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Abstract. In this paper we present a closed loop mixed reality training system 
that provides automatic assessment of trainee performance during kinetic mili-
tary exercises. At the core of our system is a hierarchical behavior analysis  
approach that integrates a number of data sensor modalities including Au-
dio/Video, RFID and IMUs to automatically capture trainee actions in a  
comprehensive manner. Our behavior analysis and performance evaluation 
framework uses a finite state machine (FSM) model in which trainee behaviors 
are the states of the training scenario and the transitions of states are caused by 
stimuli that we refer to as trigger events. The goal of behavior analysis is to es-
timate the states of the trainees with respect to the training scenario and quanti-
fy trainee performance. To robustly detect each state, we build classifiers for 
each behavioral state and trigger event. At a given time, based on the state esti-
mation, a set of related classifiers are activated for detecting trigger events and 
states that can be transitioned to and from the current states. The overall struc-
ture of the FSM and trigger events is determined by a Training Ontology that is 
specific to the training scenario. 

1 Introduction 

Infantry training, from basic training at home stations to joint exercises prior to dep-
loyment, can become more effective through automated behavior analysis and  
performance evaluations.  In this paper, we present an automated behavior analysis 
and performance evaluation computational framework for a wide range of training 
objectives.  

We model trainee behavior (individually and in teams) as states, and the causes of 
state transitions as trigger-events.  Each state has a set of performance metrics. The 
overall goals of the training exercise are captured as hierarchical Finite State Ma-
chines (FSM) with associated performance metrics. Our behavior analysis module 
uses sensor data as observations to estimate the states that the trainees are in. The 
performance evaluation module computes the performance metrics given the esti-
mated states of the trainees. Trigger events that result in transition from one state to 
another are detected using a Histograms of Oriented Occurrence (HO2) algorithm for 
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For training,  

• Σ is the set of stimuli or trigger events 
• S is the set of possible behaviors, i.e. states of the participants. 
• s0 is an initial state. 
• δ is the reaction to a stimulus. δ contains both the correct reactions to stimuli 

defined in a TTP and incorrect reactions that need to avoid. 
• F is the end state of a training exercise. 

For a training system, states S can only be perceived through sensor observations, O. 
Then, behavior analysis is to estimate states S={s0,s1,..,sn} given sensor observation 
O={o0,o1,..,on}. In our system, the sensor inputs include positions of all participants, 
their head, body and gun poses and shot/hit data (figure 1). However the definition of 
state S and transition trigger events depends on the Training Ontology discussed next. 

2.1 Training Ontology 

The training ontology captures knowledge related to a set of training objectives in-
cluding TTP (Techniques, Tactics and Procedures), training scenarios and perfor-
mance metrics.  This is a machine understandable graphical-representation of the 
TTP that includes comprehensive data on scenario context, parameters for behavior 
recognition, and expected performance evaluation thresholds. Our training taxonomy 
is divided into two sub-hierarchies – a set of concepts representing states (nouns) and 
a set representing trigger events (verbs). Using Protégé [Noy, 2001], we assign a node 
to each state, along with 
the corresponding defini-
tion. Similarly, we assign 
a node to each trigger 
event and its definition. 
All states and trigger 
events form the taxonomy 
in our training ontology. 
For each state, we also 
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including classifier and 
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state and a given trigger 
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2.2 Hierarchical Behavior Analysis 

The training ontology helps us define the FSM that represents only the top layer of 
our hierarchical behavior analysis module. As illustrated in figure 3 at the lowest level 
is the Action Detection module that classifies atomic actions performed by the partic-
ipants. These atomic actions span a wide array of low-level trainee behaviors like 
“walking”, “group formation”, “weapon sector scanning”, “weapon fire” etc. In most 
cases classifiers for these atomic actions are trained on static features extracted direct-
ly from the raw sensor data. For instance to detect “group formations” the track  
locations of the trainees are used to match against a shape template pertaining to a 
“diamond” or “wedge” formation. In the middle layer, we generate Trigger Events 
which are mid-level abstractions of trainee behavior that result in a meaningful transi-
tion from one state in the scenario to another. These trigger events typically represent 
a dynamic activity that require features to be extracted over a window of time frames. 
Figure 3 illustrates some examples of these including “Cordon Formation”, “Crossed 
Danger Zone” etc.  

