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Abstract. Innovations in healthcare delivery and Pharma require re-
examination of process models at the foundation of our knowledge discovery 
and clinical practice. Despite real-time availability of ‘big data’ from ubiquitous 
sensors, mobile devices, 3D printing of drugs, and a mind shift in data 
ownership, data integration still remains one of the core challenges to 
innovation. Increasingly persistent, semantic data integration is  gaining 
recognition for its dynamic data model and formalisms which make it possible 
to infer from and reason over interconnected contextualized data, creating 
actionable knowledge faster and at lower cost. While such technical advances 
underpin the successful strategies to drive positive patient outcomes or 
accelerate drug design, there are equally profound social changes towards the 
willingness of patients to share their own data - opening doors to new patient-
centric, precision-medicine healthcare models. Adding astronomically rising 
costs in research and healthcare, we have arrived at a critical turning point 
where it is now well within our reach to change how drugs are developed, how 
trials are performed and how patients are treated - and we can do this with huge 
benefits for otherwise unsustainable industries.  Examples show that not only is 
this possible today, but that such approaches already have traction; (i) in 
Pharma for assessing impact of excipient on drug stability and efficacy; for pre-
clinical toxicity assessment and integral systems views on drug safety, (ii) in 
Government at the FDA’s cross species biomarker initiative to reduce animal 
testing and (iii) in Health Care for organ transplant rejection assessment and 
COPD. Using comparative effectiveness and side effect analyses to base 
treatments on solid prognoses and therapy decision support, we can and must 
change discovery and healthcare into a data driven and patient centric 
paradigm. The socio-economic benefits of such a change will be enormous. 
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1 Introduction 

1.1 Historic Models in Life Sciences 

In the past, widespread utilization of large shared spreadsheets, dedicated laboratory 
information management systems (LIMS), large relational data warehouses and 
traditional methods for extraction, translation and loading (ETL) have been used 
across the life sciences enterprise spectrum with more or less sophisticated 
approaches to interconnect in-between some of those resources [1]. Key features of 
LIMS include acquisition, workflow and data tracking across different modalities, 
data exchange interfaces, audit functions and support for their use in regulated 
environments. Because of rapid pace at which laboratories and their data management 
needs shift, the definition of LIMS has become more blurred. This is particularly due 
to the fact that the needs of laboratories widely vary which requires also a shift in 
functionality of laboratory information management systems.  

Historically, LIMS and process execution have performed similar functions, 
building an organization’s reference backbone for experimental results. More 
recently, assay and ELN functions have been added to extend traditional LIMS 
systems. However, the need to implement quality standards, the awareness of data 
management solutions using different architectures and the unavailability of adapted 
solutions for interoperability led in many cases to in-house developments instead of 
using commercial solutions. Particularly in large Pharma organizations the separation 
of data into target areas, specific projects as well as the separation of R&D chemistry, 
assay development and biology caused limited communication in-between groups, 
redundant efforts and no integral view across the data. The strict separation between 
pre-clinical, clinical and market data has hampered feedback within the organizations 
to learn from past experiences. Consequently, adverse effects got missed; clinical trial 
efficiency was at a low point and causing a hesitant approach in the development of 
new drugs.  

Despite ever rising amounts of data through high throughput screening, 
multiplexed assays and broad use of chip technologies, the actual knowledge 
produced in comparison to research costs was declining rapidly [2]. Large Pharma 
companies were buying their libraries of new compounds from small biotech to cut 
costs by reducing in-house research to small focus areas. Collaboration models were 
restricted to consortia with narrow goals and small portions of pre-clinical, pre-
competitive segments the sharing party deemed to be of no further usefulness to the 
organization.  

1.2 Rise of New Technologies and Machines 

The data landscape changed with the rise of new technologies, new developments in 
instrumentation, automation and exponential increase in throughput of previously 
labor-intense and time-consuming procedures. In the last several years, massive next 
generation sequencing (NGS), progress in whole genome sequencing using de novo 
assemblies on unimaginable scale [3], RNA sequencing and genome-wide association 
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studies (GWAS) have been at the forefront of genomics to be used for both, gene-
based biomarker discovery and personal genomics as tool for precision medicine and 
the genetic selection of population cohorts for clinical trials.  

