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Foreword

The 15th International Conference on Human–Computer Interaction, HCI In-
ternational 2013, was held in Las Vegas, Nevada, USA, 21–26 July 2013, incor-
porating 12 conferences / thematic areas:

Thematic areas:

• Human–Computer Interaction
• Human Interface and the Management of Information

Affiliated conferences:

• 10th International Conference on Engineering Psychology and Cognitive
Ergonomics

• 7th International Conference on Universal Access in Human–Computer
Interaction

• 5th International Conference on Virtual, Augmented and Mixed Reality
• 5th International Conference on Cross-Cultural Design
• 5th International Conference on Online Communities and Social Computing
• 7th International Conference on Augmented Cognition
• 4th International Conference on Digital Human Modeling and Applications
in Health, Safety, Ergonomics and Risk Management

• 2nd International Conference on Design, User Experience and Usability
• 1st International Conference on Distributed, Ambient and Pervasive Inter-
actions

• 1st International Conference on Human Aspects of Information Security,
Privacy and Trust

A total of 5210 individuals from academia, research institutes, industry and gov-
ernmental agencies from 70 countries submitted contributions, and 1666 papers
and 303 posters were included in the program. These papers address the latest
research and development efforts and highlight the human aspects of design and
use of computing systems. The papers accepted for presentation thoroughly cover
the entire field of Human–Computer Interaction, addressing major advances in
knowledge and effective use of computers in a variety of application areas.

This volume, edited by Dylan D. Schmorrow and Cali M. Fidopiastis, contains
papers focusing on the thematic area of Augmented Cognition, and addressing
the following major topics:

• Augmented Cognition in Training and Education
• Team Cognition
• Brain Activity Measurement
• Understanding and Modeling Cognition
• Cognitive Load, Stress and Fatigue
• Applications of Augmented Cognition



VI Foreword

The remaining volumes of the HCI International 2013 proceedings are:

• Volume 1, LNCS 8004, Human–Computer Interaction: Human-Centred De-
sign Approaches, Methods, Tools and Environments (Part I), edited by
Masaaki Kurosu

• Volume 2, LNCS 8005, Human–Computer Interaction: Applications and Ser-
vices (Part II), edited by Masaaki Kurosu

• Volume 3, LNCS 8006, Human–Computer Interaction: Users and Contexts
of Use (Part III), edited by Masaaki Kurosu

• Volume 4, LNCS 8007, Human–Computer Interaction: Interaction Modali-
ties and Techniques (Part IV), edited by Masaaki Kurosu

• Volume 5, LNCS 8008, Human–Computer Interaction: Towards Intelligent
and Implicit Interaction (Part V), edited by Masaaki Kurosu

• Volume 6, LNCS 8009, Universal Access in Human–Computer Interaction:
Design Methods, Tools and Interaction Techniques for eInclusion (Part I),
edited by Constantine Stephanidis and Margherita Antona

• Volume 7, LNCS 8010, Universal Access in Human–Computer Interaction:
User and Context Diversity (Part II), edited by Constantine Stephanidis and
Margherita Antona

• Volume 8, LNCS 8011, Universal Access in Human–Computer Interaction:
Applications and Services for Quality of Life (Part III), edited by Constan-
tine Stephanidis and Margherita Antona

• Volume 9, LNCS 8012, Design, User Experience, and Usability: Design Phi-
losophy, Methods and Tools (Part I), edited by Aaron Marcus

• Volume 10, LNCS 8013, Design, User Experience, and Usability: Health,
Learning, Playing, Cultural, and Cross-Cultural User Experience (Part II),
edited by Aaron Marcus

• Volume 11, LNCS 8014, Design, User Experience, and Usability: User Ex-
perience in Novel Technological Environments (Part III), edited by Aaron
Marcus

• Volume 12, LNCS 8015, Design, User Experience, and Usability: Web, Mobile
and Product Design (Part IV), edited by Aaron Marcus

• Volume 13, LNCS 8016, Human Interface and the Management of Informa-
tion: Information and Interaction Design (Part I), edited by Sakae Yamamoto

• Volume 14, LNCS 8017, Human Interface and the Management of Informa-
tion: Information and Interaction for Health, Safety, Mobility and Complex
Environments (Part II), edited by Sakae Yamamoto

• Volume 15, LNCS 8018, Human Interface and the Management of Informa-
tion: Information and Interaction for Learning, Culture, Collaboration and
Business (Part III), edited by Sakae Yamamoto

• Volume 16, LNAI 8019, Engineering Psychology and Cognitive Ergonomics:
Understanding Human Cognition (Part I), edited by Don Harris

• Volume 17, LNAI 8020, Engineering Psychology and Cognitive Ergonomics:
Applications and Services (Part II), edited by Don Harris

• Volume 18, LNCS 8021, Virtual, Augmented and Mixed Reality: Designing
and Developing Augmented and Virtual Environments (Part I), edited by
Randall Shumaker



Foreword VII

• Volume 19, LNCS 8022, Virtual, Augmented and Mixed Reality: Systems
and Applications (Part II), edited by Randall Shumaker

• Volume 20, LNCS 8023, Cross-Cultural Design: Methods, Practice and Case
Studies (Part I), edited by P.L. Patrick Rau

• Volume 21, LNCS 8024, Cross-Cultural Design: Cultural Differences in Ev-
eryday Life (Part II), edited by P.L. Patrick Rau

• Volume 22, LNCS 8025, Digital HumanModeling and Applications in Health,
Safety, Ergonomics and Risk Management: Healthcare and Safety of the En-
vironment and Transport (Part I), edited by Vincent G. Duffy

• Volume 23, LNCS 8026, Digital HumanModeling and Applications in Health,
Safety, Ergonomics and Risk Management: Human Body Modeling and Er-
gonomics (Part II), edited by Vincent G. Duffy

• Volume 25, LNCS 8028, Distributed, Ambient and Pervasive Interactions,
edited by Norbert Streitz and Constantine Stephanidis

• Volume 26, LNCS 8029, Online Communities and Social Computing, edited
by A. Ant Ozok and Panayiotis Zaphiris

• Volume 27, LNCS 8030, Human Aspects of Information Security, Privacy
and Trust, edited by Louis Marinos and Ioannis Askoxylakis

• Volume 28, CCIS 373, HCI International 2013 Posters Proceedings (Part I),
edited by Constantine Stephanidis

• Volume 29, CCIS 374, HCI International 2013 Posters Proceedings (Part II),
edited by Constantine Stephanidis

I would like to thank the Program Chairs and the members of the Program
Boards of all affiliated conferences and thematic areas, listed below, for their
contribution to the highest scientific quality and the overall success of the HCI
International 2013 conference.

This conference could not have been possible without the continuous sup-
port and advice of the Founding Chair and Conference Scientific Advisor, Prof.
Gavriel Salvendy, as well as the dedicated work and outstanding efforts of the
Communications Chair and Editor of HCI International News, Abbas Moallem.

I would also like to thank for their contribution towards the smooth organi-
zation of the HCI International 2013 Conference the members of the Human–
Computer Interaction Laboratory of ICS-FORTH, and in particular George
Paparoulis, Maria Pitsoulaki, Stavroula Ntoa, Maria Bouhli and George Kapnas.

May 2013 Constantine Stephanidis
General Chair, HCI International 2013
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Andreas Holzinger, Austria
Josette Jones, USA
Simeon Keates, UK

Georgios Kouroupetroglou, Greece
Patrick Langdon, UK
Seongil Lee, Korea
Ana Isabel B.B. Paraguay, Brazil
Helen Petrie, UK
Michael Pieper, Germany
Enrico Pontelli, USA
Jaime Sanchez, Chile
Anthony Savidis, Greece
Christian Stary, Austria
Hirotada Ueda, Japan
Gerhard Weber, Germany
Harald Weber, Germany



Organization XI

Virtual, Augmented and Mixed Reality

Program Chair: Randall Shumaker, USA

Waymon Armstrong, USA
Juan Cendan, USA
Rudy Darken, USA
Cali M. Fidopiastis, USA
Charles Hughes, USA
David Kaber, USA
Hirokazu Kato, Japan
Denis Laurendeau, Canada
Fotis Liarokapis, UK

Mark Livingston, USA
Michael Macedonia, USA
Gordon Mair, UK
Jose San Martin, Spain
Jacquelyn Morie, USA
Albert “Skip” Rizzo, USA
Kay Stanney, USA
Christopher Stapleton, USA
Gregory Welch, USA

Cross-Cultural Design

Program Chair: P.L. Patrick Rau, P.R. China

Pilsung Choe, P.R. China
Henry Been-Lirn Duh, Singapore
Vanessa Evers, The Netherlands
Paul Fu, USA
Zhiyong Fu, P.R. China
Fu Guo, P.R. China
Sung H. Han, Korea
Toshikazu Kato, Japan
Dyi-Yih Michael Lin, Taiwan
Rungtai Lin, Taiwan

Sheau-Farn Max Liang, Taiwan
Liang Ma, P.R. China
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Rüdiger Heimgärtner, Germany
Brigitte Herrmann, Germany
Steffen Hess, Germany
Kaleem Khan, Canada

Jennifer McGinn, USA
Francisco Rebelo, Portugal
Michael Renner, Switzerland
Kerem Rızvanoğlu, Turkey
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Milan Petković, The Netherlands
Joachim Posegga, Germany
Jean-Jacques Quisquater, Belgium
Damien Sauveron, France
George Spanoudakis, UK
Kerry-Lynn Thomson, South Africa



XIV Organization

Julien Touzeau, France
Theo Tryfonas, UK
João Vilela, Portugal

Claire Vishik, UK
Melanie Volkamer, Germany

External Reviewers

Maysoon Abulkhair, Saudi Arabia
Ilia Adami, Greece
Vishal Barot, UK
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Abstract. The concept of sensemaking has become a prominent component of 
military operations in ambiguous environments. Sensemaking, in general, de-
scribes the process of pattern recognition, semantic formulation, anticipation, 
and holistic understanding and supports sociocultural situation assessment, 
anomaly detection, and anticipatory thinking. This skill enables intuitive experts 
to rapidly draw accurate conclusions based on cues that others cannot discern or 
to attend to the most important cues, based on experience. Simulation-based 
training can enhance and accelerate the ability to recognize and analyze cues 
and patterns by translating the unconscious, automatic monitoring and integra-
tion practiced by experts into a conscious cognitive process that we call intui-
tive sensemaking. We describe an Office of Naval Research project, currently 
in development, intended to effectively train previously ambiguous advanced 
cognitive skills such as intuition-informed sensemaking. With training, teams of 
military personnel should see increases in cohesiveness, sociocultural situation 
assessment, anomaly detection, and anticipatory thinking. 

Keywords: Sensemaking, Intuition, Simulation-Based Training, Human-
Computer Interaction (HCI), Expertise, Implicit Learning. 

1 Introduction: Sensemaking and Intuition 

Sensemaking describes the ability to explain data that are sparse, noisy, and uncertain 
(Moore, 2011) when assessing a situation. Sociologist Karl Weick, one of the first 
academics to define sensemaking as it relates directly to complex operational envi-
ronments, contended that the ability to construct a coherent and shared explanation for 
events and circumstances enables operational functioning during periods of great 
uncertainty (Weick, 1993). In the past, this type of intelligence gathering generally 
consisted of locating a known entity or a specific target; today’s battlefields, however, 
require an additional skill set: looking for (and judging the significance of) undefined 
activities or transactions. Frequently, observers must scan complex, ambiguous set-
tings and groups of diverse, unpredictable people to assess threats and determine ne-
cessary actions. They must make sense of situations that include large numbers of 
relatively small actors responding to a shifting set of situational factors (Moore, 
2011). Predicting and anticipating the actions of these players and the directional 
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shifts of surrounding circumstances requires enhanced observational and sensemaking 
training that accelerates the acquisition of expertise and fosters the development of 
intuition. 

Individuals engage in sensemaking under conditions of equivocality and uncertain-
ty (Weick, 1979, 1993), and their expectations and motivations affect this process, 
since individuals vary in how they construct ethical issues and make intuitive judg-
ments about those constructions (Sonenshein, 2007). While some people seem to be 
more naturally intuitive than others, recent work suggests that the process of intuition 
rests on an unconscious awareness, valuation, and integration of cues that shape deci-
sions and judgments, and in experts, those perceptual observations may reach a level 
of automaticity (e.g., Dervin, B., 1983; Klein, Moon, & Hoffman, 2006b; Thurlow & 
Mills, 2009; Betsch, 2008; Dane & Pratt, 2007). When people “know” without know-
ing how they know, their conscious awareness may have been influenced by an  
unconscious monitoring of patterns and anomalies (e.g., Claxton, 2000; Simons & 
Chabris, 2010). For example, profound decisions and actions that save firefighters in 
potentially catastrophic situations can most likely be credited to implicit processing of 
important environmental cues. Decades of research on implicit learning have shown 
that our brains possess an array of mechanisms for automatically extracting informa-
tion from the environment without our awareness (Reber, 2008). This skill enables 
intuitive experts to rapidly draw accurate conclusions based on cues that others cannot 
discern or to attend to the most important cues, given conditions and context of a 
situation, based on experience. 

The human brain has two distinct information processing systems: one conscious 
and deliberative and the other unconscious and intuitive. Intuition is rooted in the 
unconscious information processing system, as are related inputs of implicit attitudes 
and goals (Hassin, Uleman, & Bargh, 2005). This intuitive processing creates the 
moment of intuition, the experience of knowing, without knowing how that  
knowledge came to be. Dane and Pratt (2007) offer this definition: intuitions are “af-
fectively charged judgments that arise through rapid, non-conscious, and holistic as-
sociations” (Dane & Pratt, 2007). Betsch (2008) provides a definition of the three core 
components of intuition: “Intuition is a process of thinking. The input to this process 
is mostly provided by knowledge stored in long-term memory that has been primarily 
acquired via associative learning. The input is processed automatically and without 
conscious awareness. The output of the process is a feeling that can serve as a basis 
for judgments and decisions.” Thus, while experts may attribute their advanced 
awareness (e.g., sense of danger before an explosion) to intuition, at an unconscious 
level, they most likely had mentally observed, analyzed, and decided how to act with-
out recognizing that cognitive process. Intuition typically emerges with no awareness 
of the mental events leading to it, which fits with our conjecture that implicit memory 
is critical in producing trustworthy intuition. The results of this implicit learning often 
appear as an intuition or a “sixth sense” about the current situation. Development of 
expertise that achieves this level of automaticity takes time, but simulation-based 
training can accelerate that process. 
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2 Can Sensemaking and Intuition Be Trained? 

Research suggests that fast, affect-rich intuitions frequently drive individuals’ beha-
vior (Loewenstein, 1996). Subject-matter experts routinely use their intuitive abilities 
to help them make decisions and judgments (Hodgkinson et al., 2009), and intuition is 
“critical to effective decision making in many settings” (Salas et al., 2009, p. 2). 
Emerging theory further proposes the existence of expertise-based intuition, a form of 
intuition rooted in domain-specific expertise that experts can learn to constructively 
employ in support of their decision making, sensemaking, and other cognitive 
processes (Salas et al., 2009). This suggests that intuition, like other cognitive me-
chanisms, can improve through experience, deliberate practice, and a variety of spe-
cialized training interventions. It also means that it may be possible to decrease the 
time required to effectively use intuition to drive decisions in situations where one has 
not had the requisite time required to become a domain expert. In other words, we 
may be able to artificially enhance intuitive decision making skills at a more rapid 
pace than previous research has suggested (Eriksson, 1996) by using specific training 
techniques within implicit learning environments. 

Given the influence of intuition on cognitive performance, and considering the re-
cent evidence that individuals can intentionally improve their intuitive skills, the mili-
tary community’s interest in intuition has grown. Because intuition and psychosocial 
skills complement one another, training for intuitive processing might be conveyed in 
the learning context of sociocultural pattern recognition, anticipation, and interaction. 
In that context, intuitive processing can enhance the discernment and interpretation of 
subtle sociocultural cues and patterns, and supports the need to enhance military per-
sonnel’s sociocultural abilities. Moreover, such blended instruction on these topics 
may help engender the generalizable sociocultural competencies that Marines and 
Sailors need to excel in any operational environment.  

Despite its subconscious facets, training and education can enhance individuals’ in-
tuitive capacities (Salas et al., 2009). Classically, experts build their intuitive skills 
through experience and implicit learning (Agor, 1989; Harper, 1989; Klein, 1998). 
They learn to regulate their intuitive feelings by actively seeking feedback (Hogarth, 
2001), and they selectively attend to intuitive thoughts based upon the characteristics 
of the problem space (Salas et al., 2009). Fortunately, accelerated acquisition of do-
main experience and the development of intuition-related skills can be facilitated 
through deliberate practice, critical self-appraisal, and candid feedback (Hodgkinson, 
2009). A validated training program for intuition could help military personnel im-
prove their access to, and appropriate use of, intuition. For example, through implicit 
learning, situated training, deliberate practice, self-critique, and metacognitive  
instruction, warfighters could enhance their intuition-informed pattern recognition 
capabilities, learn to more rapidly and efficaciously conduct intuition-informed situa-
tion assessments, and gain regulatory skills to more deliberately control their intuitive 
processing. 

Specifically, simulation-based training can enhance and accelerate the ability to 
recognize and analyze cues and patterns by translating the unconscious, automatic  
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monitoring and integration practiced by experts into a conscious cognitive process 
that we call intuitive sensemaking. However, the challenge consists of taking empiri-
cally-driven findings about intuition, based on models and theories, best practices in 
simulation-based training, and what is known about instructional strategies and feed-
back, to design effective scenarios that will stimulate and train the development of 
these unconscious intuitive functions. 

For simulation-based training, the scenario design provides the context for the 
training; it defines the capabilities of the simulation system that should be utilized to 
create the required conditions and cues, and suggests the instructional strategies that 
provide the best method to deliver the training and the performance feedback. Will it 
be simple or complex? Is a part-task trainer that adds layers as expertise improves the 
best option to train the objectives? Is immediate feedback or an after-action review 
the best way to emphasize learning points? Should feedback be embedded in the sce-
nario design or mediated by a live instructor? Design decisions will also involve “vis-
ual noise” and temporal markers, as well as spatial issues of proximity, juxtaposition, 
and foreshadowing. How can we design a richly cued scenario that will enable or 
direct a search, and what are the salient cues important to the overall training objec-
tive that will need to be detected? 

Event-based training featuring novel, unexpected situations offers friction points to 
stimulate decision making under time or mission constraints and to provide triggers 
for other courses of action; timely feedback can direct attention to cues and patterns 
that are missed. Simulations offer a chance to rehearse actions and thinking, but cap-
turing the thinking and knowing that occurs below conscious awareness presents 
another challenge. Simulations also provide a means for repetition of the same or 
similar scenarios, increasing the complexity in a chained strategy, and provide the 
means for transfer of training to a novel scenario. Performance measurement is gener-
ally comprised of observable outcomes and courses of action taken based on deci-
sion(s) made in support of an objective. Simulation-based technologies can provide 
capture of voice and video recordings, resources and assets used, and digital informa-
tion exchanged to help build metrics. Measurement of physiological functions (e.g., 
via EEG, eye tracking) provide data that may help identify what is being observed and 
when, for how long, in what sequence, and how that information influences decision 
making and outcomes. Correlating those data with trainee verbal protocol and demon-
strable results from actions taken can provide insights into implicit decision making 
and how best to employ training feedback to uncover the trainees’ strategies, such as 
how or if they took into account cue characteristics, multiple criteria, sequence of 
visual acquisition of cues, etc.  

Scenario-based simulation training to accelerate the process of automaticity will 
need to develop the skills of an expert via intense and intentional practice with specific 
feedback that impacts the learner in an emotional, highly connotative way. Feedback 
delivery options must also be explored, since allowing learners to make errors can 
increase problem solving abilities and enhance the emotional impact of the experience, 
whereas providing delayed feedback, or after-action review, may create a disconnect 
between action and consequence (or may lead to negative training). Consensus among  
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experts on what constitutes “good” decisions, and therefore actions, will need to  
be addressed to ensure consistent training objectives and sound scenario and metric 
design. Decomposition of the decisions and “micro” decisions that could or should be 
made within the context of a given scenario is paramount for simulation design.  

2.1 PercepTS: Immersive Technologies to Enhance Intuitive Decision Making 

We theorize that, after exploring factors and options related to simulation-based  
training, military researchers will have the ability to effectively train previously am-
biguous advanced cognitive skills such as intuition-informed sensemaking. With 
training, teams of military personnel should see increases in cohesiveness, sociocul-
tural situation assessment, anomaly detection, and anticipatory thinking. 

Toward this end, the Office of Naval Research (ONR) stood up the Perceptual 
Training Systems and Tools (PercepTS) program to explore immersive methodologies 
and technologies for improving the training of sensemaking/perceptual knowledge, 
skills, and abilities (KSAs) in operational environments. This work includes devel-
opment of an approach to enhance the decision-making skills of military personnel by 
investigating a range of cognitive training approaches, situated in the context of urban 
sociocultural sensemaking.  

On-going PercepTS work seeks to develop an actionable framework of perceptual 
competencies and training strategies for military use. Based on this framework and 
the instructional strategies identified therein, a perceptual skils Program of Instruction 
(POI) suitable for implementation by military instructors could be developed under 
future projects, tested, and packaged as advanced instructional strategies for future 
use in adaptive implicit training systems. Given the current (and likely future) empha-
sis on Stabilization, Security, Transition, and Reconstruction Operations (SSTRO) 
and other socioculturally situated operations, intuition research is being conducted 
and developed for psychosocial skills training. In particular, the Virtual Observation 
Platform, a simulation-based trainer in development under PercepTS, could act as a 
test site for implicit learning techniques to enhance intuitive decision making. This 
simulation-based training approach offers opportunities for practice in sensemaking 
activities, via anomaly detection among patterns of human behavior. Repeated oppor-
tunities for practice can accelerate the development of expertise, wherein the sense-
making process of informed observation, analysis, and action becomes intuitive.  
Development of intuitive sensemaking will provide learners with the ability to solve 
ill-defined problems and make sound, complex decisions in uncertain, socially com-
plicated operating environments.  

3 Additional On-going and Future Work 

Future work in this area might explore the use of adaptive training interventions, in-
cluding neurophysiologically informed adaptive instructional systems currently being 
investigated by other researchers. For example, under DARPA’s Warfighter Intuition  
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effort, using a high-density EEG and post hoc analyses, researchers identified medial 
orbital frontal electrical responses that seem to correlate with presence of intuition 
(Luu et al., 2010). The cumbersome technology and time-consuming analyses prohibit 
this technology from being deployed in the near term; however, it is reasonable to 
believe that a neurophysiologically informed adaptive training system could support 
intuition instruction. 

In Spring of 2013, work will begin on an ONR-funded program to address four 
areas of a Basic Research Challenge: “Enhancing Intuitive Decision Making Through 
Implicit Learning.” A world-class team of researchers will combine the talents of the 
groundbreaking cognitive and neuroscience university laboratories at Northwestern 
University (NWU), Massachusetts Institute of Technology (MIT), and University of 
California, Los Angeles (UCLA) with teams of human systems modeling and simula-
tion scientists from Charles River Associates, and Defense Group Inc., all led by 
MESH Solutions/DSCI to contribute to the Intuitive Sensemaking Interactive Simula-
tion (ISIS) program. This unique team will collaborate to research, develop models, 
make recommendations, and test advanced instructional strategies for use in adaptive 
implicit scenario/simulation based training system.  

The phased approach of the program will include parallel Neuroimaging experi-
ments conducted at the IMHRO Staglin Center for Cognitive Neuroscience at UCLA 
and the Center for Translational Imaging at NWU to investigate multiple brain 
processes in order to gain greater understanding of intuitive decision making. Compu-
tational models will be developed and used for both data analysis and to inform rec-
ommendations for instructional strategies. Results in the form of modeling predictions 
and training recommendations will be used to drive simulation-based training experi-
mentation and to explore the training effectiveness, and validation of, the resulting 
guidelines and strategies.  

Current and future work will need to articulate and refine possible training  
strategies that could be triggered or enhanced by neurophysiological inputs and to 
recommend adaptive training strategies that a developer could implement into an 
intuition intelligent tutor, once the corresponding sensing technologies reach suffi-
cient maturity. The overarching goal of this work is to advance capabilities for  
enhancing the intuitive decision-making skills of military personnel by investigating 
a range of intuition training approaches, situated in the context of urban sociocultural 
sensemaking. 
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Abstract. Few efforts have greater significance to our warfighting capability 
than those aimed at dramatically improving the skills, knowledge, and expe-
rience of military decision makers. The research and technology ideas presented 
in this paper are motivated by need to improve the quality of decision makers 
through the design of innovative training technology for military decision mak-
ers. This paper describes an adaptive simulation based training approach to im-
prove the effectiveness of warfighter decision making. The paper describes (i) a 
method for adaptive simulation based training; (ii) a mission-driven approach to 
measure trainee performance based on carefully designed metrics; and (iii) an 
automation support architecture for adaptive simulation based training. Exam-
ples are provided throughout the paper to illustrate key research ideas. 

Keywords: Simulation Based Training, Warfighter Decision Making, Adaptive 
Training, Mission Driven Performance Measurement. 

1 Motivations 

This section summarizes important technology gaps in the area of simulation-based 
training to enhance warfighter decision making effectiveness.  The central problem is 
the inability to rapidly refine and adapt simulation based training content to address 
focused training needs. Currently, simulation based training content is painstakingly 
handcrafted by subject matter experts (SMEs) and this content is not maintained in a 
manner that facilitates rapid change.  Moreover, simulation based training systems do 
not provide mechanisms for automatically determining training content changes based 
on the analysis of measured student performance. Current simulation-based training 
systems lack the ability to efficiently adapt the current state of a scenario to a desired 
state that will address the training goals. Consider the simulation-based Military  
Operations on Urban Training (MOUT) infantry training exercise in which the goal is 
to detect and eliminate a sniper.  If, during the training, the trainee constructs a 
smoke-screen or exits his vantage point, these actions serve to render the scenario 
ineffective for the intended goal. To use another example, in an air combat exercise 
focused on increasing threat awareness in the presence of enemy radar sites, the  
trainee’s departure from the radar site area renders the scenario ineffective for the 
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exercise’s “increase threat awareness” goals. Under current simulation-based training 
systems, the instructor would have to issue a request to the simulator operator in order 
to create a set of new Computer Generated Forces (CGFs) for the trainee in order to 
meet the goals of the exercise. Such a request has an unacceptable response time, 
especially towards the end of the exercise. It is often the case that the instructor defers 
the unfulfilled training goal to a future simulation exercise. This carries the risk that 
the same course of events would ensue even in future exercises. Adaptive simulation 
content generation methods may be used to automate the generation of new training 
drills and scenarios within seconds of sub-optimal trainee actions. In the first exam-
ple, a new CGF action (a simulation ‘drill’) will be automatically inserted to bring 
another bandit to replace the originally defeated bandit. In the second example, a new 
radar site would be automatically inserted into the area in which the trainee strayed. 

1.1 Lack of Knowledge Capture Methods and Tools 

There exists a technology gap surrounding effective methods for capturing and main-
taining critical training event data such as training goals, trainee decisions, trainee 
performance, etc. Scenario-based training provides an advanced framework for deci-
sion makers to be exposed to real tasks in a systematic way. It is also a practical  
approach because it facilitates the move toward an adaptive training paradigm, in 
which new incidents may be defined and deployed during the training exercise. Sce-
nario-based training is composed of six main steps executed in a closed cycle: (i) Skill 
Inventory/Performance Data, (ii) Learning Objectives/Competencies, (iii) Scenario 
Events/Scripts, (iv) Performance Measures/Standards, (v) Performance Diagnosis, 
and (vi) Feedback and Debrief [1]. Under scenario-based training, trainers are respon-
sible for monitoring trainees, providing feedback, diagnosing deficiencies and per-
forming remediation. However, correct execution of all of these tasks represents a 
huge task overload on trainers that are involved in the scenario-based training process, 
and existing scenario definition tools lack comprehensive knowledge capture and 
knowledge management capabilities to compensate for this overload.  Further, rela-
tions between the objects of the scenario and information about the relations that exist 
between objects in the scenario are not maintained, thereby making it nearly impossi-
ble to perform automated after-action review and historical analysis. 

1.2 Lack of Knowledge Capture and Reuse Technology for Training 

There exists a void in the availability of methods and tools for capturing and reusing 
training information from recurring training events.  For example, tools are necessary 
to maintain information about the students participating in the training, their role 
types, their association to other training events, what roles they played in those 
events, their performance in those events, characteristics of their training regimen that 
they felt were most influential in their performance, etc.  Further, mechanisms are 
needed to capture and use training lessons learned over recurring exercises. 
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1.3 Lack of Learning Mechanisms for Training Systems 

Absent are adaptive automation mechanisms to improve the quality and content of 
training over time. Learning Management System (LMS) technologies must allow the 
students to provide scenario enhancements based upon their experience. In essence, 
the scenario definition system must “learn” about or adapt to new aspects of the train-
ing environment or objects in the system and allow the scenario developer to utilize 
these new facets in the generation of new scenarios.  

1.4 Paper Outline 

This paper describes simulation based methods and automation mechanisms that seek 
to address the above challenges. First, we will describe an ontology for adaptive simu-
lation based training that provides a conceptual foundation for the adaptive training 
method. Next, we outline an adaptive simulation based training method. A mission-
driven approach to measure performance is described. A summary of an automation 
architecture for adaptive simulation based training is then presented.  Finally, the 
paper summarizes the benefits of our adaptive simulation based training method and 
outlines areas for further research.  Illustrative examples drawn from the military 
training domain are used throughout the paper to describe key ideas. 

2 An Ontology for Adaptive Simulation Based Training 

The simulation based training method described in this paper seeks to address the 
training needs of defense missions.  Mission requirements are the drivers for the train-
ing goals, which, in turn, drive the determination of warfighter training performance 
measures. An ontology (conceptual model) for adaptive simulation based training is 
shown in Figure 1. Knowledge, Skills, and Experiences (KSE’s) must satisfy Mission 
Requirements as shown in Figure 1. ‘Knowledge’ is defined as “information or facts 
that can be accessed quickly under stress.” Examples of knowledge areas include 
tactical plan coordination, team operating protocols, tactical maneuver principles, and 
team maneuver expectation templates [2]. ‘Skill’ is defined as “a compiled sequence 
of actions that can be carried out free of error under stress.” Examples of skill areas 
include single mode selection to maximize information requirements, scan volume 
placement to maximize relevant information gathering, and radar control manipula-
tion to locate and track relevant targets.  An ‘Experience’ is defined by [3] as a “de-
velopment event during training and/or career necessary to learn a knowledge or skill 
or practice a MEC under operational conditions.” Dependencies between KSEs and 
Training Performance Measures provide an important requirement for determining the 
structure and content of the Performance Measures.  Capturing these important de-
pendencies is part of our strategy for designing mission-driven metrics as outlined 
later in this paper. In the context of simulation based training, Training Scenarios are 
decomposed into finer-grained building blocks called ‘Drills.’ A Drill is defined as  
 



14 P. Benjamin et al. 

the smallest building block of training simulation content. Drills may be grouped 
together into meaningful collections for building Training Scenarios (Figure 1). A key 
idea is the notion of adaptively composing/assembling simulation training material 
from building blocks of re-usable parts:  drills and drill collections [4]. 

 

Fig. 1. Ontology Model for Adaptive Simulation Based Training 

As indicated in Figure 1 the Training History of each student (often stored in  
‘Electronic Training Jackets’) is used to individualize the training content (drills and 
scenarios) to address unique training gaps of different students.  The execution of the 
scenario based training will generate simulation log data that is used to compute the 
values of carefully designed performance metrics as shown in Figure 1.  The Perfor-
mance Metrics must address Training Objectives and are mapped to the simulation 
drills.  The Drills themselves are carefully engineered to induce the Skills and Expe-
riences that address the warfighter mission requirements. 

3 An Adaptive Simulation Based Training Method 

This section describes a method for adaptive simulation based training.  The method 
identifies the activities required for conducting simulation based training and the rela-
tionships between these activities in terms of the activity inputs, outputs, enabling 
mechanisms, and constraints. The IDEF0 function modeling method (www.idef.com) 
was used to represent the method, which is summarized pictorially in Figure 2. 

The following paragraphs describe the adaptive simulation based training method 
in greater detail. 
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Fig. 2. Adaptive Simulation Based Training Method 

Baseline Trainees: This activity involves performing benchmarking or testing per-
formance at the point of entering the training sessions.  For example, subjective  
evaluation methods may be used to baseline cognitive knowledge structures among 
trainees.  The main outcome of this activity is a set of prioritized training require-
ments for the current set of trainees.  These training requirements are used to inform 
subsequent activities in this methodology.  For example, the training requirements are 
used to help determine the appropriate scenarios that best address the skill and expe-
rience needs of the trainees in the current training session.  The baseline assessment 
results also provide a ‘control data set’ during the integrated training performance 
assessment activity. 

Generate and Author Scenarios: This activity involves generating the following 
information:  (i) identifying drills and collections of drills, and (ii) composing and 
sequencing drills to provide scenario design (and redesign) advice. A combination of 
rule-based methods and data analytics-driven methods may be used for scenario  
design information generation.  

Execute Training: The scenario-based training simulation models are initialized with 
the mission-specific training data sets. The simulations are then executed. The train-
ing participants (trainees and instructors) interact with the simulation in a manner that 
induces the learning that is intended by the training objectives. 

Perform Integrated Training Assessment: This activity involves using the results 
from the simulation based training event in order to measure the performance of the 
trainees (students).  There are many different types and levels of performance metrics. 
The ability to scientifically measure performance is influenced by many factors in-
cluding (a) the availability of a well conceived plan and the engineering design of 
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simulation training instrumentation, (b) the availability of data generated during the 
training session, and (c) the availability of subject matter experts (e.g., trainers  
and research scientists). In general, performance metrics span many dimensions. The 
metrics may be quantitative/objective or they may be qualitative/subjective. In some 
situations, metrics are binary; these metrics are used to determine whether or not a 
particular event/action was enacted by the trainee (a ‘Yes or No’ type metric).  Time 
based metrics measure time intervals (e.g., actual time of a particular response vs. the 
desired response time) and proficiency metrics that determine the level of the correct-
ness of a response (e.g., how well was the threat discriminated vs. a decoy, how well 
did the trainee respond to large amounts of noise and distracters in the data, etc.). The 
design of metrics is influenced by the types of warfighter missions and the degree of 
sophistication of the simulation based technology and infrastructure that is available 
for training. The design of sound metrics requires significant and intentional effort. 
More research is needed in some areas of measurement and metrics; for example, the 
evaluation of cognitive states often requires the use of sophisticated sensing technolo-
gy such as neuro-physiological sensors. Our mission driven performance measure-
ment approach involves (i) determining training performance based on objective 
training performance data, (ii) determining training performance based on subjective 
training performance data, and (iii) fusing the results of the different performance 
assessments to determine an aggregated assessment of training performance. 

Diagnose Learning Gaps: This activity will infer the training gaps by comparing 
actual performance with desired performance.   

4 Mission Driven Performance Measurement Approach 

The overall strategy/rationale for training performance metric design is: The measures 
must provide a means to evaluate whether the warfighter is learning to be more effec-
tive in supporting missions. This implies that the training results must provide  
warfighters with the Knowledge, Skills, and Experiences (KSEs) needed to address 
mission requirements. These requirements are often met in different ways: basic train-
ing, mission qualification training, continuation training, etc. Simulation Based Train-
ing (vs. Classroom/Schoolhouse Training) is often used for Continuation Training (for 
refreshing and updating KSEs and addressing critical gaps that occur because of con-
stantly changing mission requirements).  

We now provide more details of our approach.  A simple urban combat training 
example is used to illustrate the main ideas. 

Step 1: Identify Knowledge and Skill (KS) Categories: This activity determines the 
set of knowledge and skills that are being imparted.  We have identified multiple sets 
of KS categories for different types of warfighter missions based on the extensive 
body of knowledge that documents combat knowledge and skill sets (for example, [5-
7]).  For example, [5] lists Knowledge and Skill categories for building a clearing 
mission in Urban Operations (UO):  (i) diagnosing and predicting, (ii) situation 
awareness, (iii) perceptual skills, (iv) improvising, (v) metacognition, (vi) recognizing 
anomalies, and (vii) compensating for equipment limitations.  Our research indicates 
that these KS categories are inherently linked to decision processes (i.e., ratio-
nale/reasoning for making decisions and taking action).  
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Step 2: Identify Mission Specific Task Sets: This activity determines mission spe-
cific task categories that are relevant to live combat training. These tasks manifest 
themselves at multiple levels of granularity and specificity. To illustrate, we use a 
simulation based UO warfighter training situation.  In this situation, there are two 
broad categories of decision requirements:  task-focused and task-independent.  Task-
focused decision requirements for building clearing missions are (i) determine how to 
secure the perimeter, (ii) determine how to approach the building, (iii) determine how 
to enter the building, (iv) determine how to clear the building, (v) determine how to 
maintain and extend security, and (vi) determine how to evacuate the building. Like-
wise, the task-independent decision requirements for building clearing missions are (i) 
maintain the enemy’s perspective, (ii) lead subordinates, (iii) maintain the big picture 
and situation awareness, (iv) project into the future, and (v) understand and apply 
rules of engagement.  The decision requirements are linked to specific parameters 
found in tactics manuals that provide instructors with guidelines for measuring  
performance against recognized standards of employment doctrine. Each of the deci-
sion requirements (task-focused and task-independent) are governed by critical  
decision and judgments.  To illustrate, the “determine how to secure the perimeter” 
decision requirement is linked/tied to the following critical decisions and judgments: 
(i) determining how to seal off the area, (ii) determining where to place security as-
sets, (iii) determining which assets and people to employ, (iv) determining where to 
concentrate fire, (v) determining how to synchronize fire and the shifting of fire, and 
(vi) if multiple buildings are to be cleared, determining which to clear first.  A simula-
tion based UO training engagement will provide training events/drills that induce 
critical decisions and judgments for these decision requirements. 

Step 3: Design Metrics for Knowledge/Skills and Tasks Combinations: This activ-
ity formulates performance metrics for meaningful associations of Knowledge/Skills 
with (mission specific) Tasks. Figure 3 illustrates, by example, the idea of a metric 
that is determined through the association of knowledge/skills with tasks. Mission-
specific tasks are listed for a building clearing mission in UO operations. All the tasks 
within a mission are governed by Tactics, Techniques, and Procedures (TTPs) or Pre-
deployment Training Program (PTP) standards. TTPs are composed of parameters 
that instructors monitor against recognized standards of employment doctrine. Each 
task is decomposed into individual actions that the soldiers within a unit or that a 
specific soldier should perform to successfully complete the task. Instrumented train-
ing facilities and instructors record measurements on actions performed by soldiers. 
Objective measures may be determined from the simulation output log data, and sub-
jective measures are recorded by training instructors [usually Subject Matter Experts 
(SMEs)] using pre-determined grade sheets. The preferred choice of assessing team 
performance is through subjective measures.   

Every mission requires units to possess certain Knowledge and Skills (KS) to suc-
cessfully execute and accomplish the goals.  These KS are applicable across all the 
tasks, but it is possible that the degree of association (weights) might vary significant-
ly. For example, “Improvising” might play a significant role for the “Approach the 
Building” task than for the “Secure Perimeter” task.  We envision, for each pair of  
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associations between KS areas and Tasks, that there exists metrics for quantifying 
team performance effectiveness. We have listed a few metrics and measures in the 
figure and how they relate to KS-Task association as follows: 

 

Fig. 3. Approach for Designing Metrics: An Example 

• Objective metric, “Hits to Miss Ratio On Targets”:  this can be associated to the 
“Diagnosing and Predicting” and “Concentrate Fire” (action within “Secure Peri-
meter” task) pair.  

• Subjective metric, “Solicits Information”:  this can be associated to the “Recog-
nizing Anomalies” and “Identify Hazard/Constraints” (action within “Approach 
the Building” task) pair. 

The above two metrics are given to illustrate the idea and approach for designing 
metrics.  

 

Step 4: Determine Instrumentation Strategy: This activity refers to the creation of 
the means for deriving values of the performance evaluation metrics.  This activity 
will be significantly influenced by the type of (post-) training data that is actually 
available within the simulation based training system.  

5 Architecture of an Adaptive Simulation Based Training 
System  

This section summarizes a conceptual architecture of a system that provides automa-
tion support for the ‘Adaptive Simulation Based Training Method’ described earlier in 
this paper (Figure 4).  The functions supported by this architecture include (i) Inte-
grated Training Performance Assessment, (ii) Learning Gap Diagnosis, and (iii) 
Adaptive Scenario Generation. 

The architecture provides automated support for the adaptive generation of scena-
rio based training simulations through (i) agile and comprehensive performance  
measurement and (ii) targeted training gap diagnosis.  The Scenario Generation tool 
auto-generates scenario creation and scenario redesign information, allowing users to 
rapidly author/reconfigure scenarios to address the focused needs of the trainees.  
The scenario design advice is intelligently guided by the measured training gaps, the 
training objectives, and the desired performance goals.  The Intelligent Performance 
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Assessment (IPA) Tools determine the values of training performance metrics by 
combining the results of three types of assessment:  (i) neurophysiological-sensor 
based assessment, (ii) objective assessment, and (iii) subjective assessment.  The IPA 
Tools use an ‘information fusion’ approach to integrate the measurements from the 
three different assessment methods.  The Learning Analyzer compares the results of 
the IPA with the desired performance (based on the training objectives and the exper-
tise level of the trainees).  An important output of the Learning Analyzer is a priori-
tized set of trainee learning gaps that is addressable through redesign of the training 
scenarios.  The architecture houses different types of knowledge models: (i) the Sce-
nario Library, and (ii) the Knowledge Base (KB) that contains Rules, Fuzzy Rules, 
and Analytic Models. 

 

Fig. 4. Adaptive Simulation Based Training System Architecture 

Finally, the Training Adaptation Tools subsystem interfaces with the ‘Training En-
vironment’ that includes (i) Training Systems (this includes training simulators and 
the information infrastructure needed to manage the execution of simulation-based 
training), (ii) the Training Model Library (this refers to the collection of models used 
within the simulation-based training environment), and (iii) the Training Execution 
Data (this refers to the transactional data that is managed within the simulation-based 
training data; this includes simulation input data and simulation output data). 

The adaptive simulation based training architecture has been implemented for air 
to air combat training with the U.S Air Force and the U.S. Navy.  End user validation 
of this technology is currently ongoing within a laboratory setting [4]. 

6 Summary and Areas for Further Research 

This paper described a structured method of adaptive simulation based training. Dri-
ven by an ontology model of adaptive simulation based training, the method characte-
rizes the simulation based training activities and their interrelationships. A central 
element of the method is a mission-driven, information fusion-based approach for 
integrated performance measurement. Finally, an automation architecture is outlined 
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that provides a pathway for realizing the practical benefits of the adaptive simulation 
based training methods described in this paper. 

Key benefits of the research described in the paper include (i) significant reduc-
tions in time and cost to develop and maintain simulation based training systems, (ii) 
improved effectiveness and quality of simulation based training in response to dynam-
ically changing and complex training needs and requirements, and (iii) a component-
based architecture that enables rapid, affordable, and scalable technology insertion 
and deployment. 

Areas that would benefit from further research include (i) design of mission-driven 
metrics and instrumentation methods to measure intuitive decision making capabilities 
during simulation based training, (ii) design of methods to rapidly tailor simulation 
based training to address dynamically evolving mission-driven needs of individuals 
and teams, and (iii) design of hybrid training methods and tools that combine (a) simu-
lation based training, (b) game based training, and (c) computer based training. 
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Abstract. The ever increasing complexity of knowledge, skills and abilities 
(KSAs) demanded of Department of Defense (DoD) personnel has created the 
need to develop tools to increase the efficiency and effectiveness of training. 
This is especially true for the F-35, the first 5th-generation aircraft to use an 
HMD as the primary instrument display. Additionally, the F-35 can perform 
operations previously performed by multiple operators, which potentially places 
incredible strain on the pilot’s cognitive resources by exposing him to large 
amounts of data from disparate sources. It is critical to ensure training results  
in pilots learning optimal strategies for operating in this information rich 
environment. This paper discusses current efforts to develop and evaluate a 
performance monitoring and assessment system which integrates eye tracking 
and Electroencephalography (EEG) technology into an HMD enabled F-35 
training environment to extend traditional behavioral metrics and better 
understand how a pilot interacts with data presented in the HMD.   

Keywords: Training, Performance Assessment, Eye tracking, EEG, Helmet-
mounted display, Heads-up display, F-35. 

1 Introduction 

According to the Air Force Transformation 2010, “the ultimate source of air and 
space combat capability resides in the men and women of the Air Force…first priority 
is ensuring they receive the precise education, training, and professional development 
necessary to provide a quality edge second to none”[1]. As technology progresses, the 
extensive knowledge, skills and abilities (KSAs) required of Department of Defense 
(DOD) personnel increases, and the demand for efficient yet effective training 
intensifies. This training need is particularly evident with 5th-generation tactical 
aircraft such as the F-35 Lightning II (formerly referred to as the Joint Strike Fighter).  
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In the 1970’s heads-up displays (HUDs) were introduced to tactical combat 
aircraft, which projected essential flight information onto the cockpit glass. This 
allowed pilots to continue to keep their eyes directed outside of the aircraft without 
being required to look down at important gauges. Several decades later, the 
development of the helmet-mounted display (HMD) allowed the HUD to be placed 
inside the pilot’s helmet. The F-35 Lightning is the first 5th generation aircraft to use 
an HMD as the primary instrument and sensor display. Additionally, the F-35 is 
capable of performing air-to-air combat and air-to-ground strikes while flown by a 
single operator. Tactical information has been added to the HMD to aid the F-35 pilot 
in performing the additional tasks. This translates to an increase in cognitive demands 
for an F-35 pilot, with the amount of data from different sources potentially exceeding 
an individual’s natural cognitive processing limits. As noted by Endsley (2001), data 
does not equal information, and may not be useful “unless it is successfully 
transmitted, absorbed and assimilated in a timely manner by the human” [2]. To date, 
the amount of information to be displayed often already exceeds available display 
space. Although essential information is provided on the HMD, the pilot must 
periodically transfer attention to other areas of the cockpit, such as the Multi-function 
Displays (MFDs), a paper copy of the Checklist, or cockpit control panels, in order to 
view more detailed information throughout a flight. Attentional demands in the 
cockpit shift frequently and rapidly if an emergency such as engine failure occurs, 
adding to the cognitive stress already amplified in an emergency situation. Given this, 
it is critical to ensure training results in pilots learning optimal strategies for operating 
in this information rich environment, including appropriate attention allocation 
between the different displays and pieces of information displayed within.  

2 Training Needs / Opportunity 

The application of HMD systems in tactical aircraft and simulation environments has 
substantial implications for performance assessment, proficiency tracking, and 
training. Much of the interaction that occurs with an HMD is unobservable, including 
gaze location/durations and cognitive processing of various information inputs that 
may not have an overt behavioral response. In order to effectively diagnose 
deficiencies/inefficiencies in performance and provide targeted feedback, it is 
necessary to obtain process level measures of performance that include capture of 
unobservable perceptual and cognitive tasks. To achieve this, there is a need for 
practical tools and instrumentation to better capture important data that can be 
assimilated in real-time to more accurately assess pilot performance, including data 
presented in the HMD, the interaction of the pilot with the data, and reactions and 
actions taken based on the data. With this enhanced data capture and performance 
monitoring capability, improved After Action Reviews (AARs) and debriefings will 
be possible that may substantially enhance training effectiveness and efficiency. 

The current training practices for the F-35 lightning were investigated to ensure 
that the research effort to develop a precision performance assessment system, 
referred to as the Helmet-Mounted Display ASsessment System for the Evaluation of 
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eSsential Skills (HMD ASSESS), is designed to address the training needs of the  
F-35. The current training program for F-35 transition pilots is 8 weeks long. The 
transition pilots are comprised of legacy aircraft experts such as experienced F-16 or 
F-22 pilots. These pilots will become F-35 instructors upon the completion of the 
program.  Training begins with a week of military lectures, followed by 3 weeks of 
lectures and academic courses specific to the F-35. A pilot training aid (PTA) laptop 
simulator is flown by transition pilots during these early phases of the course. The last 
phase of the training program is a mixture of 8-10 F-35 Full Mission Simulator (FMS) 
sessions and 4-5 actual flights in the F-35. The PTA and the FMS are the two main 
simulators used in the transition curriculum. The PTA has a large touchscreen monitor 
that displays both the out-the-window view of the aircraft as well as the touchscreen 
instrumentation (i.e. Main Forward Display). In addition to the touchscreen monitor, 
the PTA also has a full replication of the F-35 Hands-On Throttle and Stick 
(HOTAS). The PTA is mainly used during academic lectures to familiarize the pilot 
with the controls and procedures for the F-35. An HMD is not used in conjunction 
with the PTA.   

The FMS is a high fidelity flight simulator which contains a full 1-to-1 replication 
of the F-35 cockpit surrounded by a dome with almost 360 degrees of visual 
coverage. The pilot trainee is outfitted with an HMD visor that reveals a HUD fixed 
on the center windscreen. Additionally, a de-cluttered, un-fixed version of the main 
HUD with a reduced selection of essential symbols (e.g., airspeed, altitude) appears 
on the HMD when the pilot turns his/her head off bore-sight (i.e., left, right, up, or 
down). The simulator sessions in the FMS are 1.5 hours in duration and are preceded 
by a 1 hour pre-brief and followed by a 1 hour debrief. Each trainee in the FMS  
has the individualized, one-on-one attention of an instructor. The instructor has an 
operator station where he can launch scenarios and insert abnormal aircraft 
conditions. During the training session, the instructor can also view the pilot’s 
performance unfolding from a series of view, including the field of view (FOV) in the 
cockpit due to a head-tracker associated with the HMD.   

The debrief then provides the opportunity for the instructor to playback any flight 
segment during the simulator session and review notes, exceptional performance, and 
trainee performance errors. Control inputs, the pilot’s FOV, and other simulator 
information can be accessed by the instructor to facilitate this debrief. Instructors 
depend on overt behavioral actions and communications to identify performance 
errors. One limitation of this approach is the inability of the instructor to determine 
the specific instruments the pilot is monitoring, both within the HMD and on the 
MFD. Heads up/heads down status can typically be inferred based on the FOV 
presented by the HMD, however, the specific information that the pilot is visually 
integrating is not accessible. Given that a large portion of the task is monitoring 
information presented by a range of instruments; this limits the instructors 
understanding of how pilot performance is unfolding.   

Without sufficient data collection and diagnosis of performance data, evaluations 
and feedback provided by instructors may not address the underlying sources of poor 
performance. There are multiple reasons for this, including: 1) instructors may not be 
able to detect all errors due to the high workload associated with monitoring a 
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complex scenario; and 2) instructors are unable to monitor subtle physical behaviors 
such as scanning patterns or attention allocation. As a result, instructors may not drill 
down far enough to expose the root cause of training deficiencies. For example, 
during irregular flight training such as warning or error procedures, a trainee may  
fail to take appropriate action to correct the aircraft parameters during a warning 
indicator. This could be due to several reasons including 1) he/she is not 
monitoring/scanning the relevant content in the cockpit, 2) he/she is monitoring the 
relevant content in the cockpit, but does not detect that they are out of tolerance, or 3) 
he/she detects they are out of tolerance but does not understand appropriate actions to 
take to mitigate. Additionally, there may be overarching error patterns undetected by 
the instructor, such as tendency to allocate unnecessary attention heads-down/ within 
the main forward display (MFD) or to symbols not relevant to the task at hand. 
Having data that can help instructors to determine the root cause of errors could 
provide key information regarding the general nature of the failures, which could 
potentially facilitate development of more effective training interventions.  

Given the increased responsibilities and cognitive workload of the F-35 pilot, 
pilot’s cognitive interactions with the HMD and other instrumentation are ever more 
important to ensuring that training feedback is as accurate and helpful as possible. To 
this end, objective measures of pilot information processing efficiency and 
effectiveness are required. Since information interaction within a head-mounted 
display (HMD) is limited almost entirely to perceptual and cognitive processes such 
as visual scan and information processing, there is a need for innovative solutions that 
can accurately and reliably capture this ‘unobservable’ behavior in order to 1) 
understand how an HMD is impacting pilot performance and 2) design training  
to effectively maximize performance. With the advancement in physiological 
monitoring technology such as eye tracking and EEG there is an opportunity to make 
these unobservable processes accessible to instructors to increase the accuracy and 
effectiveness of training feedback. 

2.1 Eye Tracking and EEG 

Visual attention can provide important insights to the information used in task 
performance, such as the importance of various features or cues [3]. Several studies 
[4; 5; 3; 6] have used eye tracking to extract information about scan strategies. These 
studies have demonstrated that eye tracking can aid in the assessment of perception 
through measurement of visual attention during observation via gaze, scan path, and 
fixation data. These measures can provide a means for increasing the granularity of 
performance feedback and hence the effectiveness of debriefs based on these 
measures. Additionally, mobile eye tracking technology has been successfully 
implemented in both the commercial flight deck [7] and military fighter jet [8] 
simulation environments to measure scan path sequence, visual attention allocation, 
overall situational awareness, and fixation times. These measures are particularly 
useful for assessing HMD interactions, as the HMD is an area of the cockpit where 
the pilot is solely monitoring information visually and is not performing observable 
direct control inputs. EEG has been successfully used in previous studies [9] along 
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with electrocardiogram (ECG) sensors [10] to measure trainee workload in the aircraft 
simulation environment. Cognitive workload is of particularly interest in the F-35 
environment due to the previously-stated consolidation of duties. Such a measure 
could allow the identification of times when cognitive overload led to performance 
failures as opposed to skill decrements, allowing for feedback to more accurately 
target the root cause of errors. 

Eye tracking and EEG measures have been successfully implemented together in a 
number of desktop-based environments to provide this deep diagnostic evaluation of 
performance [11, 12, 13, 14, 15]. Eye tracking and electroencephalography (EEG) can 
be used in combination to access such “unobservable” perceptual cognitive processes 
as scan strategies [11], attention allocation [12, 13, 14] and cognitive workload [15, 
16].  Thus, eye tracking and EEG emerged as the most suitable combination of 
physiological measures to incorporate into HMD ASSESS to address the training 
needs of the F-35 Lightning II. The initial version of HMD ASSESS intended for use 
in the F-35 training environment will be limited to utilizing eye tracking 
measurements, with EEG measurements reserved for the version of HMD ASSESS 
used in conducting research. However, incorporating EEG in the training assessment 
version of HMD ASSESS is the end goal when EEG technology becomes more 
deployment friendly. 

These measures can provide a means for increasing the granularity of performance 
feedback and hence the effectiveness of debriefs based on these measures. Specific 
advancements required to realize the benefit of such metrics in FMS include 1) 
integration of hardware into an HMD; 2) analysis techniques that can reliably identify 
visual focus, such as when focus is on the Heads-Up Display (HUD) versus out the 
window, on which instrument the pilot is fixating, and cognitive state (e.g., cognitive 
overload); and 3) display techniques for visualizing the data in a format usable by 
pilot instructors during assessment and debrief. 

3 HMD ASSESS Approach 

The HMD ASSESS development effort aims to create a precision performance 
assessment system which integrates advanced sensor technologies including eye 
tracking and EEG to measure “unobservable” perceptual and cognitive processes such 
as visual scan, attention allocation and cognitive workload during HMD-based 
performance. Based on these granular-level process measures, HMD ASSESS will 
diagnose performance deficiencies (e.g., failures in monitoring and detection) and 
inefficiencies (e.g., times of cognitive overload, distraction or inefficient scan 
strategies) and provide Real-time and After Action Review (AAR) summaries of 
individualized performance issues. These summaries can be used to 1) support 
training instructors in identifying skill decrements which need to be effectively 
remediated to achieve criterion performance and 2) assist system designers in gaining 
an understanding of how a pilot is interacting with the system and 3) identify specific 
problem areas within the display. HMD ASSESS will thus provide a comprehensive 
understanding of pilot performance within an HMD enabled environment, a task 
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previously unachievable due to the unobservable nature of these processes. The 
resultant precision performance assessment system is intended to improve training 
effectiveness by providing instructors with access to previously unobservable 
perceptual and cognitive processes, allowing them to pinpoint the root cause of 
performance deficiencies (e.g., issues with attention allocation) and effectively tailor 
the debrief to address the problem.   

This effort commenced with the development of a taxonomy which delineated the 
data presented in the F-35 HMD and the expected pilot interactions with this 
information. F-35 instructor pilots and other domain experts were interviewed 
throughout the design process, with interviews conducted in an iterative manner. 
Utilizing the taxonomy as a foundation for what needs to be measured in order to 
understand pilot interactions with the HMD, a conceptual design of HMD ASSESS 
was developed and evaluated by F-35 Subject Matter Experts (SMEs) who provided 
input leading to the redesign of several HMD ASSESS metrics, diagnostic methods 
and displays. The resulting HMD ASSESS conceptual model consists of four main 
components, including 1) Measurement component, 2) Diagnosis component, and 3) 
Instructor Displays component.   

These components are discussed in the following sections and a use case is 
presented to illustrate the tool concept of operations.  

3.1 HMD ASSESS Conceptual Design  

HMD ASSESS Measurement. The HMD ASSESS measurement and data capturing 
component will log the occurrence of relevant events during the training session. The 
measurement component will receive events from a variety of available data sources, 
including the simulation system or another instructor learning station as appropriate 
(e.g., when warnings are provided or HOTAS inputs received from the pilot), eye 
tracking (e.g., ocular fixations relative to pre-defined high or low priority areas of the 
cockpit for a specific segment of flight or emergency scenario), EEG hardware (e.g., 
cognitive workload levels ) and input devices available to the user. The measurement 
component will assess events received for inclusion in the diagnostics to facilitate 
system flexibility required for integration into multiple training simulations. This 
component will be the hub for integrating the available data sources and calculating 
metrics to support the diagnostics.  

Taxonomy Development. Based on an analysis of F-16 and F-35 operations, and 
advanced HMD systems (including the Helmet Mounted Display System, the Joint 
Helmet Mounted Cueing System, and the Helmet Mounted Integrated Targeting 
system), an HMD-ASSESS Taxonomy was developed to serve two purposes. First, it 
provides a preliminary understanding of unique and common data displayed across 
HMD systems as well as when and how pilots interact with HMD presented data. 
Second, it provides a foundation for identifying metrics to assess this interaction as it 
identifies when pilots should be monitoring different pieces of information and 
potential errors in doing so. The taxonomy provides a breakdown of the following 
information for 40 symbols provided in the F-35 HMD interface and 8 MFD displays, 
including a description and location of the symbol, other locations in the cockpit the 
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same information can be found, the associated tasks performed when interacting with 
the symbol, and common errors associated with monitoring the symbol. 
 
HMD ASSESS Diagnosis. The diagnostic component will utilize the raw metrics 
output from the measurement component and run a series of algorithms utilizing 
constraint-based modeling approaches to identify key performance decrements and 
the underlying causes of these decrements such as insufficient attention allocation, 
cognitive state and occurrence of tunnel vision. This will be used to identify critical 
performance issues on which instructors should focus their training interventions such 
as AAR debrief and future training scenario selection and manipulation. Output of the 
performance diagnosis will provide instructors with pilot generated errors, root-cause 
error analysis, and consolidated error pattern analysis. 
 
HMD ASSESS Real-Time Display. The HMD ASSESS will include a real-time 
presentation of pilot trainee eye scan data displayed over a video feed displaying the 
area of the cockpit where the trainee is currently looking. The real-time display will 
be viewable in the instructor station, so the instructor can monitor where the pilot is 
looking and flag errors if desired, in addition to the errors identified automatically by 
the system. 

 
HMD ASSESS After Action Review Displays. An AAR screen generator will be 
implemented in HMD ASSESS that displays a variety of data to assist instructor in 
pilot performance assessment and debrief, including:   

• Graphical representation of pilot eye scan performance  
• Diagnostic information regarding pilot performance decrements 
• Performance summaries of pilot behavioral and eye scan performance 
 
Diagnostic outcomes will be fed forward to the display component which will present 
a single AAR screen containing 1) a playback mode showing real-time trainee eye 
scan data relative to pre-defined high or low priority areas of the cockpit for a specific 
training segment, 2) an overview mode showing a summary of all eye scan data 
relative to pre-defined high or low priority areas of the cockpit for a specific training 
segment, 3) a multi-level timeline which contains performance feedback and allows 
the instructor to zoom into specific segments of flight (i.e., taxi, take-off, approach, 
etc.), emergency scenarios (e.g., engine flame-out or rudder failure), instructor flags 
or system identified errors (e.g., when the pilot misses a required task for a specific 
segment of flight or emergency scenario), 4) a summary list of all instructor flags and 
system-identified errors, and 5) summaries of the total time the trainee fixated on 
different areas of the cockpit (e.g.,  the total time the pilot was heads up or heads 
down,  the total time spent looking at HMD symbols or MFD pages). In summary, 
the AAR screens provide the instructor with the ability to select a specific segment of 
flight in order to review scan patterns, errors, and visual allocation timing information 
with the pilot trainee. 
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4 HMD ASSESS Use Case 

HMD-ASSESS is designed to be utilized during the actual training session and 
debrief. A use-case was developed to demonstrate the HMD ASSESS concept of 
operations for F-35 FMS training sessions and is presented in summary in this 
section.  

A typical training session in the FMS may include several abnormal malfunctions 
from which a pilot must attempt to recover. During this particular training session, the 
instructor has inserted an Integrated Power Package (IPP) failure into the scenario. As 
the pilot trainee attempts to recover from the IPP failure, he performs three key errors: 
1) the pilot misses a critical checklist item (i.e., arming the backup oxygen system); 2) 
the pilot spends too much heads down time looking at his checklist and fails to scan 
his primary flight instruments (altitude, attitude, airspeed) at the necessary intervals; 
3) the pilot develops tunnel vision on an area of the cockpit irrelevant to the 
appropriate task, e.g., determining the best place to land, resulting in a delay in 
conducting a critical checklist item (i.e., open RAM door).  

After the training session in the simulator has ended, the instructor uses the HMD 
ASSESS after action review displays to facilitate his debrief to the pilot trainee as 
follows. The instructor is interested in assessing the students handling of the IPP 
failure, so the instructor clicks on this segment of the timeline and the timeline 
automatically zooms into the IPP failure event. The instructor points out overall 
timing summary for that segment to the pilot, including total time heads up vs. heads 
down and total time in high priority areas. The instructor can illustrate to the pilot 
trainee that he spent a large amount of time heads down while handling the IPP 
Failure.  

The instructor then clicks on the first system identified error, which automatically 
zooms the timeline down to a system default of 30 seconds on either side of the error. 
The instructor plays back the error and points out that, based on the eye tracking data, 
the pilot was distracted from reading the checklist by focusing on blinking lights on 
the IPP Panel.  

The instructor then moves on to the next error (i.e., breakdown in a periodic eye 
scan of flight instruments), by selecting the error from the error summary list. The 
instructor wants to show the pilot how he failed to scan his primary flight instruments 
frequently enough. By using the Overview mode containing a summary of all eye 
tracking data for 30 seconds on either side of the error, the instructor illustrates to the 
trainee that a scan of these three primary flight instruments did not occur during this 
time period. The instructor confirms this by pointing out the timing summary which 
shows that the pilot spent very few seconds looking at the altitude, attitude, and 
airspeed instruments for the specified window of time.  

The instructor then points to the section of the timing summary that shows the total 
time spent on each MFD page for the segment of flight in focus. He uses this data to 
illustrate that the pilot spent only 30 seconds looking at the navigation page and flight 
instruments because he started to look for the nearest airport to land too early, instead 
of following the checklist steps. This caused the pilot to delay in opening the RAM 
(i.e., air intake) door, which resulted in systems overheating more quickly. 
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As illustrated in the se case, HMD ASSESS will allow an instructor to more 
accurately and efficiently diagnose a performance issue. Instructors will be better able 
to direct a pilot’s attention during overwhelming flight scenarios and prevent pilots 
from making common mistakes with regard to visual attention allocation. 

5 Future Research 

Development of the HMD ASSESS prototype is currently underway. HMD ASSESS 
will be integrated with the PTA initially, with the ultimate goal of implementing the 
system in the F-35 FMS. As HMD ASSESS has an iterative lifecycle and 
development process, the initial HMD ASSESS prototype will be verified and 
validated, and then revised as needed following implementation. The effort will 
culminate with a training effectiveness evaluation to assess the impact HMD ASSESS 
has on performance assessment and training effectiveness.   
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Abstract. Simulation based training is one way to attain operational realism for 
training complex military tasks in a safe, task relevant manner. For successful 
transfer of knowledge, skills, and abilities to the dynamically changing military 
environment, the human-computer interface should minimally support learning 
during the training process and provide congruent action plans that facilitate 
understanding of the overall training goal. While there are emerging controller 
technologies, simulators still rely on such input devices as mouse and keyboard. 
These devices potentially cause information and training bottlenecks as they 
limit naturalistic interactivity within the more advanced serious gaming  
platforms. Given the shortcomings of current interface design, we suggest a 
human-computer interface framework that includes perceptual user interface 
components and an open source serious game testbed. We discuss a multimodal 
framework called bio-reckoning that integrates brain-computer interface tech-
niques, eye tracking, and facial recognition within EDGE, the U.S. Army’s 
newest serious game based training tool.    

Keywords: simulation based training, perceptual user interfaces, brain-
computer interfaces, serious games, military training, augmented cognition. 

1 Introduction 

Human Computer Interface (HCI) techniques do not enjoy the same timely advances 
as do computer components and related hardware. This lag is apparent when review-
ing interface design for military training simulations, especially those following a 
serious game platform [1]. Smith’s review of the use of games in military training 
makes clear that throughout history the game play or simulation supported cognitive 
function and related action needed for battlefield success. However, regardless of the 
technological advances (e.g., high fidelity terrain maps and realistic avatars) in to-
day’s serious game training paradigms current HCIs execute our ‘plans to perform’ an 
action in computer space by means of intermediary physical manipulations such as 
pressing keys or directing a joystick. Transferring actions through these traditional 
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input devices places an intermediary between the human operator and the training 
simulation that can detract from training goals and objectives, and more importantly 
fail to support transfer of training to the field environment [2].  

For example, computer-aided training that relies on joystick manipulations may 
hinder necessary cognitive processes (e.g., focused attention) through the bottleneck 
of translating intended action through an unnatural modality. Further, mapping com-
puter interactions through these peripherals requires time to learn and to operate pre-
training, while demanding time to translate a user’s physical action into a limited 
predefined set of object behaviors during training. Given the artificiality of these input 
devices, physically operating interfaces for multiple objects may demand more cogni-
tive resources and may lead to overload simply through motor control processing and 
motoric interference. 

Also neglected in the traditional user-interface paradigm is the affective training 
that is necessary to provide the correct amount of emotion regulation required to react 
appropriately under stress [3]. The gaming industry leads the software and hardware 
development for many serious games for military use [4] [5]. Matching interactivity 
and emotional regulation design elements to the training environment is not impor-
tant. The gaming industry’s goal is entertainment, and not transfer of training to the 
theatre of war. Poor transfer of training from simulation to field is not only costly 
from a financial perspective, but also can lead to loss of life. Offering a more natura-
listic interaction within military training simulations is an overlooked necessity.  

How to proceed in creating appropriate user interfaces for supporting transfer of 
training is a non-trivial task. Defining types of actions necessary for task training and 
mapping them to the serious game action codes is a primary concern. Once actions are 
chosen, how to instantiate these codes in the serious game environment by choosing 
or developing serious game controllers is key. With new gaming technologies such as 
the Microsoft Kinect, a motion based controller, one strategy is to gather all state-of-
the art controllers and user test for ease of use and improved performance. Problems 
quickly arise in that these controllers work optimally with a particular gaming con-
sole. Even controllers with their own software development kits pose interfacing is-
sues that may require knowledge from a highly trained technician to integrate.  

Another issue when choosing off-the-shelf gaming environments for training is that 
the metaphor used for interface design may not match the one needed for training. 
Controller technology and subsequent action code responses are gaming specific and 
serve the purpose of gaming goal, of which high entertainment value is one. These 
elements are also chosen as part of the gamming narrative or story that provides the 
nature of the interaction as a gaming element. How challenging these action pairings 
to gaming objectives are to learn depends on the overall goal of the game. For exam-
ple, discovering how to launch a weapon may be a gaming objective for an action 
game. Action codes within the game environment support this aspect of exploration. 
In contrast, guessing how to change mission critical entities within military simula-
tions for training is never appropriate. More importantly, the inability to access the 
source code of proprietary serious game platforms does not allow changes to control-
ler parameters and their associated action maps further limiting the number, variety, 
and type of controller. 
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Low Cost Game Interfaces. Nintendo opened the game industry to non-gamers by 
creating an interface, Wii Mote, that made playing games more natural and engaging 
[6]. Researchers [7] explored the use of the Wii Mote and Numchuk for navigation, 
object manipulation, and object selection within a First Person Shooter (FPS) type 
gaming environment.  The user navigated using the Wii Mote; the combination of the 
Wii Mote and the Numchuk performed the action of selecting and manipulating ob-
jects.  Experienced FPS gamers reported the navigation strategy as frustrating; yet, 
many found the manipulation tasks more pleasant using the Wii tools as compared to 
a mouse. In this example, user satisfaction could be due to the optimized interactivity 
when using the new controllers.  This research demonstrates the ease of use of  
these controllers for manual tasks, but falls short when describing the entire user  
experience.  

Microsoft™ responded to the market success of the Nintendo Wii with the 
groundbreaking Kinect depth sensor camera [8]. The Kinect uses an infrared laser 
projector combined with an image sensor, which captures video data in 3D [9]. It is 
capable of simultaneously tracking six people with two active players at a time, al-
lowing facial feature extraction or the ability to "recognize" players and the ability to 
track 20 joints per player [10].  The system includes a directional microphone to 
support voice control.  In June of 2011, Microsoft™ released a non-commercial 
Software Development Kit (SDK) for use with Windows [11]. The Kinect interfaces 
with a standard PC via USB connector.  This system has arguably changed the face 
of the interface world by bringing the player into the game more accurately than ever, 
however there are still unsolved problems that with the Kinect. Though the micro-
phone is useful for administrative functions, it is still not reliable enough to replace 
the keyboard (or in this case, joystick).  Gestures used to do interactions or adminis-
trative functions can be awkward or might not be readily recognized [12].  
 
Voice as a Controller. Voice recognition for use in games is still at an early state of 
research. The goal of using voice in a FPS game is to assist in interacting with ob-
jects. For example, if the user approaches a vehicle, an action menu appears asking if 
the user wants to enter the vehicle.  To activate the menu the player would use a spe-
cific word.  Drawbacks to using voice as an interface are that background noise and 
casual conversation may unintentionally activate a task. It may be necessary to con-
firm direction to avoid false positive responses. The proposed strategy for this re-
search would be to use a Small-Vocabulary/Many User system, with only a small set 
of words in use at specific times. Mohanram [13] showed that speech recognition as a 
game interface was not yet ready for public adoption with only 40% of the users  
considering speech as a better input strategy than voice.  The greatest issue was mi-
srecognition of the voice cues.  

Apple has since released Siri as an alternative means of inputting data into its smart 
phone. Siri “understands” conversational context and is surprisingly accurate in con-
verting spoken word into text [14]. Siri and PC applications (e.g., Dragon Dictation) 
demonstrate that voice recognition as a natural and intuitive interface tool is begin-
ning to ‘come of age’. This technology clearly brings new functionality that was not 
readily available in the past.   
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Controller Testbed. A more efficacious serious game design strategy would be to 
start with a framework that provides a more systematic manner of testing controllers, 
interfaces, and content for their effects on military training and training transfer. The 
serious game platform should allow for full access to technology and action codes, as 
well as allow for the integration of multiple action controllers. This work uses  
Enhanced Dynamic Geo-Social Environment (EDGE), a military relevant gaming 
environment, to provide a testbed from which to assess gaming and training elements. 
Within EDGE, the Bio-Reckoning Interface (BRI) integrates multiple psychophysio-
logical and body (e.g., facial features and limb movement) measures and uses these 
measures as naturalistic input control to the EDGE platform. For the purpose of this 
paper, we discuss the development of a BRI interface that uses brain computer-
interface techniques, eye tracking, and face recognition to provide action codes to 
EDGE.   

2 Perceptual User Interfaces for Military Training 

Perceptual User Interface (PUI) design takes into account naturalistic human nonverbal 
and verbal human responses as part of the device or sensor input to the human-
computer system [15]. This relationship between the trainee and simulator is symbiot-
ic, like that in an intelligent automated system. This idea extends the concepts of  
Augmented Cognition, where the system uses the trainee’s psychophysiological data to 
determine learner biophysical states that impede the learning process during training 
[16]. However, unlike the Augmented Cognition closed-loop system, the multimodal 
interaction capabilities of a PUI based system would allow for user control over the 
type of interaction that accounts for individual differences in how a person processes 
complex cues and related action in operational environments.  

PUIs integrate concepts from perceptive, multimodal, and multimedia user inter-
face designs. According to [15]: 1) perceptive interfaces are aware of the learner’s 
body, face, and hands; 2) multimodal interfaces use several learner perceptual modali-
ties such as speech and eye tracking as system input; and 3)  multimedia systems 
include the use of text, graphics, animation, voice, and touch to best deliver training 
content. For these interface styles to be effective they must reciprocally monitor user 
behavior, model the goals and objectives of the training, flexibly change to learner 
preferences, positively support learning acquisition, support multi-tasking, and moti-
vate the learner to interact meaningfully with to-be-learned material. Turk [17] con-
tended that an ideal user interface should seamlessly transfer the intent of the user to 
the system, and the system response should appropriately support the user experience 
(e.g., reduce extraneous cognitive load).  

2.1 PUI Military Examples 

QuickSet is one of the first examples of a military based PUI that was a wireless, 
handheld capability that could control distributed interactive simulations based on  
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Modular Semi-automated Forces representing training at 29 Palms, California [18]. 
QuickSet used multiple input sensors such as speech, gesture, and direct object mani-
pulation to support platoon leaders and company commanders with decision making 
involving multiple distributed assets (e.g., vehicles or personnel). The use of data 
fusion algorithms such maximum likelihood estimators coupled with artificial  
neural networks assisted to disambiguate the sensor inputs and increase reliability in 
noisy military exercises [19]. The system was also extensible to support 3-D terrain 
visualization.  

Improved sensor technology and data fusion algorithms allowed for the miniaturi-
zation of sensors such that wireless, unobtrusive biosensors fit into wearable systems 
that convey real-time data acquisition [20]. The Virtual Locomotion Controller is an 
example of a wearable multimodal capability that used solid-state gyros and accele-
rometers, ultrasonic range sensors, and force sensitive footpads to provide naturalistic 
motion (e.g., crouching and running) within Military Operations on Urbanized Terrain 
(MOUT) simulated environments [21]. These advances in sensor and algorithm  
development also allow for redundant HCIs that present a combination of system 
features (e.g., face recognition, eye tracking, and graphics) to the operator, as well as 
user selection modes where the operator chooses the type of feature based on task 
relevance. 

2.2 Bio-Reckoning Interface Components 

The BRI is an example of a state-of-the-art PUI that provides data fusion across a 
multimodal sensor suite. These data streams are synchronized and applied to the se-
rious game either as emulators for controllers in the case of proprietary games or as 
actual controllers as in training simulations. Their output can also provide information 
on the efficacy of the training system (i.e., eye tracking). Within this BRI prototype, 
we explored the use of BCI techniques, eye tracking, and face recognition.  

Brain-Computer Interface Techniques. Brain-Computer Interfaces (BCIs) afford 
the possibility of removing the interface-as-middleman in both gaming and virtual 
reality contexts [22]. A typical BCI system consists of three processing modules: 1) a 
brain activity-monitoring device (i.e., electroencephalography-EEG) that records 
brain activity, 2) a signal-processing module that identifies specific brain patterns or 
features related to a person’s intention to initiate action, 3) and a translator that  
converts these brain features into meaningful control commands [23]. Electrophysio-
logical sources of control (ESC) are the mental activities and their associated EEG 
measures that become the control mechanism that perform actions within a given 
application. ESC are currently elicited in an active (user conscious control without 
external stimulation), a reactive (external stimuli elicits user brain response), or a 
passive (brain activity associate with a cognitive state drives system change) manner. 
The proposed BRI system combines an easy-to-apply wireless EEG sensor headset 
made by Advanced Brain Monitoring. 
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Eye Tracking. Blinks, direction of gaze, and fixations are all candidate eye move-
ments that can act as naturalistic input to a serious game [24]. Additionally, gaze pat-
terns provide information on how naturalistic a task appears to the operator [25]. 
These gaze patterns can also address training design elements through the evaluation 
of fixation patterns during task performance.  For this work, we used an EyeTech 
TM3 eye tracker that monitors head movement as well as the gaze pattern of both 
eyes. 

Face Recognition. Humans have a biologically mediated expertise in identifying 
faces versus objects [26]. Researchers in computer vision have sought to replicate this 
process in computer software since the 1960’s. Facial recognition software measures 
various generalizable features common to all human faces (e.g., spacing between the 
eyes). While facial recognition systems are becoming more accurate at their primary 
task of identifying faces, techniques for transferring these facial features and their 
related meaning (e.g. smile) to an avatar is not readily available. Open source solu-
tions exist; however, we chose a more robust commercial product, faceAPI created by 
Seeing Machines.  

3 Enhanced Dynamic Geo-Social Environment (EDGE)  

Experiential learning is one of the benefits of using a serious gaming platform for 
training military tasks. However, there are challenges to serious game use in training. 
Besides adoption, there needs to be a clear training benefit to using this training para-
digm. Additionally, PUI features should serve to augment training or otherwise not be 
a part of the training system. Proprietary games for training do not allow code access 
to develop and test appropriate training content integrated with candidate PUIs. A 
solution that 1) provides access to source code; 2) allows for community input assist-
ing with extensibility and updates; and 3) leverages coding expertise from a global 
network [27] affords the opportunity to test different types of PUI features within an 
operationally relevant training environment.  
 

 

Fig. 1. Screen shots from EDGE showing accurate physics, terrain, and visual representations 
of military relevant operational environments  

EDGE is a government owned architecture designed using AMSAA approved 
standards (e.g., OneSAF) to provide highly accurate virtual simulations of military 
operational environments utilizing state-of-the-art Multiplayer Online Gaming 
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(MOG) technologies [28]. Access to EDGE requires Federal Government sponsorship 
for use. This feature allows the community to upgrade the software to meet the  
challenge and pace of changing technology. Figure 1 depicts the fidelity of the com-
puter-generated models, along with accurate physics, and military relevant operational 
environments.  

The first level developed within EDGE was a tutorial level that requires the user to 
walk and run in each direction, complete a high and low crawl through small open-
ings, walk a balance beam, drive a vehicle and shoot a weapon.  Throughout the lev-
el, smart menus appear to interact with objects, such as entering a vehicle.  If the user 
is at a keyboard, the “F” key activates these menus. This level ensures that users are 
familiar with controls prior to using a training level. However, for this research, the 
level ensures that the user can complete tasks within a FPS game environment. Addi-
tional levels allow free exploration of a small village and an urban environment.   

4 Future Work Additional Controllers Integrated with the BRI  

The next phase of BRI development will include the Playstation Kinect sensor, which 
will extract body positioning information and collect voice data.  In addition, a Nin-
tendo Wii will have a dual purpose of controlling a tactical weapon to allow the user 
to engage an enemy and a steering wheel to allow the user to have a sense of driving a 
vehicle.  This combination will allow the user to move forward or backward using 
the BCI, jump, kneel, turn using the Kinect, shoot and drive using the Wii, and inte-
ract with the user prompts using voice.  While the implementation of these control-
lers is initially to improve interaction within the EDGE platform, the intention is that 
the interface is not platform specific. Future research includes a phased approach 
described below.   

4.1 Phase I: Establish Prototype and Measure User Experience 

Implement a Prototype Interface Set to Engage with a First-Person-Shooter En-
vironment.  A difficult challenge is ensuring that all integrated controllers function 
in a complimentary manner.  For example, if a player intends to jump across a hole in 
the training simulation, the Microsoft™ Kinect should detect that the player is jump-
ing and the BCI must move the avatar forward concurrently. Otherwise, the player 
will not effectively complete the jump across the opening. Additionally, a single 
Graphical User Interface (GUI) should setup pairings for the controllers and their 
associated actions, as well as monitor pairing functionality throughout the experience.  

Demonstrate the Prototype and Establish Measures of User Engagement.  The 
first study will compare traditional keyboard and mouse input to the experience of 
using the BRI controllers.  Measures of user experience will include: 1) time to suc-
cessfully complete the tutorial level, 2) usability of the combined interface during 
interaction in a simulated small town, and, 3) psychophysiological measures of  
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engagement and distraction (e.g., brain activity and skin conductance). Finally, partic-
ipants will respond to the NASA TLX and a user questionnaire based on five criteria 
for user acceptance of the interface (i.e., intuitive, readily available, augments existing 
user capabilities, accessible through an open toolkit, and fun). 

4.2 Phase II: Comparison between Virtual and Live Experiences  

Create a Scenario in the Virtual Environment That Replicates a Live Military 
Training Scenario. A MOUTexercise translatable into a live experience may provide 
the testing environment for this phase of research. A training exercise of this type 
would take place in a small simulated or mock-up town.  The live exercise would use 
laser training weapons rather than live-fire weapons to reduce the risk of injury. The 
target location for the scenario is at the Maneuver Center of Excellence at Fort  
Benning, Georgia.  

Compare Brain Activity and Skin Conductance Readings. To determine the how 
the level of realism experienced in a FPS game with an immersive interface suite 
compares to a live training experience at the same level of physical risk, trainees 
would experience both environments and perform similar tasks. Brain activity and 
skin conductance provide comparison measures of engagement and distraction or 
stress in each environment.  

Compare Performance in the Live Environment after Practice in the Virtual 
Environment. Simulations historically reduce the cost and risk associated with live 
training. Further, simulation based training may better prepare a trainee for live train-
ing and ultimately for operational engagements. This study will compare the perfor-
mance of trainees at the Maneuver Center of Excellence live training environment 
with and without preparatory virtual training. The expectation is that Trainees with 
virtual training preparation will perform better in a MOUT operation (building clear-
ing, hostage rescue, etc) than those moving directly into a live training environment. 
This fits well with the described research because the level of realism established 
while in the virtual environment may be a critical factor in live training preparedness. 
To further establish that realism is a factor, three study groups will be established; one 
with no virtual training, one with keyboard and mouse at a desktop and one using the 
prototype BRI. 

5 Conclusion 

The ultimate goal of this research is to show that a combination of off-the-shelf 
emerging controller technologies integrated within a simulation-based trainer can 
improve the interaction between the human and computer. This improved interface 
can increase the user’s sense of presence, immersion and flow, which may lead to 
improved human performance [29] and potentially to training realism. By creating a 
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PUI testbed using a military relevant simulation based training environment, this 
could benefit the gaming world as well as support military training applications. 

It is clear that there is no one-size-fits-all interface in existence today. The premise 
of this research is that a combination of interface tools may begin to close the gap 
between the user and the immersive environment. Various modalities are mixed and 
matched and can be adjusted to support specific training needs; however, this type  
of experimentation should occur in a valid testing environment. In most cases, a  
traditional interface is sufficient; however, when total immersion is the goal for train-
ing or even for entertainment, a combination of interfaces may provide a better user 
experience.  
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Abstract. The study aims to identify the types of metacognitive awareness of 
reading strategies that Taiwanese EFLs (English as Foreign Language) used at 
medical junior colleges. In addition, metacognitive awareness of reading strate-
gies were investigated to discover whether or not it affects students’ English 
reading performance, specifically in reading comprehension. A total of 454 ju-
nior college students participated in the study. The results indicated that prob-
lem-solving reading strategies were used the most, followed by globe reading 
strategies, whereas support reading strategies were used the least. Regarding of 
the effects of variables on English reading performance, overall reading strategy 
use, and problem-solving reading strategies each significantly predicted stu-
dents’ reading comprehension. It’s hoped that the finding could be helpful for 
further study as well as teaching. 

Keywords: Metacognitive awareness, reading strategy, reading comprehension. 

1 Background 

Traditional instruction for reading often stresses on the teaching of vocabulary and 
grammar. Students are required to spend most of the time memorizing words, struc-
tures and grammar. Moreover, it fails to promote students’ comprehension but results 
in their fear and rejection toward reading. During the studying period, the ultimate 
goal of teachers and students is how to come up with correct answers on exams. Thus, 
personal opinion and thoughts do not receive lots of attention on students’ reading 
process, and the opportunity of using strategies to enhance reading comprehension is 
neglected.  

A key element to enhance comprehension is metacognition, which is a personal’s 
awareness to manage and monitor the process of cognition. Metacognitive strategic 
knowledge is a thinking ability involved in the process of reading comprehension. 
Moreover, students are able to adopt these strategies while reading so as to promote 
their reading comprehension (Baker & Brown, 1984; Yang, 2002). 

In order to investigate the relationship between metacognitve reading strategies and 
comprehension, the study aims to identify the types of metacognitive awareness of 
reading strategies that Taiwanese EFLs (English as Foreign Language) used at medi-
cal junior colleges. In addition, metacognitive awareness of reading strategies were 
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investigated to discover whether or not they affect students’ English reading perfor-
mance, specifically in reading comprehension.   

In light of intense teaching schedule, it failed to provide students enough time and 
chance to notice their use of language learning strategies. Thus, it is hoping to offer 
students and teachers information about students’ reading strategies, and to design 
suitable curriculum for students to cultivate their reading strategies and promote read-
ing comprehension. 

2 Literature Reviews 

Reading comprehension has been identified as the cognitive skill that people use to 
comprehend what they read. Although reading in a native language (L1) is not the 
same as reading in a second language (L2), reading in L1 and L2 still share a similar 
process that can be influenced by various factors in different patterns (Cook, 2001).  

Each student who enters the classroom comes from different family background 
and possesses different learning style. Several characteristics are synthesized to help 
obtain concepts about so-called good reader, and that are: (1) be active and positive 
reader; (2) know how and when to use different strategies in order to help them  
comprehend what they are reading; (3) tend to make assumption of any unclear or 
unfamiliar part on reading; (4) monitor how much oneself comprehend the reading; 
(5) manipulate different strategies to promote comprehension, and adjust strategies to 
compromise the part which failed to comprehend successfully by using previous strat-
egies; (6) possess linguistic awareness (Celce-Murcia, 2001; Houtveen and Van de 
Grift, 2006; Maria, 1990 ; Tompkins, 2005). 

Although there are various factors that affect the ability of reading comprehen-
sion, the key factor is strongly associated with the reader’ cognitive skills and meta-
cognition, such as if the reader has enough prior knowledge to link what they have 
learnt to the new information, using different strategies to help comprehend reading, 
and so on (Celce-Murcia, 2001; Farley and Elmore,1992). Besides, Flavell (1979) 
stated that metacognition is a personal’s awareness to manage and monitor the 
process of cognition. Metacognitive strategic knowledge is a thinking ability involved 
in the process of reading comprehension. Moreover, students are able to adopt these 
strategies while reading so as to promote their reading comprehension (Baker & 
Brown, 1984; Yang, 2002).  

3 Methodology 

3.1 Participants and Population 

Participants in this study mainly consisted of students who were learning English as a 
foreign language. Except for those in the foreign language department, students are 
required to take English courses for three hours per week their first three school years. 
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Before attaining junior college status, all students had been taking English courses for 
at least three years in junior high school.  

The data for this study was based on surveys given to the students from different 
departments. These students contained different levels from basic to advanced English 
proficiency for the population of approximately 550 students. By removing the un-
completed surveys, valid samples were reduced to a total of 454 full-time students, 
shown in Table 1, including 100 males (22%) and 354 females (78%).  

In addition to gender, participants are mainly from the following department:  
Applied English (34.1%), Nursing (31.5%), Physical Therapy (15.4%), Dental Labor-
atory Technology (11.5%), and Occupational Therapy (7.5%). The majority of partic-
ipants were first-year junior college students (75.1%) at the age of 16 to 17 years old, 
whereas the rest students are second- to fourth-year students (24.9%). In addition, 
Chinese was their native language.  

3.2 Research Instrument 

The research instruments in the study were surveys that included two sections: Meta-
cognitive Awareness of Reading Strategy Inventory (MARSI, Mokhtari and Reichard, 
2002), and a reading test called the General English Proficiency Test (GEPT). As for 
the period used for answering, students were able to complete all within 90 minutes. 

Section 1: MARSI. The MARSI, developed by Mokhtari and Reichard (2002), was 
used to identify 6th- 12th grade students’ awareness and perceived use of reading strat-
egies while reading academic or relative materialss. It is composed of 30 items in 3 
scales: Globe Reading Strategies, Problem-solving Reading Strategies and Support 
Reading Strategies. In order to reduce difficulty and misunderstanding in responding 
to the questions, MARSI was translated into a Chinese Version by the researcher.  

Section 2: GEPT Test. In order to identify students’ English reading comprehension, 
the reading section of a General English Proficiency Test (GEPT) was used in the 
study. The GEPT is divided into five levels according to difficulty: elementary, in-
termediate, high-intermediate, advanced, and superior. The GEPT elementary level 
was chosen in the study because it is designed for examinees who have achieved at 
least a junior high school level proficiency. The GEPT reading test has a total of 35 
items dealing with three components of reading: vocabulary and structure, cloze texts, 
and reading for comprehension. Each item contains a statement that requires exami-
nees to choose one answer that best fits its description. The reading test requires 35 
minutes for participants to complete, and the maximum score is a total of 120 points. 

3.3 Data Collection and Analysis 

Participating students were given relevant materials including a copy of the MARSI 
and the GEPT reading comprehension test. Participants were guaranteed that all data 
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and information was collected anonymously and would not be accessed by anyone 
other than the researcher. 

The data was gathered from the survey with a five-point Likert scale, and from the 
GEPT reading scores. Before data analysis, the researcher checked and edited the data 
from returned questionnaires. The Statistical Package for the Social Sciences (SPSS), 
Version 16.0, was used for data analysis in this study. 

4 Research Findings 

The following information, including descriptive statistics and analysis summary, was 
described by the research questions of the study. 

4.1 Students’ Reading Comprehension 

On average reading scores, as shown in Table 1, revealed that Occupational Therapy 
groups scored the highest (M = 67.87, SD = 18.926) on English reading comprehen-
sion than the other four groups (N: M = 39.61, SD = 18.236; PT: M = 51.28, SD = 
24.878; D: M = 62.18, SD = 14.968; E: M = 67.75, SD = 20.000). 

The results showed that the occupational therapy groups had better English reading 
scores, followed by applied English groups, dental laboratory technology and physical 
therapy, whereas nursing groups reported the lowest reading scores.  

Table 1. Descriptive Statistic of English Reading Scores with Different Majors 

Major N M SD 

Overall 454 55.72 23.156 
  Nursing (N) 143 39.61 18.236 

Physical Therapy (PT) 70 51.28 24.878 
Occupational Therapy (OT) 34 67.87 18.926 
Dental Laboratory Technology (D) 52 62.18 14.968 
Applied English (E) 155 67.75 20.000 

4.2 Students’ Metacognitive Awareness of Reading Strategy Use 

As shown in Table 2, on average students’ overall and the three types of reading strat-
egies reported medium use of reading strategies when reading materials (M = 
2.5~3.4). In term of individual strategy use, students used problem-solving strategies 
the most (M = 3.36¸ SD = .807)，followed by global strategies ( M = 3.30¸ SD = 
.719), whereas support strategies are used the least (M = 3.18¸ SD = .782). Moreover, 
the overall frequency of strategy use in the study was in the medium use (M = 3.28¸ 
SD = .732). 
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Table 2. Descriptive Statistics of the Use of Reading Strategies 

Type of strategy M SD 

Overall  3.28 .732 
Global 3.30 .719 
Problem-solving 3.36 .807 
Support 3.18 .782 

Note. M ≦2.4 indicates low use of strategies while reading; 2.5< M < 3.4 indicates 
medium use of strategies while reading; M≧ 3.5 indicates high use of strategies 
while reading. 

4.3 The Relationship between Metacognitive Awareness of Reading Strategies 
and Reading Comprehension 

A standard regression analysis (see Table 3) was used between the dependent and 
independent variables. In terms of individual variable, major (β = .334, p < .001) and 
overall strategy use (β = .420, p < .001) both held significant relationships with stu-
dents’ reading scores. According to the results in Table 3 and 5, major difference is  
a factor that affects students on their English reading achievement. For the use of 
overall reading strategies, students who used more reading strategies scored better in 
English reading than those who used fewer strategies.  

Table 3. Regression Analysis Summary for Major, Grade, Gender, Overall Reading Strategy 
Predicting English Reading Scores 

Variables B SEB β t 
Major 2.235 .294 .334 7.608*** 

Grade 1.004 1.639 .026 .613 
Gender -1.775 2.109 -.032 -.841 
Overall strategy 13.301 1.231 .420 10.801*** 

Note. R2 = .372, Adjust R2 = .366. F(4,449) = 66.425, p < .001.  
*p < .05. ** p < .01. *** p < .001. 

 
Another regression analysis (see Table 4) was employed to determine the relation-

ships of three types of reading strategy use and English reading achievement. In terms 
of individual variable, major (β = .333, p < .001) and problem-solving strategy use (β 
= .263, p < .001) both held significant relationships with students’ reading scores. 
According to the results in Table 3 and 6, major difference still presented effects on 
students’ English reading achievement. Students in OT, D, and E groups, who used 
more strategies while reading, achieved higher reading scores than N and PT groups. 
For the three types of reading strategy, students who used more problem-solving  
reading strategies scored better in English reading than those who used fewer prob-
lem-solving strategies.  
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Table 4. Regression Analysis Summary for Major, Grade, Gender, Three types of Reading 
Strategy Predicting English Reading Scores 

Variables B SEB β t 
Major 2.229 .294 .333 7.581*** 

Grade 1.163 1.646 .030 .707 
Gender -2.037 2.123 -.037 -.960 
Reading strategy     

Globe 4.064 2.861 .126 1.420 
Problem 7.535 2.459 .263 3.064** 
Support 1.531 2.272 .052 .674 
Note. R2 = .375, Adjust R2 = .367. F(6,447) = 44.720, p < .001.  
    *p < .05. ** p < .01. *** p < .001. 

5 Conclusion and Implication 

5.1 Discussion 

Students’ Metacognitive Awareness of Reading Strategy Use. The overall fre-
quency of strategy use in the study was in the medium use. In terms of reading strate-
gy use, the strategy that Taiwanese EFL students used the most was problem-solving 
strategy, and this has been supported by studies (Alsheikh, 2002; Chen, 2007; Chen, 
2010; Hu, 2011). Moreover, other results have also reported that support strategy was 
found to be the least used (Al-Nujaidi, 2003; Chen, 2007; Chen, 2010; Wu, 2005). 
One possible explanation for problem-solving strategies being the most used strategy 
could be that instruction of English reading in the first three years of junior colleges 
emphasizes seeking for the correct answers, and for this purpose, using additional 
resources (such as library and online information access) or cooperating different 
realm of information are not required at this stage.   

Metacognitive Awareness of Reading Strategy Use Relationship to English read-
ing Comprehension. For the use of overall reading strategies, students who used 
more reading strategies scored better in English reading than those who used fewer 
strategies. According various research findings, it was reported that the training of 
metacognitive reading strategy has positive effect on developing students’ reading 
performance (Tseng, 2009; Wu, 2012). That is, reading comprehension could be pro-
moted through metacognitive reading strategy training which helps increase the use of 
strategies on reading.  

In terms of individual reading strategy use, students who used more problem-
solving reading strategies scored better in English reading than those who used fewer 
problem-solving strategies. The finding can be explained by a fact that English, in-
stead of reading for fun, is an academic subject which is used to examine students’ 
English performance. Thus, students are taught to seek for the right answers as soon 
as possible. In addition, intense class schedule could not offer student enough time 
and opportunity to search supportive information related to the reading materials.  
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5.2 Implication 

Effective Teaching Strategies for Reading Comprehension. In the study, students 
were reported to possess medium use of strategies on reading. That is, students 
adapted strategies to help comprehend written text, either intentionally or sponta-
neously. It comes to an agreement that better readers are often strategic and skillful 
(Celce-Murcia, 2001; Tompkins, 2005). Besides, since the 1970s, a number of models 
and strategies of reading comprehension have been developed. Research for the Na-
tional Reading Panel has identified five effective reading comprehension strategies 
which are “summarization, self-questioning, story structure instruction, graphic and 
semantic organizer, and comprehension monitoring” (Taylor, et al., 2006, p.305).  

To this point, Brown and Palincsar (1989) provided four reading strategies, called 
reciprocal teaching (RT), that should be taught to students; summarizing, predicting, 
clarifying, and asking questions. According to the research findings, reciprocal teach-
ing has been reported a significance on promoting metacognition (Huang, 1996; 
Yang, 2002) and reading comprehension (Frances & Eckart, 1992; Hsieh, 2010; Lin, 
2012; Tsai, 2010; Ya, 2010). Since English reading is often taught as an academic 
subject in most Taiwanese classes and finding the answer is always the only mission 
to read. That is, it left no need to students to probe the information behind the written 
text and then to connect it to their prior knowledge. Therefore, it is necessary to offer 
students the training and practice about using the four types of RT. Asking questions, 
for instance, is one of the most common modes to engaging responsively. Different 
levels of questions lead to different levels of cognitive engagement with text. It is 
found that teachers who use more high-level questions significantly improve students’ 
reading comprehension (Arends, 1994; Rothenberg & Fisher, 2007; Taylor, Pearson, 
Clark, & Walpole, 2000; Taylor, et al., 2006; Wilen, 1991).   
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Abstract. Physical training ranges have been shown to be critical in
helping trainees integrate previously-perfected skills. There is a growing
need for streamlining the feedback participants receive after training.
This need is being met by two related research efforts: approaches for
automated camera selection and control, and computer vision-based ap-
proaches for automated extraction of relevant training feedback
information.

We introduce a framework for augmenting the capabilities present in
training ranges that aims to help in both domains. Its main component
is ASCENT (Automated Selection and Control for ENhanced Training),
an automated camera selection and control approach for operators that
also helps provide better training feedback to trainees.

We have tested our camera control approach in simulated and labo-
ratory settings, and are pursuing opportunities to deploy it at training
ranges. In this paper we outline the elements of our framework and dis-
cuss its application for better training support.

1 Introduction

In recent years, physical training ranges have proven instrumental in providing
trainees with a way to integrate skills perfected separately in an environment
that is similar to the operational environment. Training feedback is provided
in the form of After Action Reviews (AARs), which currently require a large
number of highly-experienced instructors to accompany different segments of
the unit throughout their training run.

Some training ranges have been equipped with large networks of hundreds of
cameras, which can capture training exercises as they take place. Many cameras
have pan-tilt-zoom (PTZ) capabilities, and are manually controlled by operators
during the exercises. Other cameras are static, but operators still need to manu-
ally select which cameras to record, because only a limited number of recording
devices are usually available. To alleviate these problems, automated approaches
are being pursued to augment the operators’ capabilities in controlling PTZ cam-
eras and selecting which video streams to record.

The availability of cameras and operators has enabled instructors to provide
a package containing multiple hours-long video segments manually selected by
the operators. However, in order to pinpoint problem areas, the videos in the
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package need to be reviewed in their entirety. Computer vision algorithms can be
employed to analyze the captured images and automatically extract information
relevant for training feedback.

The framework introduced in this paper supports these efforts through AS-
CENT, an automated camera selection and control approach designed to support
camera operators, while also helping provide better feedback to trainees by tak-
ing into account the requirements of the computer vision algorithms that process
the captured images.

ASCENT consists of a stochastic performance metric and a constrained op-
timization method. The performance metric quantifies the uncertainty in the
state of the targets. It can account for occlusions, accommodate requirements
specific to the algorithms used to process the images, and incorporate other fac-
tors that can affect their results. The optimization method explores the space
of camera configurations over time under constraints associated with the cam-
eras, the predicted target trajectories, and the image processing algorithms. To
achieve real-time performance, it combines a global assignment of cameras to
targets that divides the problem into subproblems with a local optimization in-
side each subproblem. The global assignment uses a proximity-based heuristic
to group targets and a greedy heuristic based on performance metric evaluations
to assign cameras to each target group. It can also perform camera selection
when needed. The local optimization is performed at the level of each group. It
predicts the trajectories of all targets in the group and plans dynamic camera
configurations over time to ensure optimal coverage up to a time horizon. While
only some of the available cameras may be selected for recording, all captured
images are available for algorithms that run in real-time, some of which can even
provide feedback to ASCENT.

We have applied ASCENT to simulated and laboratory settings, and are pur-
suing opportunities to deploy it at training ranges that have already been out-
fitted with large camera networks. Our framework is well-positioned to help
augment training capabilities. First, it augments camera operators’ capabilities,
allowing them to more effectively manage large camera networks. ASCENT auto-
mates camera selection and control decisions, allowing operators to either direct
it to cover important events, or directly manage a smaller number of cameras.
Additionally, ASCENT can be customized to produce images best-suited for
the computer vision approaches that analyze and help extract relevant training
feedback data. This has the potential to shorten AAR video packages down to
automatically-selected segments that can be reviewed much faster.

The rest of the paper is organized as follows. In Section 2 we present some rele-
vant research: a few performance metrics and camera control methods, as well as
a few computer vision approaches that can be used to augment training. Section
3 presents our approach to camera selection and control: our performance met-
ric and our camera selection and control method, as well as some experimental
results. Section 4 briefly describes our framework and its potential contributions
to better training support. We discuss some future work and conclude the paper
in Section 5.
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2 Previous Work

2.1 Performance Metrics

Many researchers have attempted to express the intricacies of factors such as
placement, resolution, field of view, focus, etc. into metrics that could measure
and predict camera performance. Below we list the performance metrics research
closest to our work. The interested reader can find a comprehensive list of camera
performance metrics in Chapter 2 of [10].

Allen [1] introduces steady-state uncertainty as a performance metric for opti-
mizing the design of multi-sensor systems. In previous work [9] we illustrate the
integration of several performance factors into this metric and envision applying
it to 3D reconstruction using active cameras.

Denzler et al. [3] derive a performance metric based on conditional entropy
to select the camera parameters that result in sensor data containing the most
information for the next state estimation. In [4], Denzler et al. present a per-
formance metric for selecting the optimal focal length in 3D object tracking.
The determinant of the a posteriori state covariance matrix is used to measure
the uncertainty derived from the expected conditional entropy given a particu-
lar action. Visibility is taken into account by considering whether observations
can be made and using the resulting probabilities as weights. The authors of
Deutsch et al. [6,5] improve the process by using sequential Kalman filters to
deal with a variable number of cameras and occlusions, predicting several steps
into the future and speeding up the computation. The ASCENT performance
metric presented in Section 3.1 is similar to the metric by Denzler et al., but it
uses a norm of the error covariance instead of entropy as the metric value, and
employs a different aggregation method.

2.2 Camera Selection and Control Methods

Camera selection and control methods are typically encountered in surveillance
applications. Many are centralized approaches, based on the adaptation of
scheduling policies, algorithms and heuristics from other domains to camera con-
trol. Others are distributed: decisions are arrived at through contributions from
collaborating or competing autonomous agents. We list a few example methods
below. The interested reader is referred to Chapter 2 of [10] for a comprehensive
list.

Qureshi and Terzopoulos [19] propose a virtual testbed for surveillance algo-
rithms and use it to demonstrate two adapted scheduling policies: first come,
first serve (FCFS) and earliest deadline first (EDF). In [18], they apply the same
paradigm to a distributed surveillance system, in which cameras can organize
into groups to accomplish tasks using local processing and inter-camera commu-
nication with neighbors in wireless range.

Naish et al. [17] propose applying principles from dispatching service vehicles
to the problem of optimal sensing. They present a dynamic dispatching method-
ology that selects and maneuvers subsets of available sensors for optimal data
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acquisition in real-time. The goal is to select the optimal sensor subset for data
fusion by maneuvering some sensors in response to target motion while keeping
other sensors available for future demands.

Lim et al. [13] propose solving the camera scheduling problem using dynamic
programming and greedy heuristics. The goal of their approach is to capture
images that satisfy task-specific requirements such as: visibility, movement di-
rection, camera capabilities, and task-specific minimum resolution and duration.

Krahnstoever et al. [11] present a system for controlling 4 PTZ cameras to
accomplish a biometric task. Scheduling is accomplished by computing cam-
era plans: lists of targets to cover at each time step. Plans are evaluated us-
ing a probabilistic performance objective function to optimize the task success
probability.

Broaddus et al. [2] present ACTvision, a system consisting of a network of
PTZ cameras and GPS sensors covering a single connected area that aims to
maintain visibility of designated targets. Cameras are tasked to follow specific
targets based on a cost calculation that optimizes the task-camera assignment
and performs hand-offs from camera to camera. The authors develop optimiza-
tion strategies to either use the minimum number of cameras needed, or encour-
age multiple views of a target for 3D reconstruction.

Sommerlande and Reid [21] present a probabilistic approach to control mul-
tiple active cameras observing a scene. Similar to the approach in ASCENT,
they cast control as an optimization problem, but their goal is to maximize the
expected mutual information gain as a measure for the utility of each parameter
setting and each goal. The approach allows balancing conflicting goals such as
target detection and obtaining high resolution images of each target.

Matsuyama and Ukita [15] describe a distributed system for real-time multi-
target tracking. The system is organized in three layers (inter-agency, agency and
agent), with agents that dynamically interchange information with each other.

2.3 Computer Vision Approaches to Augment Training

There are many computer vision approaches that can process images, ranging
from posture recognition from single images [22] to full 3D reconstruction from
multiple images: multi-view dynamic scene modeling [7], space carving [12], 3D
video [14] and image-based visual hulls [16]. However, most of these approaches
have yet to be applied to large environments such as training ranges. Moreover,
there are few approaches that can analyze the results of computer vision algo-
rithms and extract relevant information that can help augment training. Sadagic
et. al. [20] describe a concerted research effort in this direction. ASCENT pro-
vides ways to take into account the requirements of these approaches in order
to capture images that are likely to produce the best possible result.

3 Automated Camera Selection and Control

We approach camera selection and control as an optimization problem over the
space of possible camera configurations (combinations of camera settings) and
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over time, under constraints derived from knowledge about the cameras, the
predicted target trajectories and the computer vision algorithms the captured
images are intended for. The objective function is a performance metric that
evaluates dynamic, evolving camera configurations over time. In this section, we
briefly describe the two components of ASCENT: its camera performance metric
and its camera selection and control method. The interested reader is referred
to [8] and Chapters 5 and 6 of [10] for a detailed presentation.

3.1 Camera Performance Metric

We define the performance of a camera configuration as its ability to resolve 3D
features in the working volume, and measure it using the uncertainty in the state
estimation process. We use state-space models [8] to describe target dynamics
and measurement systems. Formally, at time step t, the system state is described
by a state vector x̄t ∈ R

n which may include elements for position, orientation,
velocity, etc. Given a point in the state space, a mathematical motion model can
be used to predict how the target will move over a given time interval. Similarly,
a measurement model can be used to predict what will be measured by each
sensor. We measure the uncertainty in the state x̄t using the a posteriori error
covariance P+

t , which we compute by applying the Kalman Filter equations to
elements of the state-space models.

Our performance metric evaluates plans : temporal sequences of camera con-
figurations up to a planning horizon. We compute the performance metric for
each candidate plan by repeatedly stepping forward in time up to the plan-
ning horizon, while applying the Kalman Filter equations and changing relevant
state-space model parameters at each time step. We use the motion models to
predict target trajectories and generate predicted measurements, and we update
the measurement models with the camera parameters corresponding to the con-
figurations planned for each time step. We aggregate over space and time using
weighted sums, with weights quantifying the relative importance of elements at
various levels, such as points in a target surrogate model, targets, or time in-
stants. Equation 1 illustrates the general formula for the metric computation
using weighted sums.

M =

Nt∑
r=1

ur

(
H∑
t=1

vt

(
Nr∑
p=1

wp

(√
Max

(
Diagpos

(
P+
t,p

)))))
(1)

Nt is the number of targets, Nr is the number of points in the surrogate model
of target r, H is the planning horizon. ur, vt and wp are relative weights for each
target r, time step t, and model point p, respectively. P+

t,p is the a posteriori
covariance for model point p at time t. To convert the error covariance into a
single number, we use the square root of the maximum value on the diagonal
of the portion of the error covariance matrix P+

t,p corresponding to the position
part of the state.
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3.2 Camera Selection and Control Method

We define optimization in active camera selection and control as the exploration
of the space of possible solutions in search for the best solution as evaluated
by the performance metric. Our optimization process first predicts the target
trajectories, then uses them to construct and evaluate a number of candidate
plans for each camera. A plan consists of a number of planning steps. A step
consists of a transition (during which cameras are not being recorded, and PTZ
cameras change their settings) and a dwell (during which cameras capture, with
constant settings, and are being recorded). Candidate plans differ in the number
and duration of planning steps up to the planning horizon.

To ensure real-time performance, we decompose the optimization problem into
subproblems and solve each subproblem independently. Our method consists of
two components: centralized global assignment and distributed local planning.

The global assignment component accomplishes two tasks: grouping targets
into agencies and assigning cameras to each agency. We create agencies by clus-
tering together targets that are close to each other and predicted to be heading
in the same direction. We use predicted target trajectories to cluster the tar-
gets into a minimum number of non-overlapping agencies of a given maximum
diameter. We use a minimal change clustering heuristic that tries to preserve
agency membership over time. We then use a greedy heuristic to assign cameras
to each agency, based on their potential contribution to it. The heuristic itera-
tively tries assigning all available cameras to nearby agencies, searching for the
camera-agency assignment that best improves the performance metric value for
the agency. Improvement is measured using the ratio between the metric val-
ues before and after making the assignment. The resulting plans are compared
with plans obtained by prolonging the current plans up to the planning horizon
whenever possible, and the greedy assignments are only applied if they perform
better. We use the same process both to control PTZ cameras in real-time and
to select which cameras to record when there are fewer recording devices than
cameras. In the case of selection, we simply stop after the maximum allowable
number of cameras have been assigned. The plans corresponding to each camera-
agency assignment are generated assuming the worst-case scenario: the camera
is repeatedly set to transition, then capture for as long as possible, with PTZ
cameras zoomed out to a field of view as wide as possible. Predicted static and
dynamic occlusions are taken into account, and transitions are planned dur-
ing occlusions whenever possible, in order to minimize the time intervals when
cameras are not capturing.

Local planning at the level of each agency is concerned with the locally-
optimal capture of the targets in the agency. All cameras assigned to each agency
capture all member targets, and no further camera-target assignment decisions
are made at this level. The planning decisions made at this level are on when and
for how long each camera should dwell (capture), and when each PTZ camera
should transition to a new configuration. All possible combinations of candidate
plans for all cameras are explored exhaustively using backtracking. To achieve
on-line, real-time control, the set of candidate plans is heuristically generated
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and sorted so that the most promising plans are evaluated first. We use prior
experimental observations to derive criteria for judging a plan’s potential. While
not a guarantee that the best plan would be chosen on time, we have found this
heuristic to closely approximate an exhaustive search.

3.3 Experimental Results

We have applied ASCENT to automated on-line control of cameras in simulated
and laboratory settings, capturing training exercises that involved patrolling,
cordoning and searching a civilian, and crossing a danger zone. Experiments
showed the emergence of desired camera behaviors, including: fast coverage of
new targets, continuous target coverage via staggered settings adjustments, con-
tinuous coverage of divergent target groups, automatic hand-offs, and continuous
preemptive coverage of fast-moving targets. The performance metric and control
method were tuned to produce images best suited for a volumetric reconstruc-
tion method such as [7]. The interested reader is referred to Chapter 7 of [10]
and [8] for more details.

The simulated setting involved capturing 6 targets (4 Marines and 2 civilians)
moving around 2 occluders, using 6 cameras. Figure 1 (Left) shows an overview
of the setup as modeled in the simulator. Camera locations are shown in blue,
occluders are shown in red. The laboratory setting involved capturing 7 targets
(4 Marines and 3 civilians) moving around the entrance to an alley between 2
buildings, using 8 cameras hanging from the ceiling. Figure 1 (Right) shows an
image captured by an overview camera during the exercise. Building walls were
simulated using cloth attached to waist-high posts.

Fig. 1. (Left) Simulated setting. (Right) Laboratory setting.

4 Training Support Framework

We envision ASCENT as part of a training support framework that defines how
automatic control of cameras can augment the capabilities at training ranges.

First, by automating camera selection and control decisions, ASCENT aug-
ments the operators’ capabilities. A well-configured automated system can make
decisions that an operator may find counter-intuitive, but are justified when the
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captured images are destined for automated analysis, as opposed to manual re-
view. We envision the following scenarios for how ASCENT can be applied to
augment human decisions in camera selection and control:

1. Automated: ASCENT controls all active cameras and selects a number of
cameras for recording.

2. Directed: ASCENT allows operators to intervene on-the-fly, and designate
important events, areas and persons for capture with higher priority. Camera
selection and control are still done automatically, but operator interventions
are incorporated as constraints in the optimization method.

3. Assisted: ASCENT allows operators to dynamically choose a set of cameras
that they want to record, control directly or assign to particular targets. It
then assists the operators by automatically selecting which of the remaining
cameras to record, and controlling the remaining active cameras. It also
suggests the best camera-target assignments and camera settings for the
cameras chosen by the operators, but lets the operators decide whether to
apply them or not.

Second, ASCENT augments the training capabilities at training ranges by help-
ing provide images best suited for automated computer vision analysis, which
has the potential to shorten AARs video packages down to segments relevant
for improving the trainees’ performance. To that end, both components of AS-
CENT are highly customizable. The performance metric can be adapted to in-
clude performance factors relevant to the application, such as varying weights for
different members of a team over time; or factors relevant to the computer vision
algorithm used, such as preferred incidence angles for 3D reconstruction or 2D
posture recognition. The selection and control method can incorporate domain
knowledge such as the training range topology and the locations of important
training events in relation to camera placement, as well as their timing during
a training exercise. The interested reader can find a discussion of many of the
customizations possible in ASCENT in [8] and Chapters 5 and 6 of [10].

5 Conclusions and Future Work

We introduced a framework for augmenting capabilities at training ranges. Its
main component is ASCENT, an optimization-based on-line camera selection
and control approach consisting of a performance metric and a selection and
control method. For the optimization objective function, we employ a versatile
performance metric that can incorporate both camera performance factors and
application requirements. To reduce the size of the search space and arrive at an
implementation that runs in real-time, our camera control method breaks down
the optimization problem into subproblems. We first use a proximity-based min-
imal change heuristic to decompose the problem into subproblems and a greedy
heuristic to select cameras and assign them to subproblems. We then solve each
subproblem independently, generating and evaluating candidate plans as time al-
lows. We applied ASCENT to simulated and laboratory settings, demonstrating
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useful camera behaviors. We briefly discussed how ASCENT can help augment
the capabilities at training ranges: it can automate selection and control deci-
sions, and can be easily adapted to include requirements for automated analysis
using computer vision approaches.

We are looking forward to applying ASCENT in training ranges that have
the camera infrastructure already in place, and gather feedback from camera
operators, instructors and trainees. We plan to address the challenges of scaling
an approach that has only been tested in simulated and laboratory settings with
a small number of cameras to training ranges with hundreds of cameras. We are
also looking forward to incorporating the requirements of emerging approaches
that go beyond the results of today’s computer vision algorithms and extract
relevant information such as the video segments best suited for AARs. While in
its current version ASCENT can capture images best suited for computer vision,
human reviewers may have different requirements for AAR. We plan to leverage
the experience of human operators in selecting footage appropriate for AARs in
further customizing ASCENT to incorporate these requirements. Similarly, the
experience of instructors currently following monitoring exercises on the ground
will be invaluable.
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Abstract. In this paper we present a closed loop mixed reality training system 
that provides automatic assessment of trainee performance during kinetic mili-
tary exercises. At the core of our system is a hierarchical behavior analysis  
approach that integrates a number of data sensor modalities including Au-
dio/Video, RFID and IMUs to automatically capture trainee actions in a  
comprehensive manner. Our behavior analysis and performance evaluation 
framework uses a finite state machine (FSM) model in which trainee behaviors 
are the states of the training scenario and the transitions of states are caused by 
stimuli that we refer to as trigger events. The goal of behavior analysis is to es-
timate the states of the trainees with respect to the training scenario and quanti-
fy trainee performance. To robustly detect each state, we build classifiers for 
each behavioral state and trigger event. At a given time, based on the state esti-
mation, a set of related classifiers are activated for detecting trigger events and 
states that can be transitioned to and from the current states. The overall struc-
ture of the FSM and trigger events is determined by a Training Ontology that is 
specific to the training scenario. 

1 Introduction 

Infantry training, from basic training at home stations to joint exercises prior to dep-
loyment, can become more effective through automated behavior analysis and  
performance evaluations.  In this paper, we present an automated behavior analysis 
and performance evaluation computational framework for a wide range of training 
objectives.  

We model trainee behavior (individually and in teams) as states, and the causes of 
state transitions as trigger-events.  Each state has a set of performance metrics. The 
overall goals of the training exercise are captured as hierarchical Finite State Ma-
chines (FSM) with associated performance metrics. Our behavior analysis module 
uses sensor data as observations to estimate the states that the trainees are in. The 
performance evaluation module computes the performance metrics given the esti-
mated states of the trainees. Trigger events that result in transition from one state to 
another are detected using a Histograms of Oriented Occurrence (HO2) algorithm for 
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For training,  

• Σ is the set of stimuli or trigger events 
• S is the set of possible behaviors, i.e. states of the participants. 
• s0 is an initial state. 
• δ is the reaction to a stimulus. δ contains both the correct reactions to stimuli 

defined in a TTP and incorrect reactions that need to avoid. 
• F is the end state of a training exercise. 

For a training system, states S can only be perceived through sensor observations, O. 
Then, behavior analysis is to estimate states S={s0,s1,..,sn} given sensor observation 
O={o0,o1,..,on}. In our system, the sensor inputs include positions of all participants, 
their head, body and gun poses and shot/hit data (figure 1). However the definition of 
state S and transition trigger events depends on the Training Ontology discussed next. 

2.1 Training Ontology 

The training ontology captures knowledge related to a set of training objectives in-
cluding TTP (Techniques, Tactics and Procedures), training scenarios and perfor-
mance metrics.  This is a machine understandable graphical-representation of the 
TTP that includes comprehensive data on scenario context, parameters for behavior 
recognition, and expected performance evaluation thresholds. Our training taxonomy 
is divided into two sub-hierarchies – a set of concepts representing states (nouns) and 
a set representing trigger events (verbs). Using Protégé [Noy, 2001], we assign a node 
to each state, along with 
the corresponding defini-
tion. Similarly, we assign 
a node to each trigger 
event and its definition. 
All states and trigger 
events form the taxonomy 
in our training ontology. 
For each state, we also 
store associated attributes 
including classifier and 
the performance metrics 
for the state. For each 
state and a given trigger 
event, the ontology also 
captures all states that it 
can transition to. Figure 2 
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2.2 Hierarchical Behavior Analysis 

The training ontology helps us define the FSM that represents only the top layer of 
our hierarchical behavior analysis module. As illustrated in figure 3 at the lowest level 
is the Action Detection module that classifies atomic actions performed by the partic-
ipants. These atomic actions span a wide array of low-level trainee behaviors like 
“walking”, “group formation”, “weapon sector scanning”, “weapon fire” etc. In most 
cases classifiers for these atomic actions are trained on static features extracted direct-
ly from the raw sensor data. For instance to detect “group formations” the track  
locations of the trainees are used to match against a shape template pertaining to a 
“diamond” or “wedge” formation. In the middle layer, we generate Trigger Events 
which are mid-level abstractions of trainee behavior that result in a meaningful transi-
tion from one state in the scenario to another. These trigger events typically represent 
a dynamic activity that require features to be extracted over a window of time frames. 
Figure 3 illustrates some examples of these including “Cordon Formation”, “Crossed 
Danger Zone” etc.  

 

Fig. 3. Hierarchical framework for behavior analysis 

Adaptive space-time aggregated features Histogram of Oriented Occurrences 
(HO2) are computed and trained with SVM to classify atomic actions and trigger 
events. In its most generalized form, space-time context is the histogram of occur-
rences of entity classes of interest over a partition of a spatial-temporal volume with 
respect to a reference entity or a reference location. Existing activity or event exploi-
tation approaches represent these events using features that only measure pair wise 
relationships between entities at a time, such as relative distance and relative speed. 
Due to the limitations of the pair wise entity relationship descriptors, this class of 
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events is mainly defined and recognized using rule-based approach. HO2 captures the 
interactions of all entities of interests in terms of configurations over space and time 
through a histogramming process. Using this new space-time context representation, 
our activity exploitation approach captures both environmental context and spatial-
temporal characteristics of the entities in a unified framework. Using HO2, we  
have been able to detect multi-agent events such as VIP arriving or depicturing with 
security details. 

 

Fig. 4. HO2 computation using log-polar partition function. The reference entity is the middle 
vehicle in a three-vehicle convoy. The people icons represent a pedestrian crossing the street. 
The histograms of vehicle and people occurrences are shown in the middle. The resulting 
space-time context feature vector is shown on the right. 

Finally, as already discussed at the third and highest level a finite state machine 
(FSM) is used to model the training scenario as a set of behavioral states predicated 
with trigger events (mid-level). The overall structure of the FSM and trigger events is 
determined by a Training Ontology that is specific to the TTP (techniques tactics and 
procedures) of the training scenario.  

2.3 Trainee Performance Evaluation 

Performance metrics are computed by comparing trainee actions to canonical execu-
tions based on the TTP. Our system computes performance metrics associated with 
each state during a training exercise. Low-level data including location, weapon 
orientation etc. is used to compute these metrics. For our MOUT application training, 
the following performance metrics are computed: 

• 360 degrees Security:  The percentage of a full 360 degrees that is either covered 
by a Warfighter’s weapon or is blocked by a cover.   

• Blocking: The fraction of the time that all danger spots were blocked by the war-
fighters, i.e. at least one warfighter points his weapon at each of the danger spots. 
The danger spot may be a possible sniper position or an approaching vehicle, etc. 
We use “Aim Margin” to determine the blocking accuracy which needs to be 
achieved.  
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to view performance of two different teams on the same exercise. In figure 7 we show 
performance metrics comparing two teams doing the same exercise. Such compari-
sons are extremely useful in evaluating the impact of training and identify what me-
trics are more pertinent than others. 

 

 

Fig. 7. Performance metrics for an exercise. Events corresponding to metrics like "Muzzling", 
"Cover" and others are shown. 

 

Fig. 8. Comparison between two different teams performing the same exercise 
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5 Conclusions 

We have developed a computational framework for automated behavior analysis and 
performance evaluation that effectively incorporates TTP and designed training sce-
narios. Our approach is to use a hierarchical framework that uses a FSM at the top 
level to capture TTP objectives. Trigger events that transition the state machine from 
one state of the scenario to another are detected using classifiers on the HO2 feature. 
To capture trainee behavior, the prototype training system captures and computes 
tracks, poses and actions of the participants and automatically assesses the perfor-
mance of warfighters using a training ontology. We have developed a prototype sys-
tem that has been demonstrated to accurately detect participants’ states, mistakes, 
such as muzzling, automatically. The detected events and computed performance 
metrics provide power tools for advanced AAR capabilities.  

 
Acknowledgments. This work has been supported by the Office of Naval Research 
(ONR) program BASE-IT contract N00014-08-C-0127. The U.S. Government is 
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. The views and conclusions contained 
herein are those of the authors and should not be interpreted as necessarily 
representing the official policies or endorsements, either expressed or implied, of 
ONR, or the U.S. Government. 

References 

1. Cheng, H., Yang, C., Han, F., Sawhney, H.: HO2: A new feature for multi-agent event de-
tection and recognition. In: Computer Vision Pattern Recognition Workshop, pp. 1–8 
(2008) 

2. Hsu, S., Samarasekera, S., Kumar, R., Sawhney, H.S.: Pose Estimation, Model Refine-
ment, and Enhanced Visualization Using Video. In: Proc. IEEE Conf. on Computer Vision 
and Pattern Recognition, Hilton Head Is., SC, vol. I, pp. 488–495 (2000) 

3. Jung, S., Guo, Y., Sawhney, H., Kumar, R.: Action Video Retrieval Based on Atomic Ac-
tion Vocabulary. In: Proc. ACM Int’l Conf.on Multimedia Information Retrieval, Vancou-
ver, British Columbia (2008) 

4. Cheng, H., Kumar, R., Basu, C., Han, F., Khan, S., Sawhney, H., Broaddus, C., Meng, C., 
Sufi, A., Germano, T., Kolsch, M., Wachs, J.: An Instrumentation and Computational 
Framework of Automaoted Behavior Analysis and Performance Evaluation for Infantry 
Training. In: Proceedings of 2009 Interservice/Industry Training, Simulation, and Educa-
tion Conference (I/ITSEC 2009), Orlando, FL (2009) 

5. Cheng, H., Kumar, R., Germano, T., Meng, C.: Automatic Performance Evaluation and 
Lessons Learned (APELL) for MOUT Training. In: Proceedings of 2006 Interser-
vice/Industry Training, Simulation, and Education Conference (I/ITSEC 2006), Orlando, 
FL (2006) 

6. Kumar, R., Samarasekera, S., Arpa, A., Aggarwal, M., Paragano, V., Hanna, K., Sawhney, 
H., Sartor, M.: Monitoring Urban Sites using Video Flashlight and Analysis System. In: 
GOMAC Proceedings, Tampa Florida (2003) 



 A Hierarchical Behavior Analysis Approach 69 

7. Fontana, R.J.: Recent System Applications of Short-Pulse Ultra-Wideband (UWB) Tech-
nology. IEEE Transaction on Microwave Theory and Techniques 52(9), 2087–2104 (2004) 

8. Noy, N.F., Sintek, M., Decker, S., Crubezy, M., Fergersen, R., Musen, M.A.: Creating 
Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems 16(2), 60–71 (2001) 

9. Melnik, S., Garcia-Molina, H., Papepcke, A.: A Mediation Infrastructure, for Digital Li-
brary Services. ACM Digital Libraries, 123–132 (2000) 

10. Viola, P., Jones, M.: Robust Real-time Object Detection. In: 2nd Intl Workshop on Statis-
tical and Comp. Theories of Vision, Vancouver (2001) 

11. Wachs, J.P., Goshorn, D., Kölsch, M.: Recognizing Human Postures and Poses in Mono-
cular Still Images. In: Intl. Conf. on Image Processing, Computer Vision, and Pattern  
Recognition (IPCV) (2009) 

12. Torralba, S.A., Murphy, K.P., Freeman, W.T.: Sharing visual features for multiclass and 
multiview object detection. IEEE PAMI 29(5), 854–869 (2007) 

13. Camouflage, Cover and Concealment, Lesson Plan. USMC, Weapons and Field Training 
Battalion (January 26, 2006) 

14. Zhao, T., Aggarwal, M., Kumar, R., Sawhney, H.S.: Real-time Wide Area Multi-camera 
Stereo Tracking. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, San 
Diego, CA (2005) 



D.D. Schmorrow and C.M. Fidopiastis (Eds.): AC/HCII 2013, LNAI 8027, pp. 70–79, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Augmenting Instructional Design  
with State-Based Assessment 
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Abstract. The Trainee Engagement Management System (TEMS) is a technol-
ogy—enabled instructional design concept that leverages state-based assess-
ment techniques to improve training processes and outcomes. Specifically, the 
concept is designed to support military instructors in the delivery of empirical-
ly-supported instructional prompts to foster trainee engagement within a Com-
puter Based Training (CBT) environment. The central theme of the concept is 
to augment, not replace, an instructor’s abilities. By reducing workload de-
mands on an instructor, the approach enables the delivery of personalized in-
struction in a one (instructor) to many (trainees) context. The TEMS concept 
embraces a human-system philosophy and is designed to mitigate risks typically 
associated with the transition of advanced technologies and concepts to field 
settings. In this paper we discuss those challenges and describe the basic TEMS 
architecture.  

Keywords: Instructional System Design, Augmented Cognition, Human Sys-
tems, Computer Based Training. 

1 Introduction 

Under conditions of persistent conflict and mounting economic pressures military 
instructors are required to impart mission-critical Knowledge, Skills, Abilities (KSAs) 
with fewer resources. Training remains as the primary mechanism for acquiring and 
maintaining operational readiness across all branches of the military. Many opportuni-
ties exist within instructional design field(s) to support the efficient and affordable 
delivery of high quality instruction. However, a co-occurrence of change across 
science, technology, and Operational Environments (OEs) often disrupts the success-
ful transition of innovative and validated instructional designs to field settings. In 
part, a lack of coordination across these fields contributes to a growing tension as to 
how ‘advanced’ should be defined with respect to instructional technology. Research-
ers from each field, in earnest, work to accomplish a shared goal - improve Operator 
performance; however, they tend to pursue orthogonal objectives that rarely converge 
to produce a field-ready solution.  

In this paper, we describe a technology enabled instructional design concept that 
embeds monitoring and management strategies to facilitate trainee engagement in 
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Additionally, human variations within a trainee may color a training event, so that 
outcomes on identical tasks are not consistent for a given trainee over time. These 
dynamic intra-personal factors may change from moment-to-moment and are often 
classified as state-based variables. For example, a person’s ability to focus on a task 
rarely remains stable over extended periods of time, instead fluctuations from highly 
engaged to extreme bored are normal. The mix of inter-personal and intra-personal 
differences prohibits a ‘one size fits all’ approach to training system design. There-
fore, instructional designs must include adaptable features that afford individualized 
tailoring to maximize each training events for each trainee. 

The second component, the instructor, is the primary resource currently available 
for providing personalized tailored training. In a one-to-one context an instructor can 
reasonably estimate a trainee’s state and make real-time adjustments to better match 
instruction to a trainee’s current needs in real-time within a training context. Unfortu-
nately, the one-to-one approach is not cost a cost effective method, nor is it reasona-
ble from a manpower perspective; skilled personnel/instructors are a valuable  
resource. A more common approach is to have a single instructor provide CBT to 
multiple trainees at a time, thus, diminishing the value of the highly skilled instructor. 
Monitoring and managing multiple trainees overwhelms an instructor’s mental band-
width making it nearly impossible to estimate a trainee’s current needs and make 
instructionally significant adjustments. Moreover, the high workload requirements 
placed on instructors becomes more troubling for novice instructors that lack the  
abilities gained through experience.  

The final component, the instructional technology, is the mediating component that 
has the greatest potential to enhance, or disrupt, the training environment. In a CBT 
context, the technology (hardware and software) connects both the trainee and in-
structor to the instructional materials and it connects them to each other. Thus, favor-
able outcomes are directly related to the quality of the human system integration. 
Unfortunately, this important point is often overlooked because the objectives of a 
technologist are derived from goals that are indirectly linked to the basic premise of 
instruction, impart knowledge and skills. The disconnect results in an increased risk 
for the development of ineffective instructional tools. For example, improvements in 
3D graphics may improve collaboration work, but this is of little value to an instructor 
that is training KSAs for a one-person task. Moreover, instructional technologies with 
form factors that don’t match the training environment are not good candidates  
for transition to field settings. Therefore, a human-systems integration philosophy is 
particularly useful for the design, development, and implementation of advanced in-
structional concepts and technology. 

2.1 Human Performance 

Over the past one hundred years, models of human performance and behavior have 
indicated that KSAs tend to fit within scoped boundaries, such as, the inverted U-
hypothesis [1], zone of proximal development [2], comfort zone [3], and flow state 
[4]. The overarching take-away from the extant literature is that there appears to be a 
“sweet spot” for getting people to perform at their best! While it appears that we all 



 Augmenting Instructional Design with State-Based Assessment 73 

have a sweet spot it is also clear that finding the sweet spot is highly individual.  
What stimulates the flow state in one person may frustrate, or bore, someone else. 
Moreover, it is not easy to get into or maintain this highly desirable state of optimal 
performance. There are techniques that can help initiate flow; however, they require 
meta-cognitive skills, such as, self monitoring and regulation of cognitive states. Un-
fortunately, timely attainment of these higher order skills is likely beyond the reach of 
most people. These are implicit skills that are difficult to quantify and are not readily 
observable. However, the field of augmented cognition is making strides toward the 
design of technology/tools that may make these implicit processes explicit. In the 
near-term, these technologies may provide insight to instructors about a trainee’s state 
that may enable for the design of systematic methods to stimulate a flow state. An 
instructional design that integrates the human-technology components so tightly has 
great potential to deliver personalized instruction in a number of new and interesting 
ways. 

 But lo! Men have become the tools of their tools, Thoreau, Henry David 

In 1854, Henry David Thoreau raised an idea (maybe concern) to emphasize the in-
ter-relation between people and technology. Leastwise, his statement illustrates how 
technology “tools” are more than mere objects; they are integral implements that inte-
ract with people to facilitate achievement of goals. Often, advanced technologies are 
not accepted by military leaders and/or instructors because they are too disruptive, 
either in concept of operations or technical execution. But, also, there is this idea of 
the status quo in which people are comfortable using current tools in the manner to 
which they have grown accustom. Whether, or not, the new tool is better suited for 
the task at hand is moot if it is judged to be too farfetched. To balance the acceptance-
advanced equation, the initial Trainee Engagement Management System (TEMS) 
solution is being designed as an enhancement to a government owned Instructor  
Operator Station (IOS) that aligns with practices currently employed by military in-
structors. In short, introducing a simple design modification to an existing CBT con-
text might be an acceptable application of advanced physiological technologies.  

2.2 Instructional Quality 

In broad terms, instructional quality can be tailored through monitoring and manage-
ment of two types of variables - situation and person. Situation variables are the ex-
ternal factors and conditions of an instructional context that frames learning events. 
Because CBT platforms afford relatively easy monitoring and management of situa-
tion variables, it continues to be a very popular and useful option for the delivery of 
many instructional methods, such as, demonstration based training and simulation 
based training. Conversely, there remains a weakness in the instructional administra-
tion of CBT for the direct observation and management of person variables, such as 
cognition, affect, and attention that influence instructional quality. Maintaining en-
gagement, or focused attention, is a very important person variable for knowledge and 
skill acquisition. Finding ways to stay focused is challenging for everyone. Our lives 
are filled with many things that compete for our attention, creating distraction and 
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depleting our mental resources. In the case of military personnel that are immersed in 
a culture of always on technology it is common for them to lack the mental energy 
required to maintain focused attention during CBT. If a trainee is not engaged in the 
CBT event the path to learning is blocked impairing both training effectiveness  
and efficiency. The approach described in this paper acknowledges that trainee en-
gagement is a cornerstone to the development of high performers. Specifically, com-
prehension and retention are affected by the trainee’s degree of active participation 
(i.e., effort) in the training event. Paas [5] describes how the path to expertise depends 
on an individual’s willingness to work at becoming expert: 

 In research on deliberate practice, it has been noted that because 
this type of practice requires trainees to stretch themselves to a 
higher level of performance, it requires full concentration and is 
effortful to maintain. This does not make it a very enjoyable ex-
perience, so without the motivation to improve, trainees will soon 
give up (Ericsson et al., 1993). Feedback can play a crucial role in 
their willingness to continue to invest effort (indeed, feedback is 
also considered to play a crucial role in deliberate practice; see, 
e.g., Ericsson & Lehmann, 1996). [6] 

Ideally, each trainee would be drive by an intrinsic motivation to achieve expert 
status and, to that end, would supply the effort required to maintain engagement dur-
ing a given training event. However, that ideal circumstance is not typical of trainee 
populations in real world contexts, nor is it reasonable to expect that any individual 
could consistently sustain that level of motivation. Thus, instructional designs that 
systematically foster active learning in typical training environments are desirable.  

3 Instructional Design Concept 

The TEMS design concept offers an augmented cognition solution to close the person 
variable loop. Augmented cognition is a field of research that continues to re-design 
Human Computer Interaction (HCI), as it makes technological systems responsive  
to state-based person variables. An opportunity exists to exploit Commercial Off-The-
Shelf (COTS) technologies that assess physiological arousal via measures of Electro-
dermal Activity (EDA) to improve instructional effectiveness and efficiency of CBT 
approaches. A new class of EDA technologies has successfully transitioned from 
controlled laboratories to real world settings. With improved form factors and low 
cost, these technologies are good candidates for near-term advancements in training 
contexts. Reliably, EDA measures arousal and can provide indications of high arousal 
(e.g., excitement, engagement, anger) and low arousal (e.g., boredom, disengagement, 
calm) that affect cognition and emotion. We have conceptualized an instructional 
design concept that utilizes EDA to mitigate information loss in a CBT context 

Trainee engagement is a critical component for optimizing instructional effective-
ness and efficiency of CBT. Often, a single instructor simultaneously administers 
CBT exercises to multiple trainees making it difficult for them to detect every  
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occurrence of poor engagement and/or motivation. Thus, they are unable to provide 
crucial feedback or prompts that would re-engage the trainee. A key capability of 
TEMS is reporting to instructors those trainees lacking proper engagement during 
training exercises [6]. The TEMS concept focuses on the management of trainee en-
gagement to maximize learning opportunities. To accomplish that we conceptualized 
a design that enhances an instructor’s awareness of trainees’ state to augment their 
judgments and improve decision making. 

At one location, an instructor is able to monitor both behavioral performance and 
physiological indicators of a trainee’s arousal. These two pieces of information com-
bine to convey a more complete picture of a trainee’s performance, or progress. In 
many instructor operator stations (IOSs) the instructor has the option to peer into a 
trainee’s lesson so they can observer trainee performance. However, the ability to 
peer into a trainee’s lesson only provides observations of situational variables – a very 
limited assessment of performance as discussed earlier in this paper. Paring a physio-
logical assessment of arousal with the standard capability to observe trainee behaviors 
will augment instructor’s ability to provide instructional support. 

From a human-system perspective, the core capabilities of the TEMS instructional 
design concept are embodied in the IOS. The IOS contains the key systems features 
that enable the advanced training capabilities of the TEMS design concept. Moreover, 
the IOS is the system interface to the intelligence that drives the technology, the in-
structor. At the IOS, an instructor is able to monitor trainees’ behaviors (performance) 
and physiological states (processes). The enhanced monitoring feature within the IOS 
enables the deployment of re-engagement strategies promoting a transactional model 
for instructional design, see Figure 2 below.  

 

 

Fig. 2. Transactional Model for Instructional Technology 

The transactional model for instructional design incorporates two process models: 
1) Information-Process Output (IPO) for human performance, and 2) sense-assess-
augment for human performance augmentation. The top three IPO boxes, in Figure 2, 
are conceptualized as follows; all stimuli in the world are symbolized as ‘input’, cog-
nitive and biological processes are ‘process’, and behavioral actions taken are 
represented as ‘outcome’. The United States Air Force’s Human Performance Aug-
mentation model is represented in the second row of 3 boxes and is conceptualized as; 
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sensor monitoring provides ‘sense’, bio-data classification acts as ‘assess’, and inter-
vention strategies assume the role of ‘augment’[7]. As a foundation for TEMS, these 
models are used to characterize trainee performance so that the interplay between 
trainee behavioral performance and physiological arousal are exposed to instructors to 
enhance their awareness via an IOS.  

Note, the instructor is in the loop and is responsible for deploying re-engagement 
content to the trainees. The prototype system will include an empirically supported 
metacognitive prompting strategy as its re-engagement strategy. Many opportunities 
exist to be creative with respect to designing re-engagement strategies and much re-
search is needed to clearly link strategies to specific types of trainee needs. However, 
recent work suggests that the State-based Information-loss Process (SIP) Model could 
be used to appropriately administer a metacognitive prompt strategy. 

3.1 Advanced Learning Concepts 

The SIP Model was used to inform the initial prototype of the TEMS design concept. 
The SIP Model [8] identifies possible points for cognitive breakdown that may con-
tribute to information loss during instruction. It is an evidence-supported model that 
focuses on higher-order learning (i.e., knowledge/skill integration and application) 
that is important for imparting complex KSAs that are required in military operations. 
Based on the SIP Model, we incorporated a metacognitive prompting strategy that 
could be used to mitigate information loss in a CBT context.  

 Learning without thought is labor lost, Confucius 

Metacognition is widely accepted as an implicit “thinking” skill that enhances 
one’s ability to learn and solve problems [9]. Recent findings from the Next-
generation Expeditionary Warfare-Intelligent Training (NEW-IT) program have  
demonstrated increases in learning effectiveness when metacognitive prompts were 
employed in the service of learning [10]. Those successes demonstrate that these 
prompts can be effective in a CBT context. We will build on those findings to develop 
a system that will help instructors more precisely target trainees for instructional in-
tervention, metacognitive prompts. Leveraging a COTS state-based assessment of 
trainee arousal (i.e., EDA) the TEMS concept re-designs how this validated instruc-
tional strategy could be implemented. The physiological-based aspect of TEMS  
provides an objective assessment a person variable that allows instructors to more 
effectively, efficiently, and confidently employ an advanced strategy with a familiar 
CBT context. In addition to a meta-cognitive prompting strategy that we plan to test 
in the initial instantiation of the TEMS design concept, other prompting strategies 
could easily be adapted. Paas [5] outlines a few candidate prompting strategies that 
may be employed to promote deep comprehension and self regulation: 

• Reflection prompts: to promote self-regulated learning competency and sustai-
nability through reflection on one’s own learning 

• Self-explanation prompts: to promote understanding of the underlying principles of a 
problem, often provided with worked examples 
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The basic idea is to provide instructors real-time assessments of engagement for 
each trainee in the instructional setting. Visualizations of engagement will be dis-
played on an Instructor Operator Station (IOS) allowing instructors to get a top-level 
view of trainee engagement at a single location. When a trainee’s engagement drops 
below an acceptable level, the instructor can easily identify which trainee is not prop-
erly engaged. When a state-based change is observed the instructor may choose to 
take steps to re-engage that trainee or they may decide see if the trainee self-corrects 
to regain engagement. The TEMS design concept embraces a human systems integra-
tion philosophy that supports, not replaces, instructors to promote tailored instruction 
in CBT environments.  

5 Discussion 

A mix of technical and technological change throughout the military contexts imposes 
a great deal of responsibility on military personnel to reach and maintain mission 
readiness. Effectively and efficiently imparting mission-critical KSAs is a first order 
goal of instructors across the military services. Under ideal one-on-one conditions it 
can be difficult to optimize that match instructional content and a trainee’s unique 
needs. Individual differences and state-based variations converge at each training 
session to create a signature experience. Thus, delivery of high quality instruction at 
each training session requires an adaptive capability that is responsive to the dynamic 
person variables. To date one-on-one paradigms with highly skilled instructors are the 
best way to consistently obtain that quality of instruction. However, that paradigm is 
extremely costly and is not sustainable, or reasonably feasible, in military training 
settings. Typically, trainee settings include one instructor that is responsible for a 
large number of trainees with a ratio that is closer to 1:10, as compared to 1:1; thus, a 
need for innovative instructional designs persists. 

A significant amount of work continues to be devoted to the development of Intel-
ligent Tutoring (IT) systems that can be used to support training in unsupervised con-
texts and replace live instructors. The explicit goal of IT is to achieve the same level 
of quality as observed in one-on-one instruction. However, this is not likely to be 
realized in the near-term as a field-ready solution. In large part, much work remains in 
the fields of Artificial Intelligence (AI) and Natural Language Processing (NLP) be-
fore this worthy goal can be validated and transitioned. For that reason, the AI capa-
bilities required to support the TEMS design concept are comparatively crude. The 
TEMS design concept only provides indications of engagement that can be derived 
from commercially available data classifiers. The actual intelligence within the TEMS 
concept resides within the instructor’s expert judgment and highly skilled decision 
making. As the research community demonstrates advances in AI capabilities future 
implementations will incorporate intelligent tutoring capabilities; however, the envi-
sioned system is intended to always include roles and responsibilities for a live human 
instructor. 
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Abstract. Cyber defense exercises create simulated attack and defense
scenarios used to train and evaluate incident responders. The most per-
vasive form of competition-based exercise is comprised of jeopardy-style
challenges, which compliment a fictional cyber-security event. Multiple
competitions were instrumented to collect usage statistics on a per-
challenge basis. The competitions use researcher-developed challenges
containing over twenty attack techniques, which generate forensic ev-
idence and observable second-order effects. The following observations
were made: (1) a group of defenders performs better than an individ-
ual; (2) situation awareness of the fictional event may be measured; (3)
challenge complexity does not imply difficulty. This research introduces
a novel application of system instrumentation on competition-based ex-
ercises and describes an exercise development methodology for effective
challenge and competition creation. Effective challenges correctly repre-
sent difficulty and reward competitors with objective points and optional
forensic clues. Effective competitions compliment training goals and ap-
propriately improve the knowledge and skill of a competitor.

1 Introduction

Information (cyber) security exercises have become powerful tools for simulating
and planning for emergency scenarios, training, and competition. This paper
focuses on the latter examples of training and competition. These exercises create
simulated attack and defense scenarios where participants organize into groups
and interact hands-on with operating systems, hardware, and software.

The exercise format varies, including modes with a sizable red (or attack)
team versus many blue (or defending) teams, all red versus red teams, or all
blue versus blue [CA1]. The red versus red is considered an attack and defense
exercise where each team functions as both blue and red; they must maintain
their security posture while decreasing their opponent’s. The red versus blue
is an interactive defense where each blue team is evaluated by their security
posture after a complex and distributed set of red team attacks. A blue versus
blue exercise uses point-valued challenges; the team that correctly solves the
most challenges is the exercise victor [DE1].

The blue versus blue, or challenge-based exercises, are well-suited for train-
ing. The instructor develops interactive-challenges (i.e., a capture of forensic
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data containing a reportable sliver of evidence) which requires comprehension
of course material to solve. Students may be motived to learn the material such
that they can demonstrate competitive mastery (we do not make this assertion).

Challenge-based exercises are also the most flexible. Participants typically use
their own hardware and tools, and may compete remotely and asynchronously
(e.g., an exercise may not be bounded by time). Unfortunately this flexibility
creates a difficulty for instrumentation; it is difficult to observe behavior and
interaction. In this paper we describe a methodology for competition-based ex-
ercise development that yields measurable usage data and allows competition-
designers introspection into player-challenge interaction.

1.1 Purpose of Study

Competition-based, continuous [GG1], exercises have proven successful for mul-
tiple applications and have become a pervasive [CB1] method of comprehen-
sion verification and community entertainment. Similar formatted exercises have
been commonplace in high consequence domains (e.g., military) [MT1]. However,
there have been few studies on the development and operation of these exercises
and the human interaction in the cyber-security domain.

This research introduces an exercise platform and challenge development
methodology that allows study of player-exercise, and player-player interaction.
Example studies include: (1) a comparison of training modes; (2) player and
tool adaptability; (3) situation awareness comprehension variability [T1]; (4) de-
fensive solution-path discovery [SH1]; and (5) challenge playability tolerance.
The last example uses the exercise to collect interaction statistics and create
an arbitrary game mechanic called tolerance [GD1]. This demonstrates the ex-
ercise platforms ability to verify the challenge development, and is part of the
development methodology. The methodology defines four categories of tolerance:
simple, difficult, confusing, and unsolvable. A well-defined challenge should both
be simple or difficult, and generate measurable feedback effects.

2 Approach

2.1 Exercise Platform

This research used a jeopardy–style interface containing categories of increasing-
value challenges to represent the exercise. This game–board uses username and
password account (or user) authentication and associates each user to a team. If
any user correctly solves a challenge the team will receive the point-value; a team
score is the aggregate of its users. The interface presents a robust configuration
to the competition-designer.

The designer chooses from an XML-defined repository of challenges, with the
ability to set time-thresholds and custom point values for each. A challenge is
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defined as a block of instruction, suggested time to complete, suggested point
value, and solution. A solution may be an input string, a review process, or a
trigger event. These challenges are organized into categories and categories are
organized into boards. The designer configures the board availability (i.e., start
and stop time) as well as trigger events (i.e., stop conditions) and submission
rules. Fig. 1 shows an example participant view of the game–board. Note that
one 100-point challenge has been solved by the user.

Fig. 1. Game–board from a participant’s view

2.2 Methodology

Developing exercise challenges is non-trivial. Challenges should test a partici-
pant’s critical thinking and knowledge application abilities. Challenges should
implement a 1:1:2 ratio of effort required for a solution. This ratio represents
1-part discovery, 1-part understanding, and 2-parts solution development. The
participant should spend the discovery phase analyzing the challenge to find
a starting point. The understanding phase should be spent researching what
skills, tools, and techniques are required for a solution. The solution develop-
ment should stress the participants technical and critical-thinking prowess.

The challenge developer must maintain the highest level of fidelity for their
challenge. Environment and data anomalies jeopardize the tolerability of a chal-
lenge and degrade any potential experiment or assessment. Example anomalies
may include: (1) improper use of IP-space when creating a synthetic environment
for forensic data generation, (2) unmatched operating system version artifacts
left in physical memory, (3) poorly synchronized timing seen in network data,
file systems, and descriptions, and (4) typographic fixes or incorrect checksums.

Dependent Challenge. A challenge (c1 ) may include artifact data needed to
solve a separate challenge (c2 ). Challenge c2 is called a dependent challenge.
Dependent challenge development is particularly difficult; the development must
be conscience of the playability implied by lack of depended knowledge.



Instrumenting Competition-Based Exercises 83

2.3 Participants and Data

This research used five exercises. Each spanned at least two working-hour days,
comprised of the same challenge set and over 220 combined participants. The
participants represent a combination of high school students, undergraduate and
graduate college students, and industry professionals. There were a total of 95
teams with a majority of 1-player teams with an assumed1 maximum of 7-player
teams. For this research no identifiable information was collected. When each
exercise is completed usage data is exported with teams and users represented
as arbitrary integer placeholders.

The exercises used 97 challenges per-event. Challenges were worth 100-500
points each, and most were solvable independent of the others. In all of the exer-
cises recorded, wrong answers had no penalty and awarded 0 points; challenges
were attempted until a successful submission (if any). The exercises attempted to
measure participant situation awareness about a fictional cyber-security event.
The challenges contained forensics data which required little interaction with
the exercise platform. Thus it was very important that the challenges generate
second-order effects such as (1) red-herring2 submissions, (2) fictional names,
services, or IP-addresses, or (3) additional forensics data.

The analysis uses an example assessment of challenge playability tolerance.
Submissions and incorrect actions are compared to create a tolerance. Over six
thousand submissions were recorded with just fewer than one thousand correct
submissions. Over one million actions were recorded with a ratio of 4:1 incorrect
to correct actions per challenge.

3 Results

3.1 Data Sanity

The data from all five exercises is combined and visualized in the following
sections. In Fig. 2 the total score for each team is plotted in ascending order. The
score distribution follows the exponential trend-line very closely. This is expected
as better-performing teams solve higher-valued challenges across all categories.
Problems with challenge confusion, which require participants to guess, may
create a deviation. An imbalance in scores is highlighted indicating a potential
guessing situation.

In Fig. 3 the number of correct and incorrect submissions per-challenge are
plotted with a logarithmic trend-line. This describes a global interaction for
every challenge. Challenge developers should expect a global logarithmic distri-
bution, indicating a well-formed exercise with increasingly difficult challenges.

1 One of the exercises was played virtually, thus any team may contain an unknown
number of human players whom share user accounts. However, it is unlikely that
accounts are shared as the game platform does not allow simultaneous challenge
solving (i.e., only one challenge can be viewed at a time).

2 A known-wrong submission that is easy or obvious but indicates progress.
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Fig. 2. Total score distribution with exponential trend-line

Fig. 3. Submission count per-challenge with logarithmic trend-line

Any abnormalities or deviations in submission counts may indicate confusion.
The ratio of incorrect to correct submissions in Fig. 9 is used to enhance this
visualization and help identify poorly-defined challenges. The two highlighted
challenges have enormous incorrect to correct submission ratios.

Using a linear-trend with a bisection creates four quadrants of challenge ra-
tios. Challenges with high submissions and low correct submissions (Q1) are
candidates for review. Balanced ratios with high submissions are also candidates
if not defined as difficult challenges. The same applies to the inverse if not de-
fined as simple challenges. Finally, challenges without correct submissions are
flagged as potentially unsolvable3.

3 Occasionally a ’solvable-but-near-impossible’ challenge is useful for attracting
curiosity.
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3.2 Activity

In Fig. 4 the average momentum for the top three teams overall is shown as the
dark line. The average momentum for the top three teams from one standard
deviation (sd) away is shown as the light line. The momentum is seemingly linear
for both groups. In this representation where momentum is a function of score
versus time the reason for a dramatic (30%) point spread is unknown.

The point spread is more obvious when comparing Fig. 5 and 6. These figures
show a normalized delay between submissions for each set of three teams. The
longer each team plays, the more frequently they experience delayed submis-
sions. Note, this does not represent periods of non-play. Delay normalization is
a function of incorrect submissions. These plots may suggest teams are encoun-
tering more difficult challenges. The plots corroborate a similar momentum in
Fig. 4 with a similar delay from point 15.

3.3 Tolerance

In Fig. 7 and 8 participant tolerance is show as the average for the top three
teams and the average for the top three teams from one sd. To assess toler-
ance the exercise platform measures a combination of player frustration (f ) and
promotion (p). A promotion p, is defined as any positive feedback provided by
the exercise platform to the player. A frustration f is a continually increasing
value assigned to each player; f is reset to an initial state upon p. The exercise
platform measures team frustration using a gain calculation based on incorrect
actions and time.

ft =
∑n

i=p
n (ti − ti−1) where p is the last promotion event . (1)

Fig. 8 shows a significant amount of frustration toward the end of the measure-
ment which most likely leads the disparity in points. Within the five exercises a p
is a correct submission or a positive action taken by a participant (i.e., acquiring
an additional piece of forensics data, gaining access to a services, or disabling
an attacker).

3.4 Situation Awareness

Situation awareness is assessed by comparing the average performance of event
related challenges to non-event related challenges. The event related challenges
implicitly include artifacts and relations to other event challenges. These rela-
tions are not dependent challenges; the related challenges are solvable indepen-
dently. However, knowledge of additional event related challenges builds context
around possible attack vectors, techniques, and tools. If the participant has situ-
ation awareness and can build this context, the assertion is they will solve event
related challenges more efficiently.

Out of the 97 challenges, 13 tightly related challenges were compared against
an unrelated 13. These pairs were assessed by the challenge developers as having
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Fig. 4. Average momentum of top three teams (dark) and top three teams from one
standard deviation (sd)

Fig. 5. Normalized time delay between submissions for top three teams

Fig. 6. Normalized time delay between submission for top three teams from one sd
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Fig. 7. Average frustration for top three teams

Fig. 8. Average frustration for top three teams from one sd

Fig. 9. Challenge submission ratios plotted (incorrect versus correct)
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similar difficulty with little knowledge overlap. It is possible to solve the pairs
in either order (non-event then event, or event then non-event) without con-
founding performance. Over 96% of participants demonstrate a better average
performance on the event related challenges. A degree of situation comprehen-
sion may be measured within the exercise using a tool called Plotweaver [O1].

4 Conclusion

This exercise platform successfully demonstrates an example evaluation of cyber
defender situation awareness. Participants are evaluated by their comprehension
of a fictional cyber event through narration and plot description. Participants are
also evaluated based on event related challenge performance versus non-event re-
lated challenges. If both a related and non-related challenge exists with similar
difficulty and no overlap in knowledge requirement or other confounds: then the
solution path can evaluated based on insight. The platform generates these statis-
tics by comparing measurements generated through instrumented challenges.

The platform successfully validates challenge tolerance through usage statis-
tics. This feedback is given to challenge developers and functions to remove
unwanted difficulty confounds. Challenges that move from unsolvable or con-
fusing to difficult make the exercise more enjoyable, reduce potentially harmful
frustration, and generate more statistically-relevant usage data.

Instrumentation of challenges to provide measurable second-order effects cre-
ated observations on player activity fallout based on frustration thresholds. This
activity was not apparent in objective interaction data such as game-board ac-
tivity and score momentum.

5 Future Work

Additional objective and subjective usage measures will continue to enhance the
community’s ability to use cyber defense exercises to improve domain knowledge
and event response. The existing measures can be engineered into the exercise
platform to provide real-time feedback to the designer. If player frustration and
interaction threshold classes can be defined, a designer can provide in-line chal-
lenge and exercise augmentations. These augmentations can reduce frustration
and experiment confounds to generate better data and a more enjoyable exercise
experience.

Finally, challenge solution paths should be more closely monitored. Addi-
tional rewards can be granted to players demonstrating unique solutions. This
encouragement may potentially enhance situation awareness, generate richer us-
age data, and reduce future frustration thresholds.
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Abstract. A study was conducted in which participants received either tool-
based or narrative-based training and then completed challenges associated with 
network security threats. Three teams were formed: (1) Tool-Based, for which 
each participant received tool-based training; (2) Narrative-Based, for which 
each participant received narrative-based training and (3) Combined, for which 
three participants received tool-based training and two received narrative-based 
training. Results showed that the Narrative-Based team recognized the spatial-
temporal relationship between events and constructed a timeline that was a  
reasonable approximation of ground truth. In contrast, the Combined team pro-
duced a linear sequence of events that did not encompass the relationships be-
tween different adversaries. Finally, the Tool-Based team demonstrated little 
appreciation of either the spatial or temporal relationships between events. 
These findings suggest that participants receiving Narrative-Based training 
were able to use the software tools in a way that allowed them to gain a greater 
level of situation awareness. 

Keywords: cyber security, training, situational awareness. 

1 Introduction 

Situation awareness is essential to effective cyber security analysis and incident re-
sponse team performance. However, cyber situation awareness has not been well 
studied (Tadda, 2008). This research sought to help clarify the cyber situation aware-
ness problem, while providing insights that will improve training effectiveness for 
cyber defenders.  

An explosion of new vendor and open source tools has occurred in the past few 
years to address the growing cyber problem, with U.S. Government enterprise net-
works and their incident response teams being a primary market. However, these new 
tools have not always improved the situation awareness of cyber security analysts. 
Consequently the return on investment has been questionable given the costs of pur-
chase, development and integration of the new technologies.  

Nonetheless, cyber security analysts need tools to assist them in fathoming the vast 
quantities of data and deciphering ever-more sophisticated network attacks. There is 
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need for research to understand why tools that ought to increase the productivity of 
cyber security analysts often fail to realize this objective. We believe that this failure 
may be partially attributable to insufficient training and, particularly, the fact that 
intended users often lack fundamental knowledge essential to effectively use the tools 
being provided to them. Today, there is no scientific basis for asserting that one mode 
of training cyber defenders to use software tools is superior to any other mode of 
training. Likewise, there has been no openly published empirical assessment of stu-
dents receiving alternative modes of training. The objective of this project was not to 
compare alternative software tools and no data was collected that reflected on  
the relative performance or utility of alternative software tools. Instead, through la-
boratory research employing human performance measurement, the current project 
scientifically addressed the question of what type of training is needed to maximize 
the effectiveness of new tools being introduced to improve the situation awareness of 
cyber security analysts.  

1.1 Purpose of Study 

The current project employed a suite of network analysis tools comparable to those 
commonly used in operational cyber settings. Two modes of training were considered. 
The baseline training condition (Tool-Based training) was based on current practices 
where classroom instruction focused on reviewing the software functionality with 
various exercises in which students apply those functions. In the second training con-
dition (Narrative-Based training), classroom instruction addressed software functions, 
but in the context of adversary tactics and techniques. Upon completion of training, 
participants were evaluated during a Tracer FIRE (Forensic and Incident Response 
Exercise) simulated blue team exercise. It was hypothesized that students receiving 
Narrative-Based training would gain a deeper conceptual understanding of the soft-
ware tools and that this would be reflected in better performance during the Tracer 
FIRE exercise.  

Three hypotheses were tested. Hypothesis 1: The narrative-based training is differ-
ent from the tool-based training and will result in better performance in an assessment 
of students’ abilities to use software tools to interpret events associated with a cyber-
attack. Hypothesis 2: Personality has an effect on team success and dynamics. Certain 
personality attributes will result in lower team scores. Hypothesis 3: Cognitive apti-
tude has an effect on team success. Certain cognitive aptitudes will result in superior 
team scores.  

While research of this nature is commonplace in other high consequence domains 
(e.g., military operations), there exists little precedent within the cyber security do-
main. Accordingly, the cyber domain introduces unique challenges. For instance, 
scenarios must be presented that are unique and somewhat realistic, yet offer equiva-
lent outcome measures of performance. Process measures must be identified and  
implemented that allow data to be collected in a non-obtrusive manner such that mea-
surement does not interfere with participants exercising the skills and knowledge 
being measured. Furthermore, outcome and process measures must be identified that 
are generalizable to and predictable of performance within operational settings. By 
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beginning to address these issues, the proposed project advances the domain of cyber 
science through development of unique experimental methodologies, while providing 
a deeper understanding of situation awareness within the cyber domain. Furthermore, 
the current study offered an opportunity to collect data regarding secondary research 
questions concerning the effectiveness of cyber operations. Cyber security is a major 
challenge for DOE and other government agencies and there has been little scientific 
study of the human dimension of cyber operations.  

Through the current study, data was collected that addressed group processes, the 
relationship between certain cognitive and personality attributes and the behavior and 
performance of cyber defenders, and the use of narrative in constructing stories to 
understand, explain and remember events in the cyber domain. 

2 Methods 

2.1 Participants 

Thirteen employees from Sandia National Laboratories volunteered to participate in 
the experiment.  All participants met the following requirements: (1). be 18 years or 
older, (2). have a background in computer science, (3). have an interest in cyber secu-
rity/cyber incident response, (4). have not participated in any prior Tracer FIRE 
events and (5). be available on the designated dates for five full days of training and 
three full days to participate in the Tracer FIRE evaluation exercise.   

2.2 Materials 

The suite of network analysis tools used in the experiment included Encase Enter-
prise, Wireshark, IDA Pro, Volatility, Hex Workshop and PDF Dissector. Teams 
were additionally provided IRC chat as a means for intra-team communication and 
Plotweaver as an aide in creating a record of events.  

2.3 Procedure 

Participants were first asked to fill out a consent form and then complete a pre-
screening questionnaire.  Next, the participants were asked to fill out a demographic 
questionnaire and a detailed questionnaire assessing general computer security and 
cyber incident response skills. This information was later used to assign individuals to 
the two training conditions and subsequently to place the participants into teams for 
the Tracer FIRE exercise.  The objective was to assure that the three teams compet-
ing in the exercise were relatively balanced with respect to the knowledge and expe-
rience of team members. 

