we can say that
for this Hecke pair C*(G, I') does not exist and C*(L'(G,I")) % pC*(G)p %
Cx(G,TI).

As we have seen in this chapter, the isomorphism C*(L'(G,T")) = pC*(G)p
holds whenever G, G, or G has subexponential growth. We would like know if
the same is true or if one counter-example can be found for the class of amenable
groups:

Question 3. If G is amenable does it follow that C*(L'(G,T")) = pC*(G)p?
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Chapter 14

Dynamics, Wavelets, Commutants and Transfer
Operators Satisfying Crossed Product Type
Commutation Relations

Sergei Silvestrov

Abstract An overview is provided of several recent results, constructions and
publications relating dynamical systems, wavelets, transfer operators satisfying
covariance commutation relations associated to non-invertible dynamics, defining
generalizations of crossed product operator algebras to non-invertible dynamics or
actions by semigroups, ideals in the corresponding crossed product type algebras
and commutants of elements and subsets in the algebras and in their representations.
Some open directions and open problems on this rich interplay motivated by these
constructions and results are also indicated.

Keywords Dynamical system ¢ Crossed product algebra ¢ Commutant * Ideal
Wavelet representation  Quadrature mirror filter » Cantor set

Mathematics Subject Classification (2010): 42C40, 28A80, 47165, 37A30

14.1 Introduction

The interplay between dynamical systems and operator theory and operator algebras
is now a well developed subject [13,17,22,42,72,74,86,87]. The interplay between
topological properties of the dynamical system (or more general actions of groups)
such as minimality, transitivity, freeness and others on the one hand, and properties
of ideals, subalgebras and representations of the corresponding crossed product
C *-algebra on the other hand has been a subject of intensive investigations at least
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since the 1960s. In the recent years, substantial efforts are made in establishing
broad interplay between C *-algebras and non-invertible dynamical systems, actions
of semigroups, equivalence relations, (semi-)groupoids, correspondences (see for
example [1,3,4,10-12,14-16,18,19,23,26-28,31,37,39-41,44,50-52,61,72,77-
79, 88], and references therein).

This interplay and its implications for operator representations of the correspond-
ing crossed product algebras, spectral and harmonic analysis, non-commutative
analysis and non-commutative geometry are fundamental for the mathematical
foundations of quantum mechanics, quantum field theory, string theory, integrable
systems, lattice models, quantization, symmetry analysis and, as it has become clear
recently, in wavelet analysis and its applications in signal and image processing
(see [11,22,48,58-60,72,74,89] and references therein). In particular, the operator
theoretic approach to wavelet theory has been extremely productive [10-12, 19,43].
The connections between irreducible covariant representations, ergodic shifts on
solenoids, fixed points of transfer (or Ruelle) operators, as well as the related
investigations on interplay between decompositions or reducible representations,
centers and commutants in corresponding crossed product algebras and periodicity
and aperiodicity, freeness, minimality, transitivity, ergodicity and related properties
of the corresponding topological dynamical system, are of major importance in these
contexts.

Wavelets are functions that generate orthonormal bases under certain actions of
translation and dilation operators. They have the advantage over Fourier series that
they are better localized. More precisely, in the theory of wavelets, orthonormal
bases for L2(R) are constructed by applying dilation and translation operators, in
a certain order, to a given vector ¥ called the wavelet. Thus from the start, in
this construction, there are two unitary operators, the dilation operator U and the
translation operator 7 on L?(R),

1
2

satisfying a covariance relation with the action defined by the non-invertible map
7 +> z2 on the complex plane C or on the unit circle T or on the real line R:

Uf@) = —=f(3): Tf0=fr=D. ek fel’®) (141

UTUu ' =12 (14.2)

Since T is a unitary operator, its spectrum is a subset of the unit circle T. Using
Borel functional calculus, one can define a representation of L*(T) on L?(R), by
n(f) = f(T), (f € L*(R)), which means in particular that = (z") = T"
and for polynomials 7 ()", ) = > ok dk Tk. The representation satisfies the
covariance relation:

Un(HU™ = n(f(@). (f € L=(T) (14.3)
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Crossed product W*-algebras or covariant representations of crossed product
C*-algebras of functions by a group action (invertible dynamics) are defined by
such relation except that in the context of Wavelets, the dynamics (the action) on
the space of definition of the functions is not invertible, meaning that the action by
the group Z is replaced by the action of a semigroup of non-negative integers put in
correspondence with forward iterations of the acting non-invertible map. A natural
general way to include the information about the inverse iterations given by inverse
branches (pre-images) into such crossed-product algebra structure is to attach to it
the transfer operators averaging in some ways the values of the functions over all the
pre-images of the acting non-invertible map. This turns out to be vary fruitful and
relevant for investigation of dynamics and wavelets using the operator approach, and
is also the framework used in the Exel’s crossed product algebras by a semigroup.