The development of new sensor technologies and advances in mobile computing 
led to sensors being everywhere and on everything with real-time internet 
connectivity. Wearable medical technology is becoming a hot commodity [4]. As 
these devices come to market, they have great potential to help both patients and 
clinicians monitoring vital signs and symptoms [5]. In personal health, sensors which 
are always on, always with you, always tracking were changing data collection to 
become a continuous monitoring stream [6], providing both, individuals and 
physicians more accurate and more detailed data about many influence parameters on 
a health or disease state which previously were not available [7]. Lifestyle choices, 
such as exercises, habits and environments have been recorded similarly [8].  

The size of all these data and the computational considerations to analyze them 
along with the high data dynamics require investment in High Performance 
Computing (HPC) and have led to tradeoffs between inexpensive highly dense storage 
on commodity disks and higher cost better performant NAS, SAN or Cloud services 
(CEPH, OpenStack, Amazon). Dependent on budgets, compromises were made, and 
raw data have been thrown out in favor of much smaller analyzed data sets. 
Algorithmic transformations to normalize in-between platforms have changed over 
time and metadata not always included, making review for verification in many cases 
impossible. While new ways of computing have been introduced which are using 
massive parallel computing and distributed clusters for analysis [9], management of 
‘big data’ has become a complex, expensive and demanding task at scales beyond 
most forecast expectations. This development has created a new bottleneck in analysis 
and practical use of ever growing data repositories and made interoperability, 
provenance and versioning an equally important concern to plain connectivity and 
was instrumental in rethinking data integration in life sciences in general.  

1.3 Economic Importance of Data 

In a MIT Technology Review end of 2012, the question was raised publicly if 
personal data is the new currency [10]. The economic importance of access and 
utilization of vast amounts of interconnected data can no longer be denied, and the 
same applied equally to the life sciences. With the expansion of social networks and 
the drive from individuals to take care of their needs for better prognosis and 
treatment, the frustration about public availability of medical data has driven the 
movement of patients making their own data publicly accessible. Adding to this  
the fact, that big data analytics became a way of turning data into money [11], the 
assessment that Data is the new money and those who have access to it, have power 
became obvious with significant implications in the shift from revenue and margins 
driven industrial models towards customer-centric, health outcomes for patients 
motivated strategies in which consumers influence the drivers of healthcare systems.  
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This new proposition is affecting insurers, payers, service providers, drug 
discovery processes, drug development, repurposing of drugs for new indications 
alike – moving to an evidence-based, outcomes-focused, behavior-driven life sciences 
environment which through empowering of data will benefit all of us.  

1.4 Staying Competitive 

In the past, low ROI on research and development has provided little incentives to 
innovation or change, particularly as industry was closely watching its competitor’s 
moves to decide about the necessity to adjust their model to new trends based on 
proof-of-concept (PoC) and pilot study outcomes. In a way, the unwillingness to share 
even pre-competitive or failed approaches within tightly controlled consortia 
members for collaborations has reduced the competitiveness of the industry – 
however, there a several positive examples on the horizon that this behavior is 
changing as both, Pharma and Healthcare industry have come to the realization that 
everyone profits from collaborative approaches to accumulative and complimentary 
data on common goals. Of course, any meaningful collaboration is closely tied to 
interoperability, and this is true equally for both, commercial and academic entities.  

Crowd-sourced analysis requires interoperability, and interoperability is how big 
data becomes big open data, and this will assure rapid progression in scientific 
discovery and providing a solid foundation for Pharma and healthcare to stay 
competitive. Acknowledged, that crowd-sourcing as a new policy has many 
implications [12-13] and there is still hesitancy to collaborative data sharing, its 
driving force will be costs and efficiency towards new concepts which will 
significantly shape the future of data-driven life sciences.   

2 State of the Industry 

2.1 Data Generation vs. Knowledge Gain 

While automation and advances in technologies have brought down costs of complex 
testing faster than anticipated, analysis and integration towards applicable knowledge 
has lagged behind.  Massive data (a single run of Life Technologies sequencer 
produces ~900 GB raw data, 1 machine = 10 TB/day) and the sophistication required 
by the complexity of analysis procedures have let to the notion of the “$1,000.- 
genome at $1 Mio interpretation.”[14] – thus, in most cases, only a small fraction of 
information is used to build knowledge and advance scientific progress.  