Training. Participants were assigned to either the Tool-Based (7 participants) or the 
Narrative-Based (6 participants) training conditions. The two training groups received 
3 days of training appropriate for their condition.  The two training groups were then 
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combined for 2 additional days of training which addressed details concerning the use 
of the selected tools.  This training was not as extensive as that provided in the Tool-
Based training and emphasized the knowledge participants would need to solve the 
challenges in the Tracer FIRE exercise. 

Tool-Based Training. Participants assigned to the Tool-Based training condition re-
ceived 3 days of training focused on the functions incorporated into the tools and  
the mechanics of using the tools. This training involved relatively little information 
concerning adversary tactics and techniques and was comparable to training common-
ly provided by software vendors and included canned examples showing how the 
tools work, with relatively little emphasis on the application of the tools to real-world 
problems. 

Narrative-Based Training. Participants assigned to the Narrative-Based training con-
dition received 3 days of training emphasizing the theory of adversary tactics, applica-
tion of tools and a detailed understanding of the role as a cyber incident responder. 
This training involved little consideration of the functionality of tools used for con-
ducting network analysis. The training was structured in a manner that sought to help 
students comprehend the complex ideas and information in a form that was personal 
and formed relationships between their prior knowledge and personal experiences. 

Tracer FIRE exercise. Following the 5 days of training, the participants were placed 
in one of three teams for the Tracer FIRE exercise.  The Tool-Based team comprised 
of four participants whom had all received Tool-Based training.  The Narrative-
Based team comprised of four participants whom had all received the Narrative-Based 
training.  The third group, the Combined team, composed of five participants; three 
of whom had received the Tool-Based training and two of whom had received the 
Narrative-Based training.  

Each team was asked to solve multiple challenges to receive points with the score for 
each team continuously displayed and teams encouraged to compete against each 
other. The challenges were built around a coordinated series of events involving the 
same multi-level attack upon a host network of each team. The challenges required 
the teams to use the software tools addressed during training to analyze network  
traffic. This provided the basis for their interpreting events and establishing overall 
situational awareness. Points were awarded on the basis of successfully answering 
challenge questions concerning specific aspects of the attack, as well as their ability to 
form an accurate picture of the overall pattern of events (i.e., situational awareness). 

Secondary Measures. Subjects were asked to complete a personality assessment 
consisting of the Big Five Inventory (BFI) from the website www.similarminds.com. 
Participants were also asked to perform three cognitive tasks: syllogism, comprehen-
sion span and mental rotation. These tasks have been used in previous studies and 
address different cognitive aptitudes associated with adaptive thinking and decision 
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making. The object was to assess whether these same aptitudes correlated with per-
formance for cyber defender tasks. 

Syllogism. This task is a measure of reasoning. Participants were given a logical ar-
gument in which a proposition is inferred from a set of premises and were asked to 
indicate whether the proposition was true given the premises. 

Comprehension span. This task is a measure of verbal comprehension and associated 
memory recall. The participants saw a sentence and had to indicate whether the sen-
tence made sense or not.  After a series of sentences, the participant was asked to 
recall the last work of every sentence in order. 

Mental rotation. This task is a measure of visual-spatial ability and mental flexibility. 
The participant was presented with a series of 20 pairs of figures. The task was to 
indicate whether the two figures, one of which was often rotated a specific amount of 
degrees, corresponded to the same object. The number correct that were classified in 
60 seconds was taken as a measure of mental rotation ability. 

Finally, at the beginning of the Tracer FIRE exercise, participants were told that 
there was a story embedded within the upcoming series of challenges. Furthermore, it 
was their task to discover this story as they solved the various challenges. It was en-
couraged that teams pay attention to cues associated with the stories and take notes to 
help them later piece together these cues.  Then, at the end of the exercise, teams 
were given 30 minutes to construct an illustration depicting their interpretation of 
events and the underlying story. 

3 Results 

3.1 Descriptive Statistics  

Participants were assigned to teams in a manner that provided a relative balance in the 
skills and experience of the individual team members. With respect to the question-
naire assessing general computer security and cyber incident response skills, the sums 
of the test scores for each team were Tool-Based training (Team 1) = 354, Combined 
training (Team 2) = 374, and Narrative-Based training (Team 3) = 347.   

3.2 Training Type and Team Differences 

The Narrative-Based team received the most points (11,182) followed by the Tool-
Based team (10,480) and Combination team (9,811), respectively. This was also re-
flected in the average number of points received by team members; members of the 
Narrative-Based team individually scored more points on average than members of 
the other two teams. 

A general linear model ANOVA with two factors was conducted to determine if 
there was a “training type” or “team” effect on the number of points obtained by 
teams. There were two levels in the training type: Narrative-Based or Tool-Based 
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training. There were three levels in the team factor: Team 1 (Tool-Based), Team 2 
(Combined), and Team 3 (Narrative-Based) training. Neither training type nor team 
factor was significant and there was no statistical difference between team scores (i.e., 
“success”) based on the training type or team.  

3.3 Team Narratives 

The teams were asked to prepare an illustration describing the story underlying the 
various events encompassed in the Tracer FIRE exercise.  Figure 1 shows the ground 
truth depicted by the Plotweaver tool.  As can be seen, there were multiple actors 
who intersected one another at key point in time.  This was a multi-layered scenario 
that unfolded over time and it was not expected that any of the teams would be able to 
fully deduce all of the relationships that occurred across time and space. 

Figure 2 shows the illustration prepared by the Narrative-Based team. It is apparent 
that this team failed to deduce many of the relationships between actors and events. 
However, this team did recognize five separate plot lines that loosely corresponded to 
those depicted in the ground truth storyline. Likewise, they recognized seven of the 
thirteen points at which the plotlines intersected one another. These two measures are 
believed to be indicative of the team’s overall situation awareness which, as discussed 
below, was superior to that of the other two teams. 

Figure 3 shows the illustration by the Combined team. This team deduced plotlines 
that loosely corresponded to four of the five plotlines within the ground truth depic-
tion. Likewise, this team recognized the sequential development of events across 
time. However, it is striking that this team did not recognize any of the points where 
the individual plotlines intersected with one another. In fact, in both their hand-drawn 
illustration and their verbal account, the Combined team presented a linear sequence 
of events that did not involve any interactions between events, or individual actors. 
This team pieced together a story involving four separate actors that, for the most 
part, operated independently, when, in fact, the actors operated in concert with one 
another and this was a key element to interpreting the overall sequence of events. 
While this team clearly grasped the temporal structure of events, as well as the impor-
tance of individual actors, they were unable to deduce the relationships between dif-
ferent actors that were evidenced through their interactions as the scenario unfolded. 

Figure 4 shows the illustration produced by the Tool-Based team. The Tool-Based 
team produced an even more impoverished illustration than either the Narrative-
Based or Combined teams. They recognized three of the five plotlines. Yet, they rec-
ognized none of the relationships between the separate plotlines and two of the three 
plotlines that they did recognize consisted of a single event. Furthermore, their depic-
tion captured none of the relationships between events or the relationships between 
different actors. Each member of this team seemed to have deduced one or more ele-
ments of the story independently; however, as a team, they were unable to put these 
elements together and did not seem to recognize that there was a coordinated action 
being taken by the adversaries. 
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Fig. 1. Plotweaver Depiction of Ground Truth for Tracer FIRE Scenario  

 

Fig. 2. Plotweaver Illustration Prepared by the Narrative-Based team 

 

Fig. 3. Plotweaver Illustration Prepared by the Combined team 

Interestingly, it was noted that all three teams deduced about the same number of 
story elements. During the Tracer FIRE exercise, there were specific challenges that, 
if successfully completed, teams learned a key element of the storyline. While the 
Narrative-Based team earned the most points in these challenges, there was not a huge 
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difference between the points earned by the Narrative-Based and the other two teams. 
This indicates that all three teams had many of the key story elements available to 
them but only the Narrative-Based team was able to put those story elements together 
in a way that corresponded to the actual relationships between events. 

 

 

Fig. 4. Plotweaver Illustration Prepared by the Tool-Based team 

3.4 Personality Factors 

The BFI data was analyzed to determine if personality measures were associated with 
team success. Two subjects opted out of the personality assessment portion of the 
study. Therefore, only 11 participant’s data was analyzed. A correlation matrix was 
calculated to determine if there was multicollinearity (Penney et al., 2011). The va-
riables showed random scatter and no significant correlation.   

A stepwise regression was conducted to determine if any of the variables were sig-
nificant (alpha = 0.15, was set for selection in the stepwise regression). The final 
model included TimeTotal (total amount of time spent working on challenges), Inqui-
sitiveness, and Emotional Stability. There were no departures from normality or  
outliers, and the residuals displayed constant error variance, with the error terms nor-
mally distributed. These data indicate that participants fell within the range that would 
be considered normal within the overall population and, therefore, results cannot be 
attributed to individual subjects with extreme scores on the Inquisitiveness or Emo-
tional Stability personality dimensions. TimeTotal was not significant, but was in-
cluded in the model as β1. Inquisitiveness and Emotional Stability were significant 
(R2 = 58.87 and R2-adjusted = 41.25, β0 = -7491, β1 =1.148e-12, t-value = 1.83,  
p-value < .1093). Inquisitiveness was marginally significant (β2 = 63, t-value = 2.02, 
p-value= .083) as was Emotional Stability (β3 = 88, t-value = 2.98, p-value= .021). 
Only Emotional Stability was included in the final model. 

3.5 Cognitive Factors 

The three cognitive tasks, Mental Rotation (MRScore), Comprehension Span 
(CompS) and Syllogism (Syllo), were analyzed to determine if they were associated 
with team success. Four subjects opted out of the cognitive task portion of the study. 
Therefore, only 9 participant’s data was included. 

The final model included CompS (R2 = 47.25, R2-adjusted = 39.71, β0 = 1459, β1 
= 32 with a t-value =2.50, p-value <0.041). There were no departures from normality, 
no outliers, the residuals displayed constant error variance, and the error terms were 
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normally distributed. Thus, the results could not be attributed to individual subjects 
who exhibited extreme scores, as all subjects were within the range that would be 
considered normal for the population. 

4 Conclusion 

The results from this study provide insights concerning alternative methods for deli-
vering training for cyber defenders, as well as a better understanding of factors con-
tributing to team situation awareness and individual and team performance of cyber 
defenders. Most notably, this study highlights the importance of the narrative, or the 
capacity to interpret events and put them into the context of a story, to the effective 
use of software tools by cyber defenders. Furthermore, the study also illustrates the 
importance of individual characteristics to the ability of individuals to effectively 
work together within a cyber incident response team. 

With only three teams, it was not possible to demonstrate a statistically significant 
difference in the performance of the teams receiving alternative modes of training, 
although the team receiving Narrative-Based training did earn more points than their 
counterparts. Likewise, on average, the members of the Narrative-Based team indivi-
dually earned more points than their counterparts on the other teams. While not statis-
tically significant, these results are in the expected direction and are consistent with 
detailed analysis of overall situation awareness exhibited by the three teams. 

Assessments of personality and cognitive factors revealed two variables that were 
significantly correlated with individual performance during the cyber exercise. With 
respect to personality, those who exhibited higher scores on the Emotional Stability 
dimension performed better. Those scoring high on this dimension tend to be more 
secure and confident, whereas those scoring low exhibit a greater tendency to show 
unpleasant emotions such as anger, anxiety, depression and vulnerability. It should be 
noted that while the participants in the current study exhibited a range of scores on 
this dimension, their scores fell within the range considered normal for the overall 
population. 

There are two important ramifications for the finding that individual performance 
correlated with Emotional Stability. First, during training, the Emotional Stability of 
individual students may be expected to affect both the benefit derived from the train-
ing experience, as well as the performance during training exercises, such as Tracer 
FIRE. Thus, it is proposed that mechanisms be employed that allow individual and 
team performance to be more closely monitored in real-time so that instructors may 
effectively intervene when students have become non-productive and are struggling. 
Likewise, in composing teams, it may be beneficial to combine individuals with vary-
ing experience and maturity to provide some degree of scaffolding for weaker team 
members who may become easily discouraged. 

Second, and perhaps more importantly, within operational settings, it may be ex-
pected that personnel will exhibit varying levels of Emotional Stability and this will 
have an indirect, and perhaps direct, effect on their performance. This may be mani-
fested in their capacity to effectively function within teams, as well as their capacity 
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to cope with ongoing stressors. It is uncertain what countermeasures may be most 
appropriate; however this represents an important consideration given the nature of 
the Cyber domain where technically qualified personnel are in high demand and many 
organizations find it difficult to retain their best talent. 

A second individual factor that correlated significantly with performance was 
Comprehension Span. In this task, subjects were presented a series of sentences and 
after each sentence, they were required to indicate if the sentence made sense. Then, 
their memory span was tested by requested that they recall the last word in each sen-
tence. To perform well, an individual must have both proficient at interpreting verbal 
content and possess good short-term memory. Previous studies have shown that  
individuals who perform well on this measure also perform well in tasks requiring 
adaptive decision making. Here, adaptive decision making is defined as the capacity 
to recognize that a strategy is ineffective and thus, there is need to either alter an ex-
isting strategy or abandon an existing strategy for an alternative strategy (Abbott et 
al., 2011). It is proposed that the challenges presented through the Tracer FIRE exer-
cise place similar demands for adaptive decision making upon the participants and 
that Comprehension Span represents a fundamental cognitive attribute underlying 
effective performance. 

References 

1. Abbott, R., Haass, M., Trumbo, M., Stevens-Adams, S., Hendrickson, S., Forsythe, C.:  
Robust Automated Knowledge Capture, SAND 2011-8448, Sandia National Laboratories 
(October 2011) 

2. Penney, L.M., David, E., Witt, L.A.: A review of personality and performance: Identifying 
boundaries, contingencies, and future research directions. Human Resource Management 
Review 21, 297–310 (2011) 

3. Tadda, G.P.: Measuring the Performance of Cyber Situational Awareness Systems. In: Pro-
ceedings of the 11th International Conference on Information Fusion, Cologne GE, June 30-
July 3 (2008) 



D.D. Schmorrow and C.M. Fidopiastis (Eds.): AC/HCII 2013, LNAI 8027, pp. 100–109, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Instrumenting a Perceptual Training Environment  
to Support Dynamic Tailoring 

Robert E. Wray, Jeremiah T. Folsom-Kovarik, and Angela Woods 

Soar Technology, Inc., 3600 Green Court Suite 600,  
Ann Arbor, Michigan, USA, 48015 

{wray,jeremiah.folsom-kovarik,angela.woods}@soartech.com 

Abstract. Simulation-based practice environments would be more valuable for 
learning if they supported adaptive, targeted responses to students as they 
proceed thru the experiences afforded by the environment. However, many 
adaptation strategies require a richer interpretation of the student’s actions and 
attitudes than is available thru the typical simulation interface. Further, creating 
extended interfaces for a single application solely to support adaptation is often 
cost-prohibitive. In response, we are developing “learner instrumentation 
middleware” that seeks to provide a generalized representation of learner state 
via reusable algorithms, design patterns, and software. 

Keywords: Perceptual learning; adaptive training; learner modeling. 

1 Introduction 

Many of today’s computer-based learning environments offer simulacrums of the 
performance environment. These practice environments enable a learner to practice 
skills and to demonstrate knowledge of concepts that are the subject of training, 
offering support for more sustained and thus potentially deeper and more complete 
learning [1-3]. Although theoretical debate continues regarding how to best structure 
practice experiences, an emerging consensus agrees that dynamic adaptation of 
practice to enable targeted, individualized experience is important for effective 
computer-based training [4]. 

We are taking an applied perspective to practice environments, focusing on 
delivering effective and adaptive instruction thru whatever means appears apt for the 
domain. Toward this end, we are developing general learner instrumentation and 
tailoring capabilities that enable practice environments to adapt to the learner both 
extrinsically (outside of the domain experience of the simulation) and intrinsically 
(within the simulated experience). These capabilities also are designed to support both 
learner cognitive and affective states. The resulting Dynamic Tailoring System [5, 6] 
is designed to integrate instructional methods and best practices as they are identified 
and validated and also serves as a testbed for researching such adaptation strategies.  

The Dynamic Tailoring System (DTS) has been demonstrated in multiple practice 
domains. Each domain imposes specific requirements. Although many requirements 
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are shared across domains, some are unique. A core engineering challenge is to define 
and implement a capability that is sufficiently functional and flexible to support the 
common and the unique requirements of a particular application. In this paper, we 
explore this tension, focusing on the general challenge of learner instrumentation: 
processing and packaging inputs from a learner and simulation to enable the 
classification/recognition of learner states. These states then help the system identify 
the best interventions for the individual student at that moment. To illustrate with a 
concrete example, we introduce a perceptual training application that demands more 
powerful instrumentation than earlier applications because the human practice task is 
primarily one of observation, in which explicit action, which is easier to recognize 
and assess, is relatively infrequent. 

In response to these limitations, we are developing “learner instrumentation 
middleware” that transforms, supplements, and fuses simulation and learner data into 
a succinct representation of learner context and state. We describe requirements of the 
learner-instrumentation capability such as extensibility and reusability. We then 
describe how we are developing and applying this middleware in the context of the 
perceptual training application. 

2 Enabling Dynamic Tailoring 

We have been developing the Dynamic Tailoring System as a general-purpose 
software architecture for dynamic tailoring; that is, pedagogical experience 
manipulation during practice [1, 6]. The system is specifically designed to support 
many types of simulation-based training systems and domains. We have implemented 
a functional implementation of this system and have demonstrated it in multiple 
domains. Figure 1 illustrates the current architecture. There are three core functional 
components (boxes) and four primary representational components (database icons). 
Here, we briefly outline the overall design of the system in order to motivate and to 
provide context for the learner instrumentation challenge below.  

Monitor. The Monitor observes learner actions, interprets those actions in the context 
of the learning situation (via a domain/expert model), assesses the learner’s behavior 
in terms of active learning objectives, and then classifies the observed behavior using 
a behavior ontology. As we outline further below, the Monitor is supported by several 
translation layers (“learner instrumentation middleware”) that decouple the details of 
simulation environments and learner sensing from the representations used for 
interpretation. 

Pedagogical Manager. The Pedagogical Manager maintains an estimate of 
proficiency for each learning objective, decides between extrinsic mediation (such as 
an ITS dialog) and the intrinsic tailoring, and chooses alternative instructional 
strategies. For example, a “scaffold” tailoring strategy can be used when a learner has 
demonstrated high levels of competence but is transitioning to more complex 
challenges or new learning objectives within the domain [7]. The Pedagogical Manager 
also mediates choices between affective and domain-content tailoring strategies. 



102 R.E. Wray, J.T. Folsom-Kovarik, and A.Woods 

 

Fig. 1. Architectural composition of the Dynamic Tailoring System  

Experience Manager. The Experience Manager chooses and instantiates tailoring 
strategies based on general recommendations from the Pedagogical Manager. For 
example, the Pedagogical Manager may recommend a tailoring strategy that is 
intrinsic, meant to challenge, and focuses on several enumerated learning objectives. 
The Experience Manager then evaluates tailoring strategy options to determine which 
strategies can be used to satisfy the request. 

3 Instrumentation Requirements for Perceptual Training 

The previous section outlined a high-level software architecture to support dynamic 
tailoring across a range of training applications. In this section, we wish to examine 
architectural requirements more substantively, focusing on a specific training application 
to highlight requirements. The training application includes a practice environment in 
which US Marines observe a village from a Virtual Observation Post (VOP).  

The VOP is inspired and informed by successful “live” training programs [8, 9]. In 
this training, Marines learn to construct a general “baseline” of understanding from 
sustained attention to the activities in a “village” (populated by human role players). 
Marines exchange observations with one another and practice the application  
of observational skills introduced in a classroom. The resulting sensemaking skill 
covers a broad range of perceptual skills, from low-level signals (recognizing the 
proxemics and kinesics or “body language” of individual villagers), to recognizing 
and categorizing quotidian and unusual events, to developing an abstract mental 
representation of the patterns of life within the village.   

For the VOP, the implementation of adaptive tailoring strategies is comparatively 
straightforward [10]. The learner is positioned in a Virtual Observation Post 1000m or 
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more from the observed village. As a consequence, learner action requires less 
interaction and coordination with the simulation than in a domain in which a learner 
would be directly interacting with a business partner, an accident victim, or aircraft in 
a virtual battlespace. Learner actions include focusing “optics” (e.g., binoculars) on 
specific locations in the scene, reporting observations and events, and suggesting 
interpretations of events for others to consider and discuss. Open-ended speech 
recognition across a team of learners is a challenging technical problem, but, from the 
point-of-view of the tailoring system, these inputs are pre-processed to as labeled text 
strings. 

Although learner actions are comparatively simpler, it is also relatively more 
challenging to develop and maintain an understanding of learning state in this domain. 
A learner may spend many minutes just scanning a scene with binoculars. During this 
time, numerous observations may be made (or missed) by the learner without an 
explicit utterance or formal report. An understanding of learner state is necessary for 
deciding what tailoring actions are relevant at a particular time for a particular 
learner/team. Without a good understanding of the learning state, appropriate and 
timely instructional tailoring is not possible. Worse, inapt tailoring may also increase 
learner frustration and negatively impact learning. 

The requirements for tailoring in turn impose additional constraints on the practice 
environment. A practice environment without instructional supports (such as 
tailoring) needs only to allow a learner to take action in the environment (reporting an 
event to other team members, choosing different sensing optics, firing a weapon, etc.). 
Richer instrumentation of the practice environment is necessary to enable 
interpretation of a learner’s actions and maintenance of a dynamic and reasonably 
accurate model of the learner.  

Instrumentation is difficult because simulation affordances for learner observation 
are typically weak. Most simulations provide minimal descriptions of learner activity 
and without directly providing learner/task context; e.g., they may indicate that a  
 

 

Fig. 2. Conceptual design of the learner instrumentation middleware 



104 R.E. Wray, J.T. Folsom-Kovarik, and A.Woods 

learner took some action at some time, but cannot indicate the appropriateness of  
that action. A related limitation is the available “channels” of observation. Most 
simulations provide only keystroke and mouse inputs, which are much more limited 
than the kinds of signals and information a human tutor might get from interaction 
with a learner.  

4 Learner Instrumentation Middleware 

In order to support adaptive training, the simulation environment requires additional 
methods of learner instrumentation in addition to just a practice environment. 
However, these requirements have the potential to add significant cost to the training 
system. The approach we have been investigating and exploring is “learner 
instrumentation middleware.” This section outlines the design of this middleware, 
current progress toward the goal, and some of the tradeoffs in pursuing middleware 
versus application-specific solutions. 

Fig. 1 illustrates the conceptual design of the learner instrumentation middleware.  
This software seeks to transform, supplement, and fuse simulation and learner data 
into a succinct representation of learner context and state with a general (not domain 
specific) set of functions and processes. The potential advantage of the middleware is 
that it can collect and transform individual sensor and input streams from the learner 
and simulation into representations that are largely independent of these sources. This 
approach allows the interpretation and adaptation algorithms used in the remainder of 
the Dynamic Tailoring System to be independent of the specific simulation 
environment and sensor suite.1 There are three distinct layers to the middleware: 1) 
syntactic normalization, 2) learner/task mapping, and then 3) interpretation. Each of 
these layers is sketched individually below. 

4.1 Syntactic Normalization 

This layer converts the specific representations used by the simulation to a general 
representation used within the Dynamic Tailoring System. In the examples in this 
paper, we use a predicate representation of the normalized syntax for simplicity/clarity. 
This layer is largely custom-built for each simulation environment. However, this layer 
is not application specific, meaning that components in this layer can be reused for 
different training applications using a common simulation environment.  

The Cognitive State Integrator (CSI) is a more sophisticated component than the 
other two in this layer. The goal of the CSI is to provide a consistent representation of 
estimated cognitive states regardless of the sensor(s) used to measure indices of these 
states. At this level of the middleware, indices measured from different sensors are 
fused and leveled, providing an estimate of a particular cognitive-state dimension 
(such as arousal or attention) at the current moment in time.   

                                                           
1 An “inverse transform” is required for translation of adaptive interventions into simulation-

specific functions. 
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4.2 Learner/Task Mapping 

The role of this layer is to translate or map the outputs from the syntactic 
normalization layer to a representation that is focused on the learning task rather than 
simulation events. The transformation at this layer is in some respects analogous to an 
affine transformation, in that the transformation enables the consumer of the 
transformed data to be simpler. The mapping process simplifies and unifies the range 
of inputs the interpretation layer must consume, allowing interpretation to be domain 
neutral. Ideally, it will also be possible for the mapping layer to be reusable across 
domains. However, we have not yet developed general, reusable algorithms for this 
layer and it thus currently requires custom programming for each new application. We 
are currently investigating a scenario representation with a formal (ontological) 
representation within this layer to reduce and simplify the custom development 
requirements.  

Several examples of the kinds of mapping provided in this layer are summarized in 
Fig. 3. Imagine a situation where a learner is tasked to track and report on the actions 
of an individual moving thru a small village. At some point, this actor enters a 
marketplace. The learner, using virtual binoculars with high magnification, notices 
that the high-interest individual is visibly angry and reports that over a simulated 
radio. The syntactic layer, as above, converts data from the different components of 
the simulation – an optics simulation, a simulation environment (e.g., VBS2), speech-
to-test components – and converts them into to a predicate representation similar to 
that pictured in Fig. 3.  

 

 

Fig. 3. An example of inputs and outputs for the Learner/Task Mapping layer 

This translation decouples the syntactic details of the different system components 
for interpretation but representations remain tied to their original frames. For 
example, the syntactic layer will provide data about the location of particular objects, 
but not how those objects relate to the learner and the learning task. The mapping 
layer provides this translation. As suggested by the figure, the combination of the use 
of binoculars and focus on the marketplace allows the system to be able to infer that 
the learner CanSeeDetail()of objects in the market, such as the angry 
expressions of the high-interest individual. As we discuss further below, these 
mappings to the learning context make it much simpler for the interpretation layer to 
reason about the learning situation and assess a learner’s action(s). 
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4.3 Interpretation and Assessment 

Monitor. The syntactic and semantic transform layers feed the interpretation and 
assessment layer. As outlined above, the “Monitor” evaluates the current learning 
state, as represented by the outputs of the semantic transform layer against a 
collection of user-defined constraints. The Monitor is implemented using the Soar 
architecture as an agent architecture [11] and takes advantage of a highly efficient 
pattern matcher to evaluate the constraints against the learner-oriented description of 
the situation provided by the previous layers. These constraints were originally 
inspired by constraint-based expert modeling [12] but have been extended and 
customized for this function in the Dynamic Tailoring System. One specific example 
of a customization is a codification of distinct domain, scenario, and practice 
constraints [13], which enables (as one example) the monitor to assess the same 
learner action differently based on the specific goals of a practice exercise. 

Figure 4 illustrates how the mapping and interpretation functions of the 
middleware components enable improved generality, ease of authoring, reusability, 
and transparency for the Monitor. Continuing the example from above, the Monitor’s 
rules can leverage the general predicates Angry() and InRegion() to test for 
classes of events that should be reported, rather than needing to include simulator-
specific tests for specific character grid locations and animations. The middleware lets 
the Monitor query simulation-specific inputs such as simulation state or physiological 
sensors and easily interpret the learner’s behavior in order to determine not just 
whether the learner reacted correctly, but what underlying reasons might have caused 
any incorrect outcomes. The outputs of the Monitor (shaded boxes), which drive 
pedagogical decisions in the DTS, can be specified more abstractly allowing 
instructors to understand and control the system’s behavior. Finally, the Monitor rules 
can be reused when new scenarios or new sensor input sources are added. 

 

 

Fig. 4. Generalized predicates within the Monitor are able to describe a wide range of learner 
behaviors independently of simulation-specific details such as line-of-sight calculation and 
individual physiological sensor inputs 
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A significant benefit of the learner middleware approach is that the Monitor itself 
can be reused from one application to another without significant recoding. We have 
used the Monitor for applications as diverse as cross-cultural conversation, military 
decision-making and medical triage. A primary impetus for formalization of the 
middleware, as described in this paper, is our recognition that the constraint-based 
representation and pattern-matcher is proving powerful for many different 
applications.  

Cognitive State Interpretation. The cognitive state interpretation function supports 
the Monitor but also provides direct measures of learner cognitive state and/or affect 
to other components of the DTS. Fig. 5 illustrates the cognitive state interpretation 
function. In this example, the dimension of interest is arousal/attention. The syntactic 
layer fuses sensor inputs and places individual observations on a normalized attention 
axis at a particular time, as outlined previously. The interpretation layer then 
compares the observations to a bounding “envelope” that defines the minimum and 
maximum desired levels for the dimension at a particular time.  

The envelope provides a simple to use, actionable interpretation of cognitive state 
for other DTS components to use. An individual observation (or a prediction based on 
the trend/derivative) can help the DTS understand the relative priority and urgency of 
affective interventions.  In the example in the figure, the learner’s falling attention and 
the proximity of the current attention level to the lower bound of the envelope may 
lead the DTS to prioritize an attention-oriented tailoring strategy over a conceptual 
one. Similarly, the Pedagogical Manager might recommend an extrinsic intervention 
rather than in intrinsic adaptation in this situation because attention is sufficiently low 
that there is likely to be little interference with the learner’s sense of presence in the 
practice experience. 

 
Fig. 5. Illustration of cognitive state interpretation 

These envelopes today must be constructed by hand and adjustments made for 
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compose envelope segments to accommodate learner actions and branching events 
within a scenario. 
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5 Conclusions 

This paper has presented the conceptual design of general-purpose abstraction and 
translation layers to make it easier to obtain richer information from a practice 
environment than is typically afforded by a simulation environment. Although we 
noted several areas where the current implementations of this middleware are not yet 
fully developed or limited in their generality, the development thus far is providing 
benefit. We see two primary advantages to this learner-instrumentation middleware. 
First, it lowers the cost of integrating adaptive tailoring into a practice environment. 
Cost is reduced by supporting faster and simpler integration with simulation 
environments and by enabling reuse of the primary DTS components (Monitor, 
Pedagogical Manager, and Experience Manager) across applications. Second, it 
enables the integration of additional learner information streams, such as cognitive 
and affective state. The hypothesis is that these additional sources of information will 
enable more accurate diagnosis of the learner’s needs and progress, extend the range 
of adaptation, and, ultimately, improve the efficiency of training.  
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Abstract. Illegal cyberspace activities are increasing rapidly and many
software engineers are using reverse engineering methods to respond to
attacks. The security-sensitive nature of these tasks, such as the un-
derstanding of malware or the decryption of encrypted content, brings
unique challenges to reverse engineering: work has to be done offline, files
can rarely be shared, time pressure is immense, and there is a lack of tool
and process support for capturing and sharing the knowledge obtained
while trying to understand assembly code. To help us gain an under-
standing of this reverse engineering work, we conducted an exploratory
study at a government research and development organization to explore
their work processes, tools, and artifacts [1]. We have been using these
findings to improve visualization and collaboration features in assem-
bly reverse engineering tools. In this talk, we will present a review of
the findings from our study, and present prototypes we have developed
to improve capturing and sharing knowledge while analyzing security
concerns.

Keywords: malware, reverse engineering, empirical study.

1 Introduction

In his 1987 article [3], Cohen coined the term “computer virus” to describe self-
reproducing programs designed to infect other computer programs. At that time,
computer viruses were created for experimentation purposes or merely for fun,
therefore causing little damage to real world systems [6].

Today’s landscape shows us a different scenario. Computers are widely used
in criminal activities such as bank fraud, identity theft, and corporate theft.
According to a recent Symantec report [10], 2011 saw more than 187 million
identities exposed in data breaches caused by hacking, and 93% more vulnera-
bilities related to mobile platforms—up to 315 in 2011 from 163 in 2010.
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Illegal activities in cyberspace affect national security and threaten citizen’s
rights and privacy, thus having significant political, economic, and social impli-
cations [1]. Organized cyber groups typically communicate using cryptographic
protocols and store information using encrypted files or systems. As a counter-
measure against cybercrime, government institutions and business organizations
have been using reverse engineering methods to analyze malicious code and break
into password protected file systems.

This paper summarizes the findings of a first-of-its-kind field study we con-
ducted with security engineers working in a government research and develop-
ment organization [11] and looks at how we are incorporating these findings into
tools designed to assist security engineers performing exploitability analysis [2].

Our study shows that security engineers have a unique work environment and
experience significant challenges with urgency, documentation, and a limited
ability to share information. Overall, security engineers have special needs in
terms of time sensitivity, coordination, communication, and documentation.

2 Field Study Overflow

Our field study was conducted as an exploratory qualitative study. We conducted
seven semi-structured interviews with engineers at a government research and
development organization tasked with understanding targeted malware. For the
remainder of this paper, we use P1 to P7 to refer to the participants of our study.
A full description of the methodology can be found in [11]

To gain a comprehensive understanding of software reverse engineering in a
government security context, our research questions focus on processes, tools,
and artifacts:

1. What processes are part of reverse engineering in a security context?
2. What tools are being used?
3. What artifacts are being created and shared?

3 Summary of Findings

In this section, we present a summary of our findings from [11], subdivided for
each research question posed in Section 2.

3.1 Processes

Based on the interview data, we identified five processes that are part of reverse
engineering in a security context.

Analyzing. Analyzing assembly code is at the heart of most reverse engineer-
ing projects. Typical projects include the detection of malware, such as trojan
horses, or the decryption of encrypted file systems. Assembly code is more diffi-
cult to understand than source code written in high-level programming languages
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because the code is less structured, often lacks meaningful symbols or data defi-
nitions, and allows for tricks that can mislead reverse engineers in their analysis
efforts. Following the flow of data is challenging: “Understanding the data flow
is a big part of understanding a program.”P4

Documenting. Documenting reverse engineering has several purposes. Some
documentation is done to provide cognitive support for the reverse engineers at
the time of the analysis, some documentation is meant to capture the reverse
engineers’ own understanding of the code, and other documentation is meant to
be shared either with team members or outside stakeholders. While it is already
difficult to document source code written in high-level programming languages,
it is even more difficult when dealing with assembly code. During the exploration
of the assembly code, most reverse engineers document just enough information
to be able to resume a task and do not document the paths that were explored
without success.

Transferring Knowledge. Transferring knowledge is a challenge in reverse
engineering. Documentation alone is often not enough to understand the work
that has been completed by somebody else: “[I would] look at a version with
comments, but I’d still need to jump through to understand.”P7 In the current
setting, information is usually passed on verbally or via email and chat. These
mechanisms do not scale beyond groups of about five reverse engineers. To solve
some of these issues, the idea of a workflow would be useful: “Right now it’s be-
ing done like a craft, and we’d like to have some kind of assembly line”P4. How-
ever, workflows are not consistent for all cases, and most workflow support tools
are too constraining. In addition, documentation conventions and information
sharing standards could improve the reverse engineering process: “Respecting
conventions [would make it] easier to pass from one project to another.”P2

Articulating Work. Articulating work consists of all the items needed to coor-
dinate a particular task, including scheduling sub-tasks, recovering from errors,
and assembling resources [4]. In reverse engineering, where tangible results are
only produced when a path of exploration is successful, constantly re-doing work
is a problem. Work was usually divided based on different pieces of hardware, dif-
ferent vulnerabilities, different functions, or different files. Relating information
from the analysis of different pieces of the problem was very difficult.

Reporting. When external stakeholders are involved, the final step in a project
is reporting the results of the reverse engineering activities. In some cases, report-
ing includes a great deal of articulation work, especially when artifacts can be
co-opted as reports: “Instead of writing a report we shared a Word document.”P6

3.2 Tools

Tools used by the participants in our study can be classified as disassemblers,
office productivity and visualization tools, and communication and coordination
tools.
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Disassemblers. Most of the reverse engineering work is performed using IDA
Pro1. IDA Pro is a commercial product that performs automatic code analysis
and offers interactive functionality to support the understanding of disassembly.
Reverse engineers typically start with an automatically generated disassembly
listing, then rename and annotate sections in the listing until they understand
the code. Debuggers are rarely used for malware in the early stages of analysis
since portions of the code required for execution are often missing or because of
the need to first remove anti-debugging tricks used by the malware. As one of
our interviewees described it, the main analysis tool used by reverse engineers
in the security context is “brain power”P6.

Office Productivity and Visualization Tools. Most of the documentation
is written using Microsoft Word, Excel, or OneNote. UML sequence diagrams
are usually drawn to represent control flow understanding. However, the reverse
engineers had “trouble finding good tools that draw graphs and make it easy
to navigate and export graphs”P1. Paper was also used, primarily for workflow
support, small graphs, and articulation work.

Communication and Coordination Tools. For communication, only basic
tools, such as e-mail and chat, were used. Our interviewees work in a co-located
setting that allows face-to-face communication, but data sharing is complicated
by the nature of the classified work. Interviewees coordinated work using tools
such as wikis, bug trackers, and shared documents.

3.3 Artifacts

Artifacts created during the reverse engineering process in our setting consist of
annotations, artifacts created for cognitive support, and reports.

Annotations. IDA Pro supports two notions of annotations: repeatable and
non-repeatable. A repeatable annotation will appear attached to the current item
as well as other items referencing it. Non-repeatable annotations only appear
attached to the current item2. In addition, pre-comments and post-comments
can be attached to lines and functions. All annotations also show up in the IDA
Pro dependency graph.

The reverse engineers used annotations for several reasons: to keep track of
variables, to rename functions, to document jumps, and to record where a partic-
ular piece of code was reading from or writing to. However, one of the challenges
is that annotations are always incomplete: “When you document stuff you tend
to skip stuff that’s obvious at the time.”P6

Cognitive Support Artifacts. Depending on the use case, different docu-
ments are created by the reverse engineers to aid their cognition. These include:

1 http://www.hex-rays.com/idapro
2 http://www.hex-rays.com/idapro/idadoc/480.shtml



Software Reverse Engineering in a Security Context 117

memory maps, Excel or Word tables showing register usage and boot processes,
data flow diagrams, sequence diagrams, and scripts. A common scenario is when
an engineer needs to keep track of different paths that are being explored in
order to understand a particular piece of code. One of our interviewees used
Microsoft OneNote to do that: “I also used OneNote in other projects to keep
track of paths that way. The last line in the OneNote document was the last path
[that I had] explored.”P6

Reports. Companies focused on malware, such as Symantec, frequently create
reports that provide an overview of how a particular piece of malware works.
Such reports rarely include enough detail to understand the inner workings of
the malicious program, mostly because security companies do not want to reveal
their insights to malware writers. In contrast, reports produced in our study set-
ting had more technical content, and often included assembly code for functions
as well as detailed descriptions of all input and output parameters.

4 Discussion of Challenges

Each work process described in the last section involved a different set of tools.
These tools, in turn, were used to produce artifacts in distinct, non-interoperable
formats. Therefore, moving from one process to another required a lot of man-
ual work. By moving from the analysis to the documentation, engineers produce
artifacts that would help them resume their own tasks, as well as transfer their
knowledge to other team members. For example, reverse engineers have tried us-
ing wiki-based systems for sharing mixed content (e.g., details on how particular
hardware works, including pieces of code). However, wikis have shortcomings
when navigating code and related artifacts: “Wikis are very document like, not
ideal for documenting code – some kind of graph tool would have been better.”P1.
Overall, even when knowledge sharing was encouraged, reverse engineers faced
a lack of proper tools to pass information along to others: “There’s also stuff
that we don’t know how to document.”P1. Navigation is particularly a challenge
when dealing with different documents such as the cognitive support artifacts
mentioned above. A map of all documents and their connections usually only
exists in the reverse engineer’s head.

To articulate their work and break problems into pieces, engineers often fol-
lowed a divide-and-conquer strategy: “We go after different pieces. The problem
is how to share information then... different people have different processes.”P2.
This poses an interesting phenomenon: there is no general process in the work
of security reverse engineers. The following factors would influence this
phenomenon:

Task Complexity. Tasks, such as blocking malware and breaking into secure
devices, often include unsolved problems, thus requiring the use of different
approaches, tools, and skills.
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Security. The security context further obstructs the reverse engineers’ work.
Classified information cannot be easily shared, and for classified tasks, the re-
verse engineers are only allowed to work on classified, often un-networked, equip-
ment. Often, information cannot be transported since it could belong to different
projects, security classifications, or machines. Even for unclassified contexts, such
as malware, the nature of the code prohibits easy sharing to prevent further in-
fection. This also means that a lot of the work has to be completed offline, and
access to web resources is very limited. Most of the reverse engineers in our study
worked by themselves, often for security reasons: “I’m the only one allowed to
look at it [...] You don’t want others to be infected [with malware]”P2.

Time Constraints. The amount of time pressure depends on the scenario.
Some projects have the goal of understanding everything about a particular piece
of software and are usually completed without time pressure. In other scenarios,
only a couple of weeks are allocated for a particular project in order to provide
a fast response to a potentially harmful threat. In the latter case, the reverse
engineers have to prioritize what they are working on. In the example of malware:
“[We have] four goals when dealing with malware: detect, block, remove, [and]
understand everything. Usually [the process] stops after the third step.”P7 The
amount of documentation produced depends on the extent of the time pressure.
Long-term projects without time pressure yield more documentation, whereas
for short-term projects, there is often not enough time to document thoroughly:
“If you put too much documentation, you won’t have enough time to finish.”P2

Tool Constraints. A graph is often the best way to capture a certain aspect
of a reverse engineering problem, but it is difficult to deal with different types
of diagrams. One of our interviewees told us that he sometimes spends up to
100 hours creating a single diagram. Also, the graphs produced are usually not
linked to the disassembly, thus losing traceability. There is a shortage of tools
that span different aspects of reverse engineering, such as hardware specifications
and assembly code. The reverse engineering is also limited by memory since tools
rarely scale beyond executables larger than a few megabytes.

5 Application of Findings

To demonstrate how these insights into the work practices of security engineers
can be incorporated into tool design we, present Atlantis, a tool designed to
assist software security engineers performing program exploitability analysis [2].

Exploitability analysis is the process of determining if a given program may
be susceptible to exploitation. One way of determining if a program may have
a hidden vulnerability is to: attempt to make the program crash (through a
process called fuzzing [9]), trace the program (either by instrumention or an
external tracer), and then analyze the resulting execution traces. While this
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process can be somewhat automated, assessing the actual exploitability of a crash
and performing root cause analysis requires a great deal of human reasoning and
manual analysis of the very large trace files generated.

Atlantis is an integrated assembly trace analysis environment designed to as-
sist security engineers perform and manage this analysis. Atlantis was developed
in collaboration with software security engineers to meet their requirements, and
its design was informed by the work processes summarized in 3.1. Here we reuse
these processes to structure our discussion of the features Atlantis offers.

Fig. 1. Atlantis

5.1 Analyzing

With the advent of new tracing technologies (e.g. BitBlaze [7], Pin [5]) we believe
analyzing trace files will become the primary task performed by engineers when
conducting exploitability analysis of a program. Currently, engineers rely on off-
the-shelf text editors and file comparison tools to analyze traces. Atlantis (Figure
1) improves on these tools by providing three customized and linked views: a
dedicated Trace Text Viewer, a Trace Visualization View, and a Memory State
View which work in concert to allow the engineer to perform their analysis.

1. The Trace Text Viewer is a simple text viewer and comparison tool but
improves on off-the-shelf solutions with features like very large file support,
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fast search, trace-specific syntax highlighting, and memory reference high-
lighting.

2. The Trace Visualization View provides engineers with a high-level rep-
resentation of the trace. It was designed to help navigate very large traces
and to provide a visual overview of the entire trace under study.

3. The Memory State View (using an innovative indexing approach) allows
an engineer to reconstruct the entire memory state of the program under
study at any point in the execution trace, in real time.

5.2 Documenting and Reporting

Documenting trace files (like documenting source code or disassembly) is a sim-
ilarly crucial part of exploitability analysis. Engineers document traces both to
support their analysis activities and to capture and share their findings with
other engineers. Atlantis supports this process by providing rich annotation fea-
tures, allowing engineers to attach comments and tags to locations within the
trace.

The Comments View and Tags View provide a way for users to quickly record
hypotheses as they traverse the trace. Building on previous work on tagging in
software development [8], tags allow a user to annotate a particular line and
column (or entire sections) in the trace. There can be multiple occurrences of a
tag and using the Tags View, the user can navigate between all occurrences of a
tag. Tags can also be grouped into different sets and labeled. Comments function
in a similar way but are unique and allow a user to express more complex ideas
about a particular location or section of the trace.

Unlike traditional source code editors, where comments and tags are expressed
in-line with the source, in Atlantis, comments and tags are displayed in a separate
UI layer floating above the Trace Text Viewer and are stored in separate files.
This allows the user to selectively display only particular groups of comments
and tags. For example, a user analyzing a trace might have different comment
groups for different features they are investigating in the trace. Comment and
tag layering allows a user to quickly show or hide all comments from one or both
of those features.

5.3 Transferring Knowledge

Exploitability analysis offers a lot of opportunity for engineers to collaborate
when analyzing traces. Atlantis supports collaboration between engineers by
storing annotations separate from traces, and by making it easier for them to
share and manage trace annotations. This has multiple benefits.

1. Engineers don’t have to share the trace files themselves, but rather just the
annotation files. This can be a significant benefit due to the large size of the
trace files.

2. As the annotation files are simple xml files, engineers can place them under
version control, allowing them to version and share annotations with other
engineers in an organized and traceable fashion.
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3. If multiple engineers are analyzing a trace collaboratively, they can easily
merge annotations from other engineers into their own annotations and then
re-export their annotations to be shared with the group.

5.4 Articulating Work

When performing exploitability analysis, engineers will typically not be working
with just a single trace, but rather a set of multiple types of traces. For exam-
ple, along with ‘failing’ traces that result from program crashes (and which may
demonstrate an exploit), engineers often want to analyze and compare ’passing’
traces (traces which demonstrated correct operation of the program). The At-
lantis Project Management View provides engineers a mechanism for organizing
their exploitability analysis of a program into a project structure (including trace
and annotation files) and to share that project structure with other engineers
through version control. This allows engineers to treat the exploitability anal-
ysis of a program as a coherent, standardized entity in itself, rather than as a
disparate collection of trace files and documentation.

6 Conclusion and Future Work

The work setting of reverse engineers tasked with security-related issues, such as
the dissection of malware or the decryption of encrypted file systems, is unique.
Web resources are often unavailable because work has to be performed offline,
files can rarely be shared to avoid infecting co-workers with malware or because
information is classified, time pressure is immense, and tool support is limited.

In this paper we presented an overview of an exploratory study we con-
ducted [11] to gain an understanding of the work done by security reverse engi-
neers and to understand their processes, tools, artifacts, challenges, and needs.
We also reported on Atlantis, a tool that attempts to incorporate the findings of
that study and is designed to assist software security engineers with identifying
potentially exploitable programs based on analysis of their execution traces. Re-
verse engineering in a security context is a fast-changing environment. New tools
and approaches have to be learned on the spot as hackers and organized cyber
groups constantly create new security threats with implications for national se-
curity. Future work lies in addressing the challenges that we have identified with
improved tools and processes, and in studying their usefulness in the unique
work environment of security reverse engineers.

Acknowledgments. We wish to thank the participants in this study, and Cas-
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Abstract. The concept of neural efficiency provides a powerful framework to 
assess the underlying mechanisms of brain dynamics during cognitive-motor 
performance. Electroencephalography (EEG) studies have revealed that as  
cognitive-motor performance improves non-essential brain processes are pro-
gressively disengaged resulting in brain dynamics leading to a state of neural 
efficiency. Multiple factors such as practice, genetics, mental stress, physical 
fitness and social interaction (team dynamics) can influence such cortical re-
finements positively or negatively and translate into an enhanced or deteriorated 
quality of performance. This paper provides a report of brain activity, assessed 
via fMRI, in a group of athletes who perform well under conditions of mental 
stress. Better understanding of brain states associated with such groups can en-
hance the ability to detect and classify adaptive mental states  and increase the 
possibility of employing field-friendly brain monitoring tools such as EEG in 
ecologically valid situations for assessment of cognitive-motor performance in 
challenging real-world settings.  

Keywords: Neural efficiency, expertise, fMRI, emotion regulation. 

1 Introduction 

Converging neuroimaging data suggest that experts require less neuronal resources 
compared to novices to accomplish the same task in their domain of expertise, and 
that this cortical refinement can be characterized as psychomotor efficiency, which is 
a special case of neural efficiency that refers to the magnitude of communication or 
input of non-motor brain activity to motor planning processes during movement prep-
aration and execution [1]. Thus, one of the hallmarks of highly skilled individuals is 
the ability to perform using minimal effort and refined cortical processing specific to 
the action demands [2]. Many investigators have employed precision aiming tasks 
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(shooting tasks) to explore this notion of efficiency since these kinds of tasks involve 
minimal movement artifact, and the advantage of ecological validity (e.g.[3]). This 
research has consistently revealed that the cerebral cortex reduces its activity during 
task execution, particularly in the left temporal region (associated with verbal analy-
sis), and is characterized by automaticity of motor control [3]. Collectively, these 
findings imply a refined recruitment of the essential neural networks required for 
skilled performance. The opportunity to achieve such an adaptive state of cerebral 
cortical dynamics can be influenced by numerous factors. Personality characteristics, 
perceptual or attentional styles, trait anxiety, genetic influence on brain processes 
(e.g., 5-HTT polymorphic influence on emotional states in response to fear-eliciting 
stimuli), practice, expertise, and social influence as mediated by team dynamics can 
all affect cortical dynamics to facilitate refinement of networks or introduce nonessen-
tial activity that interferes with refinement and efficiency. The relevance of neural 
efficiency for military operational environments is that state-sensitive biomarkers, 
such as EEG, heart rate variability, etc., (individually or collectively) could be used to 
classify if a human operator is in such an adaptive state. 

Importantly for this study, such neural efficiency of brain dynamics can become 
disrupted by mental stress leading to performance decline under pressure [4, 5]. Tra-
ditionally, the relationship between stress and performance can be characterized by 
the organizing principle of the inverted-U, termed the Yerkes- Dodson law [6]. Ac-
cording to this model, performance varies as a function of the stress activation conti-
nuum: with an under-aroused-state resulting in sub-optimal performance (in part due 
to decrements in attention & lack of engagement); a central zone where stress levels 
are consistent with behavioral adaptability, optimal performance and psychomotor 
efficiency and extreme excitation, which can become manifested as anxiety, also re-
sulting in performance decline. 

As such, the management of high levels of arousal is critical to the performance of 
tasks under conditions of mental stress. Anxiety-induced disruption of the central 
zone of optimal arousal may act to perturb the refined process associated with psy-
chomotor efficiency [6]. Such negative appraisal accompanied by elevated arousal, is 
typically coupled with increased amygdala activity, which, in turn, influences the 
thalamus, hypothalamus, striatum, and brainstem areas in addition to numerous sen-
sory and association cortical areas [7], creating neuromotor noise. Thus the regulation 
of emotion (which can be manifested as anxiety), is critical in determining the quality 
of cognitive-motor performance. 

Nonetheless, some individuals are able to maintain a high level of performance 
during stressful events and, therefore, demonstrate qualities of stress resilience. Stress 
resiliency encompasses the ability to adaptively cope with adversity and can be ex-
amined at behavioral, psychological, and neural levels [8]. For the purpose of the 
study we define our stress resilient population as individuals who have a history of 
successful performance (1) senior varsity athletes in the sport of American football 2) 
letter award winners 3) who typically play a starting role on the team 4) supported  
by a partial or full athletic scholarship) under conditions of emotional challenge  
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(high-level competition). Examination of elite performers (intercollegiate athletes) 
holds promise for understanding the neural basis for such abilities to adaptively cope 
with stressful events, and more specifically, elite athletes may be uniquely resilient to 
stress perturbation through the ability to regulate their emotions. Such a population 
offers a relevant vehicle with which to examine the impact of stress on human per-
formance and can serve as an analogue to military populations who are also chal-
lenged with stress while attempting to maintain adaptive performance (i.e., brain) 
states. The ability to manage or regulate emotion under conditions of mental stress is 
critical to the quality of performance under such pressure. 

There are numerous strategies through which to engage emotion regulatory brain 
networks, but one strategy, cognitive reappraisal, is a particularly adaptive means of 
emotion. Cognitive Reappraisal is a “cognitive-linguistic strategy that alters the tra-
jectory of emotional responses by reformulating the meaning of a situation” p 1, [9], 
and this results in a decrease in the reported negative emotion [10]. In other words, 
the result of cognitive reappraisal is that it attenuates negative emotional experience 
resulting in an enhancement in cognitive control of emotion. This implies it is impor-
tant to consider not only the stressful event, but the individual’s perception of the 
stressor, to understand how skilled performers maintain consistency under various 
challenges and during mental stress. 

In support of this notion, the dynamics between stress (i.e. anxiety) and perfor-
mance can be further characterized by the transactional model described by Staal 
(2004) [11]. Specifically, stress is conceived as the aggregate result of the interpreta-
tion of the environmental challenge, as well as the objective challenge. In particular, 
this model integrates human performance and information processing capacity with 
the notion of appraisal of threat, controllability, and predictability for understanding 
how stress affects performance. As such, a key element is the individual’s appraisal of 
the situation. This implies that a great deal of individual variation in the response to 
the stressor may be a consequence of the perception of the event rather than the actual 
environmental stressor. Therefore, the perception of the stimulus is essential rather 
than the objective stimulus and, furthermore, the perception may be highly related the 
individual’s experience (i.e. domain specific). 

Consequently, elite athletes may have developed a domain-specific reaction to 
stressful challenge, which through experience and training, allows them to endoge-
nously regulate their affective response to known stressors and efficiently respond to 
affective challenge. In summary, the present work examined the neuropsychological 
processes that may well contribute to a state of psychomotor efficiency under stress. 
Using elite athletes as a model for a stress-resilient population this study attempted to 
provide insight into the mental approach these individuals employ to maintain mental 
stability as they engage in sport-specific challenges. A model of stress resiliency is 
proposed which is characterized by an economy of affective neural processing and an 
experience-dependent automaticity of neural processes associated with cognitive 
reappraisal. 
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2 Materials and Methods 

2.1 Participants  

Twenty-five male participants between the ages of 18 and 22 were recruited and of 
these 13 were football athletes (M=21.46 years; SD=0.776) and 12 were non-athletes 
(M= 21.08 years; SD=2.19).  

The football athletes were 1) senior varsity athletes 2) letter award winners 3) typi-
cally play a starting role on the team 4) on a partial or full athletic scholarship. The 
non-athletes were healthy subjects who never played football at a college level, but 
reported familiarity with the goal and rules of the sport; this is critical to ensure that 
all subjects understand the meaning of the negative sport-relevant images. Additional 
selection criteria included that the subjects must have been (a) native English speakers 
(b) free of current or past diagnosis of neurological or psychiatric disorders, and (c) 
MRI compatible (e.g., no metal in body, no tattoos on face, no medicine delivery 
patch). All subjects gave their written informed consent and all experimental proce-
dures were approved by the University of Maryland Institutional Review Board with 
proper notification IRB of record for Hyman Subject Research Projects performed at 
the Georgetown University Center for Functional and Molecular Imaging. 

2.2 Stimuli  

Negative and neutral images were selected from the International Affective Picture 
System (IAPS). In addition we developed Sport-Specific (SS) images by searching 
internet databases (e.g., Google Images) to find images representing unpleasant events 
experienced during football competition: for example: 1) injuries; 2) embarrassment 
due to loss (i.e., dejected players); 3) critical coaches. SS images were rated with a 
valence rating mean of 4.131 and arousal mean rating of 4.824. In turn, IAPS images 
were selected with matching valence means scores of 4.116 and arousal mean scores 
of 4.896 to create equivalence between the two image sets. 

2.3 Task  

Each trial was composed of four events: First, instructions (watch or decrease) ap-
peared centrally for 2 seconds. On “decrease” trials, participants were instructed to 
engage in cognitive reappraisal and on “watch” trials participants will be instructed 
simply to look at the image and respond naturally. Second, an aversive or neutral 
image appeared centrally for 8 seconds. While the image remained on the screen, 
participants performed the evaluation operations specified by the prior instructional 
cue. Third, a rating scale appeared immediately after presentation of the image for 4 
seconds to determine “How negative do you feel” with a rating from 1 to 5 (1 not at 
all, 3 moderately, 5 extremely). Fourth, the transition task of a fixation cross appeared 
for 4 seconds in the center of the screen cuing participants to relax until the next trial. 
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Each subject was cued to passively view or reappraise 48 domain non-specific 
negative images (24 each) and 48 domain- specific negative images (24 each) in addi-
tion to the passive viewing of 24 neutral images during randomly intermixed trials 
over 4 MRI scanning runs. Each image was shown only once for a given participant.  

2.4 Imaging Parameters and Data Analysis  

Functional and structural magnetic imaging data were acquired on a 3TSiemens Mag-
netom Trio system equipped with gradients suitable for echo-planar imaging se-
quences. Thirty-eight axial slices (3.2 mm thick in plane) were acquired using an echo 
planar imaging (EPI) pulse interleaved sequence (TR 2000 ms; FOV 205; TE 30ms). 
The DICOM images imported Statistical Parametric Mapping, SPM5. Slice timing 
and head motion correction, was followed normalization into MNI format (template 
EPI.mni). Default SPM5 settings were used to warp volumetric MRIs to fit the stan-
dardized template (16 nonlinear iterations), and normalization parameters were ap-
plied to subject’s functional images. Normalized images were resampled into 2 × 2 × 
2 mm voxels and smoothed. Preprocessed images were entered into a General Linear 
Model in SPM5 that modeled the canonical hemodynamic response function con-
volved with an 8-second boxcar representing the picture-viewing period. Motion  
parameters, the instructional cue period, and the rating period were entered into the 
model as additional regressors. Contrasts were created for each condition relative to 
the neutral baseline. These individual contrasts were then entered into a Full Factorial 
design of a 2 x 4 ANOVA Group by Conditions to perform a random-effects group 
analysis. The Group factor consisted of Athlete and Control and the Condition factor 
consisting of Cognitive Reappraisal SS, Passive Negative SS, Cognitive Reappraisal 
IAPS, and Passive Negative IAPS. Whole brain analysis was examined for each 
group relative to the neutral condition. Region of interest analysis was executed for 
the Cognitive Reappraisal SS vs Passive Negative SS, Cognitive Reappraisal IAPS vs 
Passive Negative IAPS in the prefrontal cortex (BA 8, 9, 10, 11, 45, 46, 47, taken 
from the Wake Forest Pick Atlas indication of Brodmann Areas). All results were 
FDR corrected for multiple comparisons (p<0.05) unless otherwise noted.  

3 Results 

3.1 Whole Brain Analysis  

Whole brain analysis revealed that during the natural response of the athlete group to 
generalized negative images (IAPS) (relative to the neutral baseline) significant acti-
vation occurred in the left dorsolateral prefrontal cortex (DLPFC), left inferior frontal 
gyrus (IFG), left dorsomedial prefrontal cortex (DMPFC), left ventrolateral prefrontal 
cortex (VLPFC), bilateral orbitofrontal cortex (OFC), bilateral superior parietal lobule 
(SPL), right lingual gyrus, bilateral parahippocampal gyrus, bilateral premotor cortex 
(PMC), right cerebellum, superior temporal gyrus (STG) and right middle temporal 
gyrus (MTG). In the control group significant activation was observed in the bilateral 
DLPFC, left DMPFC, left IFG, left VLPFC, the bilateral OFC, the right STG, left 
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inferior temporal gyrus (ITG) and right middle occipital gyrus (MOG), right anterior 
cingulated cortex (ACC), bilateral PMC, left SPL, right lentiform nucleaus and right 
postcentral gyrus. 

Whole brain analysis results indicate that during passive viewing of sports-specific 
(SS) images, the athlete group exhibited significant activation in the left DMPFC, left 
insula, right lingual gyrus, left DLPFC, bilateral VMPFC, left IFG, right OFC, bila-
teral PMC, bilateral SPL/precuneous, left postcentral gyrus, bilateral ITG, the right 
STG, bilateral parahippocampal gyrus, left putamen and left thalamus. During the 
passive viewing of SS images, the control group exhibited significant activation in the 
bilateral DLPFC, bilateral VMPFC, right IFG, left OFC, left insula, bilateral STG, left 
ITG, right lingual gyrus, bilateral parahippocampal gyrus, bilateral PMC, bilateral 
SPL, left precentral gyrus, and left and right lentiform nucleus. 

Cued cognitive reappraisal of generalized negative images (IAPS) resulted in sig-
nificant activation of the left DLPFC, bilateral VMPFC right VLPFC, bilateral OFC, 
right lingual gyrus, bilateral premotor cortex, bilateral parahippocampal gyrus, left 
post central gyrus, right SPL, bilateral ITG, left MTG, bilateral cerebellum, left uncus 
and left lentiform nucleus in the athlete group. Significant activation in the left 
DLPFC, left DMPFC, bilateral OFC, bilateral IFG, bilateral PMC, right SPL, left 
supramarginal gyrus, left amygdala, right MOG, left posterior cingulated, right STG, 
right ITG, left MTG, and the right cerebellum was observed in the control group dur-
ing cued reappraisal of IAPS images. 

The cued cognitive reappraisal of SS images revealed significant activations in the 
left DLPFC, left VLPFC right OFC, bilateral PMC, right lingual gyrus, bilateral para-
hippocampal gyrus, left supramarginal gyrus right postcentral gyrus, bilateral SPL,  
 

 

Fig. 1. Results of whole brain analysis. Passive Negative IAPS, Passive Negative SS, Cognitive 
Reappraisal IAPS, and Cognitive Reappraisal SS contrasts are relative to the neutral baseline. 
The red indicates the unique activation for the athlete group, the blue indicates the unique acti-
vation of the control group, and the green indicates regions where both groups showed activa-
tion (overlap), p<0.05, FDR corrected. 
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left STG, left MTG, left lentiform nucleus and left cerebellum in the athlete group. 
Activation was observed in the control group in the bilateral DLPFC, left IFG bilater-
al VLPFC right VMPFC bilateral medial OFC right cuneus, left parahippocampal 
gyrus, bilateral PMC, left MTG bilateral SPL, bilateral lentiform nucleus, bilateral 
STG, right motor cortex left posterior cingulate and bilateral insula.  

3.2 Region of Interest Analysis 

The region of interest analysis of the Cognitive Reappraisal of IAPS images and the 
Passive Response to IAPS images indicated activation in the left DLPFC, the bilateral 
DMPFC, bilateral VLPFC, right VMPFC and left IFG (p<0.05, uncorrected) in the 
athlete group (Figure 2). Direct comparisons within the IAPS image set between Cog-
nitive Reappraisal and Passive Negative revealed that during cued cognitive reap-
praisal the left IFG (p<0.05, uncorrected) was active in the control group (Figure 2). 

The region of interest analysis revealed that no difference (p<0.05, uncorrected) 
was detected during the Cognitive Reappraisal SS- Passive Negative SS contrast in 
the prefrontal for the athletes (Figure 2). Direct comparisons of Cognitive Reappraisal 
SS - Passive Negative SS revealed greater activation in the left DMPFC (BA 8), left 
IFG (BA 47), and right IFG (p<0.05, uncorrected) in the control group (Figure 2). 

 

Fig. 2. Axial slices from prefrontal cortex region of interest analysis for the Athlete (left panel) 
and Control (right panel) groups. Contrast: Cognitive Reappraisal - Passive Viewing. IAPS. 
Generalized Negative Images. SS. Sports-Specific Negative Images. Slice numbers and t-score 
color bar is provided (p<0.05, uncorrected).  

4 Discussion and Conclusion 

There is a robust relationship between one’s emotional state and the ability to effec-
tively perform cognitive-motor skills. Elite performers must balance competing task 
demands such as physical requirements (dexterity, force), physiological recovery 
(metabolic rate, body temperature), psychological focus (memory, decision making), 
etc. during high levels of performance [12]. Critical to the orchestration of adaptive 
responses to the challenge of competitive sport, is the management of the emotional 
component of the task. Mental stress can lead to detrimental outcomes like state an-
xiety, burnout, exhaustion, strain, and tension, but it can also evoke adaptations such 
as hardiness, resilience and resistance [13]. Thus, these divergent outcomes must be 
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explained not only in terms of the nature of the stressor but also in terms of the indi-
vidual’s perception of the challenge. Our data revealed a generalized neural 
processing efficiency during affective challenge (Figure 1) in which elite athletes are 
less perturbed by mental stress and suggests this may be a critical quality contributing 
to their stress resilience. When examining the specific patterning of neural processing 
during the natural response of the elite athletes to stressful challenges, our data show 
that they demonstrate similar neural processes to those used during cognitive reap-
praisal, but this is only within their domain of expertise (Figure 2).  Thus, the conflu-
ence of experience based-factors such as controllability, emotional coping strategies, 
motivational efforts, trait/state anxiety and individual personality, in addition to the 
qualities of the objective stressor, cumulatively interact to produce the stress response. 

The disruptive effects of stress on human performance can be classified as a loss of 
neural processing efficiency [1] leading to hyperactivity of non-essential brain regions 
that interfere with the cognitive-motor task demands. Conceptualized as “neuromotor 
noise,” [14] this process affects cortical arousal and redistributes processing resources 
away from those dedicated to the goal-directed behavior. The loss of neural 
processing efficiency caused by stress-induced neuromotor noise may explain the 
phenomenon of “choking” or performance decline under pressure [4, 5]. However, 
elite-level athletes are typically resilient to such stress perturbation, enabling them to 
maintain a high level of performance during stressful conditions.  The whole brain 
analysis result, which revealed more focused brain activity in the athletes during all 
conditions, suggests that neural efficiency in the motor domain as reported in the 
literature [1] extends to the emotional domain (Figure 1). This, in turn, would pro-
mote an overall refinement of cortical activity necessary for successful performance 
under mental stress and allow for a greater capacity to handle stressful events (i.e., 
less neuromotor noise). 

Interestingly, the elite athletes demonstrate efficiency during both specific (sport-
specific) and generalized (IAPS) challenge. On speculation, this pattern may be a 
consequence of repeated exposure to competitive stress, which can lead to active cop-
ing strategies that would translate to an ubiquitous planning and problem solving 
approach to challenge [8]. Our results also support efficiency in brain regions sensi-
tive to social competence and understanding, which may promote adaptive  neural 
processing mediated by oxytocin (reduces fear response) [8]. In addition physical 
fitness is associated with altered behavioral and neuromodulator responses to stressors 
(e.g.[15]). Lastly, genetic factors could also contribute to adaptive responses to stress 
by way of mediating reward circuits and protecting against depression [16] and  
trait disposition to anxiety [17].  Our present design cannot address the speculations 
identified here, but we examined one specific element of stress resiliency, cognitive 
reappraisal. 

Cognitive reappraisal is a cognitive-linguistic strategy that changes the trajectory 
of emotional responses by reformulating the meaning of a situation such that negative 
affect experience is reduced [9]. Thus cognitive reappraisal serves 1) as a means for 
understanding the qualities that contribute to the unique features of stress resilient 
population compared to a representative sample population and 2) a critical reference  
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for understanding what stress resilient individuals do when responding naturally to 
stressful events. Neuroimaging studies have examined this cognitive approach to 
mental stress and have revealed that frontally mediated executive processes act to 
manage the response of the amygdala (central to emotional processing)[9]. 

We examined if those who have demonstrated stress resilience (superior  
performance under pressure) exhibit such a specific pattern of neural responses cha-
racterized by this adaptive emotion regulatory strategy (cognitive reappraisal) in the 
prefrontal cortex.  In addition, as stated earlier, the transactional model [11] predicts a 
high degree of specificity of the stress response based on an individual’s perception 
and appraisal of the stressful event. Consequently, an athlete may have developed 
through experience and training a domain-specific reaction to stressful challenge, 
which allows them to endogenously regulate their affective response to familiar stres-
sors.  The region of interest analysis between the sport specific conditions (cued cog-
nitive reappraisal and passive viewing of negative sport-specific images) indicates 
that through experience, these individuals automatically engage in mental transforma-
tion of an emotional event such that the negative consequences are attenuated, (i.e.  
they appear to endogenously engage in cognitive reappraisal) (Figure 2). This equiva-
lence of processing (no difference during SS in athletes) between the natural response 
to mental stress and cued cognitive reappraisal is lost during the generalized negative 
events (IAPS images). Although this work was based on MR imaging future work can 
employ EEG/fNIRS, which are more appropriate in operational environments. A 
longer term goal is to develop applications for brain monitoring of emotion level and 
regulation in the field. Such an approach could be applied to military personnel for 
monitoring during combat situations for the purpose of stress management, altering 
workload based on one’s state as well as for solider selection for special units if ro-
bust profiles emerge. 

The results suggest that skilled performers who excel during competitive stress en-
gage in cognitive regulation in their domain of expertise, decreasing physiological 
arousal thereby enabling them to sustain elevated performance. This specificity sug-
gests that emotion regulation promotes refinement of brain activity resulting in an 
optimal state for effective task execution particularly under conditions of known 
stressful challenge (i.e., sport competition). By investigating a stress resilient popula-
tion (elite athletes), this study provides an assessment of the postulated dynamic be-
tween cognitive (prefrontal) and affective (limbic) brain networks as related to skilled 
motor performance. What emerges is a generalized neural efficiency that appears to 
be a quality of resiliency to promote a mental state where neuromotor noise is  
attenuated. However a specific element of resiliency (i.e., automaticity of cognitive 
reappraisal) is dependent on experience. In the context of performance, cognitive 
reappraisal, through prefrontal regulation of the arousal, may maintain an adaptive 
level of arousal to promote a state of psychomotor efficiency during mental stress. 
The establishment of this protocol as an effective means through which to probe the 
emotion regulatory processes in elite groups, holds promise to facilitate more tactical 
psychological interventions that aid in motor performance.  
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Abstract. Performing a task as a team requires that team members
mutually coordinate their actions. It is this coordination that distin-
guishes the performance of a team from the same actions performed in-
dependently. Here we set out to identify signatures of team coordination
in behavioral and brain dynamics. We use dual electroencephalography
(EEG) to measure brain dynamics of dyadic teams performing a virtual
room clearing task. Such complex tasks often exhibit high variability of
behavioral and brain dynamics. Although such variability is often con-
sidered to impede identification of the behavior or brain dynamics of
interest here we present a conceptual and empirical framework which ex-
plains variability in geometrical terms and classifies its sources into those
that are detrimental and non-detrimental to performing the task at hand.
Using our framework we found that behaviorally team coordination is re-
flected in terms of role dependent behavior. Furthermore we identified a
low-dimensional subspace of the brain dynamics in the frequency domain
which is specific for team behavior and correlated with successful team
coordination. Moreover, successful team coordination was positively cor-
related with the inter- but not intra-brain coherence in the gamma band.
Our results hence indicate that successful team coordination is associ-
ated with increased team cognition, particularly readiness to engage in
the task.

1 Introduction

Many tasks in real life are best accomplished when a group of people acts
as a team. Examples include lifting heavy weights, hunting, police or military
operations, and team sports, but also some instances of abstract problem solv-
ing. Performing a task as a team requires that team members mutually coordi-
nate their actions. It is this coordination that distinguishes the performance
of a team from the same actions performed independently by multiple sub-
jects. While multiple studies investigate team cognition from behavioral mea-
sures [1,2,3,4,5,6,7,8,9,10], it is currently unknown how team cognition is
reflected in the brain dynamics of the team members. Studies of brain activity
during social interaction - but not team cognition - have found brain rhythms
associated with social coordination [11], inter-brain coherence [12,13], inter-brain
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Granger causality [14], and joint brain networks [15]. The findings of the few ex-
tant studies about brain activity during team tasks include indications of inter-
brain functional connectivity in partners of the same team in a card game [16],
dimensionality of brain dynamics being affected by team expertise and task dif-
ficulty [17], and classification of EEG engagement patterns of individual team
members [18].

Here we use dual electroencephalography (EEG) of dyadic teams who perform
a virtual room clearing task to identify neuromarkers of team coordination. The
task we use is a virtualization of one of the most extreme forms of team co-
ordination, namely when members’ survival and safety depend upon efficient
team interactions. During such tasks cognitive and social processes have to be
coordinated in a context-dependent fashion. The task is ecologically valid and
highly dynamic with well defined behavior in which subjects dynamically engage
in and disengage from team coordination. Team coordination can be studied in
a meaningful way only in ecologically valid tasks. Ecologically valid tasks how-
ever are often highly dynamic and individuals performing such tasks exhibit
a high variability of behavioral and brain dynamics. Here we present a concep-
tual framework which explains this variability in geometrical terms and classifies
variability into detrimental and non-detrimental to the task at hand. Our frame-
work provides a unifying theoretical account for tasks with multiple degrees of
freedom and hence is particularly suited to guide the analysis of team tasks.

The paper is organized as follows: In section 2.1 we describe the experiment,
in section 2.2 the conceptual framework for analyzing behavioral and brain dy-
namics in complex tasks is introduced, and in section 3 we present the results of
this framework, followed by a discussion in section 4.

2 Materials and Methods

2.1 Virtual Room Clearing Task

For our study we devised a virtual room clearing task by creating a video game in
which team members of a dyadic team work together to detect and eliminate en-
emies as they jointly progress through buildings in a hostile urban environment,
with the shared goal of clearing a virtual room from threats. The video game
was designed to retain the essence of key behavioral, perceptual, cognitive, social
and attentional processes that occur in successful team work. Subjects shared
the same top down perspective of their virtual environment while controlling
their avatar’s position and direction of gaze, as they navigated through a series
of 32 buildings each composed of 5 successive rooms, with their virtual envi-
ronment becoming visible upon the avatars’ spatial exploration. Dual-EEG was
recorded by using two 60 channel EEG caps and a sampling rate of 1 kHz. The
experimental setup is described in more detail in [19]. Figure 1(a) shows an ex-
ample trajectory of an avatar dyad through a building. In each room clearing
task one subject assumes the role of the leader and the other the role of the
follower. The subjects assume the roles of leader and follower in a self-organized
manner and renegotiate their roles implicitly by the behavior of their avatars
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after completion of each room clearing trial. There are two valid entry patterns,
the leader button-hook entry and the leader cross-over entry (cf. Figure 1(b)).
Due to this degeneracy, the task is endowed with intrinsic variability. On the
day before the experiment, subjects received training for one hour to master
basic concepts of room clearing. Although in our study the room clearing task
is virtual, the behavior of the avatars closely resembles the behavior of subjects
performing an actual room clearing task (compare Fig. 1(c) to Fig. 3, left).

  0  10  20  30  40  50  60  70  80  90 100

0 1
2π π 3

2π 2π

 
 

(a)

(b)

(c)

Fig. 1. (a) Trajectories of the avatar dyad through the five rooms of one of the build-
ings. Color of the beams between team member positions: percentage of trajectory
completed (from blue 0% to red 100%). Color of the circles: Gaze direction. Green
subject: green 0◦, red 120◦, yellow 240◦. Blue subject: blue 0◦, magenta 120◦, cyan
240◦. (b) Two possible team entry patterns: leader button-hook (top) and leader cross-
over (bottom). The follower executes the complementary entry pattern, respectively.
(c) Spatial probability density of leader trajectories in a behavioral (not virtual) room
clearing task. Values indicate the percentage of trajectories crossing a given region.
Based on data from [8].

Each room clearing trial proceeds as follows: The follower aligns behind the
leader. The follower gives a ready signal, conveyed through touch ’tap’ in the
real situation, and through a vibration of the Xbox controller in the experiment
(verbal communication was not allowed to avoid EEG artifacts) upon which the
leader initiates motion of his avatar and is followed by the avatar of the follower.
Then both subjects move their avatars to the door as close as possible and the
leader presses a button to open the door. The leader enters the room, followed as
closely as possible by the follower. Then both leader and follower independently
move to their respective corners of dominance, which are the corners to the left
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and right from the door. Both corners of dominance must be covered, hence the
follower needs to coordinate his entry pattern with that of the leader such as
to move to the opposite corner as the leader. After arriving in their corners of
dominance, subjects had instruction to engage in gaze interlock, i.e. the overlap
of their view cones. The gaze interlock ended the trial and the subjects moved
to the next stacking point. From the description above, each room clearing trial
can be divided into three main events: First, the coordination build-up while
stacking in front of the room, second, coordinated behavior when moving to
the door and entering the room, and third, breaking and rebuilding coordinated
behavior.

2.2 Geometrical Description of Behavioral and Brain Dynamics
during Complex Tasks

Detrimental and Non-detrimental Variability. Ecologically valid tasks are
often complex and have a high number of degrees of freedom which leads to be-
havioral variability because there are multiple valid ways in which these tasks
can be executed (cf. Fig. 1(b)). Such behavioral variability is non-detrimental
to task execution and actually may improve its performance metrics (e.g. speed,
survival, ...). However, other variability may be detrimental, representing a de-
viation from ideal task execution. Furthermore in team tasks the behavior of
each team member is influenced by the behavior of the other team members.
This gives rise to particular behavioral patterns which are not present in tasks
performed by a single subject. In addition to behavioral variability there is also
variability in the brain dynamics associated with task execution. Neural pro-
cesses also exhibit degeneracy, and hence a single behavior may be supported by
multiple neural processes.

To guide the choice and development of analysis methods we devised a geo-
metrical framework for the description of complex tasks. This allows to translate
properties of the behavioral and brain dynamics into geometrical properties and
makes available geometrical tools for the analysis of dynamics in brain and be-
havior. An implicit geometrical perspective is already adopted in many standard
multivariate analysis methods such as principal component analysis or clustering
algorithms. Our framework is novel however, because it offers a conceptualization
of all behavioral aspects of a task and its associated brain dynamics in terms
of geometry and furthermore provides a geometrical account for inter subject
coordination.

Behavioral and Brain Manifolds. Behavioral and brain dynamics during a
complex task can be described geometrically as a trajectory in a phase space.
Each dimension of the phase space represents a variable of the dynamics. The
choice of the phase space is not unique. Different phase spaces hence provide dif-
ferent “windows” to the problem. The brain dynamics in each trial represents a
trajectory in phase space. The ensemble of all possible trajectories constitutes a
geometrical object which we refer to as manifold. The term “manifold” is chosen
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to indicate that the geometrical object can have a non-trivial shape and alludes
to the Uncontrolled Manifold in movement sciences [20]. Here we extend the
uncontrolled manifold concept to team behavior and brain dynamics. Figure 2
shows the manifold concept for behavioral and brain dynamics, respectively.
A trajectory on the behavioral manifold contains information about the team
behavior in a given trial, and a trajectory in the brain manifold represents infor-
mation about the associated brain dynamics. Note that unless stated otherwise,
the term “trajectory” always refers to a trajectory on the manifold rather than
to a physical trajectory through the virtual rooms. The shape of the manifolds
is governed by three main factors: task constraints, team coordination and task
performance. Task constraints affect the global shape of the manifold while team
coordination and task performance delineate submanifolds.

(a) Behavioral manifold

(b) Brain manifold (team coordination:
modulation of neural processes)

(c) Brain manifold (team coordination:
separate neural processes)

Fig. 2. Illustration of the manifold concept in phase spaces of behavioral and brain
dynamics, respectively. (a) Behavioral manifold. (b) Brain manifold in which team
coordination is supported by modulation of neural processes underlying behavior. (c)
Brain manifold in which coordination is supported by separate neural processes. The
cartoons on the brain manifold stand for the behavior that the neural processes support.
Red connections illustrate team coordination. Due to degeneracy, the same behavior
may be supported by different neural processes. In all manifolds, team performance
increases from left to right, and team coordination from bottom to top. The shaded
areas in the manifolds illustrate a probability measure on the manifold.

Team Subspace. A manifold can be approximated at any given point by its
tangent space at this point. Here we use singular value decomposition (SVD) of
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local time-frequency windows to approximate the tangent spaces of the mani-
folds. Neuromarkers are properties of brain dynamics that are related to a certain
behavior, which in our case is team coordination. For neuromarkers to be iden-
tifiable, certain properties of brain dynamics during the behavior in question
need to be sufficiently consistent. Consistency, however, implies low variability
and hence we are confronted with the challenge to identify consistent patterns
from highly variable brain dynamics. To identify consistent brain dynamics re-
lated to team behavior, yet account for the variability associated with neural
and behavioral degeneracy, we compute the intersection of the tangent spaces
over different trials and project the brain signals into this subspace which we
refer to as team subspace. The subspace represents the submanifold of the brain
manifold which is related to team behavior and the projected brain signals corre-
spond to trajectories on this submanifold. We determined the intersection of the
tangent spaces by computing the principal angles between them using a method
proposed in [17]. The dimensionality of the team subspace was determined by
the number of dimensions for which cosα > 0.8 where α is a principal angle.

Measure of Team Coordination. When the subjects perform the virtual
room clearing task, task initiation is a key event of team coordination. The task
is initiated when the follower taps the leader to signal his readiness to start upon
which the leader starts to move. A short duration of this time interval indicates
that both subjects were simultaneously ready to start the task. Here we use the
duration of task initiation as global measure of team coordination of a trial.
Short durations thereby indicate successful team coordination.

3 Results

Behavioral Signatures of Team Coordination. Our study focusses on
brain signatures of team coordination, however, we found that behavioral sig-
natures of team coordination were present even on the level of single subject
behavior. More specifically, we found that the entry patterns of leaders and
followers exhibited role-dependent differences. Figure 3 shows the behavioral
variability over trials of cross-over entries performed by a leader and a follower,
respectively. The entry pattern of the leader has much less variability than that
of the follower. There are two regions of high concentration of leader entry tra-
jectories, one before and one after the entry. Interestingly, this pattern is also
found in the leader trajectory during actual room clearing (cf. Fig. 1(c)). The
entry pattern of the follower is much more diffuse with only one area of slightly
higher concentration of entry trajectories. This indicates that the follower is co-
ordinating with the leader. The coordination of the follower with the leader has
the effect of enhancing the variability of his own behavior, since his behavior is
affected by both external task constraints and the behavior of the leader, while
the leader’s behavior is primarily affected by external task constraints.
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(a) (b)

Fig. 3. Behavioral variability of a cross-over entry of a leader and a follower. Spatial
probability density of the trajectories. Values indicate the percentage of trajectories
crossing a given region. (a) Leader. (b) Follower.

Brain Signatures of Team Coordination. We applied our geometrical
framework (cf. Materials and Methods) to the dual EEG data from the virtual
room clearing task and determined a brain manifold in the frequency domain,
using as phase space variables the real and imaginary parts of a wavelet trans-
form (complex Morlet, 3 peaks) of the signal of all electrodes. We restricted our
analysis to the frequency band of 15-40 Hz (β and low and medium γ band),
because the behaviors of interest like signaling readiness by the follower, move-
ment initiation by the leader, and entry coordination between the two subjects
occur at time scales of 200 ms or less, corresponding to 3-25 cycles in the chosen
frequency band. Here we report results from the task initiation interval, which
is the interval between the tap performed by the follower to signal readiness
and the movement onset of the leader. This interval has a duration of 250 ms -
1000 ms with an average around 400 ms. Figure 4(a) shows the spatio-temporal
patterns of the wavelet powers in the frequencies 15-40 Hz during the first 250
ms of the task initiation interval, averaged over trials for one dyadic team. We
found consistent low-dimensional team subspaces (cf. Materials and Methods)
for each dyadic team, with dimensionalities of 8-11. Neuromarkers of team be-
havior were identified by the portion of the brain signals that lay within the team
subspace (cf. Fig. 4(b)). We found the mean relative wavelet power in the team
subspaces to be significantly positively correlated with successful team coordina-
tion as measured by the duration of the task initiation interval (cf. Materials and
Methods). This supports the notion of a low-dimensional subspace of joint brain
activity which is related to team coordination. Moreover we found that inter-
brain coherence, but not intra-brain coherence in the low and medium γ bands
(30-40 Hz) during task initiation was significantly positively correlated with
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(a) Wavelet powers

(b) Wavelet powers within the team subspace

Leader Follower

Fig. 4. Mean wavelet powers of leader (left column) and follower (right column) (a)
before and (b) after projection onto the team subspace

successful team coordination as well. With inter-brain coherence and spatio-
temporal wavelet powers in a team subspace, we have identified two neuromark-
ers of team coordination.

4 Discussion

Social interaction is a crucial part of human life. Yet the neuroscience of social
interaction is only in its infancy. To identify neuromarkers of team coordination
we have performed a dual EEG study of dyadic teams performing a virtual room
clearing task. Ecologically valid tasks like this represent a particular challenge
to the analysis because of their high inherent variability. We have developed a
geometrical framework that provides a unifying theoretical account for ecologi-
cally valid tasks and is particularly suited to guide the analysis of team tasks. In
this framework behavioral and brain dynamics are interpreted as evolving along
trajectories on a manifold in a high-dimensional phase space. The geometry of
the manifold is determined by multiple factors, such as task constraints, team
performance and team coordination. The manifold depends on the choice of the
phase space. Here we analyzed the data in the wavelet domain, which lends itself
to two natural descriptors: wavelet power and coherence, representing amplitude
and phase information, respectively.

While our focus was on neuromarkers, we found behavioral signatures of team
coordination even on the single subject level in terms of role dependent behavior.
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Their pattern indicates that the follower is coordinating his behavior with that
of the leader akin to an object attached to the leader. On the level of the brain,
successful team coordination was associated with an increased proportion of the
subjects’ brain signals evolving in a low-dimensional team subspace. Moreover,
we found successful team coordination to be positively correlated with inter-
but not intra-brain coherence in the γ band during task initiation. This implies
that inter-brain coherence is higher when both subjects are ready to engage in
the task. Since task initiation is associated with information transfer, inter-brain
coherence might be a signature of a state of mind of both subjects which enables
or facilitates information transfer. While it has been argued that coherently os-
cillating neuronal groups facilitate efficient interaction within a brain [21], there
is currently no extablished model of how inter-brain coherence could be medi-
ated [22]. A possible interpretation of our finding is that inter-brain coherence
is related to the subjects’ receptiveness of their mutual behavior. However, a
more detailed analysis of the spatio-temporal patterns of intra- and inter-brain
coherence in relation to the subjects’ behavior is needed to test this hypothesis.

Behavioral variability is brought about by the degrees of freedom of the task
as well as differences in task performance. Variability in brain dynamics is due
to behavioral variability and due to the degeneracy of brain processes. It is
well known - although rarely explicitly acknowledged - that multiple different
brain processes may support identical behavior [23]. Our framework represents a
departure from the quest for single neural mechanisms underlying given behav-
iors and explicitly acknowledges the degeneracy and highly synergistic nature of
brain processes.
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Abstract. A multi-level framework for analyzing team cognition based on team 
communication content and team neurophysiology is described.  The semantic 
content of team communication in submarine training crews is quantified using 
Latent Semantic Analysis (LSA), and their team neurophysiology is quantified 
using the previously described neurophysiologic synchrony method.  In the cur-
rent study, we validate the LSA communication metrics by demonstrating their 
sensitivity to variations in training segment and by showing that less expe-
rienced (novice) crews can be differentiated from more experienced crews 
based on the semantic relatedness of their communications.  Cross-correlations 
between an LSA metric and a team neurophysiology metric are explored to ex-
amine fluctuations in the lead-lag relationship between team communication 
and team neurophysiology as a function of training segment and level of team 
experience. Finally, the implications of this research for team training and  
assessment are considered. 

Keywords: Latent Semantic Analysis, Team cognition, Team communication, 
Team neurophysiology, Teamwork. 

1 Introduction 

A team is an interdependent group of two or more people who work together for a 
fixed amount of time to achieve a common goal [1-2].  Across a wide range of work 
environments, including business, military, medical, academic, and culinary settings, 
there are many common goals that are either too physically or cognitively demanding 
to be achieved by individuals working alone.  To meet such goals, tasks must be per-
formed in real time by people working together as a team.  This paper focuses on the 
communicative and neurophysiological aspects of team cognition as crews work to-
gether to solve navigation problems and coordinate solutions in a submarine crew 
training environment. 
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1.1 Levels of Analysis in Team Cognition 

Team cognition has been defined theoretically as either the shared declarative know-
ledge of team members, the shared cognition perspective [e.g., 3-5], or as the dynam-
ic interactions (e.g., communications) between team members, the interactive theory 
of team cognition [6].  Inspired by the interactive theory of team cognition, we take a 
multi-leveled approach to studying team cognition as it unfolds across segments of 
submarine crew training.  In this research, our overarching focus in on how team 
communication and team neurophysiology function as related metrics for team cogni-
tion, though each is concerned with a different level of analysis. 

At a more “micro” level of analysis, we have analyzed neurophysiological patterns 
of team members as they work together to acquire team skill [7].  We argue that sole-
ly focusing on individual neurophysiology does not capture the dependencies that 
develop across team members as they acquire overt interaction patterns.  The team 
neurophsysiology paradigm developed by Stevens and colleagues [7-8] addresses this 
by allowing one to examine distributions of neurophysiological patterns as they de-
velop across team members.  We have also developed a variety of approaches for 
studying team cognition at a more “macro” level by focusing on overt interaction 
patterns during team skill development [9].  Those overt measures of team cognition 
include behavioral [e.g., 10] and communication-based [e.g., 11] metrics.  The major 
theme of this paper is to continue to extend our communication-based metrics of team 
cognition into a submarine crew training environment, while beginning to develop a 
framework to support a joint team communication—team neurophysiology paradigm 
for understanding team skill development. 

The team neurophysiology methods considered in this paper are described else-
where [7-8].  Therefore, we want to devote much of this paper to describing our  
analysis of team cognition during submarine crew training using semantic content 
analysis of team communication.  Hence, we devote the following section to team 
communication analysis. 

1.2 Analyzing Team Communication Using Latent Semantic Analysis  

Latent Semantic Analysis (LSA) is a mathematical/statistical method for representing 
and analyzing semantic knowledge within a domain [12].  LSA is based on the theory 
that knowledge is reflected in the contextual usage of words within meaningful dis-
course [13].  LSA takes as its input a raw corpus of text and represents the corpus as a 
matrix of unique terms (e.g., words) by documents (e.g., paragraphs).  LSA assumes 
that lower-dimensional (latent) semantic factors account for the frequency of co-
occurrence between words and documents in the raw matrix.  The space of factors is 
called the semantic space, and it is constructed through singular value decomposition. 
The optimal number of dimensions can be determined such that the relationships  
between words and context results in correct inductions (e.g., synonym matching; 
missing word replacement). 

LSA has been used to successfully distinguish high-performing from low-
performing unmanned air vehicle (UAV) teams by comparing their transcribed com-
munications to a UAV semantic space [11].  For the current study, we constructed a 
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semantic space representing nautical navigation knowledge with which to analyze 
submarine crew communication.  The semantic space (314 factors, 124,326 total 
words, 6,846 terms, and 5,904 documents) was constructed from a corpus created 
from submarine crew training transcripts, the Navigational Rules of the Road 
(COLREGS), Submarine Operations Manual, and the unclassified Doctrine for Sub-
marine Interior Communications. 

1.3 The Current Study 

The primary goals of the current study are to (a) validate semantic content metrics for 
identifying critical differences between submarine crew training segments, (b) use 
semantic relatedness metrics to differentiate between levels of submarine crew expe-
rience, and (c) demonstrate the dependent relationship between team semantic content 
and team neurophysiology in a submarine crew training environment.  Finally, we 
consider the implications of our results for team training and assessment. 

2 Method 

2.1 Participants 

The data used in the current study were collected from Junior Officer Navigation 
teams enrolled in the Submarine Officer Advanced Candidacy class at the US Navy 
Submarine School.  These teams consisted of six or more crew members, including: 
Quartermaster on Watch; Navigator; Officer on Deck; Assistant Navigator; Contact 
Coordinator; and Radar. (Other team members were also present and participated, but 
were not analyzed using the neurophysiological methods described later.) These 
teams participated in Submarine Piloting and Navigation (SPAN) simulation sessions 
during the class.  We analyzed seven of these SPAN sessions:  Four are from more 
experienced teams, and three are from less experienced (“novice”) teams.  In the sta-
tistical analyses we present below, we use a between-subjects variable, Experience, to 
index Novice vs. Experienced SPAN training sessions. 

2.2 Training Simulation 

The communication metrics analyzed in the current study were calculated from tran-
scripts of team communication across crews during SPAN training simulations.  The 
SPAN sessions are high-fidelity training simulations that consist of three segments: 
Briefing; Scenario; and Debriefing [7-8].  During the Briefing segment, the overall 
goals of the mission are presented and discussed.  The Scenario is the dynamically 
evolving segment of the training, during which teams navigate through a route in a 
high-fidelity submarine simulation.  The Scenario segment requires teams to steer and 
change course or speed while identifying landmarks and other ships that factor into 
SPAN. During the Scenario, the team must also periodically take Rounds, during 
which three navigation points are chosen, and the bearing of each point from the boat 
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is measured and plotted on a chart.  The accuracy and variability of Rounds may serve 
as a team performance measure in future research, but those data will not be analyzed 
here.  The Debriefing segment is an after-action-review, during which teams discuss 
what worked and what other options or actions could have been taken during the Sce-
nario.  The Debriefing segment provides a teaching experience, where both short- and 
long-term learning goals are discussed.  In the statistical analyses we present below, 
we use a within-subjects variable, Training Segment, to index the Briefing, Scenario, 
and Debriefing training segments.  In addition to communication metrics, neurophy-
siology data taken from crew members during the training simulations are used in 
some analyses presented below. 

2.3 Measures 

Two metrics derived from the geometrical interpretation of the semantic space are (1) 
the vector length of a piece of discourse and (2) the cosine between two pieces of 
discourse.  We calculated both of these metrics for seven SPAN transcripts (i.e., the 
four experienced team sessions and three novice team sessions).  These metrics will 
be used to analyze the semantic content of team communication during SPAN. 

The vector length of a piece of discourse (e.g., an utterance; “Recommend steering 
course 178 to regain track.”) is the Euclidean norm of the vector, created by summing 
the semantic space vectors of words in the discourse, plotted in the semantic space.  
The vector length measures the amount of semantic content (cf. knowledge) a piece of 
discourse contains relative to the domain of discourse, as represented by our SPAN 
semantic space. 

The cosine between any two pieces of discourse (e.g., any two utterances; any two 
training segments; any two complete transcripts; etc.) is the vector dot product be-
tween two vectors plotted in the semantic space.  The correlation between two vectors 
can be shown to be the cosine of the angle joining them (e.g., independent, perpendi-
cular vectors have cos[90o] = 0, and they are completely uncorrelated).  Hence, the 
cosine measures the degree of semantic relatedness, or correlation, between any two 
pieces of discourse. 

The team neurophysiological measure we will use (NS Entropy) to examine the re-
lationship between communication content and team neurophysiology is derived from 
the EEG-based Neurophysiological Synchrony (NS) method, which is more fully 
described elsewhere [7-8].  Using this method, discrete, team-level NS states are sam-
pled at a fixed interval (we used 1 Hz) from continuous EEG streams collected from 
each team member.  The EEG-to-NS mapping is such that each discrete NS state 
identifies a different distribution of cognitive engagement (or workload; not analyzed 
here) across team members.  As training segments unfold, the team engagement dis-
tribution changes, and is captured in a time series of discrete NS states.  The set of NS 
states for SPAN was determined using an artificial neural network approach [7-8], 
which resulted in a set of 25 discrete NS states. 

Though the cardinality of the NS states is fixed, there is no inherent numerical or-
dering of states.  To quantify NS organization, therefore, we calculated the Shannon 
entropy across NS states using a sliding window of size 100s. 
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where pi is the relative frequency of NS state i over a 100s window, was repeatedly 
calculated as the 100s window slid over the original, discretely-varying NS time se-
ries.  Using this technique, for an input NS time series of length N, the output is a 
continuously-varying NS entropy time series of length N – 99.  In this way, we use 
the first 100 samples to calculate the first entropy value at time t = 100, samples 2 
through 101 to calculate the second entropy value at t = 101, and so forth.  Using a 
window smaller than 100s has been found to increase the potential for false (disconti-
nuous) spikes in the NS entropy time series [7].  In terms of team cognition, low  
entropy may be interpreted as a highly-ordered team neurophysiological state, whe-
reas high entropy corresponds to a more random mix of team neurophysiological 
states [7]. 

3 Results 

3.1 Differentiating between Task Phases Using Vector Length 

To examine whether Training Segment and Experience underlie communication dif-
ferences captured by LSA metrics, we first computed mean vector length across utter-
ances for Briefing, Scenario, and Debriefing segments of each transcript and then we 
analyzed those mean vector lengths using a 3 (Training Segment) × 2 (Experience) 
mixed ANOVA. (We also analyzed cosines taken between successive utterances us-
ing this approach; however, none of those results were significant.) As illustrated by 
the vector length data shown in Figure 1, there was a significant main effect of Train-
ing Segment, F (2, 10) = 15.78, p = .001, η2 = .76.  No other omnibus effects were 
significant.  A follow-up Tukey test on Training Segment (αFW = .05) revealed that 
mean Debriefing vector length (M = 1.21; SD = .27) was significantly greater than 
both Briefing (M = .79; SD = .30) and Scenario (M = .51; SD = .03) mean vector 
lengths. 

Careful reading of the utterances in the transcripts clearly indicated that teams were 
communicating differently as a function of Training Segment.  Specifically, teams 
communicated with shorter, to-the-point utterances during the Scenario segment and 
longer, conversational utterances during the Briefing and Debriefing segments.  To 
quantify this observation, we controlled for word count by dividing each utterance’s 
vector length by the number of words in each utterance.  The resulting quantity meas-
ures the rate of semantic content per word in each utterance: Communication Effi-
ciency = Vector Length / Word Count [11].  To examine whether Training Segment 
and Experience underlie communication differences captured by the Communication 
Efficiency measure, we computed mean Efficiency across utterances for Briefing, 
Scenario, and Debriefing segments in each transcript and then analyzed those mean 
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Efficiency values using a 3 (Training Segment) × 2 (Experience) mixed ANOVA.  
The main effect of Training Segment was significant, F (2, 10) = 25.81, p < .001, η2 = 
.84.  No other omnibus effects were significant.  A follow-up Tukey test on Training 
Segment (αFW = .05) revealed that Communications Efficiency was significantly 
higher during the Scenario (M = .078; SD = .001) than during the Briefing (M = .054; 
SD = .006) and Debriefing (M = .039; SD = .003) segments. 

 

Fig. 1. Vector length of each utterance for an experienced team separated by Training Segment 

3.2 Differentiating between Experienced and Novice Teams Using Cosines 

To determine whether experienced teams’ semantic content was more similar to each 
other than to novice teams and that novice teams’ semantic content was more similar 
to each other than to experienced teams, we first calculated the LSA cosine metric 
between all possible pairs of transcripts as a function of Training Segment. We  
show the cosine matrix for the Scenario training segment in Table 1.  If it is the case 
that semantic relatedness differentiates between experienced and novice team  
communication, then the bold values in Table 1 should be larger than the italicized 
values. We further examined that qualitative grouping using cluster analysis and  
multidimensional scaling (MDS). 

A hierarchical cluster analysis of the Scenario cosine matrix (Table 1) using aver-
age between-groups linkage revealed that experienced teams clustered together and 
novice teams clustered together based on the semantic content of their communica-
tions for the Scenario training segment (Figure 2a).  Similarly, a two-dimensional 
MDS solution for the Scenario cosine matrix (Stress = .86; R2 = .96) revealed an “Ex-
perience” dimension, with novice teams low and experienced teams high on this di-
mension, and a second dimension that also appears to differentiate between teams by 
an as yet unidentified factor (Figure 2b).  Hierarchical clustering and MDS conducted 
on the Briefing and Debriefing cosine matrices revealed that novice teams tended to 
be more tightly grouped in terms of semantic content than experienced teams during 
those training segments. 
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Table 1. Cosine Similarity Matrix Computed between All Pairs of Transcripts during Scenario 

  Exper. 1 Exper. 2 Exper. 3 Exper. 4 Novice 1 Novice 2 Novice 3 

Exper. 1 1.00 

Exper. 2 0.91 1.00 

Exper. 3 0.81 0.85 1.00 

Exper. 4 0.85 0.87 0.82 1.00 

Novice 1 0.82 0.85 0.78 0.81 1.00 

Novice 2 0.76 0.77 0.72 0.77 0.88 1.00 

Novice 3 0.81 0.81 0.79 0.84 0.85 0.83 1.00 

 

   
 

Fig. 2. (A) hierarchical clustering of the LSA cosine matrix from the Scenario training segment; 
(B) multidimensional scaling of the LSA cosine matrix for the Scenario training segment 

3.3 Cross-Correlations between Semantic Content and Team 
Neurophysiology 

Having established that (a) LSA-based vector length metrics differ as a function of 
training segment and (b) that LSA-based cosine metrics differentiate between expe-
rienced and novice teams, we turn to the question of how these differences in team 
communication are related to changes in team neurophysiology as a function of Train-
ing Segment and Experience. 

We calculated the lagged cross-correlation function between LSA vector length of 
each utterance (Variable 1) and mean NS Entropy during each utterance (Variable 2) 
for each combination of Training Segment and Experience.  The peak cross-
correlation between these two variables (e.g., Figure 3) was identified to determine 
whether semantic content was leading (+ lag) or following (- lag) team neurophysiol-
ogy and whether that correlation was significantly positive (+ direction) or negative  
(- direction). Table 2 provides basic information for each of the cross-correlations 
analyzed in the current study. (Because we were simply concerned with determining 
whether these variables were cross-correlated for the current study, we do not  
report or interpret exact values of lags and strength of correlation in this paper.) If the 

A B 
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correlation is significantly negative at a negative lag, as it is for the novice teams 
during the Briefing segment, then team neurophysiology is leading during that seg-
ment of training, such that higher entropy tends to temporally precede lower vector 
lengths.  In terms of team cognition, this suggests that a more random mix team neu-
rophysiological engagement states tends to temporally precede a reduction in the se-
mantic content (cf. “knowledge”) embodied in a team’s communications, at least for 
some training segments and levels of team experience.  Interestingly, we see the op-
posite cross-correlational pattern emerge for two of the three novice teams during the 
Debriefing segment.  Though the cross-correlational patterns for the experienced 
teams are more varied, their interpretation can be carried out in the same way as our 
interpretation of novice teams’ patterns. 

 

Fig. 2. Cross-correlation function for a novice team during the Briefing segment 

4 Discussion 

The LSA-based vector length metric of team communication content significantly dif-
fered as a function of training segment, and the cosine metric allowed us to differentiate 
between experienced and less experienced submarine crews.  Those results lend support 
to our expectation that LSA-based metrics of semantic content can successfully distin-
guish teams of different skill levels and under different task constraints (e.g., planning a 
scenario vs. actually performing the scenario).  The LSA communication efficiency 
measure also differed as a function of training segment.  This metric is a hybrid between 
semantic content and simple syntactic markers of communication and represents just 
one of many possibilities for augmenting LSA metrics by adding contextual and syntac-
tic details of team communication.  In future research, each of these metrics should be 
validated against objective team performance measures (e.g., taking Rounds). 

The lagged cross-correlations were largely significant and seem to suggest that 
team communication and team neurophysiology may lead or lag each other at differ-
ent stages of team training or experience.  Interestingly, we saw a mix of positive and 
negative peak cross-correlations, indicating that at times higher synchronization at the 
neurophysiological level is associated with increased domain specific semantic con-
tent at the verbal communication level and at other times with decreases in domain 
specific communication content.  The prevalence of significant cross-correlation be-
tween team neurophysiogy and communication content begins to lend support to a 
joint team communication—team neurophysiology paradigm for understanding team 
skill development; however, the variety of lead-lag patterns and directions of cross-
correlation must be disentangled in future research. 
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Table 2. Lag and Direction of Peak Cross Correlation between LSA Vector Length and NS 
Entropy as a Function of Training Segment and Experience 

Training Segment 

  Briefing Scenario Debriefing 

Experience Lag Direction Lag Direction Lag Direction 

Exper. 1 -     + * -    + * +    - * 

Exper. 2 +  + + + +    + * 

Exper. 3 -     - * -     + * -     + * 

Exper. 4 -     - * -     + * +     + * 

Novice 1 -     - * -      - * +     + * 

Novice 2 -     - * -     + * -     + * 

Novice 3 -     - * -      - * +     + * 

Note. * This correlation lies beyond the 95% Confidence Interval for no correlation; p < .05. 

 
Finally, in this paper we have suggested a multi-leveled analysis of team cognition, 

which has implications for team training and assessment.  During team development, 
the goal of team performance may be reflected in a variety of adjustments in the neu-
rophysiological and overt behavioral patterns exhibited by teams as they learn to work 
together.  In keeping with the interactive theory of team cognition [6], and similar to 
the theory of embodied cognition [14], neurophysiological patterns may constrain 
behavior patterns, or vice versa, at critical points during team skill development.  As 
we are beginning to see with cross-correlation analyses, hierarchical patterns of con-
straint, in the form of lead-lag relationships between team neurophysiology and team 
communication, may be significantly altered by type of training and level of team 
experience.  Although the exact nature of these developmental transitions remains to 
be seen; in the future, a joint neurophysiological/communication analysis may be 
critical for assessing key transitions in neural/cognitive team development. 
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Abstract. Objective: To identify benchmark neurophysiological measures that 
predict performance at a teaming level. Advanced Brain Monitoring has a track 
record of success in identifying neurophysiological metrics that impact expert 
behavior. For example, we characterized negative and positive predictors for 
marksmanship skill; persons with higher HF:LF Norm metrics of Heart rate 
variability (HRV, an indication of anxiety) during a benchmarking auditory 
passive vigilance task did not achieve expert marksman performance while 
those with above average visuospatial processing ability achieved greater levels 
of expertise. In the current research, we explored the ability of benchmark 
neurophysiological metrics to predict team performance in two large scale 
studies. Significance: Identifying neurophysiological metrics of teaming ability 
and performance as part of a team can provide potential screening mechanisms 
or developmental data to help build optimal teams and improve team 
interactions for different types of contexts in which teams may operate.  

Keywords: leadership, neurophysiology, qEEG, prediction. 

1 Introduction 

Identifying leadership potential is a growing interest in military, academic, and 
industry applications. Many applications using personality profiling have been used to 
some success, however, these are self report mechanisms and do not access the 
internal processes that may contribute to leadership potential. Waldman and 
colleagues [1] argue that neurophysiology may provide more ecologically-valid 
assessment of psychological constructs associated with leadership.. Recent advances 
in the technical design of the qEEG hardware and software platforms enable practical 
application of qEEG in studying leadership potential during live teaming exercises. 
The main advantage of the qEEG-based team assessment is that it is continuous, and 
it does not require disruption of the ongoing team process. For example, [2] utilized 
the qEEG data for modeling team dynamics in complex military tasks. 
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Previous studies have found that neurophysiological profiles may identify predictors 
for those that were able to obtain expert status in a marksmanship task. The current 
study sought to determine the potential of using neurophysiological predictors for 
identifying leaders. 

2 Materials and Methods 

2.1 Participants 

The students at a business school in the U.S. (Arizona State University) formed 43 
teams of either 4 or 5 individuals. The overall sample comprised 201students with the 
mean age of 24.28 years. The participants were ethnically diverse (63.5% were 
Caucasian, 14.2% were Asian, and17.3% were Hispanic) and gender balanced (54.2% 
were males). 

The students at a business school in Europe (ESADE, Barcelona) formed 31 teams 
of either 4 or 5 individuals. The overall sample comprised 146 students with the mean 
age of 28.7 years. The participants were ethnically diverse (61.5% were Caucasian, 
20.7% were Asian, and 15.6% were Hispanic) and gender balanced (64.4% were 
males). 

2.2 Protocol 

All subjects were asked to complete a set of 3 benchmark tasks with simultaneous 
EEG: a 3-choice active vigilance task (3CVT), an auditory passive vigilance task 
(APVT), and a visual passive vigilance tasks (VPVT). Subjects completed these tasks 
as individuals before being assigned to teams of 3-5 people. The 3CVT required 
subjects to discriminate one primary target (presented 70% of the time) from two 
secondary non-target geometric shapes that were randomly interspersed over a 20 min 
period. Participants were instructed to respond as quickly as possible to each stimulus. 
A brief training period was provided prior to the start of the task to minimize the 
practice effects. The VPVT asked participants to keep pace with a visual stimuli that 
was presented every 2 seconds. Participants were instructed to depress the space key 
each time the stimuli was presented. The APVT was identical to the VPVT except 
that an auditory stimuli was presented in the APVT.  

In the first study, we had advanced, business undergraduate students in a leadership 
course at Arizona State University attempt to solve the Ethical Decision Challenge™ 
from Human Synergistics/Center for Applied Research, Inc. of Chicago, Illinois. The 
exercise requires participants to rank 10 biomedical and behavioral research practices 
(all of which involve human subjects) in terms of their relative permissibility and 
acceptability [3-4]. This provides participants with an opportunity to engage in ethical 
analysis and decision-making. Examples of the practices include: 

─ Withholding study design information on purpose from participants when such 
information might skew their behavior within the study 
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─ Conducting high risk but very important research when: a) there is no direct benefit 
to the participants, b) subjects are fully informed about the research and its risks, 
and c) they are capable of deciding whether or not to participate 

While monitored for qEEG and qECG assessment, participants were given 5 minutes 
to initially read the problem statement, followed by an additional 10 minutes to 
provide their respective, individual solutions. They then repeated the task in a team 
process involving 4 or 5 individuals. The goal was to find a solution that all team 
members could “live with”. The team process lasted 30-45 minutes. This allowed 
teams to complete the task without excessive time pressure and without generating 
participant fatigue or disinterest. To derive performance scores, solutions for both 
individuals and teams can be compared against expert scoring. In this study, the 
average solution of 800 members of Institutional Review Boards (IRBs) served as the 
normative scores. These IRBs had been established by various hospitals, universities, 
and research organizations throughout the U.S. 

In the second study, conducted at the ESADE business school in Barcelona, Spain, 
the problem solving task addressed a corporate social responsibility case of the Levi 
Strauss Company involving child labor issues in Bangladesh [5]. Over approximately 
40 minutes, students initially read the case (as individuals), formed a solution to the 
issues mentioned in the case, and recorded their respective solutions through a 
computer interface. After being fitted for qEEG and qECG assessment, they then 
engaged in a team discussion process involving 4 or 5 individuals. The goal was to 
derive a common solution to the issues mentioned in the case. The team process lasted 
up to an hour, including time for the recording (by one of the team members) of a 
solution onto a computer file. To derive performance scores, solutions for both 
individuals and teams were rated by two trained coders in terms of effective problem 
solving, decisiveness, and level of ethical development displayed in those solutions. 
The coders worked independently and showed high levels of inter-rater reliability in 
their scoring. 

2.3 Leadership Performance Metrics 

Both studies rated leadership similarly, although the second was more fine grained. 
The leadership scores involved other team member's assessment (for each respective 
team member) through a survey at the conclusion of the team task. In the first study, 
only shared leadership was assessed, while in the second, we added a more fine 
grained assessment.  

In the second study, Leadership scores for each subject were assessed by the other 
team members in a survey that covered the following aspects of leadership: 

• transformational leadership [6-7] - intellectual stimulation (i.e., helping others to 
examine and solve problems in new ways) and inspirational motivation (i.e., 
expressing confidence and enthusiasm about goals and what needed to be 
accomplished)  
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• emergent leadership [8-9] - the overall degree to which the team members relied 
on and considered a respective team member to have shown the leadership role 
during the team task.  

All members of a respective team rated the other members (excluding himself). As 
the level of agreement among the subjects was high, these scores were averaged to 
provide a single score for each leadership measure for each subject. In the second 
study, these scores were averaged to identify the overall leadership score for each 
individual. The leadership scores were then ranked by team, with those with the 
highest scores categorized as “Leaders”, those with the lowest scores assigned the 
category of “non-leader”, and those in the middle assigned “Team-member”. These 
categories were then used in the ANOVA to examine what neurophysiological metrcs 
are predictive of leadership role.  

2.4 qEEG/ECG Data Recording and Signal Processing 

The wireless B-Alert sensor headset [10] was used to acquire qEEG data of all subjects 
during the benchmark sessions. The qEEG recordings during the team process were 
synchronized with the respective videos. The qEEG data from 9 sites (POz, Fz, Cz, C3, 
C4, F3, F4, P3, and P4) were recorded with a sampling rate of 256 samples per second. 
The qEEG signals were first filtered with a band-pass filter (0.5-65Hz) before the 
analog to digital conversion and then the sharp notch filters were applied to remove 
environmental artifacts from the power network. The algorithm [11] was utilized to 
automatically detect and remove a number of artifacts in the time-domain qEEG 
signal, such as spikes caused by tapping or bumping of the sensors, amplifier 
saturation, or excursions that occur during the onset or recovery of saturations. Eye 
blinks and excessive muscle activity were identified and decontaminated by an 
algorithm [11] based on wavelet transformation. 

From the filtered and decontaminated qEEG signal, the absolute and relative power 
spectral densities (PSD) were calculated on an epoch-by-epoch basis for each 1Hz bin 
from 1 to 40 Hz by applying fast Fourier transformation (FFT) to the 50% overlapping 
1sec overlays of the qEEG data. In order to reduce the edge effect, the Kaiser window 
was applied to each overlay. Furthermore, the FFT on three successive overlays was 
averaged to decrease epoch-by-epoch variability. The following PSD bandwidths were 
extracted: theta slow (3-5 Hz), theta fast (5-7 Hz), theta total (3-7 Hz), alpha slow     
(8-10 Hz), alpha fast (10-12 Hz), alpha total (8-12 Hz), beta (13-30 Hz), and gamma 
(25-40 Hz).  

In order to explore the applicability of neurological alertness quantification in 
estimation of the psychological metrics, we also included into the analysis the outputs 
of the B-Alert model [11-12] that quantifies engagement levels and identifies 
cognitive state changes. It is an individualized model that selects the most 
discriminative PSD variables, derives coefficients for a discriminant function, and  
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classifies subject's cognitive state for each epoch into one of the four levels of 
alertness: sleep onset, distraction/relaxed wakefulness, low engagement, and high 
engagement.  

The p300 latency and amplitude components of the event related potential for the 
correct targets during the 3CVT task were also extracted. All individual trials of 
correct target responses were extracted; any trials that exceeded +/- 50 μV were 
removed, as were those with excessive artifact. All appropriate trials were then 
averaged and the maximum amplitude between 200-500 ms was determined, along 
with the latency of the maximal amplitude.  

The B-Alert headset is enabled for the collection of heart rate, using a two lead set 
up, where one lead is place on the upper right collar bone and the other the lower left 
rib. Data is then sampled at 256Hz and the R-R spike indentified using proprietary 
algorithms, and the beat-to beat heart rate and heart rate variability measures are 
calculated per international standards [13].  

2.5 Data Analysis 

First, correlation analysis was performed to explore if any neurophysiological metrics 
were related to the leadership scores (shared in the first study, transformational and 
shared in the second).  

As an initial investigation into what predictors might contribute to leadership 
development potential, we examined all neurophysiological metrics with 1-way 
ANOVA, comparing the leadership roles assigned (Leader, Non-Leader, Team-
member) across the three benchmark tasks.  

In order to explore the development of a predictive algorithm based on benchmark 
neurophysiology, we used the variables identified in the ANOVAs in a discriminate 
function analysis. We explored both a 3 class (Leader, Non-Leader, and Team 
Member), and a 2 class (Leader, Team Member) model.  

3 Results 

In this section the following results are presented: (1) statistically significant 
correlations between the neurophysiological measures during benchmark tasks and 
leadership at the individual levels, (2) ANOVA outcomes for neurophysiological 
metrics across leadership roles based on scores.  

3.1 Correlations 

Correlation analysis showed that small but significant correlations occurred between 
the individual level leadership scores and neurophysiological metrics. Table 1 shows 
the significant correlations for the first study (Shared leadership only), while table 2 
shows the significant correlations for study 2 (transformational leadership, shared 
leadership). 
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3.2 ANOVA Results 

No significant results occurred for the first study, indicating the single shared 
leadership metric is insufficient. For the second study ANOVA analysis revealed two 
distinctive patterns. First, during the VPVT, a passive visual vigilance task, we see 
significant increase in the Theta bands for the Leaders compared to the Non-Leader 
and Team-member categories. The ANOVA revealed a main effect for both Central 
Theta: F (2, 134) = 3.29, p < .05; and Left Theta: F (2, 134) = 4.79, p < .01. Post hoc 
analysis reveled that Leaders had the greatest activation, followed by the Non-
Leaders, with the Team Members having the least activation. These data are shown in 
Figure 1. 

A similar but inverse pattern of activation was found in the Frontal and Midline 
regions in Slow Theta (5-7 Hz), but not in overall or fast Theta during the Passive 
Auditory vigilance task (APVT). ANOVA revealed significant activation difference 
in the Slow Theta in the Frontal region: F (2, 134) = 4.05, p < .05, as well as the 
Midline region, F (2, 134) = 4.05, p < .05. Post hoc analysis found that while the 
Leadership role still had the greatest activation, the team members had the next 
greatest with the least being the Non-leaders.  

Table 1. Correlations from Study 1compare subjectively scored shared leadership and 
neurophysiological metrics during an ethical decision making tasks associated with human 
subject informed consent protocols (Study1) and Child labor in developing countries (Study 2) 

Neurophysiology Metrics Pearson’s R 
 Study 1 Study 2 
 Shared Shared Emergent 

Frontal_AlphaSlow_8_10 0.206779   
Frontal_AlphaFast_10_13 0.236309   
Frontal_AlphaTotal_8_13 0.219375   
F3_Gamma_31_40   0.201425 
Central_Gamma_31_40   0.200233 
Left_Gamma_31_40   0.212858 
HRV_pFreq_LFHFRatio  0.205656  
P300_Fz_Amplitude  0.371654  
P300_F3_Amplitude  0.40748 0.239428 
P300_F4_Amplitude  0.216757  
P300_F4_Latency  -0.24146  
P300_C3_Amplitude 0.206123 0.279236 0.270103 
P300_C4_Amplitude 0.263649   
P300_Cz_Latency 0.221524   
P300_POz_Amplitude 0.200265   
P300_P3_Amplitude 0.274717   
P300_POz_Latency  -0.32695 -0.34109 
P300_P3_Latency 0.234837   
P300_POz_Amplitude 0.200265   
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Fig. 1.  Theta power (2-7 Hz) in the central (A) and left (B) scalp regions is significantly 
elevated during the Visual vigilance task for those that emerge as leaders during the ethical 
decision making task associated with child labor in developing countries. (* indicate significant 
post-hoc differences from Leaders, Ŧ indicate significant differences from Team Members).  

 

  

Fig. 2. Slow Theta power (5-7 Hz) in the frontal (A) and midline (B) scalp regions is 
significantly elevated during the Auditory vigilance task for those that emerge as leaders during 
the ethical decision making task associated with child labor in developing countries. (* indicate 
significant post-hoc differences from Leaders, Ŧ indicate significant differences from Team 
Members).  

4 Discussion 

The data shown herein demonstrate the potential of neurophysiological predictors of 
leadership development. Small but significant correlations were shown, particularly in 
the latency and amplitude of the P300 component across scalp sites, during the 3CVT. 
Longer latency P300s were associated with lower leadership scores. This finding is 
consistent with a body of literature linking latency slowing with decreased cognitive 
ability and slower response times in a variety of tasks [14-17]. ANOVAs revealed that 
central and left theta during the VPVT and frontal and midline theta during the APVT 
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predict the leadership role later taken during the ethical decision making task 
associated with child labor in developing countries. There were no such findings in 
the first study, with the human subject consent issues. This may be due to the 
inadequacy of the single metric of leadership.  

The leadership status was based on team members rating each other, a highly 
subjective, but ecologically valid assessment. In addition, there is a high degree of 
variability of these scores. All teams had a clear leader, but the strength of that leader 
is variable, with the scale of the metric going from 1-5. Most leaders among the 
groups were ranked in the low to mid 4 range. However some were in the low 3 
range. This may indicate low team coherence, dissonance in decision making, etc. In 
other teams we had several persons score above 4 (although one was always higher), 
perhaps indicating a strong group decision making process. Further breaking down 
the analysis by the strength of the leader may lead to additional finer grained analysis 
that may prove more helpful in identifying effective leaders, not just those most likely 
to emerge as a leader. In the second study, additional objective third party experts also 
ranked the leadership status of the team members. These scores may prove more 
informative than the internal, subjective measures taken and compared in the current 
analysis.  

The tasks used herein were ethical decision making tasks. The “correctness” of 
each solution was also scored, in the second study, by expert judges. Allowing these 
metrics to be entered into the model of leadership may prove useful in future analysis. 
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Abstract. A five-state Markov model is proposed for group and team operation 
and evolution that has a stronger basis in neurodynamics, greater descriptive 
accuracy and higher predictive value than many existing models. The derivation 
of this model from the symbolic analysis of normalized EEG activity during as-
signed team and group tasks is discussed, as are observations on team and 
group dynamics which emerge from the model. The predictive value of the 
model is shown when applied to independent data from submarine crew evolu-
tions. Observations are offered on team dynamics which show the five-state 
model and its accompanying state transitions to be necessary and sufficient to 
describe both linear and non-linear team dynamics, and to begin unifying these 
traditional and new approaches in a straightforward way.  

Keywords: nonlinear dynamics, neurodynamics teamwork, markov model, 
state transition, EEG symbol, tuckman.  

1 Introduction 

Ever since Benoit Mandelbrot [1] observed in his 1967 paper How Long is the Coast 
of Britain? that the apparent structure of complex dynamical phenomena can depend 
on the scale of magnification used, students of group and team dynamics have strug-
gled to find the right observational lens through which the linear and non-linear  
dynamics of teams and organizations can be understood equally well. With a large 
observational aperture, gestalt states applying to a whole work team – for example the 
“forming, storming, norming, performing, adjourning” states well-known from 
Tuckman [2] – make excellent sense and are well understood. At small apertures drill-
ing down toward individuals, non-linear states and behaviors where there is important 
fine structure and no useful gestalt characterization make equally good sense and are 
partly understood, albeit much less predictably in outcome. 

The difficulty to date has been that team and group dynamics from a standpoint of 
workplace productivity are often best viewed through apertures of medium size. At these 
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apertures, traditionally-understood linear phenomena and more-recently investigated 
non-linear phenomena become equally important and can each be crucial in determining 
practical productivity outcomes. A straightforward model of team and group dynamics 
and evolution which unifies both linear and non-linear phenomena is therefore an essen-
tial tool for the modern practical leader. 

It is also desirable to base any such model, where possible, on verifiable and ob-
servable facts about human cognition. Inference drawn from behavior is important 
and remains the basis of much of psychology, but where it is possible to observe cog-
nitive truth directly and thus to improve both the quality of observations and the in-
sightfulness of descriptive models, opportunity exists for better science. Previously 
Stevens and colleagues [3] have taken advantage of technological developments in 
neuroscience and EEG monitoring to describe the neurodynamics of teams. This 
study extends these descriptions through the development of a five-state Markov 
model of teamwork which coalesces the complex phenomena into a simpler taxonomy 
that is well suited to practical team dynamics in industry and government. 

2 Methods 

2.1 Task and Teams  

The custom-designed group task involved the team-based steering of a radio-
controlled vehicle over an obstacle course and has been used for large-scale team 
training since 1996. The intention of the exercise was to present subjects with a sig-
nificantly non-linear task to manage that kept the team motivated and engaged.  

The operating area consisted of a Subject Zone within which subjects and experi-
menters were seated, and a Chicane Zone within which a radio-controlled vehicle, a 
varying number of chicanes, and four targets were located (Fig. 1). The Subject Zone 
contained seating for four subjects, each within easy reach of an individual controller 
for the vehicle steering system. Also within this area were a radio control system for 
the vehicle, a radiotelemetry monitoring and recording center for the subjects’ EEG 
units, and a video camera to record video and audio. The Chicane Zone contained a 
small radio-controlled vehicle, four clearly-marked targets for the vehicle to strike, 
and a varying number and placement of wooden chicanes which was adjusted be-
tween the first and second task evolution. The targets each contained a detection sys-
tem which caused them to emit clear visible and auditory feedback when struck and 
“set off” by the radio-controlled vehicle. Subjects were instructed that the goal was to 
use the vehicle to strike and “set off” all four targets in any order. 

The radio-controlled vehicle operated like a tracked vehicle with steerage by 
wheels only. Ordinarily it would be a simple matter for a single operator to control 
this vehicle with a single radio remote, but the remote was replaced with a custom-
built system which required four subjects to issue finely-coordinated commands in 
order to control the vehicle. Each subject was provided with a controller unit offering 
four buttons - left forward, right forward, left reverse and right reverse. Each function 
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would only operate the vehicle as commanded if all four subjects pressed the relevant 
button at the same time; moreover each function would not cease to operate until all 
four subjects released the relevant button at the same time. 

 

Fig. 1. Experimental layout for both task evolutions (chicane layouts vary) 

The net effect of this system was twofold. Firstly, a high and constant level of en-
gagement was required by the tight communication and feedback-management con-
straints of the task. Secondly, even with excellent team operation, a combination of 
mechanical tolerances, reaction time differences and uneven ground in the Chicane 
Zone meant that simple linear plans - such as the vehicle traveling in a straight line 
when appropriately commanded by the team – only worked for periods of a second or 
two. The combined effect yielded a non-trivial task in which linear and non-linear 
elements were combined in a way that could not be practically deconstructed.  

Two task evolutions were performed that were characterized as “easy” and “hard”, 
with the “easy” evolution run first. In the “easy” evolution, only one or two chicanes 
were used, and none were placed in particularly awkward places with respect to the 
targets. In the “hard” evolution, targets were placed in more challenging locations 
within the Chicane Zone and more chicanes were used, some with awkward placing. 

Subjects were also instructed to appoint a leader, and leadership was rotated after 
each target was “set off”, resulting in each subject being designated as the leader once 
per evolution, always in the same order.  

The four subjects were tertiary-educated adults employed in the workforce by a 
range of employers, and not normally working together as a team. The same subjects 
were used for each task evolution, located in the same four physical positions, and 
with subject order preserved in the symbol elements generated for both. Subjects 
(n=4) performed the two task evolutions with a break in between. During each evolu-
tion of the task, all four subjects were simultaneously monitored by EEG. 
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2.2 Electroencephalography (EEG) 

The B-Alert® system by Advanced Brain Monitoring, Inc. is an easily-applied wire-
less EEG system that includes software that identifies and eliminates multiple sources 
of biological and environmental contamination and allows second – by -second classi-
fication of cognitive state changes [3]. The 9-channel wireless headset includes sensor 
site locations: F3, F4, C3, C4, P3, P4, Fz, Cz, POz in a monopolar configuration refe-
renced to linked mastoids. B-Alert® software acquires the data and quantifies en-
gagement (EEG-E) in real-time. 

For each task the four team members were rank ordered (4 = highest, 1 = lowest) 
with regard to the levels of EEG-E. The positions of the leaders in each performance 
were then compared with the average positions of the remaining team members. In all 
eight performances the leader had the highest or second highest levels of EEG-E 
(mean ranking Leaders = 3.34, Other Members = 2.21, T = 4.80, df = 7, p < 0.002). 

3 Design and Procedure 

3.1 Team Neurodynamics 

For neurodynamics modeling, normalized second-by-second values of EEG-E were 
concatenated into vectors representing the levels being expressed by each team mem-
ber. For instance, in Fig.2A team members 3 and 4 were expressing below average 
levels of EEG-E and would be assigned values of -1. Team members 1 and 2 were 
expressing above average levels of EEG-E and were assigned the value 3. A team 
member with average levels would be assigned the value 1; the vector representation 
was therefore (3, 3,-1,-1). Using unsupervised artificial neural networks (ANN) where 
the nodes were arranged in a linear configuration, the vectors from all performances 
were modeled into collective team variables that are termed neurodynamic symbols of 
engagement (NS_E). ANN classification of these second-by-second vectors created a 
symbolic state space showing the possible combinations of either EEG-E or EEG-WL 
across team members (Fig. 2A). One effect of the linear configuration of neural net-
work nodes during ANN training is that symbols that resemble each other become 
closely aligned. For instance, in Fig. 2B NS 1-5 represented periods where most team 
members had average / below average levels of EEG-E while NS 20-25 represented 
times when most had above average EEG-E levels.  

While a symbolic view of the state of the team is useful for characterizing team 
neurodynamics, it is not the best representation for quantifying team neurodynamics. 
Although there are methods for the quantitative representation of symbols, we chose a 
moving average window approach to derive numeric estimates of the Shannon entro-
py of the NS symbol stream [3]. Entropy is expressed in terms of bits; the maximum 
entropy for 25 randomly-distributed NS symbols would be log2 (25) or 4.64.  
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Fig. 2. Data Flow for Creating Team Neurodynamics Models. ANN classification of second-
by-second vectors (A) creates a symbolic state space showing the possible combinations of 
EEG-E or EEG-WL across (numbered) members of the team (B). 

For comparison, an entropy value of 3.60 would result if roughly half (12) of the 
NS symbols were randomly expressed. To develop an entropy profile over a session, 
the NS Shannon entropy was calculated at each epoch using a sliding window of the 
values from the prior 60 seconds. As teams entered and exited periods of organiza-
tion, the entropy should fluctuate as a function of the number of NS symbols being 
expressed by the team during a block of time [3]. As shown in Fig. 3 for the hard 
problems, there were significant entropy fluxes, with the periods of greatest team 
organization (i.e. the lowest NS_E entropy) occurring around periods where there was 
a target hit, or an expected target hit.  

 

Fig. 3. NS_E Entropy Fluctuations. The fluctuations in the NS_E entropy levels are shown for 
the hard problems. The lines mark where there was a hit, or a near miss. 

3.2 Symbols and Phase Transitions 

One way of visualizing the short-term structural dynamics of a data stream is to create 
transition maps that plot symbol being expressed a time t vs. that at time t + 1; such 
maps are shown for the “easy” case (Fig. 4A) and “hard” case (Fig. 4B). An examina-
tion of the phase transition diagrams for the “easy” and “hard” cases reveals attractive 
basins along the diagonal in both cases, representing relatively stable symbols, and 
also off-diagonal attractors which indicate common symbol transitions. The hard 
problems showed fewer of the off-axis transitions indicating a more organized cogni-
tive state. Randomizing the NS data stream destroyed this organization (Fig. 4C).  
As expected from the transition matrices, the harder tasks had lower overall NS_E 
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entropy levels. These transitions show a practical landscape of team preferences in the 
context of the task environment. In the “easy” case, symbols of particular interest on 
the diagonal are 5, 7 and 25. High-usage off-diagonal symbol transitions include 15-
to-25, 25-to-15, 23-to-7 and 27-to 7. It is also apparent that while some symbol transi-
tions are bilaterally symmetrical, for example 15/25, not all are. In the “hard” case, 
symbols of interest include 1, possibly 11 and 19, and 21 along the diagonal; and the 
off-diagonal transition 1-to-21. Similar observations about possible bilateral asymme-
try apply. The phase colorings also denote considerable additional structure showing 
relationships of interest between symbols, but these seem numerous, complex, and 
confusing as they stand. 

 

 

Fig. 4. Neurodynamic Symbol Transition Matrices for Easy (A) and Hard (B) Problems. Ran-
domization of the combined data destroyed the structure (C). 

The dimensionalities of the data streams were estimated by the Hurst exponent, 
where an exponent of 0.5 indicates a random process while an exponent between 0.5 
and 1 indicates a persistent process, i.e. an upward or downward trend is likely to 
continue. The Hurst exponents for the data stream in Figures 4A and 4B were 0.88 
and 0.67 respectively suggesting the NS data streams for these tasks have a fractal 
structure; i.e. a process somewhere between deterministic and random. As expected, 
randomizing the data stream reduced the Hurst exponent to 0.47.  

4 Analysis 

4.1 Development of a Symbol Taxonomy for Transitions 

To extend the transition matrix representation, a taxonomy was applied to the major 
transitions in Fig. 4, focusing on the symbol transitions that were most heavily-used 
by the team while accomplishing both the “easy” and the “hard” tasks. The goal was 
to develop a taxonomy based on the distributions of EEG-E by different members of 
the team (Table 1); the motivation for this scheme was based on general principles 
from leadership development discussed later. The move from 25 EEG symbols to five 
underlying and descriptive and characterized states for the team – using the term 
“states” in the Markovian sense – is key, and the five Markov states (Dominant, Dya-
dic, Collegiate, Outlier, Dormant) are used subsequently. The outstanding questions, 
covered next, are how we can maximize the information yield of the data under this 
model, and whether the five states are necessary and sufficient.  
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Table 1. Taxonomy based on the distributions of EEG-E 

Evolution Symbol Name Characterization 
Easy 5 Dominant One person with high engagement; the rest follow 

with uniformly lower engagement. 
Easy 7 Dyadic One small clique with high engagement; the rest 

follow with uniformly lower engagement. 
Easy 15 Outlier One small clique with distinctively low engagement; 

the rest with much higher engagement. 
Easy 23 Collegiate Uniformly high and approximately equal engagement 
Easy 25 Outlier Ibid 
Hard 1 Dominant Ibid 
Hard 11 Outlier Ibid 
Hard 21 Outlier Ibid 
All 2,3,4 Dormant Uniformly low and approximately equal engagement 

4.2 Data Aggregation 

In both the easy and hard cases, 25x25 transition frequency matrices – the numerical, 
and accurate, counterpart of a colored phase transition diagram – were generated. 
Each symbol was assigned to a state in the taxonomy, and then the frequency transi-
tion counts for each state were aggregated. The resulting state transition tables were: 

Table 2. Aggregated transition counts,“easy” case, row-column order 

COL DOM DOR DYA OUT 
COL 57 34 9 46 60 
DOM 22 91 31 85 94 
DOR 11 44 28 29 31 
DYA 53 80 41 113 102 
OUT 63 74 33 117 155 

Table 3. Aggregated transition counts, “hard” case, row-column order 

COL DOM DOR DYA OUT 
COL 23 18 2 30 28 
DOM 20 127 66 118 99 
DOR 7 81 60 39 44 
DYA 24 123 53 140 86 
OUT 27 81 50 99 125 

 
Aggregating counts in this way allows us to use the theoretical maximum informa-

tion rate from the available data. Moreover, as we apply the taxonomy in part 4.1 to 
all 25 symbols, we observe that this taxonomy is necessary and sufficient to cover all 
symbols. There are no symbols that do not “fit”, but if any one of the five states is 
removed from the taxonomy, this ceases to be the case. 
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4.3 The Markov Model 

A Markov model offers the advantages of simplicity, practical and immediate usabili-
ty by workplace managers, and a well-developed body of knowledge and understand-
ing derived from uses in math, engineering and other areas of the life sciences [4]. 
Such a model posits a number of underlying states of a system and a collection of 
probabilities of transition from any state to any other, including itself. We can now 
take the state transition counts, convert these to probabilities and then map them into 
the following model for group and team operation and evolution (Fig. 5 and 6). 

 

Fig. 5. Model for the “easy” case 

 

Fig. 6. Model for the “hard” case 
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Some preliminary observations about the dynamics of the subject team can be 
made from these models:  

1. In the “easy” task, the team almost never transits from Collegiate to Dormant or 
Dormant to Collegiate. Therefore and if for example it should be undesirable for a 
team ever to be Dormant, with this dataset the safest state to try to engineer in a 
team would be Collegiate. 

2. In the “hard” task, the bidirectional low-probability transition between Collegiate 
and Dormant is further accentuated, and simply never occurs. Thus this latent “for-
bidden” transition seems to be fundamental and is accentuated as the job becomes 
more demanding. 

3. Although the team was forcibly started in the Dominant state by being instructed to 
select a leader, it does not remain in this state. In both the “easy” and “hard” tasks, 
Dyadic is slightly more stable state than Dominant. In the “hard” task, the hierar-
chical relationship between Dyadic and Dominant states is preserved, but Dorman-
cy increases (perhaps owing to being “stumped” more often), Outlier behaviors  
reduce somewhat and Collegiate behavior drops significantly. 

4. Outlier and Dyadic have a close relationship in the “easy” task, as do Dyadic and 
Dominant in the “hard” task. With clique leadership, minorities are often lost, 
dropping their engagement; and one overall leader still emerges frequently. 

Now that we know the model is necessary and sufficient, and that it explains the ob-
servations, the remaining question is whether it has predictive value.  

5 Discussion 

The proposed taxonomy is also satisfying and robust from the standpoint of some 20 
years’ experience with team development in industry. We are all familiar with the 
“Dominant”, one-leader team dynamic for example, as we are with leadership cliques 
in a “Dyadic” state; wholly engaged and disengaged teams in the Collegiate and 
Dormant states; and breakaway or disaffected minorities in the “Outlier” state. Exam-
ples of high-probability state transitions familiar to the experienced leader include the 
tendency of leadership cliques to disaffect some team members who feel ignored, and 
the rarity of truly collegiate and leaderless behavior. The model also applies well to an 
earlier study done on a large automotive company in which a rapid transition from 
Dominant to Outlier dynamics, which then became recursive, closed a manufacturing 
plant for two days at a cost of around $5M [4].  

The model can also be shown to have predictive value, in that the same model was 
then applied to data from a previous experiment with submarine crews [3] and found 
to fit. Many of the same properties of team dynamics were verified with this data, and 
some new features applicable to submarine crews were also found.  

We now also see the fusion offered by this new taxonomy between linear and non-
linear dynamics. This is especially useful in the mid-range organizational scale and  
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apertures of observation favored by workplace managers in which the effects of li-
near, gestalt emergent behaviors and non-linear, non-gestalt behaviors in work teams 
become equally important.  

The science and the brain itself are telling us that we need to model two gestalt 
states and three non-gestalt states. The gestalt, whole-of-team states are Collegiate 
and Dormant; in these states, the team can indeed be lumped together and considered 
as one, as older models assume for all states. The Dominant, Dyadic and Outlier states 
however are non-gestalt states, in which the granularity and fine structure of the team 
must be taken into account. The modern manager can simply use the five states as a 
model, confident that both linear and non-linear events are catered for. 

The new model has immediate application in government and industry for practical 
managers at the line, middle, senior and top levels. Previous models of team evolution 
often do not match well with real-world observation, and are synthetic rather than 
analytic. An analytic model permits diagnosis and correction. Managers can readily 
spot whether a team is in a Dominant, Dyadic, Collegiate, Outlier or Dormant state 
and can be fairly confident of the likely futures, allowing good decisions to be made 
quickly. Passive observation of synthetic models offers no such call to action. 

The model also lends itself well to recruitment, team-based interventions that have 
a measurable effect on productivity, change management and – perhaps most impor-
tantly – to the promotion of good and simplifying science in industry. 
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Abstract. Cyber security is critical for any modern day organization’s opera-
tions. Organizational structure and reward policies not conducive for teamwork 
may be affecting the performance of cyber defense analysts. Past research 
shows that team interaction could lead to better cyber defense performance. 
However, the value of team work in the cyber defense context has not been 
demonstrated using empirical methodologies. To explore this, we conducted a 
study on the effects of teamwork versus group work (i.e., looking at both the 
team and individual levels) on signal detection performance of cyber security 
defense analysts using the synthetic task environment called CyberCog. The re-
sults from the preliminary analysis conducted reveal that simply encouraging 
analysts to work as a team and providing team-level rewards leads to better 
team performance in cyber defense analysis. 

Keywords: Cyber Defense Performance, Team Cognition, Team Performance, 
Synthetic Task Environment, CyberCog. 

1 Introduction 

A recent study sponsored by Hewlett Packard [1] has found a 42% increase in the 
number of cyber attacks on organizations in the U.S. alone in 2012. To counter this 
growing number of cyber attacks, effective cyber defense is essential. Cyber security 
defense involves protecting the computer networks of an organization from any mali-
cious activities such as malware attack and cyber espionage [2]. Personnel defending 
an organization’s computer networks from cyber based attacks are often called cyber 
security defense analysts (or CSD analysts).  

Cyber Defense Analysis. A typical organization contains a large number of compu-
ting systems such as desktop computers, laptops, servers, networking devices, and 
more that produce large amounts of data in the form of system logs, network traffic 
data and sensor data (alerts from intrusion detection systems (IDS)). CSD analysts 
have to monitor and fuse large amounts of data in order to identify patterns that may 
correspond to potential cyber attacks [3][4]. For example, analysts usually start from a 
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suspicious set of intrusion alerts, filter network level data pertinent for those intrusion 
alerts, find associated system level logs, find intelligence reports relating to the situa-
tion, and then using their experience and training analyze the data collected to deci-
pher if their network is being attacked or not. Once the analysts suspect there is an 
ongoing attack, the analysts start collecting data as evidence to support their suspicion 
and to eventually report the findings to higher authorities [2]. Finally, the analyst must 
assess the adversaries’ intentions and capabilities to take the appropriate response. 
These tasks are mostly conducted manually using command level interfaces or  
graphical interfaces. 

Due to cyber attacks evolving at very high speeds [5], this reduces the time availa-
ble to respond to an attack, and adds to analyst’s cognitive overload [6]. The cyber 
defense analysis task involves uncertainty with high information load and requires 
experienced personnel with domain knowledge. Because of this, CSD analysts are 
often placed under extreme time pressure. In some settings they have to process the 
alerts given to them at a pace of one every two minutes. Leading to further frustra-
tions, alerts generated from current IDSs are often false alarms and thus the onus is on 
the analysts to distinguish the alerts that correspond to an attack from false alarms. 
Thus, a combination of factors that include overwhelming amounts of data, numerous 
false alarms, and time stress leads to cognitive overload in cyber defense analysts [6]. 

With cyber defense analysis being a complex task, it is sometimes performed by 
CSD analysts as a large group, with each analyst working on different levels of the 
task with specific domain knowledge and experience. However, simply bringing a 
group of people together to work on a task would not suffice. To work on such com-
plex tasks we need actual teams of CSD analysts. What often occurs with CSD ana-
lyst teams is a loose association among individuals, rather than a functioning team [6]. 
For our definition, a team is a type of a group in which members of the team have 
diverse backgrounds, but work together in an interdependent manner towards a com-
mon goal [7]. Team cognition, which is defined as cognitive processes such as deci-
sion-making and learning, occurs at the team level [8] and has a significant effect on 
team performance [9][10]. Cooke and colleagues [9] proposed a theory of Interactive 
Team Cognition (ITC) which is a recent perspective on team cognition which states 
that team cognition emerges from team interactions. This is contrasting to the earlier 
theory of shared team cognition [10] which states that team cognition is the sum of 
the knowledge of individual team members. ITC does not however dispute the impor-
tance of individual knowledge for effective performance, but argues instead that team 
cognition is not solely tied to the knowledge of the individual members of the team. 

As aforementioned, CSD analyst groups have been observed to lack teamwork [6]. 
We hypothesize that existing organizational structure and reward policies could be 
one of the possible factors inhibiting teamwork and team interaction, in addition to 
the many other factors such as information overload and uncertainty. However, CSD 
analysts are often recognized and rewarded based on the attacks he/she has detected 
and processed. Therefore a notion of “knowledge is power” (and arguably within this 
case “knowledge is money”) is prevalent in this domain, which prevents analysts from  
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sharing information and knowledge with other analysts leading to minimal collabora-
tion and communication among analysts. Such a disconnection between analysts 
might have an adverse effect on the performance of them. 

Even though we have hypothesized that teamwork is lacking within CSD analyst 
groups, there is some preliminary evidence from an observational study conducted by 
Jariwala and colleagues [11] that team work could lead to better performance in cyber 
defense analysis. However there is a lack of experimental evidence to validate the 
effectiveness of team work in the cyber defense context. Therefore, in the present  
lab-based study, we manipulated the effect of teamwork versus group work (control 
condition) on the performance of cyber defense analysts by priming participants in the 
teamwork condition with team level rewards that motivate them to work as a team 
versus priming participants in the group work condition to compete with other  
analysts for individual rewards. 

2 Method 

In this study, we are testing the hypothesis that having reward structures which are 
conducive to team work in CSD analyst groups performing triage level analysis will 
lead to higher signal detection performance. To test the hypothesis, we conducted a 
team-based cyber defense analysis experiment. The participants in the experiment 
used a synthetic task environment [12] called CyberCog [13] to perform the tasks of a 
cyber defense analyst. Synthetic task environments  are simulation environments built 
to recreate the real world tasks and cognitive aspects of the task with highest fidelity 
possible, giving less focus towards the appearance of the real world environment [13].  

2.1 Simulation Environment 

CyberCog is a three-person synthetic task environment that simulates the triage 
process in cyber defense analysis. The CyberCog system presents a simulated set of 
network and system security alerts which participants have to categorize as either a 
benign or suspicious alert based on the analysis they conduct using other simulated 
information sources such as network and system activity logs, a user database, a secu-
rity news website, and a vulnerability database. Figure 1 is a screen capture of the 
CyberCog system where the alerts are presented to the participants. Simulated intru-
sion alerts used in the system are of 15 different types constructed based on real world 
intrusion alert types such as alert for malware attack, suspicious email messages, and 
so forth. However, the alerts used in this system were simplified versions of their real 
world counterparts to make them understandable for our experimental participants 
who are not familiar with the domain or the task. Simplified does not imply that the 
alerts are easy to analyze but simply means that they are presented in a form that is 
free from technical jargon.  

Within the task, participants were trained in depth on 5 of the 15 total alert types. 
Participants must analyze each alert to decide whether it is a suspicious or a benign  
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alert by first looking at the corresponding log of the activity that caused the alert. 
Based on the alert type, the participants also have to leverage more information 
sources such as employee database or website for further analysis. Some of the alert 
types are comparatively easier to analyze because they only involve verifying that the 
user who performed the activity has the authorization to do it or not. Other alerts are 
more difficult to analyze involving analyzing the source IP address, making judg-
ments on whether sensitive data was transferred, or fusing multiple data to make deci-
sions. However care was taken to make sure that each participant was trained on an 
equal number of difficult and easy alert types. If a participant was unable to complete 
an alert due to lack of training or another participant indicated that they were able to 
solve an alert, the alert could be easily “shared” between the participants.  

In summation, the CyberCog system recreates the different aspect of the triage 
analysis task as it is performed in the real world but in a controlled fashion.  

 

Fig. 1. Screen capture of the web page presenting intrusion alerts in mission 1 

2.2 Procedure 

Twenty teams comprised of three participants were recruited from the university sub-
ject pool to work as CSD analyst teams in the study. 32 were male and 28 were fe-
male and gender composition varied across teams. The participants were either given 
three course credits and a sum of $10 for their participation in the experiment, or four 
course credits based on participant choice. Participants provided informed consent 
and were assigned to one of the two conditions: teamwork or group work. The  
participants were then provided the necessary training for performing the tasks in the 
experiment. Training was identical between teamwork and group work conditions.  

Training. In training, the participants were first given an overview of the cyber 
domain using a recorded video presentation. They were then provided training to  
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perform cyber defense analysis tasks using the CyberCog system. They were provided 
training to be a specialist on analyzing five of the fifteen types of intrusion alerts used 
in CyberCog system. Each participant received unique individualized training on the 
five alert types that they were assigned. The training consisted of two sections: A 
reading section in which the participants would read power point presentation that 
described how to analyze each type of alert that they were assigned. There was also a 
hands-on practice section on actually analyzing an example alert of that type.  

Experimental Missions. After the training, the participants performed three mis-
sions: one practice and two main missions. Practice and the main missions differed by 
the number of alerts and the time available to complete the mission. In the practice 
mission, each participant was presented with fifteen alerts and was given fifteen  
minutes to analyze and classify those alerts. During the two main missions, each par-
ticipant was presented with seventy-five alerts and was given thirty minutes to ana-
lyze and classify those alerts. This meant the participants had to analyze two alerts 
every minute during the main missions. Thirty minutes was chosen as duration for the 
main mission to simulate the time crunch and overload that is experienced by an ana-
lyst in the real world. The missions were carefully constructed so that each participant 
would receive an equal number of suspicious and benign alerts to analyze. The mis-
sions were also constructed such that each participant would receive a mix of alerts 
for which the participant received training and alerts for which the participant did not 
receive any training. During the mission, the participants can either choose to transfer 
unfamiliar alerts to other members of the team for analysis or learn to analyze those 
alerts themselves using the lookup system which provided a textual description of the 
analysis procedure. 

During each experiment session, two teams performed the same task in parallel 
under the same experimental condition. In the team-work condition, the participants 
were encouraged to work as a team to classify as many alerts as accurately as possi-
ble. They were informed that they would be scored as a team (the running scores were 
presented on a common screen throughout the experimental session) and that all the 
members of the better of the two teams during that session will receive a reward (i.e., 
a snack bag). In the group work condition, the participants were instructed to work 
individually to classify as many alerts, as accurately possible. They were informed 
that they would be scored individually and that the best of the six participants (two 
groups of three participants) during that session would receive a reward. The entire 
experiment session lasted approx. four hours, which included break time between the 
missions.  

Measures. We collected a variety of data and measures from the experiment. Our 
primary measure of team performance was based on the Signal Detection Theory 
[14]. For the alerts analyzed the number of hits (number of suspicious alerts the team 
classified as suspicious), misses (number of suspicious alerts the team classified as 
benign), false positives (number of benign alerts the team classified as suspicious), 
and correct rejections (number of benign alerts the team classified as benign) were  
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One might think that putting the extra effort to communicate and collaborate with 
other team members for analyzing an alert is not essential when one can learn to ana-
lyze it by themselves. But as we see from the results that the analysts can achieve 
higher performance by simply collaborating with other analysts to leverage each  
other’s unique expertise and knowledge to analyze alerts that are novel and non-
intuitive to them. Putting the extra effort to analyze all alerts may be detrimental to 
their performance.  

Response biases were calculated to determine if either condition was more inclined 
to say yes/no in one direction or the other. Both teams and individual groups were 
more likely to respond with ‘no’, which given the level of signal to noise is a good 
indication. We had included noise at five times the level of signal. It becomes inter-
esting to think that teams were less likely to say ‘no’ than individual groups but still 
were able to outperform the individual groups. There are any number of speculative 
reasons: sharing information more readily among the team members, participants 
were more willing to ask for help since there was no singular incentive, or even the 
commonality that the team is ‘in it together’. Only further investigations could help 
resolve this presented quandary.  

Lastly, the biggest challenge we faced while designing an experiment for studying 
team cognition in cyber defense has been in building a synthetic task environment 
with the task and missions that is at the right level of difficulty for the student partici-
pants who are not familiar with domain. The task and the missions either get too  
difficult to understand or so easy that it nullifies external validity of the simulation. 
However, with the completion of this study we have arrived at a juncture where we 
have a system that is close to the level we desire. Future work should address this 
challenge by improving the mission data, task, and also by adding more missions to 
the STE. Future work should also be investigating more specific cognitive biases that 
affect team performance in cyber defense analysis. 
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1 Introduction 

Many of today’s most complicated systems are human-machine systems that involve 
extensive advanced technology and a team of highly trained operators. As these hu-
man-machine systems are so complex, it is important to understand the factors that 
influence operator performance, operator state (e.g., overloaded, underload, stress) 
and the types of errors that operators make. Thus, it is desirable to develop an experi-
mental methodology for studying complex systems that involve team operations. This 
paper looks at Nuclear Power Plant (NPP) operations as a test case for building this 
methodology. The methodology will reference some aspects/details specific to NPPs, 
but the general principles are intended to extend to any complex system that involves 
team operations. 
 
Nuclear Power Plant Operations 
NPPs are composed of complex systems that are controlled via a Human System Inter-
face (HSI) located in the Main Control Room (MCR). A minimum of three operators 
are required to manage and maintain a single nuclear reactor. Two individuals serve as 
Reactor Operators (RO) and the third is the Senior Reactor Operator (SRO). The types 
of tasks performed by operators have been classified differently over the years. O'Hara 
and his colleagues (2008; 2010) spent much time observing the roles of the operators 
in a NPP and suggest four categories of tasks: Monitoring and Detection, Situational 
Assessment, Response Planning, and Response Implementation. Monitoring requires 
checking the plant to determine whether it is functioning properly by verifying parame-
ters indicated on the control panels (Figure 1), observing the readings displayed on 
screens, and obtaining verbal reports from other personnel. Detection occurs when the 
operator recognizes that the state of the plant has changed. Situational assessment tasks 
consist of evaluating current states of NPP systems to determine whether they are  
within required parameters. Response planning tasks consist of deciding on a plan to 
diagnose and perform appropriate actions when an event occurs. In NPPs, response 
planning is largely guided by standardized procedures. The procedures used during 
accident scenarios, and utilized in the present project, are symptom-based procedures 
called Emergency Operating Procedures (EOPs). Response implementation tasks con-
sist of performing actions required by response planning (i.e. as directed by the EOP). 
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adheres to the principal of different but equal; the populations, EOPs, and control 
panels are different, but they are different in such a way that is controlled and induces 
the same level of task demand that would be experienced by each population.  

The long-term objective for this work is to examine challenges related to the im-
pact of technology upgrades, automation of tasks, and digital interfaces on the human 
operators. However, in order to answer those questions, the first step is to begin with 
exploring the effect that task type has on the workload within each operator role. That 
is the context within which the below methodology was developed.  
 
Choosing the operating sequence 
To reiterate, EOPs are the procedures that operators follow when certain symptoms 
are present in the plant. These procedures prescribe the type and order of actions that 
the operating crew takes. For example, if the plant automatically shuts down, opera-
tors would enter a procedure called E-0 that would lead them through actions that will 
diagnose the cause of the shutdown and provide the necessary actions to return the 
plant to a known safe state. In other domains, where procedures may not be used or 
not used in the same regimented way, the equivalent may be the event or scenario 
participants will face (e.g., a hurricane in disaster planning domain). The equivalent is 
whatever dictates the actions taken by participants. In this case, as the EOP chosen 
will literally dictate our participants’ actions, we are equating EOP with scenario. 

Four criteria were established for selecting EOPs best suited for a non-operator 
sample.  

1. Select an EOP that best resembles the typical task flow that operators most com-
monly face.  

A subject matter expert (SME) identified a limited number of frequently used EOPs. 
A task analysis is being conducted based upon the SME mapping for side-by-side 
comparison across EOPs. From this mapping, we, along with a SME in NPP opera-
tions, will attempt to discern characteristics of a typical task flow. The reason for this 
criterion is to preserve the fidelity of the task environment by maintaining the typical 
task flow experienced in a real NPP. Primarily, we want to avoid scenarios that in-
clude atypical tasks or order of events as it makes the results less generalizable to 
other scenarios. 

2. Select an EOP that allows the investigation of all roles on the team. 

The reason for this criterion was to allow for the assessment of phenomena as relevant 
to the ROs and the SRO separately, as their primary responsibilities are different. 
During an EOP, the SRO guides the ROs through symptom-based procedures to iden-
tify the events or causes of system alarms, while the ROs interact with control panels 
to perform actions to alter the state of the NPP. We are interested in understanding the 
workload associated with different tasks within each role on the team. 

3. Select an EOP that requires participants to perform an equal or known ratio of  
the task types being investigated (e.g., monitoring and detection, and response  
implementation).  
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hours, according to an operations SME, it is not uncommon to see 30-45 minute  
scenarios especially in initial licensing training. Thus, we thought this a reasonable 
and realistic starting point for scenario length. Obviously, due to extensive training 
and frequent practice, experts are able to perform actions more efficiently and effec-
tively and, thus, can do more in less time. We kept have a realism associated with 
both the type of tasks and duration of work in this study in an attempt to induce simi-
lar levels of taskload experienced by operators. 

We feel the criteria and simplifications described above, although tailored to the 
NPP domain, can be used as a starting point for developing experimental methodolo-
gy for studying complex systems with team operations in other domains. 
 
Selecting Measures 
The final stage in the process of developing methodology is selecting measures that 
allow us to understand performance, determine error types, and understand the state 
of operators (stressed, overloaded, alert, etc.) while interfacing with complex systems. 
Performance can be measured in terms of response time, accuracy of actions, and 
detection of changes. Errors can be categorized along dimensions of slips, lapses, 
violations, and mistakes. In the NPP context, workload measurement is likely to be 
important for understanding performance and errors. This assumption is based upon 
the distinctiveness of the four primary tasks performed by operators. It may be that 
workload will vary with task type. However, assessing mental workload changes, in 
this context, may be challenging. No workload measure exists that has been validated 
in an NPP setting and many subjective assessments interrupt the task or are post-hoc. 
Interrupting the task changes the overall flow of events and perhaps even the demand 
requirements of the operators. Questionnaire administration in the middle of a scena-
rio might either hinder operator performance and increase error when the task is re-
sumed or the opposite could occur because a “break” allows the operator to reflect on 
the scenario event thus far. In comparison, a post-hoc measure might not be sensitive 
to the dynamic changes occurring in the NPP. The use of physiological metrics assist 
in circumventing these challenges.  

There are many benefits to using physiological metrics as an assessment of mental 
workload. Most importantly, physiological metrics provide objective and continuous 
monitoring of the participant’s cognitive and physical state (Reinerman-Jones, Cosen-
zo, & Nicholson, 2010). Several physiological measures are being considered for 
inclusion in our NPP test case. Electroencephalography (EEG) measures neural activi-
ty and is sensitive to changes in mental workload (Figure 4). EEG allows for the con-
tinuous monitoring of brain activity without interfering with the primary task (Brook-
ings, Wilson, & Swain, 1996).  

Transcranial Doppler (TCD) sonography monitors cerebral blood flow velocity 
(CBFV) in intracranial arteries and has been commonly used in vigilance studies 
showing a decrease in CBFV paralleled by decreased performance for sustained atten-
tion of highly demanding tasks (Reinerman-Jones, Matthews, Langheim, & Warm, 
2010). Vigilance is the detection of infrequent signals amidst non-signals or noise. 
Much of the operators’ responsibility fits the criteria of a vigilance task. Functional 
Near Infra-Red (fNIR) imaging monitors hemodynamic changes in oxygenated he-
moglobin and deoxygenated hemoglobin in the prefrontal cortex (Ayaz et al., 2011).  
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Fig. 4. An ABM x10 EEG/ECG system worn by a participant 

A study by Ayaz et al. (2010) showed that blood oxygenation increases are associated 
with increasing task difficulty. Electrocardiography (ECG) measures cardiac activity. 
Heart rate, heart rate variability, and inter-beat interval have been associated with 
mental workload (Jorna, 1993; Kramer, 1991; Roscoe, 1992, 1993; Veltman & Gail-
lard, 1996; Wilson, Fullenkamp, & Davis, 1994). Eye tracking measures ocular  
behavior and can provide insight into task difficulty by providing scan and fixation 
patterns (Reinerman-Jones, Cosenzo, & Nicholson, 2010). 

Awareness of the many possible measures of performance, errors, and states along 
with understanding the scope and limitations of the operating environment (i.e. simu-
lator capabilities/limitations, physical space, the modified EOPs, required team inte-
raction, and the required actions) enables selecting appropriate assessments.  

3 Conclusions 

The methodology presented in this paper can serve as a foundation for future human 
factors testing in the NPP domain and other domains that involve complex systems 
and team operations. This work will expand understanding of performance in com-
plex systems operations and explain factors, such as new technology or concepts of 
operation, impact on performance. 
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Abstract. Successful submarine operations—those that accomplish the mission 
while maintaining security and safety—depend on numerous factors. Among 
the most critical elements driving success are the effectiveness of team behavior 
and the ability to understand when this behavior breaks down such that this de-
gradation can be mitigated or avoided. While underway, submarine Command-
ers and other leaders must be attuned and alert to potential precursors that may 
manifest in decreased performance. This paper describes a framework used to 
develop performance measures to support formative assessment of team beha-
viors and to examine team breakdown and degradation. Results are reported 
from two events: an observation of an operational exercise and a study at the 
Naval Submarine School concerning the validity and utility of the measures. 
This preliminary research captured essential aspects of performance and helped 
define future efforts to develop better tools for assessing team behavior and un-
derstanding team breakdown in our warfighters. 

Keywords: performance measures, formative assessment, team effectiveness, 
team breakdown, submarine. 

1 Introduction 

Submarine crews are operating in an era of emerging complexity in both peacetime 
and combat operations. Complexity brings with it new, novel, and unpredictable sit-
uations which submarine tactical teams must recognize, adapt, and respond quickly 
and accurately in order to complete the mission or task at hand. The most critical and 
common complex element is that of understanding tactical team dynamics, perfor-
mance, and degradation. Maintaining effective operational team performance during 
prolonged stressful missions is a common challenge faced by the submarine fleet. 
Naval Submarine Medical Research Laboratory (NSMRL) investigated approaches to 
further understand the details and characteristics of tactical teams. 
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Studies over the past three years at NSRML regarding submarine tactical teams 
have discerned team behaviors that are aligned with the unique performance needs of 
submarine warfighters. This research identified and validated five sustainable tactical 
team practices for submarine crews: Dialogue (interaction among crewmembers), 
Critical Thinking (how they solve problems), Use of Bench Strength (how they build 
and utilize all levels of the team), Decision Making (how teams distribute authority to 
make such decisions), and Problem Solving Capacity (an integration of the other four 
practices with additional behaviors that measures the degree of tactical complexity 
that the team can absorb successfully). [1-3]. The five practices are necessary for 
effective team cohesion and dynamics, and ultimately enable a team to achieve opera-
tional resilience. The research method employed a series of workshops (called 
COMPASSSM, described below) to develop tools that capture behaviors that are 
aligned with the five practices. The workshops were attended by scientists, engineers, 
and subject matter experts in the submarine domain. The initial focus of these work-
shops was to develop, for each practice, a set of Performance Indicators (PIs), i.e., 
observable and measurable behaviors which allow an instructor or expert to recognize 
whether a team or individual is performing well or poorly. These PIs were then vali-
dated during a three-day observation of a command training exercise performed by an 
SSGN (cruise missile submarine) crew. The PIs were developed into measurement 
tools that improve the Submarine Force’s ability to assess tactical team behaviors, 
enhance training through formative feedback, and thus promote successful submarine 
operations. 

Secondly, NSMRL, the Naval Undersea Warfare Center Division Newport, Rhode 
Island (NUWC) and National Aeronautics and Space Administration (NASA) are 
proposing to further examine team performance degradation and breakdown of tactic-
al teams during extended missions. While team breakdown is often perceived as a 
sudden event with a dramatic loss of effectiveness, it may, more appropriately, be 
viewed as a gradual or incremental process. Therefore, this research is to conduct a 
set of experiments that measure team performance and determine the relationship (if 
any) that exists between that performance and a number of variables which may or 
may not contribute to team performance degradation and, eventually, breakdown. By 
fully capturing submarine tactical team behaviors and thoroughly understanding the 
details and specifics of how and when a team breaks down, the Submarine Force will 
be more capable of resilient action as they encounter increasingly complex combat 
operations.  

