
Christopher J.O. Baker
Greg Butler
Igor Jurisica (Eds.)

 123

LN
BI

 7
97

0

9th International Conference, DILS 2013
Montreal, QC, Canada, July 2013
Proceedings

Data Integration
in the Life Sciences

Lecture Notes in Bioinformatics 7970
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand

T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff

R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Christopher J.O. Baker Greg Butler
Igor Jurisica (Eds.)

Data Integration
in the Life Sciences
9th International Conference, DILS 2013
Montreal, QC, Canada, July 11-12, 2013
Proceedings

13

Volume Editors

Christopher J.O. Baker
University of New Brunswick
Department of Computer Science and Applied Statistics
Saint John, NB E2L 4L5, Canada
E-mail: bakerc@unb.ca

Greg Butler
Concordia University
Department of Computer Science and Software Engineering
Montreal, QC H3G 1M8, Canada
E-mail: gregb@encs.concordia.ca

Igor Jurisica
University of Toronto
Ontario Cancer Institute
Toronto, ON M5G 1L7, Canada
E-mail: juris@ai.utoronto.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-39436-2 e-ISBN 978-3-642-39437-9
DOI 10.1007/978-3-642-39437-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013941943

CR Subject Classification (1998): H.3, J.3, I.2, H.4, C.2, H.2, H.5

LNCS Sublibrary: SL 8 – Bioinformatics

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

DILS was established in 2004 as a new bioinformatics workshop focusing on
topics related to data management and integration. Now in its ninth year the
conference continues to attract researchers from across a range of disciplines
all of whom recognize the challenges faced by life scientists in managing and
reusing data. Stakeholders involved in digital ecosystems and data ownership
are able to generate large volumes of high-quality data and want to publish
it to the widest possible audience for prospecting by scientists. And yet, data
are not knowledge. The real value is the translation of the data into actionable
knowledge. The methodologies and frameworks we depend on to facilitate this
translation are still evolving, and the challenges in data management and reuse
have grown rather than diminished over the last decade and are common across
many disciplines.

Life science remains one of the leading domains and continues to create mas-
sive amounts of diverse data needing validation, curation, and annotation with
meaningful descriptions and formatting according to open standards to ensure
it is sharable between interoperable distributed systems and accessible by end
users. Practitioners are, however, continually experimenting and the forum for
discussing which methodologies have succeeded, which new technologies are now
being adopted, for which particular tasks, and how they are used to integrate
data for subsequent bioinformatic analysis is DILS.

This year, DILS received 23 papers to the main research track (both long
and short papers). Four papers were accepted unconditionally. A further six were
accepted with the provision that authors revised their papers in accordance with
reviewers’ comments and provided detailed and itemized responses. All papers
were subsequently verified by the Program Committee (PC) Chair and General
Chairs.

Accepted papers cover a range of important topics including: algorithms for
ontology matching, interoperable frameworks for text mining using Semantic
Web services, pipelines for genome-wide functional annotation, automation of
pipelines providing data discovey and access to distributed resources, knowledge-
driven querying-answer systems, prizms, nanopublications, electronic health
records and linked data. This year we opted to also offer an Early Career and
Systems Track at the DILS workshop. At the time of writing, papers submitted
to each track were still under review. These papers are not published in the
research track proceedings.

DILS 2013 featured two keynote speakers. Firstly, Dr. Erich Gombocz, co-
founder and CSO of IO Informatics a decade ago, is a veteran in applying systems
biology approaches to pharmaceutical and clinical decision making based on se-
mantic data integration and knowledge management technologies. Dr. Gombocz

VI Preface

presented the rationale for rethinking old problems, retooling with new method-
ologies and revisiting the process models that underpin our existing knowledge
discovery in pharma and clinical practice in healthcare. Specifically, he advo-
cates new patient-centric, precision-medicine healthcare models to change how
drugs are developed, how trials are performed, and how patients are treated.
His manuscript is included in the proceedings. Our second keynote speaker was
Dr. Paolo Ciccarese, Assistant in Neuroscience at Massachusetts General Hos-
pital and Instructor in Neurology at Harvard Medical School. He is known for
his pioneering work on the Annotation Ontology, an RDF model for exchang-
ing annotation. In his talk, Dr. Ciccarese introduced annotation as a form of
“micro-integration,” in which typed, versioned, and provenance links are as-
signed between text and schema, text and data, or data and data. He showed
how the Open Annotation standard facilitates both short- and longer-term data
integration efforts, transforming content into smart and connected data.

DILS 2013 was held at Concordia University in Montreal, Canada, and was
organized as part of a series of three co-located events known as the Semantic
Trilogy. The two co-located events were the 4th International Conference on
Biomedical Ontology and the 4th Canadian Semantic Web Symposium.

As the event co-chairs and editors of this volume, we would like to thank
all authors who submitted papers, as well as the PC members and additional
referees for their excellent work in evaluating the submissions. Special thanks go
to Concordia University for providing us with the facilities to run the event, and
the Semantic Trilogy organization team. Finally, we would like to thank Alfred
Hofmann and his team at Springer for their cooperation and help in putting this
volume together.

May 2013 Christopher J.O. Baker
Greg Butler
Igor Jurisica

Organization

General Chairs

Christopher J.O. Baker University of New Brunswick, Saint John,
Canada

Greg Butler Concordia University, Montreal, Canada

Program Committee Chair

Igor Jurisica University of Toronto, Canada

Program Committee

Adam Lee University of Maryland, USA
Adrien Coulet Loria - INRIA Nancy Grand Est, France
Amar K. Das Stanford University, USA
Artjom Klein University of New Brunswick, Canada
Asif M. Khan National University of Singapore, Singapore
Bastien Rance NIH, Bethesda, USA
Brad Malin Vanderbilt University, USA
Christian Schönbach Kyushu Institute of Technology, Japan
David De Roure Oxford e-Research Center, UK
Dietrich Rebholz-Schuhmann EBI, UK
Erhard Rahm University of Leipzig, Germany
Fatima Al-Shahrour Broad Institute of MIT and Harvard, USA
Fleur Mougin University of Bordeaux Segalen, France
Guo-Qiang Zhang Case Western Reserve University, USA
Hasan Jamil University of Idaho, USA
James Cimino NIH/CC/OD, USA
Jörg Hakenberg Arizona State University, USA
Jerven Bolleman Swiss Institute of Bioinformatics, Switzerland
Jong Park Korea Advanced Institute of Science and

Technology, Korea
Karen Eilbeck University of Utah, USA
Karin Verspoor National ICT, Australia, NISTA
Lawrence Hunter University of Colorado, USA
Marco Masseroli Politecnico di Milano, Italy
Marco Roos LUMC, University of Amsterdam,

The Netherlands
Maria Esther Vidal Universidad Simón Boĺıvar, Venezuela
Matthew Hindle Synthetic and System Biology, Edinburgh, UK

VIII Organization

Michael Krauthammer Yale University, USA
Mong Li Lee National University of Singapore, Singapore
Neil Sarkar University of Vermont, USA
Nigam Shah Stanford Center for Biomedical Informatics

Research, USA
Paolo Missier Newcastle University, UK
Paolo Romano Institute of Genoa, Italy
Peter Mork Noblis, USA
Radhakrishnan Nagarajan University of Kentucky, USA
Rainer Winnenburg NIH, USA
Satya Sahoo Case Western Reserve University, USA
Tammy Cheng Cancer Research UK London, UK
Vasant Honavar Iowa State University, USA

DILS Steering Committee

Sarah Cohen-Boulakia LRI, University of Paris-Sud 11, France
Graham Kemp Chalmers University of Technology, Sweden
Ulf Leser Humboldt-Universität zu Berlin, Germany
Paolo Missier Newcastle University, UK
Norman Paton University of Manchester, UK
Louiqa Raschid University of Maryland, USA
Erhard Rahm University of Leipzig, Germany

Organizing Committee

Greg Butler Concordia University, Montreal, Canada
Christopher J.O. Baker University of New Brunswick, Saint John,

Canada
Michel Dumontier Carleton University, Ottawa, Canada

Webmaster

Artjom Klein University of New Brunswick, Saint John,
Canada

Table of Contents

Changing the Model in Pharma and Healthcare – Can We Afford to
Wait Any Longer? . 1

Erich Alfred Gombocz

Ibidas: Querying Flexible Data Structures to Explore Heterogeneous
Bioinformatics Data . 23

Marc Hulsman, Jan J. Bot, Arjen P. de Vries, and
Marcel J.T. Reinders

From Questions to Effective Answers: On the Utility
of Knowledge-Driven Querying Systems for Life Sciences
Data . 38

Amir H. Asiaee, Prashant Doshi, Todd Minning, Satya Sahoo,
Priti Parikh, Amit Sheth, and Rick L. Tarleton

OmixAnalyzer – A Web-Based System for Management and Analysis
of High-Throughput Omics Data Sets . 46

Thomas Stoltmann, Karin Zimmermann, André Koschmieder, and
Ulf Leser

The RDF Pipeline Framework: Automating Distributed,
Dependency-Driven Data Pipelines . 54

David Booth

Towards Interoperable BioNLP Semantic Web Services Using the SADI
Framework . 69

Ahmad C. Bukhari, Artjom Klein, and Christopher J.O. Baker

Optimizing Similarity Computations for Ontology Matching -
Experiences from GOMMA . 81

Michael Hartung, Lars Kolb, Anika Groß, and Erhard Rahm

Semi-automatic Adaptation of Mappings between Life Science
Ontologies . 90

Anika Groß, Julio Cesar Dos Reis, Michael Hartung,
Cédric Pruski, and Erhard Rahm

Next Generation Cancer Data Discovery, Access, and Integration Using
Prizms and Nanopublications . 105

Deborah L. McGuinness
Jamie P. McCusker, Timothy Lebo, Michael Krauthammer, and

X Table of Contents

Putting It All Together: The Design of a Pipeline for Genome-Wide
Functional Annotation of Fungi in the Modern Era of “-Omics” Data
and Systems Biology . 113

Greg Butler

Mining Anti-coagulant Drug-Drug Interactions from Electronic Health
Records Using Linked Data . 128

Jyotishman Pathak, Richard C. Kiefer, and Christopher G. Chute

Author Index . 141

C.J.O. Baker, G. Butler, and I. Jurisica (Eds.): DILS 2013, LNBI 7970, pp. 1–22, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Changing the Model
in Pharma and Healthcare –

Can We Afford to Wait Any Longer?

Erich Alfred Gombocz∗

IO Informatics Inc., Berkeley, California, USA
egombocz@io-informatics.com

Abstract. Innovations in healthcare delivery and Pharma require re-
examination of process models at the foundation of our knowledge discovery
and clinical practice. Despite real-time availability of ‘big data’ from ubiquitous
sensors, mobile devices, 3D printing of drugs, and a mind shift in data
ownership, data integration still remains one of the core challenges to
innovation. Increasingly persistent, semantic data integration is gaining
recognition for its dynamic data model and formalisms which make it possible
to infer from and reason over interconnected contextualized data, creating
actionable knowledge faster and at lower cost. While such technical advances
underpin the successful strategies to drive positive patient outcomes or
accelerate drug design, there are equally profound social changes towards the
willingness of patients to share their own data - opening doors to new patient-
centric, precision-medicine healthcare models. Adding astronomically rising
costs in research and healthcare, we have arrived at a critical turning point
where it is now well within our reach to change how drugs are developed, how
trials are performed and how patients are treated - and we can do this with huge
benefits for otherwise unsustainable industries. Examples show that not only is
this possible today, but that such approaches already have traction; (i) in
Pharma for assessing impact of excipient on drug stability and efficacy; for pre-
clinical toxicity assessment and integral systems views on drug safety, (ii) in
Government at the FDA’s cross species biomarker initiative to reduce animal
testing and (iii) in Health Care for organ transplant rejection assessment and
COPD. Using comparative effectiveness and side effect analyses to base
treatments on solid prognoses and therapy decision support, we can and must
change discovery and healthcare into a data driven and patient centric
paradigm. The socio-economic benefits of such a change will be enormous.

Keywords: life sciences, big data, sensors, data ownership, semantic
integration, actionable knowledge, patient centric, precision medicine, decision
support, use cases, socio-economics.

∗ Corresponding author.

2 E.A. Gombocz

1 Introduction

1.1 Historic Models in Life Sciences

In the past, widespread utilization of large shared spreadsheets, dedicated laboratory
information management systems (LIMS), large relational data warehouses and
traditional methods for extraction, translation and loading (ETL) have been used
across the life sciences enterprise spectrum with more or less sophisticated
approaches to interconnect in-between some of those resources [1]. Key features of
LIMS include acquisition, workflow and data tracking across different modalities,
data exchange interfaces, audit functions and support for their use in regulated
environments. Because of rapid pace at which laboratories and their data management
needs shift, the definition of LIMS has become more blurred. This is particularly due
to the fact that the needs of laboratories widely vary which requires also a shift in
functionality of laboratory information management systems.

Historically, LIMS and process execution have performed similar functions,
building an organization’s reference backbone for experimental results. More
recently, assay and ELN functions have been added to extend traditional LIMS
systems. However, the need to implement quality standards, the awareness of data
management solutions using different architectures and the unavailability of adapted
solutions for interoperability led in many cases to in-house developments instead of
using commercial solutions. Particularly in large Pharma organizations the separation
of data into target areas, specific projects as well as the separation of R&D chemistry,
assay development and biology caused limited communication in-between groups,
redundant efforts and no integral view across the data. The strict separation between
pre-clinical, clinical and market data has hampered feedback within the organizations
to learn from past experiences. Consequently, adverse effects got missed; clinical trial
efficiency was at a low point and causing a hesitant approach in the development of
new drugs.

Despite ever rising amounts of data through high throughput screening,
multiplexed assays and broad use of chip technologies, the actual knowledge
produced in comparison to research costs was declining rapidly [2]. Large Pharma
companies were buying their libraries of new compounds from small biotech to cut
costs by reducing in-house research to small focus areas. Collaboration models were
restricted to consortia with narrow goals and small portions of pre-clinical, pre-
competitive segments the sharing party deemed to be of no further usefulness to the
organization.

1.2 Rise of New Technologies and Machines

The data landscape changed with the rise of new technologies, new developments in
instrumentation, automation and exponential increase in throughput of previously
labor-intense and time-consuming procedures. In the last several years, massive next
generation sequencing (NGS), progress in whole genome sequencing using de novo
assemblies on unimaginable scale [3], RNA sequencing and genome-wide association

 Changing the Model in Pharma and Healthcare 3

studies (GWAS) have been at the forefront of genomics to be used for both, gene-
based biomarker discovery and personal genomics as tool for precision medicine and
the genetic selection of population cohorts for clinical trials.

The development of new sensor technologies and advances in mobile computing
led to sensors being everywhere and on everything with real-time internet
connectivity. Wearable medical technology is becoming a hot commodity [4]. As
these devices come to market, they have great potential to help both patients and
clinicians monitoring vital signs and symptoms [5]. In personal health, sensors which
are always on, always with you, always tracking were changing data collection to
become a continuous monitoring stream [6], providing both, individuals and
physicians more accurate and more detailed data about many influence parameters on
a health or disease state which previously were not available [7]. Lifestyle choices,
such as exercises, habits and environments have been recorded similarly [8].

The size of all these data and the computational considerations to analyze them
along with the high data dynamics require investment in High Performance
Computing (HPC) and have led to tradeoffs between inexpensive highly dense storage
on commodity disks and higher cost better performant NAS, SAN or Cloud services
(CEPH, OpenStack, Amazon). Dependent on budgets, compromises were made, and
raw data have been thrown out in favor of much smaller analyzed data sets.
Algorithmic transformations to normalize in-between platforms have changed over
time and metadata not always included, making review for verification in many cases
impossible. While new ways of computing have been introduced which are using
massive parallel computing and distributed clusters for analysis [9], management of
‘big data’ has become a complex, expensive and demanding task at scales beyond
most forecast expectations. This development has created a new bottleneck in analysis
and practical use of ever growing data repositories and made interoperability,
provenance and versioning an equally important concern to plain connectivity and
was instrumental in rethinking data integration in life sciences in general.

1.3 Economic Importance of Data

In a MIT Technology Review end of 2012, the question was raised publicly if
personal data is the new currency [10]. The economic importance of access and
utilization of vast amounts of interconnected data can no longer be denied, and the
same applied equally to the life sciences. With the expansion of social networks and
the drive from individuals to take care of their needs for better prognosis and
treatment, the frustration about public availability of medical data has driven the
movement of patients making their own data publicly accessible. Adding to this
the fact, that big data analytics became a way of turning data into money [11], the
assessment that Data is the new money and those who have access to it, have power
became obvious with significant implications in the shift from revenue and margins
driven industrial models towards customer-centric, health outcomes for patients
motivated strategies in which consumers influence the drivers of healthcare systems.

4 E.A. Gombocz

This new proposition is affecting insurers, payers, service providers, drug
discovery processes, drug development, repurposing of drugs for new indications
alike – moving to an evidence-based, outcomes-focused, behavior-driven life sciences
environment which through empowering of data will benefit all of us.

1.4 Staying Competitive

In the past, low ROI on research and development has provided little incentives to
innovation or change, particularly as industry was closely watching its competitor’s
moves to decide about the necessity to adjust their model to new trends based on
proof-of-concept (PoC) and pilot study outcomes. In a way, the unwillingness to share
even pre-competitive or failed approaches within tightly controlled consortia
members for collaborations has reduced the competitiveness of the industry –
however, there a several positive examples on the horizon that this behavior is
changing as both, Pharma and Healthcare industry have come to the realization that
everyone profits from collaborative approaches to accumulative and complimentary
data on common goals. Of course, any meaningful collaboration is closely tied to
interoperability, and this is true equally for both, commercial and academic entities.

Crowd-sourced analysis requires interoperability, and interoperability is how big
data becomes big open data, and this will assure rapid progression in scientific
discovery and providing a solid foundation for Pharma and healthcare to stay
competitive. Acknowledged, that crowd-sourcing as a new policy has many
implications [12-13] and there is still hesitancy to collaborative data sharing, its
driving force will be costs and efficiency towards new concepts which will
significantly shape the future of data-driven life sciences.

2 State of the Industry

2.1 Data Generation vs. Knowledge Gain

While automation and advances in technologies have brought down costs of complex
testing faster than anticipated, analysis and integration towards applicable knowledge
has lagged behind. Massive data (a single run of Life Technologies sequencer
produces ~900 GB raw data, 1 machine = 10 TB/day) and the sophistication required
by the complexity of analysis procedures have let to the notion of the “$1,000.-
genome at $1 Mio interpretation.”[14] – thus, in most cases, only a small fraction of
information is used to build knowledge and advance scientific progress.

One major reason for this discrepancy is that the required proficiency of a whole
range of experts including molecular and computational biologists, geneticists,
pathologists and physicians with detailed knowledge of disease and treatment
modalities, genetic counsellors and IT specialists to build analysis teams [15] is not
easy to establish. Using large number of specialists was critical to complete the data
analysis, for variant annotations and to interpret causative or actionable variants. Even
then, clinical verification of such variants and ramifications for the treating physician
and patient require even today immense efforts and make the widespread use of

 Changing the Model in Pharma and Healthcare 5

clinical whole-genome sequencing for diagnosis and quality of life improvement still
a distant goal. On top of this, the bioethics pros and cons of WGS of every newborn
child need to be sorted out and genomics must address socio-economic disparities in
healthcare.

Similar considerations should be applied to other rapidly evolving fields such as
proteomics, transcriptomics and microbial implications in major diseases – rapid data
generation through automated, low cost high throughput sample analyses does not
match up with the possible knowledge gain from those resources. Amongst other
reasons, standardization of analytical methods and algorithms and requirements for
quality standards on data also has played a significant role in the usability of results
across laboratories.

2.2 Traditional Data Mining

Relational data warehouses and object data bases require upfront considerations to
determine which questions you want to answer, Data models (schemas) must be
defined at the beginning, so such solutions, while excellent for final datasets and great
performing on optimized queries for what they were built for are demanding in
support due to their rigid and static structure. On the other hand, a whole host of
mining solutions and visualization tools are available as relational database
technology has been around for a long time and big players in information technology
have embraced its use.

In Life Sciences, however, a different picture emerges as dynamic, agile solutions
are required to keep pace with changing data types, formats, instrumentation as well
as analytical requirements. Add to this the scale of growth, and ‘big data’ has
demonstrated impressively, that more relational data warehouses and traditional data
mining approaches cannot be the answer to today’s information requirements
landscape. In many cases in Life Sciences, questions to ask and potential use cases are
moving targets, so any inflexible solution limits its applicability. In biological
systems, the need to traverse data, to infer from other data and to search complex
pattern across all your resources to find clues what kind of questions you can answer
is rooted on a different set of requirements - in most cases, questions are not
predefined, and the picture what and how to ask is not clear at the beginning. Include
to this that in the relational world no clear connections in-between data silos exist and
different proprietary schemas prevent cross-resource queries, and the limitations of
such approaches become transparent.

2.3 Cost of Research vs. Outcomes

A recently published Forbes report [16] on staggering costs of new drugs, a new study
comparing healthcare cost in the US with other countries [17] and the OECD Health
Statistics [19] provide insights into costs of research versus outcomes which are
stunning, but well known within the industry. A representative of Eli Lilly estimated
the average cost of bringing a new drug to market at $1.3 billion, a price that would
buy 371 Super Bowl ads on television [16]. On average, a drug developed by a major
pharmaceutical company costs at least $4 billion in R&D (see Table 1 below)

6 E.A. Gombocz

Table 1. Number of approved drugs and drug development costs of major Pharma companies
(2012)

 Company Approved Drugs R&D Costs/Drug [$ Mio]

AstraZeneca 5 11,790.93

GlaxoSmithKline 10 8,170.81

Sanofi 8 7,909.26

Roche AG 11 7,803.77

Pfizer Inc. 14 7,727.03

Johnson & Johnson 15 5,885.65

Eli Lilly & Co. 11 4,577.04

Abbott Laboratories 8 4,496.21

Merck & Co Inc 16 4,209.99

Bristol-Myers Squibb Co. 11 4,152.26
Novartis AG 21 3,983.13

Amgen Inc. 9 3,692.14

Source: InnoThink Center For Research In Biomedical Innovation; Thomson Reuters
Fundamentals via FactSet Research Systems (adapted from [16])

Looking at the quality of healthcare and its costs between countries gives
interesting insights into the state of global healthcare. The US spends $8,233 per
person/year [17] which is 2.5-times more than most of developed nations and uses
17.6% of GDP for healthcare [17]. At the same time, the US had 2.4 practicing
physicians per 1,000 people comparing to an average of 3.1 among OECD countries.
In hospital beds per 1000 people, the US ranges with 2.6 well under the OECD
average of 3.4.

Life expectancy in the US was increased by 9 years between 1960 and 2010;
Japan’s by 15 years and in OECD countries on average by 11 years [17]. In the drug
development arena, per patient clinical trial costs have risen on average by 70 percent
across all development phases since 2008 [18].

This numbers are clear indicators that the cost vs. outcome ratio needs to be
improved [19] and the current models require adjustments

2.4 Data Ownership: Closed Data vs. Patient-Shared Access

Social media has arrived in healthcare. Patients are sharing publicly their own data, in
which case no restrictions on scientific use apply. While many impediments by
HIPAA compliance requirements to provide only selected, de-identified subsets to
certain authorized individuals have been circumvented by such developments, new
questions arise on the consequences from changes in data ownership and the shifts
from hospital and providers to patient, and how this may impact integrated research.

Fig. 1. OECD Statistics 2012
Health Data 2012 [2])

Private and public expenditure
pane)

An article in 2011 in th
discussion about privacy co
access problems [20]. Neve
health devices in use and
aspect of data ownership o
and their sharing among p
closed data will lose ground

Changing the Model in Pharma and Healthcare

2: Healthcare cost comparisons across countries (Source: OE

es per capita (upper panel) and in percentage of the GDP (lo

he Harvard Journal of Law and Technology opened
oncerns and why data ownership alone cannot resolve d
ertheless, with more and more internet connected perso
a strong movement towards prevention and wellness,

on real-time, near-continuous monitoring of vital functi
private individuals and physicians is a good indicator t
d against patient-shared access in the future.

7

ECD

ower

the
data
onal

the
ions
that

8 E.A. Gombocz

3 Methodology for Change

3.1 Semantic Approach to Data Integration – Meaning, Inference, Reasoning

Resource description framework (RDF)-based integration (W3C standard) [21] opens
new avenue and possibilities for rapid and efficient data integration. It has been
around for quite some time, and its benefits as an agile, extensible environment built
for interoperability have been widely demonstrated. Semantic data is much easier to
connect, to visualize and extend as it does not rely on isolated RDBMS schemas, a
contested standard data description, or a proprietary middleware translation layer.
Dynamically built application ontologies can be adjusted and data remapped as
needed; meaningful, not arbitrary schema-based connections drive its framework of
triples, providing capabilities for inference and reasoning and pattern-based queries
across the network graphs. The built-in basis for interoperability of true 5-star
compliant RDF resources is not only a needed convenience, but a must for today’s life
sciences needs to utilize a fast array of publicly available linked data resources. RDF
and its web ontology language, OWL [22] providing an excellent way to represent
data with changing needs, with ability to reuse, repurpose in an easy to adopt and
maintain fashion – allowing for disambiguous queries, pattern discovery and graph
traversal across multiple RDF-represented resources.

In addition to being a globally standardized framework which links data based on
their meaning, emergent properties include network visualization, visual query,
faceted browsing, machine inference, and pattern recognition. Recent advances in
provenance and versioning [23-24], in the development of public formal ontologies
[25] and their direct accessibility through tools [26] have shown increasing interest in
life sciences as foundation for larger project. Examples of such ongoing efforts are the
development of the Translational Medical Ontology and Knowledgebase [27] driven
by both, industry and academia, and the connex between medical informatics and
bioinformatics in knowledge building in the clinic [28-29].

3.2 Linked Life Data, Linked Open Data – Consequences

The significant increase in the quality of Linked Data (LLD, LOD) [30-32] brings
promising add-ons to qualify experimental findings early on through enrichment with
external resources – but interoperability and different provenance remain still
impediments for broader applicability as well as changes in licensing for previously
‘open’ public resources. Legal restrictions on use without modification prevent certain
data resources from becoming interoperable as mapping and harmonization functions
to other data cannot be applied.

As government funding for some linked open data cloud resources is unsure due to
austerity and budget restraints in the US, Japan and Europe we will have to ensure to
establish new business models between data provider and consumer to warrant
continuous availability of such resources; either through private/academic/government
partnerships or new concepts based on resource value for organizations. As the socio-
economic benefits of maintaining these resources by far outweigh contributions towards
their sustainability, such models will benefit all participants greatly.

 Changing the Model in Pharma and Healthcare 9

3.3 Complexity and Change Require Dynamic, Adaptable Models

New and better scientific methods and analysis tools require adaptation for changes.
As outlined before, the complexity of functional biology calls for network analysis of
interconnected data in their relationships to each other. This leads logically to
semantic integration approaches and network-driven systems to establish better
understanding of complex biological intertwined reactions.

The healthcare industry is now about three years into ‘meaningful use’, an
ambitious incentive program to convince hospitals and private practices to use
electronic health record (EHR) software. Regulators are also bringing HIPAA into the
21st century, and similar efforts are underway for telemedicine. Above all, it looks as
if healthcare finally seems ready to benefit from big data, cloud services and other
disruptive technologies that have dramatically changed other vertical industries [33].
As healthcare costs have tripled within the last decade and despite over $10 Billion
payments in healthcare incentives, we cannot afford to have EHR systems which are
not interoperable and CRO’s which are disconnected from their customers. A good
example about possibilities in progressing with success in complex diseases like
atherosclerosis to assess life threatening risk of plaque rupture via biomarkers leading
to discovery of previously unknown pathway involvement, using such approaches to
take advantage of integrated knowledge can be found in [34].

3.4 Understanding Biology: Shifting towards Interoperable, Integral Systems

The need to contextualize experimental findings with pathway involvement and
mechanisms is apparent as pharmacogenomics correlations not necessarily always
match biological systems responses. Only when utilizing as much as we possibly can
know, we will succeed in comparative effectiveness to select the best treatment at the
right dose based on a patient’s profile, lifestyle, disease stage and individual drug
response.

The shift towards an integral view is the key to improving effectiveness of
therapies and better understanding of the impact of a disease stage and a patient’s
profile on response, prognosis and outcome. Indications are that this is happening
now. This year's Health Information and Managements Systems Society's (HIMSS13)
conference brought the announcement, that five leading electronic health record
(EHR) vendors were forming the ‘CommonWell Health Alliance’ to promote
‘seamless interoperability’ of healthcare data [35].

3.5 Progression towards New Life Sciences Models: Pharma 3.0,
Healthcare 3.0

There is a noticeable, albeit slowly, but steadily happening shift in industry from a
product-centric business model to a customer/patient centric business model; and the
new drivers are health outcomes. Maintaining or regaining growth will require the
transition of Pharma from acquisition model to innovate partnerships and
collaborative data sharing [36]. Innovation needs to focus more on business model

10 E.A. Gombocz

innovation than product innovation. Reimbursement needs to have its foundation in
real market effectiveness rather than the approval of clinical trial data. What applies
to Pharma, applies in equal ways to the entire healthcare industry. Efforts to
reimbursement based on comparative effectiveness of clinical procedures and
treatments indicate that life sciences industries are shifting to evidence-based and
outcomes-focused business models – data-savvy, integrative, consumer (patient)-
minded rather than product-centric. Moving quickly and following the value to
progress towards a new sustainability model will be the key to success. Although
there is a sense of urgency to try disruptive methods, it so far has been a ‘trying the
water’ approach around edges of the business, not deeply embraced change. While the
trends are apparent to most industry players, to think in new ways has always been
uncomfortable and therefore slow in execution. If moving from 2.0 to 3.0 means, that
collective impact approaches allow to move more expressively to pre-competitive
sharing within the healthcare / life sciences space, the transition will not only be more
rapid, it also will create new incentives for holistic approaches to this sector.

Fig. 2. Pharma on the move from 2.0 to 3.0 – Consequences for Life Sciences(Source: Ernst &
Young 2012 [36])

Significant changes need to occur in business model, value drivers and innovation during the
shift towards a patient-centric, outcomes-focused and innovation-driven partnership model,
where any reimbursement is based on effectiveness in its application rather than the product
itself.

 Changing the Model in Pharma and Healthcare 11

4 Use Cases of Adoption

4.1 Pharmaceutical Industry

Impact of Excipient Choice on Formulation Stability, Purity and Drug Efficacy
Objective at a large Pharma company was the integration of disconnected
chromatography data systems (CDS) and LIMS with compound and formulation
databases to provide quick searches for compound purity data upon FDA inquiries. As
there were no common identifiers, such inquiries required time-consuming off-line
searches with ambiguous results, delaying responses to the FDA by several weeks. A
system was sought to remedy this organizational problem.

The solution to build a semantic platform for compound purity and stability
assessment not only was accomplished in a fraction of the allocated time (6 weeks
instead of ~ 1 yr. projected project completion time in traditional data warehouse
fashion), but inference could be used to quickly and unambiguously find the desired
raw data in the CDS. As a pleasant side effect of the semantic data model
implemented, an additional data resource was integrated to allow for queries
determining the impact of the choice of excipient in a given drug formulation on
active ingredient efficacy and overall drug stability.

Pre-clinical Toxicity Assessment and Compound Toxicity Type Classification
In a joint project (NIST/Cogenics/CLDA) to understand the impact of toxicity on
biological systems, sets of known and presumed toxicants were used in large 3-year
animal studies to determine biomarker classifier patterns and their applicable ranges
for pre-clinical toxicity screening of compounds.

Hepatotoxicity studies consisted of a panel of hepatotoxicants at single oral dose
(placebo, low, mid, high) in groups of 4 rats, at 6, 24 and 48 hrs.) and metabolic
analysis of liver, serum and urine (1603 metabolic components; Bruker LC/MS-MS);
gene expression microarray analysis of liver and whole blood (31096 transcript
probes; Affymetrix); and statistical biomarker pre-selection at p<0.005, abs fc>10
(genes) and p<0.005, abs fc>2.5 (metabolites).

Alcohol studies were carried out at high doses t.i.d. for four days, with and without
24h withdrawal; metabolic analysis of plasma, liver and brain (1620 metabolic
components),microarray analysis of liver and brain (31096 transcript probes) and
statistical biomarker pre-selection at p<0.005, abs fc>5 (genes) and p<0.005, abs
fc>2.5 in similar fashion.

The experimental network of statistically preselected putative genomic and
metabolomic biomarkers was then enriched with public RDF resources through
SPARQL queries to discover common pathway dependencies, using LOD-based
systems-biological qualification of experimental pharmacogenomic correlations. As a
result of semantic data integration, markers to distinguish several distinct types of

12 E.A. Gombocz

T
ab

le
 2

. T
ox

ic
ity

 b
io

m
ar

ke
r

w
ith

 b
io

lo
gi

ca
l v

al
id

at
io

n:
 C

ha
ra

ct
er

iz
at

io
n

of
 to

xi
ci

ty
 ty

pe
s

Fig. 3. Use case:

Network view of toxic insult f
conjunction with their associa
with ranges for each biomark
(ASK) arrays, accessible on a

toxicity were established, w
result, Benzene-, Chlorinate
and long-term effects of
recognized [37-38]. The fin
clinical toxicity assessm
pharmacological mechanis
[39]. Results for Benzene-ty

Integral Systems View on
A multi-national Pharma p
drug safety assessment fro
~14,000 documents (~8 gb
quality was unknown and d

During semantic integra
during mapping and data q
the body of data were d
knowledgebase contained ~
drop query builder using a
access through a web porta
clinical trials.

Changing the Model in Pharma and Healthcare

: Pre-clinical toxicity assessment and categorization

from a set of compounds with affected genes and metabolite
ated pathways and diseases (left); visual SPARQL pattern qu
ker (center); published query pattern as Applied Knowledgeb
web server for rapid toxicity type screening of compounds (rig

which passed functional biology criteria for toxicity. A
ed compound- and Ethanol toxicity could be distinguis

f Alcohol on memory functions in brain biologic
ndings from these studies have major implications for p

ment and were reported at a FDA workshop
m-based drug safety assessment and prediction in 20
ype toxicity are depicted in Table 2

Drug Safety and Adverse Effects
project required data integration of trial management
om a large document corpus. The project scope invol
) with ~1.2 billion spreadsheet cells containing data. D

data curation requirements were not obvious at start.
ation, thesaurus-based harmonization and transformat
quality enhancement through inference, inconsistencies
detected and remedied, As result, the initial seman
~ 780 M triples. Parameterizable SPARQL and a drag
a cache search index (iPool) for fast queries provide e
al for integral adverse effect queries on compounds used

13

es in
uery
base
ght)

As a
hed
ally
pre-

on
011

for
lved
Data

tion
s in
ntic
-&-

easy
d in

14 E.A. Gombocz

4.2 Government

Cross-Species Biomarkers
In an effort to reduce anim
animal experiments, the F
long-term project to develo
the need to integrate gen
biopsies, assay results and
feasibility to determine com

Objective was exploring
to smaller ones (rats, mice)
reduce costs and minimize t

The semantic integration
and animal characteristics a
resources (UniProt, KEGG
knowledgebase provides th
biomarkers applicable to hu

Initial results have bee
additional species data is
significant reduction in anim

Microbial Pathogen Know
Identification of biologica
diseases require rapid acti
biological source. While th
MIST, PATRIC), their sche

As the need to identify
integral access to as many r
resources (including a thesa

Fig. 4. Use case: Quick patho

Visual SPARQL queries acros
are used to identify threads
server’s ASK arrays for online

s to Reduce Animal Studies
mal testing in accordance with world-wide trends aga
FDA Center for Veterinarian Medicine (CVM) starte
op species-independent biomarkers. The project invol
nomics data, proteomics data, imaging endpoints fr
 animal data obtained from a variety of species to pr

mmon disease biomarkers across those species.
g the ability to move from large animal testing (pigs, do
, and further progress to human cell cultures in an effor
the need for animal experiments.
n of raw data and results from experimental tests, imag
across multiple time points and the incorporation of pub
, Reactome) into a comprehensive multi-species biolog
he basis for network analyses to discover cross-spec

uman adverse events and diseases.
en very encouraging, and ongoing research integrat
under way. Ultimately, this development will lead t

mal testing and better drug models for human responses

wledgebase to Identify Biological Threads
al threads or the outbreak characteristics of infecti
ion on proper identification and characterization of

here are several public database resources available (ICT
emas are not built for interoperability.
y microbial pathogens quickly and precisely entails
resources as possible, a semantic mapping for those pub
aurus for microorganism for synonym harmonization) w

ogen identification from samples using microbial knowledgeba

ss the graph of an integrated microbial pathogen knowledgeb
from experimental data. Those pattern are populating a

e and in-field screening using smart phones

ainst
ed a
lved
rom
roof

ogs)
rt to

ges,
blic

gical
cies

ting
to a
.

ious
the

TV,

the
blic
was

ase

base
web

 Changing the Model in Pharma and Healthcare 15

established and the microbial pathogen knowledgebase enhanced with NCBI’s
taxonomy for group classification into family, subfamily, genus and organisms. This
Knowledgebase [40-42] then was used in integrated network analysis of samples from
MS-based sequencing and/or rapid microbiological assays in conjunction with historic
case data to identify pathogens within the host samples.

An Applied Semantic Knowledgebase (ASK) web portal for simplified pattern
queries was established to determine threads by location and confidence level for the
identified pathogens.

4.3 Clinical Decision Support

Biomarkers in Transplantation: Organ Rejection Screening
Transplantation is currently the most common therapy for patients with end-stage
organ failure. It involves putting a donated organ into the immunologically foreign
environment of the receiving patient. While the transplantation procedure itself may
go smoothly, the recipient’s immune system may react to the new organ to induce
rejection. White blood cells and antibodies are primarily involved in the recognition,
attack and destruction of foreign tissues, yielding dysfunction of the transplanted
organ.

A major challenge facing clinical caregivers in the management of organ rejection
is to determine whether a transplanted organ is undergoing rejection prior to any
symptoms. This typically required using highly invasive and risky procedures, such as
tissue biopsies – expensive, regularly performed emotionally and physically stressful
procedures which may still result in inconclusive findings. In order to prevent organ
rejection, powerful therapies are used to suppress a patient's immune system. While
this approach reduces the probability of rejection, it does so at a high cost.
Impairment of a recipient patient’s immune system leaves them susceptible to
infections, malignancies and functional complications in the newly transplanted
organs.

As individuals vary in their response to such therapies, understanding this variation
would help physicians balancing the necessity of therapy with its possible side-
effects. The ability to personalize immune suppressants for each patient not only
alleviates patient discomfort and side-effects, but also reduces the enormous costs
associated with over-prescription of immunosuppressive drugs and other diagnostic
procedures.

The Biomarkers in Transplantation (BIT) initiative was established to identify and
validate biomarkers for diagnosis of rejection of a transplanted organ via a simple
blood test [43]. The program was launched in 2004 to better understand acute or
chronic tissue rejection in heart, liver, and kidney transplant patients. Its application to
use a web-based Applied Knowledgebase (ASK) decision support system won Bio-
IT’s Best Practices Award in 2010 [44]. It utilizes semantic data integration and
parameterized SPARQL queries with weighing and ranges for multimodal biomarkers
[45-46] to provide screening for patients at risk

16 E.A. Gombocz

Fig. 5. Use case: Score-based
rejection

Semantic network of a heart
history and organ donor infor
provide guidance-text based de

Biomarkers for COPD: Pr
Chronic obstructive pulmo
characterized by loss of lun
productivity, and longev
exacerbations related to res
of disease. Results are
hospitalization, intensive c
cause of morbidity and mor

Fig. 6. Use case: Biomarke
exacerbations

Semantic integration of cl
predicting likelihood of e
smoking history and prior
on normalized algorithmic

recommendation for immune suppression therapy at risk of or

t transplant patient with blood-test based biomarkers, dise
rmation (left). Use of ASK array to screen for rejection risk
ecision support on immune suppression therapy (right).

rediction of Exacerbation
onary disease (COPD) is a chronic, progressive dise
ng function and breathlessness that reduce quality of l

vity. Its course is frequently complicated by ac
spiratory infections, ambient pollution or poor managem

urgent visits to physicians, emergency room c
care unit admissions, and even death. COPD is a ma
rtality around the world. In British Columbia (BC) and

er-based clinical decision support system to predict CO

linical data for genomic marker-based decision supp
exacerbation. Network view of 5 patients with differ
exacerbations (left). ASK array physician guidance ba
scoring of weighed biomarker expression profiles (right

rgan

ease
and

ease
life,
cute

ment
are,
ajor
the

OPD

port
rent
ased
t)

 Changing the Model in Pharma and Healthcare 17

rest of Canada, COPD exacerbations are leading cause of hospitalization, and
prevalence has continued to rise, increasing 41% since 1982. It now affects 10-14% of
Canadians 40 years of age and older and 600 million people globally [47-48]. As the
4th leading cause of mortality in Canada and the US [49] and the only major cause of
mortality for which death rates continue to rise [48-49], the economic costs of COPD
management for society are estimated to be over a billion dollars annually in Canada
with $736 million of that directly attributable to exacerbations [51]. Most of the
morbidity occurs during exacerbations, and their direct costs are predicted to surpass
$1 billion by 2015 [52].

A biomarker-based decision support system to predict likelihood of exacerbation
and advise treating physician via web-based access to screen patients alleviates those
risks and provides a tremendous improvement for patient care in reducing emergency
care and hospitalization.

5 Discussion, Future Outlook

5.1 Applied Knowledge as Cost Saver

A 2012 released OECD Health Data Report [19] provides among others statistics on
health expenditures, healthcare utilization, demographic references, healthcare quality
indicators, pharmaceutical market and long-term care resources. In 2010, in the US
public expenditure on health were 48.2% from the total expenditures compared to
87.7% in the Netherland, 85.1% in Denmark and 83.2% in the UK [19]. Applied
knowledge from semantic integration of experimental, clinical and public proteomics,
genomics, metabolomics and pathway resources led to the development and
qualification of multi-modal biomarker pattern applicable for rejection risk
assessment with enormous cost savings.

Taking the examples from 4.3 using biomarker blood test for clinical decision
support can be used replacing monthly biopsies for up to a year after transplantation
at average costs of $4000.-/each. As of 2007, the average price of a kidney-only
transplant was $246,000 in the first year. A single lung transplant totaled $399,000. A
heart transplant patient's first-year total medical costs were $658,000. In 2011, in the
US 1,760 patients on the heart wait list received heart transplants. This represents a
decrease from 2,333 hearts transplanted in 2010 and 2,211 in 2009 (Source:
UNOS/OPDN). The Heart and Stroke Foundation in Canada reports that heart disease
and stroke costs the Canadian economy more than $20.9 billion every year in
physician services, hospital costs, lost wages and decreased productivity (Conference
Board of Canada, 2010). In 2010, there were 167 heart transplants in Canada, with
135 patients on the waiting list for organ donors. One can imagine the cost savings
and quality of life enhancement for patients obtainable through widespread use of
preventive non-invasive screening methods Similarly, the effects of being able to
predict COPD exacerbations which cause permanent lung tissue damage, are
impressive indicators how far reaching integral patient-centric procedures based on
semantic knowledgebases have influenced the socio-economics of healthcare.

18 E.A. Gombocz

Actionable knowledge and near-real time alerting of physicians about patients at
risk in life-threatening conditions is a testimonial to the real value of interoperable,
agile data in life sciences.