One major reason for this discrepancy is that the required proficiency of a whole 
range of experts including molecular and computational biologists, geneticists, 
pathologists and physicians with detailed  knowledge of disease and treatment 
modalities, genetic counsellors and IT specialists to build analysis teams [15] is not 
easy to establish. Using large number of specialists was critical to complete the data 
analysis, for variant annotations and to interpret causative or actionable variants. Even 
then, clinical verification of such variants and ramifications for the treating physician 
and patient require even today immense efforts and make the widespread use of 
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clinical whole-genome sequencing for diagnosis and quality of life improvement still 
a distant goal. On top of this, the bioethics pros and cons of WGS of every newborn 
child need to be sorted out and genomics must address socio-economic disparities in 
healthcare.  

Similar considerations should be applied to other rapidly evolving fields such as 
proteomics, transcriptomics and microbial implications in major diseases – rapid data 
generation through automated, low cost high throughput sample analyses does not 
match up with the possible knowledge gain from those resources. Amongst other 
reasons, standardization of analytical methods and algorithms and requirements for 
quality standards on data also has played a significant role in the usability of results 
across laboratories. 

2.2 Traditional Data Mining 

Relational data warehouses and object data bases require upfront considerations to 
determine which questions you want to answer, Data models (schemas) must be 
defined at the beginning, so such solutions, while excellent for final datasets and great 
performing on optimized queries for what they were built for are demanding in 
support due to their rigid and static structure. On the other hand, a whole host of 
mining solutions and visualization tools are available as relational database 
technology has been around for a long time and big players in information technology 
have embraced its use.  

In Life Sciences, however, a different picture emerges as dynamic, agile solutions 
are required to keep pace with changing data types, formats, instrumentation as well 
as analytical requirements. Add to this the scale of growth, and ‘big data’ has 
demonstrated impressively, that more relational data warehouses and traditional data 
mining approaches cannot be the answer to today’s information requirements 
landscape. In many cases in Life Sciences, questions to ask and potential use cases are 
moving targets, so any inflexible solution limits its applicability. In biological 
systems, the need to traverse data, to infer from other data and to search complex 
pattern across all your resources to find clues what kind of questions you can answer 
is rooted on a different set of requirements - in most cases, questions are not 
predefined, and the picture what and how to ask is not clear at the beginning. Include 
to this that in the relational world no clear connections in-between data silos exist and 
different proprietary schemas prevent cross-resource queries, and the limitations of 
such approaches become transparent. 

2.3 Cost of Research vs. Outcomes 

A recently published Forbes report [16] on staggering costs of new drugs, a new study 
comparing healthcare cost in the US with other countries [17] and the OECD Health 
Statistics [19] provide insights into costs of research versus outcomes which are 
stunning, but well known within the industry. A representative of Eli Lilly estimated 
the average cost of bringing a new drug to market at $1.3 billion, a price that would 
buy 371 Super Bowl ads on television [16]. On average, a drug developed by a major 
pharmaceutical company costs at least $4 billion in R&D (see Table 1 below) 
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Table 1. Number of approved drugs and drug development costs of major Pharma companies 
(2012) 
 

           Company                                  Approved Drugs      R&D Costs/Drug [$ Mio] 

AstraZeneca 5 11,790.93 

GlaxoSmithKline 10 8,170.81 

Sanofi 8 7,909.26 

Roche AG 11 7,803.77 

Pfizer Inc. 14 7,727.03 

Johnson & Johnson 15 5,885.65 

Eli Lilly & Co. 11 4,577.04 

Abbott Laboratories 8 4,496.21 

Merck & Co Inc 16 4,209.99 

Bristol-Myers Squibb Co. 11 4,152.26 
Novartis AG 21 3,983.13 

Amgen Inc. 9 3,692.14 
 
Source: InnoThink Center For Research In Biomedical Innovation; Thomson Reuters 
Fundamentals via FactSet Research Systems (adapted from [16]) 
 

Looking at the quality of healthcare and its costs between countries gives 
interesting insights into the state of global healthcare. The US spends $8,233 per 
person/year [17] which is 2.5-times more than most of developed nations and uses 
17.6% of GDP for healthcare [17]. At the same time, the US had 2.4 practicing 
physicians per 1,000 people comparing to an average of 3.1 among OECD countries. 
In hospital beds per 1000 people, the US ranges with 2.6 well under the OECD 
average of 3.4.  

