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Preface

DILS was established in 2004 as a new bioinformatics workshop focusing on
topics related to data management and integration. Now in its ninth year the
conference continues to attract researchers from across a range of disciplines
all of whom recognize the challenges faced by life scientists in managing and
reusing data. Stakeholders involved in digital ecosystems and data ownership
are able to generate large volumes of high-quality data and want to publish
it to the widest possible audience for prospecting by scientists. And yet, data
are not knowledge. The real value is the translation of the data into actionable
knowledge. The methodologies and frameworks we depend on to facilitate this
translation are still evolving, and the challenges in data management and reuse
have grown rather than diminished over the last decade and are common across
many disciplines.

Life science remains one of the leading domains and continues to create mas-
sive amounts of diverse data needing validation, curation, and annotation with
meaningful descriptions and formatting according to open standards to ensure
it is sharable between interoperable distributed systems and accessible by end
users. Practitioners are, however, continually experimenting and the forum for
discussing which methodologies have succeeded, which new technologies are now
being adopted, for which particular tasks, and how they are used to integrate
data for subsequent bioinformatic analysis is DILS.

This year, DILS received 23 papers to the main research track (both long
and short papers). Four papers were accepted unconditionally. A further six were
accepted with the provision that authors revised their papers in accordance with
reviewers’ comments and provided detailed and itemized responses. All papers
were subsequently verified by the Program Committee (PC) Chair and General
Chairs.

Accepted papers cover a range of important topics including: algorithms for
ontology matching, interoperable frameworks for text mining using Semantic
Web services, pipelines for genome-wide functional annotation, automation of
pipelines providing data discovey and access to distributed resources, knowledge-
driven querying-answer systems, prizms, nanopublications, electronic health
records and linked data. This year we opted to also offer an Early Career and
Systems Track at the DILS workshop. At the time of writing, papers submitted
to each track were still under review. These papers are not published in the
research track proceedings.

DILS 2013 featured two keynote speakers. Firstly, Dr. Erich Gombocz, co-
founder and CSO of IO Informatics a decade ago, is a veteran in applying systems
biology approaches to pharmaceutical and clinical decision making based on se-
mantic data integration and knowledge management technologies. Dr. Gombocz
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presented the rationale for rethinking old problems, retooling with new method-
ologies and revisiting the process models that underpin our existing knowledge
discovery in pharma and clinical practice in healthcare. Specifically, he advo-
cates new patient-centric, precision-medicine healthcare models to change how
drugs are developed, how trials are performed, and how patients are treated.
His manuscript is included in the proceedings. Our second keynote speaker was
Dr. Paolo Ciccarese, Assistant in Neuroscience at Massachusetts General Hos-
pital and Instructor in Neurology at Harvard Medical School. He is known for
his pioneering work on the Annotation Ontology, an RDF model for exchang-
ing annotation. In his talk, Dr. Ciccarese introduced annotation as a form of
“micro-integration,” in which typed, versioned, and provenance links are as-
signed between text and schema, text and data, or data and data. He showed
how the Open Annotation standard facilitates both short- and longer-term data
integration efforts, transforming content into smart and connected data.

DILS 2013 was held at Concordia University in Montreal, Canada, and was
organized as part of a series of three co-located events known as the Semantic
Trilogy. The two co-located events were the 4th International Conference on
Biomedical Ontology and the 4th Canadian Semantic Web Symposium.

As the event co-chairs and editors of this volume, we would like to thank
all authors who submitted papers, as well as the PC members and additional
referees for their excellent work in evaluating the submissions. Special thanks go
to Concordia University for providing us with the facilities to run the event, and
the Semantic Trilogy organization team. Finally, we would like to thank Alfred
Hofmann and his team at Springer for their cooperation and help in putting this
volume together.

May 2013 Christopher J.O. Baker
Greg Butler
Igor Jurisica
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Christian Schönbach Kyushu Institute of Technology, Japan
David De Roure Oxford e-Research Center, UK
Dietrich Rebholz-Schuhmann EBI, UK
Erhard Rahm University of Leipzig, Germany
Fatima Al-Shahrour Broad Institute of MIT and Harvard, USA
Fleur Mougin University of Bordeaux Segalen, France
Guo-Qiang Zhang Case Western Reserve University, USA
Hasan Jamil University of Idaho, USA
James Cimino NIH/CC/OD, USA
Jörg Hakenberg Arizona State University, USA
Jerven Bolleman Swiss Institute of Bioinformatics, Switzerland
Jong Park Korea Advanced Institute of Science and

Technology, Korea
Karen Eilbeck University of Utah, USA
Karin Verspoor National ICT, Australia, NISTA
Lawrence Hunter University of Colorado, USA
Marco Masseroli Politecnico di Milano, Italy
Marco Roos LUMC, University of Amsterdam,

The Netherlands
Maria Esther Vidal Universidad Simón Boĺıvar, Venezuela
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Changing the Model  
in Pharma and Healthcare – 

Can We Afford to Wait Any Longer? 

Erich Alfred Gombocz∗ 

IO Informatics Inc., Berkeley, California, USA 
egombocz@io-informatics.com 

Abstract. Innovations in healthcare delivery and Pharma require re-
examination of process models at the foundation of our knowledge discovery 
and clinical practice. Despite real-time availability of ‘big data’ from ubiquitous 
sensors, mobile devices, 3D printing of drugs, and a mind shift in data 
ownership, data integration still remains one of the core challenges to 
innovation. Increasingly persistent, semantic data integration is  gaining 
recognition for its dynamic data model and formalisms which make it possible 
to infer from and reason over interconnected contextualized data, creating 
actionable knowledge faster and at lower cost. While such technical advances 
underpin the successful strategies to drive positive patient outcomes or 
accelerate drug design, there are equally profound social changes towards the 
willingness of patients to share their own data - opening doors to new patient-
centric, precision-medicine healthcare models. Adding astronomically rising 
costs in research and healthcare, we have arrived at a critical turning point 
where it is now well within our reach to change how drugs are developed, how 
trials are performed and how patients are treated - and we can do this with huge 
benefits for otherwise unsustainable industries.  Examples show that not only is 
this possible today, but that such approaches already have traction; (i) in 
Pharma for assessing impact of excipient on drug stability and efficacy; for pre-
clinical toxicity assessment and integral systems views on drug safety, (ii) in 
Government at the FDA’s cross species biomarker initiative to reduce animal 
testing and (iii) in Health Care for organ transplant rejection assessment and 
COPD. Using comparative effectiveness and side effect analyses to base 
treatments on solid prognoses and therapy decision support, we can and must 
change discovery and healthcare into a data driven and patient centric 
paradigm. The socio-economic benefits of such a change will be enormous. 

Keywords: life sciences, big data, sensors, data ownership, semantic 
integration, actionable knowledge, patient centric, precision medicine, decision 
support, use cases, socio-economics. 

                                                           
∗ Corresponding author. 
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1 Introduction 

1.1 Historic Models in Life Sciences 

In the past, widespread utilization of large shared spreadsheets, dedicated laboratory 
information management systems (LIMS), large relational data warehouses and 
traditional methods for extraction, translation and loading (ETL) have been used 
across the life sciences enterprise spectrum with more or less sophisticated 
approaches to interconnect in-between some of those resources [1]. Key features of 
LIMS include acquisition, workflow and data tracking across different modalities, 
data exchange interfaces, audit functions and support for their use in regulated 
environments. Because of rapid pace at which laboratories and their data management 
needs shift, the definition of LIMS has become more blurred. This is particularly due 
to the fact that the needs of laboratories widely vary which requires also a shift in 
functionality of laboratory information management systems.  

Historically, LIMS and process execution have performed similar functions, 
building an organization’s reference backbone for experimental results. More 
recently, assay and ELN functions have been added to extend traditional LIMS 
systems. However, the need to implement quality standards, the awareness of data 
management solutions using different architectures and the unavailability of adapted 
solutions for interoperability led in many cases to in-house developments instead of 
using commercial solutions. Particularly in large Pharma organizations the separation 
of data into target areas, specific projects as well as the separation of R&D chemistry, 
assay development and biology caused limited communication in-between groups, 
redundant efforts and no integral view across the data. The strict separation between 
pre-clinical, clinical and market data has hampered feedback within the organizations 
to learn from past experiences. Consequently, adverse effects got missed; clinical trial 
efficiency was at a low point and causing a hesitant approach in the development of 
new drugs.  

Despite ever rising amounts of data through high throughput screening, 
multiplexed assays and broad use of chip technologies, the actual knowledge 
produced in comparison to research costs was declining rapidly [2]. Large Pharma 
companies were buying their libraries of new compounds from small biotech to cut 
costs by reducing in-house research to small focus areas. Collaboration models were 
restricted to consortia with narrow goals and small portions of pre-clinical, pre-
competitive segments the sharing party deemed to be of no further usefulness to the 
organization.  

1.2 Rise of New Technologies and Machines 

The data landscape changed with the rise of new technologies, new developments in 
instrumentation, automation and exponential increase in throughput of previously 
labor-intense and time-consuming procedures. In the last several years, massive next 
generation sequencing (NGS), progress in whole genome sequencing using de novo 
assemblies on unimaginable scale [3], RNA sequencing and genome-wide association 
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studies (GWAS) have been at the forefront of genomics to be used for both, gene-
based biomarker discovery and personal genomics as tool for precision medicine and 
the genetic selection of population cohorts for clinical trials.  

The development of new sensor technologies and advances in mobile computing 
led to sensors being everywhere and on everything with real-time internet 
connectivity. Wearable medical technology is becoming a hot commodity [4]. As 
these devices come to market, they have great potential to help both patients and 
clinicians monitoring vital signs and symptoms [5]. In personal health, sensors which 
are always on, always with you, always tracking were changing data collection to 
become a continuous monitoring stream [6], providing both, individuals and 
physicians more accurate and more detailed data about many influence parameters on 
a health or disease state which previously were not available [7]. Lifestyle choices, 
such as exercises, habits and environments have been recorded similarly [8].  

The size of all these data and the computational considerations to analyze them 
along with the high data dynamics require investment in High Performance 
Computing (HPC) and have led to tradeoffs between inexpensive highly dense storage 
on commodity disks and higher cost better performant NAS, SAN or Cloud services 
(CEPH, OpenStack, Amazon). Dependent on budgets, compromises were made, and 
raw data have been thrown out in favor of much smaller analyzed data sets. 
Algorithmic transformations to normalize in-between platforms have changed over 
time and metadata not always included, making review for verification in many cases 
impossible. While new ways of computing have been introduced which are using 
massive parallel computing and distributed clusters for analysis [9], management of 
‘big data’ has become a complex, expensive and demanding task at scales beyond 
most forecast expectations. This development has created a new bottleneck in analysis 
and practical use of ever growing data repositories and made interoperability, 
provenance and versioning an equally important concern to plain connectivity and 
was instrumental in rethinking data integration in life sciences in general.  

1.3 Economic Importance of Data 

In a MIT Technology Review end of 2012, the question was raised publicly if 
personal data is the new currency [10]. The economic importance of access and 
utilization of vast amounts of interconnected data can no longer be denied, and the 
same applied equally to the life sciences. With the expansion of social networks and 
the drive from individuals to take care of their needs for better prognosis and 
treatment, the frustration about public availability of medical data has driven the 
movement of patients making their own data publicly accessible. Adding to this  
the fact, that big data analytics became a way of turning data into money [11], the 
assessment that Data is the new money and those who have access to it, have power 
became obvious with significant implications in the shift from revenue and margins 
driven industrial models towards customer-centric, health outcomes for patients 
motivated strategies in which consumers influence the drivers of healthcare systems.  
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This new proposition is affecting insurers, payers, service providers, drug 
discovery processes, drug development, repurposing of drugs for new indications 
alike – moving to an evidence-based, outcomes-focused, behavior-driven life sciences 
environment which through empowering of data will benefit all of us.  

1.4 Staying Competitive 

In the past, low ROI on research and development has provided little incentives to 
innovation or change, particularly as industry was closely watching its competitor’s 
moves to decide about the necessity to adjust their model to new trends based on 
proof-of-concept (PoC) and pilot study outcomes. In a way, the unwillingness to share 
even pre-competitive or failed approaches within tightly controlled consortia 
members for collaborations has reduced the competitiveness of the industry – 
however, there a several positive examples on the horizon that this behavior is 
changing as both, Pharma and Healthcare industry have come to the realization that 
everyone profits from collaborative approaches to accumulative and complimentary 
data on common goals. Of course, any meaningful collaboration is closely tied to 
interoperability, and this is true equally for both, commercial and academic entities.  

Crowd-sourced analysis requires interoperability, and interoperability is how big 
data becomes big open data, and this will assure rapid progression in scientific 
discovery and providing a solid foundation for Pharma and healthcare to stay 
competitive. Acknowledged, that crowd-sourcing as a new policy has many 
implications [12-13] and there is still hesitancy to collaborative data sharing, its 
driving force will be costs and efficiency towards new concepts which will 
significantly shape the future of data-driven life sciences.   

2 State of the Industry 

2.1 Data Generation vs. Knowledge Gain 

While automation and advances in technologies have brought down costs of complex 
testing faster than anticipated, analysis and integration towards applicable knowledge 
has lagged behind.  Massive data (a single run of Life Technologies sequencer 
produces ~900 GB raw data, 1 machine = 10 TB/day) and the sophistication required 
by the complexity of analysis procedures have let to the notion of the “$1,000.- 
genome at $1 Mio interpretation.”[14] – thus, in most cases, only a small fraction of 
information is used to build knowledge and advance scientific progress.  

One major reason for this discrepancy is that the required proficiency of a whole 
range of experts including molecular and computational biologists, geneticists, 
pathologists and physicians with detailed  knowledge of disease and treatment 
modalities, genetic counsellors and IT specialists to build analysis teams [15] is not 
easy to establish. Using large number of specialists was critical to complete the data 
analysis, for variant annotations and to interpret causative or actionable variants. Even 
then, clinical verification of such variants and ramifications for the treating physician 
and patient require even today immense efforts and make the widespread use of 
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clinical whole-genome sequencing for diagnosis and quality of life improvement still 
a distant goal. On top of this, the bioethics pros and cons of WGS of every newborn 
child need to be sorted out and genomics must address socio-economic disparities in 
healthcare.  

Similar considerations should be applied to other rapidly evolving fields such as 
proteomics, transcriptomics and microbial implications in major diseases – rapid data 
generation through automated, low cost high throughput sample analyses does not 
match up with the possible knowledge gain from those resources. Amongst other 
reasons, standardization of analytical methods and algorithms and requirements for 
quality standards on data also has played a significant role in the usability of results 
across laboratories. 

2.2 Traditional Data Mining 

Relational data warehouses and object data bases require upfront considerations to 
determine which questions you want to answer, Data models (schemas) must be 
defined at the beginning, so such solutions, while excellent for final datasets and great 
performing on optimized queries for what they were built for are demanding in 
support due to their rigid and static structure. On the other hand, a whole host of 
mining solutions and visualization tools are available as relational database 
technology has been around for a long time and big players in information technology 
have embraced its use.  

In Life Sciences, however, a different picture emerges as dynamic, agile solutions 
are required to keep pace with changing data types, formats, instrumentation as well 
as analytical requirements. Add to this the scale of growth, and ‘big data’ has 
demonstrated impressively, that more relational data warehouses and traditional data 
mining approaches cannot be the answer to today’s information requirements 
landscape. In many cases in Life Sciences, questions to ask and potential use cases are 
moving targets, so any inflexible solution limits its applicability. In biological 
systems, the need to traverse data, to infer from other data and to search complex 
pattern across all your resources to find clues what kind of questions you can answer 
is rooted on a different set of requirements - in most cases, questions are not 
predefined, and the picture what and how to ask is not clear at the beginning. Include 
to this that in the relational world no clear connections in-between data silos exist and 
different proprietary schemas prevent cross-resource queries, and the limitations of 
such approaches become transparent. 

2.3 Cost of Research vs. Outcomes 

A recently published Forbes report [16] on staggering costs of new drugs, a new study 
comparing healthcare cost in the US with other countries [17] and the OECD Health 
Statistics [19] provide insights into costs of research versus outcomes which are 
stunning, but well known within the industry. A representative of Eli Lilly estimated 
the average cost of bringing a new drug to market at $1.3 billion, a price that would 
buy 371 Super Bowl ads on television [16]. On average, a drug developed by a major 
pharmaceutical company costs at least $4 billion in R&D (see Table 1 below) 
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Table 1. Number of approved drugs and drug development costs of major Pharma companies 
(2012) 
 

           Company                                  Approved Drugs      R&D Costs/Drug [$ Mio] 

AstraZeneca 5 11,790.93 

GlaxoSmithKline 10 8,170.81 

Sanofi 8 7,909.26 

Roche AG 11 7,803.77 

Pfizer Inc. 14 7,727.03 

Johnson & Johnson 15 5,885.65 

Eli Lilly & Co. 11 4,577.04 

Abbott Laboratories 8 4,496.21 

Merck & Co Inc 16 4,209.99 

Bristol-Myers Squibb Co. 11 4,152.26 
Novartis AG 21 3,983.13 

Amgen Inc. 9 3,692.14 
 
Source: InnoThink Center For Research In Biomedical Innovation; Thomson Reuters 
Fundamentals via FactSet Research Systems (adapted from [16]) 
 

Looking at the quality of healthcare and its costs between countries gives 
interesting insights into the state of global healthcare. The US spends $8,233 per 
person/year [17] which is 2.5-times more than most of developed nations and uses 
17.6% of GDP for healthcare [17]. At the same time, the US had 2.4 practicing 
physicians per 1,000 people comparing to an average of 3.1 among OECD countries. 
In hospital beds per 1000 people, the US ranges with 2.6 well under the OECD 
average of 3.4.  

Life expectancy in the US was increased by 9 years between 1960 and 2010; 
Japan’s by 15 years and in OECD countries on average by 11 years [17]. In the drug 
development arena, per patient clinical trial costs have risen on average by 70 percent 
across all development phases since 2008 [18].  

This numbers are clear indicators that the cost vs. outcome ratio needs to be 
improved [19] and the current models require adjustments  

2.4 Data Ownership: Closed Data vs. Patient-Shared Access 

Social media has arrived in healthcare. Patients are sharing publicly their own data, in 
which case no restrictions on scientific use apply. While many impediments by 
HIPAA compliance requirements to provide only selected, de-identified subsets to 
certain authorized individuals have been circumvented by such developments, new 
questions arise on the consequences from changes in data ownership and the shifts 
from hospital and providers to patient, and how this may impact integrated research.  
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3 Methodology for Change 

3.1 Semantic Approach to Data Integration – Meaning, Inference, Reasoning 

Resource description framework (RDF)-based integration (W3C standard) [21] opens 
new avenue and possibilities for rapid and efficient data integration. It has been 
around for quite some time, and its benefits as an agile, extensible environment built 
for interoperability have been widely demonstrated. Semantic data is much easier to 
connect, to visualize and extend as it does not rely on isolated RDBMS schemas, a 
contested standard data description, or a proprietary middleware translation layer. 
Dynamically built application ontologies can be adjusted and data remapped as 
needed; meaningful, not arbitrary schema-based connections drive its framework of 
triples, providing capabilities for inference and reasoning and pattern-based queries 
across the network graphs. The built-in basis for interoperability of true 5-star 
compliant RDF resources is not only a needed convenience, but a must for today’s life 
sciences needs to utilize a fast array of publicly available linked data resources. RDF 
and its web ontology language, OWL [22] providing an excellent way to represent 
data with changing needs, with ability to reuse, repurpose in an easy to adopt and 
maintain fashion – allowing for disambiguous queries, pattern discovery and graph 
traversal across multiple RDF-represented resources.  