5.2 Socio-economics - Higher Quality of Life

As exemplified by examples provided, the use of semantic data integration
technologies and integrated, harmonized network approaches utilizing both, internal
experimental, clinical, observational and demographic data and public resources
provided as RDF/OWL via SPARQL endpoints to enrich, qualify, validate – even
plan additional new experiments – has moved from exploratory projects to
mainstream acceptability.

Biomarker-based screening for kidney disease to avoid biweekly dialysis or
transplantation, heart organ transplant monitoring with biomarkers instead of costly
and unpleasant monthly biopsies, and prediction of exacerbations in COPD are just
the beginning of a new era of patient-centric, date-driven improvement in health
outcomes where everyone involved in applying Pharma 3.0 and Healthcare 3.0
principles [36] will win back sustainability based on reimbursement of real, not
perceived effectiveness at the reward of huge socio-economic benefits and improved
prevention, care and quality of life.

5.3 Actions Today and Tomorrow

We can see already today the adaption towards more open-minded strategic
approaches to build integrated, interoperable (and open?) life science knowledge
system capable of remarkable results at significantly lower costs [53] – but there still
remains a lot to do.

We need to do more to promote and proliferate these efforts among wider
communities to ensure that the life sciences industries are sustainable, effective and
applied to help through early intervention, better prognosis and integrated patient-
centric, knowledge-based treatment to improve outcomes, increase life expectancy
and the quality of life for all. I would urge you to join me in my assessment, that we
cannot afford to wait any longer, and that the phase of hesitation on early adaptation
to implement innovate solutions and business processes in our quest for
comprehensive, integrative systems approaches to better understand biology is over.

We know, what is necessary to change the model, and we have examples leading
the way to a bright future – but knowing is not enough; it’s time to act, and more than
any time before, the time is now.

“Knowing is not enough; we must apply. Willing is not enough; we must do.”
- Johann Wolfgang von Goethe (1782)

Acknowledgements. The following groups and researchers have been contributing to
the success of the projects described in 4. Use Cases of Adoption:

 Changing the Model in Pharma and Healthcare 19

Toxicity Project: Pat Hurban, Alan J. Higgins, Imran Shah, Hongkang Mei, Ed K.
Lobenhofer (Cogenics, Morrisville, NC), Fulton T. Crews (Bowles Center for
Alcohol Studies / UNC, Chapel Hill, NC)
Microbial Pathogen Project: Sherry Ayers (FDA NARMS, Silver Spring, MD)
Species-independent Biomarkers: Haile F. Yancy, Michael J. Myers, Rudell Screven
(FDA VET / CVM, Laurel, MD)
Biomakers inTransplantation and COPD: Bruce Mc Manus, Raymond T. Ng, Scott
Tebbutt (Centre for the Prevention of Organ Failures / PROOF, Vancouver, BC,
Canada)
RDF / OWL Database Resources and Ontologies: Jerven T. Bolleman (Swiss Institute
Bioinformatics / SIB / UniProt Consortium, Geneva, Switzerland), Michel Dumontier
(Bio2RDF II, Carleton University, Ottawa, Canada), Mark A. Musen, Patricia L.
Whetzel (BMIR / NCBO Stanford, CA)
W3C HCLS LLD / Pharmacogenomics SIG: Scott Marshall, Michel Dumontier
IO Informatics: Andrea Splendiani, Jason A. Eshleman, Robert A. Stanley
Working Groups: Best Practices in Data Sharing, Informatics for Personalized
Medicine
Grant Support for Toxicity Studies: NIST ATP #70NANB2H3009, NIAAA
#HHSN281200510008C

References

1. Technology survey on LIMS and ELN in Life Sciences. Project Share Biotech, University
of Nantes, France (2011), http://www.biogenouest.org/sites/default/
files/Biogenouest/Fichiers/qualite/lims_eln_sharebiotech_
study_report.pdf

2. OECD health systems 2012 (2012), http://www.oecd.org/health/
health-systems/oecdhealthdata2012.htm

3. Richter, B.G., Sexton, D.P.: Managing and Analyzing Next-Generation Sequence Data.
PLoS Comput. Biol. 5(6), e1000369 (2009), doi:10.1371/journal.pcbi.1000369,
http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371
%2Fjournal.pcbi.1000369#s5

4. Wearable wireless health sensor for remote bio-monitoring. Gizmag (2010)
5. Sensors facilitate health monitoring. Sensor Magazine (2011),

http://www.sensorsmag.com/specialty-markets/medical/
sensors-facilitate-health-monitoring-8365

6. 10 wearable health tech devices to watch. Information Week (2012),
http://www.informationweek.com/healthcare/mobile-
wireless/10-wearable-health-tech-devices-to-watch/240012613

7. Mobile ECG monitor via iPhone. AliveCor (2011),
http://www.alivecor.com/?gclid=CPP9yqyL-LUCFchaMgodg3QANA

8. fitbit one – Wireless activity monitor. Fitbit (2011),
http://www.fitbit.com/one/gallery

9. Sanjeev, A., Boaz, B.: Computational Complexity – A Modern Approach, Cambridge
(2009) ISBN 978-0-521-42426-4

10. Zax, D.: MIT Technology Review, November 2011: Is Personal Data the New Currency?
(2011), http://www.technologyreview.com/view/426235/
is-personal-data-the-new-currency/

20 E.A. Gombocz

11. Ohlhorst, F.J.: Big Data Analytics: Turning Big Data into Big Money. Wiley (2012)
ISBN: 978-1-118-14759-7, http://www.wiley.com/WileyCDA/
WileyTitle/productCd-1118147596.html

12. Dean, M.: Crowdsourcing as Healthcare Policy Pros&Cons. The Nation (2013),
http://www.thenation.com/blog/174059/
crowdsourcing-health-care-policy-cant-we-do-better

13. Engelen, L.: Crowdsource your health. Video on TED.com (2012),
http://www.ted.com/talks/lucien_engelen_
crowdsource_your_health.html

14. Davis, K.: The $1,000 Genome. The Revolution in DNA Sequencing and the New Era of
Personalized Medicine. Free Press (2010) ISBN 9781416569596

15. Mardis, E.: The $1,000 genome, the $100,000 analysis? Genome Medicine 2, 84 (2010)
16. Herper, M.: The truly staggering costs of inventing new drugs. Forbes (2012),

http://www.forbes.com/sites/matthewherper/2012/02/10/
the-truly-staggering-cost-of-inventing-new-drugs/

17. PBS, 2012: Healthcare costs: How the US compares with other countries (2012),
http://www.pbs.org/newshour/rundown/2012/10/health-costs-
how-the-us-compares-with-other-countries.html

18. Evangelista, E.: Per patient clinical trial costs rise 70% in three years. Marketwire (2011),
http://www.marketwire.com/press-release/per-patient-
clinical-trial-costs-rise-70-in-three-years-1538269.htm

19. OECD Health Statistics: Data Dissemination and Results (2012),
http://www.oecd.org/els/health-systems/
Item%202_OECD%20Health%20Data_Dissemination%20and%20
Results_MCC_Final.pdf

20. Harvard Journal of Law and Technology: 25(1) 2011: Much Ado about Data Ownership
(2011), http://jolt.law.harvard.edu/articles/pdf/
v25/25HarvJLTech69.pdf

21. Resource Description Framework (RDF): Concepts and Abstract Syntax (2004) W3C
Recommendation (February 10, 2004), http://www.w3.org/TR/rdf-concepts/

22. OWL 2 Web Ontology Language - Document Overview (2nd edn.) (2012) W3C
Recommendation (December 11, 2012),
http://www.w3.org/TR/owl2-overview/

23. Cyganiak, R., Zhao, J., Alexander, K., Hausenblas, M.: VoID Vocabulary of Interlinked
Datasets. DERI, W3C note (2011)

24. PROV-O: The PROV Ontology. W3C Candidate Recommendation (2012)
25. Musen, M.A., Noy, N.F., Shah, N.H., Whetzel, P.L., Chute, C.G., Story, M.A., Smith, B.:

The National Center for Biomedical Ontology. J. Am. Med. Inform. Assoc. 19(2), 190–
195 (2012)

26. Salvadores, M., Horridge, M., Alexander, P.R., Fergerson, R.W., Musen, M.A., Noy, N.F.:
Using SPARQL to Query BioPortal Ontologies and Metadata. In: Cudré-Mauroux, P., et
al. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 180–195. Springer, Heidelberg (2012)

27. Luciano, J.S., Andersson, B., Batchelor, C., Bodenreider, O., Clark, T., Denney, C.K.,
Domarew, C., Gambet, T., Harland, L., Jentzsch, A., Kashyap, V., Kos, P., Kozlovsky, J.,
Lebo, T., Marshall, S.M., McCusker, J.P., McGuinness, D.L., Ogbuji, C., Pichler, E.,
Powers, R.L., Prud’hommeaux, E., Samwald, M., Schriml, L., Tonellato, P.J., Whetzel,
P.L., Zhao, J., Stephens, S., Dumontier, M.: The Translational Medicine Ontology and
Knowledge Base: driving personalized medicine by bridging the gap between bench and
bedside. J. Biomed. Semantics 2(suppl. 2), S1 (2011)

 Changing the Model in Pharma and Healthcare 21

28. Connecting medical informatics and bioinformatics: Advances in knowledge acquisition
and management. Mayo Clinic’s Enterprise Data Trust. JAMIA (2010),
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3000789/

29. Podgorelec, V., Grašič, B., Pavlič, L.: Medical diagnostic process optimization through
the semantic integration of data resources: New opportunities for automated reasoning at
patient-data level: Medical diagnostic process optimization through the semantic
integration of data resources. Computer Methods and Programs in Biomedicine (2009),
http://www.sciencedirect.com/science/article/pii/
S0169260709000832

30. Linked Life Data http://linkedlifedata.com/sources LLD: Instance
mapping, Predicate mapping; 1.1: no of statements: 8,740,201,002;EU IST project

31. Linked Open Data http://linkeddata.org/ LOD Cloud Diagram:
http://lod-cloud.net/ LDOW2012 Linked Data on the Web. Bizer, C., Heath,
T., Berners-Lee, T., Hausenblas, M.: WWW Workshop on Linked Data on the Web, Lyon,
France (April 16, 2012)

32. Callahan, A., Cruz-Toledo, J., Ansell, P., Klassen, D., Tumarello, G., Dumontier, M.:
Improved dataset coverage and interoperability with Bio2RDF Release 2. In: SWAT4LS
Workshop, Paris, France, November 30 (2012)

33. 13 healthcare IT trends in 2013,
http://www.cio.com/slideshow/detail/83055

34. Plasterer, T.N., Stanley, R., Gombocz, E.: Correlation Network Analysis and Knowledge
Integration. In: Dehmer, M., Emmert-Streib, F., Graber, A., Salvador, A. (eds.) Applied
Statistics for Network Biology: Methods in Systems Biology. Wiley-VCH, Weinheim
(2011) ISBN: 978-3-527-32750-8

35. Is healthcare IT interoperability (almost) here? HIMSS13, http://www.cio.com/
article/731757/Is_Healthcare_IT_Interoperability_Almost_Here_

36. Ernst & Young: The third place: healthcare everywhere – Global Life Sciences Report
(2012), http://www.ey.com/Publication/vwLUAssets/
Progressions_The_third_place:_health_care_everywhere_-
_Global_Life_Sciences_Report_2012/$FILE/Progressions_
Global_Life_Sciences_Report_2012_The_third_place_health_
care_everywhere.PDF

37. Gombocz, E.A., Higgins, A.J., Hurban, P., Lobenhofer, E.K., Crews, F.T., Stanley, R.A.,
Rockey, C., Nishimura, T.: Does network analysis of integrated data help understanding
how alcohol affects biological functions? - Results of a semantic approach to biomarker
discovery. 2008 Biomarker Discovery Summit 2008, Philadelphia, PA (2008)

38. Higgins, A.J., Gombocz, E.A., Stanley, R.A.: From Correlation to Biological
Understanding: Multi-modal semantic networks for biomarker discovery and qualification.
In: Bio-IT World 2008, Boston, MA (2008), http://
www.io-informatics.com/news/pdfs/CHI_BioIT2008_Talk.pdf

39. Gombocz, E., Stanley, R.: Predictive Toxicology: Applied Semantics with a major impact
on drug safety. In: FDA Drug Safety Workshop: Pharmacological Mechanism-Based Drug
Safety Assessment and Prediction FDA, White Oak Campus, Silver Spring, MD (2011)

40. Gombocz, E., Candlin, J.: A Novel Approach to Recognize Peptide Functions in
Microorganisms: Establishing Systems Biology-based Relationship Networks to Better
Understand Disease Causes and Prevention. In: 8th Annual Conference US Human
Proteome Organization: The Future of Proteomics (HUPO 2012), San Francisco, CA
(2012)

22 E.A. Gombocz

41. Gombocz, E., Candlin, J.: How semantic technology helps fighting infectious diseases:
Biological systems approach to understand microbial pathogens. In: Semantic Technology
& Businesss Conference (SemTech 2012), San Francisco (2012),
http://www.io-informatics.com/news/pdfs/
SemTech2012_EGombocz_Talk20120606_r3.pdf

42. Gombocz, E., Candlin, J., Stanley, R., Chiang, D.: Semantically Enhancing Protein
Identification: Systems Biology Knowledgebase for Infectious Disease Screening. In: Bio-
IT World 2012, Boston, MA (2012),
http://www.io-informatics.com/news/pdfs/BioIT2012_Poster.pdf

43. A new way to predict and diagnose organ rejection. Transplant Foundation Research of
British Columbia (2010),
http://www.trfbc.org/site/PageServer?pagename=News_Biomarkers

44. Bio-IT World Best Practices Award 2010 in Personalized & Translational Medicine:
PROOF / iCAPTURE Centre of Excellence; Semantic Data Integration, Knowledge
Building and Sharing Applied to Biomarker Discovery and Patient Screening for Pre-
symptomatic Heart, Lung or Kidney Failure in Transplantation Medicine (2010),
http://www.prweb.com/releases/2010/04/prweb3917414.htm

45. Ng, R.T., Gombocz, E.: Biomarker Development to Improve Decision Support for the
Treatment of Organ Failures: How Far Are We Today? In: ADAPT 2010, Arlington, VA
(2010),
http://www.io-informatics.com/news/pdfs/ADAPT2010_Talk.pdf

46. Stanley, R., McManus, B., Ng, R., Gombocz, E., Eshleman, J., Rockey, C.: W3C
Semantic Web Use Cases and Case Studies Case Study: Applied Semantic
Knowledgebase for Detection of Patients at Risk of Organ Failure through Immune
Rejection. Joint Case Study of IO Informatics and University British Columbia (UBC),
NCE CECR PROOF Centre of Excellence, James Hogg iCAPTURE Centre, Vancouver,
BC, Canada (2011)

47. Global Initiative for Chronic Obstructive Lung Disease, Global Strategy for the Diagnosis,
Management, and Prevention of Chronic Obstructive Pulmonary Disease (2009)
(updated),
http://www.goldcopd.com/Guidelineitem.asp?l1=2&l2=1&intId=2003

48. Murray, C.J., Lopez, A.D.: Alternative projections of mortality and disability by cause
1990-2020: Global Burden of Disease Study. Lancet. 349(9064), 1498–1504 (1997)

49. Jemal, A., Ward, E., Hao, Y., Thun, M.: Trends in the leading causes of death in the
United States, 1970-2002. JAMA 294(10), 1255–1259 (2005)

50. Buist, A.S., McBurnie, M.A., Vollmer, W.M.: International variation in the prevalence of
COPD (the BOLD Study): a population-based prevalence study. Lancet. 370(9589), 741–
750 (2007)

51. Mathers, C.D., Loncar, D.: Projections of global mortality and burden of disease from
2002 to 2030. PLoS Med. 3(11), e442 (2006)

52. Mittmann, N., Kuramoto, L., Seung, S.J., Haddon, J.M., Bradley-Kennedy, C., Fitzgerald,
J.M.: The cost of moderate and severe COPD exacerbations to the Canadian healthcare
system. Respir. Med. 102(3), 413–421 (2008)

53. Gombocz, E.A.: On the road to production: Semantic integration cases indicate successful
adoption to improve knowledge-based decisions in Pharma and healthcare NCBO
Webinar Series, Stanford, CA. Recording (2013)

Ibidas: Querying Flexible Data Structures

to Explore Heterogeneous Bioinformatics Data

Marc Hulsman1, Jan J. Bot1, Arjen P. de Vries1,3, and Marcel J.T. Reinders1,2

1 Delft Bioinformatics Lab, Delft University of Technology
2 Netherlands Bioinformatics Centre (NBIC)
3 Centrum Wiskunde & Informatica (CWI)

Abstract. Nowadays, bioinformatics requires the handling of large and
diverse datasets. Analyzing this data demands often significant custom
scripting, as reuse of code is limited due to differences in input/output
formats between both data sources and algorithms. This recurring need
to write data-handling code significantly hinders fast data exploration.

We argue that this problem cannot be solved by just data integra-
tion and standardization alone. We propose that the integration-analysis
chain misses a link: a query solution which can operate on diversely struc-
tured data throughout the whole bioinformatics workflow, rather than
just on data available in the data sources. We describe how a simple
concept (shared ’dimensions’) allows such a query language to be con-
structed, enabling it to handle flat, nested and multi-dimensional data.
Due to this, one can operate in a unified way on the outputs of algorithms
and the contents of files and databases, directly structuring the data in a
format suitable for further analysis. These ideas have been implemented
in a prototype system called Ibidas. To retain flexibility, it is directly in-
tegrated into a scripting language. We show how this framework enables
the reuse of common data operations in different problem settings, and
for different data interfaces, thereby speeding up data exploration.

1 Introduction

Research in the field of biological systems has become a strongly data-driven
activity. Measurements are performed at multiple levels (genomics, transcrip-
tomics, etc.), and combined with already-available information, which can be
accessed through the more than 1300 available public data sources [1]. Handling
these large and diverse datasets can be a time-consuming and complex task,
requiring the development of many custom-written data-handling scripts. This
problem has attracted significant attention from researchers, which has led to
the development of numerous approaches to improve this process [2].

Generally this is solved in a bottom-up fashion, where one starts from the
data sources and enables structured access to the data, for example by making
use of warehouses, webservices or the semantic web, e.g. [3–5]. Bottom-up ap-
proaches have some limitations however. Data interfaces offer relatively limited
functionality (for computational and security reasons as queries often run on

C.J.O. Baker, G. Butler, and I. Jurisica (Eds.): DILS 2013, LNBI 7970, pp. 23–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

24 M. Hulsman et al.

public servers). Furthermore, queries spanning multiple data sources often are
not supported, as data can only be queried when it is available within a com-
mon (or in case of the semantic web: similar) data store. For example, comparing
organisms by linking BLAST results with gene ontology (GO) annotation data
requires manual linking of the two data sources. Finally, once the data has been
retrieved and processed, further use of the query functionality offered by the
data sources is only possible by importing the data back into a data store. E.g.,
to perform queries on the results of a differential expression analysis requires one
to put the data back into a database/triple store. Due to this overhead, most
users will elect to write custom data-handling code instead. Especially within
a bioinformatics research context, the mentioned limitations are encountered
often.

Why do so many trivial data-handling tasks still require custom scripting so-
lutions, while high-level data-handling query languages such as SPARQL, SQL
or XPath are available? Fundamentally, the underlying cause for these problems
is that both data integration and data analysis play a large role in bioinformat-
ics. These two tasks have very different requirements. Data integration favors
the absence of data structures, such as tables/matrices/nested arrays, as map-
ping these structures onto each other can be a difficult process. Data analysis
on the other hand requires such data structures to allow for easy reasoning and
aggregation across related data elements (Figure 1ab). Current query languages
however do not support this complete range of data structuring, but only a lim-
ited subset. For example, RDF/SPARQL focuses on data integration, reducing
datasets to collections of single facts; similarly, SQL focuses on relational ta-
bles; and XPath queries are used to query hierarchical descriptions of objects
(XML). None of these query languages handle analysis-focused data structures
(e.g. matrices) well. Support for data-handling operations within and between
algorithms is therefore more or less absent, while this is exactly the area where it
is most often needed. Therefore, most of the complex data-handling operations
are still performed by the user, often by implementing them in custom written
scripts.

To solve this problem, we propose a query language that can operate on data,
irrespective of whether it is stored in simple or more complicated data structures.
That is, we solve data-handling issues at the language level (’top-down’). Note
that the bottom-up and top-down approaches are complementary: top-down
needs bottom-up, as it enables easier access to (integrated) data sources and
standardized identifiers, while bottom-up needs top-down as there is no universal
best (agreed on) data structure, for which reason there will always be a need to
’navigate’ between data structures.

Our goal has been to combine both the flexibility of low-level languages as well
as the advantages of general high-level query operations. The proposed query
language (which has been implemented in a prototype system called Ibidas)
therefore uses the syntax of the Python scripting language, allowing one to mix
normal scripting code with high level data operations. Besides stand-alone use,
Ibidas also functions as middleware, allowing other analysis applications to use

Ibidas: Querying Flexible Data Structures 25

ge
ne

_n
am

es

values

tissues
Filter

out empty
gene names

ge
ne

_n
am

es

values

tissues

Low level
0) filter = old.gene_names != ""
1) new.tissues = old.tissues
2) new.gene_names = old.gene_names[filter]
3) new.values = old.values[filter,:]

High level
0) new = old[_.gene_names != ""]

old
newge

ne
_n

am
es

values

tissues

sort median

ge
ne

_n
am

es
tis

su
es

va
lu
es sort

median

a)

b)

c)

Octave: median(sort(values),2)

SQL: SELECT s.row_number, median(s.values) FROM
 (SELECT row_number() AS row_number, values
 OVER (PARTITION BY tissues ORDER BY values)
 FROM microarray) AS s
 GROUP BY s.row_number

Fig. 1. Effects of data structure and language choice. Illustrated using a microarray
dataset, which contains a matrix of measurement values, a vector of gene names (related
to rows of the value matrix), and a vector of tissue names (related to columns of
the value matrix). a) Calculating the median distribution of gene expression values
(used for microarray normalization) with Octave commands. b) Performing the same
operation on data structured as a table, using SQL. Note that the ’flat’ table format
makes such analysis operations conceptually harder to express. c) Filtering the dataset
on empty gene names. Using low level code (scripting), one has to make sure during
programming that data relations remain consistent. High level data operations (queries)
do this automatically.

it through webservices. This way, data-handling functions (e.g. parsers, data
operations) can be shared between platforms.

In the next section we will give an overview of the main ideas underlying this
system. In section 3 we describe some aspects of the current (prototype) system
in detail, followed by an extensive description of related work and a discussion
in section 4 and 5.

2 Approach and Results

2.1 Annotating Data: Roles and Relations

In order to construct a query language which can operate on more complex data
structures, we first focus on the question: which data representations can be
queried?

Datasets consist of data elements, such as text or integers. However, with-
out knowing the role of these data elements or the relations between the data
elements, a dataset remains meaningless. For example, to assign meaning to a
floating point value, both its role (e.g. it being a microarray expression measure-
ment) as well as its relations (e.g. to a data element with the role ’gene name’,

26 M. Hulsman et al.

name: BRCA1 tissue: normal value: 3.9

name: BRCA2

tissue: cancer

value: 4.3

value: 6.7

value: 7.3

name: BRCA1

name: BRCA2

tissue: normal

tissue: cancer

Composite (relation)

Role

BRCA1 normal 3.9

BRCA2

cancer

4.3

6.7

7.3

BRCA1

BRCA2

normal

cancer

Collection (role)

Relation

name: tissue: value:

m
e
a
su

re
m

e
n
ts

m
e
a
su

re
m

e
n
ts

m
e
a
su

re
m

e
n
ts

m
e
a
su

re
m

e
n
ts

a) Collection of composites (table) b) Composite of collections

BRCA1

BRCA2

normal cancer

3.9

4.3

6.7

7.3

g
e
n
e
s

tissues

g
e
n
e
s

tissues

tissue:

name: value:

c) Composite of (multi-dimensional) collections

shared class/field shared dimension/position

d) Legend

Fig. 2. Illustration of how role and relations are represented by composites and collec-
tions. a) Table: a collection (list) of composites (records). Composites contain mutually
related data elements. Shared fields indicate a common role, e.g. ’name’. b) Inverted
table: a composite of collections. Collections contain data elements with a common
role. Similar positions w.r.t. to the shared dimension (’measurements’) indicate mu-
tual relation. c) Multi-dimensional collection (’values’), annotated with a ’genes’ and
’tissues’ dimension. Both roles and relations are still fully described.

and to a data element with the role ’tissue’) have to be known. In this way,
relations/roles transform data into information (see also [6]). For comparison,
in the semantic web context, the equivalents of roles are properties/predicates,
while relations are represented through (common) object identifiers.

The way in which such meta-data is handled forms, in our view, the main
distinction between ’low-level’ custom scripted data operations and ’high-level’
query operations. Custom scripts require one to manually maintain relation/role
consistency, while high-level data operations use relation/role information to
maintain this consistency automatically (Figure 1c). One could say that scripts
operate at the data level, while query operations operate at the information
level.

This does require though a data representation describing both its own roles
and relations. One way to annotate data in this way is the use of data structures,
usually a combination of collections1 and composites2. Composites group mutu-
ally related data elements, while collections group data elements with common
roles.

For a queryable data structure, both roles and relations need to be represented.
For composites (representing relations), one could consider that the field names
indicate these roles. This is used in relational databases, where similar composites
are stored in a common collection. The common collection signifies that these
composites have the same role (in object-oriented terms: class), and by extension
we can assume that similarly named fields within these composites also represent
common roles. This structure is better known as a table (Figure 2a). A shared
class and fields thus add the role aspect to the composite type.

1 Collections: vectors, arrays, lists, e.g. [1,2,3].
2 Composites: records, objects, tuples, e.g. (name=’BRCA1’, value=0.5).

Ibidas: Querying Flexible Data Structures 27

We propose to do the same for collection types, which lack relations. Where
composites can have similar field names, collections can have similar positions.
Where composites can have the same class, collections can have the same ‘di-
mension’ (i.e. shared axis). Based on this parallel, we consider data elements
stored in collections with a similar dimension to be related if they are stored at
the same position. In this way, a shared dimension and positions add the relation
aspect to the collection type.

In its most simple form, this leads to an ’inverted table’ (Figure 2b): each
collection in the composite shares the same dimension, and elements with the
same positions in the different collections are related. However, one can also
represent more complex cases with multiple (nested) dimensions (Figure 2c).

Through the introduction of shared dimensions, any (nested) data structure
consisting of composites and collections can be fully annotated with relations and
roles (assuming that it has only data elements with similar roles in a collection
and only related data elements in a composite). With this development, a query
language can be constructed which is able to query any data structure consisting
of composites and collections.

2.2 Query Language

To construct the query language, well known data operations (e.g. Filter, Match,
Group) are redefined together for use on more complex data structures. As only
a single concept (’dimensions’) was added to the data representation, we find
that this can be accomplished in a relatively straightforward way. As a general
rule, different collections within a dataset that have the same dimension are kept
consistent with each other. If a collection is reordered or filtered, this operation
is also performed on the other collections in the dataset that have the same
dimension. Next to this general rule, only two extra mechanisms are required,
which keeps the language simple. The first describes how an operation can target
specific dimensions, and the second how operands with non-matching dimensions
are handled. These are described in more detail in section 3. Here, we first
illustrate the language using a few examples.

Example 1: Differential Expression Using Gene Ontology Categories.
Suppose that for a certain microarray dataset, one needs to calculate differen-
tial expression not per gene, but directly per gene ontology (GO) category. The
microarray data is (after normalization) available in the usual matrix format.
Also, a dataset is imported containing for each gene a list of GO annotations.
In Figure 3, we show how these two datasets are matched together based on
common gene names, then regrouped based on GO categories, after which the
expression values are averaged for each sample/GO category combination. Di-
mensional relations between the different vectors, matrices and nested data are
automatically taken into account by the used operations, and thus do not have
to be specified by the user. Due to this, all these operations can be expressed

28 M. Hulsman et al.

genes

sa
m
pl
es

tis
su
e

gene_name

values

genes

sa
m
pl
es

tis
su
e

gene_name

values

genes_go

sa
m
pl
es

tis
su
e

gene_name

values

g_go_items

sa
m
pl
es

tis
su
e

g_g
ene

s_g
o

MATCH FLAT GROUP MEAN
data = (microarray |Match| gene_go).Flat(_.go_items).GroupBy(_.go_items).To(_.values, Do=_.Mean())

go
_i
te
m
s

values

gene_go annotations

g_go_items

sa
m
pl
es

tis
su
e

values

gene_name

go_items

scores = ttest_ind(data[_.tissue == 'cancer'].values(), data[_.tissue == 'normal'].values())

values

values

FILTER

g_go_items

f_
sa

m
pl
es

f_
sa

m
pl
es

microarray

scores

TTEST

g_
ge

ne
s_

go

g_
ge

ne
s_

go

ge
ne
_n
am

e

go_itemsgo_items

gene_name

go_items

ge
ne

s

go

go

Fig. 3. Calculating differential expression per GO category. Compare the steps one
would have to take to implement this using a scripting language, with the shown im-
plementation using the Ibidas query language. Rectangular shapes indicate vectors,
square shapes matrices, and rectangles in rectangles nested vectors. Dimension names
are in italic and colored green. Thus, expression matrix ’values’ and vector ’tissue’
share the samples dimension. Match links the microarray and gene go dataset on com-
mon gene names. Flat de-nests the ’go items’ nested vector, thereby expanding and
renaming the genes dimension. The _. is called the context operator, and addresses the
enclosing scope (here: the result of the Match operation). GroupBy ’go items’ groups
also ’values’ and ’gene name’, due to their shared dimension. Mean averages ’values’
along the ’g genes go’ dimension, and Filter is used to split the resulting matrix in a
’normal’ and ’cancer’ section, which are compared using t-tests. The external ttest ind
function (from SciPy) cannot be executed directly on Ibidas query objects: adding the
’()’-operator executes the query into Python data objects.

using a single line of code (shown in Figure 3), this in contrast to what would
be needed if this task would have been performed manually. The output can be
directly used to calculate t-tests.

Example 2: Relating Diseases to Genes. Given an analysis which has re-
sulted in a number of possible cancer genes, one might want to validate the
results by determining if the genes are already known as cancer genes. This
requires gene-disease associations, which can be obtained from OMIM[7].

Ibidas contains macros which automatically download and import such data
sources. In Listing 1 it is shown how, with a few high-level operations, the data
is filtered using the hypothetical cancer genes. After this, the number of asso-
ciations per disease are counted and the final results are sorted based on this
count. This can be done interactively, allowing the user to inspect the output at
every step. Note that the code shown in Listing 1 has regular Python syntax,
and can therefore be intermixed with normal Python code.

Data sources are not limited to files. The same code could have been used
if OMIM was available as a webservice or database. The system would have
automatically performed the webservice-calls and/or SQL querys. Furthermore,
as shown in Listing 1, operations in Ibidas can work with nested data structures.
In most situations, this works transparently. For example, if one wants to perform

Ibidas: Querying Flexible Data Structures 29

1 cancer_genes = Rep ([’BRCA1’, ’BRCA2’])

#Rep packages any Python structure into a Ibidas data object.

3 omim = Get.human.omim_genemap ()

predefined macro to download/import the omim genemap data.

5 # output (incomplete):

gene_alias disease

7 #[LOH18CR1, OSTS] [Osteosarcoma]

#[BRCA1 , PSCP] [Breast - ovarian cancer]

9 #[BRCA2 , FANCD1] [Breast - ovarian cancer , Prostate cancer , Pancreatic cancer]

11 r = omim[(cancer_genes |Contains| omim.gene_alias).Any ()]

#for each gene alias , determine if it is contained in cancer_genes .

13 # select genes where this is true for at least one of the gene aliases.

r = r.Flat(_.disease).GroupBy(_.disease)

15 # flatten the per -gene disease lists , group genes on disease.

#(uses context operator _. to address enclosing scope)

17 r = r.Get (_.disease , _.gene_alias .Array().Count()/"ngene").Sort(_.ngene)

#get the disease , count disease genes (call it " ngene"), sort on ngene

19 # Array() "packs" an array , so that we count the arrays , and not the individual aliases

disease ngene

21 #"Pancreatic cancer", 1

#"Prostate cancer", 1

23 #"Breast - ovarian cancer", 2

Listing 1. Determine which (and how often) diseases in OMIM are associated with a
certain list of genes

the same task for multiple lists of genes, one could have simply replaced the
cancer genes data representation with a nested array, e.g.
cancer_genes = Rep([[’BRCA1’, ’BRCA2’],[’RAD54L’,’AKT1’, ’ESR1’]].
Without changing any other line, the script still works, and results in a nested
output dataset.

2.3 Optimization and Scalability

Performance and interactive usage are in some sense opposite goals, as interac-
tivity suggests immediate execution of operations, while performance demands
that one optimizes and executes multiple operations simultaneously.

To combine both, a lazy execution model is used: only when the user requests
the contents of the data representation object, are the pending operations opti-
mized and executed. In principle, this would allow for a fully declarative language
(e.g. like SQL). However, query optimization is an open problem due to the wide
range of data sources that we handle, often without any data statistics. There-
fore, we chose to use a procedural approach, in which the programmer solves the
problem step by step, thereby simultaneously specifying a suggested execution
order. The optimizer only performs those optimizations afterwards for which it is
reasonably sure that they will improve performance (e.g. not flattening/grouping
the ’genes’ vector in Figure 3 as it is not used in the final t-test). Although there
is room for a large number of further optimizations, the current version already
runs fast enough for interactive use. Even though it is written in an interpreted
language, for a large expression dataset and the GO biological process annota-
tions (54,612 probes, 180 microarrays, 442,842 gene annotations), the first line of
example 1 only takes 13 seconds to execute in Ibidas. In contrast, the same query
required 21 minutes when performed by a MySQL database, 128 seconds when
using a PostGreSQL database, and 37 seconds when using the high performance,

30 M. Hulsman et al.

column-store based, Monet Database [8] (with for the databases an optimized
table design based on integer identifiers, all possible indices, and all data loaded
in memory). This indicates the importance of multi-dimensional representations
for efficient data analysis, as in general the efficiency of Ibidas’ implementation is
decidedly less efficient than the database-implementations, which use compiled
languages and have been optimized for many years.

Ibidas can make use of the database query engines for data which is located
in a database. This can save memory, bandwith and time, as one can move oper-
ations to the data, instead of moving data to the operations. The lazy execution
scheme makes it possible to translate (part of) a query into a data source specific
query language such as SQL. This is done transparently, which has the advan-
tage that the user does not have to learn the different query methods for the
various data sources. Determining which operations a data source supports, and
translating them into a query/program, is implemented using so-called wrap-
pers [9]. Several wrappers are already available, such as the standard in-memory
execution wrapper, wrappers for several commonly used biological file formats
and a SQL wrapper. This design also allows for easy addition of streaming-based
(memory-efficient) and parallel (time-efficient) processing in the future.

1 s = Connect(’postgresql :// localhost /string’)

read String database

3 i = s.network.protein_protein_links |Match| s.items.species

couple interaction and species table on common field (species_id)

5 iy = i[_. official_name == ’Saccharomyces cerevisiae ’]

#use only interactions occuring in yeast

7
iy = iy |Match(’protein_id_a ’, ’protein_id ’)| s.items.proteins //" left"

9 iy = iy |Match(’protein_id_b ’, ’protein_id ’)| s.items.proteins //" right"

couple iy and the proteins table to get protein names for interactions .

11 #as the proteins table is used two times , assign aliases (’ left’, ’right ’)

13 imatrix_yeast = iy.GroupBy(_.left.preferred_name ,

_.right. preferred_name).combined_score .Mean()

15 #map yeast interaction scores to a 2- dimensional matrix , with for each

protein pair an entry containing the mean score of the found interactions .

17 #(pairs without measured interactions are assigned a missing value symbol)

Listing 2. Obtain score matrix for yeast interactions from the String database

1 --note: aliases have been assigned readable names

SELECT prota.preferred_name , protb.preferred_name , plink. combined_score

3 FROM (((items.species AS species

INNER JOIN network. protein_protein_links AS plink ON species.species_id = plink.species_id)

5 INNER JOIN items.proteins AS prota ON plink.protein_id_a = prota.protein_id)

INNER JOIN items.proteins AS protb ON plink.protein_id_b = protb.protein_id)

7 WHERE official_name = ’Saccharomyces cerevisiae ’

Listing 3. Automatically generated SQL by SQL wrapper for listing 2 (lines 4-12)

Example 3: Loading Interaction Scores from the String Database. As
an example of how a query can be processed by multiple wrappers, protein inter-
actions between proteins are loaded from a String database instance [10] and put
into a (weighted adjacency) matrix format (Listing 2). The SQL wrapper trans-
lates the first part of the script as an SQL query (Listing 3). The second part

Ibidas: Querying Flexible Data Structures 31

performs a multi-dimensional grouping (i.e. a group operation across two sepa-
rate vectors, thereby creating a matrix). This cannot be translated directly into
SQL, and is therefore performed internally by the default in-memory wrapper.

3 Methods

3.1 Architecture

Ibidas has a layered architecture (Figure 4a). One can interact both through a
command line interface (the IPython shell [11]) as well as a webservice-interface
(XML-RPC)). Both interfaces use the same language layer. This language layer
implements the data representation and operations, as well as the consequences
of operations on the data structure / meta-data. Query execution is planned in
the next layer. Here queries (combinations of operations) are converted to query
trees (Figure 4b), rewritten and then executed. The rewriting is done in several
passes, which are handled by a pass manager. Query execution makes use of
wrappers, which are in the last layer. Here we find the actual implementation
of the operations. Each type of data source has a wrapper, which describes
its data structure in terms of the Ibidas data model. Furthermore, it tells the
query execution layer which operations can be handled by the wrapper (either
by sending it to the data source, or by implementing the functionality in the
wrapper itself). Operations which are not supported by a data source wrapper
are executed using the Python in-memory wrapper.

Dr= O1(O2(D1), O3(O2(D2)))

D1 D2

O2 O2

O3

O1

D1 D2

O2 O3

O2

O1

S
Q

L-
w

ra
p
p
e
r

Iterative-wrapper

Pa
rs

e
r-

wrapper

Translate into
query tree

Execute
optimization &

planning
passes

Result

Webservices:
- XML-RPC, JSON

Command line:
- Python environment
- Tab-completion

Ibidas language
- common data representation
- generalized operations

Execution engine
- Optimize (pass-based, user can add own passes)
- Decide which execution wrapper to use

CSV-wrapper
- read tables

Python-wrapper
- fallback wrapper

Parser-wrappers
- e.g. fasta

-

SQL-wrapper
- translate operations
 into SQL

Cytoscape wrapper
- read and store Cytoscape
 networks

...

In
te

rf
a
ce

E
xe

cu
ti

o
n

a) Architecture b) Query execution

Fig. 4. a) An overview of the Ibidas architecture. b) A command-line query is trans-
lated into a query graph, which is optimized. Operations are assigned to execution
wrappers. Subsequently, the query is executed and the result returned.

3.2 Data Representation

To access data, representer objects are used. These represent data source(s) and
the operations that have been applied to them. Each representer consists of one
or more ’slices’ (which are a generalization of the column in a table). Each slice

32 M. Hulsman et al.

has a name, a data type, and a list of dimensions. The name represents the
role of the slice, and is used to address the slice. The data type describes the
structure of the individual data elements, distinguishing if it is e.g. an integer
or a DNA sequence. The dimensions describe the data structure of the slice: a
scalar slice has no dimensions, while a matrix has two dimensions. In general,
dimensions have a fixed size, e.g. each row in a matrix has size n. However, to
allow for variable sized nested data (e.g. the ’go items’ nested vector in Figure 3),
the concept of ’dependent dimensions’ is used. These are dimensions whose size
is variable along their parent dimensions. Using this approach, both nested and
multi-dimensional structures can be handled in exactly the same way. Dimension
can be shared between different slices, thereby describing the relations between
the data elements in these slices. Note that dimension identities are changed
by operations that change the order of elements (Sort) or shape of a dimension
(Filter).

3.3 Data Operations

The core operations for data exploration, such as filter, groupings, joins, sorts,
aggregates, and arithmetic operations are defined for 0- or 1-dimensional data.
A common foundation for the execution of such operations on multi-dimensional
data can be obtained through just two concepts: broadcasting and packing/un-
packing.

Broadcasting. To be able to execute 0- and 1-dimensional operations on flex-
ible structured data, dimensions of the operands are mapped onto each other,
based on their identity. This is done for all dimensions (0-dimensional operations,
e.g. addition) or all but the most nested dimension (1-dimensional operations,
e.g. matching). Dimensions that cannot be mapped are ’broadcasted’ to the other
operands (Figure 5a). Broadcasting introduces new dimensions in an operand,
by repeating data (i.e. a cartesian product): scalars become vectors, vectors
become matrices, and so on. This is a well-known concept, e.g. [12]. Ibidas dif-
fers from other implementations of broadcasting in that it has the concept of
dimension identity, allows for broadcasting within operations such as filtering,
joining, and is able to perform broadcasting on nested arrays. Given operands
that are equalized in their dimensions, the operation itself is ’broadcasted’, i.e. it
is applied in turn to each common operand element (0-dimensional operations)
or each common vector (1-dimensional operations) (Figure 5b). Creating new
operations is simplified by sharing this implementation of dimension mapping
and broadcasting across operations. This way, the implementation of a new op-
eration can remain oblivious to the full complexity of supporting the nested,
multi-dimensional data model.

Packing/Unpacking. To prescribe at which data structure nesting level an op-
eration has to be performed, we make use of pack/unpack operations (Figure 5c).
They change at what ’structure level’ subsequent operations are performed.

Ibidas: Querying Flexible Data Structures 33

Current slice(s)
('cursor')

Pack Unpack

Array()

Tuple()

Elems()

Fields()

Collections

Composites

#slice dimensions:

#slices:

-1 +1

-x +x

Operation name:

Operation name:

go
_i

te
m

s
go

_i
te

m
s

go
_e

vi
de

nc
e

(gene_go |Match| go)

go
_i

te
m

s

go
_e

vi
de

nc
e

ge
ne

s

ge
ne

sge
ne

s

ge
ne

s

ite
m
s

annotations

annotations_items annotations_items

genes

sa
m
pl
es

genes

values

genes

sa
m
pl
es

la
be

l

microarray[_.values > 10]

values

sa
m
pl
es

genes

la
be

l

microarray gene_go

go

c) Structure navigationa) Operand broadcast b) Operation broadcast

Fig. 5. a) Obtaining the genes with expression value > 10 (shapes explained in Figure
3). Applying the 2-dimensional filter constraint (operand) to the ’genes’ slice requires
broadcasting of the samples dimension. Note that in this way the relation between
values and gene names is maintained. b) Match (a join operation) is applied on the
common ’go items’ slices, along the annotations dimension. It is thus executed for
each gene (i.e. it is broadcasted along the genes dimension). c) Navigation in nested
data using pack and unpack operations. Array packs a dimension into a collection,
while Elems unpacks it. Similarly, Tuple converts multiple slices into a single slice, by
combining their related data elements into tuples (a composite type), while Fields

unpacks such tuples.

1 #(iyeast dataset from Listing 3 is used)

iyeast.GroupBy(_.left.preferred_name)

3 .Get(_.left. preferred_name / ’protein_name ’,

_.combined_score .Count() / ’degree’,

5 _.combined_score .Sort(descend=True)[:5].Mean()/ ’top5_score ’

).Sort(_.top5_score)

Listing 4. Calculate degree and mean score of the top 5 interactions per protein, sort
proteins on latter score. Note that the sort is performed for each protein, as well as
over all proteins.