In the paradigmatic classical example from wavelet analysis described above a
wavelet is a function ¥ € L?(R) with the property that

(2179 - k) : j.k € Z} (14.4)

is an orthonormal basis for L?(R) (see for example Daubechies’ classical book [21]
for details). Using the operators U and T, the family defined in (14.4) can be written
as {U TRy« jk e Z}. The main general technique of constructing wavelets
is by a multiresolution analysis (multiresolution). A multiresolution analysis or
multiresolution is a sequence (V}),ez of closed subspaces of L*(R) with the
following properties:

1. V, € V,4  foralln € Z;

2. UVyq1 =V, foralln € Z;

3. U,V, is dense in L?(R) and N, V,, = {0};

4. There exists a function ¢ € L?(R) called the scaling function, such that {T%¢ :
k € Z} is an orthonormal basis for V.

The subspaces V,, correspond to various resolution levels. Once a multiresolution
analysis is given, the wavelet can be found in the detail space: Wy := Vi © V. Itis
a function v with the property that {T¥v : k € Z} is an orthonormal basis for W,
The multiresolution is constructed easily from the scaling function ¢. Since Ug is
in V_; C V), it can be written as a combination of translates of ¢. This gives the
scaling equation for the function ¢:

Up = arT . (14.5)
kEZ

Starting from a quadrature-mirror-filter (QMF) my € L°(T) that satisfies the
OMF-condition

1
5 2 mow)P =1, (e, (14.6)

W2 =z
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the low-pass condition mo(1) = +/2, and perhaps some regularity (Lipschitz, etc.),
the scaling function ¢ associated to the QMF my is constructed by an infinite product
formula for its Fourier transform

mo (€21 37)

> e
x)=1|—F
1177

where f denotes the Fourier transform f (x) = fR f(t)e 2 x dt, (x € R), of the
function f.

The scaling function satisfies the scaling equation, which in terms of the
representation 7t can be written as

Up = n(my)g, (14.7)
with the low-pass filter mo(z) = ) ¢y ai7*, (z € T), which is the starting point for
the construction of the multiresolution analysis. A multiresolution associated to ¢ is

generated as a sequence of subspaces V,,, n € Z:

Vo = span{T*¢ |k € Z} = span{n(f)¢ | f € L>(T)}.

V,=U"Vy, (neZ)

satisfying the scaling equation V,, € V},4; and

UV =L2®). (14.8)

nez

With m carefully chosen, one can obtain orthonormal scaling function ¢, i.e., such
that its translates are orthogonal (Tk @, T! (p) = §y; for k, [ € Z. Equivalently

(). o) = /T fdu. (f € L(T)). (14.9)

Given the orthonormal scaling function and the multiresolution, the wavelet is
obtained by considering the detail space Wy := V| © Vj. Analyzing the multiplicity
of the representation w on the spaces Vy and Vi, one can see that there is a
function v such that {T*y |k € Z)} is an orthonormal basis for W,. The set
{U"T*y |n,k € Z)} is an orthonormal basis for L2(R), and thus v is a wavelet.
Since one is aiming at scaling functions whose translates are orthogonal, a necessary
condition on my is the quadrature mirror filter (OMF) condition (14.6).

Wavelet representations were introduced in [24, 31, 49] in an attempt to apply
the multiresolution techniques of wavelet theory [21] to a larger class of problems
where self-similarity, or refinement is the central phenomenon. They were used to
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construct wavelet bases and multiresolutions on fractal measures and Cantor sets
[29] or on solenoids [25]. Wavelet representations can be defined axiomatically as
follows. Let X be a compact metric space and let 7 : X — X be a Borel measurable
function which is onto and finite-to-one, i.e., 0 < #r~'(x) < oo forall x € X. Let
W be a strongly invariant measure on X, i.e.

1 o0
/X fdp = /X e X S0due). (feLTX) (1410)

r(y)=x
Let mg € L*°(X) be a QMF filter, i.e.,

1

2 _
ey 3 Imo)P = 1for p-ae.x € X (14.11)

r(y)=x

Theorem 1 ([31]). There exists a Hilbert space ¢, a unitary operator U on I, a
representation w of L°°(X) on € and an element ¢ of 7 such that

1. (Covariance) Un(f)U ' = n(f or) forall f € L®(X).
2. (Scaling equation) Up = mw(mg) e

3. (Orthogonality) (w(f)¢, ¢) = [ fdu forall f € L=(X).
4. (Density) {U™"n(f)e|n € N, f € L®°(X)} is dense in F.

Moreover they are unique up to isomorphism.

Definition 2. The quadruple (7, U, m,¢) in Theorem 1 is called the wavelet
representation associated to m.