In addition to being a globally standardized framework which links data based on 
their meaning, emergent properties include network visualization, visual query, 
faceted browsing, machine inference, and pattern recognition. Recent advances in 
provenance and versioning [23-24], in the development of public formal ontologies 
[25] and their direct accessibility through tools [26] have shown increasing interest in 
life sciences as foundation for larger project. Examples of such ongoing efforts are the 
development of the Translational Medical Ontology and Knowledgebase [27] driven 
by both, industry and academia, and the connex between medical informatics and 
bioinformatics in knowledge building in the clinic [28-29].  

3.2 Linked Life Data, Linked Open Data – Consequences 

The significant increase in the quality of Linked Data (LLD, LOD) [30-32] brings 
promising add-ons to qualify experimental findings early on through enrichment with 
external resources – but interoperability and different provenance remain still 
impediments for broader applicability as well as changes in licensing for previously 
‘open’ public resources. Legal restrictions on use without modification prevent certain 
data resources from becoming interoperable as mapping and harmonization functions 
to other data cannot be applied. 

As government funding for some linked open data cloud resources is unsure due to 
austerity and budget restraints in the US, Japan and Europe we will have to ensure to 
establish new business models between data provider and consumer to warrant 
continuous availability of such resources; either through private/academic/government 
partnerships or new concepts based on resource value for organizations. As the socio-
economic benefits of maintaining these resources by far outweigh contributions towards 
their sustainability, such models will benefit all participants greatly. 
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3.3 Complexity and Change Require Dynamic, Adaptable Models 

New and better scientific methods and analysis tools require adaptation for changes. 
As outlined before, the complexity of functional biology calls for network analysis of 
interconnected data in their relationships to each other. This leads logically to 
semantic integration approaches and network-driven systems to establish better 
understanding of complex biological intertwined reactions.  

The healthcare industry is now about three years into ‘meaningful use’, an 
ambitious incentive program to convince hospitals and private practices to use 
electronic health record (EHR) software. Regulators are also bringing HIPAA into the 
21st century, and similar efforts are underway for telemedicine. Above all, it looks as 
if healthcare finally seems ready to benefit from big data, cloud services and other 
disruptive technologies that have dramatically changed other vertical industries [33]. 
As healthcare costs have tripled within the last decade and despite over $10 Billion 
payments in healthcare incentives, we cannot afford to have EHR systems which are 
not interoperable and CRO’s which are disconnected from their customers.  A good 
example about possibilities in progressing with success in complex diseases like 
atherosclerosis to assess life threatening risk of plaque rupture via biomarkers leading 
to discovery of previously unknown pathway involvement, using such approaches to 
take advantage of integrated knowledge can be found in [34].    

3.4 Understanding Biology: Shifting towards Interoperable, Integral Systems 

The need to contextualize experimental findings with pathway involvement and 
mechanisms is apparent as pharmacogenomics correlations not necessarily always 
match biological systems responses. Only when utilizing as much as we possibly can 
know, we will succeed in comparative effectiveness to select the best treatment at the 
right dose based on a patient’s profile, lifestyle, disease stage and individual drug 
response.  

The shift towards an integral view is the key to improving effectiveness of 
therapies and better understanding of the impact of a disease stage and a patient’s 
profile on response, prognosis and outcome. Indications are that this is happening 
now. This year's Health Information and Managements Systems Society's (HIMSS13) 
conference brought the announcement, that five leading electronic health record 
(EHR) vendors were forming the ‘CommonWell Health Alliance’ to promote 
‘seamless interoperability’ of healthcare data [35]. 

3.5 Progression towards New Life Sciences Models: Pharma 3.0,  
Healthcare 3.0 

There is a noticeable, albeit slowly, but steadily happening shift in industry from a 
product-centric business model to a customer/patient centric business model; and the 
new drivers are health outcomes. Maintaining or regaining growth will require the 
transition of Pharma from acquisition model to innovate partnerships and 
collaborative data sharing [36]. Innovation needs to focus more on business model 
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innovation than product innovation. Reimbursement needs to have its foundation in 
real market effectiveness rather than the approval of clinical trial data. What applies 
to Pharma, applies in equal ways to the entire healthcare industry. Efforts to 
reimbursement based on comparative effectiveness of clinical procedures and 
treatments indicate that life sciences industries are shifting to evidence-based and 
outcomes-focused business models – data-savvy, integrative, consumer (patient)-
minded rather than product-centric. Moving quickly and following the value to 
progress towards a new sustainability model will be the key to success. Although 
there is a sense of urgency to try disruptive methods, it so far has been a ‘trying the 
water’ approach around edges of the business, not deeply embraced change. While the 
trends are apparent to most industry players, to think in new ways has always been 
uncomfortable and therefore slow in execution. If moving from 2.0 to 3.0 means, that 
collective impact approaches allow to move more expressively to pre-competitive 
sharing within the healthcare / life sciences space, the transition will not only be more 
rapid, it also will create new incentives for holistic approaches to this sector.  
 

 

Fig. 2. Pharma on the move from 2.0 to 3.0 – Consequences for Life Sciences(Source: Ernst & 
Young 2012 [36]) 

Significant changes need to occur in business model, value drivers and innovation during the 
shift towards a patient-centric, outcomes-focused and innovation-driven partnership model, 
where any reimbursement is based on effectiveness in its application rather than the product 
itself. 
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4 Use Cases of Adoption 

4.1 Pharmaceutical Industry 

Impact of Excipient Choice on Formulation Stability, Purity and Drug Efficacy 
Objective at a large Pharma company was the integration of disconnected 
chromatography data systems (CDS) and LIMS with compound and formulation 
databases to provide quick searches for compound purity data upon FDA inquiries. As 
there were no common identifiers, such inquiries required time-consuming off-line 
searches with ambiguous results, delaying responses to the FDA by several weeks. A 
system was sought to remedy this organizational problem.  

The solution to build a semantic platform for compound purity and stability 
assessment not only was accomplished in a fraction of the allocated time (6 weeks 
instead of ~ 1 yr. projected project completion time in traditional data warehouse 
fashion), but inference could be used to quickly and unambiguously find the desired 
raw data in the CDS. As a pleasant side effect of the semantic data model 
implemented, an additional data resource was integrated to allow for queries 
determining the impact of the choice of excipient in a given drug formulation on 
active ingredient efficacy and overall drug stability. 
 
Pre-clinical Toxicity Assessment and Compound Toxicity Type Classification 
In a joint project (NIST/Cogenics/CLDA) to understand the impact of toxicity on 
biological systems, sets of known and presumed toxicants were used in large 3-year 
animal studies to determine biomarker classifier patterns and their applicable ranges 
for pre-clinical toxicity screening of compounds.   

Hepatotoxicity studies consisted of a panel of hepatotoxicants at single oral dose 
(placebo, low, mid, high) in groups of 4 rats, at 6, 24 and 48 hrs.) and metabolic 
analysis of liver, serum and urine (1603 metabolic components; Bruker LC/MS-MS); 
gene expression microarray analysis  of liver and whole blood (31096 transcript 
probes; Affymetrix); and statistical biomarker pre-selection at p<0.005, abs fc>10 
(genes) and p<0.005, abs fc>2.5 (metabolites).  

Alcohol studies were carried out at high doses t.i.d. for four days, with and without 
24h withdrawal; metabolic analysis of plasma, liver and brain (1620 metabolic 
components),microarray analysis of liver and brain (31096 transcript probes) and 
statistical biomarker pre-selection at p<0.005, abs fc>5 (genes) and p<0.005, abs 
fc>2.5 in similar fashion.  

The experimental network of statistically preselected putative genomic and 
metabolomic biomarkers was then enriched with public RDF resources through 
SPARQL queries to discover common pathway dependencies, using LOD-based 
systems-biological qualification of experimental pharmacogenomic correlations. As a 
result of semantic data integration, markers to distinguish several distinct types of  
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established and the microbial pathogen knowledgebase enhanced with NCBI’s 
taxonomy for group classification into family, subfamily, genus and organisms. This 
Knowledgebase [40-42] then was used in integrated network analysis of samples from 
MS-based sequencing and/or rapid microbiological assays in conjunction with historic 
case data to identify pathogens within the host samples.  

An Applied Semantic Knowledgebase (ASK) web portal for simplified pattern 
queries was established to determine threads by location and confidence level for the 
identified pathogens. 

4.3 Clinical Decision Support 

Biomarkers in Transplantation: Organ Rejection Screening 
Transplantation is currently the most common therapy for patients with end-stage 
organ failure. It involves putting a donated organ into the immunologically foreign 
environment of the receiving patient. While the transplantation procedure itself may 
go smoothly, the recipient’s immune system may react to the new organ to induce 
rejection. White blood cells and antibodies are primarily involved in the recognition, 
attack and destruction of foreign tissues, yielding dysfunction of the transplanted 
organ.  

A major challenge facing clinical caregivers in the management of organ rejection 
is to determine whether a transplanted organ is undergoing rejection prior to any 
symptoms. This typically required using highly invasive and risky procedures, such as 
tissue biopsies – expensive, regularly performed emotionally and physically stressful 
procedures which may still result in inconclusive findings. In order to prevent organ 
rejection, powerful therapies are used to suppress a patient's immune system. While 
this approach reduces the probability of rejection, it does so at a high cost. 
Impairment of a recipient patient’s immune system leaves them susceptible to 
infections, malignancies and functional complications in the newly transplanted 
organs.  

As individuals vary in their response to such therapies, understanding this variation 
would help physicians balancing the necessity of therapy with its possible side-
effects. The ability to personalize immune suppressants for each patient not only 
alleviates patient discomfort and side-effects, but also reduces the enormous costs 
associated with over-prescription of immunosuppressive drugs and other diagnostic 
procedures.  

The Biomarkers in Transplantation (BIT) initiative was established to identify and 
validate biomarkers for diagnosis of rejection of a transplanted organ via a simple 
blood test [43]. The program was launched in 2004 to better understand acute or 
chronic tissue rejection in heart, liver, and kidney transplant patients. Its application to 
use a web-based Applied Knowledgebase (ASK) decision support system won Bio-
IT’s Best Practices Award in 2010 [44]. It utilizes semantic data integration and 
parameterized SPARQL queries with weighing and ranges for multimodal biomarkers 
[45-46] to provide screening for patients at risk  
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rest of Canada, COPD exacerbations are leading cause of hospitalization, and 
prevalence has continued to rise, increasing 41% since 1982. It now affects 10-14% of 
Canadians 40 years of age and older and 600 million people globally [47-48]. As the 
4th leading cause of mortality in Canada and the US [49] and the only major cause of 
mortality for which death rates continue to rise [48-49], the economic costs of COPD 
management for society are estimated to be over a billion dollars annually in Canada 
with $736 million of that directly attributable to exacerbations [51]. Most of the 
morbidity occurs during exacerbations, and their direct costs are predicted to surpass 
$1 billion by 2015 [52].   

A biomarker-based decision support system to predict likelihood of exacerbation 
and advise treating physician via web-based access to screen patients alleviates those 
risks and provides a tremendous improvement for patient care in reducing emergency 
care and hospitalization. 

5 Discussion, Future Outlook 

5.1 Applied Knowledge as Cost Saver 

A 2012 released OECD Health Data Report [19] provides among others statistics on 
health expenditures, healthcare utilization, demographic references, healthcare quality 
indicators, pharmaceutical market and  long-term care resources. In 2010, in the US 
public expenditure on health were 48.2% from the total expenditures compared to 
87.7% in the Netherland, 85.1% in Denmark and 83.2% in the UK [19]. Applied 
knowledge from semantic integration of experimental, clinical and public proteomics, 
genomics, metabolomics and pathway resources led to the development and 
qualification of multi-modal biomarker pattern applicable for rejection risk 
assessment with enormous cost savings.  

Taking the examples from 4.3 using biomarker blood test for clinical decision 
support can be used replacing monthly biopsies for up to a year after transplantation 
at average costs of $4000.-/each. As of 2007, the average price of a kidney-only 
transplant was $246,000 in the first year. A single lung transplant totaled $399,000. A 
heart transplant patient's first-year total medical costs were $658,000. In 2011, in the 
US 1,760 patients on the heart wait list received heart transplants.  This represents a 
decrease from 2,333 hearts transplanted in 2010 and 2,211 in 2009 (Source: 
UNOS/OPDN). The Heart and Stroke Foundation in Canada reports that heart disease 
and stroke costs the Canadian economy more than $20.9 billion every year in 
physician services, hospital costs, lost wages and decreased productivity (Conference 
Board of Canada, 2010). In 2010, there were 167 heart transplants in Canada, with 
135 patients on the waiting list for organ donors. One can imagine the cost savings 
and quality of life enhancement for patients obtainable through widespread use of 
preventive non-invasive screening methods  Similarly, the effects of being able to 
predict COPD exacerbations which cause permanent lung tissue damage, are 
impressive indicators how far reaching integral patient-centric procedures based on 
semantic knowledgebases have influenced the socio-economics of healthcare.  
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Actionable knowledge and near-real time alerting of physicians about patients at 
risk in life-threatening conditions is a testimonial to the real value of interoperable, 
agile data in life sciences.  

5.2 Socio-economics - Higher Quality of Life 

As exemplified by examples provided, the use of semantic data integration 
technologies and integrated, harmonized network approaches utilizing both, internal 
experimental, clinical, observational and demographic data and public resources 
provided as RDF/OWL via SPARQL endpoints to enrich, qualify, validate – even 
plan additional new experiments – has moved from exploratory projects to 
mainstream acceptability.  

Biomarker-based screening for kidney disease to avoid biweekly dialysis or 
transplantation, heart organ transplant monitoring with biomarkers instead of costly 
and unpleasant monthly biopsies, and prediction of exacerbations in COPD are just 
the beginning of a new era of patient-centric, date-driven improvement in health 
outcomes where everyone involved in applying Pharma 3.0 and Healthcare 3.0 
principles [36] will win back sustainability based on reimbursement of real, not 
perceived effectiveness at the reward of huge socio-economic benefits and improved 
prevention, care and quality of life.  

5.3 Actions Today and Tomorrow 

We can see already today the adaption towards more open-minded strategic 
approaches to build integrated, interoperable (and open?) life science knowledge 
system capable of remarkable results at significantly lower costs [53] – but there still 
remains a lot to do.  

We need to do more to promote and proliferate these efforts among wider 
communities to ensure that the life sciences industries are sustainable, effective and 
applied to help through early intervention, better prognosis and integrated patient-
centric, knowledge-based treatment to improve outcomes, increase life expectancy 
and the quality of life for all. I would urge you to join me in my assessment, that we 
cannot afford to wait any longer, and that the phase of hesitation on early adaptation 
to implement innovate solutions and business processes in our quest for 
comprehensive, integrative systems approaches to better understand biology is over.  

We know, what is necessary to change the model, and we have examples leading 
the way to a bright future – but knowing is not enough; it’s time to act, and more than 
any time before, the time is now. 
 

“Knowing is not enough; we must apply. Willing is not enough; we must do.” 
- Johann Wolfgang von Goethe (1782) 
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Abstract. Nowadays, bioinformatics requires the handling of large and
diverse datasets. Analyzing this data demands often significant custom
scripting, as reuse of code is limited due to differences in input/output
formats between both data sources and algorithms. This recurring need
to write data-handling code significantly hinders fast data exploration.

We argue that this problem cannot be solved by just data integra-
tion and standardization alone. We propose that the integration-analysis
chain misses a link: a query solution which can operate on diversely struc-
tured data throughout the whole bioinformatics workflow, rather than
just on data available in the data sources. We describe how a simple
concept (shared ’dimensions’) allows such a query language to be con-
structed, enabling it to handle flat, nested and multi-dimensional data.
Due to this, one can operate in a unified way on the outputs of algorithms
and the contents of files and databases, directly structuring the data in a
format suitable for further analysis. These ideas have been implemented
in a prototype system called Ibidas. To retain flexibility, it is directly in-
tegrated into a scripting language. We show how this framework enables
the reuse of common data operations in different problem settings, and
for different data interfaces, thereby speeding up data exploration.

1 Introduction

Research in the field of biological systems has become a strongly data-driven
activity. Measurements are performed at multiple levels (genomics, transcrip-
tomics, etc.), and combined with already-available information, which can be
accessed through the more than 1300 available public data sources [1]. Handling
these large and diverse datasets can be a time-consuming and complex task,
requiring the development of many custom-written data-handling scripts. This
problem has attracted significant attention from researchers, which has led to
the development of numerous approaches to improve this process [2].

Generally this is solved in a bottom-up fashion, where one starts from the
data sources and enables structured access to the data, for example by making
use of warehouses, webservices or the semantic web, e.g. [3–5]. Bottom-up ap-
proaches have some limitations however. Data interfaces offer relatively limited
functionality (for computational and security reasons as queries often run on
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public servers). Furthermore, queries spanning multiple data sources often are
not supported, as data can only be queried when it is available within a com-
mon (or in case of the semantic web: similar) data store. For example, comparing
organisms by linking BLAST results with gene ontology (GO) annotation data
requires manual linking of the two data sources. Finally, once the data has been
retrieved and processed, further use of the query functionality offered by the
data sources is only possible by importing the data back into a data store. E.g.,
to perform queries on the results of a differential expression analysis requires one
to put the data back into a database/triple store. Due to this overhead, most
users will elect to write custom data-handling code instead. Especially within
a bioinformatics research context, the mentioned limitations are encountered
often.

Why do so many trivial data-handling tasks still require custom scripting so-
lutions, while high-level data-handling query languages such as SPARQL, SQL
or XPath are available? Fundamentally, the underlying cause for these problems
is that both data integration and data analysis play a large role in bioinformat-
ics. These two tasks have very different requirements. Data integration favors
the absence of data structures, such as tables/matrices/nested arrays, as map-
ping these structures onto each other can be a difficult process. Data analysis
on the other hand requires such data structures to allow for easy reasoning and
aggregation across related data elements (Figure 1ab). Current query languages
however do not support this complete range of data structuring, but only a lim-
ited subset. For example, RDF/SPARQL focuses on data integration, reducing
datasets to collections of single facts; similarly, SQL focuses on relational ta-
bles; and XPath queries are used to query hierarchical descriptions of objects
(XML). None of these query languages handle analysis-focused data structures
(e.g. matrices) well. Support for data-handling operations within and between
algorithms is therefore more or less absent, while this is exactly the area where it
is most often needed. Therefore, most of the complex data-handling operations
are still performed by the user, often by implementing them in custom written
scripts.

To solve this problem, we propose a query language that can operate on data,
irrespective of whether it is stored in simple or more complicated data structures.
That is, we solve data-handling issues at the language level (’top-down’). Note
that the bottom-up and top-down approaches are complementary: top-down
needs bottom-up, as it enables easier access to (integrated) data sources and
standardized identifiers, while bottom-up needs top-down as there is no universal
best (agreed on) data structure, for which reason there will always be a need to
’navigate’ between data structures.