Life expectancy in the US was increased by 9 years between 1960 and 2010; 
Japan’s by 15 years and in OECD countries on average by 11 years [17]. In the drug 
development arena, per patient clinical trial costs have risen on average by 70 percent 
across all development phases since 2008 [18].  

This numbers are clear indicators that the cost vs. outcome ratio needs to be 
improved [19] and the current models require adjustments  

2.4 Data Ownership: Closed Data vs. Patient-Shared Access 

Social media has arrived in healthcare. Patients are sharing publicly their own data, in 
which case no restrictions on scientific use apply. While many impediments by 
HIPAA compliance requirements to provide only selected, de-identified subsets to 
certain authorized individuals have been circumvented by such developments, new 
questions arise on the consequences from changes in data ownership and the shifts 
from hospital and providers to patient, and how this may impact integrated research.  
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3 Methodology for Change 

3.1 Semantic Approach to Data Integration – Meaning, Inference, Reasoning 

Resource description framework (RDF)-based integration (W3C standard) [21] opens 
new avenue and possibilities for rapid and efficient data integration. It has been 
around for quite some time, and its benefits as an agile, extensible environment built 
for interoperability have been widely demonstrated. Semantic data is much easier to 
connect, to visualize and extend as it does not rely on isolated RDBMS schemas, a 
contested standard data description, or a proprietary middleware translation layer. 
Dynamically built application ontologies can be adjusted and data remapped as 
needed; meaningful, not arbitrary schema-based connections drive its framework of 
triples, providing capabilities for inference and reasoning and pattern-based queries 
across the network graphs. The built-in basis for interoperability of true 5-star 
compliant RDF resources is not only a needed convenience, but a must for today’s life 
sciences needs to utilize a fast array of publicly available linked data resources. RDF 
and its web ontology language, OWL [22] providing an excellent way to represent 
data with changing needs, with ability to reuse, repurpose in an easy to adopt and 
maintain fashion – allowing for disambiguous queries, pattern discovery and graph 
traversal across multiple RDF-represented resources.  

In addition to being a globally standardized framework which links data based on 
their meaning, emergent properties include network visualization, visual query, 
faceted browsing, machine inference, and pattern recognition. Recent advances in 
provenance and versioning [23-24], in the development of public formal ontologies 
[25] and their direct accessibility through tools [26] have shown increasing interest in 
life sciences as foundation for larger project. Examples of such ongoing efforts are the 
development of the Translational Medical Ontology and Knowledgebase [27] driven 
by both, industry and academia, and the connex between medical informatics and 
bioinformatics in knowledge building in the clinic [28-29].  

3.2 Linked Life Data, Linked Open Data – Consequences 

The significant increase in the quality of Linked Data (LLD, LOD) [30-32] brings 
promising add-ons to qualify experimental findings early on through enrichment with 
external resources – but interoperability and different provenance remain still 
impediments for broader applicability as well as changes in licensing for previously 
‘open’ public resources. Legal restrictions on use without modification prevent certain 
data resources from becoming interoperable as mapping and harmonization functions 
to other data cannot be applied. 

As government funding for some linked open data cloud resources is unsure due to 
austerity and budget restraints in the US, Japan and Europe we will have to ensure to 
establish new business models between data provider and consumer to warrant 
continuous availability of such resources; either through private/academic/government 
partnerships or new concepts based on resource value for organizations. As the socio-
economic benefits of maintaining these resources by far outweigh contributions towards 
their sustainability, such models will benefit all participants greatly. 
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3.3 Complexity and Change Require Dynamic, Adaptable Models 

New and better scientific methods and analysis tools require adaptation for changes. 
As outlined before, the complexity of functional biology calls for network analysis of 
interconnected data in their relationships to each other. This leads logically to 
semantic integration approaches and network-driven systems to establish better 
understanding of complex biological intertwined reactions.  

The healthcare industry is now about three years into ‘meaningful use’, an 
ambitious incentive program to convince hospitals and private practices to use 
electronic health record (EHR) software. Regulators are also bringing HIPAA into the 
21st century, and similar efforts are underway for telemedicine. Above all, it looks as 
if healthcare finally seems ready to benefit from big data, cloud services and other 
disruptive technologies that have dramatically changed other vertical industries [33]. 
As healthcare costs have tripled within the last decade and despite over $10 Billion 
payments in healthcare incentives, we cannot afford to have EHR systems which are 
not interoperable and CRO’s which are disconnected from their customers.  A good 
example about possibilities in progressing with success in complex diseases like 
atherosclerosis to assess life threatening risk of plaque rupture via biomarkers leading 
to discovery of previously unknown pathway involvement, using such approaches to 
take advantage of integrated knowledge can be found in [34].    