The issues of reducibility, irreducibility and decompositions of wavelet repre-
sentations are central for analysis and constructions of multiresolutions, wavelets,
bases, corresponding harmonic analysis and their applications. The commutant of
representation plays important role in these contexts. The paradigmatic classical
wavelet representation 7 on L?(R), defined via Borel functional calculus by the
dilation and translation operators described above, is associated to the map r(z) = 7>
on T. The measure w is the Haar measure on the circle, and m can be any low-pass
QMF filter which produces an orthogonal scaling function (see [21]). For example,
the Haar filter mo(z) = (1 + z)/+/2 produces the Haar scaling function ¢. This
representation is reducible. The commutant was computed in [43] and the direct
integral decomposition was presented in [57]. Some low-pass filters, such as the
stretched Haar filter mo(z) = (1 + 2°)/v/2 give rise to non-orthogonal scaling
functions. In this case super-wavelets appear, and the wavelet representation is
realized on a direct sum of finitely many copies of L>(R). This representation is also
reducible and its direct integral decomposition is similar to the one for L?(R) (see
[9,25]). For the QMF filter my = 1 the representation can be realized on a solenoid
and in this case it is irreducible [25]. The result holds even for more general maps
r, if they are ergodic (see [33]).
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The general theory of the decomposition of wavelet representations into irre-
ducible components was given in [25], but there is a large class of examples where
it is not known whether these representations are irreducible or not.

The wavelet representation associated to the map r(z) = z* on the unit circle T
with the Haar measure 4 and the QMF filter mo(z) = (1 + z2)/+/2 is strongly
connected to the middle-third Cantor set C (see [30]). This representation is
reducible [34]. A wavelet representation whose scaling function is the Sierpinski
gasket is constructed in [20] by d’Andrea, Merrill and Packer. They also present
some numerical experiments showing how this multiresolution behaves under the
usual wavelet compression algorithm. In [8, 55, 56] the wavelet representations are
given a more operator theoretic flavor. A groupoid approach is presented in [45].
General multiresolution theories are considered in [5-8].

14.2 Wavelet Representations, Solenoids
and Symbolic Dynamics

Wavelet representations can be realized on the solenoid associated to the underlying
dynamics [31], that is in terms of the symbolic dynamics of the orbit space. The
solenoid associated to the map r is defined as the set of all inverse iteration paths
(backward orbits) for the dynamical system generated by r:

Xoo := {(x0,x1,...) € X" |r(xy41) = x, foralln > 0} (14.12)

also sometimes being convenient to view as the forward orbits of the iterated
function system generated by the pre-image maps (inverse maps) of r. Given the
map 7 : X — X, the map ro : Xoo = Xoo defined by

Foo(X0, X1,...) = (r(xo), X0, X1,...) forall (xg,x1,...) € Xoo (14.13)

is a measurable automorphism on X, with respect to the o-algebra generated by
cylinder sets. Let c(x) := #r~'(r(x)) and W(x) = |mo(x)|*/c(x) forall x € X.
Then

YWy =1 (xeX), (14.14)
r(y)=x

and W (y) can be interpreted as the transition probability from x to one of the roots
y of the equation x = r(y) (pre-images of x under r). The path measure P, on the
fibers 2, := {(x0,x1,...) € Xoo | X0 = x} with x € X, defined on cylinder sets
forany zj,...,2, € X by

Px({(xn)nZO ER | xi=z1,....% =2}) = W) ... W(zn), (14.15)
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can be interpreted as the probability of the random walk to go from x to z, through
the points x; = zj,...,X, = 2z, and defines the measure (Lo, on Xo via the
condition

/fduoo :/X/m f(x,x1,...)dPy(x,x1,...)du(x) (14.16)

for bounded measurable functions on X. Consider now the Hilbert space ¢ :=
L*(X oo, floo)- Let 0,,(x0, X1,...) = X, for m > 0 be the projection map 6,, :
Xoo — X onto the mth coordinate. Then in particular 6y : Xoo — X is the
projection map 6y(xg, x1,...) = Xo onto the initial Oth coordinate (xo-coordinate)
and the relation between the maps r, roo, 6 is described by the commutative diagram

Xoo = Xoo
6o | 16y, 6Gporee=roby
x5 x

meaning that the projection 6 is an intertwining map for the maps r and r. Define
the operator

Ut = (mgo )& ore, (£€L*(Xoosfloo)) (14.17)

and the representation of L*°(X) on .57

n(f)E=(fo00)€ (f€L®X).§€L* (Xoo hoo)) (14.18)

and let ¢ = 1 be the constant function 1 on X . If mg is non-singular, i.e., u({x €
X |mo(x) = 0}) = 0, then the data (77, U, , ¢) forms the wavelet representation
associated to mg (see [31]).