Our goal has been to combine both the flexibility of low-level languages as well
as the advantages of general high-level query operations. The proposed query
language (which has been implemented in a prototype system called Ibidas)
therefore uses the syntax of the Python scripting language, allowing one to mix
normal scripting code with high level data operations. Besides stand-alone use,
Ibidas also functions as middleware, allowing other analysis applications to use
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Octave: median(sort(values),2)

SQL:  SELECT s.row_number, median(s.values) FROM
            (SELECT row_number() AS row_number, values
            OVER (PARTITION BY tissues ORDER BY values)
            FROM microarray) AS s
      GROUP BY s.row_number

Fig. 1. Effects of data structure and language choice. Illustrated using a microarray
dataset, which contains a matrix of measurement values, a vector of gene names (related
to rows of the value matrix), and a vector of tissue names (related to columns of
the value matrix). a) Calculating the median distribution of gene expression values
(used for microarray normalization) with Octave commands. b) Performing the same
operation on data structured as a table, using SQL. Note that the ’flat’ table format
makes such analysis operations conceptually harder to express. c) Filtering the dataset
on empty gene names. Using low level code (scripting), one has to make sure during
programming that data relations remain consistent. High level data operations (queries)
do this automatically.

it through webservices. This way, data-handling functions (e.g. parsers, data
operations) can be shared between platforms.

In the next section we will give an overview of the main ideas underlying this
system. In section 3 we describe some aspects of the current (prototype) system
in detail, followed by an extensive description of related work and a discussion
in section 4 and 5.

2 Approach and Results

2.1 Annotating Data: Roles and Relations

In order to construct a query language which can operate on more complex data
structures, we first focus on the question: which data representations can be
queried?

Datasets consist of data elements, such as text or integers. However, with-
out knowing the role of these data elements or the relations between the data
elements, a dataset remains meaningless. For example, to assign meaning to a
floating point value, both its role (e.g. it being a microarray expression measure-
ment) as well as its relations (e.g. to a data element with the role ’gene name’,
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Fig. 2. Illustration of how role and relations are represented by composites and collec-
tions. a) Table: a collection (list) of composites (records). Composites contain mutually
related data elements. Shared fields indicate a common role, e.g. ’name’. b) Inverted
table: a composite of collections. Collections contain data elements with a common
role. Similar positions w.r.t. to the shared dimension (’measurements’) indicate mu-
tual relation. c) Multi-dimensional collection (’values’), annotated with a ’genes’ and
’tissues’ dimension. Both roles and relations are still fully described.

and to a data element with the role ’tissue’) have to be known. In this way,
relations/roles transform data into information (see also [6]). For comparison,
in the semantic web context, the equivalents of roles are properties/predicates,
while relations are represented through (common) object identifiers.

The way in which such meta-data is handled forms, in our view, the main
distinction between ’low-level’ custom scripted data operations and ’high-level’
query operations. Custom scripts require one to manually maintain relation/role
consistency, while high-level data operations use relation/role information to
maintain this consistency automatically (Figure 1c). One could say that scripts
operate at the data level, while query operations operate at the information
level.

This does require though a data representation describing both its own roles
and relations. One way to annotate data in this way is the use of data structures,
usually a combination of collections1 and composites2. Composites group mutu-
ally related data elements, while collections group data elements with common
roles.

For a queryable data structure, both roles and relations need to be represented.
For composites (representing relations), one could consider that the field names
indicate these roles. This is used in relational databases, where similar composites
are stored in a common collection. The common collection signifies that these
composites have the same role (in object-oriented terms: class), and by extension
we can assume that similarly named fields within these composites also represent
common roles. This structure is better known as a table (Figure 2a). A shared
class and fields thus add the role aspect to the composite type.

1 Collections: vectors, arrays, lists, e.g. [1,2,3].
2 Composites: records, objects, tuples, e.g. (name=’BRCA1’, value=0.5).
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We propose to do the same for collection types, which lack relations. Where
composites can have similar field names, collections can have similar positions.
Where composites can have the same class, collections can have the same ‘di-
mension’ (i.e. shared axis). Based on this parallel, we consider data elements
stored in collections with a similar dimension to be related if they are stored at
the same position. In this way, a shared dimension and positions add the relation
aspect to the collection type.

In its most simple form, this leads to an ’inverted table’ (Figure 2b): each
collection in the composite shares the same dimension, and elements with the
same positions in the different collections are related. However, one can also
represent more complex cases with multiple (nested) dimensions (Figure 2c).

Through the introduction of shared dimensions, any (nested) data structure
consisting of composites and collections can be fully annotated with relations and
roles (assuming that it has only data elements with similar roles in a collection
and only related data elements in a composite). With this development, a query
language can be constructed which is able to query any data structure consisting
of composites and collections.

2.2 Query Language

To construct the query language, well known data operations (e.g. Filter, Match,
Group) are redefined together for use on more complex data structures. As only
a single concept (’dimensions’) was added to the data representation, we find
that this can be accomplished in a relatively straightforward way. As a general
rule, different collections within a dataset that have the same dimension are kept
consistent with each other. If a collection is reordered or filtered, this operation
is also performed on the other collections in the dataset that have the same
dimension. Next to this general rule, only two extra mechanisms are required,
which keeps the language simple. The first describes how an operation can target
specific dimensions, and the second how operands with non-matching dimensions
are handled. These are described in more detail in section 3. Here, we first
illustrate the language using a few examples.

Example 1: Differential Expression Using Gene Ontology Categories.
Suppose that for a certain microarray dataset, one needs to calculate differen-
tial expression not per gene, but directly per gene ontology (GO) category. The
microarray data is (after normalization) available in the usual matrix format.
Also, a dataset is imported containing for each gene a list of GO annotations.
In Figure 3, we show how these two datasets are matched together based on
common gene names, then regrouped based on GO categories, after which the
expression values are averaged for each sample/GO category combination. Di-
mensional relations between the different vectors, matrices and nested data are
automatically taken into account by the used operations, and thus do not have
to be specified by the user. Due to this, all these operations can be expressed
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Fig. 3. Calculating differential expression per GO category. Compare the steps one
would have to take to implement this using a scripting language, with the shown im-
plementation using the Ibidas query language. Rectangular shapes indicate vectors,
square shapes matrices, and rectangles in rectangles nested vectors. Dimension names
are in italic and colored green. Thus, expression matrix ’values’ and vector ’tissue’
share the samples dimension. Match links the microarray and gene go dataset on com-
mon gene names. Flat de-nests the ’go items’ nested vector, thereby expanding and
renaming the genes dimension. The _. is called the context operator, and addresses the
enclosing scope (here: the result of the Match operation). GroupBy ’go items’ groups
also ’values’ and ’gene name’, due to their shared dimension. Mean averages ’values’
along the ’g genes go’ dimension, and Filter is used to split the resulting matrix in a
’normal’ and ’cancer’ section, which are compared using t-tests. The external ttest ind
function (from SciPy) cannot be executed directly on Ibidas query objects: adding the
’()’-operator executes the query into Python data objects.

using a single line of code (shown in Figure 3), this in contrast to what would
be needed if this task would have been performed manually. The output can be
directly used to calculate t-tests.

Example 2: Relating Diseases to Genes. Given an analysis which has re-
sulted in a number of possible cancer genes, one might want to validate the
results by determining if the genes are already known as cancer genes. This
requires gene-disease associations, which can be obtained from OMIM[7].

Ibidas contains macros which automatically download and import such data
sources. In Listing 1 it is shown how, with a few high-level operations, the data
is filtered using the hypothetical cancer genes. After this, the number of asso-
ciations per disease are counted and the final results are sorted based on this
count. This can be done interactively, allowing the user to inspect the output at
every step. Note that the code shown in Listing 1 has regular Python syntax,
and can therefore be intermixed with normal Python code.

Data sources are not limited to files. The same code could have been used
if OMIM was available as a webservice or database. The system would have
automatically performed the webservice-calls and/or SQL querys. Furthermore,
as shown in Listing 1, operations in Ibidas can work with nested data structures.
In most situations, this works transparently. For example, if one wants to perform
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1 cancer_genes = Rep ([’BRCA1’, ’BRCA2’])

#Rep packages any Python structure into a Ibidas data object.

3 omim = Get.human.omim_genemap ()

# predefined macro to download/import the omim genemap data.

5 # output ( incomplete):

# gene_alias disease

7 #[LOH18CR1, OSTS] [ Osteosarcoma ]

#[BRCA1 , PSCP] [Breast - ovarian cancer]

9 #[BRCA2 , FANCD1] [Breast - ovarian cancer , Prostate cancer , Pancreatic cancer]

11 r = omim[( cancer_genes |Contains| omim.gene_alias ).Any ()]

#for each gene alias , determine if it is contained in cancer_genes .

13 # select genes where this is true for at least one of the gene aliases.

r = r.Flat(_.disease).GroupBy(_.disease)

15 # flatten the per -gene disease lists , group genes on disease.

#(uses context operator _. to address enclosing scope)

17 r = r.Get (_.disease , _.gene_alias .Array().Count()/"ngene").Sort(_.ngene)

#get the disease , count disease genes (call it " ngene"), sort on ngene

19 # Array() "packs" an array , so that we count the arrays , and not the individual aliases

# disease ngene

21 #"Pancreatic cancer", 1

#"Prostate cancer", 1

23 #"Breast - ovarian cancer", 2

Listing 1. Determine which (and how often) diseases in OMIM are associated with a
certain list of genes

the same task for multiple lists of genes, one could have simply replaced the
cancer genes data representation with a nested array, e.g.
cancer_genes = Rep([[’BRCA1’, ’BRCA2’],[’RAD54L’,’AKT1’, ’ESR1’]].
Without changing any other line, the script still works, and results in a nested
output dataset.

2.3 Optimization and Scalability

Performance and interactive usage are in some sense opposite goals, as interac-
tivity suggests immediate execution of operations, while performance demands
that one optimizes and executes multiple operations simultaneously.

To combine both, a lazy execution model is used: only when the user requests
the contents of the data representation object, are the pending operations opti-
mized and executed. In principle, this would allow for a fully declarative language
(e.g. like SQL). However, query optimization is an open problem due to the wide
range of data sources that we handle, often without any data statistics. There-
fore, we chose to use a procedural approach, in which the programmer solves the
problem step by step, thereby simultaneously specifying a suggested execution
order. The optimizer only performs those optimizations afterwards for which it is
reasonably sure that they will improve performance (e.g. not flattening/grouping
the ’genes’ vector in Figure 3 as it is not used in the final t-test). Although there
is room for a large number of further optimizations, the current version already
runs fast enough for interactive use. Even though it is written in an interpreted
language, for a large expression dataset and the GO biological process annota-
tions (54,612 probes, 180 microarrays, 442,842 gene annotations), the first line of
example 1 only takes 13 seconds to execute in Ibidas. In contrast, the same query
required 21 minutes when performed by a MySQL database, 128 seconds when
using a PostGreSQL database, and 37 seconds when using the high performance,



30 M. Hulsman et al.

column-store based, Monet Database [8] (with for the databases an optimized
table design based on integer identifiers, all possible indices, and all data loaded
in memory). This indicates the importance of multi-dimensional representations
for efficient data analysis, as in general the efficiency of Ibidas’ implementation is
decidedly less efficient than the database-implementations, which use compiled
languages and have been optimized for many years.

Ibidas can make use of the database query engines for data which is located
in a database. This can save memory, bandwith and time, as one can move oper-
ations to the data, instead of moving data to the operations. The lazy execution
scheme makes it possible to translate (part of) a query into a data source specific
query language such as SQL. This is done transparently, which has the advan-
tage that the user does not have to learn the different query methods for the
various data sources. Determining which operations a data source supports, and
translating them into a query/program, is implemented using so-called wrap-
pers [9]. Several wrappers are already available, such as the standard in-memory
execution wrapper, wrappers for several commonly used biological file formats
and a SQL wrapper. This design also allows for easy addition of streaming-based
(memory-efficient) and parallel (time-efficient) processing in the future.

1 s = Connect(’postgresql :// localhost /string’)

# read String database

3 i = s.network.protein_protein_links |Match| s.items.species

# couple interaction and species table on common field ( species_id )

5 iy = i[_. official_name == ’Saccharomyces cerevisiae ’]

#use only interactions occuring in yeast

7
iy = iy |Match(’protein_id_a ’, ’protein_id ’)| s.items.proteins //" left"

9 iy = iy |Match(’protein_id_b ’, ’protein_id ’)| s.items.proteins //" right"

# couple iy and the proteins table to get protein names for interactions .

11 #as the proteins table is used two times , assign aliases (’ left’, ’right ’)

13 imatrix_yeast = iy.GroupBy(_.left.preferred_name ,

_.right. preferred_name ).combined_score .Mean()

15 #map yeast interaction scores to a 2- dimensional matrix , with for each

# protein pair an entry containing the mean score of the found interactions .

17 #(pairs without measured interactions are assigned a missing value symbol)

Listing 2. Obtain score matrix for yeast interactions from the String database

1 --note: aliases have been assigned readable names

SELECT prota.preferred_name , protb.preferred_name , plink. combined_score

3 FROM ((( items.species AS species

INNER JOIN network. protein_protein_links AS plink ON species.species_id = plink.species_id )

5 INNER JOIN items.proteins AS prota ON plink.protein_id_a = prota.protein_id )

INNER JOIN items.proteins AS protb ON plink.protein_id_b = protb.protein_id )

7 WHERE official_name = ’Saccharomyces cerevisiae ’

Listing 3. Automatically generated SQL by SQL wrapper for listing 2 (lines 4-12)

Example 3: Loading Interaction Scores from the String Database. As
an example of how a query can be processed by multiple wrappers, protein inter-
actions between proteins are loaded from a String database instance [10] and put
into a (weighted adjacency) matrix format (Listing 2). The SQL wrapper trans-
lates the first part of the script as an SQL query (Listing 3). The second part
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performs a multi-dimensional grouping (i.e. a group operation across two sepa-
rate vectors, thereby creating a matrix). This cannot be translated directly into
SQL, and is therefore performed internally by the default in-memory wrapper.

3 Methods

3.1 Architecture

Ibidas has a layered architecture (Figure 4a). One can interact both through a
command line interface (the IPython shell [11]) as well as a webservice-interface
(XML-RPC)). Both interfaces use the same language layer. This language layer
implements the data representation and operations, as well as the consequences
of operations on the data structure / meta-data. Query execution is planned in
the next layer. Here queries (combinations of operations) are converted to query
trees (Figure 4b), rewritten and then executed. The rewriting is done in several
passes, which are handled by a pass manager. Query execution makes use of
wrappers, which are in the last layer. Here we find the actual implementation
of the operations. Each type of data source has a wrapper, which describes
its data structure in terms of the Ibidas data model. Furthermore, it tells the
query execution layer which operations can be handled by the wrapper (either
by sending it to the data source, or by implementing the functionality in the
wrapper itself). Operations which are not supported by a data source wrapper
are executed using the Python in-memory wrapper.

Dr= O1(O2(D1), O3(O2(D2)))
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Fig. 4. a) An overview of the Ibidas architecture. b) A command-line query is trans-
lated into a query graph, which is optimized. Operations are assigned to execution
wrappers. Subsequently, the query is executed and the result returned.

3.2 Data Representation

To access data, representer objects are used. These represent data source(s) and
the operations that have been applied to them. Each representer consists of one
or more ’slices’ (which are a generalization of the column in a table). Each slice
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has a name, a data type, and a list of dimensions. The name represents the
role of the slice, and is used to address the slice. The data type describes the
structure of the individual data elements, distinguishing if it is e.g. an integer
or a DNA sequence. The dimensions describe the data structure of the slice: a
scalar slice has no dimensions, while a matrix has two dimensions. In general,
dimensions have a fixed size, e.g. each row in a matrix has size n. However, to
allow for variable sized nested data (e.g. the ’go items’ nested vector in Figure 3),
the concept of ’dependent dimensions’ is used. These are dimensions whose size
is variable along their parent dimensions. Using this approach, both nested and
multi-dimensional structures can be handled in exactly the same way. Dimension
can be shared between different slices, thereby describing the relations between
the data elements in these slices. Note that dimension identities are changed
by operations that change the order of elements (Sort) or shape of a dimension
(Filter).

3.3 Data Operations

The core operations for data exploration, such as filter, groupings, joins, sorts,
aggregates, and arithmetic operations are defined for 0- or 1-dimensional data.
A common foundation for the execution of such operations on multi-dimensional
data can be obtained through just two concepts: broadcasting and packing/un-
packing.

Broadcasting. To be able to execute 0- and 1-dimensional operations on flex-
ible structured data, dimensions of the operands are mapped onto each other,
based on their identity. This is done for all dimensions (0-dimensional operations,
e.g. addition) or all but the most nested dimension (1-dimensional operations,
e.g. matching). Dimensions that cannot be mapped are ’broadcasted’ to the other
operands (Figure 5a). Broadcasting introduces new dimensions in an operand,
by repeating data (i.e. a cartesian product): scalars become vectors, vectors
become matrices, and so on. This is a well-known concept, e.g. [12]. Ibidas dif-
fers from other implementations of broadcasting in that it has the concept of
dimension identity, allows for broadcasting within operations such as filtering,
joining, and is able to perform broadcasting on nested arrays. Given operands
that are equalized in their dimensions, the operation itself is ’broadcasted’, i.e. it
is applied in turn to each common operand element (0-dimensional operations)
or each common vector (1-dimensional operations) (Figure 5b). Creating new
operations is simplified by sharing this implementation of dimension mapping
and broadcasting across operations. This way, the implementation of a new op-
eration can remain oblivious to the full complexity of supporting the nested,
multi-dimensional data model.

Packing/Unpacking. To prescribe at which data structure nesting level an op-
eration has to be performed, we make use of pack/unpack operations (Figure 5c).
They change at what ’structure level’ subsequent operations are performed.
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Fig. 5. a) Obtaining the genes with expression value > 10 (shapes explained in Figure
3). Applying the 2-dimensional filter constraint (operand) to the ’genes’ slice requires
broadcasting of the samples dimension. Note that in this way the relation between
values and gene names is maintained. b) Match (a join operation) is applied on the
common ’go items’ slices, along the annotations dimension. It is thus executed for
each gene (i.e. it is broadcasted along the genes dimension). c) Navigation in nested
data using pack and unpack operations. Array packs a dimension into a collection,
while Elems unpacks it. Similarly, Tuple converts multiple slices into a single slice, by
combining their related data elements into tuples (a composite type), while Fields

unpacks such tuples.

1 #(iyeast dataset from Listing 3 is used)

iyeast.GroupBy(_.left.preferred_name )

3 .Get(_.left. preferred_name / ’protein_name ’,

_.combined_score .Count() / ’degree’,

5 _.combined_score .Sort(descend=True)[:5].Mean()/ ’top5_score ’

).Sort(_.top5_score )

Listing 4. Calculate degree and mean score of the top 5 interactions per protein, sort
proteins on latter score. Note that the sort is performed for each protein, as well as
over all proteins.

An example of such an operation is the Array function, used in Listing 1. It packs
the gene aliases arrays, letting the Count operation count the arrays of gene aliases.
The opposite operation Elems unpacks the arrays again. The ’packing state’ is
described by the slice properties. To accomplish this, we use the duality relation:
slice type <-> (slice name, slice dimensions). For example, unpacking a
slice with a collection type converts the collection type into a slice dimension, and
sets the slice type to the data type of the collection elements. Unpacking a com-
posite data type returns for each of its fields a new slice with as name the corre-
sponding field name and as data type the field data type. Packing performs the
reverse operations, converting slice names or dimensions into data types. This is
illustrated in Figure 5c. Enabling the use of operations at different structure levels
allows for simpler queries. An example is given in listing 4, where we use Sort at
different levels. Expressing such a query in a non-nested data model is much more
complicated, requiring e.g. (correlated) subqueries in SQL.