An example of such an operation is the Array function, used in Listing 1. It packs
the gene aliases arrays, letting the Count operation count the arrays of gene aliases.
The opposite operation Elems unpacks the arrays again. The ’packing state’ is
described by the slice properties. To accomplish this, we use the duality relation:
slice type <-> (slice name, slice dimensions). For example, unpacking a
slice with a collection type converts the collection type into a slice dimension, and
sets the slice type to the data type of the collection elements. Unpacking a com-
posite data type returns for each of its fields a new slice with as name the corre-
sponding field name and as data type the field data type. Packing performs the
reverse operations, converting slice names or dimensions into data types. This is
illustrated in Figure 5c. Enabling the use of operations at different structure levels
allows for simpler queries. An example is given in listing 4, where we use Sort at
different levels. Expressing such a query in a non-nested data model is much more
complicated, requiring e.g. (correlated) subqueries in SQL.

4 Related Work

Data-handling is an actively studied topic, especially within bioinformatics. We
compare Ibidas to several other approaches based on its data model, its query
language, and in its role as data-handling tool/mediator.

34 M. Hulsman et al.

4.1 Data Models

Multi-dimensional data structures [13] are popular in the context of Online Ana-
lytical Processing (OLAP), as these structures simplify data analysis. The OLAP
data cube indexes tuples by measurement attributes, which form the various di-
mensions. The use of dimensions differs however fundamentally from Ibidas: a
data cube without measurement dimensions (i.e. a default table) is essentially
0-dimensional in the OLAP model (the relational model considers tuples to be
stored in an unordered, i.e. dimensionless, set) whereas in Ibidas, tables are
1-dimensional. More closely related are the netCDF [14] and HDF5 [15] file for-
mats, which are widely used in e.g. the geosciences and by applications such as
Matlab, to store multi-dimensional data. Similar to Ibidas, they have the con-
cept of dimensions (although this has not been generalized to allow for nested
dimensions). Nested data models have also been studied extensively, e.g. [16–
18]. Particularly interesting is the XML / XPath [19] approach here. The Ibidas
pack/unpack operations are related to the axes navigation steps that can be per-
formed in XPath. Both nested data models and multidimensional data structures
have their strengths. The main contribution of Ibidas is that it combines table,
multi-dimensional and nested approaches through the concept of dimensions.

4.2 Query Systems

The goal of query systems is to make data accessible through a language or other
interface based on high-level operations. Standard query languages such as SQL,
SPARQL and XQuery can only access one (type of) data source. In response to
this, federated database tools (mediators) have been developed, which can also
access other types of data sources through the use of wrappers. Examples of the
latter approach are IBM Discoverylink [20], Kleisli [21], TAMBIS [22], BioMART
[5], BACHIIS [23] and Biomediator [24]. In the latter four systems, individual
sources are mapped against a mediated schema. Queries posed against the medi-
ated schema can be translated to queries on the data sources. This offers an easy
way to pose (declarative) queries, however it also makes adding new data sources
rather complex. All of the mentioned systems work with either a language de-
rived from SQL, and/or an API/Graphical Query Interface, which have a limited
ability to handle multi-dimensional data structures. Other well-known systems,
which are not directly bioinformatics related but somewhat related to Ibidas,
are Pig Latin [25] and LINQ [26]. Pig Latin is a procedural SQL derivative,
enabling one to map tasks to the map-reduce framework (used for data analysis
on large computer clusters). LINQ is a SQL-like query language which is em-
bedded in the .NET framework, allowing easy access from program code. Both
languages cannot be used interactively however, making them less suitable for
interactive exploration of data. Prolog is a logic programming language, which
can also be used as an interactive and declarative query system, offering more
flexibility than standard query languages. It differs from Ibidas in that its focus
is not on enabling statistical and machine-learning-based analysis, but rather
on logic-based inference. An interesting development is the proposed language

Ibidas: Querying Flexible Data Structures 35

SciQL [27], whose motivations are similar to those mentioned in this work. This
proposal enhances SQL for science tasks by adding support for array structures,
allowing it to handle multi-dimensional arrays. Its approach differs from Ibidas,
in that it adds support for data analysis tasks to the database, whereas Ibidas
focuses on adding query operations to the data analysis environment.

4.3 Mediators and Workflow Tools

Gaggle [28] is a mediating tool, functioning as special purpose clipboard for
datasets. It focuses on connecting various bioinformatics software tools and web-
sites, by allowing them to exchange data. It is mostly oriented toward data mov-
ing, and less to performing data operations. Workflow tools are another class
of data-handling tools, which depict graphically, and on a high-level, the steps
that are taken in the analysis of some data. Well known examples are Taverna
[29] and Galaxy [30]. Galaxy has predefined operations which one can apply to
uploaded datasets in a website environment. The advantage of this approach
is that it is relatively easy to use. Taverna on the other hand is a stand-alone
application, allowing one to extend it with custom-scripted nodes. One can use
these nodes to create a workflow graph. These nodes do not form a high-level
query language though; instead they are more similar to script functions. The
user remains responsible for maintaining the consistency of data relations and
roles.

5 Discussion

To a large extent, research in bioinformatics is focused on finding new ways to
combine data, by integrating and analyzing it. In this process, data management
plays a central role. We have argued that current data-handling solutions mainly
focus on data integration, while not adequately supporting data analysis. Two of
the key problems are: a) query operations need to be supported not just on data
sources, but throughout the whole bioinformatics workflow, and b) query opera-
tions should work across a range of data structures, as the best data structure is
a task-specific choice, not a data-specific one. The solution proposed in this work
is based on the concept of ’shared dimensions’. It is surprising to see that just
adding this single concept allows for such a rich extension of the query language,
enabling generic implementations of data-handling subtasks (such as filtering,
grouping or matching) that support a wide range of data structures. This natu-
ral data representation also enables high query performance, by keeping track of
data relations. Due to this, an implementation which in itself is not particularly
fast (e.g. written in an interpreted language), can outperform even the fastest
database engines on a common task such as microarray data-handling. We be-
lieve the dimension concept allows for more query language improvements than
discussed in this work. For example, improved support for handling sparse data
in multi-dimensional matrices would allow for the easy inclusion of all kinds of
graph operations that are based on adjacency matrices. On a more long-term
basis, we think the language should also incorporate various analysis algorithms

36 M. Hulsman et al.

(e.g. statistical and machine learning tools) as first-class citizens, enabling their
use in a standardized way. This would then truly bring together the data integra-
tion and data analysis fields in a common high-level language. Describing data
relations through dimensions has opened the road towards this goal. Due to the
embedding of the data-handling language within a common scripting language
(Python), the user however does not have to wait for such functionality, but
can easily make use of e.g. existing machine learning or graph libraries. Also,
already in its current form, the ideas presented in this work could form a use-
ful foundation on which workflow tools could be based. While we have limited
our discussion to bioinformatics-based applications, as Ibidas was designed in
response to problems encountered in this field, the general approach used here
may of course be equally useful for other fields in which data-intensive analytical
tasks play a role.

6 Availability

Ibidas has been written in the Python language. Documentation, source code
and installation packages are available from the PyPI website: https://pypi.
python.org/pypi/Ibidas.

References

1. Galperin, M., Fernández-Suárez, X.: The 2012 nucleic acids research database is-
sue and the online molecular biology database collection. Nucleic Acids Research
40(D1), D1–D8 (2012)

2. Goble, C., Stevens, R.: State of the nation in data integration for bioinformatics.
Journal of Biomedical Informatics 41(5), 687–693 (2008)

3. Belleau, F., Nolin, M., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: To-
wards a mashup to build bioinformatics knowledge systems. Journal of Biomedical
Informatics 41(5), 706–716 (2008)

4. Goble, C., Belhajjame, K., Tanoh, F., Bhagat, J., Wolstencroft, K., Stevens, R.,
Nzuobontane, E., McWilliam, H., Laurent, T., Lopez, R.: BioCatalogue: a curated
web service registry for the life science community. In: Microsoft eScience Workshop
2008, Indianapolis, IN, USA (2009)

5. Smedley, D., Haider, S., Ballester, B., Holland, R., London, D., Thorisson, G.,
Kasprzyk, A.: BioMart – biological queries made easy. BMC Genomics 10(1), 22
(2009)

6. Bellinger, G., Castro, D., Mills, A.: Data, information, knowledge, and wisdom
(2004)

7. McKusick, V.: Mendelian Inheritance in Man and its online version, OMIM. Amer-
ican Journal of Human Genetics 80(4), 588 (2007)

8. Zukowski, M., Boncz, P., Nes, N., Héman, S.: Monetdb/x100–a dbms in the cpu
cache. IEEE Data Eng. Bull. 28(2), 17–22 (2005)

9. Roth, M., Arya, M., Haas, L., Carey, M., Cody, W., Fagin, R., Schwarz, P., Thomas,
J., Wimmers, E.: The garlic project. ACM SIGMOD Record 25(2), 557 (1996)

https://pypi.python.org/pypi/Ibidas
https://pypi.python.org/pypi/Ibidas

Ibidas: Querying Flexible Data Structures 37

10. Jensen, L., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T.,
Julien, P., Roth, A., Simonovic, M., et al.: STRING 8–a global view on proteins and
their functional interactions in 630 organisms. Nucleic Acids Research 37(Database
issue), D412 (2009)

11. Perez, F., Granger, B.: IPython: a system for interactive scientific computing.
Computing in Science & Engineering, 21–29 (2007)

12. Oliphant, T.: Guide to NumPy (2006)
13. Gyssens, M., Lakshmanan, L.: A foundation for multi-dimensional databases. In:

Proceedings of the International Conference on Very Large Data Bases, Citeseer,
pp. 106–115 (1997)

14. Rew, R., Davis, G.: Netcdf: an interface for scientific data access. IEEE Computer
Graphics and Applications 10(4), 76–82 (1990)

15. HDF Group and others: Hdf5: Hierarchical data format,
http://www.hdfgroup.org/hdf5

16. Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., Yergeau, F.: Extensible
markup language (XML) 1.0. W3C recommendation 6 (2000)

17. Colby, L.: A recursive algebra for nested relations. Information Systems 15(5),
567–582 (1990)

18. Kim, W.: Introduction to object-oriented databases (1990)
19. Clark, J., DeRose, S.: XML path language (XPath) 1.0. W3C recommendation.

World Wide Web Consortium (1999), http://www.w3.org/TR/xpath
20. Haas, L., Schwarz, P., Kodali, P., Kotlar, E., Rice, J., Swope, W.: Discoverylink: A

system for integrating life sciences data. IBM Systems Journal 40(2) 2001 (2001)
21. Wong, L.: Kleisli, a functional query system. Journal of Functional Program-

ming 10(01), 19–56 (2000)
22. Baker, P., Brass, A., Bechhofer, S., Goble, C., Paton, N., Stevens, R.: TAMBIS-

Transparent Access to Multiple Biological Information Sources. In: Proc. Int. Conf.
on Intelligent Systems for Molecular Biology, pp. 25–34 (1998)

23. Miled, Z., Li, N., Baumgartner, M., Liu, Y.: A decentralized approach to the in-
tegration of life science web databases. Bioinformatics Tools and Applications 27,
3–14 (2003)

24. Shaker, R., Mork, P., Brockenbrough, J., Donelson, L., Tarczy-Hornoch, P.: The bio-
mediator system as a tool for integrating biologic databases on the web. In: Work-
shop on Information Integration on the Web (IIWeb 2004), Toronto, CA (2004)

25. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099–1110. ACM (2008)

26. Box, D., Hejlsberg, A.: The LINQ Project: .NET Language Integrated Query.
Microsoft Corporation (2005)

27. Kersten, M., Zhang, Y., Ivanova, M., Nes, N.: Sciql, a query language for sci-
ence applications. In: Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases, pp. 1–12. ACM (2011)

28. Shannon, P., Reiss, D., Bonneau, R., Baliga, N.: The Gaggle: an open-source soft-
ware system for integrating bioinformatics software and data sources. BMC Bioin-
formatics 7(1), 176 (2006)

29. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.:
Taverna: a tool for building and running workflows of services. Nucleic Acids Re-
search 34(Web Server issue), W729 (2006)

30. Giardine, B., Riemer, C., Hardison, R., Burhans, R., Elnitski, L., Shah, P., Zhang,
Y., Blankenberg, D., Albert, I., Taylor, J., et al.: Galaxy: a platform for interactive
large-scale genome analysis. Genome Research 15(10), 1451 (2005)

http://www.hdfgroup.org/hdf5
http://www.w3.org/TR/xpath

C.J.O. Baker, G. Butler, and I. Jurisica (Eds.): DILS 2013, LNBI 7970, pp. 38–45, 2013.
© Springer-Verlag Berlin Heidelberg 2013

From Questions to Effective Answers:
On the Utility of Knowledge-Driven

Querying Systems for Life Sciences Data

Amir H. Asiaee1, Prashant Doshi1, Todd Minning2, Satya Sahoo3,
Priti Parikh3, Amit Sheth3, and Rick L. Tarleton2

1 THINC Lab, Dept. of Computer Science, University of Georgia, Athens, GA
2 Tarleton Research Group, Dept. of Cellular Biology, University of Georgia, Athens, GA

3 Kno.e.sis Center, Dept. of Computer Science, Wright State University, Dayton, OH
{aha,tminning,tarleton}@uga.edu, pdoshi@cs.uga.edu,

{satya,priti,amit}@knoesis.org

Abstract. We compare two distinct approaches for querying data in the context
of the life sciences. The first approach utilizes conventional databases to store
the data and provides intuitive form-based interfaces to facilitate querying of
the data, commonly used by the life science researchers that we study. The
second approach utilizes a large OWL ontology and the same datasets asso-
ciated as RDF instances of the ontology. Both approaches are being used in
parallel by a team of cell biologists in their daily research activities, with the
objective of gradually replacing the conventional approach with the knowledge-
driven one. We describe several benefits of the knowledge-driven approach in
comparison to the traditional one, and highlight a few limitations. We believe
that our analysis not only explicitly highlights the benefits and limitations of
semantic Web technologies in the context of life sciences but also contributes
toward effective ways of translating a question in a researcher’s mind into pre-
cise queries with the intent of obtaining effective answers.

1 Introduction

Much of the data in the life sciences continues to be stored using conventional data-
base management systems (DBMS) and subsequently, queried using the structured
query language (SQL). Intuitive interfaces such as forms often provide and support
“pre-canned” queries that are most commonly used by the researchers who are chiefly
interested in quick and targeted accessibility to the data. However, these interfaces
tend to provide more data than needed leading to time-consuming post processing
steps which are specific to the local researchers, instead of being general.

We compare and contrast two approaches for querying life sciences data. Both utilize
an identical data context: strain, stage transcriptome and proteomic data on the parasite
Trypanosoma cruzi (T. cruzi). In the first approach, T. cruzi data is stored in a conven-
tional DBMS and accessed through a suite of well-designed forms representing a prede-
fined set of queries, we refer to this approach as Paige Tools [1] which has been the

 From Questions to Effective Answers 39

de-facto way for storing and accessing experimental data related to T. cruzi by the Cen-
ter for Tropical and Emerging Diseases at the University of Georgia. The second ap-
proach, Parasite Knowledge Repository - PKR, uses an OWL-based ontology designed
in collaboration with the life science researchers to model T. cruzi experimental data [2].
Querying capabilities of PKR are provided by an enhanced version of a knowledge-
driven querying system, Cuebee [3] [4], that facilitates formulation of RDF triple-based
queries, which are transformed to SPARQL-DL [5].

We believe that Paige Tools and PKR is representative of the traditional and
more sophisticated way of querying life sciences data, respectively. These approaches
provide alternative ways of transforming the precise question in a researcher's mind
into a computational query in order to obtain the answer. The outcome of our analysis
is a set of benefits that knowledge-driven approaches such as PKR offer over the
more conventional approaches. We also highlight two limitations that this approach
faces, which could impede its widespread adoption despite the substantial benefits.

2 Related Work

Other Semantic Web based systems exist that focus on queries to provide targeted
access to data in the life sciences and other contexts. These include query tools such
as Openlink iSPARQL [6] and NITELIGHT [7] both of which provide graph-based
interfaces for query formulation. These systems did not provide evaluation of their
approaches on real-world data. Similar to PKR, GINSENG [8] offers suggestions to
users, but from a different perspective. GINSENG relies on a simple question gram-
mar, which is extended using the ontology schema to guide users to directly formulate
SPARQL queries. Bernstein et al. [8] briefly evaluated GINSENG on three aspects:
usability of the system in a realistic task, ability to parse large number of real-world
queries, and query performance.

Semantics-based approaches also exist that focus more on data integration in the
life sciences context. GoWeb [9] is a semantic search engine for the life sciences,
which combines keyword-based Web search with text-mining and ontologies to facili-
tate question answering. GoWeb demonstrates a recall of 55 to 79% on three bench-
marks. Cheung et al. [10] introduce semantic Web query federation in the context of
neuroscience which provides facilities to integrate different data sources and offers
either SPARQL or SQL query. Mendes et al. [4] evaluated the usability of Cuebee on
the system usability scale [11] and the query formulation effort by recording time
taken and number of interactions to retrieve answers. Because PKR’s front end uses
an enhanced version of Cuebee we believe that the same evaluation holds.

All of the listed approaches are available for public use. However, there is not
enough evidence of how much these systems are in use by life science researchers in
daily research. This paper discusses significant enhancements to Cuebee [3] [4], and
explicitly highlights the benefits and limitations of using PKR while being used by an
interdisciplinary team of computer science and cell biology researchers. Thus, while
PKR is not alone in bringing knowledge-driven approaches to the life sciences, we
believe that our comparative evaluation of the systems in use is novel.

40 A.H. Asiaee et al.

3 Background

In this section, we briefly describe the two approaches for querying experimental data
related to T. cruzi. We emphasize that both Paige Tools and PKR are currently oper-
ational and are being used by researchers, with the expected longer-term objective of
replacing Paige Tools with PKR.

3.1 Paige Tools – Conventional DBMS-Based Approach

Paige Tools offers interfaces to add and edit experimental data related to T. cruzi
housed in multiple separate local databases as well as facilities to execute queries.
Typically, these interfaces manifest as forms containing widgets such as drop-down
lists, check boxes and buttons that allow formulation of a Boolean query on a specific
dataset and selection of attributes to display in the result. We believe that the interfac-
es in Paige Tools are typical of systems utilized by life science researchers. As ex-
pressed by the researchers that use Paige Tools, these tend to be simple but adequate
approaches for somewhat targeted access to portions of data. The interfaces are tightly
coupled to the schema design and limited to executing a specific set of queries. Thus,
any change to the database schema results in refactoring of the forms.

3.2 PKR – Knowledge-Driven Approach

At the front end of PKR we use a significantly enhanced version of Cuebee – an on-
tology-based query formulation and data retrieval system applied in the context of T.
cruzi parasite research originally designed by Mendes et al.[3] [4].

Cuebee employs two query engines, which we refer to as suggestion engine and
answer engine. Suggestion engine guides a user through the process of transforming
her question into a query in a logical way. It utilizes RDFS ontology schemas to sug-
gest concepts in a drop-down list that match the characters that the user types. Fur-
thermore, it lists all the relevant relationships for any selected particular concept. In
the process of formulating the query users may need to select some intermediate con-
cepts in order to relate the concepts that appear in the question. Finally, queries are
transformed into SPARQL queries and executed by the answer engine.

We introduce multiple enhancements to make Cuebee more user-friendly [12]. For
example, the enhanced suggestion engine now annotates each suggested concept with
information that includes a description of the ontology class and associated properties.
It allows selection of multiple instances that satisfy Boolean operators. The enhanced
Cuebee also guides users to formulate more complex SPARQL graph patterns using
group by and aggregate functions, filter over instances using regular expressions. In
addition, an undo feature helps users revise their queries at any point during the for-
mulation process.

Our contributions go beyond the interface and focus on the infrastructure of Cu-
ebee as well. A major improvement is the capability to support OWL ontologies be-
cause they tend to be more expressive than RDFS ontologies. For example, in the
context of T. cruzi research, we use the OWL-based parasite experiment (PEO) and

 From Questions to Effective Answers 41

parasite lifecycle (OPL) ontologies [2]. Subsequently, we equip the two query engines
to execute SPARQL-DL [5] queries which offer more expressive power than
SPARQL. OWL ontologies are deployed in an OWL-DL reasoner called Pellet in
order to take advantage of the inferencing capabilities.

An increasing number of bioinformatics tools and biomedical data sources are
available as Web services. As another contribution to Cuebee, we extend the results of
the final queries with common bioinformatics tools such as EBI BLAST available as
RESTful Web services and access into TriTrypDB [13]. Here, we detect if the results
of a query contain appropriate types of protein sequences or gene IDs, and allow the
user to trigger an invocation of the EBI BLAST Web service or obtain additional
information from TriTrypDB.

4 Benefits of PKR over Paige Tools

Both Paige Tools and PKR are running concurrently on identical data and in use by
a team of researchers. The identical contexts provide us a valuable opportunity to
comparatively evaluate the two approaches in a principled way in this section.

4.1 Explicitly Structured Queries

The first benefit is with respect to the structure of the queries that may be formulated
in the two approaches. In order to illustrate this, consider the following question
posed by parasitologists in the context of T. cruzi:

Which microarray oligonucleotide derived from homologous genes has 3 prime re-
gion primers?

Note that homology is a relationship between two genes (these genes are derived
from a common ancestor) and 3-prime-region is a property of primers.

Conventional database design places minimal importance on named relationships
(e.g., table joins) and Paige Tools as a typical example of DBMS-based systems that
are in use in life science research labs, reflects this. While query pages within Paige
Tools provide users the ability to show attributes of microarray oligonucleotide,
genes and primers, discerning homology relationships between two genes is left to the
ability of the user in post-processing the results. Thus, the resulting query does not
adequately reflect the original question in the researcher’s mind.

Fig. 1. Formulated query for “Which microarray oligonucleotide derived from homologous
genes has 3 prime region primers?” in PKR. Notice the relationships between the concepts.

On the other hand, PKR’s process of formulating queries allows a logical
interpretation of the question. Queries formulated within PKR contain not only the
concepts (e.g., gene) but also make the relationships explicit in the query (e.g., is
homologous to), as we show in Fig. 1. The query formulation process in PKR leads

42 A.H. Asiaee et al.

users to find linkages betwe
the expressiveness of ontol
promotes better understandi

4.2 Queries at Differen

A significant benefit of PK
This is beneficial because r
questions. Consider the foll

What genes are used to c
T. cruzi sample could b

sample, and transfected sa
general question into a quer
into a query for strains da
researcher tediously analyz
type of T. cruzi sample. I
would involve redesigning t

Fig. 2. The question “What g
PKR and cloned sample which

On the other hand, PKR
types of samples in the on
Pellet’s inferencing by usin
corresponding query in ord
Fig. 2 illustrates, cloned sa
“General Results” tab. The
user’s domain expertise in c

een concepts by suggesting relationships explicitly. Due
logy schemas, the formulated query is more readable
ing even to users with less domain knowledge.

nt Levels of Abstraction

KR is its ability to query at multiple levels of abstracti
researchers investigating new hypotheses often ask gene
lowing question posed by our parasite researchers:
create any T. cruzi sample?
e of several different types: cloned sample, drug selec

ample. There is no straightforward way to transform
ry using Paige Tools. A researcher translates this quest
atabase that produces almost all genomic data. Then,
zes multiple attributes for each data record to ascertain
In this approach, explicitly linking the different samp
the database and reduced efficiency.

genes are used to create any T. cruzi sample?” is formulated
h is a type of T. cruzi sample appears in the results

R intuitively models the relationships between the differ
ntology schema. PKR’s answer engine takes advantage
ng SPARQL-DL’s extended vocabulary and generates
er to access instances of the class and all its subclasses.

ample – a subclass of T. cruzi sample – appears under
erefore, answering general questions is less dependent o
contrast to Paige Tools.

e to
and

ion.
eral

cted
this
tion
the
the

ples

d in

rent
e of
the

. As
the

on a

4.3 Uniform Query Int

Ontology-driven approache
tiple related datasets; howe
different databases. Each in
attribute names from the c
option to the user of filteri
down lists and the check bo

PKR provides a uniform
are the target of the questi
does not change with differ
over all datasets. Users ma
datasets for efficiency. Th
schema for the related datas
tied to a specific ontology b

Fig. 3. The (a) gene annotatio
two interfaces of Paige Tools

4.4 Querying over Mul

Often, researchers pose que
ple, consider the following

Which genes with log-ba
Data related to log-base2

with 3-prime-regions are fo
into two sequential sub-que
1; and (b) which of these ge
found using the gene annota
(a) and manually looks for t

On the other hand, PKR
composing it despite the fac

From Questions to Effective Answers

terface

es such as PKR allow a uniform query interface for m
ever, Paige Tools offers several interfaces to access
nterface is designed using drop-down lists holding differ
corresponding table schema and check boxes to give
ing results (see Fig. 3). Notice that the items in the dr
ox labels differ across the two interfaces.
m query interface to the user regardless of which data
ions. The process of translating the question into a qu
rent contexts. By default, formulated queries are execu

ay also select a suitable dataset from the drop-down lis
his is enabled by using a single, comprehensive ontolo
sets. Furthermore, approaches such as PKR are usually
but support any ontology designed in OWL.

n query page and (b) cloning database query page – represen
s

ltiple Datasets

estions that span across different types of data. For exa
question:

ase-2-ratio greater than 1 have 3 prime region primers?
2-ratio is found in the transcriptome dataset while prim
ound in strain dataset. In Paige Tools question is divi
estions: (a) Which genes have log-base-2-ratio greater th
enes has 3-prime-region primers. Answer to question (a
ations query page. Then, a researcher takes the results fr
the primers in the gene cloning page to find answers to (

R allows a formulation of the associated query without
ct that two different datasets hold the answers. A user fi

43

mul-
the

rent
the

rop-

sets
uery
uted
t of
ogy
not

nting

am-

?
mers
ded
han
a) is
rom
(b).
de-

inds

44 A.H. Asiaee et al.

Fig. 4. The question, “Which genes with log-base-2-ratio greater than 1 have 3 prime region
primers”, formulated in PKR. The query for this question spans multiple datasets.

the appropriate concepts and relationships between log-base-2-ratio and gene (Fig. 4
area (1)), and continues to formulate the query by adding the has-3-prime-region
relationship followed by region (Fig. 4 area (2)). On formulating the query, PKR
allows a search over all datasets – made possible because of a comprehensive ontolo-
gy for all the data. The solution to the query integrates both datasets thereby facilitat-
ing integrated analysis by the researchers with minimal post-processing effort.

5 Limitations of PKR

We highlight two limitations of approaches such as PKR, which may likely impact its
widespread adoption. While ontologies represent a formal model of the domain know-
ledge, users not well acquainted with the ontology feel tied down to its structure. We
minimize this by providing suggestions about next possible concepts and relation-
ships. Nevertheless, our triple-based queries often require users to select intermediate
concepts and relationships that connect the entities in the question. But users prefer
more abbreviated queries in their daily usage of systems such as PKR.

The second limitation is the increased time and space complexity of knowledge-
driven systems compared to highly optimized modern DBMS. While fast RDF
storages such as Virtuoso exist, the predominant complexity is due to the ontology
inferencing facilities provided by systems such as Pellet.

6 Evaluation and Discussion

While Mendes et al. [4] evaluated the usability of PKR’s interface, in this paper, we
focus on the usefulness of knowledge-driven systems such as PKR in comparison to
DBMS-based systems such as Paige Tools, which requires that the systems be in
use. We compile our observations of both systems in use into the benefits and limita-
tions of the two approaches, in Sections 4 and 5. In order to quantify aspects of use-
fulness of PKR and Paige Tools we calculate precision and recall on a corpus of 25
domain questions, many of which span multiple datasets. Although the domain of
these questions is limited to the parasite, T. cruzi, such questions are commonly
encountered by biologists and parasitologists investigating other organisms as well.

Two domain experts independently validated the consensual reference set for each
question in this evaluation. We obtain average precisions of 83% and 56% for PKR and
Paige Tools, respectively; average recall score for PKR is 80% and for Paige Tools is
77%. Our results show that both systems retrieve large fractions of the relevant data

 From Questions to Effective Answers 45

from the collection of all data, and queries in PKR provide more accurate answers than
in Paige Tools. The latter lead to much post processing, as mentioned.

Parasitologists using PKR appreciate its advantages and are getting more
comfortable with the layout as it improves. But, it takes time to get researchers to
change over completely. We are not yet at a point where researchers in other labs may
be able to simply install PKR and query their particular sets of data. Many of the
concepts used in PEO are general enough to be incorporated into ontologies for other
organisms, but we anticipate that ontologies will still require tailoring to individual
use cases. The scope of this paper is to provide a model for developing ontology-
based systems for life science researchers, to offer proof that semantic Web
technologies will ultimately be of greater use to biomedical researchers than
traditional DBMS, and to demonstrate the capabilities of PKR. We believe that these
are substantive steps towards developing systems that are more user friendly and
efficient for biomedical researchers. As PKR continues to be utilized we expect that
researchers will gain new biological insights from their analysis of the data.

Reference

1. Paige tools, http://paige.ctegd.uga.edu
2. Parikh, P., Minning, T., Nguyen, V., Lalithsena, S., Asiaee, A., Sahoo, S., Doshi, P., Tarle-

ton, R., Sheth, A.: A Semantic Problem Solving Environment for Integrative Parasite Re-
search: Identification of Intervention Targets for Trypanosoma cruzi. PLoS Neglected
Tropical Diseases 6(1), e1458 (2012)

3. Cuebee (Original Version), http://Cuebee.sourceforge.net
4. Mendes, P., McKnight, B., Sheth, A., Kissinger, J.: Tcruzikb: Enabling complex queries

for genomic data exploration. In: IEEE-ICSC, pp. 432–439 (2008)
5. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In : Third OWL Expe-

riences and Directions Workshop (OWLED) (2007)
6. Kiefer, C., Bernstein, A., Lee, H.J., Klein, M., Stocker, M.: Semantic Process Retrieval

with iSPARQL. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS,
vol. 4519, pp. 609–623. Springer, Heidelberg (2007)

7. Russell, A., Smart, P., Braines, D., Shadbolt, N.: NITELIGHT: A Graphical Tool for Se-
mantic Query Construction. In: SWUI Hosted by CHI, Florence (2008)

8. Bernstein, A., Kaufmann, E., Kaiser, C., Kiefer, C.: Ginseng: A Guided Input Natural
Language Search Engine for Querying Ontologies. In: Jena User Conference, UK (2006)

9. Dietze, H., Schroeder, M.: GoWeb: a semantic search engine for the life science web.
BMC Bioinformatics 10(suppl. 10), S:7 (2009)

10. Cheung, K., Frost, H., Marshall, M., Prud’hommeaux, E., Samwald, M., Zhao, J., Paschke,
A.: A journey to Semantic Web query federation in the life sciences. BMC Bioinformatics
10(suppl. 10), S:10 (2009)

11. Brooke, J.: SUS: a quick and dirty usability scale. In: Usability Evaluation in Industry,
pp.189–194 (1996)

12. Cuebee (Enhanced Version), http://jade.cs.uga.edu:8080/Cuebee
13. TriTrypDB, http://tritrypdb.org

OmixAnalyzer – A Web-Based System

for Management and Analysis
of High-Throughput Omics Data Sets

Thomas Stoltmann�, Karin Zimmermann�, André Koschmieder�, and Ulf Leser

Humboldt-Universität zu Berlin, Germany
Department of Computer Science

{stoltman,zimmer,koschmie,leser}@informatik.hu-berlin.de

Abstract. Current projects in Systems Biology often produce a multi-
tude of different high-throughput data sets that need to be managed, pro-
cessed, and analyzed in an integrated fashion. In this paper, we present
the OmixAnalyzer, a web-based tool for management and analysis of
heterogeneous omics data sets. It currently supports gene microarrays,
miRNAs, and exon-arrays; support for mass spectrometry-based pro-
teomics is on the way, and further types can easily be added due to its
plug-and-play architecture. Distinct from competitor systems, the Omix-
Analyzer supports management, analysis, and visualization of data sets;
it features a mature system of access rights, handles heterogeneous data
sets including metadata, supports various import and export formats, in-
cludes pipelines for performing all steps of data analysis from normaliza-
tion and quality control to differential analysis, clustering and functional
enrichment, and it is capable of producing high quality figures and re-
ports. The system builds only on open source software and is available on
request as sources or as a ready-to-run software image. An instance of the
tool is available for testing at omixanalyzer.informatik.hu-berlin.de.

1 Introduction

Current projects following a Systems Biology approach to the study of biomed-
ical phenomena typically produce a multitude of different high-throughput data
sets. For instance, to study complex phenotypes such as cancer [6] and other ge-
netic diseases [1], researchers analyze cellular samples at various levels, such as
gene expression, protein expression, epigenetic status of regulatory elements in
the genome, presence of differentially spliced protein isoforms, levels of metabo-
lites etc. Managing and analyzing such diverse and heterogeneous data sets is a
significant challenge; therein, analysis cannot stop at individual data sets, but
needs to intelligently combine data generated by different methods [12]. In con-
crete projects, such technical and scientific issues are engraved by more social
issues, such as highly different levels of proficiency of project members with mod-
ern methods in data analysis, problems in terms of data sharing, and unclear
separations of concern between experimentalists and bioinformaticians [3].

� These authors contributed equally to this paper.

C.J.O. Baker, G. Butler, and I. Jurisica (Eds.): DILS 2013, LNBI 7970, pp. 46–53, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

OmixAnalyzer 47

The degree to which this harms projects varies with the size: Typically, small
projects (2-4 groups) often have a clear separation of duties, a modest hetero-
geneity in data sets and less problems with data sharing. In large, international
or national-wide projects such issues are usually resolved in a strict and manged
manner by enforcing agreed policies and hierarchical organization [16]. However,
the majority of typical Systems Biology projects probably are just in-between,
uniting 10-20 groups with mixed expertise, having different perspectives on their
subject, and gathering a heterogeneous set of experimental data. Further, these
groups are often very sensitive to questions of data ownership and access autho-
rization. Especially projects of this size can greatly benefit from central solutions
to data management and analysis, as they may help to reduce cost, establish uni-
fied standard operating procedures, and foster data exchange [10].

In this paper, we present OmixAnalyzer, a system for managing, analyzing,
sharing and visualizing heterogeneous -omics data sets for mid-sized projects.
It uses a central database to store experimental results and sample metadata,
features a full blown three-tier access rights management, and offers an intuitive
web interface tailored towards biologists without specialized computer training.
The OmixAnalyzer uses only open source components and builds on a plug-in
architecture for adding novel data types with their individual metadata, internal
data structures, and workflow-based analysis pipelines. For data analysis, the
system executes configurable pipelines of R scripts, which makes changes in
terms of individual analysis tools or the way algorithms are combined quite
easy. Analysis results are downloadable in spreadsheet formats, can be used to
generate publication-quality figures, and are stored by the system for later reuse.

We believe that the feature set of OmixAnalyzer is quite unique. For instance,
systems such as Intermine [14] or Galaxy [5] are focused on genome sequences
and do not target dynamic data sets typical for transcriptomics or proteomics. A
variety of tools exist for transcriptome data [8], but none is suitable for our set-
ting; for instance, using Chipster requires uploading data to a project-external
server [7], while Mayday [2] clearly targets only expert bioinformaticians. Sys-
tems explicitly focusing on multiple omics data are, for instance, Vanted [11],
which focuses on graph-based analysis and visualization, or Babelomics [9], which
targets nation-wide projects and lacks a data access model. A number of other
projects, such as SysmoSeek [15] or DIPSBC [4] only target data management
but not data analysis or visualization. Overall, we are not aware of any other
system that specifically targets mid-size Systems Biology projects.

2 System Architecture

The system architecture of the OmixAnalyzer follows the Model-View-Controller
pattern in most cases and is segmented into three different layers: presentation,
business, and data layer. The presentation layer contains all GUI elements, i.e.
the web pages the user navigates when using the system. The business layer
contains the operational logic, handles the communications between the front-
end and the data layer, and manages the database transactions. Also in this

48 T. Stoltmann et al.

OmicsExplorer
S

pr
in

g
Fr

am
ew

or
k

Tr
an

sa
ct

io
n

M
an

ag
em

en
t

B
us

in
es

s
E

nt
iti

es

B
us

in
es

s
Lo

gi
c

B
us

in
es

s
La

ye
r

Service API

A
na

ly
si

s
B

ac
ke

nd

Analysis Module API Crawler API

G
en

e
C

hi
p

M
od

ul
e

M
ic

ro
R

N
A

M
od

ul
e

...

M
ic

ro
R

N
A

Ta
rg

et
C

ra
lw

er

P
at

hw
ay

C
ra

w
le

r

…

Web Frontend Module API

JSF 2, Primefaces, jQueryP
re

se
nt

at
io

n
La

ye
r

Analyis Wizard GUI Experiment manager GUI ...User manager GUI
D

at
a

La
ye

r

D
at

a
E

nt
iti

es

JPA 2 (using Hibernate)

Persistence API

PostgreSQL
Database

Fig. 1. System architecture of the OmixAnalyzer and software used

layer is the analysis back-end, which contains all analysis modules available in
the OmixAnalyzer as well as the data crawlers. The data layer handles the data
persistance and communications with the database.

Note that the software project completely relies on open source software.
Figure 1 gives an overview of the system architecture and shows its components.

The layers have been designed in a modularized manner, with each module
covering a specific task. This way, new functionality can easily be added to the
system by means of adding new modules. Details on how to add new mod-
ules (e.g. new data types) are covered in Section 5. In the presentation layer, a
module represents web pages like user settings, experiment manager or analysis
wizard.

The analysis backend consists of modules for data analysis and data crawlers.
A data analysis module contains all available analysis workflows for a specific
platform, with gene chips, micro RNA, and exon arrays currently available. A
module exports description files for all supported analysis workflows providing
information on required data and options for the workflow. For example, sup-
ported analysis workflows for the gene chip module are Clustering, Differential
Analysis, Functional Analysis, Quality Control and Visualization. All currently
implemented workflows use R as analysis backend, and methods for invoking
R and handling jobs are available in the analysis API. However, new analysis
modules are not required to use R as backend, but can also use Java, Perl, or
other languages.

A data crawling module provides the system with data gathered from external
resources. Crawlers can be run manually, or automatically at specific intervals.

OmixAnalyzer 49

The crawlers provide annotation data used in the analysis workflows as well as
pathway and gene identification data. Currently, the following data sources are
supported: BioMART, KEGG (the last publicly available version), BioGRID,
Reactome, TarBase, MirTarBase, MicroCosm, Miranda, PicTar and mapping
files of different manufacturers. Additional crawling modules can easily be added.

The data layer is responsible for storing the data used in OmixAnalyzer. While
some data formats like raw experimens or binary normalized expression data
are stored in the file system, most data is stored in the relational PostgreSQL
database. This includes all experiments and their annotations, users, groups and
permissions, crawled external data, and analysis jobs and results.

3 Supported Data Analysis

A short overview of the functionality of the OmixAnalyzer demonstrates the
variety of analysis possibilities. On top of supporting both the analysis of mi-
croarray and sequencing technologies, their joint analysis is a key feature of the
presented software.

The analysis possibilities provided are organized in six workflows (see Figure
2(b)) according to their main topics for better overview and user guidance: Qual-
ity control, differential analysis, clustering, visualization, functional analysis and
joint analysis.

Quality control implements commonly used plots such as boxplot, array-array
correlation plot or PCA which enable the user to estimate the quality of the data
and detect potential outliers. Visualization contains a potpourri of widely used
plots providing a powerful tool for investigative and hypothesis generating anal-
yses on the one hand as well as the visualization of results on the other hand.
Clustering analysis can be applied to samples or genes, or both. Hierarchical
clustering using the complete linkage algorithm and euclidian distance provides
a generic and powerful tool in class discovery. Differential analysis is a state-
of-the-art implementation facilitating the detection of relevant genes based on
commonly used criteria such as t-test based p-value, fold change or gene expres-
sion variance. For more than two groups, Anova is available.

A more bio-functional interpretation of the results can be obtained with Func-
tional analysis. A pre-selected set of genes, coming from differential analysis or
selected by other criteria, can be tested for significant enrichment of KEGG path-
ways or GO terms. This service is provided for all microarray-based data that
originated from chips supported by Bioconductor. The joint analysis enables the
user to compare and correlate data from different technologies as long as they
contain samples which can be matched. Based on different criteria, subsets of
data can be selected and combined for correlation and visualization.

Each workflow leads to a result page (see Figure 2(a)) containing both a pdf
file incorporating all analysis results as well as all single result files for download.

Additionally, every workflow provides highly specialized filtering options with
respect to the data used for the concrete analysis. Clustering for example can be

50 T. Stoltmann et al.

Fig. 2(a). Downloadable analysis re-
sults for differential analysis.

Fig. 2(b). Workflows provided for the se-
lected dataset

applied to samples, genes or both. Differential expression analysis will produce
results for genes meeting certain criteria such as p-value or simply return a list
and figures, and calculating the test statistic for all selected genes. A further
filtering option is based on the role of genes. The user can select the latter based
on their membership in a certain pathway or by user-defined lists. Microarrays
can even be selected based on their target genes. Due to the almost infinite
number of combinations the filtering techniques make the OmixAnalyzer a very
powerful tool by providing a maximum of creative analysis freedom.

A very straightforward but flexible and effective way to implement integrated
data analysis is provided by the option to store gene lists at the end of an analysis
workflow and reuse the entities, i.e. genes, in another. If, for example, epigenetic
as well as expression data of the same conditions were stored in the OmixAn-
alyzer, the set of differentially expressed genes could be tested for differential
histone acetylation. Sample correspondence over experiments permits even more
sophisticated options, such as miRNA to mRNA mapping by target as well as
their correlation.

OmixAnalyzer 51

4 Web Interface

The web interface is entirely written in Java and XML and relies on JSF2, Prime-
faces, HTML5 and Ajax to offer a seamless user interface. Ajax is implemented
through partial page rendering and partial page processing. Most of the client-
side JavaScript code is provided through the frameworks used. The web interface
is theme-able.

All administration of OmixAnalyzer can be done in the web interface by a user
with administration privileges. The so-called administration area provides pages
to manage entities within the system. The Experiment Manager Module allows to
create, edit, delete and export experiments. The creation of new experiments can
be done entirely using the web interface, including the upload of the experiment
data. Experiments can be exported as a single zip file containing the data of the
experiments in mage-tab format as well as the raw data (e. g. cel files of gene
chip experiments). The user manager module contains facilities to create, edit
and delete users and their roles. Additional modules are available to manage
platforms, organisms, etc.

A more illustrative impression of the web interface shall be achieved by a
walk-through to joint Analysis of gene chips and miRNA. The step preceding all
workflows is the selection of the data set. Based on this decision, the workflows
available for the selected data sets are displayed. In case of joint analysis, a
miRNA and a gene chip data set need to have corresponding samples. After
choosing the workflow, a subset of groups can be selected. For a more specific
analysis a filter can be applied to genes as well as to miRNAs. The emerging
subset of samples and targets is now correlated based on an internally provided
miRNA target mapping. Once the calculations are complete, the result page
offers the view and download of all generated results including images in a pdf
file, by single download or as an all-including compressed archive.

5 Availability and Extensibility

The OmixAnalyzer is available on request. We provide the full sources required
to build and run the system, as well as a ready-to-run virtual machine image. Be-
cause the OmixAnalyzer is easy to administer but complex to install, this image
can be used to set-up the system in only a few steps. The system is also avail-
able online for trying out its features: http://omixanalyzer.informatik.hu-
berlin.de

To run the OmixAnalyzer from the virtual machine image, VirtualBox (4.2
or higher) is required, which is freely available for most operating systems. The
image contains all required software, and an installation guide for setting up the
virtual machine is also provided.