2 Measures of Resilient Submarine Tactical Team Behavior 

2.1 Overview and Development Process 

Prior work performed by NSMRL has identified five team practices that are integral 
to promoting resilient submarine team operations [1-3]. They focus on interaction 
among crewmembers (Dialogue), how they work together to solve problems (Critical 
Thinking), how they build and utilize all levels of the team (Use of Bench Strength), 
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how the authority to make decisions is distributed among the team (Decision  
Making), and the degree of tactical complexity that the team can successfully absorb 
(Problem Solving Capacity). Aptima, Inc.’s COMPASSSM workshop process was 
employed to identify observable and measurable behaviors that were aligned with 
these five practices. These behaviors will be used for assessment and as a provision of 
formative feedback. Initial data collection opportunities validated the initial products 
of the workshops which included Likert scales, checklists, and narrative descriptions 
of behavior.  

Aptima, Inc.’s COMPASSSM workshop process is a systematic method for identi-
fying essential knowledge and skills and then identifying observable behaviors that 
provide evidence of that knowledge and those skills at varying levels of expertise. 
The goal of COMPASS is to develop meaningful and reliable measures that are sensi-
tive to variability in performance and are validated by their relationship to mission 
outcomes [4]. It does this by combining performance and psychometric theory with 
extensive subject matter expert input. This input is critical to developing metrics that 
are firmly tied to the operational domain, are clearly expressed in operationally-
relevant terms, and reflect performance at multiple levels within the tactical team (i.e., 
individual operators, departments, leadership). Leveraging psychometric theory en-
sures that the resulting measures are reliable, valid, and sensitive to changes in per-
formance (across crewmembers and across time), and that they provide meaningful 
and diagnostic feedback for post-exercise debriefing. COMPASS has been applied to 
many complex organizations across the military. In the submarine domain, measures 
have been developed for routine operations such as coming to periscope depth and 
weapons employment, while more recent efforts have focused on more interpretive 
assessments of topics such as Command Team decision making [5]. 

At the conclusion of the first workshop, approximately 75+ PIs were identified 
during a thorough discussion of the observable behaviors that an expert observer 
would expect to see during the course of four representative submarine missions: 
Intelligence, Surveillance, and Reconnaissance at Periscope Depth, Anti-Submarine 
Warfare, Strike missions, and Routine Transit. The PIs were continually condensed 
and refined, and the long list was culled to a much smaller subset of “high-level” PIs 
that adequately covered the main categories of behavior that were represented. 
Throughout this process, the PIs were cross-checked with the five practices to ensure 
that they were aligned with the initial framework. With a reduced set of high-level 
PIs, the research team then turned to data collection opportunities to begin validating 
the products of the workshops thus far. 

2.2 SSGN Command Training Exercise Observation 

In spring of 2012, data were collected during a three-day observation of an SSGN 
(cruise missile submarine) command training exercise at the Trident Training Facility 
in Bangor, Washington. The research team divided into two groups of three observers  
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each, both with a mix of submarine domain and performance measurement experts. 
Each day was divided into morning and afternoon sessions (eight hours each), with a 
scheduled two-hour overlap to meet as a group and discuss findings. Each team of 
three remained on either the morning or afternoon watch for the duration of the multi-
day event. During each session, a single person was assigned to a specific practice, 
and asked to focus on the PIs associated with that Practice. The PI assignments  
were balanced across the teams and across the days to maximize the amount of data 
collected for each. All notes were unclassified, and the observers were free to use  
the previously-developed data-collection sheets in any manner that they considered 
most useful. 

From these data come a number of preliminary findings. The PIs can be developed 
agnostic of mission, and in fact, they were determined to be nearly agnostic of prior 
technical knowledge of submarine operations. Even those who were not experienced 
submariners could pick up on many of the identified behaviors that mark both  
resilient and brittle teams1. The SSGN crew was comprised of three different Watch 
Sections, i.e., intact teams which are on duty for six hours at a time. In this case, the 
different Watch Sections provided an excellent opportunity to witness a range of brit-
tle and resilient team behaviors. The abilities of each section seemed to align nicely 
with this spectrum, and provided first-hand examples of contrasting events that will 
inform future development of the PIs. The research team determined that there were 
no “missing” practices, and in fact, some of the five practices (such as Problem Solv-
ing Capacity and Decision Making) began to lend themselves to much more richness 
than previously thought. 

With the data that were collected, preliminary analyses were performed that ex-
amined the frequency with which each PI was observed. Figure 1 shows the total 
number of observations of each high-level PI summed across all observers and all 
days of observation. By far, the most frequently observed high-level PI was “Deci-
sion-makers use briefs to build shared understanding.” This is not surprising consider-
ing that it is an easily observable act that requires someone to communicate verbally 
with individual or multiple crewmembers. Although all of the high-level PIs focus on 
observable behaviors, some were more salient than others. For example, discussion 
and crew engagement can be seen during an exercise, while changes to watch team 
configuration manifest more slowly and need to be assessed over a longer period of 
time. Furthermore, some PIs are not frequently observed because they rely on infre-
quent opportunities to observe them (i.e., the exercise may or may not achieve the 
necessary conditions for activating a tripwire or pre-planned response.) 

                                                           
1  Submarine Operational Resilience is a team’s capacity to recognize, deep within the com-

mand structure, developing danger and opportunity under ambiguous and uncertain condi-
tions. It is a team achievement, requiring conscious and purposeful practices and behaviors. 
Once a danger or opportunity is recognized, resilient teams are able to adapt and respond in 
ways that are safe in operations, and bold in war. 
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2.3 Current State 

Following the command training exercise observation, the research team continued to 
speak with additional experts in the submarine domain to explore ways in which the 
measures of tactical team behavior could be tailored to meet the needs of its future 
users. Through these conversations, it became clear that the comprehensive set of 
measures that were being developed would not be easily integrated into the existing 
tools and systems that are currently employed by the Fleet to train and evaluate the 
performance of its warfighters. One key suggestion was to summarize the set of 
measures so that it could be printed on paper and quickly reviewed by instructors, 
Commanders, and other leaders to guide their assessments and enable more formative 
feedback. Therefore the measures were adapted into one-page narrative descriptions 
of behavior, also referred to as “Team Behavior Maps,” that would be much easier to 
use in this manner. 

Each of the five practices (Dialogue, Critical Thinking, Use of Bench Strength, 
Decision Making, and Problem-Solving Capacity) has its own one-page Team Beha-
vior Map. To develop each of them, the PIs and performance measures for each  
practice were distilled into a set of observable behaviors that were placed along a 
continuum of “brittle,” “average,” and “resilient” behavior. This continuum was di-
vided into five distinct levels of performance that map to this range, and the behaviors 
were binned into one of the five categories. Observers are then able to assess where a 
team exists along this continuum of performance by matching observed behaviors to 
those in each category along the Team Behavior Map scale. 

3 Team Performance Degradation and Breakdown 

As mentioned earlier, maintaining effective operational team performance during 
prolonged stressful missions is a common challenge faced by the submarine fleet. 
While the behavior maps place the teams on a brittle-resilience scale, the ability to 
assess the change in team performance during increasing stress (complexity) is also 
necessary. Teams will eventually fail to accomplish their tasking, but such breakdown 
is preceded by other observable behavior changes. This team degradation and break-
down can be seen during observations of tactical submarine teams when the difficulty 
of the mission overwhelms their capacity to absorb the complexity. But while team 
breakdown is often perceived as a sudden event with a dramatic loss of effectiveness, 
this decrease in performance may in fact be a gradual or incremental process that is 
presently undetectable. By understanding the specific precursors prior to breakdown, 
the Submarine Force will be able to design technology and training that more effec-
tively detects and mitigates its impact. 

One approach to building an understanding of team degradation and breakdown is 
to continue gathering data while observing training and at-sea exercises. In addition, 
NSMRL, in collaboration with NUWCDIVNPT and NASA, propose a series of expe-
riments that will continuously measure team performance while collecting several 
dependent variables (physiological and behavioral) that are identified as potential 
early indicators of breakdown. Assessing these variables before and during the  
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experiment will illustrate when and what variables contribute to team degradation. 
Another component of this work will research the factors that predict continued  
effective team performance during prolonged stress. For example, the theoretical 
underpinnings of this resilience; personality types that are most robust in these envi-
ronments; the psychological effects of these conditions; crew selection techniques for 
mitigating breakdown; and, training to build team resilience. Finally, this research 
aims to gain firm understanding of how a team recovers effective functioning after a 
breakdown. 

A notable factor in studying these types of teams is the flexibility by which they 
replace losses and augment the team during or after the stressful event; this concept of 
utilizing reserve capacity is reflected in the practice “Use of Bench Strength,” dis-
cussed earlier. Although the mission can be accomplished with added support, the 
original, remaining team must continue functioning and ultimately recover from the 
breakdown. While stressor types vary between the missions and organizations, vary-
ing stress levels should induce team performance degradation or breakdown regard-
less of the specific mission or organization that is involved. Studying this process 
requires three critical elements; preliminary data collection, a set of metrics that illu-
minate precursors to the breakdown, and an operationally realistic environment where 
the team can perform for days or weeks at a time. Figure 3 below shows two studies 
that are needed to initially address the team questions that are posed. 

 

 

Fig. 3. A sample measure that assesses how a team builds an operational picture and how this 
assessment may correlate to the proactive transfer of information 

In both studies the researchers will collect preliminary data on personality traits 
(e.g., Myers Briggs); emotional intelligence (e.g., MSCEIT, Daniel Goleman); perfor-
mance predictors (e.g., Intelligence Measures); and demographics. The researchers 
plan to correlate these data with team performance degradation and breakdown as 
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measured through various tools: observer-based measurements (e.g., the measures of 
Resilient Submarine Tactical Team Behavior), physiological measures (e.g., M-
waves), psychological measures (e.g., Mood, Morale, Interpersonal Relations),  
Electroencephalogram (EEG) monitors, Sociometric Badges (described below), and 
behavior tracking software. Some of these tools are being used in ongoing research 
efforts which are examining the behavioral, physiological, and neurological factors that 
enable a more nuanced assessment of team performance than is currently available.  

Several of these ongoing studies provide both insight and techniques for the expe-
rimentation that is proposed. For example, the measures of resilient submarine tactical 
team behavior discussed above potentially provide a sensitive mechanism through 
which to assess incremental team degradation. Another study with direct relevance is 
a Defense Advanced Research Projects Agency (DARPA) program with the Universi-
ty of California, Los Angeles (UCLA), Submarine Learning Center (SLC), and 
NSMRL to wirelessly monitor EEG signals from six submarine team members per-
forming a navigational task. The signals are then time-correlated and assessed using a 
measure called neurosynchonicity (i.e., a measure of how engaged and collaborative a 
team is at any given time). This measure has been shown to correlate with scenario 
events and has been used to identify differences between the ad hoc and mature  
teams [6]. 

Physiologically, NSMRL has been conducting at-sea tests of circadian rhythm and 
lighting by collecting salivary, melatonin, cortisol and alpha-amylase, which are im-
portant biomarkers of stress. Specific performance methodologies that have been used 
include the Multi-Attribute Task Battery, which incorporates tasks that are analogous 
to activities that aircraft crew members perform in flight, and the Psychomotor Vigil-
ance Task which is a sustained-attention, reaction-timed task that measures the speed 
at which subjects respond to a visual stimulus.  

In addition, NSMRL has the responsibility for testing prospective submariners for 
suitability for submarine service. The test used, SUBSCREEN (an NSMRL-
developed instrument) has been shown to predict losses during the first enlistment. 
The test is currently being reanalyzed to better predict retention losses. If it is effec-
tive, it could possibly become a component of a selection process for effective teams, 
in addition to standardized test like the Myers-Brigg. Psychological measures will 
also be included in this study for use in measuring Mood, Morale, and Interpersonal 
Relations over time. The measures being evaluated during the prolonged stress-
induced task will give an indication of how/when a team potentially breakdown in 
order to provide guidance to our warfighters. 

Manually assessing team interactions can, at best, be resource intensive, and for 
certain team sizes and lengths of time, intractable. Automating such assessments re-
duces the resources required to do so by decreasing both the number of observers that 
are required and the time spent manually coding interactions. By removing these con-
straints, it also increases the amount of data that can be gained because now a group 
of practically any size can be instrumented to collect data over any length of time. 
Sociometric Badges (produced by Sociometric Solutions, Inc. [SSI] and the Massa-
chusetts Institute of Technology [MIT]) are small, unobtrusive pieces of hardware 
that are worn around a person’s neck and employ multiple sensors that collect various 
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types of data as teams of people interact in complex mission environments. The types 
of data that are recorded include artifacts of speech, face-to-face interactions, body 
movements, and the proximity of people with respect to one another. In prior experi-
ments the data were analyzed to assess the ability of the Sociometric Badges to auto-
matically and reliably detect behaviors that correlate to team performance [7].  

Another tool to assist in behavioral observation and coding is the NASA Behavior 
Tracking Software developed by Horizon Performance through a Small Business 
Innovative Research (SBIR) grant. This software, originally designed for the Depart-
ment of Defense and modified for monitoring astronauts, allows users to track and 
code human behavior in real time or post hoc using video. The software allows users 
to timestamp, tag, and rate behaviors as they occur and are observed. These behaviors 
can then be linked to other data sources. The software can also be used to generate 
near real-time reports for use by observers or the individuals being observed. 

4 Discussion and Next Steps 

Team behaviors are crucial to successful submarine operations. If validated, the team 
practice behavior maps would allow for the accurate evaluation of tactical teams' 
behaviors, the precious identification of problem areas, and the targeted delivery of 
formative feedback to communicate, precisely, how a team can improve its resilience. 
Validation will require disparate observers who are using the tools to record similar 
assessments (reliability), descriptions that sufficiently capture the range of behaviors 
that define the team's performance (sensitivity), as well as accurate correlations be-
tween Team Behavior Map rankings and team performance (validity). If the Beha-
vioral Practices are diagnostic of resilient submarine team behavior, then higher 
scores should correlate with successful performance. The Team Behavior Maps will 
be further validated by comparing the assessments of the observers who are using 
them (i.e., members of the research team, Navy personnel and/or contractors). If the 
worksheets are a reliable assessment tool, the individuals’ ratings should be consis-
tent. The Team Behavior Maps will be instrumental in future research efforts, such as 
the proposed experimentation to examine team breakdown and degradation.  

Team breakdown and degradation is often perceived as a sudden event with a  
dramatic loss of effectiveness, however the breakdown of a team may in fact be a 
gradual, observable process. As is typically seen in the submarine domain, effective 
operational team performance is difficult to maintain, especially during prolonged 
stressful missions. By understanding the proposed theoretical underpinnings of the 
effect these missions have on teams—including the personality types that are most 
robust in these environments, the psychological effects of these conditions, crew  
selection techniques for mitigating breakdown, and training to build team resilience—
the Submarine Force will be able to design technology and training that more effec-
tively detects and mitigates their impact. 

Overall, this program of research will assist the Submarine Force as they encounter 
the increasing complexity of combat operations, serve to improve the individual and 
team selection and screening process, and evaluate intact teams for potential vulnerabili-
ties such that they can be trained to be more resilient when faced with these challenges. 
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Abstract. We have modeled neurophysiologic indicators of Engagement and 
Workload to determine the influence the task has on the resulting neurodynamic 
rhythms and organizations of teams.  The tasks included submarine piloting and 
navigation and anti-submarine warfare military simulations, map navigation 
tasks for high school students and business case discussions for entrepreneurial 
/ corporate teams. The team composition varied from two to six persons and all 
teams had teamwork experience with the tasks. For each task condition teams 
developed task-specific neurodynamic rhythms. These task-specific rhythms 
were present during much of the task but could be interrupted by exogenous or 
endogenous disturbances to the team or environment. The effects of these 
disturbances could be rapidly detected by changes in the entropy levels of the 
team neurodynamics symbol streams. These results suggest the possibility of 
performing task-specific comparisons of the rhythms and organizations across 
teams expanding the opportunities for rapid detection of less than successful 
performances and targeted interventions.        

Keywords: team neurodynamics, entropy, coordination dynamics, rhythms. 

1 Introduction 

Teamwork is an important, and most would argue, integral part of all human 
activities. Like most forms of social coordination, teamwork is not simple.  Early 
studies showed that communication is dynamic during social interactions like 
teamwork with cyclic exchanges having both synchronous and lead-lag relationships; 
when repeated these can evolve into shared rhythms and refined speech patterns [1].  
It is now widely appreciated that within the context of coordinated team activity such 
linkages and synchronizations extend beyond speech to include gestural, postural, 
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functional, and physiologic systems [2-4].  It is not surprising that neurophysiologic 
events are the underpinnings of these dynamics yet it is only recently that their 
evolving dynamics in real-world teamwork settings have begun to be modeled [5-9].   

Our work has focused on developing an information and organization-centric 
framework for team neurodynamics that is information centric in the sense that raw 
EEG measures from each team member are combined into symbols showing the 
levels of different cognitive measures of each team member and the team as a whole 
[10, 11]. These neurodynamics symbol streams (NS) are probed for regions 
containing information related to team performance much in the way that words in a 
sentence or the codons in nucleic acids convey information.  Importantly, fluctuations 
in the mix of symbols identify ‘interesting periods’ of team organization and the 
frequency, duration, and magnitude of these fluctuations can be quantified by 
measuring the Shannon entropy of the data stream [12].  

The purpose of this study was to expand a research framework describing 
successful teamwork by focusing on how elements of the task help shape team 
neurodynamics. This perspective could be useful for better understanding team-
related concepts like organization, rhythm, resilience and the effects of  exogeneous 
and endogeneous disturbances to the team, and lead to the development of more 
quantitative approaches for comparing across teams. To test the generality of this 
approach we describe the team neurodynamics of four tasks where the teams were 
experienced with the task and had worked with the other members of the team, i.e. in 
the Phase 4 of Team Development as described by Kozlowski et al [13].   

2 Hypotheses 

The hypotheses for this study were: 

1. Teams develop identifiable task-related neurodynamic rhythms and organizations  
2. These rhythms and organizations are dynamically modified in response to 

endogenous and exogenous disturbances to the task 

3 Methods 

3.1 Tasks and Participants 

Map Navigation Task (N = 15 High School Teams)  
The task was a two-person problem solving / navigation exercise based on the 
Edinburgh Map Task corpus [14]. Two team members sat facing and each had a 
sketch-map with several landmarks on it. The two maps were similar, but not identical 
and they could not see each other’s map.  One person, the instruction giver (Giver or 
G), had a path printed on the map and attempted to verbally guide the other person, 
the instruction follower (Follower or F) in  drawing  that path on the Follower’s map.  
The subjects for this task were fifteen 11th and 12th grade science student teams.  
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Anti-Submarine Warfare Helicopter Teams (N = 3) 
The second task was a training exercise for experienced Anti-Submarine Warfare 
Helicopter Teams (ASWT).  Three crewmembers, the pilot, the sonar operator and the 
tactical officer performed simulated search, track and attack missions in support of 
surface combat groups.  The role of the pilot was to steer the helicopter to the location 
of a submarine sighting and to fly appropriate paths for buoy configuration.  When the 
approximate location was reached the sonar operator directed the three-dimensional 
positioning of the passive and active sonar buoys.  The tactical officer directed the 
overall mission and munitions drop.  There were three teams based out of Orlando, 
FLA and San Diego, CA that each conducted two mission simulations; these teams 
had in-flight crew experience. 

Submarine Piloting and Navigation Teams (N = 21) 
Submarine Piloting and Navigation (SPAN) is a high fidelity simulation where events 
include encounters with approaching ship traffic, the need to avoid shoals, changing 
weather conditions, and instrument failure [15].  Each SPAN session contains three 
segments beginning with a Briefing where the overall goals of the mission are 
presented.  Next, the Scenario is a dynamically evolving task containing both easily 
identified and less well-defined processes of teamwork. The final segment, the 
Debrief is the most structured part with team members reporting on their 
performance.   

Entrepreneurial Teams (N = 6)  
A fourth set of data was collected from teams of experienced / advanced student 
entrepreneurial teams at two international business schools.  The simulations lasted 
~40 minutes and were structured around business case discussions of corporate social 
responsibility concerns [16].  The task segments included: 1) defining the task and 
surfacing pertinent information; 2) prioritizing and discussing issues; 3) developing a 
team consensus about how to proceed; and 4) formalizing the team recommendation.   

3.2 Electroencephalography (EEG) 

The B-Alert® system by Advanced Brain Monitoring, Inc. contains an easily-applied 
wireless EEG system that includes software that identifies and eliminates multiple 
sources of biological and environmental contamination and allows second – by -
second classification of cognitive state changes [17].  The 9-channel wireless headset 
includes sensor site locations: F3, F4, C3, C4, P3, P4, Fz, Cz, POz in a monopolar 
configuration referenced to linked mastoids. B-Alert® software acquires the data and 
quantifies engagement (EEG-E) and mental workload (EEG-WL) in real-time using 
linear and quadratic discriminant function analyses with model-selected PSD 
variables in each of the 1-hz bins from 1 – 40 Hz, ratios of power bins. 
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3.3 Team Neurodynamics 

When combined data from multiple time series (i.e. team members) are treated as 
symbols instead of numeric points it becomes easier to mine them and detect 
interesting patterns. Normalized second-by-second values of EEG-E or EEG-WL 
were concatenated into vectors representing the levels being expressed by each team 
member.  For instance, in Fig.1A team members 1, 3 and 5 were expressing below 
average levels of EEG-E and were assigned values of -1.  Team members 2 and 4 
were expressing average levels of EEG-E and were assigned the value 1, and team 
member six was expressing above level values and was assigned the value 3; the 
vector representation was therefore (-1, 1,-1,1,-1,3).  Using artificial neural networks 
(ANN), the vectors from multiple performances were modeled into collective team 
variables termed neurodynamic symbols of engagement (NS_E) or workload 
(NS_WL). ANN classification of these second-by-second vectors created a symbolic 
state space showing the possible combinations of either EEG-E or EEG-WL across 
team members (Fig. 1B).  Experimentally, the EEG data has been modeled into state 
spaces between 9 and 900 symbols depending on the task and team [17].   

 

Fig. 1. Data Flow for Creating Team Neurodynamics Models. ANN classification of second-
by-second vectors (A) creates a symbolic state space showing the possible combinations of 
EEG-E or EEG-WL across members of the team (B).   

While a symbolic representation of the team state is useful for characterizing team 
neurodynamics, it is not the best representation for quantifying team neurodynamics.  
Although there are methods for the quantitative representation of symbols, we chose a 
moving average window approach to derive numeric estimates of the Shannon 
entropy of the NS symbol stream.  Entropy is expressed in terms of bits; the 
maximum entropy for 25 randomly-distributed NS symbols would be log2 (25) or 
4.64.  For comparison, an entropy value of 3.60 would result if roughly half (12) of 
the NS symbols were randomly expressed. To develop an entropy profile over a 
session, the NS Shannon entropy was calculated at each epoch using a sliding window 
of the values from the prior 60 -100 seconds.  As teams entered and exited periods of 
organization, the entropy should fluctuate as a function of the number of NS symbols 
being expressed by the team during a block of time [15].  Entropy is a quantity, the 
value of which is determined by the state of the system, in our case with regard to the 
EEG-E or EEG-WL of the team members.  By itself, it says nothing about the state of 
the system; this information comes from the NS symbols.  
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4 Results 

4.1 Map Task 

The detailed NS_WL dynamics for one Map Task team are shown in Fig. 2.  NS symbol 
2 was expressed twice as often as other symbols (Fig. 2A), represented periods where 
the Giver expressed high levels of EEG-WL and the Follower was expressing average 
or, below average levels. The dominance of NS 2 was also seen in the second-by-second 
NS symbol expressions (Fig. 2B). Around epoch 200 the Follower began having 
difficulties drawing the map with the mouse. As the difficulties persisted (indicated by 
the frequency of mouse clicks in Fig. 2D) this resulted in a team reorganization where 
NS 2 expression was sequentially replaced by NS 4 (G↕F↑), NS 5 (G↓F↑), NS 7 (G↓F↕) 
and NS 9 (G↓F↓); i.e. the team slowly reduced its EEG-WL. This increased 
organization was reflected in the slowly decreasing entropy levels. Once the Follower 
regained control of the mouse the entropy levels rapidly increased as the team  
re-established its normal operating rhythm NS 2. 

 

Fig. 2. Linking NS symbols (A) with temporal NS expressions (B), entropy fluctuations (C) 
and drawing mouse clicks (D) 

4.2 ASWT Teams 

The neurodynamics are shown for one ASWT team where the major task segments 
Search, Track and Attack have been identified.  For these teams, across team NS-WL 
models were developed by pooling the NS vectors from four performances and then 
testing teams individually against this model [15].  The NS maps for EEG-WL 
showed that that NS 1 and 25 had twice the expression of the remaining symbols.  
These symbols represent periods where the ATO & SO had high EEG-WL levels and 
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the Pilot had low (i.e. [ATO,SO]↑P↓) (e.g. NS 1) or the combination [ATO,SO] ↓P↑  
(e.g. NS 25).  From the perspective of teamwork these NS_WL patterns are consistent 
with what would be expected from the task as the ATO & SO work closely together 
once contact is made while the pilot needs less second-by-second coordination with 
the other members while flying to the initial location, or when changing the search 
area.  Entropy fluctuations were present in the three major task segments that 
corresponded to identifiable simulation events like in Fig. 3C.1.a where the sonar 
instrument was malfunctioning and needed repair.  During that period the 
predominant NS_WL symbols were NS 3-10 indicating periods where all team 
members had average or below average EEG-WL.   

 

Fig. 3. Linking NS symbols (A) with temporal NS expressions (B), entropy fluctuations (C) 
and segments of the task (D) 

4.3 Submarine Piloting and Navigation Teams 

The members of SPAN teams also have defined roles but with up to ten team 
members the teamwork is more complex. As with other teams, the NS expressions 
were not uniform, but showed qualitative changes over time, particularly at the 
Scenario / Debriefing junction.  For instance NS_WL symbols 10, 11 and 18 which 
were poorly expressed during the Scenario, dominated during the first half of the 
Debriefing.  Qualitative dynamic changes also occurred during the Scenario, but these 
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were generally less obvious than those at task junctions.  They were sufficient 
however to be detected by entropy fluctuations such as those between epochs 2300 - 
2500 when the submarine deviated from its safe operating envelope (Fig. 4C.2.c).  
More pronounced neurodynamic reorganizations were seen during the Debriefing 
Segment (Fig. 4C.3.a) as the causes for this deviation were discussed. 

 

Fig. 4. Linking NS symbols (A) with temporal NS expressions (B), entropy fluctuations (C) 
and segments of the task (D) 

4.4 Entrepreneurial Teams 

Teams participating in the business simulations do not have defined member roles 
like other tasks and the discussions and teamwork are less structured.  The data of one 
team is shown in Fig. 5 where the second-by-second expression of the 25 NS (Fig. 
5A) are plotted (Fig. 5B) along with the profile of the Entropy (Fig. 5C).  Sections of 
the entropy profile have been highlighted to indicate task segments.  To show the 
modeling generality this study highlights EEG-E rather than EEG-WL. 

Prior to the start (Fig 5C.1) many of the team members had low EEG-E (NS 6, 13, 
& 14) as general instructions were given.  The team then began to surface issues and 
during this segment NS 1 emerged as the dominant symbol.  This symbol represented 
periods where team member 1 had high EEG-E while the rest were average / low.  
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This team rhythm intensified as the end of this session was approached and the 
resulting organization was reflected in a drop in the entropy. The team was then 
instructed to begin developing a consensus and NS 1 was replaced by a variety of 
other NS. After ~10 minutes NS 1 re-emerged as the dominant NS as consensus was 
reached.  The team then entered the last segment of the task where their 
recommendations were finalized (Fig. 5C.4).   

 

Fig. 5. Linking NS symbols (A) with temporal NS expressions (B), entropy fluctuations (C) 
and segments of the task (D). The blue regions indicate times where instructions were being 
given.  The ** represents the dominant symbol.  

5 Discussion 

The first hypothesis was that teams develop task-related neurodynamic rhythms and 
organizations when performing a task. As cycles and rhythms are widespread across 
different systems and subsystems during social interaction it would not be unusual to 
find a form of neurodynamics rhythm. What was less certain was if and how these 
rhythms would be manifested in EEG-defined measures of Engagement or Workload, 
and what the prevalence, magnitude, and duration of such rhythms would be. The data 
in this study suggest that many, if not most successful teams develop what we would 
term a Normal Operating Rhythm (NOR). The NOR is operationally described as a 
symbolic representation of a quantitative combination of an EEG-defined measure 
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that is expressed most often.  In terms of complexity theory these preferred patterns of 
neurodynamics expression can be thought of as a rhythm that the team frequently 
returns to or an attractor system. As described by Goldstein et al [18] attractors are 
likely more than repetitive patterns, but are more representative of the underlying 
system of beliefs ‘…the core drivers of organizational culture that lead to consistent 
individual choices and actions.’  

These rhythms often did not appear immediately, particularly with teams that had 
not worked together, but emerged with the progress of the performance.  For both the 
MT and the ASWT teams these rhythms and organizations were not team or session 
specific but were seen across teams and sessions indicating a more generalized 
organizational phenomena. Such rhythms may be useful for evaluating different 
combinations of team members to determine which teams develop the most efficient 
and effective synchronies. 

Neurodynamic re-organizations were often a result of these rhythms or of 
disturbances to the rhythms, but the question remains open as to why such 
organizations develop. A simple answer would be that it is an energy savings / 
efficiency device, i.e. self-organization of complex systems often results in reduced 
system entropy. When one complex system (task) interacts with a second complex 
system (team) it is difficult to reduce the constraints of the task, but the degrees of 
freedom of interaction of the team members can be reduced by mutually agreeing on a 
defined protocol of exchanging information. A final possibility is that they are a 
manifestation of shared situation awareness or of team macrocognition.  If so, they 
may provide a pathway for linking the neurodynamic and behavioral models of 
teamwork. 
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Abstract. The goal of this study was to explore the feasibility of continuous 
neurophysiological assessment of different psychological aspects of a team 
process. The teams consisted of the MBA students who discussed and at-
tempted to solve a case problem dealing with corporate social responsibility 
(i.e. child labor). At the end of the team process, two types of psychological 
metrics (i.e., engagement and leadership) were assessed by team members, both 
at the individual and team levels. These metrics showed significant correlations 
with the team performance scores derived by four trained coders. Two of them 
rated the teams’ solutions in terms of effective problem solving, decisiveness, 
and creativity. The other two coders rated the level of moral reasoning dis-
played in the solutions. The psychological metrics were then estimated based on 
quantitative electroencephalography (qEEG). Different modeling techniques, 
such as linear and quadratic discriminant function analysis (DFA) and linear re-
gression were applied to the processed qEEG data. The models were evaluated 
through auto-validation, but also through cross-validation to test stability of the 
models in the team-independent training setting. The experimental results sug-
gested that qEEG could be effectively used in the team settings as an estimator 
of individual and team engagement, as well as the leadership qualities shown by 
team members. Our findings suggest that qEEG can help in understanding, and 
perhaps building, optimal teams and team processes.  

Keywords: team process, engagement, leadership, electroencephalography.  

1 Introduction 

There is a growing interest in studying different aspects of collaborative teamwork 
such as engagement [1] and leadership [2] due to evolving task demands and the  
necessity of building optimal teams that accomplish the tasks successfully and effec-
tively. Psychological metrics are typically measured using traditional psychometric 
assessment methodologies at the conclusion of a team process. In [3] it has been  
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argued that neuroscience can provide more ecologically-valid assessment of psycho-
logical metrics. Recent advances in the technical design of the qEEG hardware and 
software platforms enable practical application of qEEG in studying team processes. 
The main advantage of the qEEG-based team assessment is that it is continuous, and 
it does not require disruption of the ongoing team process. For example, [4] utilized 
the qEEG data for modeling team dynamics in complex military tasks. 

This paper explores qEEG-based estimation of engagement and leadership at the 
individual and team levels during the team discussion of a social responsibility case 
problem. The proposed approach is not computationally expensive, it accounts for 
individual variability inherent in the qEEG data, and it leverages a general trend of 
qEEG changes to characterize individual and team engagement and leadership. Unlike 
[5], where transformational leaders were classified based on the qEEG data during the 
resting eyes closed session, we focus on the more challenging team setting. 

2 Materials and Methods 

In this section, our study protocol is outlined, the assessed performance and psycho-
logical metrics are introduced, and the qEEG acquisition system is described together 
with signal processing and data analysis.  

2.1 Study Protocol 

The students at a business school in Europe formed 31 teams of either 4 or 5 individ-
uals. The overall sample comprised 146 students with the mean age of 28.7 years. The 
participants were ethnically diverse (61.5% were Caucasian, 20.7% were Asian, and 
15.6% were Hispanic) and gender balanced (64.4% were males). 

Each subject first completed a sustained attention task (3-choice active vigilance 
task - 3CVT) that required subjects to discriminate one primary target (presented 70% 
of the time) from two secondary non-target geometric shapes that were randomly 
interspersed over a 20 min period. Participants were instructed to respond as quickly 
as possible to each stimulus. A brief training period was provided prior to the start of 
the task to minimize the practice effects.  

The problem solving task addressed a corporate social responsibility case of the 
Levi Strauss Company involving child labor issues in Bangladesh [6]. Each team 
member was first given approximately 40 min to read the case individually, consider 
the issues presented in the case, and form initial solutions, which were typed into 
computer files by respective students. Afterwards, the subjects were engaged in the 
team discussion process with the goal to derive a common solution to the case. The 
discussion lasted up to 45 min including time for generating a summary of the solu-
tion into a computer file. The entire team sessions were videotaped and synced to 
qEEG recording for each subject. 
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2.2 Performance Metrics 

To derive performance scores, both individual and team solutions were rated by four 
trained coders in terms of: 

• effective problem solving - the extent to which the case was diagnosed thoroughly 
and all relevant information presented in the case and expertise were utilized to 
solve the problem 

• decisiveness - the extent to which one clear and explicit solution to the case was 
derived  

• creativity - the extent to which a new or different and useful approach was devel-
oped that was not explicitly considered or implied in the case 

• moral reasoning - the extent to which advanced ethical principles were used and 
the derived case solution showed concern for the others and the common good. 

The coders worked in two teams: one team of coders rated the teams' solutions in 
terms of effective problem solving, decisiveness and creativity; and the other coder 
team rated the level of moral reasoning displayed in the solutions. The split of coding 
avoided any possible moral bias that may have occurred when only two coders had 
coded all four categories simultaneously. The coders showed high levels of agreement 
and inter-rater reliability in their scoring. 

Furthermore, team process [7] can also be regarded as an outcome of teams in that 
teams with better task and interpersonal processes tend to perform more effectively.  
We assessed team process through survey ratings of respective team members at the 
conclusion of the team discussion. This included a combination of: 

• transition processes - developing an overall strategy to guide the team activities 
• action processes - ensuring that the team was using the right information to  

perform well 
• interpersonal process - sharing a sense of team harmony, togetherness, and  

cohesion. 

2.3 Psychological Metrics 

Two types of psychological constructs (i.e., engagement and leadership) were  
obtained with multi-source psychometrics measurement procedures, both at the indi-
vidual and team levels. The engagement scores relied on self-assessment, and the 
leadership scores involved other team member's assessment (for each respective team 
member) through a survey at the conclusion of the team task.  

Each team member rated both his individual and overall team engagement during 
the task. Engagement was assessed with the scale of 14 items including physical, 
emotional/affective, and cognitive aspects of engagement [1]. 

Leadership scores for each subject were assessed by the other team members in a 
survey that covered the following aspects of leadership: 
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• transformational leadership [8, 9] - intellectual stimulation (i.e., helping  
others to examine and solve problems in new ways) and inspirational motivation 
(i.e., expressing confidence and enthusiasm about goals and what needed to be  
accomplished)  

• emergent leadership [2, 10] - the overall degree to which the team members relied 
on and considered a respective team member to have shown the leadership role 
during the team task.   

All members of a respective team rated the other members (excluding himself). As the 
level of agreement among the subjects was high, these scores were averaged to provide a 
single score for each leadership measure for each subject. These individual scores were 
then aggregated over all team members to attain leadership scores at the team level. 

2.4 qEEG Data Recording and Signal Processing 

The wireless B-Alert sensor headset [11] was used to acquire qEEG data of all sub-
jects during the baseline 3CVT and the team discussion sessions. The qEEG record-
ings during the team process were synchronized with the respective videos. The 
qEEG data from 9 sites (POz, Fz, Cz, C3, C4, F3, F4, P3, and P4) were recorded with 
a sampling rate of 256 samples per second. The qEEG signals were first filtered with 
a band-pass filter (0.5-65Hz) before the analog to digital conversion and then the 
sharp notch filters were applied to remove environmental artifacts from the power 
network. The algorithm [11] was utilized to automatically detect and remove a num-
ber of artifacts in the time-domain qEEG signal, such as spikes caused by tapping or 
bumping of the sensors, amplifier saturation, or excursions that occur during the onset 
or recovery of saturations. Eye blinks and excessive muscle activity were identified 
and decontaminated by an algorithm [12] based on wavelet transformation. 

From the filtered and decontaminated qEEG signal, the absolute and relative power 
spectral densities (PSD) were calculated on an epoch-by-epoch basis for each 1Hz bin 
from 1 to 40 Hz by applying fast Fourier transformation (FFT) to the 50% overlap-
ping 1sec overlays of the qEEG data. In order to reduce the edge effect, the Kaiser 
window was applied to each overlay. Furthermore, the FFT on three successive over-
lays was averaged to decrease epoch-by-epoch variability. The following PSD band-
widths were extracted: theta slow, theta fast, theta total, alpha slow, alpha fast, alpha 
total, beta, and gamma.   

In order to explore the applicability of neurological alertness quantification in es-
timation of the psychological metrics, we also included into the analysis the outputs 
of the B-Alert model [12, 13] that quantifies engagement levels and identifies cogni-
tive state changes. It is an individualized model that selects the most discriminative 
PSD variables, derives coefficients for a discriminant function, and classifies subject's 
cognitive state for each epoch into one of the four levels of alertness (sleep onset, 
distraction/relaxed wakefulness, low engagement, and high engagement).  

As we are dealing with the high-level psychological constructs, both types  
of epoch-by-epoch variables (i.e., PSD bandwidths and B-Alert classification proba-
bilities) were then averaged over a 30sec sliding window in 1sec increments to get a 
general trend of neurological changes over time.  
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To normalize the qEEG data for individual variability, the absolute and relative 
PSD values during the teaming task were z-scored to the qEEG data during the base-
line 3CVT session for each respective subject. Similarly, the B-Alert output engage-
ment probabilities during the team discussion were also calibrated in the same manner 
by z-scoring them with respect to the subject's engagement during the 3CVT task.  

2.5 Data Analysis 

First, correlation analysis was performed to explore if psychological metrics such as 
engagement and leadership relate to the achieved team performance scores in the 
conducted teaming study.  

Second, different modeling approaches were applied to estimate the psychological 
metrics based on the qEEG data. Both individual and team scores of engagement and 
leadership were analyzed and grouped into two classes in the following manner: all 
team scores that were above the overall mean value for all teams were considered as 
"High", and all team scores that were below the mean value were considered as 
"Low". In order to accommodate potential differences among different teams, indi-
vidual scores were first z-scored with respect to the mean value within the respective 
team. Next, such normalized individual scores that were above 0 (i.e. above average 
value for the respective team) were grouped into the "High" class, and the ones that 
were below 0 were assigned to the "Low" class. The most discriminative qEEG va-
riables were selected by step-wise variable selection procedure. Afterwards, the se-
lected variables were used in three different algorithms: linear DFA, quadratic DFA, 
and linear regression. Linear and quadratic DFA classify the data into the two classes 
of interest (i.e., "High" and "Low"). Linear regression algorithm predicts the value of 
psychological variable and then we classify it into one of the two classes based on the 
above defined thresholds for the classes.   

Table 1. Statistically significant correlations between psychological measures and performance 
variables at the individual and team levels 

Individual scores 

Psychological measure Performance Correlation p 
Engagement Decisiveness 0.16 0.03 

Transformational leadership Moral reasoning 0.14 0.05 
Emergent leadership Moral reasoning 0.21 0.01 

Team scores 
Engagement Team process 0.58 0.0002 

Transformational leadership Team process 0.34 0.03 
Emergent leadership Moral reasoning 0.31 0.04 

 
As the goal is to recognize the team members who are highly engaged and/or good 

leaders, the "High" class is assumed to be the positive class and the trained algorithms 
were evaluated in terms of the models' sensitivity, specificity, positive predictive val-
ue (PPV), and negative predictive value (NPV) in two different ways: auto-validation 
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and cross-validation. In the initial model development phase, auto-validation is cru-
cial to test the feasibility of the model by testing the model on the training data. 
Cross-validation assesses the generalization capabilities of the model by testing it on 
the data that was not used for training. In order to examine team independent training, 
we performed leave-one-team-out cross-validation by training the model on the data 
from all teams but one, and testing the trained model on the removed team's data. The 
procedure was repeated for all teams in the study, and the results were averaged 
across all cross-validation rounds.  

3 Results 

In this section the following results are presented: (1) statistically significant correla-
tions between the psychological measures of engagement and leadership at the indi-
vidual and team levels and the corresponding performance scores, (2) classification 
results of the applied algorithms (linear DFA, quadratic DFA, and linear regression), 
and (3) detailed analysis of different experimental settings.   

3.1 Correlations 

Correlation analysis showed that psychological measures, such as engagement and 
leadership are positively correlated with some of the achieved performance scores 
both at the individual and team levels. In Table 1 are shown statistically significant 
correlations (based on the two-tailed t-test). From the table one can observe that en-
gagement is related to the team process and decisiveness, while leadership is corre-
lated with the team process and moral reasoning. On the other hand, performance 
scores such as effective problem solving and creativity were not correlated with the 
analyzed metrics of engagement and leadership.    

3.2 Classification Results 

The auto-validation and leave-one-team-out cross-validation classification results of 
the three evaluated algorithms (i.e., linear DFA, quadratic DFA, and linear regression) 
for engagement, transformational and emergent leadership at the individual and team 
levels are shown in Table 2 and Table 3, respectively. The results are averaged over 
30 teams, as the qEEG data for one team were unusable due to difficulties in captur-
ing qEEG data and synchronization problems between video and qEEG recordings. 

Typically, quadratic DFA achieved the highest auto-validation classification re-
sults. However, leave-one-team-out cross-validation showed that the quadratic DFA 
classifier achieved significantly higher specificity than sensitivity. After investigating 
the confusion matrices in such cases, it turned out that majority of the instances were 
classified as "Low" class in such cases.  
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Table 2. Classification results for the psychological measures at the individual level. Three 
algorithms were evaluated: linear discriminant function analysis (L-DFA), quadratic 
discriminant function analysis (Q-DFA), and linear regression through auto-validation (AV) 
and leave-one-team-out cross-validation (CV). 

Individual level measures 

Engagement 

 Sensitivity Specificity PPV NPV 

Algorithm AV CV AV CV AV CV AV CV 

L-DFA 80.8% 47.0% 79.4% 48.7% 78.4% 45.8% 81.8% 49.9% 

Q-DFA 72.8% 15.5% 99.6% 80.2% 99.4% 41.9% 79.9% 50.7% 

Regression 69.1% 36.8% 79.3% 51.1% 75.5% 41.5% 73.6% 47.2% 

Transformational leadership 

 Sensitivity Specificity PPV NPV 

Algorithm AV CV AV CV AV CV AV CV 

L-DFA 75.6% 40.9% 76.3% 49.9% 76.5% 45.5% 75.4% 45.3% 

Q-DFA 74.8% 10.2% 99.4% 79.1% 99.2% 33.2% 79.4% 46.3% 

Regression 56.8% 32.3% 83.1% 57.6% 77.4% 43.7% 65.5% 45.4% 

Emergent leadership 

 Sensitivity Specificity PPV NPV 

Algorithm AV CV AV CV AV CV AV CV 

L-DFA 75.2% 40.0% 75.8% 46.0% 75.9% 42.9% 75.0% 43.0% 

Q-DFA 77.7% 18.5% 99.3% 75.6% 99.2% 43.5% 81.4% 47.7% 

Regression 58.6% 31.0% 81.0% 52.5% 75.8% 39.8% 65.8% 42.8% 

 
Overall, linear DFA performed well and obtained acceptable results in all settings. 

Even though, in some cases the cross-validation results were below the chance level, 
some metrics such as emergent leadership at the team level were accurately recog-
nized. As this seem to be the most promising classifier, in the next section we further 
analyze its performance in different settings.    

3.3 Analysis of Different Experimental Settings 

Next, we analyze the effects of the qEEG data normalization with respect to the 
baseline 3CVT session and averaging over the sliding window. The classification 
results of the linear DFA classifier for emergent leadership at the team level are 
shown in Table 4 for four different settings:  

• both 3CVT normalization and sliding window are applied 
• only 3CVT normalization is applied 
• only sliding window is applied 
• neither 3CVT nor sliding window is applied 
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Table 3. Classification results for the psychological measures at the team level. Three algorithms 
were evaluated: linear discriminant function analysis (L-DFA), quadratic discriminant function 
analysis (Q-DFA), and linear regression through auto-validation (AV) and leave-one-team-out 
cross-validation (CV). 

Team level measures 

Engagement 

 Sensitivity Specificity PPV NPV 

Algorithm AV CV AV CV AV CV AV CV 

L-DFA 77.0% 53.5% 77.4% 45.4% 71.0% 41.4% 82.3% 57.5% 

Q-DFA 95.3% 28.8% 98.4% 66.2% 97.8% 38.1% 96.6% 56.3% 

Regression 64.5% 45.8% 70.9% 56.4% 61.5% 43.1% 73.4% 59.1% 

Transformational leadership 

 Sensitivity Specificity PPV NPV 

Algorithm AV CV AV CV AV CV AV CV 

L-DFA 81.5% 53.9% 77.5% 46.2% 74.4% 44.5% 84.0% 55.7% 

Q-DFA 99.5% 68.6% 84.5% 39.0% 83.7% 47.3% 99.6% 60.8% 

Regression 79.2% 59.6% 64.2% 42.2% 63.9% 45.2% 79.4% 56.7% 

Emergent leadership 

 Sensitivity Specificity PPV NPV 

Algorithm AV CV AV CV AV CV AV CV 

L-DFA 82.2% 64.2% 81.4% 55.1% 80.6% 57.3% 83.0% 62.2% 

Q-DFA 99.5% 73.0% 87.3% 34.2% 88.1% 51.0% 99.4% 57.4% 

Regression 79.6% 64.9% 69.7% 48.3% 71.1% 54.1% 78.4% 59.5% 

 
From the table, it can be clearly seen that the classifier benefits from both 

normalization and averaging of data. On average, when both normalization and 
averaging were applied the classification results were higher by 24.6% and 13.2% in 
the case of auto-validation and cross-validation, respectively. When looking at the 
improvements that normalization and averaging bring separately, it turned out that 
averaging is more valuable as the results were slightly more improved that way.   

4 Discussion 

The current study aimed at developing a method for estimation of psychological 
measures in the team setting based on the neurophysiological data. In order to achieve 
that goal, the teams were rated in terms of engagement and leadership while solving a 
corporate social responsibility case. The qEEG data were utilized during the team 
discussion to provide insight into brain activity of the team members. The objective 
was to meet the three criteria: (1) The algorithm had to be computationally simple so 
that it could be easily implemented in real-world applications; (2) The approach had 
to accommodate individual variability in the qEEG data; (3) The approach had to 
capture a general trend of the qEEG changes over time in order to address high-level 
psychological constructs. Next, we summarize how each of these criteria was met, 
and discuss the limitations of the algorithm and future work directions. 
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Table 4. Comparison of linear DFA classification results for emergent leadership at the team 
level for different 3CVT normalization and sliding window settings  

Setting Sensitivity Specificity PPV NPV 

3CVT 

normalization 

sliding 

window 
AV CV AV CV AV CV AV CV 

yes yes 82.2% 64.2% 81.4% 55.1% 80.6% 57.3% 83.0% 62.2% 

yes no 68.3% 60.4% 61.7% 51.9% 62.7% 54.2% 67.3% 58.2% 

No yes 66.8% 45.5% 68.4% 48.5% 62.8% 41.4% 72.0% 52.7% 

No no 56.0% 44.9% 58.5% 47.8% 52.0% 40.9% 62.3% 51.9% 

 
Three algorithms were evaluated: linear DFA, quadratic DFA, and linear regres-

sion. These algorithms were chosen as they are relatively simple, but still very effec-
tive in different application scenarios. Based on the experimental results, in our study, 
linear DFA proved to be the most effective in predicting both psychological metrics 
of interest, i.e. engagement and leadership. The algorithm successfully coped with 
individual qEEG data variability by calibrating the data with respect to the baseline 
sustained attention task (i.e., 3CVT). The epoch-by-epoch data variability was re-
duced by averaging the data over a 30sec sliding window. Both data normalization 
and averaging substantially improved the classification results.   

The proposed algorithm demonstrated the feasibility of neurophysiological esti-
mation of team psychological metrics. One of the main findings of our work is that 
the qEEG data carry a wealth of information and can help assessing different aspects 
of team process. This is only a first step towards a broader acceptance of the qEEG-
based psychological assessment. In order to move beyond controlled laboratory  
experiments, a few limitations of our work need to be overcome. First, the psycho-
logical measures were assessed by either the subjects themselves or other team 
members. Such scores might be biased and slightly subjective. We are re-assessing 
the scores by the trained coders. However, as shown in Section 3.1 our psychological 
measures were correlated with the objective team performance scores. Second, the 
cross-validation results were noticeably lower than the auto-validation results. That 
could be altered by team-dependent training which would require longer recordings 
of the team process to acquire sufficient amount of training data to model the com-
plex psychological constructs such as engagement and leadership. Third, parts of the 
qEEG recordings were unusable due to the large amount of noise (i.e., artifacts) in 
the data. In order to enable unobtrusive long-term qEEG recordings in realistic set-
tings, we are streamlining our platform, especially in context of the team settings, by 
further improving the acquisition system, timing accuracy, and the artifact deconta-
mination algorithms. Fourth, the study focused on business students who were solv-
ing particular case of social responsibility. In the future, we plan to extend the study 
to real-world organizations with specific tasks and team roles. Lastly, we will ex-
amine in more details which brain regions might be indicative of engagement and 
leadership. 
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Abstract. Research shows that teammates often exhibit similarity in their phy-
siological and behavioral responses during cooperative task performance, a 
phenomenon referred to here as physio-behavioral coupling (PBC). Goals of 
this manuscript are to provide an overview of research examining the utility of 
PBC as an index of team processes (e.g., coordination) and performance, dis-
cuss applied and theoretical issues in PBC measurement, and present findings 
from a study using linear and nonlinear statistics to assess PBC. 
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1 Introduction 

This manuscript supports the parallel session entitled, “Modeling the Complex Dy-
namics of Teamwork.” The focus of this manuscript is physio-behavioral coupling 
(PBC), its relation to team processes and performance, and issues regarding its mea-
surement and interpretation, with an emphasis on practical applications. An experi-
mental illustration of these issues is provided. 

1.1 PBC, Team Processes, and Team Performance 

PBC can be defined as a statistical similarity in the cortical, autonomic, or beha-
vioral activity of two or more members of a team engaged in cooperative behavior. 
Over the past three decades, researchers have identified PBC in a number of phy-
sio-behavioral responses, including cardiac inter-beat intervals (IBIs), electrical 
brain activity, and human postural sway, and in diverse team task environments, 
such as military room clearing, team puzzle solving, and duet guitar playing [1-5]. 
In many cases, PBC manifests as an emergent (i.e., spontaneous and self-
organized) phenomenon outside conscious awareness [1]. As such, there has been 
speculation about the underlying causes (or drivers) of PBC, its role in cooperative 
task performance, and the associations it shares with important team processes 
(e.g., strategy, coordination, communication, cohesion, etc.).  
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Most explanations posit that PBC reflects important team-level processes, such as 
communication and coordination [1]. For example, oral communication is a vector 
employed by teams to discuss strategy and coordinate action [6]. Research has dem-
onstrated that oral communication is sufficient to drive the coupling of human postur-
al sway, supporting speculation that sway coupling can serve as an indirect index of 
team communication dynamics [4] – a speculation that our own research supports [5]. 
Other research has identified PBC between group members performing very different 
actions (e.g., active participants and passive observers) [7], supporting the perspective 
that PBC may be caused by emotional (arousal) and/or cognitive (shared situation 
awareness) dynamics associated with group/team membership. Finally, PBC has been 
shown to exhibit relationships with psychosocial phenomenon like rapport and trust 
[8, 9], prompting some to speculate that PBC may facilitate, rather than simply reflect 
a consequence of, team processes. 

To date, only a small number of studies have examined the association between 
PBC and team performance. While several studies suggest a positive relationship (i.e., 
higher PBC is related to better team performance) [2, 3], our research indicates that a 
negative relationship is possible [5].  

From an applied perspective, PBC has been shown to exhibit a moderate relation-
ship with performance (absolute r ~ .4) [1, 5], which is comparable in magnitude to 
correlations observed between performance and other team processes such as cohe-
sion and collective efficacy (both r ~ .25) [10, 11]. This suggests that PBC measures 
may have an advantage over other (largely self-reported) team process assessments 
since many responses used to estimate PBC are minimally invasive (e.g., cardiac IBI, 
postural sway), and many metrics of PBC can be computed in real-time without inter-
rupting task performance. 

1.2 PBC Measurement: A Historical Review and Recent Developments 

PBC has been characterized using a variety of different statistical measures, leading to 
inconsistency across studies. It has also been exceedingly rare for researchers to 
communicate why a particular measure (or set of measures) was chosen to over others 
(see [7] and [12] for exceptions). However, choosing the proper measure is critical 
since it may influence the ability to detect meaningful changes in PBC, determine the 
information about PBC obtained (e.g., coupling strength versus phase relation), and 
have implications for the utility of PBC measurement in applied applications. 

Early PBC studies used independent rater analysis of recorded video and/or phy-
siological signals to detect response similarities [8]. While these methods were care-
fully implemented, they are subjective, as well as both cost and time prohibitive. 

In more recent studies assessing PBC in cyclical motor tasks (e.g., swinging of 
handheld pendulums), researchers have often employed relative phase statistics [13]. 
Though relative phase is an intuitive indicator of synchronicity (a specific sub-type of 
coupling) and phase relation (e.g., in-phase versus out-of-phase), it is effective pri-
marily for examining responses that exhibits near-sinusoidal oscillations [14]. 

An additional approach employed by Henning and colleagues [2] has been to ex-
amine PBC using cross-correlation (CC) and cross-spectral coherence (CSC), which 



 Physio-behavioral Coupling as an Index of Team Processes and Performance 221 

are linear statistics that describe the degree of similarity between two time series in 
the time and frequency domains, respectively. Advantages of the measures include a 
long and accepted history for examining complex time-series data and the ability to 
provide estimates of multiple coupling dynamics (CC: coupling strength and temporal 
lag; CSC: coupling strength at particular frequencies) in near-real-time [15]. Disad-
vantages include linear assumptions of periodicity and stationarity (i.e., equal mean 
and variance), which many physio-behavioral responses are known to violate [16, 17]. 

In an attempt to overcome the limitations of linear statistics, some researchers (in-
cluding the current authors) have explored the use of nonlinear measures to character-
ize PBC. Although computationally quite different from one another, this family of 
statistics, which include measures such as Cross-Recurrence Quantification Analysis 
(CRQA) [12], Cross Sample Entropy (CSEn) [18], and Average Mutual Information 
(AMI) [19], can be used to confirm the existence of nonlinear coupling and quantify 
its strength. To illustrate how the information obtained from linear and nonlinear 
coupling measures differ, consider that CC, when a zero lag is employed, is equiva-
lent to a Pearson product-moment correlation [20]. Thus, CC characterizes the degree 
to which two time-series share a one-to-one (i.e., linearly synchronized) relationship 
in both time and (relative) amplitude. Conversely, nonlinear measures (with acknowl-
edgment that the following is a broad generalization) quantify the degree to which 
two time series exhibit matching temporal patterns (i.e., strings of sequential data 
points) across an entire time interval, regardless of where those matches occur within 
that interval. Thus, nonlinear measures do not index synchronicity (a potential limita-
tion if this is the coupling dynamic of specific interest), but rather the overall degree 
of patterning shared between two data streams within a specified temporal envelope.  

It is because of this flexibility that nonlinear measures may be better suited for de-
tecting and quantifying coupling strength in aperiodic and noisy systems [12]. This 
view is supported by findings that nonlinear coupling measures demonstrate greater 
sensitivity, compared to more traditional linear measures like CC and CSC, for detect-
ing changes in coupling dynamics among paired physical systems [21], financial 
trends [22], human postural sway [12], and animal neurophysiological responses [23].  

However, claiming that nonlinear coupling measures are more sensitive than linear 
measures, without first identifying that the systems under examination exhibit mea-
ningful (i.e., deterministic) linear and/or nonlinear coupling, is problematic. To estab-
lish that meaningful coupling is evident, surrogation tests are required.  

The most straightforward and intuitive method to perform surrogation tests first in-
volves obtaining estimates of PBC (for each metric of interest) from originally sam-
pled time-series representing the response(s) of interest (e.g., postural sway from two 
people engaged in oral communication). Next, new (surrogate) time-series are  
generated by (separately) randomly shuffling the sequence of data points within each 
original time-series. The result of this procedure are two time-series in which any 
deterministic temporal structure that originally existed in individual responses, as well 
as any meaningful coupling between those responses, is eliminated. Then, PBC esti-
mates are obtained for the surrogate time-series and compared with those from the 
original time-series. If the two sets of PBC estimates are shown to be equivalent (of-
ten determined using inferential statistics applied to an entire experiment’s sample), 
this suggests that no meaningful coupling existed in the original time-series. Con-
versely, if PBC estimates in the original time-series are greater than those observed 
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from the surrogates, this suggests that meaningful coupling does exist in the original. 
In a case where both linear and nonlinear measures are used to examine PBC, and 
both detect meaningful coupling, then it is possible to examine the PBC metrics for 
sensitivity differences, with the understood caveat that each type of metric characte-
rizes a different coupling dynamic. However, in a case where meaningful nonlinear 
coupling is detected but linear coupling is not, investigating sensitivity differences is 
futile, since the very application of linear statistics in this case is inappropriate.  

To date, very few PBC studies have included any form of surrogation test. Howev-
er, it is our view that these tests are critical since they not only provide useful infor-
mation about the underlying dynamics of a coupled relationship, but also verify the 
appropriateness of statistics used to draw inference about the phenomenon. 

2 Empirical Application of Linear and Nonlinear Measures  
for Assessing PBC in a Cooperative Team Task  

The remainder of this manuscript is dedicated to describing methods and results from 
a single experiment in which PBC was examined in dyads performing a cooperative 
pointing task (Fig. 1). The purpose of including this experiment here is to provide 
guidance on application of linear and nonlinear measures to examine PBC, as well as 
explore the unique (or analogous) information linear and nonlinear metrics may pro-
vide about team coordination and performance.  

 

Fig. 1. Illustration of the cooperative pointing task used in this experiment. The goal of the task 
was to achieve complete overlap of two “virtual” circles projected onto a far wall by manipulat-
ing handheld remote controls (Nintendo Wii Remotes) that controlled the circles’ movements.  

The pointing task employed in this experiment required dyads to control the 
movements of two “virtual” circles (each participant controlled one circle) and align 
them such that the two circles completely overlapped one another. This particular task 
was selected because it presented a context in which PBC (i.e., wrist coupling), team 
coordination, and team performance should be closely related. Thus, we hoped in 
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utilizing this task we might draw more direct inference from PBC measurement about 
the coordination dynamics supporting team performance, and about how those dy-
namics are altered by a manipulation of task constraints (i.e., an increase in difficul-
ty). Other goals included a determination of the presence of meaningful linear and/or 
nonlinear coupling in team members’ wrist movements (using surrogation tests) and a 
comparison of the sensitivity of linear and nonlinear coupling measures to team per-
formance differences across task difficulty conditions.  

2.1 Methods 

To perform the pointing task, dyads (N = 30 pairs) stood upright facing a far wall at a 
distance of 1.5 m while holding handheld remote controls (Nintendo Wii remotes – 
“wiimotes”) in their dominant hand with elbow flexed to 90 degrees. Two large circles 
(145 and 150 pixels in diameter, respectively) were shown on a far wall using a video 
projector. The vertical and lateral movements of the circles were linked to the move-
ments of the wiimotes using custom software and Bluetooth connection. The task per-
formance goal was to achieve complete overlap of the two circles (at a location near the 
center of the wall) and hold that position for “as long as possible” in 90 second trials. 

Task difficulty was manipulated by altering the wiimote-to-circle movement ratio. 
In the easy condition the ratio was 1:.25, meaning that a 1 cm translation of the wii-
mote elicited a .25 cm translation of the circle to which it corresponded. In the normal 
and hard conditions the ratio was 1:1 and 3:1, respectively. 

Dyads performed two trials of each condition in counterbalance order (six trials to-
tal). Throughout trials wrist movements (yaw and pitch rotation) were recorded from 
participants at 75 Hz using two wireless Xsens Technologies Mtw inertial trackers. In 
post-processing, yaw and pitch time-series were cropped to 60 second durations by 
removing the first and last 15 seconds of each trial. The truncated times-series were 
then subjected to .1 to 30 Hz 2nd order Band-pass Butterworth filters (to achieve sta-
tionarity and eliminate high frequency noise) and normalized to unit variance. 

Normalized time-series were then paired within dyad and rotational plane and ex-
amined using CC, CRQA (percent recurrence; %REC)1, CSEn2 and AMI in 13.65 sec 
(1,024 data point) windows with a 6.83 (512 point) overlap.3 This procedure rendered 
six values in each trial for each PBC measure; from those six values, the median was 
recorded for each measure to indicate the central tendency of yaw and pitch wrist 
coupling. Median PBC estimates from like conditions were then averaged.  

                                                           
1  %REC is the percentage of points (where point represents a distance vector comprised of a 

serial sequences of data values) that repeat in a 2-dimenstional recurrence plot. It serves as an 
indicant of the overall amount of patterning in a time-series [12]. 

2  In subsequent reporting the inverse of CSEn, CSEn-1, is presented to facilitate directional 
correspondence with interpretation of all other PBC measures. 

3  CC was estimated with zero lag, replicating the procedures of [2]. CSEn parameters, M = 3 
(vector lengths for comparison) and r = .3 (vector tolerance) were set using a parameter selec-
tion procedure described by [24]. CRQA parameters, i.e., embedding dimension (EmD = 9), 
time delay (td = 4), rescaling method (rescale = euclidean), and radius (rad = 10), were estab-
lished using the procedure described by [12]. AMI requires no parameter selection using the 
algorithm provided in [19]. 
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2.2 Results 

Surrogation tests were used to determine whether meaningful linear and/or nonlinear 
coupling existed between wrist movements of dyads using identical methods to those 
described earlier in section 1.2. Inferential comparisons testing for differences in PBC 
estimate from original and surrogate time-series were carried out using paired samples 
t-tests for all PBC metrics.  

Results indicated that, across nonlinear measures, PBC estimates from the original 
time-series were significantly greater than those obtained from surrogates. However, 
no difference was found between PBC estimates of original and surrogate time-series 
for CC (Table 1). This indicates that the wrist movements of teammates exhibited a 
nonlinear, as opposed to linear, coupled relationship. From a practical perspective this 
means that dyad wrist movements did not exhibit linear synchronicity, though they 
did exhibit meaningful similarities in overall temporal patterning. Consequently, CC 
was dropped from further analyses and comparisons. 

Table 1. Mean of median PBC estimates and standard errors (in parentheses) obtained from 
original and surrogate (randomly shuffled) time-series pairings 

PBC Measure Original pairs Surrogate pairs t 

CC – yaw -.01 (.01) .00 (.00) .53 

CC – pitch -.03 (.01) .00 (.00) 1.87 

CSEn1 - yaw 11.01 (.25) .68 (.00) 41.40* 

CSEn1 - pitch 10.76 (.33) .67 (.00) 30.14* 

%REC – yaw 3.95 (.13) .00 (.00) 30.39* 

%REC - pitch 3.83 (.13) .00 (.00) 29.71* 

AMI - yaw .29 (.00) .03 (.00) 56.64* 

AMI - pitch .30 (.05) .03 (.00) 55.32* 
      Note. t-crit df = 89, α = .05 = 1.99. 
     * p < .05 

 
Next, effects of task difficulty were examined using separate repeated-measures 

ANOVAs for PBC measures and the team performance metric, Circle Overlap4. Om-
nibus main effects of Circle Overlap, F (1.60, 46.31) = 2701.14, p < .05, and AMI-
yaw, F (1.87, 54.33) = 6.89, p < .05, were detected. Post-hoc pairwise comparisons 
revealed a precipitous decline in Circle Overlap as a product of increases in task diffi-
culty (Fig. 2a). Circle Overlap decreased as task difficulty increased, which confirms 
that the experimental manipulation was effective in diminishing team performance. 

Post-hoc assessment of AMI-yaw revealed lower wrist coupling in the normal and 
hard, as compared to the easy condition – indicating that nonlinear wrist coupling 
decreased as a result of increases in task difficulty (Fig. 2b).  

                                                           
4  Circle Overlap is defined as the cumulative time (in seconds) during a 90 second trial that 

complete overlap of the two circles was achieved. 
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Fig. 2. Mean estimates of Circle Overlap (a) and Average Mutual Information in wrist-yaw 
rotation (b) across task difficulty conditions. Connected arrows represent significant pair-wise 
differences at p < .05. Error bars are standard errors. 

Finally, Pearson (r) correlations were used to assess the relationship between team 
performance (i.e., Circle Overlap) and nonlinear wrist coupling strength for each task 
difficulty condition (Table 2). Interestingly, all of the nonlinear metrics we employed 
were analogous in detecting a negative relationship between PBC and performance 
across all conditions, indicating that a decrease in coupling was related to better per-
formance. In other words, lower similarity in the temporal patterning of coupled wrist 
movements was related to a greater ability to keep the two circles aligned. The similar 
direction of effect detected across measures is also intriguing, and suggests that these 
measure, though computational quite different form one another, are sensitive to simi-
lar dynamical properties about a coupled relationship (as argued in section 1.2).  

Still, there were noticeable differences in the magnitude of relationship detected 
between wrist coupling and team performance across measures. Specifically, %REC 
detected the strongest relationship (r = -.50, collapsed across condition and rotational 
plane), followed by CSEn-1 (r = -.40) and AMI (r = -.26), respectively. This may indi-
cate sensitivity differences between these measures, at least in-so-far as accounting 
for individual differences in team performance are concerned.  

Table 2. Pearson correlations between PBC measures and team performance (Circle Overlap) 
for each task difficulty condition 

              Task Difficulty Condition 

PBC Measure Easy Normal Hard 

CSEn1 - yaw -.38* -.54* -.25 

CSEn1 - pitch -.48* -.41* -.33 

%REC – yaw -.51* -.31 -.56* 

%REC - pitch -.41* -.68* -.50* 

AMI - yaw -.43* -.40* -.23 

AMI - pitch -.32 -.13 -.03 
Note. r-crit df = 28, α = .05 = .36 
* p < .05 
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2.3 Discussion 

Dyad wrist movements did not exhibit a linear, but rather a nonlinear coupled rela-
tionship in this experiment. This is important because it determined the family of 
statistics that were appropriate for examining PBC experimental effects, but also be-
cause it ruled out synchronicity (the coupling dynamic indexed by CC) as a coordina-
tion strategy that could have been utilized by teams to perform the task. However, we 
make this statement with some caution since our results do not exclude the possibility 
that a synchronized relationship might have existed at some temporal lag, potentially 
indicating a linear leader-follower coordination strategy. We are currently examining 
this issue. 

Findings regarding the manipulated effect of task difficulty revealed lower nonli-
near wrist coupling strength (reduced AMI) in conditions where the task was more 
difficult. In interpreting this effect, it is first important to mention that this finding 
does not insinuate that wrist movements were completely decoupled, since significant 
nonlinear coupling was confirmed through surrogation tests. Rather, this finding indi-
cates that nonlinear coupling strength was simply less in higher difficulty conditions. 
Second, if the only other information provided is that performance was also decreased 
by increases in task difficulty, then one possible explanation is that higher difficulty 
may have inhibited the ability of teams to coordinate effectively, leading to decreased 
coupling and reduced performance. However, insight gained from the correlation 
analyses supports a different interpretation; namely, that a decrease in wrist coupling 
under higher task difficulty may have reflected a compensatory strategy. This inter-
pretation is supported by the ubiquitous set of negative correlations detected between 
nonlinear wrist coupling and team performance across task difficulty conditions,  
indicating that decreases in wrist coupling strength were associated with increases in 
performance.  

As mentioned in section 1.1, we found a similar relationship between team perfor-
mance and PBC (in cardiac IBIs) in a previous study [5]. In that study, we posited that 
a negative correlation may have indicated general team coordination plasticity or a 
complimentary coordination strategy featuring asynchronous and/or anti-phase team 
member behaviors [25] – either of which could result in decreases in nonlinear coupl-
ing strength. Here we come to similar conclusions. 

In considering sensitivity differences in the set of nonlinear measures we em-
ployed, it appears that our results lead to mixed interpretations. On one hand, because 
AMI was the only measure to detect meaningful changes in wrist coupling induced by 
the experimental manipulation of task difficulty, it could be argued that this metric 
was more sensitive than the others. However, %REC exhibited the strongest correla-
tions with performance, hinting that it was best in accounting for individual team 
performance differences. While the results of this study cannot definitively address 
issues of measure sensitivity across coupling metrics, they raise interesting possibili-
ties. To formally address the issue further we have planned a series of modeling expe-
riment wherein coupling strength will be mathematically manipulated, allowing for 
true quantitative comparisons. 
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3 Conclusion 

In this manuscript we presented an overview of PBC with a focus on studies that have 
explored its utility as an index of team processes and performance. In addition, we 
provided an overview of important measurement issues in PBC research, followed by 
a simple empirical study that contextualized and accentuated this matter. Overall, we 
believe that examination of PBC is a fruitful area for ongoing research, since it not 
only appears to be informative for basic theory development of team dynamics but 
also has the potential for use in real-time team monitoring. 
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Abstract. Electroencephalography (EEG) has been used to reliably and non-
invasively detect fatigue in drivers. In fact, linear relationships between EEG 
power-spectral estimates and indices of driver performance have been found 
during simplified driving tasks. Here we sought to predict driver performance 
using linear regression in a more complex paradigm. Driver performance varied 
widely between participants, often varying greatly within a single driving ses-
sion. We found that a non-selective linear regression model did not generalize 
well between periods of stable and erratic driving, yielding large errors. How-
ever, prediction errors were significantly reduced by training a linear regression 
model on stable driving for each participant. To provide a confidence estimate 
for the stable driving model, a quadratic discriminate classifier was trained to 
detect the transition from stable to erratic driving from the EEG power-spectra. 
Combined, the regression model and classifier yielded significantly lower pre-
diction errors and provided improved discrimination of poor driving. 

Keywords: EEG, Regression, Driving, Fatigue, Power Spectral Density. 

1 Introduction 

Fatigue and drowsiness are among the primary contributors to vehicular accidents, 
being estimated to have contributed to between 40-90% of all accidents [1-2]. In fact, 
a 2005 poll conducted by the National Sleep Foundation found that about 60% of 
adult drivers admitted to getting behind the wheel in a drowsy or fatigued state [3]. As 
a result, the prevention of these accidents has become a major focus of driver safety 
research.  

To date, many systems have been designed to detect driver fatigue. Typically, 
these systems have relied on vehicle mounted sensors which correlate certain beha-
viors, such as vehicle dynamics, driver posture, or eye-blinking characteristics [4-6]. 
However, recent research has argued that monitoring the neural correlates of fatigue 
using electroencephalography (EEG) may provide a more reliable estimate of driver 
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fatigue [7-8]. Further, a number of these studies have found significant correlations 
between neural signals and fatigue (see Lal and Craig, 2001, for a review [9]).  Intri-
guingly, the results of these studies have varied almost as widely as their respective 
tasks, suggesting many differing assessments of the influence of fatigue on neural 
signals [10], leading to the conclusion that the specific influence of fatigue is task 
dependent [11-12]. 

Nonetheless, the observation of measureable changes in brain activity with fatigue 
has led to the development of several methods for classifying driver fatigue spanning 
a wide variety of classification approaches to predict the onset of fatigue [13-16], as 
well as discriminate between multiple levels of fatigue within a given driver [17-18]. 
While these works have been entirely fatigued-based, in a series of recent works, Lin 
and colleagues avoided the fatigue construct entirely and described a linear relation-
ship between indices of driver performance and power-spectral estimates of EEG data 
[19-21]. In fact, they have shown that this simple relationship can be used to directly 
predict driver behavior based solely on neural activity recorded during a driving task 
with minimal processing of the EEG data [19].  

However, the driving simulation used in their task was highly simplified. It has 
been shown that increases in task complexity can have a significant effect on the on-
set and characteristics of driver fatigue, and may be partly responsible for the diverse 
findings of the neural correlates of fatigue [11-12, 23]. As a result, it remains unclear 
how well a simple linear regression approach to driver performance prediction would 
translate to more complex driving tasks.  

To begin to address this question, we evaluated predictions of driver performance 
from two linear regression models similar to that described in Lin et al. (2005a) in a 
more realistic driving scenario requiring participants to not only control vehicle head-
ing but also control the speed of the vehicle and abide by posted speed limit signs. 
One of these models was trained on the full set of driving data during the training 
period while the other model only considered those points which reflect stable driving 
for that participant. Both models were then evaluated for the same testing data. We 
found significantly better performance of a linear model trained only on reasonably 
stable driving versus a linear model trained on the full range of behavior. Ultimately, 
we determined that the application of this type of performance prediction model bene-
fits when coupled with an additional measure to diagnose changes in the relationship 
between power spectral estimates of EEG and driving behavior, thereby providing a 
confidence measure of the model prediction and insight into the driver's state. 

2 Methods 

2.1 Experimental Design 

Participants. Eleven participants (aged from 20 to 40 years) participated in a virtual 
reality-based highway driving experiment. Each participant was briefed on the  
experimental equipment and procedures and signed an informed consent form.  
The voluntary, fully informed consent of the persons used in this research was ob-
tained as required by Title 32, Part 219 of the Code of Federal Regulations and Army 
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Regulations 70-25. The investigator has adhered to the regulations for the protection 
of human participants as prescribed in AR 70-25. 
 
Driving Simulation. Participants completed two separate driving sessions: the first, 
an acclimation session, lasted 15 minutes, the second experimental session consisted 
of 45 minutes of continuous driving. Before each session, participants provided an 
estimate of their fatigue level via the Karolinska Sleepiness Scale (KSS) [23].  
Additionally, participants were asked to verbally report their fatigue score on this  
scale every 15 minutes during the second experimental session without interruption of 
driving. 

Participants drove down a straight, infinitely long highway and were instructed to 
keep their vehicle as close to the center of the right-hand lane as possible. Throughout 
the session, after participants had maintained the vehicle within the appropriate lane 
for 8-10 seconds, a lateral perturbation was applied to the vehicle, causing it to begin 
to veer off course. The strength of the perturbation increased until the participant 
made a corrective steering adjustment (defined as a steering wheel deflection of 1 
degree in the opposite direction of the perturbation) at which point the perturbation 
ceased allowing the participant to return the vehicle to center of the driving lane. The 
perturbation would ramp down automatically after approximately 3 seconds if no 
correction was made, however the participant was still required to correct the vehicle's 
heading and position. If the participant did not perform a corrective steering adjust-
ment, the vehicle would continue to veer out of the lane and off the road until the 
vehicle was 21.9 meters outside of the lane, at which point the participant would be 
alerted to regain control of the vehicle via an auditory cue.  

In addition to maintaining control of the vehicle's direction, participants also main-
tained appropriate speed for the vehicle during the testing session via accelerator and 
brake pedals. Participants were instructed to obey posted speed limit signs which 
appeared on the right-hand side of the road during the driving session. The speed limit 
was 45 mph for the majority of the session; however at three different points during 
the 45minute driving session the posted speed limit was reduced to 25 mph. 
 
Data Collection and Analysis.  Vehicle, EEG, and eye-tracker data were collected 
simultaneously throughout the experiment. 

Vehicle Status and Performance Metrics. Vehicle status (position and dynamics) 
was monitored throughout each session, sampled at 90 Hz for participants 1-7 and at 
100 Hz. for participants 8-11. To estimate driving performance, the vehicle's lateral 
deviation was calculated for entire session as the difference between the vehicle's 
lateral position and the center of the driving lane. To account for the tendencies of 
some participants to consistently position the vehicle to the right or left of the center 
of the lane, the median of their offset was subtracted to minimize this bias. Lane Dev-
iation (LD) was then calculated as the absolute value of the lateral deviation through-
out the driving session. LD values over the entire session were smoothed using a 90 
second moving average filter with 2 second increments [19]. 

Electroencephalography. EEG signals were collected using a 64-channel Biosemi 
Active Two EEG system (Amsterdam, Netherlands), sampled at 2048 Hz and down-
sampled to 256Hz off-line. Electrode impedance was kept at or below 5 MΩ. Using 
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the embedded timing pulses and event signals, the EEG time series was synchronized 
with the vehicle status and driving performance data. Following this, the data was 
bandpass filtered to remove signals greater than 50 Hz and less than 5 Hz. The power 
spectral density estimates (PSD) for each channel were calculated using a 750 point 
Hanning window with 250 point overlap. Each channel and frequency power estimate 
of the 1-40 Hz bands was then smoothed with the same 90 second moving average 
filter used to smooth the lane deviation data, reducing variance and preserving the 
temporal alignment of the PSD and LD data streams. As was described in Lin et al. 
(2005a), correlation between PSD estimates and LD were often strongest for channels 
Cz and Pz leading to their selection for regression analysis. The same general trend 
was observed in the present study and thus the same two locations were used for  
performance prediction. 

Eye tracking. Eye position was monitored but was not used for the analysis. 

2.2 Experimental Design 

Cross-Validation Preparation. The aligned EEG and vehicle data from the experi-
mental session were split into three 15 minute blocks to train and test each prediction 
approach. Three-fold cross-validation was conducted such that two blocks were used 
to train the prediction algorithm and the remaining block was used to assess predic-
tion performance. To eliminate overlapping data between training and testing sets, 90 
seconds of the training data that abutted the testing data was removed prior to each 
cross-validation iteration. 
 
Full-Data Regression. Following channel selection, principle component analysis 
(PCA) was then performed on the combined PSD estimates of both channels of the 
training session. Using these eigenvectors, both training and testing PSD estimates 
were projected into the component space and only the scores from the top 50 compo-
nents (based on their eigenvalues) were preserved. The projected PSD data of the 
training set were used to calculate the coefficients of a 51 parameter (50 component 
vectors + offset) linear regression model of lane deviation. These coefficients were 
then applied to projected PSD testing data to generate a prediction of LD over  
this period. The predicted and measured LD values were compared for each epoch  
to characterize the predictive accuracy of the algorithm. This was repeated three 
times-- once for each cross-validation block. 
 
Stable-Driving Regression. Driving performance varied widely not only between 
participants, but also within a single driving session for several of them. This high 
degree of variability resulted in dramatically different regression coefficients for a 
single participant's driving behavior depending upon which period of the driving ses-
sion is used to train the model. To generate a regression model that yields more stable 
performance across an experimental session, we attempted to fit a linear regression 
model to a narrower subset of the driving performance data that reflected the more 
consistent driving epochs. To accomplish this, we defined a behavioral threshold for 
stable regression based on each participants individual driving habits: 
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"Stable-Driving"    0.5 ,          (1) 

where  and ,  are respectively the median and standard deviation of lane devia-
tion during the training period for participant i. A linear regression model was subse-
quently calculated using only the LD data and PSD estimates from the indices in 
which LD values were below this threshold. In essence, LD values below this thre-
shold represents a regime of stable driving performance; henceforth we refer to this 
sub-threshold performance as "stable driving”.   

Performance Classification and Confidence Estimate. Given that the "stable-
driving" regression model was trained on a subset of the data when performance was 
generally consistent, the reliability of the model is somewhat limited during the pe-
riods of less stable driving where the shift in the behavior may be accompanied by a 
shift in the natural relationship between PSD estimates and driving performance. In 
these cases, the predictions of the stable-driving model may be suspect. It would be 
useful to be able to predict when the participant's performance may be deviating from 
stable driving based on the patterns observed in the PSD estimates, thereby providing 
an estimate of the confidence in the predictions of the stable-driving model. To ac-
complish this, a Quadratic Discriminate Classifier (QDC) was developed by assigning 
sub-threshold epochs to one class and supra-threshold epochs as another class. The 
PSD data fed into the classifier was treated identically to that used for regression with 
the one exception that the PSD estimates were smoothed with only a 4 second sliding 
window with 2 second steps. This was done to preserve a higher degree of sensitivity 
of the classifier to more rapid changes in PSD.    Based on the PSD data of the testing 
period, if the QDC predicted stable driving conditions, we considered the predictions 
of the stable-driving model to be valid.  However, if a transition to supra-threshold 
driving (class 2) was predicted by the QDC with 95% confidence, we considered the 
stable driving model’s estimates to be invalid. In this way, the QDC serves as binary 
estimate of our confidence in the stable driving model.  

Statistical Analysis. To compare predictive performance between models, regression 
coefficients, mean squared error (MSE) of the prediction, and identification of supra-
threshold LD values within a given participants and block were compared directly 
using a paired Wilcox test unless otherwise stated. Significance threshold was set to a 
p-value of 0.05.  

3 Results 

3.1 Driving Performance 

Driving performance varied greatly between participants as some participants main-
tained a high level of control of their LD whereas others exhibited periods of large LD 
or highly variable driving performance. For instance, 3 of the 11 participants’ average 
LD did not exceed 0.5 meters, whereas 3 other participants produced averaged LD in 
excess of 2 full lanes outside of the correct lane. 
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While the stable-driving model yielded significantly smaller predictions errors, the 
model often under-estimated large increases in LD and missed significantly more 
epochs of supra-threshold driving than did the linear model (p<0.05). This suggests 
the stable-driving model alone may not reliably predict when the participant begins to 
drive poorly. As previously described, the QDC output also serves as a predictor of 
supra-threshold driving. Combining the outputs of the classifier and stable-driving 
models may result in a more accurate estimate of sub- and supra-threshold driving 
epochs than the full-data model.  

With respect to identifying periods of supra-threshold LD, the full-data model 
yielded predictive accuracy ranging from 56% to 100% across participants, with an 
average accuracy of 83.3 ± 15% for the population. The combined stable-driving and 
QDC system preformed better, yielding a range between 71% and 100%, with a sig-
nificantly greater average accuracy of 89.8 ±11% (p<0.05). In addition, the number of 
false positives across the population, i.e. predictions of large LDs, was significantly 
greater in the full-data model compared to the combined approach (p<0.05), with no 
difference in the number of false negatives between approaches. Interestingly, the 
combined QDC and stable-driving predictions did not out-perform the QDC predic-
tions of supra-threshold driving alone (88.6% average accuracy). This suggests that 
while the linear regression can provide a higher resolution estimate of the driving 
performance, the classifier was necessary to more reliably predict periods of the su-
pra-threshold driving in this scenario, even when a more accurate linear model is 
used.  

4 Discussion 

In this study, we found that a linear algorithm indiscriminately trained on participants’ 
driving data yielded larger predictions errors than one which was trained on a subset 
of driving data representative of stable-driving behavior. The stable-driving regres-
sion model was generally accurate during these periods of the testing data; however, 
performance deteriorated during periods of less stable driving. In this experiment, 
large or variable LDs were associated with a lack of vigilance on the part of the driv-
er. Thus, the inability of the stable driving model to reliably predict far beyond the 
stable driving regime may be evidence of a shift in the natural relationship between 
PSD estimates and driving performance. This may in part explain why the model 
trained on the full set of data was less accurate, particularly in those cases where driv-
ing performance varied greatly. 

Several researchers have recently applied non-linear algorithms to classify fatigue 
onset from EEG data with high degrees of accuracy [16-17], and in some cases dis-
criminate between multiple levels of fatigue [18-19]; while others have shown broad-
er network-based shifts in neural activity associated with fatigue driving performance 
[21]. Thus, it is possible that the onset of fatigue is accompanied by a more complex 
shift in the patterns of brain activity than can be characterized by a single linear algo-
rithm. Another explanation for this is that additional processes or events not related to 
fatigue and drowsiness could have affected the relationship between PSD estimates 
and driver performance. Fatigue is only one of many physiological constructs which  
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can affect driving behavior and alter neural activity. A system designed to predict 
driver performance in the real-world must be equipped to manage or anticipate these 
factors to allay their affects. 

Given this, we hypothesized that the predictions of a linear model may be comple-
mented by a secondary means to detect when a shift in the relationship may occur. 
Here, a quadratic discriminate classifier was trained to detect a change in the patterns 
of PSD data indicative of a transition in behavior (i.e. from stable- to errant-driving) 
in and out of a regime where a single linear model could not extrapolate to. Using this 
output, we were able to identify epochs where the stable-driving model produced 
vastly larger errors and thus indicating that the QDC provided a useful confidence 
estimate for the stable-driving model. In addition, we used the classifier output as an 
additional behavioral metric and combined those predictions with the stable-driving to 
accurately predict periods of poor driving at a significantly higher rate than the linear 
model as well as produce significantly fewer false positives. As a result, we conclude 
that while a linear model trained on a limited regime of stable driving behavior yields 
improved predictions of driving behavior, this approach is greatly benefitted by a 
complementary method to specifically identify non-stable driving.  

A potential future application for a regression/classification system as described 
here is to use the classifier to toggle between regression models based on the pre-
dicted state of the driver. That is, if a different relationship between PSD and LD is 
found during poor driving performance (or N other behavioral regime), the informa-
tion provided by the classifier could also serve to switch between regression models 
trained specifically for the classified driver states. Further, the accuracy and reliability 
of such an EEG-based system may be enhanced by leveraging other sources of infor-
mation regarding the driver’s state such as eye-tracking, posture etc. This multimodal 
approach has been shown to be effective for detecting fatigue onset in drivers [15, 24] 
and would be of great benefit to an automated system deciding to trust the output of 
one or multiple predictions of driving performance.  
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Abstract. Synthetic speech has a growing role in human computer interaction and 
automated systems with the emergence of ubiquitous computing such as smart 
phones, car multimedia control and navigation systems. Cognitive processing 
costs associated with comprehension of synthetic speech relative to comprehen-
sion of natural speech have been demonstrated with behavioral (reaction time, ac-
curacy, etc.) and self-reported (ratings, etc.) measures. In this neuroergonomics 
study, we have used optical brain imaging (fNIR: functional near infrared spec-
troscopy) to capture the brain activation of participants while they were listening 
to speech with varied quality, as well as natural speech. Results indicated a diffe-
rential hemodynamic response with speech quality. As fNIR systems are safe, 
portable and record brain activation in real world settings, fNIR is a practical and 
minimally intrusive assessment tool for user experience researchers and can  
provide an objective metric for the design and development of next generation 
synthetic speech systems.  

Keywords: Optical Brain Imaging, functional near infrared spectroscopy, fNIR, 
synthetic speech, perception, auditory processing. 

1 Introduction 

Speech perception is essential to human language and can be defined as the ability of 
a listener to identify and appropriately utilize the phonetic categories from audio sti-
muli input. It is known that separate prefrontal regions are specialized for the  
controlled processing of semantic information [1]. This study investigates cortical 
activation during different qualities of synthetic speech perception and processing as 
measured by optical brain imaging in human computer interaction settings. 
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Past research indicates that the human brain is wired and optimized for processing 
human voices (natural speech) and indicates that there are additional cognitive 
processing costs associated with processing and comprehension of synthetic speech 
[2-4]. Behavioral studies compare favorably for natural speech in comprehension 
although the difference might be slight in some cases. However, there currently is no 
tool available to user experience researchers to elicit objective measures of cognitive 
workload in ecologically valid environments.  

Recent neuroimaging studies demonstrated brain activation changes with respect to 
quality (natural versus synthetic) of auditory stimuli with functional magnetic reson-
ance imaging (fMRI) [4] and positron emission tomography (PET) [1] based studies.  
Both studies found significant differences in prefrontal cortex activity as a function of 
the quality of the auditory signal. Hence, these findings suggest that additional and 
complementary brain networks in the prefrontal cortex (cognitive processing) helps 
with covering modulation in auditory input quality to keep high performance (com-
prehension). Although a listener may not be even conscious to such processing, it 
yields longer reaction times, increased mental effort and eventually fatigue.  

Validation and measurement of audio quality biomarkers and measurement using 
wearable optical brain imaging may help in the advancement of voice synthesizers 
and eventually assist in the production of synthetic speech that will sound more natu-
ral to and be easier to comprehend by human listeners.  

The specific aim of this pilot study is to identify neural correlates of auditory 
processing and its relationship to stimuli quality as measured by functional near infra-
red (fNIR) spectroscopy which is a safe, non-invasive, affordable and portable neu-
roimaging technology that can be used to monitor hemodynamic changes that occur in 
the brain, i.e., blood oxygenation and blood volume, during select cognitive tasks 
such as mental workload [5-7], task difficulty/problem solving [8-10], 
performance[11-13] and learning[13-15] assessment tasks. Moreover, fNIR data can 
be collected in quiet settings unlike functional magnetic resonance imaging (fMRI) 
that exposes subjects to noise and confines them to restricted spaces and a supine 
position during the data acquisition process. These qualities pose fNIR as an ideal 
candidate for monitoring cognitive activity-related hemodynamic changes not only in 
laboratory settings but also under ecologically valid conditions – real world environ-
ments, consistent with the neuroergonomic [16] approach. A recent review of fNIR 
literature by Dieler et al. [17] summarizes the results of speech processing assessment 
in language-related disorders in the fields of neurology (i.e. aphasia and epilepsy) and 
psychiatry (i.e. disruptions of speech production in mood disorders, schizophrenia, 
dementia and anxiety disorders, as well as dyslexia and vigilance). 

For the experimental paradigm, fNIR measures were integrated into a sentence lis-
tening task. The protocol involved listening to a sentence three consecutive times and 
rating the sentence each time for intelligibility, naturalness and overall quality in a 
balanced order. There were five different sentences (i.e., topics related to calendar 
information, email, navigation, sms and weather) and each were generated with three 
different quality levels and also recorded as natural speech being the highest quality. 
A 16-channel continuous wave (CW) fNIR system designed by the Optical Imaging 
Team at Drexel University (see [5]) was used to monitor the prefrontal cortex during 
task performance.  
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2 Methods 

2.1 Participants 

Four right-handed participants (assigned using the Edinburgh Handedness 
Inventory[18]) between the ages 22 to 25 volunteered for this study with average LQ 
of 72.64±17.13. Participants denied having hearing impairment, neurological or psy-
chiatric history. All participants were medication-free, with normal or corrected-to-
normal vision. Participants gave written informed consent for the study, which was 
approved by the Institutional Review Board at Drexel University, and were paid for 
their participation. 

2.2 Experiment Protocol 

The speech quality task and the synthetic speech recordings used in the study were 
originally developed at Intel Labs and were implemented as a Matlab application 
based on ITU Recommendation P.835 [19]. Before the task, a hearing test was per-
formed for each participant and followed by a practice session with two trials before 
the task started. Each trial of the task started with listening to an audio recording (sen-
tence) of about 5 seconds length. There were 5 different sentences and 4 levels of 
audio quality: natural (N) + 3 levels of synthetic (S1, S2 and S3). The synthetic 
speech synthesizers have different system requirements in terms of memory foot-
prints. Synthesizer S1 required 250 MB, S2 required 1 MB and S3 required 50 MB. 
Participants were asked to rate intelligibility, naturalness and overall quality of the 
sound after listening to the each audio piece and submit selection from a scale of 1-
bad, 2-poor, 3 fair, 4-good and 5-excellent. Stimulus delivery to the subject utilized a 
calibrated playback system with an auditory amplifier (Head Acoustics HPS IV), and 
high fidelity headphones (Sennheiser HD 600). 

2.3 fNIR Data Acquisition 

The continuous wave fNIR system (fNIR Devices LLC; www.fnirdevices.com) used 
in this study is connected to a flexible sensor pad that contains 4 light sources with 
built in peak wavelengths at 730 nm and 850 nm and 10 detectors designed to sample 
cortical areas underlying the forehead. With a fixed source-detector separation of 2.5 
cm, this configuration generates a total of 16 measurement locations (optodes) [5, 20]. 
For data acquisition and visualization, COBI Studio software [21] (Drexel University) 
was used. The sampling rate of the system was 2Hz. During the task, a serial cable 
between the fNIR data acquisition computer and stimulus presentation computer was 
used to transfer time synchronization signals (markers) that indicate the start of  
sessions and onset of audio stimuli. 
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Fig. 1. Functional Near Infrared Spectroscopy sensor (head band) and optode locations visua-
lized on anterior view brain surface image [5] 

2.4 Data Analysis 

For each participant, raw fNIR data was low-pass filtered with a finite impulse re-
sponse, linear phase filter with order of 20 and cut-off frequency of 0.1Hz to attenuate 
the high frequency noise[5]. Motion artifact contaminated sessions and saturated 
channels (if any), in which light intensity at the detector was higher than the analog-
to-digital converter limit were excluded[22]. Using time synchronization markers, 
fNIR data segments for rest periods (5 seconds before onset of audio) and task periods 
(audio file length plus 5 seconds) were extracted. Blood oxygenation changes within 
dorsolateral prefrontal cortex for all optodes were calculated using the Modified Beer 
Lambert Law (MBLL) for task periods with respect to rest periods at beginning of 
each task[5]. Average oxygenation change for each session was used as the dependent 
measure. For statistical analysis, one way repeated measures ANOVAs with 4 (Voice: 
Natural + 3 types of Synthetic) levels on both self-reported ratings and oxygenation 
changes were calculated for each optode. To account for violations of sphericity, 
Huynh Feldt corrections were used with Tukey Kramer post hoc tests to determine the 
locus of significant main effects. The significance criterion was 0.05. For multiple 
comparison correction, False Discovery Rate (FDR) approach was used [23]. This 
FDR based procedure has been reported to provide better balance between specificity 
and power than other available methods for multi-channel near-infrared spectroscopy 
functional neuroimaging data [24]. 

3 Results 

3.1 Self-reported Measures 

Subjective ratings recording during the first presentation of each sentence were sub-
mitted to a repeated measures one-way (speech quality) ANOVA. The self-reported 
ratings increase with the available amount of memory for respective recorded speech 
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synthesis solution. There was a significant main effect for speech audio quality 
(F3,64=66.3, p<0.05) and is depicted in Fig. 2. Tukey post hoc tests indicated that each 
group was different from other (q0.05/3, 9 =4.415, p<0.05) and showed that the natural 
speech had the highest ratings. 

 

Fig. 2. Average self-reported measures for each speech quality level. Error bars are standard 
error of the mean (SEM) 

3.2 fNIR Measures 

Oxygenation values for all trials were submitted to a repeated measures one-way 
(speech quality) ANOVA for each optode separately, after FDR corrections only  
 

 
Fig. 3. Average task related oxygenation changes for all four speech quality levels. Error bars 
are standard error of the mean (SEM). 
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optode 13 (which approximately taps middle frontal gyrus) provided a significant 
response, depicted in Fig.3. There was a significant main effect for speech audio qual-
ity (F3,44=10.27, p<0.05) and is depicted in Fig. 3. Tukey post hoc tests indicated that 
showed that the natural speech had significantly lower oxygenation compared to S2 
and S3 (q0.05/3, 9 =4.896, p<0.05).  

3.3 Efficiency Analysis 

Efficiency analysis provides a multidimensional view by connecting outcome and effort 
[25]. For this study, we estimated outcome with self-reported ratings since they indicated 
how much participants liked the speech inputs. For effort, we have used oxygenation 
changes as an indicator of cortical processing performed during that input as an objective 
assessment of cognitive effort.  Normalization of both self-reported and oxygenation 
measures were performed by calculating z-scores with each subject separately.  

In this efficiency graph, the fourth quadrant represents low efficiency, where mini-
mum outcome is achieved with maximum effort. The second quadrant represents high 
efficiency where maximum outcome is achieved with minimal effort. The diagonal y=x 
is the neutral axis, where efficiency (E) is zero and effort and performance are equal. 
The Euclidian distance from the y=x axis (where E=0) indicates the efficiency for each 
condition. Efficiency graph for four speech quality levels (N, S1, S2 and S3) using all 
subjects’ data is provided in Figure 4 below.   To determine the relationship between 
normalized self-reported rating of speech audio quality and normalized oxygenation a 
zero-order correlation coefficient was calculated (r= -0.417, p <0.001). Also, calculated 
efficiencies for each four levels are listed within the graph. 

 

Fig. 4. Efficiency graph with normalized self-reported ratings (Outcome) vs. normalized oxy-
genation (Effort) graph for all four speech audio quality. Second quadrant is high efficiency and 
fourth quadrant is low efficiency area. y=x is where efficiency is zero.  
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4 Discussion 

The purpose of this study was to test if cortical hemodynamic responses as measured 
by wearable optical brain imaging can detect a difference in prefrontal cortex with 
natural and synthetic speech. Our results indicate that oxygenation changes at optode 
13, middle frontal gyrus had significant differences across varying levels of audio 
quality. In previous fMRI studies, a core group of regions beyond the auditory cortic-
es, including the middle frontal gyrus has been shown to be preferentially activated 
for familiar speech categories and for novel non-speech audio [26]. Our results are 
also supporting the results from speech quality studies with fMRI and PET [1, 4]. 

Comparison of oxygenation changes with self-reported measures indicated a nega-
tive (r = -0.417) association between quality of speech and oxygenation: higher nor-
malized oxygenation was observed for lower quality rated speech. Approximately, 
17.4% of the variance in normalized self-reported speech quality output ratings can be 
explained by normalized oxygenation.  

The efficiency analysis also provides insight into the relationship between the au-
dio speech quality and neural activation representing cognitive effort. For example, 
oxygenation of natural speech was minimal, whereas the self-reported rating for it 
was highest and this resulted in highest efficiency rating as depicted in Figure 4. Fur-
thermore, after applying the within subject normalization, the efficiency analysis indi-
cated a transition from high efficiency (natural speech) to low efficiency (S2&S3).  

Efficiency values (E) of each speech (N, S1, S2 and S3) that is the distance from 
y=x axis, followed the audio quality level; N had the highest and synthetic speeches 
followed the memory footprint used for the synthetic speech generation. The self-
reported ratings and oxygenation values followed the same pattern, except for S2 and 
S3 oxygenation levels. Although the difference between oxygenation of S2 and S3 
was not different, S2 had slightly lower oxygenation. One interpretation of this find-
ing is that participants gave up processing the S2 at least in some trials perhaps by 
knowing that S2 had the lowest audio quality rather than the highest audio quality.  
However, additional experimentation is required to substantiate this speculation.   

This study tested the effects of synthetic and natural speech in anterior prefrontal 
cortex and provides important albeit preliminary information about fNIR measures of 
the anterior prefrontal cortex hemodynamic response and its relationship to mental 
workload and speech perception. Level of audio quality does appear to influence the 
hemodynamic response in the dorsolateral/ventrolateral prefrontal cortices, at least for 
some complex sentences and with synthetic audio speech. Since fNIR technology 
allows the development of mobile, non-intrusive and miniaturized devices, it has the 
potential to be deployed in future human factors research environments to provide 
objective, task related brain-based measures of speech quality and may help in the 
design and development of complex human machine systems. 
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Abstract. There is growing evidence that there are functional changes in the 
brains of individuals with substance use disorders. Numerous studies utilizing 
functional magnetic resonance imaging (fMRI) have shown that drug cues elicit 
increased regional blood flow in reward-related brain areas among addicted 
participants that is not found among normal controls. This finding has prompted 
leading investigators to suggest fMRI might be useful as a diagnostic or 
prognostic biomarker of addiction severity. However, fMRI is too costly for 
routine use in most treatment facilities. Functional near-infrared spectroscopy 
(fNIRs) offers an alternative neuroimaging modality that is safe, affordable, and 
patient-friendly. This manuscript reviews evidence that fNIRs can be used to 
differentiate prefrontal cortical responses of current alcohol dependent 
participants from alcohol dependent patients in treatment for 90-180 days. 
Differential responses to both alcohol and natural reward cues in both groups 
suggests fNIRs might serve as a clinic-friendly neuroimaging technology to 
inform clinical practice.  

Keywords: Addiction, alcoholism, neuroimaging, functional near infrared 
spectroscopy, fNIRs, functional magnetic resonance imaging, fMRI, biomarker. 

1 Introduction 

A variety of techniques have been used to elucidate the pathophysiology of addiction, 
which includes abnormalities in brain structure, function, connectivity, and receptor 
pharmacology [1-3]. Recent neuroimaging studies have provided increasing evidence 
that there are indeed functional changes in the brains of individuals with substance 
use disorders (e.g., [2-4]). These functional changes have significant deleterious 
effects on people’s behavior, and leave them at risk for continued substance abuse and 
its consequences.  
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Functional magnetic resonance imaging (fMRI) has been an important tool in the 
effort to understand the neurocircuitry underlying various aspects of addiction [1-3]. 
Numerous fMRI studies have now demonstrated that drug addicted individuals show 
increased regional blood flow in reward-related brain areas in response to drug cues 
that do not occur among normal controls. However, these studies have yet to be 
translated into clinically useful information that can be used to directly inform 
diagnosis or treatment. The consistency of fMRI-based studies on the functional 
differences between addicted participants and healthy controls, however, has led 
several prominent investigators to suggest that fMRI could be used as a biomarker of 
addiction severity [1, 4, 5] or treatment outcome [5]. Although fMRI is the current 
gold standard for non-invasive neuroimaging, and holds promise as a biomarker of 
addiction severity, the size, cost, and infrastructure required to operate an MRI system 
makes it untenable for use in a large majority of substance abuse treatment clinics. 

Functional near-infrared spectroscopy (fNIRs), on the other hand, offers an 
affordable neuroimaging technology that could be readily implemented in a many 
clinical settings. fNIRs is a noninvasive optical imaging technique that can be used to 
monitor changes in the concentration of oxygenated hemoglobin (oxy-Hb) and 
deoxygenated hemoglobin (deoxy-Hb) during functional brain studies [6-10]. 
Analogous to fMRI, fNIRs provides information on local changes in blood 
oxygenation concentrations during neural activity, largely from the capillary beds. 
fNIRs can also be safely used for repeated measures on the same individual. In 
contrast to fMRI, however, fNIRs can be engineered to provide neuroimaging systems 
that are relatively inexpensive, portable, boast rapid application time (5-10 minutes), 
and near-zero run-time costs. fNIRs is also relatively robust to movement artifacts in 
comparison to fMRI, allowing more ecologically valid experimental paradigms. 
Participants can be sitting and working at a computer, standing, even walking on a 
treadmill while being monitored with fNIRs. Algorithms have been developed to 
remove motion artifacts should they occur during desktop as well as ambulatory use 
[11-13]. Having an affordable neuroimaging technology that can be implemented in a 
typical clinical office makes it feasible for routine clinical use at drug and alcohol 
treatment centers.  

fNIRs does have two important limitations relative to fMRI. First, with greater 
depth of penetration, there is an exponential decrease in the amount of light that 
scatters back to the surface of the scalp. Given the magnitude of oxygenation changes 
associated with cognitive/emotional activity, this limits current fNIRs neuroimaging 
to the outer cortex (2-3 cm) of the brain [14]. Second, due to the scattering properties 
of light interacting with biological tissue, spatial localization is on the order of 1 cm2, 
versus the 1-2mm2 of fMRI. Despite these limitations, if a given phenomenon of 
interest is located in accessible cortex, fNIRs provides the potential for safe, 
comfortable, affordable, and portable neuroimaging.  

The utility of fNIRs in addiction medicine derives from two emerging themes in 
the addiction literature; first, that the dorsolateral/ventrolateral prefrontal cortex plays 
an important role in the individual’s response to both drug cues and natural rewards, 
and second, that anhedonia, or failure to respond to natural rewards, plays a critical 
role in relapse among patients in treatment for addiction. It is well-established that the 
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reinforcing effects of drugs of abuse are mediated by the meso-corticolimbic 
dopaminergic system [15,16]. A large number of neuroimaging studies of cue 
reactivity have identified a distributed neural network that is activated by drug- and 
alcohol-related stimuli among participants with drug addiction [1, 17-21]. Until 
recently, theories of addiction focused primarily on reward processes mediated by 
mesolimbic dopaminergic circuits (e.g., [22]). However, recent studies suggest that 
dorsolateral pre-frontal cortex (DLPFC), orbitofrontal cortex (OFC) and anterior 
cingulate cortices, comprise a mesocortical dopamine circuit involved in behavioral 
control mechanisms as well as in the conscious experience of drug intoxication [1, 
23]. Drug cues are known to be perceived as highly appetitive by non-treatment 
seeking opiate addicts [24, 25]. Drug users selectively attend to drug-related cues at 
the expense of other stimuli (e.g., [26]), and attention is largely supported by 
dorsolateral prefrontal areas [27]. Furthermore, in their 2004 review of the cued 
response literature, Wilson et al. [18] suggested that differential activation in areas of 
DLPFC and OFC in response to drug cues may be related to treatment status. Among 
neuroimaging studies that examined non-treatment seeking individuals, 8 of 10 found 
activation in DLPFC, whereas only 1 of 9 studies that examined treatment-seeking 
individuals found activation in either DLPFC or OFC. 

In contrast, non-addicted individuals preferentially respond to natural reward cues 
rather than drug cues. Whereas drug users are inclined to perceive drug-related cues 
as positively valenced, non-users are not [28-30]. Neuroimaging studies have shown 
that the long-term use of drugs of abuse decreases dopamine (DA) striatal D2 
receptors and DA release [17], resulting in diminished responses to natural rewards. 
Because the large and long-lasting increases in DA induced by drugs of abuse are still 
able to activate the compromised reward circuits, whereas natural reinforcers are not, 
the salience of drug cues over natural reinforcers is thought to fuel relapse [17,31]. 
These attentional and evaluative biases are posited to operate automatically, outside 
awareness, and to exert a controlling influence over drug-taking behavior [32]. As 
such, anhedonia, or the inability to experience natural rewards as reinforcing, is 
gaining as a central construct in our understanding of relapse.  

Theoretically, the prefrontal cortex plays a critical role in the integration of 
motivational and cognitive information, and in mediating the neural basis for adaptive 
processing of incentive stimuli [18]. It is also involved in the assignment of emotional 
significance to a stimulus and producing an affective state in response [33]. These 
observations parallel developing models of DA that view it not only as a 
neurotransmitter of reward, but also as playing a role in signaling the salience of 
events (including aversive, rewarding, novel, and unexpected stimuli), in driving 
motivation, in predicting reward - or failure to receive it, and in facilitating memory 
consolidation of salient events [1, 17, 23]. In light of this research, recent theories 
have begun to emphasize the critical role of cortical function in drug abuse (e.g., [1]). 
Goldstein & Volkow [1, 23] have proposed a model that conceptualizes drug 
addiction as a syndrome of impaired response inhibition and salience attribution. In 
their model, the core of drug addiction is a loss of self-directed, volitional behaviors 
to automatic processes driven by the primary need for drug in lieu of other rewarding 
stimuli. Disruption of prefrontal top-down processes (mediated by dopaminergic 
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processes) releases behaviors that are typically tightly monitored and regulated. If 
human drug addiction, indeed, down-regulates the frontal cortex and its supervisory 
functions, the role of higher cognitive and self-monitoring processes in addiction are 
critical to our understanding of relapse prevention. Growing evidence for the role of 
prefrontal cortex in addiction, coupled with research suggesting that neuroimaging 
can be used to predict relapse [34-37], makes fNIRs a viable neuroimaging 
technology that could readily be used in the clinical office, or even in a bar setting, to 
provide an objective measure of diagnostic or prognostic utility.  

2 Functional Near-Infrared Spectroscopy in Addiction 
Research 

Bunce et al [38] utilized fNIRs to evaluate the hypothesis generated by Wilson et al. 
[18], i.e., that current alcohol-dependent participants with no motivation to stop 
drinking would show increased activation in DLPFC/OFC to alcohol cues relative to 
patients who had been in treatment for 90-180 days and social drinkers. They also 
evaluated the participants’ responses to natural reward cues, predicting reduced 
response to reward cues among current drinkers relative to patients in treatment and 
social drinkers.  

2.1 Prefrontal Responses to an Alcohol Cued Response Task  

The methods for the study are presented in detail elsewhere [38]. In brief, participants 
in the study were 14 right-handed non-smokers recruited into three groups; 4 
nontreatment-seeking adult alcoholics (1 female), 6 alcoholic patients currently in 
recovery (2 females), and 4 healthy social drinkers (2 females). Diagnoses were 
assigned using the Structured Clinical Interview for DSM–IV for Axis I (Ver. 2.0), 
and daily alcohol use for the 180 days prior to intake were gathered using the Form-
90 A interview [39]. NTSA met DSM-IV criteria for Alcohol Dependence, expressed 
no interest in treatment, and had not sought treatment in the past year. RA met DSM-
IV criteria for Alcohol Dependence in early full remission, lived in a non-restricted 
environment, and reported no alcohol use for 90-180 days. This pattern of sobriety 
was the behavioral operationalization of early commitment to sobriety, as they 
reported having remained sober past the critical early (90 day) phase of relapse [40-
42], while having had the opportunity to drink. Social drinkers reported consuming 
fewer than 7 drinks per week. All participants registered a Blood Alcohol Content 
(BAC) of .000 (Alco-Sensor IV), prior to imaging, and scored 1 or less on the Clinical 
Institute Withdrawal Assessment for Alcohol-revised (CIWA-Ar; [43]).  

Participants were asked to complete a cued response task. Visual stimuli were 
presented in a block design, with each block consisting of either: a) alcoholic 
beverages, b) nonalcoholic beverages, c) visual control pictures, d) a crosshair, or e) 
natural rewards (highly palatable food). The alcohol blocks were specific to a 
beverage type (wine, beer, or liquor), with two blocks per type. After each block, 
participants rated their craving and resistance to craving in real time on 100-point 
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visual analog scales. fNIRs sensors were located over bilateral dorsolateral and 
inferior frontal gyri [44].  

The results showed that, as predicted, current drinkers had increased activation to 
alcohol cues over right middle/inferior frontal gyrus relative to participants in 
treatment as well as social drinkers (see Fig 1; F (2,11) = 7.62, p = .008; partial eta2 = 
.58). Patients in treatment showed marginally less activation to the alcohol cues than 
the social drinkers. The results were reversed in response to the natural reward cues.  

Current drinkers had significantly less neural activation in response to the natural 
reward cues than either participants in recovery or the social drinkers, whereas social 
drinkers and patients in recovery did not differ (Fig. 2). This effect was also found in 
the right hemisphere, slightly more posterior, towards inferior frontal gyrus relative to 
the area activated by the alcohol cues (Fig. 3). 

 

               

Fig. 1. Mean changes in OxyHb in response to        Fig. 2. Mean changes in OxyHb in response  
to Alcohol stimuli                                                      natural reward stimuli 

 

Fig. 3. Location of Neural Response to Alcohol Cues and Natural Rewards. Yellow = 
activation to alcohol – beverage cues; Blue = activation to natural rewards – beverage cues; 
Green = overlap in activation to both alcohol and natural reward cues (Optode 14). 
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Similar results using fNIRs imaging have been reported for patients who are in 
treatment for prescription opiate dependence. In a preliminary report, Bunce et al. 
[45] suggested that patients who had just completed detoxification for prescription 
opiates (n=7) showed increased activation to prescription pill cues in right lateral 
prefrontal cortex relative to patients who had been in extended supervised residential 
treatment for 60-90 days (n=7). The area of activation in response to the pill cues had 
substantial overlap with the results from the Bunce et al. study in alcoholics, although 
the effect size was not as large. The smaller effect size may have been due to the fact 
that the latter study looked at patients at two different stages of early treatment, rather 
than current users versus patients in extended sobriety. Both studies, however, require 
larger sample sizes and further elaboration.  

3 Conclusions 

The findings in these fNIRs studies are consistent with growing evidence from 
research employing fMRI [1, 2, 23] indicating that prefrontal cortices are involved in 
the cycle of addiction. Bunce et al. [38] found that current drinkers showed a heighted 
response to alcohol cues in lateral prefrontal cortex relative to patients in sustained 
recovery from alcohol dependence and normal controls. In contrast, natural reward 
cues elicited greater responses in right lateral prefrontal cortex from participants in 
recovery, and decreased responses from non-treatment seeking participants. Although 
the exact interpretation of these cortical responses still remains to be determined, 
increased activation among current users and patients in early recovery in this area of 
the cortex make it likely that it is related to attentional processes. Attentional biases 
towards drug-related stimuli, and a lack of attention to natural reinforcers, have been 
well documented in addiction [1,2]. These findings are consistent with Goldstein and 
Volkow’s [1, 23] impaired response inhibition and salience attribution (iRISA) model 
of addiction, which argues that disrupted prefrontal cortical function leads to a 
syndrome in which addicted individuals attribute excessive salience to the drug and 
drug-related cues, coupled with decreased sensitivity to non-drug reinforcers, and a 
decreased capacity to inhibit disadvantageous or maladaptive behaviors.  

The differential response to alcohol and natural reward cues in both current 
alcoholics and patients in extended sobriety is important for two reasons. First, 
although this was a cross-sectional study, rather than a longitudinal study, it suggests 
that the hedonic response to natural rewards, if compromised in addiction, may return 
with extended sobriety. Deficient response to non-drug related rewards is a known 
problem in treatment, and a critical factor in the addiction cycle [e.g., 1, 21], as drugs 
of abuse remain the primary source of gratification among patients in early recovery. 
An objective, brain-based measure of a patient’s hedonic capacity would be helpful to 
improve treatment planning. Second, this finding answers an important potential 
criticism of the Bunce et al. study, i.e., that the current drinkers had imbibed alcohol 
much more recently than the patients in recovery. The differential cortical responses 
to alcohol and natural reward cues suggest that the results cannot be attributed to a 
general hypometabolism in cortical response among either group. Both current and 
recovering alcoholics had cortical responses to relevant stimuli, but to psychologically 
different stimuli.  
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There are other limitations to these studies. First, given the small sample sizes, 
these results must be interpreted with caution until larger studies can be completed. 
Second, the cortical area that was assessed in these studies was limited, which in turn 
limits the capacity to fully understand the implications of the data. More research is 
necessary, including studies that integrate the results of fNIRs and fMRI, to fully 
explicate the meaning and clinical utility of these preliminary results.  

In conclusion, the research reviewed in this manuscript suggests that, like fMRI, 
fNIRs may have utility as a biomarker of addiction severity, or as a prognostic 
indicator of relapse vulnerability in addition treatment. fNIRs has the added potential 
to provide affordable and patient-friendly neuroimaging for routine clinical use in 
treatment facilities that do not have access to an fMRI magnet, and for research in 
ecologically valid environments such as a bar setting. If, indeed, fNIRs can provide an 
objective index of predilection to relapse, clinicians could use it to develop better 
treatments through the use of an objective biomarker, and provide better care through 
individualized medicine.  
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Abstract. Workload classification Augmented Cognition systems aim
to detect when an operator is in a high or low workload state, and then
to modify their work flow and operating environment based upon this
knowledge. This paper reviews state-of-the-art electroencephalography
(EEG) recorders for use in such systems and investigates the impact of
EEG noise on an example system performance. It is found that adding
up to 15 μVRMS of artificially generated noise still leaves EEG signals
that have correlations in-line with the correlations found between con-
ventional wet EEG electrodes and new dry electrodes. The workload clas-
sification system is found to be robust in the presence of small amounts
of noise, and there is initial evidence of small stochastic resonance effects
whereby better performance can actually be obtained in the noisy case
compared to the traditional noise-less case.

Keywords: EEG, Augmented Cognition, Workload classification,
Noise-enhanced signal processing.

1 Introduction

Augmented Cognition is a recent research concept focusing on creating the next
generation of Human-Computer Interaction devices. Closed-loop Brain Com-
puter Interfaces (BCIs) are a classic example of such next generation systems.
In these, a human operator uses a computer and interacts with changes on the
screen; whilst simultaneously the computer monitors the human and changes its
outputs based upon the results. For example, workload monitoring systems aim
to detect when an operator is in a high or a low workload state, and use this
knowledge to change the speed at which information is presented to the oper-
ator. As such the work flow and operating environment can be optimized in a
real-time and time-varying manner.

Successful BCI Augmented Cognition intrinsically relies on the availability of
portable and easy-to-use brain monitoring technologies. For this there are two
practical modalities, functional near-infrared (fNIR) and electroencephalogra-
phy (EEG). The EEG is the non-invasive recording of brainwaves performed
non-invasively by placing electrodes on the scalp, and is by far the most com-
monly used modality. As a result, in recent years there has been a huge amount
of research dedicated to improving the EEG unit and the overall recording
experience. [1]–[6] represent a small selection of such papers.

D.D. Schmorrow and C.M. Fidopiastis (Eds.): AC/HCII 2013, LNAI 8027, pp. 259–268, 2013.
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Although both have seen considerable process in recent years the two principle
focuses in EEG unit research are well known, and remain: power consumption
and dry electrode design. In Section 2 this paper presents a brief review of
state-of-art EEG technology for use in Augmented Cognition, highlighting the
recent improvements on these two fronts. An in-depth analysis on the impact
of recording noise on Augmented Cognition performance is then presented in
Section 3. Excess noise in the EEG recording is related to the use of dry electrodes
through the correlation coefficients obtained as clean EEG signals are corrupted
by artificially generated noise. By injecting small amounts of artificial noise into
the EEG collected from a workload monitoring task it is shown that the task
performance is robust under noisy EEG recordings. Further, initial evidence
of small stochastic resonance effects, where the system performance actually
improves in noisy conditions, is found.

2 Portable EEG for Augmented Cognition

2.1 EEG Recorders

Table 1 summarises the features of state-of-the-art low channel count EEG sys-
tems that are potentially suitable for non-obtrusive EEG brain monitoring in
Augmented Cognition applications. Low channel counts are sufficient for many
applications, and for Augmented Cognition the need for recorders that are dis-
crete, socially acceptable, and quick to set up, places a strong emphasis on the
use of a low number of channels.

From Table 1 it can be seen that a number of high quality, highly miniaturised
units are now available commercially. These can easily offer over 8 hours of
recording time, likely sufficient for any individual protocol in an Augmented
Cognition experiment. Nevertheless, one day of recording, allowing a complete
sleep-wake cycle to be captured, should be the aim for future high-quality units.
(In any case, even the best clinically attached wet electrodes begin to fall off
after this time.) This 24 hour level of power consumption is starting to be met
by research stage units.

However this still falls far short of pick up and use devices. Substantial im-
provements in system power consumptions will be required to realise units that
can be trusted to be re-usable session after session. Although current batteries
guarantee that a wanted protocol is feasible, it remains a common experience to
have to worry about battery charge, or to have to adjust experiment timings af-
ter discovering that a unit was not adequately charged. Tackling this is essential
for engendering user trust and reliability in Augmented Cognition systems. On-
board signal processing for providing the first level analysis of the EEG data is a
promising approach for further power consumption reductions, but implement-
ing complete and accurate algorithms within the limited power budget available
remains a major challenge [1].

Looking further ahead, the EEG technology itself is evolving. For example, [4]
reported the use of very small, flexible, textile based EEG units. These are ap-
plied directly to the scalp as a tattoo and, if forehead only channels are required,
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eliminate much of the wiring involved in the EEG collection and are very in-
conspicuous. [18] presented a new approach for recording the EEG from the ear
canal using a modified hearing aid. This is a very interesting development be-
cause the recording location is accessible, it intrinsically holds the electrodes in
place, and hearing aids are already very socially acceptable. It also allows a sin-
gle unit that can collect free-running EEG and auditory steady state responses,
while simultaneously collecting a heartbeat record and providing classic hearing
aid functionality. Both of these developments are at an early stage, but hold
significant promise for future use in Augmented Cognition applications.

2.2 Electrode Technologies

Also apparent from Table 1 is the increasing availability of dry EEG electrodes
which do not require a conductive gel to operate. Most of these electrodes are
now based upon having fingered electrodes, rather than discs, for easier pene-
tration through the hair (see for example [19]). It is clear that making a funda-
mentally gel free recording is no longer a major challenge. However, there are
outstanding challenges in how to actually keep the electrodes in place without a
cap or tight headband. Furthermore, electrode availability does not mean that
these electrodes get comparable performance to conventional wet Ag/AgCl EEG
recording electrodes.

In-depth measurements of dry electrode performance have been presented [6],
[20], [21] but most studies only report a correlation coefficient between EEG
recorded at nearby locations with wet and dry electrodes. Typical values re-
ported are: >0.93 [3]; 0.89 [22]; 0.83 [23]; 0.81–0.98 [15]; 0.68–0.90 [16]; 0.39–
0.85 [24]. For greater acceptance of dry electrodes the wider reporting of the
second order electrode properties is essential. In particular: the half-cell poten-
tial, the long term stability and the contact noise. The latter is known to be
a function of electrode contact area [25], which is decreasing with the move to
fingered electrodes. To begin to evaluate the impact of this, the remainder of this
paper investigates the effect of excess recording noise on a workload monitoring
Augmented Cognition task.

3 Noise-Enhanced Augmented Cognition

3.1 Noise Correlation

Noise robustness is a clear requirement of Augmented Cognition systems that
must operate in non-controlled environments. Excess recording noise from any
source cannot be allowed to have a substantial detrimental effect on the system
performance. To investigate this, Fig. 1 shows the correlation coefficient calcu-
lated between a raw recorded EEG trace and the same EEG trace after it has
had artificial white Gaussian noise deliberately added to it. The additive noise
generation procedure is detailed in [26]. In Fig. 1, the artificial noise is added to
a complete 12.5 hour EEG recording (using the publicly available data from [27],
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[28]). This long EEG record is then split into multiple shorter duration EEG sec-
tions, and the correlation in each section plotted against the duration of these
shorter sections. This allows the maximum, minimum and median correlation
coefficients over time to be found.

1 10 100 1000
0.8

0.9

1
5µVrms added noise

EEG section length / minutes

C
or

re
la

tio
n 

co
ef

fic
ie

nt

1 10 100 1000
0.5

0.7

0.8

1
10µVrms added noise

EEG section length / minutes
C

or
re

la
tio

n 
co

ef
fic

ie
nt

1 10 100 1000
0.4

0.6

0.8

1
15µVrms added noise

EEG section length / minutes

C
or

re
la

tio
n 

co
ef

fic
ie

nt

1 10 100 1000
0.2

0.6

1
20µVrms added noise

EEG section length / minutes

C
or

re
la

tio
n 

co
ef

fic
ie

nt

Fig. 1. Correlation coefficients between a raw EEG trace and a noise corrupted copy
of the same EEG trace as the EEG section length used for calculation is changed.
Vertical lines show the maximum, minimum and median correlation values found over
a complete 12.5 hour EEG recording.

From Fig. 1 it is clearly seen that the underlying correlation present is not
accurately estimated when very short sections of data are analysed. There is a
consistent tendency for the median correlation to be underestimated at the cost
of much larger variances. As a result, in some cases only testing the correlation in
short EEG records will lead to a significant overestimation of the true correlation
present. Importantly, even with up to 15 μVRMS of artificial noise added to the
raw EEG traces, correlations in-line with those reported for dry electrodes are
found.

It is therefore essential to investigate the impact of this noise on Augmented
Cognition system performance. Moreover, recent results have shown that some
EEG applications are not only robust in the presence of more noise, but actually
get better performance [26]. Such stochastic resonance has been observed in
many physical systems [29] and could have a big impact on EEG in Augmented
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Cognition. For example, is it necessary to design electrodes to have the minimum
contact noise anyway?

3.2 Noise-Enhanced Processing

These effects are investigated here using an EEG workload classification system
based upon the publicly available data from the 2011 Cognitive State Assessment
Competition [30], [31]. In this, participants were asked to perform a workload
engagement task [32], [33] which altered the difficultly and required attention
level between high and low workload states. Nineteen channels of EEG data
were recorded, and the experiment was run on each person multiple times on
the same day, and on different days. The objective is to use only the EEG data
to recognise the operator’s state as either high or low workload.

Fig. 2 shows the performance of a new Artificial Neural Network based work-
load monitor on the data from two subjects. The used network is a simple feed-
forward patternnet with 10 hidden neurons with features from standard FFT
frequency bands and time domain features including line-length. These are cal-
culated from all 19 EEG channels. The used Artificial Neural Network is trained
using the first recording session from day 1. The test data is then taken as the
two other recording sessions on day 1, and the three from day 2. Fig. 2 shows
that the Artificial Neural Network performs well on day 1, the same day as the
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Fig. 2. Performance of an Artificial Neural Network workload monitor using data from
two subjects recorded on two subsequent days. Data is taken from the 2011 Cognitive
State Assessment Competition [30], [31].
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training data is from. However, by day 2 (the next day) the network performance
has degraded substantially and is no better than chance.

This result, using a different Artificial Neural Network, replicates the results
reported in [30], [31] which demonstrated that the performance of some workload
classification systems degraded significantly as the time gap between the training
and testing sessions increased. Clearly such systems are not reliable and reusable.
Re-training of the network is required each day and this comes with a high time
cost. There are now open research questions over the causes of these performance
decreases, and potential approaches for mitigating them.

The impact on this situation from adding artificially generated noise to the
raw EEG traces is shown in Fig. 3. Training with noise is a common technique
used to increase the accuracy of Artificial Neural Networks by adding small lev-
els of noise to the training data before training the network [34]. The aim is
to do this multiple times and make the available training data more variable
and more representative of future unknown data. Testing with noise is a novel
approach introduced here where independently generated noise is also added to
the EEG data used for testing. This therefore simulates the use of a more noisy
EEG recorder for obtaining the test data. It also simulates the potential use of
low-power, low-accuracy circuit structures in the EEG unit in place of conven-
tional higher-accuracy, higher-power structures. As such the noise results here
are useful for creating even low power consumption EEG processing electronics.
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Day 1

Day 2
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Fig. 3. Performance of an Artificial Neural Network workload monitor as artificial noise
is deliberately added to the training and test data. Plotted results show the average
performance the test sessions on each day (two on day 1 and three on day 2).
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From Fig. 3, in both subjects the presence of excess noise in the EEG record-
ing does not intrinsically stop the workload classification process. Robust per-
formance is maintained when small amounts of noise are present. Moreover,
several instances of performance improvements are present. Considering day 1,
in Subject E a small performance resonance is present with better classification
accuracies being obtained when 5 μVRMS of noise is deliberately added to the
EEG signals. In Subject F no resonance is seen, but there is no substantial de-
crease in performance. On day 2, better classification performance is obtained
at many different noise levels compared to the no noise case. This effect is small,
and the issue with performance degradation over time is not fixed: in neither of
the cases considered here does the performance improve to a level substantially
above chance classification. Nevertheless, this demonstration of stochastic reso-
nance effects is an important new result for Augmented Cognition systems. If
this effect can be isolated and improved upon, noise enhanced processing could
be an important new tool for creating robust and reusable Augmented Cognition
systems that can work autonomously over a number of days.

4 Conclusions

Stochastic resonance is an effect whereby noise embedded in a signal leads to
better overall performance compared to a no noise case. This paper has demon-
strated that EEG systems are now readily available with dry EEG electrodes for
quick and easy set ups. These electrodes produce EEG signals with high corre-
lations when compared to conventional wet electrodes, but similar correlations
can be obtained when using EEG signals which have been artificially corrupted
by up to 15 μVRMS of noise. Using an EEG based Artificial Neural Network
workload classification system as an example this paper has shown that the sys-
tem performance is maintained under such noise levels. Indeed there is initial
evidence of stochastic resonance effects, with consistently better performance
being obtained on next day workload classifications tests as more noise is added
to the EEG data. At present these stochastic resonance effects are very small,
but suggestive, and future work investigate their full exploitation.
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Abstract. Over the last decade, numerous papers have presented the use of dry 
electrodes capable of acquiring electroencephalogram (EEG) signals through 
hair. A few of these dry electrode prototypes have even progressed from lab-
based EEG acquisition to commercial sales. While the field has improved 
rapidly as of late, most dry electrodes share a number of shortcomings that limit 
their potential real world applications including: 1) multiple rigid prongs that 
require sustained pressure to penetrate hair and maintain solid scalp contact, 
creating higher levels of discomfort when compared to standard wet sensors; 2) 
cumbersome or chin-strap-type applications for maintaining electrode contact, 
creating barriers to end user acceptance; 3) rigid active electrodes to 
compensate for high input impedances that limit flexibility and placement of 
sensors; 4) inability to safely imbed sensors under protective headgear, 
restricting use in some fields where EEG metrics are most desired; and 5) 
expensive sensor manufacturing that drives costs high for use across subjects. 
Under a recent DARPA Phase 3 contract, Advanced Brain Monitoring has 
developed a novel semi-dry sensor that addresses the current dry electrode 
shortcomings, opening up the door for new real world applications without 
compromising subject safety or comfort. The semi-dry sensor prototype was 
tested during a live performance requirement at the end of Phase 3, and 
successfully acquired EEG across all subject hair types over a 3 day testing 
period. The results from the performance requirement and subsequent results 
for new advancements to the prototype are presented here. 

Keywords: Electroencephalograms (EEG), dry-electrodes, wearable EEG, BCI, 
Real World Applications. 

1 Introduction 

While Electroencephalography (EEG) has been used for decades to record the 
electrical activity of the brain [1] and validated for use in a wide range of applications 
it has rarely left the controlled confines of the laboratory. Use of medical-grade EEG 
in real world settings has often been limited by its susceptibility to environmental 
noise, usability constraints, and availability of technical personnel. Over the last 
twenty years, however, technological advances have begun to address these issues, 
enabling medical grade, real world wearable systems.  
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The "Holy Grail" for EEG is a self-applied, wearable system that can reliably 
record medical grade EEG on users in the real world. In the quest for this ideal 
system, the notion of a “Dry EEG Sensor” has become a popular buzz word, and (in 
some cases) a de facto requirement. This trend can be explained in part by the 
unfavorable way in which most dry sensor publications portray "wet" sensor 
technologies [2-7], particularly as it pertains to Brain Computer Interface (BCI) 
platforms. The bulk of dry sensor publications use older EEG systems that have since 
been updated or superseded as their examples of "current" wet EEG platforms. This 
perpetuates the misconception that the only wet sensor systems available require 
substantial time to set up each sensor site, depend upon extensive skin preparation 
(below 5kΩ), are not wearable, are susceptible to electromagnetic interference due to 
leads from the head to the amplifier, and result in severe discomfort to the user [2-3]. 
Some combination of these qualities are often listed as shortcomings of existing wet 
sensors, and thereby benefits of implementing dry sensors. Dry sensor publications 
often further emphasize their advantage by overstating the amount of residue left 
behind by wet sensors. These publications rarely acknowledge the existing available 
medical grade wet sensors that are multi-site systems with short set up times, minimal 
or zero skin preparation, easily attainable impedances below 80kΩ, wearability for 
multiple days (during both wake and sleep), low electromagnetic interference in 
wireless mode and/or storage directly to the device, and high levels of user comfort 
[8-11]. One remaining, frequently cited, drawback specific to wet sensors is the 
residue left behind. As aforementioned, dry electrode publications commonly 
reference wet systems that use 10/20 paste and collodian, and require an experienced 
laboratory technician for application. In reality, some current wet systems have 
already eliminated any residues, and for many other applications the residue is 
minimal and unnoticeable. Moreover, depending on intended use, many wet sensor 
systems can be self-applied by the end user without any technical personnel required 
[12-13], and those applications requiring assistance can easily be completed by non-
technical personnel. 

What remains as a significant drawback for wet sensors when compared against 
dry sensors is the ability to record long acquisitions (i.e., over 8 hours) without 
requiring the addition of more gel or paste. This dry sensor benefit should, however, 
be considered alongside the negatives inherent in the current state of dry electrodes, to 
include: 1) multiple rigid prongs that require sustained pressure to penetrate hair and 
maintain solid scalp contact, creating higher levels of discomfort when compared to 
standard wet sensors; 2) cumbersome or chin-strap-type applications for maintaining 
electrode contact, decreasing the likelihood of end user acceptance; 3) rigid active 
electrodes to compensate for high input impedances that limit flexibility and 
placement of sensors; 4) inability to safely imbed sensors under protective headgear, 
restricting use in some fields where EEG metrics are most desired; and 5) expensive 
sensor manufacturing that drives costs high for use across subjects. When objectively 
evaluating existing dry sensors vs. current wet technologies, intended application 
should be taken into consideration. For short term recordings (i.e., less than 8 hours), 
evidence suggests that available wet sensors are the more effective option, while for  
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acquisitions over 8 hours in length dry sensors may prove beneficial. Another viable 
option for future wearable sensors is to extend the 8 hour recording time of existing 
wet sensors. 

Under a DARPA Phase 3 contract, we were able to consider both possibilities as 
possible end solutions for long acquisitions. Solution 1 entailed the design of a dry 
hydrogel sensor that was soft, flexible, and embeddable, eliminating all of the main 
drawbacks associated with existing dry sensor technologies. The design process 
allowed the dry sensor to be interchangeable with our current wet (i.e., foam and 
synapse cream) sensors, while maintaining the same usability across head sizes and 
hair types. Some of the results from a 9 subject study are included, along with 
additional single subject studies on the most recent advances and modifications of the 
dry sensor.  

Solution 2 involved improving the ease-of-use of the current wet systems to 
ultimately enable the end user to self-adjust the system, quickly and easily changing 
out the sensors as needed without any additional support. This development would 
permit long term recordings with wet sensors. Some early prototype solutions are 
highlighted in the Discussion section. 

2 Methods and Materials 

2.1 Methods 

As part of the Phase 3 DARPA contract, the Advanced Brain Monitoring, Inc. (ABM) 
dry sensor prototype was integrated with a proprietary EEG system and tested as part 
of a live performance requirement. A total of 9 subjects (1 female; ages: 22- 39) 
participated in the study, with each of the 3 dry electrode teams providing 3 subjects. 
The subjects rotated through a 3 day testing sequence across all 3 teams. The 
procedure complied with the appropriate Institutional Review Board (IRB), and each 
subject provided written consent prior to cap application. For each day of testing, 3 
subjects were set up with the dry sensor interface (average set-up time of less than 5 
minutes), with one subject each day repeating the session as part of a wet/dry 
comparison. Each subject was run through a battery of tests that took approximately 
90 minutes from set-up to break down. Session recordings included the following 
tasks: a Baseline session of Eyes Open (EO), Eyes Closed (EC), Eye Blinks, and 
EMG; SSVEP at 5, 10, and 15 Hz; a Baseline SSVEP EO for 2 minutes; a Rapid 
Serial Visual Presentation (RSVP) Video task; an RSVP Image task (with Novelty 
Image) and Evoked Response Potential (ERP) Task; and an Audio ERP task. As a 
follow-up to the live performance requirement, 2 additional subjects (2 male; ages 22 
and 25) were run through the full test battery in house, using further iterations of the 
semi-dry interface. Changes are discussed in the Materials section, and the results and 
outputs were comparable to those of the earlier 9 subjects. For purposes of this paper, 
the results will focus on data from the RSVP Image Task (with Novelty Image) n =11. 
Future papers will discuss the results of other tasks performed. 

The experimental task for RSVP presented 25 sets of 50 images. Each set of 
images comprised 49 terrain images and 1 novelty Mickey Mouse image. Use of the 
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novelty image elicited pronounced ERPs even in shorter test sessions. Images 
remained on screen for 0.2 seconds each, for a total duration of 10 seconds per set. 
The user was provided a 2 second pause between each set of 50 images. After every 5 
sets, a longer 10 second break was provided to the subject. Users were instructed to 
use pauses for resting and/or blinking eyes to help minimize artifacts during testing. 

To obtain ERP measures, the EEG was visually inspected for artifacts and data 
containing muscle artifacts or eye blinks were excluded from analysis.  

To accommodate differences across dry electrode teams, the comparison between 
wet and dry sensor types required the following set-up. All teams recorded dry sensor 
data from F3, F4, P3, and P4, in addition to their remaining sensor sites (which 
differed between teams), while simultaneously recording wet data from F5, F1, F6, 
F2, P5, P1, P6, and P2. For the ABM team, this entailed removing existing sensor 
sites at F1, F2, P1 and P2 to accommodate the wet sensor set-up. The wet sensor data 
was then used to create derived F3, F4, P3, and P4 channels. Differential channels 
F3P3 and F4P4 were then calculated and compared between the wet and dry. For the 
purpose of this paper, P3 and P4 were used to show the PSD correlations from the 
baseline EO and EC tasks and to look at Target and Non-Target ERPs from the RSVP 
with Novelty. 

2.2 Materials 

Data for all of the ABM team's dry studies was collected using Advanced Brain 
Monitoring, Inc.’s commercially available B-Alert X24 Wireless EEG Headset 
System sampling at 256Hz for all channels. The sensor montage used for data 
acquisition was developed in part under previous DARPA contracts, optimized for 
single trial ERP analysis. Sensor sites collected were F3, F1, Fz, F2, F4, C3, C1, Cz, 
C2, C4, CPz, P3, P1, Pz, P2, P4, POz, O1, Oz, and O2 according to the extended 
International 10-20 placement. All sites were referenced to Linked Mastoids in the 
wireless mode. The standard wet sensors were replaced with the semi-dry sensors for 
data collection. The semi-dry sensor consists of a hydrogel (i.e., water absorbing 
polymer) with dissolved hygroscopic ingredients/components to maintain hydration, 
and dissolved salts to conduct electricity ionically. Maintaining hydration ensures the 
salts stay dissolved and that the sensors retain lower skin-to-sensor impedances for 
longer periods of time. The hydrogel was polymerized around a cylinder of silverized 
spacer fabric attached to conductive (i.e., silverized) hook Velcro. This spacer fabric 
served 2 important roles: 1) a structural support for the hydrogel, and 2) a transition to 
the fabric strip. The strip that connected to the B-Alert X24 Wireless EEG Headset 
was a stretchable fabric that utilized silverized thread with an insulative, polymer 
coating applied via chemical vapor deposition (CVD) to each of the fabric strip layers 
to carry the signals from the semi-dry sensor to the hardware. The stretchable fabric 
strip was used across all 9 subjects during data acquisition. Two additional subjects 
were added to the data set after the required test run, using the standard commercial 
strip interfaced with the semi-dry sensor, bringing the subject total to the n=11 used 
for group summaries found in the Results section. 
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After the completion of the live performance requirement, ABM conducted 
additional test runs on further iterations of the dry strip interface. While the 
stretchable conductive fabric used for the first 9 subjects shows great promise,  
the current manufacturing expenses may prove cost-prohibitive. Testing following the 
live performance was conducted on alternative applications of the current commercial 
strip that will allow rapid sensor change outs from a prepackaged form factor. The 
new packaging works with both the semi-dry hydrogel sensor and the currently used 
easy-to-apply foam and synapse cream sensor. The ERPs collected from subsequent 
tests with the new strip show the same ERP components from the live performance 
test on the group of 9. Ongoing additional testing continues to support equivalence 
between the two dry strip interfaces. 

ABM plans to continue refining the dry sensor, ultimately arriving upon a 
commercially available dry sensor option that the end user can switch between 
depending on the goals and applications of the intended study. 
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Abstract. While current military systems are functionally capable of adaptively 
aiding human operators, the effectiveness of this capability depends on the 
availability of timely, reliable assessments of operator states to determine when 
and how to augment effectively. This paper describes a response to the technic-
al challenges associated with establishing a foundation for reliable and effective 
adaptive aiding technologies. The central component of this approach is a real-
time, model-based classifier and predictor of operator state on a continuous 
high resolution (0-100) scale. Using operator workload as a test case, our ap-
proach incorporates novel methods of integrating physiological, behavioral, and 
contextual factors for added precision and reliability. Preliminary research con-
ducted in the Air Force Multi Attribute Task Battery (AF_MATB) illustrates 
the added value of contextual and behavioral data for physiological-derived 
workload estimates, as well as promising trends in the classification accuracy of 
our approach as the basis for employing adaptive aiding strategies.  

Keywords: Workload, Augmentation, Human Performance, Modeling and  
Simulation, Physiological Measurement. 

1 Introduction 

To address the modern threat environment, military operations must overcome a va-
riety of demands and resource constraints, such as manpower limitations, information 
overload, sustained long-term missions, and an increasingly complex decision space. 
This reality leads to our military force being more vulnerable to performance decre-
ments related to increases in cognitive workload, stress, and fatigue. There are availa-
ble technological solutions that could help mitigate these types of performance 
decrements through adaptive aiding and, consequently, benefit the effectiveness of 
active operational systems. Traditional approaches to designing user interfaces (UI) 
typically result in a fixed presentation of information throughout the entirety of the 
operator interaction with a control station; however, human operator states (e.g., 
workload, engagement, and affect) are dynamic. For instance, if the system detects 
that the human operator is experiencing high workload, as when an remotely piloted 
aircraft (RPA) pilot must monitor a noisy video feed of a crowded marketplace while 



280 K. Durkee et al. 

simultaneously attending to frequent audio and chat communications for task-relevant 
information, the system could alter the interface to (1) eliminate all the irrelevant 
information that may clutter the display to reduce the workload demand, and (2) bring 
into focus central information that needs attention [1]. While different operator states 
often entail different ideal interface configurations, traditional approaches to UI can-
not accommodate this demand. 

The feasibility and overall effectiveness of adaptive performance augmentation is 
dependent on timely and reliable assessments of a human operator’s state. The ability 
to accurately and autonomously define an operator’s state, particularly in real-time, 
has been a much desired yet difficult to achieve capability that has hindered the abili-
ty to employ adaptive aiding technologies. One approach that has generated much 
interest in recent years focuses on the use of physiological data to classify an opera-
tor’s state. Previous research has shown that physiological measures can be used to 
detect operator state [2, 3]. Recent improvements in reliability, level of invasiveness, 
set-up time, and cost of physiological measurement makes it even more compelling. 
Physiological data also serves as an objective source of information and is theoretical-
ly available from any person working in any domain, in contrast to behavioral and 
situational data which are likely to vary greatly across different work environments.  

However, from the perspective of developing an operationally deployable capabili-
ty for estimating operator states, there have been limitations with regard to: (a) the 
ability to produce a model with high levels of accuracy across individuals, particularly 
when the operator state model has not been “trained” to a specific individual; (b) the 
ability to derive an accurate classification from available real-time data, as opposed to 
post-hoc analysis in which a much larger spectrum of data are available (e.g., future 
events, subjective responses, etc.); and (c) the ability to pinpoint the operator’s state 
with high resolution and update frequency. Some of the most successful operator state 
classification efforts to date have made progress in this endeavor by collecting large 
sums of data from a specific individual, and subsequently training a custom operator 
state model for that same individual with machine learning based methods [4]. While 
this work produced invaluable insights on the possibilities of operator state classifica-
tion, there are practical limitations to shaping specially trained models to each indi-
vidual operator using a particular system.  More recent work has started to explore 
cross-subject workload classification [5], however this body of research remains in 
the early stages. In addition, a prominent theme in the literature to date is the classifi-
cation of operator states according to very discrete categories, such as “low workload” 
and “high workload”, as well as outputting these categorical state estimates at infre-
quent intervals. When attempting to employ automated augmentation strategies, the 
lack of granularity allotted by a “low vs. high” classification and at infrequent update 
rates may prevent a system from tracking the necessary detailed trends and subtle 
fluctuations over time that can greatly affect the operator’s need for intervention. 

In addition, the ideal adaptive augmentation system would be able to incorporate 
predictions of operator state and its expected impact on human performance. Predic-
tive capabilities would provide an invaluable tool for proactively address problems 
before they occur. Unfortunately, operator state predictions have not been thoroughly 
explored, as much of the published research has been focused on historical and  
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real-time diagnosis of operator state. These predictive capabilities are also held back 
by the lack of a reliable, continuous, and frequently updated estimate of operator state 
that supplies the required level of granularity and volume of data necessary to make 
quality predictions. Collectively, these gaps illustrate the need for a forward-looking 
approach that can establish an extensible foundation for adaptive aiding strategies; 
one that is both practical for application and improves the likelihood that dynamic 
interventions will have a beneficial effect on operator state and job performance. 

2 Approach 

The objective of our research is to expand upon this existing foundation of research to 
identify the most relevant and sensitive multi-modal measures of operator states (i.e., 
neural, physiological, behavioral) and develop algorithms that can assess these states 
in real time for the purpose of enabling various performance augmentation strategies. 
In response to this technical challenge, we have designed and implemented an ap-
proach that intends to lay a foundation for adaptive aiding technologies to be transi-
tioned to operational system usage.  

Our approach relies on innovative physiological-based operator state modeling and 
classification techniques being formulated and tested within the Air Force Research 
Laboratory’s (AFRL) “Sense, Assess, Augment” taxonomy [6]. To fulfill the “Sense” 
component of this framework, we have developed a flexible architecture (Figure 1) 
for collecting and processing physiological, behavioral, and situational data from 
disparate sources in real-time into a centralized location. The “Assess” component of 
this framework employs a machine learning based modeling approach that is trained 
from data sets spanning four categories: Physiological, Self-reported factors, Perfor-
mance, and Situational. As our test case, the current focus of the assessment compo-
nent is on operator workload classification as a function of these four categories,  
given that workload has a demonstrated relationship to task performance and thus is 
an “augmentable” construct. Lastly, the “Augment” component seeks to “close the 
loop” on sustained human performance by leveraging the accessibility of real-time 
continuous workload estimates as the basis for when and how to aid performance. For 
the purpose of this paper, we focus primarily on the “Sense and Assess” portions of 
this framework as a stepping stone to achieving the end goal of effective real-time 
adaptive augmentation strategies.  

Our modeling approach is unique on several fronts. First, the inclusion of expan-
sive contextual information to support the model’s ability to interpret noisy physio-
logical data has not been substantially explored by other published approaches. We 
theorize that data characterizing an individual’s antecedent health and lifestyle fac-
tors, real-time task performance, and situational data from the task environment pro-
vide beneficial insight into why physiological patterns occur, thus supporting the 
ability to “sift through the noise” and ultimately obtain the most meaningful data for 
operator state classification.  

Second, this approach supplies a real-time output with a continuous high-resolution 
(0-100) scale. We accomplish this by applying machine learning methods to train a 
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model that identifies the best fit between these available real-time data sources and 
subjective operator state measurements collected from our experimental paradigm 
(described in the next section). With respect to our model training approach, we inject 
noise into each subjective measurement for each corresponding trial to generate an 
operator state estimate along a continuous scale for model training, under the assump-
tion that few, if any, meaningful operator states are perfectly static over time. Because 
it is impractical, if not impossible, to obtain operator responses at very frequent inter-
vals (e.g., once per five seconds), it is important to rely on a theoretically-grounded 
relationship between an available, measurable factor (or set of factors) and the mod-
eled construct of interest as the basis for incorporating noise. The complexity of this 
component of our approach can range from simple to highly complex depending on 
the modeled construct and tolerance to error. As an example, for our test case of mod-
eling operator workload, we add noise to self-reported workload ratings based on 
specially designed algorithms that process contextual data about the situation at each 
point in time to produce the direction and magnitude of noise. 

 
Fig. 1. Data aggregation and modeling architecture for operator state assessment as a founda-
tion for automated adaptive aiding strategies 

Third, this approach employs on-line model training capable of improving the pre-
cision of the operator state estimation across different individuals over time. The on-
line training process is triggered by a scalable set of operator-driven inputs dependent 
on the state being modeled. Ideally, the scale of these inputs is set to consume the 
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lowest possible time, effort, attention, and frequency of input from the operator (e.g., 
5-second response per every 30 minutes). Using this trigger, a set of sub-components 
within our architecture dynamically updates the model weights using the operator 
input data in conjunction with recent physiological, behavioral, and situational data 
that has occurred during a corresponding timeframe, resulting in more accurate and 
individualized estimate of operator state that improves over time without the need for 
a priori custom-built classifiers for each human operator.  

Lastly, the predictive layer of this approach utilizes memory of historical data to 
help facilitate informed, and proactive, augmentation decisions based on expected 
operator state and performance. The predictive accuracy is, as one would expect, de-
pendent on the level of granularity and update frequency of the real-time operator 
state classifier. For example, workload estimates on a 0-100 scale and updated once 
per every five seconds allows a trained model to monitor subtle trends and changes 
not otherwise possible with highly discrete classifiers (e.g., high versus low); this may 
potentially be the difference between knowing when, and when not, to intervene with 
an augmentation strategy. In addition, forecasted knowledge of the situation – such as 
when a highly tactical and attention-demanding phase of a mission is known to occur 
– is valuable, if not essential, context that adds to the accuracy of workload and  
performance predictions. 

3 Current Study 

3.1 Overview 

To develop a prototype operator state model based on this approach, we conducted a 
model training study at AFRL’s Human Universal Measurement and Assessment 
Network (HUMAN) Laboratory. Our primary objective was to generate data sets that 
would allow an operator state model of workload to be trained within our defined 
technical approach. For the scope of this paper, our reporting focuses primarily on 
model classification accuracy in relation to related published work. Secondary objec-
tives of this study were to validate that subjective workload ratings to be used for 
training the workload model indeed correspond to the intended task difficulty, and 
conduct exploratory analysis on the degree to which workload fluctuations correspond 
to performance fluctuations. These latter objectives are important as a preface to our 
future research on developing effective augmentation strategies.  

3.2 Task Environment 

The task environment for this study was based upon a modified version of the Air 
Force Multi-Attribute Task Battery (AF_MATB) [7]. This PC-based aviation simula-
tion requires an operator to perform an unstable tracking task while simultaneously 
monitoring warning lights and dials, responding to simulation-generated auditory 
requests to adjust radio frequencies, and managing simulated fuel flow rates using 
various key presses. Our rationale for using this task environment was threefold.  
First, MATB has been used as a testbed to train and develop other models of operator 
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workload [5], which provides our approach with a benchmark for comparison. 
Second, MATB allows for linear titration of workload on a high-resolution scale, 
which provides the necessary task conditions to model beyond “low versus high 
workload” prior to injecting noise. Third, MATB has long and rich history of research 
findings that provide a deep understanding of how each task module affects operator 
workload, as well as the interactions between these factors. 

 

Fig. 2. The operator interface for the AF_MATB task 

3.3 Participants 

Ten participants served as operators of the AF_MATB system for this study. The only 
requirement for participation was a familiarity with computer-based systems. Seven 
participants were male and three participants were female. The age of participants 
ranged from 23 to 47 years old, with a mean age of 32 years old.  

3.4 Experimental Design 

Task difficulty was the only independent variable (IV) for this study. We selected task 
difficulty because this manipulation has been an effective method for inducing vary-
ing levels of operator workload [8]. In our attempt to obtain the highest possible level 
of model granularity, we relied upon 15 levels of task difficulty that intend to linearly 
span the full range of workload (i.e., low to high). Accordingly, this study employed a 
one-way experimental design in which a single IV (task difficulty) was manipulated 
across 15 conditions in order to assess its effects on each dependent variable (DV). 
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All participants experienced the same 15 conditions; however, the sequence of condi-
tions was counterbalanced to mitigate order effects. 

3.5 Dependent Variables 

The dependent variables (DVs) were physiological, self-reported, and performance 
measures collected from participants. Physiological measures included EEG, ECG, 
and eye-tracking activity (e.g., pupil diameter, fixations, blinks, etc.). Self-reported 
measures included antecedent lifestyle factors (e.g., demographics, level of exercise, 
video game experience), recent behavioral factors that can affect physiological state 
(e.g., sleep quality, current sleepiness, caffeine and food intake), and subjective work-
load assessments of each condition as measured via the NASA Task Load Index 
(TLX) scale [9]. Performance measures included primary task performance on the 
AF_MATB tracking task (distance from centerpoint) and secondary task performance 
on the lights/gauges task (response time and accuracy).  

3.6 Procedures 

Each participant went through two sessions: training and data collection. During the 
training session, participants acquired hands-on training by operating the system dur-
ing practice scenarios ranging across easy, medium, and hard difficulty conditions. 
Our goal was to eliminate learning effects during the data collection phase to the ex-
tent possible. For the data collection session, participants operated the AF_MATB 
environment through 15 five-minute scenarios while being monitored with physiolog-
ical sensors and behavioral data capture software. Each of the 15 scenarios varied by 
task difficulty and was presented in a quasi-randomized order with five blocks of 
three scenarios per block. The three blocks in each scenario consisted of a low, me-
dium, and high difficulty block. Physiological sensors collected data on eye move-
ments, blinks, pupil diameter, EEG, and ECG. At the end of each trial, participants 
completed the NASA TLX questionnaire provided electronically on the AF_MATB. 

4 Results and Discussion 

4.1 Model Training Results 

Within the scope of this study, there are several ways to evaluate the utility of trained 
model results. First, we evaluated the absolute error (expressed as mean absolute dif-
ference percent) between the model’s output and the reference continuous workload 
estimator values upon which the model was trained, which came to an average of 35% 
for all participants across all trials. For some participants, the average error across 
trials reached as low as 15%, although other participants produced greater than 50% 
error. We concluded that while we may have collected many valuable inputs that 
account for the majority of workload variance for specific individuals, there could be 
individual differences that were not sufficiently measured.  
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Second, we analyzed classification accuracy of the trained model when applied re-
troactively to participant data without providing the model with any direct workload-
related input. While categorization is not the ultimate goal of this approach, it is useful 
as a means for comparing this work to known benchmarks in the literature. Using clas-
sification accuracy for low versus high workload, the prototype model produced mean 
82.7% accuracy when averaged for entire trials, and 75.7% accuracy on a per five-
second basis. We also went a step further by randomly removing two participants from 
the training set and applying the adjusted model to these removed participants. When 
averaged for entire trials, the adjusted model produced a mean 87.5% accuracy for low 
versus high classification for these two participants, and 77.8% on a per five-second 
basis. When considering our use of continuous high-resolution output as the basis of 
these classifications – as well as the small sample size and our inclusion of outliers – 
these results appear to compare favorably to similar work [4, 5]. In addition, our pre-
liminary analysis on the benefits of on-line model training techniques (which are not 
reported here due to intended scope) has revealed promising trends with regard to addi-
tional accuracy generated due to dynamic model weight adjustments over time based 
on the individual performer.  

While the per five-second classification accuracy of our workload model is diffi-
cult to empirically validate at this time (i.e., it is not feasible to obtain self-report data 
every five seconds for comparison), these results provide a quality baseline standard 
from which to expand our forthcoming work. Our future research will: (a) quantify 
the benefit of a larger sample size and on-line model training; and (b) identify  
methods to validate high-resolution output of our approach beyond categorical levels.  

4.2 Secondary Analyses 

Secondary objectives of this study were to validate that subjective workload ratings to 
be used for training the workload model indeed correspond to the intended task diffi-
culty, and conduct exploratory analysis on the degree to which workload fluctuations 
correspond to performance fluctuations. While these findings are not directly related 
to the formulation of our operator state modeling approach, they can be used as a 
preface to our future research on developing effective augmentation strategies. 

Correlation between participants’ self-reported NASA TLX ratings and intended 
experimental difficulty (1-15) was approximately 0.67, demonstrating that workload 
was indeed reasonably well connected to the intended task difficulties of scenarios. 
We further validated this assumption by grouping continuous workload measures 
used for model training based on intended task difficulty/workload: Low (difficulties 
1-5), Medium (difficulties 6-10), and High (difficulties 11-15). Based on these group-
ings, there was a statistically significant difference between mean continuous work-
load measures used for model training across each of three groups (p<0.0001).  
Furthermore, we analyzed the addition of our noise injection algorithm to the NASA 
TLX responses to generate the continuous workload estimates for model training. 
When averaging the resulting continuous workload estimates across trials, we ob-
tained a correlation of r = 0.99 with the actual reported NASA TLX values, which 
demonstrated the noise injection algorithm did not overly skew workload responses. 
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Lastly, at an exploratory level we investigated the degree to which the model’s  
estimates of workload provided identifiable clues to when performance decrements 
might occur. This was an informal analysis done to obtain a realistic expectation as to 
how frequently performance decrements could be identified proactively, using work-
load as the “leading indicator” and/or “trailing indicator” of their occurrence. The 
example illustration in Figure 3 demonstrates one recurring trend in which a perfor-
mance decrement can serve as a leading indicator of workload spikes, followed by 
subsequent behavioral changes in reaction to these effects. Currently, we are quantita-
tively formalizing the complex relationships between workload and performance as a 
precursor to intelligent augmentation strategy selection in real-time mission settings. 

 

Fig. 3. Example of a workload spike as a leading indicator for a performance decrement 

5 Conclusions 

This paper described a novel technical approach for establishing real-time estimates 
of operator states on a continuous, high-resolution scale for the purpose of improving 
the ability to employ effective adaptive aiding strategies for performance augmenta-
tion. Using operator workload as a test case, our research to date has served as a key 
stepping stone with regard to establishing a level of accuracy in line with the pub-
lished state of the art. Future research will focus on improving model accuracy 
through additional data collection, optimizing components of the model architecture 
(e.g., on-line training), and additional measures that may account for a larger percen-
tage of workload variance. A critical next step is also the design of a model validation 
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paradigm that enables empirical investigation of workload estimation accuracy on a 
continuous 0-100 scale. Finally, we will quantitatively represent the complex relation-
ships between workload and performance, which may provide substantial benefit to 
the employment of automated aiding strategies to mitigate performance decrements.  
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Abstract. There are a number of limitations to existing usability testing me-
thods, including surveys, interviews, talk-alouds, and participant observations. 
These limitations include subject bias, poor recall, and inability to capture fleet-
ing events, such as when a UI functions or behaves in a manner that contradicts 
user expectations. One possible solution to these problems is to use electrophy-
siological indicators to monitor user interaction with the UI. We propose using 
event related potentials (ERP), and the error potential (ErrP) more specifically, 
to capture moment-to-moment interactions that lead to violations in user expec-
tations. An ERP is a response generated in the brain to stimuli, while the ErrP is 
a more specific signal shown to be elicited by subject error. In this experiment 
we monitored subjects using a 10-channel electroencephalogram (EEG) as they 
completed a range of simple web browsing tasks. However, roughly 1/3 of the 
time subjects were confronted with poor UI design features (e.g., broken links). 
We then used statistical and machine learning techniques to classify the data 
and found that we were able to accurately identify the presence of error poten-
tials. Furthermore, the ErrP was present when the subjects encountered a UI  
design flaw, but only during the more ‘overt’ examples of our design flaws.  
Results support our hypothesis that ERPs and ErrPs, can be used to identify UI 
design flaws for a variety of systems, from web sites to video games. 

Keywords: EEG, usability testing, error potential. 

1 Introduction 

Usability testing is a critical part of the design process, and can be conducted using a 
number of different methods. Surveys, talk-alouds, focus groups, and interviews all 
offer ways to explore the user experience. However, all of these methods fail to  
adequately capture fleeting interactions by the users; post-use interviews rely on  
imperfect memory to create a narrative summary of the experience, and talk-alouds 
interrupt the natural flow of use. Furthermore, these micro-events can escape the  
conscious processing of the user yet can have a cumulative negative impact on  
users’ satisfaction (Hirshfield et al., 2013). Examples of these micro-events include 
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interacting with broken links, improperly operating forms, buttons working incorrect-
ly or performing unexpected operations, users clicking on the wrong button because it 
is too close to another desired button, etc. Additionally, capturing these events with 
notes during an observation is slow and prone to error, and it is also possible for users 
to correct their action quickly enough that the observer and the user fail to notice. 

In addition to technical errors, users may also experience frustration when working 
with an interface that violates customs or conventions. Well-designed UIs should not 
violate users’ expectations—that is—the action items available to a user working with 
a computer system, and the feedback provided after the user takes an ‘action’, should 
fit with the users’ expectations—enabling them to immerse themselves with the task 
at hand.  As an illustrative example:  the CTRL+Left Click combo is for selecting 
multiple items in a list; assigning the delete function to this key combo would violate 
user expectations. 

Identifying these types of events is a well-studied problem in the human factors 
domain.  When usability experts want to gather information that extends beyond that 
gleaned through accuracy and speed data, they often depend on qualitative feedback 
gathered via surveys, focus groups, and interviews. This can cause problems, as it has 
has been demonstrated that self-report measures can be very unreliable (Shneiderman 
& Plaisant, 2005) in that they often include subject biases, they lack real-time infor-
mation about user experiences throughout a task, and they are limited by many users’ 
inability to accurately describe their experience while working with a given UI de-
sign. In the current study, we look to neuroscience methods to attempt to provide 
additional, and valuable, quantitative information throughout a usability study that 
can serve as a real-time indicator that a given user’s expectations with the UI have 
been violated. 

Event Related Potentials (ERPs) are electrophysiological responses in the brain to 
an internal or external stimulus. ERPs can be found in EEG data as specific wave-
forms preceding or following a stimulus. ERPs have several components; for this 
study we focus on the ‘Error Potential’ (ErrP). The ErrP is a signal which has been 
shown to be elicited by subject error and is present within milliseconds after a person 
realizes that he or she has made a mistake (via immediate feedback presented to them 
that indicates they were incorrect).  Results from recent studies indicate that the ErrP 
can also be elicited by more general violations in an individual’s expectancy (Oliveira 
et al., 2007). This study attempts to take state-of-the-art error potential research a step 
further, applying it to the concept of usability testing. The potential of using the non-
invasive EEG device during human-computer interactions has been proposed, and 
validated, by a wealth of recent research (Tan and Nijholt, 2010). The EEG is 
lightweight, portable, and it has been implemented wirelessly, allowing the monitor-
ing of computer user’s brain activity during real world settings.   

In this study we test the hypothesis that the ErrP will appear in the EEG data after 
an interaction with common interface design mistakes. Additionally, we test the  
feasibility of using machine learning to accurately classify these interactions. 
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2 Background and Literature Review 

An EEG measures the field potentials produced by the firing of neurons in the brain 
(Tatum, Husain, & Benbadis, 2008). EEG devices have channels, corresponding to 
the number of electrodes used to capture the data. The equipment used for this study 
is an ABM 10-channel wireless EEG (http://www. advancedbrainmonitoring.com). 
One channel is assigned to the reference electrodes, commonly affixed to the mastoid 
bones behind each ear of the subject. An integrated voltmeter records the difference in 
voltage between the site of interest and the reference electrode. This reference site is 
chosen as to be relatively uninfluenced by activity in the area of interest (Coles & 
Rugg, 1996).  