4 Related Work

Data-handling is an actively studied topic, especially within bioinformatics. We
compare Ibidas to several other approaches based on its data model, its query
language, and in its role as data-handling tool/mediator.
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4.1 Data Models

Multi-dimensional data structures [13] are popular in the context of Online Ana-
lytical Processing (OLAP), as these structures simplify data analysis. The OLAP
data cube indexes tuples by measurement attributes, which form the various di-
mensions. The use of dimensions differs however fundamentally from Ibidas: a
data cube without measurement dimensions (i.e. a default table) is essentially
0-dimensional in the OLAP model (the relational model considers tuples to be
stored in an unordered, i.e. dimensionless, set) whereas in Ibidas, tables are
1-dimensional. More closely related are the netCDF [14] and HDF5 [15] file for-
mats, which are widely used in e.g. the geosciences and by applications such as
Matlab, to store multi-dimensional data. Similar to Ibidas, they have the con-
cept of dimensions (although this has not been generalized to allow for nested
dimensions). Nested data models have also been studied extensively, e.g. [16–
18]. Particularly interesting is the XML / XPath [19] approach here. The Ibidas
pack/unpack operations are related to the axes navigation steps that can be per-
formed in XPath. Both nested data models and multidimensional data structures
have their strengths. The main contribution of Ibidas is that it combines table,
multi-dimensional and nested approaches through the concept of dimensions.

4.2 Query Systems

The goal of query systems is to make data accessible through a language or other
interface based on high-level operations. Standard query languages such as SQL,
SPARQL and XQuery can only access one (type of) data source. In response to
this, federated database tools (mediators) have been developed, which can also
access other types of data sources through the use of wrappers. Examples of the
latter approach are IBM Discoverylink [20], Kleisli [21], TAMBIS [22], BioMART
[5], BACHIIS [23] and Biomediator [24]. In the latter four systems, individual
sources are mapped against a mediated schema. Queries posed against the medi-
ated schema can be translated to queries on the data sources. This offers an easy
way to pose (declarative) queries, however it also makes adding new data sources
rather complex. All of the mentioned systems work with either a language de-
rived from SQL, and/or an API/Graphical Query Interface, which have a limited
ability to handle multi-dimensional data structures. Other well-known systems,
which are not directly bioinformatics related but somewhat related to Ibidas,
are Pig Latin [25] and LINQ [26]. Pig Latin is a procedural SQL derivative,
enabling one to map tasks to the map-reduce framework (used for data analysis
on large computer clusters). LINQ is a SQL-like query language which is em-
bedded in the .NET framework, allowing easy access from program code. Both
languages cannot be used interactively however, making them less suitable for
interactive exploration of data. Prolog is a logic programming language, which
can also be used as an interactive and declarative query system, offering more
flexibility than standard query languages. It differs from Ibidas in that its focus
is not on enabling statistical and machine-learning-based analysis, but rather
on logic-based inference. An interesting development is the proposed language
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SciQL [27], whose motivations are similar to those mentioned in this work. This
proposal enhances SQL for science tasks by adding support for array structures,
allowing it to handle multi-dimensional arrays. Its approach differs from Ibidas,
in that it adds support for data analysis tasks to the database, whereas Ibidas
focuses on adding query operations to the data analysis environment.

4.3 Mediators and Workflow Tools

Gaggle [28] is a mediating tool, functioning as special purpose clipboard for
datasets. It focuses on connecting various bioinformatics software tools and web-
sites, by allowing them to exchange data. It is mostly oriented toward data mov-
ing, and less to performing data operations. Workflow tools are another class
of data-handling tools, which depict graphically, and on a high-level, the steps
that are taken in the analysis of some data. Well known examples are Taverna
[29] and Galaxy [30]. Galaxy has predefined operations which one can apply to
uploaded datasets in a website environment. The advantage of this approach
is that it is relatively easy to use. Taverna on the other hand is a stand-alone
application, allowing one to extend it with custom-scripted nodes. One can use
these nodes to create a workflow graph. These nodes do not form a high-level
query language though; instead they are more similar to script functions. The
user remains responsible for maintaining the consistency of data relations and
roles.

5 Discussion

To a large extent, research in bioinformatics is focused on finding new ways to
combine data, by integrating and analyzing it. In this process, data management
plays a central role. We have argued that current data-handling solutions mainly
focus on data integration, while not adequately supporting data analysis. Two of
the key problems are: a) query operations need to be supported not just on data
sources, but throughout the whole bioinformatics workflow, and b) query opera-
tions should work across a range of data structures, as the best data structure is
a task-specific choice, not a data-specific one. The solution proposed in this work
is based on the concept of ’shared dimensions’. It is surprising to see that just
adding this single concept allows for such a rich extension of the query language,
enabling generic implementations of data-handling subtasks (such as filtering,
grouping or matching) that support a wide range of data structures. This natu-
ral data representation also enables high query performance, by keeping track of
data relations. Due to this, an implementation which in itself is not particularly
fast (e.g. written in an interpreted language), can outperform even the fastest
database engines on a common task such as microarray data-handling. We be-
lieve the dimension concept allows for more query language improvements than
discussed in this work. For example, improved support for handling sparse data
in multi-dimensional matrices would allow for the easy inclusion of all kinds of
graph operations that are based on adjacency matrices. On a more long-term
basis, we think the language should also incorporate various analysis algorithms
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(e.g. statistical and machine learning tools) as first-class citizens, enabling their
use in a standardized way. This would then truly bring together the data integra-
tion and data analysis fields in a common high-level language. Describing data
relations through dimensions has opened the road towards this goal. Due to the
embedding of the data-handling language within a common scripting language
(Python), the user however does not have to wait for such functionality, but
can easily make use of e.g. existing machine learning or graph libraries. Also,
already in its current form, the ideas presented in this work could form a use-
ful foundation on which workflow tools could be based. While we have limited
our discussion to bioinformatics-based applications, as Ibidas was designed in
response to problems encountered in this field, the general approach used here
may of course be equally useful for other fields in which data-intensive analytical
tasks play a role.

6 Availability

Ibidas has been written in the Python language. Documentation, source code
and installation packages are available from the PyPI website: https://pypi.
python.org/pypi/Ibidas.
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Abstract. We compare two distinct approaches for querying data in the context 
of the life sciences. The first approach utilizes conventional databases to store 
the data and provides intuitive form-based interfaces to facilitate querying of 
the data, commonly used by the life science researchers that we study. The 
second approach utilizes a large OWL ontology and the same datasets asso-
ciated as RDF instances of the ontology. Both approaches are being used in  
parallel by a team of cell biologists in their daily research activities, with the 
objective of gradually replacing the conventional approach with the knowledge-
driven one. We describe several benefits of the knowledge-driven approach in 
comparison to the traditional one, and highlight a few limitations. We believe 
that our analysis not only explicitly highlights the benefits and limitations of 
semantic Web technologies in the context of life sciences but also contributes 
toward effective ways of translating a question in a researcher’s mind into pre-
cise queries with the intent of obtaining effective answers. 

1 Introduction 

Much of the data in the life sciences continues to be stored using conventional data-
base management systems (DBMS) and subsequently, queried using the structured 
query language (SQL). Intuitive interfaces such as forms often provide and support 
“pre-canned” queries that are most commonly used by the researchers who are chiefly 
interested in quick and targeted accessibility to the data. However, these interfaces 
tend to provide more data than needed leading to time-consuming post processing 
steps which are specific to the local researchers, instead of being general.  

We compare and contrast two approaches for querying life sciences data. Both utilize 
an identical data context: strain, stage transcriptome and proteomic data on the parasite 
Trypanosoma cruzi (T. cruzi). In the first approach, T. cruzi data is stored in a conven-
tional DBMS and accessed through a suite of well-designed forms representing a prede-
fined set of queries, we refer to this approach as Paige Tools [1] which has been the 
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de-facto way for storing and accessing experimental data related to T. cruzi by the Cen-
ter for Tropical and Emerging Diseases at the University of Georgia. The second ap-
proach, Parasite Knowledge Repository - PKR, uses an OWL-based ontology designed 
in collaboration with the life science researchers to model T. cruzi experimental data [2]. 
Querying capabilities of PKR are provided by an enhanced version of a knowledge-
driven querying system, Cuebee [3] [4], that facilitates formulation of RDF triple-based 
queries, which are transformed to SPARQL-DL [5].  

We believe that Paige Tools and PKR is representative of the traditional and 
more sophisticated way of querying life sciences data, respectively. These approaches 
provide alternative ways of transforming the precise question in a researcher's mind 
into a computational query in order to obtain the answer. The outcome of our analysis 
is a set of benefits that knowledge-driven approaches such as PKR offer over the 
more conventional approaches. We also highlight two limitations that this approach 
faces, which could impede its widespread adoption despite the substantial benefits. 

2 Related Work 

Other Semantic Web based systems exist that focus on queries to provide targeted 
access to data in the life sciences and other contexts. These include query tools such 
as Openlink iSPARQL [6] and NITELIGHT [7] both of which provide graph-based 
interfaces for query formulation. These systems did not provide evaluation of their 
approaches on real-world data. Similar to PKR, GINSENG [8] offers suggestions to 
users, but from a different perspective. GINSENG relies on a simple question gram-
mar, which is extended using the ontology schema to guide users to directly formulate 
SPARQL queries. Bernstein et al. [8] briefly evaluated GINSENG on three aspects: 
usability of the system in a realistic task, ability to parse large number of real-world 
queries, and query performance.  

Semantics-based approaches also exist that focus more on data integration in the 
life sciences context. GoWeb [9] is a semantic search engine for the life sciences, 
which combines keyword-based Web search with text-mining and ontologies to facili-
tate question answering. GoWeb demonstrates a recall of 55 to 79% on three bench-
marks. Cheung et al. [10] introduce semantic Web query federation in the context of 
neuroscience which provides facilities to integrate different data sources and offers 
either SPARQL or SQL query. Mendes et al. [4] evaluated the usability of Cuebee on 
the system usability scale [11] and the query formulation effort by recording time 
taken and number of interactions to retrieve answers. Because PKR’s front end uses 
an enhanced version of Cuebee we believe that the same evaluation holds.  

All of the listed approaches are available for public use. However, there is not 
enough evidence of how much these systems are in use by life science researchers in 
daily research. This paper discusses significant enhancements to Cuebee [3] [4], and 
explicitly highlights the benefits and limitations of using PKR while being used by an 
interdisciplinary team of computer science and cell biology researchers. Thus, while 
PKR is not alone in bringing knowledge-driven approaches to the life sciences, we 
believe that our comparative evaluation of the systems in use is novel. 
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3 Background 

In this section, we briefly describe the two approaches for querying experimental data 
related to T. cruzi. We emphasize that both Paige Tools and PKR are currently oper-
ational and are being used by researchers, with the expected longer-term objective of 
replacing Paige Tools with PKR. 

3.1 Paige Tools – Conventional DBMS-Based Approach 

Paige Tools offers interfaces to add and edit experimental data related to T. cruzi 
housed in multiple separate local databases as well as facilities to execute queries. 
Typically, these interfaces manifest as forms containing widgets such as drop-down 
lists, check boxes and buttons that allow formulation of a Boolean query on a specific 
dataset and selection of attributes to display in the result. We believe that the interfac-
es in Paige Tools are typical of systems utilized by life science researchers. As ex-
pressed by the researchers that use Paige Tools, these tend to be simple but adequate 
approaches for somewhat targeted access to portions of data. The interfaces are tightly 
coupled to the schema design and limited to executing a specific set of queries. Thus, 
any change to the database schema results in refactoring of the forms. 

3.2 PKR – Knowledge-Driven Approach 

At the front end of PKR we use a significantly enhanced version of Cuebee – an on-
tology-based query formulation and data retrieval system applied in the context of T. 
cruzi parasite research originally designed by Mendes et al.[3] [4].  

Cuebee employs two query engines, which we refer to as suggestion engine and 
answer engine. Suggestion engine guides a user through the process of transforming 
her question into a query in a logical way. It utilizes RDFS ontology schemas to sug-
gest concepts in a drop-down list that match the characters that the user types. Fur-
thermore, it lists all the relevant relationships for any selected particular concept. In 
the process of formulating the query users may need to select some intermediate con-
cepts in order to relate the concepts that appear in the question. Finally, queries are 
transformed into SPARQL queries and executed by the answer engine.  

We introduce multiple enhancements to make Cuebee more user-friendly [12]. For 
example, the enhanced suggestion engine now annotates each suggested concept with 
information that includes a description of the ontology class and associated properties. 
It allows selection of multiple instances that satisfy Boolean operators. The enhanced 
Cuebee also guides users to formulate more complex SPARQL graph patterns using 
group by and aggregate functions, filter over instances using regular expressions. In 
addition, an undo feature helps users revise their queries at any point during the for-
mulation process. 

Our contributions go beyond the interface and focus on the infrastructure of Cu-
ebee as well. A major improvement is the capability to support OWL ontologies be-
cause they tend to be more expressive than RDFS ontologies. For example, in the 
context of T. cruzi research, we use the OWL-based parasite experiment (PEO) and 
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parasite lifecycle (OPL) ontologies [2]. Subsequently, we equip the two query engines 
to execute SPARQL-DL [5] queries which offer more expressive power than 
SPARQL. OWL ontologies are deployed in an OWL-DL reasoner called Pellet in 
order to take advantage of the inferencing capabilities.  

An increasing number of bioinformatics tools and biomedical data sources are 
available as Web services. As another contribution to Cuebee, we extend the results of 
the final queries with common bioinformatics tools such as EBI BLAST available as 
RESTful Web services and access into TriTrypDB [13]. Here, we detect if the results 
of a query contain appropriate types of protein sequences or gene IDs, and allow the 
user to trigger an invocation of the EBI BLAST Web service or obtain additional 
information from TriTrypDB. 

4 Benefits of PKR over Paige Tools 

Both Paige Tools and PKR are running concurrently on identical data and in use by 
a team of researchers. The identical contexts provide us a valuable opportunity to 
comparatively evaluate the two approaches in a principled way in this section.   

4.1 Explicitly Structured Queries 

The first benefit is with respect to the structure of the queries that may be formulated 
in the two approaches. In order to illustrate this, consider the following question 
posed by parasitologists in the context of T. cruzi: 

Which microarray oligonucleotide derived from homologous genes has 3 prime re-
gion primers? 

Note that homology is a relationship between two genes (these genes are derived 
from a common ancestor) and 3-prime-region is a property of primers. 

Conventional database design places minimal importance on named relationships 
(e.g., table joins) and Paige Tools as a typical example of DBMS-based systems that 
are in use in life science research labs, reflects this. While query pages within Paige 
Tools provide users the ability to show attributes of microarray oligonucleotide, 
genes and primers, discerning homology relationships between two genes is left to the 
ability of the user in post-processing the results. Thus, the resulting query does not 
adequately reflect the original question in the researcher’s mind.  

 

Fig. 1. Formulated query for “Which microarray oligonucleotide derived from homologous 
genes has 3 prime region primers?” in PKR. Notice the relationships between the concepts. 

On the other hand, PKR’s process of formulating queries allows a logical 
interpretation of the question. Queries formulated within PKR contain not only the 
concepts (e.g., gene) but also make the relationships explicit in the query (e.g., is 
homologous to), as we show in Fig. 1. The query formulation process in PKR leads 
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Fig. 4. The question, “Which genes with log-base-2-ratio greater than 1 have 3 prime region 
primers”, formulated in PKR. The query for this question spans multiple datasets. 

the appropriate concepts and relationships between log-base-2-ratio and gene (Fig. 4 
area (1)), and continues to formulate the query by adding the has-3-prime-region 
relationship followed by region (Fig. 4 area (2)). On formulating the query, PKR 
allows a search over all datasets – made possible because of a comprehensive ontolo-
gy for all the data. The solution to the query integrates both datasets thereby facilitat-
ing integrated analysis by the researchers with minimal post-processing effort. 

5 Limitations of PKR 

We highlight two limitations of approaches such as PKR, which may likely impact its 
widespread adoption. While ontologies represent a formal model of the domain know-
ledge, users not well acquainted with the ontology feel tied down to its structure. We 
minimize this by providing suggestions about next possible concepts and relation-
ships. Nevertheless, our triple-based queries often require users to select intermediate 
concepts and relationships that connect the entities in the question. But users prefer 
more abbreviated queries in their daily usage of systems such as PKR. 

The second limitation is the increased time and space complexity of knowledge-
driven systems compared to highly optimized modern DBMS. While fast RDF  
storages such as Virtuoso exist, the predominant complexity is due to the ontology 
inferencing facilities provided by systems such as Pellet. 

6 Evaluation and Discussion 

While Mendes et al. [4] evaluated the usability of PKR’s interface, in this paper, we 
focus on the usefulness of knowledge-driven systems such as PKR in comparison to 
DBMS-based systems such as Paige Tools, which requires that the systems be in 
use. We compile our observations of both systems in use into the benefits and limita-
tions of the two approaches, in Sections 4 and 5. In order to quantify aspects of use-
fulness of PKR and Paige Tools we calculate precision and recall on a corpus of 25 
domain questions, many of which span multiple datasets. Although the domain of 
these questions is limited to the parasite, T. cruzi, such questions are commonly 
encountered by biologists and parasitologists investigating other organisms as well. 

Two domain experts independently validated the consensual reference set for each 
question in this evaluation. We obtain average precisions of 83% and 56% for PKR and 
Paige Tools, respectively; average recall score for PKR is 80% and for Paige Tools is 
77%. Our results show that both systems retrieve large fractions of the relevant data 
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from the collection of all data, and queries in PKR provide more accurate answers than 
in Paige Tools. The latter lead to much post processing, as mentioned.  

Parasitologists using PKR appreciate its advantages and are getting more 
comfortable with the layout as it improves. But, it takes time to get researchers to 
change over completely. We are not yet at a point where researchers in other labs may 
be able to simply install PKR and query their particular sets of data. Many of the 
concepts used in PEO are general enough to be incorporated into ontologies for other 
organisms, but we anticipate that ontologies will still require tailoring to individual 
use cases. The scope of this paper is to provide a model for developing ontology-
based systems for life science researchers, to offer proof that semantic Web 
technologies will ultimately be of greater use to biomedical researchers than 
traditional DBMS, and to demonstrate the capabilities of PKR. We believe that these 
are substantive steps towards developing systems that are more user friendly and 
efficient for biomedical researchers. As PKR continues to be utilized we expect that 
researchers will gain new biological insights from their analysis of the data. 
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Abstract. Current projects in Systems Biology often produce a multi-
tude of different high-throughput data sets that need to be managed, pro-
cessed, and analyzed in an integrated fashion. In this paper, we present
the OmixAnalyzer, a web-based tool for management and analysis of
heterogeneous omics data sets. It currently supports gene microarrays,
miRNAs, and exon-arrays; support for mass spectrometry-based pro-
teomics is on the way, and further types can easily be added due to its
plug-and-play architecture. Distinct from competitor systems, the Omix-
Analyzer supports management, analysis, and visualization of data sets;
it features a mature system of access rights, handles heterogeneous data
sets including metadata, supports various import and export formats, in-
cludes pipelines for performing all steps of data analysis from normaliza-
tion and quality control to differential analysis, clustering and functional
enrichment, and it is capable of producing high quality figures and re-
ports. The system builds only on open source software and is available on
request as sources or as a ready-to-run software image. An instance of the
tool is available for testing at omixanalyzer.informatik.hu-berlin.de.