Compiling and deploying OmixAnalyzer requires a few more steps. The system
presupposes a Linux system with Oracle’s Java JDK 7, PostgreSQL (9.0 or
higher), R (2.15 or higher) and Bioconductor, ImageMagick and Maven 3. After
modifying the central configuration file according to your needs, Maven will
automatically download all required libraries and build a ready-to-run war file,

http://omixanalyzer.informatik.hu-berlin.de
http://omixanalyzer.informatik.hu-berlin.de

52 T. Stoltmann et al.

which can be deployed on a Tomcat servlet container (version 7 or higher) or a
Glassfish application server (3.1 or higher). The database can easily be installed
using the supplied schema files. A detailed installation guide is also available.

With the modular architecture, new components can be added to the system
with relatively small effort as plug-ins. These can add new GUI components to
the system, provide more analysis methods for supported platforms, or even add
a completely new platform type like for example proteomics.

To add a new GUI component, only the website layout and a Java class
containing the GUI related functionality need to be written. For new platform
types, a small module containing platform-specific information is required, along
with some minor changes in the Data Layer. To enable users to analyze data of
the new platform type, new analysis modules are required as well.

Analysis modules are the most complex type of plug-ins for OmixAnalyzer. A
new analysis module must contain meta information about the analysis workflow,
including required input data and user options to parameterize the analysis. The
actual analysis functionality can be supplied as Java, R, Perl or similar code
routines.

6 Discussion

We present the OmixAnalyzer, a system for data management and analysis that
specifically targets the needs of mid-size projects. For smaller groups of peo-
ple, maintaining a central solution like the OmixAnalyzer probably brings more
burden than gain; in such settings, stand-alone systems, some of which are also
available commercially, are usually the better choice. On the other hand, very
large, international projects typically need a more flexible system than the Omix-
Analyzer, with stronger capabilities in terms of scalable and distributed data
analysis, support for automatic data and metadata ingestion, and possible di-
rect links to LIMS systems. The OmixAnalyzer was designed to target projects
just in-between, which typically can afford (limited) central and professional staff
for running a data management solution.

The systems supports both computer-illiterate and savvy users. Biologists can
take advantage of the built-in pre-processing, quality-control and data analysis
options to work with their data and to generate results and figures for publi-
cations. Bioinformaticians may exploit the plug-in architecture to easily adapt
the system to specific needs or to add specific extensions, like novel analysis
pipelines or support for other data types. The successful use of the OmixAna-
lyzer manifests in at least two publications [6,13] accrued in the framework of
the TRR54.

We are currently extending the system to also support proteomics data. Fur-
thermore, we plan to provide a more comprehensive set of joint analysis methods.

Acknowledgements. We acknowledge funding from the Deutsche Forschungs-
gemeinschaft (DFG) through Transregio TRR-54. We thank Y. Mayer, L. Sousa
and M. Pichotta for contributions, and M. Hummel and other Transregio mem-
bers for feedback.

OmixAnalyzer 53

References

1. Baranzini, S.E., Mudge, J., van Velkinburgh, J.C., Khankhanian, P., Khrebtukova,
I., et al.: Genome, epigenome and rna sequences of monozygotic twins discordant
for multiple sclerosis. Nature 464(7293), 1351–1356 (2010)

2. Battke, F., Symons, S., Nieselt, K.: Mayday – integrative analysis for expression
data. BMC Bioinformatics 11, 121 (2011)

3. Birney, E., Hudson, T.J., Green, E.D., Gunter, C., Eddy, S., et al.: Prepublication
data sharing. Nature 461(7261), 168–170 (2009)

4. Dreher, F., Kreitler, T., Hardt, C., Kamburov, A., Yildirimman, R., et al.: Dipsbc-
data integration platform for systems biology collaborations. BMC Bioinformat-
ics 13(1), 85 (2012)

5. Goecks, J., Nekrutenko, A., Taylor, J.: Galaxy: a comprehensive approach for sup-
porting accessible, reproducible, and transparent computational research in the life
sciences. Genome Biol. 11(8), R86 (2010)

6. Joosten, M., Seitz, V., Zimmermann, K., Sommerfeld, A., Berg, E., et al.: His-
tone acetylation and dna demethylation of t-cells result in an anaplastic large cell
lymphoma-like phenotype. Haematologica 98(2), 247–254 (2013)

7. Kallio, M.A., Tuimala, J.T., Hupponen, T., Klemela, P., Gentile, M., et al.: Chip-
ster: user-friendly analysis software for microarray and other high-throughput data.
BMC Genomics 12, 507 (2011)

8. Koschmieder, A., Zimmermann, K., Trissl, S., Stoltmann, T., Leser, U.: Tools for
managing and analyzing microarray data. Brief. in Bioinf. 13, 46–60 (2012)

9. Medina, I., Carbonell, J., Pulido, L., Madeira, S., Goetz, S., et al.: Babelomics: an
integrative platform for the analysis of transcriptomics, proteomics and genomic
data with advanced functional profiling. Nucl. Acids Res. 38(suppl.) W210–W213
(2010)

10. Paton, N.W.: Managing and sharing experimental data: standards, tools and pit-
falls. Biochem. Soc. Trans. 36(Pt. 1), 33–36 (2008)

11. Rohn, H., Junker, A., Hartmann, A., Grafahrend-Belau, E., Treutler, H., et al.:
Vanted v2: a framework for systems biology applications. BMC Syst. Biol. 6(1),
139 (2012)

12. Schadt, E.E., Linderman, M.D., Sorenson, J., Lee, L., Nolan, G.P.: Computational
solutions to large-scale data management and analysis. Nat. Rev. Genet. 11(9),
647–657 (2010)

13. Seitz, V., Thomas, P., Zimmermann, K., Paul, U., Ehlers, A., et al.: Classical
hodgkin’s lymphoma shows epigenetic features of abortive plasma cell differentia-
tion. Haematologica 96(6), 863–870 (2011)

14. Smith, R.N., Aleksic, J., Butano, D., Carr, A., Contrino, S., et al.: Intermine: a
flexible data warehouse system for the integration and analysis of heterogeneous
biological data 28(23), 3163–3165 (2012)

15. Wolstencroft, K., Owen, S., du Preez, F., Krebs, O., Mueller, W., et al.: The seek:
a platform for sharing data and models in systems biology. Methods in Enzymol-
ogy 500, 629 (2011)

16. Wruck, W., Peuker, M., Regenbrecht, C.R.: Data management strategies for multi-
national large-scale systems biology projects. Brief. in Bioinf. (2012)

C.J.O. Baker, G. Butler, and I. Jurisica (Eds.): DILS 2013, LNBI 7970, pp. 54–68, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The RDF Pipeline Framework: Automating Distributed,
Dependency-Driven Data Pipelines

David Booth

Independent Consultant
KnowMED, Inc.

david@dbooth.org
http://dbooth.org/2013/dils/pipeline/,

http://rdfpipeline.org/

Abstract. Semantic web technology is well suited for large-scale information
integration problems such as those in healthcare involving multiple diverse data
sources and sinks, each with its own data format, vocabulary and information
requirements. The resulting data production processes often require a number of
steps that must be repeated when source data changes -- often wastefully if only
certain portions of the data changed. This paper explains how distributed
healthcare data production processes can be conveniently defined in RDF as
executable dependency graphs, using the RDF Pipeline Framework. Nodes in
the graph can perform arbitrary processing and are cached automatically, thus
avoiding unnecessary data regeneration. The framework is loosely coupled,
using native protocols for efficient node-to-node communication when possible,
while falling back to RESTful HTTP when necessary. It is data and
programming language agnostic, using framework-supplied wrappers to allow
pipeline developers to use their favorite languages and tools for node-specific
processing.

Keywords: Data flow, data pipelines, semantic web, RDF, SPARQL.

1 Introduction

A major use case for semantic web technology in industry is information integration
involving several diverse data sources, each having its own access protocols, data
format, vocabulary and information content. Healthcare data fits this profile well.
When semantic web technology is used for this purpose, source data such as patient
information and lab data must be accessed, converted to RDF[1], and transformed in
ways that are specific to each data source, to link the information together.
Ontologies and rules are useful in performing semantic transformation of the
information, and often require multiple processing steps. In addition, if the
information is important – such as healthcare information – there are often multiple
applications that must consume that information, i.e., multiple data sinks, each one
having its own data format, vocabulary, information requirements and protocol
requirements. For example, the same source information may be used for patient care

 The RDF Pipeline Framework 55

purposes, research, quality-of-care measurement, billing, etc. This further
complicates the data production process with more custom steps.

To automate the data production process when using semantic web technology,
often an ad hoc pipeline is built using a mixture of shell scripts, SQL queries,
SPARQL updates, web services, etc., and sometimes specialized integration tools.
The resulting pipeline often uses a mix of interfaces ranging from files, to web
services, HTTP, SQL, etc., and deals with a mixture of data representations such as
text, CSV, XML and relational. On the plus side, such pipelines can be built using
whatever tools are available for addressing each part of the problem, and the pipeline
can evolve organically. On the minus side, such pipelines become extremely fragile,
difficult to understand and difficult to maintain, both because they use so many
technologies and because the topology of the pipeline is very hard for a newcomer to
figure out. Typically, the topology is not expressed explicitly in one document –
unless someone manually documented the pipeline, in which case the documentation
is likely out of date. Instead, the topology is implicit in the communication that
occurs between a shell script on one server, another shell script on another server, a
web service on yet another server, etc. Furthermore, requirements frequently change
as new data sources and new applications are integrated, thus causing pipeline
maintenance to be a major problem.

To simplify the creation and maintenance of automated data production pipelines,
various pipeline languages, tools and frameworks have been created over the years.
For example, much research has already been done on workflow automation[2], and
the W3C in 2010 standardized an XML pipe processing model, XProc[3]. Although
the work presented in this paper could be considered workflow automation, it differs
from most work in that area (and XProc) in that: (a) it is specifically oriented toward
semantic web data production pipelines; and (b) it is more primitive, as there is no
flow of control, no flow of control operators, and no central controller. A few other
frameworks have been developed specifically for semantic web data
production[4][5][6][7], but our work differs from those in being fully decentralized,
with no central controller.

This paper presents an approach for semantic web data production pipelines that is
unique in being decentralized – there is no central controller – distributed, web
oriented (based on RESTful[8][9] HTTP), dependency graph driven, and allows
adjacent nodes in a pipeline to transparently use local data-access methods when the
nodes are compatible and on the same server. The approach was designed for
semantic web applications but can also be used for other purposes. The approach has
been implemented in the RDF Pipeline Framework[10], an open source project
available under the Apache 2.0 license. The Framework provides: (a) a hosting
environment (initially Apache2 using mod_perl2) with a pluggable wrapper interface;
and (b) some standard wrappers such as FileNode, GraphNode and JavaNode.
(Wrappers are discussed in Section 3.1.) The user provides: (a) an RDF pipeline
definition (such Pipeline #1 shown below); and (b) updaters (described below). As of
this writing (4-May-2013), code for the RDF Pipeline Framework is in "developer

56 D. Booth

release" status: it runs and passes regression tests, and may be downloaded for testing,
but is not yet ready for general production release, as some code cleanup and
documentation still need to be done.

2 Example Pipeline

To provide a concrete basis for illustrating this approach, this section presents a
simple example of a data pipeline using the RDF Pipeline Framework. Figure 1
shows a data pipeline (Pipeline 1) for producing cardiology and immunology data
based on patient medical records and lab data. There is no special significance to the
names of the nodes in this pipeline (patients, labs, normalize, merge, process,
cardiology, immunology). They were chosen only to suggest the application-specific
processing that they might perform.

To keep the example very simple, only two data sources are used and they are both
text files, though one comes from a remote HTTP source and the other from a local
file. (Of course, an actual system would likely involve more data sources and the data
sources would often be things like relational databases or web services.)

Fig. 1. This simple data pipeline (Pipeline 1) shows patient and lab data being combined to
produce data that is consumed for cardiology and immunology purposes. Each node in the
graph performs arbitrary application-specific processing and data storage. A directed link from
one node to another indicates data flow and hence data dependency. Although the lab data is
related to the patient data – lab results for patients – the lab data is first run through a
"normalize" step before being merged with the patient data. After merging, the data is further
processed through another application specific step before being consumed by the cardiology
and immunology nodes.

Here is the content from http://dbooth.org/2012/patients-data.txt:

patient id=001 name=Alice dob=1979-01-23
patient id=002 name=Bob dob=1950-12-21
patient id=003 name=Carol dob=1944-06-12

 The RDF Pipeline Framework 57

patient id=004 name=Doug dob=1949-08-27
patient id=005 name=Ellen dob=1966-09-29
patient id=006 name=Frank dob=1971-11-15

And here is the content of file labs-data.txt:

lab customer=001 glucose=75 date=2012-02-01
lab customer=002 glucose=85 date=2012-02-02
lab customer=002 glucose=94 date=2012-02-03
lab customer=004 glucose=72 date=2012-03-01
lab customer=004 glucose=104 date=2012-03-02
lab customer=004 glucose=95 date=2012-03-03
lab customer=005 glucose=98 date=2012-02-02
lab customer=006 glucose=87 date=2012-01-15
lab customer=006 glucose=91 date=2012-01-16

The pipeline of Figure 1 (Pipeline 1) is defined in RDF/Turtle[11] as follows. Line
numbers have been added for reference purposes.

1. # Pipeline 1: RDF/Turtle for Figure 1
 2. @prefix p: <http://purl.org/pipeline/ont#> .
 3. @prefix : <http://localhost/node/> .
 4.
 5. :patients a p:FileNode ;
 6. p:inputs (<http://dbooth.org/2012/patients-data.txt>) .
 7.
 8. :labs a p:FileNode ;
 9. p:inputs ("labs-data.txt") .
10.
11. :normalize a p:FileNode ;
12. p:inputs (:labs) .
13.
14. :merge a p:FileNode ;
15. p:inputs (:patients :normalize) .
16.
17. :process a p:FileNode ;
18. p:inputs (:merge) .
19.
20. :cardiology a p:FileNode ;
21. p:inputs (:process) .
22.
23. :immunology a p:FileNode ;
24. p:inputs (:process) .

It is easy to see that this pipeline definition corresponds directly to the graphical
representation in Figure 1. Indeed, although Figure 1 was drawn manually, tools such
as TopBraid Composer[12] can automatically display graphical representations of
these pipelines, making them very easy to visualize. Some notes:

Line 2: Prefix "p:" is declared for the namespace <http://purl.org/pipeline/ont#>
of the RDF Pipeline Framework's vocabulary. This is the vocabulary used to
define a pipeline in the RDF Pipeline Framework, as summarized in Section 3.7.

58 D. Booth

Line 3: Prefix ":" is declared for the base URI <http://localhost/node/> of the
RDF Pipeline server that will host one or more nodes in the pipeline. Any number
of servers may be used, though this example uses only one.
Line 5: Node <http://localhost/node/patients> (abbreviated as :patients) is
defined to be of type p:FileNode, which is the kind of wrapper (see Section 3.1) to
be used by the :patients node. In web style, a node's URI is used both to identify
that node and to retrieve data from it.
Line 6: The :patients node takes its input from a remote source,
<http://dbooth.org/2012/pipeline/patients-data.txt>.
Lines 11-12: The :normalize node takes the result of the :labs node as its input.
Lines 14-15: The :merge node has two inputs, specified as an ordered list: the
:patients node and the :normalize node.

Although Pipeline 1 defines the data flow between nodes, it supplies no details about
the application-specific processing that is performed by each node. This separation of
concerns makes it easy to reconfigure the pipeline without affecting the application-
specific processing, and vice versa.

To specify the application-specific processing that a node should perform, an
updater must be supplied. An updater is a named function, command or other
operation that implements the processing task of a node. An updater is written by the
user to perform an application-specific operation that produces data. Its job is to
produce the node's output when invoked by its wrapper (described in Section 3.1).
The wrapper passes, to the updater, wrapper-specific parameters for the node's inputs
and output destination, such as filenames for a FileNode, or RDF graph names for a
GraphNode.

For a node of type p:FileNode, such as :patients, the updater must be an executable
program that accepts files as inputs and writes its output to stdout or (optionally) to a
file. By default, the framework expects the name of the updater to be the node name
implicitly, but it may also be specified explicitly using the p:updater property. Below
is the updater for the :patients node, written as a shell script. Again, the line numbers
are not a part of the script.

1. #! /bin/sh

2. # This is the patients node updater.

3. cat $1 | ./patients2rdf

This updater simply pipes the content of file $1 through ./patients2rdf and writes the
result to stdout. Significant things to notice:

• There are no Application Programmer Interface (API) calls to pollute the
updater code. Instead, the RDF Pipeline Framework invokes the updater when
the data for that node needs to be generated, allowing the updater to be clean,
simple and focused only on the application-specific task that it needs to
perform.

• The updater expects its input as a file whose name is passed in as a parameter
$1 to the script, even though the pipeline definition specified its input as

 The RDF Pipeline Framework 59

<http://dbooth.org/2012/patients-data.txt>. The RDF Pipeline Framework will
automatically cache – in a file – the content retrieved from
http://dbooth.org/2012/patients-data.txt, and provide the cache filename as the
actual parameter $1 when it invokes the updater.

As shown in line 15 of Pipeline 1, the :merge node expects two inputs – the :patients
node and the :normalize node. Here is the :merge updater.

1. #! /bin/sh
2. # This is the merge node updater.
3. cat $1
4. cat $2 | sed 's/customer/patient/g'

The :merge updater performs a crude RDF merge by concatenating files $1 and $2 to
stdout. It also performs some crude ontology alignment by filtering file $2 through
sed in the process, to change all occurrences of "customer" to "patient", because the
:labs data used the word "customer" where the :patients data used the word "patient".
(Warning: this technique of using cat and sed to merge and edit RDF data will only
work for certain kinds of data, and should not be used in general. It is shown here
only to keep the example short and simple.)

Because the inputs of the :merge node are specified as an ordered list in the pipeline
definition, parameter $1 of the :merge node updater corresponds to the output of the
:patients node, and parameter $2 corresponds to the output of the :normalize node.

Once deployed, each node in a pipeline is independently "live", and will respond to
data requests by dereferencing the node's URI. Thus, there are no specially
designated endpoints: any node can be used as an endpoint or as an intermediate node.
For example, if the :patients node is dereferenced – such as by pasting its URI into a
browser, or by using the curl[13] command – the updater program named patients
will be invoked (if necessary) and its output will be returned. Here is the output of
"curl http://localhost/node/patients", with XSD data types[14] omitted for

brevity:

@prefix patient: <http://example/patient#> .
@prefix : <http://example/med#> .
patient:p001 :lab [:name "Alice" ; :dob "1979-01-23"] .
patient:p002 :lab [:name "Bob" ; :dob "1950-12-21"] .
patient:p003 :lab [:name "Carol" ; :dob "1944-06-12"] .
patient:p004 :lab [:name "Doug" ; :dob "1949-08-27"] .
patient:p005 :lab [:name "Ellen" ; :dob "1966-09-29"] .
patient:p006 :lab [:name "Frank" ; :dob "1971-11-15"] .

And here is the output of "curl http://localhost/node/merge":

@prefix patient: <http://example/patient#> .
@prefix : <http://example/med#> .
patient:p001 :lab [:name "Alice" ; :dob "1979-01-23"] .
patient:p002 :lab [:name "Bob" ; :dob "1950-12-21"] .

60 D. Booth

patient:p003 :lab [:name "Carol" ; :dob "1944-06-12"] .
patient:p004 :lab [:name "Doug" ; :dob "1949-08-27"] .
patient:p005 :lab [:name "Ellen" ; :dob "1966-09-29"] .
patient:p006 :lab [:name "Frank" ; :dob "1971-11-15"] .
@prefix patient: <http://example/patient#> .
@prefix : <http://example/med#> .
patient:p001 :lab [:glucose 750 ; :date "2012-02-01"] .
patient:p002 :lab [:glucose 850 ; :date "2012-02-02"] .
patient:p002 :lab [:glucose 940 ; :date "2012-02-03"] .
patient:p004 :lab [:glucose 720 ; :date "2012-03-01"] .
patient:p004 :lab [:glucose 1040 ; :date "2012-03-02"] .
patient:p004 :lab [:glucose 950 ; :date "2012-03-03"] .
patient:p005 :lab [:glucose 980 ; :date "2012-02-02"] .
patient:p006 :lab [:glucose 870 ; :date "2012-01-15"] .
patient:p006 :lab [:glucose 910 ; :date "2012-01-16"] .

This technique of making each node independently "live" means that no central
controller is needed or used, though nodes in a pipeline do share the same pipeline
definition. It also allows the pipeline to be used for multiple applications that share
some, but not all of the same data requirements. For example, the pipeline may have
originally been built to supply an application with data from only the :merge node.
The :cardiology and :immunology nodes may have been added later for other
applications, without duplicating work or disrupting the existing pipeline.
Furthermore, since each node can be on a different server (if desired), accessing its
own private data, nodes can run concurrently.

The RDF Pipeline Framework does not currently check to see if a pipeline contains
a cycle, although such a check would be straight-forward to add using well-known
techniques. Since a pipeline definition indicates data dependencies, a cycle would
likely be a mistake, though it is conceivable that a use could be found for it.

3 The RDF Pipeline Approach: What It Does and How It
Works

This section describes more of the principles used in this approach, how they work
and how they are used.

3.1 Wrappers

Pipeline 1 above showed how an updater could be implemented by an arbitrary
executable program, such as a shell script, which took files as inputs and produced a
file as output. However, although shell scripts and files are convenient in many cases,
data preparation for semantic web applications often requires processing steps that are
more conveniently and efficiently performed directly within an RDF data store.
Approaches like this are convenient for transforming RDF data from one model,
ontology or vocabulary to another. For example, SPARQL 1.1 Update[15] operations
can be used to create RDF named graphs from other named graphs. One can consider
such tasks to be nodes in a pipeline, in which SPARQL Update operations take named
graphs as inputs and produce named graphs as outputs.

 The RDF Pipeline Framework 61

To accommodate such needs, a node is composed of two parts: the updater and a
wrapper. A wrapper is a standard component, usually provided by the Framework,
that is responsible for invoking the updater and communicating with other nodes. This
architecture allows updaters to be written in any programming language and consume
or produce any kind of object, provided that a suitable wrapper is available. A
wrapper runs inside a hosting environment that implements an HTTP server (e.g.,
Apache2/mod_perl2 or Tomcat), allowing the wrappers to respond to HTTP requests,
and in turn potentially invoking updaters. The wrapper framework is extensible, so
new wrapper types can be plugged in to each hosting environment. The wrapper must
be implemented in the same programming language as its hosting environment (e.g.,
Perl or Java), but this does not necessarily need to be the same language in which
updaters are written – it depends on the wrapper.

Some basic wrappers:

• p:FileNode, for updaters written as executable programs (in any programming
language) that consume and produce files;

• p:GraphNode, for updaters written as SPARQL Update operations that
consume and produce RDF named graphs in a SPARQL server; and

• p:JavaNode, for updaters written in Java that consume and produce Java
objects in a JVM.

For example, the following SPARQL Update code INSERTs presidents from graph
http://example/in to graph http://example/out whose foaf:givenName is "Bill",
changing the foaf:givenName to "William". Again, the line numbers are not a part of
the code.

 1. # SPARQL Updater #1
 2. PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 3. PREFIX inGraph: <http://example/in>
 4. PREFIX outGraph: <http://example/out>
 5.
 6. DROP SILENT GRAPH outGraph: ;
 7.
 8. INSERT {
 9. GRAPH outGraph: {
10. ?president foaf:givenName "William" .
11. ?president foaf:familyName ?familyName .
12. }
13. }
14. WHERE {
15. GRAPH inGraph: {
16. ?president foaf:givenName "Bill" .
17. ?president foaf:familyName ?familyName .
18. }
19. }

Unfortunately, although the above code could be used as a p:GraphNode updater, it
would not be very convenient or flexible, because the names of the input and output
graphs are hard coded. Thus, the code would need to be modified if the pipeline were
reconfigured to use a different input or output graph. It would be nice if the graph

62 D. Booth

names were instead passed in as parameters, so that this same SPARQL code could be
used on any input and output graphs, but SPARQL 1.1 does not provide any way to
do that. The RDF Pipeline Framework therefore includes a simple template facility
that can be used for this purpose. Here is the same updater code, but written as a
SPARQL Update template.

 1. # SPARQL Updater #2, using a template
 2. #inputs (${in})
 3. #outputs (${out})
 4.
 5. PREFIX foaf: <http://xmlns.com/foaf/0.1/>
 6. PREFIX inGraph: <${in}>
 7. PREFIX outGraph: <${out}>
 8.
 9. DROP SILENT GRAPH outGraph: ;
10.
11. INSERT {
12. GRAPH outGraph: {
13. ?president foaf:givenName "William" .
14. ?president foaf:familyName ?familyName .
15. }
16. }
17. WHERE {
18. GRAPH inGraph: {
19. ?president foaf:givenName "Bill" .
20. ?president foaf:familyName ?familyName .
21. }
22. }

Points worth noting:

Line 1 is a normal SPARQL comment line.
Line 2 tells the SPARQL template processor the names of this updater's formal
input parameters. When the template is expanded at runtime, this line will be
removed and every occurrence of ${in} will be changed to the URI of the node's
input.
Line 3 tells the SPARQL template processor the names of this updater's formal
output parameters. When the template is expanded at runtime, this line will be
removed and every occurrence of ${out} will be changed to the node's URI.

3.2 Serializing, Deserializing and Optimizing Communication

In addition to invoking a node's updater, the wrapper is responsible for
communication between nodes. Thus, the wrapper performs wrapper-specific
serialization of node data (such as serializing a graph to RDF/Turtle) when it needs to
transmit that data to an external node or other requester, and it performs the
corresponding deserialization upon receiving data from an external node. This allows
updaters to stay very simple – unpolluted by serialization, deserialization or data
transmission issues.

 The RDF Pipeline Framework 63

This wrapper architecture also allows adjacent nodes to communicate more
efficiently when they are on the same server and use the same wrapper. Instead of
serializing an object, transmitting it via HTTP and deserializing it on receipt, nodes in
the same environment can transparently access each other's objects directly. For
example, if node <http://example/in> were an input to node <http://example/out> in a
pipeline, and both nodes were p:GraphNodes in the same server, then the updater for
<http://example/out> would automatically directly access the graph produced by
<http://example/in>, avoiding both HTTP and serialization / deserialization.

Pipelines can be built from a heterogeneous mix of node types as long as the
serializations produced by the wrappers are compatible. For example, a p:FileNode
could produce output that is RDF/Turtle and be used as the input of a p:GraphNode.

3.3 Caching and Updating Only When Necessary

A wrapper does not necessarily invoke a node's updater for every data request. The
wrapper automatically caches a node's output and keeps track of whether any of the
node's inputs have changed. The updater is invoked only if the cached output is stale
with respect to the nodes inputs. Again, this allows updaters stay simple, focusing
only on the application-specific tasks that they need to perform.

3.4 Deploying and Distributed Processing

As of this writing, a pipeline is deployed by placing the pipeline definition file and
updaters into the deployment directory of each hosting environment and starting the
hosting environments, such as Apache2. However, a future version of the Framework
will likely allow the pipeline definition to be read from an arbitrary HTTP source,
thus simplifying the distribution of a new version of the pipeline definition to multiple
hosting environments.

Nodes in a pipeline can be deployed on any servers that are accessible to their
adjacent nodes. Consider the following simple two-node pipeline.

1. # Pipeline 2
2. @prefix p: <http://purl.org/pipeline/ont#> .
3. @prefix b: <http://server1.example.com/> .
4. @prefix w: <http://server1.example.com/> .
5. b:bills a p:GraphNode ;
6. p:inputs (<http://dbooth.org/2012/presidents.ttl>) .
7. w:williams a p:GraphNode ;
8. p:inputs (b:bills) .

Lines 3 and 4 of Pipeline 2 indicate that the b:bills and w:williams graphs are

actually in the same SPARQL server (server1.example.com), and thus the
p:GraphNode wrapper will cause the w:williams node to access b:bills graph directly.
In contrast, if we had deployed these nodes on different servers (server1.example.com
and server2.example.com) the pipeline definition would differ only on line 4, as
shown in Pipeline 3 below. Furthermore, the updaters would not change at all.

64 D. Booth

1. # Pipeline 3
2. @prefix p: <http://purl.org/pipeline/ont#> .
3. @prefix b: <http://server1.example.com/> .
4. @prefix w: <http://server2.example.com/> .
5. b:bills a p:GraphNode ;
6. p:inputs (<http://dbooth.org/2012/presidents.ttl>) .
7. w:williams a p:GraphNode ;
8. p:inputs (b:bills) .

3.5 Update Policies

Consider Pipeline 3 above, and suppose that the data from node b:bills changes.
When should the updater of node w:williams be invoked to update its output? Should
it be updated immediately? Or should it be updated only when its output is actually
requested? Or perhaps periodically, every n seconds?

A node's p:updatePolicy may be specified as an additional node property to
indicate the policy that the wrapper should use in deciding when to invoke a node's
updater. Potential policies include p:lazy, p:eager and p:periodic – each one
identifying a particular algorithm that will be used internally. Again, by specifying
the update policy in the pipeline definition, a node's updater can stay simple.

3.6 Passing Parameters Upstream

Pipeline 1 above showed :cardiology and :immunology both consuming data.
However, each one may only need a small subset of the total data that is available. It
would be wasteful to propagate all possible :patients and :labs data through the
pipeline if only a small subset is actually needed. For example, cardiology may only
need data for patient=(002,003,004), and immunology may only need data for
patient=(003,006).

To avoid this problem, parameters can be passed upstream through the pipeline, as
illustrated in Figure 2. By default such parameters are passed as query string
parameters on a node's URI, when node data is requested. For example, the command
"curl 'http://localhost/node/cardiology?patient=(002,003,004)'" will request data from
node :cardiology, passing query string "patient=(002,003,004)" as a parameter. (Of
course, if parameters contain sensitive information then they should be suitably
encrypted.) A parameter is treated as an additional node input, and thus a parameter
change can cause the node's updater to fire. A node's updater can make use of its
parameters if it chooses to do so. For example, for a p:FileNode updater, the most
recently passed parameter is available in the $QUERY_STRING environment
variable, and the parameters from all of a node's output nodes are available in the
$QUERY_STRINGS environment variable.

By default, parameters are propagated upstream automatically. However, a
pipeline definition may specify a p:parametersFilter for any node in order to
transform the parameters as they are propagated upstream through that node. A
p:parametersFilter is thus analogous to an updater, but it only operates on parameters

 The RDF Pipeline Framework 65

Fig. 2. Parameters are passed upstream through the pipeline, to control the data that the
:patients and :labs nodes will generate. By default, parameters are passed upstream without
modification. However, the pipeline definition may specify a p:parametersFilter for a node to
control how that node will combine and/or modify the parameters that it passes upstream. In
this illustration, the :process node supplied a p:parametersFilter that merged the parameters
"patient=(002,003,004)" and "patient=(003,006)" that it received from :cardiology and
:immunology, to produce the parameter "patient=(002,003,004,006)" that it passes upstream to
the :merge node. The :merge node then used another p:parametersFilter to pass one parameter
"patient=(002,003,004,006)" upstream to the :patients node, but a different parameter
"customer=(002,003,004,006)" to the :normalize node. No other node in this pipeline needs to
specify a p:parametersFilter. By passing such parameters upstream, the :patients and :labs
updaters are able to generate only the data that is actually needed downstream.

that are being passed upstream. For a p:FileNode, the p:parametersFilter must be an
executable program – typically a simple shell script. This treatment of parameter
propagation again allows updaters to stay simple, while providing a powerful
technique for data production to be efficiently controlled.

3.7 Error Checking and Automated Transformations

As of this writing, the Framework provides minimal error checking and does not
include monitoring or alerting functions, though such features could be added in a
future version. The Framework itself would be useful in implementing such features.
For example, it would be easy to write an email notification node that reads from an
error stream.

The Framework knows almost nothing about the semantics of a node or its inputs
or output. It does not check to ensure that the actual input that a node receives
conforms to the media type that the node expects, nor does the Framework perform
any automatic transformation from one media type to another. It would be
straightforward to extend the Framework to add such error detection and/or automatic
transformation, but this has not been done thus far, because: (a) the user would have

66 D. Booth

to declare the expected media types for each of a node's inputs, thus making the
pipeline definition more verbose; (b) the correspondence between the pipeline
definition and the actual processing would be less direct, since in essence the
Framework would perform automatic translation by inserting implicit translation
nodes into the pipeline as needed; (c) a node normally has input expectations that go
far beyond what a media type specifies, and during development these expectations
need to be tested anyway, to ensure that the node receives what it expects, so it seems
quite unlikely that a media type mismatch would pass unnoticed during such testing;
and (d) it is very easy to insert an explicit translation node into a pipeline anyway.

Since an updater can perform arbitrary processing, updaters can have side effects
that are unknown (and unknowable) to the Framework. Such side effects could cause
concurrency issues if different updaters share the same resource. Users should bear
this in mind when designing their updaters.

3.8 Graceful Evolution of Nodes and Pipelines

One motivation for cleanly separating the application-specific concerns (encapsulated
in a pipeline's updaters) from the mechanics of caching, updater invocation,
serialization, deserialization and handling HTTP requests, is to enable nodes and
pipelines to evolve gracefully, without impacting other part of the pipeline: loose
coupling. For example, a node can be swapped out for a new version, implemented in
an entirely different programming language, with no change to adjacent nodes and
only a trivial change to the pipeline definition (to change the node's wrapper type).
This enables a pipeline to be developed quickly and easily, using the simplest
available updater implementation techniques, and then refined as needed, adding
features or improving efficiency. This fits well with agile development practices.

3.9 RDF Pipeline Properties

Section 3.1 discussed wrappers, which are represented in a pipeline description as
classes. The following table summarizes the user-oriented properties used in defining
a pipeline. Wrappers use additional properties internally. The subject (or domain) of
each property in the table is a node unless the Value column indicates otherwise, such
as "Subject is $nodeType", which means that the subject should be the type of a node,
e.g., GraphNode, rather than a node instance. For all properties (and classes) the
namespace is <http://purl.org/pipeline/ont#> except for the rdfs:type property, a/k/a
"a" in Turtle.

Property Value

a / rdfs:type Node type, e.g., GraphNode.

contentType
HTTP Content-Type for this node's serialized output.
Defaults to defaultContentType of the $nodeType.

defaultContentType
Subject is $nodeType. Default HTTP Content-Type for
serialized output.

 The RDF Pipeline Framework 67

defaultContentEncoding
Subject is $nodeType. Default HTTP Content-Encoding for
serialized output.

dependsOn

URIs of inputs, parameters and anything else this node
depends on. Inputs and parameters are automatically
included, but dependsOn can be used to specify additional
dependencies.

hostRoot

Subject is $nodeType. The value is a list that maps the
server prefix (such as "http://localhost") of node URIs of
this $nodeType to the root location (as native name) of the
server that implements the wrapper for this $nodeType.
Analogous to $DOCUMENT_ROOT, which is used by
default if this property is not set. Example:
 p:GraphNode p:hostRoot
 ("http://localhost" "http://localhost:28080/openrdf-
workbench/repositories/owlimlite/") .

inputs
URIs of this node's inputs. They maybe other RDF
Pipeline Nodes, or arbitrary HTTP data sources.

parametersFilter
File path of parametersFilter, relative to server
"$ENV{DOCUMENT_ROOT}/node/".

state

Native name of node output, i.e., the object that will be
updated by the node's updater. For example, for a
FileNode it is a filename. For a GraphNode it is a named
graph.

stateType
Subject is $nodeType. Type of state, if set. Otherwise
$nodeType is used.

stderr File name of stderr from last update.

updatePolicy
Specifies the name of the algorithm that decides
whether/when a node's state should be updated. Potential
policies include lazy, eager and periodic.

updater Native name of updater function.

4 Security

Data security is critical in healthcare and many other domains. For lack of space, this
paper does not detail how security concerns can be addressed in the RDF Pipeline
Framework, but as a brief outline:

• Wrappers can ensure that data in transit is securely encrypted, both in
passing data downstream and in passing parameters upstream.

• Secure HTTP (https:) can also be used, for an additional layer of inter-node
communication security.

• Updaters can ensure that data at rest is fully encrypted, if necessary.

68 D. Booth

5 Conclusions

This paper has presented a novel approach to automating data production pipelines for
healthcare and other applications using semantic web technology. The approach
makes use of framework-supplied wrappers that handle caching, dependency
checking and inter-node communication, allowing a node's updater code to stay
simple and application-focused. This also allows the framework to be used with
multiple programming languages or object types, given appropriate wrappers. The
approach is decentralized – every node in a pipeline is live – and nodes can be easily
distributed across multiple servers with minimal change to the pipeline definition and
no change to a node's updater. The approach is implemented as an open source project
at http://rdfpipeline.org/ . Interested parties are invited to contact the author.

References

1. W3C: Resource Description Framework (RDF), http://www.w3.org/RDF/
(retrieved June 08, 2012)

2. Anonymous, Articles on workflow (google scholar search),
http://tinyurl.com/a5yf5ng (retrieved February 01, 2013)

3. Walsh, N., Milowski, A., Thompson, H., XProc: An XML Pipeline Language, W3C
Recommendation (May 11, 2010), http://www.w3.org/TR/xproc/
(retrieved February 01, 2013)

4. Becker, C., Bizer, C., Isele, R., Matteini, A., et al: Linked Data Integration Framework
(LDIF), http://www4.wiwiss.fu-berlin.de/bizer/ldif/
(retrieved June 08, 2012)

5. Top Quadrant: Sparql Motion, http://www.topquadrant.com/
products/SPARQLMotion.html (retrieved June 08, 2012)

6. Phuoc, D.L., Morbidoni, C., Polleres, A., Samwald, M., Fuller, R., Tummarello, G.: DERI
Pipes, http://pipes.deri.org/ (retrieved June 08, 2012)

7. Fensel, D., van Harmelen, F., Witbrock, M., Carpentier, A.: LarKC: The Large Knowledge
Collider, http://www.larkc.eu/ (retrieved February 01, 2013)

8. Methedras: REST for the Rest of Us, http://developer.mindtouch.com/
REST/REST_for_the_Rest_of_Us (retrieved June 08, 2012)

9. Fielding, R.: Chapter 5: Representational State Transfer (REST). From PhD Thesis:
Architectural Styles and the Design of Network-based Software Architectures, University
of California, Irvine (2000), http://roy.gbiv.com/pubs/dissertation/
rest_arch_style.htm (retrieved June 08, 2012)

10. Booth, D.: rdf-pipeline, A framework for RDF data production pipelines, google code
repository, http://rdfpipeline.org/ (retrieved February 01, 2013)

11. Prud’hommeaux, E., Carothers, G. (eds.): Turtle: Terse RDF Triple Language (2011),
http://www.w3.org/TR/turtle/ (retrieved June 08, 2012)

12. TopQuadrant: TopBraid Composer, http://www.topquadrant.com/
products/TB_Composer.html (retrieved June 08, 2012)

13. Stenberg, D.: curl man page, http://curl.haxx.se/docs/manpage.html
(retrieved June 08, 2012)

14. Biron, P.V., Malhotra, A.: XML Schema Part 2: Datatypes Second Edition (2004),
http://www.w3.org/TR/xmlschema-2/ (retrieved June 08, 2012)

15. Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 Update (2012),
http://www.w3.org/TR/sparql11-update/ (retrieved June 08, 2012)

C.J.O. Baker, G. Butler, and I. Jurisica (Eds.): DILS 2013, LNBI 7970, pp. 69–80, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Towards Interoperable BioNLP Semantic Web Services
Using the SADI Framework

Ahmad C. Bukhari, Artjom Klein, and Christopher J.O. Baker

Department of Computer Science and Applied Statistics,
University of New Brunswick, Canada

{sbukhari,aklein,bakerc}@unb.ca

Abstract. The number of NLP and BioNLP tools published as web services
grows every year. Web services do not require installation, they are platform
independent, and provide access to software modules that cannot be installed on
regular computers due their complexity and heaviness. Whereas XML is the de
facto interchange format for web services, the different XML schemas and the
absence of semantics make the integration of resources (XML-based web ser-
vices and their outputs) a very challenging task requiring significant effort from
end users. We propose the use of semantic web services that provide semantic
description of their in- and outputs to achieve interoperability of BioNLP ser-
vices and the ad-hoc consolidation of their results. We leverage the SADI
framework as a development platform to realize, by example, a number of high-
ly integrated application and data integration scenarios.

Project Page: https://code.google.com/p/bionlp-sadi

Keywords: BioNLP, Bio data integration, Semantic web services, SPARQL.

1 Introduction

Over the last decade, biomedical natural language processing (BioNLP) has been
validated as a solution to address the text-mining and information extraction needs of
life scientists. Recently the number of NLP and BioNLP tools published as web ser-
vices have been growing steadily. There are several providers of text-mining web
services which include popular providers such as Whatizit [1], e-LICO [2], NaCTeM
[3] and Manchester Interdisciplinary Biocentre [4]. Web services are typically regis-
tered in public catalogues (registries) e.g. BioCatalogue [5]. Web services do not re-
quire installation; they are platform independent and provide access to software that
cannot be installed on desktop computers due to their complexity and heaviness. Most
BioNLP tools produce XML based output, where XML schema represents syntactic
structure of the input and output messages. In many use-cases, integration of several
text-mining web services is required and the output results must be consolidated.
Since XML schemas differ in their structure and do not provide the “meaning” of the

70 A.C. Bukhari, A. Klein, and C.J.O. Baker

syntactic XML elements, integration of web services and consolidation of results
cannot be automated and requires additional programming work.

Achieving semantic interoperability - where distinct data not only share the syntax
(same structure) but also the same semantics (elements link to the same vocabulary
providing system-independent interpretation of the data) is a bottleneck of XML-
based approaches. Unlike XML-based web services, semantic web services provide
semantic metadata describing their input and output. This enables automatic discov-
ery, composition, interoperation, and ad-hoc consolidation of the outputs as long as
they are modeled in terms of the same or compatible ontologies.

Despite the existence of several semantic web service specifications, such as
OWL-S [6], SSWAP [7], WSMO [8], few have been successfully adopted. In our
work we leverage the Semantic Automated Discovery and Integration (SADI) [9]
framework. The choice is based on superior functionality of the framework for devel-
oping and deploying semantic web services, the availability of plug-in tools and client
software that simplifies the discovery and utilization of the services by end users.
Moreover, we have extensive experience using SADI to achieve semantic interopera-
bility between data retrieval and data processing resources in several domains such as
personalized medicine [10], clinical intelligence [11], ecotoxicology [12], lipidomics
[13], mutation text-mining [14]. More details on SADI specification, tooling and
usage see Methodology and Usage sections below.

The current goal of our work is to create a web based platform of interoperable
services targeted at the bio text-miner, bioinformatics application or database de-
veloper where users can readily exploit service interoperability to perform complex
tasks requiring ad-hoc mash-up of output data, without needing to program or in-
stall software. In this article we report on our work to leverage SADI as develop-
ment platform to expose text-mining tools as SADI services and call our approach
the BioNLP-SADI framework. We illustrate its utility for a number of scenarios of
interest to life scientists. The article is outlined as follows. The Related Work de-
scribes the relevant approaches and shows the position of our approach in context of
competing technologies. The Methodology section outlines the ontologies used for
modeling the input and output of SADI services, as well as examples of service
design and consolidated outputs. In the last section, we discuss possible use case
scenarios and finally, the Conclusion summarizes the results and outlines directions
of future work.