14.3 Commutants and Reducibility of Wavelet
Representations and Fixed Points
of the Transfer Operators

Irreducibility and reducibility of wavelet representations as well as decomposition
theorems (generalized spectral theorems) involve the study of the commutant of the
representation. There are actually several equivalent ways to formulate the problem
of reducibility or irreducibility of the wavelet representations yielding different
approaches and insights. The commutant of the wavelet representations, i.e., the set
of operators that commute with both the “dilation” operator U and the “translation”
operators 7( f), has a simple description, and the operators in the commutant are
in one-to-one correspondence with bounded fixed points of the transfer operator.
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The commutant of the classical wavelet representation on L*(R) was computed
in [19]. The commutant for other choices of filters, such as my = 1 or for the
wavelet representation associated to the Cantor set and connection to reducibility
or irreducibility of wavelet representations have been considered for example in
[33]. Some of the results pertaining to irreducibility and reducibility of the wavelet
representations and commutant are presented in the next several theorems.

Theorem 3 ([31]). Suppose my is non-singular. Then there is a one-to-one corre-
spondence between the following data:

1. Operators S in the commutant of {U, 7 }.

2. Cocycles, i.e., functions [ € L% (Xoo, [oo) Such that f oreo = [, lloo-a.e.

3. Harmonic functions h € L*(X) for the transfer operator R, i.e., R,;h = h,
where

Ry f(x) = > ImeWIPf ().

1
Hr—1
) G
The correspondence 1 <> 2 is given by S = M y where M ¢ is the multiplication
operator My§ = f§ § € L*>(X 0, [too). The correspondence from 2 to 3 is
given by

h(x) :/ flx,x1,...)dPx(x,x1,...).
Q,’C
The correspondence from 3 to 2 is given by
f(x,x1,...) = lim h(x,), for io-a.e. (x,x1,...) in Xeo.
n—>oo

Using Theorem 3, the following criteria for irreducibility or reducibility of the
wavelet representation has been obtained in [33].

Theorem 4 ([33]). Suppose that my is non-singular. The following affirmations are
equivalent:

1. The wavelet representation is irreducible, i.e., the commutant {U, 7t} is trivial.

2. The automorphism roo on (Xeo, floo) IS ergodic.

3. The only bounded measurable harmonic functions for the transfer operator R,
are the constants.

4. There are no non-constant fixed points of the transfer operator h € L? (X, ),
for some p > 1 with the property that

sup/ |m(()n)(x)|2|h(x)|” du(x) < oo (14.19)
X

neN
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where
m(x) = mo(x)mo(r(x)) ... mo(r"'(x)), (x € X). (14.20)

5. If ' € L*(Xoo» oo), Satisfies the same scaling equation as ¢, i.e., Up' =
7 (mo)@’, then ¢’ is a constant multiple of ¢.

The following theorem, proved in [34], shows that under some mild assumptions
the wavelet representations are reducible.

Theorem 5 ([34]). Suppose r : (X, u) — (X, p) is ergodic. Assume |my| is not
constant 1 ji-a.e., is non-singular, i.e., j1({x | mo(x) = 0}) = 0, and log |mo|? is in
L'(X). Then the wavelet representation (', U, 1, ¢) is reducible.

The proof in [34] uses Jensen’s inequality, Birkhoff’s ergodic theorem, Egorov’s
theorem and Borel-Cantelli’s lemma. As an application of this theorem yields a
solution of the problem posed by Judith Packer who formulated the following
question: is the wavelet representation associated to the middle third Cantor set
described in the introduction irreducible? The answer is that this representation is
reducible [34]. Using this result about reducibility of the wavelet representation in
combination with results from [33], one can get that there are non-trivial solutions
to refinement equations and non-trivial fixed points for transfer operators for mg
satisfying the conditions in Theorem 5. For m as in Theorem 5 and the associated
wavelet representation (¢, U, 7, ¢), there exist solutions ¢’ € 5 for the scaling
equation Up’ = m(mg)¢’ which are not constant multiples of ¢, and there exist
non-constant, bounded fixed points for the transfer operator (see [34])

1
R /() = o= 20 ImoIPSB). (f € L¥(X).x € X).

r(y)=x

In the case |my| = 1 not covered by Theorem 5, the corresponding representation
can be irreducible [35].

Theorem 6. Let mo = 1 and let (L*(Xoo, hoo), U, 7, @) be the associated wavelet
representation. The following affirmations are equivalent:

1. The automorphism roo on (Xoo, lhoo) is ergodic.

2. The wavelet representation is irreducible.

3. The only bounded functions which are fixed points for the transfer operator Ry,
ie.,

1

th(x) = m

> h(y) = h(x)

r(y)=x

are the constant functions.
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4. The only L*(X, w)-functions which are fixed points for the transfer operator Ry,
are the constants.
5. The endomorphismr on (X, ) is ergodic.