1 Introduction

Current projects following a Systems Biology approach to the study of biomed-
ical phenomena typically produce a multitude of different high-throughput data
sets. For instance, to study complex phenotypes such as cancer [6] and other ge-
netic diseases [1], researchers analyze cellular samples at various levels, such as
gene expression, protein expression, epigenetic status of regulatory elements in
the genome, presence of differentially spliced protein isoforms, levels of metabo-
lites etc. Managing and analyzing such diverse and heterogeneous data sets is a
significant challenge; therein, analysis cannot stop at individual data sets, but
needs to intelligently combine data generated by different methods [12]. In con-
crete projects, such technical and scientific issues are engraved by more social
issues, such as highly different levels of proficiency of project members with mod-
ern methods in data analysis, problems in terms of data sharing, and unclear
separations of concern between experimentalists and bioinformaticians [3].
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The degree to which this harms projects varies with the size: Typically, small
projects (2-4 groups) often have a clear separation of duties, a modest hetero-
geneity in data sets and less problems with data sharing. In large, international
or national-wide projects such issues are usually resolved in a strict and manged
manner by enforcing agreed policies and hierarchical organization [16]. However,
the majority of typical Systems Biology projects probably are just in-between,
uniting 10-20 groups with mixed expertise, having different perspectives on their
subject, and gathering a heterogeneous set of experimental data. Further, these
groups are often very sensitive to questions of data ownership and access autho-
rization. Especially projects of this size can greatly benefit from central solutions
to data management and analysis, as they may help to reduce cost, establish uni-
fied standard operating procedures, and foster data exchange [10].

In this paper, we present OmixAnalyzer, a system for managing, analyzing,
sharing and visualizing heterogeneous -omics data sets for mid-sized projects.
It uses a central database to store experimental results and sample metadata,
features a full blown three-tier access rights management, and offers an intuitive
web interface tailored towards biologists without specialized computer training.
The OmixAnalyzer uses only open source components and builds on a plug-in
architecture for adding novel data types with their individual metadata, internal
data structures, and workflow-based analysis pipelines. For data analysis, the
system executes configurable pipelines of R scripts, which makes changes in
terms of individual analysis tools or the way algorithms are combined quite
easy. Analysis results are downloadable in spreadsheet formats, can be used to
generate publication-quality figures, and are stored by the system for later reuse.

We believe that the feature set of OmixAnalyzer is quite unique. For instance,
systems such as Intermine [14] or Galaxy [5] are focused on genome sequences
and do not target dynamic data sets typical for transcriptomics or proteomics. A
variety of tools exist for transcriptome data [8], but none is suitable for our set-
ting; for instance, using Chipster requires uploading data to a project-external
server [7], while Mayday [2] clearly targets only expert bioinformaticians. Sys-
tems explicitly focusing on multiple omics data are, for instance, Vanted [11],
which focuses on graph-based analysis and visualization, or Babelomics [9], which
targets nation-wide projects and lacks a data access model. A number of other
projects, such as SysmoSeek [15] or DIPSBC [4] only target data management
but not data analysis or visualization. Overall, we are not aware of any other
system that specifically targets mid-size Systems Biology projects.

2 System Architecture

The system architecture of the OmixAnalyzer follows the Model-View-Controller
pattern in most cases and is segmented into three different layers: presentation,
business, and data layer. The presentation layer contains all GUI elements, i.e.
the web pages the user navigates when using the system. The business layer
contains the operational logic, handles the communications between the front-
end and the data layer, and manages the database transactions. Also in this
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Fig. 1. System architecture of the OmixAnalyzer and software used

layer is the analysis back-end, which contains all analysis modules available in
the OmixAnalyzer as well as the data crawlers. The data layer handles the data
persistance and communications with the database.

Note that the software project completely relies on open source software.
Figure 1 gives an overview of the system architecture and shows its components.

The layers have been designed in a modularized manner, with each module
covering a specific task. This way, new functionality can easily be added to the
system by means of adding new modules. Details on how to add new mod-
ules (e.g. new data types) are covered in Section 5. In the presentation layer, a
module represents web pages like user settings, experiment manager or analysis
wizard.

The analysis backend consists of modules for data analysis and data crawlers.
A data analysis module contains all available analysis workflows for a specific
platform, with gene chips, micro RNA, and exon arrays currently available. A
module exports description files for all supported analysis workflows providing
information on required data and options for the workflow. For example, sup-
ported analysis workflows for the gene chip module are Clustering, Differential
Analysis, Functional Analysis, Quality Control and Visualization. All currently
implemented workflows use R as analysis backend, and methods for invoking
R and handling jobs are available in the analysis API. However, new analysis
modules are not required to use R as backend, but can also use Java, Perl, or
other languages.

A data crawling module provides the system with data gathered from external
resources. Crawlers can be run manually, or automatically at specific intervals.
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The crawlers provide annotation data used in the analysis workflows as well as
pathway and gene identification data. Currently, the following data sources are
supported: BioMART, KEGG (the last publicly available version), BioGRID,
Reactome, TarBase, MirTarBase, MicroCosm, Miranda, PicTar and mapping
files of different manufacturers. Additional crawling modules can easily be added.

The data layer is responsible for storing the data used in OmixAnalyzer. While
some data formats like raw experimens or binary normalized expression data
are stored in the file system, most data is stored in the relational PostgreSQL
database. This includes all experiments and their annotations, users, groups and
permissions, crawled external data, and analysis jobs and results.

3 Supported Data Analysis

A short overview of the functionality of the OmixAnalyzer demonstrates the
variety of analysis possibilities. On top of supporting both the analysis of mi-
croarray and sequencing technologies, their joint analysis is a key feature of the
presented software.

The analysis possibilities provided are organized in six workflows (see Figure
2(b)) according to their main topics for better overview and user guidance: Qual-
ity control, differential analysis, clustering, visualization, functional analysis and
joint analysis.

Quality control implements commonly used plots such as boxplot, array-array
correlation plot or PCA which enable the user to estimate the quality of the data
and detect potential outliers. Visualization contains a potpourri of widely used
plots providing a powerful tool for investigative and hypothesis generating anal-
yses on the one hand as well as the visualization of results on the other hand.
Clustering analysis can be applied to samples or genes, or both. Hierarchical
clustering using the complete linkage algorithm and euclidian distance provides
a generic and powerful tool in class discovery. Differential analysis is a state-
of-the-art implementation facilitating the detection of relevant genes based on
commonly used criteria such as t-test based p-value, fold change or gene expres-
sion variance. For more than two groups, Anova is available.

A more bio-functional interpretation of the results can be obtained with Func-
tional analysis. A pre-selected set of genes, coming from differential analysis or
selected by other criteria, can be tested for significant enrichment of KEGG path-
ways or GO terms. This service is provided for all microarray-based data that
originated from chips supported by Bioconductor. The joint analysis enables the
user to compare and correlate data from different technologies as long as they
contain samples which can be matched. Based on different criteria, subsets of
data can be selected and combined for correlation and visualization.

Each workflow leads to a result page (see Figure 2(a)) containing both a pdf
file incorporating all analysis results as well as all single result files for download.

Additionally, every workflow provides highly specialized filtering options with
respect to the data used for the concrete analysis. Clustering for example can be
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Fig. 2(a). Downloadable analysis re-
sults for differential analysis.

Fig. 2(b). Workflows provided for the se-
lected dataset

applied to samples, genes or both. Differential expression analysis will produce
results for genes meeting certain criteria such as p-value or simply return a list
and figures, and calculating the test statistic for all selected genes. A further
filtering option is based on the role of genes. The user can select the latter based
on their membership in a certain pathway or by user-defined lists. Microarrays
can even be selected based on their target genes. Due to the almost infinite
number of combinations the filtering techniques make the OmixAnalyzer a very
powerful tool by providing a maximum of creative analysis freedom.

A very straightforward but flexible and effective way to implement integrated
data analysis is provided by the option to store gene lists at the end of an analysis
workflow and reuse the entities, i.e. genes, in another. If, for example, epigenetic
as well as expression data of the same conditions were stored in the OmixAn-
alyzer, the set of differentially expressed genes could be tested for differential
histone acetylation. Sample correspondence over experiments permits even more
sophisticated options, such as miRNA to mRNA mapping by target as well as
their correlation.
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4 Web Interface

The web interface is entirely written in Java and XML and relies on JSF2, Prime-
faces, HTML5 and Ajax to offer a seamless user interface. Ajax is implemented
through partial page rendering and partial page processing. Most of the client-
side JavaScript code is provided through the frameworks used. The web interface
is theme-able.

All administration of OmixAnalyzer can be done in the web interface by a user
with administration privileges. The so-called administration area provides pages
to manage entities within the system. The Experiment Manager Module allows to
create, edit, delete and export experiments. The creation of new experiments can
be done entirely using the web interface, including the upload of the experiment
data. Experiments can be exported as a single zip file containing the data of the
experiments in mage-tab format as well as the raw data (e. g. cel files of gene
chip experiments). The user manager module contains facilities to create, edit
and delete users and their roles. Additional modules are available to manage
platforms, organisms, etc.

A more illustrative impression of the web interface shall be achieved by a
walk-through to joint Analysis of gene chips and miRNA. The step preceding all
workflows is the selection of the data set. Based on this decision, the workflows
available for the selected data sets are displayed. In case of joint analysis, a
miRNA and a gene chip data set need to have corresponding samples. After
choosing the workflow, a subset of groups can be selected. For a more specific
analysis a filter can be applied to genes as well as to miRNAs. The emerging
subset of samples and targets is now correlated based on an internally provided
miRNA target mapping. Once the calculations are complete, the result page
offers the view and download of all generated results including images in a pdf
file, by single download or as an all-including compressed archive.

5 Availability and Extensibility

The OmixAnalyzer is available on request. We provide the full sources required
to build and run the system, as well as a ready-to-run virtual machine image. Be-
cause the OmixAnalyzer is easy to administer but complex to install, this image
can be used to set-up the system in only a few steps. The system is also avail-
able online for trying out its features: http://omixanalyzer.informatik.hu-
berlin.de

To run the OmixAnalyzer from the virtual machine image, VirtualBox (4.2
or higher) is required, which is freely available for most operating systems. The
image contains all required software, and an installation guide for setting up the
virtual machine is also provided.

Compiling and deploying OmixAnalyzer requires a few more steps. The system
presupposes a Linux system with Oracle’s Java JDK 7, PostgreSQL (9.0 or
higher), R (2.15 or higher) and Bioconductor, ImageMagick and Maven 3. After
modifying the central configuration file according to your needs, Maven will
automatically download all required libraries and build a ready-to-run war file,

http://omixanalyzer.informatik.hu-berlin.de
http://omixanalyzer.informatik.hu-berlin.de
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which can be deployed on a Tomcat servlet container (version 7 or higher) or a
Glassfish application server (3.1 or higher). The database can easily be installed
using the supplied schema files. A detailed installation guide is also available.

With the modular architecture, new components can be added to the system
with relatively small effort as plug-ins. These can add new GUI components to
the system, provide more analysis methods for supported platforms, or even add
a completely new platform type like for example proteomics.

To add a new GUI component, only the website layout and a Java class
containing the GUI related functionality need to be written. For new platform
types, a small module containing platform-specific information is required, along
with some minor changes in the Data Layer. To enable users to analyze data of
the new platform type, new analysis modules are required as well.

Analysis modules are the most complex type of plug-ins for OmixAnalyzer. A
new analysis module must contain meta information about the analysis workflow,
including required input data and user options to parameterize the analysis. The
actual analysis functionality can be supplied as Java, R, Perl or similar code
routines.

6 Discussion

We present the OmixAnalyzer, a system for data management and analysis that
specifically targets the needs of mid-size projects. For smaller groups of peo-
ple, maintaining a central solution like the OmixAnalyzer probably brings more
burden than gain; in such settings, stand-alone systems, some of which are also
available commercially, are usually the better choice. On the other hand, very
large, international projects typically need a more flexible system than the Omix-
Analyzer, with stronger capabilities in terms of scalable and distributed data
analysis, support for automatic data and metadata ingestion, and possible di-
rect links to LIMS systems. The OmixAnalyzer was designed to target projects
just in-between, which typically can afford (limited) central and professional staff
for running a data management solution.

The systems supports both computer-illiterate and savvy users. Biologists can
take advantage of the built-in pre-processing, quality-control and data analysis
options to work with their data and to generate results and figures for publi-
cations. Bioinformaticians may exploit the plug-in architecture to easily adapt
the system to specific needs or to add specific extensions, like novel analysis
pipelines or support for other data types. The successful use of the OmixAna-
lyzer manifests in at least two publications [6,13] accrued in the framework of
the TRR54.

We are currently extending the system to also support proteomics data. Fur-
thermore, we plan to provide a more comprehensive set of joint analysis methods.
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Abstract. Semantic web technology is well suited for large-scale information 
integration problems such as those in healthcare involving multiple diverse data 
sources and sinks, each with its own data format, vocabulary and information 
requirements. The resulting data production processes often require a number of 
steps that must be repeated when source data changes -- often wastefully if only 
certain portions of the data changed.  This paper explains how distributed 
healthcare data production processes can be conveniently defined in RDF as 
executable dependency graphs, using the RDF Pipeline Framework.  Nodes in 
the graph can perform arbitrary processing and are cached automatically, thus 
avoiding unnecessary data regeneration.  The framework is loosely coupled, 
using native protocols for efficient node-to-node communication when possible, 
while falling back to RESTful HTTP when necessary. It is data and 
programming language agnostic, using framework-supplied wrappers to allow 
pipeline developers to use their favorite languages and tools for node-specific 
processing. 

Keywords: Data flow, data pipelines, semantic web, RDF, SPARQL. 

1 Introduction 

A major use case for semantic web technology in industry is information integration 
involving several diverse data sources, each having its own access protocols, data 
format, vocabulary and information content.  Healthcare data fits this profile well.  
When semantic web technology is used for this purpose, source data such as patient 
information and lab data must be accessed, converted to RDF[1], and transformed in 
ways that are specific to each data source, to link the information together.  
Ontologies and rules are useful in performing semantic transformation of the 
information, and often require multiple processing steps.  In addition, if the 
information is important – such as healthcare information – there are often multiple 
applications that must consume that information, i.e., multiple data sinks, each one 
having its own data format, vocabulary, information requirements and protocol 
requirements.  For example, the same source information may be used for patient care 
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purposes, research, quality-of-care measurement, billing, etc.  This further 
complicates the data production process with more custom steps.   

To automate the data production process when using semantic web technology, 
often an ad hoc pipeline is built using a mixture of shell scripts, SQL queries, 
SPARQL updates, web services, etc., and sometimes specialized integration tools.  
The resulting pipeline often uses a mix of interfaces ranging from files, to web 
services, HTTP, SQL, etc., and deals with a mixture of data representations such as 
text, CSV, XML and relational.  On the plus side, such pipelines can be built using 
whatever tools are available for addressing each part of the problem, and the pipeline 
can evolve organically.  On the minus side, such pipelines become extremely fragile, 
difficult to understand and difficult to maintain, both because they use so many 
technologies and because the topology of the pipeline is very hard for a newcomer to 
figure out.  Typically, the topology is not expressed explicitly in one document – 
unless someone manually documented the pipeline, in which case the documentation 
is likely out of date.  Instead, the topology is implicit in the communication that 
occurs between a shell script on one server, another shell script on another server, a 
web service on yet another server, etc.  Furthermore, requirements frequently change 
as new data sources and new applications are integrated, thus causing pipeline 
maintenance to be a major problem. 

To simplify the creation and maintenance of automated data production pipelines, 
various pipeline languages, tools and frameworks have been created over the years. 
For example, much research has already been done on workflow automation[2], and 
the W3C in 2010 standardized an XML pipe processing model, XProc[3].  Although 
the work presented in this paper could be considered workflow automation, it differs 
from most work in that area (and XProc) in that: (a) it is specifically oriented toward 
semantic web data production pipelines; and (b) it is more primitive, as there is no 
flow of control, no flow of control operators, and no central controller.  A few other 
frameworks have been developed specifically for semantic web data 
production[4][5][6][7], but our work differs from those in being fully decentralized, 
with no central controller. 

This paper presents an approach for semantic web data production pipelines that is 
unique in being decentralized – there is no central controller – distributed, web 
oriented (based on RESTful[8][9] HTTP), dependency graph driven, and allows 
adjacent nodes in a pipeline to transparently use local data-access methods when the 
nodes are compatible and on the same server.  The approach was designed for 
semantic web applications but can also be used for other purposes.  The approach has 
been implemented in the RDF Pipeline Framework[10], an open source project 
available under the Apache 2.0 license. The Framework provides: (a) a hosting 
environment (initially Apache2 using mod_perl2) with a pluggable wrapper interface; 
and (b) some standard wrappers such as FileNode, GraphNode and JavaNode. 
(Wrappers are discussed in Section 3.1.)  The user provides: (a) an RDF pipeline 
definition (such Pipeline #1 shown below); and (b) updaters (described below).  As of 
this writing (4-May-2013), code for the RDF Pipeline Framework is in "developer  
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release" status: it runs and passes regression tests, and may be downloaded for testing, 
but is not yet ready for general production release, as some code cleanup and 
documentation still need to be done.   

2 Example Pipeline 

To provide a concrete basis for illustrating this approach, this section presents a 
simple example of a data pipeline using the RDF Pipeline Framework.  Figure 1 
shows a data pipeline (Pipeline 1) for producing cardiology and immunology data 
based on patient medical records and lab data.  There is no special significance to the 
names of the nodes in this pipeline (patients, labs, normalize, merge, process, 
cardiology, immunology).  They were chosen only to suggest the application-specific 
processing that they might perform. 

To keep the example very simple, only two data sources are used and they are both 
text files, though one comes from a remote HTTP source and the other from a local 
file.  (Of course, an actual system would likely involve more data sources and the data 
sources would often be things like relational databases or web services.)   
 

 

Fig. 1. This simple data pipeline (Pipeline 1) shows patient and lab data being combined to 
produce data that is consumed for cardiology and immunology purposes.  Each node in the 
graph performs arbitrary application-specific processing and data storage.  A directed link from 
one node to another indicates data flow and hence data dependency.  Although the lab data is 
related to the patient data – lab results for patients – the lab data is first run through a 
"normalize" step before being merged with the patient data.  After merging, the data is further 
processed through another application specific step before being consumed by the cardiology 
and immunology nodes. 

Here is the content from http://dbooth.org/2012/patients-data.txt: 
 

patient id=001  name=Alice      dob=1979-01-23  
patient id=002  name=Bob        dob=1950-12-21  
patient id=003  name=Carol      dob=1944-06-12  
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patient id=004  name=Doug       dob=1949-08-27  
patient id=005  name=Ellen      dob=1966-09-29  
patient id=006  name=Frank      dob=1971-11-15  

 
And here is the content of file labs-data.txt: 
 

lab     customer=001    glucose=75      date=2012-02-01  
lab     customer=002    glucose=85      date=2012-02-02  
lab     customer=002    glucose=94      date=2012-02-03  
lab     customer=004    glucose=72      date=2012-03-01  
lab     customer=004    glucose=104     date=2012-03-02  
lab     customer=004    glucose=95      date=2012-03-03  
lab     customer=005    glucose=98      date=2012-02-02  
lab     customer=006    glucose=87      date=2012-01-15  
lab     customer=006    glucose=91      date=2012-01-16  
 

The pipeline of Figure 1 (Pipeline 1) is defined in RDF/Turtle[11] as follows.  Line 
numbers have been added for reference purposes. 
 

1. # Pipeline 1: RDF/Turtle for Figure 1  
 2. @prefix p: <http://purl.org/pipeline/ont#> .  
 3. @prefix : <http://localhost/node/> .  
 4.  
 5. :patients a p:FileNode ;  
 6.   p:inputs ( <http://dbooth.org/2012/patients-data.txt> ) .  
 7.  
 8. :labs a p:FileNode ;  
 9.   p:inputs ( "labs-data.txt" ) .  
10.  
11. :normalize a p:FileNode ;  
12.   p:inputs ( :labs ) .  
13.  
14. :merge a p:FileNode ;  
15.   p:inputs ( :patients :normalize ) .  
16.  
17. :process a p:FileNode ;  
18.   p:inputs ( :merge ) .  
19.  
20. :cardiology a p:FileNode ;  
21.   p:inputs ( :process ) .  
22.  
23. :immunology a p:FileNode ;  
24.   p:inputs ( :process ) .  