EEGs can determine when activity occurs in the brain, although most are unable to 
distinguish beyond a gross estimate where the activity occurred. There are some ex-
ceptions to this rule for EEGs with a high number of electrodes (128). A 10 channel 
EEG is relatively easy to set up, but offers limited spatial resolution. In exchange for 
that limitation, the EEG offers high temporal precision, with a sampling rate of 256Hz 
(~4ms). EEG also has a few other advantages over other methods of recording brain 
activity. For example, EEG recordings are less sensitive to a subject’s movement than 
fMRI. EEG devices are also small and relatively portable, and are therefore much 
more suitable for simulating natural human conditions and surroundings. 

While EEG produces a number of usable data streams, in this study we focus on 
one, the event-related potential (ERP) – a spike is generated in response to an internal 
or external stimulus. A common way of measuring ERPs is to “time-lock” a stimulus 
to the EEG signal. For example, a time period could be defined that extends .5 sec 
before the onset of the stimulus and ends 1 sec after. Within this time period, there 
may be changes in the brain’s electrical activity that relate specifically to the stimulus.  

2.1 ERP 

The ERP is a response in the brain to an internal or external stimulus, and appears in 
the EEG data as specific waveforms preceding or following a stimulus, after filtering 
the data. There are a number of components in an ERP; for this study we will confine 
our analysis to the ‘Error Potential’ (ErrP). The ErrP in turn has two sub-components 
error-related negativity (ERN or Ne) and error-related positivity (Pe). In addition, 
modifications of the signal have been discovered, particularly feedback error-related 
negativity (fERN), response error-related negativity (rERN), and the interaction ErrP.  

Researchers discovered the Error-related negativity (ERN) while observing sub-
jects committing errors in simple choice response tasks. The signal “takes the form of 
a sharp, negative-going deflection of up to 10 μV in amplitude, and is largest at elec-
trodes places over the front and middle of the scalp” (Gerhring, Coles, Meyer, & 
Donchin). Additionally, the signal begins immediately after the incorrect response, 
and peaks 80 - 150ms later (Gehring 1993).  

A Pe, characterized by a positive deflection in the signal, can follow an ERN. The 
Pe occurs when the subject becomes aware of the error (Nieuwenhuis et. al., 2001), 
but is not dependent upon error correction (Falkenstein et. al. 2000). If a Pe appears, it 
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immediately follows the ERN, occurring 200-500ms after the incorrect response (Fal-
kenstein et. al., 2000). ErrPs can also be elicited in subjects by giving negative feed-
back (Miltner et. al., 1997). When both types of ErrPs are involved, the standard re-
sponse referred to as rERN (response error-related negativity) and the feedback-
elicited response is referred to as fERN (feedback error-related negativity).  

Few studies have examined the error potential in relation to human-computer inte-
raction. In one study, Ferrez and Milán (2005) found that ErrPs were elicited by in-
correct interpretation of a subject’s intent by a computer interface, which they dubbed 
an “interaction ErrP”. The interaction ErrP is similar to an rERN, occurring imme-
diately after the stimulus and taking the same shape. However, the interaction ErrP 
has a sharper negative peak and broader positive peak. The goal of this study is to 
build on Ferrez and Millan’s BCI research, demonstrating how Interaction ErrPs can 
be detected and used to evaluate human-computer interactions for non-disabled users.  

2.2 Processing the EEG Data 

EEG signal captures the data of thousands of ongoing processes in addition to the 
response generated by the stimulus. Consequently, it would be difficult to detect the 
activity related to the stimulus after just one trial. The averaging method is often used 
to overcome this limitation. Averaging involves generating a set of values by record-
ing a number of different time-locked trials for the same event, then averaging the set 
to produce a value for that type of event (Coles & Rugg, 1996; Mouraux & Iannetti, 
2008).  

Averaging, although popular, does have certain shortcomings. One problem is that, 
due to the averaging between many trials, this procedure can not directly measure the 
ERP elicited by an individual event. Because of this, the resulting data must be ana-
lyzed on its own and not compared to other measures such as reaction time for an 
individual stimulus. There is in addition a problem with processing when the wave-
form of a trial has a bimodal distribution (two different modes with distinct peaks). In 
this case, the average amplitude will not correspond to the actual amplitude of any of 
the trials (Coles & Rugg, 1996).  

Ferrez and Millan (2005) used machine learning techniques to create a statistical 
Gaussian classifier to predict, on a single trial basis, whether or not a portion of EEG 
data indicated a correct, or an incorrect subject response. Similarly, Hirshfield et. al. 
(2009) implemented signal processing and machine learning algorithms to conduct 
single trial analyses on their EEG data. They split the continuous EEG data into small 
2 second windows, with windows overlapping every second, and then took a Fourier 
transform of the data in each window. For each window, they computed the magni-
tude and phase of the signal and the spectral power of the signal in the delta (1-4Hz) 
theta (4-8Hz), alpha (8-12Hz), beta-low (12-20Hz), beta-high (20-30Hz), and gamma 
(30-50Hz) frequency bands. They also computed the coherence and cross spectrum 
between each channel for each frequency band in each window. This resulted in over 
6,200 features for each instance. They then use blocked cross validation to select most  
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relevant attributes for single trial classification. They used an information gain heuris-
tic followed by Weka’s CfsSubsetEval function to choose the features that best  
predict the class label in the training data. We will be using similar machine learning 
algorithms to analyze our data on a single-trial basis in the current study. 

3 Methodology 

For each subject, we employed a two phase experiment. The first phase involved us-
ing a localizer task, in this case a difficult memory task which was time-locked to 
EEG data. Localizer tasks use validated tests to elicit, and verify our ability to cap-
ture, the ErrP. In the second phase subjects completed simple interface tasks that were 
programmed to have errors 1/3 of the time. Finding ErrPs time-locked to the interface 
errors would support our argument that the ErrP is useful for UI testing, making the 
process more sound, quantitative, and scientific.  

Ten students from Hamilton College were recruited to take part in this study (8 
males, mean age = 19.8). All subjects indicated that they had no history of mental 
disability and that they were healthy and prepared for the study beforehand. All sub-
jects gave written consent and this study was approved by the institutional review 
board at Hamilton College. Subjects were fitted with a B-Alert X10 EEG headset 
before beginning the study. One of the subjects’ data was discarded due to technical 
difficulties during measurement. 

For the first part of the study, we utilized a difficult variation of the Sternberg 
memory task (Sternberg 1966) using E-Prime software (Psychology Software Tools, 
Inc.). The Sternberg task has been used repeatedly to elicit the ErrP. In the memory 
task, subjects must identify whether or not a probe letter is contained in a set of pre-
viously presented letters. Each subject underwent 150 trials in 15 cycles of 10 sets 
each.  Sets were comprised of 3, 5, 7, 9, and 11 randomly selected consonants. Each 
set size was displayed to the user 15 times with a correct probe following, and 15 
times with an incorrect probe following in total. Each cycle was preceded by a blank 
screen for .5 sec, and each letter was flashed for 1.2 sec, with a .5 sec blank screen in 
between each letter display. At the end of the list, the focus (a blue cross) was dis-
played for 1 sec, followed by a .5 sec blank screen, and then the probe letter, in red. 
After the subject’s response, the next sequence would begin. Responses were record-
ed and time-locked to the EEG signal. 

In the second part of the study, subjects went through 5 different mini-interface 
tasks in a randomized order. Each task contained 30 trials, 10 of which had an inten-
tional error (error trials).  

Symbols (Figure 1): A list of 5 symbols (thanks to the noun project - 
http://thenounproject.com) are randomly selected and presented for each trial. The 
subject is instructed to select the symbol which most accurately portrays a word pre-
sented above the row of symbols. The normal trials report a correct answer, and the 
error trials report an incorrect answer. 
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Fig. 1. Symbols 

Links (Figure 2): One sentence (written in latin to prevent any comprehension or 
reading interference) is presented on the screen, and the subject is instructed to click 
on the link. One or two randomly selected words are linked, indicated by a difference 
in color, underline, and hover effect. In the normal trials, clicking on the link moves 
the user on to the next trial with no delay. In the error condition, the link text is im-
mediately changed to "error: try again", and there is a 1.2 second delay before moving 
to the next trial.  
 

 

Fig. 2. Links 

Motion (Figure 3): A small text box with navigation links at the top (home, about, 
portfolio, studies, contact) is presented, and the subject is instructed to click on one 
randomly selected navigation link. In normal trials, clicking on any navigation link 
would move to the next trial, and in error trials, the box would rapidly vibrate for 1.2 
seconds before moving on to the next trial.  

 

Fig. 3. Motion 
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Buttons (Figure 4): A large red button is presented on screen and the subject is in-
structed to simply click on the button. In normal trials, the button depresses on click 
and then move on to the next trial. In error trials, the button does not depress, and 
there is a 1.2 second delay before moving to the next trial.  

 

 

Fig. 4. Buttons 

Sound (http://jenius.me/sound.html): A vertical row of 5 sliding switches in the 
"off" position are presented and the subject is instructed to activate one randomly 
selected switch. In normal trials, the switch slides to the "on" position and it advances 
to the next trial. In error trials, the switch slides to the "on" position, then emits a loud 
siren noise for approximately 2 seconds before moving on to the next trial.  

4 Results 

4.1 Statistical Analysis 

We analyzed the Sternberg memory task data using BATCH software (Advanced 
Brain Monitoring), splitting the data into ERP windows extending 1.5 seconds before 
after the subject's response. Subsequent analysis revealed that only the data after the 
stimulus was necessary, so we cut out the 1.5 seconds prior to the stimulus. We then 
took a folding average across similar trials ('error potential expected', when the sub-
ject had an incorrect answer, and 'no error potential expected', when the subject had a 
correct answer) and across subjects for all electrodes.  

Previous studies have shown that error-related negativity can be reliably detected 
by a significant difference between the EEG signal on error trials vs. non-error trials 
along the fronto-central midline, principally the Fz and Cz electrodes (Pailing et. al. 
2002). We adopted this method and compared the cross subject and cross trial aver-
ages for the Cz and Fz electrodes in terms of error trials and non-error trials, using an 
ANOVA at 95% confidence to confirm significance. There was a significant differ-
ence found between error trial and non-error trial conditions at the p<.05 level for the 
Cz electrode [F(1, 7) = 4.15, p = 0.421]. We did not find a significant difference at the 
Fz electrode, but previous studies have shown that a significant difference at Cz is 
sufficient to confirm the presence of an error potential (Pailing et. al. 2002).  

Next we conducted analysis on the data generated by the interface tasks comparing 
the EEG data when the UI functioned properly versus the EEG data when the UI  
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was not functioning correctly. Results indicate that we were able to identify error 
potentials in the Motion, Sound, and Symbols conditions, but not in the Links or  
Buttons conditions (see Table 1). 

Table 1. ANOVA values discriminating error and no-error conditions 

Condition Results 
Symbols F(1,7)=40.78, p=2.9e-10 
Motion F(1,7)=210.44, p=0 
Sound F(1,7)=127.62, p=0 

4.2 Machine Learning 

Our end goal is to be able to use this technology to conduct analysis in real-time, 
creating the opportunity for integrated methods (e.g., an observation while measuring 
with the EEG). In order to reach that goal we will need to be able to classify the data 
using machine learning techniques. Post-hoc analysis will always be useful; to that 
end we recently were able to synchronize an EEG and eye-tracking device and screen 
recorder with high temporal precision in our lab. However, we do not consider post-
hoc analysis to be  a sufficient stopping point. 

For this study we implemented a Naïve Bayes Classifier in Matlab, randomly parti-
tioning the Sternberg memory data equally for training and testing. Furthermore, for 
each 1 second window, we concatenated the Cz and Fz data together for input into the 
classifier. We repeated this process 10 times, with different partitions of data in our 
training and testing sets. The results were promising, showing an average of 75.8% 
correct across all subjects. We did the same machine learning on the data from the UI 
error and no-error conditions. Results averaged 69.2%  across subjects.  

5 Discussion 

We hypothesized that users encountering interface errors will produce an ERN. This 
hypothesis was partially supported. Although the symbols, sound, and motion condi-
tions produced significantly different EEG data, the button and link conditions did 
not. One thing that the button and link conditions had in common is that they were the 
only UI design flaws that included a lack of feedback. The other UI conditions in-
cluded motion, sound, and symbols, which all included more overtly incorrect fee-
back. Perhaps the less overt broken links and buttons did not produce a strong enough 
ErrP for us to identify with our EEG.  

Based on these results, we argue that the ErrP would be a valuable addition to the 
methodological toolbox of usability testing experts focusing on all types of systems 
from web sites to game design. Although the ErrP does not catch all interface errors, 
it will catch many of the interaction errors where users tend to blame themselves,  
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and thus perhaps not report the error. Thus, the ErrP offers a way to systematically  
and quantitatively review a system for difficult to detect errors that lead to user  
frustration, dissatisfaction, and reduced performance. 

We also note that using the ErrP, and EEG in general, for usability testing is still  
relatively rare. Much more work can be done to explore the different ways in which 
other EEG signals can be incorporated into the usability testers’ toolbox, particularly as 
a way to counter the limitations of existing methods that rely on self-report measures. 

Other EEG signals, including Mismatch Negativity, N2pc, P300, and P3a/b, Al-
pha, Beta, and Theta rhythms could comprise a more well-rounded set of measure-
ments for evaluating interface usability directly through brain monitoring, capturing 
a larger portion of the errors. An achievement such as this would dramatically in-
crease the quality of usability testing, and done in conjunction with other more 
standard methods, provide substantial feedback leading to significant increases in 
user experience. 
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Abstract. The investigation of BCI (Brain Computer Interface) is particularly 
interesting for HCI research. Some of recent results concerning BCI have much 
contributed to the progress of HCI. In this paper we propose an effective ERP 
model that can reduce the difference among individuals in the process of  
repetitive tasks. Human brain reactions are quantified by ERPs (Event Related  
Potentials) that reflect the change of brain reactions through repetitive tasks. 
We discuss a method of how to even out the difference appeared in ERPs 
among individuals. 

Keywords: BCI, EEG, ERP, Individual difference, Model. 

1 Introduction 

In order to achieve effective HCI, it is important for us to consider how to treat the 
difference among individual human beings. Since brains control the behavior of 
human beings, studies on BCI are indispensable for HCI research. In our experi-
ments, we use monotonous repetitions of tasks by subjects. We recognize some 
notable changes of ERPs3,4,5 during the engagement of repetitive tasks by subjects. 
We propose an effective ERP model that reflects the change of brain reactions 
through monotonous repetitions of tasks. Using the model we discuss the difference 
of ERPs among the individual subjects and the possibility of reducing the effect of 
the difference by taking the average of the ERPs. In this way, we propose a method 
of how to reduce the effect of the difference among individuals in the process of 
repetitive tasks. 

As monotonously repetitive tasks in our experiments, we choose division questions 
such that the correct answer to each question can be easily and uniquely determined 
by subjects. Since EEGs (Electroencephalograms) are relatively easily measured, we 
adopt them as useful information from the brains in our experiments. In order to  
investigate the relation between the task effects and EEGs, we use ERPs that are  
normalized potentials caused by the brain reactions to tasks by subjects. 
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2 Methods 

2.1 An Experimental Method 

We repeat each of the following experiments from five to eight times: 

• The subjects are 5 right-handed men and 3 right-handed women from 20 to 23 
years old. We identify each of the subjects by a to h.  

•  The place of the experiments is the laboratory of the first author at Hakuoh Uni-
versity. 

•  We use two kinds of stimuli. As shown in Fig. 1, one is a division question (Fig.1 
(a)) and the other is a circle (Fig.1. (b)). Each stimulus is displayed in the size of 
80×240 pixels. 

 
           (a) a stimulus of a division   (b) a stimulus for asking to input an answer 

Fig. 1. Examples of a division question and a stimulus for asking to answer 

•  A subject calculates a division when the division question is displayed, and he/she 
inputs the answer to the question when a circle is displayed. We call the calculation 
work by a subject “a task”. 

•  Each stimulus of a sequence of stimuli is displayed sequentially in a CRT (Ca-
thode Ray Tube) of 19 inches placed in front of a subject. The number of repeti-
tions of tasks (i.e., the number of division-and-circle stimuli in the sequence) is 
100. A subject watches each stimulus without moving his/her eyes. As a stimulus, 
a division question or a circle for answering (as shown in Fig. 1) is displayed for 1 
sec. The time interval between two consecutive stimuli is randomly chosen within 
the range from 800 [ms] to 1200 [ms].  

•  The EEGs as a response to a set of division questions and circles for answering 
are recorded in real time (strictly speaking, it requires 1 sec to record them). Con-
sequently about 6.7 minutes are required for one experiment (i.e., 100 division 
questions together with answering).  

•  The single polar and eight channels of the “International 10-20 method” are used 
for the measurement of EEGs. The positions of the measurement are at C3, C4, Cz, 
and Pz. The base is A1 that is connected to A2. The sampling frequency for the 
A/D converter is 1 kHz. We mainly analyze EEGs recorded at Cz. 

2.2 An Analytical Method 

The recorded EEGs are filtered by an adaptive filter, and the EEGs are normalized by 
taking the average of their waveforms and by using the standard deviation of the data. 
Then we measure the ERPs of 100 repetitions of tasks by using the normalized EEGs, 
the AM (Averaging Method), and the DSAM (Data Selecting and Averaging Me-
thod)1. Furthermore, we measure the ERPs by using every set of 21 data and then 
taking their average (Moving Average Method, MAM). 
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3 Results 

3.1 The Ratios of Correct Answers 

The ratios of correct answers (RCA) of eight experimental days are depicted in Fig.2. 
The horizontal axis indicates the experimental days and the vertical axis indicates the 
RCA. The subjects are divided into four groups: {c}, {b, d, f, g, h}, {e} and {a} by 
the Cluster Analysis. The order of groups is the order of RCA. 

 

 

Fig. 2. The ratios of correct answers (Subjects: a - h) 

3.2 ERPs Obtained by the AM and Patterns of ERPs 

We calculate ERPs for each experimental day by the AM, and averaging them, we 
obtained ERPs as shown in Fig.3. The horizontal axis indicates the time after a stimu-
lus is given, and the vertical axis indicates the amplitude of ERPs. The ERPs in Fig.3  
 

 

Fig. 3. An example of ERPs (subjects: a - c) 
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are from subjects a, b and c. The negative potentials and positive potentials called N1, 
P1, N2, P2, N3, P3 and N4 appear alternatively. The differences of the waveforms of 
the ERPs among these subjects are comparatively large. The parts of waveforms N1-
P1-N2-P2-N3 are remarkably different, but the latencies of N3 are nearly the same 
among subjects. 

Next we select all EEGi(t)’s and average them. Then we obtain an ERP, where “i” 
is the question number when the subject finds the correct answer. In Fig.4 (a) and (b) 
we show ERPs when correct answers are found. The waveforms N1-P1-N2-P2-N3 in 
Fig.4(a) are resemble each other but the latencies are different. The latencies of the 
waveforms N1-P1-N2-P2-N3 in Fig.4(b) are almost the same. So we average the 
ERPs in Fig.4(b) and obtain four patterns of the waveforms N1-P1-N2-P2-N3 as 
shown in Fig.5. Pattern A is obtained from subject c in Fig.4(a), pattern B is obtained 
from Fig.4(b), patterns C and D are obtained from subjects e and a in Fig.4(a), respec-
tively. These four patterns correspond to the ratios of correct answers (RCA): the 
RCA of patterns A, B, C and D are 92.8%, 80.7%, 56.7% and 11.3% respectively. 

We consider that an ERP obtained from a subject for a task corresponds to his/her 
proficient state (or RCA) of the subject.  If the proficient state (or RCA) is improved, 
then the ERP reflects the progress of the subject. So we consider the following model 
to represent the changes of ERPs: 
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(a) ERPs when subjects a, c, and e found correct  (b) ERPs when subjects b, d, f, g and h found 
answers                                          correct answers 

Fig. 4. ERPs in the case of correct answers 
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Fig. 5. Four patters of the part N1-P2-N2-P2-N3 in the case of correct answers 

3.3 ERPs by the DSAM and Distributions of Potentials 

An example of potential distributions used by the DSAM is shown in Fig.6. The bold 
curve and the dotted curve are the distribution of potentials on the 3rd and 6th experi-
mental days, respectively. The result shows the maximum frequency changes through 
the repetitions of experiments. 

Using the same data in Fig.6, ERPs in Fig.7 are obtained by the DSAM. As the 
maximum frequency varies, the waveforms of ERPs vary. The distributions and ERPs 
of all subjects vary through the repetition of experiments. 

 

   

Fig. 6. The potential distributions on the 3rd 
and 6th experimental days (Subject: b, repeti-
tion: 100 times) 

Fig. 7. ERPs obtained by DSAM (subject: b, 
number of data: 59 (3rd), 48 (6th)) 

3.4 ERPs by the MAM and Their Changes 

We calculate ERPs by moving every set of 21 data. Then we obtain ERPs in Fig.8. 
The ERPs are the 11th, 21th, …, 81th, 90th waveforms. Though N1, P1, N2, P2 and N3 
appear on every waveform, the latencies and amplitudes continuously change through 
the repetitions. 
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Fig. 8. An example of moving averaged ERPs (subject: a, 1st experimental day) 

Applying the model (1) to the patterns in Fig.5, we determine the values of all pa-
rameters. In Table 1 we show the parameters of the pattern A. We calculate cross-
correlations between the revised patterns and all moving average of ERPs. In Fig.9 we 
show the stacked chart of all cross-correlations. The ERPs continuously change 
through the calculations. In Fig.10 we show the cross-correlations and moving aver-
age of RCA. The relation between cross-correlation and RCA suggests some possibil-
ity of estimating the values of RCA using the values of cross-correlations.  

Table 1. The parameters of pattern A using the model(1) 

Potentials k hk wk tk sk 
N1 1 1 6.657 30 12 
P1 2 0 4.424 82 16 
N2 3 1 9.313 129 25 
P2 4 0 53.722 201 41 
N3 5 1 85.177 340 71 

 

Fig. 9. An example of cross-correlation between moving averaged ERP and four patterns  
(subject: a, 1st experimental day) 
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Fig. 10. Another example of cross-correlations between moving average ERP and four patterns, 
and moving average ratios of correct answers (subject: d, 5th day) 

3.5 Models for Estimating the RCA 

We define 4-tupple (xA, xB, xC, xD) as the values of cross-correlations between the 
revised pattern A, B, C and D, respectively. We also define moving averaged ERPs. 
Defining the moving averaged RCA as a criterion variable, and xA, xB, xC, xD as expla-
natory variables, we analyzed the data (RCA, xA, xB, xC, xD) by Regression Analyses 
(RA). An example of the results of RA is shown in Fig. 11.  The adjusted coefficient 
of determination is 0.91, and the estimation is good. But the results are different 
among experimental days, and among the subjects. 

 

Fig. 11. An example of ratios of correct answers (RCA) to estimated RCA (subject: b, 7th expe-
rimental day) 

We calculate the average of cross-correlations between the revised patterns and the 
RCA. Concerning the average of pattern B, the tendencies in lower RCA (line (1) in 
Fig. 12) and higher RCA (line (2) in Fig. 12) are very different. We select the higher 
RCA data, and analyze them by Stepwise Regression through Backward Elimination: 
the criterion variable is the average of RCA, and the explanatory variables are initially 
four cross-correlations. The results of the adjusted coefficients of determination (R2) 
are shown in Fig. 13. Using the pattern B as an explanatory variable, the estimation of 
RCA is shown in Fig.14.  
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Fig. 12. Averaged RCA and the average of cross-correlations between moving averaged ERPs 
and four revised patterns 

    

Fig. 13. The adjusted R2 of Stedpwise Regression  Fig. 14. Result of Stepwise Regression using  
                                                   the pattern B as an explanatory variable 

4 Discussions 

From our results, the individual differences included in ERPs are caused partially by 
repetition of calculations in each experiment and partially by repetition of experi-
ments. The change of ERPs is mainly caused by the change of distribution of poten-
tials. In the group of proficient subjects for the task (in our experiments, subjects with 
the RCA greater than 78%), the characteristics or similarity of ERPs have a linear 
relation. The results in this paper explain that the individual difference appearing in 
ERPs can be expressed as the following equation: 

 y = f(the level of proficiency for a task)+ g(others)  (2) 

In our experiments, f (the level of proficiency for the task) is almost 83.6% of y. In 
other words, the individual differences can be reduced to about 83.6% statistically.  
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5 Conclusions 

From our analysis and discussions we come to the following conclusions: 

• We have proposed a method for reducing the individual differences in ERPs.  
• The method can be used to clarify various patterns of ERPs for the tasks. We can 

estimate the similarity of correct answer ratios by cross-correlations.  
• The individual differences caused by the proficiency for the task can be reduced by 

using our method. 
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Abstract. The goal of the present research was to increase understanding of the 
neural oscillatory signature of originality in verbal divergent thinking by deter-
mining if event-related synchronization (ERS) in frequency bands other than 
alpha predicts originality.  EEG was recorded while participants performed the 
insight task in which they were presented with a brief scenario and asked to 
generate as many explanations as possible during a three minute period.  After 
the EEG session, participants were asked to rate the originality of each idea 
they produced. Analyses revealed that high originality was associated with de-
creases in the high beta ERS and with hemispheric asymmetry in the low beta 
band, immediately prior to idea generation. These results suggest the neural 
signature of originality extends beyond hemispheric asymmetries in the alpha 
band and provide important insights into the neural underpinnings of verbal 
creativity. 

Keywords: Divergent thinking, originality, EEG, ERS, alpha, beta. 

1 Introduction 

Divergent thinking is a type of creative problem solving which involves the genera-
tion of multiple, distinct solutions to open-ended problems. These solutions will vary 
in their level of originality such that some will be highly unique, unusual ideas while 
others will reflect more standard approaches.  One commonly used task is the insight 
task (IS) in which participants are presented with a brief scenario (“a light in the 
darkness”) and asked to provide as many explanations as possible within a specified 
time period.  A standard, fairly unoriginal response would be “headlights on a car”, 
while “jelly fish in the ocean” is an example of a highly original solution.  There is a 
substantial literature examining the neural oscillatory signature of divergent thinking 
[1] which suggests that original divergent thinking is associated with increases in 
spectral power in the alpha band (8-12 Hz).  Alpha power is inversely related to neur-
al activation such that greater alpha power indicates reduced activation and vice versa.  

                                                           
*  Corresponding author. 
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One standard view of alpha is that it reflects cortical idling [2].  It is believed that this 
disengagement is what enables the formation of atypical conceptual combinations 
between weakly related or unrelated concepts.  Increases alpha power have also been 
found during cognitive activity as a function of task demand [3-4]. The dominant 
theory is that alpha reflects a top-down process that inhibits the intrusion of sensory 
information or conflicting operations [3], [5-7].   In the case of verbal creativity tasks, 
such as the remote associates test (RAT), the increased alpha power is thought to 
inhibit the activation of words and concepts that are strongly associated with the cue 
thus reducing the difficulty of selecting weak associates in the face of competition [8]. 

One focus of research on the neural basis of divergent thinking is to determine 
what distinguishes highly original and less original ideas at the neural level.  A recent 
study by Grabner, et al. [5] found that (self-rated) originality of ideas generated dur-
ing divergent thinking is predicted by event-related synchrony (ERS) in the alpha 
band over the right hemisphere during idea generation.  In their study, highly original 
ideas were associated with increased alpha ERS in the right hemisphere relative to 
less original ideas. Their study did not, however, report analyses of whether power in 
other frequency bands, such as the beta band, predicts originality.  The goal of the 
present study was to fill that gap by determining if other frequency bands are sensitive 
to originality level during idea generation, and examine how any effects interact with 
hemisphere given that, though the literature is not unambiguous, there is a strong 
suggestion of greater engagement of the right hemisphere during the generation of 
highly original ideas [5], [9]. 

2 Methods 

The current analysis includes data from two experiments, both of which employed the 
IS as the divergent thinking task. 

2.1 Participants 

Data from a total of 41 neurologically normal participants were included in this analy-
sis.  21 (7 male; mean age 21.1, S.D. 2.3) from Experiment 1 and 20 (10 male; mean 
age 21.0, S.D. 1.5) from Experiment 2.  All participants were right handed native 
speakers of English. 

2.2 Materials 

In both experiments, participants performed the insight (IS) task, in which they were 
presented with situations and asked to produce different explanations.  The following 
are the test items:  

• “a light in the darkness”  
• “Person A is lying down, person B is sitting and person C is standing”  
• “a cloth in the air” 
• “Person A walks, Person B jumps” 
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Items 1 and 2 are the English translations of the items used in [5]. Items 3 and 4 were 
added in order to increase the power of the design.   

2.3 Procedure 

After signing a consent form and electrode application, participants were tested indi-
vidually in a sound-attenuating room with the lights turned off.  Participants were 
seated in a comfortable chair in front of a computer monitor and asked to use a chin 
rest in order to minimize movement artifacts.  Prior to the task, two one-minute base 
baselines were recorded, one with eyes open and the other with eyes closed.  Each of 
the four task items consisted of the presentation of a fixation cross for 15 seconds, 
followed by the presentation of the item.  Participants were instructed to generate as 
many solutions as possible and to be creative in their responses. When participants 
had an idea, they pressed a button on the response box.  They then vocalized their 
idea and pressed the button again to indicate when they were done.  The response 
period for each item lasted 3 minutes. The testing session lasted approximately 30 
minutes. At the conclusion of the EEG session, participants were presented with the 
transcription of the ideas they produced for each item and were asked to rate the ori-
ginality of each response on a scale of 1 to 5.  In Experiment 1, participants were 
exposed to pink noise during task performance while in Experiment 2 there were no 
auditory stimuli.  Also, in Experiment 2, participants had a one minute rest between 
the IS task items.   

2.4 EEG Recording 

Electroencephalographic (EEG) data were acquired with a 128-channel HydroCel 
Geodesic Sensor Net using the Electrical Geodesics Inc. (EGI) NetStation system.  
The EEG signal was sampled at 250 Hz. The signal was high-pass filtered online at 
0.1 Hz, low-pass filtered at 100 Hz, and notch filtered at 60 Hz. Impedances were 
kept below 50 KΩ where possible per manufacturer recommendation, and otherwise 
under 100 KΩ.  

2.5 EEG Analysis 

EEG data were artifact-corrected using the EP toolkit for MATLAB [10]. Spectral 
power was obtained through Fast Fourier Transform averaged across 1-second 
epochs within a period.  By-subject averages of EEG spectral power were obtained 
for every cell in our design and then log-transformed, except for power values that 
were entered into the ERS analyses [cf. 5]. ERS was calculated using the following 
formula [11]: %ERS = [(Activation-Reference)/Reference] x 100.  The 1000 ms pe-
riod terminating 250 ms prior to first button press (indicating an idea) served as the 
activation interval.  Reference was the pre-task eyes-open baseline.   

The design for the data analysis was the following:  Originality (High, Low) x 
Hemisphere (Left, Right) x Lobe (frontal, temporal, parietal, occipital).  This repeated 
measures ANOVA was performed for each frequency band with Experiment as a 
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between subjects factor.  The lobe by hemisphere division of the scalp electrodes was 
accomplished via Brain Voyager QX 2.4 (Brain Innovation, Maastricht, The Nether-
lands) which mapped the 10/20 sensor positions, using the coordinates set forth in 
[12] on to brain lobes. The frequency bands were defined as follows: delta (1-4 Hz), 
theta (4-8 Hz), lower alpha (8-10 Hz), upper alpha (10-12 Hz), overall alpha (8-12 
Hz), low beta (12-16 Hz), mid beta (16-20), high beta (20-28 Hz) and gamma (28-70 
Hz).  The EEG data for each response in the Insight Task was categorized as high or 
low originality (as per the median split performed on the originality ratings).   
The degrees of freedom in all analyses were Greenhouse-Geisser corrected when 
appropriate. 

In addition, a correlational analysis, using Pearson product-moment correlations, 
was run using an index of hemispheric asymmetry (right minus left hemisphere) for 
the alpha and beta sub-bands in order to assess the impact of hemispheric asymmetry 
on divergent thinking performance (fluency and originality).  Fluency was defined as 
the number of distinct ideas and originality as a rating from 1 (least original) to 5 
(most original). The analysis was run on both the pooled data from the two experi-
ments and on each experiment separately. 

3 Results 

When analyzed separately, the data from the two experiments showed effects of ori-
ginality in the alpha and beta bands only.  These two bands will, therefore, be the 
focus of this analysis.  In the lower alpha band, there was a four-way interaction of 
Originality, Lobe, Hemisphere and Experiment (F(3,117) = 3.24, p < .05, ηp

2 = .077).  
Splitting across the factor Experiment revealed a significant Originality x Hem x 
Lobe interaction (F(3,57) = 2.935, p = .050, ηp

2 = .134) in Experiment 2 only.  Sepa-
rate analysis of the levels of the Lobe factor reveals an interaction of Originality and 
Hemisphere in the frontal lobe (F(1,19) = 7.431, p < .05, ηp

2 = .281) such that high 
originality responses had greater ERS in the left hemisphere while ERS for low origi-
nality responses was greater in the right.  Simple comparisons revealed no significant 
effects.  In the high alpha band, there was also a significant four-way interaction 
(F(3,117) = 4.14, p < .05, ηp

2 = .096).  This was driven by a marginally significant 
Originality x Hem x Lobe interaction (F(3,60) = 3.183, p = .059, ηp

2 = .137) in Expe-
riment 1 only.   Splitting across the factor lobe revealed a marginal interaction of 
originality and hemisphere in frontal sites (F(1,20) = 4.038, p = .058, ηp

2 = .168).  
Simple comparisons showed a main effect of hemisphere for high originality res-
ponses in the frontal lobe (F(1,20) = 4.899, p = .039, ηp

2 = .197) such that ERS was 
greater in the right hemisphere than the left.  Finally, in the high beta band there was a 
main effect of Originality in the high beta band (F(1,39) = .7863, p = .008, ηp

2 = 
.185), such that ERS was greater for low originality responses pooled across both 
experiments.  When the data from each experiment were analyzed separately, the 
effects of originality on the high beta band were marginal (Experiment 1, F(1,20) = 
4.129, p = .058, ηp

2 = .171; Experiment 2, F(1,19) = 4.320, p = .051, ηp
2 = .185) but in 

the same direction as the pooled analysis. 
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Fig. 1. Percentage of ERS for low and high originality responses in the high beta band with 
standard error bars 

The correlational analysis ran between the index of hemispheric asymmetry and 
the behavioral measures.  In Experiment 1, there was a positive correlation between 
hemispheric asymmetry and fluency in the high alpha band (r = .545, p < .05).  In 
Experiment 2, there was a positive correlation between asymmetry in the low beta 
band and originality (r = .488, p < .05).  The pooled analysis did not yield any signifi-
cant correlations. 

4 Discussion 

The results of the current experiment provide a more nuanced view of the neural sig-
nature of originality.  While confirming the association between alpha power and 
originality (albeit only significant in Experiment 1), the finding that the beta band is 
also sensitive to originality level is a novel finding.  Similarly, the suggestion that 
hemispheric asymmetry in not only the alpha but also the beta band during idea gen-
eration predicts performance underlines the contribution of beta to divergent thinking. 

The findings for the ERS in the alpha band in the two experiments are somewhat 
contradictory in terms of sub-band and hemispheric distribution.  In Experiment 1 the 
ANOVA results showed that highly original responses had increased high alpha ERS 
in the right compared to left frontal areas.  In experiment 2, a marginal interaction of 
originality and hemisphere in frontal areas for the low alpha band suggested that high-
ly original responses elicited increased ERS in the left hemisphere.  It is possible that 
the presence or absence of pink noise contributed to this difference but not likely 
given that the pattern exhibited in Experiment 1 is very similar to that found by 
Grabner et al. [5] in an experiment that contained no auditory stimuli.  The discrepan-
cy is, however, not surprising as in the wider literature findings for the topographical 
distribution of alpha tend to be inconsistent [1].  It must be recognized that both expe-
riments did show evidence of an association between originality and frontal alpha 
ERS which generally does replicate previous experiments using the IS task [9], [13]. 
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The finding of an association between decreased spectral power in the high beta 
band and generation of high originality responses was more robust and has not been 
previously reported.  Dietrich and Kanso indicate that “the single most common find-
ing in this literature is the absence of significant changes to the beta frequency‰ [1 p. 
825].  They are also surprising as oscillations in the beta frequencies are associated 
with motor processes.  The execution of movements is associated with desynchrony in 
the beta band [2], as is observing movements [14] or imagining them [15].  While the 
production of both high and low originality ideas involve movements and, therefore 
motoric processes, high originality responses involve retrieving and producing words 
that are not strongly primed by the cue and may, as a result, involve more effortful 
production and, therefore, distinct (and perhaps increased) motoric demands, evi-
denced by increased beta desynchrony.  However, while lexical-semantic priming 
affects the time course of lexical access, it does not necessarily affect subsequent 
speech motor planning and execution. 

The notion that distinct linguistic demands are reflected in power changes in the 
beta band is supported by recent research in semantic processing [16].  Luo, et al. [17] 
and Wang, et al. [18] have found decreases in power in the mid beta band (16-19 Hz 
in [17]. and 16-20 in [18]) for semantically incongruent words in a sentence compared 
to congruent words. These studies examined brain activity during language perception 
while we looked at activity during idea generation (preceding speech production) so it 
is difficult to make direct comparisons with confidence.  Nevertheless, as the genera-
tion/production of highly original ideas involves accessing and integrating lexical 
items that are normally not considered related, there is a parallel.  [16] and [17] found 
that unprimed words (semantically incongruent) elicited reductions in beta synchrony, 
as did the highly original (i.e. unprimed) ideas in our experiments, albeit in the high 
but not mid beta band. The sensitivity of the beta band to the semantic features of 
words found in the sentence processing studies listed above implies that our effect 
may reflect the differing linguistic and cognitive demands of high and low originality 
ideas.  

How specific properties of these demands reflect different sub-bands within the 
overall beta band remains to be determined. One possibility is that the decreased 
power associated with high originality in the high beta band reflects decreased de-
mands in active, controlled semantic processing needed for the generation of more 
original ideas. For example, reducing this type of processing may facilitate access to 
implicit semantic memory without top-down bias from explicit semantic memory, 
thus resulting in more original ideas. This explanation is admittedly post-hoc and it 
does not rule out the possibility that there are conditions under which an increase in 
active, controlled semantic processing results in greater originality. The latter type of 
processing can help to resolve the competition between dominant and weak associa-
tions in favor of weak ones, thereby contributing to greater originality. This analysis, 
while speculative, implies that divergent thinking can be achieved with different 
modes of thinking, which need to be experimentally controlled. 

The correlational analysis revealed that in Experiment 1, hemispheric asymmetry 
(increased ERS on the right compared to the left) in the high alpha band predicted 
fluency (but not originality), but in Experiment 2 asymmetry in the low beta band 
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predicted originality (and not fluency).  Though the correlations differed across expe-
riments, they do emphasize the importance of hemispheric asymmetry during diver-
gent thinking and provide evidence that fluency and originality are underpinned by 
distinct neural mechanisms.  The relationship between alpha and fluency found in 
Experiment 1 is novel but generally consistent with Jung-Beeman et al.’s account [8] 
such that individuals with greater right hemispheric alpha are able to inhibit standard 
associations in favor of weakly associated concepts while those without the greater 
right hemispheric alpha may become fixated on standard, unoriginal associations and 
generate fewer overall responses.  The lack of correlation between alpha asymmetry 
and originality is somewhat surprising. But, as mentioned above, the mode of thinking 
induced by the experimental context may influence whether increased alpha asymme-
try is associated with increased originality.  With respect to beta, the correlational 
analysis of Experiment 2 provides additional evidence for the relationship between 
beta and generating original responses and suggests that a greater increase in low beta 
power in the right than left hemisphere may be a key component. 

Taken together, these results suggest the neural signature of originality extends 
beyond the alpha band.  The findings that both activity in the high beta band and he-
mispheric asymmetry in the low beta band predict originality provide new and impor-
tant insights into the neural underpinnings of verbal creativity.  Future research will 
further elucidate the role of beta in the generation of original ideas. Of particular in-
terest is the question of whether original divergent thinking can arise from different 
modes of thinking and their associated neurophysiological mechanisms. In this paper, 
the focus was on the association between neural oscillatory activity and originality. 
Frequency-specific experimental manipulation of this activity will be crucial for mov-
ing beyond association and establishing its causal role in cognitive creativity. 
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Abstract. While the laboratory setting offers researchers a great deal of expe-
rimental control, this environment also limits how generalizable the results are 
to the real world. This is particularly true when studying the multifaceted phe-
nomenon of stress, which often relies on personal experience, a dimension that 
is difficult to reproduce in the laboratory setting. This paper describes a novel, 
multi-aspect real-world integrated neuroimaging system (MARIN) optimized to 
study physiological phenomena in the real-world and particularly suited to the 
study of stress.  This system integrates neurological data from a gel-free, wire-
less EEG device with physiological data from wireless cardiac and skin conduc-
tance sensors, as well as self-reports of activity and stress. Coordination of the 
system is managed through an Android handheld mobile device that also logs 
salient events and presents inventories for subjective reports of stress. The inte-
gration of these components creates a rich, multimodal dataset with minimal  
interference to the user’s daily life, and these data will guide the further  
understanding of neurological mechanisms of stress. 

Keywords: wireless electroencephalography, skin conductance response,  
electrodermal activation, heart-rate variability, wearability. 

1 Introduction 

Understanding the human brain is crucial to the development of technology that will 
enhance daily life and performance on critical tasks. Our current level of understand-
ing has been vastly improved through increasingly complex and sophisticated labora-
tory-based experimental research. While this setting grants the researcher a great deal 
of control, it also limits the ecological validity of the results. For example, it may be 
difficult to accurately represent phenomena such as fatigue [1], aggression [2], and 
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social preferences [3] within the artificial setting of a laboratory. Therefore, there 
exists a need to study the brain in its natural environment in order to truly further our 
understanding of how behavior connects to brain function.  

This is particularly true for broad phenomena, such as stress, which involves a con-
fluence of multiple physiological systems that are highly influenced by diverse envi-
ronmental factors. Stress is defined as anything that disrupts or is perceived to disrupt 
the complex dynamic homeostasis of the body and brain [4, 5], although we recognize 
that this may not be a complete definition [6]. In daily life, we face many personal 
sources of stress that can be difficult to replicate in the laboratory setting, such as 
stress from one’s work environment or stress related to one’s family life. Indeed, evi-
dence suggests that physiological responses to stress are larger in the real-world com-
pared to in the laboratory [7, 8]. Meanwhile, increased levels of psychological stress 
are associated with increased incidence of disease [9] and mortality [10, 11].  Even 
acute stress can be maladaptive in some individuals [5] and has been shown to affect 
cognition, although these observations have been limited to laboratory settings [12, 
13]. These facts further the importance of real-world research on the effect of stress 
on the human brain.  

This paper discusses the current state of technology available for studying neuro-
physiological constructs, such as stress, in true “real-world” settings, as well as poten-
tial roadblocks that must be addressed in the design of such systems. Here, we discuss 
efforts focused on developing a real-world neuroimaging system optimized for study-
ing broad-based scientific and applied pursuits of monitoring physiological states, 
using the study of stress as an exemplar target state. The ultimate goal of this system 
is to use contextual and physiological information to interpret neurological data. The 
system described here (MARIN) combines newly developed wireless neuroimaging 
technology with existing physiological sensors and a mobile user-interface device to 
record events and collect subjective measurements in real-world environments.  
MARIN also integrates contextual information from the environment with the high-
quality neurological, physiological, and subjective monitoring data. We highlight the 
specific technological advancements of this device and how it is particularly suited 
for the study of real-world stress. 

2 Background 

The physiological response to stress is essential to healthy functioning. This response 
is considered maladaptive only when it occurs too frequently, is disproportional to the 
stressor (i.e. chronic stress), occurs in the absence of a stressor, or does not occur 
when a stressor is present [6]. While a majority of research studies have focused on 
the deleterious effects of stress, without real-world neuroimaging research, the basic 
effect of stress on the brains of normal individuals is still unknown. By building upon 
real-world research of the physiological mechanisms underlying the response to 
stress, research can begin to make the connection to the natural neurological response 
to stress. 
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2.1 Studying Real-World Stress 

Although technological advances have only recently enabled real-world neuroimaging 
of stress in humans, stress has been measured outside of the laboratory via ambulatory 
cardiac monitoring for some time [8]. Cardiac measurements allow the researcher to 
tap into the functioning of the autonomic nervous system via measurements of bio-
markers, such as heart rate and blood pressure. Stressful stimuli act directly on the 
autonomic nervous system, generally by activation of the sympathetic nervous sys-
tem, which mobilizes the body to respond to stress via peripheral physiological func-
tions, such as increased heart rate and sweating  [5]. 

The measurement of skin conductance on eccrine sites (i.e. hands and feet) is 
another method for assessing autonomic nervous system function, and, therefore, the 
effect of stress [14]. However, while ambulatory monitoring of cardiac responses in 
the real-world has been ongoing for several years, the measurement of skin conduc-
tance outside of constrained settings has only just begun due to a major challenge to 
wearability. Traditional skin conductance sensors were placed exclusively on the tips 
of the fingers, preventing participants from engaging in tasks requiring manipulation 
of objects. Semi-real-world studies of skin conductance to date have relied upon the 
subject singularly engaging in a task that does not require dexterity of the fingertips or 
direct pressure on the soles of the feet, such as driving [15].  However, recent tech-
nology has been developed to reliably measure skin conductance via a site on the 
wrist, allowing the participant a full range of motion [16] and opening the door for 
integration with a wide range of tasks.  

Both cardiac and skin conductance measurements excel at detecting the broad reac-
tion of the body to a stressful event. While this broad categorization of stress is par-
ticularly helpful to detect the occurrence of a stressful event, these measures lack a 
high degree of selectivity, and in fact, are sensitive to many different types of events. 
Since our goal is to understand how the brain responds to stress, a portable neuroi-
maging device is crucial to tease these factors apart. Recent advances in neurotech-
nology have created truly wearable wireless electroencephalography (EEG) systems 
for real-world research [17] that could be utilized for a host of applications, including 
stress research. Additionally, a system integrating EEG, heart rate, and skin conduc-
tance has been proposed, however, this system has not been designed for real-world 
experiences; i.e., it is not completely wireless and only features a limited number of 
electrodes for EEG recording (< 6 channels) [18]. Although recent scientific efforts 
have been put forth to create stress prediction indices from EEG data [18–21], due to 
technological limitations these schemes have consisted of laboratory-derived scena-
rios and have not been utilized in a real-world neuroimaging environment.  However, 
this type of predictive technology would be highly advantageous as part of a wearable 
EEG system. 

2.2 Obstacles for a Real-World Neuroimaging System 

We believe one of the most critical components of a real-world neuroimaging system 
is to create a rich multi-dimensional characterization of context. This allows for the 
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accurate and meaningful interpretation of measured neural activity. This obstacle has 
been mitigated in some real-world cardiac monitoring studies by the use of electronic 
diaries (e.g. [22]). 

Additional obstacles fall under three broad topic areas that directly influence the 
design of such a system, including general wearability, usability for trained (non-
scientist) users, and usability for scientific purposes. In order for any system to be 
suitable for real-life settings, the user must be able to wear it without any substantial 
hindrance to normal activities. The device must be comfortable enough for the user to 
wear for multiple hours a day. This means the device should not be too heavy or made 
of inflexible material. This has been particularly difficult for adapting current EEG 
acquisition systems for real-world data collection. For example, the system in Figure 
1 takes approximately one hour to setup and can be come uncomfortable in minutes. 
As with any real-world device, usability for the wearer is crucial. The device must be 
easy for even a trained non-scientist to set up, troubleshoot rare issues with data ac-
quisition, and log events throughout the day. Finally, usability is also important for 
the scientists analyzing the data. Dropped data packets, time lags, and movement of 
the different sensors must be minimized. Meanwhile, perhaps most critical for scien-
tific pursuits, raw data from all sensors must be accessible in a manner that facilitates 
integrated analyses while providing the ability to properly characterize external influ-
ences. The system described in this paper has been designed to address these ob-
stacles and create a rich dataset that captures neurological functioning during multiple 
types of events and states that occur naturally in the real world. 

  

Fig. 1. State-of-the-art laboratory grade EEG system made mobile. The participant wears a 
high-density wet electrode cap which is wired to a laptop and amplifiers that are placed in a 
backpack. 
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3 The Real-World Neuroimaging System 

The system developed here (referred to here as “MARIN” – Multi-Aspect Real-world 
Integrated Neuroimaging system) is a laboratory-grade measurement capability specifi-
cally designed to overcome several of the obstacles for real-world neuroimaging, partic-
ularly context monitoring (Figure 2). The prototype comprises an Android device, a 
Samsung Galaxy S III in the current implementation, and three physiological monitor-
ing sensors: a high-density MINDO EEG system (Hsinchu, Taiwan), a multifunction 
Zephyr Bioharness 3 lightweight chest strap (Waltham, MA, USA), and a multifunction 
Affectiva Q Sensor wrist-watch style device (Annapolis, MD, USA). The Android de-
vice monitors, records, and synchronizes data streamed from the three physiological 
monitoring devices, as well as obtaining additional user inputs. All three of the physio-
logical systems use dry-type electrodes for quick, easy set-up and longer-term weara-
bility. The complete system weighs approximately 406 grams (0.9 pounds; MINDO-64: 
200g, Bioharness 3: 50g, QSensor: 22.7g, Samsung Galaxy S III: 133g).  

As this system is designed for scientific pursuits, the primary analysis software will 
be offline, where the Android-based physiological data and behavioral data can be 
combined with contextual information from additional sources, such as the user’s 
calendar, user annotations, or questionnaire responses (see below for more detailed 
description). State-of-the-art offline-analyses programs, such as EEGLAB, will be 
used for data processing. 

3.1 Components 

Wireless EEG Cap. The centerpiece of the MARIN System is the NCTU-developed 
64-channel wireless EEG system (MINDO-64), which is designed to address high-
resolution laboratory-grade data acquisition, long-term comfortable wear, quick user 
set-up, and high portability. The typical wet electrodes found in laboratory equipment 
can dry out within 30-minutes to 2 hours, which directly influences signal quality 
[23]. High-bandwidth data transmission requirements typically force participants to 
be tethered to computing systems or to carry relatively heavy hardware, such as batte-
ries, amplifiers, and laptop computers [24]. This is especially confounded by the large 
number of channels typically required (64+) for laboratory-grade research, which may 
include source localization or separation procedures [25]. These hardware constraints 
limit the naturalistic behaviors that can be observed, as well as the types of contexts 
that may be investigated. The MINDO-64 is the first wireless EEG system integrated 
into a form factor with a flexible printed circuit board inside, a novel head-
circumference-adaptable mechanical design for improved stability, and active dry 
sensors that amplify signals at a very early stage to improve signal-to-noise ratios and 
avoid the need for skin preparation and gel application. It uses both Bluetooth and 
WiFi modules to transmit EEG signal during recording, offering a maximum 512Hz 
sampling rate with 24-bit resolution. Through the integration of active sensor and 
power control on the main circuit, the system allows long-term wear of up to 10 con-
secutive hours of operation time. The system’s wireless technologies, light weight 
(<200g), and dry sensor design also support comfort, fast set-up, and portability.  
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Fig. 2. The MARIN System 

Devices. A Zephyr Bioharness 3 is the system’s princi
suite in MARIN. It is a small, lightweight, self-contai
 system that also provides respiration rate, three-axis ac

osture, skin temperature and derived measures of heart r
ate, and breathing rate RR. The Bioharness is capable
cept ECG directly on the device; ECG data is transmit

321 

ipal 
ined 
cce-
rate, 
e of 
tted 



322 B. Kellihan et al. 

and stored on an external device (see next section). Together these measures capture 
several aspects of autonomic nervous system function that can be affected by stress, 
while the sensor suite can be easily donned and removed by the subject in under a 
minute, as the sensors are integrated into a single strap that is worn around the chest. 

Additionally, MARIN includes the Affectiva Q Sensor, which is a small sensor 
worn on the wrist, that provides measures of skin conductance via electrodermal ac-
tivity (EDA) and three axis accelerometery. It is similar in size to a men’s wrist watch 
and attaches with a simple wrist strap. The Q Sensor stores data locally on the device 
and, similar to the Bioharness, transmits the data to the Android device wirelessly 
using Bluetooth. While EDA provides an additional modality for autonomic response, 
the accelerometers can be used to correlate this with modulation in general activity 
levels (i.e., used as an actigraph). 

 
Handheld Computing Device. An application of constant, day-long monitoring plac-
es a premium on lightweight, small form factor systems since the user must carry the 
computing device with them for the duration of the data acquisition period. For this 
reason, we chose a cell phone as the central computing device in MARIN. Among the 
available devices, the Android-based Samsung Galaxy S III was chosen for computa-
tional performance and battery life. As mobile computing technology is evolving at a 
rapid pace, we anticipate being able to take advantage of the advancing capabilities in 
this area as they become commercially available, and development within Android 
provides easy portability across devices. 

The computing device serves three main functions: centralizing data collection, 
providing the user interface, and collecting self-reports and survey data. Sensors in-
cluded in the final system all utilize Bluetooth or WiFi for data transmission, with the 
phone serving as host. Real-time data from the sensors is streamed to the computing 
device, where it is time stamped and recorded in a combined data store. Due to inhe-
rent delays in wireless data transmission, it is anticipated that there will be small vari-
ations in synchronization of the data from the various sensors. For the supplementary 
sensors, this should not pose an issue because the time resolution of the measures 
(heart rate, respiration rate, skin temperature, electrodermal activity) is such that a 
several millisecond delay in correlating to EEG does not affect the usefulness of the 
data.  

A screen is provided for the subject that shows signal quality for the EEG elec-
trodes, the ECG electrodes, and connectivity to the sensors. This enables the subject 
to put on the system components and immediately see if any sensors need to be ad-
justed. The computing device monitors the signal quality and connectivity to the sen-
sors throughout the experiment, and if a problem is detected, the subject is notified by 
an alert on the computing device and provided with instructions to correct the issue. 
Due to the simplistic, user-friendly nature of the interface, we anticipate only minimal 
training will be necessary for users to become proficient with applying and monitor-
ing the system components. 

We have also developed a range of applications on the Android platform to enable 
an observational, multi-aspect measurement approach targeted at building a context to 
interpret the neural activity related to stress throughout the day. These applications 
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currently include the main subject-interaction panel, master scheduler, and question-
naires administrator. 

The Main Subject-Interaction Panel. A large widget on the home screen of the An-
droid device allows the user to self-report the start and end of pre-defined activities 
(eating, drinking, meeting, conversing, etc.), as well as unexpected events (startling 
sounds, equipment adjustment or repositioning, data logging mistakes, etc.). The wid-
get is comprised of ten buttons. These allow the user to: (1) report the start/stop of 
reading email; (2) report the start/stop of consumption of a caffeinated beverage; (3) 
report the start/stop of consumption of food; (4) report the start/stop of a conversation; 
(5) report the start/stop of a meeting; (6) report the start/stop of exercise; (7) report the 
start/stop of listening to music; (8) view the experiment schedule; (9) access some 
application settings; and (10) report an incident. A screenshot is depicted in the center 
of Figure 2. 

When certain events (items 1-7) are logged by the subject, short surveys are admi-
nistered to gain more information about the event. For example, when the caffeine or 
food buttons are pressed, the user is asked to rate the size of the beverage or meal. 
Meanwhile, the remaining three buttons serve utilitarian functions for the user to en-
sure smooth usability, such as providing the ability to view a textual display of the 
experiment schedule for the day, or allowing the user to change the current subject ID 
and to activate or deactivate the schedule alarms. Finally, because not all event types 
can be predicted or classified ahead of time, the report incident button provides the 
user a way to input a generic text description of any other event. 

The Master Scheduler. A background application is responsible for triggering the 
various alarms and events detailed in the experiment schedule. It sets off an alarm with a 
textual reminder for each activity. Some examples of reminders would be to start a task, 
take off the equipment, or fill out some questionnaires. In the case of the questionnaires 
or certain tasks, the master scheduler starts the relevant app automatically. 

The Questionnaire Administrator. An application houses all of the questionnaires 
for the experiment. Currently, these include a variety of inventories related to stress, 
e.g. a Visual Analog Scale of Stress (S-VAS) [26], and variables that influence stress, 
e.g. the NASA Task Loading Index (TLX) [27] and the Pittsburgh Sleep Diary [28]. 

4 Conclusion 

This paper has described a novel, laboratory-grade multi-modal neuroimaging sys-
tem designed to overcome the obstacles of real-world neuroimaging. A major ob-
stacle this system has addressed is the need for context monitoring that will result in 
a meaningful interpretation of observed real-world neural signals. This system is 
particularly suited to the scientific study of stress given how it integrates physiolog-
ical responses related to the autonomic nervous system with high quality neurological 
data and subjective measurements. This technology will lead to a better understanding 
of neural activity in the real world, which ultimately will help develop better  
neurotechnology. 
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Abstract. Identifying artifacts or non-brain electrical signals in EEG time series 
is often a necessary but time-consuming preprocessing step, as many EEG 
analysis techniques require that the data be artifact free. Because of this, relia-
ble and accurate techniques for automated artifact detection are desirable in 
practice. Previous research has shown that coefficients obtained from autore-
gressive (AR) models can be used as feature vectors to classify among several 
different artifact conditions found in EEG. However, a statistical method for 
identifying significant AR features has not been presented. In this work we pro-
pose a method for determining the optimal AR features that is based on pena-
lized multinomial regression. Our results indicate that the size of the feature 
vector can be greatly reduced with minimal loss to classification accuracy. The 
features selected by this algorithm localize to specific channels and suggests a 
possible BCI implementation with increased computational efficiency than with 
using all available channels. We also show that the significant AR features pro-
duced by this approach correlate to known brain physiological properties. 

Keywords: Autoregressive (AR) model, Artifacts, Electroencephalography, 
classification, feature selection, multinomial regression, penalized regression, 
machine learning. 

1 Introduction 

In current EEG, the signal of interest is easily confounded by other biological sources 
of voltage, often stemming from muscle (EMG) or eye (EOG) movements. Great care 
is taken in laboratory settings to limit sources of artifacts, such as by having subjects 
limit any unnecessary movements or actions during the experiment, as these activities 
may confound the EEG activities of interest. After completing an experiment, re-
searchers still must remove artifacts in EEG signals to obtain a “clean” signal that can 
be further analyzed. This process often requires manual identification of artifact-
contaminated EEG, generally conducted by a panel of experts, which can be tedious 
and time-consuming, especially for large amounts of data. New applications of EEG 
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are being performed in more complex and realistic environments, where controlling 
the effects of artifacts is not feasible, such as in the detection of fatigue while driving 
[1]. Similarly, brain-computer interfaces (BCIs) are being developed for individuals 
who may have physical disabilities and as a means to improve performance in healthy 
individuals [2]. In these scenarios, traditional labor-intensive off-line analyses that 
require extensive computation to remove artifacts are not feasible. Thus, extending 
applications of EEG to more realistic scenarios will require automated artifact detec-
tion methods that are robust to both inter-subject and intra-subject variations.  

A common approach for the analysis of EEG signals is autoregressive (AR) model-
ing. Autoregressive models are linear models that relate signals to their past values. 
The coefficients of these models can characterize signal properties. Single-channel 
AR models relate signals to their own values, while multivariate models can model 
relationships between simultaneously-recorded time series. Useful characteristics of 
time series can be derived such as ordinary, partial or directed coherence [3, 4] and 
the direct transfer function (DTF) [5]. AR models are attractive representations in that 
they are compact and computationally efficient.  

One important feature of AR models is that the coefficients are invariant to scaling 
changes in the data, making AR approaches valuable in EEG analyses. AR modeling 
has been extensively used in EEG data analysis for feature extraction and classifica-
tion tasks [6], detection and classification of cardiac arrhythmias [7], and analysis of 
epilepsy data [8]. AR models have also been used for detecting artifacts in EEG sig-
nals. For example, Van de Velde et al  [9] used features such as the slope, signal 
variance and AR model coefficients to classify EEG segments into three artifact cate-
gories: None, Moderate and Severe.  

Our recent work [10] has shown that AR coefficients can be used alone to classify 
type-specific artifacts such as eye blinks and jaw movements. This method uses AR 
coefficients together with a support vector machine (SVM) classifier to distinguish 
among 8 different artifact conditions. While this is already a relatively efficient me-
thod, the high degree of correlation in the signals from neighboring channels and the 
close relationship of their resulting AR features exhibit a high degree of redundancy if 
all channels of a high-density cap are included. This suggests substantial room for 
streamlining the computation and very likely the hardware necessary for data acquisi-
tion. Channel elimination requires reliable methods for down-selecting channels, and 
the high degree of correlation among the features may make traditional feature selec-
tion techniques such as AIC (Akaike information criterion) or BIC (Bayesian infor-
mation criterion) unreliable.  There may also be situations where there are many 
more parameters than samples (the p >> N case), making this an ill-posed problem 
which cannot be solved using traditional methods. In addition to reasons of analysis, 
using fewer features has advantages for implementation in natural environments using 
portable EEG headsets, which usually have many fewer channels than high-density 
laboratory models. In this environment, processing must be done online and not all 
channels may be in full contact. Therefore it is valuable to investigate methods  
that can be used to select only the most important features for EEG signal classifica-
tion and to understand more clearly how information from different channel loci  
contribute to classification of different artifact types. 
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In this paper, we propose a method for determining significant signal features for 
artifact classification based on regularized multinomial regression. Multinomial re-
gression is an extension of logistic regression, where more than two response classes 
are present. We use the artifact classes found in [10] as the response levels while us-
ing the AR coefficients from EEG channels as the covariates in the model. Since the 
AR coefficients exhibit a high degree of multi-variable co-linearity, we use an elastic 
net penalization [11] of the standard maximum likelihood solution to determine the 
optimal features. This approach has been used successfully in situations where there 
are many more parameters than samples (p >> N) such as in microarray gene expres-
sion data and text classification [12]. The high degree of co-linearity can make the 
matrix inversions needed for standard maximum likelihood unreliable and inaccurate. 
Our results indicate that a significant reduction in the feature set size is possible with-
out loss in classification accuracy. 

2 Experimental Methods 

2.1 Experimental Setup 

The data used in this study was recorded using a 64-channel Biosemi ActiveTwo 
System and analyzed in a previous study [10]. A brief summary is given here. A total 
of seven participants performed a block of artifact-inducing facial and head move-
ments. All provided consent prior to participating, and methods were approved as 
required by U.S. Army human use regulations [13, 14]. The seven movements in-
cluded (abbreviations follow): clenching the jaw (JC); moving the jaw vertically 
(JM); blinking both eyes (EB); moving eyes leftward, then back to center (EL); mov-
ing eyes upwards, then back to center (EU); raising and lowering eyebrows (ME); and 
rotating head side-to-side (as in looking leftward), (RH). All movements were per-
formed sitting in front of a PC screen. The participants were instructed to perform 
each type of movement 20 times in concert with a consistently occurring tone. A 
baseline dataset was also recorded for each participant. Participants were told to look 
straight at the computer screen and to not move excessively in order to minimize 
muscle artifacts. We extracted 20 epochs of each artifact condition, plus 20 artifact-
free epochs from the baseline condition. Our total dataset consisted of 160 epochs, 20 
for each of 8 conditions for each of seven participants (see [10] for more details). 

3 Statistical Methods 

3.1 Autoregressive Models  

We use autoregressive (AR) model coefficients as features for artifact classification in 
EEG. Given a zero mean time series  , 1, … , , an AR model of order p can be 
written as:  

 ∑   (1) 
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where ,, 1, … ,  are the AR model coefficients, and ~ 0, . The AR 
model estimates the signal characteristics by modeling the signal compared to the 
signal in the past p time points. In our analysis EEG channels are modeled individual-
ly using a second order AR model, and the AR coefficients are concatenated across 
channels to form the feature vector used for classification, resulting in a 128-
dimensional feature vector. We use the Burg method for fitting the AR coefficients 
[15]. 

3.2 Multinomial Regression with Elastic Net Penalization 

We treat the classification of artifact signals as a multinomial regression problem, 
where the artifact classes are the response levels, and the covariates are the AR 
coefficient features. Let  be the response variable (consisting of artifact la-
bels) and C be the vector of AR coefficients (C = 128). Using the notation 
from [11], the multinomial regression model for the response variable G, having K 
> 2 levels, is: 

 Pr | ∑   (2) 

where 1, … , . We fit this model using regularized multinomial maximum like-
lihood. Let Pr |  and let 1,2, … ,  be the  response. The 
penalized log-likelihood is: 

 max , ∑ log ∑   (3) 

where  is the penalty coefficient and: 

 ∑ 1 | |   (4) 

is the elastic net penalty [11]. This penalty reduces to the ridge regression penalty 
when 0 (the standard  penalty) and the Lasso penalty when 1 (the stan-
dard  penalty). The Lasso penalty is a sparse penalty that forces many of the coeffi-
cients to be 0, with a small subset to be nonzero, while the ridge regression penalty 
shrinks the coefficients of highly correlated variables relative to each other. The pa-
rameter  controls the degree of homogeneity among the two penalties. Setting 1  for some small  produces a sparse solution similar to Lasso as well as 
removing irregular behavior caused by a high degree of co-linearity among the cova-
riates. In our analysis we set .99 as we seek a sparse solution that is robust to 
high correlations among covariates. We use the GLMNET toolbox for MATLAB [11] 
to solve for the coefficients. The optimal  is found by using a grid search and  
maximizing the percentage of explained deviance (see [11] for more details).  
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3.3 Bootstrap Model Validation 

To verify the significance of the model parameters, we randomly partitioned our data 
into two sets, a training (60%) and testing (40%) set. The training set is used to fit the 
regularized multinomial model, while the testing set is used to validate the accuracy 
of the classification. We used B = 100 bootstrap samples and calculated the average 
accuracy across all the samples. Note that the significant covariates may change at 
each bootstrap iteration; therefore, in a separate analysis, the covariates that were 
significant in at least 75% of the bootstrap iterations were extracted and a ridge re-
gression model ( 0) was used on only these covariates. A ridge regression model 
was used as high degree of co-linearity may still exist among these covariates.  

4 Results 

The results of our classification study are shown in Table 1. The first row within each 
subject grouping denotes the classification accuracies when using all available  
parameters in the data and using the radial basis function support vector machine 
(RBF-SVM) that was used in [10] for artifact classification. The results from this 
classification are taken as the baseline performance, which we compare our current 
methods against. The average classification accuracy over all subjects is 95.8% +/- 
2%. The second row denotes the classification accuracy from the elastic net penalty 
for the multinomial regression. The average performance in this case is not signifi-
cantly different than using the full feature vector with SVM (94.7% +/- 2.4%) while 
using significantly fewer parameters in the model (40.3). This result indicates that the 
AR feature vector is highly redundant and in fact the majority of features are not ne-
cessary to obtain the same classification accuracy. When using only the parameters 
that appeared in at least 75% of the bootstrap iterations (third row within subject), we 
see a slight reduction in accuracy of ~4-5%. A Kruskal Wallis ANOVA revealed only 
minimal evidence of a significant difference in the three classification probabilities 
(  = 7.48, p < .03). Note that subject 7 saw no decrease in overall performance be-
tween the two models, while subjects 3 and 6 saw minimal reduction (3% or less). 

Figure 1 shows a channel plot of significant channels for all of the subjects in the 
analysis. The first plot (top left) denotes the standard configuration of the 64-channel 
Biosemi System (see Materials and Methods). Channels in red indicate that at least 
one of the two AR(2) coefficients was significant in at least 75% of bootstrap sam-
ples, while channels in blue indicate both the AR(2) coefficients were significant in at 
least 75% of bootstrap samples. We see that there is some degree of consistency 
across subjects, with channels located frontally significant, while a few channels 
around the edge of the cap are also consistently contributing to the discrimination. 

Figure 2 shows the classification performance for different criterion percentage 
values of the bootstrap models. The x-axis value at 0 denotes the classification  
percentage using the full feature vector (128 parameters) similar to the SVM-only 
classifier as in [10]. The bootstrap percentage value at 20 indicates that we use the 
parameters that occur in at least 20% of bootstrap models to build the multinomial 
regression. The two y-axes denote the percentage of the total number of parameters 
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used in the model (blue, left side, which varies by percentage criterion) and the result-
ing overall classification percentage (green, right side). For example, at the bootstrap 
percentage value of 20% (meaning parameters had to appear in at least 20% of the 
bootstrap models to be included for analysis), about 40% of the parameters were used 
(~54 parameters) while achieving a classification percentage of ~93%. While there is 
a dramatic drop in the percent of parameters remaining in the model, which tapers to a 
slower decline, we simultaneously see that the accuracy curve (green) remains fairly 
flat until after the 80% bootstrap percentage value, where a noticeable reduction (to 
about 83%) occurs. 

Table 1. Classification percentages for the elastic net regression models for classifying artifact 
conditions based on the average of 100 bootstrap models. Values in parentheses denote one 
standard deviation of the classification percentage. The first row within each subject denotes 
the average classification probabilities using all available parameters and using the SVM for 
classification. The second row denotes the average classification probability using elastic net 
penalization method, while the third row denotes the average classification probability only 
using parameters that were significant in >75% of the bootstrap models and using ridge 
regression to fit the multinomial model. The P column in the first row of each subject denotes 
the average number of significant parameters. Mean = average accuracy for all movements, JC 
= Jaw Clench, JM = Jaw Movement, EB = Eye Blink, EL = Eye Left Movement, EU = Eye Up 
Movement, ME = Move Eyebrows, RH = Rotate Head. 

Subj P Mean JC JM EB EL EU ME RH None 

1 

 

128 

38.7 

26 

96(1.8) 

95(2.4) 

91(3.6) 

99(2.8) 

99 (1.2) 

94(10.2) 

99(2.8) 

95(6.1) 

88(10.7) 

87(10.3) 

89(10.9) 

91(7.9) 

93(6.3) 

90(10.0) 

86(10.5) 

94(7.5) 

98(5.1) 

97(5.8) 

100(0) 

100(0) 

92(10.3) 

98(4.5) 

97(5.7) 

93(9.8) 

96(7.1) 

92(10.7) 

85(13.8) 

2 

 

 

128 

49.7 

24 

93(2.4) 

90(3.3) 

86(3.6) 

99(2.8) 

99 (3.2) 

99(2.1) 

92(7.3) 

84(13.8) 

77(14.4) 

100(0) 

98(3.7) 

98(4.3) 

97(5.5) 

92(8.3) 

90(11.8) 

86(10.6) 

90(10.9) 

81(14.5) 

89(7.3) 

89(8.5) 

86(10.3) 

88(10.3) 

75(13.3) 

84(13.3) 

89(12.3) 

84(12.3) 

75(14.7) 

3 

 

 

128 

35 

19 

97(2.3) 

98(1.6) 

95(2.1) 

100(0) 

95(7.3) 

99(2.1) 

89(10.1) 

94(9.4) 

90(9.4) 

100(0) 

99(2.1) 

99(2.4) 

100(0) 

100(0) 

98(5.2) 

92(8.3) 

100(0) 

84(8.6) 

100(0) 

99(1.2) 

98(4.2) 

97(6.8) 

96(5.8) 

95(6.4) 

96(6.1) 

100(0) 

94(6.5) 

4 

 

 

128 

37.9 

20 

94(3.6) 

94(2.8) 

89(3.6) 

100(0) 

99 (1.2) 

97(7.8) 

99(2.8) 

100(0) 

99(2.4) 

98(4.5) 

96(5.7) 

96(5.5) 

88(14.5) 

90(10.3) 

83(12.1) 

85(16.5) 

91(9.8) 

87(11.3) 

99(2.8) 

98(4.7) 

91(9.7) 

94(11.8) 

87(10.2) 

78(13.6) 

81(11.1) 

91(10.1) 

79(14.1) 

5 

 

 

128 

41.0 

23 

97(2.1) 

95(3.4) 

90(3.6) 

100(0) 

100(0) 

96(6.1) 

100(0) 

99(3.8) 

95(7.8) 

99(2.8) 

100(0) 

99(1.7) 

84(10.8) 

86(11.5) 

67(17.1) 

93(10.2) 

86(13.5) 

92(9.0) 

100(0) 

96(5.9) 

83(11.5) 

100(0) 

95(10.1) 

93(8.2) 

100(0) 

99(2.7) 

90(12.1) 

6 

 

 

128 

41.4 

26 

97(1.9) 

96(2.5) 

93(2.7) 

95(6.2) 

98(5.3) 

91(7.4) 

99(2.8) 

90(11.4) 

94(6.9) 

98(5.1) 

96(5.9) 

95(6.2) 

96(7.1) 

99(2.9) 

97(5.4) 

94(6.3) 

96(7.7) 

96(6.0) 

97(5.5) 

99(3.6) 

84(11.2) 

99(3.8) 

93(9.4) 

93(10.8) 

100(0) 

100(0) 

96(5.9) 

7 

 

 

128 

38.7 

27 

98(1.7) 

95(2.4) 

95(2.4) 

98(5.1) 

99 (1.2) 

97(5.2) 

95(7.4) 

95(6.1) 

94(7.2) 

93(6.2) 

89(10.9) 

84(12.3) 

99(2.8) 

90(10.0) 

95(6.2) 

100(0) 

98(5.1) 

91(9.2) 

97(5.5) 

100(0) 

97(6.1) 

100(0) 

97(5.7) 

100(0) 

100(0) 

92(10.7) 

100(0) 
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Fig. 1. Plot of significant channels for all subjects in the study. The first plot depicts the 10-20 
channel orientation of a 64-channel Biosemi System. Channels with red stars indicate that at 
least one of the two AR(2) coefficients was significant in at least 75% of bootstrap samples, 
while channels with blue circles indicate both AR(2) coefficients were significant at this same 
criterion. 

 

Fig. 2. Plot of the average percentages of overall parameters and the classification percentage 
for different percentage of parameters observed in bootstrap models. The dashed green line 
denotes the classification accuracy, while the solid blue line denotes the percent of overall 
parameters used in the model.  
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5 Conclusion 

In this paper we have proposed a method for down-selecting the appropriate features 
necessary for accurate discrimination of EEG artifacts based on elastic net penalized 
regression models. The elastic net penalty applied to multinomial regression can ef-
fectively handle the high correlations and redundancy in the AR parameters and ap-
pears to be an effective general approach for feature selection in EEG analysis. In our 
analysis, using the elastic net penalty with multinomial regression effectively reduced 
the number of parameters by 60% without any loss in classification accuracy. The 
overall classification accuracy remained above 90% until we restricted the number of 
parameters to less than 20% of the overall parameters available (Fig 2). This indicates 
that a significant computational savings could be achievable if implemented in a BCI 
system. For example, data streamlining is critical in new wireless EEG headsets, 
where transmission bandwidth is limited by power. Although the high variability 
observed across subjects might limit the possibility of physically tailoring the channel 
locations to a specific user, one possible scheme might be to only record and broad-
cast data from the channels previously established to be most meaningful for that 
individual. Potential applications of this approach include monitoring subjects for 
artifact instances such as eye blink frequency and duration for detecting lapses in 
attention during experiments [16]. 

The results derived from artifact classification by the regularized multinomial re-
gression are corroborated by known brain physiological properties. For example, 
there were many frontal channels identified as being highly significant, which is ex-
pected given that these channels exhibit eye movement artifacts the most strongly. 
Meanwhile, there were also many significant channels located around the edges of the 
cap, while the majority of those in the center are less likely to significantly contribute 
to the discrimination. One possible reason for this is that muscle activations from the 
rotate head (RH) condition are picked up by the channels located near the neck. 
Channels near the ears are also significant in many subjects, as these channels are 
located near the jawline and pick up jaw clench and jaw movement artifacts. A few 
channels located at the top are most likely contributing to the model of the baseline 
condition, as these channels are minimally impacted by artifacts.   
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Abstract. Next generation brain computer interfaces (BCI) are expected to pro-
vide robust and continuous control mechanism. In this study, we assessed inte-
gration of optical brain imaging (fNIR: functional near infrared spectroscopy) 
to a P300-BCI for improving BCI usability by monitoring cognitive workload 
and performance. fNIR is a safe and wearable neuroimaging modality that 
tracks cortical hemodynamics in response to sensory, motor, or cognitive acti-
vation. Eight volunteers participated in the study where simultaneous EEG and 
16 optode fNIR from anterior prefrontal cortex were recorded while participants 
engaged with the P300-BCI for spatial navigation. The results showed a signifi-
cant response in fNIR signals during high, medium and low performance indi-
cating a positive correlation between prefrontal oxygenation changes and BCI 
performance. This preliminary study provided evidence that the performance  
of P300-BCI can be monitored by fNIR which in turn can help improve the  
robustness of the BCI classification.  

Keywords: BCI, P300, fNIR, Performance, Optical brain imaging, EEG. 

1 Introduction 

A brain-computer interface (BCI) decodes neurophysiological signals from the brain 
for direct controlling an external device without the brain’s normal communication 
pathway of peripheral nerves and muscles. Electroencephalography (EEG) is by far 
the most studied technology for non-invasive BCI signal acquisition [1-3]. Apart from 
EEG, variant types of signal acquisition methods such as Magnetoencephalography 
(MEG) [4], functional near-infrared spectroscopy (fNIR) [5-9] and functional magnet-
ic resonance imaging (fMRI) [10, 11] has been proposed to be applied in BCI. More 
recently, several studies showed that utilizing multimodal neuroimaging has the po-
tential to enhance BCI performance [12-16]. These BCIs were generally referred to as 
hybrid BCIs in the literature.  
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In this pilot study, our aim was to investigate combining fNIR and EEG for en-
hancing a P300 based BCI. P300 is an event-related potential usually elicited by the 
oddball paradigm. A typical P300-BCI show to the user sequences of stimulus and the 
user’s task is to identify the infrequent occurrence of the target stimulus. Since early 
works of Farwell and Donchin in the 1980s [2],  substantional progress has been 
made for enhancing the capability of the P300-BCI  [See Mak and McFarland [17] 
for a detail review]. Despite the volume and depth of work conducted in this area, to 
our best knowledge, to date no study has been done to investigate the possible benefit 
of combining fNIR and EEG in a P300-BCI.  

fNIR is an optical brain imaging technology for monitoring the changes in the con-
centration of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) in 
the cortex. Typically, neuronal activities in the active area of the cortex would even-
tually cause an overabundance of local blood oxygenation result from a mechanism 
known as neurovascular coupling [18]. Coyle et al in 2004 proposed using a single 
channel NIR for  developing a mind-switch [5]. Sitaram et al [6] demonstrated multi-
channel optical BCI for hemodynamic pattern classification for motor imagery.  
Ayaz et al in 2007 proposed using fNIR  cognitive tasks for on/off switch [7] while 
Fazli et al in 2012 showed that combining EEG and NIR can significantly improve 
motor imagery BCI [19]. The same group also showed that fNIR can serve as a pre-
dictor for the performance of EEG-based motor imagery BCI [20].  

Recently, several studies investigated predicting the between-subject performance 
(or aptitude) of P300-BCI [21, 22] based on EEG predictors. In [21], the within-
subject effects were also investigated but no significant predictors were found. Pre-
dicting the within-subject performance is of particular interest because it may provide 
information for generating more robust BCI classifiers. In [20], fNIR predicted motor 
imagery BCI performance was used for generating a meta-classifier which enhanced 
classification accuracy. In this study, we propose using a prefrontal cortex based fNIR 
for monitoring within-subject performance of a P300-BCI. It has been established in 
fMRI studies that the BOLD signal is associated with varies event-related tasks [23-
25]. Previous work also suggested that the prefrontal cortex is associated with the 
level of alertness and attention [26-28] which can affect BCI performance. A fNIR 
study by our group showed that prefrontal activations were correlated with the per-
formance of an n-back task [29]. The aforementioned evidence suggests a possible 
correlation between prefrontal activation and P300-BCI performance. For testing the 
hypothesis, prefrontal fNIR was recorded while subjects were using a spatial naviga-
tion P300-BCI that we proposed previously  [30, 31]. Our preliminary results show 
that the subject-wise performance of P300-BCI may be monitored by prefrontal fNIR 
recording.  

2 Materials and Methods 

2.1 Participants 

Eight right-handed healthy students from local universities participated in this study. 
The participants included 5 males, 3 females and ages between 22 to 26 years. All 
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2.3 Protocol 

The visual presentation of 
icons (turn left, move forw
backward and look around
columns of the matrix were
was 80ms and the inter-sti
included six stimuli – each
cluded ten sequences at th
BCI to the maze. 

The experiment include
EEG data in order to calibr
run, visual instruction was
attempt to choose by count
end of stimulus presentatio
to manually record the ic
BCI(see Fig. 2 right).  

Fig. 2. Left: The 3×3 P300 BC

Part 2 was for the subje
Each subject navigated a sm
ing points. Fig. 3 shows the
at the maze screen to deci
show on the maze screen 

P300-BCI included a 3 by 3 matrix of spatial navigat
ward, turn right, strafe left, trigger, strafe right, jump, m
d, see Fig. 2 Left). During stimulus presentation, row 
e intensified in pseudo random order. The stimulus durat
imulus interval (ISI) was 160ms. A sequence of stimu
h row and column was intensified exactly once. A run 
e end of which a command would be outputted from 

d two parts: Part 1 and Part 2. Part 1 was for collect
ate the P300-BCI. It included 24 runs. Before the start o

s given to the subjects indicating which icon they sho
ting the number of times it flashed. For each run, after 
on, a keyboard with 10 buttons was shown for the subje
con they attempted to choose through activation of 

         

CI matrix used in this study. Right: Keyboard shown to the subje

 

Fig. 3. Time line for a run 

ects to navigate freely in 3D virtual mazes using the B
mall mirror maze eight times with possibly different st

e timeline of a run in Part 2. The subjects started by look
ide their next action. A cue ‘Look at matrix’ would t
asked the subjects to turn their attention to the stimu

tion 
move 

and 
tion 
ulus 
 in-
the 

ting 
of a 
ould 

the 
ects 
the 

ect. 

BCI. 
tart-
king 
then 
ulus 



 Towards a Hybrid P300-Based BCI Using Simultaneous fNIR and EEG 339 

presentation screen. After that, the 10 sequences of stimulus for generating P300 re-
sponse would be shown at the end of which a keyboard (see Fig. 2. right) was dis-
played on the same screen for the subjects to record their intended actions in this run. 
Finally, a cue would show to let the subjects turn their attention back to the maze 
screen in order to see the maze action animation such as moving forward correspond-
ing to the command output by the BCI. 

2.4 Data Processing and Analysis  

P300 BCI Classification. Raw EEGs were band pass filtered from 0.5 to 12 Hz and 
downsampled to 36 Hz. A stepwise linear discriminant analysis (SWLDA) was ap-
plied to distinguish target from non-target stimulus based on the EEG amplitudes 
from 0 to 800ms after the onset of a stimuli. The data collected in Part 1 was used to 
determine the weights for the classifiers which were then applied to predict the data 
collected in Part 2. 

Performance Criterion for P300 BCI. The performance criterion adopted was the 
single sequence prediction accuracy (SeqAcc) for each run. Target icons were first 
predicted using the EEG data of each single sequence (note that for a single sequence, 
each row and column intensified only once). The prediction accuracies for each run 
were then calculated. Since each run included 10 sequences, this is an ordinal variable 
with 11 levels of measurement (i.e. from 0 to 1 with 0.1 increments).  This criterion 
gives a finer resolution of the performance and reduced the ceiling effect compared to 
a simple dichotomous variable indicating whether or not the target of the run has been 
correctly predicted. Table 1 shows the average and standard deviation of SeqAcc for 
each subject. It can be seen that for subject 4 and 7, their target icon prediction accu-
racy was the same 100% but SeqAcc revealed that the signal quality for subject 7 
(SeqAcc=0.88±0.12) was much better then subject 4 (SeqAcc=0.48±0.19). 

fNIR Processing. fNIR signals were first low-pass filtered at 0.1Hz. An automatic 
artifact detection algorithm, sliding window motion artifact rejection (smar) was em-
ployed for eliminating saturation and motion artifact containing segments [35, 36]. 
Oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) changes were 
calculated for each P300-BCI run from 0-15s using a local rest period as baseline. To 
further reduce noise, spatial averaging was performed for both left and right hemis-
phere separately by averaging the channels located at the left and right hemisphere 
respectively.  

3 Results 

P300-BCI Classification. Table 1 listed the sample sizes, target icon prediction accu-
racy and SeqAcc in Part 2 for each subject. Raw sample sizes are different for each 
subject due to possibly different paths taken during maze navigation, the additional 
number of runs required for correcting the BCI mistakes and the ratio of rejected run.  
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Table 1. Sample sizes, target icon prediction accuracy and the Avg. and Std. of SeqAcc for each 
participant 

Subject 4 5 6 7 8 

Run #  34 81 49 16 58 

Accuracy 1.00 0.89 0.78 1.00 0.86 

SeqAcc Mean+SD% 0.48±0.19 0.44±0.18 0.38±0.16 0.88±0.12 0.42±0.20 

fNIR Results. Fig. 4 shows the grand average fNIR responses for low performance 
runs and high performance runs during P300 matrix stimulus presentation periods. 
Each P300 BCI run was categorized into either the low performance group or high 
performance group subject-wise according to the following criterion: ,,  

4,5,6,7,8 1,2, … ,  

Where is the SeqAcc for run  of subject .  is the median SeqAcc for subject . 
 is the number of run for subject . 

 

Fig. 4. Grand average fNIR for high performance and low performance runs. The left and right 
figures show HbO and HbR for left and right hemisphere, respectively. Dash lines stand for 
standard error of the mean (SEM). 

It can be seen that for both left and right hemispheres, HbO was increasing and 
HbR was decreasing relative to the baseline, consistent with higher activation for 
prefrontal cortex during the BCI task period. However, for high performance runs, 
HbO increased (and HbR decreased) at a greater rate compared to low performance 
runs. Additionally, this phenomenon was more significant for left hemisphere.  
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areas, specifically the dorsolateral prefrontal cortex, are associated with attention [38, 
39]. Hence, the differences in prefrontal activation across performance levels may be 
partly due to the different concentration levels during the task periods consistent with 
our previous results [35, 40].   

Despite the encouraging results, more subjects and larger sample sizes are needed 
for validation. In addition, future studies would benefit from identification of low 
performance P300-BCI runs to inform a classifier which can help improve the robust-
ness and usability of the BCI.  An interesting question is whether some key P300-
BCI features such as the amplitude and latency of the P3 and N2 components are 
correlated with the prefrontal activations. Being able to partially observe the change 
of these components across time may help adapting the covariate shift due to factors 
such as alertness and fatigue. 
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Abstract. Machine learning techniques have been used to classify patterns of 
neural data obtained from electroencephalography (EEG) to increase human-
system performance. This classification approach works well in controlled la-
boratory settings since many of the machine learning techniques used often rely 
on consistent neural responses and behavioral performance over time. Moving 
to more dynamic, unconstrained environments, however, introduces temporal 
variability in the neural response resulting in sub-optimal classification perfor-
mance. This study describes a novel classification method that accounts for 
temporal variability in the neural response to increase classification perfor-
mance. Specifically, using sliding windows in hierarchical discriminant compo-
nent analysis (HDCA), we demonstrate a decrease in classification error by 
over 50% when compared to other state-of-the-art classification methods. 

Keywords: Brain-Computer Interface (BCI), Rapid Serial Visual Presentation 
(RSVP), Electroencephalography (EEG), HDCA, Sliding HDCA, Temporal 
Variability, Single-trial, Real-world environment. 

1  Introduction 

Systems incorporating neural activity using EEG typically use machine learning tech-
niques to classify or predict the occurrence of an action or event. To be useful, these 
systems must be able to function outside of the controlled confines of a laboratory 
setting. Moving into more dynamic environments introduces changes in the 
processing demands of the user as well as uncontrolled variability into the system. 
Variability of the EEG signal is influenced by an interaction of endogenous processes 
related to a user’s state (e.g. fatigue), exogenous factors related to stimulus properties 
[1–4], and other system related factors. For example, it has been shown that the laten-
cy of the P300 event related potential (ERP) brain response is correlated with stimulus 
evaluation and reaction time [5, 6]. Stimuli that are easier to categorize produce faster 
reaction times and earlier P300 peak latencies than those that are more difficult to 
categorize. Thus, situations where the difficulty of stimulus categorization varies from 
trial to trial will produce a temporally variable neural response. Optimal performance 
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of systems interpreting neural data must account for the existence of trial by trial tem-
poral variability in the neural response.  

Existing methods for single-trial classification can be divided into several catego-
ries. Some algorithms operate directly on the multi-channel EEG signals [7–11], 
while others apply spatial filters to transform the multi-channel EEG signal into a new 
signal that contains more task-relevant information prior to applying a standard ma-
chine-learning classifier [12–21]. Each of these existing methods have been shown to 
perform well in a specific task; however none of the previous studies has focused on 
testing the effects of temporal variability on classification performance. In this study, 
participants performed a rapid serial visual presentation (RSVP) target detection task. 
ERP analysis shows that the neural data contains large amounts of temporal variabili-
ty. We show that a novel classification method that accounts for temporal variability 
can reduce classification error by over 50%.  

2 Methods 

2.1 Participants 

Fifteen participants (9 male, age range 18-57, average age 39.5) volunteered for the 
current study. Participants provided written informed consent, reported normal or 
corrected-to-normal vision and reported no history of neurological problems. Four-
teen of the fifteen participants were right-handed.  

The voluntary, fully informed consent of the persons used in this research was ob-
tained as required by Title 32, Part 219 of the Code of Federal Regulations and Army 
Regulations 70-25. The investigator has adhered to the policies for the protection of 
human subjects as prescribed in AR 70-25. 

2.2 Stimuli and Procedure 

Short video clips were used in a rapid serial visual presentation (RSVP) paradigm [22, 
23]. Video clips either contained people or vehicles on background scenes, or only 
background scenes. Observers were instructed to make a manual button press with 
their dominant hand when they detected a person or vehicle (targets), and to abstain 
from responding when a background scene (distractor) was presented.  Video clips 
consisted of five consecutive images each 100ms in duration; each video clip was 
presented for 500ms. There was no interval between videos such that the first frame 
was presented immediately after the last frame of the prior video. If a target appeared 
in the video clip, it was present on each 100ms image. The distracter to target ratio 
was 90/10. RSVP sequences were presented in two minute blocks after which time 
participants were given a short break. Participants completed a total of 25 blocks. 

2.3 EEG Recording and Analysis 

Electrophysiological recordings were digitally sampled at 512Hz from 64 scalp elec-
trodes arranged in a 10-10 montage using a BioSemi Active Two system (Amsterdam, 
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Netherlands). External leads were placed on the outer canthus and below the orbital 
fossa of both eyes to record electrooculography (EOG). Continuous EEG data were 
referenced offline to the average of the left and right earlobes and digitally filtered 
0.1-55Hz. To reduce muscle and ocular artifacts in the EEG signal and potential con-
tamination with brain-based signals, we removed EOG and EMG artifacts using inde-
pendent component analysis (ICA) [24]. 

ERP Analysis  
ERP analysis was used to evaluate the trial by trial temporal variability of the neural 
response. Analyses for these data were previously reported [22] and are briefly de-
scribed here. EEG data were processed and analyzed using EEGLAB [25] and ER-
PLab [26]. Continuous, artifact free data were epoched -1500 to 1500ms around target 
onset. Target epochs followed by a button press within 200 to1000ms and non-target 
epochs not followed by a response were included in the analysis. Averaging across all 
trials in a given condition may mask meaningful brain dynamics associated with per-
formance; especially in perceptually difficult tasks in which the variance in ERP la-
tency and reaction time (RT) increases [27]. Therefore, to assess the brain dynamics 
associated with varying levels of RT performance, target epochs were sorted into bins 
corresponding to an individual participant’s reaction time quartile [28]. Grand aver-
ages across all subjects were then calculated for each quartile. 

Single Trial Classification 
The novel classification approach presented here is a modification of hierarchical 
discriminant component analysis (HDCA). Because of this, HDCA served as an ideal 
baseline measure of classification performance for this study. Details of the HDCA 
algorithm can be found in [7, 9–11] and it is briefly described below.  

For classification purposes, EEG data were epoched -500 to 1600 ms around sti-
mulus onset. Epoched EEG data were baseline corrected by removing the average of 
activity occurring between -500 and stimulus onset. Target epochs followed by a but-
ton press within 200 to 1000ms and all non-target epochs were included in the classi-
fication analysis.  

Hierarchical Discriminant Components Analysis 
HDCA transforms multi-channel EEG data collected over a temporal window relative 
to image onset into a single interest-score.  Ideally, the interest score is generated so 
that the range of scores for each class are distinct, thereby allowing for simple dis-
crimination of the two classes.  

Generating interest scores from HDCA involves a two stage classification. In the 
first stage, our implementation uses a set of 15 discriminators applied to 15 non-
overlapping 100 ms time windows that span 100 ms to 1600 ms after image onset. 
Each of the 15 discriminators is trained independently. Each discriminator combines 
the information contained in all 64 EEG signals collected over the course of the  
corresponding time window into a single value for discriminating target versus non-
target. Thus, stage 1 of HDCA produces 15 interest scores that independently discri-
minate target from non targets. In the second stage, a separate discriminator is applied 
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to the output of the stage 1 discriminators to create a single interest score that can 
efficiently discriminate between target and non-target trials.  

Sliding Hierarchical Discriminant Components Analysis  
Sliding HDCA (sHDCA) builds upon the standard HDCA algorithm in an attempt to 
extract more information from temporally scattered events. sHDCA starts by using a 
standard HDCA classifier trained to discriminate targets versus non targets based on 
500 ms of data between 300 ms and 800 ms after stimulus onset using 50 ms time 
slices. Rather than simply statically applying this classifier to each epoch, in sHDCA 
this initial classifier slides in time such that it is applied at each sample ranging from 
200 ms prior to stimulus onset to 800 ms after stimulus onset.  This sliding step means 
that the classifier is using epoch data from 100 ms post stimulus to 1600 ms post sti-
mulus, which matches the data used by the standard HDCA algorithm.  

Because each application of the standard HDCA algorithm produces a single score, 
sliding the HDCA classifier in time produces a single score per application (per time 
point). When the sliding process is complete, we are left with a score signal that is 
1000 ms in duration. From this score signal, a second HDCA classifier is trained to 
discriminate targets versus non-targets based on the score signal. This second level 
classifier uses ten 100 ms time slices. The result of this HDCA classifier is the final 
score assigned to the epoch which is used to decide whether the current epoch is a 
target or non-target. 

Cross Validation  
A 10-fold cross validation was used to determine the accuracy for both classification 
methods. Data from each subject were divided into 10 equal sized blocks of trials. 
Classifiers were trained on 9 of the 10 blocks, and then tested on the block left out. 
This process was repeated 10 times such that each of the 10 blocks of trials was used 
as the independent testing set once. Performance was evaluated based on the area 
under the ROC curve (AUC). Each participant’s performance was calculated as the 
average AUC calculated across all 10 cross validation sets. Statistical analyses for 
each classification method were performed on the average AUC for each participant. 

Computational Requirements  
Timing measures were also employed to evaluate the computational costs of training 
and testing each algorithm. For this evaluation, the MATLAB functions ‘tic’ and ‘toc’ 
were used to measure the total time needed for classifier training and testing. The time 
needed for testing was divided by the total number of trials in the test set to calculate 
an approximation of the total time needed to apply the classifier to a single epoch as 
would be required in a real-time application.  

3 Results 

3.1 Existence of Temporal Variability 

Reaction time quartiles were used as binning parameters for the ERP analysis[28]. P3 
latency exhibited a large amount of temporal variability relative to the stimulus onset 
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(Figure 1). P3 latency data were submitted to a one-way ANOVA with the main fac-
tor of Quartile containing four levels. Analysis showed a significant main effect of 
Quartile, F(3,42) = 69.37, p < .001. Subsequent t-tests revealed each quartile was 
significantly different (α = .05) from each other after correction for multiple compari-
sons using Tukey’s method indicating that P3 latency increased as RT became slower. 
(Figure 1).  

 

Fig. 1. Temporal variability in EEG of a single participant (S10). Upper plot shows single trial 
EEG response at Pz when activity is aligned to the target onset and sorted by response time. 
Lower plot shows average ERPs when reaction time is used as a binning parameter for ERP 
analysis.  

3.2 Classification in the Face of Temporal Variability 

Figure 1 clearly establishes the presence of temporal variability in the neural re-
sponse. Figure 2 shows the accuracy of single-trial classification on these data. 
HDCA achieves a classification accuracy of 0.8691 ± 0.0359 (Mean AUC ± Std), 
while the classification accuracy of Sliding HDCA was 0.9365 ± 0.0223 (mean ± std 
AUC). This represents a 51.5% reduction of classification error and the overall differ-
ence is statistically different (Wilcoxon Sign Rank Test p<0.001). 
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Fig. 2. Classification results across 15 subjects. Horizontal lines in each box represent the me-
dian and the dot represents the mean. The maroon box shows the classification accuracy when 
using the standard HDCA algorithm. The blue box shows the classification accuracy when using 
sliding HDCA. The difference is significant using the Wilcoxon Sign Rank Test (p < 0.001). 

3.3 Execution Time 

Sliding HDCA represents a potential improvement upon the standard HDCA classifi-
cation scheme but comes at the cost of increased computing time. Training a standard 
HDCA classifier on the data set described here takes approximately 10 to 15 seconds. 
Training a sliding HDCA classifier on the same data set using the parameters  
described above takes 354 ± 33 seconds – a 20 to 35 fold increase in training time. 
Applying a standard HDCA classifier to this data set typically takes less than a milli-
second per epoch, while applying sliding HDCA takes 383 ± 4 ms. While these  
relative time comparisons are important, in most RSVP applications, requiring  
approximately 6 minutes to train a classifier and 383 ms to apply the classifier is  
perfectly reasonable.  

4 Discussion 

The current study employed a dynamic RSVP task using short-duration videos. ERP 
analyses showed a high degree of temporal variability in the neural response. This 
study developed a novel classification scheme that overcame the temporal variability 
in the data without needing to use information from the behavioral response.  

Sliding HDCA classification is a novel classification method described here that 
reduced classification error by over 50% over a standard HDCA classifier using  
the same amount of data. The increased accuracy of sHDCA classification comes at 
the expense of computation time. The increase in computation time is significant; 
however for most applications the increased accuracy seen with sHDCA will far out-
weigh the increase in computation time. 
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This study demonstrates that algorithms that account for temporal variability can 
dramatically improve classification accuracy. The novel method described here is one 
such method. This method enables further development of applications that either 
replace or augment behavioral responses for tasks where variable reaction times are 
expected. 

5 Conclusion 

The Sliding HDCA method described here provides a means to overcome the tempor-
al variability in the neural response that is likely to occur in more complex environ-
ments. By transforming the raw EEG signal into a score signal, the sliding step of 
sHDCA produces a new signal that emphasizes the discriminating features of the 
EEG input and consequently improves single trial classification. The efficacy of this 
approach was demonstrated in an RSVP target detection task; however this approach 
may also prove to be useful for other types of BCI technologies in which temporal 
variability causes a drop in performance.  
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Abstract. The past several decades have seen an explosion of meaningful and 
nuanced insights into the connection between human behavior and the nervous 
system; however, the translation of these insights into viable applications is a 
non-trivial and widely acknowledged challenge. Recent advancements in brain-
computer interaction and real-world neuroimaging technologies have provided 
major breakthroughs that provide the underpinnings for translational neuros-
cience research efforts. This session focuses on building off of those advance-
ments and specifically proposes three concepts necessary for overcoming the 
challenges of translation: 1) integrating aspects of knowledge of brain function 
that are generally separate into single analyses, 2) increasing situational com-
plexity, and 3) continuing to develop neuroimaging tools specifically for use in 
real-world environments. 

Keywords: Translational Neuroscience, Neurotechnology, Brain-Computer  
Interface (BCI), Electroencephalography (EEG), Neural Classification. 

1 Introduction 

The past several decades have seen an explosion of meaningful and nuanced insights 
into the connection between human behavior and the nervous system; a connection 
that is considered to be foundational for understanding how we perceive and interact 
with the external world. Underlying the discovery of these insights is the highly active 
field of neuroscience, which has generated approximately ½ million citable docu-
ments over the past 15 years [1]. Analysis and recommendations from numerous 
sources including the Office of the U.S. President and the National Research Council 
suggest that the continued advancements in neuroscience have the potential to revolu-
tionize human-system integration technologies and have a dramatic impact on society 
at large [2–4]. However, translating basic neuroscience research into viable applica-
tions is a non-trivial and widely acknowledged challenge, particularly within the  
medical community [5].  

The difficulties in translation are due, in large part, to the overwhelming complexity of 
the human brain and its approximately 100 billion neurons. Most basic neuroscience 
research has been largely conducted using a reductionist approach in which experimental 
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variables are highly controlled and both stimuli and behavioral responses are relatively 
simple compared to those found in real-world settings. These highly constrained labora-
tory environments are often used to enhance signal-to-noise ratios, and limit the beha-
viors and interactions study participants normally have with the world. Although this 
research has advanced our basic understanding of brain function within highly con-
strained environments, the extent to which controlled laboratory research results general-
ize to brain function in complex and dynamic real-world environments is currently not 
well understood [6, 7].  Further, it has been argued that the complexity of the human 
brain allows not only different individuals to process information differently, but also the 
same individuals may engage different brain structures to cognitively process similar 
information, particularly in response to contextual changes [8]. These concepts suggest 
that there may be fundamental differences in real-world brain function relative to that 
observed in highly controlled laboratory environments, thus supporting the need for more 
ecological approaches [9] focusing on human, task, and environmental interactions [10] 
within real-world environments. We posit that such approaches would lead to a more 
representative understanding of real-world brain function and enhance the success of 
translational neuroscience efforts. 

2 Translational Advances in Human-System Integration  

The potential for translating neuroscience into revolutionary human-system integra-
tion technologies has been recently boosted by technological advancements in two 
areas: the rise of brain-computer interaction (BCI) technologies and the advent of 
real-world neuroimaging tools. These advancements have enhanced not only the abili-
ty to measure neural activity in real-world situations, but also the ability to interpret 
neural data generated within complex scenarios. As discussed below, the technologies 
and insights generated in these two fields are now enabling the ecological approaches 
needed for successful translational neuroscience. 

The past decade had seen a surge of research and technological advancements in 
BCI and associated technologies, particularly as applied to the medical domain. Many 
of the advancements in BCI arose from the unique combinations of researchers fo-
cused on the man-machine problem as opposed to simply addressing the traditional 
neuroscience questions underlying nervous system function. Early BCI efforts fo-
cused on providing communications and direct control capabilities to specific clinical 
populations [11]. However, the mix of scientific and engineering approaches have 
changed the focus of the original BCI efforts (e.g., for discussion, see [12]), and pro-
vided novel insights into not only how neuroimaging could be effectively integrated 
in system designs, but also how the brain functions. These understandings are allow-
ing researchers to uncover approaches to integrate emotion into video games, toys, 
advertising, and music [13, 14], merge human pattern recognition with computer 
processing power for joint human–computer object detection [15, 16], and overall, 
develop applications that use neural signals in ways that are more consistent with the 
brain function that naturally occurs during task performance [17]. Importantly, the 
efforts in this domain have augmented current methodologies and given rise to a wide 
variety of novel research approaches and tools for analyzing and interpreting neural 
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signals in complex settings. For example, the BCI community has made dramatic 
improvement in real-time signal processing and the use of machine learning ap-
proaches including artificial neural networks and signal classification methods for 
neuroimaging.   

Driven by a focus on application, recent advances in BCI technologies have pro-
vided proof-of-principle that neurotechnology applications can be effective outside 
clinical and controlled laboratory settings; however, the state-of-the-art in this area is 
still limited in its utility.  For example, direct control BCIs are becoming viable for 
clinical populations; but, their performance is still well below that of healthy users 
employing traditional optimized control devices such as a keyboard, mouse, or joys-
tick. In the near future, we expect greater translation into the BCI field as the focus of 
BCI’s shift towards use by healthy populations.  We foresee three technical areas 
aiding the translational effort: more effective approaches to integrating neural 
processing into BCI design, the integration of BCIs into more complex situations, and 
a shifting focus to BCIs that accomplish unique tasks that are difficult to accomplish 
through other means (for examples, see [4, 18]). 

The second major advancement over the past decade has been the development of 
neuroimaging tools for use in operationally relevant settings, which has been enabled 
in large part due to DoD programs such as Augmented Cognition [19].  Neural sens-
ing technology is one area that has seen several significant advancements in recent 
years (for a full review, see [20]). Specifically, electroencephalography (EEG) has 
shown the most promise as a near-term solution to the challenges of quality, mobility 
and wearability within realistic operational environments. Recent advancements oc-
curring in the areas of dry, comfortable EEG electrodes and wireless EEG systems 
have shown particular promise. A second area of advancement has been in EEG ana-
lytic techniques and approaches (for review, see [21]) and accessible software for 
both off-line and real-time EEG analysis. These tools are enabling steady progress 
toward real-world neuroimaging capabilities. Significant conceptual progress in both 
hardware and software still needs to be accomplished to enable end state goals of 
wear-and-forget sensing technologies capable of producing laboratory grade results in 
real-time and in environmental conditions never before deemed possible. 

3 Three Translational Concepts for Human-System Integration  

In this session, we highlight three concepts that build off of the advancements in BCI 
and real-world neuroimaging technologies to enable the translation of neuroscience 
needed to provide revolutionary advances in military neurotechnologies projected by 
the National Research Council and others (e.g., [3]). The first three talks of the ses-
sion focus on improving signal analysis, classification, and interpretation through a 
integrating a better understanding of nervous system function into classifier design. In 
the fourth talk, the speaker will focus on the translation of a BCI into operationally 
complex situation. The final talks of the session will focus on tools for improving 
real-world neuroimaging and neurotechnologies. 
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3.1 Integrating Multiple Aspects of Neuroscience Knowledge into Single 
Analyses 

The vast extant neuroscience literature is filled with important and interesting insights 
into brain function.  However, many of the neuroscience studies and applications to 
date focus on isolated research areas, avoiding potential confounds or contextual 
modulations that make interpretation difficult. For example, much of the direct con-
trol BCI literature avoids the psychological construct of mental fatigue by designing 
studies that are limited in duration or by throwing out data when subjects seem fati-
gued. In the first part of this session, we focus on attempting to merge different con-
ceptualizations of nervous system function into single analyses to overcome some of 
the aforementioned confounds or contextual modulations that make interpretation 
difficult. Specifically, in the first three talks, the speakers focus on combining known 
but underutilized information about brain function into more traditional analyses for 
improved performance: 

• Amar Marathe and colleagues examine the classification of targets from neural 
data as participants perform a rapid, serial visual presentation (RSVP) task [22]. 
According to the literature, during complex situations, temporal variability exists 
between stimulus presentation and the measurement of neural responses due to fac-
tors both internal and external to the operator. However, to date, target classifier 
schemes have not effectively accounted for this trial-by-trial variability. Dr. Ma-
rathe presents a study that describes a novel classification method that accounts for 
temporal variability in the neural response to increase classification performance 
and behavioral prediction. Specifically, using sliding windows in hierarchical  
discriminant component analysis (HDCA), they demonstrate a decrease in classifi-
cation error by over 50% when compared to a state-of-the-art HDCA method. 

• Jon Touryan and colleagues  examine the generalizability of fatigue-based meas-
ures of EEG to predict task performance [23]. As previously mentioned, BCI re-
search has often avoided addressing fatigue..  Dr. Touryan presents a study  
that takes the first steps towards developing an RSVP-based BCI that continues to 
effectively function as operators become fatigued.  He presents a study that extends 
the fatigue-based performance prediction algorithms developed for the driving do-
main [24] to RSVP performance prediction and demonstrate similar results for 
both tasks.  This study illustrates the capability to detect the state-based informa-
tion stream within an existing BCI task (i.e., RSVP) that is needed to extend BCI 
algorithms that adapt to user state. 

• Greg Apker and colleagues examine the ability to use fatigue-based measures of 
EEG to predict driving performance [25].  Previous research has shown the ability 
to make such predictions based on findings of a linear relationships between power 
spectral density estimates of EEG and driving performance in simple driving tasks 
[24]  However, the extant literature also suggests that this simple relationship is in-
sufficient based on multiple findings including: 1) task performance depends on 
numerous factors in addition to fatigue and 2) state changes in the brain may pro-
duce non-linearities in the relationship between the EEG signal and behavior.  
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Dr. Apker presents a study that merges a quadratic discriminate classifier with a 
modified version of the original linear approach and demonstrates prediction im-
provements through the inclusion of the non-linear element. 

3.2 Increasing Situational Complexity 

Theoretical and experimental evidence suggests that there are fundamental differences 
in how the human brain functions to control behavior when it is situated in ecological-
ly-valid environments (i.e., situated cognition) versus that observed in highly-
controlled laboratory environments. We hypothesize that a portion of our  
understanding of brain function will generalize to real-world settings, and from a 
translational perspective, it is critical to identify which portion. This generalizability 
issue defines the need to expand the capability of neuroimaging technologies beyond 
the laboratory and into complex situations where natural human, task, and environ-
mental interactions can be studied. The fourth talk of the session illustrates the suc-
cessful translation of a generalizable research finding to a complex scenario: 

• Anthony Ries presents data supporting the use of the RSVP task for searching 
imulated urban environments with performance improvements over a manual 
search of the same environment. Second, Dr. Ries presents the development under-
lying a novel simulation environment designed to aid the translation of the RSVP 
into a more realistic context. Specifically, the novel simulation environment  
embeds the RSVP into an operationally-relevant multitasking scenario where the 
operator is required to search for targets, identify IEDs near the roadside, and  
respond to specific radio communications while riding in a simulated moving ve-
hicle. The initial results of a validation study support the successful translation of 
the RSVP task into the more complex environment with the neural-driven target 
detection approach outperforming manual target detection [26].  

3.3 Developing Neuroimaging Tools Specifically for the Real-World  

The capability to extend both science and applications into a wider variety of real-
world situations will be critical to the effectiveness of translational neuroscience. 
Developing neuroimaging tools and in particular tools that function in a wide range of 
settings is a crucial component of such a capability and is a top research priority ac-
cording to the Executive Office of the President [2]. In the final part of this session, 
two speakers will present improved tools for collecting and interpreting neural signals 
in real-world situations: 

• Bret Kellihan and colleagues describe a neuroimaging tool for understanding the 
human brain’s interaction with real-world stress [27]. While laboratory settings 
have offered a great deal of insight into the brain function underlying stress, the ef-
fectiveness of laboratory stressors to represent the entire span of real-world stres-
sors has been called into question [28]. Mr. Kellihan presents a paper discussing 
the state-of-the-art in real-world stress measurement technologies and the limita-
tions of current systems.  He also describes the novel multi-aspect real-world  
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neuroimaging system (MARIN) that has been developed specifically for studying 
the brain under conditions of real-world stress. This tool will enable a better under-
standing of the neurological mechanisms of stress and enable the development of 
future neurotechnologies that function in real-world situations. 

• Vernon Lawhern and colleagues focus on the critical issue of artifact or non-brain 
electrical signal identification within EEG time series [29]. Real-world environ-
ments pose critical issues with non-brain electrical signals that are dramatically dif-
ferent than the issues posed under laboratory conditions designed to minimize 
sources of artifact.  Hence, real-world neuroimaging will require effective tools to 
eliminate or potentially separate and utilize the non-brain from brain electrical 
sources. Dr. Lawhern presents a study that focuses on identifying artifacts using 
autoregressive (AR) models and specifically proposes a method for determining 
optimal AR features based on a penalized multinomial regression. The authors’ re-
sults indicate that the size of the feature vector can be greatly reduced with minim-
al loss to classification accuracy, which has significant ramifications for both com-
putation efficiency and hardware design. 

Together, these talks on neurotechnology development highlight translational ad-
vancements in BCI and real-world neuroimaging technologies. The multifaceted ap-
proach taken by the authors in this session demonstrates the importance of developing 
neurotechnology tools and methods to enhance human system performance as well as 
a means to measure the brain-in-action within ecologically valid environments.   
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Abstract. Previous studies have shown that psychological arousal impacts 
motor performance during social-evaluative tasks by its influence on cortical 
dynamics, which can translate into motor performance enhancement. Although 
these findings have established critical links between performance under mental 
stress and elevated brain activity beyond that required for performance, there is 
still a need to further investigate brain connectivity during cognitive motor 
performance under such conditions. Here both electroencephalographic (EEG) 
and shooting performance were obtained in a shooting task under both 
performance-alone and competitive conditions. Network connectivity was 
assessed for the localized EEG sources. The results are consistent with those 
previously obtained and suggest elevated statistical dependencies and causal 
interactions between motor and non-motor areas during the competitive 
condition relative to performance-alone. Such network analysis provides a 
complementary approach to more traditional EEG derived metrics allowing for 
examining brain dynamics during cognitive motor performance under varying 
conditions of mental stress. 

Keywords: Brain connectivity, EEG Localization, Motor Cognition, 
Competitive Pressure. 

1 Introduction 

Some individuals are better able to perform under high pressure, while others fail to 
perform up to their skill and ability (i.e., choking under pressure [1]). For example, 
                                                           
* Corresponding author. 



362 H. Oh et al. 

social-evaluative stress such as competition often leads to significant fluctuations in 
the quality of motor performance [2]. In such situations, it has been reported that not 
only physiological factors (e.g., circulatory and electromyography) but also 
neurocognitive aspects (e.g., mental state and neural processes) play a critical role in 
the quality of motor performance [3–6]. Several studies have demonstrated that 
experts employ less verbal-analytical processing during skilled motor performance, 
resulting in attenuation of nonessential cognitive motor processes possibly due to a 
shift to reliance on subcortical structures and relative engagement of visuospatial 
processing [7]. A recent multilevel examination of motor performance and cortical 
dynamics under social-evaluative competitive pressure [8] found a loss of psycho-
motor efficiency during competitive performance; i.e. elevation of non-essential 
neural activity and cerebral cortical networking. Namely, during competition  
relative to a non-competitive (i.e., performance-alone) condition, each measure was 
respectively reported as dysfluency of the aiming trajectory, modestly elevated 
physiological responses, and increased cortico-cortical communication between  
motor and other brain regions, accompanied by relative desynchrony of high alpha 
power [8].  

Such performance changes may be a consequence of reinvestment, in which a 
performer focuses explicit attention and control to well learned motor skills during 
mental stress exposure, which, in turn, results in performance degradation [9]. Thus, 
the confluence of increased state anxiety and explicit self monitoring leads to 
conscious control of essential motor control processes such that the performer reverts 
from the advanced stage of automaticity to an earlier stage of effortful analysis where 
verbal-analytical processing interferes with the refinement of skilled action. In 
addition social evaluative pressure may also act to increase the cognitive-motor task 
difficulty or workload load during performance resulting in elevated neural effort 
during task execution [10]. Thus, it seems to be reasonable that increased cortical 
activation (especially in verbal temporal regions) could occur during social-evaluative 
competitive pressure and could disrupt psychomotor efficiency [5].  

To better understand how performance under competitive pressure relates to 
elevated neural activity beyond that required for performance, this study uses a novel 
EEG tomography techniques called low resolution brain electromagnetic tomography 
algorithm (LORETA) to identify the three dimensional (3D) distribution of the 
generating electric neuronal activity [11]. In LORETA, the source space is restricted 
to gray matter and the hippocampus as determined in the digitized probability atlas 
based on the Talairach human brain atlas (Brain Imaging Center, Montreal 
Neurological Institute (MNI)). Based on response similarity in such localized EEG 
sources, connectivity (e.g., structural, functional, or effective connectivity) analysis is 
processed to infer interregional communications between several brain regions. This 
study examined the EEG source distribution under competitive pressure as compared 
with non-competitive condition using LORETA, and to identify the brain connectivity 
from performers under varying conditions of mental stress by correlating cortical 
dynamics with motor performances. 
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2 Methods 

2.1 Data Acquisition 

Participants completed a dry fire (i.e., no ammunition) pistol shooting task under 
performance-alone (PA) and competitive (C) conditions while EEG and shooting 
performance were recorded. 

Subjects. Nineteen subjects (17 men and 2 women; age range of 18-38 years; mean 
and standard deviation age of 22 and 4.33), enrolled in the Reserve Officers’ Training 
Corps (ROTC) program, participated in the present study. All subjects were right-
hand dominant and right-eye dominant and reported no history of neurological or 
psychiatric disorders as well as psychotropic medications at the time of their 
participation in the study. In addition, all subjects met a minimum performance level 
for inclusion in to the study such that each participant had to hit the target 80% of the 
time or greater during a preliminary practice session consisting of 40 shots. Prior to 
testing, all participants granted their written informed consent in accordance with the 
protocol approved by the University of Maryland Institutional Review Board, and 
were also informed that they were free to withdraw from the study at any time. 

EEG Measures. EEG data were acquired from 30 EEG channels (Fig. 1b) in 
accordance with the 10-20 system using a linked earlobes reference and a common 
ground on FPz with 2 bipolar electrooculography (EOG) channels (horizontal HEOG 
at the outer canthi of both eyes and vertical VEOG placed above and below the left 
eye over the orbicularis oculi muscle). The data were recorded with an online 
bandpass filter at 0.01-100 Hz and a sampling rate of 1000 Hz using SCAN 4.3.3 
(Compumedics Neuroscan, Charlotte, NC, USA). EEG baselines (1 min standing in 
shooting position without pistol) were collected prior to each session commencement. 

Shooting Tasks. A dry fire pistol shooting task was completed in a sound attenuated 
testing chamber, for which a prism technique based shooter training system, Noptel 
ST-2000 version 2.33 (Noptel Oy, Oulu, Finland), was used to monitor the shooting 
performance at 66 Hz: e.g., both the position of the instantaneous aiming point and 
the shot placement in mm on the target as well as shot score. Participants shot from a 
standing position 5 m (Fig. 1a) from an appropriately scaled target to maintain a 
proportionate diameter consistent with that of a standard competitive target at a 
distance of 50 feet (or 15.24 m). They held the pistol with their dominant (i.e., right) 
hand and had their nondominant (i.e., left) eye occluded. 

Two testing conditions (PA and C) were counterbalanced such that half of the 
participants engaged in PA followed by C, and the other half of them completed C 
first and then PA with a 15 min rest period in between to ensure a stable attention 
state and to minimize the adverse effects of fatigue. Participants were allowed 10  
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practice shots prior to each testing condition, and completed 40 self-paced shots (a 30 
s time constraint for each shot in condition C) during both PA and C conditions. In 
each shot (or trial), an electronic pulse was generated by the Noptel to mark the 
trigger pull in the continuous EEG recording, and visual feedback on shot placement 
on the target as well as shot score was provided after each shot. The shot location was 
recorded as the position of the aiming point on the target at the time of the trigger 
pull, and shot score was proportional to the proximity of the hit point from the 
bullseye: a maximum of 10 points at the bullseye, and 1 point at least touching the 
outermost ring. 

 

Fig. 1. (a), (c) A shooting performance was monitored using a prism technique based shooter 
training system during both PA and C conditions. During condition C, two participants took 
turns shooting at the target in a social evaluation environment by a superior officer and the 
opponent. b) 30 EEG electrode placements on the international 10-20 system. EOG, reference, 
and ground electrodes are not shown. 

Condition PA. Participants were not evaluated but instructed to remain focused and 
relaxed during this condition. Following the baseline measures and the practice shots, 
the first 20 shots for record (i.e., block 1) were executed followed by a 5 min break, 
and then the final 20 shots for record (i.e., block 2) were executed (Fig. 1a). 

Condition C. This condition involved the same order of measurements as PA, but 
included direct comparison of shooting performance to another study participant. Two 
participants took turns shooting at the target such that one shot while the other 
observed the opponent’s performance and the shooting order was alternated across 
trials (Fig. 1c). Participants were instructed to set the pistol down between each shot 
and to remain standing throughout the respective conditions. Scores were presented to 
the competitor after each trial (i.e. after both participants had taken one shot) and a 
winner of that trial was declared. Participants were explicitly informed of all of the 



 Understanding Brain Connectivity Patterns during Motor Performance 365 

following testing rules to exert competitive pressures prior to task execution and were 
encouraged to win the competition: 

─ social evaluation by a superior officer who conspicuously took notes and evaluated 
the participants’ shooting stance and accuracy, 

─ financial loss or gain of 50 cents per round from a starting sum of $20; in the case 
of a tie, the sum at stake (i.e., $1) carried over to the next round; a dollar bonus or 
loss respectively for a bullseye or missing the target completely, 

─ a 30 s time constraint for each shot, beginning when the participant first grasped 
the pistol to initiate the shooting position, 

─ video camera recording, 
─ social responsibility as a team member; participants were placed on teams such that 

their score contributed to overall team score, both of which were displayed outside 
the ROTC field house. 

2.2 Data Analysis 

Preprocessed EEG data were localized by applying LORETA, and then statistical 
dependencies (e.g., cross-spectral connectivity) between localized EEG sources were 
investigated along with the co-registered shooting performance. 

Shooting Data. The time for each shot started around -4 s before trigger pull, which 
corresponds to time zero. Participants performed motionless precision aiming tasks, 
allowing for minimal artifacts up to the time of the trigger pull. Aiming variability 
was quantified as the standard deviation of the tangential displacement of the shot 
placement with respect to the position of the aiming point at 3 s prior to trigger pull 
(instead of 4 s to minimize artifacts). In addition, mean shooting scores across shots 
for each subject on each condition were computed. 

EEG Data. Ocular artifacts were reduced from the EEG data by employing a 
regression procedure with artifact averaging method using SCAN 4.3.3: a positive 
deflection with the trigger threshold of 10 % from the maximum artifact voltage, and 
20 and 400 for minimum sweeps and the sweep duration in ms, respectively. The 
EEG data were then visually inspected to reject any trials that still contained 
significant artifacts, and were bandpass filtered by a bidirectional Butterworth filter 
between 3 to 50 Hz with a 24 dB/octave rolloff. Next, the continuous EEG data were 
partitioned to have a 3 s period of EEG data points prior to trigger pull (as shooting 
data) in each trial, and then each trial was baseline corrected and linear detrended. 
Finally, every trial was decimated to 100 Hz by applying a lowpass Chebyshev type I 
filter with a cutoff frequency of 40 Hz for antialiasing and then resampled by a factor 
of 10 in MATLAB R2012b (MathWorks, Natick, MA, USA). 

Based on the preprocessed EEG data, 3D cortical distribution of current density 
with the properties of small localization bias and low spatial resolution was  
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determined using standardized LORETA (sLORETA) version 20081104 [11] as well 
as the Brainstorm 3.1 [12]. More precisely, a realistic head model was designed using 
the MNI152 template [13] as determined by the probabilistic Talairach atlas [14, 15] 
and symmetric boundary element method [16]. The standard electrode positions on 
the MNI152 scalp were adjusted with the fiducial points by manual inspection. The 
noise level in the EEG recordings prior to the aiming period was also estimated as the 
regularized full noise covariance matrix per subjects, so that the source reconstruction 
could be more accurate. Next, the intracerebral volume was partitioned in 15182 
LORETA voxels at 4 mm spatial resolution so that sLORETA voxels could represent 
the electric activity at each dipole grids in neuroanatomic MNI space as the exact 
magnitude of the estimated current density with the signal to noise ratio of 3 dB. 
These 15182 voxels were then corrected to have an orientation that is close to the 
normal to the cortex, and finally 15028 voxels were estimated. In addition, the EEG 
cross-spectral matrix was computed to examine sLORETA voxels that generated the 
oscillatory activity in the delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 
Hz) rhythms. 

Finally, the connectivity pattern analyses were performed to study the 
interconnectivity of the information processing elements between different cortical 
regions. The information processing units were calculated by averaging the source 
signals within a specific region of interest (ROI) for each orientation separately, and 
then taking the first component of the principal component analysis decomposition. 
The ROIs were defined based on 200 functionally distinct regions (100 ROIs in each 
hemisphere) using sources clustering method, in which each source was assigned to a 
single ROI in terms of closest distance to the center of mass of each ROI. The 
connectivity patterns between these ROIs were computed by means of two measures 
of N×N coherence and N×N phase locking value, and then such connectivity 
measures were averaged across subjects per each condition. 

3 Results 

EEG Localization. In the first step, a forward model of the head was computed to 
explain how cortical sources could influence the values on the EEG sensors. The 
estimated sources were standardized to minimize between-subject variability, and 
then averaged across subjects per each condition (Fig. 2). Considering PA as a 
reference case, relatively higher cortical source activations were more widely 
dispersed across cortical regions in C. Particularly, such activations were distributed 
apparently on both left fronto-temporal and right occipito-parieto-temporal areas 
during C, In addition, greater lateral temporal and lower medial central source 
activations respectively associated with alpha and beta rhythms were observed from 
the best who achieved minimum aiming variabilities in both conditions (1.9322 and 
2.007 in PA and C) compared to the worst performer [4, 8], whose aiming 
variabilities were 4.0418 and 4.8819 in PA and C, respectively (Fig. 3). 



 Understanding Brain Connectivity Patterns during Motor Performance 367 

 

Fig. 2. Grand average EEG sources for both (a) PA and (b) C conditions respectively in each 
row. Each column displays the grand average of standardized cortical activations across 
subjects from left and top view, respectively; right view images are reversed as mirror images 
of left view images since each plot was drawn in 3D orthogonal sliced coordinates. (c) EEG 
source activations having p < 0.10 between two conditions were depicted. 

 

Fig. 3. Exemplar source activations in alpha (8-13 Hz; 1st and 3rd columns) and beta (13-30 Hz; 
2nd and 4th columns) rhythms from best (1st and 2nd columns) and worst (3rd and 4th columns) 
performers under PA (1st row) and C (2nd row) conditions. 

Brain Connectivity. Next, functional connectivity was computed from a clustered set 
of ROIs into prefrontal, frontal, temporal, parietal, and occipital regions in both left 
and right hemispheres (Fig. 4). Coherence results were similar in both conditions, but 
did reveal a tendency such that lower frequency bands were more globally connected 
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and higher frequency bands were more locally and anteriorly connected. Conversely, 
phase locking value could discriminate two conditions apparently in each frequency. 
Particularly, as similar to the sources distribution results, fronto-temporal and  
fronto-parietal connections associated with alpha rhythm were disconnected. Also, 
fronto-temporal, fronto-parietal, and occipito-parieto-temporal connections were 
attenuated in the beta frequency. 

 

Fig. 4. Functional neural connectivity measures based on (a) N×N coherence and (b) N×N 
phase locking value for grand average ROIs per each condition. (c) All ROI groups were 
depicted in a polar grid, where each dot represented a distinct ROI. C-PA: C vs. PA, Left: Left 
hemisphere, Right: Right hemisphere, PF: Prefrontal, F: Frontal, T: Temporal, P: Parietal, O: 
Occipital regions. 

4 Discussion 

This study offered a multi-level examination of motor performance and cortical 
dynamics under competitive pressure. Previous studies have reported alpha power 
synchrony during expert marksmanship was positively related to performance and has 
been interpreted as quiescence of cognitive analysis during non-evaluative conditions 
[7, 10]. However, few studies have examined the impact of social evaluative mental 
stress on cortical dynamics during goal oriented motor behavior; to our knowledge, no 
studies exist where network connection analysis was performed to elucidate the 
functional relationship between brain regions under such competitive pressure 
condition. In the present study we examined how direct competition accompanied by 
a modest increase in mental stress perturbs cortical processes and influences the 
quality of motor performance. 

Similar to our previous studies, the competitive condition increased the neural 
processing workload and resulted in heightened cortical activity across all of the 
topographical regions [10]. The elevation in cortico-cortical communication involved 
heightened connection between numerous non-motor regions with the motor planning 
region, suggesting a loss of psychomotor efficiency during social evaluation. The 
frontal input may be explained by elevated executive effort to inhibit task-irrelevant 
stimuli associated with the competition, while the central and parietal communication 
could be explained by additional effort in the motor and visuo-spatial domains. 
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Our results also indicated that competition produced behavioral changes in the 
fluency of motor performance, and source activations as well as functional 
connectivity were related to aiming variability, but no difference in shooting score 
(not shown in the results). Importantly examination of the best performer compared to 
the worst performer revealed a significant increase in left temporal alpha power 
during competition whereas the worst performer did not reveal a significant change in 
alpha. This is consistent with previous studies that have reported that the left temporal 
activity, associated with verbal-analytical processes, progressively decreases 
(reflected by increasing alpha synchrony in left temporal) during the aiming period of 
expert shooting up to the time of the trigger pull [17] and during the practice phase for 
motor skill acquisition [7]. Interestingly the best performer also did better during 
competition compared to performance alone, demonstrating the adaptive profile of 
alpha synchrony in left temporal region during competition [6]  and supporting the 
notion of arousal-dependent performance facilitation to promote psychomotor 
efficiency [4].  In addition the lack of significant alpha synchrony in the left temporal 
region of the worst performer is consistent with the reinvestment hypothesis in which 
maladaptive self-talk (left temporal activation) infers with motor performance and 
results in neuromotor noise (elevated beta response in competition compared to 
performance alone).   

Lastly the phase locking value results suggest competitive pressure can perturb the 
neural processes of the performer beyond that required simply to execute the pure 
motoric demands of a task because of the increase magnitude of the cortico-cotical 
communication across the alpha and beta frequency bands. Thus social evaluation 
may promote non-essential cortical activity, resulting in the degradation of motor 
efficiency in the form of nonessential limb movement (i.e., dysfluency of the aiming 
trajectory). Such a state could alter the motor preparatory processes (i.e., aiming) and 
the quality of the motor behavior, while the reduction in efficiency did not result in a 
change in performance outcome (as measure by shooting score). 

In summary, the results revealed that competition introduced an increase in activity 
in the central nervous system, which introduced elevated non-essential neural activity 
to the visuo-motor processes, and then such a loss of psychomotor efficiency resulted 
in dysfluency of the aiming movement during competition. Since motor performance 
typically occurs under a variety of situations where workload demands and mental 
stress may perturb behavior, it appears useful to examine EEG functional connectivity 
and source distribution to aid in the assessment of performance optimization 
approaches and promote resilience to motor task inference.  
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Abstract. Electroencephalogram (EEG) data can provide information
on cognitive states and processes with high temporal resolution, but to
take full advantage of this temporal resolution, common transients such
as blinks and eye movements must be accounted for without censor-
ing data. This can require additional hardware, large amounts of data,
or manual inspection. In this paper we introduce a greedy, template-
based method for modeling and removing transient activity. The method
iteratively models an input and updates a template; a process which
quickly converges to a unique and efficient approximation of the input.
When combined with standard source separation techniques such as In-
dependent Component Analysis (ICA) or Principal Component Analysis
(PCA), the method shows promise for the automatic and data driven
removal of ocular artifacts from EEG data. In this paper we outline
our method, provide evidence for its effectiveness using synthetic EEG
data, and demonstrate its effect on real EEG data recorded as part of a
minimally constrained cognitive task.

Keywords: EEG, EOG, ICA, PCA, BCI, matching pursuit.

1 Introduction

1.1 EOG Removal from EEG for Cognitive State Estimation

EEG is being actively investigated as a method for creating advanced human-
computer interfaces, in which cortical activity patterns are used to infer the
cognitive state of users or to control external devices.

Cognitive state estimation systems allow for estimates of latent cognitive prop-
erties such as mental workload, estimates which can then be used to regulate
information provided to a user as part of an augmented cognition system, or
for the development of new methods for assessing specific cognitive deficits and
tailoring cognitive rehabilitation. Brain-computer interface (BCI) systems may
allow patients with motor disabilities to interact with the world by controlling
external devices through cortical activity. Devices include traditional computer
control devices (such as mice), text communication systems, and robotic limbs.
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In both cases, granular measures and high temporal resolution are desirable
factors, as they allows for the production of more sensitive control mechanisms
and a more detailed investigation of cognitive processing. Temporal resolution
is easily hindered by physiological contamination from ocular and muscular ac-
tivity. Recorded blinks and eye movements can be particularly disruptive due to
their high amplitude and impulse-like shapes. These impulses disrupt both seg-
ment comparisons and local frequency estimates common in BCI and cognitive
state estimation systems. The frequency with which these events occur makes the
development of automatic systems for removing artifacts (rather than identifying
and rejecting them) an important step in developing new tools built on EEG.

1.2 Existing EOG Removal Methods

A 2007 review by Fatourechi, et al. documents the common methods for re-
moving such contaminants from EEG in BCI systems, their benefits and short-
comings, and the frequency with which they are employed in published work
[1]. Although most studies neglect to discuss how ocular artifacts are treated
(53.7%), the majority of those that employ automatic ocular artifact removal
employ an electrooculogram (EOG) paired with a simple linear model (69.7%).
This combination consists of dedicated electrodes placed around the eyes and
a linear regression model that relates some portion of the signal recorded by
each electrode of the EEG to an EOG component. In addition to requiring addi-
tional hardware and a more involved setup process, the relationship between the
recorded EOG signal and the EEG is not entirely linear. The activity associated
to the EOG during different eye movements varies depending on the type of
eye-movement [2].

The second most common method for ocular component removal, being re-
ported in 9.1% of papers, is blind source separation, usually in the form of inde-
pendent component analysis (ICA). ICA is a statistical method that separates
additively mixed, independent signals through the optimization of a measure
of non-normality in the resulting component signals. ICA may be used with or
without an EOG [3,4], and depends on both a large amount of data (for the
optimization process) and a manual identification step (to identify components
associated with the type of contamination in question).

Only 6.1% of automatic EOG artifact removal is performed with principal
component analysis (PCA), an eigendecomposition based method for identify-
ing uncorrelated components. The rarity with which PCA is used is probably
due to EOG components and cortical activity not meeting the condition that
components be orthogonal. PCA decompositions will produce components that
contain combinations of activity from unrelated sources (such as ocular activity
and frontal cortical activity). Yet, PCA remains a tempting method because
the decomposition is deterministic, fast, and requires less data (when compared
to ICA).



Removal of Ocular Artifacts from EEG Using Learned Templates 373

ICA and PCA perform a similar task, using statistical properties to iden-
tify spatial components that have some sort of coherent activation pattern.
However, they differ in terms of assumptions about the data and the difficulty
with which projections can be derived from the data. PCA alone is a poor match
for the removal of EOG artifacts due to an orthogonality assumption not met
by EEG data [5]. However, dropping this assumption and further optimizing
for independence makes ICA a more difficult method to employ, in terms of
data requirements and derivation properties. For both methods, it is likely the
case that the estimated EOG component also contains cortical activity, possibly
due to unmet requirements for full separation under PCA, and to suboptimal
projections being derived through the optimization for non-normality [5,6].

1.3 Using Temporal Shape for Artifact Removal

In this paper, we describe an extension of ICA-based or PCA-based EOG arti-
fact removal that further constrains the attribution of signal to ocular activity
by leveraging the conserved temporal shape of common transients. Our method
uses a modified version of matching pursuit, a method by which signals are rep-
resented as a linear combination of elements from an over-complete dictionary
[8]. Matching pursuit results in a sparse signal representation which has been
found to be useful in signal classification and compression contexts. However, the
modeling process is prohibitively slow when using common dictionaries, making
it unsuitable for online applications [9]. Although applied to EEG soon after its
development [7], matching pursuit is rarely applied in the context (not appearing
in Fatourechi’s survey of artifact removal techniques) due to this poor runtime
performance. Methods for accelerating matching pursuit rely on efficient im-
plementation and careful pruning of the dictionary elements considered during
signal modeling. Although the gains from these approaches can be substantial,
the runtime remains bound to the cardinality of the dictionary being used, which
is usually large [9]. We find that artifacts in EEG are sufficiently modeled using
a very simple dictionary, consisting of only a few entries. Our approach modifies
the matching pursuit process by comparing dictionary elements to the signal at
all possible offsets, reducing the dictionary size to only a few elements that can
be learned from the data, and are constructed to model an individual subjects
ocular artifacts for removal.

Evaluation of EEG processing methods presents an inherent challenge, as we
lack a ground truth signal against which processed signals can be compared.
For this reason, processing methods are sometimes evaluated using synthetic
data, where conclusions regarding a method can only be drawn in so far as the
synthetic data is a meaningful approximation of real data. We will demonstrate
our method in this synthetic context first, where assumptions will be made
explicit and efficacy can be demonstrated clearly, and then we will demonstrate
the method using real EEG data, which can not be evaluated for correctness,
but compares favorably to the synthetic results.
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2 Methods

2.1 Data Collection

We developed our technique for removing ocular artifacts while investigating
EEG data collected during performance of a naturalistic reading task. Subjects
read passages under a high-workload condition, where text came from sources
such as the New Yorker and a challenging time constraint was imposed, or under
a low-workload condition, which used easier passages and little time constraint.
The nature of the task made it unreasonable to discourage eye-movements, and
frequency with which they occurred made rejection unreasonable, so we had to
remove the EOG from the recorded data.1

The frequency of eye movements made ICA quite effective in producing an
independent ocular component using only a few minutes of recorded data. The
component was found and identified using the methods described in Jung, et al.
[4]. To further isolate ocular activity, we modeled the activation time-course of
this channel using our template based method. The modeled ocular activity was
then subtracted from this component, leaving other activity as a residual that
could be re-integrated into the data at large. A mathematical description of the
modeling process follows.

2.2 Processing

The component recognized as containing ocular activity, x = (x1, x2, ..., xn), is
modeled using a shape template h = (h1, h2, ..., hm) and a scaling coefficient
sequence c = (c1, c2, ..., cn).

The signal model m is constructed by the convolution m = h ∗ c. From the
signal x and this model m, we generate the residual r = x−m.

For convenience, let Nm(xi) = (xi−m
2
, ..., xi+m

2
), that is, an m unit neighbor-

hood of xi. We initialize h by taking the point-wise average of signal segments
that are centered on local amplitude extrema.

W = {wi : max(|Nm(xi)|) = |xi|},

where wi =
Nm(xi)

stdev(Nm(xi))

h = E(W )

The coefficient sequence c is initialized with ci = 0 for all i. We greedily add
single coefficients using the following update procedure.

i∗ = argmax
i

cov(h, Nm(ri))

1 EEG data was recorded from standard scalp locations using a 64-channel
BiosemiTMActiveTwoTMsystem. Data was down-sampled to 256Hz during recording
and was high-pass filtered at 1 Hz using an 8th order Butterworth filter. Additional
details regarding the experiment and the collection of this data can be found in the
Engineering in Medicine and Biology 2010 conference proceedings [10].
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a∗ = argmin
a

∑
(ah−Nm(ri∗))

2

ci∗ = a∗

Update m = h ∗ c and r = x−m

Each iteration selects a location from the current residual, fits a scaling coef-
ficient, and updates the model and residual. These steps are repeated until a
termination condition is met, which can be based on a limit on the number of
non-zero elements of c, a threshold on a∗, or reaching a target residual variance.

After the signal has been modeled, we update the template.

Let r◦i = x− h ∗ (c1, c2, ..., ci−1, 0, ci+1, ..., cn),

W = {Nm(r◦i ) : ci �= 0},
h = E(W ).

r◦i shows us our current residual modified such that a single transient remains
unmodeled. This allows us approximate the event at i in isolation, reducing the
effect of overlapping occurrences of the transient.

Repeating this process of modeling and template updating based on covariance
guides the model toward a group of transients with a similar shape, producing
a template increasingly fitting the transient of interest. A final signal estimate
mfinal is built using the same matching pursuit process that is used during each
of the update steps. Additional transients may be modeled by repeating the
entire process, starting with x−mfinal.

3 Results

3.1 Synthetic Data

To evaluate how well our method for modeling transients decomposes an EEG
signal containing both cortical and EOG components, we generated synthetic
EEG data with an additive combination of a stable random signal and a sequence
of transients generated from a conserved temporal shape. That is, xEEG =
xstable+

∑
i hi ∗ci, where hi is a transient, and ci is a sparse activation sequence

for hi.
Transients are often impulse like (and therefor broadband), so their frequency

distributions overlap with that of the stable signal. We generated a transient
by producing a random .5 second signal in the 1-8Hz band, and scaling it to
have unit variance. There were 30 activations with coefficients in the range .75
to 1.25. The random signal was from the 1Hz to 20Hz frequency range and had
variance of .25. This process produced the signal seen in Figure 1. Although
not a sophisticated model of EEG activity, the components overlap in frequency
distribution, and are reminiscent of contaminated EEG components.
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Fig. 1. We model EEG data as the additive combination of a stable random signal
between 1 and 20 Hz and repeated activations of a transient in the range 1 to 8
Hz. Our model includes substantial activity not associated with the transient, which
would indicate poor separation of signal components when applying a source separation
technique to real EEG data.

Initializing the template using signal segments of high local variance produces
a fairly poor result. However, applying our template updating procedure several
times produces a reasonable approximation, as can be seen in Figure 2. Using
the resulting template approximation, the signal is separated into a transient
activation sequence and a residual signal, shown in Figure 3

Fig. 2. Our method for modeling a repeated transient produces a good approximation
of the generating transient signal, despite a poor initial estimate. The ground truth
transient shape is shown on the left, the initial estimate is shown in the middle, and
the final approximation is shown on the right.

As we iterated between signal modeling and template updating, we see in
Figure 4 that the residual error, the squared sum of the difference between our
model residual and the stable random signal, quickly drops off to a constant near
the original variance. Although the error cannot be monitored during application
to a real signal, the residual variance can be monitored. Figure 4 also shows that
when the remaining residual variance stabilizes, there is also little change in the
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Fig. 3. The modeled signal produces a close approximation of the two contributing
signal sources (seen in Figure 1) from a single channel. In conjunction with source
separation techniques that use spatial information, our method may produce a more
complete separation of contributing sources.

Fig. 4. The residual error closely tracks the total remaining variance in the signal. This
provides useful information for constructing an appropriate termination condition when
using real data, where error cannot be monitored.

residual error. If this relationship between residual variance and error remains
consistent when using real data, it contributes to a natural termination condition
for the signal modeling procedure.

3.2 EEG Data

To demonstrate our method for modeling ocular transients, we use a component
from a PCA decomposition of the aforementioned data recorded during a reading
task. Although our method works well in conjunction with ICA, PCA quickly
produces a robust decomposition from which components associated with ocular
activity might be more easily identified through automated processes. However,
the ocular activity is less isolated when using PCA. Our template approach
addresses this issue by introducing the additional shape constraint.
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PCA was applied to our recorded EEG data. We selected the component con-
taining blink activity based by examining the scalp distribution of PCA weights.
Our signal modeling technique was applied to the the activation time-course of
this component. As before, the template modeling method converges on a rea-
sonable approximation of the time-course of the most common transient, as can
be seen in Figure 5. Using this template, the activation time-course of the se-
lected PCA component is decomposed into two parts: the modeled transient
activation and the residual activity, which is presumably cortical in nature. This
further decomposition can be seen in Figure 6. Again, the modeled signal closely
tracks what appear to be instances of the transient activity, without introducing
obvious artifacts or removing additional activity.

Fig. 5. The estimated transient converges quickly to a plausible shape for common
ocular artifacts. The frequency of blinks in rapid succession contributes to an elevated
amplitude leading and following the main amplitude spike by about .25 seconds. These
sorts of artifacts associated with overlapping transients are reduced by the local mod-
eling used when learning the transient shape.

Using this method allowed us to perform our analyses of data recorded dur-
ing the reading-task, which included the extraction of local frequency features,
without corruption from impulse-like activations.

4 Discussion

In this paper we introduced a template based approach to modeling transients in
EEG data. We provided evidence for the efficacy of the method in the context of
synthetic data, and demonstrated the result of applying the process to real EEG
data. The method provides the benefit of being able to remove common ocular
contaminants from recorded EEG signals without rejecting data; without the
use of additional hardware; and, when combined with PCA, without requiring
large amounts of data or a detailed analysis of separated components.



Removal of Ocular Artifacts from EEG Using Learned Templates 379

Fig. 6. On ocular and frontal activity component (in black) is split into a transient com-
ponent (in red) and a locally stationary signal (in blue). It appears that this separation,
using a component derived using PCA, creates for a more easily automated method for
removing ocular contamination in EEG when compared to ICA based methods, which
usually require the attention of a researcher to identify ocular components.

There are several natural concerns associated with the method, including im-
plementation details such as termination conditions and the potential for learn-
ing degenerate templates that model more than the intended transient activity.
Additionally, the known shortcomings of matching pursuit remain applicable,
with the potential for highly suboptimal signal representations to occur when
transients overlap frequently. Furthermore, we have only peripherally discussed
the situation where multiple transient patterns occur within the same signal. For
example, transients associated with left-to-right and right-to-left eye movements
usually share a component when identified using PCA or ICA, but may not be
appropriately modeled with a single template.

In practice, many of these concerns can be mitigated, without significant ef-
fort, by empirically adjusting the few parameters in the system, such as the
width of the transient model and the threshold on activation coefficients. The
presence of multiple transient shapes requires a bit more engineering, but ini-
tial results using clustering of signal segments (rather than a simple mean), or
sequential application of the method, are encouraging.

Several additional experiments remain future work, including: comparing our
method to EOG signals gathered with dedicated electrodes, further automation
through the integration of priors for the spatial distribution of common ocular
contaminants, and the modeling and detection of evoked response potentials
without the use of a time-lock.
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Abstract. The role of practice is crucial in the skill acquisition process and for 
assessments of learning. In this study, we used a portable neuroimaging tech-
nique, functional near infrared (fNIR) spectroscopy for monitoring prefrontal 
cortex activation during learning of spatial navigation tasks throughout 11 days 
of training and testing. Two different tasks orders, blocked and random, were 
used to test the effect of the practice schedule on the acquisition and transfer of 
3D computer mazes. Results indicated variable decreases in the hemodynamic 
response during the initial days of practice. Although there were no differences 
in mean oxygenation for the practice orders across acquisition the random prac-
tice order used less oxygenation than the blocked order for the more difficult 
tasks in the transfer phase Use of brain activation and behavioral measures pro-
vides can provide a more accurate depiction of the learning process. Since fNIR 
systems are safe, portable and record brain activation in ecologically valid  
settings, fNIR can contribute to future learning settings for assessment and  
personalization of the training regimen.  

Keywords: Optical Brain Imaging, functional near infrared spectroscopy, fNIR, 
Learning, Spatial navigation, contextual interference. 

1 Introduction 

The advent of new and improved brain imaging tools, that allow monitoring brain 
activity in ecologically valid environments, is expected to allow better identification 
of neurophysiological markers of human performance and learning. Further, deploy-
ment of portable neuroimaging technologies to real time settings could help assess 
cognitive and motor task related brain activations for objective assessment of mental 
effort and cortical processing involved for the task at hand. Functional Near-Infrared 
Spectroscopy (fNIR) is an emerging optical brain imaging technology that relies on 
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optical techniques to detect changes of hemodynamic responses within the prefrontal 
cortex in response to sensory, motor, or cognitive activation. 

The role of practice is crucial in the skill acquisition process and for assessments of 
learning. By examining the cognitive and behavioral output during the performance 
and learning of selected cognitive and motor tasks, along with a detailed examination 
of the neural activity obtained from fNIR, it may be possible to gain insight into the 
impact of practice on learning, transfer and the skill acquisition processes. This paper 
discusses the neural mechanisms of learning and skill acquisition using fNIR with 
Maze Suite 3D spatial navigation tasks using a contextual interference paradigm. 

The organization of practice when learning multiple tasks (e.g., [1, 2]) is a learning 
phenomenon called the contextual interference effect.  The effects of contextual inter-
ference are evident when individuals acquire multiple tasks under different practice 
schedules.  High contextual interference (random (RAN) practice order) is created 
when the tasks to be learned are presented in a non-sequential, unpredictable order.  
Low contextual interference (blocked (BLK) practice order) is created when the tasks 
to be learned are presented in a predictable order 

The specific aim of this pilot study is to identify brain based biomarkers of learning 
and its relationship to task performance improvement with practice as measured by 
fNIR spectroscopy which is a safe, non-invasive, affordable and portable neuroimag-
ing technology that can be used to monitor hemodynamic changes that occur in the 
brain, i.e., blood oxygenation and blood volume, during select cognitive tasks such as 
mental workload [3-6], task difficulty/problem solving [7-9], performance[10-12] and 
learning[12-14] assessment tasks. Moreover, fNIR data can be collected in quiet set-
tings unlike functional magnetic resonance imaging (fMRI) that exposes subjects to 
noise and confines them to restricted spaces and a supine position during the data 
acquisition process. These qualities pose fNIR as an ideal methodology for monitor-
ing cognitive activity-related hemodynamic changes not only in laboratory settings 
but also under ecologically valid conditions – real world environments. 

For the experimental paradigm, fNIR measures were integrated into a virtual 3D 
navigation tasks generated with MazeSuite [15, 16] (Drexel University). The protocol 
involved execution of wayfinding tasks throughout 11 days. Two different groups, 
BLK and RAN practice orders were used for learning of mazes (virtual environments 
/labyrinths) during acquisition and more difficult (complex) mazes during retention.   
A 16-channel continuous wave (CW) fNIR system designed by the Optical Imaging 
Team at Drexel University (see [3]) was used to monitor the prefrontal cortex during 
task performance.  

2 Methods 

2.1 Participants 

Eight right-handed participants (assigned using the Edinburgh Handedness 
Inventory[17]) volunteered for this study. Participants self-reported that they did not 
have any neurological or psychiatric history; that they were medication-free, and had 
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normal or corrected-to-normal vision. Participants gave written informed consent for 
the study, which was approved by the Institutional Review Board at Drexel Universi-
ty, and were paid for their participation.  Participants were randomly assigned to  
either a BLK practice order or RAN order. 

2.2 Experiment Protocol 

The spatial navigation tasks involved wayfinding in virtual 3D environments rendered 
using MazeSuite software [15, 16] developed in our lab. Figure 1 below displays a 
screen from a one of the 3D maze (labyrinths) that participants interacted with using 
keyboard and mouse controls. The first day of the experiment involved familiarization 
with the task controls and generic navigation in an orientation maze. Tasks for the 
acquisition period (3 mazes) were performed on each day 2 through day10. On day 
11, transfer tasks (2 novel mazes) were executed. For the BLK group, one type of 
maze was practiced on each day with three days of practice per maze. For the RAN 
group, all mazes were practices on all days. Total of mazes for all subjects were same 
(acquisition: 9 days x 15 repetitions per day + transfer: 1 day x 12 repetitions per 
day). Transfer practice order was the same as the acquisition order with the BLK 
group having the transfer mazes in a blocked order while the RAN group had the 
transfer mazes in a random order. The transfer mazes were used to determine the ex-
tent to which each subject was able to generalize their learning and practice with ac-
quisition mazes – given that robust learning assessments are best illustrated through 
generalizability tests like transfer.  

 

   

Fig. 1. Functional Near Infrared Spectroscopy sensor (head band) covers forehead of partici-
pants (left) and screen shot from a maze rendering on computer screen (right).  

2.3 fNIR Data Acquisition  

The continuous wave fNIR system (fNIR Devices LLC; www.fnirdevices.com) used 
in this study is connected to a flexible sensor pad that contains 4 light sources with 
built in peak wavelengths at 730 nm and 850 nm and 10 detectors designed to sample 
cortical areas underlying the forehead. With a fixed source-detector separation of 2.5 
cm, this configuration generates a total of 16 measurement locations (optodes) [3, 18]. 
For data acquisition and visualization, COBI Studio software [15] (Drexel University) 
was used. The sampling rate of the system was 2Hz. During the task, a serial cable  
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Fig. 2. Measurement locations of the 16 optodes [18]. The location of optode #2 (indicated by 
the red circle) is close to AF7 in the International 10–20 System and is located within the left 
prefrontal cortex (inferior frontal gyrus). 

between the fNIR data acquisition computer and MazeSuite presentation computer 
was used to transfer time synchronization signals (markers) that indicate the start of 
sessions and onset of maze tasks. 

2.4 Data Analysis 

For each participant, raw fNIR data was low-pass filtered with a finite impulse re-
sponse, linear phase filter with order of 20 and cut-off frequency of 0.1Hz to attenuate 
the high frequency noise [3]. Motion artifact contaminated sessions and saturated 
channels (if any), in which light intensity at the detector was higher than the analog-
to-digital converter limit were excluded [19]. Using time synchronization markers, 
fNIR data segments for rest periods (15 seconds rest period between trials) and task 
periods (maze task performance) were extracted. Blood oxygenation changes within 
dorsolateral prefrontal cortex for all optodes were calculated using the Modified Beer 
Lambert Law (MBLL) for task periods with respect to rest periods at beginning of 
each task[3].  Dependent measures included relative changes in the mean oxygenation 
change for optode #2 (see Fig 2) and behavioral measure of path length for the mazes  
For acquisition for optode #2 mean oxygenation and mean path length, 2 X 9 (Prac-
tice Order X Day) mixed model ANOVAs with repeated measures on the last factor. 
In this repeated measures design, participants were considered a random-effects fac-
tor, whereas Practice Order was considered a fixed-effect factor. To test a fixed-effect 
with one random effect in the model, the appropriate denominator term for the  
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F-statistic was determined by limiting the error term for the interaction of the fixed 
and random factors to zero [20].  For transfer, planned contrasts of the BLK vs RAN 
practice orders were calculated for optode #2 mean oxygenation changes and mean 
path length. The significance criterion for all tests was set at α= 0.05.  

2.5 Behavioral Measures 

For acquisition, the behavioral measure mean path length (arbitrary units (a.u.),  had a 
significant interaction of Practice Order by Day with [F(8,920) = 7.43, p < 0.001] and 
significant main effect of Day [ F(8,920) = 22.82, p < 0.001].  The main effect of Prac-
tice Order was not significant [ F(1,920) = 3.14, p = 0.137]. The change of average  
path length for the BLK and RAN groups across acquisition and transfer is depicted 
in Fig. 3. The planned contrast resulted in no significant difference between the BLK 
and RAN practice orders in the transfer phase with [F(1,94) = < 1.0, p = 0.591]. 

 

Fig. 3. Average navigation path length for all subjects during acquisition and transfer for 
blocked order group (BLK) and random order group (RAN). Error bars are standard deviations 
(SD) 

2.6 fNIR Measures 

In this paper, the left inferior frontal gyrus (location of optode #2 – see Fig. 2)  mean 
oxygenation change (μmolar) values were assessed for all maze trials across the ac-
quisition phase (9days)  and for the transfer phase (day 11) transfer. Both the interac-
tion of Practice Order X Days [F(8,991) = 2.03, p=0.04], and the main effect of Days 
[F(8,991) = 2.00, p =0.043] were significant for acquisition. There was no significant 
main effect of Practice Order with [F(1, 991) = < 1.0, p =0807]. For transfer, the planned 
contrasts yielded a significant difference with [F(1,84) = 6.86, p =0.01].  Depicted in  
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Fig.4 are the mean oxygenation changes for practice orders plotted as a function of 
the acquisition and transfer phases. More difficult tasks were performed during trans-
fer and the change in oxygenation values was higher for the BLK practice order rela-
tive to the end of acquisition. However, oxygenation for the RAN practice order was 
lower compared to the BLK practice order during transfer and the RAN practice order 
had lower mean oxygenation during transfer relative to the end of acquisition. 
 

 

Fig. 4. Average oxygenation changes at optode #2 across acquisition and transfer stages. Error 
bars are standard deviations (SD). * (p < 0.05). 

3 Discussion 

The purpose of this study was to test the practice order effect with spatial navigation 
tasks. Behavioral performance measures and cortical hemodynamic responses as 
measured by wearable optical brain imaging were collected to compare changes 
across 11 days of practice and for two practice orders: BLK and RAN. Our results 
indicate differential patterns for behavioral and fNIR measures for the different prac-
tice orders.  

During acquisition phase (day2-10), navigation path length (behavioral measure) 
improved across both practice orders for the acquisition phase (Fig. 3). This expected 
results showed that participants improved their navigation skill with more practice. 
The mean path length traveled was lower for BLK order across the days of the acqui-
sition period compared to the RAN practice order. The oxygenation (fNIR measure) 
was variable throughout the acquisition phase for both practice orders (Fig. 4).  There 
was a quicker reduction in oxygenation for the BLK practice order relative to the 
RAN order and both BLK and RAN orders had similar oxygenation values at the end 
of acquisition.   
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During the transfer phase (day11), more complex maze tasks were presented. Av-
erage navigation path length for RAN group was higher compared to BLK group, 
suggesting that RAN practice order prepared the participants for the more complex 
task. Similarly, oxygenation during  the transfer phase was lower for the RAN group 
compared the BLK group suggesting that RAN group used less mental effort to com-
plete the task compared to the BLK order group. These findings corroborate the PET 
findings with spatial navigation of virtual mazes reported by Van Horn and colleagues 
[21].  In addition, using fMRI, Wymbs and Grafton [22] reported that the left inferior 
frontal gyrus was differentially activated during late learning as a function of practice 
schedule for the sequence execution of a go/no-go task.  Our transfer findings illu-
strate that there is a differential relative mean oxygenation of the left inferior frontal 
gyrus region for RAN and BLK practice orders for spatial navigation tasks. These 
results help to extend our understanding of the contextual interference effect regard-
ing the influences of the practice order and task type on neural function [21-26]. 

This study tested the effects of learning spatial navigation tasks in virtual environ-
ments. Results indicated that behavioral performance and oxygenation in the anterior 
prefrontal cortex is sensitive to both the amount of practice and the order of practice 
in learning multiple tasks. This study provides preliminary information about fNIR 
measures of the anterior prefrontal cortex hemodynamic response and its relationship 
to learning/skill acquisition. Since fNIR technology allows the development of mo-
bile, non-intrusive and miniaturized devices, it has the potential to be used in future 
learning/training environments to provide objective, task related brain-based measures 
for optimizing the learning process. 
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Abstract. Event-Related Potentials (ERP) are changes in brain activity detected 
using electroencephalographic (EEG) methods. One well-studied ERP is the 
P3b, which is generally elicited by asking participants to press a key when 
presented a target stimulus (e.g., “T”) that is intermixed with a much more 
commonly presented non-target stimulus (e.g., “S”). We hypothesized that we 
could assess knowledge by asking participants to solve a problem then press a 
key when they see the correct answer in a series of (mostly wrong) answers. 
Early pilot testing (four participants) suggests that the P3b shows promise in 
this regard. In a math test, P3b responses were produced when shown correct, 
but not incorrect answers. In a foreign-language vocabulary test (matching 
picture to foreign word), P3b responses were not produced when shown correct 
answers prior to studying the words, but did produce P3b responses after 
studying. Some notable deviations in individual participants are discussed. 

Keywords: Evoked Potential, Electroencephalogram, EEG, Knowledge 
Assessment. 

1 Introduction 

Assessing knowledge in learners, whether pencil-and-paper or though computer-based 
methods, typically involves an explicit question and answer process, where the 
answers are taken as evidence (for or against) learner knowledge.  The scoring of such 
assessments may be straight forward (e.g., percent correct), may include individual 
test items that are weighted to account for differences in their a priori assessed 
difficulty, and/or may see item or overall scores adjusted based on statistical 
arguments that the learner was guessing on a given item (for full discussion of this 
approach, see the field of Item Response Theory [1],[2]). However, none of these 
approaches provides direct evidence that can distinguish correct answers that reflect 
true knowledge possessed by the learner from her guesses, or that can distinguish true 
misconceptions (wrong answers the learner believes to be right) from a simple lack of 
knowledge (wrong answers that are the result of guessing and/or that the learner 
knows she did not know). Empirical data suggests that the learner may, at least in 
some cases, lack introspective awareness of these differences, or at least, is not a 
reliable source of clarification[1],[2].   
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Event-Related Potential (ERP) responses have been used as an additional source of 
direct evidence for possession of knowledge. ERPs are changes in brain activity that 
can be seen following presentations of stimuli to a person. They are measured using 
electroencephalographic (EEG) sensors, which detect small changes in the voltage 
potential on an individual’s scalp. One particularly interesting ERP for this purpose is 
the P3b (also called the P3 and the P300).  It is a transient positive shift in voltage 
observed from central EEG sensors, reaching its peak amplitude between 300-600 
msec following presentations of “oddball” stimuli[3], [4].  It is independent of 
stimulus modality, but is typically stronger when the individual is consciously 
searching for the rare stimulus.  Most P3b eliciting protocols expose participants to 
serial presentations of a non-target stimulus (e.g., the letter T), and ask the participant 
to perform a key press when they see the (much less common) target stimulus (e.g., 
the letter S).  More complex presentations of non-targets (or distractors) also work, as 
long as the target is known and is relatively rare (10-20% of total stimuli 
presentations). 

Most efforts exploiting ERP analysis in studies of learning and memory focus on 
gaining insight into the process of learning itself – i.e., what are the cognitive 
mechanisms of learning?  However, a few efforts have sought the use of P3b 
detection as a method for knowledge assessment.  These efforts have used the ERPs 
as evidence for word recognition, recognition of deviations of musical expectancy in 
experts versus novices, and for detecting “guilty knowledge” in criminal suspects. 

Johnson, et al. [5] had participants study word lists, and then tested these 
participants for P3b elicitation during subsequent presentation of those words mixed 
with distractor words. They observed greater P3b amplitudes during presentation of 
studied words, which increased with the extent of studying permitted. Words that 
were correctly recognized elicited stronger P3b responses than study words that were 
recognized less consistently. Besson and Faita [6] studied musicians and non-
musicians listening to musical phrases that were either selected from the classical 
repertoire or composed for the experiments. The musical phrases ended either 
congruously or with a musical violation. Musicians performed better than non-
musicians in recognizing familiar musical phrases and classifying terminal violations. 
The ERPs (in this case an N400 ERP) to the end notes differed both in terms of 
amplitude and latency between musicians and nonmusicians, and as a function of 
participants' familiarity with the melodies and type of violation. 