3.4 Understanding Biology: Shifting towards Interoperable, Integral Systems 

The need to contextualize experimental findings with pathway involvement and 
mechanisms is apparent as pharmacogenomics correlations not necessarily always 
match biological systems responses. Only when utilizing as much as we possibly can 
know, we will succeed in comparative effectiveness to select the best treatment at the 
right dose based on a patient’s profile, lifestyle, disease stage and individual drug 
response.  

The shift towards an integral view is the key to improving effectiveness of 
therapies and better understanding of the impact of a disease stage and a patient’s 
profile on response, prognosis and outcome. Indications are that this is happening 
now. This year's Health Information and Managements Systems Society's (HIMSS13) 
conference brought the announcement, that five leading electronic health record 
(EHR) vendors were forming the ‘CommonWell Health Alliance’ to promote 
‘seamless interoperability’ of healthcare data [35]. 

3.5 Progression towards New Life Sciences Models: Pharma 3.0,  
Healthcare 3.0 

There is a noticeable, albeit slowly, but steadily happening shift in industry from a 
product-centric business model to a customer/patient centric business model; and the 
new drivers are health outcomes. Maintaining or regaining growth will require the 
transition of Pharma from acquisition model to innovate partnerships and 
collaborative data sharing [36]. Innovation needs to focus more on business model 
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innovation than product innovation. Reimbursement needs to have its foundation in 
real market effectiveness rather than the approval of clinical trial data. What applies 
to Pharma, applies in equal ways to the entire healthcare industry. Efforts to 
reimbursement based on comparative effectiveness of clinical procedures and 
treatments indicate that life sciences industries are shifting to evidence-based and 
outcomes-focused business models – data-savvy, integrative, consumer (patient)-
minded rather than product-centric. Moving quickly and following the value to 
progress towards a new sustainability model will be the key to success. Although 
there is a sense of urgency to try disruptive methods, it so far has been a ‘trying the 
water’ approach around edges of the business, not deeply embraced change. While the 
trends are apparent to most industry players, to think in new ways has always been 
uncomfortable and therefore slow in execution. If moving from 2.0 to 3.0 means, that 
collective impact approaches allow to move more expressively to pre-competitive 
sharing within the healthcare / life sciences space, the transition will not only be more 
rapid, it also will create new incentives for holistic approaches to this sector.  
 

 

Fig. 2. Pharma on the move from 2.0 to 3.0 – Consequences for Life Sciences(Source: Ernst & 
Young 2012 [36]) 

Significant changes need to occur in business model, value drivers and innovation during the 
shift towards a patient-centric, outcomes-focused and innovation-driven partnership model, 
where any reimbursement is based on effectiveness in its application rather than the product 
itself. 
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4 Use Cases of Adoption 

4.1 Pharmaceutical Industry 

Impact of Excipient Choice on Formulation Stability, Purity and Drug Efficacy 
Objective at a large Pharma company was the integration of disconnected 
chromatography data systems (CDS) and LIMS with compound and formulation 
databases to provide quick searches for compound purity data upon FDA inquiries. As 
there were no common identifiers, such inquiries required time-consuming off-line 
searches with ambiguous results, delaying responses to the FDA by several weeks. A 
system was sought to remedy this organizational problem.  

The solution to build a semantic platform for compound purity and stability 
assessment not only was accomplished in a fraction of the allocated time (6 weeks 
instead of ~ 1 yr. projected project completion time in traditional data warehouse 
fashion), but inference could be used to quickly and unambiguously find the desired 
raw data in the CDS. As a pleasant side effect of the semantic data model 
implemented, an additional data resource was integrated to allow for queries 
determining the impact of the choice of excipient in a given drug formulation on 
active ingredient efficacy and overall drug stability. 
 
Pre-clinical Toxicity Assessment and Compound Toxicity Type Classification 
In a joint project (NIST/Cogenics/CLDA) to understand the impact of toxicity on 
biological systems, sets of known and presumed toxicants were used in large 3-year 
animal studies to determine biomarker classifier patterns and their applicable ranges 
for pre-clinical toxicity screening of compounds.   