 
It is easy to see that this pipeline definition corresponds directly to the graphical 
representation in Figure 1.  Indeed, although Figure 1 was drawn manually, tools such 
as TopBraid Composer[12] can automatically display graphical representations of 
these pipelines, making them very easy to visualize.  Some notes: 

Line 2: Prefix "p:" is declared for the namespace <http://purl.org/pipeline/ont#>  
of the RDF Pipeline Framework's vocabulary.  This is the vocabulary used to 
define a pipeline in the RDF Pipeline Framework, as summarized in Section 3.7. 
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Line 3: Prefix ":" is declared for the base URI <http://localhost/node/>  of the 
RDF Pipeline server that will host one or more nodes in the pipeline.  Any number 
of servers may be used, though this example uses only one. 
Line 5: Node <http://localhost/node/patients>  (abbreviated as :patients) is 
defined to be of type p:FileNode, which is the kind of wrapper (see Section 3.1) to 
be used by the :patients node.  In web style, a node's URI is used both to identify 
that node and to retrieve data from it. 
Line 6: The :patients node takes its input from a remote source, 
<http://dbooth.org/2012/pipeline/patients-data.txt>. 
Lines 11-12: The :normalize node takes the result of the :labs node as its input.  
Lines 14-15: The :merge node has two inputs, specified as an ordered list: the 
:patients node and the :normalize node. 

 
Although Pipeline 1 defines the data flow between nodes, it supplies no details about 
the application-specific processing that is performed by each node.  This separation of 
concerns makes it easy to reconfigure the pipeline without affecting the application-
specific processing, and vice versa.   

To specify the application-specific processing that a node should perform, an 
updater must be supplied.  An updater is a named function, command or other 
operation that implements the processing task of a node.  An updater is written by the 
user to perform an application-specific operation that produces data.  Its job is to 
produce the node's output when invoked by its wrapper (described in Section 3.1).  
The wrapper passes, to the updater, wrapper-specific parameters for the node's inputs 
and output destination, such as filenames for a FileNode, or RDF graph names for a 
GraphNode.   

For a node of type p:FileNode, such as :patients, the updater must be an executable 
program that accepts files as inputs and writes its output to stdout or (optionally) to a 
file.  By default, the framework expects the name of the updater to be the node name 
implicitly, but it may also be specified explicitly using the p:updater property.  Below 
is the updater for the :patients node, written as a shell script.  Again, the line numbers 
are not a part of the script. 

 
1. #! /bin/sh  

2. # This is the patients node updater.  

3. cat $1 | ./patients2rdf  
 

This updater simply pipes the content of file $1 through ./patients2rdf and writes the 
result to stdout.  Significant things to notice: 

• There are no Application Programmer Interface (API) calls to pollute the 
updater code.  Instead, the RDF Pipeline Framework invokes the updater when 
the data for that node needs to be generated, allowing the updater to be clean,  
simple and focused only on the application-specific task that it needs to 
perform. 

• The updater expects its input as a file whose name is passed in as a parameter 
$1 to the script, even though the pipeline definition specified its input as 
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<http://dbooth.org/2012/patients-data.txt>.  The RDF Pipeline Framework will 
automatically cache – in a file – the content retrieved from 
http://dbooth.org/2012/patients-data.txt, and provide the cache filename as the 
actual parameter $1 when it invokes the updater. 

 
As shown in line 15 of Pipeline 1, the :merge node expects two inputs – the :patients 
node and the :normalize node.  Here is the :merge updater. 

 
1. #! /bin/sh  
2. # This is the merge node updater.  
3. cat $1  
4. cat $2 | sed 's/customer/patient/g'  

 
The :merge updater performs a crude RDF merge by concatenating files $1 and $2 to 
stdout.  It also performs some crude ontology alignment by filtering file $2 through 
sed in the process, to change all occurrences of "customer" to "patient", because the 
:labs data used the word "customer" where the  :patients data used the word "patient".  
(Warning: this technique of using cat and sed to merge and edit RDF data will only 
work for certain kinds of data, and should not be used in general.  It is shown here 
only to keep the example short and simple.)   

Because the inputs of the :merge node are specified as an ordered list in the pipeline 
definition, parameter $1 of the :merge node updater corresponds to the output of the 
:patients node, and parameter $2 corresponds to the output of the :normalize node. 

Once deployed, each node in a pipeline is independently "live", and will respond to 
data requests by dereferencing the node's URI.  Thus, there are no specially 
designated endpoints: any node can be used as an endpoint or as an intermediate node.  
For example, if the :patients node is dereferenced – such as by pasting its URI into a 
browser, or by using the curl[13] command  – the updater program named patients 
will be invoked (if necessary) and its output will be returned.  Here is the output of 
"curl http://localhost/node/patients", with XSD data types[14] omitted for 

brevity: 
 
@prefix patient: <http://example/patient#> .  
@prefix : <http://example/med#> .  
patient:p001 :lab [ :name "Alice" ; :dob "1979-01-23" ] .  
patient:p002 :lab [ :name "Bob" ; :dob "1950-12-21" ] .  
patient:p003 :lab [ :name "Carol" ; :dob "1944-06-12" ] .  
patient:p004 :lab [ :name "Doug" ; :dob "1949-08-27" ] .  
patient:p005 :lab [ :name "Ellen" ; :dob "1966-09-29" ] .  
patient:p006 :lab [ :name "Frank" ; :dob "1971-11-15" ] .  

 
And here is the output of "curl http://localhost/node/merge": 

 
@prefix patient: <http://example/patient#> .  
@prefix : <http://example/med#> .  
patient:p001 :lab [ :name "Alice" ; :dob "1979-01-23" ] .  
patient:p002 :lab [ :name "Bob" ; :dob "1950-12-21" ] .  
 



60 D. Booth 

 

patient:p003 :lab [ :name "Carol" ; :dob "1944-06-12" ] .  
patient:p004 :lab [ :name "Doug" ; :dob "1949-08-27" ] .  
patient:p005 :lab [ :name "Ellen" ; :dob "1966-09-29" ] .  
patient:p006 :lab [ :name "Frank" ; :dob "1971-11-15" ] .  
@prefix patient: <http://example/patient#> .  
@prefix : <http://example/med#> .  
patient:p001 :lab [ :glucose 750 ; :date "2012-02-01" ] .  
patient:p002 :lab [ :glucose 850 ; :date "2012-02-02" ] .  
patient:p002 :lab [ :glucose 940 ; :date "2012-02-03" ] .  
patient:p004 :lab [ :glucose 720 ; :date "2012-03-01" ] .  
patient:p004 :lab [ :glucose 1040 ; :date "2012-03-02" ] .  
patient:p004 :lab [ :glucose 950 ; :date "2012-03-03" ] .  
patient:p005 :lab [ :glucose 980 ; :date "2012-02-02" ] .  
patient:p006 :lab [ :glucose 870 ; :date "2012-01-15" ] .  
patient:p006 :lab [ :glucose 910 ; :date "2012-01-16" ] .  

 
This technique of making each node independently "live" means that no central 
controller is needed or used, though nodes in a pipeline do share the same pipeline 
definition.  It also allows the pipeline to be used for multiple applications that share 
some, but not all of the same data requirements.  For example, the pipeline may have 
originally been built to supply an application with data from only the :merge node.  
The :cardiology and :immunology nodes may have been added later for other 
applications, without duplicating work or disrupting the existing pipeline.  
Furthermore, since each node can be on a different server (if desired), accessing its 
own private data, nodes can run concurrently. 

The RDF Pipeline Framework does not currently check to see if a pipeline contains 
a cycle, although such a check would be straight-forward to add using well-known 
techniques.  Since a pipeline definition indicates data dependencies, a cycle would 
likely be a mistake, though it is conceivable that a use could be found for it. 

3 The RDF Pipeline Approach: What It Does and How It 
Works 

This section describes more of the principles used in this approach, how they work 
and how they are used. 

3.1 Wrappers 

Pipeline 1 above showed how an updater could be implemented by an arbitrary 
executable program, such as a shell script, which took files as inputs and produced a 
file as output.  However, although shell scripts and files are convenient in many cases, 
data preparation for semantic web applications often requires processing steps that are 
more conveniently and efficiently performed directly within an RDF data store.  
Approaches like this are convenient for transforming RDF data from one model, 
ontology or vocabulary to another.  For example, SPARQL 1.1 Update[15] operations 
can be used to create RDF named graphs from other named graphs.  One can consider 
such tasks to be nodes in a pipeline, in which SPARQL Update operations take named 
graphs as inputs and produce named graphs as outputs.   
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To accommodate such needs, a node is composed of two parts: the updater and a 
wrapper.  A wrapper is a standard component, usually provided by the Framework, 
that is responsible for invoking the updater and communicating with other nodes. This 
architecture allows updaters to be written in any programming language and consume 
or produce any kind of object, provided that a suitable wrapper is available.  A 
wrapper runs inside a hosting environment that implements an HTTP server (e.g., 
Apache2/mod_perl2 or Tomcat), allowing the wrappers to respond to HTTP requests, 
and in turn potentially invoking updaters. The wrapper framework is extensible, so 
new wrapper types can be plugged in to each hosting environment.  The wrapper must 
be implemented in the same programming language as its hosting environment (e.g., 
Perl or Java), but this does not necessarily need to be the same language in which 
updaters are written – it depends on the wrapper. 

Some basic wrappers: 

• p:FileNode, for updaters written as executable programs (in any programming 
language) that consume and produce files; 

• p:GraphNode, for updaters written as SPARQL Update operations that 
consume and produce RDF named graphs in a SPARQL server; and 

• p:JavaNode, for updaters written in Java that consume and produce Java 
objects in a JVM. 

For example, the following SPARQL Update code INSERTs presidents from graph 
http://example/in to graph http://example/out whose foaf:givenName is "Bill", 
changing the foaf:givenName to "William".   Again, the line numbers are not a part of 
the code. 

  
 1. # SPARQL Updater #1  
 2. PREFIX foaf:     <http://xmlns.com/foaf/0.1/>  
 3. PREFIX inGraph:  <http://example/in>  
 4. PREFIX outGraph: <http://example/out>  
 5.  
 6. DROP SILENT GRAPH outGraph: ;  
 7.  
 8. INSERT {  
 9.   GRAPH outGraph: {  
10.     ?president foaf:givenName "William" .  
11.     ?president foaf:familyName ?familyName .  
12.     }  
13.   }  
14. WHERE {  
15.   GRAPH inGraph: {  
16.     ?president foaf:givenName "Bill" .  
17.     ?president foaf:familyName ?familyName .  
18.     }  
19.   }  

 
Unfortunately, although the above code could be used as a p:GraphNode updater, it 
would not be very convenient or flexible, because the names of the input and output 
graphs are hard coded.  Thus, the code would need to be modified if the pipeline were  
reconfigured to use a different input or output graph.  It would be nice if the graph 
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names were instead passed in as parameters, so that this same SPARQL code could be 
used on any input and output graphs, but SPARQL 1.1 does not provide any way to 
do that.  The RDF Pipeline Framework therefore includes a simple template facility 
that can be used for this purpose.  Here is the same updater code, but written as a 
SPARQL Update template. 

 
 1. # SPARQL Updater #2, using a template  
 2. #inputs ( ${in} )  
 3. #outputs ( ${out} )  
 4.  
 5. PREFIX foaf:     <http://xmlns.com/foaf/0.1/>  
 6. PREFIX inGraph:  <${in}>  
 7. PREFIX outGraph: <${out}>  
 8.  
 9. DROP SILENT GRAPH outGraph: ;  
10.  
11. INSERT {  
12.   GRAPH outGraph: {  
13.     ?president foaf:givenName "William" .  
14.     ?president foaf:familyName ?familyName .  
15.     }  
16.   }  
17. WHERE {  
18.   GRAPH inGraph: {  
19.     ?president foaf:givenName "Bill" .  
20.     ?president foaf:familyName ?familyName .  
21.     }  
22.   }  

 
Points worth noting: 

Line 1 is a normal SPARQL comment line. 
Line 2 tells the SPARQL template processor the names of this updater's formal 
input parameters.  When the template is expanded at runtime, this line will be 
removed and every occurrence of ${in} will be changed to the URI of the node's 
input. 
Line 3 tells the SPARQL template processor the names of this updater's formal 
output parameters.  When the template is expanded at runtime, this line will be 
removed and every occurrence of ${out} will be changed to the node's URI. 

3.2 Serializing, Deserializing and Optimizing Communication 

In addition to invoking a node's updater, the wrapper is responsible for 
communication between nodes.  Thus, the wrapper performs wrapper-specific 
serialization of node data (such as serializing a graph to RDF/Turtle) when it needs to 
transmit that data to an external node or other requester, and it performs the 
corresponding deserialization upon receiving data from an external node.  This allows 
updaters to stay very simple – unpolluted by serialization, deserialization or data 
transmission issues. 
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This wrapper architecture also allows adjacent nodes to communicate more 
efficiently when they are on the same server and use the same wrapper.  Instead of 
serializing an object, transmitting it via HTTP and deserializing it on receipt, nodes in 
the same environment can transparently access each other's objects directly.  For 
example, if node <http://example/in> were an input to node <http://example/out> in a 
pipeline, and both nodes were p:GraphNodes in the same server, then the updater for 
<http://example/out> would automatically directly access the graph produced by 
<http://example/in>, avoiding both HTTP and serialization / deserialization. 

Pipelines can be built from a heterogeneous mix of node types as long as the 
serializations produced by the wrappers are compatible.  For example, a p:FileNode 
could produce output that is RDF/Turtle and be used as the input of a p:GraphNode. 

3.3 Caching and Updating Only When Necessary 

A wrapper does not necessarily invoke a node's updater for every data request.  The 
wrapper automatically caches a node's output and keeps track of whether any of the 
node's inputs have changed.  The updater is invoked only if the cached output is stale 
with respect to the nodes inputs.  Again, this allows updaters stay simple, focusing 
only on the application-specific tasks that they need to perform. 

3.4 Deploying and Distributed Processing 

As of this writing, a pipeline is deployed by placing the pipeline definition file and 
updaters into the deployment directory of each hosting environment and starting the 
hosting environments, such as Apache2.  However, a future version of the Framework 
will likely allow the pipeline definition to be read from an arbitrary HTTP source, 
thus simplifying the distribution of a new version of the pipeline definition to multiple 
hosting environments. 

Nodes in a pipeline can be deployed on any servers that are accessible to their 
adjacent nodes.  Consider the following simple two-node pipeline. 

 
1. # Pipeline 2  
2. @prefix p: <http://purl.org/pipeline/ont#> .  
3. @prefix b: <http://server1.example.com/> .  
4. @prefix w: <http://server1.example.com/> .  
5. b:bills a p:GraphNode ;  
6.   p:inputs ( <http://dbooth.org/2012/presidents.ttl> ) .  
7. w:williams a p:GraphNode ;  
8.   p:inputs ( b:bills ) .  

 
Lines 3 and 4 of Pipeline 2 indicate that the b:bills and w:williams graphs are 

actually in the same SPARQL server (server1.example.com), and thus the 
p:GraphNode wrapper will cause the w:williams node to access b:bills graph directly.  
In contrast, if we had deployed these nodes on different servers (server1.example.com 
and server2.example.com) the pipeline definition would differ only on line 4, as 
shown in Pipeline 3 below.  Furthermore, the updaters would not change at all. 
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1. # Pipeline 3  
2. @prefix p: <http://purl.org/pipeline/ont#> .  
3. @prefix b: <http://server1.example.com/> .  
4. @prefix w: <http://server2.example.com/> .  
5. b:bills a p:GraphNode ;  
6.   p:inputs ( <http://dbooth.org/2012/presidents.ttl> ) .  
7. w:williams a p:GraphNode ;  
8.   p:inputs ( b:bills ) .  

3.5 Update Policies 

Consider Pipeline 3 above, and suppose that the data from node b:bills changes.  
When should the updater of node w:williams be invoked to update its output?  Should 
it be updated immediately?  Or should it be updated only when its output is actually 
requested?  Or perhaps periodically, every n seconds? 

A node's p:updatePolicy may be specified as an additional node property to 
indicate the policy that the wrapper should use in deciding when to invoke a node's 
updater.  Potential policies include p:lazy, p:eager and p:periodic – each one 
identifying a particular algorithm that will be used internally.  Again, by specifying 
the update policy in the pipeline definition, a node's updater can stay simple. 

3.6 Passing Parameters Upstream 

Pipeline 1 above showed :cardiology and :immunology both consuming data.  
However, each one may only need a small subset of the total data that is available.  It 
would be wasteful to propagate all possible :patients and :labs data through the 
pipeline if only a small subset is actually needed.  For example, cardiology may only 
need data for patient=(002,003,004), and immunology may only need data for 
patient=(003,006).  

To avoid this problem, parameters can be passed upstream through the pipeline, as 
illustrated in Figure 2.  By default such parameters are passed as query string 
parameters on a node's URI, when node data is requested.  For example, the command 
"curl 'http://localhost/node/cardiology?patient=(002,003,004)'" will request data from 
node :cardiology, passing query string "patient=(002,003,004)" as a parameter.  (Of 
course, if parameters contain sensitive information then they should be suitably 
encrypted.) A parameter is treated as an additional node input, and thus a parameter 
change can cause the node's updater to fire.  A node's updater can make use of its 
parameters if it chooses to do so.  For example, for a p:FileNode updater, the most 
recently passed parameter is available in the $QUERY_STRING environment 
variable, and the parameters from all of a node's output nodes are available in the 
$QUERY_STRINGS environment variable. 

By default, parameters are propagated upstream automatically.  However, a 
pipeline definition may specify a p:parametersFilter for any node in order to 
transform the parameters as they are propagated upstream through that node.  A 
p:parametersFilter is thus analogous to an updater, but it only operates on parameters  
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Fig. 2. Parameters are passed upstream through the pipeline, to control the data that the 
:patients and :labs nodes will generate.  By default, parameters are passed upstream without 
modification.  However, the pipeline definition may specify a p:parametersFilter for a node to 
control how that node will combine and/or modify the parameters that it passes upstream.  In 
this illustration, the :process node supplied a p:parametersFilter that merged the parameters 
"patient=(002,003,004)" and "patient=(003,006)" that it received from :cardiology and 
:immunology, to produce the parameter "patient=(002,003,004,006)" that it passes upstream to 
the :merge node.  The :merge node then used another p:parametersFilter to pass one parameter 
"patient=(002,003,004,006)" upstream to the :patients node, but a different parameter 
"customer=(002,003,004,006)" to the :normalize node.  No other node in this pipeline needs to 
specify a p:parametersFilter.   By passing such parameters upstream, the :patients and :labs 
updaters are able to generate only the data that is actually needed downstream. 

that are being passed upstream.  For a p:FileNode, the p:parametersFilter must be an 
executable program – typically a simple shell script.  This treatment of parameter 
propagation again allows updaters to stay simple, while providing a powerful 
technique for data production to be efficiently controlled. 

3.7 Error Checking and Automated Transformations 

As of this writing, the Framework provides minimal error checking and does not 
include monitoring or alerting functions, though such features could be added in a 
future version.  The Framework itself would be useful in implementing such features.  
For example, it would be easy to write an email notification node that reads from an 
error stream. 