Detection of the P3b has been used (with some controversy) to determine if a 
criminal suspect posses knowledge of a crime that only the criminal or an investigator 
could know [7].  These suspects are typically shown a sequence of crime scene 
images. Most of the images in this sequence are not from the crime in question, but a 
few are.  Detection of P3b ERPs in response to the images from the crime in question 
are taken as indicators of specific knowledge of the crime.  If the suspect does not 
have a suitable explanation (e.g., they witnessed the crime, they investigated the 
crime, etc.), then these results are taken to connect them to the crime.  The 
controversy with this approach is not whether it provides some useful information 
relevant to guilt or innocence; rather the controversy is related to the perfect accuracy 
rate claimed by its proponents [7].    
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These previous studies provide limited evidence that ERPs can be used to assess 
acquisition or possession of knowledge in some respect, but none provide a 
systematic exploration of the potential of ERPs in neuro-based assessments.  What 
types of knowledge can be assessed? What form must the testing take to provide 
reliable valid, evidence of specific knowledge?  What parameters can be manipulated 
without invalidating the approach?  This paper provides a qualitative description of 
ongoing/preliminary work that is exploring whether ERPs, and in particular the P3b 
can be reliably used to assess possession of explicitly learned procedural and/or 
declarative knowledge. In the most common form of P3b eliciting experimental 
paradigms, P3b responses are elicited by rare target (visual or auditory) stimuli, 
presented as part of a series of non-target stimuli. Instead of instructing participants 
on what target stimulus they should search for, as is commonly done in P3 studies, we 
adapted this approach by presenting them with a problem and asking them to search 
for the correct solution in the set of answers that we presented to them serially.  
Our hypothesis was that by embedding the correct answer in a series of wrong 
answers, the correct answer (if recognized as such) would elicit a P3b response. 
Further, incorrect answers that the participant believes to be correct (reflecting 
misconceptions) will also elicit P3b responses, but both incorrect answers and correct 
answers that are not recognized by the participant will fail to elicit P3b responses.   

2 Methods 

All methods involving participants were approved by the University of California, 
Los Angeles (UCLA) Institutional Review Board. At the time of writing, four 
individuals (3 female, 1 male), age range 28-33, all fluent in English, have 
participated in this study.   

2.1 Tasks 

Each participant was asked to complete a series of 5 tasks. In each case, the 
participant was presented on screen instructions and told to press the space bar when 
they were ready to begin.  They were also instructed to press the space bar when they 
saw the target stimulus (tasks 1 and 2) or the correct answer to the problem (tasks 3-
5).  Stimuli in all tasks were presented on screen for 500 msec.  A single dot was 
displayed in the same location on screen for 2000 msec between each stimulus 
presentation.  Participants were instructed that reaction time was not critical, but that 
they needed to press the space bar before the next stimulus appeared on the screen.  
They were also instructed to try not to blink while the stimulus was on the screen, but 
to blink a second or so after it went off screen.  Their blinking pattern was 
surreptitiously observed during task 1 and feedback a reminder was provided if 
necessary. 

Tasks 1 and 2 were replications of common P3 inducing protocols. In task one, a 
non-target stimulus (the letter “T”) was presented 90 times and a target stimulus (the 
letter “S”) was presented 10 times, randomly interspersed within the non-target 
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sequence, but not appearing within the first 5 presentations.  Prior to beginning this 
task, participants were instructed to press the space bar when they saw the letter “S”.  
In task two, participants were again instructed to press the space bar when they saw a 
new target stimulus (the letter “U”), which was presented a total of 10 times.  But this 
time non-target stimuli (90 presentations total) were selected randomly from all of the 
other letters of the alphabet.   

Tasks 3 through 5 were tests of explicit procedural or declarative knowledge. Task 
3 asked participants to solve or simplify math equations. Twenty-two different 
problems were presented. When a problem was presented on the screen, participants 
were given as long as they needed to solve the problem, and then asked to press the 
space bar to initiate the sequential presentation of possible answers. To ensure 
participants focused on searching only for the correct answer, they were instructed 
that the answers might appear more than once, and that they should press the space 
bar every time they saw the correct answer. For the sequence of possible answers to 
each problem, one correct answer was presented (never in the first three 
presentations), and nine unique wrong answers were presented.  Five of the wrong 
answers were repeated again (at random), for a total of 14 wrong answer presentations 
and only one correct answer presentation. 

Task 4 and 5 tested participant recognition of ten common words in Pinyin 
(Chinese characters into Latin script).  Task 4 tested their recognition of these words 
prior to being given the opportunity to study them, and task 5 tested them after 
studying them with provided flash cards.  The words chosen were the Pinyin names of 
common animals (cat, dog, horse, pig, etc.).  Each task used the same 10 words, but 
prompted the participant to identify them with different pictures of those animals. 
Likewise the flash cards included different pictures of the same animals used in tasks 
4 and 5.  Pre and post written tests were also given using different pictures to provide 
further evidence of whether the participant had prior knowledge of these words and/or 
had successfully learned them using the flash cards.  As with task 3, the participant 
was presented a picture of the animal, asked to recall the Pinyin name of the animal, 
and to press the space bar to initiate the sequential presentation of possible answers.  
In this case, wrong answers were the names of the other nine animals.  Answers were 
presented in random order.  Five wrong answers were repeated again (at random), but 
the correct answer was not presented in the first three presentations and was presented 
only once.  

2.2 Event Related Potential (ERP) Data Collection and Processing  

Electroencephalographic (EEG) data were collected from each participant during all 
five tasks, using a B-Alert X10 EEG system (Advanced Brain Monitoring).  The B-
Alert X10 system records activity through nine sites (F3, F4, Fz, C3, C4, Cz, P3, P4, 
and POz) digitizing each at 256 samples per second.  Event synching was achieved by 
processing bin files generated by the task presentation software. These files were 
processed in MATLAB in order to obtain the event (stimulus and response) and it's 
corresponding epoch and data-point. The epoch and data-point of each event was then 
stored in a common log file (CLF) that is processed with the .ebs file in the B-Alert 
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batch software. The resulting ERP outputs are time locked to the start of each 
stimulus presentation and is presented for 1 second (256 data-points). 
    Data were processed for all sites by staff at ABM who were blind to the conditions 
of the study, using standard methods for artifact detection and removal.  Briefly, ERP 
waveforms that included artifact such as eyeblinks or excessive muscle activity were 
removed on a trial by trial basis using the B-Alert automated software.  Additionally, 
trials with data points exceeding ±50µV were manually removed. 

2.3 Quantitative/Qualitative Analysis 

Quantitative analyses have not performed on the current preliminary dataset. Data 
collection from additional participants are ongoing and quantitative/statistical 
analyses will take place once the dataset is complete.   

3 Results 

Data were processed for the nine EEG channels recorded.  However, P3b responses 
are attributed to central/posterior sources.  For this reason, and because the data are 
preliminary, we report only descriptive results for POz.  Cz and Fz displayed similar 
patterns across all subjects.   

Figure 1 depicts the global average response across all participants as recorded from 
the POz location. Prominent P3b responses to target, but not non-target stimuli, are 
evident in trials from Task 1 and Task 2. Here we see peak amplitudes of 
approximately 20 μV ~450 msec after target stimulus presentation.  Non-target stimuli 
peak amplitudes do not exceed 10 msec, and tend to peak closer to 300 msec post 
stimulus onset. Task 3 exhibits a weaker, but still evident P3b response to target 
stimuli. Target stimuli elicit an average response peaking at approximately 15 ~450 
msec after stimulus onset. Non-target stimuli generate an average wave that is 
qualitatively similar to that observed in Task 2.  In task 4, a P3b response is not evident 
to either target or non-target stimuli. Peak amplitude for either stimulus type is ~10 μV 
or lower and occurs ~350 msec after stimulus onset.  Task 5 target stimuli, may exhibit 
a modest P3b response to target stimuli, but not to non-target stimuli.  Target stimuli 
are associated with a peak amplitude of ~13 μV between 450 and 500 msec after 
presentation onset.  Non-target stimuli are associated with a peak amplitude of less 
than 10 mV, with the peak occurring between 300 and 350 msec after presentation 
onset – qualitatively similar to non-target responses in tasks 2 and 3.  

Participant variation from these averages are illustrated in figure 2.  As can be seen 
in this figure, the first and third participants exhibit prominent P3b responses to target 
stimuli in task 3, while the second and fourth participant show no apparent P3b 
responses at all in this task.  In task 5, participants three and four exhibit moderate to 
strong P3b responses to target stimuli.  Participant 2 does not appear to produce a P3b 
response, but does show a very prominent negative response beginning around 500 
msec after presentation onset that is selective for target stimuli.  This participant also 
showed similar, but less intense pattern of response in Task 4 (which tested the same 
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stimuli but before the participants were allowed to study the words; data not shown). 
The first participant does not appear to produce a P3b response to target or non-target 
stimuli in this task. 

 

 

Fig. 1. Population ERP responses from each task following exposure to target and non-target 
stimuli. Tasks 1 and 2 replicate previous methods for inducing P3b responses.  In task 3, 
participants were asked to solve math problems to determine the target stimuli.  In tasks 4 and 
5, participants were shown pictures of animals and told that the correct name for the animal in 
Pinyin (Chinese written using Latin characters) was their target.  Participants were given the 
correct answers to study after task 4, but before task 5.  
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Fig. 2. Average ERP responses from individuals in Task 3 (Math) and Task 5 (Pinyin – after 
studying). Each row in this figure presents data from the same individual participant – averaged 
across their own target or non-target trials.  

The first participant had no prior knowledge of Chinese, but was fluent in Korean.  
In discussing the tasks after the experiment, this participant indicated that while the 
written languages of Pinyin and Korean are very different, the spoken forms of some 
of the words are similar.  This participant correctly answered 6 out of 10 of the words 
on the written pre-test.  The second participant revealed some confusion about the 
anticipated solution format in the math task.  In particular, this participant when 
confronted with problems that could be simplified but not solved (e.g., 2x+3x+ 5=__) 
assumed that the blank held a value of zero and solved the equation, rather than 
simplifying it. Despite this confusion, the participant selected correct answers in all 
but 3 of 22 problems.  In addition, this participant revealed at the end of the 
experiment that they had prior exposure to Chinese, having taught English in rural 
China for a year.  This participant correctly identified 4 of the 10 Chinese words in 
the pre-test. The third and fourth participants were given more explicit instructions 
with regard to solving versus simplifying problems. The third participant selected the 
correct answer in all but 4 problems, however the fourth participant selected 11 
incorrect answers out of 22. 

Task 5: Post-Pinyin 
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4 Discussion 

Prior studies provide limited evidence that ERPs can be used to assess acquisition or 
possession of knowledge in some respect, but none provide a systematic exploration 
of the potential of ERPs in neuro-based assessments. This paper provides a qualitative 
description of ongoing/preliminary work that is exploring whether ERPs, and in 
particular the P3b can be reliably used to assess possession of explicitly learned 
procedural and/or declarative knowledge.  In the most common form of P3b eliciting 
experimental paradigms, P3b responses are elicited by rare target (visual or auditory) 
stimuli, presented as part of a series of non-target stimuli. Instead of instructing 
participants on what target stimulus they should search for, we adapted this approach 
by presenting them with a problem and asking them to search for the correct solution 
in the set of answers that we presented to them serially.  Our hypothesis was that by 
embedding the correct answer in a series of wrong answers, the correct answer (if 
recognized as such) would elicit a P3b response.  

We began by establishing a baseline P3b response for each participant through 
tasks 1 and 2.  The results of these tasks replicate prior results using similar if not the 
same paradigms.  In addition, task 2 may have prepared the participant for our 
problem-solution variation by challenging them to find a specific target in a complex 
set of non-target stimuli.  All four participants tested to date were able to discriminate 
the target from non-targets in tasks 1 and 2, and all generated robust P3b responses to 
targets, and not to non-targets in these tasks.   

In tasks 3-5, we test our hypothesis by asking participants to determine what the 
target stimulus should be based on their knowledge of math procedures, or based on 
their knowledge of Chinese (written in Pinyin).  We had assumed going in that our 
math problems were solvable by the population from which we would be recruiting, 
and that none of our population would have prior knowledge of Chinese.  Instead, as 
described in the results section, we discovered that our math problems were 
sometimes confusing as written and our instructions on how to handle them too vague 
for some.  This may have lead to a reduced P3b response to target stimuli, particularly 
for the second participant.  Participant four did not produced an apparent P3b 
response to correct solutions in the math task, but their performance in that task 
suggests that this may be due to identifying incorrect solutions to the problem, in 
which case this lack of P3b would be consistent with our hypothesis.   

We had also assumed that knowledge of Chinese language would be sparse in our 
participant population, but post-experiment discussions with our participants suggests 
otherwise.  Participants one and two had partial knowledge of the words used in our 
tests, and both failed to generate a P3b responses in tests run before and after allowing 
them to study the words.  The lack of any ERP response from participant one in this 
task does not support the hypothesis. The second participant did produce a late, 
negative ERP that was present in task 4 and more prominent in task 5 (post-studying).  
This is not consistent with our specific hypothesis that a P3b ERP should be elicited 
by recognized stimuli, but does suggests that other ERPs may also be a source of 
knowledge assessment.  The particular ERP that reveals knowledge may differ based 
on cognitive strategies employed by the participant and/or may reflect some natural 
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individual variation that will have to be accounted for if ERPs are to be put to 
practical use in this regard. 

Collectively, analysis of the data collected to date suggests that there may be 
potential for using ERPs, including the P3b, as a basis for knowledge assessment.  
The data also indicate that clear test items and unambiguous instructions are critical.  
In order to improve the quality and clarity of our test items, we plan to utilize math 
items taken from the National Assessment of Educational Progress (NAEP) database 
of test items.  In addition, we will test alternative foreign languages to ensure that 
each participant is fully naïve in that task.  And we will begin exploring history/civics 
test items also taken from the NAEP database to broaden the types of test items with 
which we test our hypothesis.   
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Abstract. Today’s military missions pose complex time-constrained challenges, 
such as detecting IED emplacements while in a moving vehicle or detecting 
anomalous civilian behaviors indicative of impending danger. These challenges 
are compounded by recent doctrinal requirements that require younger and  
less-experienced Warfighters to make ever-more complex decisions. Current 
understanding of decision making, which is based on concepts developed 
around theories of analytic decision making (Newell and Simon, 1972), cannot 
effectively address these new challenges since they are based on the notion of 
enabling experts to apply their expertise to addressing new problems. Yet, there 
are actually two types of recognized decision making processes, analytical and 
intuitive, which appear to be mediated by different processes or systems (Ross 
et al, 2004; Evans, 2008; Kahneman & Klein, 2009). Analytical decision mak-
ing is mediated by processes that reflect a sequential, step-by-step, methodical, 
and time-consuming process. To be effective, analytic decision making appears 
to require domain expertise. In contrast, intuitive decision making relies upon a 
more holistic approach to processing information at a subconscious level  
(Luu et al, 2010). The thesis of this paper is that unlike analytic decision mak-
ing, effective intuitive decision making does not require domain expertise but, 
rather, can be enhanced through training methods and technologies. This paper 
will explore ways in which the results from a range of studies at the behavioral, 
cognitive and neurophysiological levels can be leveraged to provide a compre-
hensive approach to understanding and enabling more effective intuitive deci-
sion-making for these non-experts.  

Keywords: Cognitive Modeling, Perception, Emotion and Interaction, Intuition  
Decision Making, Implicit Learning. 

1 Introduction 

The traditional understanding of intuition suggests that it can guide the judgment 
process by assisting with the discovery of plausible solutions from which to choose 
(cf Bowers, et al. 1990). This characterization of intuition - and many others that fol-
low from it (e.g Kahneman & Klein, 2009) - assumes a high level of familiarity with 
the information being detected. Yet a growing body of results ranging from the bio-
logical (mainly, neural) to the cognitive (Lieberman, 2000; Jung-Beeman et al., 2004; 



402 J. Cohn et al. 

 

Luu et al 2010) suggests that pre-existing expertise, which requires years of practice 
to attain (Ericsson et al, 1993) may not be a key requirement for developing intuitive 
decision making processes. These studies suggest that intuitive decision making 
processes share some of the same underlying neural structures and cognitive 
processes as implicit learning (Frensch, 2003; Lieberman, 2000, 2007). By acquiring 
domain knowledge through implicit learning, one may be able to automatically 
strengthen, at the neural, cognitive and behavioral levels, the same capabilities that 
are needed for effective intuitive decision making (Figure 1), making intuition a 
strong candidate for enhancement through training.  

 
Fig. 1. Intuition relies on multiple layers of systems, from the biological to the cognitive to the 
behavioral. After Newell, 1993; Lieberman, 2000.  

In order to develop these training capabilities, four challenges that are key to un-
derstanding and enhancing intuitive decision making must be addressed and unders-
tood: 1) Combining advances in measuring performance at multiple representation 
levels (e.g., neural, cognitive and behavioral) with advances in simulation–based  
paradigms for assessing decision making to understand the foundations of intuitive 
decision making; 2) Leveraging advances in cognitive modeling and machine learning 
techniques to represent individual intuitive decision making processes; 3) Developing 
an implicit learning based approach for enhancing intuitive decision making; and, 4) 
Combining these efforts, through scenario/simulation based training, to test and vali-
date the hypothesis that implicit learning can enhance intuitive decision making for 
one or more operationally valid tasks. The remainder of this paper will discuss each of 
these challenges and possible solutions in greater detail.  

1.1 Defining Intuition  

Decision making is decomposed into two types or categories: analytic and intuitive. 
At the behavioral level analytic decision making is characterized by properties such 
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as deliberate and often lengthy periods of processing information, leading to a final 
result. At the cognitive level, analytic decision making seems to require intentional or 
goal-oriented information processing combined with a clear potential for being im-
pacted by other cognitive processes – e.g. working memory. Finally, at the neural 
level, analytic decision making seems to be driven by a series of neural structures 
collectively acting as part of an (ad hoc) network. These structures include: Lateral 
Pre Frontal Cortex; Dorsomedial Pre Frontal Cortex; and Medial and Lateral Parietal 
Cortices and (Luu et al 2010; Lieberman, 2000, 2007; Bowers 1990). Perhaps most 
importantly, though, analytic decision making has shown itself to be accessible to a 
wide range of performance enhancement methodologies (Ericsson et al, 1993).  

Conversely, intuitive decision making at the behavioral level is characterized by 
properties such as seemingly non-deliberate and fast operating information 
processing, seemingly at the pre conscious level. At the cognitive level, intuitive deci-
sion making seems to be cued by recognizable characteristics of the information being 
processed. At the neural level, intuitive decision making seems to organize brain net-
works for more advanced processing – acting as a ‘coherence generator’ for external 
information detected through sensory organs. Importantly, there have been only li-
mited efforts focusing on enhancing intuitive decision making. 

Because analytic decision making has proven to be more amenable to enhance-
ment, the vast majority of efforts to improve overall decision making performance 
have focused on it. This bias towards analytic decision making belies the potential 
benefits to be gained by enhancing intuitive decision making. Intuitive decision mak-
ing processes appear to provide a quick connection to the Limbic system (‘gut res-
ponses’) coupled with slower connections to frontal cortex and executive functions 
(Luu et al, 2010) potentially. As well, evidence suggests that intuition activates the 
formation of semantic networks in the brain. This means that intuitive decision mak-
ing may actually set the stage for the detailed assessment of the benefits of taking 
those actions enabled by analytic decision making (Evans, 2008; Luu et al, 2010).  

Figure 2a shows one way of envisioning this synergy between intuitive and analyt-
ic decision making, based notionally on the Human Information Processing notion of 
Parasuraman & Sheridan (2000) (Figure 2a). Early on the intuitive decision making 
system is activated, helping process key features of information while also priming 
the analytic decision making system. Later on, the analytic decision making system is 
activated, making sense of the information, enabling the decision maker to guide the 
process.  

 
Fig. 2a. One view on how the two decision making systems may work together 
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Figure 2b provides a neural perspective on this synergy. When information requir-
ing a decision and subsequent action is presented to an individual, initial features like 
contour and shape are registered by neural structures in the Temporal-Parietal-
Occipital region (0 ms to ~250 ms). At approximately 250 to 300 ms other neural 
regions become activated, including those both in the limbic region, triggering the 
‘gut response’ which is a hallmark of intuition, as well as those in cortical regions 
responsible for activating executive functions.  

 

 

Fig. 2b. A neural level perspective on how the two decision making systems may work togeth-
er. See text for details 

1.2 Facilitating Intuition 

The above discussion leads to two important points regarding enhancing human deci-
sion making. First, it suggests that we have a strong enough grasp of what intuition is, 
across different levels or representation, that we may consider it a ripe target for en-
hancement. Second, it suggests that by improving intuition we may streamline the 
decision making cycle. The critical question is how can we facilitate intuition? 

Our starting point in addressing this question can be summed up by a quote from 
Reber, 1989: “To have an intuitive sense…is to have gone through an implicit learn-
ing experience.”  In order to develop one’s intuitive capabilities, one must have 
moved through a type of learning known as implicit learning. In turn, this suggests 
that one may enhance one’s intuitive capabilities through implicit learning. But  
what is implicit learning and why might it lead to enhanced intuitive decision making 
performance? 

As Frensch & Runger (2003) define it, implicit learning is: “Learning complex in-
formation in an incidental manner, without awareness of what has been learned.” 
Implicit learning emphasizes the role of associative learning mechanisms, coordinat-
ing action amongst different cognitive processes. Implicit learning exploits statistical 
dependencies in the environment, meaning that it is driven by certain kinds of features 
– or pattern structures-detected in information streams. Implicit learning leads to the 
generation of implicit knowledge as abstract representations (Seger, 1994) which 
provides the basis through which implicit knowledge can generalize to other contexts.  

As Table 1 shows, the similarities between implicit learning and intuitive decision 
making are striking. Both processes seem to occur at a preconscious or unguided  
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level. Both processes appear to rely on recruiting different processes and or structures 
across the brain (Luu et al 2010).  Both involve a level of pattern detection in the 
information stream being processed (Bowers, 1990). Lastly, both focus on transform-
ing information into generalizable and actionable knowledge (Bowers, 1990). These 
similarities are equally striking when the neural structures underlying both processes 
are compared. Recent findings suggest that many of the neural structures that support 
intuition also support implicit learning (Luu et al 2010; Lieberman, 2000, 2007;  
Bowers 1990).  

Table 1. Some similarities between implicit learning (Left) and intuitive decision making 
(Right) 

 
 
Together, these findings suggest that from a neural, cognitive and behavioral pers-

pective we may be able to facilitate intuition through implicit learning. The question 
then becomes how best to do this. We propose a four step process that includes: 

• Characterizing intuitive decision making and implicit learning across neural, cogni-
tive and behavioral levels of representation 

• Representing intuitive decision making through cognitive models in order to guide 
implicit learning techniques. 

• Applying scenario based training techniques to develop implicit learning ap-
proaches that enhance intuitive decision making. 

• Testing the hypothesis that implicit learning facilitates intuitive decision making. 

1.3 Techniques for Characterizing Intuition  

Traditionally, intuitive decision making has been studied at the behavioral level only, 
relying on simple reaction-time measures to infer when intuitive decision making has 
occurred (Hodgkinson et al, 2008). Recent developments in the cognitive neuros-
ciences suggest that it is possible to characterize intuition across multiple levels of 
representation, thereby gaining deeper insight into how intuition works. For example, 
Lieberman et al (2007) showed that the two decision making systems are actually 
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driven by two separate networks of brain areas while Luu et al (2010) demonstrated 
that it was possible to directly correlate decision making behaviors with neural mark-
ers derived from activity in these two systems to determine when intuition occurred 
and when it did not.  

There are a wide range of technologies that can be used to detect intuition. These 
technologies can be categorized in terms of ‘Data Source’ ‘Measurement Time’, and 
‘Data Channels’. Figure 3 provides a representation of some common types of detec-
tion technologies in terms of these three parameters. On the ‘Data Source’ axis, the 
data sources that may be accessed to characterize intuition range from subcellular 
processes and individual nerve cell action, to measured behavior outcomes. On the 
‘Measurement Time’ scale, the different time scales underlying the processes 
represented by each of these data sources are shown. On the ‘Data Channels’ axis, the 
number of measurable Data Source ‘units’ is represented. For example, the potential 
number of ion channels that could be measured, limited by the size of probes, or the 
number of behavior responses, limited by the number of metrics that can be asso-
ciated with a given action.  

 
Fig. 3. Detection technologies 

1.4 Techniques for Modeling Intuition  

In order to make the characterization of intuition accessible to new training technolo-
gies an “executable” representation of these data must be developed.  This requires 
both new approaches to decoding the performance data and to representing it as a 
model. Over the past several years, various machine learning techniques have been 
developed that help organize large, multi-scale sets of time series data into informa-
tion classifiers. These multivariate decoding routines (Mitchell et al 2004) have the 
ability to take into account the full spatial pattern of brain activity, cognitive measures  
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and behavioral outcomes and appear to be transferrable to other, never-before encoun-
tered individuals, with little reduction in accuracy (Shinkareva et al 2008). In practice, 
it is expected that the initial classification routines will require a wide range of data 
sets and types, encompassing biological, cognitive and behavioral.  

These classification approaches provide the rectified data necessary for building 
models of human performance. One approach that continues to gain momentum is to 
take existing cognitive models and link them to neural data. For example one of the 
better known cognitive modeling approaches is ACT-R (Anderson, 1996). In its ex-
ecutable form, the timing and sequencing of ACT-R’s model components is based on 
observed behaviors, and the output is typically timing and accuracy predictions.  
Recently, studies performed by Anderson et al (2008) have demonstrated which neur-
al regions correspond to which elements of their modules and buffers, opening up the 
possibility for a direct link between neural data and a proven cognitive modeling ap-
proach. Other approaches focus on developing neurocognitive architectures that are 
specifically tailored to fuse data captured from different sources to create generative 
hybrid models (see Figure 4). These approaches blend top-down and bottom-up ap-
proaches to innovatively combine context with various types of cognitive and neural 
measures to model overall user performance. Using machine learning and artificial 
intelligence routines, these approaches can adapt their models using past behaviors, 
specific actions taken and outcomes realized.  

 

 
Fig. 4. An example neurocognitive architecture. Shown are both the top-down aspects, like 
hypothesis generation about patterns in collected data as well as bottom-up processes, like the 
data fusion and classification (with permission from Dr Webb Stacy, Aptima). 

1.5 Scenario-Based Training  

The classical understanding of intuition is that it requires a high degree of domain 
expertise. By some estimates, achieving such expertise may require up to ten years of 
intense exposure to any number of a wide range of practical ‘training’ exercises, 
which is well outside the training cycle in which effective Marine decision makers are 
developed. As envisioned here, intuitive decision making develops as a result of the 
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‘strengthening’ of connections with specific structures in the brain, like the basal  
ganglia, combined with the development of specific types of targeted training, collec-
tively known as implicit learning. In practice, implicit learning is experiential and 
interactive, instead of didactic and classroom based. Therefore, it seems reasonable to 
focus on training technologies like virtual environments or serious games to provide 
the “experiential” component, using models of an individual’s intuitive processes to 
modify the “interactive” component. The overarching training methodology to be 
employed will be Scenario Based Training (SBT), which emphasizes embedding 
training approaches within an evolving and dynamic scenario rather than delivering it 
through a series of static lessons (Oser et al 1999).   

1.6 Measuring Success 

There are two possible approaches for measuring success in this kind of effort. The 
first is to demonstrate that the neural structures that are active during implicit learning 
are also active during intuition; that in the absence of implicit learning there are dif-
ferent / distinct patterns of neural activity during an intuitive decision making task; 
and that in control tasks in which neither implicit learning was provided or intuitive 
decision making required, these structures are minimally active. This approach will 
essentially compare measures of neural activity across different task conditions.  

The second is to show that, under those conditions in which implicit learning was 
provided and intuitive decision making was present, there is a significant improve-
ment in decision making compared to other conditions as represented for instance by 
a shift in the form of receiver operator characteristic curves.  

2 Summary 

This paper proposes a new approach for enhancing intuitive decision making in no-
vices, outlining four areas to address in order to develop training technologies  
for intuitive decision making. First, the nature of intuitive decision making must be 
characterized, at the neural, cognitive and behavioral levels. Second, these characteri-
zations must be integrated into a single model that accurately represents these charac-
terizations providing the foundation for developing training technologies. Third, the 
resultant model must be implemented into a training technology that demonstrably 
enhances an individual Warfighters’ intuitive decision making capabilities. Finally, 
the effectiveness of this approach must be determined through a range of assessment 
techniques. 
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Abstract. This research is a theoretical study of game-augmented instruction 
for learning and playing mathematics challenges. We wanted to extend our 
work with a unique Studio-Based Learning (SBL) model for peer-critiques of 
project designs. SBL had been used successfully in 15 universities as an ap-
proach for helping undergraduate computer science students improve their pro-
gramming skills and code reviews. We piloted the model in a 9th-grade spatial 
studies class with some success in teaching freshmen how to critique their work 
and participate in peer reviews across teams. From those experiences we devel-
oped a framework for an interactive mobile application of the studio expe-
rience. Research with a group of student athletes revealed that before mobile 
development, we needed to consider the constraints of learner characteristics on 
the mobile environment. This study sets out the design for a pilot test of our 
finding that learning style may drive game features for instruction. 

Keywords: Mobile Learning, Mathematics, Physiological Measurement,  
Engagement, Physical Cognition, Game Theory. 

1 Background 

Research has made great strides in understanding the potential of virtual games to 
engage learners and advance their learning as effectively or beyond the traditional 
lecture (Magana, 2009). Understanding the potential that game-based features can 
bring to instruction is insufficient without first understanding the potential that learn-
ers bring to the game. A classic issue for any instructional systems design solution is 
how to match the pedagogical approach to the learners and the learning context (Dick, 
Carey and Carey, 2007). We considered the problem of trying to generalize instruc-
tional game approaches for all learners, and asked the question: Do specific types of 
learners require different types of game features for the instruction to be effective? 
While it may seem an obvious yes, research has more often looked at how to apply 
known gaming approaches to improve instruction without consideration for the com-
plexity in the learning population. Before we could evaluate the students-to-mobile 
system for effectiveness in facilitating student critiquing, our research showed we 
needed to ask more questions about the mobile environment and the students engaged 
with it.  We decided to start with a known instructional problem for a known low 
achieving student population to investigate how a game-based approach might engage 
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these students in mathematics problem solving. We selected 9th-grade student athletes 
with low achievement in mathematics as our study population. We then considered 
which game features might help the learner gain deeper content understanding, and 
decided on a study of differences in student engagement in a mobile mathematics 
game, controlled for student learning characteristics. 

Our original research was funded on work from a CPATH (Computing Pathways) 
grant awarded by the National Science Foundation (NSF) to a university collaborative 
of principal investigators from Auburn University, Washington State University and 
the University of Hawaii at Manoa. A first CPATH grant (CPATH I) was funded 
from 2007-2010, and involved the development and testing of a unique Studio-Based 
Learning model for teaching undergraduates in computer science. A second CPATH 
grant (CPATH II), from 2010-2012, focused on expanding dissemination of the SBL 
model to new student audiences. Both grants reported increased engagement in pro-
gramming tasks and slight, steady improvements in achievement (CPATH II Annual 
Report, 2011). The foundation of the model was the Design Crit (Crit), where stu-
dents participated in peer critiques following a protocol for conducting code reviews. 
The Crit idea was generated from the master-apprentice relationships in the architec-
tural studios of the 19th-Century. The Studio allowed for ongoing critique of students’ 
work by masters and peers at any time in the design process. The SBL classroom is 
designed as a production studio where students can work, meet in teams, and seek 
instructor feedback. The NSF offered a Research Experiences for Teachers (RET) 
supplemental grant to fund expansion of existing CPATH work to K-12. Our research 
group applied and received a RET grant to pilot the SBL model in the 9th-grade Spa-
tial Studies class at New Technology High School in Napa, California for the academ-
ic year 2010-2011. 

The two teachers who had been teaching the geometry and digital media arts 
classes had just been assigned to integrate their classes into a new block class, called 
Spatial Studies. The grant provided opportunity to write the curriculum and it was 
developed entirely around a customized SBL model fit to New Tech High’s project-
based curricula (Donohue, 2011). Replicating the core SBL model from computer 
science, the Spatial Studies class focused on teaching students to think critically and 
conduct peer reviews on their geometry and digital designs. We found that students 
preferred the SBL model over the project-based model at New Tech because it pro-
vided them more structure – they “knew what to do next” – and, it gave them more 
resources from peers in the design reviews. Students reported that they enjoyed learn-
ing geometry on the computer as well as on paper and felt that they learned many 
more digital skills Photoshop, Excel, Illustrator, and GeoSketchpad. Interviews with 
students at the beginning and end of the class showed that they formulated their learn-
ing more precisely and used mathematics terminology more accurately by the end of 
course. While that would be a natural outgrowth from one year of learning, students 
attributed their improved understanding to their team critiques and peer-experts, a 
phenomenon also reported by the teachers.  

Our current work in Instructional Technologies at San Francisco State University 
has focused on the effectiveness of mobile learning and the idea of bringing SBL to a 
mobile device provided a spark for a small group of faculty and students who  
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accepted the challenge to study a match of learner characteristics to mobile learning 
games. Our research question asked: Could we engage students in learning geometry 
by using a mobile game-based approach? If the answer was Yes, then we knew we 
could design a mobile application to facilitate students’ critical thinking in geometry. 

2 Theoretical Foundations of the Study 

This research study focused on the problem of how to engage and help low achieving 
students learn geometry. We know from the research that computer games and simu-
lations (Regan, et al., 2005; Fairclough, 2009; Magana, Brophy, and Bodner, 2010) 
can improve student understanding and build self-confidence in learning domain con-
cepts. This was encouraging for a mobile game solution to teach geometry, especially 
for middle and high school students. We turned our focus to the match of learner to 
game.  

Our study investigated the proposed game’s ability to engage low performing stu-
dents in mathematics. The population consists of sixth and seventh grade students in 
school sports. We postulated that this group of potentially low achievers in mathemat-
ics would be more likely to be engaged in geometry if they could participate in it 
physically. Our theoretical parameters involved research at the nexus of four fields of 
inquiry with potential impact on the study’s outcomes: 

1. The historical use of computing to teach mathematics 
2. The success of virtual manipulatives to assist mathematics cognition 
3. The principles of Mayer’s Multimedia Learning theory 
4. The implications of Gardner’s Multiple Intelligences 

The result was a game pilot that appeals to student athletes’ heightened bodily-
kinesthetic and visual-spatial intelligences. We developed two mobile applications of 
a basketball competition for testing: one for a mobile phone and one for Microsoft 
Kinect 360. The game incorporates findings from virtual manipulatives and multime-
dia learning theory to shape the environment for greatest effect. 

2.1 Historical Use of Computers 

James Kaput and Jeremy Roschelle (1998) proposed in their chapter review, The ma-
thematics of change and variation from a new perspective: New content, new context, 
that a Dual Challenge existed with the growth of technology that required teaching 
“more math to more people” (section Dual Challenges: Much more mathematics for 
many more people, par. 1). They pointed out that, by the turn of the century, teaching 
mathematics had become increasingly abstract and complex in the face of increasing 
student diversity and social cost. While pointing out the advantages that new technol-
ogies offered, they concluded their review with the question “Can these new possibili-
ties transform our notion of a core mathematics curriculum for all learners?” Their 
emphasis on “all learners” alluded early to the inability of mass solutions to meet  
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individual needs. More recent work in artificial intelligence that allows for individua-
lized instruction with solutions such as the Cognitive Tutor (Koedinger, 1998) or 
adaptive testing have run into the same constraints of increased cost, learner diversity, 
and complexity of content. Our challenge to match the learner to the system would 
not be a trivial question. 

2.2 Virtual Manipulatives 

Physical manipulatives have been successful teaching tools in mathematics since their 
introduction into schools in 1989. Various manipulatives such as base 10 blocks, co-
lored chips, interlocking cubes, and geo-boards proved their worth in helping students 
conceptualize abstract concepts. Manipulatives allow students to make abstractions 
meaningful. They facilitate learning by making relationships between ideas explicit 
using visual, tactile and kinesthetic experiences (Hunt, Nipper and Nash, 2011). 

Virtual manipulatives (VM) have shown new potential to engage learners by offer-
ing unique characteristics that go beyond the capabilities of physical manipulatives 
(Moyer-Packenham, Salking and Bolyard, 2008). While virtual affordances can en-
hance the user’s experience and understanding of a mathematics concept, they can 
also detract or disrupt attention and perception. VM can have drawbacks if not de-
signed well. The visuals can be distracting or disorienting in use, but the authors note 
that VM was most effectively used in tests with third-grade students when applied in 
the middle or core part of a lesson: “It was during these activities (investigation and 
skill solidification) that teachers reported the engagement of the students with the 
virtual manipulatives” (p.214).  

In looking at multimedia principles applied to virtual manipulatives, Packenham et 
al. (2008) point out that “Dual Coding Theory (Clark & Pavio, 1991) and Multimedia 
Principles (Mayer & Anderson, 1992) support the notion that when learners are pre-
sented with visual and verbal codes, the effects of multimedia instruction and stu-
dents’ recall of information are increased” (p.214). The findings of their study showed 
that virtual manipulatives “were central to the mathematics learning and content de-
velopment and were often used in combination with physical manipulatives” (p.215). 
Our game would need to build on the success of VM in developing content learning. 

2.3 Multimedia Learning Theory 

Richard Mayer’s (2001) Multimedia Learning Theory states that instructional mes-
sages should be developed in light of how the human mind works. Mayer’s research 
shows how words and pictures are qualitatively different yet complement each other 
and that human understanding occurs when learners are able to integrate visual and 
verbal representations.  By building connections between words and pictures, learners 
are able to create a deeper understanding than from words or pictures alone. 

Mayer (2001) bases his cognitive theory of multimedia learning on three main as-
sumptions: 1) Dual Channel - states that humans possess separate channels for visual 
and auditory information; 2) Limited Capacity - states that humans are limited in the 
amount of information they can process at one time; and 3) Active Processing - states 
that humans have meaningful and transferable learning experiences when they engage 
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in active learning as defined by “attending to relevant incoming information, organiz-
ing selected information into coherent mental representations, and integrating mental 
representations with other knowledge.” Our game interface would need to make use 
of multimedia design principles. 

2.4 Multiple Intelligences 

Howard Gardner introduced the theory of Multiple Intelligences with his book 
Frames of Mind in 1983.  Multiple intelligences theory challenges our traditional 
notion of intelligence. He argues that multiple intelligences deny the application of a 
universal or mass approach to measure intelligence, such as the IQ (Intelligence Quo-
tient) test. This suggests that current approaches to instructional development using 
game theory and gamification approaches might miss the critical determining factor 
of individual differences. One advantage of games is their potential for customization 
or personalization by the user. However, the ability of the user (learner) to select  
or dress the player in the game to suit his or her preferences does not address the  
need alluded to here for learners to choose a type of game that fits his or her learning 
approach.  

Our selected learners for intervention are student athletes involved in school sports. 
Gardner (1983) explains intelligence as raw biological potential to process informa-
tion and problem solve. The two intelligences important to this study are the bodily-
kinesthetic and visual-spatial intelligences.  

Bodily-kinesthetic intelligence has been defined as “the ability to problem solve or 
fashion products using one’s whole body, or parts of the body” (Gardner, 1993). Bo-
dily-kinesthetic learners process information through the sensations they feel in their 
bodies and tend to learn through movement and touch. Individuals with this intelli-
gence prefer to communicate information by demonstration and modeling. These 
learners include athletes, dancers, actors and surgeons. 

The visual-spatial intelligence has been defined by Gardner (1993) as, “the ability 
to form a mental model of a spatial world and to be able to maneuver and operate 
using that model.” Individuals with high visual-spatial intelligence tend to think in 
pictures and are able to learn readily from visual presentations. Our most surprising 
finding alerted us that our game would likely be more effective if we could meet our 
student athletes’ learning preferences. 

2.5 Ways That Games Engage 

We chose to build a mobile application based on the principles and lessons of multi-
media learning, virtual manipulatives, and multiple intelligences noted above. We 
know from the research that gamification of instruction offers numerous ways to en-
gage learners in content: rewards for achievement, instant feedback, enhancement of 
attention, a state of uncertainty that triggers Dopamine for heightened enjoyment, and 
engagement by playing with other people (Chatfield, 2012; Gee, 2005; Camerer, 
2003). Given these challenges for design and development of the platform, we  
designed a study as outlined in the methods section that follows. 
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3 Methods 

We chose to design an Augmented Basketball Challenge. Our interests for the pilot 
were to explore three areas of investigation: 1) the role of visual-spatial and bodily-
kinesthetic intelligences on learning with the game, 2) the attraction of a mobile (or 
virtual) game to engage low-performing students in learning, and 3) the ability of 
physically augmented cognition to impact students’ conceptual thinking in geometry.  

Our first prototype, the Augmented Basketball Challenge, places young players in 
friendly competition to demonstrate their understanding of triangles, angles, parallel 
and perpendicular lines. More than a classroom manipulative; more than a simulation; 
the Augmented Basketball Challenge uses a virtual 3D competition to stimulate stu-
dent understanding of mathematics by physically manipulating a visual basketball in 
live play. The pilot test will explore the physical-cognitive link during game play. We 
know from Purdue’s worldwide research on Nanohub.org (Magana, Brophy, and 
Bodner, 2010) that simulations can improve student understanding and build self-
confidence in learning domain concepts. We know, as Howard Gardner (1993) sug-
gests, that students’ spatial and bodily-kinesthetic intelligences act as cognitive aids to 
learning when body, mind, and game converge.  To gain deeper insight into the poten-
tial effects of these principles on mathematics learning, we are conducting a mixed 
methods study of the game’s implementation with middle school students.  

We have chosen the methods employed by Regan, Mandry, Kori, Inkpen and  
Calvert (2005) in their study using questionnaires, interviews, video coding of obser-
vations, and Galvanic Skin Response (GSR) to measure the user experience with en-
tertainment technologies. While their study used a hybrid game system to analyze the 
differences between computer systems, we will collect the same type of data from 
four student groups in a 2x2 design: student athletes with low mathematics scores on 
the 8th grade high stakes testing, student athletes with average to above average ma-
thematics scores, student non-athletes (scoring low on bodily-kinesthetic and visual-
spatial intelligences testing) with low mathematics scores, and student non-athletes 
with average to above average mathematics scores. Each group will participate (with-
in-group) in the Augmented Basketball Challenge on the mobile application and then 
one round on the Kinect 360. Videos during game play will capture gestures, facial 
expression, and audio. A likert-based questionnaire before participation will capture 
student perceptions and attitudes towards mathematics and geometry in particular, 
experience with video or online games, and any experience with educational games. 
Post group interviews will be taped and conducted immediately after participation. 
The interviews will collect information on students’ perceptions of the game and their 
experience, attitudes and perceptions on the geometry challenges, their preferences 
for learning with mobile devices and their observations of the game experience. 

3.1 The Game Design 

The game covers geometry basics from the 9th-grade mathematics standards on identi-
fying triangles, angles, parallel and perpendicular lines. The game gives students op-
portunity to practice the standards and assess their learning. They also have the 
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chance to compete with other students and engage in the social aspects of the game. 
The mobile application model presents live basketball footage that demonstrates a 
standard. The video is enhanced with graphics to add demonstration of the concept. 
For example, to demonstrate a right angle, a player may pass the ball from one player 
to another player and then a third player forming a right triangle. The result is shown 
with arrows on screen. Student mathematics’ assessment will occur through competi-
tion, either with the computer or against each other. Game competition will be timed 
and continuous. The time is shown as a shot clock on a basketball court. The game 
presents students with a series of mathematics terms, given one at a time, in random 
order. The player must perform the concept of the term presented and shoot. Every 
correct calculation scores a point. The highest point wins. The game will be persona-
lized for players with their picture added to a player’s scorecard. 

 
iPad Simulation. The student uses fingers to swipe the 
motion of the ball in a trajectory. After completing an 
angle, the student shoots the ball by swiping it towards 
the basket. If the basket is made, the student’s calcula-
tion was correct. If the basket is missed, the calculation 
was incorrect. Lines and Arrows demonstrate where 
the ball has been passed (See Fig. 1). Onscreen colors 
signal correctness of actions and rewards are used to 
encourage play and challenge the learner.  

XBOX 360 Kinect Simulation. The game operates as 
in the iPad simulation; however, instead of a swipe of 
the finger, the student simulates a passing motion of 
the ball in the trajectory desired, for the player on-
screen to catch it. The student is always the player with 
the ball. When the student feels the correct answer they will shoot the ball (the same 
way as if they were on a real basketball court). Onscreen, the game shows the player 
shooting the ball. If the student’s calculation is correct, the ball makes the basket; if 
incorrect, the student misses the basket. 

4 Implications of the Study 

In 2011 there were 34,024 student-athletes participating in the sport of basketball for 
NCAA (National Collegiate Athletic Association) affiliated institutions of higher 
learning.  Most of these students enter four-year institutions as freshmen and are re-
quired to learn a significant amount of basketball tactical plays in order to compete. 
College basketball tends to have a high attrition rate of freshmen student-athletes who 
must successfully make the transition from high school to college. We looked at this 
population of students who are challenged on at least three fronts. They must success-
fully transition from high school to college academic standards, athletic standards, 
and to a higher-level basketball game. These students were often the low achievers in 

 

Fig. 1. Screen shot of test iPad 
application for teaching bas-
ketball plays, showing ball 
trajectories (green) and touch 
controls at lower left. Devel-
oped by Tawnya Gray. 
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mathematics and other academic disciplines. If we can teach these athletes mathemat-
ics using a physical basketball game framework in high school, we might be able to 
help collegiate athletes before they reach their freshman year learning trauma. 
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Abstract. Within cyber security, the human element represents one of the 
greatest untapped opportunities for increasing the effectiveness of network de-
fenses. However, there has been little research to understand the human dimen-
sion in cyber operations. To better understand the needs and priorities for  
research and development to address these issues, a workshop was conducted 
August 28-29, 2012 in Washington DC. A synthesis was developed that cap-
tured the key issues and associated research questions.  

Research and development needs were identified that fell into three parallel 
paths: (1) human factors analysis and scientific studies to establish foundational 
knowledge concerning factors underlying the performance of cyber defenders; 
(2) development of models that capture key processes that mediate interactions 
between defenders, users, adversaries and the public; and (3) development of a 
multi-purpose test environment for conducting controlled experiments that 
enables systems and human performance measurement.  

Keywords: Applications of Augmented Cognition, Cyber Security, Research, 
Human Factors, Cognitive Modeling. 

1 Introduction 

Within cyber security, the human element represents one of the greatest untapped 
opportunities for increasing the effectiveness of network defenses. However, there has 
been little research to understand the human dimension in cyber operations. To better 
understand the needs and priorities for research and development to address these 
issues, a workshop was conducted August 28-29, 2012 in Washington DC. The find-
ings of the workshop are summarized in this report. 

The workshop brought together operational, scientific and programmatic perspec-
tives, with the objective to converge upon a prioritized list of key research questions. 
While the human dimension encompasses defenders, attackers and users, for the cur-
rent workshop, emphasis was focused only upon defenders. A range of topics were 
considered that contribute to increasing the effectiveness of cyber defenders, while 
minimizing the impact on users.  
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The workshop consisted of a series of focused discussions. The scope encompassed 
all areas impacting the effectiveness of cyber defenders in accomplishing their mis-
sion. This included (1) understanding the cognitive processes, (2) application of  
technology to support and enhance cognitive performance, (3) work processes/ 
environment and other factors that mediate performance, (4) collaboration and  
teamwork, (5) education and training, (6) organizational and cultural factors, and (7) 
personnel selection and retention.  

2 What Are the Key Research Questions? 

Research questions were identified that fell into several somewhat overlapping cate-
gories. The following sections discuss the core issues underlying these categories.  

2.1 Measurement and Metrics 

For the most part, there currently exists no quantitative basis for assessing the perfor-
mance of cyber defenders, whether at the individual, team, group or organizational 
levels. Furthermore, while various resources are available for generating simulated 
cyber events and observing the behavior and performance of cyber defenders, without 
underlying science regarding the human dimension within cyber and the associated 
phenomenology, there is little basis for making decisions concerning the specific 
nature of exercises, who participates and how performance is evaluated.  

2.2 Human Performance of Cyber Defenders 

From a scientific perspective, there is very little known about cyber analysts. As a 
basis for scientific study, there is need for analysis to understand the jobs filled by 
cyber analysts, and particularly, the associated cognitive processes that mediate their 
performance.  

2.3 Understanding the Adversary 

It may be generally assumed that there is benefit for the cyber defender to have an 
understanding of their adversary. However, there is need for research to understand 
what types of knowledge is beneficial and how that knowledge may be effectively put 
into use.  

2.4 Selection and Training of Cyber Defenders  

Currently, there is little known about what attributes prepare an individual to become 
an effective cyber defender. There is little understanding of what skills, knowledge 
and abilities need to be addressed through selection and training. Likewise, within the 
course of training, there is need for research to scientifically establish the appropriate 
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measures for assessing performance, as well as approaches for effectively diagnosing 
and intervening to maximize training effectiveness. 

2.5 Intersection between Humans and Technology 

Building upon a better understanding of cyber defenders, questions arise concerning 
the balance between humans and technology, and how technology may be employed 
to augment the performance of individuals and teams.  

These questions generally fall into two related areas. First, which cognitive 
processes operating at either the individual or team level should technology be used to 
augment and what mechanisms might be employed to do so. Second, what technolo-
gies would be most beneficial to the cyber defender (e.g. data mining, anomaly detec-
tion) and for these technologies, how should they be implemented?  

2.6 Teamwork and Collaboration 

Cyber defense often requires the effective coordination of teams. However, there is 
little understanding of how teams of cyber defenders operate, and what team 
processes and communications lead to more effective team performance. Likewise, 
research is needed that addresses the composition of teams and particularly, provides 
insight into what kinds of people are needed and how to best cope with situations 
where highly talented individuals are disinclined and lack the skills needed to operate 
in a team context.  

3 R&D Addressing the Human Dimension in Cyber Operations 

Workshop participants were divided into four groups who developed somewhat over-
lapping research proposals. The products of the four groups have been integrated to 
emphasize those points where there was a common appraisal of the problem and the 
corresponding research questions. 

3.1 What Is the Problem and Why Is It Hard? 

Today, the cyber defender is placed in an untenable position. They are asymmetrically 
disadvantaged faced off against a continually evolving opponent who can attack any-
where, anytime. The boundaries of the battlespace are ill-defined, both temporally and 
spatially.  

Ground truth regarding the attacker, what they’ve done and how they’ve done it is 
rarely known with certainty. Any solution must function within the context of an 
overall system that includes a broad range of users and may span organizational 
boundaries. In the absence of ground truth, there are no real measures of success or 
progress rendering the domain an art, precluding the science that might otherwise 
provide a basis for engineering systems solutions.  
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3.2 What Are the Limits of Current Practice? 

Today, extensive investments are being made ad hoc to develop software tools that 
are intended to help cyber defenders. Actions being taken are largely short-term  
and reactive to known threats. There exists a relatively small pool of qualified profes-
sionals with the assignment of personnel to cyber positions often driven more by  
expediency than thoughtful selection.  

Current measures provide little insight into the human dimension making it diffi-
cult to assess performance, much less draw conclusions regarding what is and what is 
not working, or the differential contribution of various factors to individual, team or 
organizational success. Using the tools available to them today, cyber defenders must 
process large volumes of high-tempo data with it uncertain that this is the right data or 
that the data is being used in the right way, given that we do not have a good under-
standing of the actual work being done. Finally, there has been an insufficient alloca-
tion of resources to enable long-term strategic solutions that may require structural 
and organizational change. 

3.3 What Are the Objectives and What Difference Will It Make? 

A coordinated R&D program is needed to accomplish three separate objectives. 
The first objective is to conduct human factors analysis and scientific studies to es-

tablish foundational knowledge concerning factors underlying the performance of 
cyber defenders. These studies should address a range of pertinent issues that include: 

• The roles of defenders, users, adversaries, policy makers and the public, providing 
an extensible collection of use cases; 

• The different jobs and functions within cyber defender teams and the associated 
knowledge, skills and abilities needed to fulfill these functions; 

• Cognitive processes involved in typical tasks and associated measures of perfor-
mance both as a basis for selection, and training and operational performance  
assessment; 

• Methods and materials for training to both requisite levels of performance, as well 
as a progression from proficient to expert, and potentially elite performer. 

• Allocation of functions between humans and machines, including opportunities to 
augment human performance through specific technological developments. 

The second objective involves the development of models that capture key processes 
that mediate interactions between defenders, users, adversaries and the public. Models 
should provide sufficient complexity to enable experimentation concerning alternative 
tactics, techniques and policies. Models should also accommodate insertion of alter-
native technologies, enabling estimates of the relative returns on investment.  

The third objective is to develop a multi-purpose test environment for conducting 
controlled experiments that enables systems and human performance measurement. 
The test environment should be flexible to accommodate a range of threats, software 
tools, modes of training, and policies, as well as mechanisms to simulate users,  
including the public. 
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Through accomplishing these objectives, cyber operations may be transformed 
from an art to a science, and based on that science, systems solutions may be engi-
neered to address a range of situations. Likewise, there is an opportunity to move 
beyond the current state where key decisions (e.g. personnel assignment) are made on 
a largely ad hoc basis to a state in which there exist institutionalized processes for 
assuring the right people are doing the right jobs in the right way.  

These developments lay the groundwork for emergence of a professional class of 
cyber defenders with defined roles and career progressions, with higher levels of per-
sonnel commitment and retention. Finally, operationally, the impact should be evident 
in improved performance, but also a transition to a more proactive response in which 
defenders have the capacity to exert some measure of control over the battlespace. 

3.4 What Are the Measures of Success/Progress? 

The first measure of success will be an ability, which does not exist today, to actually 
measure success. Given the primary product will be knowledge, a second measure of 
success will be the adoption and institutionalization of the resulting knowledge in 
establishing selection criteria, measures of performance, training requirements, sys-
tem specifications for technology products and other related applications. A third 
measure of success will be the utility attributed to models and resources for conduct-
ing testing as evidenced by the amount and diversity of their use.  

4 Conclusion 

This paper outlines the need for R&D to address the human dimension in cyber opera-
tions. The objective of the workshop was to collect a broad set of perspectives and 
synthesize those perspectives in a form that may be used by different organizations to 
develop R&D programs.  

Based upon this exercise, organizations may craft their own proposals having the 
benefit of knowing how other organizations view the problem and imagine the solu-
tions. It is the intent that this broader awareness will facilitate a more coordinated 
effort across government organizations than would occur otherwise.  

There is a rich collection of experiences in which different domains have taken 
concrete measures to address the human dimension within their operations. These 
experiences encompass both engineering analysis, scientific study and the develop-
ment of technologies, practices, design guidelines and other related products.  

Cyber is a relatively new domain and recognition of the human dimension in cyber 
operations is only now rising to the forefront. While cyber does not enjoy the wealth 
of knowledge and experience that is present with other domains, there is the opportu-
nity for cyber to leverage the knowledge and experiences of these other domains to 
take similarly effective measures.  
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Abstract. Augmented Cognition technologies focus on assessing and monitor-
ing the user to produce a composite picture of their cognitive state. This is 
based on the mental processes of the user involving perception, memory, judg-
ment and reasoning. It does not include the emotional, volitional or the sub-
conscious processes. Due to the absence of input from a core human dimension 
– the subconscious - it is inevitable that the picture to emerge from this data will 
be incomplete. The focus of this paper therefore, is on this subconscious dimen-
sion. The objective is to illustrate how subconscious processes can shape beha-
viours and determine individuals’ strategic actions. We argue that in order to 
formulate a complete portrait of an individual’s cognitive state, it is important 
to integrate the subconscious dimension.  

Keywords: Psycognition, characterology, subconscious behaviours, character 
strategies, critical incident breakdown, situational appropriate behaviour, inner 
subjective domain. 

1 Introduction 

Augmented Cognition technologies focus on assessing and monitoring the user to 
produce a composite picture of their cognitive state. This is based on the mental 
processes of the user involving perception, memory, judgment and reasoning. It does 
not include the emotional, volitional or the subconscious processes. Due to the ab-
sence of input from a core human dimension – the subconscious - it is inevitable that 
the picture to emerge from this data will be incomplete. The focus of this paper there-
fore, is on this subconscious dimension. The objective is to illustrate how subcons-
cious processes can shape behaviours and determine individuals’ strategic actions. We 
argue that in order to formulate a complete portrait of an individual’s cognitive state it 
is important to integrate the subconscious dimension. 

2 Focus and Objectives 

Thus the key focus of this paper is the subconscious dimension. Our objective is to 
illustrate how subconscious processes shape behaviours and determine the strategic 
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actions of individuals. The aim is to demonstrate how the inner subjective dimension 
can contribute to the understanding of individual cognitive states and therefore, lead 
to augmented cognition systems that can expand and enhance this state. An integrated 
view of the cognitive state and the interrelationship between the key four components 
is diagrammatically outlined in Figure 1. 

Inner subjective domain
Subconscious phenomena

EXTERNALINTERNAL

Physical phenomena

Physiological
Neuropsychological

Tactile
Facial

Biometrical
Etc

Behavioural

Cognitive state

Inter-subjective domain
Situational phenomena

Awareness
Environment

Location. Position
Situational events

Behavioural phenomena

Stress
Fatigue

Cognitive overload
Etc

Characterological

 

Fig. 1. An Integrated Perspective 

Subconscious phenomena are embedded in the inner subjective domain. Since 
these are usually triggered by external events, the interrelationship with situational 
phenomena is important. The interaction between the two produces the manifestation 
of visible or measurable physical and behavioural phenomena. The inner subjective 
domain, consisting of subconscious phenomena is pivotal to the formation of compo-
site pictures of current cognitive states. It is the subconscious phenomena that create 
the landscape of the inner subjective domain and determines how individuals expe-
rience the external world, the unconscious habitual, behavioural patterns and the deci-
sions and strategies adopted in response to external stimuli. 

Thus our hypothesis is by delving into this subconscious domain, it becomes poss-
ible to develop richer and more composite views of individual cognitive states. 

3 Theoretical Framework  

We refer to the inner subjective domain as the Psycognitive domain, which will be 
examined within a theoretical framework drawn from Psycognition. Psycognition is 
based on the theory that external behaviours arise from the subconscious that shapes 
how individuals perceive and experience the world. The research methodology de-
rived from Psycognition is focused on understanding the subconscious processes as-
sociated with the semi-predictable emotional responses and behaviours that reside in 
the subconscious.[1] 
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The concept of characterology lies at the core of the Psycognition theoretical 
framework. Characterology refers to the set of core beliefs formulated early in an 
individual’s development and the behaviours that are predicated on these beliefs.[2] 
Psycognition applies a framework of characterological types to examine subconscious 
processes and behavioural strategies. An overview of these is provided in Table 1. For 
purposes of clarity, colloquial terms are used instead of clinical ones. Despite the 
variations in terminology the framing of character types is similar to other topolo-
gies.[3, 4]  

The identification of a dominant character orientation provides a basis for develop-
ing hypotheses about the interdependency between subconscious core material and 
behaviourial strategies. From this we can begin to formulate approximate predictions 
of how individuals will respond in certain situations. This is the framework for our 
examination of the interrelationship between the Psycognitive inner subjective do-
main and external behaviours in the following sections. 

Table 1. An Overview of Characterological Themes 

Character Position Behavioural Orientation Core Belief 

Mr Safety Safety - trust The world is dangerous 

Mr Action Performance - recognition Self worth = achievement 

Mr Endurance Indirect control-endurance Not good enough but do the best 

Mr Freedom Freedom  - Be the best & win In charge – power - control 

Mr Self-Reliant Challenge. Going it alone Never rely on others. Self-care 

Mr Expressive Attention, avoid separation Not interesting-not listened to 

4 Examination of the Psycognitive Inner Subjective Domain 

Our examination of the interrelationship between the Psycognitive inner subjective 
domain and external behaviours is drawn from a research study of the strategies and 
decision making of a sample of RAF fighter pilots.[1] The investigation focused on 
how subconscious processes influenced the pilots’ behaviours in handling critical 
incidents. The line of enquiry was whether there were significantly different characte-
rological orientations among the research sample and if so, how these differences 
influenced the subjects handling of critical incidents.  

Examples from the research illustrate how characterological orientation influences 
the strategies employed in three kinds of critical incidents:  

1. Information Overload: The eight adjustment processes to information overload 
have been typified as: omissions, errors, filtering, abstracting, multiple channels, 
queuing, escape and chunking.[5] 

2. Control Breakdown: a perceived or actual breakdown of control in a situation. 
3. Plan Breakdown: a plan cannot be carried out, therefore objectives cannot be 

reached. 
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In the following sections we draw from the sample of fighter pilots to examine the 
differences in individual characterologies in relation to the strategies the subjects 
adopted in each critical incident.  

5 Strategic Behaviours – Information Overload  

The research findings pointed to differences in the subjects’ adjustment processes in 
information overload incidents. The four strategies consistently applied in the data are 
presented in Table 2. 

Table 2. Information Overload Strategies 

Strategy Adjustment Process Cognitive & Behavioural Response 

A Filter, chunk, escape Goes for a lot of information in an attempt to control 
overload 
Quantity is important – he determines the quality 
Core belief around not trusting dominates behaviour 
Withdrawal from the situation 

B Increase speed Speeds up & goes faster 
Goes for a lot of detail 
Core belief around, “what more do I need to do here?” 

C Queue & delay Slows things down
Timing is important to receive, consider & respond  
Core belief around doing his best & waiting for the 
outcome 

D Abstraction, 
manipulation of multiple 
channels 

Attempts to deflect the situation through abstraction 
Manipulates situations to maintain control 
Core belief around, “I can handle this.” 

 
 
Each strategy is quite different, for example, the adjustment process of Strategy A 

is based on controlling the overload by gathering as much information as possible, 
chunking it into pieces of manageable size and filtering it for quality. In contrast, 
Strategy D deflects the situation through abstraction and by drawing upon multiple 
channels of information, instead of relying only on one. The manipulation of the in-
formation is a form of maintaining control. Further contrasts are evident in Strategies 
B and C. Strategy C adopts the approach of slowing things down, queuing and delay-
ing information. While Strategy B is based on speed – i.e. of obtaining as much in-
formation as possible in order to obtain more detail. 

6 Strategic Behaviours – Control Breakdown  

The findings highlighted pronounced differences in the subjects’ strategic behaviours 
in control breakdown situations. These are outlined in Figure 2. Control Strategy B is 
orientated around values and performance where control is relinquished only after a 
considerable effort to understand the breakdown and when the subject is certain that  
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his values are not being compromised. This contrasts with the focus of Strategy D on 
power and maintaining control, where the subject superimposes whatever he can to 
maintain control over the situation. 

C
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to be in control

Control 
Breakdown
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Fig. 2. Strategic Control Orientations 

There were also differences in how the subjects’ experienced the loss or recovery 
of a control breakdown. The subject with control Strategy B initially experiences 
frustration and anxiety, but is relieved when he finally has to relinquish control. This 
differs from the subject with control Strategy A, who experiences a lack of safety and 
therefore prepares for the worse. This contrasts with the control Strategy D subject 
who experiences feelings of power and winning when he refuses to relinquish control.  

7 Strategic Behaviours – Plan Breakdown  

Further evidence of differences in strategic behaviours was also found in the subjects’ 
handling of breakdown incidents. The factors provoking a breakdown varied among 
the subjects. For example, the breakdown factor in Strategy A is a violation of values, 
for Strategy B it is the compromise of values and principles and for Strategy C it is 
the failed plan. There is no breakdown factor for Strategy D since the tactical plan is 
changed to enable the achievement of the goal. A divergence also emerged in the  
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subjects’ final response to not achieving their plan. There was a range of responses 
from a complete withdrawal, a refusal to accept, creating a rationale for acceptance, 
through to compromise. These strategic differences are shown in Table 3. 

Table 3. Plan Breakdown Strategies 

Strategy Primary 
Motivator 

Goal Strategic Tactics Breakdown Factor Response 

A 
 
 

Performance Achievement Goal focus 
Manipulates 
Persists 

Violation of core 
values 

Withdraws 

B Values  
Principles 

Achieving 
what’s right  

Focus on what is right
Perseverance 
Tactical change 

Compromise on 
values & principles 

Battles system 
Accepts failure if 
rationalized 

C Be the best 
possible 

Influence the
outcome 

Provides input to 
situation 

Failed strategy
Waits 

Compromise 

D Success & 
Winning 

Achieving the
goal 

His goal - his way.
Impulse over-rides 
rational thinking & 
judgment 

None – success
driven. Achievement 
only 

Changes plan 
Refuses to accept 
failure 

 

8 Themes and Patterns 

The findings indicated that the subjects tended to apply the same strategy to the dif-
ferent incidents. For example, the focus on trust and safety in Strategy A was applied 
to both the information overload and control breakdown incidents. This was also the 
case for Strategy B where the focus on speed and effort applied to both of these inci-
dents, as well as for Strategy C with the focus on slow and delay. The theme for Strat-
egy D – control and manipulate was evident in all three incidents. These parallels 
suggest that the subjects organise their experiences and behavioural responses around 
certain underlying core beliefs. For Strategy A it is safety and trust; for Strategy B, 
values and performance; for Strategy C – to do one’s best and compromise and for 
Strategy D, control and manipulation. These patterns are shown in Table 4. 

Table 4. Themes and Patterns in Strategic Behaviours 

 Information Overload Control Breakdown Plan Breakdown 

A Doesn’t trust information 
Controls with quantity 

Unsafe not to be in control  
Unsafe if gives up control 

Manipulates situation 
Withdraws if values are 
compromised 

B Speeds up 
Focuses on detail 

Increases effort – tries harder 
Gives up if not a negative 

reflection  

Focuses on what is right 
Accepts it if it’s rational 

C Slows and delays things 
Does his best and waits 

Attempts to understand 
Relinquishes control 

Focus on doing his best 
Adapts and compromises 

D Deflects through abstraction Exerts power to control 
Imposes own methods 

Impulse overrides rational 
thinking –refuses to accept 
failure 
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9 Strategic Behaviours in Terms of Characterology 

An examination of the subjects’ behaviours in terms of characterology drew close 
parallels between the characterological orientations outlined in Table 1 and the sub-
jects’ strategies. The theme of safety and trust for Strategy A corresponds to ‘Mr 
Safety’ and the performance and action focus of Strategy B corresponds to ‘Mr Ac-
tion’. There is also a parallel between ‘Mr Endurance’ and the orientation of Strategy 
C to do one’s best and wait. The theme of power, control and freedom for Strategy D 
closely relates to ‘Mr Freedom’. A mapping between the subjects’ strategies and cha-
racterological orientation is provided in Table 5. This has been extended to include 
the strategic behaviours and the barriers associated with each characterology. 

Table 5. Mapping of Subjects’ Strategies with Characterological Orientation 

 

The findings suggest the subjects’ characterology emerges at points of breakdown 
when subconscious behaviours arise and begin to direct the strategic behaviours. For 
this reason, we see one subject handling an information overload situation by seeking 
large quantities of information through a lack of trust, another speeding up incoming 
information and yet another slowing down and delaying information. 

Characterology also provides an explanation for the differences that appeared in 
the subjects’ handling of control breakdown situations. For example, there was a sig-
nificant variation in how the subjects responded to a breakdown in control, ranging 
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from at one end of the spectrum feeling unsafe when control is lacking, then to giving 
up control only if values and performance are not compromised, and then relinquish-
ing control only if it can be rationalised and finally to the opposite end of the spec-
trum - a refusal to relinquish control. 

The analysis of the subjects’ behaviour in the data identified four of the six charac-
terological types outlined in Table 1. This was fortuitous. Each of the four subjects’ 
strategic behaviours in the three critical incidents corresponded to a different charac-
terological type - ‘Mr Safety, Mr Action, Mr Endurance, Mr Freedom’. The limited 
size of the sample did not provide the scope for the two remaining characterologies to 
emerge.  

10 Barriers and Situational Appropriate Behaviours 

Barriers are habitual behaviours that block the process of taking appropriate actions 
and decisions. Barriers essentially are defences against failure, which reverse the ap-
propriate behaviour that needs to occur.[2] Each characterology has a disposition 
towards a particular barrier as shown in Table 5. For example, Mr Safety tends to 
have an insight barrier leading to a withdrawal response. Mr Action is disposed to-
wards a response barrier. 

The cycle for situational appropriate behaviours consists of four main functions: 
clarity, response, effectiveness and insight. Our research highlighted the interruption 
of two of these functions in breakdown situations.[1,6,7] The evidence indicated a 
number of incidents where the clarity function was interrupted by an insight barrier 
and the effectiveness function by a response barrier. Both of these functions are es-
sential to situational appropriate behaviours. 

The process begins with the clarity function, which arises from awareness, atten-
tion and information. With an absence of insight there isn’t the clarity with which to 
move forward to the next function. As illustrated in the data, when this occurs some 
strategies involved a process of continually seeking clarity by gathering more infor-
mation or through the elicitation of input.   

There were other examples in the data of the interruption of the effectiveness func-
tion by a response barrier. When this barrier emerged in some of the strategies, the 
subjects experienced difficulty in responding with appropriate and effective action 
and responded instead by withdrawal, resistance or rebellion.  

11 Characterology as a Dominant Behavioural Force 

A new research question emerged when the data pointed to evidence of counterac-
tions of normal characterological tendencies by the military system. Under normal 
circumstances the military system - the culture, ethos, rules and regulations, provides 
for automatic behaviour. When this system is the dominant force, individual thinking 
and behaviours spontaneously draw upon this system. When the strength of the sys-
tem is in the forefront, the core material underlying character strategy resides in the 
background. 



 Integration of Psycognitive States to Broaden Augmented Cognition Frameworks 431 

The data was examined to determine whether there were incidents where the  
subjects’ characterology became the dominant force in driving their behaviour and 
strategies and the military system receded into the background. A number of specific 
incidents were highlighted in the data where the strength of the subjects’ characterol-
ogy superseded the military system. For reasons of confidentiality these specific  
incidents cannot be described. However, the generic behaviours that led to the supe-
rimposition of characterological behaviours over the military system are illustrated  
in Table 6. 

The strategic behaviours evident in the data suggest that under certain circum-
stances such as, extreme high stress and life threatening situations or involving a 
compromise of character in terms of values and principles, the strength of an individ-
ual’s characterology will emerge and counteract the military system. In the majority 
of cases however, the evidence pointed to the predominance of the military system 
over the subjects’ normal character tendencies. This is an indication that the subjects 
were psychologically well balanced and fully integrated into the military system.  

Table 6. The Dominance of Characterology 

Strategy Cognitive Interference/ 
Character Compromise 

Military ‘System’ in Background 

A Safety & trust Will not rely on ‘the system’ for safety 
Has his own rules for safety 

B Performance & recognition Bypasses the system if necessary to maintain 
character integrity 
Will not allow the system to undermine his  
performance 

C To do one’s best & influence Bypasses the system if necessary 
D Power, control, freedom, 

adventure 
Dangerous situations; overrides rules 
A disregard for procedures 

12 Research Conclusions 

An important finding from this research is that despite the similarities in the subjects’ 
background, training, experience and the strength of the military culture, there were 
significant differences in how they responded to critical incidents involving a break-
down. Our conclusion here is that the differences in the strategic behaviours can be 
attributed to how the subjects organise their experiences around the subconscious 
material rooted in their characterological orientation. This is more pronounced in 
situations where the subjects are faced with an actual or perceived threat to survival, 
experience a breakdown in plan or control, an overload of information or if values and 
principles are compromised.  

These conclusions challenge the common assumption that individuals draw upon 
conscious and rational behaviour. The findings indicate this is not valid in all cir-
cumstances. A key conclusion is that this research provides evidence that the Psycog-
nition characterological framework has diagnostic and potential predictive power.  
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This can provide us with a basis for developing an understanding of the subconscious 
strategic behaviours that could emerge in critical incidents and in other challenging 
environments.  

13 Implications 

Understanding behaviour under severe stress has key implications for augmented 
cognition technologies and system design in general. Military systems are just one of 
the many kinds which can serve to provide high risk operational conditions which 
demand that human stress behaviours be studied. The results of this research suggest 
that under extremes of stress, subjects organise their experiences and behavioural 
responses around certain underlying core beliefs. Under certain conditions the sub-
jects will depend on these deeply embedded core beliefs in the subconscious to guide 
their decisions and action, as well as, or more than, rational reasoning. Moreover, 
when drawing on their experience to compensate, the subjects organise those expe-
riences around the subconscious material rooted in their characterological orientation. 

Thus systems design based on the assumption that operational staff draw only upon 
conscious and rational behaviour may be flawed. From the evidence given here, aug-
mented cognition technologies need to include a Psycognition characterological 
framework, to provide a key diagnostic dimension for understanding strategic beha-
viours driven by the subconscious that are manifested under stress, i.e. in crucial mo-
ments of decision taking in life-threatening or other conditions where individuals are 
under intense strain. 
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Abstract. Functional near infrared (fNIR) spectroscopy is a field-deployable 
optical neuroimaging technology that provides a measure of the prefrontal cor-
tex’s cerebral hemodynamics in response to the completion of sensory, motor, 
or cognitive tasks. Technologies such as fNIR could provide additional perfor-
mance metrics directly from brain-based measures to assess safety and perfor-
mance of operators in high-risk fields.  This paper reports a case study utilizing 
a continuous wave fNIR technology deployed in a real-time air traffic control 
(ATC) setting to evaluate the cognitive workload of certified professional con-
trollers (CPCs) during the deployment of one of the Federal Aviation Adminis-
tration’s (FAA’s) Next Generation (NextGen) technologies.  

Keywords: Near-infrared spectroscopy, optical brain imaging, fNIR, human 
performance assessment, air traffic control, workload. 

1 Introduction 

Military and civilian aviation personnel are increasingly required to utilize larger and 
more complex automation systems.  Hence, the information-processing load and 
decision-making demands have recently been increased on aviation personnel includ-
ing pilots and air traffic controllers. While skilled operators have demonstrated the 
ability to sustain a sufficient level of performance as task difficulty increases, even-
tually increased workload leads to a decrease in performance that ultimately can lead 
the controller to make very dangerous or even deadly errors [1].  As new technology 
is implemented to increase the safety of air travel it is imperative to avoid adversely 
affecting the controller’s performance by overloading the controller with the technol-
ogy.  Emerging wearable functional brain activity monitoring technologies can help 
evaluate the cognitive status and capacities of the crew in cockpit as well as in ground 
control stations.  Such technologies could become an important asset in maintaining 
safe and effective performance through providing additional performance metrics 
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human performance assessment such as the cognitive workload monitoring of ATCs, 
task complexity, skill acquisition, problem solving, learning/training assessment, and 
ATCs controlling fixed numbers of aircraft and military personnel commanding fixed 
numbers of warships [2, 10-16].     

1.2 Physical Principles of Optical Brain Imaging  

When near infrared light, with a wavelength of 700-900 nm, enters brain tissue, much 
of the light is scattered, some is absorbed and a small portion is reflected back to the 
sensor [17].  Water, and thus tissue, does not absorb light very highly in this range, 
however, hemoglobin (HbR) and Oxy-hemoglobin (HbO2), have distinct spectra with-
in this ‘optical window’, which makes it possible to detect changes in HbO2 and HbR 
concentration through spectroscopic techniques (Fig. 1) [8, 18]. Utilizing the peak 
absorption wavelengths of HbR and HbO2’s chromophores, 730 nm and 850 nm re-
spectively, it is possible to measure the relative changes of both HbO2 and HbR to 
effectively monitor the brain activity of individuals with fNIR spectroscopy brain 
imaging [2, 8, 17].   Applying the modified Beer Lambert Law, based off of these 
principles, the relative changes in HbO2 and HbR concentrations compared to a base-
line measurement can be calculated.  log   · · ·                       (1)  

The parameters for this equation are as follows:  ODλ is the optical density at a spe-
cific wavelength, Iin is the intensity of the inputted light, Iout is the intensity of the 
detected light, ελ is the extinction coefficient of the two chromophores, either HbO2 or 
HbR, d is the distance the light traveled, ~1.25 cm with our device, DPF is the diffe-
rential path length factor due to high scattering, and G is the attenuation factor. This 
modified law depends on the theory that near infrared light traveling through the tis-
sue is scattered at a constant level, allowing “G” and “DPF” to be considered con-
stants in the equation [19]. 

Additionally, when the light intensity is kept constant and measurements are taken 
over two different time periods and two different wavelengths the equation reduces 
to:   ∆∆ · ·· · ∆∆              (2) 

Exploiting equation 2, the relative change in concentration of HbR and HbO2 (∆CHB 
and ∆CHBO2) can be deduced.  Subsequently, oxygenation (Oxy) and total blood flow 
(HbT) can be calculated from ∆CHB and ∆CHbO2:    
 

 
∆  ∆ ∆   ∆  (3) 
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was α= 0.05. The within subject effect of aircraft count was found to be significant 
(Fig. 6; F5,105 = 37.441, p<0.001,  = 0.663). The between subject CRA effect was 
found to have no significant effect on oxygenation levels (Fig. 6). The results of post-
hoc analysis indicated that the within subject effect of each aircraft count is signifi-
cantly higher than the preceding blocks except for the comparison of ‘<10 Aircraft’ 
and ‘10-12’ Aircraft (Table 1).  

Table 1. P-Values for Post-Hoc Analysis on Within Subject Effect of Aircraft Count. * 
Indicates significant differences. 

Aircraft 
Count 

<10 10-12 13-15 16-18 19-21 22-24 

<10 - 1.000 0.038* 0.002* 0.000* 0.000* 
10-12 1.000 - 0.000* 0.000* 0.000* 0.000* 
13-15 0.038* 0.012* - 0.003* 0.000* 0.000* 
16-18 0.002* 0.000* 0.003* - 0.002* 0.000* 
19-21 0.000* 0.000* 0.000* 0.002* - 0.001* 
22-24 0.000* 0.000* 0.000* 0.000* 0.001* - 

4 Discussion 

This paper presents the preliminary finding that cognitive workload of air traffic con-
trollers can be monitored accurately for continuously and incrementally changed task 
difficulty levels using fNIR, a portable optical brain imaging system. Previous studies 
have shown that mental workload can be estimated for controlled conditions in the 
natural working environment of the operators [2] but had not been tested for the con-
tinuously changing task difficulties as in the current study where ATCs participated 
for a 50-minute session to distinguish between workload levels caused by continuous-
ly increased traffic levels. For low aircraft counts it appears that ATCs can increase 
their cognitive function, specifically, working memory, similar to ATCs performance 
on the n-back test [2]. However, as the aircraft count increased beyond 100% MAP 
value, the ATCs could no-longer increase their cognitive function to meet the tasks 
demand.  While oxygenation increases were all significant, the spline fit to the data 
indicates that the second derivative changes for the group around the 19-21 aircraft 
mark indicating the controllers cannot continue to increase their cognitive function to 
match demand. This finding may add objective physiological validity to the MAP 
rating system previously described by the FAA. More importantly, the two implemen-
tations of the CRA system compared to the baseline condition did not significantly 
change the ATC’s cognitive workload. However, the D-Only implementation of the 
CRA shows a possible decrease in workload at higher traffic levels even though the 
results were not conclusive. These findings provide some insight to possible future 
validations of the CRA concerning workload response. Future work, employing an 
increase in the sample size to reduce Type II error may help to illustrate that the CRA 
is not adding unnecessary workload to the ATC but instead the CRA may reduce the 
controller’s workload when implemented correctly.  
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Continuously and objectively monitoring the cognitive workload of ATCs and oth-
er operators, with a portable brain-imaging device, such as fNIR, may allow for an 
increase in safety of air travel and other high-risk activities by ensuring the operator 
does not become overloaded. Additionally, an accurate objective assessment of cogni-
tive workload may help prevent operator error and allow for appropriate intervention 
through predicting probable errors that can arise from work overload [22-25]. An 
objective workload assessment system, such as fNIR, may prove to be a valuable tool 
in the validation of the array of FAA’s NextGen systems, such as the CRA presented 
in this paper.  
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Abstract. To use in the Rapid Serial Visual Presentation (RSVP) Key-
boardTM, a brain computer interface (BCI) typing system developed by
our group, we propose a robust classification method of handling non-
stationarity in the electroencephelography (EEG) data that is caused
by artifacts and/or sensor failure. Considering the effect of these non-
stationarities, we build a mixture data model to use as EEG evidence
in the fusion with an n-gram language model to develop a robust clas-
sification algorithm. Using Monte Carlo simulations on the pre-recorded
EEG data containing sections with or without intentionally generated
artifacts we compare the typing performances of non-robust and robust
classification methods in terms of speed and accuracy.

Keywords: BCI, ERP, Spelling.

1 Introduction

Locked-In Syndrome can isolate a person from those closest to them by tak-
ing away their ability to communicate. We focus on empowering those who are
totally locked in, without control of any muscle group or eye gaze, by offering
them a voice. Brain computer interfaces (BCIs) offer a promising avenue to do
this. Generally, BCIs are methods which extract a person’s intent through mea-
surement of internal body signals. A common method, as we employ here, is
to use the voltage of a person’s scalp measured through Electroencephelography
(EEG). EEG is a relatively cheap, portable, non-invasive way of measuring brain
waves.

There are a number of EEG brain-phenomena which have been used to classify
user intent. In motor imagery, a BCI system is designed to detect the signal
generated by imaging the movement of a body part [1]. Additionally a steady
state visually evoked potential (SSVEP) appears when a user is exposed to a
periodic visual stimulus. Exposing a user to flickering checkerboard patterns, the
induced SSVEP signals can be used to learn the user’s gaze position from the
frequency content of their brain waves [2].

Moreover, the EEG signals are sufficient for simple letter selection in the con-
text of a typing algorithm for people with total-LIS. P300 signal, an event related
potential (ERP) which occurs when a user is surprised by a circumstance, is com-
monly used for BCI spelling systems. P300 speller and Berlin BCI’s Hexo Spell

D.D. Schmorrow and C.M. Fidopiastis (Eds.): AC/HCII 2013, LNAI 8027, pp. 443–449, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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are well known examples of such systems [3], [4]. Different than these systems,
in our approach, we utilize Rapid Serial Visual Presentation (RSVP), which
presents the stimuli on the same location of the screen with temporal separation.
The accuracy and speed of P300 typing systems suffer from low signal-to-noise
ratio (SNR), the presence of artifacts in the signal and sensor failure and other
effects that cause non-stationarity in the observed EEG signals. In this paper,
we focus on a method to mitigate the influence of this non-stationarity on the
typing performance.

The artifacts and/or sensor failure change the underlying distribution of the
EEG data obtained from a BCI system causing a change in the optimal stimuli
classification rule and degrading the system performance. Our goal is to develop a
classification rule that is robust to changes in the assumed data distributions. To
achieve this, we estimate the distribution of the data under different conditions,
and using this distribution we develop our classification rule.

The rest of the paper is as follows. In Section 2, we explain the RSVP
KeyboardTM, and then in Section 3, we develop the proposed robust classifi-
cation rule. In Section 4, we demonstrate our experimental results, and conclude
our discussion in Section 5.

2 RSVP KeyboardTM

The RSVP KeyboardTMconsists of four main components: visual presentation,
feature extraction, language modeling and the classifier used to select a symbol.

2.1 Visual Presentation

RSVP is a presentation technique in which visual stimuli are displayed as a tem-
poral sequence at a fixed location on the screen. An example screen snapshot
from the current RSVP Keyboard prototype is given in Figure 1.In the current
study, RSVP contains random permutations of the 26 letters in English alpha-
bet, a space symbol and a backspace symbol (a total of 28 symbols to choose
from). We use the term ”sequence” to mean a showing of all 28 symbols. If
repetition is needed, all symbols are repeated multiple times to improve classifi-
cation accuracy until a preset desired confidence level or a maximum number of
repetition is reached. The process of repetition of sequences to choose a single
symbol is named as an epoch. In an epoch, we make the assumption that the
user shows positive intent for a single symbol.

2.2 Feature Extraction

The feature extraction starts by extracting stimulus-time-locked bandpass fil-
tered EEG signals for each stimulus in the sequence. Since physiologically, the
most relevant signal components are expected to occur within the first 500ms
following the stimuli, the [0,500] ms portion of the EEG following each stimulus
is extracted. At this stage it is important to design bandpass filters whose group
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Fig. 1. RSVP Keyboard interface

delay does not shift the physiological response to outside this interval. A linear
dimension reduction is applied on the temporal signals using Principal Com-
ponent Analysis in order to to remove zero variance directions (i.e. zero-power
bands based on the estimated covariance). The final feature vector to be clas-
sified is obtained as a concatenation of the PCA-projected temporal signals for
each channel. Regularized Discriminant Analysis (RDA) [5] is used to further
project the EEG evidence into scalar-feature for use in fusion with language
model evidence.

RDA is a modification of quadratic discriminant analysis (QDA). QDA yields
the optimal minimum-expected-risk Bayes classifier under the assumption of
multivariate Gaussian class distributions. This classifier depends on the inverses
of covariance matrices for each class, which are estimated from training data. To
keep the calibration phase short few training samples are acquired - especially for
the positive intent class. Therefore, the sample covariance estimates may become
singular or ill-conditioned for high-dimensional feature vectors, which is the case
here. RDA applies shrinkage and regularization on class covariance estimates.
Shrinkage forces class covariances closer towards the overall data covariance as:

Σ̂C(λ) =
(1− λ)ΣC + λΣ̂

(1− λ)NC + λN̂
(1)

Where λ is the regularization parameter, ΣC , NC are the class covariance esti-
mate and number of samples for classes C ∈ {0, 1} respectively. C = 0 is the
non-p300 class. Σ̂, N̂ is the total covariance estimate and number of samples
over all classes. Regularization is administered as:

Σ̂C(λ, γ) = (1 − γ)Σ̂C(λ) +
γ

d
T r[Σ̂Cλ]I (2)

where γ is the regularization parameter, /texttr[.] is the trace function and d is
the dimension of the data vector.

After regularization and shrinkage, the covariance and mean estimates for
each class are used in generating a scalar feature that minimizes expected risk
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under the Gaussianity assumption of class distributions. This is the log-likelihood
ratio

δRDA(x) = log
fN(x; μ̂1, Σ̂1(λ, γ)π̂1

fN(x; μ̂0, Σ̂0(λ, γ)π̂0

(3)

where μc, π̂c are estimates of class means and priors respectively; x is the data
vector to be classified and fN(x;μ,Σ) is the pdf of a multivariate Gaussian
(normal) distribution.

2.3 Language Modeling

In letter-by-letter typing, we adopt an n-gram language models at the symbol
level. These models estimate the conditional probability of a letter given by the
n − 1 previously typed letters. In this study, a 6-gram model that is trained
using a one-million sentence (210M character) sample of the NY Times portion
of the English Gigaword corpus. Corpus normalization and smoothing methods
are described in [6]. Finally, we note that the backspace symbol is assumed to
have a constant conditional probability of 0.05 and the conditional probabilities
of the other symbols are normalized accordingly.

2.4 Classifier

Using the class conditional score and the language model probabilities in a naive
Bayes’ rule based fusion model, we compute the posterior probabilities of symbols
given all the evidence. We compute these probabilities for each symbol after every
sequence, and a decision is made if one symbol probability reaches a desired
confidence level or number of repetitions exceeds a predefined limit.

3 Robust Classifier

In the classifier, the class conditional score distributions are used assuming that
these distributions remain stationary during a typing session. However, possible
changes in the distribution of the EEG data, possibly due to artifacts or sensor
failure, should be incorporated in the score distribution. For example, as we
also explain in Section 4, we apply our method on artifact reduction assuming
artifacts as possible reasons for changes in the distribution. We introduce a
variable a which describes the artifact class of a particular trial. Artifact classes
include a control group (no artifacts present), eye blink, jaw movement and
smiling. For use in the language model fusion, we compute the score conditional
distributions for the mixed conditional score distribution as

P (δRDA(x)|c) = ΣiP (δRDA(x)|c, ai)P (ai) (4)

where, i is the artifact index, c = 0 or 1 is the class label, P (ai) is the prior for
artifact ai. For each class and artifact P (δRDA(x)|c, ai) is computed using (2.2).
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4 Experiments

Four healthy operators participated in this study. For each subject, four RSVP
sessions with pre-designated targets were performed using a 16-channel
g.USBamp and g.Butterfly electrodes (g.Tec, Graz, Austria) in one sitting. The
second session was the control session, while the first, third and fourth sessions
had the subjects produce intentional jaw movement, eye blinks, and face muscle
artifacts, respectively. Subjects continued to attend to the RSVP presentation
during all sessions. This data is used to build and test robust and non-robust
fusion models using 10-fold cross validation as explained in Section 3

We perform Monte Carlo simulations on multiple pre-recorded calibration
data sets to build kernel density estimates (KDEs) of the RDA score distribution
for target symbol present and not-present conditions.

We select ten different sentences and aim to spell a phrase in each sentence
(called the copy phrase task). Task difficulty is determined by requiring each
letter of the target phrase to have a likelihood ratio against the highest likelihood
competing non-target letter within a specified interval: (1) Hard: (0.3,0.5], (2)
Very hard: (0,0.3].

In summary, we model typing performance by building a distribution of RDA
scores from real training data under different artifact conditions. This model
is then simulated typing 10 sentences 15 times to compare the performances
of robust and non-robust classifiers. We report our results in terms of typing
accuracy and duration (total seconds per word completion), see Figures 2 and 3.
For reference, we include the area under the curve (AUC) values for each subject
under all artifact conditions in 1.

Table 1. AUC values

Subject 1 Subject 2 Subject 3 Subject 4

No-Artifact .7644 .8298 .6488 .8103
Jaw Movement .6079 .8026 .6370 .6527

Smile .7105 .8423 .6506 .7023
Eye Blink .6561 .7641 .4710 .7373

4.1 Typing Accuracy

As can be noted in Figure 2, typing accuracy changes dramatically between sub-
jects. In the simulation, as with other trials we’ve performed, subject 3 struggles
to produce accurate classifications. Additionally, we note that robust classifica-
tion consistently outperforms non-robust methods. The performance advantage
of our method is correlated to the magnitude of the difference in AUC between
the control and artifact classes. In other words, the stronger the drop in AUC
when an artifact is introduced (Table 1), the greater the performance benefit of
using robust fusion.
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Fig. 2. Accuracy vs artifact type

4.2 Typing Duration

From Figure 3, we immediately notice that the robust case typically types faster
than the non-robust case. Additionally, considering the AUC values from Table 1
and the results from Figure 3, we notice that higher AUC values offer quicker
typing performance. Both these effects share a common motivation. The typing
system repeats sequences until a sufficiently high confidence threshold is reached.
Accurate typing, because of robust methods or high user AUC, will yield fast
typing.

Fig. 3. Typing duration vs artifact type
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5 Conclusions

We designed a robust classification method for ERP detection in a BCI typing
paradigm. We tested the proposed method on the RSVP KeyboardTM, which is
an in-house BCI typing system. Considering the possible changes in the EEG
data, we developed a mixture density model for class conditional EEG evidence
to use in the fusion with n-gram language model. To compare the robust and non-
robust classification methods, using pre-recorded calibration data, we simulated
the performance of four subjects typing 10 sentences 15 times and reported
results on accuracy and speed of their typing.

Each of our simulations was run under a single artifact class (rather than a
mixture of multiple classes). When implemented with a true mixture of arti-
fact classes we observed nearly identical results between robust and non-robust
methods. We suggest this is due to the ability of our classifier to accumulate
additional EEG evidence when an input doesn’t reach the confidence threshold.
In the true mixture case, where artifacts aren’t very frequent, the classifier is
bound to receive useful information during the following sequences. For further
analysis, we are interested in examining the cause of mis-classified symbols. We
hypothesize that the risk in artifacts is not readily seen in their prior distribu-
tion as artifacts frequently occur in bursts during operation. Future artifact class
models which are conditioned on previous artifact classes, allowing for bursts of
artifacts to occur while still keeping artifact priors at reasonable levels, will be
studied.
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Abstract. Monitoring the neurophysiological activities of human brain dynam-
ics in an operational environment poses a severe measurement challenge using 
current laboratory-oriented biosensor technology. The goal of this research is  
to design, develop and test the wearable and wireless dry-electrode EEG hu-
man-computer interface (HCI) that can allow assessment of brain activities of 
participants actively performing ordinary tasks in natural body positions and 
situations within a real operational environment. Its implications in HCI were 
demonstrated through a sample application: vigilance-state prediction of partic-
ipants performing a realistic sustained-attention driving task. Besides, this study 
further developed an online signal processing for extracting EEG features and 
assessing cognitive performance. We demonstrated the feasibility of using dry 
EEG sensors and miniaturized supporting hardware/software to continuously 
collect EEG data recorded from hairy sites (i.e., occipital region) in a realistic 
VR-based dynamic driving simulator.  

Keywords: Drowsy driving, Wireless and dry EEG device, Mindo, Human-
computer interface. 

1 Introduction 

Conventional wet electrodes are commonly used to measure EEG signals [1], and 
they provide excellent EEG signals with the proper skin preparation and conductive 
gel application. However, a series of skin preparation procedures for applying the wet 
electrodes is always required and usually creates trouble for users [2]. Further, the 
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signal quality may degrade over time as the skin regenerates and the conductive gel 
drives. Recently, measuring the EEG signals using the dry EEG sensors have become 
available — foam-based sensors [3] for example. However, there are still some re-
minding issues that need to improve. For instance, a small part of subjects would have 
allergy issues, even the materials were modified as a bio-compatible one. During an 
hour-long cognitive experiment, the sensors have attached on the skin surface for a 
long time, resulting in that the subjects sweating on the sensors surface, which conse-
quently cause some unknown reactions on the skin. In addition, the foam-based sen-
sors are only useful for non-hairy sites such as the forehead. The EEG acquisition 
from the hairy sites is still a challenge. 

To overcome these drawbacks, a new dry-contact EEG device [2, 4] with spring-
loaded sensors [5] was used for potential operation in the presence or absence of hair 
and without any skin preparation or conductive gel usage. Significantly, the flexibility 
of the proposed dry EEG sensor is effective in tightly contacting the scalp surface and 
providing clear EEG signals without any skin preparation or conductive gel usage.  

This work demonstrated the feasibility of the wireless and mobile EEG device us-
ing spring-loaded sensors through a typical human-computer interface application: 
monitoring human cognitive states in a realistic sustained-attention driving task [6]. 
The online HCI system comprised three major modules: EEG receiving, signal 
processing, and display modules. In signal processing, we designed an effective algo-
rithm to allow a JAVA platform to implement on-line signal processing. Taken  
together, this integrated neuroergonomic system capable of measuring and processing 
concurrent neural, behavioral, psychophysiological, environmental, and system opera-
tional data could allow continuous estimation of subjects’ cognitive state to design 
and operate systems that maximize operator cognitive capacity as well as overall  
human/system performance. 

2 Materials and Methods 

2.1 Experimental Task and Subjects 

A sustained-attention driving task (event-related lane-departure paradigm [6]) was 
implemented in a virtual-reality (VR) driving simulator [7]. The VR driving environ-
ment consists of a 360-degree surrounding vision that simulates a nighttime driving 
on an uncrowded highway. The used paradigm was to try to induce subjects’ drowsi-
ness and obtain their drowsy patterns, including EEG signals and behaviors. During a 
1.5 hr. experiment, participants were instructed to compensate for the trajectory error 
as soon as possible while they detect the deviation event. The deviation event ran-
domly occurred. The duration time in response to the deviation event, denoted as the 
response time (RT), was used as an indicator to evaluate subject’s vigilance level and 
also used to label EEG trial. 
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Seven volunteers participated in this experiment. Each participant was required to 
have a lunch at noon and the task would start at 1:30 PM. As shown in Fig. 1, each 
participant wearing the Mindo EEG device sat inside the vehicle simulator, and  
controlled the simulator by using the steering wheel.  

 

 

Fig. 1. Experimental task and EEG device. (A) An immersive driving environment. (B) A 
participant wears the Mindo device in the driving simulator. (C) The Mindo collects EEG sig-
nal from (D) the occipital area (i.e., O1 and O2 channel).  

2.2 Systematic Diagram 

Fig. 1 shows the scheme of the proposed driver fatigue prediction system that in-
cludes the EEG data collection (left panel), system construction (middle panel), and 
real-time EEG analysis (right panel). After database collection, the training process 
was implemented to construct the vigilance prediction system. Previous EEG studies 
[8-10] showed the vigilance state was significantly correlated with the power spec-
trum of EEG dynamics. For instance, the spectral power of the alpha activity in the 
drowsiness state was stronger than that in the alert state. In this study, the fast Fourier 
transformation (FFT) was used to extract EEG features. To obtain an accurate estima-
tion, we proposed a weighted algorithm for on-line time-frequency analysis. The  
detail is described in Section 2.5. 

As our previous work [11], the support vector regression [12] was applied to con-
struct the core algorithm of the prediction system, in which the independent variables 
were the power spectrum array (1-30 Hz) and dependent variables were the RTs. All 
of the algorithms and signal processing methods were implemented in a JAVA inter-
face to integrate the software and hardware into a complete system. The developed 
system is an easy and effective way for monitoring the driver physiological state in 
real-time. 
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Fig. 2. Systematic diagram for constructing a driver’s vigilance prediction system 

2.3 EEG and Behavior Recorded by Mindo 

Figs. 3 (A) and (B) show the Mindo system with one ground channel, one reference 
channel, and four EEG channels. The 4-channel EEG signals (in μV) and 1-channel 
behavioral response (in pt.) simultaneously recorded by the acquisition software. The 
server with Bluetooth module wirelessly received EEG signals from the Mindo device 
at sampling rate of 256 Hz. The analogue signals were converted into the digital form 
with a 16-bit resolution in the range of -1.5V~1.5V. In addition, the server also re-
ceived the data via RS-232 compatible serial port from the client which runs the VR 
program and recorded the behavioral response. This data stream with an 8-bit digital 
resolution including the vehicle trajectory (0-240), deviation onset (251/252 for left 
and right side of the deviation), response onset (253), and response offset (254) was 
synchronized with the EEG data for further event-related analysis. 

2.4 Spring-Loaded Sensors 

Fig. 3 (C) shows the spring-load sensor [5] designing by the conductive metal thimble 
and spring material. The spring-load sensor, which is a dry sensor and contacts with 
scalp directly, overcomes the problem from thick hair and long-term monitoring. 
Therefore, the spring-load sensor is more suitable and convenient than traditional 
conductive gel in real applications. The dry EEG sensors were designed to contact 
the scalp surface with 17 spring contact probes. Each probe was designed to include a 
probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible 
substrate using a one-time forming process via an established injection molding pro-
cedure. With 17 spring contact probes, the flexible substrate allows for high geome-
tric conformity between the sensor and the irregular scalp surface to maintain low  
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skin-sensor interface impedance. Additionally, the flexible substrate also initiates a 
sensor buffer effect, eliminating pain when force is applied. The used dry EEG sensor 
was reliable in measuring EEG signals without any skin preparation or conductive gel 
usage, as compared with the conventional wet electrodes. 

 

Fig. 3. Mindo with spring-load sensors 

 

Fig. 4. Weighted spectral power estimation 
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2.5 Weighted Time-Frequency Analysis 

The EEG signal was successively feed into weighted time-frequency analysis before 
applying support vector regression. As shown in Fig. 4, power spectral density (PSD) 
of the t-th EEG trial (a 2-s EEG signal) were the weighted average of spectral powers 
which were calculated from {t-p+1}-th, …, {t-k-1}-th, …, t-th EEG trials, where k ≤ 
p. Windowed 128-point epochs were extended to 256 points by zero-padding. The 
obtained EEG power spectra were further converted to a logarithmic scale prior to 
further analysis. Then, a weighted-averaging filter was used on all the PSDs to further 
obtain a smoothing a PSD estimation. In practice, we multiplied each PSD by a 
weighted coefficient, | 1,2, … , , independently, in which  increased as  
decreased. In this study, 1,2, … , 20 which means that there are 20 windows 
( 20) for each PSD estimation. As shown in Fig. 4, compared to an unprocessed 
PSD (the blue traces), we can obtain a more accurate PSD estimation (the red trace) 
by using this algorithm. 

3 Experimental Results 

Table 1 shows the prediction results for each subject. The performances were com-
pared by calculating the correlation coefficient and the root mean square error 
(RMSE) between observed RT and predicted RT. As can be seen, the performance 
can reach the correlation coefficient of 0.9471, 0.7882, 0.8475, 0.8920, 0.9370, 
0.9738, and 0.9559 which means that the similarity between the observed RT and the 
predicted RT are very high. In terms of RMSE, most of the errors are lower than 0.1 
second. 

Table 1. Results of the prediction within subject validation 

 Subjects Correlation  
coefficient 

RMSE  
(unit: millisecond) 

W
ith

in
 s

ub
je

ct
 

va
lid

at
io

n 

S01 0.9471 50.6737 
S02 0.7882 141.8695 
S03 0.8475 80.3044 
S04 0.8920 80.6624 
S05 0.9370 109.6332 
S06 0.9738 60.3334 
S07 0.9559 70.1674 

 
Table 2 shows the prediction results using leave-one-subject-out cross validation. 

At each step of cross validation, the support vector regression is trained on EEG data 
from six subjects and tested on the remaining subject. This procedure repeats for all 
subjects being a test dataset. All the parameters of the system were calculated from 
the training data and applied to the testing data. As can be seen, in most of the cases 
(i.e., S03, S04, S05, S06, and S07) the system still can obtain a robust prediction  
result (correlation coefficient > 0.8).  
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Table 2. Results of the prediction using leave-one-subject-out cross validation 

 Subjects Correlation  
coefficient 

RMSE  
(unit: millisecond) 

L
ea

ve
-o

ne
-s

ub
je

c-
 

ou
t v

al
id

at
io

n 
S01 0.5768 548.0701 
S02 0.4799 839.2128 
S03 0.8886 174.6283 
S04 0.8378 369.1276 
S05 0.8932 552.2017 
S06 0.8848 607.8501 
S07 0.8493 1009.2067 

 
Fig. 5 shows the result of the real-time vigilance prediction system. The black trace 

indicates the vehicle trajectory. As observed in Fig. 5, we could find that the driving 
errors became large as time went by. The blue trace is the predicted RT. The result 
showed that the predicted RT had an increasing trend that co-varied with the driving 
errors. 

 

Fig. 5. The result of the real-time vigilance prediction system 

4 Discussions and Conclusions 

This study proposed a novel HCI system that can continuously monitor driver’s vigil-
ance state in real-time. Our empirical results showed that the efficacy of EEG signal 
acquisition was much more effective and easier to collect human brain activities in an 
operational environment. The remaining issue is to develop an algorithm to automati-
cally remove artifacts for improving the system performance. 
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In conclusions, this study incorporated a rich interconnection between previously 
established, conventional laboratory-derived theoretical bases, novel EEG device and 
testing within fairly complex scenarios and environments. Furthermore, the dry  
EEG devices with spring-loaded sensors promote more HCI applications in natural 
environments.  
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Abstract. Brain activities have been investigated, and various functions of 
brain have been revealed recently. In our experiment, decrease of oxy-Hb 
change at frontal cortex was observed while subjects were watching video 
contents. Also, the degrees of decreases were different among the subjective 
evaluations about impression against the video contents. Revealing the cause of 
the decrease has the possibility to evaluate video content objectively. In this 
paper we discuss the relationship between subjective evaluation and brain 
activity on video content.  

Keywords: Frontal cortex, Near-infrared spectroscopy, Subjective evaluation, 
Video content. 

1 Introduction 

A traditional evaluation method for video contents has been based on customers’ 
reviews, and the numbers of them. However, the method has some problems on 
reliability and, needs to embrace scientific approaches regarding to brain activity [1]. 
Thus, in this study, we focused on a brain activity, and analyzed the relationship 
between subjective evaluations of video contents and brain activity. 

We observed brain activity at frontal cortex during watching video contents, as 
frontal cortex was related to higher-level cognitive function. We used Near-infrared 
spectroscopy (NIRS), as it was non-invasive and restraint-free, less noise than 
electroencephalography (EEG), and higher temporal resolution than functional 
magnetic resonance imaging (fMRI) [2]. 

Nine healthy right-handed subjects watched six videos (two excellent videos, two 
average videos and two poor videos). We used NIRS to measure oxygenated 
hemoglobin (oxy-Hb) change in frontal cortex. Consequently we found a decreased 
oxy-Hb change during watching video (TV Commercial). In addition, there are 
significant differences among excellent videos, average videos, and poor videos in 
oxy-Hb change.  
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These results suggest that the decrease in oxy-Hb change is related to subjective 
evaluations of video content. 

2 Subjective Evaluation of Video Contents for NIRS 
Experiment 

2.1 Subjects  

Thirty healthy Japanese adults (22 men and 8 women, aged 21 to 25) participated in 
first subjective evaluation. Subjects were divided into three groups. In second 
subjective evaluation after the first evaluation, other nine healthy adults (all were 
men, aged 21 to 24 and right-handed), who were differ from the thirty subjects, 
participated to confirm the result of the subjective evaluation. 

2.2 Procedures 

In the first subjective evaluation, each thirty subject watched sixteen videos, and 
answered a questionnaire to gather the evaluation about overall impression, 
background music, story, persona, company, and product by the 5-point rating scale: 
Very Poor (1), Poor (2), Average (3), Good (4), Excellent (5). In this paper, we used 
only the evaluation about overall impression in analysis. We used 30-second TV 
Commercials as video contents. The commercial were related to products, such as 
home electronics, foods, etc., and companies themselves. The orders of the sixteen 
videos were random for each group. Their ratings were averaged for each video, and 
sixteen videos were ranked by the average score. 

Also, we picked up the top two videos as excellent, the worst two videos as poor 
and two videos which are near 3.00 point as average.  

In the second subjective evaluation, each nine other subject watched the six videos 
(the excellent, average, and poor videos) and answered the same questionnaire to 
confirm the previous result of ranking.  

2.3 Result 

Table1 and Fig.1 showed the result of subjective evaluation of sixteen videos in thirty 
subjects, also Table2 showed six videos; two excellent videos, two average videos, 
and two poor videos.  

Table3 and Fig.2 showed the result of subjective evaluation of the six videos in 
nine subjects.  

Compared with Table2 and Table3, the ranking of the six videos was almost the 
same between thirty subjects and the other nine subjects. Thus, these videos were 
elected accurately as excellent, average, and poor among the adults who aged 21 to 
25. These six videos were used in NIRS experiment. 
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Table 1. Sixteen videos (TV Commercials) list. The videos were sorted in descending order of 
the average score about overall impression by 5-point scale. 

 
 

 

Fig. 1. Average score and standard deviation of sixteen videos. The standard deviations showed 
that there were differences among individuals. 

Table 2. Videos; excellent, average and poor videos in the experiment in thirty subjects 

 

Table 3. Videos; excellent, average, and poor videos in the experiment in other nine subjects. 
The ranking was almost the same as the result of previous ranking in thirty subjects. Only the 
rank of No.14 (PILOT CORPORATION, 1969) and the rank of No.15 (Shiseido Company, 
1985) were reversed. We used these six videos for NIRS experiment. 

 

 

CM No. Year Company name average score evaluation

1 1980 FUJIFILM Corporation 4.39 Excellent

2 1974 Panasonic Corporation 4.13 Excellent

13 1977 Panasonic Corporation 3.04 Average

14 1969 PILOT CORPORATION 2.96 Average

15 1985 Shiseido Company, Limited 2.74 Poor

16 1980 Yamaha Motor Co., Ltd. 2.61 Poor

CM No. Year Company name Average score Evaluation

1 1980 FUJIFILM Corporation 4.67 Excellent

2 1974 Panasonic Corporation 4.33 Excellent

13 1977 Panasonic Corporation 2.67 Average

15 1985 Shiseido Company, Limited 2.56 Average

14 1969 PILOT CORPORATION 2.22 Poor

16 1980 Yamaha Motor Co., Ltd. 2 Poor
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Fig. 9. t-value graphs of oxy-Hb comparison between excellent and poor videos. Excellent 
videos were significantly smaller than poor videos in the channels which were marked by a 
heavy line. 

The result of the t-test for oxy-Hb changes showed some significant differences. 
Excellent videos were smaller than average videos in two channels (ch5 and ch9) 
(Fig.7). Poor videos were bigger than average videos in 1 channel (ch15) (Fig.8). 
Excellent videos were smaller than poor videos in 13 channels (ch4, 7, 9, 10, 11, 12, 
13, 14, 15, 16, 18, 19, and 21) (Fig.9). 

4 Conclusion and Discussion 

We picked out excellent, average, and poor videos (TV commercials) properly about 
overall impression by using 5-point rating scale questionnaire. Also, we observed 
decrease of oxy-Hb changes in frontal cortex while subjects were watching the 
videos, and found that degrees of decreases were different among the evaluation of 
overall impressions. These results suggest that NIRS at frontal cortex can detect 
differences of subjective evaluations of video content. In addition, the results also 
suggest that we can measure the degree of the subjective evaluation by investigating 
change of oxy-Hb at the channels that showed significant differences. 

Recently some researches have indicated the decrease of oxy-Hb change in various 
brain areas, and decrease of oxy-Hb change has been defined as brain deactivation [6] 
[7]. Also, some processes of deactivation at frontal cortex have been suggested. Two 
of them can be related to our decrease of oxy-Hb change. One is deactivation caused 
by engaging in goal-directed actions, such as detecting targets, because our task in 
which subjects are watching TV commercials can be as goal-directed action. Another 
is deactivation caused by conducting task that involve externally focused attention, 
because our TV commercials were so old that subjects could accept the TV 
commercials as external stimulation. In future research, we need to find out the cause 
of deactivation of our study along the two processes.  
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Abstract. A vast array of everyday tasks require individuals to use intuition to 
make decisions and act effectively, including civilian and military professional 
tasks such as those undertaken by firefighters, police, search and rescue, small 
unit leaders, and information analysts. To better understand and train intuitive 
decision making (IDM), we envision future training systems will represent IDM 
through computational models and use these models to guide IDM learning. This 
paper presents the first steps to the problem of validating computational models 
of IDM. To test if these models correlate with human performance, we examine 
methods to analyze functional magnetic resonance imaging (fMRI) data of 
human participants performing intuitive tasks. In particular, we examine the use 
of a new deep learning representation called sum-product networks to perform 
model-based fMRI analysis. Sum-product networks have been shown to be 
simpler, faster, and more effective than previous deep learning approaches, 
making them ideal candidates for this computationally demanding analysis. 

Keywords: intuition, intuitive decision making, deep learning, sum-product 
network, functional magnetic resonance imaging, model-based fMRI. 

1 Introduction 

A vast array of everyday tasks require individuals to use intuition to make decisions 
and act effectively, including civilian and military professional tasks such as those 
undertaken by firefighters, police, search and rescue, small unit leaders, and 
information analysts. Currently, intuition is developed only incidentally after years of 
training and on-the-job experience, costing time, money, and potentially lives as 
trainees are unable to perform to the intuitive decision making (IDM) needs of their 
positions.  

To address this need, research must be performed to establish a scientific and 
technical basis for IDM. Specifically, major research areas include: 

1. Characterizing intuitive decision making and implicit learning across neural, 
cognitive, and behavioral levels of representation: We define intuition as a 
rapid, non-conscious mental process that may operate with limited or uncertain 
information to produce a judgment or response [1,2]. An accurate characterization 
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will incorporate the neural basis for intuition, the cognitive components of intuitive 
decision making, and the behavioral outcomes of intuitive action. 

2. Representing intuitive decision making through computational models: The 
computational models must adapt to new information and use context and 
knowledge to make intuitive decisions. To provide training recommendations, the 
computational models must capture the differences in intuitive decision making as 
a result of learning and individual differences.  

In addition to addressing each of the major areas above, a program of study must 
support solutions that are validated against human-performance data. In this paper, we 
focus on a technique to validate computational models of intuitive decision making 
(IDM) with functional magnetic resonance imaging (fMRI) human-performance data. 
The basic approach is to give human participants an IDM task within a fMRI machine 
and compare the recorded fMRI and behavioral data with the predictions of the 
computational model. This process is known as a model-based fMRI analysis [3]. We 
extend existing model-based fMRI analyses by examining a deep learning method, 
called sum-product networks [4], to constructing temporal models of relationships 
among stimuli, computational models, fMRI data, and recorded behavior. 

2 Related Work 

2.1 Computational Models of Intuitive Decision Making 

There have been two tasks consistently used to explore the neural correlates of 
intuitive decision making (IDM). First, more than a dozen studies have used the serial 
reaction time task (SRTT) [5] which involves pressing buttons as quickly as possible 
to indicate the position of a target on the screen. The second task used to examine 
IDM is the artificial grammar task (AGL) [6]. The AGL involves exposing 
participants to letter strings (e.g., “TQSLV”) that are all generated based on a hidden 
set of rules derived from a Markovian grammar chain. Computationally, these two 
tasks can represented as learning important features from of phenomena and grouping 
those phenomena into categories that are functionally similar based on those features.  

Dirichlet process (DP) mixture model [7,8] provides a prior over partitions of a set 
of observations into groups, each with its own distribution over parameters. Dirichlet 
process mixture models can be extended to become hierarchical DP (HDP) mixture 
models [9]. These models provide a simple recipe for representing the densities 
associated with multiple categories simultaneously. Recent research has shown how 
HDP mixture models can unify classical prototype and exemplar models of human 
categorization, adaptively transitioning from prototype-like to exemplar-like 
representations as more data are acquired, and explaining human categorization 
performance within both regimes [10]. Sandborn, Griffiths, and Navarro [11] also 
explored how rational approximation methods can be used to approximate category 
learning. 

Inverse planning models, including Bayesian planning, have been shown to 
accurately predict human behavior in IDM tasks. In a series of experiments, inverse 
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planning models accurately captured quantitative human inferences about agents’ 
goals, joint beliefs and desires [12]; and social relationships with other agents, such as 
“chasing”, “fleeing”, “helping”, or “hindering” [13,14]. 

2.2 Model-Based fMRI 

Machine learning applications to neural and fMRI data, including correlation-based 
classifiers, support vector machines (SVMs), and Gaussian Naïve Bayes (e.g., 
[15,16]), have been used for more than 10 years to better analyze this complex data. 
Neural structures and data are inherently hierarchical, and therefore a number of 
applications of hierarchical (a.k.a., deep) learning techniques such as hidden Markov 
models (HMMs), dynamical components analysis, and dynamic Bayesian networks 
have been applied with some success [17]. In particular, Janoos et al. [18] used HMM 
learning techniques to learn spatio-temporal patterns in fMRI data, deriving additional 
predictive strength from the representation of temporal information in the model. 
While these deep learning techniques have been shown to have distinct advantages 
over shallow learning algorithms, they have limited application due to the difficulty of 
tuning the algorithms, their high learning and inference time, and their resulting 
inability to learn more than two hidden layers. 

Model-based fMRI [3,19] seeks to identify neural representations and processes by 
temporally correlating neural activation (i.e., fMRI voxels) with the states and outputs 
of computational models. For example, a feature classification IDM task may ask 
participants to identify to which category from a specified set an object belongs. In 
this case, a model-based fMRI may reveal that when categories overlap minimally in 
features, activation in the basal ganglia is strongest during classification. This possible 
result indicates that there are neural processes that related to the category overlap as 
computed by the model, and that this computation reflects aspects of the underlying 
neural structure. Similarly, the model-based analysis can be extended to cognitive and 
behavioral data (e.g., intuitive decisions and response times) to reveal which 
components of the model most predict behavior and aspects of cognition. Using the 
model-based analysis, model parameters can be fitted to the data and compare and 
select models based on their correlation with observed results. 

3 Towards Model-Based fMRI with Sum-Product Networks 

3.1 Sum-Product Network Overview 

Recently, SPNs were developed as a new deep learning architecture [4]. Their key 
feature is that reasoning is linear in the size of the network. This makes learning and 
inference significantly faster than for existing deep architectures. In turn, this leads to 
the ability to learn much deeper networks, capturing more of the structure of the data.  

Formally, SPNs derive from the network polynomial of graphical models [20]. The 
network polynomial is based on representing each variable in the network using a set 
of indicator functions. An indicator function indicates that a particular state of a 
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SPNs can be extended beyond Boolean variables to include continuous variables 
by using integral of the variable’s probability density function instead of sum nodes at 
the lowest level of the network. SPN learning begins with a dense network with all 
possible relationships. Then, as weights are discovered to be close to 0, edges are 
removed to simplify the network.  

3.2 Approaches to Applying Sum-Product Networks to Model-Based fMRI  

This section describes some initial applications of the SPN representation and 
learning algorithm to fMRI and model-based fMRI data analysis. 

fMRI data for a single participant consists of time-series data on brain activation 
for a set of voxels, which are 3 dimensional areas in the brain. The activation signal is 
the Blood Oxygen Level Dependent (BOLD) signal that measures the level of 
oxygenation of the blood in each voxel. The BOLD signal is captured across the 
region of interest at one or two times per second, forming a developing picture of 
brain activation over time. 3mm3 voxel regions are common, resulting in images 
consisting of thousands of voxels at each time slice. 

To apply SPNs directly to fMRI data, each voxel or region of voxels is assigned a 
variable in the SPN. The variable is set to continuous value of the voxel at the current 
time step. In addition, variables representing the experimental conditions and behavioral 
measures are created. For example in a feature classification IDM task, variables may 
indicate the category of the current object, the observable features of the object, and the 
category of classification reported by the participant. The SPN is created with a dense 
network, and the SPN learning algorithm is applied to learn the most likely structure of 
the network given the data. The resulting SPN describes the learned relationship 
between the experimental conditions, participant behaviors, and fMRI data. It is a model 
of how activation instantaneously correlates with these conditions. 

To apply SPNs to model-based fMRI, the model state and predictions are included 
in the SPN model. Using the same technique as above, the SPN learning algorithm 
detects the relationships between the computational model, experimental conditions, 
participant behaviors, and fMRI data. For example, a model-based analysis of a 
Bayesian network in a feature classification IDM task would include the fMRI data, 
category of the current object, the observable features of the object, and the category 
of classification reported by the participant, as well as the elements of the Bayesian 
model: the observed values, the intermediate nodes in the network, and the output 
nodes in the network. The learned SPN describes the relationship between the 
experimental conditions, participant behavior, fMRI data, and model predictions. It 
can answer questions from the learned network structure such as “What activation is 
most likely given a specific state of the Bayesian model?”. 

4 Discussion and Future Work 

The application of SPNs to model-based fMRI raises several questions for the SPN 
approach and the nature of the fMRI data in IDM tasks. First is the issue of 
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computational complexity. Given the large volume of data collected by the fMRI 
scanner, SPNs that represent each voxel will contain thousands or tens of thousands 
of continuous-value variables, with a correspondingly exponential number of links. 
Although SPNs have been shown to be orders of magnitude faster to learn in some 
initial tasks, this size may prove computationally slow or intractable. Techniques for 
data reduction and pre-processing may be desirable to reduce the initial SPN network 
to feasible sizes. Approaches may include restricting analysis to regions of interest, 
decreasing resolution through averaging of activation, or reducing initial model size 
through excluding relationships from the analysis (i.e., cutting links in the initial SPN 
model). 

Second, many intuitive tasks require the integration of information over time. For 
example, intuitive sequence learning (ISL) tasks directly require this ability. An 
analysis of only instantaneous fMRI data will be unable to correctly predict and 
identify the key relationships. The SPN model may be expanded to include temporal 
information by directly representing this information in variables (e.g., a variable that 
indicates the number of milliseconds since a stimulus), including simple “state” 
variables in the SPN to account for changes in the internal state of the system, or 
expanding the SPN representation to account for temporal sequences in a general. 
This last approach is similar to the expansion of Bayesian nets into dynamic Bayesian 
nets  (DBNs) [22], which has lead to the application of these models in many new 
domains and situations.  

5 Conclusions 

This paper presents the first steps in a new technique to validate computational 
models of intuitive decision making (IDM) with functional magnetic resonance 
imaging (fMRI) human-performance data. Our approach builds upon previous 
successes in deep learning approaches to learn patterns in fMRI data and combines an 
improved deep learning approach, sum-product networks, with model-based fMRI 
analysis. We discuss several research questions that arise from this application and 
note the need for future work. Model-based fMRI analysis with SPNs are a promising 
new approach to analyzing and validating computational models of IDM.  
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Abstract. A neurocomputational framework is described for characterizing how 
intuitive and deliberate processing are accomplished in the human brain. The 
framework is derived from memory systems theory and supported by research 
findings on contrasts between implicit versus explicit (nonconscious versus 
conscious) memory. Implicit intuition and deliberate deduction depend on 
separate types of memory supported by distinct brain networks. For optimal 
decision making, training should be designed to accommodate the operating 
characteristics of both types of memory. Furthermore, reliance on explicit 
memory can inhibit the use of implicit intuition, so training must facilitate 
effective interactions between the two types of mechanism. To aid 
investigations of these effects, we introduce a Mixture-of-Experts model that 
characterizes the interaction between memory systems — the PINNACLE 
model (Parallel Interacting Neural Networks Competing in Learning). This 
model captures the separate neural networks that reflect implicit and explicit 
processing, as well as their interaction, and it can thus guide the development of 
training approaches to maximize the benefits of concurrent use of both intuition 
and deliberation in decision making. 

Keywords: Intuition, decision making, implicit, explicit, memory systems, 
cognitive neuroscience, cognitive modeling. 

1 Introduction 

A fireman in Cleveland cleared his team from a fire scene because he 
“sensed” that something was odd about the situation. Indeed, the floor was 
about to collapse because of a raging fire below. The lieutenant fireman who 
saved his men was not aware of the danger in the usual sense, but rather he 
was observant enough and skilled enough to know that something was not 
right. He acted on that indication before consciously realizing what wasn’t 
right or what danger was present. At first he thought it was ESP. Only much 
later did he begin to understand the clues he had sensed. [1-2]. 

                                                           
* Corresponding author. 
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This story exemplifies the successful use of intuition in a high-pressure problem-
solving environment. The profound action that saved these firefighters can be credited 
to implicit processing of the environmental cues, leading to escape from an imminent 
catastrophe. Decades of research on implicit learning have shown that our brains 
possess an array of mechanisms for automatically extracting information from the 
environment without our awareness [3]. The results of this implicit learning often 
appear as an intuition or a “sixth sense” about the current situation. Intuition typically 
emerges with no awareness of the mental events leading to it, which fits with our 
conjecture that implicit memory is critical in producing trustworthy intuition. Our 
framework builds on a substantial body of research on implicit memory in order to 
elucidate how this distinct yet powerful type of processing can support reliable 
decision-making. 

Our prior research has identified neural correlates of implicit memory that we can 
measure to reveal implicit influences in complex tasks [4-5], and the emergence of 
implicit information when people solve with sudden insight [6]. We have also 
described a computational model to characterize the interaction of implicit and 
explicit processing [7]. That model, PINNACLE (Parallel Interacting Neural 
Networks for Competitive Learning) will be used as a basis for characterizing the 
neurocognitive processes involved in intuitive decision-making influenced by implicit 
processes. Two key features of this model are: (1) it incorporates separate processing 
streams for explicit deliberative processing versus implicit intuitive processing, and 
(2) it includes a neurocognitive architecture to test hypotheses about how these types 
of processing compete with each other, or conjointly produce decisions. This model 
makes distinct predictions about the neural basis of interactions among types of 
memory that can be explored and tested with functional neuroimaging approaches. 

Laboratory studies of implicit learning have typically found the greatest influence 
of implicit knowledge when people feel they are just guessing. When implicit and 
explicit processing are pitted against each other in experiments, the systems often 
appear to compete such that only one system can influence behavior. For instance, 
when explicit problem solving is actively engaged, a contribution from implicit 
intuition is less likely, suggesting that deliberate processing can actively block the use 
of intuitive knowledge. Although such an arrangement seems suboptimal from a 
human information-processing perspective, it may reflect a characteristic of the 
human neural architecture that needs to be understood in order to enable the best use 
of implicit intuition. Findings of competition among memory and decision-making 
systems raise important questions about how to optimize teaching and training 
programs to maximize the ability of a trainee to incorporate both sources of 
information effectively. 

The PINNACLE framework is constructed as a Mixture-of-Experts model in which 
independent processing streams feed information forward to a high-level cognitive 
process, which resolves competition and selects a response. A special feature of this 
model is that one stream operates outside awareness so that subjective introspection 
yields limited information about how this information affects behavior. Of note, the 
high-level decision process can function to inhibit the use of either type of 
information, consistent with empirical observations of competition between memory 
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types. We hypothesize that this meta-cognitive process can be separately trained to 
foster better use of both types of information and reduce inter-system competition 
between types of memory. 

This framework enables us to test critical hypotheses about people who act based 
on intuition, as did the fireman in Cleveland. In his case, his prior learning about 
dangerous environments apparently enabled a novel pattern of cues to prime the 
suspicion that the floor was about the collapse. Just before this happened, what 
explicit processing was also engaged? How did implicit information emerge at the 
critical moment, and avoid suppression, to allow him to take the life-saving action? 
Why do others fail to be heroes in such circumstances? 

If we looked into the brain of the fireman just before he saved his team, we would 
expect to see neural activity associated with implicit environmental pattern detection. 
Yet, the fireman thought that at that moment he was supernaturally able to predict the 
future. Given the competitive nature of implicit and explicit processing, we predict a 
dearth of neural activity in regions responsible for the deliberate processing of 
environmental cues to danger. Rather, the implicit processing of those cues likely 
predominated. In some domains, however, intuitive processing appears to coexist with 
explicit processing with less detrimental competition. During problem solving, for 
example, participants can be actively and explicitly searching for solutions when an 
insight suddenly emerges [6]. What factors facilitate the emergence of intuitive 
strokes of genius? 

2 Mixture of Experts Model: PINNACLE 

A key challenge for understanding how we use intuition in problem solving is that 
intuition depends materially on the result of implicit learning mechanisms that are 
represented in separate neural systems from deliberative problem solving. The 
proposed research addresses this challenge using a computational modeling approach 
that incorporates multiple information processing streams that are combined at the 
final decision process. The general PINNACLE framework is a Mixture-of-Experts 
(MoE) cognitive architecture, shown in Figure 1. 

 

Fig. 1. General Mixture-of-Experts Cognitive Architecture of PINNACLE.  Information flows 
from right to left from input through two parallel processing streams, explicit (upper) and 
implicit (lower). Three examples of explicit and implicit processes assessed in laboratory 
empirical studies are shown. The results from these independent processes are evaluated in a 
final Decision Module. Gating processes reflect competition and potential inhibition between 
types of processing. 
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Under this modeling approach, environmental information (stimulus input) is 
available to implicit and explicit processing streams that each operate independently 
in different areas of the brain. Information feeds forward to a decision module where 
a single behavioral response is selected as an action or decision. In addition, the 
model allows for a gating process to inhibit or enhance processing in one stream or 
the other. This architecture captures situations where strategic factors cause decision 
making to be locked into one mode or another—such as when a person is exclusively 
focused on explicit processing and no influence of implicit processing or intuition is 
evident. In this case, implicit processing is dormant due to inhibitory gating from the 
explicit process. Yet, this situation can theoretically be remedied via training to block 
the gating process so that implicit information can be used.  

Most theories of problem solving and decision making have focused largely on 
processing represented in the explicit processing stream that reflects conscious, 
deliberative analysis of input. The effects of implicit processing appear occasionally 
as a sudden intuition that, when accurate, reflects the operation of nonconscious 
processing or memory. Decades of memory systems research have established the 
existence of these multiple types of processing in the human brain and provided 
hypotheses about the neurocognitive basis of each type of memory. However, very 
little research has examined the important practical questions of how information 
across regions may be effectively combined to guide decision making. 

Three examples of how the PINNACLE framework is applied to laboratory studies 
of implicit and explicit processing are described here. Each example uses a different 
type of complex decision that can be made based on either implicit or explicit 
processing. Capturing these complex and interacting processes in our framework 
shows how the neurocognitive foundation of implicit intuition can be modeled. 

2.1 Applying PINNACLE to Perceptual Learning 

The PINNACLE model was first developed and applied to studies of perceptual skill 
learning in a visual category-learning paradigm. The visual category-learning 
paradigm presents participants with sine-wave gratings organized into two unknown 
categories that are learned during an experimental session via trial-and-error 
feedback. Two conditions are used to separately examine deliberate rule-based 
processing and implicit (termed “information-integration”) category learning. 
Conditions conducive to RB learning are created by using a category structure that 
can be easily described as a rule about the stimuli. The rule is discovered by 
participants readily, leading to subsequent explicit rule-based category judgments. 
When the categorization rule requires using information across stimulus dimensions 
and does not lend itself to an easily verbalized rule, learning depends on implicit 
memory and accurate performance is not accompanied by awareness of the category 
structure. 

To simulate both types of behavior, PINNACLE was developed with two core 
component processes: a rule-based learning system and an information-integration 
learning system. External stimuli feed information into these two parallel processing 
streams, which propagate information to a Decision Module, where the categorization 
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decision response is made [7]. Each of the processing streams (the internal “experts”) 
is simulated using a Decision Bound Theory (DBT) mathematical model that 
produces a category membership estimate learned from experience, but that is 
constrained to only consider either rule-based or information-integration hypotheses. 
The DBT formalism provides an estimate of the probable category membership of a 
stimulus as a function of its distance in perceptual space from the category boundary, 
and weighted by a perceptual shaping parameter that decreases the strength of the 
position near the boundary conditions, where uncertainty is higher [8-9]. At the 
beginning of a simulated experiment, the structure of the category to be learned is not 
known, and both internal models attempt to learn the category via feedback. On each 
trial, both systems update internal representations of the category in order to improve 
future predictions by an error-minimizing adjustment to the current state. 

The modeling process operates in two steps. In the first step, a multi-system 
computational model is fit to overall group behavior to establish a basic working 
model. In Nomura and Reber [7], we showed that groups of model simulations fit 
average human behavior for both kinds of category learning without needing any 
advance knowledge on the type of category being learned. For the second step, each 
individual’s performance within a learning session is fit using maximum likelihood 
estimation to provide a model of their cognitive state during each response trial, for 
both the internal implicit and explicit learning processes. Free parameter values are 
identified that maximize the likelihood of each response in the observed sequence of 
behavior using a downhill simplex optimization method shown to be effective for this 
process [7]. We can then identify key behavioral choice moments from data collected 
during functional neuroimaging based on predictions of the mental state of the 
participant and the estimated roles of the implicit and explicit processing streams. In 
Figure 2, brain activity indicating the neural correlates of the separate implicit and 
explicit processing streams and with the process of resolving these competing sources 
of information is shown derived from this method. 

The application of the PINNACLE framework to implicit and explicit processes in 
visual category learning provides a demonstration of how this modeling approach can 
be used to establish the neurocognitive foundations of both types of memory in 
complex decision making. By providing the ability to assess neural activity across 
both types of processing, we can observe when and how implicit intuition can be 
effectively brought to bear on explicit processing. In addition, when competitive 
interactions among types of memory reduce the use of implicit intuition, the neural 
basis of this effect will provide a measure of effectiveness of potential interventions to 
reduce competition and improve training. 

2.2 Applying PINNACLE to Recognition Memory 

Another example of a decision process that is potentially affected by both implicit and 
explicit processing is that required to make a judgment about prior occurrence (e.g., 
have you see this stimulus previously?). In a recognition memory test, processes of 
implicit and explicit memory can both contribute to accurate performance [9]. 
Although a recognition judgment is conventionally taken to be a straightforward test 
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of explicit memory, our recent work has shown that a correct response can also be 
produced based on a contribution of visual perceptual fluency. Explicit recognition 
judgments use a recognition cue (such as a word that may have been presented in a 
prior study list) to elicit explicit retrieval for the same item from the past (which may 
in some cases also include recall of relevant contextual features of a prior learning 
episode). However, the recognition cue can also be processed more efficiently 
because of the prior episode. This repetition-based efficiency is often ascribed to a 
boost in the fluency of perceptual processing of the cue. Responses that are seemingly 
guesses can actually be based on fluency signals, when an old item is selected in a 
recognition test without any awareness of memory for the relevant past experience. 

In a series of studies [5,10-12] we have shown that we can boost the implicit 
memory contribution to recognition with the following set of procedures. Memory for 
single kaleidoscope images (each created with a unique algorithm using three colors) 
was tested using a two-alternative forced-choice test. The correct choice was a 
stimulus seen 1-2 minutes earlier; the foil choice was a very similar stimulus creating 
by altering the algorithm slightly, such that the decision was very difficult. Sets of 
stimuli were learned under divided-attention conditions, in which elaborative 
encoding was limited due to the concurrent demands of an auditory working-memory 
task. During the test, participants were encouraged to guess, and choices were made 
quickly using a 2-second response-signal procedure. Results were unlike standard 
findings for explicit memory, in that recognition accuracy was higher after divided- 
than full-attention encoding, and higher for guess responses compared to confident or 
familiarity responses. In addition, electrophysiological evidence implicated implicit 
perceptual fluency in accurate recognition guesses in these conditions that 
emphasized the use of implicit memory as opposed to explicit retrieval. 

 

Fig. 2. Neural correlates of key brain systems  involved in categorization decisions. (A) Medial 
temporal lobe activity associated with explicit memory for prior examples. (B) Posterior caudate 
activity rrelates of key brain syste associated with implicit learning. (C) Dorsolateral prefronal 
cortex activity associated with resolving competition between implicit and explicit processing. 

On any trial in this recognition test, a correct response can be mediated by visual 
fluency or by explicit retrieval. We observe brain activity associated with either type 
of memory in EEG signals, computed by averaging trials for different judgments 
together. One indication of the type of response comes from metamemory judgments; 
participants can either indicate confidence in their response (i.e., conscious, explicit 
retrieval) or they can indicate a response made on no known basis whatsoever (guess). 
These highly accurate guess responses are what we term “implicit recognition” [9]. 
Judgments may also be made on the basis of implicit fluency signals in a variety of 
other decision-making circumstances. 
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By creating conditions wherein implicit recognition occurs on a large proportion of 
trials, the PINNACLE framework provides a method for examining the 
neurocognitive foundations of both types of processing and also potential interactions 
between the two types of memory. A key question is whether and how explicit 
retrieval blocks or interferes with the use of implicit knowledge. A focus on explicit 
memory retrieval appears to limit the extent to which implicit information is available 
for making a memory decision; both the number of guesses and the accuracy of those 
guesses is reduced by changing the instructions to emphasize confident responding 
[11] or by interfering with brain activity in prefrontal cortex [Lee, Blumenfeld, & 
D’Esposito, unpublished manuscript]. Paradigms that overcome this inhibitory 
(gating) effect will serve as a model for training the ability to simultaneously use both 
implicit and explicit memory in complex decision-making. 

2.3 Applying PINNACLE to Insight Problem Solving 

The third example domain for examining interactions between implicit and explicit 
processing is the laboratory study if insight-driven problem solving. In general 
problem solving, people can achieve solution using analytic processing, sudden 
creative insight, or both [6,13]. Analytic solving relies heavily on step-by-step 
processing and deliberate manipulation of consciously accessible information with 
explicit awareness of the contents and strategies engaged. In contrast, insight solving 
occurs when a person suddenly becomes aware of a solution, without conscious 
access to the solving process. Thus, compared to analytic solving, insight is more 
influenced by implicit memory and implicit processes generally. 

Recently we've examined and manipulated factors that modulate the degree to 
which analytic and insight processes contribute to solving problems. In order to elicit 
robust numbers of both analytic and insight solutions, we've most often presented 
people with a large number of Compound Remote Associate (CRA) problems, in 
which they view three problem words (e.g., pine, crab, sauce), and must produce a 
solution word that can form familiar compounds or two-word phrases with each of the 
problem words (apple: pineapple, crabapple, apple sauce) [14]. On average, people 
can solve about half of these problems, and about half of the solutions occur with 
each type of solving. In numerous studies, participants indicate how they solved each 
problem, by analysis or insight. Different solution types are associated with changes 
in behavior, neural activity, blinks, and eye movements, all indicating that the 
participants engaged in different processes prior to solution. Indeed, insight and 
analytic solving are associated with different forms of attention prior to engaging each 
problem [15], and even different baseline brain activity [16]. 

 Moreover, mood differentially affects insight and analytic solving, with positive 
mood facilitating insight, most likely via changes in anterior cingulate cortex that 
modulate cognitive control [17]; and separate visual tasks that encourage highly 
focused external attention facilitate analytic solving, whereas visual tasks that 
encourage internal attention facilitate insight solving [18]. Using the PINNACLE 
framework, we can characterize these effects as emphasizing processing within either 
the explicit, deliberative processing stream or the implicit, intuitive processing that 
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leads to sudden insight. Emphasis on one type of problem solving approach may be 
reflected as directly increasing neural activity within one of the processing streams or 
may be reflected in high-level decision making processes that indicate a strategic 
decision to rely on step-wise problem solving or to anticipate a sudden flash of 
insight. By examining the neurocognitive foundations of these interacting processes, 
the problem solving paradigm provides a useful model of the roles of implicit and 
explicit memory in a cognitively complex domain. 

3 Designing Interventions to Improve Use of Intuition 

The key questions for improving the use of intuition are focused on the gating and 
decision-making mechanisms that are engaged during integration of information 
between the implicit and explicit processing streams. A variety of approaches aimed 
at increasing reliance on implicit intuition are derived from our prior research on 
implicit learning. To evaluate these approaches, we can quantify the improvement in 
performance using these paradigms. In addition, the PINNACLE modeling approach 
makes testable predictions about how the underlying neural activity patterns are 
changed by successful training interventions. 

For instance, to target improvements in the operation of gating and reducing 
interfering competition, we could attempt to improve intuitive decisions using 
metacognitive strategies that avoid overshadowing of implicit information by explicit 
processing. That is, we can reduce dependence on highly focused external attention. 
To boost the impact of implicit processing, we can train participants to induce inward-
looking attention to quiet internal activations and associations [18]. To do so, we can 
combine methods for inducing inward attention (e.g., voluntary eye-blinks and overt 
eye fixations away from problem stimuli) with feedback based on both successful 
implementation of the attention strategy and successful intuitive decisions.  

Another approach is to use trial-by-trial feedback in order to give participants a 
greater ability to internally monitor their experience of implicit visual fluency signals 
in recognition judgments, using reinforcement-learning mechanisms. This approach is 
based on the idea that trainees can gradually learn to use subtle visual fluency cues 
more often, such that implicit intuition plays a greater role in complex decision 
making or problem solving. The feasibility of this method to train participants to use 
fluency this way is supported by recent findings from exposing subjects to a situation 
in which previously unstudied items were less visually fluent than studied items—and 
reinforcing this connection with trial-by-trial feedback [19-20]. Whereas familiarity is 
typically attributed to old items because they are, on average, more fluently processed 
than new items, this manipulation led to a temporary reversal such that subjects 
acquired a tendency to attribute familiarity to items with less fluency. By analogy, 
trainees should be able to learn the contingencies between the beneficial use of visual 
fluency and positive feedback for correct decisions—and these habits will generalize 
to other circumstances wherein implicit processing can be beneficial. 

A third approach to improving the use of implicit intuition is based on the 
hypothesis that people can be trained to more strongly weight the implicit processing 
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stream during decision making. Such training would encourage the use of implicit 
knowledge. This hypothesis suggests that the use of implicit intuitive knowledge 
could be enhanced in scenario-based training based on rapid decision making with 
ambiguous cues by providing pre-training with tasks that rely on implicit learning. 
Experience with successful implicit learning would then be used as a training 
enhancement to increase the ability to integrate knowledge across information 
processing systems, producing increased decision-making ability. 

These three ideas reflect examples of how it is possible to use information about 
the neurocognitive foundations of implicit intuition in decision making in order to 
learn how to better use intuition. As we better understand the neural processes 
associated with memory systems in complex decision making, it is likely that a wide 
range of additional ideas for training interventions can be developed. 

4 Summary and Conclusions 

Our computational framework, PINNACLE, provides a neurocognitive foundation for 
studies examining the interacting roles of intuition and planned, deliberate processing 
in complex decision-making environments. By connecting implicit and explicit 
processing directly to neural circuitry, we can develop strategies for studying these 
processes individually and also tackle the challenge of how these two types of 
memory interact. Training effects can therefore be attributed to behavioral change 
reflecting one type of memory or the other. Experts with strong intuitions based on 
implicit learning from extensive experience rely on a different type of neural 
processing than do individuals who have learned an explicit rule. In addition to 
simulation-based training to provide an analog to situational experience, enhancing 
the ability to apply this intuition alongside explicit rules will also be necessary to 
bring trained intuition to bear on complex real-world problems. 
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Abstract. Modern military personnel must not only possess typical warfighting 
abilities; they must also be able to rapidly perceive, understand, and then 
respond to a range of ambiguous behavioral, social, and cultural stimuli. In 
other words, personnel must have sociocultural sensemaking skills—preferably 
intuitive sensemaking skills that allow them to act with the utmost agility. This 
paper begins by discussing sensemaking, sociocultural pattern recognition, and 
expertise-based intuition. It briefly describes training approaches for these 
constructs, as well as training for the integrated concept. Instructional 
simulations could facilitate such training. However, for simulations to 
effectively support this subject matter, they must be able to replicate realistic 
patterns of life, from the subtle characteristics of human body language to the 
emergent behaviors of crowds. That is, they must provide accurate, nuanced 
cues to which the trainees can react. This paper closes by discussing our 
ongoing work to address this gap by modeling realistic cues in a simulation. 

Keywords: sensemaking, intuition, patterns of life, simulation, military 
training, cognitive readiness. 

1 Introduction 

Since 2001, the United States has engaged in an unconventional military conflict 
defined by a range of counterterrorism, counterinsurgency, peacekeeping, and 
infrastructure-building initiatives. Consequently, modern military personnel must not 
only possess typical warfighting abilities, but they must also be able to rapidly 
perceive, understand, and then respond to a range of ambiguous behavioral, social, 
and cultural stimuli. In other words, personnel must develop enhanced sociocultural 
sensemaking skills—preferably intuitive sensemaking skills that allow them to act 
with the utmost agility.  

Presently, our team is investigating novel approaches for training intuition, 
sociocultural perception, and sensemaking skills to US Marine Corps personnel. Like 
the US Army as well as other governmental and nongovernmental organizations, the 
Marines must be able to excel in potentially hostile, typically uncertain, cross-cultural 
settings. They must be able to enter a new location, develop a sense of its overall 
patterns of life, and then rapidly identify detrimental anomalies in those patterns, such 
as the activities of criminal networks or suicide bombers.  
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To meet these objectives, the US military has invested in various cultural training 
approaches; however, typical culture training lacks elements that military personnel 
uniquely require, such as learning how to distinguish friend from foe. Also, typical 
culture training does not necessarily foster sensemaking skills or anomaly detection 
abilities. To further complicate matters, the military must contend with highly 
demanding training schedules that may only allot a few weeks to learn such 
knowledge, skills, and attitudes.  

This paper describes our current efforts to address this military training need 
through advanced simulation. The paper begins by defining the training objectives at 
a high level. Next, it describes the integrated concept of intuitive sociocultural 
sensemaking and our initial thoughts on how to foster its development. Finally, the 
paper discusses ongoing research on modeling patterns of life, which are complex 
sociocultural cues presented by an instructional simulation. The goal of this research 
is to develop sophisticated patterns-of-life computational algorithms that are capable 
of successfully simulating humans’ individual and social behaviors. This, in turn, will 
support simulation-based training and practice of intuitive sociocultural sensemaking.  

2 Training and Education Objectives 

2.1 Intuition 

Intuition is the unconscious awareness, valuation, and integration of important cues. 
Stated more formally, “intuition is a rapid, non-conscious cue to the existence of 
meaningful information detected through one or more sensory modalities” [1]. It is “a 
process of thinking. The input to this process is mostly provided by knowledge stored 
in long-term memory that has been primarily acquired via associative learning. The 
input is processed automatically and without conscious awareness. The output of the 
process is a feeling that can serve as a basis for judgments and decisions” [2]. 
Intuitions “arise through rapid, non-conscious, and holistic associations” [3] and 
involve a subjective perception of pattern, meaning, or structure [4]. In other words, 
intuition is the ability to put together cues at a subconscious, nonverbal level, and 
recognize a pattern worthy of notice before that pattern can be deliberately perceived. 
The feeling of intuition is the experience of knowing, without immediately knowing 
the reasons why [5]. 

Despite the subconscious facets of intuition, training and education can enhance 
individuals’ intuitive capacities [6]. Classically, experts build their intuitive skills in 
particular domains through experience and implicit learning [7, 8, 9]. They learn to 
regulate their intuitive feelings by actively seeking feedback [10], and they selectively 
attending to intuitive thoughts based upon the characteristics of the problem space [6]. 
Therefore, intuition can be fostered by first acquiring domain experience and then 
developing intuition-related skills through intense deliberate practice, critical self-
appraisal, and candid feedback [11]. Instructors can also help engender related skills 



486 S. Schatz and K. Bartlett 

 

(e.g., divergent thinking) and factors (e.g., positive attitudes towards intuition) that 
enhance the likelihood of effective intuitive processing.  

2.2 Sociocultural Sensemaking 

Sensemaking is the ongoing process of giving meaning to one’s experiences, of 
“structuring the unknown” [12] Stated more formally, sensemaking is the “motivated, 
continuous effort to understand connections (which can be among people, places, and 
events) in order to anticipate their trajectories and act effectively” [13]. It is the 
process of “placing stimuli into some kind of framework” in order “to comprehend, 
understand, explain, attribute, extrapolate, and predict” their individual and collective, 
emergent behaviors [14, p. 51]. In social settings, sensemaking supports outcomes 
such as sociocultural situation assessment, anomaly detection, and anticipatory 
thinking. It also helps individuals establish a “sense of coherence and sociocultural 
brokerage” [15, p.104; see also, e.g., 16, 17].  

In general, sensemaking skills can be fostered through a range of instructional 
interventions, “[c]ombining theory, role models, action learning, feedback, and class 
assignments” [18, p. 13]. Sociocultural sensemaking is built through these general 
methods along with additional culture education, training, and mentorship programs 
[e.g., 18]. For example, the United States Marine Corps (USMC) Combat Hunter 
program currently teaches personnel to conduct sustained observation of social 
patterns, and it fosters personnel’s social, cultural, and behavioral perceptual skills 
[20, 21]. However, for the military, the efficiency of training is an important 
consideration, and the Combat Hunter program is time- and personnel-intensive [20]. 
Therefore, automated tools must be designed that help cultivate (and ideally, 
accelerate) personnel’s acquisition of sensemaking skills.  

2.3 Intuitive Sociocultural Sensemaking 

Intuitive sensemaking can be considered a conscious process, informed by 
subconscious intuitive mechanisms and moderated by deliberate metacognitive effort, 
with the intention of understanding connections, interpreting meaning, and 
anticipating trajectories, which support later decision making and possible actions. 
Further, intuitive sociocultural sensemaking refers to these activities as applied to 
human social, cultural, and behavioral stimuli. Intuition and psychosocial skills 
complement one another. Intuitive processing can enhance the discernment and 
interpretation of subtle sociocultural cues and patterns, and exploring intuition in this 
context addresses the timely need to enhance personnel’s sociocultural abilities. 

Our current work seeks to use existing and emerging technologies to support the 
simulation-based training of intuition and sociocultural sensemaking. This training 
involves four high-level sensemaking learning outcomes, three of which have 
immediate relevancy, here (see Table 1). For more details on these learning outcomes, 
see [22]. 
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Table 1. High-level learning outcomes relevant to sociocultural sensemaking 

Sociocultural sensemaking 

• Taking someone else’s perspective 
• Looking for prototypes to guide rapid recognition  
• Generating explanatory storylines, tying info together 
• Not settling for unexplained events or evidence but looking for antecedents to a situation 
• Mentally simulating alternative actions or outcomes 
• Anticipating what will happen next 
• Detecting an unfolding event by identifying a piece of it and inferring the rest 

 
Developing mental baselines 

• Using optics to help construct a baseline or profile 
• Establishing a baseline of an area to extract normalcy  
• Constructing a behavior profile of a person or event  
• Effectively and efficiently identifying leaders 
• Efficiently identifying anchor points and habitual areas 
• Constructing a behavior profile of a person or event  
• Orienting observation toward potentially hostile players and ignoring neutrals 

 

Identifying anomalies 

• Looking for anomalies outside of the baseline 
• Looking for signature behaviors via a cluster of cues 
• Looking for signature locations via a cluster of cues 
• Using appropriate criteria to make timely but accurate decisions about anomalies 

3 Virtual Observation Platform 

The Virtual Observation Platform (Virtual OP) is an immersive adaptive simulation-
based training system, designed to instruct perceptual–cognitive skills, such as 
sociocultural sensemaking. In the Virtual OP, trainees observe a virtual location, such 
as a small town, from distal location (300–1000 meters away). The small town is 
represented in a virtual environment, specifically Virtual Battlespace 2 (VBS2), and 
trainees observe the everyday patterns of human behavior within the small town. See 
Figure 1. 

As trainees observe the town, they learn to make sense of the patterns of activity, 
to establish a mental “baseline” of normal activities, identify anomalies, and, 
ultimately, to predict deleterious events before they occur (i.e., “left of bang”). For 
example, an event might involve the delivery of bomb-making supplies. The trainees 
would observe the terrorist cell leader meeting a pickup truck and bags of fertilizer 
being moved into a home. This represents an obvious anomalous cue, because these 
chemicals would not normally be stored in a residence.  

The architecture for the Virtual OP includes a control agent system that can 
monitor progress within scenarios, estimate trainees’ proficiency as scenarios evolve, 
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and invoke tailoring strategies [22]. In other words, the Virtual OP monitors student 
behavior during simulation-based practice and attempts to scaffold, to challenge, or to 
engage trainees based on the learning context. Like dedicated human tutors, these 
adaptive instructional technologies tailor learning content, delivery, and/or context to 
the unique needs of the learners. For instance, if novice trainees miss observing an 
anomaly, the system can scaffold their training by triggering an event (e.g., 
squawking chickens) to draw their attention to the delivery. For advanced trainees, the 
same kind of cuing event occurring in a distant area can provide a distraction. In this 
way, manipulating intrinsic cue quantity or cue misinformation can scaffold or 
challenge a perceptual skill [22].  

 

 

Fig. 1. Photo of part of the Virtual OP simulator  

3.1 Patterns of Life  

Patterns of life have been defined as the archetypal emergent properties of a complex 
sociocultural system [23]. These patterns originate from human behavioral and social 
universals. For example, universal human emotions include fear, sadness, and 
frustration, and universal practices include cooking food, sleeping in individual or 
group quarters, joining mates via rituals, identifying interactions based on kinship, 
exchanging greetings, wearing clothing or wraps, dividing labor, organizing relations 
hierarchically, making music, creating nonlinguistic symbols, and participating in 
death rites [24].  

Archetypal patterns may involve multiple levels of observable physical 
interactions, communications, and routines that occur among members of social 



 Modeling Cues for Intuitive Sensemaking Simulations 489 

 

groups, and training can involve recognition of these cultural patterns from a third-
person perspective (e.g., watching interactions between genders, observing shopping 
behaviors). Identification of these patterns of cultural behaviors will allow an 
observer to monitor societal norms to establish baselines of day-to-day activities, 
ultimately enabling a user to detect anomalies from baselines and develop 
sensemaking analytical skills [21, 22, 23]. 

3.2 Patterns of Life Simulation 

In order to effectively support sociocultural sensemaking training in the Virtual OP, 
cultural cues need to be developed and displayed at a depth beyond surface level. 
Rather than presenting an image representing a stereotypical version of a software 
designer’s interpretation of culturally relevant details, social patterns must be 
researched and carefully incorporated. That is, the simulation platform must produce 
accurate, highly nuanced representations of patterns of life. To achieve this, accurate 
and scalable pattern-of-life models must be created that computationally define the 
patterns that trainees will attempt to make sense of. The Virtual OP must be able to 
replicate realistic patterns of life, from the subtle characteristics of human body 
language to the emergent behaviors of crowds, and these entities’ individual and 
emergent behaviors must reinforce the training objectives and scenario narrative.  

Recently developed platforms for these types of systems, such as DI-GUY, attempt 
to depict realistic patterns of life in immersive environments [25]. Such programs rely 
on a technical approach of non-linear, hierarchal software programs and use a 
combination of modules, such as AI Minds, SmartObject, and SmartBuilding 
frameworks. However, we argue that current methods for representing patterns of life 
fail to comprehensively address the issue. Instead, most efforts focus narrowly, at 
small “bubbles of life,” such as the behaviors of residents on a single farm or the flow 
of communications within an insurgent network. These small-scale, top-down 
approaches have some benefits, but they are too limited to support the types of 
simulation required to compressively train intuitive sociocultural sensemaking.  

The alternative approach of using bottom-up, agent-driven systems could support 
the depth of training we require; however, such systems do not provide sufficient 
insights into the emergent behaviors nor do they readily allow for pedagogically 
guided alternations. Consequently, a novel approach to modeling human individual, 
social, and cultural cues must be developed that can then support intuitive 
sensemaking simulation-based training. We are exploring one such approach, which 
combines bottom-up agent-based simulation with top-down supervisory control (see 
[23] for an overview). 

By participating in simulation-based training involving patterns of life, we 
hypothesize that military personnel will develop enhanced—potentially intuitive--
sociocultural sensemaking skills. These skills should better prepare personnel to 
operate in complex social contexts by teaching them to perceive sociocultural 
patterns, identify normal characteristics of the patterns within their areas of operation, 
and recognize anomalous patterns when they appear. 
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Within the Virtual OP simulator, we are developing and testing more flexible, 
scalable, and controllable approaches for generating patterns of life. Our current 
approach toward realizing these patterns integrates bottom-up agent-based modeling 
with top-down supervisory control, in order to create a dynamically manipulatable, 
deterministically chaotic system. Over the next three years, we will continue to refine 
our theory of patterns of life, as well as the corresponding implementation of that 
theory in our simulation system. If we are able to accurate model patterns of life in the 
Virtual Op, then we will be better able to support military sociocultural sensemaking, 
anomaly detection, and cross-cultural perceptual skills, as well as their associated 
intuitive processes. 
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Abstract. There are several ways of recording psychophysiology data from hu-
mans, for example Galvanic Skin Response (GSR), Electromyography (EMG),
Electrocardiogram (ECG) and Electroencephalography (EEG). In this paper we
focus on emotion detection using EEG. Various machine learning techniques
can be used on the recorded EEG data to classify emotional states. K-Nearest
Neighbor (KNN), Bayesian Network (BN), Artificial Neural Network (ANN)
and Support Vector Machine (SVM) are some machine learning techniques that
previously have been used to classify EEG data in various experiments. Five
different machine learning techniques were evaluated in this paper, classifying
EEG data associated with specific affective/emotional states. The emotions were
elicited in the subjects using pictures from the International Affective Picture
System (IAPS) database. The raw EEG data were processed to remove artifacts
and a number of features were selected as input to the classifiers. The results
showed that it is difficult to train a classifier to be accurate over large datasets
(15 subjects) but KNN and SVM with the proposed features were reasonably ac-
curate over smaller datasets (5 subjects) identifying the emotional states with an
accuracy up to 77.78%.

1 Introduction

Humans interacting with computer applications are a part of everyday life. Similarly,
emotions are a vital and constantly present part in everyday life of humans and can
provide many possibilities in enhancing the interaction with computers e.g. affective
interaction for disabled or people in stressful environments. As technology and the un-
derstanding of emotions are advancing, there are growing opportunities for automatic
emotion recognition systems. There is much successful research on emotion recogni-
tion using text, speech, facial expressions or gestures as stimuli[1]. In this paper we
focus on recognition of emotions from Electroencephalogram (EEG) signals, since this
technique have the benefit of being more passive and less intrusive for the human than
facial expressions or vocal intonation. The need and importance of the automatic emo-
tion recognition from EEG signals has grown with increasing role of brain computer
interface applications and development of new forms of human-centric and human-
driven interaction with digital media. The asymmetry among left and right brain hemi-
spheres are the major areas where the emotion signals can be captured[2]. According to
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a model developed by Davidson et al., the two core dimensions -arousal and valence-
are related to asymmetric behavior of emotions. A judgment about a state as positive or
negative lies under valence whereas the level of excitation (calmness, excitement) lies
under arousal[3].

Human machine interaction on the base of physiological signals has been greatly
investigated by previous and recent research. Of particular interest are systems that can
make interpretations about psychological states based upon physiological data. Linear
classifiers[4,5,6] are considered to be the most appropriate classification technology
due to their simplicity, speed and interpretability. However, non-linear classifiers are
considered to be the most appropriate when it comes to signal features and cognitive
state[7,8].

Sequential Floating Forward Search and Fisher Projection methods are used by Pi-
card et al. to classify eight basic emotions with 81% accuracy[9]. Lisetti and Noa-
soz used Marquardt Back Propagation, Discriminant Function Analysis and K-Nearest
Neighbor to distinguish between six emotions and acquired classification accuracy be-
tween 71% and 83%[10]. Conati argued that probabilistic models can be developed
using a methodology provided which uses various body expressions of the user, per-
sonality of user and context of the interaction[11]. Mental workload has been eval-
uated using Artificial Neural Networks providing mean classification accuracies of
85%, 82% and 86% for the baseline, low task difficulty and high task difficulty states
respectively[12]. Fisher developed an emotion-recognizer based on Support Vector Ma-
chines which provided accuracies of 78.4% and 61.8%, 41.7% for recognition of three,
four and five emotion categories respectively[4]. According to Rani et al., if the same
physiological data is used then Support Vector Machines with a classification accu-
racy of 85.81% perform the best, closely followed by the Regression Tree at 83.5%,
K-Nearest Neighbor at 75.16% and Bayesian Network at 74.03%. Performance of K-
Nearest Neighbor and Bayesian Network algorithms can be improved using informative
features. Support Vector Machine shows 33.3% and 25% accuracy for three and four
emotion categories respectively when it comes to physiological signal databases ac-
quired from ten to hundreds of users[13]. For more research on emotions and EEG see
for example [14,15,16,17,18,19].

It is difficult to compare the results between different studies due to different exper-
iment environments, preprocessing techniques, feature selection etc.. However, studies
have shown that various factors such as preprocessing and classification techniques
can strongly affect the results in terms of accuracy. Even if several methods have suc-
cessfully been used to develop affect recognizers from physiological indices, it is still
important to select an appropriate method in each study for the classification of EEG
data to attain uniformity in various aspects of emotion selection, data collection, data
processing, feature extraction, base lining, and data formatting procedures.

Several machine learning techniques have been used for classifying EEG data. Some
common ones that previously have been used for EEG data associated with affec-
tive/emotional states are K-Nearest Neighbor (KNN), Regression Tree (RT), Bayesian
Network (BNT), Support Vector Machine (SVM) and Artificial Neural Network (ANN).

According to an extensive survey carried out by Rani et al. KNN is one of the most
widely used techniques for classifying EEG data associated with specific
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affective/emotional states[13]. Yu et al. found that KNN was the most effective classi-
fier in classifying emotion sickness from EEG data[20]. Parvin et al. claims that KNN’s
ability of dealing with discriminant analysis of difficult probability densities makes it
very effective for classifying EEG data[21]. According to Downey and Russell, RT is
largely used in medical fields to, for example, classify EEG data[22]. Brown et al. also
mentions the wide use of RT for classifying EEG data[23]. BN was used with success
by Matas et al. for classifying varying emotional states[24]. In their survey, Rani et al.
strongly supports SVM and recommend it for accurately classifying EEG data[13]. This
claim is also supported by Chen and Hou[25]. According to experiment results by Yu et
al. and Huang et al., SVM provides effective and promising results for classifying EEG
data[20,26]. In a study by Tangermann et al. the authors claim that SVM can show a
high level of agreement on EEG data classification[27]. In a study by Ho and Sasaki
ANN could accurately classify EEG data and they claim it is especially useful when a
small number of electrodes are used[28]. Chen and Hou claims that ANN is an effective
technique to classify EEG data due to its ability to handle noisy data efficiently[25].

These five techniques were found to be used in most of the empirical studies we have
found and were considered to be suitable for the classification of EEG data associated
with specific affective/emotional states based on the achieved classification accuracy.
KNN and SVM seemed to be the most common ones among the classifiers with the
highest attained accuracy where our interest was to achieve high accuracy over large
datasets/participants.

2 Experiments

The goal of the experiments was to classify the various emotional states in subjects
as they look on different pictures that are inducing strong emotions. The International
Affective Picture System (IAPS) was used for this purpose. IAPS is a general picture
database especially designed for experiments in emotions with normative values for
valence, arousal, and dominance[29]. In these experiments we used the 2-dimensional
emotional model with valence and arousal.

A total of 20 subjects (15 men and 5 women) participated in the experiment. All
subjects were students of Blekinge Institute of Technology, Sweden, and aged from
21 to 35 years. The subjects were from different cultural background, nationalities and
field of studies.

The EEG signals were captured from left and right frontal, central, anterior temporal
and parietal regions (F3, F4, C3, C4, T3, T4, P3, P4 positions according to the 10-20
system and referenced to Cz)[30]. Based on these findings, the experiment was executed
as described by Davidson et al.[3] and AlZoubi et al.[31]:

– An appropriate interface was applied for the automated projection of the IAPS
emotion-related pictures.

– To compensate opening/closing of eyes 30 seconds gap was maintained before
starting the experiments.

– 30 IAPS pictures (6 pictures for each emotion cluster as neutral, positive arous-
ing/calm, negative arousing/calm) were displayed randomly for the duration of 5
seconds with a gap of a black screen between 5-12 seconds. The purpose of the
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black screen duration was to reset the emotional state of subjects offering them the
time to relax having no emotional content. A cross shape projection was displayed
for 3 seconds before each picture to attract the attention of the subject. This process
was repeated for each picture.

– A subject may feel an emotion which differs from the one expected. Therefore
each subject was asked to rate his/her emotion on a Self-Assessment Manikin
(SAM)[29]. Each subject rated their level of emotion on a 2D arousal and valence
scale.

– Two recording sessions for 25 to 35 trials having 5 pictures, displaying each picture
for 2.5 seconds were completed.

– During the whole process, subjects were directed to stay quiet and still (to realize
and observe the emotion instead of mimic the facial expression) with as few eye
blinks as possible to get rid of other artifacts (e.g., facial muscles).

– Fp1, Fp2, C3, C4, F3, and F4 positions were used to attain the EEG signals accord-
ing to 10-20 system and all of the electrodes were referenced to Cz.

During the experiments, EEG data for each subject was recorded using BioSemi Ac-
tiveTwo System with a sampling rate of 2048Hz and stored in BioSemi Data Format
(BDF) using ActiView BioSemi acquisition software. Each subject took approximately
20 minutes individually to complete an experiment.

The subjects were screened to select EEG data for data analysis and processing.
The screening was based on SAM; subjects with low valence and arousal rating were
rejected. The reason for screening was to select the most valuable data and remove
the rest to get reliable results. The screening left 15 subjects out of 20. Screening was
further applied to EEG data of 15 subjects to select the signal duration which fulfill the
aimed emotion based on SAM. The idea behind this was to screen out and separate the
data for each emotion. For example the signal for positive arousal were screened from
the rest of the emotions and so on. EDF Browser1 (a tool for reading and processing
sensor data) was used to reduce the signals individually for the required duration. While
reducing the signals, the first and last second had been eliminated from the total duration
of five second stimulus presentations. This was in order to narrow down to exactly
required data. The reason for this step was to focus on valuable data and filtering out
the extra. Because when a picture is displayed, it takes some time for the brain to react
to new stimuli and therefore the first second is usually noisy. Similarly, after looking
at a picture stimulus for a while the brain goes into a relaxed state and does not react
in the same activation as initially; therefore the last second was removed as well. This
process was completed for pictures with positive, negative and neutral arousal as well
as for positive, negative and neutral valence.