Hepatotoxicity studies consisted of a panel of hepatotoxicants at single oral dose 
(placebo, low, mid, high) in groups of 4 rats, at 6, 24 and 48 hrs.) and metabolic 
analysis of liver, serum and urine (1603 metabolic components; Bruker LC/MS-MS); 
gene expression microarray analysis  of liver and whole blood (31096 transcript 
probes; Affymetrix); and statistical biomarker pre-selection at p<0.005, abs fc>10 
(genes) and p<0.005, abs fc>2.5 (metabolites).  

Alcohol studies were carried out at high doses t.i.d. for four days, with and without 
24h withdrawal; metabolic analysis of plasma, liver and brain (1620 metabolic 
components),microarray analysis of liver and brain (31096 transcript probes) and 
statistical biomarker pre-selection at p<0.005, abs fc>5 (genes) and p<0.005, abs 
fc>2.5 in similar fashion.  

The experimental network of statistically preselected putative genomic and 
metabolomic biomarkers was then enriched with public RDF resources through 
SPARQL queries to discover common pathway dependencies, using LOD-based 
systems-biological qualification of experimental pharmacogenomic correlations. As a 
result of semantic data integration, markers to distinguish several distinct types of  
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established and the microbial pathogen knowledgebase enhanced with NCBI’s 
taxonomy for group classification into family, subfamily, genus and organisms. This 
Knowledgebase [40-42] then was used in integrated network analysis of samples from 
MS-based sequencing and/or rapid microbiological assays in conjunction with historic 
case data to identify pathogens within the host samples.  

An Applied Semantic Knowledgebase (ASK) web portal for simplified pattern 
queries was established to determine threads by location and confidence level for the 
identified pathogens. 

4.3 Clinical Decision Support 

Biomarkers in Transplantation: Organ Rejection Screening 
Transplantation is currently the most common therapy for patients with end-stage 
organ failure. It involves putting a donated organ into the immunologically foreign 
environment of the receiving patient. While the transplantation procedure itself may 
go smoothly, the recipient’s immune system may react to the new organ to induce 
rejection. White blood cells and antibodies are primarily involved in the recognition, 
attack and destruction of foreign tissues, yielding dysfunction of the transplanted 
organ.  

A major challenge facing clinical caregivers in the management of organ rejection 
is to determine whether a transplanted organ is undergoing rejection prior to any 
symptoms. This typically required using highly invasive and risky procedures, such as 
tissue biopsies – expensive, regularly performed emotionally and physically stressful 
procedures which may still result in inconclusive findings. In order to prevent organ 
rejection, powerful therapies are used to suppress a patient's immune system. While 
this approach reduces the probability of rejection, it does so at a high cost. 
Impairment of a recipient patient’s immune system leaves them susceptible to 
infections, malignancies and functional complications in the newly transplanted 
organs.  

As individuals vary in their response to such therapies, understanding this variation 
would help physicians balancing the necessity of therapy with its possible side-
effects. The ability to personalize immune suppressants for each patient not only 
alleviates patient discomfort and side-effects, but also reduces the enormous costs 
associated with over-prescription of immunosuppressive drugs and other diagnostic 
procedures.  

The Biomarkers in Transplantation (BIT) initiative was established to identify and 
validate biomarkers for diagnosis of rejection of a transplanted organ via a simple 
blood test [43]. The program was launched in 2004 to better understand acute or 
chronic tissue rejection in heart, liver, and kidney transplant patients. Its application to 
use a web-based Applied Knowledgebase (ASK) decision support system won Bio-
IT’s Best Practices Award in 2010 [44]. It utilizes semantic data integration and 
parameterized SPARQL queries with weighing and ranges for multimodal biomarkers 
[45-46] to provide screening for patients at risk  
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rest of Canada, COPD exacerbations are leading cause of hospitalization, and 
prevalence has continued to rise, increasing 41% since 1982. It now affects 10-14% of 
Canadians 40 years of age and older and 600 million people globally [47-48]. As the 
4th leading cause of mortality in Canada and the US [49] and the only major cause of 
mortality for which death rates continue to rise [48-49], the economic costs of COPD 
management for society are estimated to be over a billion dollars annually in Canada 
with $736 million of that directly attributable to exacerbations [51]. Most of the 
morbidity occurs during exacerbations, and their direct costs are predicted to surpass 
$1 billion by 2015 [52].   