The study of invariant spaces for the wavelet representation {U, 7} is equivalent
to the study of the invariant sets for the dynamical system r on (Xoo, hoo). Since
the operators in the commutant of {U, '} are multiplication operators M,, with g €
L*® (X0, oo) and g = gore (see [31]), the orthogonal projection onto a subspace
2 which is invariant under U and 7 (f) for all f € L°°(X), is an operator in the
commutant and so it corresponds to a multiplication by a characteristic function
X4, where A is an invariant set for 7o, i.6., A = ro_o1 (A) = reo(A), oo-a.e., and
H = L%(A, [Loo)- This can be used for example to show, that under the assumptions
of Theorem 5, there are no finite-dimensional invariant subspaces for the wavelet
representation (see [35] for the proof).

In [32] a decomposition problem has been investigated for a class of unitary
representations associated with wavelet analysis, wavelet representations in a wide
framework having applications to multi-scale expansions arising in dynamical
systems theory for non-invertible endomorphisms. A direct integral decomposition
for the general wavelet representation, and a solution of a question posed by Judith
Packer have been obtained, a detailed analysis of the measures contributing to
the decomposition into irreducible representations have been performed involving
results for associated Martin boundaries, wavelet filters, random walks, as well
as classes of harmonic functions. As described previously, with measures on the
solenoid (Xoo, '00), built from (X, r) the map r induces unitary operators U on
Hilbert space 7 and representations 7 of the algebra L°°(X) such that the pair
(U, ro), together with the corresponding representation & forms a crossed-product
in the sense of C *-algebras, and the traditional wavelet representations fall within
this wider framework of (77, U, ) covariant crossed products.

With 729 = 1 and 71, = (mg o 6p) - (Moo 00 reo) ... (Mmoo byor’sh) forn > 1,
and

1
" (mpobyo rel) ... (mooByork)

, forn <0,

the function m : Xo X Z — C* defined by m(x,n) = m,(x) gives
a one-cocycle for the action of Z on X determined by ro, and U being
an isometry yields [Eduoe = [|ma|*6€ o r’due for n € Z and
£ € L*(Xoo,Jloo). For z = (20,21,...) in Xo consider the Hilbert space
A = {EDner t Ypey [&n*Mn(2)|* < oo}, with inner product (§, Mo =
3 ez €Tl (2)]?. Since my is non-singular, the points z € Xoo, such that one of
the functions 71, (z) = 0, form a set of jto-measure zero.
Define the unitary operator

U.(¢4)nez = (mgo g o rgo(z)gn+l)nel
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and the representation 7 of L*°(X):

() Enez = (f 0 0o 0 15 ()Ennez.  (f € L¥(X)).

The representation 7, is defined for bounded functions on X, not just essentially
bounded. The p-measure zero sets will affect the individual representations i,
but not their direct integral (see below). For ps almost every z € X, the
triples [Z, U,, ;] form an irreducible representation [32]. The proof for this fact
demonstrates the importance and application of maximal commutativity of the
canonical subalgebras in crossed products and significance of the periodic points of
the dynamics in this context. Further on, in this work, the maximal commutativity of
such canonical subalgebras for crossed product type algebras and C *-algebras and
the interplay with properties of the dynamics connected to periodic and aperiodic
points will be addressed again. Meanwhile, returning to the proof, it is a matter of
simple computations to check that U, is unitary, r, is a representation and that the
crossed product type covariance commutation relations U, 7, ( f )UZ_1 =m,(for)
hold for all f € L°°(X). To see that the representation is irreducible for pleo-
a.e. z, take z to be non-periodic, i.e., 75 (z) # z for all n # 0. Then {nm (f) :
f € L*°(X)} forms a maximal abelian subalgebra with cyclic vector §y (see [85,
Corollary III.1.3]), where §o(n) = 1 for n = 0, and §p(n) = 0 otherwise. Then,
an operator A that commutes with U, and 7, has to be of the form 7,(g) for some
g € L*®(X). Since A commutes with U, we have m,(gor) = UZJrZ(g)UZ_1 = ,(g).
This implies that g is constant on {rj (z) : n € Z}, so A is a multiple of the identity.
A subset F of X« is called a fundamental domain if, up to jLeo-measure zero:

| Jri(F) =Xoo and  rl(F)NrL(F) =0 forn # m.

nez

For any dynamical system or action the question of existence and then construction
of fundamental domains are of fundamental importance. The next general theorem,
states the existence of such fundamental domain and provides a direct integral
decomposition for general wavelet representations into irreducibles in as clean form
as is realistically feasible, in particular completely solving a question posed by
Judith Packer, see e.g., [5-8,73].