The screened data was preprocessed using EEGLAB Toolbox2 for MATLAB. Epoch
and Event info were extracted, the data was pruned and baseline removed. Finally, In-
dependent Component Analysis (ICA) was performed on the data[32]. Preprocessing
data with these various techniques helps to remove the artifacts such as eye blinking
etc. This also make it easier to extract features from the signals.

1 http://www.teuniz.net/edfbrowser
2 http://sccn.ucsd.edu/eeglab
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Feature selection is one of the key challenges in affective computing due to phenom-
ena of person stereotype[13]. This is because different individuals express the same
emotion with different characteristic response patterns for the same situations. Each
subject involved in the experiment was having diverse physiological indices that showed
high correlation with each affective state. The same finding has been observed by Chen
and Hou[25] and is explained by Rani et al.[33]. From the obtained EEG data, it was
observed that physiological features were highly correlated with the state of arousal
among two subjects. According to Rani et al., a feature can be considered significant
and selected as an input to a classifier if absolute correlation is greater for physiological
features among subjects[33]. Based on these findings, it was observed that the accu-
racy improved for some techniques (i.e. KNN, BNT and ANN) when highly correlated
features were used, while it degraded for the others (i.e. RT and SVM). Chen and Hou
point out that selection of highly correlated features helps to exclude the less important
features for affective state and hence improve the results[25].

The preprocessed data was further processed to get the real values for the signals
using EEGLAB Toolbox for MATLAB. Based on findings by AlZoubi et al. the four
features minimum value, maximum value, mean value and standard deviation were ex-
tracted from each signal in order to further process the data[31].

The raw EEG data is processed to extract the selected features. Different signal pro-
cessing techniques are available for this purpose such as Fourier transform, wavelet
transform, thresholding, and peak detection. The values obtained were formatted in
Attribute-Relation File Format (ARFF), which is an acceptable file format for the data-
mining tool WEKA3. The values obtained are used as instances in the ARFF file with
a binary class value as negative and positive arousal/valence. Each feature value (min
value, max value, mean value and standard deviation) for each electrode is a separate
attribute in each instance in the ARFF file. Six electrodes were used making the total
number of attributes 24 (plus the class value). A separate dataset was created for each
subject, as well as a combined dataset with data from all subjects.

Each dataset were classified using machine learning techniques available in WEKA.
During the classification, the classifier was trained to classify negative or positive
arousal/ valence values as correctly classified whereas neutral values as incorrectly
classified. The techniques used had all the default parameter values as implemented
in WEKA. In all experiments 10 fold cross validation were used.

Figure 1 shows the complete process of capturing, processing and classifying the
EEG data in the conducted experiments. The results from classifying the EEG data for
all 15 subjects are presented in Table 1 and Figure 2. The highest accuracy was obtained
with SVM (56.10%) closely followed by KNN, RT and BT (52.44%). The three latter
all had the same accuracy indicating that they at least in this case discriminate the data
in a similar way. The result are not very promising indicating that there can still be noise
in the processed data, or that the selected features are not representative for all subjects
which can be a problem as pointed out by Rani et al.[13]. As comparison a random
guess would give an accuracy of 33% since three possible emotional states (positive or
negative valence/arousal and neutral) are used.

3 http://www.cs.waikato.ac.nz/ml/weka
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Fig. 1. The process for capturing, processing and classifying the EEG data

Table 1. Results from classifying EEG data for all subjects

Technique Accuracy

K-Nearest Neighbor 52.44%
Regression Tree 52.44%
Bayesian Network 52.44%
Support Vector Machine 56.10%
Artificial Neural Networks 48.78%
Random guess 33.33%

KNN RT BNT SVM ANN
40%

45%

50%

55%

60%

52.44 52.44 52.44

56.1

47.78

Fig. 2. Results from classifying EEG data for all subjects

To see if there could be problems with the generality of the selected features we di-
vided the dataset into three subsets each with data from five subjects. The subsets were
split in a semi-random fashion. The first five subjects was put in Dataset 1, the next
five in Dataset 2 and the last five in Dataset 3. The results are shown in Table 2 and
Figure 3. They show that all classifiers except RT had difficulties classifying Dataset
3. RT had problems classifying both Dataset 2 and 3. In this experiment SVM are still
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the best classifier followed by KNN. It is interesting that KNN, RT and BN all had the
same accuracy when classifying the full dataset, but in this case RT and BN are well
behind KNN. The best results (over 70% accuracy topping at 77.78%) are in line with
the accuracy of other related experiments (see for example [2]).

Table 2. Results from classifying datasets of five subjects each

Technique Dataset 1 Dataset 2 Dataset 3 Average

K-Nearest Neighbor 70.37% 66.67% 51.35% 62.80%
Regression Tree 62.96% 44.44% 45.95% 51.12%
Bayesian Network 59.26% 55.44% 48.65% 54.45%
Support Vector Machine 77.78% 70.27% 51.35% 66.47%
Artificial Neural Networks 70.37% 61.11% 43.24% 58.24%
Random guess 33.33%

KNN RT BNT SVM ANN

40%

60%

80%

100%

70.4

63

59.3

77.8

70.4

51.4

46
48.7

51.4

43.2

66.7

44.4

55.4

70.3

61.1

Dataset 1
Dataset 2
Dataset 3

Fig. 3. Results from classifying datasets of five subjects each

In the last experiment we used datasets containing of only a single subject. This was
done for the first three subjects. The results are shown in Table 3 and Figure 4. In this
experiment KNN was the most accurate classifier with 83.33% accuracy for Subject
3. It is interesting to see that SVM was only able to get 50.00% accuracy on the same
subject. BN showed very large differences with 72.72% accuracy for Subject 2 and only
36.36% for Subject 1.
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Table 3. Results from classifying datasets of single subjects

Technique Subject 1 Subject 2 Subject 3

K-Nearest Neighbor 54.54% 72.72% 83.33%
Regression Tree 36.36% 54.54% 50.00%
Bayesian Network 36.36% 72.72% 66.66%
Support Vector Machine 45.45% 45.45% 50.00%
Artificial Neural Networks 45.45% 45.45% 50.00%
Random guess 33.33%

KNN RT BNT SVM ANN

40%

60%

80%

54.5

36.4 36.4

45.5 45.5

72.7

54.5

72.7

45.5 45.5

83.3

50

66.7

50 50

Subject 1
Subject 2
Subject 3

Fig. 4. Results from classifying datasets of single subjects

3 Discussion and Future Work

The main purpose of our experiments was to evaluate different machine learning tech-
niques for classifying EEG data. From our results we can conclude that it is not trivial
to process and classify data to be accurate over a large number of subjects. The results
from all 15 participants was in the best case 56.10%. When dividing the subset into
three parts with five subjects each the accuracy rose to 77.78%. In both cases SVM was
the best classifier with KNN slightly behind. The results from classifying data from
single subjects showed an accuracy of 83.33% for KNN. Interesting is that SVM only
showed an accuracy of 50.00% on single subjects.

As Rani et al. discusses the feature selection is a key challenge in affective comput-
ing due to phenomena of person stereotype[13]. This is probably the reason why the
accuracy in our experiments greatly increased on smaller datasets. It is difficult to find
features that are generally working well over a large number of subjects. Another rea-
son is that EEG data is noisy and diverse and is often very difficult to work with. There
is also the possibility that the IAPS pictures did not induce strong enough emotions on
some subjects making it difficult to classify some emotional states.
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Based on the results we cannot say which classifier that generally is the best, but
KNN and SVM seems to be good choices regardless of the size of the datasets.

In the future we would be interested in using more features and different combi-
nations of them to see how it affects the accuracy over many subjects. It would also
be interesting to observe if more subjects in the experiment would have any positive
or negative impact on the results, as the amount of data for the classifier increases. In
this experiments we used a binary class value for the classifiers (negative or positive
valence/arousal) and an unknown as neutral valence/arousal. It could have impact on
the results if we use three separate classes with neutral valence/arousal as its own class
value instead.
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Abstract. We consider the problem of determining the word or con-
cept that a subject holds in their mind prior to the act of speech using
only a scalp-recorded electroencephalogram (EEG). Such speech acts are
called covert, silent, or implicit speech acts in the literature. We consider
a binary-tree classifier that uses one of a number of candidate feature
types, including temporal correlation coefficients, spectral correlation,
and time-gated raw voltages. The particular features and binary-tree pa-
rameters are blindly determined using the local discriminant basis (LDB)
technique. The experiments involve sequential presentation of words and
numbers on a computer screen. The subject wears an EEG scalp cap
and is instructed to first consider the stimulus, then speak it. Later, the
subject is instructed to perform the same task without the actual utter-
ance, resulting in implicit speech. We present performance results for the
various obtained classifiers, which show that the approach has significant
merit.

1 Introduction

Speech recognition is a critical element of human-to-machine interfaces for an
increasing number of applications. It is used for a variety of purposes from com-
mand and control to transcription. Most speech recognition applications begin
with a general database of models, build extensive libraries of speaker-specific
templates, and use Bayesian networks or other statistical means to apply word
and grammar logic for more accurate interpretation. However, these applications
remain challenged by inter-speaker variances, generalization to populations of
speakers, noisy environments, and the ambiguities created by homophones and
confusables. In addition, overt speech recognition applications are ineffective for
many aphasias such as speakers who are impaired by stroke or traumatic brain
injury, and locked-in subjects—individuals who have lost the ability to generate
overt speech while retaining most or all other cognitive functions. These injured
and locked-in subjects have few options for human-to-machine interfaces and
often suffer with imperfect or non-existent human-to-human interaction. In re-
sponse, researchers are studying the use of electromyograms (EMG) for subvocal
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speech recognition (cf. [1]). Subvocal speech is silent speech or what we call im-
plicit speech. Subjects either mouth the words, or merely think about the words,
but they do not vocalize the speech. For individuals in noisy environments or
ALS patients who often can mouth words but cannot expel sufficient breath to
vocalize, this technique holds promise.

However, EMG-based subvocal speech recognition has two major challenges.
First, movement in the system severely disrupts attempts to match EMG pat-
terns to intended speech. Second, the patterns thus far cannot be generalized—
they are individual specific. In parallel, beginning in 1975, researchers began
testing the feasibility of engineering two-way human-to-machine interfaces driven
by the associated electrical activity of the brain. In [6], the authors concluded
that both overt and implicit speech (i.e., thinking words without the correspond-
ing overt utterance) recognition from EEG was possible if noise and interference
sources could be minimized. Suppes and his collaborators demonstrated the abil-
ity to recognize one of seven words by first creating templates of averaged, simul-
taneously recorded EEG and MEG signals [14]. More recently, Viirre and Jung
in [15] proved the ability to distinguish between spoken homophones by analyz-
ing specific EEG components produced by an independent component analysis
approach. In all cases, the authors illustrated that EEG activity during explicit
speech was distinct and word-specific for a finite set of words and small numbers
of subjects. Pinneo and Hall [6] specifically investigated the EEG of implicit
speech and concluded that it was also distinct and word-specific.

Neural Basis for Speech Production
Evidence suggests that specific brain processes are invoked in speech produc-
tion and those processes provide related detectable and exploitable signals. The
current theory of speech production is the byproduct of modern language per-
ception and production theory. Driven primarily by study of aphasias, the theory
provides a modern framework consisting of three large interacting systems: the
language implementation system, the mediation system, and the conceptual sys-
tem. These systems encompass large portions of the left hemisphere in 96% of
the population.

From [5], fMRI results from a subject instructed to utter a reveal successive
activation in the cerebellum, basal ganglia, thalamus, cingulated motor area,
primary motor cortex, and the supplementary motor area. The activation, deac-
tivation, and interaction of these widely varying regions during lexical selection
(cf. [2]), and syntactics and semantics (cf. [3]) processing are therefore potential
sources of signals for implicit speech recognition.

2 Technical Approach: Advanced Signal Processing
Techniques Applied to EEG

The distributed nature of neural activity naturally leads to an assumption that
the spatial relationships of that activity contain exploitable information. Past
work performed during the Advanced Signal Processing for Neuroscience project
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(ASPN) [13] supports this supposition. We investigate the utility of several signal
processing tools to the problems of characterizing and exploiting temporal and
spatial EEG signal variations during implicit speech production.

Correlation and Temporal Coherence.
The spatial component of the EEG signal suggests that the cross correlation
function and the normalized cross-correlation coefficient could be excellent classi-
fication measures. When combined with high spatial-resolution EEG recordings,
both measures exploit the full breadth of space and time information. Consider
two discrete-time signals x(t) and y(t). The cross correlation is defined by

Rxy(τ) = lim
T→∞

1

T

T−1∑
t=0

x(t)y∗(t− τ),

The correlation coefficient (temporal coherence) is the normalized cross corre-
lation. The normalizing coefficient is the geometric mean of the mean-square of
the two involved signals,

Cxy(τ) =
Rxy(τ)

[Rx(0)Ry(0)]
1/2

,

where Rx(τ) is the autocorrelation function for x(t). Features resulting from
the examination of the correlation and coherence of EEG data across space and
time provide task-specific indications of time-phased neural activity associated
with specific experiment tasks. By exploiting these features it is possible to
distinguish subtle differences in tasks that have been indistinguishable using
other more traditional methods.

Cyclostationary Signal Processing.
Another statistical signal processing approach shown to reveal new information
in scalp-recorded EEG signals arises from modeling EEG as cyclostationary sig-
nals [7,8]. Cyclostationary signals are the result of non-linear mixing between a
stationary signal component and periodic signal components. The resulting sig-
nal has statistics that vary periodically with time, in many cases with multiple
fundamental periods (polycyclostationary). In communications, the mixing of a
sinusoidal carrier wave with multiple nonstationary components such as the in-
formation bit waveform or framing, results in a polycyclostationary signal. The
same general mixing processes occur within the complex environment of neural
activity and can manifest in exploitable cyclostationarity in EEG recordings.
Two key functionals that are indicative of the nature and degree of cyclostation-
arity are the spectral correlation function and the normalized spectral coherence.
The temporal correlation between two narrowband frequency components of a
signal can be nonzero for nonstationary signals (i.e., cyclostationary signals).
This is called spectral correlation and is defined in terms of a generalization of
the power spectrum,

Sα
xT,Δf

(f) = gΔf (f)⊗
[
1

T
XT (f + α/2)X∗

T (f − α/2)

]
,
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where gΔf (f) is a pulse-like smoothing function with width Δf , ⊗ denotes
convolution, and XT (f) is the finite-time Fourier transform for x(t). The ideal
spectral correlation function is obtained by the following double limit

Sα
x (f) = lim

Δf→0
lim

T→∞
SxT,Δf

(f)

The spectral correlation function can be converted to a correlation coefficient by
normalizing by the geometric mean of the variances of the two quantities involved
in the correlation operation. This leads to the spectral coherence function,

Cα
x (f) =

Sα
x (f)

[S0
x(f + α/2)S0

x(f − α/2)]
,

where S0
x(f) is the power spectrum for x(t). Features derived from the spectral

correlation and spectral coherence functions of scalp-recorded EEG signals could
reveal rich and potentially exploitable structure.

Wavelets and the Local Discriminant Basis.
The local discriminant basis (LDB) [9,10] is another complex modern signal
processing tool aimed at automatic identification of powerful wavelet-based dis-
crimination functions for use in arbitrary M-class signal- or image-classification
problems. The explanation below is adapted from [11] closely except where noted.

The wavelet transform of an N ×N image is defined by a pair of quadrature
mirror filters, h and g and a maximum decomposition depth D [4]. The filters h
and g are low- and highpass filters, respectively. The transform applies the filters
to the rows and columns of the image interactively, subsamples the results, and
begins the process anew with the subsampled data. The filters are applied in all
four of their row-column combinations: low-low (LL), low-high (LH), high-low
(HL), and high-high (HH), resulting in Lx, Vx , Hx, and Dx residuals. At each
iteration, the convolution-sampling operation is applied to the Lx data only,
while the other three data sets are retained as is. At the final stage (stage D)
the Lx coefficients are also retained.

Now, suppose the context of the wavelet decomposition involves a classi-
fication problem with C classes, and we have Nc training images for classes
c = 1, . . . , C, provided in sets Xc. The LDB finds a basis such that there are a
few basis vectors whose coefficients vary widely among the classes, while varying
little between members of a class. Thus, the basis provides an excellent tool for
classification. Before selecting a vector for good discrimination between classes,
a measure of the average strength of the vector coefficients is required. Then by
establishing a measure of the distance or difference between the basis coefficients
for two or more classes, this distance indicates the discrimination power of the
corresponding basis vector. By using an algorithm to optimize the selection of the
vectors, a final set of basis vectors results. The power of wavelet-based LDB lies
in its ability to calculate the optimized basis vectors and classify data blindly. As
different transforms are developed for EEG processing, the LDB tool calculates
the basis vectors and performs classification without modification. This enables
rapid evaluation of new transforms, features, and data sets.
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Fig. 1. The concept behind the local discriminant basis (LDB). The LDB is similar to
the concept of best basis used in wavelet-based signal and image compression. Instead
of finding the most parsimonious basis to represent an input, the LDB finds the basis
that best discriminates between the classes involved in the classification problem.

3 Experimental Methods

The EEG procedure used was a standard clinical EEG collection that involves
placing a stretchable cap containing 128 small electrodes on the subject’s head
and then filling each electrode with a water-soluble gel. In addition, electrodes
were taped above and below one eye, as well as on the right and left to mon-
itor eye movements. After the EEG systems were in place a baseline reading
was obtained for 5 minutes. During baseline the subjects sat in a comfortable
chair in front of a blank computer monitor. After the baseline was obtained the
computer word task started. The task lasted approximately 30 minutes. Sub-
jects were shown words individually and asked to speak clearly after the word
appeared. Words appeared in random order in intervals of 5–7 seconds. Subjects
were given words from sets such as too vs. two and four vs. for. Over a 30-minute
session, each individual word was spoken 100 times. Subjects provided data for
four separate experiments. The experiments were designed to progress from ex-
plicit speech recognition to implicit speech recognition with the final experiment
designed to approximate real-world conditions. The experiments were:
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1 Explicit Speech Output. Explicit speech utterances augmented by voice
recording of the utterance, and electromyography (EMG) channels.

2 Explicit Speech Expanded Set. Explicit speech utterances for an ex-
panded set of words and phrases augmented by voice recording of the utter-
ance, and electromyography (EMG) channels.

3 Implicit Speech. Implicit speech “utterances” augmented by voice record-
ing of the utterance, and electromyography (EMG) channels. The full set of
words and numbers presented as stimuli for this experiment is: {1, 2, 4, 8,
Ate, Eight, For, Left, One, Right, Two, Won}.

4 Results

Data was collected for all three experiments from 12 subjects. Data from one
subject was corrupted and not processed. Data from the remaining 11 subjects
was processed first using algorithms developed under the ASPN program. Sub-
sequently, we focused on Experiment 3, the implicit speech task, processing that
data with both ASPN algorithms, and new techniques developed specifically for
the implicit speech data.

Because it most closely approximates the performance goals of an operational
system and simulates a real-world environment, Experiment 3 produced the most
critical data. Thus, the results from processing Experiment 3 data are highlighted
below. Figure 2 shows the first of three views of the processing results. For each
two-class problem derived from the twelve presented stimuli, (i.e., is the subject
implicitly speaking Stimulus 1 or Stimulus 2?) we have plotted the maximum
probability of correct classification (PCC) in the bar graph. Each of the stimuli
are represented on the x-axis and the maximum two-class PCC is plotted on
the y-axis. There are four colored bars for each stimulus. They represent the
four feature sets we used to classify the trials. The blue bar is the performance
using the temporal coherence (“Second-Order Statistics”), the green bar shows
performance using cyclostationary statistics (“Cycle Frequencies”), the pink bar
is performance using features derived directly from the filtered EEG data in
the full two seconds for each trial. Finally, the black bar shows the performance
when using the filtered EEG data features but restricting the time interval to
between 200 and 800 milliseconds post stimulus. The solid red line shows a
PCC of 50% which is the result for random guessing. In nearly every case, the
time-restricted, filtered EEG data provided the maximum performance. All four
feature sets show maximum performance superior to random guessing.

The second view of our implicit-speech experimental results is shown in Figure
3. Here, the four colored lines represent performance with the corresponding
feature sets. In this plot, the relative frequency of occurrence for a given PCC
is shown. The red dashed line is again the PCC for random guessing. When
more area under a curve can be found to the right of the red dashed line than
to the left, then our classifier performed better than random guessing for that
particular two-class problem. Note again that the black line representing the
performance of the restricted time interval features has the vast majority of area
to the right of the random-guess line.
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Fig. 4. PCCs for Subject 3 implicit-speech experiment

Fig. 5. Hand-culled voltages taken from various EEG channels for an explicit-speech
experiment. Note the high degree of separability by stimulus type. This type of sepa-
rability is consistent with our Subject-3 blind feature identification and classification
results.



510 C.M. Spooner, E. Viirre, and B. Chase

The third representation of our results is shown in Figure 4, in which the
PCCs for all two-class problems and all classification-feature types are displayed
as matrices. From this figure, it is clear that using the time-gated raw EEG
voltages provides the best overall performance for Subject 3. However, the dif-
ferent feature types provide different performance levels for the various two-class
problems, suggesting that we might obtain substantially better performance by
properly combining the features in a new classifier.

Detailed EEG Voltage Analysis
In addition to the blind feature-identification and processing using the local
discriminant basis, we also extracted voltages from various channels for several
stimuli in an attempt to gain a qualitative understanding of the potential for
feature separation by stimulus type. An example is shown in Figure 5.

5 Discussion and Conclusions

The processing results show a clear proof of concept for decoding implicit speech
using only scalp-recorded EEG. The results were obtained by processing raw
EEG signal data to approximate real-world processing. There were no steps
taken to eliminate artifacts from eye blinks, head movement, or any other noise
introduced into the signals. In addition, the analysis presented is independent
of the signal environment. There were no brain models (signal/channel models)
employed to develop the algorithms.

The real-world signal environment was approximated further by avoiding cal-
ibration or subject training routines and by specifically isolating the signals to
EEG only and limiting the EEG to non-motor related EEG. No pre-motor or
motor program content was used. Finally, no prior knowledge of the signals was
assumed so the algorithms were specifically designed to operate blindly, exploit-
ing unknown signals.

A significant issue that was uncovered and addressed involved the challenging
real-world timing of the features used to decode the implicit utterances. The EEG
data contains features for implicit utterances with loosely constrained timing
meaning the utterance onset varies randomly over the trials as it would in an
operational environment. The algorithms still identify signal patterns related to
implied utterances independent of this random timing making these techniques
tolerant to unknown delays.

The algorithms extracted more information from the frequency domain (ex-
ploited wider bandwidth and higher frequencies), from the spatial domain (an-
alyzed all viable channels), and from the time domain (derived features from
several hundred milliseconds) than any previous work in speech recognition.
By using every degree of freedom available and narrowing the feature set to a
small number of key features, the algorithms achieved results extendable to an
operational system. Finally, the signal processing results correlate with neurolin-
guistics. Analysis of timing and channel locations are consistent with neurolog-
ical functions associated with the production of an utterance. Because of this,
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evidence suggests roughly ten (or less) specific EEG channels will be required
for the ultimate applications of decoded implicit speech.
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Abstract. While making a decision to maximize the expected utility is among 
the prime examples of human intelligence, the ultimatum game showcases a 
social dilemma where people sacrifice their economic self-interest in the 
presence of negative emotions. In the present study, we explore human 
cognitive-affective interactions in strategic thinking from an integrated 
neurocomputational perspective. We manipulated participants’ emotions by 
inducing incidental affective states in the ultimatum game. We found that 
participants’ rejection rates of unfair offers were significantly lower in positive 
valence emotions (“happy” and “calm”) than in negative valence emotions 
(“sad” and “anxious”). In addition, the reduction of rejection rates appeared to 
be independent of the arousal level (high arousal in “happy” and “anxious” 
versus low arousal in “calm” and “sad”). Our results suggested that positive 
valence emotions, by broadening people’s evaluations of decision perspectives 
and alleviating the perception of unfairness, may help people regain focus on 
their economic self-interest.  

Keywords: Decision making; social dilemma; ultimatum game; affective 
induction; fairness preference; valence; arousal. 

1 Introduction 

Normative theories of judgment and decision-making in economics typically assume 
people to be rational and self-regarding [e.g., 1]. However, it has been documented that 
in the context of social interactions, people do not always act to maximize their self-
interest according to the utility functions. One prominent example is the ultimatum 
game, a relatively recent showcase of human “irrationality” in decision making [2]. In 
a simple form of the game, two players decide how to divide a $10 award. One player 
(the proposer) makes an offer and the other player (the responder) decides whether to 
accept the offer. If the responder accepts the offer, the award is split as proposed. If the 
responder rejects the offer, both players get nothing. Suppose that the proposer may 
make any offer from $0 through $10, presumably a “rational” (i.e., utility maximizing) 
responder should accept any non-zero offer, even if the offer is “unfair” (e.g., less than 
$5), since the alternative is getting nothing. The dominant empirical finding, however, 
is that the responder often rejects an offer less than 30% of the sum, a clear deviation 
from the prediction of normative theories [for a review, see 3]. 
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A straightforward explanation for the rejection behavior in the ultimatum game is 
that the players’ decisions depend on not only their own payoffs but also their 
perception of fairness, and the rejections of unfair offers reflect people’s preference of 
fairness-seeking [4-7]. Knoch and colleagues [8-10] suggest that self-interest and 
fairness preferences operate via different systems: self-interest is the more 
evolutionarily primitive desire but can be suppressed by the fairness preferences in 
order to enforce social norms. Instead of the fairness perception, other studies 
emphasize the role of emotions in the ultimatum game. The wounded pride/spite 
model [11] posits that responders perceive small offers as unfair, and therefore react 
with anger and spiteful rejections [also see 12]. Pillutla and Murnighan [13] find  
that rejections were most frequent when responders could evaluate the fairness of the 
offers and suggest that anger was a better explanation of the rejections than the 
perception of unfairness. Mikula, Scherer, and Athenstaedt [14] show that injustice 
elicits anger, disgust, sadness, and other negative emotions. Functional neuro-imaging 
studies have revealed that unfair offers induce activations in brain regions that are 
associated with disgust [15, 16]. 

 

 

Fig. 1. An attentional distribution network in which perceptions of fairness and self-interest are 
modulated by the immediate emotion 

From an integrated neurocomputational perspective, Wang, Coble, and Bello [17] 
propose that unfair offers in the ultimatum game lead to cognitive-affective 
interactions, in which the utility calculation in the posterior cortices is modulated by 
the affective states represented in the lower-level sub-cortical areas. This account 
points to a biologically realistic model in which emotional and cognitive processes are 
integrated into one attentional distribution network (Fig. 1). Specifically, we 
conjecture that in resolving the conflict between self-interest and fairness, emotions 
can have a causal effect on decision-making due to their roles in guiding attentional 
resources. When the players (respondents) consider an offer, they distribute their 
attentional resources between two preferences, self-interest and fairness, and such 
attentional distribution is regulated by the players’ immediate emotion. When an offer 
is perceived as unfair, a conflict would arise because seeking for fairness now means 
rejecting the offer thus hurting self-interest. Because an unfair offer can elicit negative 
emotions [e.g., 11] and negative emotions tend to narrow the scope of people’s  
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attention [e.g., 18], the players would be entrapped in the loop of focusing too much 
attention on the fairness preference, and consequently, ignore the aspect of self-
interest. 

In the present study, we examine whether emotion actually regulates the attentional 
distribution by inducing a range of incidental affective states (e.g., positive vs. 
negative valence, high vs. low arousal) that are independent of the fairness of offers. 
In the two experiments reported here, we manipulated the participants’ immediate 
emotions with classic music clips [19, 20] as the main affect stimulus, enhanced by 
life event recall [19]. Our main focus was to compare participants’ rejection rates in 
two sets of opposite emotional states: “happy” (positive valence and high arousal) 
versus “sad” (negative valence and low arousal) in Experiment 1, “calm” (positive 
valence and low arousal) versus “anxious” (negative valence and high arousal) in 
Experiment 2. Based on the documented functionalities of positive and negative 
emotions [19], we predict that compared with negative valence emotions (“sad” or 
“anxious”), positive valence emotions (“happy” or “calm”) would make participants 
less distracted by the aspect of fairness thus focus more attention on self-interest, and 
consequently, lead to fewer rejections of unfair offers. Moreover, in dissociating 
valence and arousal, we speculate that the perception of fairness or unfairness would 
be more strongly associated with the valence than the arousal dimension of emotions. 

2 Experiment 1 

2.1 Participants 

Seventeen participants (9 females and 8 males) participated in the experiment as 
responders, all of whom were graduate students or postdoctoral fellows in the Texas 
Medical Center (the mean age was 33.8 years with a standard deviation of 8.79 years). 

2.2 Stimuli for Affective Inductions 

Ten classical music clips from 18th, 19th, and 20th century Western composers were 
selected, five for each of the “happy” and “sad” affective inductions. These clips have 
been empirically validated to induce the corresponding affective states [20]. To 
enhance the inductions, we instructed the participants to silently recall into details of a 
happy or sad life event while listening to the music. Life-event recall, combined with 
music, has been used to successfully induce affect [19].  The standard ultimatum 
game involves only gains. Wang et al. [17] add a loss framing, in which the proposer 
and the responder split a cost of $10, and rejecting a proposal means both players 
having to each pay $10. It is possible that people’s immediate emotion could interact 
with the perception of gain or loss. For example, one might feel “happier” considering 
a potential gain than considering a potential loss. For this reason, we adopted this 
two-frame game in the current experiment. 
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2.3 Design and Procedures 

We used a 2 (affect conditions: “happy” and “sad”) x 2 (framings: gain and loss) x 11 
(offer amounts: $0, $1, $2…, $10) within-subject design. For each participant, the 
trials were grouped into 4 blocks (2 affect conditions x 2 framing conditions), and the 
orders of framing and affective conditions were counter-balanced between subjects. 
Within each block, each level of offer amount was repeated 3 times, resulting in 11 x 
3 = 33 trials, and the order of trials was randomly shuffled. 

The experiment was programmed in E-Prime and conducted on a PC with a 20 
inch LCD monitor. After giving informed consent, participants were given 
instructions and practices of the game. They were told that they would play against 
individual anonymous proposers from a large online network, a new proposer for each 
game. At the beginning of each block, participants were instructed to develop a 
particular mood by listening to the music clips through the headsets for 5 minutes, 
followed by silently recalling in detail mood-appropriate events from their past. They 
were then instructed to rate their mood on a 9x9 grid by selecting a square that best 
exemplified their current mood in terms of valence (from “extremely sad” on the left 
to “extremely happy” on the right) and arousal (from “extremely low energy” at the 
bottom to “extremely high energy” at the top). 

At the beginning of each game trial, participants were first prompted with a screen 
stating “New round! Connecting to a new partner …” for 2 seconds. This was to 
emphasize that each trial was a one-shot game with a different proposer such that the 
factor of reputation should not play a role here. In other words, rejecting the offer in 
the current trial would not serve as the means of punishing a unfair proposer in the 
previous trial. Then, depending on the framing condition, either “You get” or “You 
lose” was displayed for 1 second, which was followed by the amount of offer. 
Participants made a response by clicking either one of the mouse buttons to accept 
(left button) or reject (right button) the offer. 

2.4 Experiment 1 Result 

All 17 participants’ data were included in data analyses. To examine whether 
affective inductions were effective, we first checked participants’ self-reported ratings 
on emotional valence and arousal. Both ratings corresponded well to the intended 
affective states (see Table 1 and Figure 2). Compared with the “sad” condition, the 
“happy” condition resulted in higher ratings on both valence (mean difference = 4.03, 
paired t(16) = 8.63, p < .01) and arousal (mean difference = 2.53, paired t(16) = 6.01, 
p < .01).  

On participants’ rejection rates, we first examined the effects of affective 
conditions (“happy” vs. “sad”) and framing domains (gain vs. loss) by repeated-
measure ANOVA. Overall, affective conditions had a significant effect. Combining 
the corresponding columns in Table 2 (Experiment 1), it reveals that the overall 
rejection rate in the “happy” condition (22.9%) was significantly lower than in the 
“sad” condition (32.0%), with a mean difference of 9.1%  (F(1,16) ≈ 7.03, p < .05).  
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Table 1. Mean ratings on valence and arousal under each affective condition. Both ratings are 
scored in the range of [–4, 4] with 0 being neutral. Standard errors (over 17 participants in 
Experiment 1 and 12 participants in Experiment 2) are listed in parentheses. Column 
“Difference” is the absolute mean difference of valence or arousal ratings between “Sad” and 
“Happy” (Experiment 1), or, “Anxious” and “Calm” (Experiment 2), respectively. **: paired t-
test, p < .01; *: p < .05. 

Exepriment 1 

 Happy Sad Difference 

Valence rating 2.29 (0.27) – 1.74 (0.35) 4.03 ** 
Arousal rating 1.82 (0.31) – 0.71 (0.38) 2.53 ** 

Experiment 2 

 Calm Anxious Difference 

Valence rating    1.75 (0.26) – 0.67 (0.61)      2.42 ** 
Arousal rating – 0.58 (0.49)    0.88 (0.42) – 1.46 * 

Table 2. Mean rejection rates in percentage under each affect and framing conditions. Standard 
errors (over 17 participants in Experiment 1 and 12 participants in Experiment 2) are listed in 
parentheses. The bottom row lists the difference in rejection rates between “happy” and “sad” 
(Experiment 1), and, between “calm” and “anxious” (Experiment 2). In each framing condition, 
offers are split into sub-columns depending on whether they are less or greater than $5: offers 
less than $5 in the gain domain and greater than $5 in the loss domain are considered “unfair” 
(in bold fonts). 

Experiment 1 

 Gain Loss 

 < $5 (unfair) > $5 < $5 > $5 (unfair) 

Happy 

Sad 

51.0 (7.2) 

67.5 (7.8)  

3.9 (1.9) 

4.3 (2.9) 

0 (0) 

2.4 (1.6) 

45.1 (7.1) 

62.7 (8.8) 

Diff. 16.5 0.4 2.4 17.6 

Experiment 2 

 Gain Loss 

 < $5 (unfair) > $5 < $5 > $5 (unfair) 

Happy 

Sad 

52.8 (9.6) 

60.6 (7.9)  

0.6 (0.6) 

2.2 (1.7) 

5.6 (4.4) 

13.3 (6.9) 

42.2 (10.2) 

53.3 (9.7) 

Diff. 7.8 1.6 7.7 11.1 

 
The effect of framing and its interaction with the affective conditions were not 
significant (F(1,16) ≈ 1.90, p ≈ .19; F(1,16) ≈ 0.07, p ≈ .80, respectively). In addition, 
Table 2 (Experiment 1) shows that between the gain and loss domains, the rejections 
rates were almost symmetrically distributed across affective conditions. Since we  
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were particularly interested in whether the induced emotional states would alter 
participants’ perception of fairness or unfairness, we separately examined two 
situations in which an offer was either “unfair” (less than $5 in the gain domain and 
greater than $5 in the loss domain) or “more-than-fair” (greater than $5 in the gain 
domain and less than $5 in the loss domain). The effect of affective conditions was 
statistically significant for “unfair” offers (F(1, 16) ≈ 10.30, p < .01) but was not 
statistically significant for “more-than-fair” offers (F(1, 16) ≈ 0.36, p ≈ .56). The last 
row in Table 1 (Experiment 1) shows that the difference in the rejection rates between 
two affective conditions was always in the same direction across all columns (lower 
rejection rates in “happy” than in “sad”), but the magnitude was the greatest for unfair 
offers in both framing domains. 

 

Fig. 2. Self-reported ratings on affective valence and arousal and rejection rates for unfair 
offers (gain and loss combined) in comparing “happy vs. sad” (Experiment 1) and “calm vs. 
anxious” (Experiment 2). Error bars represent one standard error above and one standard error 
below the mean. 

3 Experiment 2 

To dissociate the two dimensions of emotion, valence and arousal, we conducted the 
second experiment in which we compared two different affective states, “calm” 
(positive valence and low arousal) and “anxious” (negative valence and high arousal). 

3.1 Participants and Procedure 

Twelve participants (6 females and 6 males) who were not included in Experiment 1 
participated in Experiment 2, all of whom were graduate students or postdoctoral 
fellows in the Texas Medical Center (the mean age was 35.5 years with a standard 
deviation of 7.44 years). Experiment 2 followed the same design and procedure as 
Experiment, except that we used classical music clips from [19], combined with life-
event recall, to induce “calm” and “anxious” affective states. 
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3.2 Experiment 2 Result 

All 12 participants’ data were included in data analyses. Again, participants’ self-
reported ratings on emotional valence and arousal corresponded well to the intended 
affective states (see Table 1 and Figure 2). Compared with the “anxious” condition, 
the “calm” condition resulted in higher ratings on valence (mean difference = 2.42, 
paired t(11) = 3.87, p < .01) but lower ratings on arousal (mean difference = – 1.46, 
paired t(11) = – 2.59, p < .05). Compared with Experiment 1, the differences on both 
valence and arousal ratings between the two target emotional states were in smaller 
magnitudes. Nevertheless, in terms of dissociating valence and arousal, we have 
obtained an obvious contrast: Figure 2 shows that in contrast to the “happy-sad” 
comparison, the “calm-anxious” comparison was in the same direction on valence 
ratings, but in the opposite direction on arousal ratings. 

Comparing two experiments, despite the reversed contrast on arousal ratings, 
rejection rates were similar between “happy” and “calm”, and between “sad” and 
“anxious”, respectively (both between-subjects comparisons were not statistically 
significant) (see Table 2 and Figure 2). Specific to Experiment 2, participants under the 
“calm” condition were more likely to accept offers than under the “anxious” condition. 
For example, combing the corresponding columns in Table 2 (Experiment 2), it reveals 
that the overall rejection rate in the “calm” condition (23.1%) was lower than in the 
“anxious” condition (30.0%) (mean difference = 6.9%, F(1,11) ≈ 4.62, p ≈ .05).  

4 Discussion 

The ultimatum game showcases the potential conflict between two of the main motives 
underlying social decision making: self-interest and fairness [21]. In the present study, 
we examined the effects of emotions in resolving such a conflict in two emotional 
dimensions, valence (positive vs. negative) and arousal (high vs. low), in four 
emotional states, “happy”, “sad”, “calm”, and “anxious”. We found that participants 
were more likely to accept offers in positive valence emotions (“happy” and “calm”) 
than in negative valence emotions (“sad” and “anxious”), and the reduction of rejection 
rates was more apparent for “unfair” offers than “fair” offers. In addition, the reduction 
of rejection rates appeared to be independent of the arousal levels (high arousal in 
“happy” and “anxious” versus low arousal in “calm” and “sad”). 

In general, our findings supported our hypotheses that emotion as a separate input 
can causally affect decision-making, and emotional states with positive valence can 
alter people’s attentional distribution between the fairness preference and self-interest 
by alleviating the perception of unfair treatment. That is, under the influence of 
positive valence emotions, participants were less likely to be distracted by the unfair 
treatment and more likely to make decisions based on their self-interest. Our results 
were congruent with the recent findings in both neurological and psychological 
research which posits that emotions can serve as a separate information input to 
directly shape the decision process [19, 22-25]. There is a convergence of opinions 
emerging from recent cognitive and affective sciences pointing toward the reciprocal 
causal links between the cognitive, behavioral, and somatic mechanisms, where 
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emotions are considered as self-perpetuating emergent systems [26], and positive 
affects can enhance evaluations and empower potential responses [27, 28]. Together, 
it is indicated that positive valence emotions, by broadening people’s evaluations of 
decision perspectives and alleviating the perception of unfairness, may help people 
regain focus on their economic self-interest.  
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Abstract. Brain wave activity is known to correlate with decrements in  
behavior brought on by fatigue, boredom or low levels of alertness. Being able 
to predict these behavioral changes from the neural activity via electroencepha-
lography (EEG) is an area of ongoing interest. In this study we used an  
established approach to predict time-on-task decrements in behavior for both a 
realistic driving simulator and a difficult perceptual discrimination task, utilized 
in many brain-computer interface applications. The goal was to quantify how 
well EEG-based models of behavior, developed for a driving paradigm, extend 
to this non-driving task. Similar to previous studies, we were able to predict 
time-on-task behavioral effects from the EEG power spectrum for a number of 
participants in both the driving and perception tasks.  

Keywords: EEG, Fatigue, Power Spectral Density, Driving, RSVP. 

1 Introduction 

The ability to detect changes in performance induced by fatigue directly from biologi-
cal markers has been an area of growing interest over recent decades. One particularly 
relevant application is the detection of reduced alertness or fatigue during driving. 
Because fatigue is a major cause of accidents and injury when operating motor vehicles 
[1], robust identification of fatigue before it impairs behavior would be of significant 
value. To this end, numerous studies have identified indicators of fatigue-induced 
changes in driver performance either from physiological observables [2–4] or neural 
signals [5]. While the physiological signals may be easier to acquire, some without 
necessitating direct contact with the driver, neural markers offer a more direct measure 
of the underlying changes in cognitive state. These changes in cognitive state, by na-
ture, are the most proximal cause of the performance decrements and offer the best 
chance of detecting fatigue before the effects are evidenced in the driving behavior. 

Electroencephalography (EEG) is the most common approach for quantifying the 
neural correlates of fatigue. Typically, EEG measurements are acquired during a long, 
sustained and monotonous task such as highway driving. With such tasks, behavior 
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begins to degrade as a function of time-on-task, presumably induced by fatigue or 
boredom. Features of the EEG signal, such as fluctuations in power along certain 
frequencies or changes in evoked amplitudes, can then be correlated with the degrada-
tion in performance. Many studies exploring the neural correlates of fatigue use 
changes in the EEG log power spectrum as principal features in their analysis [6–9]. 
This idea is based on a large body of literature that has linked EEG frequency bands, 
such as theta (4 to 8 Hz) or alpha (8 to 13 Hz) to changes in task-relevant behavior. 

One of the most general but potentially powerful approaches was described by Lin 
et al (2005) [10]. This approach takes an agnostic view as to the a priori selection of 
frequency bands but rather uses principal component analysis to identify the sets of 
frequencies that explain the most variance in the EEG power spectrum. Here, we 
wanted to extend the Lin approach to a non-driving, but potentially fatigue-inducing, 
task to quantify how well this particular EEG-based model of driver performance 
would extend to other domains. In this case we chose a perceptual discrimination task 
often utilized in brain-computer interface technology (BCIT): rapid serial visual pres-
entation (RSVP). In RSVP, visual stimuli are presented in a rapid sequence (from 1 to 
20 Hz) while the operator tries to identify the few target or relevant stimuli from the 
many irrelevant stimuli. 

In this study, we sought to quantify how well the Lin approach for predicting time-
on-task decrements in driving behavior translated to performance in an RSVP task. To 
accomplish this, we designed a study in which participants engaged in both a mono-
tonous driving task and a perceptually difficult RSVP task. This construct allowed us 
to examine how well the Lin approach performed within and across task paradigms. 
Importantly, to quantify the nature and extent of the time-on-task decrements in per-
formance, we acquired subjective, behavioral, and neurophysiologic measures 
throughout the experiment. 

2 Methods 

Participants. Eighteen participants were recruited from the general population. They 
ranged in age from 21 to 49 (mean = 31.1) and included seven males. Fifteen of the 
participants were right handed, one was left handed, and two were ambidextrous. All 
individuals participated in a single multi-hour session containing three phases and 
received compensation of $20 per hour. The voluntary, fully informed consent of the 
persons used in this research was obtained as required by Title 32, Part 219 of the 
Code of Federal Regulations and Army Regulation 70-25. The investigator has ad-
hered to the policies for the protection of human subjects as prescribed in AR 70-25. 
None of the participants were excluded from the analysis due to noise, movement 
artifacts, or low behavioral performance. 
 
Design and Experimental Procedures. The study design involved 3 tasks (figure 1): 
calibration, driving, and rapid serial visual presentation (RSVP). The calibration ses-
sion was always performed first but the order of the driving and RSVP alternated for 
each participant. 
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Calibration. This task consisted of a standard driving simulator (Real Time Technol-
ogies; Dearborn, MI) with a steering wheel and foot pedal controls. In the simulator 
the vehicle was moving down a straight highway at a constant speed (computer con-
trolled) in the rightmost lane. Participants were asked to maintain the vehicle position 
within the current cruising lane by correcting for any perturbation or drift. At random 
intervals a lateral perturbation was applied to the vehicle, causing it to begin to veer 
off course. The strength of the perturbation increased until a corrective steering ad-
justment was made at which point the perturbation ceased, allowing the participant to 
return the vehicle to the center of the rightmost lane. The perturbations would only 
resume once the vehicle was back in the cruising lane for at least 8 seconds. If the 
vehicle drifted beyond the edge of the simulated roadway, participants would receive 
audible feedback (i.e., rumble strip noise). The simulated environment was minimal 
and included no traffic or scenery in order to induce boredom and task fatigue. The 
calibration task consisted of a single 15 minute block and was designed to familiarize 
participants with the driving simulator and acquire EEG baseline activity. 

 

Fig. 1. Experiment design. A) Experiment timeline including calibration, driving and RSVP 
tasks (note that the order of the driving and RSVP tasks alternate between participants). Hori-
zontal black lines indicate block intervals. B) Screenshot of driving simulator. C) RSVP para-
digm and example images. 

Driving. This task was similar to the calibration task except that participants were 
now given control over the vehicle speed (indicated by a speedometer). Participants 
were asked to maintain both the vehicle position and speed. Speed limit signs were 
posted at regular intervals with values of either 25 or 45 miles per hour. Again, the 
simulated environment was minimal and included no traffic or scenery. The driving 
task consisted of 6 blocks of 10 minutes each. 
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RSVP. This task consisted of a rapid presentation of color photographs (512 x 662 
pixels) of indoor and outdoor scenes. The images were presented at 5 Hz (200 milli-
seconds per image) and subtended a visual angle of approximately 9°. Every 10 
seconds a blank screen with the word “blink” was presented to give participants a 
chance to blink without missing stimuli. The RSVP task consisted of 6 blocks of 10 
minutes each (to mirror the driving task). All scenes contained only inanimate objects 
and were manually centered, scaled and cropped. Some scenes contained target ob-
jects and others did not. Before each block participants were instructed as to the class 
of target objects for that block. The target classes for this experiment were: stair, con-
tainer, poster, chair, and door. Before the task began, participants were familiarized 
with exemplars from each target class. During the RSVP, participants were instructed 
to press a button only when they saw an object from the current target class. The order 
of the target classes was randomly chosen for each participant (blocks 1-5); however, 
the last block (block six) always had the same target class as the first block. In addi-
tion to target class, target probability varied across each block. Six target probability 
values (0.01, 0.03, 0.05, 0.07, 0.09 and 0.11), one for each block, were randomly 
assigned at the beginning of the task. 
 
Subjective Measures. Self-reports of fatigue (the Visual Analog Scale for Fatigue 
[11], the Task-Induced Fatigue Scale [12], and the Karolinska Sleepiness Scale [13]) 
were collected at various times during the experiment. Overall, the participant reports 
of fatigue confirmed that both the driving and RSVP task induced fatigue and bore-
dom (data not shown).  
 
Behavioral Measures. During the driving simulator task, various vehicle status mea-
surements were acquired at 100 Hz. Since the objective was to maintain vehicle posi-
tion within the rightmost lane, lane deviation (the difference between the vehicle's 
lateral position and the center of the lane) was the metric used to assess driver per-
formance. During the RSVP task, participants pressed a button only when they saw a 
target object. Accuracy, reaction time (RT) and duration were determined from this 
button response. Because the image duration (200 ms) was much less than the average 
RT, button responses were assigned to images in the following manner. For each but-
ton press, images within the time window of 1000 ms to 300 ms preceding the re-
sponse were identified. If one or more of these preceding images was a target, the 
button press was assigned to the first (oldest) target image. RT was then calculated 
from the onset of that target image. If no targets occurred within the preceding time 
window, the button press was assigned to the non-target image that preceded the but-
ton press by 600 ms. However, due to the ambiguity of assigning a button press to a 
non-target image, no RT’s were calculated for these images and the process was only 
used to determine the false alarm rate. 
 
Electroencephalography Measures. Electrophysiological recordings were digitally 
sampled at 1024 Hz from 256 scalp electrodes over the entire cortex using a BioSemi 
Active Two system (Amsterdam, Netherlands). External leads were placed on the  
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outer canthus, above and below the orbital fossa of the right eye to record electroocu-
lography (EOG). For power spectrum analysis, EEG was referenced to the average 
mastoids and down-sampled to 256 Hz using the EEGLAB toolbox [14]. For power 
spectrum analysis, only data from the midline channels A1, A6 and A21 (roughly 
corresponding to Cz, Pz, and Oz) was utilized. This selection of channels was based 
on previous studies that examined the correlation between EEG power and driver 
performance over the scalp [10]. 

Moving-average power spectra and linear regression models were calculated in the 
same way as described by Lin et al (2005) with two minor exceptions. First, to nor-
malize the power spectral density (PSD) estimates, we calculated the z-score at each 
frequency over all PSD epochs [15]. Second, for improved signal-to-noise ratio, only 
frequencies between 5-50 Hz from the three channels were included in the principal 
component analysis (PCA). Each participant had separate models fit to their PSD and 
behavioral data from the driving and RSVP tasks. For the driving task, the model used 
absolute lane deviation as the behavioral metric. For the RSVP task, separate models 
were built using target accuracy, reaction time and duration of button press.  

To reduce potential overfitting of the 50-order linear model, the EEG and behavioral 
data was split into 6 cross-validation sets corresponding to the experimental blocks. 
Specifically, a model would be built with data from 5 blocks and tested on data from 
the remaining block. The model performance was quantified using Pearson’s correla-
tion coefficient. The model with the highest correlation coefficient between the pre-
dicted and actual behavior was selected for subsequent cross task prediction. 

3 Results 

3.1 Self Reports and Behavior  

To capture behavioral performance fluctuations induced by changes in alertness level, 
we averaged the RSVP behavioral metrics within sliding 90 second windows (using 45 
second step size). In addition to being aligned with previous studies [8, 10] this win-
dow size enabled a robust estimate of accuracy (average number of trials per window = 
445) even when the target probability was low. Because participants were only  
required to respond when they saw a target and the attribution process for false alarms 
was ambiguous (see Methods), behavioral metrics were calculated for correct target 
trials. Notably, there were large fluctuations both within and across blocks (data not 
shown). Across blocks, these fluctuations could be due to changes in either task para-
meters (target type or target probability) or alertness level (due to fatigue or boredom). 
However, within block fluctuations must be precipitated from endogenous changes 
such as perceptual learning, fatigue, or boredom. To isolate these endogenous changes, 
linear fits and corresponding significance levels were calculated for each block. 

Over the population, the clear modulator of performance in the RSVP task was tar-
get class. This was true for accuracy (F(1,17) = 22.33, p < 0.001), RT (F(1,17) = 7.41, 
p < 0.001) and to a lesser extent button duration (F(1,17) = 2.67, p < 0.05). Similarly, 
target probability had a significant effect on RT (F(1,17) = 25.11, p < 0.001) and 
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duration (F(1,17) = 45.27, p < 0.001) but not accuracy (F(1,17) = 1.48, p = 0.23). 
Although none of the behavioral metrics showed a significant time-on-task effect 
across blocks, most participants had at least one block with a significant decrease in 
accuracy or increase in RT, reflecting a time-on-task performance decrement (average 
number of blocks per participant = 1.94). Far fewer participants had blocks with sig-
nificant performance improvements, either through increased accuracy or decreased 
RT (average number of blocks per participant = 0.56). This difference was significant 
(p < 0.01; paired t-test,), indicating that fatigue or boredom rather than perceptual 
learning modulated within block performance variations. 

3.2 PSD Regression Model  

Previous studies have shown a strong relationship between the EEG power spectrum 
and time-on-task decrements in performance, especially in monotonous driving tasks 
[16]. Less is known about the link between the EEG power spectrum and behavior in 
more complex perceptual tasks, such as the RSVP paradigm described here. To explore 
this relationship further, we fit a linear model to continuous estimates of the EEG pow-
er spectral density (PSD) from the driving task (see Methods). This model was similar 
to ones previously reported in the literature and utilized PSD estimates from three mid-
line electrodes (Cz, Pz, and Oz) to predict the absolute value of the lane deviation (a 
standard metric of driver performance). To match RSVP behavioral metrics described 
above, both the PSD estimates and lane deviation were smoothed over a similar 90 
second window. Here, individual models were built for each participant using a 6 fold 
cross-validation scheme (see Methods). The 6 models were used to predict lane devia-
tion data not included in the training set, yielding 6 independent prediction scores  
(correlation coefficients). Notably, there was a large variance of prediction perfor-
mance within the set of models for each participant. This indicated that the underlying 
relationship between the PSD and driving performance was highly variable between 
training and testing sets and/or the linear model tended to over-fit the training data. 
Since the purpose of this study was to explore how well general models that link EEG 
power spectra with behavior translate across tasks, we did not take additional measures 
to isolate which model coefficients added significant predictive power (e.g., step-wise 
regression). Rather, to minimize over-fitting for each participant we chose the model 
with the highest prediction score on the validation dataset. This model was then used to 
predict the participant’s behavior in the RSVP task. 

In parallel, we used the same approach to build predictive models of behavior for 
the RSVP task. These PSD models had the same structure and cross-validation 
scheme as described above. As with the PSD models of driving behavior, these mod-
els show a high degree of variability for each participant. Again, to minimize over-
fitting, we chose the model with the highest prediction score on the validation dataset. 
Over the population there was no significant difference in model performance be-
tween the two tasks (driving r = 0.547 ± 0.139, RSVP r = 0.556 ± 0.236, p = 0.74; 
Wilcoxon signed rank test). There was also no significant difference between RSVP 
models trained on accuracy versus RT (accuracy r = 0.556 ± 0.236, RT r = 0.504 ± 
0.189, p = 0.45) or accuracy versus duration (accuracy r = 0.556 ± 0.236, duration  
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r = 0.569 ± 0.250, p = 0.71). The results indicate that these linear models of behavior 
based on the EEG power spectrum have roughly the same predicative power in both 
tasks and across a number of metrics. 

To more directly test how these models generalize across tasks, we used the mod-
els from the driving task to predict RSVP behavior and models from the RSVP task to 
predict driving behavior. To accomplish this we took the best model for each partici-
pant within a given task (driving or RSVP) and applied it to the PSD estimate from 
the alternate task. Importantly, we needed to adapt the behavior prediction estimate to 
the new type of behavior. For driving, the metric (absolute lane deviation) typically 
increases with time-on-task fatigue or boredom; alternatively, the RSVP metric (target 
accuracy) typically decreases under the same conditions. Thus, we added an addition-
al affine fit of the model prediction to match the novel behavior metric. Figure 2 
shows an example of a model built on driving data used to predict RSVP behavior. 
Here, the driving model predicted the RSVP behavior with a reasonable degree of 
accuracy, capturing the fluctuation in behavior both within and across blocks. While 
the behavior and PSD estimates integrate data from a 90 second window, this type of 
linear model could have predictive power that either leads or lags the behavior. To 
assess the causality of the prediction relative to the actual behavior, we performed a 
cross-correlation analysis. 

 

Fig. 2. Cross-task prediction for one participant. Actual (black line) and estimated (red line) 
target accuracy for the RSVP task. Estimated behavior was derived from model fit to driving 
data for the same participant (see Methods). Horizontal bars indicate experiment blocks. 

Over the population, the PSD models derived from driving task were able to pre-
dict some behavioral variance in the RSVP task and vise versa (figure 3). To establish 
significance, a bootstrap reshuffling technique was applied to the predicted behavior 
and smoothed by the same integration window as the PSD. In this way, a distribution 
of random correlation coefficients could be parameterized and a confidence interval 
established for each prediction. For the driving task models, the average correlation 
coefficient between the prediction and RSVP behavior was 0.205 ± 0.189. Only 2 of 
the 18 models had a significant correlation coefficient (p < 0.01). For the RSVP task 
models, the average correlation coefficient between the prediction and the driving 
behavior was 0.211 ± 0.164. Here, 5 of the 18 models had a significant correlation 
coefficient. By using the optimal temporal lag (peak of the cross-correlation curve) 
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prediction scores improved slightly (driving model r = 0.282 ± 0.146, RSVP model r 
= 0.332 ± 0.166). The optimal temporal lags for both the driving and RSVP-based 
models were within the 90 second integration window (driving model lag = 70.2 
seconds, RSVP model lag = 58.1 seconds). Here, positive values indicate that the 
predicted behavior leads to that actual behavior. 

 

Fig. 3. Cross-task prediction over the population. A)  Correlation coefficients of the cross-task 
predictions for each participant with no temporal shift. B) Correlation coefficients of the cross-
task predictions for each participant at best temporal alignment. Level of shading indicates 
significance: black = significant for both conditions, gray = significant for one condition, clear 
= not significant. 

4 Discussion 

Using an established approach based on the EEG log power spectrum, we were able 
to predict fluctuations in driver performance with a reasonable degree of accuracy 
(correlation coefficients greater than 0.5) for a number of participants. Likewise, we 
were able to predict fluctuations in target accuracy in the RSVP task to a similar de-
gree. Furthermore, when models fit under the driving paradigm were applied to the 
RSVP task, predictive power remained significant for some participants, despite its 
reduction overall (figure 3).  

Interestingly, there was a large variation in model performance during the fitting 
and cross-validation processes. This may have resulted from several factors. First, the 
validation sets from which the scores were derived were relatively short (approx-
imately 10 min long). If there was a significant change in behavioral dynamics (e.g., 
less or more time-on-task fatigue) between the training and testing sets, the predic-
tions could differ substantially. Second, the linear regression model described here 
always included 50 components (top 50 eigenvectors of the PSD). In some instances 
this feature space may have been over-represented leading to a number of coefficients 
lacking significant predictive value. For this reason, some approaches use step-wise 
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regression [17] to minimize over-fitting. Third, while the PSD estimation process 
utilized a median filter and the power spectra were smoothed over a 90 second inte-
gration window, noise and artifacts could have degraded the model fitting process. 
Independent component analysis (ICA) has likewise been used in this paradigm to 
mitigate artifacts and improve predictions [18]. 

It is important to note that the major source of variance in the RSVP paradigm was 
not time-on-task. Instead, target class was the strongest modulator of behavioral va-
riance across blocks. While the target stimuli were roughly matched along low-level 
visual dimensions such as luminance, object size and eccentricity, we observed a 
significant performance difference in all three metrics (accuracy, RT and button dura-
tion). Likewise, the changes in target frequency across blocks significantly modulated 
behavior. Thus, given such exogenous sources of behavioral variance, it is encourag-
ing that the Lin et al (2005) approach maintains significant predictive power in this 
more complex task.  

The Lin approach we used employs a relatively simple model for predicting beha-
vior (i.e., a linear regression of the PSD coefficients along a single behavioral metric). 
Since that original study, this method has been extended to incorporate ICA [18] and 
fuzzy neural-networks [19]. However, the linear approach still represents a solid and 
interpretable framework to explore the relationship between the EEG power spectra 
and behavior in a variety of tasks. In addition, this method is computationally simple 
and utilizes universal signal processing components (such as PSD estimation). Thus, 
as we have demonstrated here, it remains a practical approach for an embedded appli-
cation in a real-time EEG processing system [20]. 
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Abstract. Adult neurogenesis is the incorporation of new neurons into
established, functioning neural circuits. Current theoretical work in the
neurogenesis field has suggested that new neurons are of greatest im-
portance in the encoding of new memories, particularly in the ability to
fully capture features which are entirely novel or being experienced in
a unique way. We present two models of neurogenesis (a spiking, bio-
logically realistic model as well as a basic growing feedforward model)
to investigate possible functional implications. We use an information
theoretic computational complexity measure to quantitatively analyze
the information content encoded with and without neurogenesis in our
spiking model. And neural encoding capacity (as a function of neuron
maturation) is examined in our simple feedforward network. Finally, we
discuss potential functional implications for neurogenesis in high risk
environments.

Keywords: Neurogenesis, Dentate Gyrus, Information Theoretic Com-
plexity, Neural Network Modeling.

1 Introduction

Human cognition is facilitated by numerous forms of neuronal plasticity that
span many different scales in both spatial and temporal dimensions. One such
neural process that has received considerable attention over the past decade is
adult neurogenesis, which is the incorporation of new neurons into established,
functioning neural circuits [1]. Neurogenesis is uniquely limited to a few regions
and has been shown to be regulated by a wide range of intrinsic and extrinsic
behavioral conditions. The most studied neurogenic region is the dentate gyrus
(DG) area of the hippocampus, a region known to be critically important for
learning and memory.

Current theoretical work in the neurogenesis field has suggested that new neu-
rons are of greatest importance in the encoding of new memories, particularly
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in the ability to fully capture features which are entirely novel or being experi-
enced in a unique way. This type of memory has the potential to be of critical
importance in high consequence scenarios, in particular in situations where the
decision-maker must base their reasoning on novel, previously unexperienced,
aspects of the environment. Without the capability to properly encode and pro-
cess novel components of an experience, a decision-maker may fall back on the
familiar, which while often a proper strategy, can sometimes be detrimental.

We anticipate that this work can impact cognitive function in two distinct
respects: 1) interventions that increase neurogenesis promise to be an effective
method to improve acute decision making by individuals; and 2) computational
approaches that implement neurogenesis-like plasticity and structural dynamics
can potentially motivate a powerful new form of algorithms that can facilitate
data processing and decision-making assistance in revolutionary ways.

In the following sections we will briefly describe the neurophysiology involved
in neurogenesis and an associated encoding hypothesis, provide a real world high
consequence decision making scenario with potential functional implications,
describe two computational models to investigate neurogenesis, and provide some
results analyzing these models.

2 Neurophysiology

Situated within the medial temporal lobe, the hippocampus is a well studied neu-
ral region that receives an amalgamation of sensory input signals and contributes
significant functional importance such as its key role in episodic memory forma-
tion [2]. The dentate gyrus (DG) serves as an entry region of the hippocampus
receiving sensory stimuli from both lateral and medial entorhinal cortex (EC)
[3]. Although it is comprised of several cell types, granule cells are the most
populous neuron types within the DG. The DG is a relatively large region (con-
sisting of approximately 10 to 20 million neurons in humans), however it exhibits
sparse activation meaning that only approximately 2 percent of these neurons
are active at a given instance [4]. DG activity subsequently serves as input to
the highly recurrent cornu ammonis 3 (CA3) region of hippocampus for further
processing.

The sparse activation of the DG has often been attributed to a pattern separa-
tion functionality within DG [5]. From this perspective, the relatively few neurons
firing despite the large size of DG corresponds to a unique non-overlapping encod-
ing of the multi-modal sensory inputs from EC. Alternatively, another proposed
role for DG is to control memory resolution [6]. From this perspective, young im-
mature neurons are hyperexcitable and broadly respond to a wide variety of input
stimulation. Mature neurons, on the other hand, are narrowly tuned to respond to
specific inputs they have learned to selectively fire to. The integration of both ma-
ture and young neurons within the same neural network allows for a mixed coding
hypothesis. From this perspective, the young, easily excitable neurons are integral
for incorporating new memories within a neural network without interfering with
existing encodings represented by the mature neurons.
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3 Real World Scenario

As a real world example of a high consequence decision-making scenario with
potential implications for neurogenesis, consider the role of the drone operator.
Rather than piloting their aircraft internally from the confines of a cockpit,
as conventional pilots do, drone pilots remotely operate their aircraft from a
distant workstation with real time video feeds projected on computer screens.
Some drones are equipped with weapons and are consequently able to take action
if a hostile target is detected.

However, the majority of a drone operator’s time is spent watching and survey-
ing. According to Massachusetts Institute of Technology (MIT) aeronautics and
astronautics professor Mary Cummings, “You might park a UAV over a house,
waiting for someone to come in or come out, and thats where the boredom comes
in” [7]. Despite the similar environment to that of a video game, a drone op-
erator’s shift is typically less action intensive. Instead, “...it is not uncommon
in search and reconnaissance missions for a UAV pilot to spend the majority of
the mission waiting for a system anomaly to occur, with only occasional system
interactions” [8].

It is of crucial importance that this rare, anomalous event consisting of a
target of interest appearing in what is an otherwise highly familiar environment
does not go undetected. It is possible that highly active young neurons may
facilitate the ability to encode and perceive this novel, but significant event.

4 Computational Models

To investigate the possible functional significance of neurogenesis we have devel-
oped two neural network models. The first is a large scale, biologically realistic,
spiking neural network model. The second is a simple rate-coded feedforward
network that grows new neurons and connections. In the following we will de-
scribe the two networks in greater detail.

4.1 Spiking Dynamics Model

We have developed a biologically motivated, spiking model comprised of nine cell
types representing EC inputs as well the molecular layer, granule cell layer, and
hilus of DG. The underlying neuron model we have implemented uses Izhikevich
neural dynamics so that we can fit to actual electrophysiology data from mature
and immature granule cells and hilar interneurons [9]. We have also incorpo-
rated biologically realistic ratios of neurons within the model. Particularly, we
have experimented with a model consisting of 5,500 EC neurons and 50,000 DG
granule cells. The EC neurons are split between lateral and medial EC providing
object cell and grid cell inputs respectively.

The particular input firings are driven by a multi-context multi-day simulated
experimental paradigm. In a single simulation day, the model is presented three
different contexts consisting of a variety of items in various locations. Over the
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course of multiple simulation days, the first context is the same every day and
is repeatedly presented to the model as a very familiar input. The second input
presented each day is familiar context that the model has been presented before,
but not as frequently as the first very familiar input. And finally, the third input
presented each day is a novel, formerly unseen input (although it may consist of
some formerly seen items in new locations and paired with different combinations
of items). This experimental paradigm allows the model to investigate both
acute and long term effects of neurogenesis while varying neurogenesis rates in
a controlled manner.

4.2 Basic Neurogenesis Model

Additionally, to investigate fundamental neurogenesis functionality, such as the
mixed coding hypothesis, we have also implemented a basic feedforward model
which relaxes biological realism. This simplistic model consists of two layers of
neurons. A fixed size input layer representing the EC, and a growing layer of
DG granule cells.

The EC layer consists of both excitatory and inhibitory inputs, with four
times as many excitatory as inhibitory inputs. Both the excitatory and inhibitory
neurons exhibit a twenty percent activation each timestep. Over time, the DG
layer grows both by incorporating new neurons as well as adding additional
synapses (both excitatory and inhibitory) to the existing neurons as they mature.
Just as there are more excitatory inputs than inhibitory, there are likewise more
synapses to excitatory inputs than inhibitory. However, the inhibitory synapses
have a stronger effect than the excitatory synapses. Throughout the neurogenesis
network growth process, these ratios are preserved.

As a simplistic model of neural behavior, DG neurons fire if for a given
timestep, input excitation exceeds input inhibition. This basic behavior is subse-
quently regulated by Hebbian learning such that if an input causes a DG neuron
to fire, its synapses are updated accordingly.

Over time, new neurons are added to the DG layer. Each of these new neurons
is randomly connected to the EC inputs, with a baseline amount of synapses.
Additionally, over time, all neurons incorporate new synapses until they reach
full maturity which happens when synaptic connections to the EC inputs reach
twenty percent (of all available EC inputs). Throughout this temporal matura-
tion process, a set of EC inputs are cycled through. Rather than exposing all
of the inputs to the full input set, instead subsets of the inputs are presented
during certain time windows.

For a more detailed description of this model please see [10].

5 Results

To quantitatively assess the potential benefits to neurogenesis we have analyzed
computational complexity as an estimation of information representation from
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an information theoretic standpoint as well as examined neuronal encoding rates.
The results of these analyses for our two computational models are presented
next.

5.1 Computational Complexity of the Spiking Dynamics Model

To analyze the encoding capability of our spiking dynamics model we looked at
the computational complexity of the granule cell neural ensemble over the course
of the presentation of a particular context. Shannon entropy is a fundamental
approach to quantize the amount of information in a variety of sources such as
communication channels [11]. Additionally, many approaches have been devised
to apply this sort of information measure to neurons [12]. However, doing so
requires knowledge of the firing behavior probability distribution for the neurons
within the model.

Rather, in lieu of estimating neuron firing probabilities, we have used com-
plexity as a measure of compressibility in order to estimate entropy to quantita-
tively assess the information content of a signal. Szczepanski et al. applied the
general Lempel-Ziv complexity (LZ-Complexity) measure to estimate entropy
of real and simulated neurons [13]. But unlike the work of Szczepanski et al.,
rather than applying LZ-Complexity analysis to individual neuron spike trains,
we have applied the approach to a neural population as a whole. LZ-Complexity
is based upon measuring the rate of generation of new patterns along a sequence
of characters in a string being compressed [14]. Applied to neuron spike trains,
this technique looks for repeated spiking behavior over time. Instead, by apply-
ing it across an entire neural ensemble, we assessed repeated patterns of neural
co-activity. Synaptic modifications alter the firing behavior of the neural network
through learning. In order to account for this plasticity of the network, rather
than computing the ensemble complexity at each timestep, we concatenated all
of the firing outputs of the entire neural ensemble (while presented a single input
context) into a long spike signal. This approach is depicted in Fig. 1.

Once the spike signal is converted into a binary signal, where an action po-
tential is encoded as a one and the absence of activity by a zero, the normalized
complexity may then be computed as follows:

cα(x
n) =

Cα(x
n)

n
∗ logαn. (1)

Normalized complexity measures the generation rate of new patterns along a
word of length n with letters from an alphabet of size α (in this case two).
Additionally, it can be proven [11] that as the string length (our series of neural
firings in this case) goes to infinity, the supremum of the normalized complexity
approaches the entropy of the signal S:

lim sup
n→∞

cα(x
n) ≤ Hα(S). (2)

We have implemented two instantiations of a biologically inspired spiking neural
model, each consisting of 50,000 granule cells. The difference between these two
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Fig. 1. Concatenation of neural firings across the population ensemble to generate a
binary spike signal preserving temporal synchrony.

models is that the first does not implement neurogenesis while the second has
a ten percent neurogenesis rate. Both models were exposed to three contexts
across different simulated days as described formerly in the model description.
Fig. 2 depicts the normalized complexity values for these two models across
seven days of contexts (with the three numbers corresponding to normalized
complexity for each of the three contexts, respectively). As evident by Fig. 2,
the neural network with neurogenesis exhibits a distinct increase in information
content, quantitatively inferred by means of normalized complexity, compared
to the network with no neurogenesis across all days and contexts.

Fig. 2. Normalized Complexity values for 50,000 granule cell network with zero and
ten percent neurogenesis over seven days of varied contexts
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5.2 Basic Neurogenesis Model

In evaluating our basic neurogenesis model, we experimented with an EC size
of 12,500 neurons (10,000 excitatory and 2,500 inhibitory inputs). The EC layer
itself had no input, however the patterns of activity we specified for it at a
given timestep served as the inputs for the DG layer. The EC does not receive
direct sensory input, but rather receives signals which have been pre-processed,
such as by the visual cortex. Alternatively, specific input patterns such as visual
images could be applied as inputs to the model if an appropriate neural sensory
processing function (such as a hashing function) were used to process the raw
input. Such a framework is illustrated in Fig. 3, where we have currently only
implemented the portion to the right of the human comprehensible images in
the figure, with binary EC activation patterns and a growing network of DG
neurons.

Fig. 3. General framework of a basic neurogenesis model proceeding from input im-
ages to an entorhinal cortex distributed representation and subsequent processing by
a growing dentate gyrus network

In our analysis, we varied the maximum allowed growth in the DG layer to
investigate network plasticity as well as learn-ability. In all cases, the younger
immature neurons proved to be more excitable and responsive to a greater num-
ber of inputs despite having fewer connections than the more mature neurons.
And likewise, the older neurons, through maturation, became narrowly tuned
and responsive to specific input stimuli. This behavior is evident in Fig. 4 where
the horizontal axis delineates the particular neurons by maturation age and the
vertical axis represents the number of inputs each neuron responds to. The neu-
rons in the figure are ordered by when they were added to the network, so the
older (more mature) neurons which were added first are on the left and the
younger more recently added neurons are on the right. To account for variability
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Fig. 4. Number of input patterns each neuron responds to. Moving from left to right
represents the ordering in which new neurons were added to the network such that the
rightmost neurons are the youngest neurons.

in the random synaptic connectivity, the number of inputs the neurons respond
to are averaged over 1000 simulation runs of the model.

Furthermore, informal evaluations have also shown that given a sufficient neu-
rogenesis rate in conjunction with an adequately sized DG proved to be sufficient
to encode all inputs. This characteristic is important for network stability such
that as neurons within the network mature and become tightly tuned to specific
inputs that prior information is not lost in exchange for the novel stimuli. In this
sense, the mature neurons are selectively responsive to narrowly tuned inputs
but do not respond to novel stimuli. We evaluated this functionality by turning
off Hebbian learning and re-showing the network the formerly seen inputs as
well as a set of novel inputs. The mature neurons only responded to their select
inputs while the younger neurons were responsive to novel stimuli as well as the
formerly seen inputs.

6 Conclusions

Through neurogenesis, it appears that the incorporation of new cells within
a neural circuit may be a means to increase the information content of the
network as well as provide a means to encode novel stimuli. New neurons, which
are highly excitable, have an increased likelihood of encoding current stimuli.
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Consequently, as they mature they become more tightly tuned to particular
inputs being learned and are not as easily able to incorporate the novel stimuli
into the network without neurogenesis. Such a phenomena may play a crucial role
in high consequence decision making scenarios such as that of a drone operator.
On a surveillance mission, the majority of the images a drone operator sees
may be routine and familiar if they have surveyed the same area previously.
The scenario may be entirely familiar if nothing has changed regarding the area
under consideration. Or it may be a highly familiar scene in which all of the
usual components are there but a suspect’s vehicle is parked on the other side
of the house for example. However, it is of utmost importance in this domain
to be cognizant of the subtle change in which a key target appears in what
was an otherwise routine surveillance so the situation can be properly assessed
and the appropriate action taken. A better understanding of the neurogenesis
phenomena and its functional implications may allow for this capability to be
increased, or alternatively incorporated within computational tools as an aid
leading to improved human performance.

While the potential benefits adult neurogenesis may provide are exciting, its
functional implications are still far from understood. As future work, we plan to
investigate the effects of varying neurogensis rates, examine whether the matura-
tion rate has any effect on learnability or stability, study strategies for synaptic
growth/formation, and consider neuronal death as a contrasting balance to neu-
rogenesis. Additionally, we also plan to investigate possible application areas
which may benefit from neurogensis like mechanisms such as memory manage-
ment, computational encoding schemes, and dynamic decision making.
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Abstract. Faces are one of the most biologically and socially significant objects 
in the human environment, and therefore believed to be processed automatical-
ly. To investigate whether the processing of faces is modulated by attention, 
event-related potentials (ERPs) were recorded in response to the dynamic facial 
stimuli. Spatial attention were manipulated by directing participants which loca-
tion to be attended. The results showed that face-sensitive component N170 was 
not influenced by spatial attention, suggesting that the processing of faces was 
not modulated by the attention during the early stage. But the late-latency com-
ponents were influenced by spatial attention. It indicated that the automatic 
processing of faces is more like to be partial rather than complete. These find-
ings on dynamically real face processing by ERPs are expected to be used in the 
development of human-computer interactions. 

Keywords: Face processing, Spatial attention, ERPs. 

1 Introduction 

Faces are one of the most salient objects for human survival and successful social 
interactions, as they convey essential information regarding identity, emotional ex-
pressions and intention. The PET and fMRI studies that focused on the faces 
processing over the past twenty years have been found the face-specific regions in the 
brain. Regions in the ventral visual pathway, particular the middle fusiform gyrus 
("fusiform face area," FFA) have been shown to respond more strongly to faces than 
other objects [1-5]. 

These neuroimaging studies concerned the localization of faces processing. Event-
related potentials (ERPs) provide a useful tool to investigate the time course of the 
processing because of the excellent temporal resolution [6]. The ERPs method has 
been widely used and found distinctive patterns of neural activity associated with 
faces processing, such as the face-sensitive component N170 [7-10]. The N170 is a 
negative component recorded from the posterior lateral electrode sites. It peaks  
at about 160–170 ms following stimulus onset and is recorded between 130 and 200 
ms. This component is larger when elicited by human faces than by other object  
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categories [11]. Also, a response component that occurs around 170 ms (M170) after 
stimulus onset has been described by previous studies with magnetoencephalographic 
(MEG) [12-14].  

Based on the unique behavioral and physiological responses elicited by faces, 
many researchers concluded that faces are processed qualitatively distinctly from the 
other types of objects and by an anatomically well-localized modular system that is 
highly specialized for analyzing faces [15]. In this context, it is interesting to note that 
a number of studies reported that the processing of faces, which is unique and unlike 
other objects, appeared to be impervious to the influence of attention [16-18]. How-
ever, this conclusion was challenged by some studies [10, 15, 19]. These studies 
showed the opposite results that the faces processing was partially or completely 
modulated by attention. For example, Furey, et al. [14] investigated attention modula-
tion on processing of faces with fMRI and MEG. The fMRI results showed that the 
response in the fusiform gyrus was strongly suppressed when attention was directed 
away from faces. However, the MEG results showed that attention had no effect on 
the M170, but late (>190 ms) category-related MEG responses elicited by faces were 
strongly modulated by attention. These conflict results may reflect that attention can 
modulate perceptual processing of faces at multiple stages. So far whether the 
processing of faces is automatic, or rather modulated by attention at early stage, is 
still debated.   

Another issue must be considered is that static faces were used as stimuli in most 
of the faces studies (with only a few exceptions [20-22] ), although dynamic facial 
expressions are encountered much more often than static facial “pictures” in everyday 
life. Despite the wide interest in the neural mechanisms of attentional modulation on 
faces processing, few study has been collected with dynamic facial stimuli. Neuroi-
maging studies have revealed that the brain regions known to be implicated in the 
processing of expressions, such as the posterior superior temporal sulcus (pSTS), the 
amygdala and the insula, respond more to dynamic than to static faces [23-25]. More 
importantly, authors reported cases of neurologically affected individuals that were 
incapable of recognizing static facial expressions but could recognize dynamic  
expressions [26].  

The present study aimed to investigate whether the spatial attention influence the 
processing of faces, and more importantly, which stages of processing are modulated. 
It was manipulated by directing participants which location (either left or right side) is 
task relevant. Dynamic facial stimuli were employed in the study, because (1) neurop-
sychological and behavioral studies with normal people and patients revealed that the 
static and dynamic faces are processed differently [22-24]; (2) dynamic facial expres-
sions come nearer everyday life than static faces.  

Since the time course of the processing and the processing of ignored stimuli are of 
particular interest, event-related potentials (ERPs) were recorded. We hypothesized 
that (1) multiple stages of faces processing are modulated by spatial attention; (2) the 
influences of attention on different stages (early low-level stage, and late high-level 
stage) are different.  
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2 Methods 

Participants. Fifteen healthy adults took part in the experiment. One participant had 
to be excluded from the data analysis because of excessive ocular and muscle artifacts 
in the electroencephalographic (EEG) recordings. The remaining 14 participants (9 
female, 5 male, age: 23-29 years, mean: 26 years) were all right-handed, had normal 
or corrected-to-normal vision, normal hearing and had not reported any neurological 
disorders. Participants received monetary compensation for participation.  
 
Stimuli. Human facial videos and voices were employed. Four professional actors 
(two male and two female) uttered nonsense pseudo words. Each actor’s utterance 
was videotaped in a sound-attenuated recording studio and then converted to digital 
format. Actors were filmed from the frontal view and only their faces were shown 
with covered hair. Videos were presented gray scaled with a black background. Light-
ing, background, height, distance were controlled. 

Videos were digitally sampled at 33 frames per second with 24-bit resolution at 
640*480 pixel size. The auditory stimuli were the voices of the pseudo words. The 
audio tracks of the voices were equated for root mean square at 0.025 and digitally 
sampled with 16-bit. Mean duration of the stimuli was 700 ms (SE = 26 ms, ranged 
from 666 to 733 ms).  

 
Procedure. Participants were seated in a sound attenuated and dimly lit room. They 
were in front of a computer screen. The viewing distance was maintained constant at 
70 cm by using a chinrest. Visual and auditory stimuli were presented with an equal 
probability and in a random sequence on the left and right side. The visual angle of 
the visual stimuli was 3.4°× 4.9° (eccentricity=4.2°, measured as the distance between 
the centre of each face and the central fixation cross).  

Participants’ task was to attend to one modality (face or voice) of one side (left or 
right) and respond to the deviant stimuli of that modality at that side only (i.e., deviant 
stimuli of the attended modality and the attended location). The deviant stimuli dif-
fered from the standards in that they were inserted with a 200-ms interruption at the 
end of the videos/audios.  

Only the data from face-attended trials were analysis in the present article. The da-
ta of crossmodal spatial attention was not analysis here.  

Two “attend left faces” and two “attend right faces” sessions with 88 trials (72 
standards and 16 deviants) each were presented. Additionally, one or two practice 
sessions were performed to familiarize participants with the task. 

Each trial started with a central fixation cross (see Figure 1). After 400ms, a stimu-
lus was presented on the left or right side of the fixation. Participants were asked to 
respond as accurately and as quickly as possible. All stimuli were presented in a ran-
dom order with a stimulus onset asynchrony (SOA) of 1800-2100ms.  
 
EEG recording. The EEG was recorded from 73 Ag/Ag-Cl-electrodes, mounted with 
equal distance into an elastic cap (Easy Cap; FMS, Herrsching-Breitbrunn, Germany). 
Electrodes were referenced to the right earlobe and re-referenced off-line to a linked 
earlobe reference (an averaged right/left ear lobe reference was calculated offline 
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using an additional left ear lobe recording). Vertical eye movements were measured 
with an electrode placed under the right eye, recorded against the right earlobe. Hori-
zontal eye movements were monitored with a bipolar recording of two electrodes 
attached to the outer canthi of the eyes.  

 

Fig. 1. The procedure used in the experiment, showing the sequence of events with two consec-
utive trails.  

Electrode impedance was kept below 5 kΩ for scalp electrodes and below 10 kΩ 
for eye electrodes. The bandpass of the amplifiers (Synamps amplifiers; Neuroscan, 
Sipplingen, Germany) was set to 0.1–100 Hz and the digitization rate was 500 Hz. 
 
Data analysis. EEG data processing was conducted with Vision Analyzer 1.0 (Brain 
Products GmbH) and included segmentation of the continuous signal into bins of 200 
ms pre-, and 1000 ms post-stimulus. Only segments of standard stimuli were 
processed. Segments including a response and segments directly following a response 
were excluded from analyses. Only data to the visual stimuli were presented here, as 
the current question was to investigate the processing of faces. 

The ERPs to the visual standard stimuli were averaged separately for each partici-
pant and attention condition, and referred to a 200 ms pre-stimulus baseline. Segments 
whose EOG activity exceeded 80 µV as well as segments with maximal amplitude 
differences exceeding 160 µV at any channel were rejected. Data from a participant 
were not used if more than 30% of the trials were discarded in this manner.  

Electrodes were remapped to ipsilateral (i) and contralateral (c) recording elec-
trodes with respect to the side of stimulation, and ERPs to stimuli from the left and 
right sides were pooled when they were attended and unattended, respectively.  

For the statistical analyses, mean amplitudes were calculated for the selected time 
windows: P1 (100–140 ms), N170 (160–200 ms), P300 (340-500 ms) and a late  
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component (LC: 600-900 ms). Six electrodes were used in the statistical analysis 
where the P1, N170 and the late components were maximal in the right and left post-
erior regions (left: TPi, Pi, POi; right: TPc, Pc, POc). Time epochs and electrode sites 
were selected on the basis of the earlier studies (see [6, 9] ) and on a visual inspection 
of the group grand average ERPs. 

Three-way ANOVAs with factors Spatial attention (attended location vs. unat-
tended location), Hemisphere (ipsi- vs. contralateral to the stimulation) and Electrode 
were run for spatial attention effect. Whenever the interaction with an Attention factor 
was significant, post-hoc tests for single electrode were calculated with paired t-tests 
(one-tailed). 

Statistics were computed with SPSS, subroutine GLM for repeated measurements. 
Huynh/Feldt-corrected P values are reported where appropriate. 

3 Results 

3.1 Behavioral Results 

The mean reaction times to the target visual stimuli measured from stimuli onset were 
1399.6 ms (SE=44.4 ms). A one-way ANOVA (left vs. right) revealed that the accu-
racy was not influenced by Side of stimulation (P>0.10). Participants detected 92.6% 
(SE=1.7%) of the target faces. False alarms and misses rates were both below 1%. 
Side of stimulation (left vs. right) had no effect on accuracy, misses and false alarms 
(all P>0.10).  

3.2 ERP Results 

Visual stimuli elicited an early positive potential (P1) over the parietal and occipital 
areas, followed by a negativity peaked around 170 ms post-stimulus (N170) with a 
maximum over lateral parietal-occipital areas (See Figure 2). ANOVAs with three 
factors (Spatial attention × Hemisphere × Electrode) were run on the mean amplitudes 
of each interval. The ANOVA results were presented in Table 1. 
 
P1 In this early time window, the ERPs to the location attended stimuli (thick 
lines in Figure 2) were more positive than ERPs to the location unattended stimuli 
(thin lines in Figure 2). The P1 effect was found [main effect of spatial attention: 
F(1,13)=19.44, P=0.001]. Post hoc tests showed that the spatial attention effect was 
most pronounced at bilateral parietal-occipital sites (Pi, POi, Pc and POc, all P<0.01). 
The effect was also found at temporal-parietal sites (TPi and TPc, P<0.05).  
 
N170   No effect or interaction was found for the mean amplitude of N170, suggest-
ing that this component was not influenced by spatial attention [spatial attention  
effect: F(1,13)=2.64, P=0.128].  
 



546 L. Zhang and K. Zhang 

 

 
 

Fig. 2. Grand-averaged ERPs elicited by visual standard stimuli at parietal-occipital electrode 
sites (ipsilateral: Pi, POi; contralateral: Pc, POc). Time windows used in the statistical analyses 
are marked gray. Negativity is up. 

Table 1. Results of ANOVAs for spatial attention effects 

 P1 N170 P300 LC 

Spatial attention (SA) (1,13) = 19.44;.001 (1,13) = 2.64;.128 (1,13) = 3.44;.087 (1,13) = 8.02;.014 

SA×Hemisphere (1,13) = 0.01;.929 (1,13) = 0.19;.673 (1,13) = 10.64;.006(1,13) = 5.65;.033 

SA× Electrode (2,26) = 6.60;.020 (2,26) = 0.03;.935 (2,26) = 10.96;.004(2,26) = 4.71;.040 

SA× Hemisphere×Electrode (2,26) = 0.55;.508 (2,26) = 0.31;.622 (2,26) = 0.38;.573 (2,26) = 0.81;.807 

Post hoc t-tests (Electrode) TPi, Pi, POi, 

TPc, Pc, POc 

 Pi, POi, POc Pi, POi, Pc, POc 

Post hoc t-tests (P) All P<0.05 All P>0.1 .007,.007,0.042 .001,.036,.001,007 

F(df); P     

 
P300 In the time window 340-500 ms, ERPs to the location attended stimuli were 
more positive than ERPs to the location unattended stimuli. The main effects of  
Spatial attention were not significant but the interactions with Spatial attention were 
significant. The effects were not pronounced equally at all sites [spatial attention × 
Electrode: F(2,26) =10.96, P =0.004] and not equally over the two hemispheres [spa-
tial attention × Hemisphere: F(1,13)= 10.64, P=0.006]. Post hoc tests showed a  
positive enhancement at Pi, POi (P<0.01), and POc (P=0.042). The tests also showed 
that the attention effects were more pronounced over the ipsilateral sites than the  
contralateral sites. 
 
LC For this late time window, widely spatial attention effects were seen. The 
main effect of spatial attention was significant [F(1,13)= 8.02, P=0.014]. This effect 
was not pronounced equally at all sites [spatial attention × Electrode: F(2,26) =4.71, P 
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=0.040] and not equally over the two hemispheres [spatial attention × Hemisphere: 
F(1,13)= 5.65, P=0.033]. Post hoc tests showed a negative enhancement at bilateral 
parietal and occipital sites (Pi, POi, Pc, POc, all P<0.05).  

4 Discussion 

The aim of the present study was to investigate whether the processing of faces is 
affected by spatial attention. ERPs were recorded in response to the dynamic facial 
stimuli presented in spatial attended/unattended condition.  

The results can be summarized in four points. First, the spatial attention effect 
started at about 100 ms after stimulus onset, as indexed by a reduction of the P1 com-
ponent to the stimuli of the unattended location. Second, the N170 was impervious to 
the influence of spatial attention. Finally, spatial attention modulated the ERPs re-
sponse during the late stages (as indexed by P300 and LC). The implications of these 
results on the way the brain processes faces were discussed.  

 
Is face processing automatically? 
In the present study, participants had to detect infrequent target stimuli at the attended 
location only, while ignoring stimuli at the unattended location. However, both of the 
attended and unattended faces elicited the face-sensitive component N170. Moreover, 
this component appeared to be unaffected by attention, which is assumed to reflect the 
encoding of faces was not modulated by attention. In contrast, P1 amplitude is influ-
enced by attention modulation. By examining P1 amplitude, we confirmed that the 
absence of N170 modulation reflects the specialty of faces processing. These results 
are consistent with previous works in which early face responses were not modulated 
by attention [16-17, 27]. 

One view that has been invoked to explain the absence of early attentional effects 
for faces is that faces enjoy a privileged status and are fully processed automatically 
[16, 28]. However, P300 effect and the late negative effect were observed in our 
study, indicating the faces are not fully processed automatically.  

A similar result pattern has been found by a MEG study. Lueschow, et al. [17] 
found that the first face-distinctive MEG response was observed at 160-170 ms 
(M170). Nevertheless, attention did not start to modulate face processing before 190 
ms. Such results suggest although face processing may be impervious to attentional 
influences during early stages of sensory perceptual process, attention may influence 
later face processing. From our ERPs results, the spatial attention effects at late 
components indicate that obligatory processing may occur for “ignored” faces, but it 
is more like to be partial rather than complete. 
 
How early are spatial modulation and faces encoding? The difference between dy-
namic and static faces. 
The results showed that attended faces versus unattended faces produced an early 
modulation of posterior ERPs components from 100 ms after stimulus onset (P1). It is 
well established that early sensory processing, as indexed by the P1 component, is 
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modulated by spatial attention [29]. The studies with faces stimuli also reported that 
spatial attention modulated visual processes as early as about 80 ms [30]. Whereares, 
the spatial attention effect eliminated after 140 ms and did not appeare at the face-
sensitive component N170. One possible explanation is that the face encoding started 
at about 160 ms post stimulus (N170). This finding is similar with the ERPs results of 
Jacques & Rossion [30]. They empolyed two concurrent faces and modulated spatial 
attention. It was reported that the spatial attention modulation was earlier than the 
representations of the concurrent faces. The neural representations of the concurrent 
faces was in occipital-temporal cortex as early as 130 ms. These results may suggest 
that spatial attention modulates visual processes as early as about 100 ms after 
stimulus onset and the face encoding take place around 140 ms post stimulus.  

However, there was ERP results suggested that faces were categorized around 100 
ms [31]. The difference between these results and the current results may due to the 
nature of dynamic faces comparing to static faces. A PET study has been proved that 
encoding of facial expressions by static or dynamic displays is associated with differ-
ent distributed network of brain regions. Differential activation of visual area V5, 
superior temporal sulcus, periamygdaloid cortex involved in the processing of dynam-
ic and static expressions. But considering the various types of stimuli, paradigms, and 
measurements, we cannot draw the conclusion that the encoding of static and dynamic 
faces takes place differently. Further research should compare the time course of stat-
ic versus dynamic faces processing under the same condition. 
 
Perceptual load modulation of early face processing. 
Perceptual load has been shown to influence early sensory processing [32]. Two re-
cent ERPs researches argued that the early stages of face processing indexed by the 
N170 strongly suppressed by perceptual load manipulation [30, 33]. According to the 
perceptual load theory of selective attention (reviewed by Lavie[34] ), the irrelevant 
stimulus should be processed when spare capacity can “spill over” to irrelevant items 
(i.e., low attentional load), but not when all available capacity are exhaust (i.e., high 
attentional load). Another recent research proposed that the attentional selection ef-
fects were influenced by face discriminability during attention to faces. They found 
that early selection (N170 modulation) was present for low and medium, but not for 
high discriminability faces, whereas selection at a later stage was comparable for all 
levels of discriminability [10]. The results can also be interpreted as the perceptual 
load manipulation. Comparing to the low and medium discriminability faces, the high 
discriminability faces were at low attentional load so that N170 was suppressed. Al-
though we did not manipulate the levels of perceptual load, comparing to the previous 
results, a plausible account for the absence of N170 modulation on faces in our study 
is that perceptual load remained at a low level in our experiment. Under such condi-
tion, the capacity was not exhaust so that the irrelevant faces were processed by the 
spare capacity. It has to be noted that the faces in Neumann and Sreenivasan’s studies 
were both at the center of fixation. The selective attention were manipulated by task 
demands. The mechnism of the selective attention could be different from the spatial 
attention of the present study in which the attention was manipulated by transfer the 
focus of attention.  
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Besides, the previous studies and our study are consistent in the ERPs results at 
late stages. These results support that the late stage of faces processing are influenced 
by attention. 

In summary, the results bring further support to the view that faces are processed 
rapidly and independently of attentional modulation during early perceptual stage. But 
attention can influence the later dynamic face processing stage. 
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Abstract. In the military intelligence cycle the warfighter acts as both a receiv-
er and a producer of information. As a receiver the warfighter must be able to 
readily assimilate disparate mission-relevant information. As a producer the 
warfighter must be cognizant of both the current information requirements and 
the ability to meet them. Both of these tasks are exacerbated by the heat of bat-
tle and, in the case of the receiver, the ever-increasing amount of available  
information. To address these challenges Lockheed Martin Advanced Technol-
ogy Laboratories (LM ATL) is creating a suite of capabilities to augment war-
fighter interaction with intelligence services. Much like a powered exoskeleton 
augments human interaction with the physical environment, our Information 
Exoskeleton augments the warfighter’s interaction with intelligence, providing 
greater situational awareness with minimal operational overhead. This paper 
describes our vision for the Information Exoskeleton, the capabilities required 
to realize it, and related research efforts.  

Keywords: Information Exoskeleton, Information Needs Assessment, Context 
Awareness, Information Alignment, Cognitive Alignment. 

1 Introduction 

The past two decades have witnessed a dramatic rise in military intelligence collection 
and dissemination. Advances in electronics, communications, and automated technolo-
gies for performing data integration, analysis, and dissemination have made it possible 
to rapidly push increasing amounts of intelligence to warfighters. The recent prolifera-
tion of mobile devices means that dismounted warfighters are increasingly able to a) to 
receive intelligence in the field, and b) collect and disseminate tactical information 
essential to the generation of intelligence while supporting ongoing missions.   

Actionable intelligence is key to success in tactical operations such as reconnais-
sance patrols, cordon and search or combat patrols, but its utility is undermined if it is 
not presented in a fashion that allows it to be easily understood and applied for greater 
situational awareness. Interacting with a myriad of information from different sources 
can impose significant cognitive and physical burdens (Claburn, 2009; Shanker & 
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Richtel, 2011). Dismounted warfighters are forced to maintain the shifting operating 
picture, mostly in their heads, while taking into account data from multiple systems 
and devices such as Blue Force data, enemy position reports, audio communications, 
video and RF signal detection, requiring extensive context switching (Hsu, 2011). If 
intelligence is delivered to these warfighters without regard to timing, relevance, or 
modality it will likely be underutilized, or may overwhelm or distract them when lives 
are at stake.   

Research on attention and multitasking suggests that in demanding situations re-
quiring sustained attention, especially life-threating ones, individuals have difficulty 
successfully multitasking. This has been demonstrated in classroom learning condi-
tions where students who were allowed to use laptops to browse and use social media 
during a lecture suffered decrements on tests of memory compared to peers who did 
not split their attention (Hembrooke & Gay, 2003), as well as a driver’s ability to 
quickly respond to driving-related stimuli is hindered by either handheld or hands-free 
use of a cell phone (Horrey & Wickens, 2006)  However, other research has shown 
that certain military functions like sentry duty allow a warfighter to successfully man-
age both the visual scan task as well as responding to auditory signals (McBride, Me-
rullo, Johnson, Banderet, & Robinson, 2007). In fact, the researchers observed that 
when the work rate was increased, overall performance improved. These results sug-
gest that attention is an important resource that cannot be overly taxed lest it result in 
delayed or missed reactions, or under-utilized lest it result in an individual tuning out 
from the task at hand. Technology to support the warfighter must take these  
extremes into account and carefully estimate the level of attention to help keep the 
warfighter in an optimal state to respond effectively to incoming intelligence while 
opportunistically collecting data relevant to known intelligence requirements.   

What is needed to better equip dismounted warfighters for current and future oper-
ations is a system built upon a solid framework that supports the constantly changing 
needs of the warfighters and their shifting context. For the past decade, investigators 
at Lockheed Martin Advanced Technology Laboratories have been conducting re-
search toward our vision of an Information Exoskeleton (IE) for the warfighter.  
Much like a powered exoskeleton augments human interaction with the physical envi-
ronment, our Information Exoskeleton augments the warfighter’s interaction with 
intelligence, enhancing the warfighter’s ability to benefit as a consumer of mission-
relevant information and also act as an intelligence producer with minimal operational 
overhead. The IE ensures that the intelligence cycle provides the greatest situational 
awareness (SA) with the least amount of operational disruption. This paper describes 
our operational vision of the IE, explores the challenges and required capabilities to 
enable it, and presents our current and planned research efforts. 

2 Information Interaction with the Warfighter 

2.1 Concept of Operations 

To help convey the utility of the IE, we present a Concept of Operations where the IE 
assists a ground warfighter during his patrol mission. 
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A dismounted ground warfighter is preparing to go out on patrol in a dynamic ur-
ban environment. Prior to a patrol, the warfighter typically receives an intelligence 
briefing to specify what threats or other activities have occurred recently in the patrol 
area of operation. With the IE, the warfighter will also be outfitted with body-worn 
physiological sensors (e.g., monitors for heart rate, blood pressure, galvanic skin re-
sponse) and tactical sensors (e.g., accelerometer, gunshot detection sensor, blast de-
tection sensor, microphone, camera, gyroscope). The data from these sensors are 
wirelessly collected by a small handheld or wearable device that provides applications 
the warfighter can use to file digital intelligence reports, using either texting or spo-
ken language understanding technology, and to receive updates to his understanding 
of the tactical situation while he is on patrol. The IE system will collect data from the 
warfighter to understand the warfighter's context of operation, including position, 
health status, engagement in combat activity, and in turn will use this understanding 
of individual context to help decide what intelligence to provide the warfighter, as 
well as the best way to present the information. 

 

 

Fig. 1. IE enables the warfighter to efficiently process information 

The warfighter provides the IE with a plan for the likely patrol, and the IE checks 
to see if there is applicable intelligence to the planned mission such as known threats, 
maps, weather information, and terrain. Once out on patrol, a nearby explosion oc-
curs. As the squad responds with an immediate action drill the IE detects a pattern of 
inputs from the microphone, accelerometer and gyroscope that matches the signature 
of an improvised exploding device (IED).  The IE initiates actions to aid in near-term 
tasks. Sound is being recorded on all devices in the squad and the IE requests that 
other sensors (e.g., GPS, accelerometer) begin logging data to capture movement and 
changes in posture. The IE creates an observation report template and enters current 
location and time information so the warfighter can complete and transmit the pre-
populated report with information about the IED. 
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Continuing along the route, the warfighter receives an audio alert that the IE has 
intelligence that shows a black car blocking the planned route. Suspecting an ambush, 
the warfighter diverts to an alternate road. The IE prepares information that is relevant 
to the new route, but recognizes from the speed the warfighter is moving, and the 
increased stress indicated by physiological sensors, that the warfighter likely cannot 
attend to the relatively low priority new information. IE begins summarizing and  
filtering the information based on priority, and stores it for future delivery to the war-
fighter when cognitive load is lower and assimilating the information is possible. At 
this point the IE detects that the warfighter is in a good location to collect information 
to help satisfy a commander's information requirement, and generates an alert that 
will be sent along with the new route data when the warfighter is ready to receive it.  

3 Capability Requirements 

The dissemination of intelligence to a warfighter can greatly increase SA of the bat-
tlespace.  However, pushing information without regard to timing and usability can 
negatively impact warfighters. Three major challenges that must be addressed to ef-
fectively disseminate intelligence to dismounted warfighters are 1) determining the 
relevance of information to the warfighter given the dynamics of the battlespace, 2) 
ensuring the usability of available intelligence and 3) effectively presenting informa-
tion to that warfighter. Satisfying these will enable the warfighter to achieve the high-
est level of SA with the least amount of operational disruption. 

Warfighters must be cognizant of the commander’s intelligence requirements as 
they go into battle because at any given time they may observe, or discover, new in-
formation that can strengthen the commander’s SA or satisfy the existing require-
ments. There are challenges for the tactical warfighter to overcome in order to collect 
the right information. The tactical warfighter needs knowledge of the requirements 
along with help recognizing when to collect information and the facility to capture 
information essential to the generation of intelligence. The goal for collection of use-
ful tactical information is to maximize SA while minimizing operational overhead.  

We believe that the challenges to interaction for both information dissemination 
and collection can be addressed by three core IE capabilities: 

1. Assessing the warfighter’s operational context 
2. Assembling information based on context 
3. Adapting the user interface to the information and user operational context 

While engaged in an activity, individuals are in a particular cognitive state and exhibit 
predictable physical conditions. These cognitive and physical indicators are part of 
the tactical warfighter’s operational context. The context consists of elements such as 
geographic position, health status and engagement in a combat activity. It can be 
thought of as a plan or task being executed by a tactical warfighter along with physi-
cal and cognitive states. Physical context attributes include physiological response 
and body position, while cognitive state describes individual awareness, cognitive 
load, and current interests. Body-worn physiological and tactical sensors assess heart 
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rate, blood pressure, pulse ox, stature, detect and geo-locate signal activity (Regli, 
Tremoulet & Stibler, 2013). The operational context may also include descriptions 
and status of his current mission, his role in the mission, and environmental details.  

Currently, the volume of information being processed by Companies is large 
enough to justify a dedicated Company Intelligence Support Team (CoIST) which 
assists the commander in intelligence analysis and fusion, else the intelligence be-
comes stale and dangerously obsolete to patrols (Morgan, 2008). While there is a 
wealth of data being collected and fashioned into intelligence, very little of it is ever 
used by the tactical warfighter. The reason is two-fold. The tactical warfighter does 
not have the bandwidth to scrutinize data and correlate it with other information and 
is not able to constantly monitor a screen while patrolling with a weapon in hand. 
While just providing tactical warfighters with all possible intelligence seems to be the 
solution, it would create larger problems by disrupting their primary task and informa-
tion overload. Tactical warfighters cannot spend time sorting through data. They need 
correlated sets of information relevant to their current task and environment verses 
streams of information. They can draw some conclusions in the field, but really need 
someone to help them “connect the dots” to have a greater situational understanding 
of the battlefield in which they are operating. Filtering data and correlating informa-
tion from various sources will ensure that the warfighter receives more manageable 
amounts of highly relevant data. For example, the warfighter might be interested in 
historical IED blasts along his mission route, but only those that have occurred within 
a pre-defined timeframe. Another way to reduce the data would be to determine a 
pattern in the blasts. Maybe they occur at a particular time in the day. Maybe they are 
triggered by another event such as the passing of a convoy through an intersection 
along the route. The capability to provide tactical warfighters with controlled amounts 
of relevant data will enhance their situational awareness while still allowing them to 
successfully perform their primary mission. 

Timely intelligence is most beneficial to warfighters when it is delivered via a  
method that enables them to rapidly assimilate the information, thus minimizing dis-
ruption from primary tasks. Relevancy is vital since context switching is extremely 
difficult and potentially dangerous in their operational environment. Presentation of 
the information is equally important. The most appropriate set of modalities (visual 
display, auditory or tactile alert) for presenting new intelligence depends upon war-
fighter context, including the immediate environment (noisy? potentially threatening? 
light sensitive?) and what tasks are being performed (patrolling an area? looking for a 
specific vehicle?).  For successful information transfer, tactical warfighters need a 
system that has the capability to adapt its timing and communication modality to the 
user’s tasks and environmental constraints.  

Establishing a contextual understanding of the user allows for collection and dis-
semination of information relevant to that context. A warfighter’s operational context 
leverages the most current information, correlates it with the known information and 
incorporates it into an existing perspective. Since the system has been tailored to 
present only information relevant to a warfighter's mission, including the current  
location and route, we expect a reduction in review time. Before sending data, the IE 
verifies that the warfighter is in the right context to be able to process the data. If the 
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We have developed prototype systems that adapted the user interfaces based upon 
user task and operational contexts. As part of these efforts we developed the abilities 
1) to assess individual’s cognitive states through physiological data, and 2) to track 
and manage the tasks that require operator attention (Morizio, Thomas, and Tremou-
let, 2005). We developed mitigation strategies to minimize disruption of the user’s 
primary task (Regli, Tremoulet, Hastie, and Stibler, 2006). More recent research has 
involved tracking and adapting user interaction based on other aspects of warfighter 
context such as mission status, walking versus stationary, etc. 

Our research in Plan Execution Monitoring (Allen, McCormick, 2005) enables the 
IE to be intelligently informed about the changing nature of the operational context. 
The plan monitor compares the values returned from environmental sensors with the 
values in the models to determine which activity is currently being executed, and the 
status of that activity. For military domains where explicit plans are used (e.g., tactical 
missions) the IE can leverage this approach to determine plan state allowing the con-
text tracker to know the warfighter’s current activity. Armed with this contextual 
information the Information Assembler is better equipped to provide mission-
specific information for the warfighter. 

The Anomaly/Alert Manager component monitors the data and produces alerts 
based on the rules of the context in which it is operating.  

Our Human Alerting and Interruption Logistics - Surface Ship (HAIL-SS) system 
is based on anomaly monitoring and alert management research. HAIL provides alert 
management to maximize the benefit of timely critical alerts and minimize negative 
effects of human interruption. It is composed of services that alert human operators 
appropriately, and help the operators recover work-flow context afterwards.  HAIL-
SS enables operators to maintain higher levels of situational awareness despite a high 
volume of alerts that are generated from automation. (McFarlane, 2006)  

Alerts generated by the Alert Manager are delivered to the Information Assembler 
for processing. The Information Assembler collects, organizes and correlates relevant 
data, producing useful information for the warfighter.  

We have been investigating how to most effectively express information that is 
typically requested and used by intelligence analysts in a manner that is consistent 
with the tactical language and perspective of a warfighter on patrol. The first part of 
the challenge is enabling queries to be expressed in tactical language by presenting 
tactical vocabulary as a front end to queries that contain logic gleaned from intelli-
gence experts (Samoylov et at., 2009). It also requires an understanding of tactical 
tasks to enable the presentation of different types of data from multiple data sources 
in a manner that is correlated and filtered to match the task goals that the warfighter is 
trying to accomplish. This area of information assembly research is ongoing. 

The Presentation Manager component determines how to deliver the data via an 
appropriate set of modalities to the user’s interface based on the user’s current needs. 

We developed an “environment director” component that selects presentation 
modalities based on the task’s preferred modality, the application’s modality capabili-
ties, and user context. More recently, to enable geographic display of relevant infor-
mation including blue force tracking and reports by location, we have developed a 
lightweight graphics library that can display geo-rectified objects (e.g. map tiles, 
icons, grid lines) on a map display. The library supports panning and zooming in and 
out of the map tiles that are stored at different zoom levels. The current GPS position 
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of each device is collected and shared with all the other devices and shown on  
the map. We have employed this lightweight mapping and visual location display 
technology on several efforts, including the observation reporting domain and medic 
triage and casualty reporting domain. 

In the dynamic battlespace information requirements change along with the opera-
tional context. Given updated contexts from the context tracker, the Information 
Needs Assessment component determines the types of information that best support 
the current state of the mission. We have conducted extensive research into automatic 
and semi-automatic approaches to anticipate the information needs of the warfighter. 
Our fully automated approach is based on direct mapping of mission state and war-
fighter role to information requirements based on historical/statistical analysis of prior 
information requests.  Our semi-automated approach is a recommender system that 
leverages information ontologies, historical analysis of prior information requests, and 
mission state. When the warfighter requests information the system recommends ad-
ditional information that might be relevant.   

Finally, the Intel Collection Manager supports the warfighter by providing simple, 
intuitive, multi-modal interfaces for gathering and disseminating tactical intelligence.  

Our capability in the area of tactical information collection in support of intelli-
gence generation enables the warfighter to speak the contents of standard tactical 
reports; the spoken utterances are parsed into structured digital reports that can be 
shared more easily, sent to a tactical operations center (TOC) when possible, and 
made available for use by other warfighters or by intelligence analysts for near- or 
long-term increase in overall situational awareness of the battlefield.  A multimodal 
interface enables report entry by voice when hands are occupied and by text when 
there is a need to remain quiet. We have applied spoken language understanding tech-
nology to several domains including small unit logistics, squad-level observation 
reporting and casualty reporting. 

5 Discussion 

Our research is guided by a vision of an intelligent Information Exoskeleton that 
seamlessly allows the right information to be collected, processed, pre-positioned, 
requested, and delivered in a manner that amplifies human effectiveness. The IE hosts 
a suite of capabilities that understands a user’s tasks, anticipates needs, assists in ga-
thering knowledge and presents relevant information in a time, format and modality-
appropriate way that minimizes disruption. As such, the IE functions as a contextual 
window between a tactical user and the world. 

Our future efforts will focus, primarily, on enhancing this contextual window by 
expanding and aggregating our views into the warfighter’s operational context. While 
we are currently able to monitor executing missions, some roles in the military aren’t 
represented by such explicit, well-defined plans (e.g., intelligence analyst). Recent 
research in Task Context Management (Kersten & Murphy, 2006) shows that such 
tasks can be tracked with minimal, if any, human intervention. Additionally, we 
would like to develop techniques for aggregating the disparate contexts into a unified 
warfighter profile that can be leveraged by both the IE and other information systems 
to provide better intelligence to the warfighter. 
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QEEG Biomarkers: Assessment and Selection of Special 
Operators, and Improving Individual Performance 
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Abstract. Future military special operator selection and education programs 
will take advantage of state-of-the-art neuroimaging and normative statistical 
tools in the creation of a customized database of EEG patterns gathered from 
top performing specialists over their careers. Such a quantitative EEG Norma-
tive Database (qEND) will function as the benchmark for screening, assess-
ment, selection and even training of targeted individuals required to work  
effectively as operators under extreme stresses and for extended periods.  This 
assumption implies that an improved warfighter selection and training pedago-
gy will embrace the concept of a “model” brain activity pattern (BAP) that 
represents a warfighter at peak potential and in a highly focused and resilient 
state of mind. It also implies that this model BAP can be used to: 1) identify 
biomarkers of positive traits in candidates for specialized training programs, 
and 2) reduce stress and improve sleep and training performance of program se-
lectees using guided EEG neurofeedback to maintain an optimal BAP.  One 
such statistical qEND (NeuroGuide) is used clinically in the assessment and di-
agnosis of EEG imbalances specifically related to neurological and behavioral 
disorders, as well as for guiding individual brain pattern changes through the 
use of neurofeedback training (NT).    

To evaluate qEEG for monitoring an individual’s BAP changes and poten-
tially improving mood and work performance, two military specialists with lea-
dership experience underwent a program of pre- and post-EEG recordings and 
20 neurofeedback training (NT) sessions. Here, the NeuroGuide database was 
used to determine how each participant’s BAP differed from the age-matched 
group norms, and it was also used during the NT process to inform the software 
of the differences from the norms at each of the 4 training sites used to adjust 
the trainees EEG towards the direction of “normal”.   

Changes from the NT program were assessed pre- and post-intervention us-
ing seven neuropsychological assessments of mood, anxiety, sleep, work per-
formance and life satisfaction. In addition, one subject had a series of blood 
draws taken over the course of the NT program to evaluate changes in his plas-
ma Cortisol; a reliable biomarker of stress level.  Both subjects reported  
reduced levels of anxiety, impulsivity and anger, and improved mood and life 
satisfaction after the 20-session NT intervention. 

Keywords: Assessment and Selection, Biomarkers, Quantitative EEG,  
Neurofeedback, Normative Statistics, Training Technologies, Training Policy. 
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1 Introduction 

Adult electroencephalography (EEG) patterns are individually stable with predictable 
age-related patterns of change in amplitude, coherence and phase measures of resting 
brain wave activity (1, 2). This predictability allows the use of comparative statistics 
in the evaluation of an individual’s BAP and its comparison against an age-matched 
norm of over four-thousand independent EEG measures (3). What follows from this 
statistical measurement capability is the development of a normative database of EEG 
features gathered from a large number of “normal individuals”. Such a database 
makes it possible to quantify the statistical differences in the brain waves of one per-
son as compared to their age-matched group averages (4).  Several EEG normative 
database products exist today for assessing individual brain imbalances (NX Link), 
prescribing psycho-active medications (Reference EEG), and as a neurofeedback 
training modality (NeuroGuide) primarily for individuals coping with anxiety, stress, 
insomnia, depression, addiction, obsessive compulsive disorders, cognitive difficulties 
and behavioral problems. 

This paper attempts to describe an analytical approach known as the quantitative 
EEG Normative Database (qEND) and its use in assessing brain functions and guid-
ing neurofeedback training (NT) protocols that may be used to reduce stress and en-
hance mental and physical resilience in the warfighter.  There is a scientific basis for 
use of NT as a means to help combatants maintain peak levels of performance under 
stress, and a strategy exists for the rapid development, validation and deployment of 
enhanced neurotechnologies specifically targeting rapid expert level knowledge and 
skills acquisition.  The use of EEG neurofeedback to normalize brain wave activity 
has consistently been shown to improve sleep and reduce anxiety and it is widely 
available all over the world today (5, 6, 7). 

2 The Plastic Brain 

One thing we can all agree upon is that chronic stress will change your brain, particu-
larly in areas associated with memory, sleep and emotional regulation (8).  Long-term 
stress changes hormone levels, which in turn modulate neurotransmitter production 
and uptake; driving lasting changes in the EEG (9).  Over time, imbalanced EEG 
patterns reorganize in the brain’s key system-level networks, ultimately establishing a 
new “yet stable” brain activity pattern (BAP) (10).  With reinforcement, this imba-
lanced BAP can stabilize through a resonant process that perpetuates the thoughts and 
feelings associated with prolonged exposure to high stress; like anxiety, rumination, 
panic, depression, and contemplating suicide. Ultimately, this highly imbalanced BAP 
becomes the norm and repetitive patterns of negative or self-effacing behaviors de-
velop and become linked to this now-stable imbalanced brain state (11). NT provides 
a rapid way to use the EEG to redirect an imbalanced BAP back into a more normal 
pattern (12,13) and this reorganizing to a target capability is why the method has  
direct application to specialized training programs with rigorous selection and  
acceptance criteria and high costs of operation. 
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Neural plasticity is the term associated with the brain’s ability to reorganize and 
recover lost functions after injury or illness, and it means that when one part of the 
brain is damaged or excessively imbalanced, after some re-connecting takes place,  
the brain’s key systems reorganize to a new state of balance where some (or all) of the 
impaired cognitive or sensorimotor abilities re-emerge. (e.g. a patient regaining the 
ability to speak or to use his arms and legs again after a stroke).  Thus, neural plastici-
ty provides the means for accessing the brain’s wiring and directly modulating it to 
reorganize the activity of its main cognitive and emotional systems to a new state of 
balance.  Even without damage to the brain, it is possible with NT to induce neural 
plasticity through a process known as operant conditioning, where a stimulus is timed 
to a particular measure(s) of the participant’s BAP and fed back to either reward 
(reinforce) or punish (extinguish) that particular pattern of brain activity.(14)  Several 
EEG and fMRI studies have reported the use of NT protocols with an ever widening 
range of notable positive effects correlated with attention, memory, cognitive function 
and operational performance (15, 16).   

3 The Quantitative EEG Normative Database (qEND)  

There are a small number of qEND products used clinically for the assessment and 
treatment of CNS disorders, depression and stress related conditions. Some of these 
products provide condition-specific medication treatment plans (e.g., Reference 
EEG), and others are used in assessment, diagnosis and delivery of NT therapies (e.g., 
NXLink and NeuroGuide). These neuroimaging systems provide an output in the 
form of color coded maps and graphs that indicate where and by how much the first 
and second order amplitude and frequency-based features of the EEG differ from an 
age-matched normal group average; and in which direction the imbalances occur. In 
clinical care, this information is correlated with other neuropsychological and beha-
vioral assessments and evaluations of the patient, and a treatment plan including  
neuro-cognitive and cognitive-behavioral strategies is developed to reorganize the 
patient’s BAP and help them develop a positive “way of thinking".   

4 Reorganizing Brain Connections: Z-Score Neurofeedback 

From a systems perspective, when the brain activity of an individual is out of balance 
to the point where cognitive and behavioral problems exist, it makes sense to reorgan-
ize the connections in key executive and emotional networks to establish a more 
“normal” BAP.  In the most advanced systems, this process uses Z-score guided neu-
rofeedback training (zNT) where real time brain activity is measured, compared to an 
age-matched norm, and depending on the differences from normal, used to control 
how a movie is presented to the subject to either reward or punish a particular pattern 
of activity. For instance, if the delta and theta EEG activity in the frontal lobes of a 
trainee were to remain below normal, than the picture and sound would be reduced in  
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clarity and volume as the movie played. Then, when the brain activity moved more 
towards normal by increasing in delta, theta and even alpha power, the picture and 
sounds would play more clearly, thereby rewarding the change in his BAP.  By re-
peating this zNT process over several weeks, the trainee’s EEG can be guided into a 
more balanced state with respect to the normal database population used, and in this 
case, behaviors like impulsivity, anger, anxiety and rumination lessen in severity 
while mood and cognitive function improve over time (17). 

5 Future Assessment, Selection and Neurotraining Pedagogy 

In the clinical setting, Z-score guided NT uses software that contains an instantaneous 
version of the qEND containing all the normalized EEG measures, so a site-specific 
training protocol can be applied to target the imbalanced brain waves of the patient 
and move them (through temporal and frequency neuromodulation) in a direction 
understood to be more normal “or desired” than their current BAP. In practice, it is 
the average value taken from the “normal population” that becomes the target of the 
neurofeedback.  Then, with repetition, the individual’s brain waves can be influenced 
from an existing “imbalanced” state towards the pre-determined qEND standard BAP. 
Ever growing research continues to demonstrate that these directed changes in brain 
activity toward a target pattern of activity are associated with improved task perfor-
mance, cognitive agility and perceptive functioning, all necessary to achieve persis-
tent resilience to highly stressful situations (18, 19). 

With the ability to re-connect and re-organize a trainee’s brain waves towards a 
specific target BAP, it becomes possible to design a qEND from a population of high-
ly experienced and trained mission specialists and then to use that qEND to help se-
lect candidates and train them toward a BAP more consistent with the target group 
normal. With a specifically focused “BAP++ Gold Standard” representing a large 
group of expert level operators (~500) throughout their career, it may be possible to 
identify key features of the BAP++ that correlate with reduced stress, increased cogni-
tive agility and elevated motivation and resilience under demanding circumstances. If 
such a qEND is constructed, then it also becomes possible to design zNT protocols 
customized for each candidate selected for a specialized program (e.g., Engineer, 
Pilot, or Operator). In each case, key attributes of the BAP++ would be used to guide 
the selected trainee’s EEG towards a pattern to help them better achieve their training 
objectives with lower levels of anxiety and negative responses to stress; ultimately 
leading to higher performance ratings by assessment specialists. 

6 Case Study: Research Methods 

Two individuals with military leadership experience signed informed consent forms 
and volunteered to participate in a 20-session Z-score neurofeedback training (zNT) 
study to evaluate the effects on their BAP as compared to the age-matched means in  
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the NeuroGuide qEND. These individuals were chosen because of their relevant 
backgrounds and experience as mission specialists. Subject 1 is a USMC Captain 
(Res.) with 10+ years in active and reserve service; including deployments in Afgha-
nistan and Haiti and 2 combat tours in Iraq. Subject 2 is a US Army Sergeant Major 
(Ret.) with over 18 years of service in Special Forces assessment and training.  

Immediately prior to and after a 20-session zNT program, 32-channel linked-ear 
referenced EEG recordings, plus bipolar vertical and horizontal eye, heart and neck 
muscle channels were recorded during 20-minute eyes-closed resting and 10-minute 
eyes-open resting conditions. These data were manually reviewed and edited and 2-
minutes of non-contaminated EEG data were selected from each subject’s EEG for 
use in the NeuroGuide qEND. The standard 19 channels of the International 10-20 
System were submitted for each subject into the NeuroGuide database to produce the 
Z-scored maps and connectivity graphs displayed in Figures 1 and 2. In each figure, 
the summary maps on the left are from the recordings made before the intervention 
and those on the right provide the results immediately after the 20-session zNT trial. 
The qEND compares the temporal and frequency components of the EEG from all 19 
sensor sites (e.g., 1st and 2nd order amplitude and frequency measures from all possi-
ble combinations of the 19 sensors) between each subject and the group of age-
matched members included in the QEEG database. From those data, it computes the 
magnitude of the spatial-frequency EEG differences and displays the results in Z-
scores, where 1 Z-score is the equivalent of 1 Standard Deviation from the mean for 
each of the more than 4000 EEG measures computed.   

In qEND mapping, the frequency components of the EEG are separated using the 
FFT, averaged, and displayed in narrow bands: delta (1 – 4 Hz), theta (5 – 8 Hz), 
alpha (9 – 12 Hz), beta 13- 22 Hz) and high beta (23 – 40 Hz). The magnitude of the 
difference between a particular EEG measure and the group mean is represented by 
color coded Z-score maps and graphs, where activity that is -3 std. dev. below normal 
is shown as Dark Gray and activity +3 std. dev. above normal is Light Gray in color. 
Abnormal changes in the coherence and phase activity between sensor pairs is indi-
cated by a reduction or excess (Dark Gray lines) as compared to normal, where the 
thickness of the line indicates the magnitude of the imbalance from +/- 1.96 to 3.09 
std. dev. from the mean. 

The pilot study evaluated changes in the qEND maps and connectivity graphs 
(Figs. 1 and 2) from before and after the zNT intervention.  Self-reported assessments 
of anxiety, sleep, depression, job performance and life satisfaction were used to track 
emotional and behavioral perception. In addition the study examined changes in 
plasma Cortisol to assess endocrine system stress. To accomplish this, Subject 2 had 
serial blood draws done throughout his 2.5 week evaluation period: Pre (3 draws), 
Mid (2 draws) and End (2 draws) to evaluate his corresponding changes in Cortisol 
level and infer the results to his stress level changes. All seven blood draws were done 
in the A.M. within 30-minutes each other.  Overall, Subject 2’s average Cortisol le-
vels went from 14.07 down to 11.45 mcg/dl a reduction of 2.62 mcg/dl (43% from the 
baseline average, full range = 6.1 mcg/dl). 
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7 Assessing Neurofeedback Training Results 

Thirty-six-channel EEG recordings were made pre and post-intervention from two 
veterans with leadership experience to track changes in their BAP coincident with a 
program of 20 zNT sessions (Figures 1 and 2).  Their raw EEG signals were reviewed 
for quality and at least 2-minutes of eyes-open and eyes-closed resting data from 
throughout the recordings were input to the NeuroGuide qEND to measure individual 
differences in BAP between each subject and their age-matched group norms. 

To design a 4-channel zNT protocol specific to each subject, the results of the be-
havioral assessments were combined with the qEND results to inform the choice of 
sites for training. During zNT sessions, an elastic cap was placed on the head that 
carried the 4 EEG, plus reference and ground sensors, and the wires were attached to 
the system while the trainee sat comfortably for 30-minutes watching a DVD of their 
choice. As they watched and listened the trainee’s brain waves were measured and 
used to control how the images of the movie played. The choice of movie was not 
important, as long as it held the subject’s attention. 

Figures 1 and 2 each display a pair of eyes-closed EEG Power Summary Reports 
generated from the Subjects immediately before (Left Report) and after (Right Re-
port) 20 zNT sessions. Visual comparison of the pre-NT and post-NT topographic 
Power maps (Left vs. Right) details the spatial-frequency differences coincident with 
the 20 session zNT intervention. Neither of the subjects used medication before or 
during the evaluation periods and no traumatic events were reported.  For Subject 1 
(Fig. 1) differences in the Pre vs. Post-intervention Reports were primarily visible in 
the delta and theta bands where bilateral-frontal and temporal excesses had almost 
completely resolved, while at the same time the prior reduction of power in the occi-
pital lobes had also normalized (i.e., resolved areas show as Grey in post intervention 
reports). Subject 2’s reports (Fig. 2) indicates a different pattern of change in BAP, 
where in this case, the delta band shows normalization of only the left occipital lobe 
imbalance while the right lobe remained in a reduced power state (Note: this may be 
an indicator of peak performance). The higher frequency bands of beta and high-beta 
show the largest changes towards normal in Subject 2’s BAP, primarily through the 
reduction of excess power in the right dorsal-medial frontal and insular cortices, all of 
which play an important role in prosody, empathy, socialization and approach / 
avoidance behaviors. 

Both Subjects conveyed that they experienced improvements in anxiety, rumina-
tion, anger, frustration and job performance after 20 zNT sessions. For instance, in the 
overall assessment, Subject 1’s report of anxiety level lowered from an initial score of 
49 down to a post-intervention score of 29, a change of 41% over a period of 15 
weeks. To evaluate the feasibility of a more rapid training program, Subject 2 carried 
out two zNT sessions a day and completed the training in 2.5 weeks. He reported a 
positive change in 5 out of 7 assessments: Insomnia, Depression, Life Satisfaction, 
and Daytime Function Positive and Negative attributes. In his case, there were no 
changes reported for the Anxiety or Sleep Quality assessments. 

Subject 2 also volunteered to have serial blood draws done to evaluate his morning 
Cortisol volume changes (measured in mcg/dl). Plasma Cortisol is a biomarker  
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proportionally related to stress, and provides a quantitative and independent source to 
monitor changes over the course of the intervention.(20,21)  Seven plasma Cortisol mea-
surements were taken at key points over the course of the 2.5 week study. Initial 
blood draws were taken on the three days prior to the beginning of training to estab-
lish a baseline average, two blood draws after the 9th and 11th sessions gave the mid-
point average, and two final draws after the 18th and 20th sessions gave the endpoint 
average. The results indicated a First Half increase in Cortisol from the early to mid-
period of 1.28 mcg/dl (a rise of +21%) and a decrease in Cortisol of -3.9 mcg/dl over 
the Second Half of the intervention (a reduction of 64%). Overall, the average reduc-
tion in Cortisol level from beginning to end was 2.6 mcg/dl; a drop of 43% from the 
baseline. These data are consistent with the subject’s reports of feeling less stressed 
and anxious, and not being so easily angered. This sentiment was also reflected in a 
relationship assessments filled out by the subject’s wife.  

 

 

Fig. 1. 33 year old U.S. Marine Captain (Re-
serve): No diagnosis; high stress, obsessive 
about home safety. The 2 reports above indi-
cate differences in BAP before (Left) and 
after 20 zNT sessions (Right) done over a 
period of 15 weeks. Subject reported lower 
levels of stress, fewer safety related concerns 
and improved mood and job satisfaction. 

Fig. 2. 44 year old Retired U.S. Army Sgt. 
Major: No diagnosis; high stress, easily fru-
strated and angered. The 2 reports above 
indicate differences in BAP before (left) and 
after 20 zNT sessions (Right) done over a 
period of 2.5 weeks. Subject reported less 
outbursts; lower frustration level and general-
ly improved mood and work performance. 

8 Discussion 

As we gain a rapidly expanding glimpse into the working brain through a plethora of 
modern neuroimaging and cognitive-behavioral research tools, we stand at a pinnacle, 
where brain-machine technologies can externally influence the dynamics and balance 
of that interconnected system of nervous tissue which constrains the human mind. 
Even as we stand at the edge, with our minimal understanding of how cells coordinate 
through waves of chemical and electrical interactions to process information, make 
decisions and think abstractly, we have made the tools! We are now able and willing 
to imply meaning to scant measures of mind informing us about the thoughts, moods 
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and feelings of that person living inside the calvarium…and in good faith we seek to 
improve the mind within…to make it better when emotions are askew or when one 
seeks a higher plane of existence or improved levels of performance.  

With the infancy of our field beginning to wane, we stand on shaky legs to take 
those first few steps. Thus we must come together as a community to prevent missteps 
as we begin in earnest to test the limits of our understanding of mind and machine and 
develop these impressive new tools in the light of day…not in hiding for fear of pub-
lic debate. Today it is possible to assess BAP imbalances in one person as compared 
to a known group of people, and to use the knowledge of these imbalances to redirect 
specific EEG activity and reorganize the connectivity within that person’s brain. This 
process uses concepts of operant and classical conditioning, targeted neuromodulation 
and neuroplasticity. There are currently more than 10,000 professional providers of 
such NT services around the globe with limited regulation and oversight; and only a 
hand full of government sponsored studies. Yet the adoption of NT by mental and 
behavioral health professionals and use by consumers has never been at a faster pace.  
Many NT methods abound supporting a wide range of backgrounds and experience 
among the providers of clinical services.  

Plischke et al.,(22)  acknowledge the rapid expansion of neurotechnology business-
es and growing exploitation of novice and uninformed users of games, toys, education 
aides and clinical services. They argue that the use of some neurotechnologies may 
come with the potential to do harm and call out for regulatory and peer oversight of 
the brain computer interface industry along with the establishment of a Clinical Field 
of Practice at the university level.  Canli et al., (23)  go on to say that it is the respon-
sibility of the entire neuroscience research community to be open about all their en-
deavors with interfacing neurotechnologies, particularly those related to National 
Security, and they expect active peer-review and oversight by the researchers them-
selves, as well as administrators in the governmental funding agencies. 

9 Conclusion 

Brain waves are changeable towards a predetermined normal pattern of activity using 
Z-score neurofeedback training and undergoing this process creates a benefit to trai-
nees by lowering their anxiety and stress and helping them better manage their daily 
behaviors. The zNT approach was successful in two veterans, each with different but 
relevant backgrounds and military experience. For each subject, the pattern of brain 
wave activity was different, but the general outcomes from the zNT intervention were 
the same; reduced stress and improved mood and performance.  

Each person handles stress differently, and that difference can be identified in their 
BAP maps and is likely an inherited trait. Gianotti et al., (24) have identified genetic 
markers of EEG genotype that link to specific behaviors and they state the purpose of 
their work saying “it is to identify possible neural mechanisms by which the polymor-
phism may contribute to stable individual differences. Such neural baseline activation 
measures are highly heritable and stable overtime, thus an ideal endophenotype  
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candidate to explain how genes may influence behavior via individual differences in 
neural function.” 

Interfacing neurotechnologies are here to stay and the use of normative BAP me-
thods provides the most logical way forward to investigate the use of brain computer 
systems as a means to reduce stress and improve trainee mental and emotional per-
formance. The question still remains, however, if a customized qEND composed of 
high performing experts in specialized military domains can be constructed, or if it 
even should be constructed…but the potential remains, and the feasibility of the suc-
cess of such a project is very high.  Additionally, relevant to military training, it ap-
pears possible to compress NT into a shortened time span and still see positive results 
in stress, mood, life satisfaction and job performance on par with the longer delivery 
period…borne out in both self-assessments and Cortisol measures. The inexpensive 
and portable nature of the qEEG method and shortened time frame of a zNT training 
component makes it feasible as an integrated segment that can be inserted within al-
most any existing special missions training program. 

In the right environment with SMEs experienced in training Special Forces a struc-
tured assessment, selection, and training framework combining neurocognitive, meta-
cognitive and cognitive-behavioral methodologies may be more fully investigated. 
Independently or in combination the use of a BAP++ qEND along with a concomitant 
real time zNT training methodology provides an approach capable of improving mili-
tary assessment and training technologies by reducing stress and enhancing cognitive 
and emotional  agility of trainees so they can best process and absorb the tactics and 
information presented during training.  
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Abstract. The purpose of this article is to examine ways in which a 
combination of ecological momentary assessments and reflective dialogues can 
provide a methodological framework for qualifying work-life stories in the 
process of reducing organizational stress. The article is based on two 
hypotheses: 1) a general as well as a work-related sense of coherence can 
mobilize resistance to stressors and 2) a sense of coherence can occur through 
self-reflective narratives which clarify patterns of action for oneself and for 
others. Focusing on hearing impaired people in the Danish work force as well 
as primary school teachers, the authors create a stress tracking method based on 
HRV-measurements coupled with mobile questionnaires and reflective 
dialogues. Findings in the user-test indicated that the method is a tool that 
creates a story-based foundation on which it is possible to start a process of 
talking about own experiences, stress and stressors, strategies, contexts etc. 
when dealing with organizational stress. 

Keywords: Ecological Momentary Assessments (EMA), organizational stress, 
Experience Sampling Method (ESM), Heart Rate Variability (HRV), Sense of 
Coherence (SOC). 

1 Introduction 

Research shows that an increasing number of people in the working population suffer 
from occupational stress. This is illustrated by the fact that several occupational 
medicine clinics in Denmark have experienced twice as many referrals of patients 
over the past five years [9]. Several reports conclude that there is a need for research 
whose results can immediately be converted and used in the practical efforts of 
organizations to improve the working environment. Also, interdisciplinary and 
solution-oriented research based on a holistic approach and the involvement of users 
in research, planning, implementation and dissemination have been called for [2].  
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1.1 Background 

Since 2011, both authors have conducted parallel research in the field of uncovering 
the growing problem of work-related stress under the auspices of Aalborg University 
(AAU), Department of Communication and Psychology. One project has a special 
focus on communication and stress among hearing impaired people in the Danish 
work force, while the focal point of the second project is to identify which discourses 
on work-related stress are produced in the professional field of teachers.  

In addition to work-related stress as a common target field, the authors shared a 
methodical ambition as both projects aimed to reflect a holistic perception of stress. 
Both projects adhered to the basic assumption that stress is a term with several, 
fundamentally inseparable, dimensions, and both authors worked with a holistic, 
interdisciplinary, bio-psycho-social stress concept [11]. In the wake of this 
understanding of stress, the authors also assumed that in the attempt to elucidate 
stress, it is necessary to focus on spoken as well as tacit knowledge; spoken 
knowledge meaning knowledge which is linguistic, rational and articulated, and tacit 
knowledge meaning knowledge that is not immediately articulated and accessible, yet 
producing meaningful stories such as bodily experience, memory and behaviour.  

From this theoretical starting point followed methodical frustration: how was it 
possible to reflect a holistic understanding of stress which focuses, at the same time, 
on body, mind and social factors? 

1.2  When "Quantify Yourself" Paves the Way for "Qualify Yourself" 

In November 2011, both authors participated in the pilot project "Quantify Yourself". 
This was a methodical turning point. The test lasted a week and was conducted under 
the research unit "Humansensing", AAU, where four types of Ecological Momentary 
Assessments (EMA) were tested in combination with each other: Heart Rate 
Variability (HRV), Galvanic Skin Response (GSR), GPS and an online questionnaire 
to be answered once an hour. Subjects carried the HRV and GSR sensors as well as a 
GPS around the clock and accessed the questionnaire with a smartphone. 

The authors felt on our own bodies how the combination of different EMA sources 
provided increased awareness of how, in our daily activities, we manage our energy 
and react physically and mentally to specific situations and activities. This led us to 
address questions such as: Is there anything I should do differently in my life? Why do 
I sometimes act in a way that basically does not seem to work for me - which brings 
me mentally or physically to my knees? Why don’t I do more of what seems to 
contribute positively to me - that provides energy? The responses became a form of 
electronic diary or a life story that helped us to mirror ourselves and retain memories 
of behaviour patterns. 

At the same time, we felt the value of seeing the spoken and tacit knowledge in a 
context. The responses to the questionnaires were our spoken knowledge - we could 
reflect on the experienced energy level and mood and express it. The physical 
measurements were basically tacit knowledge - we did not have access to knowledge 
about the moisture level in our skin and why it would increase or decrease. Nor did 
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we have access to knowledge of our exact heart rate or HRV - but access to the tacit 
knowledge in combination with the spoken knowledge would provide valuable 
knowledge through stories about behaviour patterns and the management of energy 
level. 

During the pilot project, both authors also experienced the lack of collective, 
reflective space where we could speak these obtained stories out loud and retain the 
knowledge we had gained in the past week. Out of this personal experience grew the 
idea that some adjustment of the method may help to create the reflective space that 
can qualify work life stories, thus offering an opportunity to create an increased sense 
of coherence among people who are particularly vulnerable to experiencing stress at 
work. Our basic assumption is that a method development based on different 
approaches to EMA combined with reflective dialogues will contribute constructively 
to articulating the experience of work-related stress and thus open up for increased 
action at an individual as well as a group level.  

2 Research Question 

How can a methodical combination of Ecological Momentary Assessments qualify 
work-life stories that can provide greater insight into and understanding of work-
related stress? 

3 Theoretical Foundations 

The theoretical inspiration for the development of a stress tracking method was taken 
from the linking of Ecological Momentary Assessment, medical sociology and 
humanistic psychology. This frame is explicated below. 

3.1 Ecological Momentary Assessment 

Ecological Momentary Assessment (EMA) is a term that covers a wide range of 
research methods and traditions, all of which have in common that they provide 
access to data on the subject's movements in the present and in the specific 
environment. Examples of EMA may vary from traditional diary keeping to the 
collection of biosensor-data and online activity logs. Thus, there are various 
categories of EMA: “Experience Sampling Method” (ESM) is registered subjectively 
experienced states; “self-monitoring” is records of actions; “ambulatory monitoring” 
detects the subject's physiological state [10]. 

In this article, we are dealing with a combination of ESM in the shape of a mobile 
questionnaire and ambulatory monitoring represented by HRV biosensor-data. 
 
Experience Sampling Method. The method is particularly suitable for gaining an 
insight into social, psychological and physiological processes and experiences in the 
present [3]. It is the spontaneous here-and-now response that is captured, thus 
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avoiding the biases that might be associated with reflective and memory-based data 
acquisition [10]. Memory can be selective and has often, in qualitative research as in 
the treatment of stress methods, been based on interviews and dialogues about 
experiences that might be months or even years old. The authors acknowledge the 
value and significance of such stories but also hold the basic assumption that a 
different time perspective closer to the moment when an experience occurs might 
offer a different picture of an incident, an experience, a feeling etc. Building the 
method on EMA combined with a qualitative approach is an attempt to embrace and 
accommodate both long-term and short-term stories.  
 
Ambulatory Monitoring. The biofeedback gives us access to the tacit knowledge 
produced by the physical body [4, 6]. We feel our bodies react when we start to sweat 
or when the heart is pounding when faced with a challenging situation. But we might 
not notice small differences in the body’s signals that might give away feelings of 
mental distress or experiences of stress. In continuation of our holistic stress 
understanding, it is a basic assumption that we cannot always rationalize our way to 
understanding. Body and mind must be reconciled. If we isolate the action from the 
body and exclusively connect it to the mind, we ignore the essential human condition 
that the self is a unity of body and mind [5]. 

3.2 Sense of Coherence 

A hypothesis in the method development is that the sense of coherence creates a 
resistance to stressors - a hypothesis derived from medical sociology. We are inspired 
by Aaron Antonovsky’s salutogenetic idea [1] which, in stead of focusing on that 
which leads to disease (pathogenesis), focuses on that which leads to health and 
resistance to disease (salutogenesis). Antonovsky's premise is that throughout life, all 
people are affected by a varying number of stressors. Antonovsky was particularly 
interested in investigating how people mobilize a resistance to the stressors. What 
determines how an individual manages to get on with his or her life when challenged 
with great resistance? According to Antonovsky, the answer to this question is the 
concept of sense of coherence (SOC) [1]. The main point is that the better we are able 
to see the coherence of different contexts in our lives, the greater the resistance we are 
able to mobilize against the stressors that life offers us [1]. 

According to Antonovsky, SOC represents a life-long learning curve. This learning 
process has the best conditions when we are experiencing life as comprehensible, 
manageable and meaningful, which are the three key components of the concept of 
SOC [1].  

3.3 Recognition through Dialogue 

Our understanding of the concept of dialogue is based on humanistic psychology. We 
are particularly inspired by Kristiansen and Bloch-Poulsen [7] who define dialogue as 
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unpredictable, risky and exploratory conversations where truth is not predetermined 
but where recognition is produced in the interpersonal contact. The aim is to jointly 
produce new insights or options. Central to this dialogue understanding is that 
dialogue is not only skills but also an interpersonal way of acting towards each other – 
it is a way of being. In this regard, we are particularly inspired by Carl Rogers' 3 
concepts: congruence, empathy and affirmation, which in our view is crucial to be 
present with and for the other in the dialogue [8]. 

3.4 EMA as a Creator of Unifying Work-Life Stories 

"If we keep our eyes wide open to reality, the way is open to an increasing 
understanding", Antonovsky writes [1]. At the same time he writes that the way to 
understanding and to "opening one’s eyes" goes through a person's life stories - this is 
where the meaningful may occur. Furthermore, writes Antonovsky, it is not certain 
that a person with a strong SOC has a plan of action. Thus, a person may well feel 
paralyzed or miss the reflective space that can put them in a position to act 
constructively. We argue as our second hypothesis that stories and reflections pave 
the way for action and change, and that these stories and reflections are to be captured 
and articulated through a methodical combination of EMA and reflective dialogues. 

4 Method Framing 

The authors conducted the pilot test that was constructed in order to get feedback on 
both the functionality of the system as well as the method and the structuring of the 
content and questions. In this article we will not dwell on feedback on the system but 
rather on the method as a whole. 

We chose to test the method on a person representing each of the two groups the 
authors work with on a daily basis namely teachers and people with a hearing loss.  

 

Questionnaires. In view of the on-going practice studies for both user groups, the 
ESM was designed as a mobile questionnaire. The aim is to develop an application 
that is generally applicable. 

Based on general knowledge on stress and specific knowledge on the two user 
groups, what we finally wished to acquire through the questionnaire was information 
on: 1) situation (activity the person is involved in and how many people are in the 
same room), 2) energy level and mood, 3) SOC (the three components 
comprehensibility, manageability and meaningfulness). 

At the end of the questionnaire, there is the opportunity to write additional text, 
take a photo or record audio either to measure the noise level or to elaborate on the 
situation and add thoughts of the moment.  
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User Test. The user test was based on 3 main modules: 
 

Day Activity 1 • The test persons are introduced to the project  
• A mobile phone with the application is handed out 
• The test persons are introduced to the use of the system (questionnaire and HRV equipment), and the HRV equipment is switched on and attached to the chest 
• The test persons starts filling in the questionnaire once an hour 2 - 4 Testing 5 A follow-up dialogue based on a reflection exercise and data analysis (day 4 activities) is implemented 

5 User Test Findings 

Through user testing we sought to answer the question: 

How can a methodical combination of Ecological Momentary Assessments qualify 
work-life stories that can provide greater insight into and understanding of work-
related stress? 

The following findings from the test run aim at answering the above. 

Can a Sense of Coherence Be Tracked? One of the hypotheses in the development 
of the method is that the sense of coherence (SOC) can mobilize resistance to 
stressors. Therefore, during the test process, we were particularly interested in 
whether or not, through the method, the test person had the experience of finding 
greater coherence or a space for greater reflection on the contexts in his life. 

5.1 Findings – Test Person 1 (TP1) 

The following are statements from the follow-up dialogue with TP1: 

"It amazes me that I had so much energy when I worked in the evenings throughout 
the week leading up to the deadline Friday. On the other hand, I was completely 
exhausted Saturday. I have not thought about it much before how demanding it is and 
how exhausted I am physically and mentally after such a deadline has been reached." 
and Our interpretation of these statements is that through self-monitoring and 
responding to ESM, TP1 obtains a meta perspective on his own practices and ways of 
managing energy. The data analysis supplies TP1 with a new insight on both a mental 
and a physical level, and it provides an elevated sense of coherence through a greater 
understanding of how different elements that constitute one’s life are connected and 
affect one’s actions, reactions and behaviours. It becomes obvious what price his 
body and mind pay after having reached a deadline. The test person said that he had 
not previously reflected on how much he subsequently responds to such pressure.  
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During the test period, TP1 had the – in his own words - “…privilege only to have 
to focus on finishing the paper”. In the follow-up dialogue it became clear that the 
focus on only one task had given him an extra amount of energy to complete the task 
and he felt an elevated sense of meaning. To the question: "How can you use this 
information?” he replied, "I can use the information to see how important it is for me 
to have a meaningful task. It makes sense to me - it gives me energy, whereas tasks 
that do not make sense steal my energy." 

In particular, self-monitoring of HRV appears to be meaningful to TP1. His first 
comment during feedback on this was: 

"Everyone should have access to this! I map many of the activities I do - use my 
calendar a lot. Here it is interesting for me to see how my body reacts for example 
when I work in the evening, go for a walk in the city or after an important deadline. 
Not everyone uses a calendar the way I do and for those who don’t I think that this 
type of questionnaire is a great way to remember what you have been up to… ”. 

Overall, the statements indicate that the method can be used as a reflexive space 
that can qualify work-life stories. But several statements also indicated that the 
introduction and follow-up dialogues with a test leader who can help explain and 
clarify concepts and data analysis as well as induce a larger degree of reflection are 
necessary. For example, during the follow-up dialogue TP1 reflected further on the 
concepts of balance, overview and meaning: 

"I still find it difficult to interpret the concepts balance, overview and meaning. I 
find myself reflecting on what you mean by this? " 

Several times throughout the follow-up dialogue, questions about the meaning of 
concepts are asked. This draws our attention to the importance of giving a thorough 
initial introduction where the concepts are discussed and explained on the basis of the 
understanding and the situation of the test person. 

5.2 Findings Test Person 2 (TP2)  

TP2 sums up his experience of being involved in the test as follows: 

“In general I can say that I have been confirmed in the feeling I had that my mood 
is often very positive. Moreover, I think that the contexts and people I surround myself 
with during a normal workday as well as in my spare time have a positive influence 
on my mental and physical balance”. 

This shows the method to be useful in discovering patterns and contexts that can 
explain certain feelings or a certain level of SOC as it clarifies connections between 
internal and external factors. 

When going through the HRV analysis, the dialogue becomes particularly relevant 
as it can be difficult to see the difference between a situation of physical activity and a 
stressful situation. TP2 was interested in knowing how his HRV was affected in a 
specific conflict situation, and the test leader analysed the time of the conflict on the  
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HRV measurement. It was obvious that he was emotionally and physically affected as 
he explained that he had to stop a conflict between two of the pupils. His HRV at that 
time was almost identical to the measurements a moment before when he had been 
carrying a heavy box up the stairs.  

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

Fig. 1. The x-axis illustrates the R-R interval, which is the period of a heartbeat measured in 
milliseconds. Increases in stress are associated with decreases in RR interval.1  

Identifying a moment like that is of great importance as it gives the test person a 
possibility to connect the feeling of distress he experienced at that moment with his 
bodily experience and from that point reflect on ways in which to deal with future 
conflict situations. The dialogue went on to reflect on his ability to calm down 
immediately after a stressful situation, which seemed to be comforting him. Also the 
fact that his HRV was fairly stable during lessons when having to correct the pupils 
once in a while seemed to have a positive effect on his perception of self. The data 
from the HRV was compared to the ESM data, which showed that his energy level 
that day dropped gradually. This had also happened the day before, however, and as 
we only had 4 days of measurements, it could be a coincidence rather than the 
expression of a certain connection. TP2 expressed several times that he would have 
preferred a longer test period in search of more significant patterns. 

TP2 reflects on the role of the test leader when talking about the possibility of 
taking more long-term measurements and analysing data him-self. He says: "I do not 
think one should underestimate the value of another person who has not been in the 
situation to analyse the numbers - looking at it from a different angle might generate 
different reflections". Furthermore to the question: "Has it made sense to you to be 
involved in the testing process?" TP2 responds: "Yes, but it only really makes sense 
when sitting down talking about it."  

                                                           
1  The y-axis is the time line. In this example the HRV–equipment was out of sync with the 

actual time as this HRV-measurement was started at 9.59 am. 

Walking on 
stairs  

Conflict 
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Walking on 
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Teaching 
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In order to become aware of the reasons for engaging in different activities TP2 
says: "... what you write2 about me scoring high in both energy and mood when I'm 
engaged in sports activities… these are actually some girls that I coach, and one 
could ask: why do you coach some girls you don’t even know? Well that's because it 
makes me happy." 

The reflection above underlines the method’s ability to find connections and reflect 
more deeply upon choices in one’s life.  

Finally he sees the test system as a potentially very useful tool for working in 
teacher teams, particularly with new school structures in mind, where several teachers 
and classes merge together for longer or shorter periods of time. 

6 Conclusions and Reflections 

Meta Perspective as an Impetus for the Creation of Work Life Stories. The main 
findings of this process indicate that the method is useful in creating the space for 
reflection and work life stories. Both test persons 1 and 2 express that the ESM and 
HRV monitoring provided them with a meta perspective on the extent to which their 
daily activities impact them both physically and mentally. In the follow-up dialogues, 
both test persons articulate how the method can serve as a useful step for them to 
gaining more insight into the connection between situations and activities in their 
work lives and their wellbeing in general.  
 
Need for Methodological Triangulation. The test also proved each part of data 
acquisition to be essential to the method in order for the test persons to reach a better 
understanding of their own work life stories and in order for the authors to achieve an 
accurate understanding of the data. It became clear to the authors that the ESM, the 
bio-feedback or the dialogues are not sufficient separately.  The authors experienced 
how crucial the dialogues are in order to understand the HRV-data. The authors could 
have interpreted the HRV curves in many ways, but we could not reach an accurate 
understanding without the follow-up dialogues. On the other hand, dialogues without 
ESM and HRV-monitoring would reduce the authors’ and the test persons’ insight 
into both bodily and mental here-and-now reactions. 

Though we have reason to believe that this method can qualify work life stories and 
bring us closer to an understanding of work-related stress, the test also prompted the 
authors to reflect on some of the potential biases and pitfalls that this method may contain.  

 
An Individualizing Trap? The answer to the salutogenetic question is the 
individual's sense of coherence, which is a lifelong learning process to which the 
individual himself may open the door through reflections and the creating of life 
stories. An objection to this particular standpoint might be that on this very point, the 
method could contribute to the individualization of the stress problem. In this context, 
individualization signifies the risk that the responsibility for the extent to which the 
individual copes with everyday stressors may become the individual’s own business. 

                                                           
2  Both test persons received written feedback with an analysis of the ESM and HRV data 

before the follow-up dialogue. 
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The individual "owns" the learning process. It may therefore be argued that the 
responsibility for whether or not the individual is able to act constructively in various 
situations rests solely on the individual. Phrased differently: If things cease to make 
sense or lack the sense of coherence, this is the individual’s own fault! The question is 
whether, on the basis of Antonovsky’s concepts, we are moving towards a scenario 
where SOC applies to the individual alone and therefore undermines the articulation 
of critical conditions in the individual's work life – conditions which are beyond the 
individual’s responsibility. On this matter, it is very important for the authors to 
emphasize that SOC cannot be reduced to a psychological characteristic that directs 
behavior. It is our belief that SOC – or the lack of it - occurs in a dialectical 
relationship between the individual and his/her surroundings.  

 
Ethical Issues Regarding the Data. In this regard, the authors also find it crucial to 
consider ethical issues pertaining to the data. An organizational context is an arena 
with many interests and relations which are both symmetric and asymmetric. Power is 
at stake between employees and managers. Goals differ. Therefore, the authors 
emphasize that this method in itself should be used with great care and include 
reflection on at least the following questions: Who owns the data? Who gains an 
insight into what and why? What purpose does the monitoring serve?  
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Abstract. An objective assessment of the cognitive burden imposed by a task 
(cognitive workload) is of fundamental interest in that it would provide a “win-
dow” into one’s current allocation of cognitive resources. Such insight would 
have tremendous implications in maximizing human performance through a 
multitude of applications including human-computer interaction. The authors 
propose a novel, electroencephalographic (EEG)-derived metric, which relies 
on the event-related potential (ERP) component, novelty-P3. A theoretical ra-
tionale and experimental evidence supporting the metric’s utility are provided, 
followed by future directions. 

Keywords: Cognitive workload, human performance, EEG, novelty-P3. 

1 Introduction 

This paper will present a novel method to assess the cognitive burden imposed when 
one performs a task (i.e., cognitive workload). First, the importance of such a metric 
will be discussed followed by how this metric was conceptualized and developed. 
Next, three experiments aimed at validating the capability of this measure regarding 
the assessment of cognitive workload will be presented. Finally, the paper will con-
clude with recommendations for future research regarding this metric. 

1.1 Why Measure Cognitive Workload? 

An accurate measure of cognitive workload would be useful in a multitude of ways. 
For instance, one would be able to determine how different task conditions impact the 
mental state. This information would be useful in designing a task so as to reduce 
excessive cognitive workload and limit mental fatigue. Additionally, a cognitive 
workload assessment could serve as a forecast of future behavior. For example, two 
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individuals could be executing the same task at comparable levels of performance and 
thus would be indistinguishable from each other using a behavioral level of analysis. 
However, it could be that one individual is performing the task at a considerable cog-
nitive ‘cost’ whereas the other individual is able to perform similarly with little strain 
placed on his/her cognitive resources. Knowing this, one could predict which individ-
ual could maintain his/her level of performance longer and who would be better able 
to cope with unexpected increases in task demands (the latter individual). Similarly, 
task mastery has been robustly associated with automaticity (the ability to perform a 
task with little mental effort), and as such, measuring cognitive workload would in-
form skill level beyond that of looking at the performance alone. In addition, conti-
nual monitoring of cognitive workload would reveal the dynamic mental state of an 
individual. This information could be used to maximize user/task interaction by ad-
justing task demands to match the user’s current cognitive state. For example, if a 
cognitive workload metric detects that an aircraft pilot is experiencing excessive cog-
nitive workload while flying the aircraft, the machine (aircraft) could assume task 
demands by engaging an autopilot feature. Similarly, in a team environment task, 
demands could be dynamically allocated among team members based on their respec-
tive cognitive workloads such that each member maintains a manageable load. For 
pictorial examples illustrating the utility of a metric assessing cognitive workload, see 
Figure 1. 

1.2 Background and Development 
Cognitive resources are limited in regards to quantity [1]. As one engages in a task, 
the cognitive workload imposed by the task draws upon these finite cognitive re-
sources. The spare resources not currently being utilized by the task are referred to as 
attentional reserve and are available to allocate to additional task demands (e.g., un-
expected events). In this regard, cognitive workload and attentional reserve are  
inversely related such that when cognitive workload increases, attentional reserve 
decreases. Conversely, when cognitive workload is reduced, attentional reserve grows 
[2]; see Figure 2A. Therefore, assessing attentional reserve provides insight into the 
current state of cognitive workload. 

Thus, in order to develop a technique to measure cognitive workload, we sought to 
objectively quantify attentional reserve using a neurobiological approach. The elec-
troencephalographic (EEG) technique measures the electrical activity of the brain. 
Brain activity associated with the processing of stimuli can be assessed by extracting 
a portion of the EEG signal time-locked to the onset of the stimuli—these EEG seg-
ments are known as event-related potentials (ERPs). ERPs are comprised of different 
components, each of which reflects a distinct cognitive process. The component 
known as the novelty-P3 reflects the automatic orienting of attention to novel stimuli, 
and the amplitude of the novelty-P3 component is positively related to the degree of 
this cognitive process [3]. The degree to which attention can be oriented to novel 
stimuli depends on the availability of cognitive resources for such orienting (i.e., the 
magnitude of attentional reserve). Thus, we reasoned that novelty-P3 component am-
plitude would reflect the quantity of attentional reserve. Specifically, when attentional  
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Fig. 1. Illustrative scenarios demonstrating the utility of an assessment of cognitive workload. 
A) In order to determine the most efficient means to convey information, three different visual 
displays representing the same information are presented to individuals. Their cognitive work-
load is assessed during these presentations and it is revealed that display Y conveys the infor-
mation with the least cognitive demand imposed, thus it is the most efficient. B) In order to 
determine when a flight controller has had enough training to begin real-world operation their 
cognitive workload is assessed as they learn how to perform their task. When they can perform 
the task with minimal cognitive workload (i.e., perform the task below a specified threshold of 
cognitive demand—“task competency”), then they are considered adequately trained. In the 
current example the two tracings correspond to two trainees with the solid line representing a 
trainee who reached the competency threshold quicker than the trainee represented by the dot-
ted line. C) During the dynamic production of a task, if the cognitive demand associated with 
the task exceeds the operator’s capacity then the probability of failure greatly increases. The 
ability to monitor the cognitive workload during task production (solid line) would inform 
when demand is exceeding capacity, which could trigger an intervention aimed at reducing the 
demand (dotted line) thus averting the increased risk of failure. For example, if a pilot became 
overloaded during a flight, then the co-pilot could begin to take over some of the responsibili-
ties, effectively reducing the pilot's load and, thus, the probability of an accident. 

reserve is high, many cognitive resources are available to be oriented to novel stimuli, 
which should then be reflected by large novelty-P3 component amplitudes. Converse-
ly, when attentional reserve is lower, fewer cognitive resources are available to be 
oriented to novel stimuli, which should result in reduced amplitude (see Figure 2B). 
Given the inverse relationship between attentional reserve and cognitive workload, we 
predicted high cognitive workload should result in small novelty-P3 amplitude, whe-
reas lower cognitive workload should result in larger novelty-P3 amplitude. In this 
regard, we predicted the novelty-P3 component should be effective in assessing cog-
nitive workload. 

In line with this rationale, our approach in assessing cognitive workload involves 
probing individuals with stimuli known to elicit the novelty-P3 component while they 
engage in a primary task (a task for which cognitive workload measurement is of 
interest). Specifically, we present individuals with novel, task-irrelevant, ecologically-
valid auditory stimuli (e.g., a woman coughing, a dog barking, a glass breaking). 
Concurrently, EEG is recorded and time-locked to the stimuli. Next, ERPs to the sti-
muli are extracted and the average amplitude of the novelty-P3 is computed.  

There are three distinct advantages to this approach. First, the EEG signal is an ob-
jective assessment and thus not influenced by the subjectivity typically introduced 
when employing self-report methods of cognitive workload assessment. Second, the 
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most commonly employed method used to measure cognitive workload (i.e., the dual-
task paradigm; [e.g., 4-7]) may risk inherently confounding the assessment [8-9]. In 
dual-task paradigms, participants are probed with stimuli to which they are asked to 
attend (secondary task) while performing the primary task. For example, participants 
may be asked to count auditory stimuli (secondary task) while performing a simulated 
aircraft flight (primary task). The major limitation of such paradigms is that the addi-
tion of a having to attend to secondary task stimuli may fundamentally interact with 
the primary task, thus compromising the magnitude of cognitive workload imposed 
by the primary task alone. As our method probes individuals with task-irrelevant sti-
muli (i.e., stimuli to which individuals are not instructed to attend), it avoids this limi-
tation altogether. Third, we probe individuals with ecologically-valid, novel stimuli. 
The salience of such stimuli is believed to induce a compulsory orienting of spare 
cognitive resources [3]. Therefore, this method is likely to provide a robust assess-
ment of attentional reserve and thus cognitive workload. 

 

Fig. 2. A) The conceptual model indicating (1) that cognitive resources are fixed with regard to 
total capacity, and (2) when a cognitive workload is imposed, the resources that are spared are 
referred to as attentional reserve. Accordingly, this relationship reveals that measuring atten-
tional reserve will, in turn, reveal the magnitude of cognitive workload. B) Hypothesized rela-
tionship between attentional reserve and novelty-P3 amplitude. As attentional reserve increases, 
this is reflected in increased novelty-P3 amplitude. Conversely, as attentional reserve decreases, 
novelty-P3 amplitude becomes reduced. 

2 Experimental Assessment of the Metric 

2.1 Experiment 1 

The first experiment aimed at testing the validity of our cognitive workload metric 
involved incrementally varying the difficulty of a primary task [10]. We reasoned that 
increasing task difficulty would elicit a corresponding cognitive burden, thus raising 
cognitive workload. Therefore, we predicted that incremental modulations in task 
difficulty would induce dose-dependent changes in cognitive workload and, as such, 
our metric should be sensitive to these changes.  
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Twenty participants performed the videogame Tetris at three levels of difficulty 
presented in random order: View, Easy, and Hard. Tetris requires individuals to use a 
keyboard to manipulate different-shaped game pieces presented on a video screen in 
order to place them in an optimal location (limiting the space between the current 
piece’s placement and previously played pieces). During the View level of difficulty, 
participants watched Tetris but did not manipulate the game pieces. This level was 
expected to impose the least cognitive burden as individuals did not directly interact 
with the game. During the Easy level, participants maneuvered game pieces moving 
down the video screen at a velocity of 1.67 cm/s, whereas during the Hard level par-
ticipants manipulated pieces moving at 3.56 cm/s. This difference in speed was be-
lieved to elicit greater cognitive workload in the Hard condition as compared to the 
Easy, as participants had to more quickly decide where to place the current game 
piece, execute the placement, and update their planning for successive pieces. During 
each level, we employed our cognitive workload assessment. Specifically, partici-
pants were probed with novel, task-irrelevant, ecologically-valid auditory stimuli. 
Concurrently, EEG was recorded and time-locked to the stimuli. Next, ERPs to the 
stimuli were extracted and the average amplitude of the novelty-P3 was computed. 

Behavioral results revealed poorer task performance in the Hard level than the 
Easy level, suggesting a successful manipulation of task difficulty. As predicted, no-
velty-P3 amplitude incrementally changed as a function of task difficulty level. Spe-
cifically, novelty-P3 amplitude was largest in the View level, second-largest in the 
Easy level, and smallest in the Hard level (see Figure 3). These results suggest that 
our metric is able to provide an effective assessment of cognitive workload. Specifi-
cally, a negative relationship between cognitive workload and novelty-P3 amplitude 
was observed, which is consistent with our conceptual model. 