A biomarker-based decision support system to predict likelihood of exacerbation 
and advise treating physician via web-based access to screen patients alleviates those 
risks and provides a tremendous improvement for patient care in reducing emergency 
care and hospitalization. 

5 Discussion, Future Outlook 

5.1 Applied Knowledge as Cost Saver 

A 2012 released OECD Health Data Report [19] provides among others statistics on 
health expenditures, healthcare utilization, demographic references, healthcare quality 
indicators, pharmaceutical market and  long-term care resources. In 2010, in the US 
public expenditure on health were 48.2% from the total expenditures compared to 
87.7% in the Netherland, 85.1% in Denmark and 83.2% in the UK [19]. Applied 
knowledge from semantic integration of experimental, clinical and public proteomics, 
genomics, metabolomics and pathway resources led to the development and 
qualification of multi-modal biomarker pattern applicable for rejection risk 
assessment with enormous cost savings.  

Taking the examples from 4.3 using biomarker blood test for clinical decision 
support can be used replacing monthly biopsies for up to a year after transplantation 
at average costs of $4000.-/each. As of 2007, the average price of a kidney-only 
transplant was $246,000 in the first year. A single lung transplant totaled $399,000. A 
heart transplant patient's first-year total medical costs were $658,000. In 2011, in the 
US 1,760 patients on the heart wait list received heart transplants.  This represents a 
decrease from 2,333 hearts transplanted in 2010 and 2,211 in 2009 (Source: 
UNOS/OPDN). The Heart and Stroke Foundation in Canada reports that heart disease 
and stroke costs the Canadian economy more than $20.9 billion every year in 
physician services, hospital costs, lost wages and decreased productivity (Conference 
Board of Canada, 2010). In 2010, there were 167 heart transplants in Canada, with 
135 patients on the waiting list for organ donors. One can imagine the cost savings 
and quality of life enhancement for patients obtainable through widespread use of 
preventive non-invasive screening methods  Similarly, the effects of being able to 
predict COPD exacerbations which cause permanent lung tissue damage, are 
impressive indicators how far reaching integral patient-centric procedures based on 
semantic knowledgebases have influenced the socio-economics of healthcare.  
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Actionable knowledge and near-real time alerting of physicians about patients at 
risk in life-threatening conditions is a testimonial to the real value of interoperable, 
agile data in life sciences.  

5.2 Socio-economics - Higher Quality of Life 

As exemplified by examples provided, the use of semantic data integration 
technologies and integrated, harmonized network approaches utilizing both, internal 
experimental, clinical, observational and demographic data and public resources 
provided as RDF/OWL via SPARQL endpoints to enrich, qualify, validate – even 
plan additional new experiments – has moved from exploratory projects to 
mainstream acceptability.  

Biomarker-based screening for kidney disease to avoid biweekly dialysis or 
transplantation, heart organ transplant monitoring with biomarkers instead of costly 
and unpleasant monthly biopsies, and prediction of exacerbations in COPD are just 
the beginning of a new era of patient-centric, date-driven improvement in health 
outcomes where everyone involved in applying Pharma 3.0 and Healthcare 3.0 
principles [36] will win back sustainability based on reimbursement of real, not 
perceived effectiveness at the reward of huge socio-economic benefits and improved 
prevention, care and quality of life.  

5.3 Actions Today and Tomorrow 

We can see already today the adaption towards more open-minded strategic 
approaches to build integrated, interoperable (and open?) life science knowledge 
system capable of remarkable results at significantly lower costs [53] – but there still 
remains a lot to do.  

We need to do more to promote and proliferate these efforts among wider 
communities to ensure that the life sciences industries are sustainable, effective and 
applied to help through early intervention, better prognosis and integrated patient-
centric, knowledge-based treatment to improve outcomes, increase life expectancy 
and the quality of life for all. I would urge you to join me in my assessment, that we 
cannot afford to wait any longer, and that the phase of hesitation on early adaptation 
to implement innovate solutions and business processes in our quest for 
comprehensive, integrative systems approaches to better understand biology is over.  

We know, what is necessary to change the model, and we have examples leading 
the way to a bright future – but knowing is not enough; it’s time to act, and more than 
any time before, the time is now. 
 

“Knowing is not enough; we must apply. Willing is not enough; we must do.” 
- Johann Wolfgang von Goethe (1782) 
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