2 Related Work

Our work is inspired by the work described in [14]. The authors deployed a mutation
impact extraction system as a SADI service in order to achieve interoperability be-
tween information extraction and data retrieving services. They also used a semantic
client [15] that made it possible to build data processing pipelines from a semantic
query, specifically for integrating mutation impact extraction text-mining with

 Towards Interoperable BioNLP Semantic Web Services Using the SADI Framework 71

pre-processing services (document retrieval, pdf-to-text conversion) and data visuali-
zation software which were also exposed as SADI services with compatible
modeling. Using this client the creation of pipelines and consolidation of the outputs
occurs in real time (on-the-fly) and does not require any integration effort by end
users.

To the best of our best knowledge, there are no other attempts to expose BioNLP
tools as semantic web services. Semantic web technologies have rarely been em-
ployed in the BioNLP domain. In a literature study, we found a modest number of
attempts to use RDF/OWL to represent biomedical corpora [16] and biomedical text-
mining results [17] [18]. One project in particular has adopted semantic web services
to publish NLP tools, namely nlp2rdf [19]. This project aims to create an interchange
format for linguistic tools, resources, and annotations. They developed ontologies to
model basic document and text structure; a String Ontology [20] and a Structured
Sentence Ontology [21]. They model Strings, Words, Sentences, their boundaries, and
relations between them, such as subString, superString, beginIndex, endIndex,
rightContext, leftContext, nextSentence, previousSentence, etc. The actual annota-
tions in RDF are represented by using ontologies and vocabularies for a specific do-
main (syntactic parsing, part-of-speech tagging, named-entity-extraction, etc). A clear
benefit is that once a NLP web service is modeled in terms of standard reference on-
tologies, its output can be published on the Web becoming Linked Open Data.

The general themes of interoperability, compatibility and re-usability of bio text-
mining resources are currently being assessed by the BioCreative group through the
organization and promotion of the BioCreative Interoperability Initiative [22]. This
initiative aims to promote simplicity, interoperability, and the large-scale use and
reuse of text mining resources by introducing and popularizing a new annotation
standard – BioC, an interchange format for corpora and tools in BioNLP. The authors
aim to achieve minimal interoperability - using basic categories such as sentences,
tokens, parts of speeches, and several named entity categories. The work is at a very
early stage and currently no detailed specification of the approach is available.

3 Methodology

In order to achieve semantic interoperability of text-mining web services and their
outputs we propose to use a semantic web services framework, SADI in particular,
and use reference ontologies to provide the compatible modeling. In the following we
describe SADI technology, ontologies we use and give examples of service design
and consolidated output automatically produced by example web services.

3.1 SADI

The SADI framework [9] is a set of conventions for creating HTTP-based semantic
web services that can be automatically discovered and orchestrated. SADI services
consume RDF documents as input and produce RDF documents as output, which
solves the syntactic interoperability problem. This is also convenient for client

72 A.C. Bukhari, A. Klein, and C.J.O. Baker

programs that can leverage existing APIs for RDF to represent the data on which
SADI services operate. In brief, SADI services operate by attaching new properties to
input URIs described in the input RDF graph, and the most important feature of SADI
is that these properties are fixed for each service. A declaration of these predicates,
available online, constitutes a semantic description of the service. For example, if a
service is declared with the predicate hasPartOfSpeechAnnotation described in ontol-
ogy as a predicate linking document with a part-of-speech tagger service, the client
software knows that it can call the service to generate part-of-speech annotations.
The SADI framework uses the OWL class syntax to specify conditions on the input
nodes a service consumes, and declare the predicates the service attaches. Such decla-
rations of inputs and outputs of services enable completely automatic discovery and
composition of SADI services. For more technical details on SADI and SHARE
(http://sadiframework.org/content/tag/share/), the reader is referred to [9] [15].

3.2 Ontologies for Modeling Annotations and Extracted Entities

The interoperability of services and the ad-hoc mash-up of text-mining results can be
achieved by defining text-mining web services output in terms of the same or compat-
ible reference ontology(s). BioNLP-SADI leverages two types of ontologies: (1) on-
tologies for modeling annotations, and (2) domain ontologies for modeling entities
and their relations extracted from text.

Annotation Ontologies: We propose to use the Annotation Ontology (AO) [23] to
model the structural level of annotations. AO is an open-source ontology for annotat-
ing the scientific documents on the web. In AO, all the annotations are regarded as
resources and fall under the instance category of the Annotation class. Each annota-
tion has some hasTopic and context predicates and the object of hasTopic predicate
can be a certain entity such as drug, chemical, disease, or reified fact while context
refers to a certain text inside the sentence. This simple reference model makes it poss-
ible to connect extracted information to surface text or entire documents. The prove-
nance of annotations is modeled with Provenance, Authoring and Versioning (PAV)
ontology [24]. E.g. predicates such as createdBy, createdOn describe the creator and
date of creation.

Domain ontologies: Domain ontologies are used to model information extracted from
a document. Such ontologies can be an upper level ontology such as Semantic Inte-
gration Ontology (SIO) [25] which also includes many high level biomedical con-
cepts, or any specific domain ontology.

3.3 IO Service Modelling Examples

Fig. 1 displays a prototypical model of the in- and output of a sentence splitting SADI
service. The goal of the SentenceSplitter service is to split text into sentences. The
service is represented by modeling the relation between the document and annotations

 Towards Interoperable BioNLP Semantic Web Services Using the SADI Framework 73

Fig. 1. A SADI service architecture of a sentence splitter service

Fig. 2. A SADI service architecture of a drug extraction service

of type Sentence in text segments. It consumes an instance of Document class as input
with the attached string content via the hascontent relation. Since most of the text
mining services carry out the document annotation, they all share the same input
modeling (compare with Fig. 2 that shows another text-mining service). In the output,
the service attaches an Annotation instance via the predicate hasSentenceAnnotation.
Typically the name of the property would represent the functionality of the services,

74 A.C. Bukhari, A. Klein, and C.J.O. Baker

or type of annotations created by it. Accordingly, the service extracting drugs attaches
hasDrugAnnotation predicates to the document (see Fig. 2.) Note the input and output
entity is the same entity - a central feature of the SADI specification. The service
simply decorates the input node (document) with new information (annotations). An-
notations are characterized by their type - Sentence (Fig. 1) and Drug (Fig. 2) - and
text strings with boundaries - start and end. Each service attaches provenance infor-
mation about the creator (the service itself) and the time when annotations are created.

3.4 Consolidated Service Outputs

Using SADI as a platform guarantees the results of text-mining are interoperable with
SADI services which operate on structured data. These data retrieval services can
augment the results of services serving text extracted information. This can take the
form of adding new data, on verifying text extracted results against existing data in
knowledge bases and controlled vocabularies, a process known as grounding (assum-
ing that knowledge bases have compatible semantic interface).

Fig. 3 shows a (prototypical) RDF graph automatically assembled from the merged
outputs of three services. Document_1 was annotated with drugs by the Drug-
Extraction-Service and was split into sentences by the Sentence-Splitter-Service.
Following this the Drug-Drug-Interaction-Service, which found all drug pairs with po-
tentially harmful interactions. The Drug-Drug-Interaction service in our example is a

�

Fig. 3. Drug-Extraction and Drug-Drug-Interaction SADI services Consolidated Output

 Towards Interoperable BioNLP Semantic Web Services Using the SADI Framework 75

data-retrieval service (not a text mining service). It is based on the DrugBank [26]
database that contains information about drugs and their interactions. The service
retrieves for each drug all the known interactions from the database and attaches them
to the drug as instances of the Drug-Drug-Interaction class (see Figure 3). The result-
ing output of three services makes it possible to pose queries for the target informa-
tion such as, find all sentences where potentially harmful drug-drug interactions are
mentioned.

4 Access to BioNLP-SADI Services

In this section we outline how to access interoperable BioNLP-SADI services.
Firstly it is possible to interact with these services through a web based interface
similar to the nlp2rdf web interface [27] where the users can select a service or
combination of services to achieve a certain goal and provide input in the form of a
text string or a list of Pubmed ids - similar to the Whatizit web interface [28]. Un-
like XML-based services, our services will produce RDF with automatically
mashed-up annotations and the RDF data will be available for download and be
searchable via SPARQL interface.

For end users that are more familiar with semantics technologies it is possible to
use a SADI SPARQL client like SHARE, which is a proof-of-concept Semantic
Web query engine that resolves SPARQL (an RDF Query Language [29]) queries
by building and executing workflows with SADI services. SHARE is also capable
of discovering instances of a given OWL class by building an appropriate SADI
workflow. Further details about SHARE can be read in [15]. The SADI client ap-
plication can also be integrated into any NLP framework such as GATE [30] or
UIMA [31]. Since we use the Annotation Ontology to model structural level of
annotations, services can be also integrated into the DOMEO [32] graphical
annotation toolkit, which is RDF-based and uses the same ontology to model
annotations.

SADI services can be accessed via SADI API; moreover a SADI plugin for Taver-
na [33] will allow easy assembly of text mining pipelines. SADI services themselves
can be registered and discovered in a SADI registry which has a web interface where
service providers can register their services. The registry can also be accessed pro-
grammatically via SADI Registry API, or as a regular SPARQL endpoint. Finally,
from developer’s point of view, there is a rich infrastructure for developing and test-
ing SADI services: service and client APIs, automatic service generator, Protege Plu-
gin and etc.

5 Use Cases - Sample Queries

In this section, we focus on the type of information that could be extracted from ad-
hoc consolidated outputs. As we outlined in the previous section, we can easily merge

76 A.C. Bukhari, A. Klein, and C.J.O. Baker

the RDF outputs (because of the RDF interoperability attribute) produced by different
SADI services to query the desired information. Here we present some use case sce-
narios along with simplified SPARQL queries and the already deployed SADI servic-
es to give an overview about ad-hoc queries to the user.

Use Case 1: Find abstracts where the same mutation mention is found in two
adjacent sentences.

In this scenario, a bioinformatics database curator wants to find abstracts where the
same mutation occurs in adjacent sentences. The generalized SPARQL query below
could extract the mutation in two adjacent sentences.

SADI services employed in use case 1: Mutation Finder and Sentence Splitter.

SELECT DISTINCT ?sentence
WHERE{
 ?document a Document; hasId ?doc_id .
 ?mutation a Mutation .
 ?annotation_1 a Annotation;
 hasTopic ?mutation;
 onDocument ?document;
 context

 [
 a String;
 source "N30A";
 isContainedBy ?sentence_1
] .

 ?annotation_2 a Annotation;
 hasTopic ?mutation;
 onDocument ?document;
 context
 [
 a String;
 source "N30A" ;
 isContainedBy ?sentence_2
] .
 ?sentence_1 hasNextSentence ?sentence_2 .
}

Use Case 2: Find Sentences Where Mutation and Drug Occur in the Same
Sentence.

In this use case, we address the needs of researchers involved in small molecule drug
discovery seeking to retrieve sentences where mentions of mutations to drug targets
and the small molecules are found in the same sentence. This is possible by invoking
mutation finder and drug extraction services run in parallel (as they are not dependent
on each other) and combining their results to generate a semantically enriched intero-
perable consolidated output view.

 Towards Interoperable BioNLP Semantic Web Services Using the SADI Framework 77

SADI Services Employed in Use Case 2: Mutation Finder, Drug Extractor and
Sentence Splitter

SELECT DISTINCT ?sentence
WHERE{
 ?document a Document;
 hasId ?doc_id .
 ?annotation_1 a Annotation;
 hasTopic [a Mutation];
 onDocument ?document;
 context
 [
 a String;
 source "N30A";
 isContainedBy ?sentence
] .
 ?annotation_2 a Annotation;
 hasTopic [a Drug];
 onDocument ?document;
 context
 [
 a String;
 source "Indinavir";
 isContainedBy ?sentence
] .
}

Use Case 3: Extract Drug Mentions from Text and Display Known Interactions
Between Them.

This query retrieves evidence of interactions between different drugs mentioned in a
document and would be of interest to physicians looking for side effects (positive,
negative, neutral) of a particular drug combination when given together to patients.
The following SPARQL query identifies evidence of interaction between two
drugs.

SADI Services Employed in Use Case 3: Drug Extractor and Drug Drug Interaction

SELECT DISTINCT ?drug_1 ?drug_2
WHERE{
 ?document a Document;
 hasId ?doc_id;
 ?drug_1 a Drug .
 ?annotation_1 a Annotation;
 hasTopic ?drug_1;
 onDocument ?document .
 OPTIONAL {
 ?drug_2 a Drug .
 ?drug_1 interactsWith ?drug_2 .
 }
}

78 A.C. Bukhari, A. Klein, and C.J.O. Baker

Use Case 4: Find Foods with Known Interactions with the Drug Cytarabine.

In this scenario, we aim to address the needs of both physicians and patients interested
to know the interaction of any foods with a certain type of drug. Certain foods are
known to be effective in reducing the effectiveness of a prescribed drug. The follow-
ing SPARQL query can fetch all the food interactions with drug the Cytarabine.

SADI Services Employed in Use Case 4: Drug Extractor, Drug Food
Interaction

SELECT DISTINCT ?food
WHERE{
 ?document a Document; hasId ?doc_id .
 ?annotation_1 a Annotation;
 hasTopic
 [
 a Drug;

hasDrugBankId "DB00987"; # DrugBankID for Cytarabine
];
 onDocument ?document .
 ?annotation_2 a Annotation;
 hasTopic [a Food];
 onDocument ?document .
 ?drug hasDangerousInteractionWith ?food .
}

6 Conclusion

To address the ongoing challenges of integration among XML-based BioNLP web
services, we proposed a generalized architecture for text mining web services using
the SADI semantic web service framework. The sophisticated mechanism we propose
is able to address key challenges related to BioNLP interoperability and data prove-
nance. We have created in-house implementations of the services described here-in
(drug-extraction, mutation mention detection, sentence-splitting, drug-drug-
interaction) along with several SPARQL queries for use with a SHARE like client.
The combined RDF outputs of the service calls permit the construction of more elabo-
rate queries, matching the needs of our target end users. Although the work we have
outlined is at an early stage, it has shown that we can provide new functionality and
seamless interoperation between services, facilitating meaningful knowledge discov-
ery. In the future work, we plan to integrate more BioNLP tools and develop more
complex use cases based on combining interoperable text mining and data mining
web services.

References

1. Rebholz-Schuhmann, D., Gaudan, A.M., Kirsch, H., Jimeno, A.: Text processing through
Web services: calling Whatizit. Bioinformatics 24(2), 296–298 (2008)

2. An e-Laboratory for Interdisciplinary Collaborative Research in Data Mining and Data-
Intensive Science, http://www.e-lico.eu/

 Towards Interoperable BioNLP Semantic Web Services Using the SADI Framework 79

3. National Centre for Text Mining, http://www.nactem.ac.uk/
4. Manchester Institute of Biotechnology, http://www.mib.ac.uk/
5. The Life Science web services registry, http://www.biocatalogue.org/
6. OWL-S: Semantic Markup for Web Services,

http://www.w3.org/Submission/OWL-S/
7. Damian, G., Schiltz, G., May, G., Avraham, S., Town, C., Grant, D., Nelson, R.: SSWAP:

A Simple Semantic Web Architecture and Protocol for semantic web services. BMC Bio-
informatics 10, 309 (2009)

8. Web Service Modeling Ontology (WSMO),
http://www.w3.org/Submission/WSMO/

9. Wilkinson, M., Vandervalk, B., McCarthy, L.: The Semantic Automated Discovery and In-
tegration (SADI) Web service Design-Pattern, API and Reference Implementation. Journal
of Biomedical Semantics 2(1), 5–23 (2011)

10. Vandervalk, B., McCarthy, L., Toledo, J., Klein, A., Baker, C., Dumontier, M., Wilkinson,
M.: The SADI Personal Health Lens: A Web Browser-Based System for Identifying Per-
sonally Relevant Drug Interactions. JMIR Res. Protoc. 2(1), e14 (2013)

11. Riazanov, A., Klein, A., Nejad, A., Rose, G., Forster, A., Buckeridge, D., Baker, C.: Se-
mantic querying of relational data for clinical intelligence: a semantic web services-based
approach. J. Biomedical Semantics 4, 9 (2013)

12. Riazanov, A., Hindle, M., Goudreau, E., Martyniuk, C., Baker, C.: Ecotoxicology Data
Federation with SADI Semantic Web Services. SWAT4LS (2012)

13. Chepelev, L., Riazanov, A., Kouznetsov, A., Low, H., Dumontier, M., Baker, C.: Proto-
type semantic infrastructure for automated small molecule classification and annotation in
lipidomics. BMC Bioinformatics 12(1), 303 (2011)

14. Riazanov, A., Laurila, J.B., Baker, C.: Deploying mutation impact text-mining software
with the SADI Semantic Web Services framework. BMC Bioinformatics 2(4), 1471–2105
(2011)

15. Wilkinson, M., McCarthy, L., Vandervalk, B., Withers, D., Kawas, E., Samadian, S.:
SADI, SHARE, and the in silico scientific method. BMC Bioinformatics 11(12), S7 (2012)

16. Croset, S., Grabmüller, C., Li, C., Kavaliauskas, S., Dietrich, R.: The CALBC RDF Triple
Store: retrieval over large literature content. CoRR, 1012, 1650 (2012)

17. Naderi, N., Witte, R.: Automated extraction and semantic analysis of mutation impacts
from the biomedical literature. BMC Genomics 13(4), S10 (2012)

18. Laurila, J., Naderi, N., Witte, R., Riazanov, A., Kouznetsov, A., Baker, C.: Algorithms and
semantic infrastructure for mutation impact extraction and grounding. BMC Genomics 11(
4), s24 (2011)

19. Sebastian, H., Jens, L., Sören, A.: NIF: An ontology-based and linked-data-aware NLP In-
terchange Format. In: 5th Workshop on Linked Data on the Web (2012)

20. Sebastian, H., Lehmann, J., Auer, S.: Towards an ontology for representing strings. In:
Proceedings of the EKAW (2012)

21. The Structured Sentence Ontology, http://nlp2rdf.lod2.eu/schema/sso/
22. BioCreative: Critical Assessment of Information Extraction in Biology,

http://www.biocreative.org
23. Ciccarese, P., Ocana, M., Castro, L., Das, S., Clark, T.: An Open Annotation Ontology for

Science on Web 3.0. J. Biomed. Semantics 2(2), S4 (2011)
24. Ciccarese, P., Wu, E., Wong, G., Ocana, M., Kinoshita, J., Ruttenberg, A., Clark, T.: The

SWAN biomedical discourse ontology. J. Biomed. Inform. 41(5), 739–751 (2008)
25. The Semanticscience Integrated Ontology (SIO),

http://semanticscience.org/ontology/sio.owl.

80 A.C. Bukhari, A. Klein, and C.J.O. Baker

26. The DrugBank database, http://www.drugbank.ca/
27. NIF Combinator: Combining NLP Tool Output,

http://nlp2rdf.lod2.eu/demo.php
28. EBI’s Whatizit service,

http://www.ebi.ac.uk/webservices/whatizit/info.jsf
29. SPARQL 1.1 Query Language, http://www.w3.org/TR/sparql11-query/
30. GATE: a full-lifecycle open source solution for text processing,

http://gate.ac.uk/
31. The Unstructured Information Management Architecture (UIMA) framework,

http://uima-framework.sourceforge.net/
32. Ciccarese, P., Clark, O.: Open semantic annotation of scientific publications using

DOMEO. J. Biomed Semantics 24(suppl. 3) (2012)
33. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: a

tool for building and running workflows of services. Nucleic Acids Research 34, 729–732
(2006)

Optimizing Similarity Computations for

Ontology Matching - Experiences from GOMMA

Michael Hartung1,2, Lars Kolb1, Anika Groß1,2, and Erhard Rahm1,2

1 Department of Computer Science, University of Leipzig
2 Interdisciplinary Center for Bioinformatics, University of Leipzig

{hartung,kolb,gross,rahm}@informatik.uni-leipzig.de

Abstract. An efficient computation of ontology mappings requires opti-
mized algorithms and significant computing resources especially for large
life science ontologies. We describe how we optimized n-gram match-
ing for computing the similarity of concept names and synonyms in our
match system GOMMA. Furthermore, we outline how to enable a highly
parallel string matching on Graphical Processing Units (GPU). The eval-
uation on the OAEI LargeBio match task demonstrates the high effective-
ness of the proposed optimizations and that the use of GPUs in addition
to standard processors enables significant performance improvements.

Keywords: ontology matching, GPU, parallel hardware.

1 Introduction

Mappings (alignments) between ontologies are important for many life science
applications and are increasingly provided in platforms such as BioPortal [13].
New mappings are typically determined semi-automatically with the help of on-
tology match systems such as GOMMA (Generic Ontology Matching and Map-
ping Management) [10] utilizing different matchers to evaluate the linguistic and
structural similarity of concepts [3]. Ontology matching is challenging especially
for large ontologies w.r.t. both effectiveness (achieving a high quality mapping)
and efficiency, i.e., fast computation [16]. Results of the 2012 OAEI [14] Large-
Bio task1 showed that some systems still have problems or are even unable to
match large ontologies such as the Foundation Model of Anatomy (FMA) [5] or
the Thesaurus of the National Cancer Institute (NCIT) [11].

For high efficiency, it is important to reduce the search space by avoiding the
comparison of dissimilar concepts [2,9], and to utilize optimized implementations
for frequently applied similarity functions such as n-gram, Jaccard, TF-IDF (e.g.,
by using fast set intersection [1], or pruning techniques [18]). Libraries such as
SimMetrics2 typically provide a comfortable and general interface getSim(string1,
string2) for multiple similarity measures but often lack efficient implementa-
tions. For example, they either lack pre-processing steps to transform strings

1 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2012/
2 http://sourceforge.net/projects/simmetrics/

C.J.O. Baker, G. Butler, and I. Jurisica (Eds.): DILS 2013, LNBI 7970, pp. 81–89, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2012/
http://sourceforge.net/projects/simmetrics/

82 M. Hartung et al.

into representations permitting faster comparisons or they cause redundant pre-
processing steps when matching a particular string multiple times.

A promising direction to speed-up processing-intensive computations such
as string comparisons is the utilization of Graphical Processing Units (GPU)
supporting a massively parallel processing even on low-cost graphic cards. The
availability of frameworks like CUDA and OpenCL further stimulated the inter-
est in general purpose computation on GPUs [15]. Algorithms like BLAST [17],
database joins [8] or duplicate detection/link discovery systems [4,12] have al-
ready been adapted for GPU execution. Unfortunately, GPUs and their program-
ming languages like OpenCL have several limitations. For instance, only basic
data types can be used, the memory capacity of a GPU is restricted to a specific
size, and data must first be transferred to the GPU. Furthermore, no dynamic
memory allocation is possible, i.e., the resources required by an algorithm must
be known and allocated a priori. These restrictions need to be considered in a
new solution for computing string similarity in match systems such as GOMMA.

In this experience paper, we make the following contributions:

• We describe how we optimized n-gram matching for linguistic matching in
GOMMA including the use of integer representations for n-grams. (Sec. 2)

• We propose a new method for n-gram matching on GPU. The technique is
not limited to n-gram and can also be applied to other token-based string
metrics (e.g., Jaccard). We further describe how GOMMA can exploit both
CPU and GPU resources for improved efficiency. (Sec. 3)

• We evaluate our techniques on a real-world match problem, namely the
FMA-NCI match task from the OAEI LargeBio track. The results show
that we are able to significantly reduce the execution times on CPU as well
as GPU compared to the standard solution. (Sec. 4)

2 Optimizing N-Gram Similarity Computation

GOMMA uses the n-gram string comparison to determine the similarity of names
and synonyms for pairs of concepts of two input ontologies O and O′. The ex-
ample in Fig. 1 shows the names/synonyms for three concepts per ontology. The
match result is a mapping MO,O′ = {(c, c′, sim) | c ∈ O, c′ ∈ O′, sim ∈ [0, 1]}
consisting of correspondences between concepts and their match similarity. Given
that a concept has a name and potentially several synonyms, there can be several
n-gram similarities per pair of concepts. GOMMA thus applies an aggregation
function agg, e.g., maximum or average, to aggregate multiple similarity values.
Finally, GOMMA uses a threshold t to restrict the mapping to the most likely
correspondences.

A naive n-gram matcher first splits the string attribute values to be compared
into overlapping tokens of length n. For our example and n=3 (Trigram), the c2
strings limbs and extremity are split into {{lim,imb}, {ext,xtr,tre,rem,emi,mit,ity}}
while the single c′2 attribute value limbs is tokenized into {{lim,imb,mbs}}. To
determine the similarity between two concepts, we (1) need to compute the dice

Optimizing Similarity Computations for Ontology Matching 83

Fig. 1. Example trigram similarity computation. Attribute values (names, synonyms)
are converted to sorted token vectors (upper part). Tokens are represented as integers
based on a dictionary (lower left part). Individual similarities are aggregated with the
max function to determine an overall similarity between two concepts (lower right part).

coefficient for each pair of token sets TS1-TS2 (diceSim(TS1,TS2)=
2·|TS1

⋂
TS2|

|TS1|+|TS2|)
and (2) aggregate the single similarities. For instance, when determining the sim-
ilarity between c2 and c′2, we compute two single similarities diceSim({lim,imb},
{lim,imb,mbs})=0.8 and diceSim({ext,xtr,tre,rem,emi,mit,ity}, {lim,imb,mbs})=0
which are aggregated using the max function: sim(c2, c

′
2)=max(0.8, 0)=0.8.

There are several possibilities to compute the set intersection (TS1 ∩ TS2)
that can have a large impact on efficiency, e.g., a nested loop over both element
sets or the use of hash tables. Furthermore, in case of string-valued tokens, even
the check whether two tokens (strings) are equal is a quite complex operation.
In general, the larger the sets and the longer the tokens are, the more time is
required to compute set overlaps. Since such similarity computations frequently
occur in match workflows for a large number of concepts, it turns out that an effi-
cient implementation of the token set intersection is a key factor to speed up the
matching of large ontologies. In recent years, different optimization techniques
for set similarity joins (e.g., prefix, suffix, and length filtering) were proposed in
the context of near duplicate detection [18]. We omit those orthogonal optimiza-
tions in favor of readability and leave their application for future work.

GOMMA’s optimized n-gram matcher is described in Algorithm 1. It is based
on two optimizations: the use of integer representations for tokens and a sort-
merge-based computation of token set overlaps. As in the naive approach, we
first split a concept’s string attribute values into token sets (Line 6). We then
convert all n-grams into integer values based on a global dictionary (Line 8). The
dictionary is built dynamically, i.e., each time a new n-gram is observed during
the tokenization, it is added to the dictionary and, from then on, represented
by its integer-valued index in the dictionary. Additionally, we sort the integer

84 M. Hartung et al.

Algorithm 1. ngramSim(O,O′, Attr, agg, t)

1 foreach c ∈ O ∪ O′ do
2 c.stvs ← ∅; // sorted token vectors
3 S ← c.getAttrValues(Attr);
4 foreach s ∈ S do
5 stv ← [] ; // empty token vector
6 tokens ← tokenizeNGrams(s);
7 foreach t ∈ tokens do
8 n ← getNumericTokenId(t);
9 stv.append(n);

10 c.stvs ← c.stvs ∪ {stv.sort()};

11 M ← ∅;
12 foreach c ∈ O do
13 foreach c′ ∈ O′ do
14 Sims ← ∅;
15 foreach stv ∈ c.stvs do
16 foreach stv′ ∈ c′.stvs do
17 s ← diceSim(stv, stv′);
18 Sims ← Sims ∪ {s};

19 sim ← agg(Sims);
20 if sim ≥ t then
21 M ← M ∪ {(c, c′, sim)};

22 return M ;

Algorithm 2. diceSim(stv1, stv2)

1 left ← 0;
2 right ← 0;
3 overlap ← 0;

4 l1 ← stv1.length();
5 l2 ← stv2.length();

6 while (left<l1) ∧ (right<l2) do
7 if stv1[left]==stv2[right] then
8 overlap++;
9 left++;

10 right++;

11 else if stv1[left]<stv2[right]
then

12 left++;

13 else
14 right++;

15 return 2 · overlap / (l1 + l2);

values of each token vector in ascending order (Line 10). Thus, after this pre-
processing, a concept has a set of sorted token vectors (stvs) representing the
n-grams of their string attribute values as integers. For example, the trigrams of
c2 are represented as {[9,10], [11,12,13,14,15,16,17]}.

We then iterate over all concepts of O and O′ and compare the sorted token
vectors of concepts with each other. In case of multiple attribute values for a
concept, the single similarities are aggregated to an overall similarity using the
specified aggregation function agg. Our pre-processing allows for a very efficient
overlap computation (Algorithm 2) similar to the Sort-Merge-Join used for ef-
ficient join computation in databases. Since all token sets are represented by
sorted token vectors stv, we can do interleaved linear list scans to compute the
overlap. We thus only perform |stv1|+|stv2| comparisons in the worst case with
a fast integer-based token comparison. For instance, when comparing {lim,imb}
with {lim,imb,mbs}, we compare [9,10] with [9,10,21] requiring merely the com-
parison of the two integer pairs 9-9 and 10-10.

GOMMA also supports the parallel execution of string matching for disjoint
sets of concept pairs to utilize multiple processors or cores for improved execution
time. In the evaluation (Sec. 4), we will also consider this performance option.

3 GPU-Based N-Gram Similarity Computation

A GPU-based implementation needs to overcome common GPU limitations,
namely (1) lack of string data type, (2) only restricted data structures such
as arrays, and (3) a priori allocation of a fixed and limited amount of memory.
Since our algorithm operates on integer values, the first limitation is already

Optimizing Similarity Computations for Ontology Matching 85

Fig. 2. GPU input and output data structures for running example and top-k=2

solved. For the second limitation we will use an index structure based on arrays.
We will overcome the third limitation by partitioning large input ontologies,
adapting memory-efficient data types, and determining only the best matches
per concept to restrict the mapping size. We further use an execution scheme
that minimizes expensive data transfers between main memory and GPU. In
the following, we describe the utilized data structures and outline the n-gram
similarity computation on GPUs.

Input Data Structure: In contrast to dynamically growing data structures
(e.g., lists or maps) usable for CPU-based computations, GPU-based process-
ing necessitates the preallocation of the required memory on the target device.
Because the number of attributes per concept and the number of n-grams per
attribute value varies, a mapping to fixed-length data structures is required. For
this purpose, we adopt a multi-level index structure (illustrated in Fig. 2 for the
running example) consisting of three arrays per input ontology: concept index
(ci), attribute index (ai), and gram index (gi). The arrays ci and ai represent
the concepts and their attributes, respectively, while gi holds the sorted token
vectors of the input concepts. For each concept, there is one entry in ci pointing
to its first string attribute in ai. The number of attributes for concept j thus is
ci[j+1]-ci[j]. Each ai entry represents a particular string and points to the first
token of its value in gi. The last (dummy) entries of ci/ai are used to mark the
end of each index. Using this structure, one can easily access the tokens of an
attribute of a particular concept. For instance, to access the tokens of concept
c2 ∈ O, we first read ci[2]=3 and ci[2+1]=5 to find the lower (inclusive) and
the upper (exclusive) bound of its attributes in ai. Hence, the concept has two
attributes represented by ai[3]=8 and ai[5-1]=10. The values at these positions
can be used to access the sorted token vectors beginning at gi[8] and gi[10], re-
spectively. To save memory and transfer costs, we use short instead of integer
data types to represent the tokens (2 instead of 4 bytes per token).

Output Data Structure: The memory for storing the match result must be
reserved a priori as well. To limit the result size, we utilize the observation that
it is sufficient to consider only the top-k best correspondences (above threshold
t) for each concept without reducing match quality. This approach marks an

86 M. Hartung et al.

Fig. 3. Execution scheme for hybrid CPU/GPU-based n-gram similarity computation
minimizing the data transfer between the host program and the GPU

upper bound of the required memory to allocate on the GPU. Our output data
structure consists of two arrays corrs and sims. The former contains the ids of
the (at most) top-k matches per concept, the latter contains the corresponding
similarities. For our running example, we would create two arrays of length 6 to
store the best two matches for each concept of O (see bottom of Fig. 2). Again,
the amount of memory and data transfer can be reduced by using the short data
type (instead of float) to express the similarity values. In particular, we limit
their precision to three decimal places which is sufficient for match processes,
e.g., the similarity value 0.8 for c2-c

′
2 is expressed by a short value of 800.

N-Gram Execution on GPU: Compared to CPUs, the architecture of GPU
hardware exhibits a large number of simpler compute cores that execute the same
instruction on multiple data partitions. In this study, we rely on the OpenCL
framework for general purpose computation GPUs. OpenCL code is written
in C as so-called compute kernels, whose submission is controlled by a host
program executed on the CPU. The actual number of kernel instances running
in parallel depends on the GPU’s number of cores, its amount of memory, the
kernel programs memory requirements, and the size of the input and output
data. OpenCL assigns a global unique identifier to each kernel instance. This
identifier is used to compute global memory offsets for loading and storing input
data that a particular kernel is operating on.

In general, the input ontologies and the |O|·k resulting correspondences exceed
the available memory of the GPU. Thus, we up-front split both input ontologies
into partitions Pi ⊆ O and Qi ⊆ O′, analogously as in our previous work on
parallel ontology matching [7]. We then iteratively ship pairs (Pi, Qi) for com-
parison to the GPU. The GPU executes a kernel instance for each c ∈ Pi that
compares c with all c′ ∈ Qi and determines its top-k correspondences above t.
The partial results are later unified by the host program. For this purpose, we
utilize a job queue that supports the parallel n-gram similarity computation of
different partition pairs on both the GPU as well as on the CPU. A dedicated
thread takes match tasks from this queue and submits them to the GPU. In
addition to this GPU thread, several CPU threads can access the job queue
from the opposite end to independently perform matching on the CPU. We se-
lect jobs and ship partitions using the scheme displayed in Fig. 3. This scheme

Optimizing Similarity Computations for Ontology Matching 87

ensures that after completion of a GPU job only a single partition needs to be
transferred to the GPU. The other partition remains in the GPU’s memory and
is reused for the next job. For instance, when the GPU finished the P0-Q3 job,
it starts to execute P0-Q4 next. In this case, only the partition Q3 needs to be
replaced by Q4 and P0 can be reused. Furthermore, it is beneficial to split the
larger of the two input ontologies into partitions. If it even fits entirely into the
device’s memory, only partitions from the smaller ontology need to be replaced.

4 Evaluation

We analyzed the execution time for computing the FMA-NCIT mapping which
is part of the LargeBio match task in OAEI [14]. The task consists of three sub-
tasks namely, small (3,720×6,551 concepts), large (28,885×25,678 concepts), and
whole (79,042×66,914 concepts). To create mappings of high quality, we applied
the GOMMA match workflow with top-k=1 and n=3 (Trigram) used in OAEI
2012 (for details and quality results see [6]). The experiments were carried out
on an Intel i5-2500 machine (4x3.30GHz, 8GB memory). We further used the
following mid-range GPU: Asus GTX660 with 960 CUDA cores/2GB memory.

The first experiment evaluates the execution times for the three sub-tasks
utilizing either one CPU thread or the GPU. For CPU-based processing, we com-
pare the proposed SortInt n-gram matching with two alternatives using nested-
loop (NLString) and hash set look-ups (HashString) for computing the token set
overlap. The results displayed in Fig. 4 (left) show that SortInt-CPU significantly
outperforms both standard algorithms. For the whole task, it requires ≈8 min
compared to about 26 min (104 min) for HashString (NLString), i.e., it improves
runtime by up to a factor of 13. This shows that our pre-processing step pays
off, i.e., converting strings into integer values and sorting are non-expensive
(<1 sec in all tasks) but valuable steps for an optimized overlap computation.
The application of SortInt on the GTX660 GPU allows for a further significant
improvement compared to the CPU implementation. The execution time for the
whole task is reduced by another factor of 5 to merely 99 sec. Thus, transferring
the data into the GPU pays off, i.e., the massively parallel hardware in the form
of hundreds of CUDA cores substantially speeds up the computation.

Fig. 4. Runtime of n-gram algorithms on CPU/GPU (left) and combined (right)

88 M. Hartung et al.

In a second experiment, we evaluate how application on multiple cores either
without GPU (NoGPU) or in combination with GPU resources affects execution
times. As shown in Fig. 4 (right), we observe that parallel CPU processing is very
effective, e.g, when using four CPU threads, the execution time can be reduced
to 137 sec (factor of 3.5) for the whole match task. The combined execution on
CPU and GPU can further improve the execution time to about 67 sec for three
and four CPU threads (factor of 2). The fourth CPU thread does not further
improve the execution time due to the dedicated GPU thread for data transfer.
Overall, one can see that even a moderately powered GPU can substantially
reduce the execution time for string and thus for ontology matching.

5 Conclusion and Future Work

We studied how similarity functions like n-gram used for linguistic matching in
GOMMA can be optimized by algorithmic tuning as well as by massively parallel
processing on GPUs. The results indicate that intelligent pre-processing (e.g.,
integer conversion, sorting) of the input ontologies pays off substantially and
speeds up ontology matching. The GPU-based execution of algorithms like n-
gram matching requires some effort to overcome the GPU limitations but boosts
performance even further. In the future we plan to investigate further GPU-based
similarity computations and the impact of different kinds of GPU hardware.

References

1. Ding, B., König, A.C.: Fast set intersection in memory. PVLDB 4(4) (2011)
2. Ehrig, M., Staab, S.: QOM – quick ontology mapping. In: McIlraith, S.A., Plex-

ousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 683–697.
Springer, Heidelberg (2004)

3. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, New York (2007)
4. Forchhammer, B., et al.: Duplicate Detection on GPUs. In: BTW (2013)
5. Foundation Model of Anatomy, http://fma.biostr.washington.edu/
6. Gross, A., Hartung, M., Kirsten, T., Rahm, E.: GOMMA Results for OAEI 2012.

In: Proc. 7th Ontology Matching Workshop (2012)
7. Gross, A., Hartung, M., Kirsten, T., Rahm, E.: On matching large life science

ontologies in parallel. In: Lambrix, P., Kemp, G. (eds.) DILS 2010. LNCS, vol. 6254,
pp. 35–49. Springer, Heidelberg (2010)

8. He, B., et al.: Relational joins on graphics processors. In: Proc. SIGMOD (2008)
9. Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer ap-

proach. Data & Knowledge Engineering 67(1) (2008)
10. Kirsten, T., Gross, A., Hartung, M., Rahm, E.: GOMMA: A Component-based

Infrastructure for managing and analyzing Life Science Ontologies and their Evo-
lution. Journal of Biomedical Semantics 2, 6 (2011)

11. NCI Thesaurus, http://ncit.nci.nih.gov/
12. Ngomo, A.-C.N., Kolb, L., Heino, N., Hartung, M., Auer, S., Rahm, E.: When

to reach for the cloud: Using parallel hardware for link discovery. In: Cimiano,
P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS,
vol. 7882, pp. 275–289. Springer, Heidelberg (2013)

http://fma.biostr.washington.edu/
http://ncit.nci.nih.gov/

Optimizing Similarity Computations for Ontology Matching 89

13. Noy, N., et al.: BioPortal: ontologies and integrated data resources at the click of
a mouse. Nucleic Acids Research 37(suppl. 2) (2009)

14. Ontology Alignment Evaluation Initiative, http://oaei.ontologymatching.org/
15. Owens, J., et al.: GPU computing. Proceedings of the IEEE 96(5) (2008)
16. Rahm, E.: Towards Large Scale Schema and Ontology Matching. In: Schema

Matching and Mapping. Springer (2011)
17. Vouzis, P., Sahinidis, N.: GPU-BLAST: using graphics processors to accelerate

protein sequence alignment. Bioinformatics 27(2) (2011)
18. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Efficient similarity joins for

near-duplicate detection. ACM Trans. Database Syst. 36(3) (2011)

http://oaei.ontologymatching.org/

Semi-automatic Adaptation of Mappings

between Life Science Ontologies

Anika Groß1, Julio Cesar Dos Reis2,3, Michael Hartung1,
Cédric Pruski2, and Erhard Rahm1

1 Department of Computer Science, University of Leipzig, Germany
2 CR SANTEC, Public Research Centre Henri Tudor, Luxembourg

3 LRI, University of Paris-Sud XI, France
{gross,hartung,rahm}@informatik.uni-leipzig.de,

{julio.dosreis,cedric.pruski}@tudor.lu

Abstract. The continuous evolution of life science ontologies requires the
adaptation of their associated mappings. We propose two approaches for
tackling this problem in a largely automatic way: (1) a composition-based
adaptation relying on the principle of mapping composition and (2) a diff-
based adaptation algorithm individually handling change operations to up-
date the mapping. Both techniques reuse unaffected correspondences, and
adapt only the affected mapping part. We experimentally assess and con-
firm the effectiveness of our approaches for evolving mappings between
large life science ontologies.

Keywords: mapping adaptation, mapping migration, mapping evolu-
tion, ontology evolution, ontology mapping, ontology alignment.

1 Introduction

Ontologies and their applications have become increasingly important especially
in the life sciences [1,2]. Typically there are many ontologies within a domain
with overlapping information, e.g., more than 30 anatomy-related ontologies in
the OBO foundry [3]. Mappings between such related ontologies are useful for
various data integration and enhanced analysis tasks. For instance, mappings are
needed to merge several ontologies into an integrated ontology, e.g., the multi-
species anatomy ontology Uberon [4]. While manually curated mappings are
especially valuable to interrelate the concepts of ontologies, it is often too time-
consuming for large ontologies. Hence, semi-automatic matching approaches are
increasingly needed for mapping creation [5,6,7].

The life sciences are a very dynamic field and new research results lead to
a continuous evolution of ontologies so that new versions are periodically re-
leased [8]. Ontology changes include the addition, revision or deletion of concepts
and relationships, and their frequency may substantially vary between ontolo-
gies or different parts of one ontology [9]. Ontology evolution can have an impact
on different dependent artifacts such as ontology mappings [10,11], annotation
mappings [12,13] and ontology-based queries [14,15]. As mappings may become

C.J.O. Baker, G. Butler, and I. Jurisica (Eds.): DILS 2013, LNBI 7970, pp. 90–104, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Semi-automatic Adaptation of Mappings between Life Science Ontologies 91

invalid and out-dated their adaptation is required. For example, a new version
of an ontology in Bioportal [16] or UMLS [17] may require the adaptation of the
associated mappings, so that users and dependent applications can consume the
most recent ones.

In this paper, we study different methods for a largely automatic adaptation of
ontology mappings. In particular, we aim to avoid an expensive re-determination
of the complete mapping and to reuse all stable parts from the old mapping. Mi-
grating ontology mappings is not trivial for complex ontology changes such as
the split of a concept into several new concepts. In this case an earlier correspon-
dence with the unsplit concept may have to be changed to another or several new
correspondences, and an expert user should be supported to select the correct
result. Each type of ontology change may require different actions to update an
ontology mapping. There is only little research so far on how to best perform
the adaptation of mappings (see Sec. 2). Typically, previous approaches did not
consider the impact of different ontology changes on mappings and also ignored
new correspondences introduced by added concepts.

We therefore make the following contributions:

– We present a composition-based approach that uses ontology matching to cre-
ate mappings between versions of an evolved ontology as well as the principle
of mapping composition to create the adapted ontology mapping (Sec. 4).

– We propose a diff-based approach relied on a diff result consisting of the
set of changes that led from the old to the new version of an ontology. The
approach uses a library of change handlers to realize change-specific mapping
adaptations (Sec. 5).

– We evaluate the approaches by adapting mappings between three large life
science ontologies extracted from UMLS. Results reveal that we can adapt
mappings largely automatically. We can also suggest specific mapping adap-
tations for certain types of ontology changes to simplify mapping curation
(Sec. 6).

Additionally, we discuss related work in Sec. 2, present preliminaries on ontolo-
gies, mappings and the change model in Sec. 3, and conclude in Sec. 7.