The Framework knows almost nothing about the semantics of a node or its inputs 
or output.  It does not check to ensure that the actual input that a node receives 
conforms to the media type that the node expects, nor does the Framework perform 
any automatic transformation from one media type to another.  It would be 
straightforward to extend the Framework to add such error detection and/or automatic 
transformation, but this has not been done thus far, because: (a) the user would have 
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to declare the expected media types for each of a node's inputs, thus making the 
pipeline definition more verbose; (b) the correspondence between the pipeline 
definition and the actual processing would be less direct, since in essence the 
Framework would perform automatic translation by inserting implicit translation 
nodes into the pipeline as needed; (c) a node normally has input expectations that go 
far beyond what a media type specifies, and during development these expectations 
need to be tested anyway, to ensure that the node receives what it expects, so it seems 
quite unlikely that a media type mismatch would pass unnoticed during such testing; 
and (d) it is very easy to insert an explicit translation node into a pipeline anyway. 

Since an updater can perform arbitrary processing, updaters can have side effects 
that are unknown (and unknowable) to the Framework.  Such side effects could cause 
concurrency issues if different updaters share the same resource.  Users should bear 
this in mind when designing their updaters. 

3.8 Graceful Evolution of Nodes and Pipelines 

One motivation for cleanly separating the application-specific concerns (encapsulated 
in a pipeline's updaters) from the mechanics of caching, updater invocation, 
serialization, deserialization and handling HTTP requests, is to enable nodes and 
pipelines to evolve gracefully, without impacting other part of the pipeline: loose 
coupling.  For example, a node can be swapped out for a new version, implemented in 
an entirely different programming language, with no change to adjacent nodes and 
only a trivial change to the pipeline definition (to change the node's wrapper type).  
This enables a pipeline to be developed quickly and easily, using the simplest 
available updater implementation techniques, and then refined as needed, adding 
features or improving efficiency.  This fits well with agile development practices. 

3.9 RDF Pipeline Properties 

Section 3.1 discussed wrappers, which are represented in a pipeline description as 
classes.  The following table summarizes the user-oriented properties used in defining 
a pipeline.  Wrappers use additional properties internally.  The subject (or domain) of 
each property in the table is a node unless the Value column indicates otherwise, such 
as "Subject is $nodeType", which means that the subject should be the type of a node, 
e.g., GraphNode, rather than a node instance.  For all properties (and classes) the 
namespace is <http://purl.org/pipeline/ont#> except for the rdfs:type property, a/k/a 
"a" in Turtle. 

Property Value 

a  /  rdfs:type Node type, e.g., GraphNode.  

contentType 
HTTP Content-Type for this node's serialized output. 
Defaults to defaultContentType of the $nodeType. 

defaultContentType 
Subject is $nodeType. Default HTTP Content-Type for 
serialized output. 
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defaultContentEncoding 
Subject is $nodeType. Default HTTP Content-Encoding for 
serialized output. 

dependsOn 

URIs of inputs, parameters and anything else this node 
depends on.  Inputs and parameters are automatically 
included, but dependsOn can be used to specify additional 
dependencies. 

hostRoot 

Subject is $nodeType. The value is a list that maps the 
server prefix (such as "http://localhost") of node URIs of 
this $nodeType to the root location (as native name) of the 
server that implements the wrapper for this $nodeType. 
Analogous to $DOCUMENT_ROOT, which is used by 
default if this property is not set.  Example: 
  p:GraphNode p:hostRoot 
      ( "http://localhost" "http://localhost:28080/openrdf-
workbench/repositories/owlimlite/" ) . 

inputs 
URIs of this node's inputs.  They maybe other RDF 
Pipeline Nodes, or arbitrary HTTP data sources. 

parametersFilter 
File path of parametersFilter, relative to server 
"$ENV{DOCUMENT_ROOT}/node/".   

state 

Native name of node output, i.e., the object that will be 
updated by the node's updater.  For example, for a 
FileNode it is a filename.  For a GraphNode it is a named 
graph. 

stateType 
Subject is $nodeType.  Type of state, if set.  Otherwise 
$nodeType is used. 

stderr File name of stderr from last update. 

updatePolicy 
Specifies the name of the algorithm that decides 
whether/when a node's state should be updated.  Potential 
policies include lazy, eager and periodic.  

updater Native name of updater function. 

4 Security 

Data security is critical in healthcare and many other domains.  For lack of space, this 
paper does not detail how security concerns can be addressed in the RDF Pipeline 
Framework, but as a brief outline: 

• Wrappers can ensure that data in transit is securely encrypted, both in 
passing data downstream and in passing parameters upstream. 

• Secure HTTP (https:) can also be used, for an additional layer of inter-node 
communication security. 

• Updaters can ensure that data at rest is fully encrypted, if necessary. 
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5 Conclusions 

This paper has presented a novel approach to automating data production pipelines for 
healthcare and other applications using semantic web technology.  The approach 
makes use of framework-supplied wrappers that handle caching, dependency 
checking and inter-node communication, allowing a node's updater code to stay 
simple and application-focused. This also allows the framework to be used with 
multiple programming languages or object types, given appropriate wrappers.  The 
approach is decentralized – every node in a pipeline is live – and nodes can be easily 
distributed across multiple servers with minimal change to the pipeline definition and 
no change to a node's updater. The approach is implemented as an open source project 
at http://rdfpipeline.org/ .  Interested parties are invited to contact the author. 
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Abstract. The number of NLP and BioNLP tools published as web services 
grows every year. Web services do not require installation, they are platform 
independent, and provide access to software modules that cannot be installed on 
regular computers due their complexity and heaviness. Whereas XML is the de 
facto interchange format for web services, the different XML schemas and the 
absence of semantics make the integration of resources (XML-based web ser-
vices and their outputs) a very challenging task requiring significant effort from 
end users. We propose the use of semantic web services that provide semantic 
description of their in- and outputs to achieve interoperability of BioNLP ser-
vices and the ad-hoc consolidation of their results. We leverage the SADI 
framework as a development platform to realize, by example, a number of high-
ly integrated application and data integration scenarios.  
 
Project Page: https://code.google.com/p/bionlp-sadi 

Keywords: BioNLP, Bio data integration, Semantic web services, SPARQL. 

1 Introduction 

Over the last decade, biomedical natural language processing (BioNLP) has been 
validated as a solution to address the text-mining and information extraction needs of 
life scientists. Recently the number of NLP and BioNLP tools published as web ser-
vices have been growing steadily. There are several providers of text-mining web 
services which include popular providers such as Whatizit [1], e-LICO [2], NaCTeM 
[3] and Manchester Interdisciplinary Biocentre [4].  Web services are typically regis-
tered in public catalogues (registries) e.g. BioCatalogue [5]. Web services do not re-
quire installation; they are platform independent and provide access to software that 
cannot be installed on desktop computers due to their complexity and heaviness. Most 
BioNLP tools produce XML based output, where XML schema represents syntactic 
structure of the input and output messages. In many use-cases, integration of several 
text-mining web services is required and the output results must be consolidated. 
Since XML schemas differ in their structure and do not provide the “meaning” of the 
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syntactic XML elements, integration of web services and consolidation of results 
cannot be automated and requires additional programming work.  

Achieving semantic interoperability - where distinct data not only share the syntax 
(same structure) but also the same semantics (elements link to the same vocabulary 
providing system-independent interpretation of the data) is a bottleneck of XML-
based approaches. Unlike XML-based web services, semantic web services provide 
semantic metadata describing their input and output. This enables automatic discov-
ery, composition, interoperation, and ad-hoc consolidation of the outputs as long as 
they are modeled in terms of the same or compatible ontologies.  

Despite the existence of several semantic web service specifications, such as 
OWL-S [6], SSWAP [7], WSMO [8], few have been successfully adopted. In our 
work we leverage the Semantic Automated Discovery and Integration (SADI) [9] 
framework. The choice is based on superior functionality of the framework for devel-
oping and deploying semantic web services, the availability of plug-in tools and client 
software that simplifies the discovery and utilization of the services by end users. 
Moreover, we have extensive experience using SADI to achieve semantic interopera-
bility between data retrieval and data processing resources in several domains such as 
personalized medicine [10], clinical intelligence [11], ecotoxicology [12], lipidomics 
[13], mutation text-mining [14]. More details on SADI specification, tooling and 
usage see Methodology and Usage sections below.  

The current goal of our work is to create a web based platform of interoperable 
services targeted at the bio text-miner, bioinformatics application or database de-
veloper where users can readily exploit service interoperability to perform complex 
tasks requiring ad-hoc mash-up of output data, without needing to program or in-
stall software. In this article we report on our work to leverage SADI as develop-
ment platform to expose text-mining tools as SADI services and call our approach 
the BioNLP-SADI framework. We illustrate its utility for a number of scenarios of 
interest to life scientists. The article is outlined as follows. The Related Work de-
scribes the relevant approaches and shows the position of our approach in context of 
competing technologies. The Methodology section outlines the ontologies used for 
modeling the input and output of SADI services, as well as examples of service 
design and consolidated outputs. In the last section, we discuss possible use case 
scenarios and finally, the Conclusion summarizes the results and outlines directions 
of future work.  

2 Related Work 

Our work is inspired by the work described in [14]. The authors deployed a mutation 
impact extraction system as a SADI service in order to achieve interoperability be-
tween information extraction and data retrieving services. They also used a semantic 
client [15] that made it possible to build data processing pipelines from a semantic 
query, specifically for integrating mutation impact extraction text-mining with  
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pre-processing services (document retrieval, pdf-to-text conversion) and data visuali-
zation software which were also exposed as SADI services with compatible  
modeling. Using this client the creation of pipelines and consolidation of the outputs 
occurs in real time (on-the-fly) and does not require any integration effort by end 
users.  

To the best of our best knowledge, there are no other attempts to expose BioNLP 
tools as semantic web services. Semantic web technologies have rarely been em-
ployed in the BioNLP domain. In a literature study, we found a modest number of 
attempts to use RDF/OWL to represent biomedical corpora [16] and biomedical text-
mining results [17] [18]. One project in particular has adopted semantic web services 
to publish NLP tools, namely nlp2rdf [19]. This project aims to create an interchange 
format for linguistic tools, resources, and annotations. They developed ontologies to 
model basic document and text structure; a String Ontology [20] and a Structured 
Sentence Ontology [21]. They model Strings, Words, Sentences, their boundaries, and 
relations between them, such as subString, superString, beginIndex, endIndex, 
rightContext, leftContext, nextSentence, previousSentence, etc.  The actual annota-
tions in RDF are represented by using ontologies and vocabularies for a specific do-
main (syntactic parsing, part-of-speech tagging, named-entity-extraction, etc). A clear 
benefit is that once a NLP web service is modeled in terms of standard reference on-
tologies, its output can be published on the Web becoming Linked Open Data.  

The general themes of interoperability, compatibility and re-usability of bio text-
mining resources are currently being assessed by the BioCreative group through the 
organization and promotion of the BioCreative Interoperability Initiative [22]. This 
initiative aims to promote simplicity, interoperability, and the large-scale use and 
reuse of text mining resources by introducing and popularizing a new annotation 
standard – BioC, an interchange format for corpora and tools in BioNLP. The authors 
aim to achieve minimal interoperability - using basic categories such as sentences, 
tokens, parts of speeches, and several named entity categories. The work is at a very 
early stage and currently no detailed specification of the approach is available. 

3 Methodology 

In order to achieve semantic interoperability of text-mining web services and their 
outputs we propose to use a semantic web services framework, SADI in particular, 
and use reference ontologies to provide the compatible modeling. In the following we 
describe SADI technology, ontologies we use and give examples of service design 
and consolidated output automatically produced by example web services. 

3.1 SADI 

The SADI framework [9] is a set of conventions for creating HTTP-based semantic 
web services that can be automatically discovered and orchestrated. SADI services 
consume RDF documents as input and produce RDF documents as output, which 
solves the syntactic interoperability problem. This is also convenient for client  
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programs that can leverage existing APIs for RDF to represent the data on which 
SADI services operate. In brief, SADI services operate by attaching new properties to 
input URIs described in the input RDF graph, and the most important feature of SADI 
is that these properties are fixed for each service. A declaration of these predicates, 
available online, constitutes a semantic description of the service. For example, if a 
service is declared with the predicate hasPartOfSpeechAnnotation described in ontol-
ogy as a predicate linking document with a part-of-speech tagger service, the client 
software knows that it can call the service to generate part-of-speech annotations.       
The SADI framework uses the OWL class syntax to specify conditions on the input 
nodes a service consumes, and declare the predicates the service attaches. Such decla-
rations of inputs and outputs of services enable completely automatic discovery and 
composition of SADI services. For more technical details on SADI and SHARE 
(http://sadiframework.org/content/tag/share/), the reader is referred to [9] [15]. 

3.2 Ontologies for Modeling Annotations and Extracted Entities 

The interoperability of services and the ad-hoc mash-up of text-mining results can be 
achieved by defining text-mining web services output in terms of the same or compat-
ible reference ontology(s). BioNLP-SADI leverages two types of ontologies: (1) on-
tologies for modeling annotations, and (2) domain ontologies for modeling entities 
and their relations extracted from text.  

Annotation Ontologies: We propose to use the Annotation Ontology (AO) [23] to 
model the structural level of annotations. AO is an open-source ontology for annotat-
ing the scientific documents on the web. In AO, all the annotations are regarded as 
resources and fall under the instance category of the Annotation class. Each annota-
tion has some hasTopic and context predicates and the object of hasTopic predicate 
can be a certain entity such as drug, chemical, disease, or reified fact while context 
refers to a certain text inside the sentence. This simple reference model makes it poss-
ible to connect extracted information to surface text or entire documents. The prove-
nance of annotations is modeled with Provenance, Authoring and Versioning (PAV) 
ontology [24]. E.g. predicates such as createdBy, createdOn describe the creator and 
date of creation. 

Domain ontologies: Domain ontologies are used to model information extracted from 
a document. Such ontologies can be an upper level ontology such as Semantic Inte-
gration Ontology (SIO) [25] which also includes many high level biomedical con-
cepts, or any specific domain ontology. 

3.3 IO Service Modelling Examples 

Fig. 1 displays a prototypical model of the in- and output of a sentence splitting SADI 
service. The goal of the SentenceSplitter service is to split text into sentences. The 
service is represented by modeling the relation between the document and annotations  
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Fig. 1. A SADI service architecture of a sentence splitter service 

 

 

Fig. 2. A SADI service architecture of a drug extraction service 

of type Sentence in text segments. It consumes an instance of Document class as input 
with the attached string content via the hascontent relation. Since most of the text 
mining services carry out the document annotation, they all share the same input 
modeling (compare with Fig. 2 that shows another text-mining service). In the output, 
the service attaches an Annotation instance via the predicate hasSentenceAnnotation. 
Typically the name of the property would represent the functionality of the services, 
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or type of annotations created by it. Accordingly, the service extracting drugs attaches 
hasDrugAnnotation predicates to the document (see Fig. 2.) Note the input and output 
entity is the same entity - a central feature of the SADI specification. The service 
simply decorates the input node (document) with new information (annotations). An-
notations are characterized by their type - Sentence (Fig. 1) and Drug (Fig. 2) - and 
text strings with boundaries - start and end. Each service attaches provenance infor-
mation about the creator (the service itself) and the time when annotations are created.  

3.4 Consolidated Service Outputs 

Using SADI as a platform guarantees the results of text-mining are interoperable with 
SADI services which operate on structured data. These data retrieval services can 
augment the results of services serving text extracted information. This can take the 
form of adding new data, on verifying text extracted results against existing data in 
knowledge bases and controlled vocabularies, a process known as grounding (assum-
ing that knowledge bases have compatible semantic interface).  

Fig. 3 shows a (prototypical) RDF graph automatically assembled from the merged 
outputs of three services. Document_1 was annotated with drugs by the Drug-
Extraction-Service and was split into sentences by the Sentence-Splitter-Service.  
Following this the Drug-Drug-Interaction-Service, which found all drug pairs with po-
tentially harmful interactions. The Drug-Drug-Interaction service in our example is a  

 

� 

Fig. 3.  Drug-Extraction and Drug-Drug-Interaction SADI services Consolidated Output 
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data-retrieval service (not a text mining service). It is based on the DrugBank [26] 
database that contains information about drugs and their interactions. The service 
retrieves for each drug all the known interactions from the database and attaches them 
to the drug as instances of the Drug-Drug-Interaction class (see Figure 3). The result-
ing output of three services makes it possible to pose queries for the target informa-
tion such as, find all sentences where potentially harmful drug-drug interactions are 
mentioned. 

4 Access to BioNLP-SADI Services 

In this section we outline how to access interoperable BioNLP-SADI services. 
Firstly it is possible to interact with these services through a web based interface 
similar to the nlp2rdf web interface [27] where the users can select a service or 
combination of services to achieve a certain goal and provide input in the form of a 
text string or a list of Pubmed ids - similar to the Whatizit web interface [28]. Un-
like XML-based services, our services will produce RDF with automatically 
mashed-up annotations and the RDF data will be available for download and be 
searchable via SPARQL interface.  

For end users that are more familiar with semantics technologies it is possible to 
use a SADI SPARQL client like SHARE, which is a proof-of-concept Semantic 
Web query engine that resolves SPARQL (an RDF Query Language [29]) queries 
by building and executing workflows with SADI services. SHARE is also capable 
of discovering instances of a given OWL class by building an appropriate SADI 
workflow. Further details about SHARE can be read in [15]. The SADI client ap-
plication can also be integrated into any NLP framework such as GATE [30] or 
UIMA [31]. Since we use the Annotation Ontology to model structural level of 
annotations, services can be also integrated into the DOMEO [32] graphical  
annotation toolkit, which is RDF-based and uses the same ontology to model  
annotations. 

SADI services can be accessed via SADI API; moreover a SADI plugin for Taver-
na [33] will allow easy assembly of text mining pipelines. SADI services themselves 
can be registered and discovered in a SADI registry which has a web interface where 
service providers can register their services. The registry can also be accessed pro-
grammatically via SADI Registry API, or as a regular SPARQL endpoint. Finally, 
from developer’s point of view, there is a rich infrastructure for developing and test-
ing SADI services: service and client APIs, automatic service generator, Protege Plu-
gin and etc.  

5 Use Cases - Sample Queries 

In this section, we focus on the type of information that could be extracted from ad-
hoc consolidated outputs. As we outlined in the previous section, we can easily merge  
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the RDF outputs (because of the RDF interoperability attribute) produced by different  
SADI services to query the desired information. Here we present some use case sce-
narios along with simplified SPARQL queries and the already deployed SADI servic-
es to give an overview about ad-hoc queries to the user.   

Use Case 1: Find abstracts where the same mutation mention is found in two 
adjacent sentences. 

 
In this scenario, a bioinformatics database curator wants to find abstracts where the 
same mutation occurs in adjacent sentences. The generalized SPARQL query below 
could extract the mutation in two adjacent sentences.  
 
SADI services employed in use case 1: Mutation Finder and Sentence Splitter.  

SELECT DISTINCT ?sentence 
WHERE{ 
    ?document a Document; hasId ?doc_id . 
    ?mutation a Mutation . 
    ?annotation_1 a Annotation; 
    hasTopic ?mutation; 
    onDocument ?document; 
    context 

 [ 
     a String; 
     source "N30A"; 
     isContainedBy ?sentence_1 
 ] . 

    ?annotation_2 a Annotation; 
    hasTopic ?mutation; 
    onDocument ?document; 
    context 
    [ 
       a String; 
       source "N30A" ; 
       isContainedBy ?sentence_2  
    ] . 
    ?sentence_1 hasNextSentence ?sentence_2 . 
} 
 

Use Case 2: Find Sentences Where Mutation and Drug Occur in the Same  
Sentence. 