 

Fig. 3. Support of our conceptual model. Specifically, as a task becomes more difficult, cogni-
tive workload increases, resulting in reduced attentional reserve. The scalp maps of the novelty-
P3 are actual data from the three difficulty levels: View, Easy, and Hard (darker grey indicates 
higher novelty-P3 amplitude). As expected, novelty-P3 amplitude was inversely related to task 
difficulty, suggesting that our metric is able to provide an effective assessment of cognitive 
workload. 

2.2 Experiment 2 

In our second experiment task difficulty was held constant while participants’ skill 
level improved [11]. It is generally accepted that as individuals learn a new task, the 
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cognitive workload required to perform that task becomes reduced [12]. Accordingly, 
we sought to examine if our metric was sensitive to changes in cognitive workload 
related to individuals’ current skill level. 

Twenty-one participants all performed a center-out reaching task that required 
moving as quickly and accurately as possible to targets. However, they were random-
ly assigned to either a group that learned a novel visuomotor distortion (i.e., requires 
learning) or to a control group that performed the same task with no distortion ele-
ment (i.e., no learning). For the duration of the task, our metric was employed to as-
sess cognitive workload. We predicted novelty-P3 amplitude would initially be low in 
the Learning group relative to the Control group, but that there would be a progressive 
increase in amplitude in the Learning group as a function of learning. Additionally, as 
the Control group was not required to learn the distortion, we predicted that novelty-
P3 amplitude would remain relatively stable.  

Behavioral evidence supported that the Learning group experienced learning whe-
reas the control group did not (i.e., the Learning group significantly improved task 
performance, whereas the Control group’s performance remained stable). As ex-
pected, the Learning group exhibited a progressive increase in novelty-P3 amplitude 
over the course of learning, whereas the Control group did not exhibit significant 
changes in amplitude (Figure 4). In other words, across the time period where indi-
viduals learned a new skill, our metric revealed a progressive decrease in their cogni-
tive workload. Moreover, our metric revealed no change in the cognitive workload of 
individuals assessed across the same time period, performing the same task but with-
out the learning component. Thus, our metric was sensitive to predictable changes in 
cognitive workload associated with skill learning.  

 

Fig. 4. The change in novelty-P3 amplitude as a function of skill level. On the right panel, the 
Learning group’s ERPs to the auditory stimuli are presented. The light grey, darker grey, and 
black lines correspond to early, middle, and late learning, respectively. Consistent with predic-
tions, novelty-P3 amplitude (indicated by the arrow) become larger as a function of learning, 
supporting our method as a valid assessment of cognitive workload. On the left panel, the Con-
trol group’s data are presented. As expected, there was no change in novelty-P3 amplitude over 
the course of task performance. 
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2.3 Experiment 3 

In our third experiment, task difficulty and participants’ skill levels were held con-
stant while participants’ environments were manipulated [13]. Specifically, 12 partic-
ipants performed Tetris at a difficulty level yoked to his/her respective skill level in 
two social environments: a high quality team environment and a low quality team 
environment. In the High Quality Team Environment, participants performed Tetris 
with a teammate who they perceived as being competent. Conversely, in the Low 
Quality Team Environment, participants performed with a teammate who they per-
ceived as being incompetent. Prior research has indicated that individuals performing 
in high quality team environments experience significantly reduced cognitive work-
load relative to performing in lower quality environments [14]. Accordingly we 
sought to examine if our metric was sensitive to changes in cognitive workload re-
lated to this aspect of the social environment. 

Participants reported, via a questionnaire, that the High Quality Team Environment 
was the preferred social environment. As expected, participants exhibited higher no-
velty-P3 amplitudes in the High Quality Team Environment relative to the Low Qual-
ity Team Environment, suggesting that cognitive workload was lower in the former. 
Thus, our metric detected predictable changes in cognitive workload as a function of 
social environment. 

2.4 Summary of Experiments 

Collectively, these three studies support our novel metric’s ability to assess cognitive 
workload. Specifically, novelty-P3 amplitude was demonstrated to be sensitive to 
multiple factors known to influence cognitive workload: changes in task difficulty 
while holding skill level constant, changes in skill level while holding task difficulty 
constant, and changes in environmental factors in which both task difficulty and skill 
level were held constant. Further, in the case of the first two experiments, the metric 
behaved in a dose-dependent, predictable fashion. Specifically, the metric revealed 
graded increases in cognitive workload concomitant with incremental increases in 
task difficulty, and progressive decreases in cognitive workload as a function of skill 
learning. These results underscore the fidelity and sensitivity of the measure as well 
as its utility in application. 

3 Future Directions 

As the employment of this cognitive workload metric progresses, we recommend 
several future directions regarding research in this area. First, the utility and integrity 
of this metric need to be rigorously investigated in a myriad of ecologically valid 
contexts. For example, a study similar to Experiment 1 in the current paper could be 
conducted in a ‘real-world’ environment, such as having individuals drive cars during 
high-density versus low-density traffic. Similarly, the results of Experiment 2 need to 
be demonstrated to generalize to a diverse set of tasks as a function of learning and  
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skill level. Secondly, although this metric has been shown to be sensitive to altera-
tions in cognitive workload, a behavioral consequence associated with this index has 
not been demonstrated. In other words, what is the predictive ability of this metric 
with regard to performance? For example, one could determine that if the metric sug-
gests an individual is under a high workload, does this correspond to a reduced ability 
to respond to additional challenge, such as an unexpected, ‘surprise,’ event. Thirdly, 
the metric currently requires that novelty-P3 amplitude be determined by computing 
its average response to multiple stimuli, thus limiting the ability to assess cognitive 
workload in near ‘real time.’ Therefore, different signal processing methods (e.g., 
wavelet analyses) need to be applied in order to compute the novelty-P3 after each 
stimulus presentation, thereby increasing the temporal resolution of this metric.  

4 Conclusion 

In this paper we described the utility of a metric that could reliably assess cognitive 
workload. We then outlined a theoretical rationale for how to assess this and  
conceived a corresponding novel metric. Experimental evidence was provided that 
suggested this metric is successful in assessing predictable changes in cognitive work-
load as a function of task difficulty, learning, and environment. We concluded with 
recommendations for future research.  
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Abstract. It is well established that anxiety causes attentional narrowing and 
increases distractibility, yet metrics are lacking for measuring these phenomena 
during performance. Attention Control Theory (ACT) postulates that anxiety 
consumes limited executive resources that are necessary for maintaining goal-
oriented, “top-down” attentional control and for suppressing stimulus-driven, 
“bottom-up” distraction. While previous work has quantified the effect of  
anxious states and traits on bottom-up distraction, it is far more difficult to 
measure endogenous top-down attention.  Here we briefly review theories and  
previous findings regarding anxiety’s affect on attention control and discuss an 
ongoing study examining sustained attention under neutral and anxiogenic  
conditions. The study employs a combination of established Electroencephalo-
graphic (EEG) methods that together may offer a way to measure top-down  
sustained attention. If successful, the method could help build a more complete 
theoretical picture of attention control, and provide a way for HCI platforms to 
monitor user states in changing contexts.  

Keywords: Attention control, Steady State Visual Evoked Potentials, anxiety. 

1 Introduction 

For human computer interfaces (HCI) to be successful in common real-world uses, 
they must be robust and reliable despite changing contexts that affect the user physio-
logically, cognitively or emotionally. This is a particular challenge for HCI that inte-
ract with human attention like those that optimize information flow to a user, analyst 
or operator. Attentional focus is a limited resource and there is often competition 
between “bottom-up” stimulus-driven attention capture and “top-down” goal-oriented 
processing.  The balance between these two mechanisms enables adaptive filtering 
that by default directs attention towards potential environmental threats (stimulus-
driven), but also permits active inhibition of the stimulus-driven system for goal 
oriented processing even in the face of distraction. Under normal circumstances this 
top-down attentional control can override and “tune out” task irrelevant stimuli,  
but under stress, attentional control is often compromised. Here we discuss the theo-
ries and evidence regarding to anxiety’s affect on attention control relevant for HCI 
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applications. We outline an ongoing study designed to simultaneously measure bot-
tom-up attentional processing of task irrelevant and task relevant stimuli with Event 
Related Potentials (ERPs) and continuous top-down attentional control using Steady 
State Visual Evoked Potentials (SSVEPs) to competing flicker frequencies. We then 
discuss a few future opportunities and considerations for using such methods in HCI 
applications.  

2 Anxiety and Attention Control 

Attention is inherently limited and often characterized as a “spotlight” for highlight-
ing features and cues of interest at the exclusion of others. From a cognitive science 
perspective, attentional control is a central executive function [1] mediated by bilater-
al dorsolateral pre-frontal cortex (dlPFC), inferior frontal gyrus, and anterior cingulate 
cortex (ACC) [2-3]. Areas specific to inhibitory processes thought necessary for sup-
pressing distraction include right ventrolateral prefrontal cortex (vlPFC) and bilateral 
temporal parietal structures [3]. These frontal regions and their functions are particu-
larly sensitive to affective stimuli, anxiety and stress hormones making them targets 
for theories and research aimed at understanding top-down attention control.   

2.1 Theoretical Models of Arousal and Performance 

Anxious arousal is a common feature of many performance environments and is 
known to undermine the efficiency, speed and/or quality of selective processing of 
task-relevant information.  Theoretical models have evolved over the years to help 
explain some of these behavioral phenomena. Easterbrook’s Cue Utilization Theory  
[4] was among the earliest of these and attempts to explain why performance may be 
improved with small amounts of arousal but eventually degrades as arousal reaches 
maladaptive levels.  In short, arousal causes attentional narrowing, initially facilitat-
ing performance by excluding task-irrelevant stimuli, in favor of task-relevant infor-
mation. As arousal increases however, attentional bandwidth narrows to the point that 
some task-relevant stimuli are also excluded from processing.  While useful, Cue 
Utilization Theory does not explain why performance outcomes are often resistant to 
anxious arousal, nor why anxious arousal is associated with increased distractibility. 
Processing Efficiency Theory (PET) offered an explanation to the former question by 
postulating that arousal and stress affect performance efficiency, if not always per-
formance effectiveness  [5]. In stressful contexts individuals can recruit greater neur-
al resources to overcome deficits otherwise associated with attentional narrowing, and 
maintain the quality of performance at the expense of increased effort. Attention Con-
trol Theory (ACT) [6] took PET a step farther to incorporate neurocognitive elements 
and account for changes in distractibility. Anxious arousal consumes executive re-
sources, eroding inhibitory control allowing salient stimuli – whether relevant or  
irrelevant – to consume attentional resources [6]. Collectively, these models suggest 
that under anxiogenic conditions information processing is both limited and  
inefficiently allocated.  
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2.2 Evidence Anxiety Erodes Inhibitory Attention Control  

Attention Control Theory’s (ACT) predictions that anxiety undermines the top-down 
attentional control and inhibition of task-irrelevant stimuli are supported by experi-
mental findings. While the literature is too vast to review in its entirety here, a few 
overarching trends and key findings are discussed. 
 
Neurochemical Mechanisms. Attentional control mechanisms have been linked to 
the function of noradrenaline and dopamine receptors in the prefrontal cortex. Both 
dopamine (DA) and noradrenaline/norepinephrine (NE) are necessary for enhancing 
selective attention in the frontal cortex by suppressing neural firing to non-preferred 
(distracting) stimuli. Stress increases the presence of both chemicals, and too much of 
either will over-suppress firing, diminishing responses to all stimuli in a non-
discriminative manner (for an excellent review see Arnsten, 2009)[2]. This absence of 
“top-down” prefrontal selectivity putatively increases reactivity to stimulus-driven 
‘bottom-up” processing and provides a mechanistic basis for understanding the ten-
sion between the two systems. Possibly reflecting over-suppression of frontal regions 
with high DA and NE, fMRI evidence links anxiety-impaired inhibition to decreased 
activity in attention-related prefrontal brain regions [7]. On a network level, increases 
in dopamine (induced via a DA reuptake inhibitor) in a resting (non-anxious) state has 
been linked to the coupling of the frontoparietal control network (FPCN) with the 
default mode network (DMN) supporting internally-guided attention, and decouples 
the FPCN from the Dorsal Attention Network (DAN) which otherwise facilitates 
external cognitive processes  [8, 9]. 
 
Induced Anxious States.  Increasing state anxiety in experimental settings – with 
threat of shock, psychosocial pressure, or other methods of inducing stress – increases 
increases sensitivity to bottom-up processing, potentially increasing opportunities for 
distraction. For example, discrimination between relevant and irrelevant cues was 
impaired in a driving simulation during competition stress, and indicative of distrac-
tion, participants fixated visually more often on peripheral cues [10]. Anti-saccade 
tasks, which are considered pure reflections of attention control, also show that the 
speed and efficiency of directing attention away from a stimulus are impaired under 
anxiogeneic conditions [11]. Acute increases in state anxiety increased neural res-
ponses to unattended threat stimuli [12] and threat of shock also increased the magni-
tude of neural response to deviant neutral stimuli indicative of hyper-vigilance [13]. 
Anxiety manipulations also impair performance on inhibitory tasks: under higher 
anxiety conditions, participants exhibit slower reaction times in response-conflict 
tasks [14] and in a dot-probe paradigm  [15]. 
 
Affective Stimuli. If anxiety increases sensitivity to bottom-up stimulus processing, it 
is not surprising that threatening or negatively-valenced stimuli garner preferential 
processing over neutral and positively-valenced stimuli. It is well established that 
affective stimuli, and particularly negative stimuli, activate the amygdala [16][12] and 
induce physiological responses, including increased skin conductance and startle  
responses, even when presented very briefly [17, 18].  Emotional stimuli trigger  
automatic attention capture mechanisms [19, 20] and show greater hemodynamic 
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responses in threat-related processing brain regions [21]. Threatening stimuli are also 
processed faster than neutral or positive stimuli [22][18].  Behavioral results show 
attentional biases for emotional stimuli in vigilance tasks  [23] and across modalities 
when in competition with simultaneously presented non-arousing stimuli [24].  
 
Trait Anxiety. Other indicators that anxiety impairs inhibitory control are the patterns 
exhibited by those with high Trait Anxiety. Higher trait anxiety is correlated with in-
creased physiological indices of stress in response to affective stimuli [17] and altered 
activation patterns in the amygdala [25]. Likewise, increases in trait anxiety measures 
correlate with reduced attention control and prefrontal activation (dlPFC) and as  
measured by fMRI [26]. Event Related Potential, (ERP) findings indicate trait anxious 
individuals exhibit increased attention and neural reactivity to threating stimuli [15], 
increased responses to deviant stimuli [13], and may also have trouble disengaging  
with negative stimuli [27], collectively indicating a bias towards threat processing  
(a potential distraction) and impaired suppression of task-irrelevant stimuli.  

Subtypes of anxiety predisposition may also have distinct relationships to neural 
processes. Those with high social anxiety exhibit increased connectivity between the 
amygdala and visual processing regions indicating a hypervigilant resting state [28] 
and a possible bias towards bottom-up, sensory driven pathways. Likewise, while the 
early N2 amplitude (related to sensory processing) correlated positively with Trait 
Anxiety scores in an inhibitory task, the amplitude of the subsequent P3 correlated 
with scores on the Anxiety Sensitivity Index (ASI) [29]. 

The relevance of these effects of anxiety on attentional systems for human comput-
er interfaces is twofold: 1) optimal information flow will depend partly on the anxious 
state of the user, which will differ between and among individuals as demands and 
contexts change; and 2) HCI systems will require means to monitor the user’s state if 
they are to titrate information flow accordingly in response to these changes. 

3 An Ongoing Study of Anxiety’s Influence on Attention 
Control 

Understanding how anxiety and stress affect attentional control requires simultaneous 
measurement of bottom–up and top-down attention processes. Of these methods, EEG 
provides the most practical (non-invasive, inexpensive) option and has the temporal 
resolution necessary for HCI applications. Indeed, ERPs linked to exogenous stimuli 
can probe such variables as residual processing capacity [31, 32] and thus provide 
snapshots of executive function from a bottom-up perspective. Measuring top-down 
attention control, a dynamic and unpredictable process, presents grater challenges for 
online assessment. 

Steady State Visually Evoked Potentials (SSVEPs) may allow for the persistent, 
online measurement of endogenous, top-down attention control. SSVEPs are neural 
oscillations that are induced by flickering stimuli such as a colored shape, checker-
board or Gabor gradient (see Vialatte, et al, 2012 for a current review) [33].1 If a 

                                                           
1  These frequency-driven oscillations can also be induced in auditory (Steady State Auditory 

Evoked Potentials) and somatosensory systems.  
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flicker is presented at a specific frequency (say, 12Hz), it will drive that same fre-
quency in visual processing regions of the cerebral cortex. The resulting SSVEP is 
relatively resistant to noise [33] and easily measured with EEG. Most important for 
studying anxiety’s effect on attention control, SSVEPs are attention-sensitive; at  
certain frequencies in the alpha band (8-12 Hz) SSVEP amplitude is greatest when 
attention is devoted towards the driving flicker, and is suppressed when the flicker is 
unattended or actively ignored [34].  These attentional modulations are sensitive to 
covert shifts in attention and do not require visual fixation on the flicker [35] meaning 
top-down attention modulation can be isolated from sensory-dependent bottom-up 
systems. Because the visual flicker generates a persistent frequency tag in the neural 
tissue, deviations of this tag may allow us to quantify and detect unpredictable endo-
genous changes in attention control (such as attentional lapses or “zoning out”) in a 
way that snapshot methods cannot. 

Morgan, Hansen & Hillyard, (1996) [35] demonstrated that more than one SSVEP 
frequency can be stimulated and recorded at the same time and that the relative ampli-
tude to each frequency reflects covert attention allocation. In other words, if attention 
is shifted from frequency A to frequency B, the amplitude of SSVEPA will decrease 
and the amplitude of SSVEPB will increase relative to baseline. This sort of experi-
mental setup allows for the simultaneous, persistent measurement of to-be-ignored and 
to-be-attended stimuli; greater amplification of the attended SSVEP and suppression of 
the ignored SSVEP are indicators of more selective sensory filtering by top-down me-
chanisms [36].  Embedding targets and distractors in the competing stimulus flickers 
generate attention-dependent ERPs providing simultaneous snapshots of bottom-up 
attention capture by task-relevant and task-irrelevant stimuli.  

We are using the same experimental approach to assess how anxiety (unpredictable 
threat of shock) affects covert attention control in a target detection task. If anticipato-
ry anxiety erodes one’s ability to ignore task-irrelevant stimuli, individuals should 
exhibit: 1) less SSVEP suppression of an unattended flicker; and 2) increased atten-
tional capture by distractor stimuli presented within the unattended flicker compared 
to neutral conditions.  

SSVEPs have been long used and developed for use in brain-computer-interfaces 
(BCI) as a way to encode user commands without relatively slow motor and mechani-
cal intermediaries [33], and thus their utility in HCI is already established. If the 
above described methodology proves sensitive to such manipulation, BCI and HCI 
systems could also use SSVEPs for the persistent, online assessment of a user’s  
attention bandwidth and vulnerability to distraction - whether anxious, fatigued, or 
otherwise compromised – to optimize and titrate information flow. For civilian and 
military applications such a method could provide a means for: assessing qualitative 
differences among individuals who perform either very well or very poorly in stress-
ful situations during training and selection; quantifying the effectiveness of training 
for reducing stress susceptibility; designing and testing platforms that may offset the 
deleterious effects of anxiety; and monitoring the operator’s ability to control his or 
her attention during performance.  
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4 Final Thoughts and Future Opportunities 

While the results of the ongoing study are pending, other features of SSVEPs present 
a number of potential opportunities and a few challenges for HCI applications. For 
example, different frequencies drive SSVEPs in distinct populations of neural tissue, 
and may allow for network- or population-specific frequency tagging. While alpha 
band frequencies (8-12Hz) are attention sensitive, upper and lower alpha frequencies 
show distinct responses, and other frequencies seem to be unaffected by attention [37] 
An HCI system could leverage this specificity to monitor and parse distinct neural 
processes and networks with functionally distinct frequencies.  Measures of phase – 
while partially reflected in measures of amplitude – may also be of utility. Despite 
this potential for network specificity, the presentation of a series of flickers can be 
visually fatiguing. As a result computer interfaces looking to include such tools will 
have to be selective in choosing the frequency and stimuli that will provide the most 
robust signal, while minimizing perceptual demand. In sum, and despite such difficul-
ties, the example of using a combined ERP and SSVEP paradigm to investigate the 
effects of anxious states on attention control mechanisms illustrate how this method 
could provide a more complete picture of attentional control mechanisms for theoreti-
cal and functional understandings of these systems as well as improved tools for  
optimizing human computer interaction. 
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Abstract. In today’s data rich environments, enormous quantities of digital in-
formation can now be collected and made available to end-users in a wide va-
riety of domains. With so much information now readily accessible, effective 
display methods that integrate and make sense of the data are needed; otherwise 
end-users may quickly become overwhelmed. HF Designworks, Inc. and Alion 
Science & Technology have developed tools that leverage large quantities of  
information to provide useful visualizations to the warfighter. This paper  
describes the approach and results of two related projects, iWarrior and My 
Heat Maps, where we provide end-users with deep data comprehension without 
imposing cognitive overload. 

Keywords: Applications of Augmented Cognition. 

1 Introduction 

Military, commercial, and medical sectors now typically yield enormous quantities of 
data for personnel to interact with and interpret. For example, typical modern military 
areas of operation continuously collect data from advanced sensors and other intelli-
gence-gathering tools. These large amounts of information can offer valuable insights 
into a variety of battlefield contexts. However, for this information to be usable, novel 
and effective techniques are required in order to sort, filter, and display data to end-
users without overwhelming them. Without effective display techniques, high vo-
lumes of data can become unusable and potentially hinder military operations by pull-
ing time and manpower from needed areas. A prime example of a fielded system that 
yields high quantities of data is “blue force tracker” (BFT) situational awareness data 
from the battlefield. BFT data provides the current and recent past location of military 
ground-based assets, and is vital for logistics, mission planning, and identifying gaps 
in strategy and area coverage. Yet much of this valuable information is not leveraged 
to its full potential because of the sheer quantity and format of data. With Blue Force 
GPS data, a single vehicle traveling for a few hours can generate thousands of  
“GPS footprints,” which must then be plotted and mapped before they become useful. 
When tracks of multiple vehicles are gathered, the data quantity multiplies, as does 
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3 Requirements 

A past project completed by the team demonstrated that many of the military casual-
ties that occur during a tour of duty are due to complacency that can lead to selecting 
and traveling along the same route repeatedly or conducting patrols in a predictable 
manner. As a result, enemy forces detect patterns in the patrols or routes used, and use 
this knowledge to stage attacks or select locations for Improvised Explosive Device 
(IED) placement. Based on this finding, a tool was needed that could easily and effec-
tively display tracks that show where vehicles have traveled for specific periods of 
time, presented on a map. Track-based visualizations are the core features of both 
iWarrior and My Heat Maps, and almost all other features within these tools build 
from this.  

Starting with a focus on route traffic, various visualization features were developed 
through SME interviews and iterative designing. In addition, the development of heat 
mapping visualizations (which use coloring scales to display relative traffic in geo-
graphic regions, visually indicating heavily traveled, “hot” areas), Soldiers also  
indicated a need for identifying areas where vehicles or personnel have remained 
stationary for longer periods of time. This requirement resulted in the development of 
halt visualizations to represent where vehicles or personnel have remained stationary 
(based on GPS tracks recording periods of no movement) for a user specified amount 
of time. The GPS data is also used to provide statistics and metric visualizations to 
users so they can better determine how fast units move through selected areas as well 
as the frequency of movement based on time (year/month/day and even time of day). 

Continual user feedback and SME-derived requirements resulted in a number of 
other features; iWarrior now also provides push pins for identifying significant events 
associated with a specific location or a selected region on the map. Users place pins 
and provide associated data (e.g., text or image files). Pins offer visual indications of 
vital information, allowing warfighters to recognize possible relationships between 
GPS traffic and push pin data. 

User requirements have also guided a recent update to the My Heat Maps applica-
tion which enables users to save their tracks as heat map image files which can then 
be uploaded to a computer and viewed in Google Earth, offering an additional method 
for tracking route and patrol traffic as well as allowing users to combine tracks from 
multiple handsets for viewing in Google Earth. Note that the popularity of viewing 
image files in Google Earth by Soldiers has also allowed us to implement a similar 
image conversion and download feature in iWarrior.    

4 Prototype 

4.1 iWarrior 

iWarrior’s features have been developed to enhance warfighter comprehension of the 
battle space and augment decision-making through valuable visualizations and infor-
mation management tools, as was presented in Fig.1. The use of iWarrior begins with 
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5.2 My Heat Maps 

To explore the in-field applicability of the My Heat Maps application plugin, a four-
man team comprised of our SMEs performed a field test to gather GPS data of possi-
ble real-world scenarios. All four members of the team had prior military experience 
including several deployments to Afghanistan and Iraq as infantrymen. The main goal 
of the exercise was to see how the on-the-ground movements translated into heat 
maps and then use the heat map visualizations to assist Soldiers in conducting future 
operations. To accomplish this goal, the four-man team conducted a variety of basic 
military formations and common mission scenarios while recording their GPS data.   

The results of the heatmap evaluation showed us that we were on the right track in 
terms of visually indicating to users where they had been, what type of movement was 
made, and with what frequency and speed they had moved through select areas. Re-
sults and later discussions also indicated to us that we needed to heat by mission ra-
ther than track if the heatmaps for multiple personnel were being viewed at the same 
time. Displaying heatmaps for multiple personnel can be performed via uploading to a 
computer and displaying in Google Earth, or uploading data to iWarrior (a single 
hand held device using My Heat Maps only renders heat maps for a single user). Ad-
ditionally, because some units may have several hand held devices while others might 
only have a single hand held device, we would need to revise our algorithms so that 
each mission, regardless of how many tracks were included, received one heat value. 
The more missions in the same area would result in a higher heat value. This was 
because we were making the assumption that the enemy was more interested in the 
fact Soldiers travelled through an area and how often, rather than how many Soldiers 
travelled through that area (which could be confusing to the system since there is no 
way to know in advance just how many Soldiers would have hand held devices). 

The team found that heat maps were an easy and effective way of visualizing 
routes taken. The heat maps also helped identify choke points in areas of slow move-
ment and areas covered in clearing operations. The team agreed that the information 
from heat maps would be very useful for mission planning, after action reviews and 
debriefs. The team also suggested that heat maps could be improved by providing 
additional capabilities. Capabilities that could enhance the utility of the program in-
clude: the ability to vary the rate of ‘heating’, the ability to vary the thickness of heat 
maps for different terrain (e.g. jungle vs. desert environments), introducing improved 
methods for indications movement speeds, and an option to have heat maps fade over-
time (i.e., stale out). 

For future work we plan to show these heat maps to SMEs who were not part of 
the original missions. We will then asking these new SMEs to evaluate the heat maps 
and provide feedback on what they think is being presented (i.e., movement details), 
to help ensure our heating algorithms are fully accurate over a variety of environ-
ments and mission scenarios. 

Fig.5 and Fig.6 display the heat mapping data of four users traveling in a fire team 
formation on line. Fig.5 shows the fire team as they spread out, moving across  
the image area from left to right. Fig.6 shows the fire team spreading out and then 
collapsing back in as they move across a field. 
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and when GPS points get heated) or even developing cultural conversion applications 
so Soldiers can better understand foreign communities they encounter. Further testing 
will include mission-based scenarios to gather data by one team of SMEs, and re-
views/interpretation by a second group of SMEs. When the second SMEs have devel-
oped their understanding, we will have them present to the first group. This will allow 
us to identify potentially misleading data visualizations, and to develop solutions that 
make sense to all users.   

7 Summary 

Current and rapidly emerging technologies can provide users an abundance of vital 
data. The data itself however, is not necessarily useful until it is displayed in a way 
that end-users can comprehend. With visualization techniques that organize data in a 
meaningful format for the intended end user, digital data can be used to provide key 
information to users without contributing to, or causing, information overload. In the 
cases of iWarrior and My Heat Maps we were able to successfully take historical GPS 
data and enhance a user’s situation awareness and decision making through statistical 
charts (including showing critical times of day Soldiers are conducting missions) as 
well as heat maps of what areas are being covered and with what frequency. 

Additionally, by following an iterative design cycle where end users are involved 
throughout, including a final test-fix-test cycle at the end of each build, we can further 
ensure the products meet the needs of the users and are robust enough to work, and 
work well, in the field. 
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Abstract. Long distance driving has been a major factor leading to road acci-
dents [1-2]. With the lack of reliable validation on driver fatigue technology 
systems [3], the aim of this study is to correlate the measurements of two cogni-
tive tests: Psychomotor Vigilance Task Tester-PVT [4] and PenScreen-PS [5] to 
establish the threshold levels of fatigued driving performance that will form the 
basis to prevent fatigued drivers from handling vehicles. PVT is recommended 
to be the first line of defense against putting fatigued drivers on duty. Drowsi-
ness can be detected by SmartEye Anti-Sleep-AS, acting as a monitoring tool. 
Eye closure analysis on AS’s eyelid opening data showed that AS is a feasible 
system for real-time monitoring of fatigue while driving. The results also sug-
gested a simpler and more economical way of monitoring fatigue using AS sys-
tem. PS could be used in conjunction with PVT to detect for any malingering 
intent. 

Keywords: Fatigue, Fitness for Duty, Driving Performance. 

1 Introduction 

Long haul driving is an example of a prolonged operation or task that demands sus-
tained vigilance in which human performance eventually breaks down as a result of 
mental fatigue. This can cause safety to be compromised. Operator fatigue has been 
one of the most prevalent reasons behind accidents, even in military settings, leading 
to the development of Fatigue Management Technologies (FMT) [6]. Generally, the 
fatigue problem is tackled by these FMTs in two ways. 

One of the ways to mitigate driver fatigue is to monitor fatigue real-time and indi-
cate its onset through a warning system. Such monitoring systems have the added 
advantage of measuring driver’s alertness while he drives, without requiring him to 
perform additional and possibly, distracting tasks. However, current technology is 
limited to detecting the onset of fatigue instead of predicting it, and hence does not 
allow for early intervention. Additionally, current behavioral attributes monitored are 
largely controllable by conscious means. In other words, unmotivated operators can 
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mimic fatigue-like behaviors to trick the fatigue-warning system, so as to be excused 
from mandatory duties. One such system is the PERCLOS system that measures the 
percentage of eyelid closure to infer sleeping behavior.  

Therefore, there is a need to develop a robust early predictor by monitoring 
attributes that cannot be voluntarily controlled by the observed driver. Monitoring 
involuntary attributes like saccadic eye velocity (quick eye movement speed) and 
pupil reflexes seems to be a better approach and these actions have been found to be 
highly correlated to fatigue levels [7-12]. Heart rate variability has been found to be a 
useful covariate of fatigue [13-17] as well as electrodermal activity (EDA), which 
detects the changes in skin activities [18, 19]. This study aims to validate eye reflexes, 
heart rate and EDA measures as effective early predictors for unacceptable fatigue 
levels. 

This study would potentially lead to improvements in operation safety of extended 
operations and sustained demand for vigilance by preventing human errors due to 
fatigue. Furthermore, the detection concepts developed here have the advantage of not 
requiring the driver to perform additional tasks which can be a hassle to the driver and 
potentially detract him from his primary task. 

2 Method 

Forty healthy Singaporean male participants (aged 20 - 45) licensed to drive a motor 
vehicle weighing no more than 3000 kg with no bad driving records for the past one 
year were recruited. All interested and eligible participants attended a recruitment 
brief at least three days ahead of their trial. During the brief, details on the conduct of 
the trial, trial safety aspects, and subject reimbursement were presented. Participants 
willing to take part in the trial signed an informed consent in the presence of a witness 
(minimum 21 years of age). Each of them was issued an ActiWatch, a wrist-device to 
log their sleep duration for 3 days before his trial. This study required participants to 
have minimum 6 hours of sleep every night, for 3 nights, prior to their trials.  

Informed consent, indemnities and recruitment work processes was administered to 
those interested on the same day, less those who are below 21 years of age and require 
parent’s consents. 

The fatigue driving trial required participants to perform prolonged monotonous 
driving (30km/hr, up to a maximum of 4 hours) within a closed-circuit road (refer to 
Table 1). Three cognitive systems deployed to determine the participants’ pre–post 
fatigue driving differences. A monitoring system tracked the participants during the 
entire driving duration. 

Each participant was required to complete both Trial A and B on separate week-
ends at least 6 days apart to prevent fatigue interaction between trials. The sequence 
of trials was counterbalanced between two groups of participants. Trial A was de-
signed to apply cognitive test hourly during the 4 hours driving, while in Trial B, 
cognitive tests were administered pre and post driving.  
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Table 1. Work flow for Trial A & B 

Time 
Start 

Activities Equipment  
( Trial A) 

Equipment  
( Trial B) 

0730 hrs Reporting and  
Safety Briefing 

All equipment ready. ActiWatch data to be downloaded. 
Health Declaration signing. 

0750 hrs Equipment Familiarization PVT, PS – Demo 

0830 hrs Driving Familiarization On-the-road Driving 5 Rounds 

0840 hrs Breakfast Food 

0915 hrs Measurement #0 –  
Trial Baseline  

PVT, PS, VAS 

0930 hrs Driving Game PS3 Game console 

1130 hrs Measurement #1 –  
Before Driving  

PVT, PS, VAS 

1205 hrs Light lunch Food 

1215 hrs Baseline Driving ET(AS),  

1230 hrs Driving 30km/hr for  
4 hours* 

Continuous data  
collection – ET(AS),  
Hourly stoppage for PVT, PS, 
VAS 

Continuous data  
collection – ET(AS), 

1630 hrs Measurement #2 –  
After Driving 

PVT, PS, VAS  

1700 hrs Monotonous  
Driving Game# 

Continuous data  
collection  - ET(AS),  
PS3 Game console 

Continuous data  
collection  - T(AS),  
PS3 Game console 

1900 hrs Measurement #4 –  
After Game 

PVT,  PS, VAS 

1815 hrs End of Trial-Run Pack all equipment 

PVT – Psychomotor Vigilance Task Tester    

PS – PenScreen 

VA – Visual Analogue Scale (Fatigue Survey)  

EDA – Electro-Dermal Activity 

ET(AS) – Eye tracker (Smart Eye Anti-Sleep) 

Note:  *Participant will proceed to the next item if he dozes off less than 4 hours into driving. 

#Participant will proceed to end the trial if he dozes off less than 2 hours into the monotonous 

driving game. 
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3 Results and Discussion 

Actiwatch II – Participants, on average, rested 441.22 minutes per night for 6 nights 
prior to taking part in the driving trials. The Actiwatch II registered 91.2% of these 
times as sleep times. On the night before the trial, participants rested, on average, 
384.11 minutes. No significant correlations between rest/sleep duration and driving 
duration or cognitive task performance. 

3.1 Visual Analogue Scale [VAS] 

On average, participants in Trial A drove for 151 minutes while participants in Trial B 
drove for 149 minutes. The analysis on VAS showed that the participants’ perception 
of fatigue increased significantly after the driving task. This supports the claim that 
the driving task successfully induced fatigue. The duration of driving in Trial B did 
not correlated with the increase in VAS score, meaning with a longer period of driv-
ing did not corresponded to a proportionate increase in the participants’ rating in fati-
gue and that the two measures were independent of each other. 

3.2 Grouping of Participants (Refer to Table 2) 

From the results derived from Psychomotor Vigilance Test (PVT) and PenScreen 
(PS), serving as potential screening tool, the performance of these participants were 
classified into three groups. One group of participants (n = 11, were labeled as Elites), 
all the participants drove for more than 220 minutes for both Trial A and B. They 
were able to successfully complete the full driving task without lane deviation. 
Another group of participants (n = 14) could only drive less than 90 minutes for both 
trials were known as the Vulnerable drivers, as they could not complete the full 4-
hour driving task and had to be stopped for causing danger to other road users. Seven-
ty-five percent of this group of participants for managed to drive for more than 40 
minutes. The longest driving duration in the group was 160 minutes and the shortest 
driving duration in the group was 18 minutes. The last group of participants (n = 15), 
better known as the Malingerers, managed to drive for more than 140 minutes for 
both trials on average before lane deviating. They have the tendency to drive almost 
90 minutes longer during the first trial and most of the time participants in this group 
did not lane deviate in the first trial, but lane deviated in the second trial.  

In summary, it was believed that the participants in this group purposefully drove 
less on their second trial than on their first to try to end the trial earlier, regardless of 
the different task demands required for each trial. We call this group the Malingerers, 
as they seemed to have feigned fatigue to get off the driving trial when we suspect 
they have not reached their maximum fatigue level. 13 out of the 15 Malingerers, who 
drove for more than 180 minutes, did it only for their first trial but not for the second 
trial. The longest driving duration for the group was 242 minutes while the shortest 
driving duration was 16 minutes. 
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Table 2. Grouping criteria for elite, vulnerable and unmotivated drivers 

 Elites Vulnerable Unmotivated 

First Trial Can last 
approximately 4 
hours of driving 
without deviating 
from lane. 

Can only last 
approximately 1 
hour of driving 
without deviating 
from lane. 

Can last approximately 4 
hours of driving without 
deviating from lane. 

Second Trial 

Can only last 
approximately 1 hour of 
driving without deviating 
from lane. 

 
Sleep records obtained from the Actiwatch found no significant differences be-

tween these 3 groups of participants in terms of rest and sleep duration (F(1,36) = 
0.18, p = 0.836). Thus, all significant differences that are found from analyses that 
follow cannot be due to the effects of rest and sleep. 

3.3 Cognitive Test –Psychomotor Vigilance Test (PVT)  

The results from the Vulnerable group revealed that PVT can reliably screen for fati-
gue individuals who are unfit for road duties. The following tables described the sig-
nificant differences between and within group comparison for PVT mean reaction 
time and its standard deviation. 

Table 3. PVT mean RT (ms) with lapses 

Trial Time Elite Vulnerable Malinger 
Comparison  

by Group 

Comparison  

by Time 

A 
Start 249.83 (28.51) 280.66 (55.05) 265.70 (39.44) F(2,37) = 5.17 

p <0.05  

(Elite vs.  

F(1,37) = 27.57 

p<0.01 End 279.20 (60.36) 560.77 (282.72) 450.15(215.12) 

Comparison  

within groups 

F(1,10)= 4.29 

p = 0.065 

F(1,13)=15.72 

p < 0.01 

F(1,14)= 14.32 

p < 0.01 

Time*Group Interaction 

F(2,37)=5.04, p < 0.05 

B 
Start 264.75 (32.51) 264.60 (31.90) 289.58 (68.23) 

F(2,37) = 0.74 

p = 0.483 

F(1,37) = 5.13 

p<0.05 End 295.54 (52.58) 505.90 (337.94) 499.01 (704.58) 

Comparison 

within groups 

F(1,10)=8.63 

p < 0.05 

F(1,13)= 7.28 

p <0.05 

F(1,14)= 1.66 

p = 0.218 

Time*Group Interaction 

F(2,37)=0.77, p = 0.471 

Note: values in brackets are Standard Deviation of its respective mean. 
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Table 4. Standard deviation (SD) of RT with lapses 

Trial Time Elite Vulnerable Malinger 
Comparison  

by Group 

Comparison  

by Time 

A 
Start 61.49 (30.04) 137.37 (186.86) 73.88 (46.84) F(2,37) = 6.05 

p < 0.01  

(Elite vs  

F(1,37) = 13.58 

p < 0.01 End 76.12 (41.99) 612.75 (614.77) 344.68(338.81) 

Comparison 

within groups 

F(1,10) = 3.41 

p  = 0.095 

F(1,13) = 7.53 

p < 0.05 

F(1,14) = 10.86 

p < 0.01 

Time*Group Interaction 

F(2,37) = 3.51, p < 0.05 

B 
Start 77.47 (42.13) 79.73 (40.04) 100.68 (89.64) 

F(2,37) = 0.77 

p = 0.469 

F(1,37) = 5.03 

p < 0.05 End 114.50 (82.35) 412.02 (577.51) 319.10 (756.67) 

Comparison 

within groups 

F(1,10) = 4.28 

p = 0.065 

F(1,13) = 4.50 

p = 0.054 

F(1,14) = 1.52 

p = 0.238 

Time*Group Interaction 

F(2,37) = 0.90, p = 0.416 

3.4 Cognitive Test –PenScreen (PS) 

PS tasks of non-matching pairs with active distracters (NAC) and matching pairs with 
neutral distracters (MNC) tasks was found to be a promising screening tool for drivers 
who have malingering intent. The following tables described the significant differenc-
es between and within group comparison for NAC and MNC tasks. 

Table 5. NAC mean RT: non-matching pair – active distracters 

Trial Time Elite Vulnerable Malinger 
Comparison by 

Group 

Comparison by 

Time 

A 
Start 852.34 (273.70) 815.16 (145.65) 779.58 (95.19) F(2,37) = 2.67 

p = 0.083 

 

F(1,37) = 7.53 

p < 0.01 
End 810.85 (204.10) 1160.71 439.69) 863.53 (248.06) 

Comparison 

within groups 

F(1,10) = 0.90 

p = 0.365 

F(1,13) = 9.62 

p < 0.01 

F(1,14) = 1.95 

p = 0.185 

Time*Group 

F(2,37) = 5.73, p < 0.01 

B 
Start 790.43 (164.80) 827.28 (171.39) 744.82 (103.58) 

F(2,37) = 1.38 

p = 0.265 

F(1,37) = 3.59 

p = 0.066 
End 802.07 (176.05) 894.31 (204.76) 791.65 (158.41) 

Comparison 

within groups 

F(1,10) = 0.52 

p = 0.490 

F(1,13) = 2.00 

p = 0.181 

F(1,14) = 1.68 

p = 0.218 

Time*Group 

F(2,37) = 0.51, p = 0.606 
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Table 6. NAC SD: non-matching pair – active distracters 

Trial Time Elite Vulnerable Malinger 
Comparison  

by Group 

Comparison  

by Time 

A 

Start 186.61 (125.86) 173.75 (86.46) 160.05 (53.03) F(2,37) = 5.30 

p < 0.01  

(Elite & Malin-

ger vs  Vul-

nerable)

F(1,37) = 20.51 

p < 0.01 End 200.88 (131.28) 622.11 (440.57) 316.17 (212.09) 

Comparison 

within groups 

F(1,10) = 0.16 

p = 0.702 

F(1,13) = 15.64

p < 0.01 

F(1,14) = 9.64 

p < 0.01 

Time*Group 

F(2,37) = 7.71,  

B 
Start 156.28 (106.62) 241.20 (275.08) 141.36 (64.60) F(2,37) = 1.918 

p = 0.162 

F(1,37) = 2.55 

p = 0.119 End 179.57(85.85) 295.11 (139.59) 244.68(252.57) 

Comparison 

within groups 

F(1,10) = 0.81 

p = 0.390 

F(1,13) = 0.55 

p = 0.472 

F(1,14) = 2.09 

p = 0.172 

Time*Group 

F(2,37) = 0.38, p = 0.688 

Table 7. MNC mean RT: non-matching pair – neutral distracters 

Trial Time Elite Vulnerable Malinger Comparison 

by Group 

Comparison  

by Time 

A Start 720.85 (146.08) 697.14 (80.12) 693.74 (80.26)  

F(2,37) = 1.15 

F(1,37) = 5.66 

p < 0.05 End 717.07 (146.88) 888.54 (314.99) 750.57 (184.96) 

Comparison 

within groups 

F(1,10) = 0.041 

p  = 0.843 

F(1,13) = 5.00 

p < 0.05 

F(1,14) = 2.03 

p = 0.176 

Time*Group 

F(2,37) = 2.79,  

B Start 705.00 (113.55) 736.38 (243.98) 688.93 (102.48) F(2,37) = 0.69 

p = 0.510 

F(1,37) = 0.015 

p = 0.902 End 683.30 (106.69) 751.19 (138.15) 704.30 (90.06) 

Comparison 

within groups 

F(1,10) = 2.48 

p = 0.146 

F(1,13) = 0.058 

p = 0.813 

F(1,14) = 0.88 

p = 0.365 

Time*Group 

F(2,37) = 0.26, p = 0.771 

Table 8. MNC SD: non-matching pair – neutral distracters 

Trial Time Elite Vulnerable Malinger 
Comparison 

by Group 

Comparison 

by Time 

A 
Start 129.14 (59.11) 147.84 (63.08) 146.53 (110.15) F(2,37) = 2.92 

p = 0.067 
F(1,37) = 19.36 

p < 0.01 End 193.25 (128.98) 397.31 (270.73) 256.68 (169.27) 

Comparison 

within groups 

F(1,10) = 3.95 

p = 0.075 

F(1,13) = 11.80

p < 0.01 

F(1,14) = 6.01 

p < 0.05 

Time*Group 

F(2,37) = 3.00,  

B 
Start 137.49 (53.77) 228.32 (402.05) 128.46 (58.52) F(2,37) = 2.08 

p = 0.140 

F(1,37) = 1.08 

p = 0.305 End 141.26 (55.14) 288.02 (212.75) 177.65 (108.77) 

Comparison 

within groups 

F(1,10) = 0.07 

p = 0.803 

F(1,13) = 0.38 

p = 0.549 

F(1,14) = 3.15 

p = 0.098 

Time*Group 

F(2,37) = 0.206, p = 0.815 
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3.5 Monitoring System (Smart Eye Anti-Sleep, AS) 

This is an off-the-shelf eye tracker (Smart Eye AB, Sweden) that can be mounted onto 
any vehicle to collect eyelid opening data at 60 times a second (60 Hz). It operates 
over a wide range of ambient lightings from dark to bright daylight with the capabili-
ties to cancel spectacle reflections which may interfere with the tracking. The unit of 
measure is percentage PERCLOS, which stands for the proportion of time in a minute 
that the eyes are at least 80 percent closed (Wierwille et al., 1994)[20]. It reflects slow 
eyelid closures rather than blinks. This parameter is simple yet sensitive to driver 
fatigue making it a hot topic for research in driver fatigue for the past half a decade. 
With advance in technologies, PERCLOS can be derived real-time using eye tracking 
systems like AS. Even this, the AS system like others need to be validated with an 
Asian population where people generally have smaller eyes. The version of AS used 
in this study is tuned towards research where data can be logged and post analyzed for 
PERCLOS, allowing the researcher to fully understand the behaviour of data over 
time. 

Thirty-three participant’s data was analysed. Percentage of Eyelid Closure over a 
minute (PERCLOS) was statistically significant between 5 minutes at the start of 
driving (BP) and the point of 1-sec microsleep (P1) as shown in Fig.1. Traditional 
P-80 criteria where eyelid closure was defined as 80% eye closed yields 3.69% and 
8.30% PERCLOS at BP and P1 respectively, and this difference was statistically 
significant (F(1.49,44.65) = 7.8, p < 0.01). The simpler but novel EO-7 criteria 
defined eyelid closure as 7 mm system eye opening reading (approximately 3mm 
actual eyelid opening corresponded to 2/3 eye closure). This EO-7 criteria yields 
10.66% and 20.16% PERCLOS at BP and P1 respectively, and this difference was 
also statistically significant (F(1.77, 53.05) = 12.58, p < 0.01). EO-7 generated wid-
er differences between alert and fatigued state and fewer tendencies for Type 1 error 
without the need for algorithms to determine baseline eyelid opening and to remove 
blink data. 

 

 
 

Fig. 1. Multiple comparisons between different data sets 
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The results and recommendation in this study will provide evidence for the custo-
mization of embedded AS suitable for Singapore population context. The analysis of 
data is steered towards how to make AS’s PERCLOS measurement as hassle-free as 
possible for implementation in typical driving context. 

4 Conclusions 

The study had successfully derived screening, monitoring criteria and a prediction 
method for driver fatigue as part of risk management. It was proposed that PVT and 
PenScreen could be deployed as screening tools while Smart Eye Anti-Sleep 
PERCLOS was the recommended monitoring tool and using eye pupil tracking for 
fatigue prediction to reduce driving risk.  
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Abstract. National Sleep Foundation’s Sleep in America (2005) reported 60% 
of adult drivers driving a vehicle while feeling drowsy in the past year, and 
more than 37% have actually fallen asleep at the wheel [1]. This paper 
presented the findings of two novel fatigue prediction tools. The first study 
presents a 4-channel dry EEG under simulated driving being able to predict 
when the driver will develop microsleep in the next 10 minutes using only 3 
minutes data of collected, with an accuracy of more than 80%. The second 
study uses an eye tracker to assess the percentage of time that the eyelids were 
closed (PERCLOS) as a potential marker for fatigue. Results showed that the 
average magnitude of oscillation (amount of pupil fluctuation), known as 
Coefficient Magnitude (CM), is generated from real-time wavelet analysis, has 
the potential to predict fatigue 8-12 minutes ahead with 84% accuracy ahead of 
compromised driving behavior. 

Keywords: Fatigue, dry EEG, eye tracker, microsleep. 

1 Introduction 

Drowsiness/fatigue is a well known major risk factor for traffic accident. According 
to data from Australia, England, Finland, and other European nations, drowsy driving 
represents 10 to 30 percent of all crashes. It was also reported 60% of adult drivers 
saying they have driven a vehicle while feeling drowsy in the past year, and more 
than 37% have actually fallen asleep at the wheel [1]. Seriously, of those who have 
nodded off, 13% say they have done so at least once a month. These numbers may 
still underestimate the true frequency since it is difficult to assess driver sleepiness 
objectively [2]. Moreover, drivers themselves are sometimes unaware of sleepiness 
[3], resulting in the unreliability of subjective assessment.  

Driving is a complex task involved numerous and varied brain functions such as 
attention, perception, memory, decision making. Thus, numerous parameters of given 
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driving situation can affect these processes, complicating the study of driving fatigue 
[4].  In general, the causes of fatigue and drowsy driving could be classified into two 
broad categories: endogenous and exogenous factors [5]. 

The endogenous factors related to the physiological processes underlying alertness 
or wakefulness, including the circadian variations associated with time of day, the 
fatigue generated with the duration of the task and sleep-related problems. Long hours 
spent driving, referred to as the time-on-task effect, are known to produce fatigue and 
a deterioration of driving performance, although the degradation can occur during the 
very early stages of a driving or vigilance task. It is observed that 60% of fatal sleep-
related accidents in Finland occurred within the first hour of driving [6]. The time-of-
day effect is another major factor that accounts for fatigue. From a perspective of 
sleep-wake regulation, the time-of-day effect is driven by two key neurobiological 
processes: a homeostatic process producing a progressive sleep drive over time awake 
and a circadian process producing an opponent wake drive as a function of time of 
day [7]. The homeostatic process, known as the sleep “homeostat”, balances time 
spent awake and time spent asleep. While the circadian, which originates in the 
biological clock in the suprachiasmatic nuclei of the hypothalamus [8], process keeps 
track of time of day and night. The homeostatic and circadian processes interact to 
produce a combined influence on driving performance. Park et al. (2005) showed that 
a significant portion of sleep-related accidents happened during the early morning 
(2am-6am) and during the afternoon period (2pm-4pm) [10]. Sleep-related factors 
such as sleep deficit and sleep deprivation also increase accident risk. Some studies 
have highlighted that even for short duration of driving (1-2h) and moderate time 
awake (8h) sleep restriction still can impair driving [11]. 

The exogenous factors could be the characteristics of road geometry and roadside 
environment, or other factors that define the driving task. These factors can have an 
impact on driving performance by affecting attention, alertness and information 
processing [5],[12]. It is acknowledged that highway night drivers are particularly 
vulnerable to sleep-related accidents [12] due to the road geometry and roadside 
environment remain unchanged or highly repetitive. An under-demanding monotonous 
road environment with low traffic density can result in feelings of boredom and 
drowsiness coupled with loss of interest of performing the task at hand, eventually lead 
to sleep. Performance deterioration, which is induced by under load, may be as 
important as what is observed during over-demanding crowded urban expressway 
situations, when arousal is raised to a point where the driving performance is 
negatively affected.  

Endogenous and exogenous factors interact continuously and it is their joint 
influence that determines alertness and vigilance at any given point during driving. 

Extensive research has been conducted to develop systems for monitoring the 
driver’s level of sleepiness using different techniques, such as measures of brain 
wave, heart rate, electrocardiogram, respiration and eye tracker. 
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2 Development of Dry EEG Sensor Headsets and Signal 
Processing Software for Driving Fatigue Prediction 

2.1 Background 

Electroencephalograph (EEG) has been acclaimed as one of the most predictive and 
reliable measurements since it directly and immediately reflects human brain state or 
brain activity. There has been considerable evidence showing the possibility of EEG-
based detection of early stages of sleepiness. In this study, a dry sensor based mobile 
EEG recording system is developed offering prolonged high-quality EEG recording 
under real-life driving conditions.  In addition, a long-term prediction of sleep onset 
based on the biological mechanism of sleep which is more reliable and accurate, is 
proposed to allow predicting unintentional sleep onset long before the eventual sleep 
onset. 

Sleep can be induced by two processes: passive process due to closure of cerebral 
gates (brain deafferentation) and active process promoted by inhibitory mechanisms 
arising in some cerebral areas. The passive process of sleep initiation depends on the 
regulation of homeostatic. The initiation of sleep is a consequence of the dampened 
activities in our wake-promoting brain systems. In addition, the absence of a steady 
excitatory bombardment may produce disfacilitation in some brain structures, 
eventually followed by rebound cellular excitation that would set in motion a series of 
structures which may promote sleep through active inhibitory processes. 

2.2 Methods 

The experiment was separated into two parts. In the first part, EEG data were 
acquired using traditional wet EEG sensors, while innovative dry EEG sensors were 
used in the second part. 

Participants. Sixteen young healthy men, range 21–25 years, ten in the first part and 
six in the second part, participated in the study. All the participants were recruited 
from the National University of Singapore and Nanyang Technological University, 
had normal or corrected to normal vision, reported no history of neurological 
problems and were right-handed. Subjects were required to keep a sleep diary one 
week prior to the experiment to ensure that they had at least 7 hours of continuous 
sleeping time and regular sleeping hours (going to bed no later than 1 am and waking 
up by 9 am). Informed consent was obtained from all participants in accordance with 
the guidelines and approval of the National University of Singapore Institutional 
Review Board. The subjects will be reimbursed for each trial for their participation. 

Procedure. In the first part, all the subjects were tested in the evening from 8pm to 
2am next day which is associated with the peak for nocturnal sleep-related accidents. 
Participants were asked to have dinner early and come to the laboratory at 7.30 pm.  
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The experiment lasted for six hours continuously. Subjects were asked to sit 
comfortably and avoid unnecessary movements such as singing, mumbling, or talking 
during the experiment. In the second part, all the settings are kept consistent, only the 
time of the experiment was changed. The subjects were tested from 10 am to 2 pm, 
which is considered as mid-day dip period. 

Simulated Driving Task. Simulated driving tests consisted of a video clip showing 
moving road images of monotonous highways mostly free of vehicles shown from the 
perspective of a driver while operating a car. Subjects were instructed to watch the 
road at all times and response by pressing keyboard buttons (right arrow and left Ctrl) 
when the car changed lanes. Simulated driving lasted for six hours. The driver’s 
attempts at maintaining vigilance were dependent on their own determination to stay 
awake. 

Data Acquisition. EEG data was acquired using an ANT amplifier (Advanced Neuro 
Technology, Enschede, Netherlands) connected to an electrode cap. Wet and dry 
electrodes were mounted on the cap based on the International 10-20 electrode 
placement system. All channels were referenced to the link of the left and right 
mastoids, and grounded with channel AFz. Input impedances of all channels were 
kept below 20 kΩ for all experimental sessions. Data was sampled at 250 Hz and 
recorded using ASA-lab software from Advanced Neuro Technology.  

2.3 Results 

As shown in the Table 1, the algorithm could predict the 2-second microsleep around 
10 minutes ahead (9.75±2.76) with 80% accuracy. The time ahead for subject 5 (1 
minute), subject 9 (3 minutes), and subject 11 (4 minutes) is less than 5 minutes, but 
can still be useful for the warning purpose. The prediction accuracy and time  
ahead for 1-second microsleep was lower compared to 2-second microsleep. The 
system could only predict accurately for 62% of the subjects with 3.5±1.26 minutes 
ahead. 

The final portable system only requires 6-channels EEG headset, 4 channels (Fz, 
Cz, Pz, Oz) for brain signals and 2 reference channels (Fig 1) to provide real-time 
countermeasure device for preventing sleepiness or unintentional sleep onset related 
accidents. 

Spindles appear during early states of sleep in the 9-15 Hz band of EEG signals, is 
the biological marker for the release of GABA and spindle properties reflect the 
accumulation of GABA in the brain. Therefore, a simple measure of spindles can 
provide the level of fatigue state at given time. The algorithm for spindle detection 
achieved 91.71% accuracy with traditional wet EEG data and a lower accuracy of 
89.31% was achieved with dry EEG sensors possibly due to the interferences of noise 
after a few hours of continuously recording.  
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Table 1. Fatigue prediction results 

Subject 
No. 

2-s 
Microsleep 

Prediction 
Time 

Time 
Ahead 

1-s 
Microsleep 

Prediction 
Time 

Time 
Ahead 

1 65 51 14 55 50 5 

2 42 34 8 36 33 3 

3 28 20 8 15 Fail  

4 18 12 6 16 12 4 

5 25 24  23 Fail  

6 29 16 13 18 16 2 

7 20 14 6 17 14 3 

8 55 45 10 29 Fail  

9 13 10  11 10  

10 214 204 10 86 83 3 

11 49 45  47 44 3 

12 52 45 7 46 45  

13 45 34 11 25 Fail  

14 121 110 11 78 74 4 

15 non   249 243 6 

16 40 27 13 29 27 2 

  Mean 9.75  Mean 3.5 

  SD 2.76  SD 1.26 

*All units are in minute 

 

Fig. 1. Electrodes diagram. (The 4 electrodes Fz, Cz, Pz, Oz is placed based on 10-20 scheme. 
Reference electrodes A1 and A 2 should be placed on “inactive” zones such as ear lobes or 
mastoids). 

To this end, a dry EEG sensor offering prolonged high-quality EEG recording 
under real-life driving conditions was developed. It is capable of providing prediction 
of sleep 10 minutes ahead of time with an accuracy of 80% based on the biological 
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mechanism of sleep instead of the statistic machine learning and pattern classification 
methods. This is an important finding since it simplifies the design of EEG headset, 
make it really portable and practical. In addition, reducing number of channels also 
means less calculation time and less required memory for computation. 

3 Using Wavelet Analysis for Pupil Oscillation to Predict 
Fatigue Onset 

3.1 Background 

In 1993, Irene Loewenfeld, the famous scientist in pupilometry, published her 
comment [14]: "(Fatigue waves) are involuntary and unconscious, so that they cannot 
be produced deliberately; and best of all, running records can be obtained without 
touching the subject. These show the slightest fluctuations from one moment to the 
next, from day to day, from week to week, and over longer periods." Since then, 
fatigue-induced pupil oscillations below 0.8 Hz have attracted the attention of 
numerous sleep experts [15-20]. 

The basis of this oscillation lies in the activity of the autonomic nervous system in 
the human body which comprises of sympathetic and parasympathetic nervous 
system. Parasympathetic system is responsible for pupil constriction. In normal alert 
state, sympathetic system plays the role of inhibiting parasympathetic system, thus 
allowing stable dilatation of pupil for active vision and perception. During sleepy or 
fatigue state, the inhibitory function of the sympathetic system is impaired. Hence, the 
infrequent firing of inhibitory signal on the parasympathetic system causes a drift in 
this stability of pupil size which is manifested as pupillary oscillation.  

In 1998, Lüdtke & colleagues formalized a standard called Pupillary Unrest Index 
(PUI), to measure fatigue in a dark room setting [17]. Due to its limitation and 
inconvenience as a real-time fatigue monitoring method, other scientist are looking at  
low frequency power of pupil fluctuation using frequency power spectrum [15,19] 
and frequency wavelet transformation [20]. Henson & Emuh (2010) found that below 
0.8 Hz, the signal amplitude for pupil oscillation increases with fatigue significantly. 
This study attempts to validate the work of Henson & Emuh (2010) by applying their 
techniques on pupil data collected from real driving and indoor. 

3.2 Data 

While 44 participants' data were collected, only 32 of them were analyzed. The rest of 
the participants are excluded due to wrong parameter setting (1), more than 40% data 
loss (5), microsleep less than 12 mins into 1st hour driving (3), corrupted video data 
(1) and strong drivers without microsleep (2). 

3.3 Method of Analysis 

Raw data from driving were processed into dependent variables (outcome or 
measuring variables) using Matlab 2012.  Firstly, eye blink and other noise artifacts in 
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the pupil size data were smoothen out using interpolation and median filtering 
algorithms available from Matlab before broken down into 4-minutes segments. Then, 
each of these segment undergone wavelet transformation computation using the 
"reverse biorthogonal 3.7" method (used by Henson & Emuh, 2010), also available 
from Matlab's Wavelet Toolbox. Signal amplitudes (or strength) in arbitrary units 
known as Coefficient Magnitudes (CM) for 60 low pupil oscillation frequencies 
ranging from 0.012 Hz to 0.727 Hz were produced from each of these transformed 
segments. Only CMs for frequencies 0.242 Hz, 0.104 Hz, 0.03 Hz and 0.02 Hz were 
selected as the dependent variables for statistical analysis. This method of deriving 
CMs from pupil fatigue wavelet was validated in simulated driving in Dr Larry Abel’s 
lab. Dr Abel found that CMs derived this way is relatively "undisturbed" by ambient 
lighting changes like that of the outdoor driving. For the purpose of fatigue prediction, 
selected frequencies' CMs were picked for statistical analysis from the following 
Fatigue Segments into driving. 

1) BP - Baseline Fatigue Segment 8-12 minutes into Baseline driving 
2) MS -12mins - Fatigue Segment 8-12 minutes after MS 
3) MS -8mins - Fatigue Segment 4-8 minutes after MS 
4) MS -4mins - Fatigue Segment 0-4 minutes after MS  
5) MS - Fatigue Segment where the 1-second microsleep (sleep eye closure for more 

than 1 second) occurs within. 
6) End - 4-8 minutes just before end of driving, completed 4 hours or up to the hour 

where lane deviation occurs 

Based on the distribution of 1-second microsleep time during the trial, the participants 
were also divided into the following groups: 

1) Tolerance Group A (n = 15) - 1-second microsleep in less than 30 minutes into 
driving 

2) Tolerance Group B (n = 9) - 1-second microsleep between 30 to 60 minutes into 
driving 

3)  Tolerance Group C (n = 8) - 1-second microsleep after 60 minutes into driving. 

All statistical analysis was done using IBM SPSS Version 20. For each frequency, a 
mixed design ANOVA was used to test for significance differences between 
Tolerance Group, Fatigue Segments and their interaction. Indoor data were also 
processed and analyzed in the same manner except that Fatigue Segments are defined 
as Indoor baseline (data taken in the morning before game driving) and Indoor End 
(data taken in the evening after monotonous game before participants were released). 

3.4 Results 

For frequencies 0.242 Hz and 0.104 Hz, their MS-12mins shown strong statistical 
differences when compared to BP and MS, thus, a high reliability for predicting MS; in 
another words, a CM value that lies between BP's and MS's yet clearly defines itself 
away from the two. Hence, by carefully selecting the CM readings based on MS-
12mins' confidence interval, it is possible to set a fatigue warning threshold (See Fig 2). 
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Fig. 2. Pupil oscillations for 4 oscillation frequencies for indoor data 

Note that two thresholds were selected (Fig 2, red dotted line and blue dotted line), 
CM 2.8 for 0.242 Hz and CM 6.5 for 0.104 Hz. The selections were made based on 
two criteria, that is, the threshold must not be below the upper bound of BP's 95% CI 
and must be as close as possible to the lower bound of MS-12mins' 95% CI. The 
rational is to avoid false alarm by setting it sufficiently above BP level but 
conservative enough to signal MS as much ahead of time where possible. Since the 
MS-12mins segment was used, these thresholds predicted the first 1-second 
microsleep, 12-8 minutes before its occurrence. When these thresholds were applied 
back to the 32 participants' data, 78% and 72% prediction accuracy were achieved for 
the 0.242 Hz and 0.104 Hz frequencies’ thresholds respectively, and 84% when both 
thresholds were applied (those participant’s data that could not be predicted by the 
0.242 Hz threshold were re-checked with the 0.104 Hz threshold). 

If the CM 2.8 and 6.5 thresholds were applied back to the 22 participants, we found 
that some participants can be notified of their 1-sec microsleep as early as 28 minutes 
ahead. Note that 86.3% of the 22 participants can be notified of their 1-second 
microsleep at least 12 minutes before their 1-second microsleep. This is similar to the 
84% found with the original pool of 32 participant's data. Although the thresholds can 
predict fatigue much earlier for certain people due to individual differences in CM 
manifestation, the project team would like to maintain a conservative definition of 
their suggested thresholds: CM 2.8 and CM 6.5 only predicts onset of 1-second 
microsleep 12 to 8 minutes ahead. This is due to the low number of participants in this 
part of the analysis which do not give enough data confidence for more refine 
conclusion on prediction time. 

4 Conclusion 

This paper has successfully demonstrated two novel fatigue tools. Using eye-tracker, 
the research team has identified the pupil behaviour threshold, in terms of low 
frequencies oscillation signal strength, which could predict onset of 1-second 
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microsleep 8-12 minutes ahead of its onset with 84% accuracy in the study 
population. In addition, a separate study has successfully identified the EEG brain 
signal which indicates the onset of 1-second microsleep 5 minutes ahead at 62% 
accuracy and 2-second microsleep 10 minutes ahead at 80% accuracy. These are 
important steps towards a real-time countermeasure device for preventing sleepiness 
or unintentional sleep onset related accidents. 
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Abstract. Resilience is the human ability to adapt in the face of tragedy, trau-
ma, adversity, hardship, and ongoing life stressors. To date, experimental re-
ports on this subject have focused on long-term trajectories (weeks to months) 
of resilience, with little or no focus on whether significant changes to resilience 
could be achieved by short-term interventions. Currently, an individual’s resi-
lience is defined either by self-report or by behavioral changes such as the  
development of depression, post-traumatic stress disorder, or suicide. We pro-
pose that the quantification of an individual’s physiological and behavioral re-
sponse to stress under controlled conditions is an indication of the individual’s 
level of resilience. To address such real-time resilience, we propose the first in a 
series of studies to evaluate real-time human resilience by exposing participants 
to controlled stressors while assessing the stress response. Activation of the  
hypothalamus-pituitary-adrenal cortex axis and sympathetic branch of the  
autonomic nervous system via monitoring of the pupil constriction, heart and 
respiration rate, muscle tonicity, salivary cortisol, and electrodermal activity 
will be assessed. Stress exposure will consist of virtual stressors presented using 
Virtual Battlespace 2 software-based scenarios, such as noise exposure, time 
pressure, and emotion-induction tasks, as well as external stressors such as  
socio-evaluative stress via the Trier social stress task, while evaluating deci-
sion-making and performance. The relationship between performance and the 
physiological stress response will be quantified, including the creation of a se-
ries of stress-performance trajectories based upon individual differences. Such 
an analysis is similar to probing for resilience in material testing, in which a 
load is applied to a candidate material, and the resulting forces and observable 
changes in dimension are quantified and reported via stress-strain curves. Ongo-
ing studies will examine how this resilience measure may be integrated into a 
closed-loop training system to provide appropriate coping strategies to optimize 
resilience training. Such training programs, which take into account individual 
perceptions of stressors and physiological responses, are expected to be effective 
in helping trainees develop resiliency during high-stress operations. 

Keywords: Resilience, Stress, Adaptation, Training, Autonomic Nervous  
System. 
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1 Introduction 

Resilience is the human ability to adapt in the face of tragedy, trauma, adversity, 
hardship, and ongoing life stressors as defined by the corresponding MeSH term  
introduced in 2009 for use in indexing articles in PubMed [1]. As such, resilience 
includes both the concept of adaptation to stress, including maintenance of perfor-
mance, and physiological bounce back, consisting of both the intensity of the re-
sponse and the time to return to baseline [2]. Studies investigating resilience have 
increased rapidly in the past several years (see Figure 3F), many of which have fo-
cused on military-relevant aspects of resilience, including rates of post-traumatic 
stress disorder (PTSD) [3] and suicide, which have been increasing in the wake of the 
conflicts in Iraq and Afghanistan [4]. Other studies have focused on factors that aug-
ment or diminish resilience in individuals [5, 6]. To date, such reports have focused 
on long-term trajectories (weeks to months) of resilience, with little or no focus on 
whether significant changes to real-time resilience (i.e., in the moment, the ability to 
shut down counterproductive thinking to enable greater task-centric concentration and 
focus during high-stress operations) could be achieved by short-term interventions or 
training scenarios [7, 8]. Currently, an individual’s resilience is qualitatively defined 
either by one of a number of self-report scales [9-11], or quantified by behavioral 
changes such as the development of major depressive disorder (MDD), PTSD or sui-
cide. Self-report scales suffer from problems with exaggeration or under-reporting 
[12]. There is a great need to identify individuals at risk for problems with resilience 
prior to the development of MDD, PTSD, or suicide attempt. 

The challenge in obtaining an objective measure of real-time resilience may be ad-
dressed by quantifying an individual’s physiological and behavioral response to stress 
under controlled conditions. In general following exposure to significant stressors, 
behavioral performance including fine motor performance [13], attention [14], and 
cognitive function [15] decrease due to biological and neural mechanisms [16, 17]. 
When an individual encounters a significant stressor, the sympathetic or “fight or 
flight” division of the autonomic nervous system (ANS) increases in activity, result-
ing in neurotransmitter release and subsequent physiological effects on multiple organ 
systems. Among a myriad of effects, heart rate increases, pupils dilate, blood vessels 
constrict, and sweat glands become active. Severe stress also strongly activates the 
HPA axis [16, 17], consisting of the hypothalamus, pituitary, and adrenal glands, 
resulting in spikes of stress related hormones including cortisol. Cortisol activity is 
associated with reduced inflammation and immunity, muscle and fat loss and conver-
sion of glucagon to glucose, which function to provide energy during stress or fasting 
conditions. Cortisol release is also governed by negative feedback loops in which free 
cortisol binds to glucocorticoid receptors (GCRs) in the anterior pituitary gland and 
the hypothalamus to decrease release of cortisol precursors. Individuals with clinical 
stress disorders have been found to have multiple epigenetic effects including de-
creased levels of GCRs in various brain areas [16, 17], so cortisol remains active for 
longer periods of time in such individuals. Stress-related ANS and HPA cascades 
depend on an individual’s perception of the stressor, including its perceived novelty, 
controllability, and predictability, with those stressors or situations perceived as a 



630 B. Winslow et al. 

 

“threat” causing higher physiological stress responses than those seen in a more pro-
ductive way as a “challenge” one has to contend with [18]. 

The quantification of load application and subsequent deformations has been em-
ployed in physics and engineering for many years to define material resilience – the 
capacity of materials to return to their initial shape following exposure to external 
forces, often modeled in stress-strain curves [19]. In such analyses, resilience can be 
calculated from the area under the curve in the linear zone, the region in which a ma-
terial can return to its initial dimensions without permanent deformation. Material 
resilience is commonly improved by methods such as strain hardening, in which ma-
terials are cyclically deformed up to their elastic limit, ultimately resulting in a 
stronger material due to reorganization of intermolecular forces [20]. A similar phe-
nomenon may be active in individuals in whom stress exposure increases resilience 
[21, 22]. In order to evaluate real-time human resilience, we propose the first in a 
series of experiments to expose participants to controlled stressors while monitoring 
activation of the HPA and sympathetic branch of the ANS via measurement of pupil 
constriction, heart and respiration rate, muscle tonicity, salivary cortisol, and EDA. 
The degree of change in physiological response along with behavioral performance 
measures will be evaluated to determine an individual’s real-time resilience. 

2 Experimental Methods 

The proposed experiment will consist of a within subjects repeated measures design. All 
participants will perform three types of tasks: 1) small unit leader decision making scena-
rios in Virtual Battlespace 2 (VBS2, Bohemia, Orlando FL) in the absence of stressors, 2) 
small unit leader decision making scenarios in VBS2 in the presence of simulation-based 
stressors. 3) Socio-evaluative stress using a modified Trier Social Stress Task (TSST), 
or a stress-free control version. A total of 60 participants will be recruited,  
with 30 going through each version of the TSST. The experiment is designed to last  
approximately 2.5 hours, and the associated time-line is shown in Figure 1. 

 

Fig. 1. Proposed experiment timeline 

Measures of both ANS activity, as well as HPA reactivity will be collected 
throughout the TSST and VBS2 scenarios. A BioNomadix sensor suite (Biopac Sys-
tems, Goleta, CA) will be used to gather physiological data non-invasively from mul-
tiple body sites and locations (Figure 2). Electrocardiogram (ECG) sensors will be 
applied to the chest in a 3 lead configuration to record the ECG, and a respiration 
strap will be placed across the chest to gather breathing intensity and kinetics. Elec-
tromyogram (EMG) sensors will be placed on the trapezius muscle to gather electrical 
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activation and tension of this muscle group. Electrodermal activity (EDA) sensors 
will be placed on the fingers of the non-dominant hand to gather electrodermal res-
ponses (EDR), and a pulse plethysmography (PPG) sensor will be placed on the 
thumb to gather pulse. Skin temperature will also be monitored. All of these sensors 
stream data in synchrony and will be analyzed to identify the most robust classifiers 
of stress reactions. Heart rate variability (HRV) will be calculated from the ECG data 
in the time domain, by calculating the R-R interval standard deviation in 5 minute 
intervals (SDNN) [23]. Pulse transit time (PTT), which is the time it takes the pulse 
waveform to propagate from the heart to the periphery, and is indicative of sympa-
thetic activation, will be calculated from the ECG and PPG at the thumb. In addition, 
vagal tone and respiratory sinus arrhythmia (RSA) will be derived from the ECG and 
respiration unit. Cortisol levels prior to and following exposure to stress will be  
captured via saliva samples, which will be tested for cortisol levels offline. 

 

Fig. 2. Bionomadix sensor suite consisting of 3-lead ECG, respiration strap, EDA and PPG 
attached to the fingers of the non-dominant hand, as well as EMG sensors on the trapezius 

The TSST is used as a positive control for stress and is divided into three 5-minute 
components [24]. Stress induction begins with the participant being taken into a room 
where a panel of 2-3 judges, described as being trained in public speaking, dressed in 
white lab coats, along with a video camera and audio recorder will be waiting. The 
first 5-minute component is the anticipatory stress phase, during which the judges ask 
the participant to prepare a 5-minute oral presentation describing why he or she is the 
best candidate for their ideal job. During the 5-minute presentation component, the 
judges will observe the participant without comment, and with neutral expressions 
throughout. At any point if the participant stops or does not use the entire five mi-
nutes, the judges will prompt him or her to continue. The presentation will be imme-
diately followed by a mental arithmetic component, during which the participant is 
asked to verbally count backwards from 1,022 in steps of 13. If a mistake is made, the 
judges will prompt the participant to start again from 1,022. This component will last 
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for five minutes and is followed by a recovery period. The control group will receive 
another version of the TSST [25], which contains the same factors except for the psy-
chosocially stressful components, including the socio-evaluative threat and uncontrol-
lability. In this group, the first 5-minute component consists of reading a popular 
scientific text after being told that reading performance will not be evaluated. Partici-
pants will then be asked to read out the text in a low voice for five minutes, and final-
ly to enumerate a series of numbers in increments of five in a low voice for another 
five minutes (e.g., 5, 10, 15, etc.). Two-three experimenters will be present during 
these sessions but they will neither wear white laboratory coats nor interrupt the par-
ticipants. In addition, they will not observe or evaluate the participants nor will they 
ask any questions. There also will be no video-cameras present.  

Scenarios will be created in VBS2 to simulate a tactical military environment with 
specific mission objectives, time requirements, and consequences depending on the 
course of action a participant pursues. Several scenarios will be designed to produce 
low levels of stress, such as following a person of interest throughout a town, or high-
er levels of stress such as clandestine demolition. Simulation-based stressors will be 
integrated into the scenarios, such as limited visual perception (night missions), sud-
den noise exposure, equipment failures, and receiving enemy fire, as well as cognitive 
tasks (e.g., time pressure) and emotion induction procedures, including dead comba-
tants, soldiers and civilians [26]. VBS2 scenarios will be presented on a PC running 
on a Pentium i5 quad core processor, with 8 GB of ram and a high-end graphics card. 
Participant performance in scenario will be quantified by a number of process and 
outcome measures, including observation of high priority areas of interest via eye 
tracking, verbal reports, decision accuracy, and reaction time. 

Non-contact sensors will gather affective and cognitive data. Facial expressions 
and verbalizations of participants will be recorded via webcam during experimental 
procedures to analyze affective state and communication offline. Visual fixations will 
be detected during scenarios by eye tracking using the easyGaze® eye tracker and 
gazeWare® software (Design Interactive, Oviedo, FL). 

3 Expected Results 

Expected stress response and performance results are shown graphically, compared to 
material tensile testing, in Figure 3. As described previously, material tensile testing 
consists of applying a load to a material of known dimensions, and measuring both 
the force applied (Figure 3A), and observing the change in length (Figure 3C) over 
time. Such data are then used to define the stress (σ) as Force/Area, and strain (ε) as Δ 
length / initial length, plotted against one another in a stress-strain curve. Expected 
results include changes in physiological responses to stressors over time, in which an 
individual’s stress response is expected to vary with the stressor applied (Figure 3B). 
In addition, performance is expected to decrease at high levels of physiological stress 
(Figure 3D). An effort will be made to use similar logic behind material testing to 
quantify resilience, such that observable performance (the human analogue to strain)  
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is plotted against measureable physiological reactivity (the human analogue to stress; 
Δ physiological response / baseline physiological response), as shown in Figure 3F. It 
is expected that certain physiological measurements and calculations, such as electro-
dermal activity and pulse transit time, will be more indicative of stress response and 
resilience. It is also expected that different individuals will follow various different 
curves [7], and taken together, the data will allow for devising a means to model real-
time human resilience prior to deployment. 

 

Fig. 3. Material testing for resilience compared to human stress testing. [A] In material testing, 
tension is applied to a material and the resulting forces are quantified over time, as well as 
changes to length [C]. Such data are then plotted in a stress (Force/unit area) vs. strain 
(length/initial length) graph, and the linear region gives a measure of material resilience. In 
human stress testing, psychological stressors are introduced, and the resulting physiological 
stress response [B], as well as changes to task performance [D] are quantified over time. A 
similar plot is used [F] to determine performance vs. physiological response and real-time 
resilience. Resilience articles have been steadily increasing, as shown by the Mesh search for 
the corresponding term [E]. 
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4 Discussion 

In this article, we have proposed a novel method to quantify human real-time resi-
lience, by using similar methods and logic as in quantifying material resilience. Simi-
lar to material testing, a (human) system is challenged by introducing stress, and 
measure the response both in terms of observable performance (strain) and measura-
ble physiological changes (stress). As one should expect from different materials 
which exhibit a range of intermolecular forces, it is expected that differences in the 
human stress strain curves will be found due to individual differences in real-time 
resilience [27]. However, unlike material testing, in which characterized materials 
exhibit relatively low variability, the human system may not yield consistent, linear, 
characterizable patterns within such an analysis due to higher variability. In addition, 
little variation in material characteristics or response is seen day-to-day in material 
testing, whereas such factors as exposure to life stressors [28] or time of day [29] may 
affect human real-time resilience. These factors will need to be addressed in the 
measure of real-time resilience.  

Long-term changes to resilience have been shown to affect protein expressions and 
neuronal pathways. Peres et al. [8] showed that one month of psychotherapy given to 
police officers with PTSD significantly improved symptoms, but also increased pre-
frontal cortex (PFC) and decreased amygdala activity during traumatic recall. The 
amygdala – PFC circuit has been shown to be predictive of pathological stress reac-
tions [30]. Another recent clinical trial has shown that a 12 week resilience-oriented 
treatment for PTSD increased clinical scoring on nearly every self-report test for resi-
lience available [31]. However, the mechanisms underlying more rapid approaches to 
building real-time resilience have not yet been defined. 

The approach taken in this study represents an endophenotype analysis of resi-
lience, which was first described as an intermediate between genes and a disease state, 
and has proven useful in suicide analysis [32]. Such analyses have shown that suicide 
traits are measurable, but generally unobservable to the unaided eye. Similar to a  
cardiovascular stress test, the system must be challenged in order for traits to be ex-
pressed and observed. Along those same lines, the current work seeks to cause a  
physiological stress response in order to measure underlying changes in real-time 
resilience, which would otherwise be unobservable without such a challenge. Such an 
analysis may define at-risk individuals prior to deployment. 

Future studies will examine how a real-time resilience measure may be integrated 
into closed-loop training systems to provide appropriate coping strategies at the right 
time to optimize resilience training within an operational context. Such adaptive train-
ing programs, which take into account individual perceptions of stressors and physio-
logical responses, are expected to be effective in helping trainees develop resiliency 
during high-stress operations, since there is a wide heterogeneity in individual’s res-
ponses to trauma and adversity. Future studies will also take advantage of stress-
hardening techniques that are used in materials science to increase the strength of 
materials for specific applications by applying cyclic strain, without heating or mod-
ifying the materials, resulting in changes to material resilience. The human analogue  
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would be any number of stress-reduction techniques, including stress exposure and 
training such as described in this article, or other methods including psychotherapy 
[8], techniques of mental preparation [23], biofeedback [33], or appraisal [34]. 
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Abstract. Good games are good motivators by nature, as they make players feel 
rewarded and fulfilled, which pushes them forward to persist and resist frustra-
tion. Gamification is a novel technique that uses game elements like points and 
badges, to motivated and engage users into embracing new behaviors, such as 
improving one’s health condition, finances or productivity. In this paper, we 
present an experiment in which an MSc college course was gamified to improve 
student interest and engagement. The gamified course led to better learning  
results and participation. However, there were several negative side effects  
that detracted from the overall experience. We will describe them, identifying 
their causes and describe possible alternatives to better tailor the gamified  
experience, stemming from the analysis of the data gathered so far. 

Keywords: Education Gamification, Perils, Student engagement, Motivation. 

1 Introduction 

The use of games in non-game contexts is gaining notoriety during the last years. 
Known as Gamification, it consists in using game elements, instead of full-fledged 
games, in non-game contexts [1].  It is typically used to keep users engaged and mo-
tivated to adopt and perform specific behaviors [2] which makes it of special interest 
for marketing [3]. Gamification has also been used for a large variety of purposes, 
like helping people to eat better [4] or to be more productive [5] or eco-friendly [6] 

Gamification emerged as a powerful behavior driver, by exploring the motivational 
power of games and applying it to other domains. Games make players feel rewarded, 
fulfilled and satisfied, by making them experience what may be called of flow [7],  
[8]. Flow is what makes players persist and endure, which explains why World of 
Warcraft players reported to spend 21 hours per week playing the game [9].  

Games have been used as motivators with success in education. In different expe-
riments, students from different academic levels were subject to learning with video 
games, and significant improvements in subject understanding, diligence and motiva-
tion were observed [10], [11], [12]. Good games are natural learning machines [13]. 
Unlike traditional educational materials, games can deliver information on demand 
and within context, and are balanced so that players do not become either bored or 
frustrated. This suggests that games and gamification have a great potential to mold 
human behavior and help people learn new skills, which is also supported by recent 
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research. Typical gamified applications rely on game elements such as Points, Badges 
and Leaderboards as the core of the experience, the so called PBL [19]. While leader-
boards allow users to compare themselves with others, points and badges are external 
rewards for completing certain actions. However, relying solely on these external 
motivators without considering important human factors like the need to feel compe-
tence, autonomy and relatedness [20], will not only fail to engage users, but will also 
overcrowd any existing interest and internal motivation to perform the behavior in 
hand [21]. Gamification should be used to boost the user’s internal motivation [22]. 

Jigsaw [14], for example is a gamified application that helps users learn Photoshop, 
through a jigsaw puzzle that challenges players to match a target image. Although no 
empirical evaluation was presented, users reported being able to explore the tool and 
discover new techniques. GamiCAD [15] in turn, is a gamified tutorial system for 
AutoCAD. By performing line and trimming tasks, users help NASA build a space-
craft to participate in an Apollo mission. Tasks are designed to be challenging and 
users are encouraged to repeat them until they achieve the required score. When com-
pared to a non-gamified version, results show that users completed tasks faster in 
GamiCAD and found the experience to be more engaging. Lee Sheldon describes [16] 
how a conventional learning experience can be designed as a game, without using 
technology, to engage students and make classes more fun and interesting. Students 
start with an F and go all the way up to an A+, by completing quests and challenges, 
which will reward them with experience points. Khan Academy [17] on the other 
hand, is a free online service that allows users to learn about several topics, such as 
algebra, economics or history, by watching videos and then completing exercises. 
Their progress is rewarded with energy points and badges. Similarly, Codeacademy 
[18] teaches online students to code in numerous programming languages, also using 
points and badges to track their progress.  

Gamified examples like these suggest a synergic effect between gamification and 
education. However, little attention has been paid to how these approaches can nega-
tively influence the students’ engagement to learn. In this paper we present an  
experiment in which a college course, Multimedia Content Production (MPC), was 
gamified, and the problems we found, pointing to possible solutions. We start by de-
scribing the course and both the gamified and non-gamified instances, which were 
deployed in different academic years. Following will be a discussion of the main ef-
fects of gamification over student participation and diligence, and we also address in 
detail the negative side-effects of using a gamified course. We finish by suggesting a 
few design guidelines for gamified learning experiences. 

2 The MCP Course 

Multimedia Content Production (MCP) is a 5-month long MSc course, in the Informa-
tion Systems and Computer Engineering degree at Instituto Superior Técnico  
(University of Lisbon). In the non-gamified year, course evaluation comprised five 
theoretical quizzes (25% of total grade), a multimedia presentation (20%), lab classes 
(15%), a final exam (35%), online participation on the course’s forums (5%) and class 
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my, by offering different options of what challenges to p
edness, by allowing students feel part of a community 
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participate in the forums. We tried to further improve autonomy with the skill tree 
(where different paths could be followed, and relatedness, by adding challenges to 
encourage students to cooperate. 

3 Playing the MCP Game 

Overall, the students did well. From a total of 52 students, six reached level 20 (the 
maximum possible grade!), with no student below level 14, except for an exchange 
student, a late arrival that was unable to adapt to the course and school (reached level 
9, thus failing the course) and a student that gave up at the middle of the semester. 
These two students will be excluded from the subsequent analysis. Figure 2 summa-
rizes the experience levels reached by the students, and shows the grades to have  
improved thanks to gamification, when compared to the non-gamified version of the 
course.  

 

Fig. 2. Percentage of students per final grade 

More important than grades, gamification led the students to participate more and 
be more active learners. Throughout the semester, a total of 2235 posts were made by 
students, for an average of 139 per week while classes lasted. This contrasts with a 
much lower figure for the un-gamified version, where only 211 posts overall were 
made by students. As posts were done mostly to gain certain achievements, for which 
some work was required, this also means that students worked more often on tasks 
that exercised the skills learned in the course, with a consequent increase in rein-
forcement learning, made evident in the final grades. 

There were, however, big asymmetries between students. Indeed, the relatively 
high grades were reached in many different ways, sometimes, as we will see, reluc-
tanty! By carefully studying the ways in which different students played the game 
throughout the semester, we were able to identify the following typical profiles.  

─ The Achiever. Achievers (11 students, 21%) constantly fought for the first place in 
the leaderboard. Seldom did their position fall below 10th place. These were the 
students that really enjoyed playing the game, going beyond the minimal  
requirements just to exercise their skills and have fun. 



 So Fun It Hurts – Gamifying an Engineering Course 643 

 

Fig. 3. Typical leaderboard evolution for an Achiever 

─ The Late Awakener. Late Awakeners (8 students, 15%) didn’t, at first, understand 
how the course worked. Accustomed to traditional courses with well-defined eval-
uation moments (a project, an exam, etc.), they neglected the course achievements 
at first. Once the game progressed and they saw themselves falling behind on the 
leaderboard, they started participating, often with good results. 

  

Fig. 4. Typical leaderboard evolution for a Late Awakener 

─ The Consistent Student. Consistent students remained roughly in the same position 
throughout the semester, in the middle-bottom part of the leaderboard. There might 
be some highs and lows, but they clearly spend a consistent (and not very high) effort 
with the course. This was the most frequently found category, with 21 students 
(40%). They typically only went after achievements that were explicitly mentioned in 
class, with deadlines and, thus, similar to what they know form traditional courses.  

  

Fig. 5. Typical leaderboard evolution for a Consistent Student 

─ The Disheartened Student. These (11 students, 21%) were students that started a 
strongly at the beginning of the semester but that, after three or four weeks, re-
verted to a Consistent Student behavior of doing the bare minimum tasks explicitly 
mentioned by the professors. 

  

Fig. 6. Typical leaderboard evolution for a Disheartened Student 
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In Fig. 7, we can see how students of different types were spread throughout the 
leaderboard. It is evident that Achievers and Late Awakeners were the best students, 
while Consistent and Disheartened appear close to the bottom of the list.  

 

Fig. 7. Final leaderboard position of different student types, (from 1, left, to 52, right) 

Throughout the course, the differences between these user profiles were made ap-
parent by the nature of comments by the students and the way they participated. 
Achievers were clearly driving the game forward very actively. Consistent students, 
while participating, contributed less to the discussion beyond the posts that would 
strictly earn them achievements. Even so, we can see (Figure 8) that students of all 
profiles participated. It must be noted that Achievers were atypical in this regard, 
participating much more than the others. In fact, a set of t-tests shows statistically 
significant differences only between Achievers and other profiles, but not between the 
others (with 95% confidence). This asymmetry led to problems, as we will see below. 

 

Fig. 8. Average number of posts per student, for the different profiles (error bars: st.dev.) 

3.1 Problems with the Game 

At the end of the game, we asked students to fill in a questionnaire inquiring them on 
different facets of the game. We had 45 respondents, out of the 52 students. All ques-
tions were based on five point Likert scales. 

Students were asked whether they had liked the gamified course. Most rated it po-
sitively, as seen in Table 1 (avg=3.51, stdev=1.04). Achievers gave it a higher rating 
(avg=3.89). Late Awakeners, Consistent and Disheartened students gave it ratings of 
3.5, 3.17 and 3.67, respectively. Surprisingly, the students that gave worse ratings to 
the course were Consistent students. Their ratings ranged from 1 to 5, with five rating 
it 1 or 2, and eight rating it 4 or 5. This hints at some hidden structure inside this 
group, not revealed by their leaderboard behavior. Also, it shows that while the Dis-
heartened students appeared to have lost interest in the course, they still liked it more 
than Consistent students (only one rated it 1 or 2, and five rated it 4 or 5).  
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Table 1. Questionnaire responses (on a 5-point Likert scale) 

 Total Achiever Late-Awakener Consistent Disheartened 

Course Rating Avg 3.51 3.89 3.50 3.17 3.67 

Stdev 1.04 1.27 0.53 1.04 1.00 

Motivation Avg 3.76 4.22 3.50 3.56 3.78 

 Stdev 1.05 0.97 0.93 1.15 0.97 

Workload Avg 4.09 4.89 3.88 3.89 3.89 

 Stdev 0.92 0.33 0.83 1.08 0.78 

 
A question about how motivating they found the gamified course yielded a similar 

pattern. With a total average of 3.76 (stdev=1.05), Achievers were by far the most 
motivated (avg=4.22), followed by Disheartened students (3.78). Future analysis will 
focus on why students that apparently “gave up” on the course actually liked it more 
and were more motivated than those that persisted. The questionnaire also had a set of 
qualitative questions that highlighted the problems discussed below. 

Workload. Many users mentioned a high workload as a detrimental factor. When 
asked to compare the workload in this course to that of others (from 1-much less to 5-
much more), they replied with a 4.09 average (Table 1). Achievers rated it higher 
(avg=4.89!), consistently with their struggle for the topmost places in the leaderboard. 
However, they seldom complained in the qualitative questions. This can mean they 
were working more for the pleasure of participating and peer recognition. Still, this 
was an issue for most students. We were convinced that the amount of work hours 
needed for this course was not dissimilar to the demands of traditional courses (with 
large programming projects and other tasks throughout the semester). To address this 
matter, we asked users about it in a post-questionnaire follow up. Responses varied, 
but a pattern emerged: it is not only the actual workload but the perception of work-
load that matters. Many courses only require work from students at very limited times 
throughout the semester (close to a project deadline, an exam, etc.). The gamified 
course requires them to do much smaller tasks, but requires them continuously. This 
created the perception that they were “always working for this course”, even when the 
total effort spent was similar to that of other courses. 

Comparison Pains. Several students complained about lack of privacy or the visibility 
of their leaderboard position. They did not want to be compared with, better placed 
students. Achiever students participated more than could be asked of a typical student. 
Seeing such a level of activity discouraged others, who felt they could not compete at 
that level. They resented the fact even while (or, probably, because) getting a better 
position depended solely on their work. This was exacerbated by the “Talkative” 
achievement that rewarded classroom participation. Those that didn’t participate re-
sented the XP awarded to those that did. Five of the eight students that complained 
about “Talkative” in the questionnaire were Disheartened students. This reinforces the 
idea they want to participate, but are intimidated by a level of activity they feel is 
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beyond their reach. In traditional courses not all students have the same interest and 
produce same quality work. This, however, happens silently throughout the semester. 
The gamified course makes it apparent in real-time.   

Reward quality, not quantity. The way the game was set up, students were rewarded for 
the sole act of participating in the several tasks and challenges posted to them. There 
were no distinctions in terms of the quality of the work produced. They (rightly) felt it 
was unfair for contributions of different quality to be rewarded similarly. 

Awaking too late. Many of the Consistent students only realized they were getting 
behind once the course was too far into the semester. As many challenges were time-
based, it was now too late for them to fully recover, and many didn’t try. Looking at 
individual achievements, they thought that, since each, individually, isn’t worth much, 
there was no point in working for them. Of course, once their colleagues had amassed 
sufficient XP points making it apparent the achievement XP add up to a significant 
amount, they wanted to make up for lost time. By then it was too late. This is where 
the gaming metaphor breaks down: in a computer game, it is possible to reload and 
try again. In gamified education (and real-life, in general) that is only possible within 
very limited boundaries. A subdivision of the Consistent group separating “too late 
awakeners” is probably relevant and will be considered in future analysis. 

Competition vs. Cooperation. Many students complained about the course to be too 
competitive. However, they did not take advantage of the collaborative features in the 
game. For instance, an achievement rewarded all students in a lab class if they all did 
well. It was supposed to serve as an incentive to students helping others. In practice, 
this never happened. Instead, students with good lab performance complained about 
groups with lower performance, as it being “their fault” the extra XP hadn’t been 
awarded. This, and similar occurrences, leads us to conclude that, despite the fact they 
complained about the course being competitive, they are, by nature, competitive, that 
is, in fact, the culture in our school. Again this was a matter of perception: gamifica-
tion made explicit that not all students have the same skills (making them resent  
competition). 

3.2 Design Implications 

From the problems above derives a set of design implications that should be taken 
into consideration when gamifying this type of course: 

• Lighten the pace. The perceived workload must be carefully managed. The inter-
vals between tasks should be carefully chosen to better balance this facet of the 
game. 

• Careful comparisons. Consider other leaderboard types that don’t make the direct 
comparison between students of widely different ratings so easy (displaying only 
the immediate neighbors, having leaderboards for different “leagues”, etc). 
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• Reward quality. Estimate the quality of each student’s participation and award 
XPs accordingly. This will increase the amount of work done by the professors but 
is a requirement for the perceived fairness of the course.  

• Make them participate as soon as possible. Many students only want to start 
playing when it is too late. Tailoring the game experience so that they are com-
pelled to participate (and see meaningful rewards) early on will yield better results. 

• Give them the chance to make up for lost time. While some tasks and challenges 
will always be time-bound, whenever possible it should be allowed for students to 
address the different challenges in a more unconstrained way. 

• Provide means for cooperation. These should not be completely decoupled from 
competition. Find mechanisms where several students can work together towards a 
common goal but maintain the ability for students can show off their work. 

• Make it all about the game. Several students thought they could neglect the game 
as some traditional evaluation components (ex: exam) were still in place. Reducing 
their importance (or getting rid of them altogether) will dispel this illusion.  

4 Conclusions 

Education gamification is a growing trend, with clear advantages in terms of student 
motivation. However, the gamified experience needs to be carefully tailored not only 
in absolute terms, but also taking into account the culture and specificities of the stu-
dents and school. We’ve shown how problems can arise that detract from the learning 
process. Most problems mentioned above have to do with the timing for the different 
game elements and related tasks. These have to be carefully adjusted in order to  
provide a more balanced gaming experience. Next semester, we will deploy a new 
version of the gamified course, adjusted based on the lessons learned here. We will 
explicitely measure engagement and characterize the students trying to fine-tune the 
profiles defined above. We will also assess the influence of each game element. 
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Abstract. A complete mobile electroencephalogram (EEG) system
based on a novel, flexible dry electrode is presented. The wireless device
features 32-channels in a soft, adjustable headset. Integrated electronics
enable high resolution (24-bit, 250 samples/sec) acquisition electronics
and can acquire operate for more than four hours on a single AAA bat-
tery. The system weighs only 140 g and is specifically optimized for ease
of use. After training users can self-don the headset in around three min-
utes. Test data on multiple subjects with simultaneously acquired EEGs
from a traditional wet, wired system show a very high degree of signal
correlation in AEP and P300 tasks.

1 Introduction

Portable electroencephalogram (EEG) based systems have long been explored
as a tool for implementing brain- computer interfaces (BCI) [1,2,3,4]. Despite
the many advancements in signal processing and algorithms towards realizing a
useful system, the EEG headset itself has remained a critical barrier against a
practical device. Conventional EEG systems are cumbersome, requiring extensive
subject preparation. Recently, dry electrode EEG systems have been explored
as an alternative. However, dry headsets still suffer from numerous issues relat-
ing to comfort (e.g., hard metal pins) and signal quality. This paper aims to
present a new, wireless dry EEG headset that specifically addresses the need
for a complete, mobile system and will cover both the design and experimental
validation.

2 Sensor Design

Mobile EEG systems have focused heavily on the use of dry electrodes with
mixed results. In principle, dry electrodes are attractive due to the lack of scalp
preparation. In practice, they have multiple issues relating to signal quality,
usability and comfort. Current dry electrodes mostly utilize the straight metal
spring-pins structure [5] to push through the hair. Pin based designs introduce
significant discomfort and in military or ambulatory applications, pose an injury
hazard [4]. Spring loaded sensors are also too intricate and complex to produce
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Tips brush 
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Fig. 1. Cognionics patent-pending flexible dry electrodes. The design consists of angled
legs that can deform under pressure enabling penetration of hair without discomfort
or risk of injury to the scalp.

0.1mV

0.25s

Fig. 2. An 18 channel raw data segment collected by the Cognionics headset using the
flexible dry electrodes. The top traces clearly show alpha burst activity and demon-
strates the high signal quality of the flexible dry electrode.

inexpensively. Other dry electrode designs exist, primarily based on conductive
fabrics [6] or conductive brushes [7]. However, such approaches do not readily
penetrate all types of hair and have issues with cost and longevity. Finally, many
dry electrode systems also require significant fiddling of both the sensor and cap
to generate sufficient pressure, eliminating many of their convenience advantages.

To address the performance and form-factor limitations with conventional
dry EEG electrodes (e.g., hard metal pins), Cognionics, has developed a patent-
pending, flexible dry electrode (Fig. 1) specifically designed to easily penetrate
layers of hair while remaining safe, even under hard pressure. The new dry
electrodes utilize a set of angled legs rather than straight pins. The electrode
is made from a nylon material (3-D printed) that permits the legs to bend and
flex outward under pressure. The flexing action helps push aside strands of hair
for better scalp contact with minimal adjustment. Under hard pressure, the
entire structure simply deforms and flattens to remain safe. For conductivity,
the sensors are coated with metallized paint.
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Fig. 3. Cognionics 32-channel dry EEG headset. The headset is made from soft fabric
and completely encloses the wiring for the headset. The miniaturized electronics (box
at the back of the head) operates from a single AAA battery and contains onboard
amplification, digitization and wireless telemetry. Total system weight is only 140 g.

Under normal usage, the legs are only slightly deformed to provide for a min-
imal tension to ensure adequate pressure on the scalp and should not introduce
any discomfort to the user. For users with different hair thicknesses, we have dif-
ferent sized sensors (e.g., broad legs for near-bald, thin for thick hair) to optimize
hair penetration and comfort. Under most haired subjects, minimal adjustment
is required to achieve sufficient scalp contact and a simple pressing motion is
sufficient to part any trapped hair. The metallized legs provide for a sufficiently
low impedance contact (100−500 kΩ) to ensure low-noise EEG acquisition as
shown in Figure 2.

3 Headset Design

We have designed a soft fabric based head harness (Fig. 3) that is adjustable
to a wide variety of heads shapes and can meet the specific requirements of dry
EEG systems. The headset consists of self-adjustable straps to easily conform
to a variety of head sizes. After training, donning can be accomplished in less
than 3 minutes without assistance. The headset is completely self-contained and
contains all the necessary electronics and streams data wirelessly via Bluetooth.
A very high data quality, comparable to research-grade bench systems, is made
possible by 32 simultaneous 24-bit A/D converters with active electrode buffers
on each channel. Typical battery life is around 5 hours of continuous streaming
using a single AAA battery.

4 Wireless Data Acquisition Electronics

The latest advancementsmake it possible to construct a very high-quality portable
EEG devices [4] that is far smaller than the traditional ’shelf’ type systems. The
electronics box for the 32-channel headset measures 2.5” x 2.5” x 0.75” and houses
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the amplifiers, digitizers,micro controller andwireless transceiver alongwith a sin-
gle AAA battery for power. A summary of the system’s specification is listed in
Table. 1.

Evoked responses have been a mainstay for EEG-based brain computer in-
terfaces. With wireless systems, especially ones based on conventional protocols
(e.g., Bluetooth) optimized for reliable data transfer, issues with latency and
jitter often prevent the accurate alignment of stimuli, event markers and EEG
data.

One solution is to simply attach a physical wire to the headset for minimal
latency and jitter-free transmission of event markers, as with traditional wired
systems. However, such an approach defeats the purpose of a wireless headset.
Cognionics has developed a novel wireless method of transmitting EEG trigger
signals and event markers based on infrared and RF based custom transceivers
(Fig. 4). As will be shown later, this approach permits fully wireless synchro-
nization of EEG with external stimuli with ’wired-equivalent’ performance in
terms of latency and jitter. The wireless system has the additional benefit of
supporting an arbitrary number of receiving headsets, enabling precision timed
group experiments that were not previously possible. Finally this approach does
not require the use of a custom wireless transceiver for the actual EEG data,
retaining compatibility with any generic Bluetooth (or future wireless standard)
device.

Table 1. System Specifications

Channels 32 Active plus Reference and Ground

Amplifier Noise < 1μVrms, 1-70 Hz

CMRR >100 dB

ADC Resolution 24 bits

Sample Rate 250 samples/sec

Wireless Bluetooth v2.1 RFCOMM

Trigger Latency 300 μs

Weight 140 g, fully loaded

Battery 1 AAA NiMH, 5 hours

5 Testing and Validation

Testing and validating the signal from a EEG system has been a difficult en-
deavor. While bench tests can accurate measure the performance of the system’s
acquisition electronics (e.g., noise floor, CMRR), the actual performance on an
actual subject is difficult to quantify due to the inherent nature of EEG signals,
which are generally not repeatable, and the many variations in human head size,
shape, and skin condition.
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New Event 
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Headset 1

Received By 
Headset 2

Wireless Transmission

Fig. 4. (left) Cognionics wireless trigger transmitter. (right) Demonstration of novel
wireless triggering system. Event codes received by Cognionics trigger unit are received
by the wireless EEG headset with a minimal latency (<250 μs) and with virtually no
jitter between different systems.

Fig. 5. Photograph of one subject in the test environment. The Cognionics 32-channel
dry headset was placed on a subject. Standard wet adhesive electrodes, on top of
abraded scalp, were placed adjacent to select dry electrodes and connected to a g.tec
amplifier for simultaneous recordings.

An evoked response potential based test protocol is perhaps the best approach
since evoked responses offer a repeatable signal. For a fair comparison, a simul-
taneous recording between wet and dry sensors is needed since conditions may
change between recording sessions (e.g., subject fatigue).

For the basic validation experiment, we chose to use an AEP task along with
two P300 tasks - one based on static images and another based on video. Since it
is impossible to fully cap a subject with both a dry and a wet array, we selected
C3-P3 and C4-P4 as the sites of interest for the comparison study.

Figure 5 shows one subject in the test environment. The dry cap was first
placed on the subject. Since it is impossible to overlay a wet electrode on top
of a dry electrode, the wet electrode must be placed at a location away from
the dry electrode with sufficient distance to avoid gel contamination. Physical
displacements are not ideal since they change the measured EEG signal. To
better simulate a simultaneous wet-dry comparison, two wet electrodes were
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Fig. 6. Exemplary time averaged ERP responses from the three subject in the three
tasks (AEP, P300 on still images, P300 on moving video). There is a high correlation
and similarity between the signals recorded from the wireless dry system and the stan-
dard wet wired system demonstrating the quality of the flexible dry electrode and the
accuracy of the wireless triggering system.

placed laterally across each of the dry electrode locations under test (C3, C4,
P3, P4). Averaging the two wet electrode ’simulates’ a single wet electrode on
the exact same spot as the dry electrode for the best comparison. For data
acquisition, a g.tec EEG device was used with the wet electrodes.

Three subjects were used for the first validation tests. Figure. 6 shows the time
averaged AEP and P300 responses (bipolar C3-P3 montage). Both the wet and
dry systems accurately show the expected ERP response. The lack of time shift
between the wired wet and wireless dry systems also demonstrate the precision
of Cognionics wireless triggering. Almost all of the tests show a high correlation
(>0.9) between the wet and dry signals. In the trials with low correlation, the
raw signals, as with all of the sets, show a high degree of qualitative similarity.

6 Conclusions

A wireless, 32-channel dry EEG system with novel dry electrodes was demon-
strated and tested. The wireless EEG systems includes all of the necessary
components for a complete EEG platform, including accurate triggering and
event marking. The high quality of the raw signal as well as time-averaged ERP
responses demonstrate the viability of the platform for constructing practical
mobile brain-computer interfaces.
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Abstract. Cyber defense competitions arising from U.S. service academy exer-
cises, offer a platform for collecting data that can inform research that ranges 
from characterizing the ideal cyber warrior to describing behaviors during cer-
tain challenging cyber defense situations. This knowledge could lead to better 
preparation of cyber defenders in both military and civilian settings. This paper 
describes how one regional competition, the PRCCDC, a participant in the na-
tional CCDC program, conducted proof of concept experimentation to collect 
data during the annual competition for later analysis. The intent is to create an 
ongoing research agenda that expands on this current work and incorporates 
augmented cognition and gamification methods for measuring cybersecurity 
situational awareness under the stress of cyber attack.  

Keywords: Cyber Defense Competitions, CCDC, cyber defender, cyberwarrior. 

1 Introduction 

The Pacific Rim Collegiate Cyber Defense Competition (PRCCDC) represents a 
unique opportunity for observational experiments. While there are many types of 
observational experiments, in computer security they mostly fall into two classes: 
laboratory experiments and field studies. Laboratory experiments can be highly con-
trolled and enable researchers to test a hypothesis and quantify the contribution of 
each of several factors with confidence. With good experimental design, the results 
may be generalized safely. Unfortunately, the very controls required to obtain certain-
ty cause results to be much less realistic, and potentially less relevant to real life.  In 
contrast, field studies are used in situations where interesting behavior is to be ob-
served, but it is impractical to compare a control group to an experimental group. In 
field studies, data collected can be highly relevant to real life, but the power of the 
conclusions that we can draw from these observations is greatly limited because of 
high variability and contamination from uncontrolled factors. Field studies are typi-
cally difficult to replicate, and results may be hard to quantify and merely anecdotal. 
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These researchers believe that the PRCCDC, and similar competitions, represent a 
venue for conducting experiments that are a hybrid of laboratory experiments and 
field studies. The nature of the competition introduces constraints that (with care) can 
be adopted as experimental controls while the range of activities available to measure 
are nearly as unlimited as those that happen in the real world. And possibly just as 
importantly, the data that can be collected could be published, shared, and reused 
much more easily without destructive anonymization, unlike that collected in real-
world situations. Further, gamification methodologies can be applied that can expand 
on the purely observational experimentation described in this proof of concept. 

2 History of the Collegiate Cyber Defense Competitions 

Cyber defense competitions arose out of a military educational requirement for the 
U.S. service academies [1]. The competition was fierce and the result was so success-
ful that civilian universities began to follow suit. Beginning in 2004, the US Military 
Academy at West Point adapted their ‘capture the flag’ exercise to a civilian scenario 
and introduced the competition at several universities across the country, including 
the University of Washington which incorporated the event into the Information As-
surance and Cybersecurity Certificate program as an annual capstone experience.  On 
February 27 and 28, 2004, a group of educators, students, government and industry 
representatives gathered in San Antonio, Texas, to discuss the feasibility and desira-
bility of establishing  a post-secondary level, national program for cyber security 
exercises. The outcome of these discussions was 1) a competition architecture with a 
clear set of rules and roles, 2) a fair and impartial scoring system that provides a level 
playing field for competitors, 3) an IT infrastructure designed to eliminate possible 
advantages due to hardware and bandwidth differences at different regional locations, 
and 4) resolution of possible legal concerns. 

The resulting Collegiate Cyber Defense Competition (CCDC) system provides in-
stitutions teaching information assurance or computer security a controlled, competi-
tive environment that can assess students’ depth of understanding and operational 
competency in managing and protecting a corporate network [2]. The CCDC helps 
participating institutions of higher education evaluate their educational programs, 
provides an educational venue for students to apply the theory and practical skills they 
learn in their course work, fosters teamwork and ethical behavior, and creates interest 
and awareness among participating institutions and students. In 2006, the University 
of Texas at San Antonio agreed to host the first national CCDC. In 2007, the Univer-
sity of Washington opened up their internal competition to outside institutions, estab-
lishing the regional PRCCDC as an entrant into the national competition. 2013 is the 
sixth year of PRCCDC participation in Nationals. There are now ten regional venues: 
At-Large (virtual) Regional, Mid-Atlantic, Midwest, North Central, Northeast, Pacific 
Rim, Rocky Mountain, Southeast, Southwest, Western. 

During competition, 8-10 student teams comprised of eight students each defend 
identical networks. The competition lasts 2-3 days. Teams are scored based on ability 
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to protect and defend against outside threats, maintain availability of web services, 
respond to business requests, and balance security needs against business needs.   

A Red Team of external attackers, often professional penetration testers from local 
industry, relentlessly attack student networks throughout the competition. Students are 
expected to resist attack, or recognize and recover from attack, if penetrated. A White 
Team of judges—in  the case of the PRCCDC a team of graduate students from Ida-
ho State University’s NIATEC program—issue a series of ‘injects,’ or administrative 
chores, that must be accomplished in an orderly and timely fashion in the face of at-
tack. The entire process is designed to simulate the stress and intensity of managing 
networks in today’s hostile Internet environment. These CCDC exercises employ 
controls designed to preserve fairness and safety among teams from participating 
schools. These same controls may be used as the foundation of high-quality experi-
mental controls as long as fairness and safety are preserved. For instance, each team 
begins with a small, pre-configured, operational network they must secure and main-
tain located on a dedicated internal network. This also allows tight control over com-
petition traffic. Each team is given the same set of business objectives and injects at 
the same time during the course of the competition.  

Each student team is composed mostly of undergraduates, although two at most 
could be graduate students. No professionals are allowed, and the students may not be 
currently employed in an IT industry job. Students must be enrolled in a minimum 
number of class hours to qualify. Faculty advisors are not allowed to be with the team 
during competition. These restrictions double as experimental controls. The White 
Team enforces the competition’s controls and employs an automated scoring engine 
that periodically tests availability and function of each student team service and net-
work component during the competition. They also administer and grade responses to 
injects. Allowing only students and White Team members inside competition rooms 
eliminates potential variability from the influence of coaches. Running scores are not 
announced during the competition, eliminating potential stress factors. 

The Red Team is the aggressor seeking to disrupt services and business objectives 
of the student teams. They are non-biased, commercially experienced, and comprised 
of volunteers. Loose controls are placed on Red Team activities that enforce objec-
tives of fairness and safety. Within these controls, Red Team members employ any 
attack techniques at their disposal, including non-cyber attacks like social engineer-
ing. After the competition, the Red Team usually provides feedback to the student 
teams on their defenses and how the Red Team attacked them. 

3 Data Collection  

In this paper, the authors discuss how data that described the effectiveness of collabo-
ration was collected at the PRCCDC. Future studies will include injecting collabora-
tion-enhancing technologies to show the effectiveness of these treatments and  
augmented cognition methodologies designed to measure participant biological reac-
tions to stress. Data collected was analyzed in a separate publication [3]. In this paper, 
we discuss experience gained in collecting the data to show the effort required, as 
well as the benefits this data will be to future studies. An observational experiment 
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was designed to collect baseline (control) information on collaborative practices in 
cyber security teams. Collecting full packet traces is common practice at these compe-
titions, but it was felt much more data was needed to tell the stories behind the colla-
borative interactions that the competition fostered. This section discusses each of the 
kinds of data collected and how it was collected. During the competition, the follow-
ing was gathered: 

1. Data from the team scoring process, 
2. Situational awareness data from team members, 
3. Network packets and machine log files, 
4. Video and audio of the competition, 
5. Stress resilience characteristics of one of the teams.  

3.1 Performance Data Capture 

Having well defined and fair performance scoring built into the CCDC makes it an 
excellent source of regular data with a ground truth. Performance and timing data 
were gathered from the teams’ execution of business requirements (injects) that were 
delivered by email as part of the competition. A HotMail web client was used to 
record the time when an email instruction was received, opened, and replied to. This 
timing data was integrated with situational awareness data discussed below. Scoring 
data gathered included evaluation rubrics for each inject (twenty per team) that guided 
scoring of student team performance when executing each inject. Computation was 
done by White Team volunteers and is somewhat subjective. Scoring data was also 
generated for each successful attack levied against the student teams. Whenever the 
Red Team infiltrated a student machine successfully, that student team lost points. If 
the attacked team filed a detailed incident report, they would salvage some portion of 
their loss. These incident reports helped assess collaborative behavior. Final scores 
accumulated by each team were gathered from the White Team as an ultimate meas-
ure of success. This scoring was partly objective, partly subjective. The subjective 
part came from humans grading the “goodness” of inject response. The more objec-
tive source of data came from the scoring engine which periodically tests the state of 
all the services teams must maintain.  The scoring engine results provided an impor-
tant source of ground truth when assessing situational awareness. 

3.2 Situational Awareness Data Capture 

Team situational awareness was measured as a way to infer team performance inde-
pendently from the competition performance scoring. Researchers, armed with digital 
audio recorders, were assigned to occasionally ask situational awareness questions of 
student and Red Team members. Timing and accuracy data were used from their res-
ponses and from the injects to conduct an assessment of team situational awareness 
using Durso’s Situation Present Assessment Method (SPAM) [4].  
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The Questions. The questions used for assessing situational awareness were binary 
choices (yes/no, A/B) designed to assess the team’s cognition of their situation with-
out interrupting their tasks.  Reducing interruptions was one of the reasons Durso’s 
model was chosen over interruption-based protocols like Endsley’s Situation Aware-
ness Global Assessment Technique (SAGAT) [5]. Additionally, the research team 
kept questions simple to answer using known, ready-to-hand, materials.  

There were seven student teams and one Red Team in the competition. Four re-
searchers gathered data. Each student team was queried every 20 minutes. The Red 
Team was also queried periodically, but the objective here was to inform the ques-
tions of the research team rather than to measure situational awareness. One research-
er stayed with the Red Team, the remainder queried student teams. A question matrix 
was designed for the student teams with one-third of the questions, each, concentrat-
ing on concerns of the past 20 minutes, the present, or future 20 minutes, respectively. 
Durso’s work shows that future-oriented questions were most indicative of expertise, 
so the tense of a question was controlled carefully. The following taxonomic break-
down of question types was used: 

1. Defense-related 
a. Policies: What defensive actions should happen? 
b. Priorities: What defensive actions are most important? 
c. Events: What defensive actions were taken? 
d. Causes: What caused or would cause defensive action X? 

2. Threat-related 
a. Policies: What offensive actions should happen? 
b. Priorities: From an attacker’s view, what is the most important action? 
c. Events: What offensive actions happened or will happen? 
d. Causes: What caused or would cause attackers to take offensive action X? 

From this taxonomy, a list of 48 questions was generated. The research team met 
approximately every 20 minutes and randomly selected one of these questions and 
applied it to the current situation, filling in information as needed. For example, one 
question was, “Do you expect your X service to be a likely attack vector in the next 
20 minutes?” Before using this question, researchers had to replace X with the name 
of a service (e.g., email, web, ftp, etc.) thought most fitting at the.It was important to 
administer the same question to all the teams so as not tip a team off and provide an 
advantage. For instance, asking whether or not a team had changed the default router 
password might inform them that they should do this when they had not known to do 
so on their own.  

The Querying Protocol. Each researcher was given the task of querying 2-3 student 
teams, selected at random, during the remainder of the 20-minute segment. Research-
ers were instructed to try to approach a team member they had not approached. This 
induced as much variability into picking the subject as possible. Some teams chose a 
spokesperson to handle all queries. In that case, the researcher noted the policy and 
always approached the spokesperson, honoring the team’s wishes. The intent is to 
infer team situational awareness from these queries.  
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Connected to the core router, each team’s router defined the team’s local network. 
Because Red Team activity could disable a team’s router, there was no guarantee that 
each team’s traffic would always reach the core router throughout the event. The aim 
was to gather as much data from the network, given configuration limitations. 

To be as unobtrusive as possible, the core router and team routers were configured 
to mirror a set of ports to an available port (the “span port”). The associated network 
interface controller (NIC) of packet-capture laptops connected to the span port were 
configured to not have an IP address—making them essentially invisible. tcpdump 
was configured to capture full packets (headers and all data) by setting the snaplen (-
s) parameter to 0 (no size limitation). Packet data was output to files of 100 million 
bytes (-C 100) to ease processing later. A startup script was installed to initialize 
tcpdump and ensure existing packet capture files were not overwritten when the pro-
gram started. Each machine ran 32-bit Ubuntu Server 9.10 OS, configured with no 
optional services, in order to minimize attack vectors. 

The core router was configured to capture packet data, and because of resource li-
mitations, only three other packet-capture machines were provided on other routers. 
To allow for possible correlation of network data with captured video, the router of 
the single team who agreed to be filmed during the competition was one of those. 
Other packet capture locations were some of the other student teams, the Red Team, 
and machines teams used to access the Internet for patch downloads. After the event, 
log data was harvested from all available machines.  

3.4 Video and Audio Data Capture 

In addition to performance, situational awareness, and network data, video and audio 
were captured from the competition. City University of Seattle filmed the entire event 
and provided access to their raw footage. This footage was particularly useful to 
record the Red team’s brief-back at the end of the competition; however, during the 
body of the competition, the coverage was too uneven as a reliable data source. Not 
all teams consented to recording which would have been prohibitively expensive in 
both equipment and time to analyze, so resources were concentrated on the one team 
from the UW iSchool which graciously agreed to allow video and audio capture. 

Eight Logitech 600 webcams were placed strategically within the iSchool team’s 
area to capture interactions and collaboration among participants. The cameras were 
pointed across the table to capture several subjects at once, allowing a clearer view of 
team interactions. The team sat in two circular pods with cameras mounted to the 
table and tops of equipment, facing back across the tables. Camera orientation was 
periodically checked to make sure they were still aimed correctly.  

A single workstation streamed video from all eight webcams using the Logitech 
camera software and Debut video capture software to capture multiple streams, simul-
taneously. Eight simultaneous streams of 15fps video were captured at 1280x1024 
pixel resolution. While not high quality, this was sufficient to identify whether people 
were collaborating and a little about their gestures and activities. Since webcams were 
unable to record clear audio, extra voice recorders were used on each table. During  
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analysis, a single audio track was used to simplify reviewing the video. To facilitate 
time synchronization, a sync signal was used to start recording and periodically 
throughout the competition: a researcher clapped his hands in front of the camera. 

3.5 Stress Resilience Characteristics  

The student team filmed also consented to being tested, individually, prior to the 
competition. This was done in order to characterize their psycho-physiological profile 
as an indicator of their nervous system type. Four tests were given that measured 
stress resilience, the ability to context-switch, and the ability to maintain balance in 
their psychological processes under stress. Results led to individualized profiles that, 
in a business setting, could be useful in managing performance.  

This suite of tests was developed by E.P. Ilyin and has proven effective in assess-
ing a subject’s ability to handle stress in a variety of occupational settings for particu-
lar professions [6,7,8,9,10,11]. Application of this methodology has been helpful in 
optimizing individual performance in a range of competitive professional environ-
ments, including world class sports venues. The authors are adapting this approach to 
cyber defense competitions. It is believed it could have relevance for developing pro-
files of effective cyberwarriors, as well as stratagems for identifying and preventing 
burnout of cyberdefenders stressed by managing networks under constant attack. 

3.6 Dry Run  

Two dry runs of the data collection technology were conducted to determine feasibili-
ty. There were multiple area dependencies where data collection could be derailed. 
Although some data was lost, the research team was satisfied that a great quantity of 
useful data was captured. Due to equipment costs and space constraints, the research-
ers were unable to provide much duplication of collection.  

4 Potential Uses of the PRCCDC Data 

This data is a “gold mine” of potential research benefits. First, obtaining a realistic set 
of network data that does not have to be anonymized meets a crying need of the cyber 
security research community. (In previous research, unavailability of strong anonymi-
zation techniques was an important reason why organizations did not share their cyber 
data and learn from one another’s mistakes [12]). Further, research groups at PNNL 
have long expressed interest in a data set where cyber and video data could be corre-
lated to evaluation of levels of fatigue and stress related to cyber operator error. These 
authors anticipate using this data to evaluate key characteristics of effective cyber 
defense teams and individuals. It is expected that the team will return to this data set, 
again and again, as research matures. 
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5 Hindrances in Using PRCCDC as a Data Collection Venue 

There are some problems discovered in using PRCCDC events as data sources. This 
is a high stress venue that allows students to impress potential employers and earn a 
berth to compete at the national CCDC in San Antonio, Texas. Some participants 
might feel some anxiety knowing that they are being monitored during the competi-
tion and not perform optimally. 

Since these events are competitions in their own right, not simply experiments, the 
research team was constrained by the official competition rules. Additionally, the 
researchers were constrained to ensure that they did not disadvantage, or advantage, 
any single team by introducing a treatment.  

While extremely helpful, those who set up and ran the competition had other jobs 
and priorities, making it difficult to impose the rigor needed to collect quality data 
when it impacted people who were not given any incentive to help. Despite these 
hindrances, the PRCCDC and similar CCDC events remain extremely valuable 
sources of data. 

6 Future Work and Conclusions 

This was a pilot study that provided a baseline for future work. The authors plan to 
interpose collaborative enhancement technology such as Vulcan, designed to improve 
analyst performance across competing teams, taking care not to (dis)advantage any 
team. Additionally, different interview techniques and different methods of query 
delivery and notification are planned to measure the effectiveness of collaboration. 
Further, semi-structured interviews, or other data sources such as physiological stress 
measurements, could be introduced to enrich the data set, facilitating the development 
of a useful profile of an effective cyber warrior. 

The contributions of data collection and experimentation with this current work 
are:  

6. Made available a source of de-identified cyber data for publication and sharing. 
7. Put forth data-collection practices that may contribute toward a future standard. 
8. Identified a new venue for profitable data collection. 
9. Contributed towards better quality scientific methods in cyber security research. 

These efforts will help researchers for years to come. Benefits of this study are ex-
pected to accrue to cyber security workers and researchers into the future. 
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Abstract. In most human-robot interfaces, the user completely controls the 
robot that operates as a passive tool without adaptation capabilities. However, a 
synergetic human-robot interface where both agents collaborate could improve 
the user’s performance while reducing the cognitive and physical workload. 
Specifically, when considering this framework applied to rehabilitation, we 
examined a shared collaborative control between a human user and an adaptive 
biologically inspired neurocontroller in order to perform reaching movements 
with a simulated prosthetic arm. When this neurocontroller was enabled, it 
progressively learned from the user to control the prosthetic arm, increasing its 
role in the shared performance and facilitating the user’s reaching movements. 
This resulted in the user’s performance enhancement and in a reduction of 
his/her cognitive workload. The long term goal of this work is to contribute to 
the development of the next generation of intelligent human-robotic interfaces 
for rehabilitation. 

Keywords: Human-machine/robot collaborative performance, intelligent 
control, adaptive systems, arm reaching, assistive technology, prosthetic arm, 
rehabilitation. 

1 Introduction 

Currently, in most human-machine interface applications, the user fully controls every 
aspect of the machine performance, which is thus considered as a passive tool 
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controlled in a unidirectional manner with no or very limited capability of adaptation 
to the user and/or to the environment. However, a more optimal interaction between 
the user and the machine, such as a robotic limb (e.g., a human controlled robotic arm 
or finger), would be a dynamic, active and bidirectional process. Therefore, 
developing a symbiotic human-robot interaction where both the user and the robot can 
co-adapt and/or cooperate could provide several advantages such as the reduction of 
ergonomic challenges due to physical and cognitive load, while improving efficiency, 
quality and safety. Specifically, in the area of rehabilitation, the robotic device that 
interacts with human can take the form of an assistive device such as a prosthetic 
limb.  

Generally, the working principles of prosthetics as well as many assistive 
technologies for severely disabled individuals are based on the decoding of available 
biosignals (e.g., muscle, brain activity, eye, head, tongue movements). These signals 
are recorded from the user and quantified in order to control the device of interest 
(e.g., [1-9]). The optimal patient specific interface guides the selection of biosignals 
that may be employed; e.g., eye, head and tongue movement, and muscle or brain 
activity [2,5,6,8,9]. Regardless of the interface and the type of biosignals, the user is 
generally expected to adapt his signal of command in order to unilaterally control the 
prosthetic while the control system of the device has no or very limited adaptive 
capabilities [10,11]. While the final aim is to maximize the recovery of motor 
functions, the available biosignals offer a limited channel of communication to 
control the prosthesis and/or the assistive device resulting in tedious training, increase 
of user’s fatigue, frustration and cognitive workload as well as a decrement in 
performance [1,9-12]. It seems reasonable to expect that a prosthetic or an assistive 
device that would incorporate some adaptive capabilities would reduce the user 
burden while improving human performance.  

Although several investigations proposed adaptive systems to control wheelchairs 
(e.g., [13,14]), only a few studies have examined biosignals-based intelligent 
interfaces to control upper limb prosthetics that are critical for the user to perform 
reaching and grasping task in order to regain interaction with his/her environment. 
Notably, few previous works have proposed to integrate adaptive elements in the 
interface to facilitate the decoding process of the control biosignals [10,11]. For 
instance, Sanchez et al. (2009) employed a reinforcement learning method to adapt 
the decoding process of invasive brain signal to enhance the control of a robotic arm 
by a rat [10]. Also, Pilarski et al. (2011) used a similar approach to enhance EMG 
decoding from human muscles to control a robotic arm [11]. Although very 
interesting, these previous studies were centered on the decoding process per-se 
without focusing on the downstream processes related to the controller of the 
prosthetic device itself. As such, there is a need to develop intelligent collaborative 
control between the user and a prosthetic arm controller itself. In this regard an 
adaptive bio-mimetic neurocontroller offers a promising area for developing enhanced 
human-shared collaborative performance.  

Therefore, we propose a human-robotic adaptive collaborative control scheme that 
provides emergent assistance to the user while performing a reaching task with a 
virtual prosthetic arm displayed on a computer screen. Using head motion as the 
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biosignal to control the virtual prosthetic arm, an adaptive biologically inspired 
neurocontroller will progressively learn to compute the inverse kinematic of the 
prosthetic limb in order to perform reaching movements towards multiple targets. We 
predict that the user’s performance will be facilitated with concomitant reduction in 
cognitive workload and frustration as the neurocontroller learns to control the 
prosthetic arm autonomously. The implications of this approach in the context of 
intelligent human-robotic interfaces for rehabilitation are discussed. 

2 Material and Methods 

2.1 The Human-Robotic Interface  

The human-machine interface was composed of two elements. The first component 
acquired the signals from two infrared sensors placed on the head (one on the 
forehead and one on the chin) of the participants. The movements of the forehead 
sensor provided the up/down and right/left desired direction from the user whereas the 
chin sensor was used for selecting/confirming the target acquisition by opening the 
mouth. Through the movements of these two markers, a motion capture camera-based 
system (Optotrak™) detected the selection of the target and the desired directional 
displacement from the user. This information was then used to move a virtual 
prosthetic arm in a two dimensional workspace displayed on a computer screen that 
was placed in front of the participant (Fig. 1). It must be noted that as a first step, this 
study considered a virtual prosthetic arm that was modeled at the kinematic level. 
However our approach can be employed including an enhanced model of the 
kinematics and dynamics of the prosthetic arm. In order to ensure consistency, the 
same targets (same positions, same sequence) were presented to all participants. Once 
the target was selected by the user, he/she executed (up, down, left or right) head 
movements that were decoded and provided to the prosthetic arm that moved in the 
corresponding directions in order to reach the selected target. 

The second component of this human-robotic interface included a biologically 
inspired neurocontroller that functionally reproduces the premotor/motor cortical 
regions in order to learn an inverse kinematic mapping. In particular, this 
neurocontroller was able to provide an accurate, robust and efficient inverse 
kinematics computation reproducing similar kinematics to those observed in human 
during arm/finger reaching task, while efficiently handling tools, unexpected 
perturbations, online reacquisition of the targets during simple single reaching 
motion, as well as more complex movements. These results were obtained with 
anthropomorphic arms including multiple degrees of freedom as well as with fingers 
having a mechanical coupling of the last two joints. Although, a simple planar arm 
with two degrees of freedom arm was considered, this type of neurocontroller can 
efficiently operate with simulated as well as actual robotic systems such as humanoid 
arms and fingers that include more complex kinematic mechanisms [15-21].  
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Fig. 1. Working principles of the human-robotic interface. (A). Experimental set-up with the 
user facing the virtual prosthetic displayed on a computer screen. (B) Marker placed on the 
forehead to detect the upward (U), downward (D), left (L) and right (R) direction as well as the 
marker placed on the chin to select the target (C). Human-robotic interaction scheme that 
allowed adaptive shared control. Δθa; Δθe, ΔX represent the actual joint, the estimated joint and 
the spatial displacement of the prosthetic arm, respectively. IK: Inverse kinematic (h: heuristic). 

When considering the present human-robotic framework, the general computational 
principle of this neurocontroller is to learn an internal representation of the inverse 
kinematics (i.e., inverse model) of the virtual prosthetic arm by progressively encoding 
a mapping between its spatial and joint displacements. Thus, when the user moved 
his/her head, the corresponding (horizontal or vertical) movement directions were 
decoded and provided to a local inverse kinematics heuristic in order to obtain the 
corresponding joint displacements and move the virtual prosthetic arm. 
Simultaneously, the corresponding joints and spatial displacements of the prosthetic 
arm were provided to the neurocontroller in order to learn the inverse kinematics 
representation as the user executed reaching movements. As the user moved the 
prosthetic arm in the workspace, this neurocontroller performed action-perception 
cycles during which it generated an estimate of the motor commands to move the 
prosthetic arm in order to reach the targets selected by the user. As the session 
progressed, the number of movements performed by the user increased and provided 
further information to the neurocontroller that gradually learned the internal inverse 
kinematic model of the prosthetic arm by integrating visual (spatial position of the 
prosthetic arm), and proprioceptive (joint angles of the prosthetic arm) information, as 
well as internal information related to the neurocontroller. Based on these spatial 
displacements, the cortical model estimated the joint angles that were compared to the 
corresponding actual joint movements, providing an error signal that guided the 
adaptation of the cortical network (for further details see, [15-19]).  
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2.2 Participants and Reaching Task  

Fourteen healthy individuals participated in this study composed of a primary 
reaching and a secondary cognitive task under various conditions. Only the reaching 
task that was performed under two conditions will be presented. During the first and 
second conditions, the subjects had to control, through limited head motion, the 
prosthetic arm to reach multiple targets while the adaptive neurocontroller was 
disengaged (i.e., passive prosthetic mode) and engaged (i.e., active prosthetic mode), 
respectively. Thus, in the first condition (or passive mode), the user exerted traditional 
control over the prosthetic since he/she fully controlled the prosthetic device that 
could be considered as a passive tool. During the second condition (active mode), by 
integrating the user’s performance data, the adaptive neurocontroller of the prosthetic 
arm progressively learned to perform reaching movements towards the targets.  

Before starting the experiment and in order to minimize any training or adaptation 
effects from the user; all the participants went through a familiarization stage where 
they had to move the virtual prosthetic arm with the neurocontroller disabled and 
enabled until they felt comfortable in controlling the device. Then, the participants 
completed two sessions, each of them corresponded to one of the conditions. The 
condition chosen for the first and second sessions was randomly selected and 
counterbalanced among the participants. In both sessions, a target (red diamond) to 
reach was presented on the computer screen within the 2D workspace to the subjects. 
They had to: i) select/confirm the target acquisition (the target turned green once 
selected) and then ii) guide the prosthetic arm towards the selected target. Once the 
participants reached the selected target, the subsequent target was presented and all 
the information from the previous trial was erased. Each session included 60 trials. To 
ensure consistency between the two sessions, the sequence of targets to reach was the 
same during the two sessions (although different from the target set employed during 
the familiarization phase). The information related to the performance was analyzed 
throughout each session and for each trial.  

In order to assess the quantity of information provided to the prosthetic from the 
user, the occurrence of head movements were quantified as control signals. Also, the 
movement time was recorded, the smoothness of the movement path was assessed by 
means of the jerk [22] and both the linear and angular kinematics of the prosthetic 
were analyzed. Once each session was completed, participants were requested to 
complete the NASA TLX questionnaire in order to assess the level of task difficulty 
and cognitive workload for each task [23]. The indicators of reaching performance 
(occurrence of head movements, movement time, jerk and the weighted respective 
role in the performance) were tested using ANOVA. The Huynh-Feldt correction was 
applied when sphericity was violated [24]. The NASA TLX questionnaire scores were 
contrasted using paired t-test or Wilcoxon depending if the assumption of normality 
was violated or not. 
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3 Results 

3.1 Reaching Performance  

Overall, the findings revealed that the user’s reaching performance with the prosthetic 
arm in the passive condition (i.e., neurocontroller disengaged) was inferior to that 
during the active condition (i.e., neurocontroller engaged).  
When comparing the respective roles of the human and of the neurocontroller 
performance, it appears clearly that the human kept full control of the prosthetics arm 
in the passive mode and thus produced the entire trajectory (see Fig. 2, upper row). In 
the active mode, the neurocontroller became progressively dominant in generating the 
trajectory to reach the targets (see Fig. 2, lower row) and thus gradually reduced the 
need for user intervention from early to late learning (compare the black and gray 
portions of the path in Fig. 2). When comparing to the active mode, the passive mode 
revealed more jerky and irregular movement’s paths (Fig.2). Namely, the occurrence 
of head movements, movement time and jerk values were larger in the passive 
compared to the active mode (p<0.001; Fig. 3A-C).   

 

Fig. 2. Reaching performance with the prosthetic arm in the passive (upper row) and active 
(lower row) mode. The red and green diamonds represent the starting target and the target to 
reach, respectively. The dotted circular shapes represent the outer and inner limits of the 
workspace. The black and gray lines represent the portion of the trajectory generated by the 
human user and by the neurocontroller, respectively. 

When focusing on the changes within the session itself, the findings revealed that 
in the passive mode, the performance was generally stable although towards the end 
of the session the movement time and smoothness increased and decreased, 
respectively. The same analysis, conducted in the active mode revealed that the 
occurrence of head movement required to control the prosthetic arm as well as the 
movement time were significantly reduced whereas the smoothness of the movement 
was significantly increased (p<0.001; Fig 3A-C). When comparing the respective 
roles of the human and of the neurocontroller during reaching with the prosthetic arm 
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in the active mode, the role of neurocontroller, which learned from the user, became 
progressively preponderant in generating the trajectory to reach the targets. In turn, 
this resulted in a gradual reduction of the role of the user in controlling the trajectory. 
Thus towards the end of the session, the user mainly had to control the target selection 
while the trajectory was generated by the neurocontroller (Fig. 3D). During the 
passive mode, no change was observed since the users fully control the prosthetic arm 
at all time.  

 

Fig. 3. Indicators of reaching performance along with the cognitive workload and task 
difficulty assessment during the control of the prosthetic arm in the passive (black color) and 
active (gray color) mode for the early, middle and late session. (A) Occurrence of head 
movements, (B) Movement smoothness, (C) Movement time, (D) Respective role in the control 
of the prosthetic arm during reaching movements, (E-F) NASA TLX scores to assess the 
mental (M), physical (P) demand, the sensation of being rushed (R), of performing successfully 
(S), of the task difficulty (i.e., hard or not; H) and the level of frustration (F). 

3.2 Cognitive Workload and Task Difficulty  

Overall, the NASA TLX results revealed higher scores for the passive compared to 
the active mode. Specifically, compared to the active mode, the mental demand, the 
perception to perform successfully, the difficulty to perform the task and the level of 
frustration were all significantly higher (p<0.05). Also, a tendency showed that the 
physical demand tended to be higher for the passive compared to the active mode 
(p=0.06). The same comparison did not reveal any significant difference between the 
two modes for the sensation of being rushed (p>0.73).  
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4 Discussion and Conclusion 

Overall, the findings suggest that, the cognitive (e.g., mental workload, task difficulty, 
frustration) and physical effort from the user were reduced whereas the performance 
was considerably increased (e.g., reduced movement time, increased smoothness) 
when the neurocontroller was engaged (active mode) compared to the condition 
where the user fully controlled the prosthetic (passive mode). This finding is in 
agreement with previous studies that revealed that a collaborative control scheme for 
wheelchair navigation improved the performance while decreasing the cognitive 
workload of the user [13, 14].  

Specifically, when this adaptive neurocontroller was enabled, throughout the entire 
session it learned, from the participant, to progressively control the prosthetic arm 
resulting in an emerging increased assistance to the user to reach the targets. Although 
the control was shared between the user and the neurocontroller during the entire task, 
the weights of their respective role evolves as the neurocontroller learned to control the 
prosthetic arm and thus gradually changed the dynamic of the collaborative effort. Thus, 
at the beginning of the session, the role of the user in this collaborative framework was 
predominant since he/she had to control both the target selection and the trajectory of 
the prosthetic arm. However, as the cortical architecture learned to control the prosthetic 
device, the roles of the user and of the robot in controlling the trajectory were 
progressively reversed (i.e., reduced and increased, respectively). Thus towards the end 
of the session, the user mainly controlled the target selection (i.e., the goal) while the 
neurocontroller generated the trajectories. In other words, the lower-level aspects of the 
task, such as the control of the trajectory, were progressively outsourced from the user 
to the neurocontroller whereas the human user maintained the control of higher-levels 
aspects of the task such as target selection/movement initiation. Such outsourcing from 
the human to the robot translated into enhanced performance while the user’s cognitive 
and physical load was reduced. This approach has several implications for users 
employing prosthetics and assistive devices. First, prosthetics/assistive devices that are 
based on decoding of biosignals offer a limited communication channel since the 
recording and interpretation of these biosignals can be complex [1,9]. In addition, the 
control of such devices generally require long training hours, elevated cognitive 
workload, and sustained concentration [1,10,12]. By outsourcing some lower-level 
control features of the task, such as trajectory control, our approach has the potential to 
develop prosthetic control systems that allow more complex performance while limiting 
the control of the user to the higher level aspects of the performance (e.g., control 
related to the goal). This would allow: i) execution of ecologically valid complex 
movements by the collaborative robot and ii) maintaining a low level of the user’s 
cognitive workload. This is in accordance with previous studies that suggested that the 
goal control method is a promising option to increase the utility of neuroprosthetics [9, 
25, 26]. Second, in daily life, even if the user can correctly control the prosthetic device, 
this may be at a very high cognitive cost thus reducing cognitive reserve. Under such 
conditions, the user would not be able to maintain a conversation or deal with 
unexpected events (e.g., someone inadvertently pushes the prosthetic arm; the prosthetic 
arm collides into an unseen obstacle) that may occur in the environment [27, 28]. 
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It must be noted that employing adaptive control in the prosthetic control loop does 
not systematically guarantee a better performance and/or a reduced cognitive 
workload. For instance, after the study, personal interviews with the users revealed 
that if a target was not reached in the active mode, it was sometimes awkward to 
switch back to the traditional (passive) mode in order to regain control of the 
prosthetic arm and reach the target. This illustrates how the implementation of the 
synergistic control between the user and the robot is critical. In this regard, a 
biologically plausible neurocontroller trained on-line may provide a better user-robot 
functional merging. This also emphasizes the need for future works that include the 
development of improved switching modes, more complex tasks and enhanced  
bio-mimetic control systems that incorporate both kinematics and dynamics 
characteristics of the prosthetic device. The long term goal of this work is to develop 
intelligent collaborative human-robotic systems to improve rehabilitation. 
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Abstract. The strategic goal of augmented cognition is to increase task perfor-
mance capacity by using physiological sensor feedback to adjust or modify the 
activity for the user. Gamification has been shown to increase performance by 
using certain combinations of game elements. Both augmented cognition and 
gamification address increased task performance capacity. Gamification adds to 
augmented cognition by directly addressing the motivation of the user to remain 
engaged in the activity. This has also been referred to as flow, or the optimal 
experience. This paper describes an example of a gamified activity in which the 
physiological sensors of augmented cognition are used to foster the optimal ex-
perience desired in gamification. Also, discussed is how the strategic goals of 
augmented cognition and gamification overlap through the use of a gamified 
example that describes how the components of augmented cognition and  
elements of gamification can be used together to better achieve the goal of  
increased task performance capacity. 

Keywords: augmented cognition, gamification, physiological sensors. 

1 Introduction 

The phenomenon of gamification has been gathering a great deal of interest among 
the various quadrants of society. It has been applied to a variety of areas, such as 
business1, education2, and health3, and it has been included in the Gartner [1] hype 
cycle for emerging technologies in the last two years 

There have been several attempts to define gamification. Deterding et al. [2] have 
defined it as “the use of game design elements in non-game contexts”. Werbach and 
Hunter [3] (p. 26) have elaborated on the definition to be “the use of game elements 
and game-design techniques in non-game contexts”. From these two definitions it 
becomes clear that gamification is not about building a fully fledge game, but rather 
about using parts of one. Deterding et al. [2] clarifies that these are “elements that are 
found in most (but not necessarily all) games, readily associated with games, and 
                                                           
1  Foursquare - https://foursquare.com/ 
2  Chore Wars -http://www.chorewars.com/ 
3  Fitocracy - https://www.fitocracy.com/ 
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found to play a significant role in game play”. Gamification leverages elements of 
games to promote users’ motivation and to create engaging dynamics that can even-
tually influence and/or change the user’s behavior.  

Games are generally regarded as enjoyable and fun, but most interestingly, they 
have shown to motivate users to engage with them with unparalleled intensity and 
duration[2]. Moreover, research into human motivation demonstrates that people feel 
motivated by well-designed game features [3] (p. 10). It is this compelling nature of 
games that gamification researchers want to explore and capitalize in order to im-
prove the effectiveness in other areas. This paper is particularly interested in how both 
augmented cognition and gamification can increase task performance capacity in 
education. Section 2 describes an example of a prototypical gamified activity and 
discusses how combining augmented cognition and gamification can support task 
performance capacity. 

1.1 Background 

Flow has been associated both with games and education. Flow, or the optimal expe-
rience, as described by Csikszentmihalyi refers to “a sense of that one’s skills are 
adequate to cope with the challenges at hand in a goal directed, rule bound action 
system that provides clear clues as to how one is performing. Concentration is so 
intense that there is no attention left over to think about anything irrelevant or to wor-
ry about problems. Self-consciousness disappears, and the sense of time becomes 
distorted." [4] (p. 71). 

The quality of an experience depends on an individual’s level of challenge and 
skill when performing a given activity. Optimal experiences, i.e.: flow experiences, 
are likely to occur when both skills and challenges are high, when a person’s skills are 
fully involved in overcoming a challenge that is just about manageable [5]. The repe-
tition of flow moments will form a narrow flow channel (Fig. 1) within which the 
individual is in the desirable and enjoyable state of flow. Ideally, in order to excel and 
deeply engage in a given activity the individual’s state should be located within this 
channel. 

Falstein [6] studied the concept of Flow in fun and games to explain that game dif-
ficulty should vary in waves. Ikehara and Crosby [7] also recognized that in aug-
mented cognition maintaining flow within an optimum cognitive load range would 
enhance learning. Ideally, if we were able to systematically adjust the level of chal-
lenge and skill a user faces we could hypothetically foster the efficacy of learning. 

According to Csikszentmihalyi [4] (p. 71, 72), “. . . it is much more likely that flow 
will result either from a structured activity, or from an individual’s ability to make 
flow occur, or both”, but activities can also be designed to make optimal experiences 
easier to occur. It is easy to enter flow in games and these are actually exemplar flow 
activities. Important to that is the existence of clear goals and rules and of immediate 
feedback. Goals make it possible to act without thinking while rules direct energy in 
patterns that are enjoyable [4] (p. 76). Finally, immediate feedback makes the person 
aware of how well she is doing and enables the person to know whether she improved 
her position or not after each move.  
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Fig. 1. The flow channel based on Csikszentmihalyi [4] (p. 74) and Falstein [6] depicting num-
bered example states 

Due to the common complex combination of elements that are present in games it 
is difficult to exactly pinpoint the game elements and relationships between them that 
contribute to the optimal enjoyable experiences. Nonetheless, it is known that certain 
combinations of game elements enable flow to occur. 

Researchers have tried to unfold those properties of games that make them so 
compelling. Jane McGonigal identified four game traits: goals, rules, feedback, and 
voluntary participation [8] (p. 21). Hunicke et al. [9] pulled out the components of 
games by formalizing them in the MDA framework that includes, mechanics, dynam-
ics and aesthetics. Reeves and Read [10] identified the ten ingredients of great games: 
self representation with avatars, three-dimensional environments, narrative context, 
feedback, reputations, ranks, and levels, marketplaces and economies, competition 
under rules that are explicit and enforced, teams, parallel communication systems that 
can be easily configured, and time pressure. Werbach and Hunter [3] (p. 77-82) pro-
pose a pyramid of elements that from the top-down includes three levels of game 
elements: dynamics, mechanics and components (Table 1). These are used later in the 
description and discussion of how augmented cognition can be applied to a prototypi-
cal gamified activity to increase task performance. 

Increasing task performance capacity is at the core of both gamification and aug-
mented cognition. Augmented cognition “aims at evaluating in real-time the cognitive 
state of a user (e.g. EEG), and to design closed-loop systems to modulate information 
flow with respect to the user's cognitive capacity.” [11] In order to increase the learning 
rate, the ability to do a task, or to maintain continued competent task performance,  
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Table 1. Werbach and Hunter Pyramid of Elements [3] 

High Level - Dynamics 
H01 Constraints (that trigger meaningful choices) 
H02 Emotions (what can make the experience richer and whatever motivates the people 

to play more) 

H03 Narrative (what makes the gamified system coherent) 
H04 Progression (what gives the player the sense that they are progressing towards the 

objective) 
H05 Relationships(people interacting with each other (e.g., teams) 

Mid-Level - Mechanics 
M01 Challenges (objective to reach) 
M02 Chance (the luck involved) 

M03 Competition (getting people to compete against each other) 
M04 Cooperation (getting people to work together) 
M05 Feedback (what enables the users to see how they are doing in real time and tends to 

drive them along to go further) 
M06 Resource Acquisition (the things that the game gives you opportunity to get in the 

game in order to move it forward) 
M07 Rewards (some benefits that you get for some achievement in the game) 
M08 Transactions (buying and selling, or exchanging something with other players, or 

with what's called a non player character, with some automated character in the 
game) 

M09 Turns (the opportunity or obligation to do something that comes successively to 
each of a number of people) 

M10 Win States - The state which defines winning the game 

Bottom Level - Components 
B01 Achievements (defined objectives) 
B02 Avatars (visual representations of a player's character) 
B03 Badges (visual representation of achievements) 

B04 Boss fights (especially hard challenges and the culmination of a level) 
B05 Collections (set of items or badges to accumulate) 
B06 Combat (a defined battle, typically short-lived) 
B07 Content unlocking (aspects available only when players reach objectives) 
B08 Gifting (opportunities to share resources with others) 
B09 Leaderboards (visual displays of player progression and achievements) 

B10 Levels (predefined steps in player progression) 
B11 Points (numerical representations of game progression) 
B12 Quests (predefined challenges with objectives and rewards) 
B13 Social Graphs (representation of players' social network within the game) 
B14 Teams (defined groups of players working together for a common goal) 
B15 Virtual goods (game assets with perceived or real-money value) 
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follows element description. For example, high score (M07, B11) refers to high score 
being related to ‘Points’ from Werbach and Hunter Gamification Pyramid. 

For the user to obtain the highest score (H02, H03, M01, M07, B11), the user must 
select all fractions greater than the critical value of 1/3 before they touch the right 
edge of the screen (H01). The goal of the user is to maximize the score (M01, M07), 
which is prominently displayed at the bottom of the screen (M05, B09), by achieving 
four subgoals before taking action. 

• The first subgoal is to evaluate all fractions as they appear to determine if the frac-
tion can be evaluated quickly or with difficulty (M01).  

• The second subgoal is to evaluate each fraction’s value, within the user’s confi-
dence level, to determine its relationship to a critical value (M01). Fractions greater 
than the critical value will increase the score when selected (B11). The difficulty of 
the comparison (i.e., cognitive load) is controlled by the fraction selected. For ex-
ample, 1/2 is obviously greater than 1/3, but comparing 6/17 versus 1/3 requires 
much more cognitive effort. The user registers decisions by clicking with the 
mouse on those fraction targets greater than the critical value. Correctly selected 
fraction bubbles turn green. Incorrectly selected fraction bubbles turn red (M05). 
For even greater difficulty, the critical value can be changed from simple fractions 
like 1/3 to complex fractions such as 5/13 (M01). 

• The third subgoal is to consider how the score is computed when selecting targets. 
The score is computed as 100 times the fractions that the user selects correctly 
above 1/3 (e.g., 3/4 * 100 = +75) and deducts 100 points for each incorrect selec-
tion. The negative scores for incorrect targets means the user cannot simply select 
everything on the screen to maximize the score (H01, M01). 

• The fourth subgoal is to not let a fraction greater than the critical value touch the 
right edge. This fraction bubble will turn red. A deduction of 200 times the fraction 
value will occur if a fraction greater than the critical value touches the right side of 
the screen while a score of 200 point are added when the fraction is below the criti-
cal value. This motivates the subject to evaluate all fractions presented and not just 
the easily computed ones (H01, M01). 

The subgoals can take on different priorities depending on task variables such as the 
difficulty of evaluating the fraction, the value of the fraction, how close the fraction is 
to the right side of the screen and the number of fractions presented (H01, M01). The 
priorities of the subgoals can also be affected by user factors such as arousal, stress 
and motivation (H02).  

With augmented cognition, incorporating physiological sensors to adjust or modify 
game elements it is possible to keep the user in the optimum flow channel is possible 
by identifying two general classes of easily modifiable game elements: challenges and 
rewards. Modifiable challenges of the game includes: win states, time pressure, 
chance, transactions, content unlocking and quests. Rewards includes: leaderboards, 
reputations, ranks, levels, resource acquisition, badges, collections, points and virtual 
goods. Both challenges and rewards can be modified based on physiological sensor to 
keep the user in the flow channel. See Table 2 for a list of physiological sensors, phy-
siological measures and secondary measures than can be used to direct the modifica-
tion of game elements. 
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Table 2. Sensors, physiological measures and secondary measures 

Sensors Physiological Measures Secondary Measures 

Eye Position 
Tracker 

Gaze Position, Fixation 
Number, Fixation Duration, 
Repeat Fixations, Search 
Patterns 

Difficulty, Attention, Stress, Relaxation 
Problem Solving, Successful Learner, 

Higher Level of Reading Skill [14], [15] 

Pupil Size, Blink Rate, 
Blink Duratio 

Fatigue, Difficulty, Strong Emotion,  
Interest, Mental Activity - Effort, Familiar 

Recall, Positive / Negative Attitudes, Informa-
tion Processing Speed [14]  

Mouse  

Pressure  

Pressures Applied to the 
Mouse Case and Buttons. 

Stress, Certainty of Response, Cognitive 
Load [16], [17]  

Skin  

Conductivity 

Tonic and Phasic Changes Arousal [14] 

Temperature Finger, Wrist and Am-
bient Temperature 

Negative Affect (Decrease), Relaxation 
(Increase) [14] 

Relative 
Blood Flow 

Heart Rate and Beat to 
Beat Heart Flow Change 

Stress, Emotion Intensity [14] 

 
Three examples below describe the ‘task state’, ‘physiological sensors used’, ‘user 

state detected by the sensors’ and ‘element of the game modified’ (see Table 3). Refer 
to Figure 1 for where these three examples are located in relation to the flow channel. 

Table 3. Examples of physiological sensor directed modification of game elements 

Task State Physiological 
Sensors Used 

User State Detected 
by the Sensors 

Element of the Game 
Modified 

Fractions 
are too 
difficult 

Relative blood 
flow - heart rate 
above normal 

Sensors indicate a 
persistent high level 
of arousal, the person 
is above the flow 
channel boundary 

Reduce challenge by re-
ducing the time pressure 
by slowing the flow of 
fractions or by reducing 
the level of difficulty of 
the fraction 

Fraction 
difficulty 
is appro-
priate 

Skin conductivity- 
 normal 

Indicate a normal 
level of arousal, the 
person is within the 
flow boundary 

No change 

Fractions 
are too 
simple 

Eye Tracking - 
Blink duration 
longer than nor-
mal 

Indicate a persistent 
low level of arousal, 
the person is below 
the flow channel 
boundary 

Challenge modification is 
to increase the time pres-
sure or increase the level 
of difficulty to move the 
user to an increased skill 
level 
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As shown in the example above, information from the physiological sensors can be 
used to modify game elements in the activity. This allows the achievement of the 
strategic goal of teaching fractions, while maintaining the positive attitude of the indi-
vidual to continue performing the activity. Concurrent modification of challenges and 
rewards can be used to maintain or move a user higher in the flow channel. For exam-
ple, increasing the time pressure (i.e., Challenge) while increasing the rank (i.e., Re-
ward) could be used to move a user to a higher level of skill or challenge.  

3 Conclusion 

There is an alignment of the strategic goals of augmented cognition and gamification. 
This paper describes an example of an activity in which gamification elements are 
found in augmented cognition activities to increase task performance capacity. The 
Moving Targets Fractions task provides an example where game elements are identi-
fied and the potential of modifying game elements based on physiological sensors is 
described. Established are the relationships between the physiological sensors of 
augmented cognition and elements of gamification and how using sensor information 
to direct the modification of game elements can lead to achieving the strategic goal of 
increase task performance capacity while motivating the individual to achieve a high 
level of competence.  
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Abstract. There are two major trends in computing that will impact augmented 
cognition. The first is the shift in computing platform from the desktop to mo-
bile computing (e.g., smartphone and tablet) because the user wants to be able 
to do computing tasks where ever they are. The second trend is the gamification 
of computer applications to keep the user engaged and motivated. Compared to 
a workstation, the mobile computing environment is a challenge because of li-
mited computing power, storage capacity, internet connectivity and battery ca-
pacity. This paper discusses the issues involved in implementing augmented 
cognition activities on a mobile platform and the tradeoffs of gamifying aug-
mented cognition activities. These issues are discussed in terms of two example 
mobile platform applications that implement internal and external sensors.  

Keywords: mobile computing, augmented cognition, gamification, physiologi-
cal sensors. 

1 Introduction 

There are two major trends in computing that will impact augmented cognition. The 
first is the shift in computing platform from the desktop to mobile computing (e.g., 
smartphone and tablet). “Mobile internet usage is predicted to overtake desktop usage 
as early as 2014.”[1] Users enjoy the portability of mobile computing (e.g. smart-
phones and tablets). With 4G and Wi-Fi hot spots internet connectivity is almost ubi-
quitous. The second trend is gamification. Gamification is the incorporation of game 
elements into non-game applications to keep the user engaged and motivated. 

1.1 Mobile Computing 

With the availability of high speed wireless internet (e.g., 4G or Wi-Fi) and cloud 
computing the computing capacity of the mobile user has significantly increased. 
Organizations with traditional web services are becoming increasingly aware of the 
need to migrate or redesign their applications to the mobile computing platform. One 
of the primary concerns with the shift to mobile computing will be how to maintain 
and increase user productivity.  
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1.2 Augmented Cognition 

Maintaining and increasing user productivity, which is to increase task performance 
capacity, is a strategic goal of augmented cognition. This task performance capacity 
could be manifested by increasing the learning rate, increasing the ability to do a task, 
or maintaining continued task competence. In augmented cognition, increase task 
performance capacity is achieved by using physiological sensor feedback to adjust or 
modify the activity the user is performing. 

To implement a real-time augmented cognition system on a workstation can be a 
challenge because of the streaming physiological sensor data that must be stored and 
processed while simultaneously running and modifying the application. Current mo-
bile platforms in comparison are more limited in computing and storage capacity than 
the workstation and must also consider limited battery life. Regardless of these limita-
tions of the mobile systems, computing power and storage increases seem to be fol-
lowing Moore’s law [2]. Also, with the advent of higher wireless communication 
rates, both computing power and storage capacity could be off-loaded to the cloud. 
Preliminary research and methods developed now can be applied to future mobile 
devices with greater computing power, storage capacity, wireless speed and battery 
life. 

 

Table 1. Mobile computing device sensors, physiological measures and potential cognitive 
measures 

Sensors Physiological Measure Potential Cognitive Measure 

Camera Eyetracking : Gaze Position, 
Fixation Number, Fixation 
Duration, Repeat Fixations, 
Search Patterns, Pupil Size, 
Blink Rate, Blink Duration 

 

Difficulty, Attention, Stress, Relaxa-
tion, Problem Solving, Successful 
Learner, Higher Level of Reading Skill 
[3] [4] 

Facial Recognition Happiness, Sadness, Surprise, Anger, 
Disgust, and Fear [5] 

Accelerometer, 
gyroscope, 
compass 

Body Motion Arousal [3] 

Touch Screen Pressures Applied to the Button Stress, Certainty of Response, Cogni-
tive Load [6], [7] 

Microphone Voice Characteristics Depression [8] 
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At the core of augmented cognition research to increase task performance capacity 
is physiological sensor selection, data collection, data analysis, and then the modifica-
tion of the activity guided by the analysis of the sensor data. Currently, mobile devic-
es are equipped with a set of sensors that could be repurposed for augmented cogni-
tion (see Table 1). An eye-tracking application using the forward facing camera on an 
Android based tablet is described in this paper. Other sensors found on mobile devic-
es are listed in Table 1 along with their potential cognitive measures that could be 
used with augmented cognition applications. 

Almost all mobile devices have the option to have Bluetooth, Wi-Fi and 4G com-
munication. Assuming Wi-Fi or 4G may be in use accessing cloud computing 
processing and data storage resources, Bluetooth would be the preferred interface 
approach for connecting sensors in close proximity. In this paper, an Android smart 
phone application is described to demonstrate how Bluetooth would be implemented 
on a mobile device to acquire sensor data.  

1.3 Gamification 

Gamification is a process of applying game elements to non-game applications to 
maintain a high level of user engagement and motivation to influence behavior.  

Jane McGonigal identified four game traits: goals, rules, feedback, and voluntary 
participation [9] (p. 21). Werbach and Hunter [10] (p. 77-82) proposed a large list of 
game elements broken down into three levels of elements: dynamics, mechanics and 
components. Reeves and Read [11] identified the ten ingredients or game elements of 
great games (Table 2). Game elements place demands on computing, data storage, 
and wireless connectivity. Table 2 used Reeves and Read’s list and is not exhaustive, 
but provides linkages between game elements and the resources that could be needed. 
Note that all resources (i.e., computing, storage, connectivity and sensors) reduce 
battery life. In the mobile environment, gamification has several benefits that must be 
weighed against the drawbacks. 

 
Gamification Benefits 

• A high level of user engagement and motivation. 
• Gamification can be enhanced by tapping into the physiological sensors used in 

augmented cognition. 
─ Sensor data can be used to direct real-time feedback to the user. 
─ Adjustments to rewards and the difficulty of the activity can be based on the 

cognitive state derived from sensor data. Currently, gamification relies on the 
user actions or overall performance to adjust rewards and activity difficulty. 
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Table 2. “Ten Ingredients of Great Games” Reeves and Read [11] and resources used 

 Ingredients 
(Game Elements) 

Computing Data Storage Wireless 
Connectivity 

Sensors 

1 Self representation 
with avatars 

To display of 
the avatar. 

To store multiple 
avatars. 

  

2 Three-dimensional 
environments 

To display the 
environment. 

To store the 
environment. 

  

3 Narrative  
context 

 To store the 
narrative. 

 To adjust the 
challenge. 

4 Feedback To ascertain 
performance 
and provide 
feedback. 

To record per-
formance histo-
ry. 

 To adjust 
feedback. 

5 Reputations, ranks, 
and levels 

 To record reputa-
tions, ranks, and 
levels. 

To display for 
other players 

To adjust the 
rewards. 

6 Marketplaces and 
economies 

 To store market-
place informa-
tion. 

To display for 
other players. 

 

7 Competition under 
rules that are expli-
cit and enforced 

  To transfer 
information 
between com-
petitors. 

 

8 Teams   To transfer 
information 
between colla-
borators. 

 

9 Parallel  
communication 
systems that can be 
easily configured 

  To provide 
communica-
tions between 
players. 

 

10 Time pressure. To run the 
task at a rapid 
pace. 

   

Gamification Drawbacks 

• Adding game elements could degrade the performance of the non-game activity 
being gamified. Sensor data could overwhelm limited computing, storage and con-
nectivity resources. Battery life could also be significantly reduced. In some cases, 
to increase battery life, wireless connectivity to the cloud could be used to supple-
ment or replace computing and data storage.  