Theorem 7 ([32]). In the hypotheses of Theorem 5, there exists a fundamental
domain 7. The wavelet representation associated to mo has the following direct
integral decomposition:

D
.U, m] = L .U 1] djtos 2),

where the component representations [7¢,, U,, ;] in the decomposition are irre-
ducible for a.e., z in F, relative 10 [Loo.
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In [32], the measures in the decomposition were studied further using p-harmonic
functions, Green function or potential functions, trees and sub-trees in the orbit
spaces of the non-invertible dynamics, regular and periodic and aperiodic points,
transition probabilities and not reversible transition processes and random walks,
Martin boundaries, Martin compactification and Martin kernels. The proof of the
theorem in [32] is rather long and elaborate and thus is beyond of the scope of this
review. What can be however mentioned here about that proof is that it in particular
indicates one possible general way to construct the fundamental domains, but this
way is not very practical and the fundamental domains obtained in such a way are
typically not the most easily describable and not the most convenient for further
analysis and computations. Thus the problem of constructing better and easier to
handle fundamental domains for wavelet representations is open and is important
for gaining further insight into the structure and properties of the corresponding
wavelet representations and wavelet bases.

14.4 Maximal Commutativity of Subalgebras, Irreducibility
of Representations and Freeness and Minimality
of Dynamical Systems

As have been demonstrated in the previous section the property of the maximal
commutativity (maximal abelianess) of the canonical commutative subalgebra in
the crossed products and their representations play pivotal role in proving that
wavelet representations, or in general representations of covariance relations and
of crossed product algebras associated to dynamical systems, are irreducible under
appropriate conditions on the dynamics closely concerned with the periodicity and
aperiodicity in the orbit space of the dynamics [32]. Such properties as ergodicity,
minimality or freeness of the dynamics (action) therefore are highly relevant in
this context. In [2, 36, 38, 53, 54, 76, 80, 86, 87, 90], it was observed that the
property of topological freeness of the dynamics for a homeomorphism, or for
more general actions of groups (i.e., reversible dynamics), is equivalent or closely
linked to the position of the algebra of continuous functions inside the crossed
product C*-algebra, namely with whether it is a maximal abelian subalgebra or
not. Moreover, in these pioneering works the property of topological freeness of
the dynamics for a homeomorphism, or for more general actions of groups (i.e.,
reversible dynamics), has been shown also closely linked with the structure of the
ideals in the corresponding crossed product C *-algebra and in particular with the
existence of non-zero intersections between ideals and the algebra of continuous
functions embedded as a C *-subalgebra into the crossed product C *-algebra. This
interplay has been considered both for the universal crossed product C*-algebra
and for the reduced crossed product C *-algebra, the later providing one of the
important insights into the significance of those properties for representations of
the crossed product. In one of the novel recent developments, envisioned by the
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present author, it has been noticed that for reversible dynamical systems and crossed
product algebras [81-83] this important interplay holds and can be applied far
beyond context of C *-algebra crossed products, in algebraic, in Banach algebraic
and in other contexts possibly with suitable modification of the corresponding
properties of the involved dynamics and of subsets of the investigated crossed
product. In particular, in these works, first steps were made into approaching this
interplay for crossed products associated with non-free dynamics, via studying in
detail the relevant commutant of the canonical commutative subalgebra when it is
not maximal commutative as well as subalgebras of the relative commutant and
properties of dual of the commutative subalgebras in the crossed product algebras
and the associated dynamics on the spectra. It has been observed first in these works
that the relative commutant has the remarkable intersection property with non-zero
two-sided ideals, i.e., it intersects any two-sided ideal non-trivially for any non-
invertible dynamics. In a series of follow up works to [8§1-83], this novel approach,
results and ideas have been further explored and substantially expanded, deepened
and applied in various directions, for classical crossed product C*-algebras and
Banach x-algebras associated to invertible topological dynamics in [46, 47, 84],
and for various generalizations of crossed product algebras (strongly graded rings,
crystalline graded rings, crossed product type algebras, categorial crossed product,
Ore extension rings, etc.) in [62-71].