2 Related Work

While a significant amount of research has already coped with the evolution of
ontologies [18], the evolution of dependent mappings has received relatively little
attention. In the context of schema evolution and model management [19,20],
it has been proposed to evolve a previously determined mapping by composing
it with a match mapping between the old and the new version of an updated
schema or model. This composition approach has been explored in [21] for schema
mappings and was shown to avoid the full re-calculation of existing mappings.
We investigate and enhance the composition approach for adapting ontology
mappings by not only reusing stable parts of the previous mapping, but by also
extending the mapping, e.g., for added ontology concepts.

92 A. Groß et al.

Only few studies specifically investigated the maintenance and evolution of
ontology mappings. In [22] the use of reasoners has been proposed for detecting
and repairing invalid correspondences after ontology changes. Khattak et al. [23]
propose to re-compute only those correspondences associated with changed on-
tology elements. Martins & Silva [24] propose that mapping evolution should
behave similarly to strategies applied for ontology evolution. However, corre-
spondences are only adapted when concepts are removed from the ontology.
Kondylakis & Plexousakis [14] focus on the automatic detection of queries af-
fected by ontology evolution. They assist developers to find and adapt invalid
queries by suggesting sequences of changes affecting such queries.

In our previous work, we empirically analyzed which ontology changes lead
to the addition or deletion of correspondences in an ontology mapping [11]. Dos
Reis et al. [10] have proposed a framework for mapping evolution highlighting
the role of different types of ontology changes for mapping adaptation, as well
as the importance of considering different semantic types of correspondences in
the adaptation process.

In contrast to prior studies, we not only aim at reusing stable parts of previous
ontology mappings, but also extend the mappings for new ontology concepts.
In addition to a composition-based method we propose a diff-based approach
to individually handle different types of ontology changes and to solicit user
feedback on adapted and newly determined correspondences. Unlike previous
studies, we also evaluate the quality of the adapted mappings for large life science
ontologies.

3 Preliminaries

We first define the considered ontology and mapping model (Sec. 3.1) and then
describe the general scenario we investigate in this paper (Sec. 3.2).

3.1 Ontology Versions and Mappings

An ontologyO = (C,R,A) consists of a set of concepts C interrelated by directed
relationships R. Each concept c ∈ C is identified by an unambiguous accession
number cacc. Further attributes a ∈ A describe a concept in more detail, e.g.,
labels, synonyms or definitions. A special attribute obsolete indicates whether a
concept is outdated and should thus not be used anymore. A relationship r ∈ R
interconnects two concepts and has a specific type, e.g., ’is a’ or ’part of’. An
ontology version is a release of O, i.e., a particular version is valid until a newer
version becomes available. In the following, we denote two versions of an evolved
ontology with O (old version) and O′ (new version), respectively.

An ontology mapping MO1,O2 interconnects concepts of two different ontolo-
gies O1/O2 by so-called correspondences:

MO1,O2 = {(c1, c2, sim, semType, status)|c1 ∈ O1, c2 ∈ O2, sim ∈ [0, 1],
semType ∈ {=,≤,≥,≈},

status ∈ {”handled”, ”toverify”}}

Semi-automatic Adaptation of Mappings between Life Science Ontologies 93

O1

O2

MO1,O2 MO1‘,O2‘

diffO1,O1‘

diffO2,O2‘

O1‘

O2‘

MO1,O1‘

MO2,O2‘

(a) (b)
Change operation Description

addC(c), delC(c) addition/deletion of concept c

toObsolete(c), revokeObsolete(c) set/revoke ‚to obsolete‘ status of c

split(s,T) split a source concept s into several target concepts T

merge(S,t) merge several source concept S into one target concept t

substitute(c,c‘) Substitute concept c by concept c‘

move(c,P,P‘) move a concept c from parents P to parents P‘

addR(r), delR(r) addition/deletion of a relationship r

chgAttValue(c,att,v1,v2) change value of att in c from v1 to v2

addA(a)/delA(a) Addition/deletion of an attribute a

Fig. 1. (a) General scenario. (b) Considered change operations of COnto-Diff.

A correspondence (c1, c2, sim, semType, status) interrelates two concepts c1 ∈
O1 and c2 ∈ O2. We use three further independent attributes to describe a
correspondence in more detail. The sim value represents the similarity measure
between c1 and c2. The higher the value, the more related are both concepts.
We assign a similarity of 1 to manually created correspondences. We further use
a semType to differentiate the semantic connection type. For instance, concepts
can be equivalent (e.g., ’torso’=’trunk’), one concept can be less or more gen-
eral than the other (e.g., ’thumb’≤’finger’) or concepts can be somehow related
(≈). A status signals the state of the correspondences during adaptation. In
particular, a correspondence can be adapted (handled) or needs verification by
an expert (to verify).

To create new mappings between ontologies we rely on semi-automatic match
strategies because a purely manual mapping generation has become increas-
ingly infeasible for large and complex ontologies [6,7]. For this purpose we use
a successfully applied match strategy based on a concept’s name and synonyms
described in [25].

We also support the inversion of ontology mappings, e.g., to get a mapping
MO2,O1 out of MO1,O2 . To this end, we will use an inverse operator that inverts
each correspondence as follows: (c1, c2, sim, semType, status) �→ (c2, c1, sim, new
SemType, status). In particular, the order of matching concepts is reversed, the
similarity and the status values remain unchanged. The semType is adapted
using the following rules: = �→=, ≤�→≥, ≥�→≤ and ≈�→≈.

3.2 General Scenario and Change Model

The general scenario investigated in this paper is depicted in Fig. 1a. There
are two ontologies in their old (O1,O2) and new versions (O1′,O2′). A mapping
MO1,O2 interconnects the old versions of the two ontologies. The task investi-
gated is to determine the new mapping MO1′,O2′ which interrelates concepts
of the new ontology versions O1′ and O2′. For this purpose, we need further
mappings between the ontology versions involved. In particular, there are two
mappings MO1,O1′ and MO2,O2′ which interconnect concepts between the ver-
sions. These mappings provide information about how concepts in an old version

94 A. Groß et al.

tail

head head
neck

limbs
lower extremities limb segment

limbs

upper extremities

body

neck

body

O1 O2

trunk

limbs

head and neck

body

O2‘

lower limbs
upper limbs

trunk
tail

delCorr
(lower extremities, limb segment)
(upper extremities, limb segment)
(head,head)
(neck,neck)
(tail,tail)
addCorr
(lower extremities, lower limbs)
(upper extremities, upper limbs)
(head,head and neck)
(neck,head and neck)
(trunk,trunk)

=

≥

=
=

=
=
=

=

≤
≤

≥
≤
≤

Fig. 2. Mapping evolution example

are related with concepts in the new version. We generate these mappings by
matching, i.e., we match O1 with O1′ and O2 with O2′, respectively. The pro-
posed composition-based approach (Sec. 4) uses the mappings MO1,O2, MO1,O1′

and MO2,O2′ to create the adapted mapping MO1′,O2′ based on composition.
We further use so-called evolution mappings (diffO1,O1′ and diffO2,O2′) be-

tween the old and new ontology versions. These mappings integrate all changes
that occurred during evolution from O1 to O1′ and O2 to O2′, respectively. An
evolution mapping can be created using a Diff tool such as PromptDiff [26] or
COnto-Diff [27] and contains different types of changes (Fig. 1b lists changes
of COnto-Diff). For instance, there are concept changes such as add, delete,
merge and split, or changes of attribute values. The proposed diff-based ap-
proach (Sec. 5) uses the diff evolution mappings diffO1,O1′ and diffO2,O2′ to
create the adapted mapping MO1′,O2′ .

4 Composition-Based Adaptation

This section presents the composition-based approach for mapping adaptation.
Its strength is the reuse of the previous, already validated ontology mapping
to avoid an expensive re-computation of confirmed correspondences. Given that
changes are typically limited to a small subset of ontologies, this promises that
the largest part of the new mapping is easily determined. For illustration purpose,
we use a running example shown in Fig. 2 with an evolution of an anatomy on-
tology (O2 �→ O2′). The ontology changes require an adaptation of the mapping
MO1,O2, in particular to delete the previous correspondence (delCorr) and to add
the new correspondence (addCorr) shown on the right side. Our composition-
based approach achieves the adaptation by composing the previous ontology
mapping MO1,O2 with the mapping MO2,O2′ , as well as by checking whether
added concepts lead to new correspondences.

The composition of two mappingsMA,B andMB,C generates a mappingMA,C

between A and C. With mappings as introduced in Sec. 3.1, we define:

MA,C = compose(MA,B,MB,C) = MA,B ◦MB,C =
{(c1, c2, aggSim(sim1, sim2), getNewType(semType1, semType2),

Semi-automatic Adaptation of Mappings between Life Science Ontologies 95

getNewStatus(semType1, semType2))|
c1 ∈ A, c2 ∈ C, b ∈ B : ∃(c1, b, sim1, semType1, status1) ∈ MA,B∧

∃(b, c2, sim2, semType2, status2) ∈ MB,C}
The generation of a correspondence (c1, c2) in MA,C requires the existence of
two correspondences (c1, b) and (b, c2) connecting to the same concept b ∈ B.
The attribute values of the new correspondence are derived from the values of
the two ’connecting’ correspondences. First, the new similarity is aggregated
from the similarities sim1 and sim2 by computing, e.g., their average or max-
imum (aggSim). Second, the new semantic type is derived from semType1 and
semType2 (getNewType) based on the rule set presented in Fig. 4a. For example,
the combination of ’=’ and ’≤’ would lead to the new semantic type ’≤’. Third,
the new correspondence is assigned the new status (getNewStatus, see Sec.5.2).

CompAdapt (Algorithm 1) shows how we perform composition-based mapping
adaption for the general case when both ontologies evolve (O1 �→ O1′, O2 �→
O2′). The algorithm uses as input the previous ontology mapping MO1,O2 as
well as the two mappings MO1,O1′ and MO2,O2′ .

Algorithm 1. CompAdapt(MO1,O2,MO1,O1′ ,MO2,O2′)

1 MO1′ ,O1 ← inverse(MO1,O1′);
2 MO1′ ,O2 ← compose(MO1′,O1,MO1,O2);

3 MO1′ ,O2′ ← compose(MO1′,O2,MO2,O2′);
4 return MO1′ ,O2′ ;

We first generate the inverse mapping MO1′,O1 (line 1) and compose it with
MO1,O2 to create an intermediate mapping between O1′ and O2 (line 2). We
then transitively compose the intermediate mapping with MO2,O2′ to produce
the adapted mapping MO1′,O2′ between O1′ and O2′ (line 3). When exclu-
sively one of the input ontologies evolve, we only need one of the two com-
positions. We perform the first two steps if O1 evolves to O1′, or only per-
form compose(MO1,O2,MO2,O2′) if O2 evolves to O2′. For the running exam-
ple (Fig. 2), we would create eight correspondences including retained corre-
spondences such as (’limbs’,’limbs’). Unfortunately, the composition also creates
the false correspondences ((’lower extremities’,’upper limbs’), (’upper extremi-
ties’,’lower limbs’)) since the concept ’limb segment’ in the intermediate ontology
is connected to several concepts in the ontologies to be composed. We will later
see how our alternate solution (Sec. 5) can cope with such situations.

Composition alone is also unable to determine new correspondences due to
added concepts in the ontologies, e.g., ’trunk’ in O2′. To address this shortcoming
we apply an additional match step as shown in the CompAdaptMatch algorithm:

Algorithm 2. CompAdaptMatch(MO1,O2,MO1,O1′ ,MO2,O2′ ,O1,O1′ ,O2,O2′)

1 MO1′ ,O2′ ← CompAdapt(MO1,O2,MO1,O1′ ,MO2,O2′);
2 AddO1 ← O1′\O1;

3 AddO2 ← O2′\O2;

4 MO1′ ,O2′ ← MO1′ ,O2′
⋃

match(AddO1,O2′)
⋃

match(O1′,AddO2);

5 return MO1′ ,O2′ ;

96 A. Groß et al.

After adapting the mapping using composition (line 1) we identify the added
concepts (AddO1,AddO2) in both ontologies (lines 2–3). We match the added
concepts with the other ontology to find new correspondences (line 4) and include
them in the adapted mapping. We can simplify the algorithm when exclusively
one of the ontologies has changed by merely matching added concepts of the
changed ontology with the unchanged ontology. In the running example, we
would determine ’trunk’ as an added concept in O2′ and matching would result in
the additional correct correspondence (’trunk’,’trunk’) in the adapted mapping.

5 Diff-Based Adaptation

The Diff-based adaptation of ontology mappings considers the individual on-
tology changes, and so-called change handlers to adapt the ontology mapping.
This modular approach is highly flexible and can accommodate different types
of changes as well as distinct automatic or interactive approaches for mapping
adaptation. For example, a concept deletion would lead to the deletion of all
affected correspondences with the composition-based approach, while a change
handler could try to keep a correspondence with a neighbor of the deleted con-
cept. Furthermore, change handlers might request expert verification for pro-
posed mapping changes.

We first explain Diff-based mapping adaptation for the frequent case when
only one of two ontologies changes (Sec. 5.1). We then explain the different
change handlers and their approaches for mapping adaptation (Sec. 5.2). Fi-
nally, we discuss Diff-based adaptation for the general case with two evolving
ontologies (Sec. 5.3). Although the proposed approach is applicable for different
diff techniques to determine ontology changes, we assume the use of our algo-
rithm COnto-Diff [27] for concreteness. COnto-Diff is suited to identify a diff
evolution mapping for two successive versions of an ontology containing typical
change operations such as merge, substitute, split, addC or delC (see Fig. 1b).

5.1 Adaptation Algorithm for One Evolving Ontology

The input data of the algorithm DiffAdapt (Algorithm 3) are the ontology map-
ping to be adapted (MO1,O2), the two versions of the domain ontology O1, O1′,
a diff between them (diffO1,O1′) as well as the current version of the range on-
tology O2. We assume that the change handlers are listed in the order in which
they should be applied for mapping adaptation(CH). This ordering is feasible
since COnto-Diff ensures that a concept is the subject of at most one of the
considered change operations.

Algorithm 3. DiffAdapt(MO1,O2,diffO1,O1′ ,O1,O1′ ,O2,CH)

1 Minfl ← getInfluencedCorrs(MO1,O2, diffO1,O1′ , CH);

2 MO1′ ,O2 ← MO1,O2 \ Minfl; //reuse unaffected mapping part

3 foreach ch ∈ CH do
4 diffPart ← diff.filter (ch.getHandledOperations());

5 ch.handleChg(Minfl, diffPartO1,O1′ , O1, O1′, O2);

6 MO1′ ,O2 ← MO1′ ,O2 ∪ Minfl;

7 return MO1′ ,O2;

Semi-automatic Adaptation of Mappings between Life Science Ontologies 97

is_a

O1

O2

O1’

O2

a b

z z

O1

O2

O1’

O2

a b c

x y z x y z

O1

O2

a

z

O1’

O2
 z

c d

O1

O2

O1’

O2
 z z

O1

O2

O1’

O2
 z

2
z

a

asup

1

2

asup asup
is_a

a

asup

substitute(a, b) delC(a)

merge({a, b, c}, d) split(a, {b, c, d})

? ? ?

bd

Fig. 3. Change handlers

We first identify all correspondences that are influenced by changes from the
input diff. Therefore, we check if the domain concept of each correspondence
was subject to a change operation listed in CH. All influenced correspondences
in Minfl are initially set to status to verify, since they might require user veri-
fication. By contrast, we reuse unaffected correspondences (status handled) by
adding them directly to the new mapping MO1′,O2 (line 2). For instance, in the
running example (Fig. 2), ’limbs’ and ’body’ remain unchanged in O2 so that we
keep the correspondences (’limbs’,’limbs’) and (’body’,’body’). The influenced
mapping part Minfl is then handled by the specified list of individual Change
Handlers (lines 3-5). The mapping Minfl is iteratively adapted, i.e., each change
handler removes outdated correspondences from and adds new correspondences
to Minfl. Depending on the used method in the change handler, the status of
new correspondences is either set to handled or to verify. Finally, we take the
union of the reused correspondences in MO1′,O2 and the adapted mapping part
Minfl and then return the resulting mapping (lines 6-7).

5.2 Change Handlers

We provide a handler for each type of ontology change to implement appropri-
ate approaches for mapping adaptation. These handlers can easily be adapted
and extended to adjust mapping adaptation, request users’ feedback in certain
cases or deal with new types of ontology changes. Fig. 3 illustrates main adap-
tation choices for some major change operations namely merge, substitute, split
and delC. It shows how correspondences from MO1,O2 are adapted according to
the evolution from O1 to O1′. In the following, we present the change handlers

98 A. Groß et al.

in the order in which they are applied in the algorithm DiffAdapt: CHmerge,
CHsubstitute, CHsplit, CHdelC , CHtoObsolete, CHaddC and CHrevokeObsolete .

In the merge operation, two or more source concepts from O1 are merged
into one target concept in O1′. The merge handler migrates all correspondences
once associated with any of the O1 concepts to the target concept in O1′. Thus,
each correspondence from MO1,O2 associated with concepts to be merged are re-
moved and new correspondences to the target concept are added. In the running
example (Fig. 2) ’head’ and ’neck’ concepts are merged as ’head and neck’. All
correspondences once related to ’head’ or ’neck’ are assigned to the new concept
’head and neck’. Algorithm 4 details the sketched approach of the merge handler.
It checks for each correspondence corr (line 1) and merge operation merge (line
2) if the domain concept of corr is equal to one of the source concepts in merge
(lines 5-6). If so, the affected correspondence is adapted.

Algorithm 4. MergeHandler(M ,Merge,O1,O1′ ,O2)

1 foreach corr ∈ M do
2 foreach merge ∈ Merge do
3 S ← merge.getSourceIDs();
4 t ← merge.getTargetID();
5 foreach s ∈ S do
6 if s = corr.getDomainID() then
7 newType ← getNewType(corr.getType(),≤);
8 newStatus ← getNewStatus(corr.getType(),≤);
9 newCorr ← createCorr(t, corr.getRangeID(),

10 corr.getSim(), newType, newStatus);
11 M.remove(corr).add(newCorr);

The merge handler supports an adaptation of the semantic type of added cor-
respondences. For example, for merge({a, b, c}, d) it usually holds that concepts
a, b, c are less general (≤) than d. Hence, we combine ≤ with the semantic type of
the old correspondence (=,≤,≥,≈) to derive the new semantic correspondence
type.

Such an adaptation of the semantic correspondence type is needed for different
types of changes and was also applied for mapping composition. To combine
semantic types of correspondences (operation getNewType) and to determine
the new correspondence status (operation getNewStatus) we currently use a set
of combination rules as shown in Fig. 4a. The basic idea is that the semantic
type with lower binding strength imposes the new semantic type. Following the
definition of semantic relation in [28], = has a higher binding strength than ≤
and ≥ which in turn are stronger than ≈. ≤ and ≥ are of equal binding strength
such that the new semantic type of their combination can not be determined by
rules (gray fields). The status to verify is set to ≈ since a user necessarily needs
to check this correspondence and its semantic type. For all other combinations
as shown in Fig. 4a, the status of the correspondence is handled.

For the substitute(a, b) change operation, the applied strategy is similar to
the one used for merge. In this case, the concept a ∈ O1 is substituted by the
target concept b ∈ O1′. Since a is involved in a correspondence with z in O2, the
correspondence between a and z is removed and the new correspondence from b

Semi-automatic Adaptation of Mappings between Life Science Ontologies 99

limbs extremities

O1 O2 O2‘ O1‘
lower extremities
upper extremities

lower limbs
upper limbs

 type1
= ≤ ≥ ≈ type2

= = ≤ ≥ ≈
≤ ≤ ≤ ≈ ≈
≥ ≥ ≈ ≥ ≈
≈ ≈ ≈ ≈ ≈

(a) (b)

Fig. 4. (a) Combining semantic types (getNewType) and determine the new corre-
spondence status (getNewStatus). (b) Example of conflicting changes for two evolving
ontologies.

to z is added. We can assume a = b as semantic type for substitute, and combine
this with the old semantic type of the correspondence to derive the new one.

The adaptation of correspondences affected by split change operations is more
complex. For example, split(a, {b, c, d}) caused a single source concept a ∈ O1
to be split into several target concepts b,c,d ∈ O1′. In the mapping adaptation,
we first remove all correspondences associated with the split source concept a.
We consider two strategies for adding new correspondences. First, one can add
all possible combinations of correspondences between the split target concepts
b, c, d and the unmodified range concept z in O2 (”take all”). Second, we can
restrict the output result to the best correspondence(s), i.e., the one(s) with the
highest similarity based on a local match between b, c, d and z (”take best”).

Also for split, new adapted correspondences obtain an individual new semantic
type based on the rules in Fig. 4a and assuming that d ≥ a, b, c holds for split. All
correspondences get status to verify since these are only recommendations and
an expert needs to decide about their validity. In the running example (Fig. 2)
’limb segment’ was split into ’lower limbs’ and ’upper limbs’. Using the ”take
all” strategy, we would present all four possible combinations between ’lower
extremities’, ’upper extremities’ and ’lower limbs’, ’upper limbs’ to the user.
Using the ”take best” strategy, we can correctly identify the most adequate
correspondences ’lower limbs’ with ’lower extremities’, and ’upper limbs’ with
’upper extremities’.

For deletion of concepts (delC(a)) we also consider two strategies. First, all
correspondences referencing deleted concepts in O1′ are removed (see Fig. 3)
(strategy ”del corr”). This is the case for ’tail’ in the running example. Second,
correspondences can be transferred to their parent concept, if possible (”keep
corr”). Thus, correspondences related to the deleted concept a are removed, but
new ”more general” correspondences are created. In particular, the domain of
the new correspondence is the first super concept (asup) of a. In case of multiple
inheritance, the correspondence can be transferred to all parents. The status is
set to to verify since a user has to check the adapted correspondences. The new
semantic type is derived by following the ≤ parent relationship in O1 combined
with the semantic type of the old deleted correspondence. For toObsolete changes
we apply the same handler.

For all concept additions and revokeObsolete operations in O1′ we apply an
automatic matching step with the whole range ontology O2. The status of the
new recommended correspondences is set to to verify. One can either apply a

100 A. Groß et al.

very restrictive selection of correspondences to show only the best matches to
experts, and avoid many false positives, or to be less restrictive in order to get
a perfect recall and let the selection up to the user. In the running example,
diffO2,O2′ contains an addition of the concept ’trunk’ which is matched to O1
such that (’trunk’,’trunk’) is correctly identified by selecting only the top result.

5.3 Adaptation Algorithm for Two Evolving Ontologies

In case where both ontologies change (domain and range of the correspondences),
we can adapt the mapping by applying the DiffAdapt (Algorithm 3) twice as
follows:

Algorithm 5. DiffAdaptBoth(MO1,O2,diffO1,O1′ ,diffO2,O2′ ,O1,O1′ ,O2,O2′ ,CH)

1 MO1′ ,O2 ← DiffAdapt(MO1,O2, diffO1,O1′ , O1, O1′, O2, CH);

2 MO2,O1′ ← inverse(MO1′,O2);

3 MO2′ ,O1′ ← DiffAdapt(MO2,O1′ , diffO2,O2′ , O2, O2′, O1′, CH);

4 return inverse(MO2′,O1′);

The input of algorithm DiffAdaptBoth (Algorithm 5) is similar as for DiffAdapt
but requires two versions for both input ontologies O1, O1′, O2, O2′, as well as
two diff mappings diffO1,O1′/diffO2,O2′. First, we adapt the given ontology
mapping with respect to changes in the domain ontology to get MO1′,O2. To
adapt the mapping regarding changes in the range ontology we call DiffAdapt
with the inverse mapping MO2,O1′ and the range diff diffO2,O2′ (line 3). Finally,
we invert the mapping again and return it (line 4).

When both ontologies change, some correspondences might be affected by
changes of the domain and range concept at the same time. For instance, if both
concepts of a correspondence are split into several concepts, we can produce
wrong results by independently handling these changes one after the other. A
possible problem scenario is shown in Fig. 4b. Applying the ”take all” strategy
twice would create too many correspondences, namely the local cross-product.
By contrast, ”take best” might lead to a wrong selection of (’lower extremi-
ties’,’limbs’) in the first step, such that we can only find (’lower extremities’,’lower
limbs’) after the adaptation concerning the range ontology. To deal with such
situations when both ontologies have evolved, we propose to handle these con-
flicting changes together in an extra step. We can first identify correspondences
involved in conflicts and modify the input mapping before we run DiffAdaptBoth.
In particular, we recommend to check conflicting change combinations as split-
split, merge-split and substitute-split where it is helpful to do the migration on
both sides in one step.

6 Evaluation

To evaluate the proposed approaches for mapping adaptation, we use three large
life science ontologies: SNOMED-CT (SCT), NCI Thesaurus (NCI) and FMA.
We use the integrated ontology UMLS to extract two mappings NCI-FMA and

Semi-automatic Adaptation of Mappings between Life Science Ontologies 101

(b)
|C2009|
|C2012|

(c)
|M2009|

|M2012|

318,502

310,121

SCT

2,408

2,294

NCI-FMA

22,732

19,971

SCT-NCI

FMA
62,285

62,285

63,655

84,132

NCI

1

10

100

1,000

10,000

100,000

ch

an
ge

s

NCI SCT

1

10

100

1,000

10,000

100,000

NCI-FMA SCT-NCI

1% 8% 6% 19
%

(a) (d)

Fig. 5. (a) Ontology changes (b) Ontology size (c) Mapping size (d) Mapping changes

SCT-NCI in two versions for 2009 and 2012 (see [29] for extraction details).
We adapt the mapping versions from 2009 with the proposed algorithms, and
use the 2012 versions as reference mappings for evaluating the quality of the
mappings adapted. It is important to notice that such reference mappings can
be considered as a ’silver standard’, i.e., these mappings are not complete, and
curators manually correct them by modifying also correspondences associated
with concepts that did not underlie changes. In this evaluation we eliminate such
correspondences from the mappings since they do not change due to ontology
modifications and can thus not be detected. To assess the quality of the adapted
mappings with respect to the 2012 reference mappings, we calculate the standard
metrics of Precision, Recall and F-Measure.

In the following we first analyze the used data sets (Sec. 6.1) and then evaluate
the quality of the proposed mapping adaptation approaches (Sec. 6.2).

6.1 Ontology and Mapping Analysis

Fig. 5 gives an overview of changes in the considered ontology versions (a) and
mapping versions (d) as well as of their sizes (b,c). From 2009 to 2012, FMA
remains completely stable while NCI and SCT have been revised considerably.
Besides some merge operations (22 for NCI) there was a notable number of ∼180
(240) concept splits for NCI (SCT). In SCT an enormous amount of >22.000
concepts has been set to obsolete while NCI has been extended by ∼20.000 con-
cepts during 2009 and 2012. The 2009 mapping version of NCI-FMA is relatively
small (∼2300) compared to SCT-NCI (∼20400) (Fig. 5c). During the considered
time interval of three years, the NCI-FMA mapping grew by ∼5% and SCT-NCI
by even 14%. The SCT-NCI mapping has been affected by more changes, namely
8% of the correspondences have been deleted from the old and 19% were added
to the new mapping version. Thus, NCI-FMA has a higher rate of unchanged
correspondences and might be easier to adapt than SCT-NCI.

6.2 Mapping Adaptation Results

Fig. 6 shows the quality of the mapping adaptation results for NCI-FMA (left)
and SCT-NCI (right). To have a basic reference for analyzing how much each

102 A. Groß et al.

70
75
80
85
90
95

100

Unaff CA CA+m DA DA+C

SCT-NCI

70
75
80
85
90
95

100

Unaff CA CA+m DA DA+C

NCI-FMA Prec Rec F-Meas Recunaff F-Measunaff

Fig. 6. Results on the Quality of Mapping Adaptation

adaptation approach contributes, we mark the impact of unaffected (stable) cor-
respondences in the adapted mapping (Unaff). The dotted and dashed lines high-
light the recall (Recunaff) and F-Measure (F -Measunaff) of Unaff. We compare
results with the composition-based adaptation (CA) and its match extension
(CA+m). Moreover, we apply the diff-based adaptation (DA) using the major
handlers CHmerge, CHsubstitute, CHsplit (”take best”), CHdelC and CHtoObsolete

(”del corr”), and as an extension (DA+C) the CHaddC and CHrevokeObsolete han-
dlers. Note that our approach is flexible and can be easily extended to handle
also attribute and structural changes. In the evaluation scenario, this showed to
have a negative impact on the quality of adapted mappings, such that we omit
it in this study. We consider this an issue for future investigations.

For both cases analyzed, the basic quality of Unaff is already very high, since
94% (80%) of the NCI-FMA (SCT-NCI) mappings were unaffected and could
be reused. For the adaptation of the relatively stable NCI-FMA mapping all
considered approaches perform similarly well and achieve a very high F-Measure.
SCT-NCI is a more challenging mapping adaptation scenario and helps to better
differentiate the relative effectiveness of the proposed approaches. Compared to
Unaff, CA is less precise and increases the recall only marginally. This is caused
by the fact that the applied compose approach takes all possible combinations
of existing correspondences, and no further selection takes place. An additional
match of new concepts (CA+m) significantly increases the recall by 18.6% for
SCT-NCI and slightly improve F-Measure compared to Unaff (despite a reduced
precision for automatically generated match correspondences).

For SCT-NCI, the diff-based approaches clearly outperform the composition-
based approaches. They not only reuse unaffected correspondences but can fur-
ther improve recall with relatively high precision due to the individual change
handling. DA+C performs best overall since it utilizes additional change han-
dlers. In particular, it can find additional match correspondences for added con-
cepts leading to a significant increase in recall and F-Measure. While this is
similar to the high recall of CA+m, the precision and thus F-Measure remains
higher for DA+C (∼94% instead of ∼90%). The recall could even be further
increased by using a lower match threshold than the applied 1.0, and let experts
select the correct correspondences out of the recommended matches in DA+C.

Semi-automatic Adaptation of Mappings between Life Science Ontologies 103

Based on these results, we recommend that ontology mappings might be
adapted in a semi-automatic manner as follows: (1) first, determine a consis-
tent adapted mapping using the DA approach; (2) apply further strategies such
as DA+C that provide recommendations of new correspondences; (3) apply ex-
pert knowledge based on the adaptation results to complete the mapping and
validate those correspondences with to verify status.

7 Conclusion

Ontology evolution can potentially invalidate previously created mappings. We
proposed a composition- and a diff-based approach for adapting ontology map-
pings as a consequence of ontology evolution. Both approaches can reuse un-
affected correspondences from existing mappings and adapt only the changed
parts in a (semi-)automatic way. The composition-based approach is conceptu-
ally simpler but can be already sufficient for ontologies that change only slightly.
The diff-based approach is more powerful by supporting different change-specific
approaches for mapping adaptation and by enabling experts to verify proposed
correspondences. The conducted evaluation for large life science ontologies con-
firmed the high effectiveness of the proposed approaches. Both of them benefit
from matching new concepts to produce a more complete mapping.

For future work, we plan to realize a more refined adaptation of semantic
mappings. The techniques presented already support the migration of semantic
mappings, but this has to be investigated in more detail and evaluated for real-
world semantic mappings. Additionally, in further evaluation expert users should
analyze the quality of mappings for the different adaptation strategies.

Acknowledgment. This work is funded by the German Research Foundation
(DFG) (grant RA 497/18-1, ”Evolution of Ontologies and Mappings”), by the
National Research Fund (FNR) of Luxembourg (grant C10/IS/786147), by the
European Social Fund and the Free State of Saxony.

References

1. Bodenreider, O., Stevens, R.: Bio-ontologies: current trends and future directions.
Briefings in Bioinformatics 7(3) (2006)

2. Lambrix, P., Tan, H., Jakoniene, V., Strömbäck, L.: Biological Ontologies. In: Se-
mantic Web: Revolutionizing Knowledge Discovery in the Life Sciences (2007)

3. Smith, B., et al.: The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration. Nature Biotechnology 25(11) (2007)

4. Mungall, C., et al.: Uberon, an integrative multi-species anatomy ontology. Genome
Biol. 13(1) (2012)

5. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
The VLDB Journal 10(4) (2001)

6. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, New York (2007)
7. Rahm, E.: Towards Large Scale Schema and Ontology Matching. In: Schema

Matching and Mapping. Springer (2011)
8. Hartung, M., Kirsten, T., Rahm, E.: Analyzing the evolution of life science on-

tologies and mappings. In: Bairoch, A., Cohen-Boulakia, S., Froidevaux, C. (eds.)
DILS 2008. LNCS (LNBI), vol. 5109, pp. 11–27. Springer, Heidelberg (2008)

104 A. Groß et al.

9. Malone, J., Stevens, R.: Measuring the level of activity in community built bio-
ontologies. J. Biomed. Inform. 46(1) (2013)

10. Dos Reis, J., Pruski, C., Da Silveira, M., Reynaud, C.: Analyzing and Supporting
the Mapping Maintenance Problem in Biomedical Knowledge Organization Sys-
tems. In: Proc. SIMI Workshop at ESWC (2012)

11. Groß, A., Hartung, M., Thor, A., Rahm, E.: How do computed ontology mappings
evolve?-A case study for life science ontologies. In: Joint Workshop on Knowledge
Evolution and Ontology Dynamics (2012)

12. Groß, A., Hartung, M., Kirsten, T., Rahm, E.: Estimating the quality of ontology-
based annotations by considering evolutionary changes. In: Paton, N.W., Missier,
P., Hedeler, C. (eds.) DILS 2009. LNCS, vol. 5647, pp. 71–87. Springer, Heidelberg
(2009)

13. Groß, A., Hartung, M., Prüfer, K., Kelso, J., Rahm, E.: Impact of Ontology Evo-
lution on Functional Analyses. Bioinformatics 28(20) (2012)

14. Kondylakis, H., Plexousakis, D.: Ontology Evolution: Assisting Query Migration.
In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 331–344.
Springer, Heidelberg (2012)

15. Liang, Y., Alani, H., Shadbolt, N.: Changing ontology breaks queries. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 982–985. Springer, Heidelberg (2006)

16. Noy, N., et al.: BioPortal: ontologies and integrated data resources at the click of
a mouse. Nucleic Acids Res. 37(suppl. 2) (2009)

17. Bodenreider, O.: The unified medical language system (UMLS): integrating
biomedical terminology. Nucleic Acids Research 32(suppl. 1) (2004)

18. Hartung, M., Terwilliger, J.F., Rahm, E.: Recent Advances in Schema and Ontol-
ogy Evolution. In: Schema Matching and Mapping. Springer (2011)

19. Velegrakis, Y., Miller, J., Popa, L.: Mapping Adaptation under Evolving Schemas.
In: Proc. VLDB (2003)

20. Bernstein, P., Melnik, S.: Model management 2.0: manipulating richer mappings.
In: Proc. SIGMOD (2007)

21. Yu, C., Popa, L.: Semantic Adaptation of Schema Mappings when Schemas Evolve.
In: Proc. VLDB (2005)

22. Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning Support for Mapping
Revision. Journal of Logic and Computation 19(5) (2008)

23. Khattak, A., Pervez, Z., Latif, K., Lee, S.: Time efficient reconciliation of mappings
in dynamic web ontologies. Knowl.-Based Syst. 35 (2012)

24. Martins, H., Silva, N.: A User-Driven and a Semantic-Based Ontology Mapping
Evolution Approach. In: Proc. Intl. Conf. on Enterprise Inform. Systems (2009)

25. Groß, A., Hartung, M., Kirsten, T., Rahm, E.: GOMMA results for OAEI 2012.
In: Proc. OM Workshop at ISWC, vol. 11 (2012)

26. Noy, N.F., Musen, M.A.: Promptdiff: A fixed-point algorithm for comparing ontol-
ogy versions. In: Proc. of Nat. Conf. on Artificial Intelligence (2002)

27. Hartung, M., Groß, A., Rahm, E.: COnto-Diff: generation of complex evolution
mappings for life science ontologies. J. Biomed. Inform. 46(1) (2013)

28. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: S-Match: an algorithm and an imple-
mentation of semantic matching. In: Bussler, C.J., Davies, J., Fensel, D., Studer,
R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 61–75. Springer, Heidelberg (2004)

29. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Logic-based assess-
ment of the compatibility of UMLS ontology sources. J. Biomed. Sem. 2 (2011)

Next Generation Cancer Data Discovery, Access,

and Integration Using Prizms
and Nanopublications

Michael Krauthammer3, and Deborah L. McGuinness1,2

1 Department of Computer Science
2 Department of Cognitive Science, Rensselaer Polytechnic Institute,

110 8th Street Troy, NY 12180, USA
http://tw.rpi.edu

3 Department of Pathology, Yale School of Medicine, 300 George St., New Haven,
CT, 06510, USA

http://krauthammerlab.med.yale.edu

{mccusj,lebot}@rpi.edu, dlm@cs.rpi.edu, michael.krauthammer@yale.edu

Abstract. To encourage data sharing in the life sciences, supporting
tools need to minimize effort and maximize incentives. We have created
infrastructure that makes it easy to create portals that supports dataset
sharing and simplified publishing of the datasets as high quality linked
data. We report here on our infrastructure and its use in the creation of
a melanoma dataset portal. This portal is based on the Comprehensive
Knowledge Archive Network (CKAN) and Prizms, an infrastructure to
acquire, integrate, and publish data using Linked Data principles. In
addition, we introduce an extension to CKAN that makes it easy for
others to cite datasets from within both publications and subsequently-
derived datasets using the emerging nanopublication and World Wide
Web Consortium provenance standards.

1 Introduction

Peer-reviewed publications remain the principal means for exchanging cancer
research information, despite the critical need for other researchers to access
supporting data so that they may progress their own (or others’) investiga-
tions. Critical ancillary data, such as gene expression data, are usually shared
at time of publication, but there is a paucity of data sharing outside the realm
of publications and it is usually limited to large consortia (ENCODE, TCGA),
or government-mandated data sharing (data.gov). The National Institutes of
Health and National Science Foundation both pass data-sharing mandates on to
their awardees, but leave the implementation of those mandates to the awardees.
An easy solution to data sharing would help federal grantees comply with award
requirements and also help create more open, shareable data resources. Addi-
tionally, from our own experience there is a wealth of data that is rarely shared,
such as ancillary data that does not make it into publications, negative findings,

C.J.O. Baker, G. Butler, and I. Jurisica (Eds.): DILS 2013, LNBI 7970, pp. 105–112, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Jamie P. McCusker1,3, Timothy Lebo ,2

http://tw.rpi.edu
http://krauthammerlab.med.yale.edu

106 J.P. McCusker et al.

and findings from investigations that were not fully completed due to resource
issues. Many institutions lack the expertise to transform local data into accepted
data standards. There are also data that are ready to be shared (such as lists of
specimens, and annotations), but few institutions have the technical means to
host it for others using a grid-enabled system.

Efforts to facilitate data sharing are common, but few are truly successful.
We believe that most data sharing initiatives do not adequately address two key
ingredients for a working data sharing environment: few constraints on how to
share data, and a recognized avenue for receiving academic recognition (such as
recognized citations). Most data sharing initiatives are built on data standards,
which promise seamless data exchange at the expense of flexibility. Such initia-
tives (such as caBIG [1]) can also be overly technical without offering avenues
for straightforward data sharing. Finally, few initiatives specify how academic
credit is established for shared content. One reason that the scientific community
is not sharing data fully is that there are no commonly accepted standards to
publish and cite researchers’ data-level contributions. We propose a new mode
of data-sharing that we believe will be successful for the following two major
reasons: First, the use of natural language provides a low barrier to entry for
authors to express their research findings; and second, authors value publications
as they offer the standard accepted proof of their academic work.

Towards this end, we are building a data sharing infrastructure with the fol-
lowing key features: first, a flexible data sharing setup, which allows for the
sharing of plain text, excel, and other similar documents, with the ability to
gracefully add metadata when needed; and second, the use of nanopublications,
tiny and highly standardized statements that are useful for establishing prove-
nance and academic credit, and for expressing high-level insights into the shared
data. Our architecture is built upon Semantic Web technology, and is thus com-
patible with existing linked data sharing efforts.

Our infrastructure, calledPrizms, is built entirely on open source software, lever-
aging existing data exchange software such asCKAN.1 Wehave deployed instances
of CKAN and Prizms at melagrid.org to serve the SPORE in skin cancer institutes
to sharing melanoma related data.2 The SPOREs have an active data sharing cul-
ture, and have recognized the need for exchanging research information.We are us-
ing the Prizms infrastructure (lod.melagrid.org) to extend the existing MelaGrid
data portal (data.melagrid.org), used for sharing SPORE-related data. To encour-
age the use of data.melagrid.org by the melanoma community, we have populated
it withmelanoma-relateddatasets fromArrayExpress using a CKANharvesterwe
developed.3 We currently have over 331 datasets in our repository.

The Prizms architecture leverages the Linked Data philosophy: use identifiers
for things (URLs) that are addresses where consumers can get more information.
When a human visits that address, they get a human-readable web page, with
useful information, visualizations, and links to other resources. When a machine

1 http://ckan.org
2 http://trp.cancer.gov/spores/skin.htm
3 https://github.com/jimmccusker/ckanext-arrayexpress

http://ckan.org
http://trp.cancer.gov/spores/skin.htm
https://github.com/jimmccusker/ckanext-arrayexpress

Next Generation Cancer Data Discovery, Access, and Integration 107

visits the page, it gets an RDF representation of the thing identified by the
URL. The RDF should re-use existing resources that also follow the Linked
Data philosophy, thereby providing aggregate benefits to both resources [2]. We
will show how we provide a simple means of dataset discovery and citation
for scientists and present a framework we use, composed of proven semantic
technologies, to provide on-demand enhancement of that data into high-quality
Linked Data.

2 Requirements: Levels of Data Sharing

Our experience suggests that only a few basic levels of data description are
needed to promote successful data sharing. We want to make the value received
from data description to be at least linearly related to the effort put into that
description, and we want the value to pay off even at very simplistic levels of
description. We therefore propose 5 levels of data sharing that will take data
providers from very little effort (Level 1) to fully integrated and semantically
enriched data that is easy to discover, integrate, and use (Level 5). Each of these
levels serves as a broad use case for data sharing based on increasing levels of
sophistication.

Level 1: Basic data sharing Basic data sharing consists of users 1) posting
data somewhere, 2) telling the world about it (such as where it is, when
it was modified, who controls it, or a simple description to make it more
searchable). This information, often called provenance [3], consists of the
basic information about data, such as who controls it, what is it about,
when was it created, where can one get it, why was it created, and how was
it created and used?

Level 2: Automated Conversion Using no domain knowledge, tools can cre-
ate “naive”, or non-knowledge driven, conversions of tabular data into struc-
tured formats such as RDF to provide basic search, browsing, and data
integration.

Level 3: Semantic enhancement Semantic enhancement is performed using
tools that allow users to specify improved data representations beyond what
a computer can provide without additional knowledge. This can be by the
data originator or other parties.

Level 4: Semantic eScience Further annotation and enhancement can be per-
formed by describing the metadata for the dataset using vocabularies with
well understood semantics. This provides a foundational component of Se-
mantic E-Science, and corresponds to caBIG-style data sharing.

Level 5: Community-Based Standards By providing a framework for com-
munication and discovery of consensus ontology use, a system can assist
communities to converge on standard representations of data that result in
interoperability across organizations. Further, by giving credit to contribu-
tors, the system can make it easier to find a community member that is able
to assist in data representation challenges, which enables content-oriented
collaborations among geographically or organizationally disparate commu-
nity members.