• Extensive testing may be required to fine tune the gamification of an activity.  
It is unclear which combination of game elements produces the best results and 
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individual differences may play a significant role in determining the optimum 
combination of game elements. Also, the combination of game elements may 
need to dynamically change with the individual’s predisposition. 

2 Examples of Sensors for Mobile Applications 

2.1 Using the Front Facing Camera of a Mobile Device for Eye Tracking  

Many smartphones and tablets have forward facing cameras (i.e., cameras that face 
the user) for video conferencing. Although these cameras have a lower resolution than 
the rear facing camera they are of sufficient quality to do eye-tracking. Although the 
pupil-center/corneal-reflection eye tracking technique using both the pupil location 
and a reflected glint from the eye is more accurate, the less accurate pupil-center only 
approach is possible with a mobile device.  

The first step of locating the two pupils of the user’s eyes begins with capturing 
and image of the user facing the display. The second step is to locate the face. The 
third step is to locate the eyes. The fourth step is to locate the pupils of both eyes. A 
calibration procedure is required for each user where the user looks at specific loca-
tions on the screen and the pupil location is recorded. Once that calibration informa-
tion is available, an algorithm can be used to determine the rough location of the gaze 
of the user. The following gives more detail on the eye-tracking process using the 
camera image. 

An Android tablet (Eee Pad Transformer TF101) was programmed based on the 
OpenCV class for face detection using JAVA as the programming language. 
“OpenCV (Open Source Computer Vision Library) is an open source computer vision 
and machine learning software library” [12]. A Local Binary Patterns (LBP) cascade 
classifier is used to do face detection. "LBP features are integer in contrast to Haar 
features, so both training and detection with LBP are several times faster than with 
Harr features." [13] Algorithm efficiency is critical with a mobile device since an 
efficient algorithm would increase the speed of computational and reduced power 
consumption.  

To locate the eyes in the face a Harr cascade classifier is used. Image processing “. 
. . detectors based on these Haar-like features work well with ‘blocky’ features such 
as eyes, mouth, face, and hairline . . . “ [14] (p. 510).  

Locating the pupils is more complicated. There are many issues including eyelids, 
eyelashes, corneal reflections, shadows, and blinking. Having an algorithm to deal 
with all these factors is beyond the scope of this paper, but researchers have been 
working on these problems. Even with a less robust pupil detection method used, the 
pupil is difficult to locate and requires several image processing steps. Figure 1 shows 
the end result of the image processing steps below. 

• Turn the color image containing the eye into gray scale. 
• Eliminate unnecessary pixels above the eye area. 
• Histogram Equalization to increase black and white contrast to make the 

black pupil the dominant in terms of pixel intensity. 
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• Invert pixel intensity to make the black pupil white. 
• Use erosion to "eat away" the distracting white areas. 
• Threshold the picture into binary to make the image only black and white. 
• Take the center of the bounding box of the contour as the center of the pupil. 

 

 

Fig. 1. The location of the pupil looking left, center and right 

The horizontal location of the pupil can be determined more accurately than the 
vertical location because there is a clear image change when moving the eyes from 
left to right on the display than up and down on the display. Figure 2 shows the face 
location, eye location and pupil location. Note that the pupil position on the left eye is 
not centered since the pupil detection algorithm used becomes less accurate when 
there is a corneal reflection on the pupil. 

 

 

Fig. 2. Eyes and face are detected. Note that the pupil position on the left eye is not centered 
since the algorithm used becomes inaccurate when there is a corneal reflection on pupil. 



 Issues in Implementing Augmented Cognition and Gamification on a Mobile Platform 691 

 

With the pupil location accurately determined calibration of the user can be per-
formed. Both calibration data and the data from the real-time location of the two pu-
pils can be used to determine where the user is looking at on the screen.  

2.2 A Smartphone Application Using External Sensors Connected via 
Bluetooth 

At times, it is desirable to have sensors that are not located on the device or different 
sensors are needed. Described is a simple application demonstrating the potential of 
an external sensor connected via Bluetooth. The system consists of an Android smart-
phone and Bluetooth system with several sensors (see Figure 3). Bluetooth communi-
cation allows the Bluetooth system to be placed up to several feet away from the 
smartphone. A mathematics game for children written in JAVA based on comparing 
fractions is implemented on the smartphone and light sensors connected through Blu-
etooth are used to indicate the relationship between the two fractions (i.e., larger, 
smaller or equal). 

 

Fig. 3. The system consists of an Android smartphone, Bluetooth link and several sensors 

An Arduino UNO with Bluetooth (i.e., the Bluetooth system) is connected to three 
Arduino Pro Minis connected to light sensors (see Figure 4). Inter-Integrated Circuit 
(I2C), a two wire protocol, is used to allow the Arduino devices to communicate with 
each other. 

 

Fig. 4. Complete system with sensor hardware, processor with Bluetooth and Android phone 
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The power is turned on for the Bluetooth system with sensors then the smartphone 
is set to search for Bluetooth devices. Once the devices are linked the fraction game 
can begin. The fraction game shows two fractions and asked the player to determine if 
the first fraction is larger, smaller or equal to the bottom fraction (see Figure 5). The 
player blocks the appropriate light sensor in response to the displayed question. 

 

Fig. 5. Left - Prototype display. Center - Prototype display with fractions and debugging infor-
mation. Right - The player is blocking the light sensor to indicate that the fraction values are 
equal.  

This system uses the I2C communications protocol allowing any number of sen-
sors and indicators (i.e. LED, lights, motors) can be connected to this system. The I2C 
communications protocol is also used by the Plug-n-Play Wearable Computing 
Framework [15] which has sensors and indicators integrated into clothing. 

The Arduino UNO with Bluetooth also has processing and storage capacity.  
This processing and storage capacity can be used to reduce mobile device resource 
requirements. 

Bluetooth Issues 
There are several versions of Bluetooth. The current version 4.0 is becoming more 
common on current mobile computing devices. Bluetooth version 2.0 has a “. . . theo-
retical maximum useful data transfer rate of approximately 2.1 Megabits per second 
(Mbps).” [16] Bluetooth version 3.0 + HS has a data transfer speed of up to 24 Mbit/s 
over a collocated 802.11 link. Bluetooth version 4.0 includes Classic Bluetooth (ver-
sion 1 & 2), Bluetooth high speed (version 3) and Bluetooth low energy protocols. A 
Bluetooth version 4 device that implements only the low energy protocol may not be 
compatible with earlier Bluetooth versions.  

Besides version, Bluetooth uses a variety of different protocol stacks to exchange 
data. What this means is that both mobile and sensor device must support the same 
protocol stack. For example, the Apple iPhone 4 with Bluetooth v4.0 supports these 
protocols: A2DP, AVRCP, HFP, HID, MAP, PAN, and PBAP.  
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3 Discussion 

Using internal or external sensors on mobile devices, although not trivial as demon-
strated with eye-tracking, can be done. These sensors systems can be used to support 
augmented cognition on mobile devices. Doing augmented cognition on a mobile 
device has many challenges. These challenges relate primarily to limited computing 
power, storage capacity, internet connectivity and battery capacity. Gamification has 
the benefit of motivating the user and improving performance by appropriately insert-
ing game elements into the mobile application, but gamification consumes resources 
that can exacerbate the mobile device challenges. The mobile computing platform is a 
fundamentally different computing experience than the workstation experience since 
mobile computing can occur in almost any environment. Understanding this funda-
mental difference is why research on mobile computing devices implementing  
augmented cognition and gamification, though challenging, needs to move forward. 

References 

1. P. UK, Mobile internet usage to overtake desktop as early as 2014 says new marketing re-
port, Report Buyer (November 23, 2012), http://news.yahoo.com/mobile-
internet-usage-overtake-desktop-early-2014-says-
080101013.html (accessed February 27, 2013) 

2. Chang, Y.S., Lee, J., Jung, Y.S.: Are Technology Improvement Rates of Knowledge In-
dustries Following Moore’S Law?-An Empirical Study of Microprocessor, Mobile Cellu-
lar, And Genome Sequencing Technologies. KDI School of Pub Policy & Management 
Paper (2012) 

3. Andreassi, J.L.: Psychophysiology: Human Behavior and Physiological Response. Law-
rence Erlbaum, Hillsdale (1995) 

4. Sheldon, E.: Virtual Agent Interactions. University of Central Florida, Orlando (2001) 
5. Littlewort, G., Whitehill, J., Wu, T., Fasel, I., Frank, F., Movellan, J.: The computer ex-

pression recognition toolbox (CERT). In: 2011 IEEE International Conference on Auto-
matic Face & Gesture Recognition and Workshops (2011) 

6. Ikehara, C.S., Crosby, M.E.: Assessing Cognitive Load with Physiological Sensors. In: 
38th Annual Hawaii International Conference on System Sciences (2005) 

7. Ikehara, C.S., Crosby, M.E., Chin, D.N.: A Suite of Physiological Sensors for Assessing 
Cognitive States. In: Proceedings of the 1st International Conference on Augmented  
Cognition, Las Vegas, NV (2005) 

8. Chang, D.F.K.H., Canny, J.: Ammon: A speech analysis library for analyzing affect, 
stress, and mental health on mobile phones. In: Proceedings of PhoneSense 2011 (2011) 

9. McGonigal, J.: Reality is broken: Why games make us better and how they can change the 
world. Penguin Press HC (2011) 

10. Werbach, K., Hunter, D.: For the Win: How Game Thinking Can Revolutionize Your 
Business. Wharton Digital Press, Philadelphia (2012) 

11. Reeves, B., Read, J.L.: Total Engagement: How Games and Virtual Worlds Are Changing 
the Way People Work and Businesses Compete. Harvard Business Press (2009) 

12. O. D. Team, About OpenCV, http://opencv.org/about.html (accessed Febru-
ary 28, 2013) 



694 C.S. Ikehara, J. He, and M.E. Crosby 

 

13. Cascade Classifier Training, https://github.com/alexmac/alcexamples/blob/ 
master/OpenCV-2.4.2/doc/user_guide/ug_traincascade.rst (accessed 
February 28, 2013) 

14. Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. 
O’Reily Media, Inc., Sebastopol (2008) 

15. Ngai, G., Chan, S., Ng, V., Cheung, J.C., Choy, S.S.S., Lau, W.W.Y., Tse, J.: i*CATch: A 
Scalable, Plug-n-Play Wearable Computing Framework for Novices and Children. In: Pro-
ceedings of the 28th International Conference on Human Factors in Computing Systems 
(CHI 2010). ACM, New York (2010) 

16. Kewney, G.: High speed Bluetooth comes a step closer: enhanced data rate approved (No-
vember 16, 2004), http://www.newswireless.net/index.cfm/article/629 
(accessed February 28, 2013) 



Visual Analysis and Filtering
to Augment Cognition

Mathias Kölsch, Juan Wachs, and Amela Sadagic

jpwachs@purdue.edu, asadagic@nps.edu
http://movesinstitute.org/~kolsch

Abstract. We built and demonstrated a system that augments instruc-
tors’ sensing abilities and augments their cognition through analysis and
filtering of visual information. Called BASE-IT, our system helps US
Marine instructors provide excellent training despite the challenging en-
vironment, hundreds of trainees and high trainee-to-instructor ratios,
non-stop action, and diverse training objectives. To accomplish these
objectives, BASE-IT widens the sensory input in multiple dimensions
and filters relevant information: BASE-IT a) establishes omnipresence
in a large training area, b) supplies continuous evaluation during multi-
day training, c) pays specific attention to every individual, d) is specially
equipped to identify dangerous situations, and e) maintains virtual van-
tage points for improved situational awareness. BASE-IT also augments
and personalizes the after-action review information available to trainees.

This paper focuses on the automated data analysis component, how
it supplements the information available to instructors, and how it facili-
tates understanding of individual and team performances on the training
range.

Keywords: Augmented cognition, information analysis, training range
instrumentation.

1 Introduction

The keystone in US Marine training is conducted at a purpose-built training
range at the Marine Corps Air Ground Combat Center in Twentynine Palms, CA,
which provides a realistic environment that immerses hundreds of trainees in a
small town with houses, markets, road traffic and human role players. Instructors
observe the non-stop 72 hour urban operation and provide performance feedback
at regular intervals. This is a challenging situation for a number of reasons.

First, this training is the final and most realistic training provided to US
Marines immediately before their deployment into theatre. There is immense
pressure on both trainees and trainers to achieve the training objectives as it
will have a tremendous impact on the performance in theatre. Techniques not
taught or not taught well, as well as mistakes not caught in training might have
severe and far-reaching consequences later.
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Second, the training facility is very expensive due to many factors, necessi-
tating efficient and effective training. Due to these pressures on expedience and
performance, as well as due to accepted best training practices, training is rarely
stopped to provide feedback. In fact, the more advanced scenarios train and eval-
uate multiple skills simultaneously, for many individuals, with little to no room
to pause and discuss or correct mistakes until the after-action review.

Third, the training range is almost one square mile large, with many buildings,
roads, foot and vehicle traffic, geographic features and other realistic aspects of
a small town. It is impossible for instructors to always keep an eye on and to
give feedback to every trainee on individual or group behavior. Instead, observa-
tions are made at crucial times and locations, and feedback is provided in short
debriefing sessions.

Fourth, some aspects of individual and group behavior are very difficult to
observe from a single vantage point. For example, the precise position of an
individual and his head location behind cover cannot be determined accurately
from just one point of view. Also, the formation of a squad that is on foot
patrol in between buildings is hard to observe from just one location due to
occlusions. Viewpoint limitations might cause actions to pass unobserved and
evading evaluation and feedback.

Fifth, while video streams from cameras on the range are available and are
being recorded, the sheer amount of data relegates their use to isolated review
questions. Rather than augmenting the instructor’s cognition, this additional in-
formation requires additional attention. Also, while pole-mounted pan-tilt-zoom
(PTZ) cameras are available, aerial cameras are not. Hence, occlusions from
buildings in a single view are common.

Sixth, due to the aforementioned constraints, some behavioral mistakes can-
not be focused on during this training, as it would distract from the main train-
ing objectives. One such mistake is unintentionally pointing a weapon system
towards a fellow Marine, also called flagging. Additionally, flagging is difficult
to determine unless an instructor happens to be very near the occurrence and
paying attention to the swift movements of trainees.

BASE-IT, short for Behavioral Analysis and Synthesis for Intelligent Train-
ing [1], was developed at the MOVES Institute at the Naval Postgraduate School,
the University of North Carolina, Chapel Hill, and the Sarnoff Corp. (now part
of SRI). The goals of BASE-IT are to address some of these difficulties and:

• to improve the preparation of trainees before their arrival,
• to supplement the information available to instructors, both in real-time

during the exercise and for after-action review (AAR), and
• to automatically generate AAR resources for individual feedback.

The main components of BASE-IT include an automated camera management
and sensing system, automated individual performance evaluation, automated
analysis of unit behaviors, 3D visualization of recorded data sets with the ability
to search for significant events, and automated behavior synthesis for exploration
of ‘what-if’ scenarios.
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Fig. 1. Observing in a “prone” posture, crossing a danger area, and results from our
posture recognition method

This paper focuses on the extensive video analysis component, how it sup-
plements the information available to instructors, and how it facilitates under-
standing of individual and team performances exhibited on the training range.

2 Related Work

Military training and performance measurement has long received tremendous
attention. BASE-IT was built together with the Marine Air Ground Task Force
Training Command at the Marine Corps Air Ground Combat Center at Twen-
tynine Palms, California, which has one of the most advanced training facilities
of the nation. Similar in instrumentation but without the analysis component
is the Future Immersive Training Environment (FITE) at, Camp Pendleton’s I
Marine Expeditionary Force in California and at Camp Lejeune, NC (see, for
example, [2, 3]). FITE’s focus is on providing a training experience through
augmentation, whereas BASE-IT as discussed here focuses on providing aug-
mentations to the instructors and, particularly, to help analyze training. The
US Army has similar training range instrumentations, for example, the Combat
Training Center Military Operations on Urban Terrain Instrumentation System
(CTC MOUT-IS) video system [4].

3 Solutions for Overcoming Cognition Limitations

Here we discuss the six limitations of unaided human cognition and what solu-
tions we have applied to augment instructor cognition.

3.1 Omnipresence

The simulated town at the US Marine base at Twentynine Palms is nearly one
square mile large and has many roads, houses, creeks, and other typical elements
of any inhabited location. This prohibits instructors to have good visibility of
all locations. We installed pole mounted fixed and PTZ cameras – a “sea of
cameras” – to achieve omnipresence even in otherwise view-obstructed locations.
Omnipresence through cameras provides augmentation of the spatial field of
information. However, while this enables an instructor to virtually be at any one
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of multiple locations, paying attention to multiple data streams simultaneously
is difficult at best. Hence, we also require some degree of automated analysis of
these additional data streams.

3.2 Continuous, Always-On Coverage

Human observation of dozens of live video feeds is impracticable if not infeasible
due to the number of cameras and the continuous, always-on, non-stop 72 hours
training scenario. Instead, we trained computer vision methods on the specific
clothing, backpacks and helmets to detect US Marines and to estimate various
body posture and weapon parameters, thereby filtering out empty scenes and
scenes without any trainees. Night-time operations were observed to the degree
possible with visible-spectrum cameras, plus the GPS and accelerometers on
trainees and weapons. This presumably improves the instructor’s ability to ab-
sorb information, essentially expanding the temporal horizon (“always-on”), the
temporal resolution (several measurements per second), and the spatial extent
(omnipresence). Despite the increased spatio-temporal field of view, information
processing (see subsequent subsections) keeps the data volume manageable, and
cognition augmented.

3.3 Posture Recognition and Head Localization

Fast action, multiple trainees, and the instructor’s vantage point often prohibit
precise estimates for the trainees’ body and head positions. Yet these are impor-
tant, for example, in order to determine whether a Marine has sought sufficient
cover in case of enemy fire. We built posture recognition methods that can de-
termine whether a Marine is standing or taking a knee, and we custom-trained
head detection methods on the specific helmets to precisely locate them in the
3D environment [5, 6]. This offloads the spatial reconstruction task from the
instructor to the computer and permits eyes-on more trainees at any time.

3.4 Monitoring Security

It is vital for US Marines to maintain “360° security” at all times, requiring
coordination between individuals to visually scan in all directions as a team.
Again, it is difficult if not impossible for instructors to assess this continuously,
particularly if part of a team is hidden from view. Our computer vision methods
automatically estimate the torso (shoulder) orientation and the head orientation
of each trainee. A subsequent performance analysis module [7] monitors this in-
formation for the entire team and flags incidents of likely incomplete situational
awareness. Cognition is augmented spatially again, around corners and through
occlusions. It is also augmented through simultaneous assessment of head orien-
tations of all squad members and automated calculation of the 360° coverage.
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3.5 Identifying Weapon Flagging

One of the performance traits that is continuously observed and evaluated is flag-
ging – unintentionally pointing a weapon system towards a fellow US Marine.
Our system continuously determines the orientation of the weapon system with
acceleration sensors and vision-based processing. It then checks against known
positions of nearby US Marines, and identifies the times and places where in-
cidents of flagging happened, including the identification of the individual who
caused each flagging incident. Such a list of incidents speeds the instructor’s com-
prehension of the trainee’s performance. Further, it provides a second, unbiased
look at trainees through the eyes of other modalities.

3.6 Foot Patrol Analysis

Another important team behavior concerns patrol formations and their disper-
sion across the terrain, that is, the distance between individual trainees and their
spatial configuration. Depending on the situation, it is more or less dangerous
to be close to each other or further apart, to walk in single file or offset, and so
on. Similarly, foot patrols need to “cross danger areas” in a particular fashion:
running, not walking, and not all at once (see Fig. 1). The BASE-IT performance
analysis module utilizes the precise position estimates from our visual analysis
to measure distances and velocities and to provide pre-analyzed results to the
instructors. Again, these objective measurements supplement the subjective and
often incomplete instructor’s observations.

4 Results

Does BASE-IT indeed augment the instructors’ cognition? This hypothesis can
ultimately only be answered by directly measuring the cognition, either through
objective means or through a questionnaire that assesses cognition. Neither of
these options was viable for BASE-IT due to time and financial constraints,
as well as due to the difficulty of constructing a control group of instructors for
these one-time training actions. The approach taken here determines whether the
instructors were given information that conceivably would result in augmented
cognition.

Figure 2 depicts the various augmentations to the information available to
instructors: additional spatial and temporal information, information in addi-
tional sensing modalities, and, last but not least, pre-processing and filtering of
information. But let us take a closer look.

Spatial Augmentation. Merely providing information about previously inac-
cessible areas can suffice to make instructors cognizant of a situation they
had no previous information on. For example, a foot patrol formation that
was previously out of view comes into view with the help of our cameras.
Provided the instructor looks at the imagery, he will become cognizant of
this information. He will be able to have eyes on more trainees and avoid
occlusions.
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Fig. 2. Augmentations to human cognition

Temporal Augmentation. The cameras provide continuous coverage in lit
areas, not taking a break and not getting tired. They also capture events at a
frame rate that permits analysis of short-lived actions such as a brief weapon
flagging event. As before, this increased temporal duration and resolution of
data makes information accessible to the instructors, but they still have to
actively seek out this information.

Sensory Augmentation. Since the trainees are tracked by visual information
and GPS sensors, and their weapons’ orientations are tracked with specific
“Inertial Navigation System” (INS) sensors mounted on the weapons, “more
than what meets the eye” helps determine locations and orientations of US
Marines and weapons. These additional sensors and measurement modalities
again increase the amount of information available to the instructors.

Pre-cognitive Filtering. Naturally, more information does not directly result
in better understanding or cognition, just like the wealth of information avail-
able on the internet does not immediately translate into smarter surfers.
However, filtering the information to only the most relevant aspects and
thereby reducing its amount increases the chances that an instructor will
find time to inspect it, especially if this information cannot easily be gleaned
from other sources. Similarly, a site of distinct and mostly relevant informa-
tion is more likely to be visited. BASE-IT provides pre-processed informa-
tion that obviates the need for tedious video review and instead makes the
most pertinent information available immediately. For example, presenting
instances of weapon flagging or cases of “bunching up” is clearly much more
useful than requiring review of hours of mostly uneventful video.
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Note that the computer does not produce final results or even make the de-
cisions. Instead, automated visual analysis and filtering “merely” improves the
scene that is presented to the human. This is an important consideration for
applied computer vision systems since it is unrealistic to expect perfect per-
formance when translating recent research into practical application. Note also
that BASE-IT distinguishes the two phases of data acquisition and processing
in the terms “sensing” and “sense making.” Sensing includes sensor management
system, tracking of individuals (including pose and posture), and sense making
includes automated behavior analysis and performance evaluation. Omnipres-
ence and continuous coverage fall under the “sensing” aspect and the remaining
solutions are mostly “sense making,” albeit they use the additional sensor data
from video or accelerometers, for example.

To illustrate the capability of pre-processing, we repeat here the results of
the BASE-IT automated video analysis [6]. Using the automated video analysis,
Marines were detected successfully (in uncluttered conditions) in 98.73% of the
tested instances. When the subjects were partially occluded, the recognition was
negatively impacted and only 53% of the torso orientations were correctly iden-
tified. The number of correctly classified instances (per marine and per frame)
was determined to be 76% and 72% for the torso and head, respectively (see
the confusion matrices in [6]). Speed performance tests showed that the detec-
tion task was accomplished in 1.9 seconds and that it scaled sub-logarithmically
with an increase in image size. The combination of per-frame detection and pos-
ture recognition with semantic consistency checking and temporal smoothing [5]
provides sufficient accuracy for determining tracks. These tracks can then be
analyzed further for troop formation [7]. This is a task that is difficult to per-
form for human instructors, as discussed in Sec. 3.6, hence we consider BASE-IT
augmenting the instructor’s cognition.

By stressing salient activities and filtering out unimportant aspects we reached
our objective of radically improving the control of and insight into the training
exercise, enabling detailed after action review within minutes of completion of
the exercise, and further enhancing and supplementing an already invaluable
training experience.

5 Conclusions

Training US Marines for complex situations requires training in a complex envi-
ronment, which poses a great challenge to instructors and their ability to assess
the trainees accurately. In this paper, we described how BASE-IT attempts to
improve upon the information available to instructors in the hope that it im-
proves their understanding and analysis of the trainees.

Our experience shows that only in tandem does more information and its
pre-processing truly augment cognition. BASE-IT pays specific, uninterrupted
attention to individuals, anywhere on the range, with help of a multi-modal sen-
sor suite, and through multi-stage analysis modules. BASE-IT provides value as
a tool for both instructors and trainees, both for training preparation and for per-
sonalized review and analysis (AAR). In the near future, we expect many more
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tools that pre-process the “big data” from training observations and, together
with a human in the loop, permit semi-automatic analysis and much-improved
feedback to the trainees.
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Abstract. Real-time functional resonance imaging (rtfMRI) provides an emerg-
ing human-computer interaction (HCI) technology with relatively high spatial 
resolution. The motor imagery is widely used for sports training of athletes and 
motor ability rehabilitation of patients, which is a common interaction approach 
for EEG-based and fMRI-based BCI. An appropriate method of interaction can 
improve the performance of BCI. In this paper, we implemented a novel HCI 
system based on rtfMRI using motor imagery interaction. The user interacted 
with the system by regulating blood oxygenation level dependent (BOLD) sig-
nal intensity of the region of interest (ROI) in motor areas using motor imagery, 
which was presented by the running speed of a virtual human in an animation. 
The ROI was chosen according to the motor network resulted from the real-
time independent component analysis (rtICA). Through the interaction with the 
HCI system, the user could learn the effectiveness of his motor imagery. 

Keywords: HCI system, real-time fMRI, motor imagery, animation interaction. 

1 Introduction 

The emerging intelligent human-computer interaction (HCI) technology based on 
cognitive neuroscience is a promising tool to provide more novel interactive expe-
rience [1, 2]. Brain-computer interfaces (BCI) based on Electroencephalography 
(EEG) have been used for volitional regulation of electrical brain activity [3, 4]. 
However, the regional specificity of self-regulation is limited to the relatively low 
spatial resolution of EEG. The BCI based on real-time functional resonance imaging 
(rtfMRI) is another non invasive BCI with comparatively high spatial resolution, 
which has been broadly used in the novel neuroscience investigations [5, 6] and  
potential clinical applications [7, 8]. 

Motor imagery [9] has been used for sports training of athletes and motor ability 
rehabilitation of patients, which is a common interaction approach in the EEG-based 
BCI [3, 4] and fMRI-based BCI [10-12]. As known in fMRI studies, motor imagery 
will lead to the activation of motor areas in brain, among which the motor areas such 
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2.2 The Experiment Design 

We carried out an experiment in block design on one subject (female, age 21 years), 
which was performed in a 3.0-T Siemens MRI scanner. The 32 axial slices were ac-
quired in an interleaved order using a single-shot T2*-weighted gradient-echo EPI 
(echo-planar imaging) sequence (TR/TE/flip angle = 2000ms/40ms/90°, matrix size = 
64×64, voxel size = 3.1×3.1×4.8 mm3, slice thickness = 4 mm, slice gap = 0.8 mm). 

The experiment included three sessions. The first session was for ROI functional 
localization, in which the subject was instructed to tap his right hand fingers. The 
following two sessions were for animation interaction, in which the subject regulated 
the running speed using motor imagery. Here, we took the first-person motor imagery 
that included both visual and kinesthetic imagery compared with the third-person 
motor imagery [15, 16]. 

In the ROI functional localization session, a motor network was resulted from the 
rtICA, in which the supplemental motor area (SMA) was chosen as the ROI for self-
regulation. The entire session was made up of five 30s rest blocks and four 30s task 
blocks. Each block consisted of fifteen trials and each trial lasted 2s. During the rest 
blocks, a text cue “rest” was presented to the subject, and during the task blocks, a 
text cue “task” was presented. 

The interaction session was made up of eight 30s rest blocks and seven 30s task 
blocks. Each block consisted of fifteen trials and each trial lasted 2s. During the rest 
blocks, a green cross was presented in the center of the monitor and the subject was 
instructed to take a rest and think nothing. During the task blocks, the running interac-
tive animation was presented and the subject was requested to adjust the speed as  
fast as possible. It was allowed that the subject could try different motor imagery 
strategies (e.g., playing basketball, playing piano) to reach a high running speed. 

2.3 The Interactive Control 

In the animation, one complete virtual human running action is made up of twelve 
frames of pictures (Fig. 2). The animation is performed by changing the frame rate  
( FPS ) with the ROI activation intensity ( S ). The running speed is termed by the 
number ( N ) of complete actions in one second. The formulation of FPS  and N  
can be described as follows: 

 12FPS N= ×  (1) 

The average signal intensity of the ROI in the last rest block is taken as a baseline 
( B ). The ROI activation intensity ( S ) is the signal intensity in one scan of the  
current task block, and the signal change ( C ) is S B− . Thus, the N  can be deter-
mined as follows: 

 max

max

0.5
baseline

N
N N C

C
= + ×  (2) 

In practice, the maximum ( )maxN N  is chosen as two to prevent the running speed 

from getting too fast for the user. The baseline of ( )baselineN N  is chosen as one when 
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C  is zero, and the bottom of N  is zero. Since the signal change in real motion is 
generally stronger than that in motor imagery, we choose the maximum C  in the 

first localization session as the maxC  for the follow interaction sessions. 

3 Results 

In the ROI functional localization session, the motor network was automatically de-
rived from the rtICA, which mainly included the left M1, pre-motor cortex and SMA 
(Fig. 3). The SMA was chosen as the ROI for the next two interaction sessions. 

 

Fig. 3. The brain network derived from the sliding-window rtICA. The green rectangle was the 
chosen ROI (SMA). 

In the second interaction session, the running speed of the animation was computed 
from the signal change of the target ROI by the formulations above (Fig. 4). In most 
of the task blocks, it could be seen that the signal intensity arose at the beginning of 
the block, and then turned fluctuant. The running speed changed with the signal inten-
sity, and was faster than baseline as a whole in majority of the task blocks. 

 
Fig. 4. The average signal intensity change of ROI (up, green curve) and the running speed 
change of the animation (down, red curve) along with the scans in the second interaction ses-
sion. The black blocks were task blocks and the gray ones were rest blocks. Besides, the base-
line of running speed is one as shown in the straight line in the rest blocks (down). 

SMA 
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4 Discussion 

We successfully applied the HCI system in an interactive motor imagery experiment. 
After the experiment, the subject reported that the running speed could be basically 
controlled by his motor imagery at the task blocks, which was in accord with the Fig. 
4. It was hard for the subject to concentrate on the task all the time, so the speed 
would fall down or be out of control at times when he was distracted. Nevertheless, 
the subject still expressed that the animation was very interesting and novel. It could 
be seen that the experience of observing and controlling one’s own brain activity 
might bring more fun in the interactive process. 

As a new way to BCI technology, rtfMRI-based motor imagery could be used to 
control the movement of a cursor turning left or right through a maze [11] and the 
movement of a robotic arm [12]. In our system, the running speed depending on the 
intensity of SMA could also serve as a control signal to manipulate real machines. 
This showed the feasibility to extend this online system. 

Compared with the previous studies on rtfMRI which mainly focused on the ROI 
activated by the task, our work also provided a new way to assess and control the 
activation of the task related network. In the component derived from the ICA (Fig. 
3), as an important node in motor network [17], SMA was chosen as the target ROI to 
be regulated as well as the regulation of motor brain network. The whole component 
could also be chosen as the target to be regulated. Thus, the system using ICA method 
might have a potential for interaction based on brain network activities. 

After all, the experiment was performed on only one subject, so the result was very 
preliminary. The effectiveness of motor imagery interaction has to be further investi-
gated in a larger sample size with more sessions to allow for the conclusions on the 
efficiency of this HCI system. 
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Abstract. Innovations in neuro-technology have created a potential gap in our 
ability to measure human performance and decision making in dynamic envi-
ronments. Therefore, a need exists to create more reliable testing methodologies 
and data analytic solutions. The primary aim of this paper is to describe work to 
integrate subject matter expertise with algorithms designed to measure human 
brain activity in real time. Specifically, Guided Learning using constrained 
spectral partitioning to increase the reliability and interpretability of fMRI data 
is explicated and applied as a test case to the Default Mode Network in the el-
derly population. How Guided Learning can be further applied to other neuro-
imaging technologies that may be more conducing to furthering the field of 
augmented cognition is discussed. 

Keywords: augmented cognition, functional connectivity, fMRI. 

1 Introduction 

Since its inception as a scientific field at the turn of this century, augmented cognition 
has been one of the fastest growing research areas influencing several different aca-
demic disciplines including engineering, psychology, and human factors [1]. The 
excitement surrounding this field of research has allowed for an explosion of innova-
tion in the ability to capture human performance and decision making through innova-
tions in neuro-technology. However, a gap may soon develop as researchers attempt 
to develop research methodologies to integrate these innovations into the laboratory 
environment. The primary aim of this paper is to describe progress integrating subject 
matter expertise (SME) with algorithms designed to measure human brain activity in 
real time. We term this work Guided Learning to reflect the pursuit to develop a  
general class of algorithms that incorporate SMEs to help identify meaningful and 
insightful patterns within dense datasets. 
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consideration, there is auxiliary information available in the form of a second graph, 
which shares the same set of nodes with the first graph, but has a different set of 
edges. A number of alternatives exist under which a second graph might meet these 
assumptions, including 1) the edges of the second graph are constructed based on a 
different set of features; 2) the edge weights of the second graph are computed using 
different similarity functions; and/or 3) the two graphs represent the evolution of a 
graph over time. Intuitively, the extra knowledge from a second graph may help to 
identify a better partition than the best one that can be identified using the first graph 
only [5]. As will be explained later, for optimal utilization, this information must be 
partially theoretically driven, using qualitative input from a SME, rather than derived 
solely through algorithm application. 

A direction already explored by the community is to consider any two such graphs 
as two independent views and combine them into one graph, to which the traditional 
spectral clustering algorithm is then applied [6]. However, this approach relies on the 
assumption that the two views are complementary and thus helpful to each other, 
which is not always the case in practice. The approach outlined in this paper attempts 
to transfer “knowledge” from more stable fMRI images to those scans where a partic-
ular activation function may not be as readily apparent. To accomplish this, a form of 
spectral clustering to two separate groups of fMRI scans was applied. Unlike tradi-
tional clustering algorithms, such as spectral clustering that attempt to segment a 
graph based on a single image, our approach incorporates knowledge from multiple 
graphs that might share the same set of nodes with the first graph, but have a different 
set of edges.  

2 Limitations of Spectral Clustering 

Clustering analytic approaches remain one of the most widely used techniques for 
exploratory data analysis and have been used extensively in areas ranging from image 
processing to functional connectivity analysis [7,8,9]. Furthermore, some forms of 
clustering may be more applicable to particular problem sets over others. For example, 
spectral clustering has been argued to be superior to traditional clustering algorithms 
like K-means because it yields a deterministic polynomial-time solution, provides re-
searchers the ability to model arbitrary shaped clusters, and affords equivalence to 
certain graph cut problems.  

However, as mentioned previously, traditional clustering like spectral clustering 
can only be applied to a single graph. In a wide range of applications, such as the 
analysis of several distinct fMRI scans, it would be more beneficial to combine prop-
erties from different graphs to form a single cut from the data comprising the set. This 
approach, which has only been recently introduced by the clustering community, has 
come to be known as constrained spectral clustering. 

Constrained spectral clustering attempts to incorporate auxiliary information from 
separate graphs to help improve clustering on both graphs. In general, constrained 
clustering is a category of techniques that tries to incorporate Must-Link (ML) and 
Cannot-Link (CL) constraints into existing clustering algorithms. It has been well 
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studied on algorithms such as K-means clustering, mixture modeling, hierarchical 
clustering and density-based clustering.  

Multi-view Spectral Clustering 

In contrast to constrained spectral clustering, traditional multi-view spectral clustering 
algorithms attempt to consider a set of two graphs as two independent views and 
combine information from both graphs into one graph. However, in its basic form, 
this relies on the assumption that the two graphs are complementary to one another. 
That is, it is assumed that both graphs are noise-free. In the work presented in this 
paper, we no longer assume the two graphs are complimentary. Rather, our approach, 
which we term Constrained Spectral Partitioning (hereafter, CSP) attempts to discov-
er an alternative direction of finding a cut whose edge weight is minimized based on 
information about both graphs [10, 11, 12].  

We contend that CSP fits into a general category of algorithms, i.e., Guided Learn-
ing. This term is appropriate because, in addition to algorithm application, we allow 
for SME input to maximize the identification of appropriate cut(s) for a series of 
scans. Assume we have two graphs, an exemplar graph and a target graph, that share 
the same set of nodes but have different sets of edges or edge weights. The goal of 
applying SME input, is the utilization of information from the exemplar graph to 
identify a more representative and replicable cut on the target graph. 

Further, we believe this work represents a hitherto unattempted technique to “close 
the loop” with respect to Augmented Cognition. Previous work in algorithm devel-
opment for Augmented Cognition was focused on utilizing machine learning to max-
imize human performance. However, our work here attempts to close the loop by 
allowing for SME input to further maximize the efficiency of the learning algorithm.  

3 Background and Graph Theory Notation 

Formally, the set of points in a network may be represented as a weighted undirected 
graph G = (V, E), where the nodes are the set of points in a feature space and an edge 
is formed between each pair of nodes. The weight (similarity) on each edge ,  is 
a function of the similarity between nodes i and j.  

To more effectively interpret the graph, grouping or clustering techniques may be 
applied that attempt to segment the graph into more similar sub graphs containing 
similar features. This may be accomplished by partitioning the graph into multiple 
disparate sets V1, V2,…,Vm, where some measure of similarity is high among vertices 
within set Vi but very low across different sets of vertices between sets Vi and Vj. 

However, as was discussed previously, the traditional approaches do not take into 
account those cases where we may only wish to extract certain features from some of 
the graphs. In this section, we describe how we adapted the classical spectral cluster-
ing to increase reliability when segmenting across one or several graphs.  

To accomplish this, CSP was applied such that one or several source graphs were 
identified and used to segment several target graphs. The knowledge to transfer  
was derived from the source graph in the form of what we termed, degree-of-belief 
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constraints. Specifically, let GS (V, ES) be the source graph and GT (V, ET ) the target 
graph. AS and AT are their respective affinity matrices. Then, AS can be considered a 
constraint matrix with only ML constraints. It carries the complete knowledge from 
the source graph, and we can transfer it to the target graph using our constrained  
spectral clustering formulation: 

v v , . . TA α, T vol G , DT/  

α is now the lower bound of how well the knowledge from the source graph must be 
enforced on the target graph. The solution to this is similar: λ AS βvol GT I  

Note that since the largest eigenvalue of AS corresponds to a trivial cut, in practice we 
should set the threshold such that β < λ1vol(G), λ1 is the second largest eigenvalue of AS. This will guarantee a feasible eigenvector that is not the trivial cut. 

4 Application of CSP to fMRI Analyses 

In this paper, we apply CSP to the analysis of the Default Mode Network [13]. The 
DMN is an interconnected brain system that activates simultaneously and periodically 
while in rest state. It has been hypothesized that the DMN is only active when  
individuals are focused on internal tasks such as daydreaming, memory retrieval, or  
introspection. The DMN is composed of several subsystems including part of the 
medial temporal lobe, medial prefrontal cortex, the posterior cingulated cortex, and 
the lateral and inferior parietal cortex. 

The DMN provides a relevant test-bed for measuring the reliability/stability of the 
technique presented herein, as it has been reliably shown that the DMN is more pro-
nounced and observable in young healthy patients than individuals suffering from 
various mental pathologies [14]. In this case, we compared DMN signatures across 
fMRI scans for young healthy patients with those suffering from early and late Alz-
heimer’s disease. If CSP is able to reduce the impact of noise within fMRI scans 
across different abnormal groups, then it is hypothesized that CSP might increase the 
sensitivity to allow for the detection of specific phenomena – in this case, degree of 
similarity to an exemplar DMN among a set of Alzheimer’s patients.  

 

 

Fig. 2a and 2b. Figure 2a (left) displays segmentation results from a normal healthy partici-
pant. Figure 2b (right) displays segmentation results from a participant diagnosed with  
Alzheimer’s disease. DMN activation appears as lighter colored pixels. 
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As shown in Figure 2a above, segmentation of a graph from a normal participant 
(P1) captures the DMN (the light pixels). However, if we apply spectral clustering to 
another graph constructed from an Alzheimer’s patient’s (P2) fMRI scan, the norma-
lized mincut shows an entirely different pattern (Figure 2b). 

Here, CSP was applied as a new approach for assessing inter-individual clustering 
commonalities at a population level. The principal benefit yielded by the reliance of 
an exemplar scan as the basis for partitioning decisions among target group members 
is an improvement in the reliability of intra-individual fMRI clustering in the target 
group. CSP incorporates user-provided guidance about which voxels should and 
should not cluster together. Our approach is to use the clustering of an exemplar scan 
to generate guidance (constraints), and use them in CSP to cluster a target scan. The 
exemplar scan is explicitly assumed to exhibit desirable or representative clustering 
behavior. If multiple diverse clusterings of the target scan all yield similar cut costs, 
CSP identifies the one most similar to that of the exemplar at each timepoint, yielding 
improved intra-individual clustering reliability across different scans.  

We used real resting-state fMRI scans of young and elderly (Normal, Mild Cogni-
tive Impairment, and Demented) individuals to demonstrate the advantages of CSP 
over spectral partitioning. In comparing the two groups, we applied segmentation 
algorithms so as to identify the DMN for each group of scans. As has been previously 
shown, we expected that the tightness of this clustering would be decreased in elderly 
individuals, especially those with Alzheimer’s disease. Therefore, we identified an 
exemplar scan of a young individual whose spectral partitioning clearly indicated the 
DMN as one of its clusters. We then applied CSP to partition target scans including 
young and elderly individuals based on constraints derived from this exemplar.  

In order to assess whether CSP increased reliability over and above the use of spec-
tral partitioning alone, we first compared the test-retest reliability of the spectral parti-
tioning with that of CSP on a group of individuals who received a pair of fMRI scans 
at two different time intervals. For each pair of fMRI scans, we calculated the percent 
difference in spectral partitioning and CSP costs between scans (i.e., the absolute 
difference in partition costs divided by average partition cost). The data from this 
study supported the claim that CSP increases reliability over and above what is found 
from spectral partitioning alone.  

Our next analysis focused on assessing the biological validity of CSP. To assess 
the biological validity of CSP, we compared partition costs for each of three groups of 
participants: Elderly, Mild Cognitive Impairment, and Demented. Figure 3 below 
plots the measure of reliability within different groups of participants. As can be seen 
from the figure below, the average CSP cut cost was greater in MCI compared to 
healthy elders, and greater in dementia compared to MCI. The MCI partition costs 
were more variable, spanning most of the range of normal and demented values. The 
difference between normal elderly and demented cut costs was statistically significant 
(p = .046). This finding is consistent with previous findings that suggest that the 
DMN is less pronounced (therefore exhibiting higher cut costs) in individuals with 
Alzheimer’s disease. 
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Abstract. Training on physical training ranges is immensely important to any 
military unit, as many aspects of individual and team skills still need to be 
trained there. Nevertheless, the overall cost of training on physical ranges, the 
required unit throughput, as well as a need to maximize the training potential 
that such precious environments have, are ever increasing, and leveraging 
emerging technologies to make the training more effective becomes a necessity. 
This paper reviews several novel efforts in the research domain that could be 
used as a guide to the types of emerging technical solutions that may be em-
ployed to augment the capabilities of physical training ranges, including the ca-
pabilities of humans engaged in orchestrating and executing the training events 
(range operators and instructors), and to support the global objective of acquir-
ing more effective training solutions. 

Keywords: physical training ranges, sensor systems, virtual reality (VR), aug-
mented reality (AR), automated behavior analysis, performance evaluation. 

1 Introduction 

Training on physical training ranges is immensely important to any military unit. 
These environments enable full skill integration; where elements of perceptual, cogni-
tive and motor skills in the applied domain, and with a given objective, get to be  
practiced in situations that include physical exertion as well as real environmental 
conditions (sun, wind, temperature, humidity). Additionally, a unit’s communications, 
cohesion and coordination, as well as its ability to operate and coordinate actions with 
other units gets decisively tested. By their nature, the physical training ranges are 
closest to the operational environments that are the final and ultimate goal for any 
unit. However, while training on physical ranges is an important form of training, it is 
often the most expensive form of unit preparation for future operations. It includes 
considerable material, logistical, as well as human resources, with zero to very mi-
nimal ability to reuse the same resources. Additionally, some elements of this type of 
training do not provide the flexibility that exists in computer-supported training inter-
ventions, thus reducing their overall effectiveness.  It is therefore understandable that 
there is added pressure to maximize the training potential that such environments 
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have, and to ensure that the most effective training does happen. One way of doing 
this is to employ different technical solutions, each addressing specific critical short-
comings of physical environments. Leveraging emerging technologies to enhance 
training capabilities is also identified as a one of the important aspects in supporting 
the central strategic idea of the Department of Defense (DoD) training concept for the 
next generation of DoD training solutions [1]. 

This paper reviews several novel efforts in the research domain that could be used 
as guidance on what types of emerging technology solutions may be employed to 
augment the capabilities of physical training ranges, including the augmentation of 
capabilities of humans engaged in orchestrating and executing the training sessions 
(range operators and instructors/evaluators).  

2 Contemporary Training Solutions 

Training solutions available to the training community can be divided into three gen-
eral categories: (1) physical training environments (training ranges), (2) computer-
supported training solutions (example: fully virtual simulations), and (3) a mix of both 
(example: physical environments augmented by synthetic elements, typically the vis-
uals and sensor data feeds like those in bridge trainers). This section reviews current 
practices in two domains, one being a physical (physical training ranges), and another 
one being a virtual domain (computer-supported training solutions). 

2.1 Physical Training Ranges 

Out team conducted extensive observations of training courses organized on US Ma-
rine Corps physical training ranges, including the ranges for combined arms and ur-
ban warfare training [2].  As an example of physical training ranges that could greatly 
benefit from integrating emerging technologies in their daily operation, we will com-
ment on ranges for rural and urban warfare; very similar conclusions could be drawn 
for training ranges for combined arms as well.  

There are several characteristics associated with the space and training events or-
ganized on ranges for rural and urban warfare: (a) they are potentially large with a 
number of stationary objects, like buildings and urban and battlefield clutter, spread 
across them that cause a high level of occlusion, (b) a number of individuals (unit 
members in full combat gear, role players) and vehicles move around, contributing to 
increased complexity of training events, (c) some events can be staged (role players 
acting in certain areas), however the unit may decide to take a different route or take 
more time on a particular segment of their operations and may never experience the 
pre-planned interactions, and (d) while they do employ sensor systems, a predominant 
mode of operation is that the sensor management is human-driven (Figure 1 
represents an illustration of a contemporary optical sensor system with multiple point-
tilt-zoom (PTZ) and fixed cameras).  The very nature of those environments is that 
they are highly occluded, and as a result some events can go unnoticed by instructors. 
In order to be able to keep good track of where everyone is and what everyone is 
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doing, a number of instructors (evaluators) are needed to conduct a single training 
session. In the case of long training courses (e.g. 72 hours), the instructors change, 
which inevitably brings a discontinuity in observation of unit performance.  

     

Fig. 1. A segment of a camera system with one PTZ and three fixed cameras (left), one screen 
with video feeds from 12 cameras (middle), and a control room with an operator (right) 

2.2 Computer Supported Training Solutions 

Computer-supported training solutions, while not having many of the characteristics 
of physical training ranges, do bring elements that physical spaces do not have; pro-
viding opportunities for practicing a number of scenarios in a shorter period of time, 
saving precious material, logistical and human resources, as well as enabling training 
situations that would not be possible otherwise (practicing emergency procedures in a 
flight simulator is a good example), constitute some of those advantages.  By the na-
ture of this type of solution, all data in the system are already digital. This means that 
there are numerical values associated with all simulated and measured phenomena, 
which makes the tracking, analysis and queries of the individual or compound values 
much easier. Additionally, a standard that is already well established for these types 
of training solutions is that they are expected to integrate the elements of a training 
management system: they track the progress of each trainee in each session and across 
multiple sessions. All of this would be very hard, if not impossible, in physical train-
ing ranges. 

Table 1 provides a basic comparison between physical training ranges and com-
puter-supported training solutions. The differences identified in each aspect typically 
serve as the main resources and motivation for employing different emerging tech-
nologies most capable of filling those gaps. Our extensive observations of training 
courses on physical training ranges, helped us identify a number of issues that could 
be addressed by inserting emerging technologies, and our suggestions are based on 
data sets collected during those observations [2].  An added limitation on what type of 
technologies can be brought in to augment current training practices has a very hard 
requirement – no system or tool should get in the way of a unit’s training objectives. 
If it does, then it is an unsuitable solution for that particular training situation. A good 
example of such solutions would be a wearable sensor that prevents a person from 
moving freely (running, crawling, kneeling, etc), something that is essential for the 
operations practiced on physical training ranges. 
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Table 1. Physical training ranges versus computer-supported training solutions 

Aspect Physical training ranges Computer supported training 
solutions 

Visibility of trainees’ actions Limited in occluded envi-
ronments 

All actions ‘visible’ to the system 

Smart instrumentation Minimal and operated by 
humans 

Enabled (system tracks and in-
itiates events) 

Type of sensory data (visual, 
auditory, etc) 

All analog, unless sensors 
used to detect events 

All digital. Maintained and ana-
lyzed by the system 

Performance evaluation Instructor-driven only Mix of automated (system-driven) 
and instructor-driven 

Closed loop feedback Instructor-driven only Mix of automated (system-driven) 
and instructor-driven 

After Action Review (AAR) Instructors’ commentary 
(what they wrote or re-
membered from training 
session) 

System account of group and 
individual performances, com-
bined with instructors’ commen-
tary 

Take-away package Instructors’ notes and 
recorded video footage 
(multiple DVDs) 

System recordings and system 
account of group and individual 
performances (digital, searchable 
data sets).  

Training management sys-
tem (tracking trainees’ per-
formance across multiple 
sessions) 

Manual, basic information 
only 

Automated (system driven) track-
ing and analysis possible 

Historical trends analysis Manual Automated analysis possible 

3 Smart Physical Training Ranges 

Physical training spaces of tomorrow could benefit from many types of emerging 
technologies. In this paper we select and review two types of technical solutions that 
demonstrated a capability to enrich multiple segments and aspects of training events: 
sensor systems or, more precisely automated sensor management systems, and virtual 
reality technologies.   

3.1 Automated Sensor Management System 

Sensor systems are already the reality of physical training spaces - the use of complex 
camera systems (optical sensors), for example, is not new.  Those systems typically 
employ a number of skilled operators who manipulate camera parameters, change a 
viewing angle of each camera, zoom-in on action, decide what to record as informa-
tion critical for future AAR and what to keep as input for a unit take-away package. 
With the number of sensors increasing dramatically (e.g. USMC Kilo2 training range 
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in Camp Pendleton has over 500 cameras), the task is becoming impossible even for a 
team of skilled operators, not to mention the cost of employing that team. The reality 
of contemporary sensor systems is that the human operators are no longer capable of 
managing a large data throughput and, at the same time, providing optimal perfor-
mance. In order to address that situation modern camera systems need to be able to do 
a self-calibration, select viewing angles and zoom factors for all PTZ cameras using 
an optimization technique suited to the type of environment and type of performance 
likely to be seen in their field of view (FOV), and make smart decisions on what to 
record in order to reduce the data storage requirement and processing of ‘empty’ data. 
Examples of such novel systems employ a sequential Kalman Filter [3], as well as a 
stochastic performance metric and a constrained optimization method [4]; both me-
thods have the same goal – to optimize the performance of optical sensors without the 
assistance of a human operator.  

3.2 Sensor-Enabled Automated Behavior Analysis and Performance 
Evaluation 

In the pursuit of better physical training ranges, one would like to keep everything 
that makes them irreplaceable and add the good features of computer-supported solu-
tions. One way of doing this is to transform the elements of the analog world of phys-
ical training ranges into the digital domain, and in that way be able to afford the flex-
ibility and data manipulation that is a clear advantage of the digital domain.  

This type of transformation was at the very center of the Behavior Analysis and 
Synthesis for Intelligent Training (BASE-IT) effort [5] - the ultimate goal of the 
project was to greatly increase the amount of observed behavior and improve the 
quality of the After Action Review (AAR). An in situ network of automatically con-
trolled PTZ cameras and personal position and orientation sensing devices was used 
to create dynamic three-dimensional (3D) participant models and combine them with 
a static 3D model of the environment [6], [7]. Sensor technology was employed to do 
the sensing part of the job – to track the movements and behavior of every individual 
[8], [9]. The subsequent analysis – sense making - was capable of deriving an auto-
mated understanding of unit actions [10], [11] (“Unit has been patrolling down Juliet 
Road for 15 minutes in a double column formation”), as well as identifying the inci-
dents of team and individual performance [12] (“Fire team 1 identified without cov-
er”, “Trainee #N passed too close to doors and windows of the building #8”). Figures 
2 and 3 illustrate a basic principle of both steps – sensing and sense making. After the 
data have been obtained, the system allowed not only viewing of the dynamic multi-
dimensional participant pose tracks from any perspective in play-back mode, but also 
the analysis and searching of the full data set for significant events.  

Once the training event is over, the take-away package for the unit is no longer a 
stack of DVDs that most units do not have time to watch and review, but rather a 
searchable database that has a full record of unit movements throughout the training 
range and training event, and an account of individual and team performance that can 
be quickly searched and interactively viewed i.e. 3D representation of the training 
event can be ‘navigated through’. This effectively replaces multiple hours of watching 
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video footage with a series of quick, straight-to-the-point searches on incidents and 
events the unit wants to know about and examine from several different angles. Hav-
ing this type of take-away package on a lightweight platform that the unit members 
can take with them and review in the barracks at their leisure, makes it even more 
flexible and certainly very attractive to the unit. This way, the value of data captured 
on the training range during the training event gets extended to the time after the 
training event. Being able to know ‘who did what’ and ‘how many times’ during any 
given training event, provides a great basis for directing skill remediation to the indi-
viduals and groups who need such additional training the most (example search: 
“Find all places where Squad #2 was bunching up”). 

Being able to query the performance of a unit in a single training event has great 
value for that unit. An additional value that has the potential to be applicable to the 
entire DoD service could be derived if this type of data is collected for a number of 
units and for an extended period of time. The data allows historical trends analysis to 
be performed and potentially for decisions to be made on what type of training regi-
men needs to be introduced to address the performance deficiencies identified in this 
analysis. The BASE-IT project incorporated this type of analysis as well. 

 

Fig. 2. System ‘sensing’ (left and middle) and ‘sense making’ (right) 

 

Fig. 3. Transition from a set of two-dimensional information to a unified three-dimensional 
world 

3.3 Sensor Enabled Production Tools for the Instructors  

The audience that is usually the most direct beneficiary of technical augmentations 
applied in training solutions is the trainees. It is less often that the instructors  
(trainers) are the subjects of these efforts. While automated tutors are slowly getting 
introduced in contemporary training solutions, human instructors are still considered 
irreplaceable in many aspects of skill acquisition (example: tactical decision making 
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where human understanding of the context plays a significant role in evaluation and 
subsequent change of instruction during the training event). Providing the instructors 
with the tools that allow them to be more productive has the potential to increase the 
overall effectiveness of the training event. The type of information they would be 
presented with during a training event to use as a basis for closed-loop feedback deci-
sions (real-time change and re-direction of training event), and after the event as a 
basis for AAR, is the very same information derived from the sensor system, auto-
mated behavior analysis and automated performance evaluation [6], [7]. 

3.4 Augmentation of Real Spaces with Synthetic (Virtual) Elements  

Physical training ranges get very close to the look-and-feel of operational environ-
ments, however they are different from operational environments in several aspects. 
One difference is that some cues provided in training environments are still notional – 
the artifacts are not actually present (visible) to the trainees, and are only imaginary. 
The trainees are expected to integrate that information in their situational awareness 
and act as if those artifacts are actually present. Examples of such cues are representa-
tions of air assets (e.g. planes) and vehicles approaching their locations, explosions, 
and humans – artifacts that would complete a description of the particular situation 
the trainees are expected to act upon.   

In order to increase the level of realism, and ensure the trainees act as if they be-
lieve those artifacts are present in their immediate physical environment, virtual reali-
ty (VR) and augmented reality (AR) solutions have been suggested and tested in  
different training setups. The Dismounted Augmented Reality Training System 
(DARTS) research project demonstrated the ability to inject virtual entities (tanks, 
targets, opposing forces) inside real environments in real time using a man-worn, non-
tethered augmented reality system [13]. The Future Immersive Training Environment 
JCTD research project demonstrated a training solution with an immersive training 
environment for small-unit ground forces [14], [15]. Similar to DARTS, the trainees 
used individual-worn augmented reality systems with see-through, head-mounted 
display. Another form of augmentation used in the same effort were VR projections 
on the walls representing ‘through the window’ view (Vista Screen) of a distant vir-
tual terrain, roads, and neighboring village, as well as the virtual humans i.e. role 
players in different rooms acting as a part of a particular training scenario.  

The test runs with actual units produced feedback about the way trainees’ treated 
2D projections of virtual humans: the trainees observed and acted on animated scenes, 
however as soon as a real human would enter the room, the trainees’ attention would 
shift from the 2D virtual humans to the real human. In other words, the physical world 
was given higher priority and ‘images’ on the wall got less attention. This observation 
was the inspiration for a line of research initiated by our team [16]. The research ef-
fort included work with tangible virtual humans – physical 3D models of humans with 
animated images of human faces being projected on them; the technique is known as 
the shader-lamp approach [17]. Our hypothesis was that 3D virtual human will be 
more effective representations than 2D virtual humans and our results are very prom-
ising (a paper with a full account of the study results is in preparation). This is not to 
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say that 2D virtual humans do not have their own role - in some situations they will 
continue to be used as an effective part of the human ‘landscape’. A good example of 
such situations are training sessions of virtual rowing where the presence of virtual 
competitors in the visual field of view of the trainees was found to influence the per-
formance of the rowers [18]. Figure 4 provides an illustration of several types of role 
players: (a) real people in the USCM Immersion Infantry Trainer (IIT), (b) 2D projec-
tion on the wall in IIT [19], (c) animatronic characters in IIT (Garner Holt Produc-
tions Inc. and Lockheed Martin), and (d) 3D tangible humans [16]. We believe that 
future physical training ranges will use what we call a human tapestry – an eclectic 
mix of different forms and types of virtual humans, each type fulfilling the role they 
are best suited for. The ongoing and future research efforts will need to determine 
what those roles are and what is the best way to incorporate them in training scena-
rios. It is important here to note that the augmentation of physical training ranges does 
not have to happen only in the visual sensory domain – training ranges can have aug-
mentation with auditory (sound) as well as olfactory sensory data (odors). Both of 
those have been successfully tested and deployed in the IIT at Camp Pendleton.  

 

 
                (a)                (b)       (c)                   (d) 

Fig. 4. Role players: (a) live, (b) two-dimensional projection of role players, (c) animatronic 
character, (d) tangible three-dimensional virtual human (shader-lamp projection) 

4 Future Generations of Physical Training Environments 

Training on physical ranges is and will continue to play an important role in training 
of the military – it is hard to expect any change in that regard for many elements of 
individual and team skills. However, what is very likely to change is the fidelity and 
variety of information presented to the training force, as well as the way training data 
gets collected, manipulated and made available to the trainees for study and analysis.      

We envisage that in that process the emphasis will inevitably be placed on a greater 
level of automation in data collection and analysis, with the objective being to serve 
the needs of all users (trainees, instructors, operators). The form of training solutions 
likely to be present in the future are an organic, eclectic mix of technologies, systems, 
tools, sensor solutions and training approaches that most effectively support the train-
ing objectives in a given training environment and for a particular training audience. 
As has been the case so far, one specific mix will work very well for the needs of 
small units operating in building and room clearing, and a different set will be needed 
for larger cordon and search operations. 

We foresee that in the future a variety of sensors will be integrated in a unified  
sensor system solution, where each sensor type could also be used to strengthen and 
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optimize the performance of another sensor. An example of such a synergetic mix 
would be the use of sensors detecting movement, with that information being used as 
a predictor for ‘what is coming and how fast’ to the FOV of nearby PTZ cameras and 
microphones. One could also imagine that, in addition to an automated sensor  
management approach, a mix of an automated approach with occasional human inter-
vention may become one of the modes of operation (humans making judgments in 
situations that are advantageous to human situational awareness and human reason-
ing). Different types of sensors and instrumentation systems are already in use, like 
laser tactical engagement simulators OneTESS, ITAS-TESS and MILES XXI [20] 
and a variety of stationary and mobile target systems. A synergetic combination of 
existing sensor solutions strengthened with new types of sensor data would amplify 
the value of investments already made in acquired range instrumentation systems. 

Similar to the capture of trainees’ movements in physical space, the ability to ac-
quire and quickly analyze audio signals (shouts, communication, grunts) and provide 
that as contextual information tied to each individual inside a 3D dynamic model, and 
to do automated behavior analysis and performance evaluation with that multi-layered 
information would be very valuable. The same physical movements and actions may 
be understood very differently if shouts and commands given at critical points during 
those actions were heard and understood by the instructors (evaluators). Therefore it 
will be important to obtain as comprehensive understanding about the event as possi-
ble, and analyze it for the benefit of all users. The experiences acquired in military 
training systems are applicable to several other domains, like training of fire fighters, 
police forces, port and airport security, as well as a range of sport training situations – 
in short all types of human activity where it is important to track and provide informa-
tion about the progression of participants’ skill mastery. 
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Abstract. Brain-Computer Interfaces (BCIs) control a computer or a
machine based on the information of the signal of human’s brain. P300
speller is one of the BCI communication tools, which uses P300 as the
feature quantity and allows users to select letters just by thinking. Be-
cause of the low signal-to-noise ratio of the P300, signal averaging is often
performed to improve the spelling accuracy instead of the degradation of
the spelling speed. In texts, there is variability in occurrence probabilities
and transition probabilities between lettersDThis paper proposes P300
speller considering the occurrence probabilities and the transition prob-
abilities as the prior probabilities in RB-ARQ. It shows that the spelling
speed and then the Utility were improved by the proposed method com-
paring with the conventional method.

1 Introduction

Brain-Computer Interface is the system that controls a computer or a machine
based on the information of signals from human’s brain[1]. It is expected to be
developed as a communication tool for seriously paralyzed patients like those
with amyotrophic lateral sclerosis (ALS). Electroencephalogram (EEG) is most
likely used for BCIs because it is noninvasive and inexpensive. P300 speller that
is first introduced by Farwell et al. is one of the communication tools using P300
as a feature[2]. P300 is one of the event-related potential (ERP) and it is elicited
when a stimulus that a user attends to is provided. A user can choose and input
letters just by his/her thoughts using P300 speller. It generally uses a letter ma-
trix interface with visual stimulus. Each row or column flashes in random order
one by one for a certain times. While they are flashing, the user concentrates
on the desired letter by counting how many times it flashes. Thereby, P300 is
elicited when the row or column that contains the desired letter is flashed. Then
the system discriminates the letter that includes P300 most likely as the target
one.

However, signal-to-noise ratio of the P300 is small. Thus, averaging signals
is needed[3][4], which improves the spelling accuracy instead of degrading the
spelling speed. Practically, it is needed to input letters correctly in a short time
to reduce user’s burden. Conventionally, the number of flashing times, i.e., the
number of stimuli, is fixed. To reduce the number of stimuli, Reliability-Based
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Automatic Repeat reQuest (RB-ARQ) has been proposed[5]. It is shown that
RB-ARQ can reduce spelling speed with keeping spelling accuracy[6].

In RB-ARQ, the prior probability, the likelihood of each letter to be the target
before the presentation of stimuli, is set equally for all letters. On the other
hand, there is variability in occurrence probabilities and transition probabilities
between letters in texts. In the area of understanding texts or voice recognition,
the transition probabilities between letters are used for letter correction or the
support of input and recognition[7][8].

In this paper, we propose a new P300 speller that considers the ocurrence
probabilities and the transition probabilities between letters as the prior prob-
ability in RB-ARQ. The experiments are done by three subjects with Japanese
interface of P300 speller and the result shows the improvement of spelling speed
and then the Utility, which is the performance index of spelling considering accu-
racy and discrimination time at once, by the proposed method comparing with
the conventional one.

2 Reliability-Based Automatic Repeat reQuest

RB-ARQ is a method that presents stimuli randomly and sets the number of
stimuli dynamically based on the maximum posterior probability[5][6]. Suppose
xt denotes a feature vector from EEG data at time t, and let XT = {xt|t =
1, 2, ..., T } be a set of data at time T , the posterior probability at time T can be
calculated as follows:

P (k|XT ) =
P (k)

∏
t p(xt|k)∑

l∈K P (l)
∏

t p(xt|l) (1)

In this equation, let K be a set of candidate letters and k ∈ K. And P (k) is
the prior probability that x belongs to label k before the stimulus presentation,
and they are set equally. The posterior probability is obtained by multiplying
the prior probability and likelihood. Maximum posterior probability at time T
is defined as Eq.(2) using the posterior probability P (k|XT ).

λT = max
k

P (k|XT ) (2)

The maximum posterior probability is equivalent to the discrimination accuracy,
which can be regarded as the reliability of data. λ is set as the threshold of
reliability, and a user keeps thinking until λT becomes larger than λ.

3 Proposed Method

As mentioned above, the prior probability of RB-ARQ is set equally to every
letter in the conventional method. This paper proposes a method to consider
the occurrence probability and the transition probability of letters in text as the
prior probability. Transition probability is the frequency of a letter in texts after



A Study on Application of RB-ARQ Considering Probability 729

the given preceding letter(s), and it is given by the occurrence rate of N-gram
character in an enormous quantity of text data. N-gram is every contiguous
sequence of n characters in a given text[9]. Therefore, the prior probability is
defined as below with n=1,2,...

P (Xi) =
N(Xi)∑
l∈K N(Xi)

(n = 1) (3)

P (Xi|X i−1
i−n+1) =

N(X i
i−n+1)

N(X i−1
i−n+1)

(n ≥ 2) (4)

Let Xj
i be a part of string from ith letter to jth letter in the character string

X1X2, ...XM . P (Xi|X i−1
i−n+1) is the conditional probability that ith letter be-

comes Xi when a string from {i− (n− 1)}th letter to (i − 1)th letter is given.
N(Xj

i ) denotes the occurrence frequency of a string from ith letter to jth letter.
When n is 1, the prior probability is simply represents the probability of the oc-
currence of each letter, and this paper calls iteUni-gram.fWhen n is 2 or 3, they
represent the transition probability between letters. This paper calls themeBi-
gramfandeTri-gram,frespectively. Using these probabilities, it is expected to im-
prove the performance of inputting text in RB-ARQ. It is thought that the time
until the posterior probability exceeds the threshold λ becomes shorter, because
the letters with high occurrence rate have high prior probability.

4 Experiment

4.1 Data Description and Preprocessing

This experiment used a recorded dataset which contained EEG data measured
by three subjects (Sub A, Sub B and Sub C) performed the P300 speller. EEG
data was recorded with sampling frequency of 1000Hz using Polymate AP216
(Digitex lab. co., ltd., Tokyo), from 5electrodes: Fz, Cz ,Pz, O1 and O2, ref-
erenced to the linked ears, A1 and A2 (Fig.1). The stimulus onset asynchrony
(SOA) was 175 ms: each stimulus was presented for 100 ms with an inter-stimulus
interval (ISI) of 75 ms. In this experiment, the 7-by-10 letter matrix interface
containing Japanese characters shown in Fig.2 was employed. An input of one
letter consisted of ten sequences, while one sequence contained 17 (10 rows and
7 columns) stimuli. Then, the EEG signals were down-sampled to 20Hz, 14 data
points corresponding to 0s to 0.65s after each stimulus was extracted. The ex-
tracted data were classified using Linear Discriminant Analysis (LDA). 20 letters
were utilized for the learning session.

In this interface, <> is used when the user wants to input small letters. For
example, when the user wants to input <>, he/she needs to select <> before
<>. And <BS> means backspace which deletes the preceding letter. The prior
probability employed in the proposed method was calculated based on the web
corpus of Japanese[10]. In the calculation of Eq.(3)(4), sonant marks and p-
sounds were regarded as one character, and the prior probability of <> was
calculated using the number of the appearance of small letters.
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Fig. 1. Used electrodes Fig. 2. User-interface

4.2 Experimental Settings and Performance Index

The experiment employed three long sentences, which had about 200 letters
extracted from Web blog, essay and novel, respectively. They were inputted for
200 times in each test, and the results were averaged.

When non-target letter was inputted, that is, discrimination result was wrong,
<BS> would be selected at the next target to input full sentence correctly. The
threshold of RB-ARQ was set to 0.9, 0.95 and 0.99. We conducted the following
two experiments.

Exp.1: We set the prior probability by Uni-gram, Bi-gram and Tri-gram and
compared with the conventional method, the prior probability was set equally
caled eEqual.’

Exp.2: We set the prior probability by Uni-gram, Bi-gram and Tri-gram, and
when <BS> and a letter except for <BS> were repeated, we set every prior
probability equal.

This paper employed the performance index for the comparison as the average
of the discrimination accuracy, the number of stimuli and the discrimination
(input) time per a letter. Each performance index is determined below.

Discrimination accuracy =
� of correct letters

� of inputted letters
(5)

� of stimuli per a letter =
� of all stimuli

� of inputted letters
(6)

Discrimination time per a letter = � of stimuli per letter × SOA (7)

This paper also uses gUtility[11]hdefined in Eq.(8) to evaluate the accuracy and
the discrimination time at once.

U =
(2P − 1) log2(C − 1)

d
(8)
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where C is the number of classes (in this experiment,N=70, 10 rows 7 columns),
P is the accuracy, and d is the discrimination time per a letter. Note that if P
<0.5, U=0. Utility corresponds to the information transfer rate when the spelling
is done perfectly by using <BS> that can delete incorrect characters. Thus, it
is thought to be a practical performance measure for the P300 speller.

5 Result

Table 1 shows the discrimination accuracy, the number of stimuli and the dis-
crimination time in Exp.1, and Table 2 shows those in Exp.2. Figure 3 shows
the Utility in Exp.1, and Fig.4 shows that in Exp.2. In these figures, the values
on the horizontal axis mean the thresholds of RB-ARQ and vertical axis shows
the value of Utility.

Table 1. Performance indexes in Exp.1

Threshold Equal Uni-gram Bi-gram Tri-gram

0.9 0.81 0.794 0.818 0.65
Accuracy 0.95 0.869 0.87 0.891 0.819

0.99 0.918 0.933 0.95 0.939

0.9 78.9 68 55.2 41.9
� of Stimuli 0.95 90.6 80 66.2 57.7

0.99 110.8 100.6 85.4 83

0.9 13.8 11.9 9.7 7.3
Time[s] 0.95 15.9 14 11.6 10.1

0.99 19.4 17.6 14.9 14.5

Table 1 shows that the accuracy of Uni-gram and Bi-gram were almost equal
or better than the conventional method (Equal), while, the number of stimuli of
Uni-gram and Bi-gram were smaller than Equal. On the other hand, the number
of stimuli of Tri-gram at threshold 0.9 was also reduced, however, the accuracy
decreased at the same time. Especially in Tri-gram, the prior probability widely
varied depending on the next selectable letters comparing with other methods.
Threfore, the discrimination time was largely decreased when the letter with
high prior probability was selected as the target letter. On the other hand, when
the letter with low prior probability was chosen as the target and the threshold in
RB-ARQ was low, a non-target letter with high prior probability was tend to be
selected incorrectly. When a non-target letter was inputted, the subject needed
to input <BS> for the correction. Then, the discrimination accuracy became
low because of the repetition of inputting <BS> and a non-target letter. Thus
in the threshold higher than 0.9, the accuracy of Tri-gram improved because
this repetition happened less frequently. As the result, Fig.3 shows that the
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Table 2. Performance indexes in Exp.2

Threshold Equal Uni-gram Bi-gram Tri-gram

0.9 0.81 0.797 0.805 0.777
Accuracy 0.95 0.869 0.869 0.88 0.859

0.99 0.918 0.933 0.944 0.941

0.9 78.9 64.7 58.8 54.1
� of Stimuli 0.95 90.6 76.5 69.8 63.6

0.99 110.8 98.9 91 83.2

0.9 13.8 11.3 10.3 9.5
Time[s] 0.95 15.9 13.4 12.2 11.1

0.99 19.4 17.3 15.9 14.6

performance in Utility of Uni-gram was better than Equal, Bi-gram was superior
to Uni-gram and Tri-gram at threshold 0.95 or 0.99 was better than Bi-gram,
while that of Tri-gram at threshold 0.9 was the worst.

On the other hand, Table 2 shows the improvement of the accuracy of Tri-
gram at every threshold in Exp.2, which has the avoidance of the repitition by
setting every prior probability equal. In this experiment, test sentences consisted
of about 200 letters including a lot of particles which had poor connection with
next letter. Thus, there were many times that the letter with low prior probability
was to be selected as the target. In Exp.1, the prior probability was set to N-gram
at all times, therefore, the repetition in Tri-gram was affected largely, which was
improved by using the equal prior probability effectively with N-gram. In the
comparison of Equal with Tri-gram, the discrimination time was shorten from 4
to 5 seconds per a letter. Thus in Fig.4, the performance in Utility of Tri-gram
was superior to Bi-gram at every threshold.

0.9 0.95 0.98

Equal
Uni−gram
Bi−gram
Tri−gram

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Fig. 3. Utility in Exp.1

0.9 0.95 0.98

Equal
Uni<BS>
Bi<BS>
Tri<BS>

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Fig. 4. Utility in Exp.2
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There were the significant differences in Utility between the conventional
method and every proposed method by the paired t-test at the significant level
of α = 0.017 (0.05/3; Boneferroni correction) considering multiple comparison.
This result showed that considering the occurrence probability and the transition
probability by the proposed method improved the inputting performance.

6 Conclusion

This paper proposed P300 speller that considering the occurrence probabilities
and the transition probabilities between letters as the prior probability in RB-
ARQ. The experiments were done by three subjects with Japanese interface of
P300 speller and the result showed the improvement of spelling speed keeping
high accuracy by the proposed method comparing with the conventional one.
We will more investigate the proposed method through the online experiment.
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Abstract. We have developed a vibration alert interface (VAI) that
provides information through various vibration patterns. In our previ-
ous studies, we designed the VAI and its vibration patterns to provide
analog-like information to users such as distance to obstacles. Precise in-
formation recognition requires correct perception of vibration patterns.
However, various disturbances can affect perception of vibrations, caus-
ing users to perceive similar vibrations as being different. We therefore
proposed the relative vibration sense presentation method to avoid dis-
ruption of the vibration sense. In this paper, we experimentally show
that this method improves the repeatability of vibration sensation. We
also propose a vibration presentation model for drivers to correct percep-
tion gaps due to the application and surroundings of VAI. We evaluate
the proposed model through experimentation.

1 Introduction

We developed the vibration alert interface (VAI) to provide information through
varying vibration patterns. Vibration is an effective method for conveying infor-
mation to individual users. In previous studies, we designed VAI and its vibration
patterns to provide analog information such as distance to obstacles [1]. Conven-
tional vibration devices convey information by turning vibrations on or off [2][3].
We found that a higher frequency vibration motor can convey greater vibration
strength to users.

Precise information recognition requires correct perception of vibration pat-
terns. However, various disturbances can affect perception of vibrations, caus-
ing users to perceive similar vibrations as being different [4][5]. One of the things
which give information by vibration is a sound. A sound is defined as follows [6]. A
phoneme is one element in the sound system of a language having a characteristic
set of interrelations with each of the other elements in that system. The phonemes
cannot be defined acoustically and they are a set of abstractions. It state that it
isn’t sound but a sound difference, i.e., contrast, which should be perceived in a
sound system [7]. We therefore developed a new presentation method for vibra-
tion that avoids disruption of the vibration sense. The proposed relative vibration

D.D. Schmorrow and C.M. Fidopiastis (Eds.): AC/HCII 2013, LNAI 8027, pp. 734–743, 2013.
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(a) Experimental setup and VAI. (b) State of participant
and VAI.

Fig. 1. The vibration alert interface (VAI)

sense presentation (RVSP) method alternately presents a presentation vibration
frequency fp and a constant base vibration frequency fb.

In this paper, we experimentally show that RVSP improved repeatability of
vibration sensations. Further, we propose a vibration presentation model for
drivers to correct perception gaps due to the application and surroundings of
VAI. We evaluate the proposed model through experimentation.

2 Vibration Alert Interface

2.1 Experimental Systems and Conditions

Fig. 1(a) shows the structure of the VAI experimental device. The vibrator is a
cylindrical plastic object containing a small vibrating motor. Participants held
it, and vibration frequency was controlled through an H8 microcomputer and
PC-based motor driver. The participants in the experiment were four healthy
adult men and women age 21 to 22 (21.8 average). To ensure only tactual judg-
ment, participants wore eye masks and listened to white noise via headphones
(Fig. 1(b)).

According to Weber–Fechner’s law, sensations are perceived in proportion to
the logarithm of the stimulation [8][9]. The amplitude of VAI vibration used in
this research is independent of the frequency, so we can define the quantity of
user vibration perception as

E = kf log f + C, (1)

where f is the vibration frequency, kf is the gain, and C is a constant. Since
the energy of vibration is proportional to the logarithm of the frequency, the
magnitude of the energy is controllable by controlling the frequency.
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(a) The relative vibration sense
presentation (RVSP) method.

(b) The absolute vibration sense
presentation (AVSP) method.

Fig. 2. Definitions of the presentation methods (fb > 0)

2.2 Relative Vibration Sense Presentation Method

Factors related to changes in vibration perception for similar vibrational fre-
quencies include the contact area and changes in the grip force. In this research
we focus on the existence of C, the unknown constant in Eq. (1). In conventional
presentation methods, since the presentation vibration fp [Hz] is given after a
state of no vibration (0 [Hz]), C varies with every presentation. We predict that
the dampening of vibration sense is due to the instability of C.

We therefore propose the relative vibration sense presentation (RVSP) method
to improve the repeatability of the vibration sense provided by the VAI. RVSP
alternately presents a presentation vibration frequency fp and a constant base
vibration frequency fb. It aims at reducing the influence of C in Eq. (1) by pre-
sentingΔE, which is the difference between the quantity of sense by presentation
vibration Ep and the quantity of sensation by base vibration Eb. kf and C are
assumed to be fixed by continuous oscillating presentation. This with Eq. (1)
gives Eq. (2). We consider that users can perceive correct information from fp
in comparison with fb by eliminating C, as in Eq. (2).

ΔE = Ep − Eb = kf (log fp − log fb) (2)

We perform an experimental investigation to determine if RVSP improves re-
producibility of vibration sense more than does the absolute vibration sense
presentation (AVSP) method, which does not use a base vibration frequency.
Fig. 2(a) shows the RVSP vibration pattern, and Fig. 2(b) shows the pattern
for AVSP. In that figure, t is the presentation time of the presentation vibration
in RVSP, s and k are the presentation times of the base vibration in RVSP, and
z is the presentation time of the presentation vibration in AVSP. A cycle of a
given vibration in RVSP is called a presentation vibration cycle.

Although log f would be infinitely large in Eq. (1) at times where f = 0 [Hz],
there are dead zones in human perception of stimuli, and the threshold of the vi-
bration frequency changes with the equipment used. We consider that there is no
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quantity of vibration sense in states where VAI vibrates at vibration frequencies
less than f0. Eq. (1) is therefore redefined as follows:

E =

{
0 if f < f0

kf log f + C otherwise
(3)

3 Verification of the Validity of RVSP

3.1 Comparison of RVSP and AVSP

We conducted experiments that compare RVSP with AVSP to verify the validity
of RVSP. Since RVSP needs the existence of the base vibration, which has the
vibration frequency more than fixed, we sets it to fb = 100 [Hz] and advances
verification.

The parameters for RVSP were set as s = 2, t = 1, and k = 1 (Fig. 2).
This vibration pattern is called rel below. The parameter of AVSP were set as
z = 5. This vibration pattern is called abs below. The presentation vibration
frequencies were set to 100, 115, 130, 145, and 160 [Hz]. Participants reported
perceived vibration strength vs as an integral value.

Experimental procedures were as follows:

(1) Participants grasped the VAI vibrating at fp = 100 [Hz], and were told to
classify perception of this vibration as strength 5.

(2) Next, they were presented with a new vibration strength, fp = 160 [Hz],
which they were told to classify as vibration strength 20.

(3) Finally, participants were presented with vibration at a random frequency,
and reported the perceived vibration strength.

(4) Steps (1)–(3) were repeated five times.

We repeated this process ten times per day for each participant, with short breaks
between presentations. This was repeated over six days, resulting in 60 data
points regarding vibration strength perception for various frequencies for each
participant. The experiment that presents rel was carried out after completion
of the experiment that presents abs.

Fig. 3 shows the results for all participants. As the box plots indicate, the
standard deviation for rel was smaller than for abs at all frequencies (Table 1).
Comparing results between participants, the same result was obtained in 17 out
of 20 pairs of data groups (four participants, five frequencies each). This confirms
that the variation in vibration strength was small under RVSP, and thus that
RVSP with fb = 0 is effective.

3.2 Presentation Vibration Cycle

We changed the presentation vibration cycle of RVSP, and carried out other
experiments. The parameters of RVSP were set as s = 1, t = 1, k = 1, and
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Table 1. Comparing rel and abs in terms of standard deviation and improvement rate

Presentation vibration Standard deviation Improvement rate[%]
frequency [Hz] abs rel absrel

100 2.56 0.14 94.3
115 2.99 1.12 62.4
130 3.13 1.94 37.9
145 2.82 2.55 9.70
160 2.08 1.72 17.6

Average 2.71 1.50 44.4

s = 2, t = 2, k = 2 (Fig. 2). These vibration patterns are respectively called rel -
1 and rel -2 below. AVSP parameters were set as z = 3. This vibration pattern is
called abs-3 below. The presentation vibration frequencies were set to the same
five levels as in the previous section.

Experimental procedures were as follows:

(1) Participants grasped the VAI vibrating at fp = 100 [Hz], and were told to
classify perception of this vibration as strength 5.

(2) Next, they were presented with a new vibration strength, fp = 160 [Hz],
which they were told to classify as vibration strength 25.

(3) Finally, Participants were presented with vibration at a random frequency,
and reported the perceived vibration strength.

(4) Steps (1)–(3) were repeated five times.

We repeated this process 15 times per day for each participant, with short breaks
between presentations. This was repeated over 3 days, resulting in 45 data points
regarding vibration strength perception for various frequencies for each partici-
pant. We carried out these experiments in the order abs-3, rel -1, then rel -2.
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Fig. 5 shows the results for all participants. Standard deviations of rel -1 and
rel -2 were smaller than that of abs-3 at frequencies 100 and 115 [Hz], but larger at
frequencies 130, 145, and 160 [Hz] (Table 2). In between-participant comparisons,
however, rel -1 was smaller than abs-3 in 17 of 20 pairs, and rel -2 obtained the
same result in 18 of 20 pairs. We thus found that the variation in vibration
strength was small under RVSP for each participant. The above analysis shows
that in each participant rel -1 and rel -2 suppressed variation in the vibratory
sense, as compared with abs-3.
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Fig. 5. Comparison of rel -1, rel -2, and abs-3 for differences in vibration perception

Table 2. Comparison of rel -1, rel -2, and abs-3 standard deviation and improvement
rate

Presentation vibration Standard deviation Improvement rate[%]
frequency [Hz] abs rel -1 rel -2 abs-3rel -1 abs-3rel -2

100 2.47 0.25 0.00 90.0 100
115 3.70 1.47 1.93 60.2 48.0
130 3.33 3.94 3.58 -4.91 -7.51
145 3.65 3.74 3.98 -2.51 -9.19
160 1.66 1.69 1.67 -1.80 -0.918

Average 2.95 2.13 2.23 28.2 26.1

4 Perceptual Model to Convert Vibration Stimulation to
Distance Perception

4.1 Systems

We assume two hypotheses as in Fig. 6 concerning the mechanism by which
humans recognize vibratory stimulation as distance perception.



740 Y. Sampei et al.

(I) The relation H1 between vibratory stimulation and vibration strength is
independent of the VAI application.

(II) The relation H2 between vibration strength and distance perception is de-
pendent on the VAI application.

We examine the relations H1 and H2 during driving to develop VAI-C, which
applies VAI to support drivers with information such as distance to obstacles. We
then verify the above-mentioned hypotheses. The influence on these relations by
driving speed is experimentally investigated with a driving simulator. Finally, we
confirm that VAI-C presents stable distance perception, independent of driving
speed. Fig. 7 shows the experimental setup.

Fig. 6. Hypotheses regarding human perception

Fig. 7. Configuration of VAI-C and participant

4.2 VAI-C Systems

A driving simulation (FORUM8 Corp.) was displayed on three monitors. Par-
ticipants were three healthy adult men aged 22 to 23 years (average 22.7 years).
Participants held the VAI and listened to white noise via headphones, and the
experiment was conducted in a darkened room, thus limiting sensory information
other than screen information and VAI oscillations. Using the driving simulator
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software, we created a virtual straight road on flat ground, with trees on both
sides at a fixed interval. Participants were exposed to AVSP with parameter
z = 3 (Fig. 2). The presentation vibration frequencies varied over 15 settings,
from 95 to 165 [kHz] in 5 [kHz] increments, and driving speeds were 30, 60, and
90 [km/h]. This resulted in 45 patterns of varying presentation frequency and
driving speed.

4.3 Experimental Exploration of Relations

We performed two experiments to investigate relationships among vibration
stimulation, vibration sense, and distance perception. In particular, we wanted
to ascertain the following:

(A) Whether differences in driving speed affect vibratory perception.
(B) Whether differences in driving speed affect distance perception.

Experimental procedures were as follows:

(A) Driving speed and vibratory sense
(1) Participants grasped the VAI vibrating at fp = 100 [Hz], and were told

to classify perception of this vibration as strength 5.
(2) Next, they were presented with a new vibration strength, fp = 160 [Hz],

which they were told to classify as vibration strength 30.
(3) Finally, participants were presented with one of the random frequency

and speed patterns, and reported the vibration strength.
(4) Steps (1)–(3) were repeated five times.

(B) Driving speed and distance perception
(1) Participants grasped the VAI vibrating at fp = 100 [Hz], and looked at

monitors in which a vehicle was 100 [m] ahead. They were told to classify
perception of this vibration as that felt for an object 100 [m] away.

(2) Next, they were presented with a new vibration strength, fp = 160 [Hz],
and looked at monitors in which a vehicle was 10 [m] ahead. They were
told to classify perception of this vibration as that felt for an object
10 [m] away.

(3) Finally, participants were presented with one of the random frequency
and speed patterns, and reported the distance perception.

(4) Steps (1)–(3) were repeated five times.

The driving speed was 60 [km/h] in steps (1) and (2). We repeated this process
3 times per day for each participant, with short breaks between presentations.
This was repeated over 3 days, resulting in 45 data points regarding vibration
strength perception for each participant. Experiment (B) was carried out after
completion of experiment (A).

Fig. 8 shows the results for all participants. Both vibration strength and dis-
tance perception form a numerical distribution without regard to driving speed,
indicating no influence of driving speed on distance or vibration strength percep-
tion. This differs from our hypothesis. Our data are currently limited, however,
so further investigation is required.
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fp

(a) Driving speed and vibration strength.

fp

(b) Driving speed and distance perception.

Fig. 8. The relationship among driving speed, vibration strength, and distance
perception

5 Conclusion

This paper showed the repeatability of vibration sensation improvement by
the relative vibration sense presentation method. Furthermore, we developed
a hypothesis about the relationship of human perception and verified it
experimentally.
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Abstract. The increase of cognitive demands in society nowadays requires new 
ways to deal with problems, such as burnout and mental fatigue. Lately, more 
and more scientifically-based rigorous research in the area of brain-computer 
interfaces has been done in the quest for restoring and augmenting cognition. 
The current research work investigates light-based priming and positive rein-
forcement as possible mediators of cognitive enhancement. 

Keywords: priming with light, cognitive enhancement, positive feedback. 

1 Introduction 

Priming refers to an increased sensitivity to a stimulus due to prior experience. Be-
cause priming is believed to occur outside of conscious awareness, it is different from 
memory that relies on the direct retrieval of information [1]. Priming is an effect of 
implicit memory. The effects of light-based priming have been widely shown in both 
humans and animals [2, 3].   

Significant research exists on the influence of color on human perception, cogni-
tion, and behavior. In [4, 5], blue and green colors are presented as leading to higher 
cognitive performance than red color, [6, 7] however report the opposite. In [8], it is 
shown that the red color enhances performance on a detail-oriented task; whereas blue 
enhances performance on a creative task. These findings together with the ones from 
[9, 10], suggest that warm colors as being more effective modulators of cognitive 
performance in a memory related task than cold colors.  

The influence of sensory stimuli on cognitive performance in a school context was 
shown in [11], where exposing underachieving children to olfactory stimulation eli-
cited an increase in performance in a new test by using a scent which was previously 
associated with high performance in a prior test.  

Increased cognitive performance can also result from stereotype priming where 
people are primed to think about a particular person or profession (the stereotype) 
exhibiting high cognitive ability, prior to engage in a task requiring cognitive ability. 
In [12] it is shown that the performance in a general knowledge task of participants 
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primed with the stereotype of a professor is higher than the performance of partici-
pants primed with the stereotype of a hooligan.  

Feedback and reinforcement can be used in a positive manner to enhance peoples’ 
feelings of competence, which then increases intrinsic motivation. This area, called 
behavior modification, assumes that behaviors are strengthened when they are re-
warded and weakened when they are punished or unrewarded. The stronger the per-
ceived self-efficacy is, the more challenging the goals that people set for themselves 
become [13]. 

In a previous study [15], we investigated the influence of light conditioning on 
cognitive performance. This work can be summarized in three steps: 1) detect (or 
create) events where a person performs particularly well, 2) apply the targeted light 
setting with the goal of creating an association between high performance and the 
light setting, and 3) at a later stage use the light setting to predispose the person for 
high performance. Three experimental conditions were considered: 1) a control condi-
tion, 2) a congruent condition (the association and the test phases had the same light 
setting) and 3) an incongruent condition (the association and the test phases had dif-
ferent light settings). The cognitive performance associated with each condition was 
evaluated and positive results were obtained for the congruent condition.  

In this study we aim at investigating the behavioral and neural responses as charac-
terized by the electroencephalogram (EEG) of light-based priming and encouraging 
feedback on a general knowledge cognitive task. 

2 Materials and Methods   

Twenty healthy volunteers (10 female and 10 male, Mean age = 27.1 and SD = 5.1) 
participated in the study. All of them had at least a BSc degree. They were randomly 
assigned to one out of three experimental conditions: a control condition, a congruent-
first condition or an incongruent-first condition (see Table 1). All participants signed 
an informed consent before starting with the experiment. This experiment was ap-
proved by the Philips internal ethics commission.  

The task of the experiment was a four-choice answer Trivia test which consisted of 
4 sets of 25 questions each. There were general knowledge questions belonging to 
seven different knowledge domains and distributed over three levels of difficulty. All 
the questions were taken from a Trivia quiz [16]. An example of a question and sug-
gested answers is: “If you suffer from daltonism, you are: a. Color blind, b. Schizoph-
renic, c. Mute, d. Deaf.” 

The participants had half a minute to answer to each question. The sets of ques-
tions were randomized over the task. EPrimeTM software (from Psychology Software 
Tools Inc) was used for the presentation of the task [17].   

The participants were looking at a 20 inch LCD screen from a distance of 70 cm. 
Following a short practice session in which no priming was involved, the actual Tri-
via test started. The light settings (see Fig. 2) were randomly chosen for each partici-
pant. After each phase of the experiment the participants were asked to complete a 
computer-based intrinsic motivation inventory questionnaire [18]. 
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Fig. 3. Overall performance during the experiment 

Fig. 4 presents the results of the previous experiment, in which it can be seen that 
the median performance during the baseline was similar in all the conditions (43%), 
which means that the participants were equally distributed in terms of proficiency 
across the three groups. The performance during the association phase of the control 
condition was very similar to the one of the incongruent condition. The performance 
in the third phase has lower values in the control (43%) and incongruent conditions 
(39%), compared to the same phase during congruent condition. The performance 
during the test phase of the congruent group is higher than the one in the incongruent 
and control groups, which indicates the effects of light priming. By comparing these 
results with the control condition, we can also say that, the improvement in the con-
gruent group is caused by both the effects of light and positively biased feedback. 

 

Fig. 4. Overall performance during the first experiment 

The average performance level was 48.7% (SD=11.8). The last phase from the 
control condition had the same average score as the baseline. In the congruent condi-
tion, the performance score during association had a larger variance (SD=16.7), aver-
age score was 56.3%, higher than in the other conditions. In the congruent condition 
the test phase had large variance, with an  average score of 56% (SD=12.1). During 
the last phase of the incongruent condition, the average performance score was 39.8% 
(SD=11.9). The average level of performance decreased as compared to the same 
phase during the congruent condition. 
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The participants in the congruent condition had a higher performance than the ones 
in the incongruent condition. This suggests that the increase is affected by the illumi-
nation setting. Furthermore, one of the illumination settings yielded a higher perfor-
mance improvement, which suggests that the color of light may also play a role. 

The experiment design does not permit to distinguish between the effect of light 
conditioning and that of encouraging feedback.  Their combination enhances the per-
formance over all conditions and this may be mediated by an increase in the motiva-
tion to perform better.  

The analysis of the questionnaire responses yields significant results on the Ef-
fort/Importance scale showing that a higher amount of effort was put while per-
forming the last phase of the task in the congruent condition. This also means that 
performing better during this phase was more important for the participants. The 
scores of the same scale under control and incongruent conditions had a similar 
trend, showing that there was no difference in performance in the control and in the 
incongruent conditions.  

To better assess the effect of the intervention (light and encouraging feedback), the 
last two phases were split according to the corresponding conditions, congruent-first 
and incongruent-first (see Fig.5). 

During the control condition the variance of the performance was large for all 
phases, except the third one. In the baseline, the average performance was 46% 
(SD=14). During association, the scores slightly decrease, the average performance is 
40.5% (SD=15). During the third phase, the scores decrease even further and the va-
riance of the scores was significantly smaller; the average score was 38% (SD=2.3). 
In the last phase, most of the participants increased their levels of performance, the 
average performance was 51% (SD=14.4), which is the highest level of performance 
over all phases of the control condition.      

The congruent-first condition presented a “zig-zag” trend in the levels of perfor-
mance over phases, with both positive and negative slopes. During the first phase, the 
average performance score was 45.5% (SD=12.5). Then, the association presented a 
slight increase in performance, with an average score of 52% (SD=8.8). The third 
phase, congruent, had the average performance, 46.8% (SD=8) a bit higher than the 
baseline. The fourth phase presented higher levels of performance, average score was 
53% (SD=7.9) of correct answers. There was no significant difference between the 
phases of the congruent-first condition.  

The incongruent-first condition presented a continuous decrease in performance over 
the phases. The baseline phase presented the average score of performance of 52% 
(SD=15.7). This is the highest averaged value from all the phases of this condition, but 
is not significantly higher than the rest. The variance is also very large. During the asso-
ciation, the variance of the performance scores was smaller compared to the baseline, 
the average score of performance was 48.5% (SD=9.7). The third phase, incongruent, 
presented the average performance score of 43.5% (SD=8.7). The last phase, congruent, 
has the largest variance in performance levels, the average level of performance was the 
same (43.5% (SD=16.1)) as during the previous phase, incongruent, but the variance 
was larger. 
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Fig. 5. Box-plots of the performance scores during all the conditions 

To compare these results (see Fig. 3) with the ones of the previous experiments 
(see Fig. 4), the current association phase was split in two parts (see Fig.6). 

 

Fig. 6. Splitting the association phase in order to compare the performance results 

We assume that in the first part we establish the association and the second part 
represents the testing. The average performance score of the newly obtained associa-
tion was 41.7% (SD=11.5), while the new testing phase had a very high the average 
score of 63.1% (SD=13), compared to the other phase.  

 

Fig. 7. The number of correct answers in the intervention conditions and the corresponding 
scores for the Effort/Importance scale and Perceived competence scale  
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Summarizing all the results that we have so far, brings us to the conclusion that 
there is no clear influence of light, but the encouraging feedback induces important 
effects. 

The feedback gradually becomes the most salient factor in the process of  
modulating cognitive performance. 

4 Conclusions  

The performance of the participants was not strongly influenced by the light interven-
tion. According to the questionnaire results their perceived competence was influ-
enced by positive reinforcement, which played the role of a mediator, leading to a 
higher performance during that phase.  The absence of the encouraging feedback  
during the next phase led to a decrease in performance and perceived competence. 

Regardless of the illumination setting or condition, the feedback seemed to be the 
most important factor when analyzing the performance scores.  

The feedback negativity is a component of the event-related brain potential that is 
elicited by feedback stimuli associated with unfavorable outcomes. We detected this 
feature, represented as the difference between correctly and incorrectly answered 
trials, at 250-300ms after the onset of the feedback. According to the grand average, 
this feature has the highest magnitude on the frontal cortex, as it is also presented in 
[14]. 

The order of the phases had a great impact on performance levels. We observed 
that regardless of the illumination setting, after association, when the positively biased 
feedback was introduced, the performance dropped, during the third phase. The order 
of the congruent phase before or after incongruent, had an impact on performance.   
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Abstract. Falls are dangerous, and unfortunately common for older adults. 
Dance! Don’t Fall is a game that assesses the quality of the user’s locomotion 
based on data from the accelerometer of a smartphone. By providing a form of 
exercise, the game may actually reduce fall risk as well as monitoring it. In this 
paper, we document the development of the prototype and a usability study with 
ten seniors that suggested the game is well suited to its primary users. 

Keywords: Fall risk assessment, older adults, mobile applications, physical  
activity, dance games. 

1 Introduction 

Falls are the most common cause of injury and injury-related death among older 
adults (65+), and one in three older adults suffers a fall every year [1]. To assess fall 
risk, doctors conduct clinical tests and administer questionnaires [2] [3]. However, 
these are rarely used before a fall occurs. Furthermore, the infrequency of the tests – 
once every couple of months – renders them ineffective for detecting sudden changes. 

One of the major factors contributing to fall risk is decreased strength and flexibili-
ty caused by a lack of physical activity [1], so counteracting the trend of increasingly 
sedentary lifestyles is a key way to prevent the occurrence of falls.  

Our systematic observation and interaction with older adults in a number of senior 
centers in Portugal has evidenced that older adults particularly enjoy dancing. How-
ever, they often are not able to dance because of a lack of specific opportunities, and 
the difficulty of fitting classes or events into their schedules [4]. Researchers at 
Fraunhofer Portugal (FhP) - AICOS developed Dance! Don’t Fall1 (DDF), a dance 
                                                           
1  Dance! Don’t Fall is available at  
http://dancedontfall.projects.fraunhofer.pt 
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game that monitors users’ fall risk, while potentially reducing it by promoting syste-
matic exercise. DDF builds upon previous technology developed for conducting and 
evaluating the gait test using a smartphone as a sensor that the user wears against his 
or her lower back [5]. This technology was developed with biomedical experts, and 
includes the clinical gait test and questionnaires in the smartphone. In the same way, 
DDF provides a means to administer clinical tests at home while it enables and moti-
vates users to exercise regularly, thereby reducing their risk of falling in the first 
place. The goal of this paper is to present the design and development of DDF as well 
as the major results of its usability evaluation. Although relevant, assessing the accu-
racy of the fall algorithm and the long-term efficacy of the game for health purposes 
are out of the scope of this paper. 

2 Related Work  

A number of topics contextualize this research, from serious games to games for 
health, and exergames. Serious games were first approached by Clark Abt, who ar-
gued that games should be used as educational tools because of their ability to com-
municate facts in an efficient way that motivates people to play and, consequently, 
learn [6]. Later, in the early 2000s, David Rejeski and Ben Sawyer founded the Se-
rious Game Initiative with the goal of spreading the use of games as a means of facing 
the challenges of the modern world [7]. Since then, serious games have been widely 
adopted within a variety of areas including military, government, education, business, 
politics, religion, art, and healthcare [8]. 

Associated with the Serious Games Initiative, games for health seek to improve 
healthcare through games that positively impact both mental and physical health [9], 
educating for healthy habits [11], training and diagnosing cognitive skills [12], com-
plying with rehabilitation programs [14], and improving motor skills [15].  

Exergames are a specific kind of game for health that combine exercise and gam-
ing [16]. By adding an element of fun to exercise, exergames can improve seniors’ 
physical and mental health [17]. Exergames have gained popularity with Nintendo’s 
Wii console, but the first commercially successful exergame was Dance Dance Revo-
lution (DDR), which began as an arcade game [18]. DDR players stand on a pad with 
colored arrows and step on them according to the visual cues on the screen. DDR and 
similar games are known to provide exercise, helping players become more physically 
fit and lose weight [19]. However, games like DDR are not adapted to older adults’ 
needs. They include fast-paced music, frequent jumping, and an overload of informa-
tion on the screen [20]. Moreover, dance pads not only limit the versatility of the 
stepping pattern, but are also dangerous, as their smooth surfaces can cause them to 
slip out from underneath players’ feet and lead to falls [16]. Nonetheless, DDR in-
spired researchers to explore dance games for seniors. Smith et al. developed a mod-
ified version of DDR and conducted tests with people aged 70+ [21]. Their results 
showed seniors were able to use the system, but their error rate grew as the step speed 
and rate increased. 

Dancetown is a PC-based exergame specifically designed for seniors. It is similar 
to DDR as it also uses a dance pad and requires players to follow on-screen cues. 
Dancetown also includes a rail that can be used with the pad to prevent falls. The 
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graphics accommodate weakening eyesight, and the game uses music from past gen-
erations that may appeal to older users [22]. Studies concluded that the exercise pro-
vided by Dancetown is an effective and fun alternative to traditional aerobic exercise; 
anecdotal findings also indicated that seniors enjoyed playing the game [23].  

Finally, DanceAlong [4] is a dance game targeted at seniors that allows players to 
do “Movioke” – that is, to dance along with scenes from popular movies. This system 
was tested at a community senior center and players responded enthusiastically, main-
ly due to the social component of the game.  

3 Process 

The DDF project followed an iterative and user-centered process with all phases oc-
curring in less than two months. It was the result of an effort of three different teams 
working concurrently: one designed the user interface, another developed the engine 
to recognize the dance moves, and another implemented the user interface and devel-
oped the communication system that enables multiplayer dances. 

The design team, comprised of user interface designers and an element with pre-
vious experience in dancing, began by conducting video and live observations of 
dances in order to identify the characteristics that a dance game system for older 
adults should have. These revealed that dancing is an activity naturally done together, 
choreographies are typically simple and repetitive, many dances are derived from 
traditional dances, and dance steps are in general smooth and small. Furthermore, 
clapping and producing sounds with the hands seem to be an important part of the 
dance, not only helping to keep the rhythm, but also stimulating enthusiasm. These 
were therefore the tenets for the design of DDF, which was initially prototyped on 
paper and then iteratively refined in terms of functionality, information architecture, 
and graphic design. In parallel, the design team also chose a song and began working 
on the dance choreography, which was also iteratively refined, based on feedback 
from the dance recognition engine team, to ensure the system would be able to detect 
the dance steps with a sufficient degree of accuracy.  

The dance recognition team’s work extended the previous work that enabled a 
smartphone to run a gait test [5]; this algorithm was extended to perceive backward 
and sideways steps in addition to forward steps. The team developed the rules for step 
detection by analyzing and testing accelerometer signals from smartphones to discov-
er patterns. The team used Audacity2 to analyze the music and define the times that 
steps should occur. They initially implemented the engine in Python using the SciPy 
open source library of scientific tools, and later ported it to the Android mobile  
operating system. 

 
 

                                                           
2  Audacity is an open-source software for recording, editing and analysing sound. For more 

information, refer to: www.audacity.sourceforge.net. 
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The third team began by imple-
menting the game’s user interfaces and 
basic functionalities. Once the dance 
engine reached a functional level, it 
was incorporated into the main Andro-
id application and synchronized with 
the dance choreography for further 
testing. At this time, the development 
team focused its resources on the de-
velopment of the multiplayer compo-
nent, which was iteratively improved 
until it was stable and could provide 
the desired functionality without addi-
tional configurations. 

4 The DDF System 

DDF is a Game for Health that monitors fall risk. To play DDF, the user wears a 
smartphone on the lower back that tracks his or her dance steps. As users perform 
choreographed moves along with audio or video dance instructions, the system’s al-
gorithms analyze the smartphone’s accelerometer data to give feedback on both dance 
performance and risk of falling. The game gives feedback on four aspects of the dance 
performance: accuracy, timing, stability, and grooviness. For every dance, the score 
for each of these factors can be LOW, OK, or HIGH. The fall risk assessment is based 
on the quality of the user’s locomotion and is complemented by a brief questionnaire, 
presented when a problem appears to exist.  

There are three ways to play DDF: Learn, Perform, and Compete. In Learn, a vir-
tual dance coach teaches the individual dance steps and then outlines the choreogra-
phy. After having learned the choreography, the user may choose Perform to dance 
alone, or Compete to challenge other friends to a group dance contest. DDF currently 
features one song and dance, which is based on a simple line dance choreography3. As 
discussed below, more dances should be included in the future. 

4.1 Physical Architecture 

DDF only requires one smartphone to play the game, but when other Android devices 
are nearby they can be connected to enhance the user experience and promote social 
play (Fig. 2). When the game is launched and the device is connected to a Wi-Fi net-
work, the system automatically searches the network for other compatible devices 
                                                           
3  The team chose a line dance - commonly associated with country-western music and featur-

ing a group of people facing the same direction and performing the same sequence of steps - 
because the application was intended for presentation at the Mobile Apps Showdown of the 
Consumer Electronics Show and thus targeted at an American market; furthermore, line 
dances easily accommodate the characteristics deemed necessary for a dance for seniors. 

Fig. 1. Multiple devices can be used to play DDF 
using a Wi-Fi connection 
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(Android smartphones or tablets and Google TVs). The user may opt to run additional 
devices in either dance monitor or dance coach mode, depending on the number and 
type of devices present. 

 

Fig. 2. The processed accelerometer signal is 
compared to the choreography to score a dance. 

Fig. 3. Participants almost exclusively 
relied on the silhouette to follow the 
dance. 

4.2 Game Modes: Dance Monitor and Dance Coach 

The dance monitor is the default mode that includes the game’s core mechanics. It 
requires one smartphone running DDF and is able to detect the steps and play instruc-
tions. In addition, the application detects other players in the network and establishes 
a connection, allowing several players to play simultaneously. 

The dance coach mode is an extension that enables players to watch a synchro-
nized dance instructor on another screen. This mode can run on another smartphone, 
but works best on a tablet or Google TV. Devices running this mode synchronize with 
the players’ smartphones and present the players’ ranking at the end of a dance.  

4.3 Dance Recognition Engine 

The dance monitor mode is powered by the dance recognition engine, which outputs 
the user’s evaluation based on the acceleration of the pelvis, a music track, and a 
technical definition of the corresponding choreography (comprised of the parts of the 
dance that are walking-like steps forward, backward, and to the sides). The dance 
recognition engine contains three modules: a signal processing module, a step detec-
tion module, and a dance performance evaluator module. The output of each module 
respectively serves as the input for the next module (Fig. 3). 

The signal-processing module calibrates the raw accelerometer signals, enabling 
the alignment of the phone’s axis with directions relative to the body. Afterwards, a 
low pass filter with cut-off based on the music frequency is applied, both eliminating 
the signal’s noise and emphasizing the components corresponding to steps. The out-
put of this module is then input to the step detection module. 
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The step detection module considers different components of the acceleration de-
pending on the direction of movement being performed and outputs a list of perceived 
steps, each characterized by a timestamp and a direction. 

The dance performance evaluator receives a list of steps and compares it to the 
choreography, which is composed of pairs consisting of a timestamp (the time from 
the start of the track when the step is supposed to take place) and a direction (the in-
tended movement for the step). Based on the results of this comparison, the module 
outputs four parameters indicating the performance of the dance:  

• Accuracy – the number of correct steps divided by the number of expected steps, a 
correct step being a step with the same direction as the closest step within a 500 
millisecond window in the choreography;  

• Timing – the delay between the step’s timestamp and the music’s time;  
• Grooviness – the intuitive sense of dancing in time, evaluated by a combination of 

pelvic sway and timing; and  
• Stability – a measure of how much and how quickly the user performs lateral pel-

vic displacement.  

5 Usability Evaluation of Dance! Don’t Fall 

The authors conducted a usability study of DDF to identify obstacles to using the 
system, evaluate the ease of learning and performing the dance, discover users’ feel-
ings about the experience, and determine key areas of future research. Ten partici-
pants (8 female, 2 male) from senior centers around the city of Porto, Portugal with 
ages ranging from 60-89 (average 74.2; median 74) took part in the study. 

The study took place in the Assisted Living Laboratory at FhP - AICOS. The DDF 
application ran on both a Google TV and two Android smartphones that the partici-
pant and moderator used. The mobile application had been translated into Portuguese, 
the language used to conduct the tests.  

Three team members facilitated the tests. One served as the moderator, giving the 
introduction and directions, participating in the dance competitions, and generally 
leading participants through the tests. The other facilitators observed and recorded the 
participants’ behavior and comments; one observer also administered a debriefing 
interview at the end of the test. One camera recorded the tests from an angle behind 
the dancers, capturing the display on the TV. Another was attached to the TV and 
recorded the front view of the dancers, providing a record of the participants’ facial 
expressions and body language. 

The test sessions lasted about 45-60 minutes and consisted of an introduction ex-
plaining the test and procedures; six tasks, instructed to the participant one at a time; a 
debriefing interview; and a questionnaire about the participant’s health. The tasks 
required participants to utilize the primary functions of the system, namely: i) input 
the necessary personal data; ii) accept a dance invitation; iii) comprehend the dance 
evaluation results; iv) start a dance alone; and v) invite another player to dance. In a 
normal test situation, each participant performed the dance three times. 
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6 Findings and Recommendations 

Overall, the participants’ reaction to the game was positive and they performed well, 
but the tests did reveal several ways to improve DDF. This section describes the main 
findings of the usability study. 

DDF Is Relevant to the Target Audience. Participants confirmed the two key as-
sumptions behind the game: falls are a frequent issue, and dance is a form of exercise 
older adults are fond of. Seven had had a fall and feared falling again; the others knew 
someone who had fallen. All participants stated they liked dancing very much. Eight 
indicated that they had danced often when younger, while the remaining two said they 
would like to learn now even though they had not danced much in the past. When 
inquired about the game itself, nine participants indicated they liked the game very 
much and would play it at home. The remaining participant did not like the dance 
style. To address this issue, a future version of the system should offer more variety, 
namely in terms of styles and levels of difficulty. Besides keeping users interested in 
the game, offering more difficult dances may also encourage improvement over time 
and make the game appeal to users with a wider range of fitness levels.  

The User Interface Should Be Improved. The participants’ ability to learn and per-
form the dance varied. Several participants performed the dance well from the begin-
ning, some improved markedly with each attempt, while others still could not follow 
the steps after several attempts. To some extent the variation was caused by differenc-
es in physical ability – for instance, three participants turned around so slowly that 
they fell behind in the dance. But it also seemed to be a matter of the participants’ 
ability to understand DDF’s user interface. Nine participants reported they focused 
solely on the silhouetted demonstrating the dance, ignoring the icons and counter that 
indicate the current step and the number of times to do it, as well as advising the sub-
sequent step (Fig. 4). This probably indicates an information overload users had when 
trying to simultaneously interpret the movements of the figure, reproduce them, and 
attempt to anticipate what to do next. It was not always easy to interpret and mimic 
the movements of the figure. One participant confused backward and forward steps, 
not knowing if she was watching the silhouette from the front or the back. Seven par-
ticipants made errors with the left and right side steps, not sure whether they should 
mirror the figure or step to their own left or right. Six participants had difficulties 
performing a step that requires the player to clap and tap their foot at the same time – 
five only clapped, while one clapped and tapped on opposite beats. Presumably the 
errors were not due to the difficulty of actually performing the step, but because the 
participants did not notice the detail of the tapping foot. In addition, to a more clear 
visual representation of the steps, the inclusion of verbal instructions should be as-
sessed as a way to improve the efficacy in conveying information about the dance 
steps. This issue, as well as a few others identified in the evaluation (e.g. unclear but-
ton labels or problems inputting data), should be addressed in a future version of the 
game. 
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DDF Should Emphasize Positive Feedback and Accommodate Beginners. The 
observers noted that the moderator strayed from the script to encourage and reassure 
participants: i) after a given participant received low scores (when the moderator typi-
cally commented that the participant had done very well considering he or she had 
just begun learning the dance), and ii) after the participant completed the fall risk 
questionnaire and received a risk warning (when the moderator assured the participant 
it was nothing to worry about). Encouraging comments should probably be incorpo-
rated in the user interface itself. In total, six participants received low scores and were 
invited to take the clinical questionnaire. This does not mean that participants had a 
particularly poor performance, but it shows that the system does not account for the 
time required to learn the dance. One way to address this is adding the ability to play 
the dance as a trial that does not receive a score. 

7 Discussion 

Despite the potential for improvement in the areas discussed above, DDF has several 
key advantages to other dance games, particularly for older adults. First of all, DDF 
does not require the purchase of a video game console or physical game media. Any-
one who owns a smartphone meeting the minimum requirements can download and 
play the game at anytime, anywhere. It can be argued that gaming consoles are begin-
ning to make their way into seniors’ homes, but our experience with this audience 
makes us believe that the majority will see them as youth-oriented technology. Smart-
phones, on the other hand, are becoming more popular and have already conquered 
the pockets of 22% of U.S. seniors (65+) [24]. For them, DDF significantly lower in 
not only the effort but also the commitment required to try a new physical activity. 
Since the smartphone is a multi-purpose device, it has better chances of being wel-
comed by older adults that believe they are too old to play games. Likewise, DDF 
accounts for the fact that Google TVs are still fairly uncommon by enabling Android 
tablets and smartphones to act as the dance coach component in the absence of a 
Google TV. Furthermore, many of these devices can also duplicate the dance coach 
display onto a regular television set through HDMI. By supporting connection with 
large screened devices, DDF transforms itself into a more traditional gaming system 
and encourages players to dance as a group around the display. While DDF’s dances 
cannot involve movements that are coordinated as pairs – since the system cannot 
distinguish multiple actors with different sets of movements – this form of group 
dancing is well-suited to older adults, since not having a partner is one factor that 
often prevents them from participating in dance activities [4]. Moreover, a study of a 
projection-based dance system for older adults revealed that participants enjoyed the 
feeling of dancing with others even though they did not have a designated partner [4].  

A key advantage of DDF is the hands-free dance interaction made possible by le-
veraging the smartphone as a wearable sensor, which provides a more enjoyable and 
usable experience than games that require the use of an external control device. The 
most appealing aspect of the new generation of gaming consoles is the use of move-
ment to control the game. However, both Nintendo Wii and PlayStation Move still 
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use a remote that players hold while playing, limiting the performance of certain ges-
tures. In a study of a digital television exercise application, the participants enjoyed 
the exercise activities but were distracted by issues related to manipulation of the 
control device [25]. Likewise, currently available dance games often use game pads 
that, as stated above, are limiting and possibly dangerous. Microsoft’s Kinect and the 
PlayStation Eye enable users to play without a physical controller. In this vein, DDF 
players wear the smartphone in a belt, giving them more freedom of movement. 

8 Conclusions and Future Work 

The usability study produced favorable results, indicating that DDF’s objectives align 
with the goals of the intended primary audience. The evaluation also revealed ways to 
make the game more effective; but participants successfully completed tasks, enjoyed 
themselves, and wanted to play again regardless. Overall, the system proved a suc-
cessful way to utilize the smartphone as a sensor for a dance game as well as assess 
fall risk through a gait test and questionnaire.  

An important subject missing from this evaluation is the question of the game’s 
health aims. How accurately does the system assess the user’s dance performance, 
and how directly does this translate into fall risk? Moreover, what is the impact over 
time? Do users’ results tend to improve as they play more, and does this truly de-
crease their risk of falling? Such questions are outside the scope of this evaluation but 
should be addressed in the future, through a more detailed, controlled, long-term 
study, planned with the collaboration of medical professionals. 
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Abstract. The field of Augmented Cognition (AugCog) has evolved over the 
past decade from its origins in the Defense Advanced Research Projects Agency 
(DARPA)-funded research program, emphasizing modulation of closed-loop 
human-computer interactions within operational environments, to address a 
broader scope of domains, contexts, and science and technology (S&T) chal-
lenges.  Among these are challenges related to the underlying theoretical and 
empirical research questions, as well as the application of advances in the field 
within contexts such as training and education.  This paper summarizes a series 
of ongoing research and development (R&D) efforts aimed at applying an 
AugCog-inspired framework to enhance both human-technology and human-
human interactions within a variety of training and operational domains.  
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1 Overview 

The field of Augmented Cognition (AugCog) has evolved over the past decade from 
its origins in the Defense Advanced Research Projects Agency (DARPA)-funded 
Improving Warfighter Information Intake Under Stress (IWIIUS) research program, 
emphasizing modulation of closed-loop human-computer interactions within opera-
tional environments [1, 2], to address a broader scope of domains, contexts, and 
science and technology (S&T) challenges.  Among these are challenges related to the 
underlying theoretical and empirical research questions, as well as the application of 
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advances in the field within contexts such as training and education.  The goal of 
AugCog is to address the inherent limitations of human operators related to cognitive 
bottlenecks in information processing such as attention, sensory input, WM, and ex-
ecutive function; and emphasizes real-time monitoring of user cognitive state via 
behavioral and physiological measures to improve performance through adaptive and 
augmented human computer interfaces [3].  As data-rich environments become in-
creasingly prevalent, the need for intelligent information management to overcome 
human information processing limitations is likely to increase within a wide variety of 
domains such as medicine, education, and information analysis.   Additionally, while 
AugCog methodologies have been applied to domains involving teams of humans, the 
method of augmentation has primarily been focused on physiologically-based mod-
ulation of human-technology interaction [4].  Ongoing research and development 
(R&D) efforts have begun to emphasize transparency and identical elements in hu-
man-robot and human-human interactions, supporting seamless integration of multi-
agent human-robot teams, and applying AugCog principles to automated modality 
selection of information exchange among human team members and between human-
robot team members.  This paper summarizes a series of ongoing research and devel-
opment R&D efforts aimed at applying an AugCog-inspired framework to enhance 
both human-technology and human-human interactions across a variety of training 
and operational domains. 

2 AugCog-Inspired Human-Technology Interaction  

Interaction design principles and practices are grounded in both theory and research, 
guided by academic disciplines such as cognitive psychology and engineering, as well 
as interdisciplinary fields such as Human Computer Interaction (HCI), human factors, 
and cognitive ergonomics.  The application of AugCog-inspired interaction prin-
ciples presents a unique paradigmatic shift in the design and use of such products 
within both training and operational domains. 

2.1 AugCog-Inspired Virtual Training Environment Design 

Vice, Lathan, Lockerd, & Hitt [5] proposed a novel, AugCog-inspired methodology 
for determining requirements for virtual environment (VE) design using psychophysi-
ological measures to determine which aspects of VE fidelity and specific VE fidelity 
configurations would have the highest impact on transfer of training (TOT).  Initial 
validation for this Perceptually-informed Virtual Environment (PerceiVE) design 
methodology has been demonstrated within a series of empirical studies, indicating 
that psychophysiological response, and in particular event related potentials (ERPs), 
may provide a more sensitive index than performance-based measures to changes 
within underlying cognitive processes occurring during training in VEs, and therefore 
may be better suited than traditional metrics for highlighting critical fidelity require-
ments to optimize TOT [6,7]. To better understand the implications for transfer to real 
world task conditions, Vice, Skinner, Berka, Reinerman-Jones, Barber, Pojman, et al. 
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[8] compared behavioral and neurological response data between a real world percep-
tual skills training task and its VE counterpart with varying levels of fidelity.  Results 
indicated that the relationship between physiological response to various VE fidelity 
configurations and physiological response within an equivalent real world task may 
be modulated not only by visual feature recognition and processing, but also by high-
er-order cognitive processes, as evidenced by ERP.  Understanding how fidelity vari-
ations in VE-based tasks lead to the most efficient processing will inform designers as 
to which components are responsible for the strongest impartation of skills and  
ultimately optimize transfer of training [9]. 

Additional simulation-based training applications that are ripe for exploration us-
ing this methodology include remotely piloted aircraft (RPA) training and medical 
modeling and simulation.  Medical simulation-based training reduces risks to human 
subjects and recues the need for cadaveric and live animal models, supporting training 
and maintenance of psychomotor skills such as tissue and tool manipulation; cogni-
tive skills related to decision making, declarative and procedural knowledge, and 
situational awareness; and perceptual skills such as visual feature detection and haptic 
perception.  As in other high-risk training environments, it is the common assumption 
that a positive linear correlation exists between VE fidelity and skills transfer.  How-
ever, training on seemingly low fidelity training systems such as the Fundamentals of 
Laparoscopic Surgery (FLS) video box trainer has repeatedly been demonstrated to 
translate to complex skills such as interoperative surgical performance, and has be-
come a credentialing criterion for many hospitals [10].  Thus, utilizing the PerceiVE 
methodology to identify medical simulation design requirements may result in opti-
mized skills instruction, enhancing transfer to real-world medical scenarios.    

Skinner, Vice, Berka, & Tan [11] expanded upon this concept, proposing a frame-
work for using psychophysiological measures and feedback within interactive training 
environments to develop a greater understanding of the processes underlying cross-
cultural decision-making and methods for training these critical skills; including  
detection of variations in information processing and cognitive biases that impact 
decision-making, interaction within explorable environments, and presentation of 
relevant cues to facilitate immersion and perspective-taking.  This framework sug-
gests that, in particular, neurophysiological metrics such as EEG have the potential to 
provide an objective measure of cognitive processes involved in attention, perception, 
and decision-making related to information processing biases; and that eyetracking 
may support recognition and mitigation of such biases via feedforward and feedback 
scan patterns, highlighting culturally-relevant perceptual biases. Additionally, this 
framework incorporates the use of interactive virtual training environments capable of 
dynamically adapting instruction to individuals based on specific biases exhibited, as 
well as real-time bias assessment and mitigation. 

2.2 AugCog-Inspired Human-Robot Interaction  

In addition to simulation-based applications, current research and development is 
seeking to apply a similar methodology within the context of human-robot interaction 
(HRI).  Woods [12] compared the introduction of automation to a human operated 
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task to adding another team member who does not necessarily speak the same lan-
guage and share the same cultural assumptions.  Thus, an interface must act as a 
bridge or translator between humans and automated systems by providing connections 
and mappings between related concepts in a manner that is partially transparent to the 
individual human and robot agents.  While significant advances are continually made 
within the domains of robotics and artificial intelligence (AI), the design of robotic 
control interfaces lacks a validated and scientifically-grounded methodological ap-
proach; and currently interface design tends to be an afterthought following develop-
ment of unmanned systems, with minimal consideration of design and assessment 
methodologies relying on measures other than those that are purely behaviorally and 
ergonomically based.   

Significant research and development has been invested into physiological sensor-
based robot [13] and prosthetic [14, 15] command and control.  The application of 
AugCog principles would expand on this, using physiological signals to measure 
cognitive states, classify error patterns, and predict cognitive performance degradation 
within the context of HRI.  Vice, Lockerd, and Lathan [16] proposed an AugCog-
based approach to multi-modal interface design and implementation, and research 
conducted under the IWIIUS program demonstrated the use of multi-modal cues and 
modality switching as a an effective mitigation technique for UAV operations [2]. In 
recent years, adaptive interfaces have become increasingly prevalent [17], and more 
specifically, neuroadaptive interfaces are being developed to change in response to 
meaningful variations in a human user’s cognitive and/or emotional states [18]. How-
ever, while psychophysiological methods have been investigated in the realm of 
Adaptive Automation (AA), the vast majority of this work has been oriented on earli-
er stages of automation (SOA) involved with information acquisition, information 
analysis, and diagnostic decision support as opposed to the direct action components 
of unmanned system control (for review see [19]).  

Parasuraman, Bahri, Deaton, Morrison, and Barnes [20] identified five primary 
categories of AA implementation techniques: 1) critical events, 2) operator perfor-
mance measurement, 3) operator physiological assessment, 4) modeling, and 5)  
hybrid methods combining one or more of these techniques.  Fidopiastis et al. [21] 
highlight the fact that of these, operator psychophysiological assessment is the only 
technique that supports unobtrusive real-time operator internal state monitoring with-
out task interruption.  Furthermore, this technique may provide the most direct and 
objective means for assessing and guiding interaction; the dynamic real-time aspects 
of this methodology preclude the disruptive influence of subjective self-report instru-
ments and secondary task assessments in complex and highly stressful environments 
while providing temporal resolution on the order of seconds or milliseconds.  Byrne 
and Parasuraman [22] suggest that psychophysiology has two complementary roles 
within AA research, including assessment of the effects of different forms of automa-
tion and the provision of information about the operator that can be integrated with 
performance measurement and operator modeling to support automation regula-
tion.  The advantages posed by the use of non-invasive psychophysiological mea-
surement as a cueing strategy for AA are substantial.  While psychophysiological 
measures may be thought to be most useful for detecting and preventing cognitive 
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overload, Byrne and Parasuraman [22] have asserted that psychophysiological meas-
ures may prove especially useful in the prevention of performance deterioration with-
in underload conditions, which often accompany automation.  So-called OOTL (Out 
Of The Loop) problems have been shown to arise due to human vigilance decrements 
[23], human complacency [24], and human loss of SA [25].  Thus, as described by 
Fidopiastis et al. [21], psychophysiologically-based AA has the potential to be applied 
within high-stress environments in order to alleviate operator workload and fatigue as 
needed, automating select activities until an operator becomes underloaded and re-
quires additional tasking in order to maintain situation awareness (SA).   

The highly structured and quantifiable nature of these measurements also provides 
a crisp perspective of an operator’s cognitive state that can control for individual dif-
ferences via baseline comparison and minimize the influence of ego and performance 
bias in risk intensive task / mission sets that require a high degree of confidence as 
well as technical competence and physical prowess. Fidopiastis et al. [21] highlight 
the fact that individual differences such as spatial ability and perceived attentional 
control (PAC) are critical within this context, as demonstrated previously by Chen & 
Terrence [26]. 

Parasuraman, Barnes, Cosenzo, and Mulgund [27] specifically demonstrated the 
effectiveness of AA for supervision of multiple unmanned vehicles.  Parasuraman 
[28] demonstrated the feasibility of matching cardiovascular and cerebral bloodflow-
based measures of human mental workload to AA, and more recently, Fidopiastis et 
al. [21] demonstrated the feasibility of an eye fixation-based workload metric for AA 
in a simulated robotic control task.  Critical to these efforts are the development of 
reliable measures of cognitive state and performance degradation caused not only by 
cognitive workload, but also by factors such as fatigue and stress, which may require 
more sophisticated and sensitive metrics, as well as the integration of various indic-
es.  Combining psychophysiological measures with behavioral measures such as vali-
dated task battery performance will support the development of hybrid metrics of 
cognitive function, which amount to more than the sum of their constituent parts, 
providing more sensitive indices of cognitive state. 

Under a current R&D effort our multidisciplinary research team has begun devel-
opment and validation of a methodology and associated technology tool to support the 
utilization of multiple, heterogeneous metrics, including operator psychophysiological 
measures, to drive robotic control interface design and real-time interactions with 
unmanned systems.  This Dynamic Robot Operator Interface Design (DROID) As-
sessment, Guidance, and Engineering Tool (AGENT) seeks to support instantiation of 
intelligent sliding autonomy, modality switching, and single versus multi-operator 
control and feedback offloading. An effective sliding autonomy system should deter-
mine the level of individual component autonomy based on maximizing the probabili-
ty of task or mission accomplishment, taking into account not only operator physical 
and mental state, but also environmental and task or domain-specific factors.  This is 
critical within the context of military operations in which factors such as rules of en-
gagement, standard operating procedures, and operational tempo may dictate prioriti-
zation of tasking and the role of automation, as well as devastating environmental 
conditions that lie beyond the capabilities and vulnerabilities of human operators.  
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Finally, as robotic systems increase in complexity beyond anthro-centric limitations to 
function in such environments, it is equally clear that human cognitive functions are 
ill suited to do so without the aid of automated modules throughout the spectrum of 
control.  

2.3 Environmental Factors 

In addition to incorporating physiological indices of operator state within human-
technology interaction design, the context in which such metrics and methodologies 
are applied must be considered, particularly within military operational environ-
ments.  A host of factors must be considered beyond cognitive state and information 
processing limitations, including physical demands on the operator and unique envi-
ronmental conditions.  For example, motion sickness can result from teleoperation 
tasks, particularly in instances in which the operator is required to teleoperate a robot-
ic asset while in a moving vehicle or on a ship, generating a mismatch between the 
perceived motion of the unmanned asset and the motion experienced directly by the 
operator within his or her own environment.  AugCog-based systems can be used to 
gauge the physiological effects of the motion experienced both physically and virtual-
ly by the operator.  Ideally, a combination of objective and subjective measures could 
be used to develop validated, multi-dimensional algorithms and constructs to enable 
effective assessment, prediction, and prevention of motion-induced human perfor-
mance degradation within a multitude of training and operational environments, in-
cluding both apparent motion, such as that associated with simulation-based training 
and teleoperation of remote unmanned vehicles; and actual motion within ground, sea, 
air, and spaceflight vehicles. 

Within the context of naval ship-based operations, ship motion is often a primary 
contributor to human performance degradation and failures across a wide variety of 
operational tasks.  While motion sickness has been studied extensively, much less 
research has been dedicated to motion-induced fatigue (e.g., Sopite syndrome symp-
tomology, prevention, effects on performance, and mitigation), and to the complex 
interactions between motion, fatigue, and stress.  Additionally, few studies have ex-
plored the constellation of psychophysiological responses associated with motion 
sickness or the time course of motion sickness, which is non-linear. Neurophysiologi-
cal metrics have the potential to identify individual differences within a particular task 
environment, determine metrics that can predict the onset of motion sickness or fati-
gue, and provide methods for offloading tasks in real-time prior to human perfor-
mance degradation within the operational environment.  

A current effort is being undertaken to design, develop, and validate a Portable  
Automated Sensor Suite (PASS) Motion-induced User Symptomology Toolkit for 
Evaluating Readiness (MUSTER) to enable unobtrusive, real-time capture, synchro-
nization, and analysis of environmental, physiological, physical, and subjective meas-
ures associated with motion-induced performance degradation within sea-based task 
environments.  This multi-dimensional assessment technology will provide a valua-
ble tool for researchers investigating the effects of motion-induced mishaps, fatigue, 
and sickness over time, and will also provide a deployable tool for operational use in  
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determining “fitness for duty”.  For example, one instantiation of the proposed tech-
nology might include a brief set of questions related to motion sickness and fatigue, 
brief cognitive and psychomotor tests, and the ability to do a rapid physiological sen-
sor reading.  Thus, crewmembers could be assessed prior to beginning a shift or prior 
to conducting high-risk tasks (e.g., on an amphibious vehicle before conducting an 
amphibious assault) to assess fitness for duty.   The embedded algorithms will be 
developed to flag at-risk individuals, enabling commanding officers to make informed 
decisions regarding crew shifts and job assignments, and to pull individuals that do 
not “pass muster” from duty in order to prevent catastrophic performance degradation 
and errors.   

3 AugCog-Inspired Human-Human Interaction  

3.1 Cognitive Coupling in Dyads 

In addition to modulating human-technology interactions, AugCog principles are 
beginning to be applied to direct interactions between humans.  Stephens, Silbert, 
and Hasson  [29] conducted a groundbreaking experiment in which speaker/listener 
dyads were monitored simultaneously using functional magnetic resonance imaging 
(fMRI) to assess neural synchronies between individuals under varied conditions of 
story comprehension.  The results not only provided evidence for detectable spatial 
and temporal neural coupling in which the listener’s brain activity mirrors the speak-
er’s, but also demonstrated that the extent of coupling correlated to the level of story 
comprehension, and demonstrated that this synchronization ceases under conditions 
of poor comprehension.  During high levels of comprehension, the listeners exhibited 
predictive anticipatory patterns, with greater the anticipatory speaker–listener coupl-
ing corresponding to greater understanding.  Stephens and his colleagues argue that 
this synchronization between production and comprehension-based processes serves 
as a mechanism by which brains convey information [29], and assert that in many 
cases the neural processes between brains are coupled, leading to complex synchro-
nized behaviors which must be studied in combination, rather than in isolation in 
order to be understood [30].  Such brain-to-brain coupling is particularly relevant 
within the context of dyads in which two humans must collaborate to complete joint 
tasks, as well as within the context of impartition of knowledge from one individual to 
another for the purposes of training.  Under a current research effort, our team is 
investigating the use of EEG-based cognitive coupling metrics for an expert/tutor 
teaching a novice/tutee to complete a complex computer-based task.    

3.2 Team Neurodynamics 

Recent studies have also shown tremendous promise for the development of  
EEG-based measures of team cognitive dynamics.  For example, Stevens, Galloway, 
Berka, and Sprang [31] modeled changes in EEG-derived measures of cognitive 
workload, engagement, and distraction, and explored using neurophysiologic collabo-
ration patterns as an approach for developing a deeper understanding of how teams 
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collaborate when solving time-critical, complex real-world problems. The resulting 
cognitive teamwork patterns, termed neural synchronies, were different across six 
different teams. Stevens, Galloway, Berka, and Behenman [32] suggest that neural 
synchrony expression may be a reflection of the internal state of team members and of 
the team as a whole.  These studies indicate that non-random patterns of neurophysi-
ologic synchronies can be observed across teams and members of a team when they 
are engaged in problem solving.  This process has been applied to a problem-solving 
task with students working in teams, as well as navy officers (experts) and officers-in-
training (novices) completing a submarine navigation task.  Distinct differences were 
found for expert versus novice neurodynamic synchronies, and novice team neural 
synchrony metrics were shown to improve (become more like the expert team pat-
terns) over time, providing a potential metric for knowledge and skill acquisition.  
Furthermore, dynamic detection and classification of individual cognitive states as 
they relate to team neurocognitive dynamics and performance could be used to identi-
fy team members that are not in sync in real time, alerting team leaders to potential 
underperformance and poor communication in order to support mitigation of team 
performance degradation via technology-based and interpersonal interventions.  This 
paradigm could be applied across teams of individuals that are both co-located and 
remotely located, and may in fact provide the most benefit to teams of individuals 
collaborating over distances in which critical communication elements such as  
nonverbal cues cannot be relied upon.  A vast variety of critical team interaction 
domains ranging from military operations to surgical teams serve to benefit from such 
a paradigm.  
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Abstract. Brain-computer interface technology has experienced a rapid evolution 
over recent years. Recent studies have demonstrated the feasibility of detecting 
the presence or absence of targets in visual imagery from the neural response 
alone. Classification accuracy persists even when the imagery is presented rapid-
ly. While this capability offers significant promise for applications that require 
humans to process large volumes of imagery, it remains unclear how well this ap-
proach will translate to more real-world scenarios. To explore the viability of au-
tomated neural processing in an Army-relevant operational context, we designed 
and built a simulation environment based on a ground vehicle crewstation. Here, 
we describe the process of integrating and testing the automated neural processing 
capability within this simulation environment. Our results indicate the potential 
for significant benefits to be realized by incorporating brain-computer interface 
technology into future Army systems.  

Keywords: Simulator, Brain-Computer Interface (BCI), Visual Search. 

1 Introduction 

Over the past decade, there has been a substantial improvement in the accuracy of 
neural signal classification algorithms. One notable area is in the classification of the 
neural response, as measured via electroencephalography (EEG), elicited by an im-
age. It has been well established that there is a significant difference in the evoked 
response between images containing a task-relevant target and images without a target  
[1, 2]. This difference persists even when the image is visible for only a few millise-
conds [3]. However, only recently have signal processing algorithms and techniques 
been sophisticated enough to accurately classify the EEG signal after a single presen-
tation of the image. Initial applications of this technology were for a rapid review or 
triage of imagery without requiring a manual response to each image [4]. Using a 
paradigm of rapid image presentation, called rapid serial visual presentation (RSVP), 
various groups have shown that this approach can identify targets in large ensembles 
of images an order of magnitude faster than a manual search [5, 6]. However, these 
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initial applications typically used obvious target objects and the only task required of 
the operator was to focus on the image presentation. 

The main goal of this Army-industry collaboration (funded through the Institute of 
Collaborative Biotechnologies 6.2 Translational Research Program) was to develop a 
simulation environment to test the performance of state-of-the-art neural classification 
techniques in a more operational context. The first stage in developing this simulation 
environment focused on determining the optimal parameters for classification of the 
neural response in an RSVP paradigm. The parameters investigated included target 
presentation properties (e.g., size, eccentricity and rate [7]),  the effect of changes in 
attentional state on classification accuracy [8], and the effect of operator multitasking 
on system performance [9]. The second stage of development, described here, focused 
on the specific application of the automated neural processing to an Army relevant 
system. Our intent was to replace the manual visual search task currently utilized to 
both identify targets and maintain situational awareness in Manned-Ground Vehicles 
(MGV). Specifically, the RSVP paradigm, in combination with automated classifica-
tion of the neural response, would replace the manual control of an imaging sensor on 
the vehicle. Therefore, instead of an operator manipulating the pan-tilt-zoom (PTZ) 
camera to scan the environment, images of the vehicle’s surroundings, containing 
potential targets, would be rapidly presented and subsequently sorted based on the 
operator’s neural response. The operator could then review the most relevant images 
for target confirmation. 

This second stage of development consisted of two elements. First, we sought to 
quantify the potential tradeoff of replacing a manual search with RSVP. To accom-
plish this we conducted an experiment to compare the time-to-target and accuracy of 
manual search and RSVP paradigms. Second, we developed a simulation environment 
based on the MGV crewstation. This simulator was designed to switch between the 
two paradigms and was fully integrated with a real-time EEG processing system. In 
addition, the simulator incorporated multitasking aspects of the crewstation, including 
auditory and text communications. Together, these results demonstrate the feasibility 
and potential benefits of integrating automated neural processing technology into 
Army systems. 

2 Visual Search and RSVP 

Sixteen participants were recruited for this experiment, 10 from the general popula-
tion and six from the project collaborators. They ranged in age from 23 to 55 (mean = 
34.8) and included 14 males. Thirteen of the participants were right handed, two were 
left handed and one was ambidextrous. All individuals recruited from the general 
population received compensation of $20 per hour. The voluntary, fully informed 
consent of the persons used in this research was obtained as required by Title 32, Part 
219 of the Code of Federal Regulations and Army Regulation 70-25. The investigator 
has adhered to the policies for the protection of human subjects as prescribed in AR 
70-25. 
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In this experiment, participants alternated between manual visual search and RSVP 
tasks. In the manual visual search blocks they were required to move a controllable 
portal (PTZ) over large scenes (1920 x 1080 pixel images) of a simulated urban envi-
ronment. Images were screen captures from a popular video game (Call of Duty®, 
Activision Publishing Inc). Above this portal was a low resolution context display of 
the entire scene with an indicator as to the current location of the portal. The portal 
was a circular vignette (radius of 150 pixels) initially revealing approximately 3% of 
the large image; but this could be either increased or decreased based on the zoom 
factor. Participants were required to use the keyboard (arrow keys, “+”, “-“) to move 
the portal and scan the scene for a target (a soldier with a gun). Target identification 
was indicated by a key press (“t”). Likewise, if no target was found, participants ter-
minated the search with an alternate key press (“n”). The initial placement of the por-
tal was randomly distributed within a given window of 500 pixels around the target. 
In most cases, the target was not visible in the context display and required the search 
portal to be detected. The context display served primarily to influence the partici-
pant’s search path and provide information on likely target locations (doors, windows, 
cars, etc.). 

In the RSVP blocks participants were presented with 100 x 100 pixel image chips 
representing a region of interest (ROI) from a high resolution image. These ROIs 
represented salient locations within the image. While the ROIs were manually  
selected for this experiment, in a real-world application they would be selected by 
pre-filtering computer vision algorithm [10, 11]. ROIs were displayed at 2 Hz (500 
milliseconds), and participants were required to press a button (spacebar) when they 
saw a target. Since the purpose of the RSVP blocks was to estimate accuracy, only 10 
ROIs were included in each RSVP block with a maximum of one target ROI per 
block. The likelihood of a target was 50 percent for both visual search and RSVP 
blocks. Participants completed 15 blocks of each task in alternating succession. 

A summary of the results for 16 participants is shown in figure 1. As expected, the 
search time for target-present images was significantly shorter than for target-absent 
(p < 0.001; Wilcoxon rank sum test), 18 seconds versus 60 seconds. While the accu-
racy for the manual search component was high (mean total accuracy = 0.85), it was 
substantially lower than for the RSVP component (mean total accuracy = 0.99). There 
was a significant correlation across participants in accuracy between the search and 
RSVP components (r = 0.62, p = 0.01; Pearson’s correlation coefficient). For this 
experiment we decided to keep the RSVP length fixed at 10 ROIs (image chips) or 5 
seconds. Under these conditions the RSVP length could be tripled (incorporating up 
to 30+ ROIs) and still outperform the manual search; requiring less than 15 seconds 
for completion. 

One interesting observation from the manual visual search task was that the search 
time did not strongly correlate with the initial portal accuracy (i.e., distance from the 
portal center to the target). The correlation coefficient between search time and initial 
portal accuracy was 0.09 (p = 0.07). Unless the portal was placed within 100 pixels of 
the target, the initial placement of the portal did not influence the search time because 
participants followed a search path of potential target locations. This observation  
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Fig. 1. Manual search and RSVP behavioral summary. A) The manual search time distributions 
for target-present (red) and target-absent (blue). Vertical lines indicate distribution mean. B) 
The relationship between initial portal placement and search time. C) The time-to-target in the 
RSVP condition with a 10 ROI sequence (9 non-target and 1 target image). Inset shows the 
reaction time (RT) distribution. 

speaks directly to the importance of the slew-to-cue accuracy (orientation of the imag-
ing sensor in response to external or environmental cues) in MGV. If the slew-to-cue 
accuracy can be well quantified, it will be imperative to instruct crewstation operators 
to stay within the area of initial placement and suppress their instinct to follow a con-
textual search path. In a similar fashion, the intelligent RSVP should be programmed 
to give priority to ROIs that fall within the cued area. 

Another potential key parameter is portal speed. To test this directly we manipu-
lated portal speed for a subset of participants (N = 10). These participants performed 
the search experiment in two sessions. In each session their portal speed (in PTZ) was 
set to a value of either baseline (1x condition) or twice baseline (2x condition). The 
order of the conditions alternated such that half of the participants had the 1x condi-
tion in the first session and half the 2x condition. Over the population we found that 
there was no significant difference in search time for the two conditions (p > 0.05; 
Wilcoxon rank sum test). However, we did find a significant reduction in search time 
between session one and two, indicating a significant practice effect (p < 0.05). These 
results suggest that training, rather than PTZ speed, is more important for system 
performance. 
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3 Simulator Design 

The simulation environment (figure 2) was designed to test the translation of  
automated neural processing into a more real-world environment. Specifically, this 
environment was modeled after an Army MGV crewstation. As in the visual search 
experiment described above, the operator’s primary task was to search the environment 
for targets (soldiers with guns) while the vehicle navigated an urban landscape. The 
principal performance comparison for this simulator is the speed and accuracy of target 
detection between a manual search, via a gimbaled camera described above, and an 
RSVP presentation of pre-filtered ROIs around the vehicle. During the RSVP presenta-
tion, each ROI is sorted based on an interest score derived from the evoked brain  
response [4]. The operator is then immediately presented with the images that generate 
the highest interest score to manually verify which of the top scoring images contained 
targets. In addition to this primary task, several other secondary tasks are required  
of the operator. These secondary tasks are designed to both increase difficulty and 
replicate real-world environments. 

 

Fig. 2. RSVP-based Adaptive Virtual Environment with Neural-processing (RAVEN) system.  
A) RAVEN system with main operator screen and RSVP window. The primary task is identifi-
cation of dismounts while the vehicle is navigating a simulated environment. Secondary tasks 
include identification of potential IED locations, monitoring and responding to communications 
(audio and text). The BCI component is engaged during RSVP (Mode 3) and top scoring im-
ages are presented on the main operator screen. B) Operator screen during driving (Mode 1) 
including sensor banner, sensor portal, and mission map windows. 

After the optimal design parameters were identified, the simulation environment 
(called RSVP-based Adaptive Virtual Environment with Neural-processing or 
RAVEN) was developed to quantify the benefit of incorporating neural processing 
techniques into this Army relevant operational context. To measure the performance 
and potential benefits of the RSVP approach, we outlined two validation experiments. 
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The first experiment, described below, was designed to quantify the speed and accu-
racy of the two search paradigm with minimal interference from secondary tasks. The 
second experiment is currently being conducted at the University of California, Santa 
Barbara, and will focus on the effects of multitasking and task difficulty on overall 
system performance. 

4 Simulator Validation 

Fourteen participants were recruited for this experiment, eleven from the general pop-
ulation and three from the project collaborators. Six of these individuals also partici-
pated in the visual search experiment (described above). Participants ranged in age 
from 23 to 59 (mean = 36.9) and included 10 males. Eleven of the participants were 
right handed and three were left handed. All individuals recruited from the general 
population received compensation of $20 per hour. The voluntary, fully informed 
consent of the persons used in this research was obtained as required by Title 32, Part 
219 of the Code of Federal Regulations and Army Regulation 70-25. The investigator 
has adhered to the policies for the protection of human subjects as prescribed in AR 
70-25. 

In this experiment, participants again alternated between manual visual search and 
RSVP tasks, this time within the context of the RAVEN simulator (figure 2). Briefly, 
the task was a simulated patrol of an urban landscape. The vehicle was driven by the 
computer but the commander (experimental participant) was required to perform sev-
eral tasks as the vehicle navigated through the environment. The primary task was 
visual target detection in order to identify threats. At each intersection (24 in all), the 
vehicle stopped and the participant searched for the target (soldier carrying a gun). At 
half of the intersections the search was via a controllable portal; in the other half, the 
search was performed through an RSVP sequence of pre-filtered image chips (ROIs). 
The majority of intersections contained a target (approximately 80 percent), which 
could appear at various locations within the scene. A set of potential locations was 
identified before the experiment but the final target location was randomly chosen by 
the computer at each intersection. The parameters of the primary task were similar to 
the visual search experiment described above. However, in this case we used a pres-
entation rate of 5 Hz (200 milliseconds) for the RSVP component. In addition to the 
intersection search, the participant was required to perform two other tasks while the 
vehicle was navigating the environment: 1) identify potential IEDs near the roadside 
(e.g., trash bags, boxes, tires) while the vehicle is moving, and 2) respond to specific 
radio communications. 

Electrophysiological recordings were digitally sampled at 256 Hz from 20 scalp 
electrodes, located on the standard 10-20 coordinate grid, using an ABM x24 system 
configured with the single-trial ERP sensor strip (Advanced Brain Monitoring, 
Carlsbad, CA). EEG was acquired during the entire simulation but real-time analysis, 
via single trial classification of the evoked response using custom software, was only 
engaged during RSVP. Individual neural classification models were constructed for 
each participant from a separate RSVP session prior to the simulator experiment. The 
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single-trial classification models were linear discriminate functions applied to the 
neural response elicited by each image. The models were constructed using a machine 
learning algorithm, described elsewhere [12], and typically achieved area under the 
ROC curve values between 0.85 and 0.95.  

The principal comparison in this validation experiment was speed and accuracy be-
tween the manual search and RSVP conditions. At the manual search intersections, 
participants scanned the environment via the controllable portal until they identified 
the target or decided that no target was present. At the RSVP intersections, the neural 
response to each image was scored and the top three ROIs from each intersection 
search were shown to the participant for final target selection (or confirmation that no 
target was present). We used metrics of accuracy and time-to-target to quantify the 
performance in both conditions. Figure 3 shows the results from the 14 participants. 
At this faster RSVP presentation rate (5 Hz) the difference in mean time-to-target 
(manual search μ = 0.64 minutes, σ = 0.49; RSVP μ = 0.23 minutes, σ = 0.11) was 
significant (p < .001, t = 7.8) while the difference in mean accuracy (manual search μ 
= 0.80, σ = 0.4; RSVP μ = 0.85, σ = 0.35) was not statistically significant (p = 0.259, t 
= -1.13). These results indicate that even under more realistic conditions, the integra-
tion of automated neural processing can enhance overall operational performance. 

 

Fig. 3. Performance summary for fourteen participants with 5 Hz RSVP presentation rate. 
Graphs compare time (in minutes) to find the target and accuracy for RSVP and manual search. 

5 Summary 

For this study, we defined and implemented a simulation environment that offers a 
platform to test automated neural processing applications within a real-world context. 
We identified a common task for MGV operators, manual search of the vehicle envi-
ronment, which could potentially be replaced with a brain-computer interface. Single-
trial classification of the neural response to ROIs of the vehicle surroundings can 
identify targets more rapidly than the manual search. This performance enhancement 
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persisted even when the task was embedded within an operation scenario. One impor-
tant component underling the success of this study is that the accuracy of the single-
trial classifier was sufficient to find the target at each intersection, even with a rapid 
presentation rate (5 Hz). Further tests will be conducted to explore how performance 
is modulated by increased difficulty and the imposition of multitasking. This simula-
tion environment demonstrates the potential for brain-computer interface technology 
to meet the challenges of the ever increasing complexity of soldier-systems.  

There are several important factors that will influence the success of this brain-
computer interface application. One critical factor is how well EEG can be acquired 
and processed in the real-world vehicle environments. Noise from electrode move-
ment and muscle activation can dramatically affect the EEG signal. Various ap-
proaches are being explored to process EEG in real-time within the context of a high 
noise environment. Another key factor is the performance of the automated systems in 
the ground vehicle. First, the slew-to-cue accuracy of the external vehicle sensors will 
directly impact how much benefit can be gained by this neural processing approach. If 
the automated systems can reliably and accurately locate targets, this triage approach 
may be unnecessary. Second, the efficacy of the computer vision pre-filtering algo-
rithm will significantly influence the RSVP speed. The length of the RSVP is directly 
related to how many false alarm ROIs are generated by the pre-filtering algorithm. 
Given that targets may often be camouflaged or embedded within a dense context, it 
is likely that numerous false alarms will be detected for every correct target identified. 
Likewise, the RSVP application described here relies on the pre-filtering algorithm to 
include the target in the ROI ensemble. Thus, integration of this type of brain-
computer application will be a dynamic process that depends on the capabilities of the 
complementary automated systems.  
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Abstract. We show that accelerometers, touch screens and software
keyboards, which are standard components of modern mobile phones,
can be used to differentiate different test subjects based on the unique
interaction characteristics of each subject. This differentiation ability can
be applied to authenticate individuals under a continuous authentication
scheme. Based on six 15 minute data sets collected from the test subjects
utilizing our data collection platform, we extract multiple features from
the data and show an ability to accurately identify individuals at a rate
of 83 percent using a simple normal distribution of each feature.

Keywords: identification, security.

1 Introduction

Determining the authenticity of the user of a computing device is always an is-
sue when considering a system’s security. Standard security practices invoke the
use of some type of challenge/response pattern, including passwords, patterns,
or biometrics such as a fingerprint. Typically the challenge/response pattern is
presented to a user at initial access or at some interval. Initial authentication
provides a level of defence at initial access to computing. Continuous authenti-
cation, the process in which a user in continually authenticated based on some
metrics, can also be applied to authenticate the user during their interaction
with a computational device. The use of continuous authentication improves
the security of a device by verifying a user after the initial authentication, and
continues to do so during the lifetime of user interaction.

Mobile devices are now starting to become the dominant model of human
computer interaction. It is estimated that by 2015 over 5 billion devices will be
in use worldwide [1]. This growth can be attributed to the low cost, ease of use,
and innovative interaction models that are provided by these devices. Many of
these mobile devices contain a set of sensors that are capable of tracking low
level interaction characteristics of the device user.

In this paper, we look at the different sensors provided by mobile phones,
and show that data collected from these sensors can distinguish mobile users
by analyzing the user’s interaction with the device. Our system observes the
interaction characteristics of what we define as behaviormetric data - the subset
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of biometric data that can be used to express individual behaviors, such as
gait, In particular, we collect information from the user/device acceleration,
keystrokes, and touch interactions. The analysis engine then extracts key features
from the data to support differentiation of users.

2 Related Work

The collection of behaviormetric data is a requirement for conducting any type
of behaviormetric analysis on a system capable of collecting such information.
Below we take a look at studies that included the collection of behaviormetric
data on mobile devices, and the methodologies used in each study.

2.1 Gait-Based Collections

Gait-based classification of users has received recent attention in the field of
behaviormetrics, mostly due to the accessibility of mobile devices that contain
accelerometer sensors. Boyle et. al. [2] conducted a series of five data collection
activities to generate a data set pertaining to sensor readings during the act of
walking by test subjects. The authors place a Motorola A855 into the possession
of each test subject to collect accelerometer and magnetometer data. In the
first three series of data collection activities, the authors collected 33 samples of
accelerometer and magnetometer data per experiment on two subjects, with each
sample duration being under 60 seconds. The fourth experiment introduced two
additional subjects with 28 samples collected per user. In the last experiment,
117 segments of data are collected on each user, with a variance in walking speed
across each sample that was not present in previous experiments conducted by
the authors.

Mantyjarvi et. al. [3] attached a three-dimensional accelerometer behind the
waist of all test subjects. 36 test subjects walked a distance of 20 m at nor-
mal, fast and slow speeds. The test was repeated after five days, with 108 total
segments of data collected.

Gafurov [4] attached an accelerometer to the leg of 21 study participants, who
walked a distance of 35meters in one direction, and 35meters back to their original
starting position. The data collected was divided into two section, the 35 meters
before the turn around, and the 35 meters after the turn around. In a more com-
prehensive experiment [5], accelerometers were attached to the ankle, hip, pocket,
and arm of test subjects while conducting the same walking test as in [4].

In additional gait-based studies, Marc et. al [6] place accelerometers on the
ankle of test subjects. 5 subjects in the study walked for 1 minute 8 times
a day for five days. Each 1 minute walk introduced different variables, either
with different shoes or walking speeds. Over 200 minutes of walking data was
collected from the 5 participants. [7] placed an iPhone into the pant pocket of 9
test subject to collect accelerometer and ambient audio data. The 9 participants
walked for 2 minutes in indoor and outdoor environments on 3 separate days,
with the additional requirement that participants wear different pants on each
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day. In [8], 36 subjects placed an Android-based smart phone in the front leg
pocket. Subjects were then asked to walk, job, climb up and down stairs for a
specified period of time.

2.2 Other Accelerometer Collections

Another popular hand-held device, the television remote was also used for the
collection of behaviormetric data. Chang [9] attached an accelerometer to the
home remote control of five households. Accelerometer data was collected 24
hours a day for a period of one to three weeks per household.

2.3 Keystroke Collections

Clarke and Furnell [10], focused on the collection of keystroke dynamics based
on the entry of telephone numbers and pin codes on a mobile keypad. In their
first study, 16 subjects entered 11-digit phone numbers and 4-digit pins into
a numerical pad that was typical of a cell phone keyboard input in 2003. In
the second study, the authors recruited 30 participants and each participant
completed 30 iterations of the entry of 11-digit phone numbers, 4-digit pins, and
text messages. The authors collected data on the inter-keystroke latency and
hold-time of the user keystrokes.

In the most comprehensive study of keystroke-dynamics on a mobile device,
[11] has twenty-five users participate in a study that collected the press/release
time of all keys over a diverse set of Nokia phones running the Symbian operation
system over the course of 7 days. Between 2900 and 13713 key hits were recorded
per user, correlating to the frequency of keypad use per subject.

[12] recruited 25 users to enter a 4-digit pin into a numeric pad. In this re-
search, in addition to the natural entry method of the test subject, each subject
was forced to enter a password with artificial pauses entered into the test entry.
Each user created an enrolment set consisting of five password entry recordings,
and an additional thirty password entry attempts per entry method. After the
test subjects completed the task, they were then asked to pose as imposters,
where they were given the pin of other test subjects and asked to enter the other
subjects pin numbers twice.

[13] recruited forty test subjects, with each subject entering the same 6 pass-
word 20 times over four distinct sessions, with each session being a minimum
of 10 minutes apart from another session into a alpha-numeric pad. Of note, to
enter a character in this type of keyboard can require multiple presses of the
same key to select the appropriate character.

[14] combined the use of a number pad with a touch screen to extract hold-
time, inter-key duration, finger pressure, and finger position from 10 subjects.
Each subject entered the ten digit number thirty times, in consecutive order.
Pressure and position were recorded every 20 milliseconds.
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3 Data Collection

We developed the software needed to collect readings from the accelerometer,
software keyboard, and touch screen of a mobile phone running the Android
operation system. Our data collection platform consisted of three major compo-
nents; an ability to collect raw accelerometer readings across three dimensions,
a custom software keyboard that allows for the capturing of keystroke informa-
tion, and a modification to the android kernel that allows for the collection of
touch screen interactions. We used this software to conduct a real-world data
collection study of six individual test subjects.

4 Feature Selection

We identified three main areas to extract features from the data set: keystroke
dynamics, touch dynamics, and accelerometer signals. For each feature that is
selected from the data, we generate a normal distribution of the feature. The
normal distribution takes the mean and variance of a feature over the course of
the 15 minute test sample, and provides a representation of the probability of a
given discrete data point occurring in the test sample. This allows us to compare
the same feature across different test subjects to get a reasonable idea regarding
the similarity of a feature between two test subjects.

4.1 Keystroke Dynamics

In our analysis of keystroke interaction, we identified several factors that pro-
vide a differentiation capability; inter-key duration, key hold time, key-to-key
duration, and key press location. Inter-key duration is the measure of the time
interval between the release of one key and the press of the next key in the time
sequence. Key hold time is a measure of the amount of time a key is held by the
user. Key-to-key duration is the inter-key duration between two specific keys.
Key press location is the two-dimensional location inside the key where the user
initially pressed a key.

4.2 Touch Dynamics

Touch dynamics refers to the extraction of features from the user interaction
with a touch screen. In our data collection platform, we are able to determine
the location, pressure, and size of each discrete touch event. Typically, multiple
discrete touch events are combined to represent a single action. For example, the
press of a button may generate a touch event for the down motion, a few events
while holding the button down, and a final event when releasing the button.

We separated out touch actions into two distinct groups; taps and gestures.
Taps are the collection of touch actions where the distance between the starting
and ending point of the touch are below some minimum threshold, and gestures
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Fig. 1. Normal distribution of each of the six test subject’s inter-key duration

consist of the group where the distance is above the same threshold. This sepa-
ration provides the benefit extracting features from user gestures, such as swipes
or scrolling, without being influenced by button presses or selections.

Features of interest identified from the collection of tap activities include the
duration of a tap, the two-dimensional location of a tap, the overall pressure of a
tap, and the size of a tap. For the collection of gestures, we extracted additional
features, inducing the direction of a gesture, the end point, the distance between
the start and end of a gesture, the speed of a gesture, and the lateral variance on
a gesture. Lateral variance is a measure of the amount of non-direct movement
in a gesture. This is calculated by drawing a direct line between the start and
end points of a gesture, and calculating the distance between every discrete point
that generated the gesture and the direct line between the start and end point.

4.3 Accelerometer Dynamics

Device accelerometers provide acceleration data across three dimensions. In our
data collection platform, discrete acceleration events were captured at a rate
of about 100 per second during the course of each test subject’s interaction.
Two main features were extracted from the acceleration data; stability, which
is a measure on the variance in acceleration over distinct time periodd, and
orientation, which provides an idea of the direction of the x, y, and z axis of the
device relative to gravity.

5 User Identification

The main goal of this study is to determine if the behaviormetric data collected
from a mobile phone can be used to identify the individual that generated the
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Fig. 2. Normal distribution of the X coordinate of each user’s press when hitting key
number 12 on the keyboard

data. To test this ability, we remove a random 90 second sample of data from a
single user’s 15 minutes of data. We then take the random sample, and compare
it against the data of each user to find the user most likely to generate the
sample.

For each test subject, we calculate a score representing the probability that
the 90 second selected sample was generated by the test subject. The score is
calculated as follows:

– For each feature (i.e. gesture pressure, z axis acceleration), a continuous
normal distribution is generated representing the probability of a discrete
event for the test subject and the 90 second sample

– For each feature, we determine the Bhattacharyya coefficient, which repre-
sents the amount of overlap between the two statistical samples

– For each feature, the Bhattacharyya coefficient of every test subject is nor-
malized so that the sum of the coefficients for a single feature equal 1

– For each test subject, the normalized coefficient’s are summed to generate
a score representing the likelihood that the test subject generated the 90
second sample

Figure 5 compares the normal distribution of the 90 second test sample on the
x coordinate ending point for a gesture feature to the same feature of each test
user. In this figure, the black line represents the normal distribution of the 90
second sample. Based on this figure, one can determine that the purple and blue
users have a high probability of having generated the 90 second sample, where
as the other four test subjects have a low probability of having generated the 90
second sample.

Overall, for each test subject, we selected six random 90 second samples to
test the ability to identify the test subject that generated the data. Using the
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Fig. 3. Normal distribution of the Y coordinate for each user when a user starts a
gesture

Fig. 4. Normal distribution of the Y coordinate for each user when a user ends a
gesture

above technique to compare the selected sample against test subjects, we were
able to correctly identify the test subject that generated the 90 second sample
83% of the time. We note that, due to the small sample size, we were not able
to include keystroke dynamic features into the identification calculation. Many
of the 90 second samples simply did not have enough keystroke information to
make any type of determination.
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Fig. 5. Black line represents a normal distribution of the X coordinate of the ending
point of a gesture of the 90 second sample, compared to all user’s normal distribution

6 Conclusion

We have constructed a data collection platform to test the hypothesis that sen-
sors on a mobile device, in particular the accelerometer, touch screen, and key-
board, can be used to differentiate between different users. Based on 15 minutes
of real-world device interaction from six test subjects, we were able to correctly
identify the test subject that generated a 90 second sample 83% of the time
using a subset of features extracted from the data.

Although these findings are encouraging, a larger scale study incorporating
more users and larger sample sizes is needed in order to make a more robust
determination on the ability to identify users based on their behaviormetric
data. In addition, more refined algorithms, as opposed to normal distribution of
features as used in this preliminary research, will likely be more effective at user
identification. Ultimately, these results provide a simple indication that further
study in this area will likely lead to positive results.
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