The author feels that one result from this fast developing direction deserves
especially attention of the readers in the context of this review. This is a result
(Theorem 10) which extends the classical motivating Theorem 8§ about interplay
between maximal commutativity, intersection property with two-sided ideals and
topological freeness of the dynamical system, from crossed product C*-algebras
associated with actions by Z of homeomorphisms on topological spaces to crossed
product C*-algebras by semigroup actions of the topological dynamical systems
generated by covering maps on topological spaces (a broad class containing
many non-invertible maps). Moreover, the connection to certain properties of
representations of such generalized crossed products is also introduced in this
extended result, showing again clearly the importance of maximal commutativity
for investigation of representations of generalized crossed product algebras by non-
invertible actions defined using forward action and the transfer operators. The
Theorem 10 furthermore implies that in the context of non-invertible maps and
associated to them transfer operators the freeness properties of the dynamics as well
as the intersections properties of the canonical subalgebra with two-sided ideals are
highly relevant to investigation of representations. To present this result in proper
historic context, we start by presenting the classic motivating pivotal result for
crossed product C*-algebras by Z associated to homeomorphism on topological
spaces, established in its different parts in [2,38, 53,54, 86, 87,90], and presented in
the following clear and convenient formulation first in [87, Theorem 5.4].

Theorem 8. The following three properties are equivalent for a compact Hausdorff
space X and a homeomorphism o of X :
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~

. The non-periodic points of (X, o) are dense in X ;

2. Any non-zero closed ideal 1 in the crossed product C*-algebra C(X) Xo Z
satisfies I N C(X) # {0},

3. C(X) is a maximal abelian C*-subalgebra of C(X) X Z.

Let X be a compact Hausdorff space and let 7 : X — X be a covering map,
ie., T is continuous and surjective and there exists for every x € X an open
neighborhood V of x such that 77!(V) is a disjoint union of open sets (Uy)qes
satisfying that 7" restricted to each U, is a homeomorphism from U, onto V. Let «,
L and .Z be the maps from C(X) to C(X) given by

a(f)=foT,
LN = > fO).
yeET~1(x)

Z(f) =Lx) 'L,

These are well defined maps of C(X) into C(X) (see [41]). The operator .Z is
a transfer operator for «. Denote o(L(1x)) by ind(E) and for every k > 1 let
Iy = ind(E)a(ind(E))---a*~!(ind(E)). Since .Z is a transfer operator for ca,
one can associate the C*-algebra C(X) x4 ¢ N to the dynamical system (X, T),
where C(X) X4 N is the crossed-product C *-algebra associated to the triple
(C(X), a, %) according to [40]. In [41] this crossed product C *-algebra has been
characterized as a universal C*-algebra generated by a copy of C(X) and an
isometry s subject to certain relations. Since 7 is a covering map there exists a finite
open covering {V; }!_, of X such that the restriction of 7" to each V; is injective. Let
{v;}!_, be a partition of unit subordinate to {V;}/_, and let u; = («¢(L(1x))v;)"/%.

Theorem 9 ([41, Theorem 9.2]). The C*-algebra C(X) % ¢ N is the universal
C*-algebra generated by a copy of C(X) and an isometry s subject to the
relations

1. sf =a(f)s,

2. s*fs = 2(f),
31 =" wiss*u;,
forall f e C(X).

The following representation turns out to play important role in the context of the
Theorem 10. For a compact Hausdorff space X and a coveringmap 7 : X — X,
let H be a Hilbert space with an orthonormal basis (ey),cx indexed by X. For f €
C(X), define the bounded operators M ; and S on H by

My(ey) = f(x)ex, x€X,

S(ex) = LA™ Y e, xeX.

yeT~1({x})
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It can be shown [15], that there exists a representation ¥ of C(X) %, ¢ N on H
such that ¥ (f) = M/, for every f € C(X) and ¥ (s) = S, and furthermore,
ker() N C(X) = {0}. This intersection property of the kernel of the representation
makes clear the relevance of this representation to the intersection properties of the
ideals with the canonical subalgebra C(X) and thus its important appearance in
Theorem 10. The notion of topological freeness for dynamical systems generated
by a homeomorphism can in a natural way be extended to possibly non-invertible
dynamical systems [41]. The dynamical system (X, T') is said to be topological
free if for every pair of nonnegative integers (k, /) with k # [, the set {x € X |
Tk(x) = T'(x)} has empty interior. The following Theorem 10 is the promised
extension Theorem 8 to possibly non-invertible dynamical systems generated by
covering maps on compact Hausdorff spaces and to the corresponding crossed
product C *-algebras C(X) X, ¢ N.

Theorem 10 ([15]). Let X be a compact Hausdorff space, and let T : X — X be
a covering map. Then the following are equivalent:

1. (X, T) is topological free.