 

Fig. 3. Hierarchical framework for behavior analysis 

Adaptive space-time aggregated features Histogram of Oriented Occurrences 
(HO2) are computed and trained with SVM to classify atomic actions and trigger 
events. In its most generalized form, space-time context is the histogram of occur-
rences of entity classes of interest over a partition of a spatial-temporal volume with 
respect to a reference entity or a reference location. Existing activity or event exploi-
tation approaches represent these events using features that only measure pair wise 
relationships between entities at a time, such as relative distance and relative speed. 
Due to the limitations of the pair wise entity relationship descriptors, this class of 
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events is mainly defined and recognized using rule-based approach. HO2 captures the 
interactions of all entities of interests in terms of configurations over space and time 
through a histogramming process. Using this new space-time context representation, 
our activity exploitation approach captures both environmental context and spatial-
temporal characteristics of the entities in a unified framework. Using HO2, we  
have been able to detect multi-agent events such as VIP arriving or depicturing with 
security details. 

 

Fig. 4. HO2 computation using log-polar partition function. The reference entity is the middle 
vehicle in a three-vehicle convoy. The people icons represent a pedestrian crossing the street. 
The histograms of vehicle and people occurrences are shown in the middle. The resulting 
space-time context feature vector is shown on the right. 

Finally, as already discussed at the third and highest level a finite state machine 
(FSM) is used to model the training scenario as a set of behavioral states predicated 
with trigger events (mid-level). The overall structure of the FSM and trigger events is 
determined by a Training Ontology that is specific to the TTP (techniques tactics and 
procedures) of the training scenario.  

2.3 Trainee Performance Evaluation 

Performance metrics are computed by comparing trainee actions to canonical execu-
tions based on the TTP. Our system computes performance metrics associated with 
each state during a training exercise. Low-level data including location, weapon 
orientation etc. is used to compute these metrics. For our MOUT application training, 
the following performance metrics are computed: 

• 360 degrees Security:  The percentage of a full 360 degrees that is either covered 
by a Warfighter’s weapon or is blocked by a cover.   

• Blocking: The fraction of the time that all danger spots were blocked by the war-
fighters, i.e. at least one warfighter points his weapon at each of the danger spots. 
The danger spot may be a possible sniper position or an approaching vehicle, etc. 
We use “Aim Margin” to determine the blocking accuracy which needs to be 
achieved.  
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to view performance of two different teams on the same exercise. In figure 7 we show 
performance metrics comparing two teams doing the same exercise. Such compari-
sons are extremely useful in evaluating the impact of training and identify what me-
trics are more pertinent than others. 

 

 

Fig. 7. Performance metrics for an exercise. Events corresponding to metrics like "Muzzling", 
"Cover" and others are shown. 

 

Fig. 8. Comparison between two different teams performing the same exercise 
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5 Conclusions 

We have developed a computational framework for automated behavior analysis and 
performance evaluation that effectively incorporates TTP and designed training sce-
narios. Our approach is to use a hierarchical framework that uses a FSM at the top 
level to capture TTP objectives. Trigger events that transition the state machine from 
one state of the scenario to another are detected using classifiers on the HO2 feature. 
To capture trainee behavior, the prototype training system captures and computes 
tracks, poses and actions of the participants and automatically assesses the perfor-
mance of warfighters using a training ontology. We have developed a prototype sys-
tem that has been demonstrated to accurately detect participants’ states, mistakes, 
such as muzzling, automatically. The detected events and computed performance 
metrics provide power tools for advanced AAR capabilities.  
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