108 J.P. McCusker et al.

3 Nanopublications for Datasets: Datapubs

MelaGrid reuses the existing open-source cataloging system CKAN to list and
describe publishers’ datasets. CKAN accounts for a majority of the basic Level
1 data sharing information that we identify in the previous section. However, it
is incomplete, only providing information about dataset publication dates, data
locations and hosting, but does not provide a means to describe how the data
was produced, nor does it provide a sophisticated mechanism for identification of
data owners. We have extended the CKAN RDF publication template to make
better use of the available metadata in CKAN using DCAT, DC Terms, and
PROV-O. This generates a novel form of nanopublication [4] we call a data-
publication, or datapub. We have also included an interface (see Figure 1) that
makes it easy to cite published datasets using plain text for non-technical users
such as biologists and clinical researchers, BibTeX, PROV, or direct use of a
nanopublication [4]. This functionality is available as an Open Source CKAN
extension in GitHub called ckanext-datapub.4 We have manually uploaded a
dataset from a recent publication [5] and have cited it here using BibTeX. All
citation modalities, including plain text, provide a Linked Data URL that pro-
vides human and machine-readable representations of the dataset using content
negotiation.

Fig. 1. Citing a datapub dataset using plain text, BibTeX, or PROV

4 https://github.com/jimmccusker/ckanext-datapub

https://github.com/jimmccusker/ckanext-datapub

Next Generation Cancer Data Discovery, Access, and Integration 109

4 The Prizms Architecture

The Prizms architecture provides the technical foundation to support the re-
maining four levels of data sharing that we outline above. Prizms combines tools
that the Tetherless World Constellation has developed during the past several
years for use both internally and externally in many semantic web applications
of scientific domains, such as a population science project that integrated health
data, tobacco policy, and demographic data [6] and a system for the HHS De-
veloper Challenge developed to integrate a wide variety of health data. The
overall workflow of how MelaGrid uses the Prizms architecture and the Datapub
extension is shown in Figure 2.

Fig. 2. Data flow through Prizms. A data owner (a) submits a dataset to a CKAN
instance. This data can be in any format, including Excel (shown), CSV, XML, JSON,
or other formats. The Prizms Autonomic System (b) recognizes the addition or change
of a dataset and triggers tools that are “interested” in particular new datasets. It is then
hosted by a standards-compliant SPARQL endpoint (c). The datapub CKAN extension
then (d) generates RDF to describe the dataset as a Datapub. Human data consumers
(e) can then browse the full dataset listing and access the data itself using either the
traditional CKAN web interface or a Linked Data portal created using LODSPeaKr.
Computational data consumers (f) can then access the data in conjunction with the
Linked Open Data ecosystem.

110 J.P. McCusker et al.

While MelaGrid uses CKAN with the Datapub extension to address Level
1 “Basic” data sharing requirements, Prizms exposes the essential data ac-
cess information as Linked Data using the W3C’s Dataset CATalog vocabu-
lary (DCAT),5 the Dublin Core Terms (DC Terms) vocabulary,6 and the W3C’s
PROV-O [7] provenance ontology. Prizms addresses Level 2 data-sharing require-
ments (automated RDF conversion) by using the access metadata to retrieve,
organize, and automatically translate data posted to CKAN (such as Excel files)
into RDF data files and hosting portions of each in a publicly-accessible SPARQL
endpoint. All processing steps record a wealth of provenance described in best
practice vocabularies such as Dublin Core, VoID,7 and PROV-O, which enables
transparency of any of Prizms’ data products. For example, any RDF triple or
RDF file can be traced back to the original data file(s) and the original pub-
lisher(s) [8]. This is important to maintain the reputability of Prizms, which
serves as a third party integrator of others’ data.

Prizms addresses Level 3 data-sharing (semantic enhancement) by transform-
ing the original data to user-defined RDF. In the case of tabular data, such as
Excel or CSV, transformations are specified using a domain-independent declar-
ative description which itself is encoded in RDF. For example, one can specify
that the third column in the data is mapped to a user-specified RDF class
for concepts like gender or diagnosis. These concise transformation descriptions
can be shared, updated, repurposed, and reapplied to new versions of the same
dataset or within other instances of Prizms; they can also be maintained on code
hosting sites like GitHub.com or Google Code. The transformation descriptions
also serve as additional metadata that can be included as part of queries for the
data (e.g., finding all datasets that were enhanced to use the class “specimen”).

Reusing existing entities and vocabularies is the heart of Level 4 data-sharing
(Semantic eScience), and using community-agreed ontologies and vocabularies
are essential to Level 5 data sharing. We use new parameters of the same seman-
tic conversion tools that are described in Level 2 for this purpose. In addition,
datasets can be automatically augmented to produce inferences based on well-
structured data that appears in Prizms’ data store. For example, Prizms will
augment any address encoded using the vCard RDF vocabulary8 with the cor-
responding latitude and longitude (which it computes using the Google Maps
API). When clients request Prizms’ data elements, Prizms includes links to other
available datasets based on a variety of curated and heuristic connections. These
link suggestions can motivate community effort to mature the data towards more
matures levels of data sharing.

At all levels of data-sharing, Prizms uses the LODSPeaKr web framework to
create Linked Data applications and publish RDF data quickly and with minimal
effort. LODSPeaKr provides a set of functionalities that not only improves the
accessibility of the data for humans but also for machines by providing content

5 http://www.w3.org/TR/vocab-dcat/
6 http://purl.org/dc/terms/
7 http://www.w3.org/TR/void/
8 http://www.w3.org/Submission/vcard-rdf/

http://www.w3.org/TR/vocab-dcat/
http://purl.org/dc/terms/
http://www.w3.org/TR/void/
http://www.w3.org/Submission/vcard-rdf/

Next Generation Cancer Data Discovery, Access, and Integration 111

negotiation (i.e, the ability to return different formats depending on the client’s
request for the data element URL). This increases accessibility of the data while
minimizing the workload for the development team. Additionally, the system
allows the creation of new web pages to display particular subsets of the data
that users may considered important. Data consumers can also perform query
operations against the backing SPARQL endpoint.

5 Discussion

The MelaGrid initiative provides usable, integrated informatics systems that
enable collaboration, data sharing, and enhanced analysis to research groups
studying skin cancer. Specimen and associated Omics data sharing is a high
priority for the MelaGrid initiative. Clinical annotations and phenotyping of
specimens, along with Single Nucleotide Polymorphism (SNP), transcription,
methylation, and copy number are just a few of the types of data that have
become important in cancer research. All of these data have representation in
the ArrayExpress subset of data.melagrid.org, and we will be extending its use
with additional information from tools like caTissue.

The consortium’s first priority is to increase the number of shared data enti-
ties, and Prizm’s flexible architecture is assisting in this goal. Melagrid has the
support of all four national skin SPOREs for use of this infrastructure. Cur-
rently, all shared data is at Level 1 (raw data with associated datapubs), and
Level 2 (automatic RDF conversion). We will be using the Prizms architecture
for converting institution-specific data descriptions into an accepted SPORE
OWL/RDF Ontology (currently CDEs, as defined on melagrid.org) as appropri-
ate. This is Level 5 data sharing in Prizms, as it involves a community-agreed
standard (Level 3 is using a locally developed ontology, and Level 4 is re-use of
ontologies, but not necessarily in a community-agreed manner).

6 Future Work

Currently, Prizms can be applied to dataset collections with other content do-
mains, and it offers the same benefits that MelaGrid provides for melanoma
data. We look forward to developing Prizms as we apply it to other applications,
and we expect that others will find value by doing the same. For example, we
are starting a portal for clinical depression treatment based on the Prizms in-
frastructure. Because using CKAN and the Datapub extension with Prizms has
been so useful, we expect to extend Prizms to include both of them in future ver-
sions, so that we can facilitate others’ adoption of all three components. We also
look forward to developing additional out-of-the box capabilities for any datasets
that Prizms is used to integrate, such as better connected exploration, better
overviews, and better recommendations or guidance on how the data could be
better modeled using best practice modeling techniques.

112 J.P. McCusker et al.

7 Conclusion

We have described an infrastructure for creating and using next generation sci-
ence data portals. We have used the infrastructure to create two data portals
- one reported on here in melanoma data and one in response to the human
health services data challenge.9 We have described how our infrastructure sup-
ports assimilating, publishing, and enhancing science data into best practices
formats. The CKAN infrastructure makes it easy to aggregate data from multi-
ple sources through its harvester framework and we have developed and used a
CKAN harvestor to obtain and populate data.melagrid.org with 330 melanoma
datasets that are now published as linked data. Further, we have provided a
citation method for people to cite datasets from within both publications and
subsequently-derived datasets using the emerging nanopublication (via our use
of datapubs) and World Wide Web Consortium provenance standards.

References

1. von Eschenbach, A.C., Buetow, K.: Cancer informatics vision: caBIG. Cancer In-
formatics 2, 22–24 (2006)

2. Berners-Lee, T.: Linked Data - Design Issues (2006)
3. Buneman, P., Khanna, S., Tan, W.-C.: Why and where: A characterization of data

provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973,
pp. 316–330. Springer, Heidelberg (2000)

4. Groth, P., Gibson, A., Velterop, J.: The anatomy of a nanopublication. Information
Services and Use 30(1), 51–56 (2010)

5. Krauthammer, M.: Variant data from ”exome sequencing identifies recurrent
somatic rac1 mutations in melanoma”,
http://data.melagrid.org/dataset/exome-variants-in-melanoma (last ac-
cessed: February 16, 2013)

6. McCusker, J.P., McGuinness, D.L., Lee, J., Thomas, C., Courtney, P., Tatalovich,
Z., Contractor, N., Morgan, G., Shaikh, A.: Towards Next Generation Health Data
Exploration: A Data Cube-based Investigation into Population Statistics for To-
bacco. In: Proceedings of the Hawaii International Conference for System Science
(2013)

7. Lebo, T., Sahoo, S., McGuinness, D.: PROV-O: The PROV Ontology,
http://www.w3.org/TR/prov-o/

8. Lebo, T., Wang, P., Graves, A., McGuinness, D.L.: Towards unified provenance
granularities. In: Groth, P., Frew, J. (eds.) IPAW 2012. LNCS, vol. 7525, pp. 39–51.
Springer, Heidelberg (2012)

9 http://healthdata.tw.rpi.edu

http://data.melagrid.org/dataset/exome-variants-in-melanoma
http://www.w3.org/TR/prov-o/
http://healthdata.tw.rpi.edu

Putting It All Together: The Design

of a Pipeline for Genome-Wide Functional
Annotation of Fungi in the Modern Era

of “-Omics” Data and Systems Biology

Greg Butler

Department of Computer Science and Software Engineering,
Concordia University, Montreal, Canada

gregb@cs.concordia.ca

Abstract. The context for bioinformatics continues to change as new
technology brings more varied data in greater volume. We present the
preliminary design of a pipeline for functional annotation of fungal
genomes. Genome-wide functional annotation benefits from the variety
and volume of data available from “-omics” technology, and benefits from
the perspective of systems biology.

1 Introduction

The outcome of genomics-related research rests on the quality of the genome
assembly, the gene predictions, and the functional annotation of the genes. Ad-
vances in biotechnology are providing the volume, variety, and quality of data
to greatly improve the quality of assemblies, gene models, and functional anno-
tations, and allow improved analysis of expression data and the construction of
models for systems biology.

The annotation of prokaryote genomes is mature [1] compared to eukaryote
genomes: they are smaller, simpler, and many have been sequenced. Genome
assembly, structural annotation, and functional annotation for eukaryotes is rel-
atively less mature. Here we focus on fungal genomes, as they are our area of
expertise, and are the simplest starting point amongst the eukaryotes. Fungi are
important but often overlooked organisms that affect our daily lives as causative
agents of disease, as sources of food, as agents for recycling of biomass, and
as key ingredients in industrial processes. The information contained in their
genomes can enhance our understanding of how they function, and on their uses
and impacts. There is no open-source software that embodies a comprehensive
pipeline for structural and functional annotation of a fungal genome, thereby
limiting the access of genomics by the fungal research community.

In this paper, we look at the problem of functional annotation and how to
utilise the available data for a species about the genome, transcriptome, and
proteome for that purpose. We consider the problem of functional annotation in
the context of the existing databases of gene annotations, and other resources, as

C.J.O. Baker, G. Butler, and I. Jurisica (Eds.): DILS 2013, LNBI 7970, pp. 113–127, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

114 G. Butler

well as in the context of modern techniques such as network analysis, metabolic
pathway reconstruction, and systems biology.

Functional annotation generally focuses on protein functional prediction from
the protein sequence, though predictions may also use protein structural infor-
mation when available. The reviews [2, 3] clearly explain the difficulty of protein
function prediction, the types of errors that are common, and the concerns about
the quality of existing annotations in databases. The difficulty is inherent due to
the multifunctional roles of proteins, the potential binding with many substrates,
and the significant impact that a change of a single amino acid can have on struc-
ture and function. There are many roles for functional annotation: (1) Collecting
evidence for manual curation; (2) Understanding the role(s) of a gene; (3) Under-
standing the roles and relationships of a set of genes; (4) Understanding the gene
complement of the organism; (5) Forming the basis for the analysis of expression
data, metabolic reconstruction, and system models; and (6) Forming the basis for
publications about the genome through stories about specific genes, or interesting
comparisons across several organisms. So a functional annotation pipeline must
do more than associate a list of GO terms with each gene [4]. We augment GO
term annotations with phylogenomic classification into protein families and sub-
families as in PANTHER [5], and include predicted protein domain architecture,
secondary structure, and post-translational modifications sites as in ANNIE [6],
and construct a feature space and a set of gene networks for data mining.

2 Background

Major centres have published brief descriptions of their procedures for functional
annotation of fungal genomes: JGI [7], Broad [8], MIPS [9], and Génolevures [10].
None has made their pipelines available. IGS has published their standard op-
erating procedure (SOP) [4] for functional annotation of prokaryote genomes
and released the pipeline as part of the CloVR system [11]. Functional annota-
tion [3, 8, 12–16] is performed by gathering evidence of function from various
sources, integrating the evidence, and presenting the inferred function. Evidence
is inferred from properties of related sequences using annotation transfer by ho-
mology (ATH), guilt-by-association, or other prediction methods. Integration
occurs through statistical summary of GO terms, classical machine learning ap-
proaches, or network analysis [16]. The major steps are: (1) Annotation transfer
by homology (ATH) using sequence similarity; (2) Protein family recognition for
ATH using Hidden Markov Model (HMM) classifiers, sometimes including reso-
lution of orthologs, paralogs, and protein subfamily membership; (3) Case-based
reasoning for specific types of genes and proteins [8, Section 7]: carbohydrate-
active enzymes, transporters, transcription factors, effectors, proteases, protein
kinases, histidine kinases, G protein-coupled receptors, secondary metabolite
gene clusters; (4) Feature recognition for signals, motifs, and domains, and map-
ping features to annotation terms; in particular, the prediction of localization
relies heavily on this approach, as does PRIAM [17] for predicting EC numbers,
and InterPro2GO for GO terms; (5) Integration and summary of GO terms

Genome-Wide Functional Annotation 115

of related sequences; (6) Guilt-by-association using genome context [18] (such
as gene clusters, gene fusion, phylogenetic profiles), pathway reconstruction,
and network analysis; (7) Post-processing by rules to detect common annota-
tion errors, e.g. the Swiss-Prot HAMAP system [19] for prokaryote annotation,
and SAAS [20] and UniRule (www.uniprot.org/program/automatic annotation)
rules at EBI when annotating Trembl from Swiss-Prot; and (8) Post-processing
data mining [21–23] to detect anomalies for investigation manually by curators,
and to automatically infer rules [20]. This is dependent upon existing sequence
databases with annotations, existing databases of HMMs with annotations, and
existing predictors for signals, motifs, and domains; ie, a trusted set of data as
the foundation for the annotation such as CharProtDB [24] for prokaryotes at
JCVI. While we concur with Ross Overbeek that this dependence on a founda-
tion of trusted data links functional annotation with the continued maintenance
of the foundation, i.e. that “curation is forever” [25], it is not clear that the sub-
system approach [26] that is taken for prokaryotes, and is the basis of RAST [1],
is appropriate for eukaryotes.

2.1 Types of Functional Annotation

The primary annotation is the role of a gene product. A GO triple is a triple
(p,m, c) of Gene Ontology (GO) terms indicating the biological process p, the
molecular function m, and the cellular component c for the role. A family pair
is a pair (F, f) of family F and subfamily f for the gene product. A functional
annotation of a gene consists of a GO triple together with a family pair. The
functional annotation described as a GO triple and a family pair allows us to
make distinctions in the role of genes that is supported by existing sequence data
in the foundation but not yet formalized in the Gene Ontology. Furthermore, it
brings in distinctions and terminology, such as glycoside hydrolase (GH) family,
which are in common use by genomics researchers but not in the Gene Ontology.

Since many genes cannot be assigned a primary annotation as complete as
this, a collection of features will be included in the annotation. Features include
individual GO terms (that are not part of a GO triple) inferred from various
searchers and predictors; EC (Enzyme Commission) numbers; information about
gene or protein regions or sites such as signals, binding modules, or catalytic
sites, secondary structure, post-translational modifications, and transcription
factor binding sites.

Ametabolic pathway reconstruction is included in the annotation as a Pathway-
Genome database (PGDB) as produced by Pathway Tools.

Gene networks are constructed as part of the annotation. Each gene network
consists of nodes representing genes or proteins, and edges that represent the
existence of a relationship or shared property of the pair of genes and/or proteins.
Types of gene networks include interaction, shared protein domains, and co-
localization networks. Important to this work are co-expression networks that
encode the information in the expression data; co-pathway networks derived from
the metabolic pathway reconstruction; and networks for comparative genomics
relationships such as orthology and synteny.

116 G. Butler

2.2 Resolving Orthology

The application of annotation transfer via homology is prone to errors. Homol-
ogy is about the evolutionary relationship of genes through the processes of
speciation, gene duplication, and horizontal gene transfer. Orthologs are homol-
ogous sequences derived from a speciation event, while paralogs are derived from
duplication. In general, orthologs are more likely to retain their function, while
paralogs more often do not [27]. Therefore, it is important to resolve orthologs
and paralogs during comparative genomics using phylogenetic and phylogenomic
techniques [27, 28]. Many functional annotation pipelines use databases of or-
thologous groups of genes. Other pipelines like PANTHER [5] and Sifter 2.0 [29]
apply phylogenomics across the board during annotation to help resolve or-
thologs and paralogs.

2.3 Integration of Evidence

Most functional annotation pipelines have a stage to reconcile descriptions and
GO terms for a protein that are obtained from the diverse search hits, such as
Blast Extend Repraze (BER) [4], Gotcha, Blast2GO, or Ontologizer. These give
more weight to strong specific hits but can also treat weaker or more remote hits
when that is the only evidence available for a protein. Daisuke Kihara’s PFP [30]
and ESG [31] showed that, for the analysis of expression data, it is worthwhile
to annotate poorly characterized proteins with GO terms which may be high in
the GO hierarchy even when there is low confidence in those terms [32]. ESG
performs better than PFP, PSI-Blast, Gotcha, and iprscan with InterPro2GO.

2.4 Pathway Reconstruction

An important task in systems biology is the modeling of metabolism [33] which
uses “-omics” data to fill in gaps in the models [34]. Pathway reconstruction
is typified by Pathway Tools [35] which uses the MetaCyc knowledgebase of
pathways curated from the literature to provide a template of metabolic, trans-
port, and regulatory pathways against which to match the roles of proteins in
a genome. The tools construct a Pathway Genome Database (PGDB). Using
an existing functional annotation, the tools first match genes to reactions, then
determine whether each pathway is present or not in the organism [36, 37].
The pathways present may have holes, which means that certain reactions in
the pathway are not matched with a gene. The hole-filling algorithm [38] uses a
Bayesian approach to rank the unmatched genes in the genome with each hole as
a potential match, and the software allows curators to accept or reject a match.
An accepted match assigns a molecular function (the reaction) and a biological
process (the pathway) to the gene. For pathways that are not in MetaCyc, there
are approaches to analyse expression data [16] or comparative genomes [39] to
discover novel subsystems such as protein complexes and pathways.

Genome-Wide Functional Annotation 117

2.5 Network-Based Annotation

Network analysis [16] is typically applied to co-expression networks as part of ad-
vanced analysis of expression data. Network analysis is one approach to integrate
diverse evidence. Its usefulness in functional annotation is established [13–16].
GeneMANIA [40] is a system for network analysis that had success in the Mous-
Func annotation competition.

Graph-based semi-supervised learning represents evidence as (weighted) edges
between vertices (i.e. genes or proteins) and as labels on vertices representing
annotations. Unlabelled vertices denote a lack of annotation and the goal of
machine learning is to propagate annotations to these unlabelled vertices from
the set of nearest relevant neighbours. The field began in 2004 at Tübingen [41]
solving the problem using Support Vector Machines with graph-specific kernels,
but also developing rank propagation algorithms (as in Google’s PageRank), and
linear algebra based approaches for a matrix representation of the graph. The
linear algebra approach led to fast graph integration [42], and to advances in ef-
ficiency in GeneMANIA [43] offering real-time response as a web service. There
are two subproblems in graph integration: learning the weights to apply to each
graph when combining them into a single graph; and learning the solution for the
integrated graph. The GeneMANIA algorithm solves both subproblems at the
same time. GeneMANIA also provides tools to gauge the impact of each graph on
the analysis. GeneMANIA currently has graphs representing protein and genetic
interactions, pathways, co-expression, co-localization, and protein domain shar-
ing. Its format for graph data is generic, so one can encode other data as graphs
for use by GeneMANIA. A strength of GeneMANIA is its collection of datasets
for model organisms. A weakness is that it only addresses model organisms. To
utilise the datasets from Saccharomyces cerevisiae, our functional annotation
pipeline needs to relate other fungal genomes to that of yeast which we can do
in various ways with graphs representing sequence similarity (see SIMAP [44]
and STRINGv7 [45]), ortholog and paralog relationships (see eggNOG [46]), or
synteny (see STRINGv8 [47]).

2.6 Structural Annotation

The impact of good quality gene models percolates throughout the downstream
processing since a correct gene model, and therefore CDS, allows further analysis
to detect features such as signal peptides, binding sites, protein domains, sites of
post-translational modification, and anchors, that might be missed due to trun-
cated C- or N-terminals, missing exons, or missing parts of exons. In proteoge-
nomics [48–50] proteins undergo de novo sequencing, or terminal sequencing,
and the peptides are mapped to the six-frame translation of the genome.

Gene prediction programs can be classified as ab initio or homology-based.
Ab initio predictors search the genome sequence with Hidden Markov Models
to detect signals that indicate coding potential, such as open reading frames,
intron donor and acceptor sites, and transcription start and stop sites [51].
Homology-based predictors search for sequences similar to known genes in related

118 G. Butler

organisms, or sequences that translate to the sequences of known proteins. Prac-
tical gene prediction pipelines combine the outputs of multiple predictors with
additional evidence [52], including transcriptomics and proteogenomics, which
requires that data be mapped to the genome.

3 Specification of the Pipeline

For the functional annotation pipeline, the inputs are

– the genome assembly;
– the genome defined as a set of genes, as a gff file for the gene models, and

the corresponding fasta sequence files for genes, CDS, transcripts, proteins,
upstream and downstream regions;

– the expression data from transcriptomics and proteomics; and
– reference datasets, classifiers, and predictors, etc.

The output produced by functional annotation consists of a set of gene pages
(one for each gene model), a summary table of the genes and their annotation,
the expression data from transcriptomics and proteomics, a Pathway-Genome
Database for the reconstructed metabolic pathways, a set of networks, and a
gene feature space for data mining. These can be accessed and viewed by web
browsers, Pathway Tools, and Cytoscape. They can be exported to other systems
for further analysis, such as Kbase, Galaxy, R/Bioconductor, and Weka.

The gene page presents the primary functional annotation. Each functional
annotation identifies the GO triple and the family pair. The gene page includes
several organized views of features: the genome context of the gene; the struc-
ture of the gene model in terms of introns and exons; the site information for
upstream and downstream regions; the protein domain architecture including
signals, cleavage sites, binding modules, catalytic domains, and low complexity
regions; protein secondary structure; and the sites of post-translational modifi-
cations. Features that are not accommodated in the organized views are listed
individually. Links are provided to supporting evidence such as alignments and
tool output, as well as to the syntenic blocks and orthologous groups to which
the gene belongs. The gene pages are in html.

A gene table provides a summary annotation of each gene in the genome.
This includes an identifier; a descriptive name; the GO triples and family pairs;
individual GO terms by category of biological process, molecular function, and
cellular component; EC number; and InterPro domains. The gene table in html

acts as an index into the gene pages. For convenience, the gene table is also
provided as a tab-separated value (tsv) file. Furthermore, the common informa-
tion on GO annotation terms, EC numbers, and InterPro results are provided
as separate files in the standard formats. An extended gene table is provided
as a tsv file and contains the organised views (encoded as readable text), and
information on orthologous clusters, and on the phylogenetic distribution of ho-
mologs across the foundation fungal genomes, the model organisms, the fungal
phyla, and the kingdoms of life.

Genome-Wide Functional Annotation 119

Fig. 1. Functional Annotation Stages

The gene feature space consists of an extensive set of features and classifi-
cations for the purpose of machine learning and data mining. Each gene has a
vector of atomic features consisting of numbers or identifiers. There are standard
approaches to encode information such as sequence composition, and annotation
terms in classification schemes like EC, GO, and InterPro whether they be hier-
archical or multi-valued.

4 Design of the Pipeline

The functional annotation process consists of three main stages. The first stage
is the initial annotation; the second stage is metabolic pathway reconstruction;
and the third stage is network-based annotation. The second and third stages
can be repeated as further new annotations may be produced. The first stage
consists of a number of steps, each of which is independent of the others. A wide
variety of tools are run in order to produce features (including individual GO
terms and EC numbers), and networks. Functional annotation in the sense of
a GO triple and a family pair are only produced from strong matches to the
foundation data by applying rules for annotation transfer by homology from the
foundation data annotations.

4.1 Stage One: Initial Annotation

The first stage can be viewed as six parts: part one matches the proteins to the
foundation data; part two applies the extended similarity group (ESG) method
to the proteins; part three performs major tasks of applying iprscan against In-
terPro, and predicting localization; part four applies numerous useful predictors,
including PRIAM, to detect features; part five considers the genome context in-
formation; and part six considers comparative genomics information including
orthology and synteny.

120 G. Butler

Table 1. Outputs of the Stages of Functional Annotation

Stage Part Tool Outputs
Features

GO Family GO other Network Pathway
triple pair term type PGDB

1 1 Foundation Match Y Y

1 2 ESG Y

1 3 InterPro MF Y shared domain
localization CC Y co-localization

1 4 predictors Y
PRIAM MF EC

1 5 Genome context Y co-chromosomal

similarity
1 6 Comparative genomics orthology

synteny

2 Pathway Tools Y co-pathway Y

3 GeneMANIA Y

Part one matches proteins in the target genome against the foundation using
similarity searches, hmmer3 searches against Hidden Markov Models (HMM) of
families and subfamilies, and specialized predictors for specific families. Each
sequence in the foundation is associated with a trusted functional annotation
as a GO triple and family pair. Each family and subfamily is associated with
an annotation that is as specific as possible while still being conserved across
all members of the family or subfamily. The general rule for annotation transfer
by homology is that when there is a strong match between a protein in the
target genome and a sequence, family or subfamily, then transfer the associated
annotation. Rules to handle exceptions to the general rule are applied.

Part two matches each protein in the target genome against sequence databases
in the foundation and against external datasets (supplied as a parameter) using
the extended similarity group method (ESG) [31] to summarize GO terms from
matches to poorly annotated proteins. It is more sensitive than PSI-Blast. For
the analysis of expression data, it is worthwhile to annotate poorly characterized
proteins with GO terms which may be high in the GO hierarchy even when there
is low confidence in those terms [32].

Part three matches each protein in the target genome against the InterPro
database using iprscan to produce a set of protein domain features for the pro-
tein. Corresponding individual GO terms are produced using the InterPro2GO
mapping. A network based on shared domains is also produced. Part three also
runs a series of tools related to the prediction of localization on each protein and
produces a set of features, an individual GO term for its cellular component, and
a co-localization network. The tools used include SignalP 4.0 [53], Phobius [54],
TargetP [55], TMHMM [56], WolfPSORT [57], and MultiLOC2 [58].

Genome-Wide Functional Annotation 121

Part four runs PRIAM [17] on each protein to produce an EC number as
a feature. Part four also runs a series of predictors for secondary structure;
low complexity regions; post-translational modifications; GPI anchors; promoter
binding sites, etc; to produce features of regions and sites.

Part five considers genome context for the target genome. For each gene it
computes a gene copy number counting the number of paralogs in the genome.
Part five also produces a genome context network where there is an edge between
two genes if and only if the genes lie on the same chromosome (or scaffold).

Part six considers comparative genomics. Part six performs similarity searches
against genomes in the foundation and for model organisms to produce a sim-
ilarity network. Part six also runs a series of predictors for orthologous groups
such as eggNOG [46], orthoMCL [59], InParanoid [60], and OMA [61] to pro-
duce various orthology networks, including one based on reciprocal best hits
(RBH). Part six also runs tools for determining synteny [62, 63] between the
target genome and those genomes in the foundation and for model organisms to
produce several synteny networks where there is an edge between two genes in
the target genome if and only if they lie in same syntenic block.

4.2 Stage Two: Metabolic Pathway Reconstruction

The second stage is metabolic pathway reconstruction done by Pathway Tools.
The input consists of the annotation of each gene in terms of a text description,
GO terms, and EC numbers. The output consists of the assignment of genes
to reactions in pathways for both metabolic reactions and transport reactions.
This assignment provides a GO triple as an annotation for the gene. This stage
also produces a co-pathway network; and a Pathway-Genome Database. When
the second stage is repeated following the third stage of network-based annota-
tion, then the metabolic pathway reconstruction only requires updating rather
than re-computation. Following the updates to the annotation, the hole-filling
methods in Pathway Tools may assign further genes to reactions.

Pathway Tools [35] uses the MetaCyc knowledgebase of pathways that have
been curated from the literature to provide a template of metabolic, transport,
and regulatory reactions and pathways. Using an existing functional annotation,
the tools first match genes to reactions, then determine whether each pathway
is present or not in the organism [36, 37]. The pathways present may have holes;
that is, there are orphan reactions in the pathway that are not assigned to a
gene. The hole-filling algorithm [38, 64] uses a Bayesian approach to rank the
unassigned genes in the genome with each hole, and the software allows curators
to accept or reject a match. There are alternative hole-filling approaches that
use orthology (AutoGraph [65]) and expression data (GLOBUS [66]). The use
of orthology should be redundant here in our pipeline because of our inclusion
of metabolic pathway reconstructions in the foundation. Similarly, the use of
expression data should be redundant because network-based annotation will use
expression data to assign genes to molecular function GO terms. We need to
determine appropriate thresholds for when to transfer an annotation for ranked
candidate genes to fill a hole automatically.

122 G. Butler

4.3 Stage Three: Network-Based Annotation

The third stage is network-based annotation done by GeneMANIA [40]. The
input is the set of networks produced by the first and second stages. The output
is new gene annotations as GO terms, or an increase in confidence for an existing
GO term annotation of a gene. The third stage also provides integration of the
evidence for functional annotation of each gene.

GeneMANIA currently has graphs representing protein and genetic interac-
tions, pathways, co-expression, co-localization, and protein domain sharing. Its
format for graph data is generic, so one can encode other data as graphs for use
by GeneMANIA. The datasets in GeneMANIA includes the yeast S. cerevisiae.
Information from prior steps will be encoded as graphs representing pathways,
co-expression, co-localization, and protein domain sharing in the target genome.

GeneMANIA is used to study a single model organism. We need to study non-
model organisms, yet benefit from the available datasets for model organisms.
Hence we propose to develop new types of gene networks representing sequence
similarity [44, 45], ortholog and paralog relationships [46], or synteny [47]. These
networks connect the genes of target genomes to genes in existing datasets.

4.4 Foundation

The foundation data for fungi will include experimentally characterized and
trusted data. It will be built out in stages: (a) lignocellulose-active proteins [67];
(b) the manually curated genes and annotations of S. cerevisiae, S. pombe, C.
albicans, N. crassa, A. nidulans, and A. fumigatus; (c) Swiss-Prot; (d) tRNA
genes and tRNA synthetase genes; (e) the metabolism reconstructions of fungi,
including transporters, from the BioMet collection [68]; (f) transcription factors
in fungi; (g) genes related to the secretory pathway; (h) genes related to cell wall
biosynthesis; and (i) fungal core genes.

In the construction of the foundation, we perform clustering, multiple se-
quence alignment, and build HMMs for well-understood families so as to resolve
orthologs and paralogs, and thereby sidestep the general use of phylogenomics.
Subfamilies are determined using SciPhy [69], and Secator and DPC [70]. It is
for such well-understood families that rules governing transfer of annotations
were developed for prokaryotes in HAMAP.

4.5 Rules, Anomalies, and Data Mining

Rules are implemented for annotation transfer by homology (ATH) first by iden-
tifying the functional annotation (as a GO triple and family pair) that is con-
served across a family or subfamily amongst the well-understood protein families
in the foundation. Exceptions to ATH in this context may arise based on phy-
logenetic variation between the foundation proteins and the target genome, in
which case they will be captured by additional rules (for the exception) as in
HAMAP (for prokaryotes). Rules will also be developed when curators notice
common errors in annotation made by the tools or pipelines. The conditions

Genome-Wide Functional Annotation 123

under which those errors occur may be identified by mining the gene feature
space; if so, a rule can be developed to catch such errors. The rules can be applied
as post-processing steps. The rules need to relate available annotated features
of proteins, together with phylogenetic location of the fungi, to the functional
annotation (primarily GO terms) and errors in functional annotation. Further-
more, there are machine learning techniques for anomaly detection that can be
applied to the gene feature space. Anomalies raise concerns about the accuracy
of annotations that can be investigated by the curators.

Features include sequence composition (EMBOSS pepstats generates 61 fea-
tures, Expasy ProtParam generates 36 features); 37955 GO terms (v1.3418);
23232 Interpro entries (v38.0); membership in families or clusters; and results
from the various predictors.

5 Benchmarking

Datasets and benchmarking are critical for the development of pipelines. Progress
is made during development by examining false positive and false negative re-
sults when benchmarking, trying to identify the cause for the errors, and making
improvements to the pipeline. When testing on novel genomes, a curator sam-
ples a small number (about 100) of results manually to determine which can be
classified as false positive or false negative.

The primary datasets for the benchmarking of the functional annotation
pipeline are those for Aspergillus niger, Thermomyces lanuginosus, and Phane-
rochaete chrysosporium, that were used for our structural annotation pipeline.
We have curated functional annotations for some genes but not for all genes.

We use Candida albicans and S. cerevisiae, as “gold standard” datasets, tak-
ing care to remove related entries from the foundation data that is the basis for
functional annotation. In cases where the benchmarking shows differences be-
tween the result of the pipeline and the gold standard, we can refer to the yeast
biologists at the Centre for Structural and Functional Genomics for adjudication.

6 Conclusions

Structural and functional annotation of a genome are basic steps in genomics-
related research. It is important that these tasks produce quality results, in terms
of coverage of the genome and accuracy of the annotations. The incompleteness of
functional annotation of genomes, even for model organisms, is a significant gap
in our knowledge. The inaccuracies in annotation databases lead to propagation
of erroneous annotations to new genomes which poses a major threat to the
validity of any ensuing analysis of experimental data. It is essential that we
advance the coverage and accuracy of structural and functional annotation.

This paper presents the design of a pipeline for functional annotation tai-
lored for fungal genomes. The pipeline uses input data from genomics (DNA
reads), transcriptomics (RNA reads), and proteomics (mass spectrometric spec-
tra). The pipeline integrates pathway reconstruction, network analysis, and rule-
based post-processing. It builds on a foundation of trusted annotations to derive

124 G. Butler

detailed functional annotations of the role of a gene product where possible, and
to provide a broad set of evidence as features, expression data, and networks for
further analysis by other tools for system biology and “-omics” data analysis.

Acknowledgements. Funding in part provided by Genome Canada, Genome
Quebec, and NSERC.

References

1. Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A.,
Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., Meyer, F., Olsen, G.J., Ol-
son, R., Osterman, A.L., Overbeek, R.A., McNeil, L.K., Paarmann, D., Paczian,
T., Parrello, B., Pusch, G.D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V.,
Wilke, A., Zagnitkos, O.: The RAST server: rapid annotations using subsystems
technology. BMC Genomics 9, 75 (2008)

2. Friedberg, I.: Automated protein function prediction–the genomic challenge. Brief.
Bioinform. 7(3), 225–242 (2006)

3. Erdin, S., Lisewski, A.M., Lichtarge, O.: Protein function prediction: towards in-
tegration of similarity metrics. Curr. Opin. Struct. Biol. 21(2), 180–188 (2011)

4. Galens, K., Daugherty, S., Creasy, H.H., Angiuoli, S., White, O., Wortman, J.,
Mahurkar, A., Giglio, M.G.: The IGS standard operating procedure for automated
prokaryotic annotation. Stand. Genomic Sci. 4(2), 244–251 (2011)

5. Mi, H., Muruganujan, A., Gaudet, P., Lewis, S., Thomas, P.D.: PANTHER version
7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology
Consortium. Nucleic Acids Res. 38, D204–D210 (2010)

6. Ooi, H.S., Kwo, C.Y., Wildpaner, M., Sirota, F.L., Eisenhaber, B., Maurer-Stroh,
S., Wong, W.C., Schleiffer, A., Schneider, G.: ANNIE: integrated de novo protein
sequence annotation. Nucleic Acids Res. 37, W435–W440 (2009)

7. Martinez, D., Grigoriev, I.V., Salamov, A.A.: Annotation of fungal genomes. Proc.
ANAS (Biol.) 65(5-6), 177–183 (2010)

8. Haas, B.J., Pearson, M.D., Cuomo, C.A., Wortman, J.R.: Approaches to fungal
genome annotation. Mycology 2(3), 118–141 (2011)

9. Mewes, H.W., Frishman, D., Gregory, R., Mannhaupt, G., Mayer, K.F.,
Münsterkötter, M., Ruepp, A., Spannagl, M., Stümpflen, V., Rattei, T.: MIPS:
analysis and annotation of genome information in 2007. Nucleic Acids Res. 36,
D196–D201 (2008)

10. Martin, T., Durrens, P.: Génolevures: Policy for automated annotation of genome
sequences, http://www.pasteur.fr/ip/resource/filecenter/document/
01s-00004f-0e5/abstract-156.pdf

11. Angiuoli, S.V., Matalka, M., Gussman, G., Galens, K., Vangala, M., Riley, D.R.,
Arze, C., White, J.R., White, O., Fricke, W.F.: CloVR: A virtual machine for
automated and portable sequence analysis from the desktop using cloud computing.
BMC Bioinformatics 12, 356 (2011)

12. Frishman, D.: Protein annotation at genomic scale: the current status. Chem.
Rev. 107(8), 3448–3466 (2007)

13. Hawkins, T., Kihara, D.: Function prediction of uncharacterized proteins. J. Bioin-
form. Comput. Biol. 5(1), 1–30 (2007)

14. Janga, S.C., Moreno-Hagelsieb, G.: Network-based function prediction and inter-
actomics: the case for metabolic enzymes. Metab. Eng. 13(1), 1–10 (2011)

15. Watson, J.D., Laskowski, R.A., Thornton, J.M.: Predicting protein function from
sequence and structural data. Curr. Opin. Struct. Biol. 15(3), 275–284 (2005)

http://www.pasteur.fr/ip/resource/filecenter/document/01s-00004f-0e5/abstract-156.pdf
http://www.pasteur.fr/ip/resource/filecenter/document/01s-00004f-0e5/abstract-156.pdf

Genome-Wide Functional Annotation 125

16. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function.
Mol. Systems Biol. 3, 88 (2007)

17. Claudel-Renard, C., Faraut, T., Kahn, D.: Enzyme-specific profiles for genome
annotation: PRIAM. Nucleic Acids Res. 31(22), 6633–6639 (2003)

18. Ferrer, L., Dale, J.M., Karp, P.D.: A systematic study of genome context methods:
calibration, normalization and combination. BMC Bioinformatics 11, 493 (2010)

19. Lima, T., Coudert, E., Keller, G., Michoud, K., Rivoire, C., Bulliard, V., de Castro,
E., Lachaize, C., Baratin, D., Phan, I., Bougueleret, L., Bairoch, A.: HAMAP: a
database of completely sequenced microbial proteome sets and manually curated
microbial protein families in UniProtKB/Swiss-Prot. Nucleic Acids Res. 37, D471–
D478 (2009)

20. Kretschmann, E., Apweiler, R.: Automatic rule generation for protein annota-
tion with the C4. data mining algorithm applied on SWISS-PROT. Bioinformat-
ics 17(10), 920–926 (2001)

21. Yu, G.X.: Ruleminer: a knowledge system for supporting high-throughput protein
function annotations. J. Bioinform. Comput. Biol. 2(4), 615–637 (2004)

22. Artamonova, I.I., Gelfand, M.S., Frishman, D.: Mining sequence annotation data-
banks for association patterns. Bioinformatics 21, iii49–iii57 (2005)

23. Poptsova, M.S., Gogarten, J.P.: Using comparative genome analysis to identify
problems in annotated microbial genomes. Microbiology 156(7), 1909–1917 (2010)

24. Madupu, R., Dodson, R.J., Brinkac, L., Harkins, D., Durkin, S., Shrivastava, S.,
Sutton, G., Haft, D.: CharProtDB: a database of experimentally characterized
protein annotations. Nucleic Acids Res. 40, D237–D241 (2012)

25. Overbeek, R., Devine, D., Vonstein, V.: Curation is forever: comparative genomics
approaches to functional annotation. Targets 2(4), 138–146 (2003)

26. Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Cohoon,
M., de Crécy-Lagard, V., Diaz, N., Disz, T., Edwards, R., Fonstein, M., Frank,
E.D., Gerdes, S., Glass, E.M., Goesmann, A., Hanson, A., Iwata-Reuyl, D., Jensen,
R., Jamshidi, N., Krause, L., Kubal, M., Larsen, N., Linke, B., McHardy, A.C.,
Meyer, F., Neuweger, H., Olsen, G., Olson, R., Osterman, A., Portnoy, V., Pusch,
G.D., Rodionov, D.A., Rückert, C., Steiner, J., Stevens, R., Thiele, I., Vassieva, O.,
Ye, Y., Zagnitko, O., Vonstein, V.: The subsystems approach to genome annotation
and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33(17),
5691–5702 (2005)

27. Kuzniar, A., van Ham, R.C., Pongor, S., Leunissen, J.A.: The quest for orthologs:
finding the corresponding gene across genomes. Trends Genet. 24(11), 539–551
(2008)

28. Kristensen, D.M., Wolf, Y.I., Mushegian, A.R., Koonin, E.V.: Computational
methods for Gene Orthology inference. Brief. Bioinform. 12(5), 379–391 (2011)

29. Engelhardt, B.E., Srouji, J.R., Brenner, S.E.: Genome-scale phylogenetic function
annotation of large and diverse protein families. Genome Res. 21(11), 1969–1980
(2011)

30. Hawkins, T., Luban, S., Kihara, D.: PFP: Automated prediction of gene ontol-
ogy functional annotations with confidence scores using protein sequence data.
Proteins 74(3), 566–582 (2009)

31. Chitale, M., Hawkins, T., Park, C., Kihara, D.: ESG: extended similarity group
method for automated protein function prediction. Bioinformatics 25(14), 1739–
1745 (2009)

32. Hawkins, T., Kihara, D.: Functional enrichment analyses and construction of func-
tional similarity networks with high confidence function prediction by PFP. BMC
Bioinformatics 11, 265 (2010)

126 G. Butler

33. Santos, F., Boele, J., Teusink, B.: A practical guide to genome-scale metabolic
models and their analysis. Methods Enzymol. 500, 509–532 (2011)