2. Every nontrivial ideal of C(X) X4 N has a nontrivial intersection with C(X).
3. The representation  is faithful.

4. C(X) is a maximal abelian C*-subalgebra of C(X) X4 N.

Note, that in comparison to Theorem 8, in Theorem 10 there is added a fourth
equivalent condition of faithfulness of the representation ¥ of C(X) x4« N. We
refer the reader to [15] for the details on the definition of this representation. If the
space X is infinite, and we consider dynamical systems generated by covering maps,
then the class of topologically free systems contains the subclass of irreducible
dynamical systems, defined as follows (see [41, Proposition 11.1]). Two points
x,y € X are said to be trajectory-equivalent x ~ y (see e.g. [4]) when there
are n,m € N such that T"(x) = T™(y). A subset Y C X is said to be invariant
if x ~ y € Y implies that x € Y. It is easy to see that Y is invariant if and
only if T7!(Y) = Y. The covering map T and the dynamical system it generates
is said to be irreducible when there is no closed (equivalently open) invariant set
other than @ and X (see e.g. [4]). Notice that irreducibility is weaker than the
condition of minimality defined in [23]. In [41], it was shown that, for dynamical
systems generated by covering maps of infinite spaces, irreducibility of the system
is equivalent to simplicity of C(X) x,_¢ N. Equivalence of simplicity of crossed
product C *-algebras and minimality for homeomorphism dynamics is a classic
result [75]. The most easy and neat conceptually proof of this result known to
the author is via specialization of Theorem 8 to minimal dynamical systems. The
situation is similar with Theorem 10 and proofs of the described above simplicity
criterium for C(X) xq_¢ N. In this sense, Theorem 10 can be also viewed as the
result on not necessarily simple C *-algebras. From the point of view of the problem
of description or classification of ideals in non-simple C *-algebras, Theorem 10
provides explicit conditions on the dynamics, or conditions on the canonical
commutative subalgebra which guaranty that it intersects any ideal in a non-empty
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way, thus providing each ideal with a non-empty ideal of the canonical commutative
subalgebra which can be in its turn used for generating and describing properties and
elements in the ideal in the crossed product. This correspondence, when it exists,
is very fruitful for explicit investigation of dynamical, topological or geometrical
structure of ideals and also for investigations of representations and their kernels
for the corresponding crossed product algebras. Theorem 10 also answers the
question of when there exists ideals without the intersection property. Namely,
this happens exactly when the dynamical system generated by the covering map is
not topological free, or equivalently when the canonical commutative subalgebra
is not maximal commutative. For non-free dynamical systems investigation of
ideals as well as extensions of the parts of Theorem 10 via description of the
commutants and subalgebras of the commutants and intersection properties of the
ideals with the commutants and their subalgebras is a very interesting open problem.
Extension of such results, and actually in the first place extensions of Theorem 10
to Banach and normed algebras, and interplay with wavelet analysis via properties
of wavelet representations and multiresolutions and detailed spectral analysis of
transfer operators and harmonic functions is an open direction of high interest. The
results and examples in [32-35] on the commutants of the wavelet representations
on fractal sets and solenoids associated to non-invertible dynamics can be viewed
as contributions in this direction.
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Chapter 15
On a Counterexample to a Conjecture
by Blackadar

Adam P.W. Sgrensen

Abstract Blackadar conjectured that if we have a split short-exact sequence 0 —
I - A — C — 0 where I is semiprojective then A must be semiprojective. Eilers
and Katsura have found a counterexample to this conjecture. Presumably Blackadar
asked that the extension be split to make it more likely that semiprojectivity of /
would imply semiprojectivity of A. But oddly enough, in all the counterexamples
of Eilers and Katsura the quotient map from A to A/I = C is split. We will show
how to modify their examples to find a non-semiprojective C *-algebra B with a
semiprojective ideal J such that B/J is the complex numbers and the quotient map
does not split.

Keywords Semiprojective C*-algebras ¢ Pullbacks of C *-algebras ¢ Kirchberg
algebras

Mathematics Subject Classification (2010): 46105, 461.80, 54C56, 55P55.

15.1 Introduction

Semiprojectivity is a lifting property for C *-algebras. It was introduced in [1] in a
successful attempt to transfer some of the power of shape theory for metric spaces
to the world of C *-algebras.

Definition 1. A C *-algebra A is semiprojective if whenever we have a C *-algebra
B containing an increasing sequence of ideals J; < J, < .-, and a
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x-homomorphism ¢: A — B/Ui Ji, we can find an n € N and a *-homomorphism
¥: A — B/J, such that

TTn,00 Olﬂ = ¢,

where 7, oo: B/J, —> B/Uj Ji is the natural quotient map.

Pictorially, A is semiprojective if we can always fill in the dashed arrow in the
following commutative diagram:

B
B/J,

W/ﬂi
-
-

A —— B/UJg.
¢

The book [10] is the canonical source for information about semiprojectivity. See
also the more recent paper [3], the beginning of which has an expository nature.

Many of the main problems about semiprojectivity are concerned with the
permanence properties of semiprojective C *-algebras. In [1], Blackadar proves that
the direct sum of two unital semiprojective C *-algebras is again semiprojective,
and that if A is unital and semiprojective then M, (A) is also semiprojective. Th