34. Orth, J.D., Palsson, B.Ø.: Systematizing the generation of missing metabolic
knowledge. Biotechnol. Bioeng. 107(3), 403–412 (2010)

35. Karp, P.D., Krummenacker, M., Latendresse, M., Dale, J.M., Lee, T.J., Kaipa,
P., Gilham, F., Spaulding, A., Popescu, L., Altman, T., Paulsen, I., Keseler, I.M.,
Caspi, R.: Pathway Tools version 13.0: integrated software for pathway/genome
informatics and systems biology. Brief. Bioinform. 11(1), 40–79 (2010)

36. Karp, P.D., Latendresse, M., Caspi, R.: The pathway tools pathway prediction
algorithm. Stand. Genomic Sci. 5(3), 424–429 (2011)

37. Dale, J.M., Popescu, L., Karp, P.D.: Machine learning methods for metabolic path-
way prediction. BMC Bioinformatics 11, 15 (2010)

38. Green, M.L., Karp, P.D.: A bayesian method for identifying missing enzymes in
predicted metabolic pathway databases. BMC Bioinformatics 5, 76 (2004)

39. Ferrer, L., Karp, P.D.: Discovering novel subsystems using comparative genomics.
Bioinformatics 27(18), 2478–2485 (2011)

40. Warde-Farley, D., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M.,
Grouios, C., Kazi, F., Lopes, C.T., Maitland, A., Mostafavi, S., Montojo, J., Shao,
O., Wright, G., Bader, G.D., Morris, Q.: The GeneMANIA prediction server: bi-
ological network integration for gene prioritization and predicting gene function.
Nucleic Acids Res. 38, W214–W220 (2010)

41. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with lo-
cal and global consistency. In: Thrun, S., Saul, L.K., Schölkopf, B. (eds.) Neural
Information Processing Systems 16. MIT Press (2004)

42. Tsuda, K., Shin, H.J., Schölkopf, B.: Fast protein classification with multiple net-
works. Bioinformatics 21(suppl. 2), ii59–ii65 (2005)

43. Mostafavi, S., Warde-Farley, D., Grouios, C., Morris, Q.: GeneMANIA: a real-time
multiple association network integration algorithm for predicting gene function.
Genome Biology 9(suppl. 1), S4 (2008)

44. Rattei, T., Arnold, R., Tischler, P., Lindner, D., Stümpflen, V., Mewes, H.W.:
SIMAP: the similarity matrix of proteins. Nucleic Acids Res. 34, D252–D256 (2006)

45. von Mering, C., Kuhn, M., Chaffron, S., Doerks, T., Krüger, B., Snel, B., Bork,
P.: STRING 7–recent developments in the integration and prediction of protein
interactions. Nucleic Acids Res. 35, D358–D362 (2007)

46. Powell, S., Trachana, K., Roth, A., Kuhn, M., Muller, J., Arnold, R., Rattei, T.,
Letunic, I., Doerks, T., Jensen, L.J., von Mering, C., Bork, P.: eggNOG v3.0: or-
thologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic
Acids Res. 40, D284–D289 (2012)

47. Jensen, L.J., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien,
P., Roth, A., Simonovic, M., Bork, P., von Mering, C.: STRING 8–a global view
on proteins and their functional interactions in 630 organisms. Nucleic Acids Res.
37, D412–D416 (2009)

48. Armengaud, J.: A perfect genome annotation is within reach with the proteomics
and genomics alliance. Curr. Opin. Microbiol. 12(3), 292–300 (2009)

49. Renuse, S., Chaerkady, R., Pandey, A.: Proteogenomics. Proteomics 11(4), 620–630
(2011)

50. Castellana, N., Bafna, V.: Proteogenomics to discover the full coding content of
genomes: a computational perspective. J. Proteomics 73(11), 2124–2135 (2010)

51. Majoros, W.H.: Methods for Computational Gene Prediction. CUP (2007)

Genome-Wide Functional Annotation 127

52. Stanke, M., Schöffmann, O., Morgenstern, B., Waack, S.: Gene prediction in eu-
karyotes with a generalized hidden markov model that uses hints from external
sources. BMC Bioinformatics 7, 62 (2006)

53. Petersen, T.N., Brunak, S., von Heijne, G., Nielsen, H.: SignalP 4.0: discriminating
signal peptides from transmembrane regions. Nat. Methods 8(10), 785–786 (2011)

54. Käll, L., Krogh, A., Sonnhammer, E.L.: A combined transmembrane topology and
signal peptide prediction method. J. Mol. Biol. 338(5), 1027–1036 (2004)

55. Emanuelsson, O., Nielsen, H., Brunak, S., von Heijne, G.: Predicting subcellular
localization of proteins based on their N-terminal amino acid sequence. J. Mol.
Biol. 300(4), 1005–1016 (2000)

56. Krogh, A., Larsson, B., von Heijne, G., Sonnhammer, E.L.: Predicting transmem-
brane protein topology with a hidden Markov model: application to complete
genomes. J. Mol. Biol. 305(3), 567–580 (2001)

57. Horton, P., Park, K.J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J.,
Nakai, K.: WoLF PSORT: protein localization predictor. Nucleic Acids Res. 35,
W585–W587 (2007)

58. Blum, T., Briesemeister, S., Kohlbacher, O.: MultiLoc2: integrating phylogeny and
gene ontology terms improves subcellular protein localization prediction. BMC
Bioinformatics 10, 274 (2009)

59. Li, L., Stoeckert Jr., C.J., Roos, D.S.: OrthoMCL: identification of ortholog groups
for eukaryotic genomes. Genome Res. 13(9), 2178–2189 (2003)

60. Ostlund, G., Schmitt, T., Forslund, K., Köstler, T., Messina, D.N., Roopra, S.,
Frings, O., Sonnhammer, E.L.: InParanoid 7: new algorithms and tools for eukary-
otic orthology analysis. Nucleic Acids Res. 38, D196–D203 (2010)

61. Altenhoff, A.M., Schneider, A., Gonnet, G.H., Dessimoz, C.: OMA 2011: orthology
inference among 1000 complete genomes. Nucleic Acids Res. 39, D289–D294 (2011)

62. Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C.,
Salzberg, S.L.: Versatile and open software for comparing large genomes. Genome
Biol. 5(2), R12 (2004)

63. Soderlund, C., Nelson, W., Shoemaker, A., Paterson, A.: SyMAP: A system for
discovering and viewing syntenic regions of fpc maps. Genome Res 16(9), 1159–
1168 (2006)

64. Green, M.L., Karp, P.D.: Using genome-context data to identify specific types
of functional associations in pathway/genome databases. Bioinformatics 23(13),
i205–i211 (2007)

65. Notebaart, R.A., van Enckevort, F.H., Francke, C., Siezen, R.J., Teusink, B.: Ac-
celerating the reconstruction of genome-scale metabolic networks. BMC Bioinfor-
matics 7, 296 (2006)

66. Plata, G., Fuhrer, T., Hsiao, T.L., Sauer, U., Vitkup, D.: Global probabilistic anno-
tation of metabolic networks enables enzyme discovery. Nat. Chem. Biol. (Septem-
ber 9, 2012)

67. Murphy, C., Wu, M., Butler, G., Tsang, A.: Curation of characterized glycoside
hydrolases of fungal origin. Database (May 26, 2011)

68. Cvijovic, M., Olivares-Hernández, R., Agren, R., Dahr, N., Vongsangnak, W.,
Nookaew, I., Patil, K.R., Nielsen, J.: BioMet toolbox: genome-wide analysis of
metabolism. Nucleic Acids Res. 38, W144–W149 (2010)

69. Brown, D.P., Krishnamurthy, N., Sjölander, K.: Automated protein subfamily iden-
tification and classification. PLoS Comput. Biol. 3(8), e160 (2007)

70. Plewniak, F., Bianchetti, L., Brelivet, Y., Carles, A., Chalmel, F., Lecompte, O.,
Mochel, T., Moulinier, L., Muller, A., Muller, J., Prigent, V., Ripp, R., Thierr,
J.C., Thompson, D.T., Wicker, N., Poch, O.: PipeAlign: A new toolkit for protein
family analysis. Nucleic Acids Res. 31(13), 3829–3832 (2003)

C.J.O. Baker, G. Butler, and I. Jurisica (Eds.): DILS 2013, LNBI 7970, pp. 128–140, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Mining Anti-coagulant Drug-Drug Interactions
from Electronic Health Records Using Linked Data

Jyotishman Pathak, Richard C. Kiefer, and Christopher G. Chute

Division of Biomedical Statistics and Informatics, Department of Health Sciences Research,
Mayo Clinic College of Medicine, Rochester, MN 55905, USA

{Pathak.Jyotishman,Kiefer.Richard,Chute}@mayo.edu

Abstract. By nature, healthcare data is highly complex and voluminous. While
on one hand, it provides unprecedented opportunities to identify hidden and
unknown relationships between patients and treatment outcomes, or drugs and
allergic reactions for given individuals, representing and querying large
network datasets poses significant technical challenges. In this research, we
study the use of Semantic Web and Linked Data technologies for identifying
potential drug-drug interaction (PDDI) information from publicly available
resources, and determining if such interactions were observed using real patient
data. Specifically, we apply Linked Data principles and technologies for
representing patient data from electronic health records (EHRs) at Mayo Clinic
as Resource Description Framework (RDF), and identify PDDIs for widely
prescribed anti-coagulant Warfarin. Our results from the proof-of-concept study
demonstrate the potential of applying such a methodology to study prescription
trends based on gender and age as well as patient health outcomes.

Keywords: Drug-drug interactions, SPARQL, Federated querying, DrugBank,
Electronic Health Records.

1 Introduction

An important aspect in realizing the vision of translational research lies in the ability
to access, integrate, analyze and manage multiple and heterogeneous datasets within
and across functional domains. This necessitates a systematic study of clinical
phenotypes and health-related treatment outcomes to better understand the impact of
effective patient-care management. The Semantic Web, and its related tools and
technologies provide the underlying infrastructure for large-scale data integration and
knowledge acquisition, and are being increasingly adopted by the biological, clinical
and translational science communities to serve their information management and
querying requirements. In particular, the Linked Open Data (LOD [1]) community
project at the World Wide Web Consortium (W3C) is publishing various open data
sets as Resource Description Framework (RDF [2]) on the Web and extending it by
setting RDF links between data items from different data sources containing
information about genes, proteins, pathways, diseases, and drugs. While this presents
a very powerful platform for federated querying and heterogeneous data integration,

 Mining Anti-coagulant Drug-Drug Interactions from EHRs Using Linked Data 129

its true potential can only be realized when combining such information with “real”
patient data from electronic health records. However, in practice, due to several
privacy, security, ethical, policy and confidentiality issues, patient data is closely
guarded and monitored for unauthorized access within institutional firewall
boundaries. Consequently, projects such as the LOD rely on “sample” patient data
that do not represent the inherent idiosyncrasies and complexities of information
contained within an electronic health record system.

In this manuscript, we report early experiences by leveraging our prior work [3, 4]
in applying linked data principles for representing patient data from electronic health
record systems at Mayo Clinic to study drug-drug interaction patterns for a widely
prescribed anti-coagulant Warfarin. In particular, we use open-source tooling and
standardized ontologies for creating virtual RDF graphs (i.e, “views”) from Mayo’s
clinical enterprise warehouse and demonstrate federated querying for potential drug-
drug interaction (DDI) information using public data available from the Linked Open
Data cloud. It is well-known that adverse drug events are a major health risk, and
DDIs are one of the causes of such events. However, while thousands of DDIs have
been reported, only a handful is worth any attention. Furthermore, a set of DDIs that
suit one medical center or patient care facility might not be entirely appropriate to
others. Consequently, there is significant research and on-going debate on how DDI
information can be leveraged for better care, particularly in the context of clinical
decision support and EHRs [5].

The work presented in this study is informed by such advances and focuses
primarily on mining DDI information from EHR systems using Semantic Web
technologies. Specifically, our proof-of-concept described in this manuscript is based
on DDI information for Warfarin (Brand Name: Coumadin). Our reasoning behind
selecting Warfarin for demonstration of our methods was not only due to the fact it is
a commonly prescribed anti-coagulant medication, but also because existing literature
[6, 7] have demonstrated the role of genes to guide the drug administration and dosing
recommendations—an area of future interest and relevance to our project [4]. The
preliminary results from our study further illustrate the strong potential for
considering Semantic Web technologies to enabling Web-scale data integration and
federation in biomedical research and development.

We begin by providing a brief background to Semantic Web technologies and their
benefits, followed by a description of Mayo Clinic’s clinical data repository and the
DrugBank and NCBO BioPortal public knowledgebases.

2 Background and Materials

2.1 Semantic Web and Related Technologies

A key benefit of using Semantic Web technologies is a rigorous mechanism of
defining and linking data using Web protocols for automation, integration and reuse
across various applications. Specifically, an “attractive” element of the Semantic Web
is its simple data model, called Resource Description Framework (RDF), which
represents data as a labeled graph connecting resources and their attribute values with
labeled edges representing properties. The graph can be structurally parsed into a set

130 J. Pathak, R.C. Kiefer, and C.G. Chute

of triples (subject, predicate, object), making it very general and easy to express any
type of data. Such a model coupled with (i) dereferenceable Uniform Resource
Identifiers (URI’s) for creating globally unique names, and (ii) standard languages
such as RDFS, OWL, and SPARQL for creating ontologies as well as modeling and
querying data, provides a very powerful framework for the integration of
heterogeneous data. Of particular relevance to this study is the Linked Open Data
(LOD [1]) initiative from the World Wide Web Consortium (W3C) that aims to
bootstrap the Web of data by publishing existing data sets in RDF on the Web and
creating numerous links between them. As of February 2013, the LOD project has
more than 300 public datasets from multiple domains (e.g., genes, drugs and side
effects, diseases, anatomy) with approximately 300 billion triples connected via more
than 500 million links, and comprises resources such as DBpedia [8]) that provide an
RDF representation of Wikipedia.

2.2 Enterprise Clinical Data Warehouse at Mayo Clinic

Mayo Clinic has a history of over 100 years in organizing patient records to support
research and quality improvements [9]. Starting with structured paper documents
storing patient information about laboratory results or physical examination findings,
Mayo has supported the notion of explicitly missing information since 1907. Around
1990, efforts to integrate and organize information into semantically well-formed
structure were initiated in tandem with infrastructure development for registry
creation and information retrieval. The Mayo Clinic Life Sciences System (MCLSS
[10]) is a rich clinical data repository maintained by the Enterprise Data Warehousing
Section of the Department of Information Technology. MCLSS contains patient
demographics, diagnoses, hospital, laboratory, flowsheet, clinical notes and pathology
data obtained from multiple clinical and hospital source systems within Mayo Clinic
at Rochester, Minnesota. Data in MCLSS is accessed via the Data Discovery and
Query Builder (DDQB) toolset, consisting of a web-based GUI application and
programmatic API. Investigators, study staff and data retrieval specialists can utilize
DDQB and MCLSS to rapidly and efficiently search millions of patient records.
Users are able to quickly build, save and share complex queries without programming
or database knowledge. A unique text search engine provides the capability to rapidly
search for specific words and phrases within unstructured text documents, such as
clinical notes and pathology reports, freeing investigators from many hours of tedious
manual chart reviews. Data found by DDQB can be exported into CSV, TAB or
Excel files for portability. It implements full data authorization and audit logging to
ensure data security standards are met.

For this project, we leverage MCLSS to access and retrieve patient demographic
and diagnosis data, and represent such knowledge using Resource Description
Framework (RDF). We also leverage patient clinical information from Mayo’s
Electronic Medical Record and Genomics (eMERGE [11]) project comprising
approximately 7000 patients. In particular, we represent the medication prescription
data from this cohort as RDF graphs for querying. We discuss additional details and
processes involved in the remainder of this manuscript.

 Mining Anti-coagulant Drug-Drug Interactions from EHRs Using Linked Data 131

2.3 DrugBank and Drug-Drug Interaction Information

DrugBank [12] is a publicly available rich source of annotated drugs and drug target
information. At the time of writing this manuscript in February 2013, DrugBank
contained 6711 drug entries including 1447 FDA-approved small molecule drugs, 131
FDA-approved biotech (protein/peptide) drugs, 85 nutraceuticals and 5080
experimental drugs. Additionally, 4227 non-redundant protein (e.g., drug transporter
or carrier) sequences are linked to these drug entries. The data is represented via a
DrugCard where each entry comprising 150 data fields contains information on
drug/chemical and drug target or protein data. Specifically, the data fields include
information drug-action pathways, drug transporter data, drug metabolite data,
pharmacogenomic data, adverse drug response data, ADMET data, pharmacokinetic
data, computed property data and chemical classification data, and more recently
drug-drug and drug-food interactions. Additionally, the DrugBank data is also
available as RDF via the Bio2RDF [13] SPARQL endpoint.

Our objective is to use the SPARQL endpoint to demonstrate how we can integrate
publicly available data with institutional EHR data in a flexible manner. Since our use
case for this work is investigate DDI information for Warfarin (Coumadin), we
restrict our SPARQL query searches to these entities (see more details in Section 3.2).
Table 1 below illustrates a partial listing of DDI information extracted from
DrugBank for Warfarin and how the combination of the two effects the INR
(international normalized ratio) levels.

Table 1. Partial listing of Warfarin drug-drug interactions

132 J. Pathak, R.C. Kiefe

2.4 National Center for

The National Center for
computing infrastructure—
ontologies and terminolog
evaluation and evolution
between terms, to add com
ontology reviews. In this w
multiple ontologies.

3 Methods

3.1 Representing Patie

Figure 1 shows the propose
MCLSS using RDF, linked
components: (1) data acces
Here we provide a brief ov
prior work [3].

Fig

Data Access and Storage
diagnoses, procedures, labo
generated during a clinical
the MCLSS database as RD
as a mediator in the crea
SPARQL endpoint for quer

er, and C.G. Chute

r Biomedical Ontology (NCBO) BioPortal

Biomedical Computing (NCBO) provides a natio
—BioPortal [14]—to access a library of biomed
gies. BioPortal enables community participation in
of ontologies by providing features to add mappi

mments linked to specific ontology terms and to prov
work, we leverage BioPortal's SPARQL endpoint to qu

nt Clinical Data as RDF Graphs

ed architecture for representing patient health records fr
d data and related technologies. It comprises of two m
ss and storage, and (2) SPARQL-based querying interfa
verview of these components; more details are described

g. 1. Linked Clinical Data Architecture

e. This component comprises the patient demograph
oratory results, and free-text clinical and pathology no
encounter. Since our goal is to represent the data stored

DF data, we use the Virtuoso Universal Server [15] that a
ation of materialized RDF graphs as well as provide
rying the graphs. In particular, R2RML is used to descr

onal
dical

the
ings
vide
uery

rom
main
ace.
d in

hics,
otes
d in
acts
es a
ribe

 Mining Anti-coagulant Drug-Drug Interactions from EHRs Using Linked Data 133

the mappings between the relational schema and RDFS/OWL ontologies to create the
RDF triples. This language generates a mapping file from table structures of the
databases in eMERGE and MCLSS that can then be customized by replacing the
auto-generated terms with concepts from standardized ontologies. In our case, we
modified the custom ontology generated by Virtuoso for creating these mappings with
terms and concepts from the SNOMED-CT [15] standardized ontology.

SPARQL endpoint. The RDF graphs created from MCLSS and eMERGE using the
above approach was exposed via two different endpoints. This allows software
application clients to query the MCLSS RDF data using the SPARQL query language.
Given that our overarching goal is to integrate the eMERGE, MCLSS and DrugBank
RDF graphs, our objective is to execute federated queries across multiple SPARQL
endpoints. The MCLSS and eMERGE endpoints were placed on two different servers
in order to reduce the bandwidth load on the machines during the query execution.
We discuss the details of SPARQL-based federated querying in the next section.

3.2 SPARQL-Based Federated Querying for Drug-Drug Interactions

As shown in Figure 1, our goal is to federate between three main data sources:
eMERGE, MCLSS and DrugBank, where eMERGE is a MySQL database containing
prescription data, MCLSS is a DB2 database containing patient clinical and
demographic data, and the DrugBank is a public drug data repository. Since our
interest lies in querying for DDI pairs in DrugBank and determining such potential
interactions using Mayo's EMR data, in its current form, one would have to execute
multiple SQL query across all these datasources to retrieve the appropriate resultset.
Instead, by leveraging RDF and Semantic Web technologies, we demonstrate how
this can be achieved using a single SPARQL query.

In particular, there were four different endpoints queried during this study. The
first endpoint was DrugBank where we state the drug for which is the basis for our
investigation into patient prescription histories. By stating Warfarin in the first
service statement we are able to retrieve the list of drugs which have been established
in DrugBank to have a DDI. The next service statement uses that list of medications
to find the patients who have been prescribed both Warfarin and a DDI medication on
the same clinic visit. The form of the results from this portion of the query is in
patient clinic numbers. A decision was made at this point of the query that the list of
patients would be distinct so those who were prescribed a specific DDI combination
with Warfarin would not be duplicated in the list.

When creating the mapping file for the RDF view, SNOMEDCT concept code
422549004 was used to represent patient clinic numbers in order to align our database
concepts with accepted ontology descriptions. In this case, the concept id represents a
“patient related identification code”. For the same reasoning, SNOMEDCT concept
code 432213005 was mapped to the clinic visit dates in the database as they represent
the “date of diagnosis”. Medications listed in the table were mapped to SNOMEDCT
concept code 33633005 as we considered them a “medication prescription”.

134 J. Pathak, R.C. Kiefer, and C.G. Chute

Fig. 2. SPARQL query to retrieve patient diagnosis information

The next service statement queries the MCLSS endpoint against two different
graphs. The demographic graph was required to transform the list of patient clinic
numbers into internal MCLSS key ids as they are used as primary keys on all the
tables in the database. The query then matches the internal primary key from the
demographic graph with the internal primary key in the diagnostic graph. Once that
match is made, we are able to extract the list of diagnoses made for the patients on the
date of the clinic visit.

When mapping the MCLSS tables, SNOMEDCT concept code 422549004 was
also used to map the patient clinic identification numbers. Another advantage to
using known ontologies while doing the mappings is to provide a common
understanding of what the values within each table represent. If we were to use
column names, the patient numbers in eMERGE would use the predicate “clinic”
while the ones in MCLSS demographics table would use the predicate “mcn”. To
differentiate patient clinic numbers with internal table identification numbers, we used
SNOMEDCT concept code 396278008 to map the primary table keys to the
ontology’s “identification number” representation. The relationship between patient
and the diagnosis was mapped as SNOMEDCT concept code 8319008 to represent
the “principle diagnosis”.

 Mining Anti-coagulant Drug-Drug Interactions from EHRs Using Linked Data 135

The list of diagnoses from the MCLSS diagnostic graph is in the form of ICD9CM
codes. Rather than manually matching up codes with their descriptions, we end the
query by using a service statement against the ICD9CM graph located at the BioPortal
endpoint. This endpoint was added to the initial three to help us match the list of
diagnosis code values with the code descriptions to include in the final result set.

The results of the query are
grouped by medication and
diagnosis. We used a count
function on the diagnosis values in
order to analyze the results
outlined in the next section. A
graphical representation of the
query process is shown in Figure 3.

Two other queries were run to
further the analysis of patient
data. One query provided a
breakdown of the ages of the
patients when they were
prescribed the DDI combination
and the other broke it down in
terms of gender. Patient age
information is included as a part
of eMERGE, and hence service
calls to MCLSS and DrugBank
were not required. Similarly,
gender information is included in
MCLSS, and hence the diagnosis
graph matching was not required
nor the DrugBank service call. In
the interest of space in this paper, the queries have been posted to our project wiki:
http://informatics.mayo.edu/LCD/index.php/Project_Warfarin_DDI.

4 Results

We retrieved DDI information from the prescription medication data using the
SPARQL endpoints for Warfarin (Coumadin) on a cohort of 6758 patients that are
participating in the Mayo Clinic eMERGE (Electronic Medical Records and
Genomics) study [11]. This cohort primarily comprises of elderly patients who have
been diagnosed with cardiovascular diseases; a detailed description of the cohort is
presented elsewhere [11]. Figures 4 and 5 show the gender and age distributions,
respectively, on the eMERGE cohort for which potential DDIs were observed using
the electronic health record data retrieved from the MCLSS SPARQL endpoint.
Figure 4 highlights the gender distribution and as such, each distinct patient was
included only once in the result set data. Figure 5 highlights the age distribution and

Fig. 3. SPARQL query process

136 J. Pathak, R.C. Kiefe

because a patient may hav
lifetime, each incidence wa
(Table 1 shows only a sma
for at least one or more p
potential DDI evidences w
above). This would be
complications are more pre
are prescribed to prevent th

Fig. 4. Gender distribution f

Specifically, the most
Warfarin were Acetaminop
relatively equal. Prednison
patients in the 18-30 year o
and 71+ but not to 31-50
prescribed Allopurinol an
Females were 10 times mor
more likely to take Clopid
Patients in the age group of
used to reverse the effects
levels were too low.

Finally, Table 2 shows a
disease diagnoses (based on
of cardiovascular diseases a
large number of patients di
followed by Diabetes Mell
272.4). This would correl

er, and C.G. Chute

ve had the same ddi prescribed more than once in th
as included. Of the total 171 potential DDIs for Warfa
all subset), 72 DDIs were observed in the prescription d
patient. While the gender distribution was not biased,
were observed more primarily in the elderly (65 years

consistent with the fact that cardiovascular rela
evalent in the older population, and hence anticoagula
rombosis and thromboembolism.

for the eMERGE cohort (N=6758) for potential Warfarin DDI

commonly prescribed medications that interact w
phen and Prednisone. The distribution among gender w
ne was the most commonly prescribed medication amo
old grouping. Dicloxacillin was given to age groups 18
or 51-70. Males were almost 3 times more likely to

nd 4 times more likely to be prescribed Amiodaro
re likely to be prescribed Fluconazole. Older patients w

dogrel – as usually prescribed to patients receiving ste
f 71 years or above were only given Phytonadione—a d
s of Warfarin when INR (international normalized ra

another dimension of these findings in the context of pati
n ICD-9-CM), which further illustrates a higher prevale
and its risk factors in this cohort. Specifically, we observ
iagnosed with Essential Hypertension (ICD-9 code 401
litus (ICD-9 code 250) and Hyperlipidemia (ICD-9 c
late with the fact most of the patients were prescri

heir
arin
data
the

s or
ated
ants

Is

with
was
ong

8-30
o be
one.

were
ents.
drug
atio)

ient
ence
ve a
1.9),
ode

ibed

 Mining Anti-coagulant

Fig. 5. Age distribution fo

cardiovascular drugs includ
cohort primarily comprising
morbidities, we also obs
antivirals.

5 Summary

5.1 Discussion

The overarching goal of th
and querying using public d
identifiable patient data fro
and software, we develop
patient data stored in Mayo
via a SPARQL end- point
querying of DDI informat
endpoints further demonstr
interlinking and querying m
available, with private (and
that further development o
accelerate scientific finding

We also acknowledge th
known to the clinical care

t Drug-Drug Interactions from EHRs Using Linked Data

or the eMERGE cohort (N=6758) for potential Warfarin DDIs

ding statins and antiplatelets. Further, with this particu
g of elderly with a mean age of 60.3 years and several

serve higher rates of prescriptions for antibiotics

his study is to precisely explore federated data integrat
data sources from the Linked Open Data cloud, and priv
m Mayo Clinic’s EHR systems. Using open-source tool

ped a proof-of-concept system that allows represent
o’s enterprise warehouse system as RDF, and exposin
t for accessing and querying. Our use case for federa
tion from DrugBank and the NCBO BioPortal SPAR
rated the applicability of such a system and the benefits
multiple, heterogeneous Web data sources that are publi
d institution- specific) patient information. We hypothes
of such a system can immensely facilitate, and potenti
gs in clinical and translational research.
hat several potential DDIs relevant to Warfarin are of
e providers, and are in fact prescribed in combinatio

137

ular
co-
and

tion
vate,
ling
ting

ng it
ated

RQL
s of
icly
size
ally

ften
ons,

138 J. Pathak, R.C. Kiefer, and C.G. Chute

although with appropriate dosing considerations. For example, we observed that 37 out
of 38 patients prescribed Clopidogrel and Warfarin concomitantly were 50 years old or
above. This would make clinical "sense" since individuals in this age group frequently
receive drug-eluting stents (Clopidogrel prevents blood clotting). Similarly,
concomitant prescription for Ciprofloxacin was observed in 51 out of 55 patients that
were above 50 years since it is an important antibiotic used widely to treat several
respiratory, urinary tract, gastrointestinal and abdominal infections. Consequently,
while concurrent administration cannot be avoided entirely, and hence may increase or
decrease Warfarin activity, the clinical protocols and guidelines recommend close
monitoring of daily INR levels, and appropriately adjusting Warfarin dosing. For
instance, Isoniazid—a commonly used drug to prevent and treat tuberculosis—when
co-administered with Warfarin, often increases the anticoagulant effects of Warfarin by
interfering with the enzyme in the liver that eliminates Warfarin, thereby necessitating
dose adjustments (lowering the Warfarin dose in this case).

5.2 Limitations

The proof-of-concept system developed in this study has several limitations. First,
while we demonstrated the applicability of the system via sample use case queries, a
more robust and rigorous evaluation along several dimensions (e.g., performance,
query response, precision and recall of query results etc.) is required before it can be
deployed within an enterprise environment. Note that since our use cases are based on
federated querying of several public SPARQL endpoints, the system performance and
query responses are dependent on the behavior of the endpoints. Nevertheless, we
plan to perform a thorough system evaluation after the integration of additional
MCLSS sources (e.g., laboratory, clinical and pathology reports) that contain large
amounts of patient data. Second, the use-case queries were executed on a small cohort
of approximately 7000 patients, and only drug prescription data was available. It
remains to be seen if the preliminary findings for the DDI pairs can be replicated in a
larger cohort, and more importantly, using drug administration data. Finally, while
one of the Linked Data principles is to make data publicly available and accessible,
due to privacy and HIPPA constraints of identifiable patient data, the MCLSS RDF
views remain private. Consequently, only appropriate personnel within Mayo’s
firewall approved by Mayo’s Institutional Review Board participating in this study
can access our application.

5.3 Future Work

In addition to addressing the limitations aforementioned, there are several activities
that we plan to pursue in the future. Firstly, in this study, we studied only a handful of
DDI pairs. Our immediate goal is to expand the DDI pair list that are of clinical
significance and consider both drug prescription and administration data. Secondly,
our experience in discussing and demoing the proof-of-concept to clinicians made it
amply clear that we should focus on developing visual and interactive interfaces for

 Mining Anti-coagulant Drug-Drug Interactions from EHRs Using Linked Data 139

Table 2. Top 5 ICD-9-CM diagnosis (for the cohort in Figures 4 and 5)

Drug interacting
with Warfarin

ICD-9-CM
diagnosis codes

Top 5 observed ICD-9-CM diagnosis

401.9 Unspecified essential hypertension

V58.61 Encounter for long-term (current) use of anticoagulants

250 Diabetes mellitus without mention of complication

272.4 Other and unspecified hyperlipidemia

414 Coronary atherosclerosis of nonautologous biological bypass graft

414 Coronary atherosclerosis of nonautologous biological bypass graft

401.9 Unspecified essential hypertension

250 Diabetes mellitus without mention of complication

272.4 Other and unspecified hyperlipidemia

414.01 Coronary atherosclerosis of native coronary artery

401.9 Unspecified essential hypertension
250 Diabetes mellitus without mention of complication
414 Coronary atherosclerosis of nonautologous biological bypass graft

272.4 Other and unspecified hyperlipidemia

714 Felty's syndrome

250 Diabetes mellitus without mention of complication

V58.61 Encounter for long-term (current) use of anticoagulants

V42.0 Kidney replaced by transplant

401.9 Unspecified essential hypertension

272.4 Other and unspecified hyperlipidemia

401.9 Unspecified essential hypertension

250 Diabetes mellitus without mention of complication

414 Coronary atherosclerosis of nonautologous biological bypass graft

272.4 Other and unspecified hyperlipidemia

714 Felty's syndrome

401.9 Unspecified essential hypertension
250.01 Type 1 diabetes mellitus
V58.61 Encounter for long-term (current) use of anticoagulants
427.31 Atrial fibrillation

272.4 Other and unspecified hyperlipidemia

250 Diabetes mellitus without mention of complication

401.9 Unspecified essential hypertension

272.4 Other and unspecified hyperlipidemia

V58.61 Encounter for long-term (current) use of anticoagulants

414 Coronary atherosclerosis of nonautologous biological bypass graft

401.9 Unspecified essential hypertension

V42.0 Kidney replaced by transplant

V58.61 Encounter for long-term (current) use of anticoagulants

250 Diabetes mellitus without mention of complication

V42.1 Heart replaced by transplant

401.9 Unspecified essential hypertension
V58.61 Encounter for long-term (current) use of anticoagulants
427.31 Atrial fibrillation
272.4 Other and unspecified hyperlipidemia

414 Coronary atherosclerosis of nonautologous biological bypass graft

Prednisone

Lovastatin

Triamcinolone

Acetaminophen

Gemfibrozil

Hydrocortisone

Ibuprofen

Clopidogrel

Doxycycline

140 J. Pathak, R.C. Kiefer, and C.G. Chute

forming the SPARQL queries. To this end, we plan to explore visual SPARQL editing
tools, such as SPARQLMotion [16]. Finally, as depicted in Figure 1, we plan to use
the Linked Data API for creating our service layer to provide application developers a
friendlier access to the data, for example, using JSON.

Acknowledgment. This research is supported in part by the Mayo Clinic Early Career
Development Award (FP00058504) and the eMERGE consortia (U01-HG-006379).
The authors would also like to thank Jamie Kiefer for her inputs and feedback on the
manuscript.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

2. Resource Description Framework (RDF) (2011), http://www.w3.org/RDF/ (cited
January 13, 2011)

3. Pathak, J., Kiefer, R., Chute, C.: Applying Linked Data Principles to Represent Patient’s
Electronic Health Records at Mayo Clinic: A Case Report. In: 2nd ACM SIGHIT
International Health Informatics Symposium 2012 (2012)

4. Pathak, J., Kiefer, R., Chute, C.G.: Using Semantic Web Technologies for Cohort
Identification from Electronic Health Records to Conduct Genomic Studies. AMIA
Summit on Clinical Research Informatics (CRI) American Medical Informatics
Association (AMIA), p. 10–19 (2012)

5. Greenberg, M., Ridgely, M.: CLinical decision support and malpractice risk. JAMA: The
Journal of the American Medical Association 306(1), 90–91 (2011)

6. Ramirez, A.H., et al.: Predicting warfarin dosage in European-Americans and African-
Americans using DNA samples linked to an electronic health record.
Pharmacogenomics 13(4), 407–418 (2012)

7. Delaney, J.T., et al.: Predicting Clopidogrel Response Using DNA Samples Linked to an
Electronic Health Record. Clin. Pharmacol. Ther. 91(2), 257–263 (2012)

8. Bizer, C., et al.: DBpedia - A crystallization point for the Web of Data. Web Semant. 7(3),
154–165 (2009)

9. Kurland, L., Molgaard, C.: The Patient Record in Epidemiology. Scientific
American 245(4), 54–63 (1981)

10. Weiss, T.: IBM, Mayo Clinic to develop database for clinical trials, research (2002),
http://www.computerworld.com/s/article/69540/IBM_Mayo_Clinic
_to_develop_database_for_clinical_trials_research (June 8, 2011)

11. Kullo, I., et al.: Leveraging Informatics for Genetic Studies: Use of the Electronic Medical
Record to Enable a Genome-Wide Association Study of Peripheral Arterial Disease.
JAMIA 17(5), 568–874 (2010)

12. Knox, C., et al.: DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs.
Nucleic Acids Research 39(suppl. 1), D1035–D1041 (2011)

13. Belleau, F., et al.: Bio2RDF: Towards a mashup to build bioinformatics knowledge
systems. Journal of Biomedical Informatics 41(5), 706–716 (2008)

14. Musen, M.A., et al.: The National Center for Biomedical Ontology. Journal of the
American Medical Informatics Association 19(2), 190–195 (2012)

15. Virtuoso Universal Server (2011), http://virtuoso.openlinksw.com/ (cited
January 16, 2011)

16. Waldman, S.: TopQuadrant: SPARQLMotion Visual Scripting Language (June 28, 2011),
http://www.topquadrant.com/products/SPARQLMotion.html

Author Index

Asiaee, Amir H. 38

Baker, Christopher J.O. 69
Booth, David 54
Bot, Jan J. 23
Bukhari, Ahmad C. 69
Butler, Greg 113

Chute, Christopher G. 128

de Vries, Arjen P. 23
Doshi, Prashant 38
Dos Reis, Julio Cesar 90

Gombocz, Erich Alfred 1
Groß, Anika 81, 90

Hartung, Michael 81, 90
Hulsman, Marc 23

Kiefer, Richard C. 128
Klein, Artjom 69
Kolb, Lars 81

Koschmieder, André 46
Krauthammer, Michael 105

Lebo, Timothy 105
Leser, Ulf 46

McGuinness, Deborah L. 105
Minning, Todd 38

Parikh, Priti 38
Pathak, Jyotishman 128
Pruski, Cédric 90

Rahm, Erhard 81, 90
Reinders, Marcel J.T. 23

Sahoo, Satya 38
Sheth, Amit 38
Stoltmann, Thomas 46

Tarleton, Rick L. 38

Zimmermann, Karin 46

McCusker, Jamie P. 105

	Preface
	Organization
	Table of Contents
	Changing the Model in Pharma and Healthcare – Can We Afford to Wait Any Longer?
	1 Introduction
	1.1 Historic Models in Life Sciences
	1.2 Rise of New Technologies and Machines
	1.3 Economic Importance of Data
	1.4 Staying Competitive

	2 State of the Industry
	2.1 Data Generation vs. Knowledge Gain
	2.2 Traditional Data Mining
	2.3 Cost of Research vs. Outcomes
	2.4 Data Ownership: Closed Data vs. Patient-Shared Access

	3 Methodology for Change
	3.1 Semantic Approach to Data Integration – Meaning, Inference, Reasoning
	3.2 Linked Life Data, Linked Open Data – Consequences
	3.3 Complexity and Change Require Dynamic, Adaptable Models
	3.4 Understanding Biology: Shifting towards Interoperable, Integral Systems
	3.5 Progression towards New Life Sciences Models: Pharma 3.0, Healthcare 3.0

	4 Use Cases of Adoption
	4.1 Pharmaceutical Industry
	4.2 Government
	4.3 Clinical Decision Support

	5 Discussion, Future Outlook
	5.1 Applied Knowledge as Cost Saver
	5.2 Socio-economics - Higher Quality of Life
	5.3 Actions Today and Tomorrow

	References

	Ibidas: Querying Flexible Data Structures
to Explore Heterogeneous Bioinformatics Data
	1 Introduction
	2 Approach and Results
	2.1 Annotating Data: Roles and Relations
	2.2 Query Language
	2.3 Optimization and Scalability

	3 Methods
	3.1 Architecture
	3.2 Data Representation
	3.3 Data Operations

	4 Related Work
	4.1 Data Models
	4.2 Query Systems
	4.3 Mediators and Workflow Tools

	5 Discussion
	6 Availability
	References

	From Questions to Effective Answers: On the Utility of Knowledge-Driven Querying Systems for Life Sciences Data
	1 Introduction
	2 Related Work
	3 Background
	3.1 Paige Tools – Conventional DBMS-Based Approach
	3.2 PKR – Knowledge-Driven Approach

	4 Benefits of PKR over Paige Tools
	4.1 Explicitly Structured Queries
	4.2 Queries at nt Differen Levels of Abstraction
	4.3 Uniform Query Int terface
	4.4 Querying over Mul ltiple Datasets

	5 Limitations of
	6 Evaluation and Discussion
	Reference

	OmixAnalyzer – A Web-Based System for Management and Analysis of High-Throughp
ut Omics Data Sets
	1 Introduction
	2 System Architecture
	3 Supported Data Analysis
	4 WebInterface
	5 Availability and Extensibility
	6 Discussion
	References

	The RDF Pipeline Framework: Automating Distributed, Dependency-Driven Data Pipelines
	1 Introduction
	2 Example Pipeline
	3 The RDF Pipeline Approach: What It Does and How It Works
	3.1 Wrappers
	3.2 Serializing, Deserializing and Optimizing Communication
	3.3 Caching and Updating Only When Necessary
	3.4 Deploying and Distributed Processing
	3.5 Update Policies
	3.6 Passing Parameters Upstream
	3.7 Error Checking and Automated Transformations
	3.8 Graceful Evolution of Nodes and Pipelines
	3.9 RDF Pipeline Properties

	4 Security
	5 Conclusions
	References

	Towards Interoperable BioNLP Semantic Web Services Using the SADI Framework
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 SADI
	3.2 Ontologies for Modeling Annotations and Extracted Entities
	3.3 IO Service Modelling Examples
	3.4 Consolidated Service Outputs

	4 Access to BioNLP-SADI Services
	5 Use Cases - Sample Queries
	6 Conclusion
	References

	Optimizing Similarity Computations for
Ontology Matching - Experiences from GOMMA
	1 Introduction
	2 Optimizing N-Gram Similarity Computation
	3 GPU-Based N-Gram Similarity Computation
	4 Evaluation
	5 Conclusion and Future Work
	References

	Semi-automatic Adaptation of Mappings
between Life Science Ontologies
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Ontology Versions and Mappings
	3.2 General Scenario and Change Model

	4 Composition-Based Adaptation
	5 Diff-Based Adaptation
	5.1 Adaptation Algorithm for One Evolving Ontology
	5.2 Change Handlers
	5.3 Adaptation Algorithm for Two Evolving Ontologies

	6 Evaluation
	6.1 Ontology and Mapping Analysis
	6.2 Mapping Adaptation Results

	7 Conclusion
	References

	Next Generation Cancer Data Discovery, Access,
and Integration Using Prizmsand Nanopublications
	1 Introduction
	2 Requirements: Levels of Data Sharing
	3 Nanopublications for Datasets: Datapubs
	4 The Prizms Architecture
	5 Discussion
	6 Future Work
	7 Conclusion
	References

	Putting It All Together: The Design of a Pipeline for Genome-Wide Functional A
nnotation of Fungi in the Modern Eraof “-Omics” Data and Systems Biology
	1 Introduction
	2 Background
	2.1 Types of Functional Annotation
	2.2 Resolving Orthology
	2.3 Integration of Evidence
	2.4 Pathway Reconstruction
	2.5 Network-Based Annotation
	2.6 Structural Annotation

	3 Specification of the Pipeline
	4 Design of the Pipeline
	4.1 Stage One: Initial Annotation
	4.2 Stage Two: Metabolic Pathway Reconstruction
	4.3 Stage Three: Network-Based Annotation
	4.4 Foundation
	4.5 Rules, Anomalies, and Data Mining

	5 Benchmarking
	6 Conclusions
	References

	Mining Anti-coagulant Drug-Drug Interactions from Electronic Health Records Using Linked Data
	1 Introduction
	2 Background and Materials
	2.1 Semantic Web and Related Technologies
	2.2 Enterprise Clinical Data Warehouse at Mayo Clinic
	2.3 DrugBank and Drug-Drug Interaction Information
	2.4 National Center for r Biomedical Ontology (NCBO) BioPortal

	3 Methods
	3.1 Representing Patie nt Clinical Data as RDF Graphs
	3.2 SPARQL-Based Federated Querying for Drug-Drug Interactions

	4 Results
	5 Summary
	5.1 Discussion
	5.2 Limitations
	5.3 Future Work

	References

	Author Index