In this use case, we address the needs of researchers involved in small molecule drug 
discovery seeking to retrieve sentences where mentions of mutations to drug targets 
and the small molecules are found in the same sentence. This is possible by invoking 
mutation finder and drug extraction services run in parallel (as they are not dependent 
on each other) and combining their results to generate a semantically enriched intero-
perable consolidated output view.  
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SADI Services Employed in Use Case 2: Mutation Finder, Drug Extractor and 
Sentence Splitter 

SELECT DISTINCT ?sentence 
WHERE{ 
    ?document a Document; 
      hasId ?doc_id . 
    ?annotation_1 a Annotation; 
      hasTopic [ a Mutation ]; 
      onDocument ?document; 
      context 
      [ 
      a String; 
      source "N30A"; 
      isContainedBy ?sentence 
      ] . 
    ?annotation_2 a Annotation; 
      hasTopic [ a Drug ]; 
     onDocument ?document; 
      context 
      [ 
      a String; 
      source "Indinavir"; 
      isContainedBy ?sentence 
      ] . 
} 
 

Use Case 3: Extract Drug Mentions from Text and Display Known Interactions 
Between Them. 
 
This query retrieves evidence of interactions between different drugs mentioned in a 
document and would be of interest to physicians looking for side effects (positive, 
negative, neutral) of a particular drug combination when given together to patients. 
The following SPARQL query identifies evidence of interaction between two  
drugs. 
 
SADI Services Employed in Use Case 3: Drug Extractor and Drug Drug Interaction 

SELECT DISTINCT ?drug_1 ?drug_2 
WHERE{ 
    ?document a Document; 
      hasId ?doc_id; 
       ?drug_1 a Drug . 
    ?annotation_1 a Annotation; 
      hasTopic ?drug_1; 
     onDocument ?document . 
    OPTIONAL { 
     ?drug_2 a Drug . 
     ?drug_1 interactsWith ?drug_2 . 
    } 
} 
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Use Case 4:  Find Foods with Known Interactions with the Drug Cytarabine. 
 
In this scenario, we aim to address the needs of both physicians and patients interested 
to know the interaction of any foods with a certain type of drug. Certain foods are 
known to be effective in reducing the effectiveness of a prescribed drug. The follow-
ing SPARQL query can fetch all the food interactions with drug the Cytarabine. 
 
SADI Services Employed in Use Case 4: Drug Extractor, Drug Food  
Interaction 

SELECT DISTINCT ?food 
WHERE{ 
    ?document a Document; hasId ?doc_id . 
    ?annotation_1 a Annotation; 
      hasTopic 
      [  
     a Drug; 

hasDrugBankId "DB00987";  # DrugBankID for Cytarabine 
      ]; 
      onDocument ?document . 
    ?annotation_2 a Annotation; 
      hasTopic [ a Food ]; 
      onDocument  ?document . 
    ?drug hasDangerousInteractionWith ?food . 
} 

6 Conclusion 

To address the ongoing challenges of integration among XML-based BioNLP web 
services, we proposed a generalized architecture for text mining web services using  
the SADI semantic web service framework. The sophisticated mechanism we propose 
is able to address key challenges related to BioNLP interoperability and data prove-
nance. We have created in-house implementations of the services described here-in 
(drug-extraction, mutation mention detection, sentence-splitting, drug-drug-
interaction) along with several SPARQL queries for use with a SHARE like client. 
The combined RDF outputs of the service calls permit the construction of more elabo-
rate queries, matching the needs of our target end users. Although the work we have 
outlined is at an early stage, it has shown that we can provide new functionality and 
seamless interoperation between services, facilitating meaningful knowledge discov-
ery. In the future work, we plan to integrate more BioNLP tools and develop more 
complex use cases based on combining interoperable text mining and data mining 
web services. 
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Abstract. An efficient computation of ontology mappings requires opti-
mized algorithms and significant computing resources especially for large
life science ontologies. We describe how we optimized n-gram match-
ing for computing the similarity of concept names and synonyms in our
match system GOMMA. Furthermore, we outline how to enable a highly
parallel string matching on Graphical Processing Units (GPU). The eval-
uation on the OAEI LargeBio match task demonstrates the high effective-
ness of the proposed optimizations and that the use of GPUs in addition
to standard processors enables significant performance improvements.

Keywords: ontology matching, GPU, parallel hardware.

1 Introduction

Mappings (alignments) between ontologies are important for many life science
applications and are increasingly provided in platforms such as BioPortal [13].
New mappings are typically determined semi-automatically with the help of on-
tology match systems such as GOMMA (Generic Ontology Matching and Map-
ping Management) [10] utilizing different matchers to evaluate the linguistic and
structural similarity of concepts [3]. Ontology matching is challenging especially
for large ontologies w.r.t. both effectiveness (achieving a high quality mapping)
and efficiency, i.e., fast computation [16]. Results of the 2012 OAEI [14] Large-
Bio task1 showed that some systems still have problems or are even unable to
match large ontologies such as the Foundation Model of Anatomy (FMA) [5] or
the Thesaurus of the National Cancer Institute (NCIT) [11].

For high efficiency, it is important to reduce the search space by avoiding the
comparison of dissimilar concepts [2,9], and to utilize optimized implementations
for frequently applied similarity functions such as n-gram, Jaccard, TF-IDF (e.g.,
by using fast set intersection [1], or pruning techniques [18]). Libraries such as
SimMetrics2 typically provide a comfortable and general interface getSim(string1,
string2) for multiple similarity measures but often lack efficient implementa-
tions. For example, they either lack pre-processing steps to transform strings

1 http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2012/
2 http://sourceforge.net/projects/simmetrics/
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into representations permitting faster comparisons or they cause redundant pre-
processing steps when matching a particular string multiple times.

A promising direction to speed-up processing-intensive computations such
as string comparisons is the utilization of Graphical Processing Units (GPU)
supporting a massively parallel processing even on low-cost graphic cards. The
availability of frameworks like CUDA and OpenCL further stimulated the inter-
est in general purpose computation on GPUs [15]. Algorithms like BLAST [17],
database joins [8] or duplicate detection/link discovery systems [4,12] have al-
ready been adapted for GPU execution. Unfortunately, GPUs and their program-
ming languages like OpenCL have several limitations. For instance, only basic
data types can be used, the memory capacity of a GPU is restricted to a specific
size, and data must first be transferred to the GPU. Furthermore, no dynamic
memory allocation is possible, i.e., the resources required by an algorithm must
be known and allocated a priori. These restrictions need to be considered in a
new solution for computing string similarity in match systems such as GOMMA.

In this experience paper, we make the following contributions:

• We describe how we optimized n-gram matching for linguistic matching in
GOMMA including the use of integer representations for n-grams. (Sec. 2)

• We propose a new method for n-gram matching on GPU. The technique is
not limited to n-gram and can also be applied to other token-based string
metrics (e.g., Jaccard). We further describe how GOMMA can exploit both
CPU and GPU resources for improved efficiency. (Sec. 3)

• We evaluate our techniques on a real-world match problem, namely the
FMA-NCI match task from the OAEI LargeBio track. The results show
that we are able to significantly reduce the execution times on CPU as well
as GPU compared to the standard solution. (Sec. 4)

2 Optimizing N-Gram Similarity Computation

GOMMA uses the n-gram string comparison to determine the similarity of names
and synonyms for pairs of concepts of two input ontologies O and O′. The ex-
ample in Fig. 1 shows the names/synonyms for three concepts per ontology. The
match result is a mapping MO,O′ = {(c, c′, sim) | c ∈ O, c′ ∈ O′, sim ∈ [0, 1]}
consisting of correspondences between concepts and their match similarity. Given
that a concept has a name and potentially several synonyms, there can be several
n-gram similarities per pair of concepts. GOMMA thus applies an aggregation
function agg, e.g., maximum or average, to aggregate multiple similarity values.
Finally, GOMMA uses a threshold t to restrict the mapping to the most likely
correspondences.

A naive n-gram matcher first splits the string attribute values to be compared
into overlapping tokens of length n. For our example and n=3 (Trigram), the c2
strings limbs and extremity are split into {{lim,imb}, {ext,xtr,tre,rem,emi,mit,ity}}
while the single c′2 attribute value limbs is tokenized into {{lim,imb,mbs}}. To
determine the similarity between two concepts, we (1) need to compute the dice
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Fig. 1. Example trigram similarity computation. Attribute values (names, synonyms)
are converted to sorted token vectors (upper part). Tokens are represented as integers
based on a dictionary (lower left part). Individual similarities are aggregated with the
max function to determine an overall similarity between two concepts (lower right part).

coefficient for each pair of token sets TS1-TS2 (diceSim(TS1,TS2)=
2·|TS1

⋂
TS2|

|TS1|+|TS2| )
and (2) aggregate the single similarities. For instance, when determining the sim-
ilarity between c2 and c′2, we compute two single similarities diceSim({lim,imb},
{lim,imb,mbs})=0.8 and diceSim({ext,xtr,tre,rem,emi,mit,ity}, {lim,imb,mbs})=0
which are aggregated using the max function: sim(c2, c

′
2)=max(0.8, 0)=0.8.

There are several possibilities to compute the set intersection (TS1 ∩ TS2)
that can have a large impact on efficiency, e.g., a nested loop over both element
sets or the use of hash tables. Furthermore, in case of string-valued tokens, even
the check whether two tokens (strings) are equal is a quite complex operation.
In general, the larger the sets and the longer the tokens are, the more time is
required to compute set overlaps. Since such similarity computations frequently
occur in match workflows for a large number of concepts, it turns out that an effi-
cient implementation of the token set intersection is a key factor to speed up the
matching of large ontologies. In recent years, different optimization techniques
for set similarity joins (e.g., prefix, suffix, and length filtering) were proposed in
the context of near duplicate detection [18]. We omit those orthogonal optimiza-
tions in favor of readability and leave their application for future work.

GOMMA’s optimized n-gram matcher is described in Algorithm 1. It is based
on two optimizations: the use of integer representations for tokens and a sort-
merge-based computation of token set overlaps. As in the naive approach, we
first split a concept’s string attribute values into token sets (Line 6). We then
convert all n-grams into integer values based on a global dictionary (Line 8). The
dictionary is built dynamically, i.e., each time a new n-gram is observed during
the tokenization, it is added to the dictionary and, from then on, represented
by its integer-valued index in the dictionary. Additionally, we sort the integer
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Algorithm 1. ngramSim(O,O′, Attr, agg, t)

1 foreach c ∈ O ∪ O′ do
2 c.stvs ← ∅; // sorted token vectors
3 S ← c.getAttrValues(Attr);
4 foreach s ∈ S do
5 stv ← [] ; // empty token vector
6 tokens ← tokenizeNGrams(s);
7 foreach t ∈ tokens do
8 n ← getNumericTokenId(t);
9 stv.append(n);

10 c.stvs ← c.stvs ∪ {stv.sort()};

11 M ← ∅;
12 foreach c ∈ O do
13 foreach c′ ∈ O′ do
14 Sims ← ∅;
15 foreach stv ∈ c.stvs do
16 foreach stv′ ∈ c′.stvs do
17 s ← diceSim(stv, stv′);
18 Sims ← Sims ∪ {s};

19 sim ← agg(Sims);
20 if sim ≥ t then
21 M ← M ∪ {(c, c′, sim)};

22 return M ;

Algorithm 2. diceSim(stv1, stv2)

1 left ← 0;
2 right ← 0;
3 overlap ← 0;

4 l1 ← stv1.length();
5 l2 ← stv2.length();

6 while (left<l1) ∧ (right<l2) do
7 if stv1[left]==stv2[right] then
8 overlap++;
9 left++;

10 right++;

11 else if stv1[left]<stv2[right]
then

12 left++;

13 else
14 right++;

15 return 2 · overlap / (l1 + l2);

values of each token vector in ascending order (Line 10). Thus, after this pre-
processing, a concept has a set of sorted token vectors (stvs) representing the
n-grams of their string attribute values as integers. For example, the trigrams of
c2 are represented as {[9,10], [11,12,13,14,15,16,17]}.

We then iterate over all concepts of O and O′ and compare the sorted token
vectors of concepts with each other. In case of multiple attribute values for a
concept, the single similarities are aggregated to an overall similarity using the
specified aggregation function agg. Our pre-processing allows for a very efficient
overlap computation (Algorithm 2) similar to the Sort-Merge-Join used for ef-
ficient join computation in databases. Since all token sets are represented by
sorted token vectors stv, we can do interleaved linear list scans to compute the
overlap. We thus only perform |stv1|+|stv2| comparisons in the worst case with
a fast integer-based token comparison. For instance, when comparing {lim,imb}
with {lim,imb,mbs}, we compare [9,10] with [9,10,21] requiring merely the com-
parison of the two integer pairs 9-9 and 10-10.

GOMMA also supports the parallel execution of string matching for disjoint
sets of concept pairs to utilize multiple processors or cores for improved execution
time. In the evaluation (Sec. 4), we will also consider this performance option.

3 GPU-Based N-Gram Similarity Computation

A GPU-based implementation needs to overcome common GPU limitations,
namely (1) lack of string data type, (2) only restricted data structures such
as arrays, and (3) a priori allocation of a fixed and limited amount of memory.
Since our algorithm operates on integer values, the first limitation is already
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Fig. 2. GPU input and output data structures for running example and top-k=2

solved. For the second limitation we will use an index structure based on arrays.
We will overcome the third limitation by partitioning large input ontologies,
adapting memory-efficient data types, and determining only the best matches
per concept to restrict the mapping size. We further use an execution scheme
that minimizes expensive data transfers between main memory and GPU. In
the following, we describe the utilized data structures and outline the n-gram
similarity computation on GPUs.

Input Data Structure: In contrast to dynamically growing data structures
(e.g., lists or maps) usable for CPU-based computations, GPU-based process-
ing necessitates the preallocation of the required memory on the target device.
Because the number of attributes per concept and the number of n-grams per
attribute value varies, a mapping to fixed-length data structures is required. For
this purpose, we adopt a multi-level index structure (illustrated in Fig. 2 for the
running example) consisting of three arrays per input ontology: concept index
(ci), attribute index (ai), and gram index (gi). The arrays ci and ai represent
the concepts and their attributes, respectively, while gi holds the sorted token
vectors of the input concepts. For each concept, there is one entry in ci pointing
to its first string attribute in ai. The number of attributes for concept j thus is
ci[j+1]-ci[j]. Each ai entry represents a particular string and points to the first
token of its value in gi. The last (dummy) entries of ci/ai are used to mark the
end of each index. Using this structure, one can easily access the tokens of an
attribute of a particular concept. For instance, to access the tokens of concept
c2 ∈ O, we first read ci[2]=3 and ci[2+1]=5 to find the lower (inclusive) and
the upper (exclusive) bound of its attributes in ai. Hence, the concept has two
attributes represented by ai[3]=8 and ai[5-1]=10. The values at these positions
can be used to access the sorted token vectors beginning at gi[8] and gi[10], re-
spectively. To save memory and transfer costs, we use short instead of integer
data types to represent the tokens (2 instead of 4 bytes per token).

Output Data Structure: The memory for storing the match result must be
reserved a priori as well. To limit the result size, we utilize the observation that
it is sufficient to consider only the top-k best correspondences (above threshold
t) for each concept without reducing match quality. This approach marks an
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Fig. 3. Execution scheme for hybrid CPU/GPU-based n-gram similarity computation
minimizing the data transfer between the host program and the GPU

upper bound of the required memory to allocate on the GPU. Our output data
structure consists of two arrays corrs and sims. The former contains the ids of
the (at most) top-k matches per concept, the latter contains the corresponding
similarities. For our running example, we would create two arrays of length 6 to
store the best two matches for each concept of O (see bottom of Fig. 2). Again,
the amount of memory and data transfer can be reduced by using the short data
type (instead of float) to express the similarity values. In particular, we limit
their precision to three decimal places which is sufficient for match processes,
e.g., the similarity value 0.8 for c2-c

′
2 is expressed by a short value of 800.

N-Gram Execution on GPU: Compared to CPUs, the architecture of GPU
hardware exhibits a large number of simpler compute cores that execute the same
instruction on multiple data partitions. In this study, we rely on the OpenCL
framework for general purpose computation GPUs. OpenCL code is written
in C as so-called compute kernels, whose submission is controlled by a host
program executed on the CPU. The actual number of kernel instances running
in parallel depends on the GPU’s number of cores, its amount of memory, the
kernel programs memory requirements, and the size of the input and output
data. OpenCL assigns a global unique identifier to each kernel instance. This
identifier is used to compute global memory offsets for loading and storing input
data that a particular kernel is operating on.

In general, the input ontologies and the |O|·k resulting correspondences exceed
the available memory of the GPU. Thus, we up-front split both input ontologies
into partitions Pi ⊆ O and Qi ⊆ O′, analogously as in our previous work on
parallel ontology matching [7]. We then iteratively ship pairs (Pi, Qi) for com-
parison to the GPU. The GPU executes a kernel instance for each c ∈ Pi that
compares c with all c′ ∈ Qi and determines its top-k correspondences above t.
The partial results are later unified by the host program. For this purpose, we
utilize a job queue that supports the parallel n-gram similarity computation of
different partition pairs on both the GPU as well as on the CPU. A dedicated
thread takes match tasks from this queue and submits them to the GPU. In
addition to this GPU thread, several CPU threads can access the job queue
from the opposite end to independently perform matching on the CPU. We se-
lect jobs and ship partitions using the scheme displayed in Fig. 3. This scheme
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ensures that after completion of a GPU job only a single partition needs to be
transferred to the GPU. The other partition remains in the GPU’s memory and
is reused for the next job. For instance, when the GPU finished the P0-Q3 job,
it starts to execute P0-Q4 next. In this case, only the partition Q3 needs to be
replaced by Q4 and P0 can be reused. Furthermore, it is beneficial to split the
larger of the two input ontologies into partitions. If it even fits entirely into the
device’s memory, only partitions from the smaller ontology need to be replaced.

4 Evaluation

We analyzed the execution time for computing the FMA-NCIT mapping which
is part of the LargeBio match task in OAEI [14]. The task consists of three sub-
tasks namely, small (3,720×6,551 concepts), large (28,885×25,678 concepts), and
whole (79,042×66,914 concepts). To create mappings of high quality, we applied
the GOMMA match workflow with top-k=1 and n=3 (Trigram) used in OAEI
2012 (for details and quality results see [6]). The experiments were carried out
on an Intel i5-2500 machine (4x3.30GHz, 8GB memory). We further used the
following mid-range GPU: Asus GTX660 with 960 CUDA cores/2GB memory.

The first experiment evaluates the execution times for the three sub-tasks
utilizing either one CPU thread or the GPU. For CPU-based processing, we com-
pare the proposed SortInt n-gram matching with two alternatives using nested-
loop (NLString) and hash set look-ups (HashString) for computing the token set
overlap. The results displayed in Fig. 4 (left) show that SortInt-CPU significantly
outperforms both standard algorithms. For the whole task, it requires ≈8 min
compared to about 26 min (104 min) for HashString (NLString), i.e., it improves
runtime by up to a factor of 13. This shows that our pre-processing step pays
off, i.e., converting strings into integer values and sorting are non-expensive
(<1 sec in all tasks) but valuable steps for an optimized overlap computation.
The application of SortInt on the GTX660 GPU allows for a further significant
improvement compared to the CPU implementation. The execution time for the
whole task is reduced by another factor of 5 to merely 99 sec. Thus, transferring
the data into the GPU pays off, i.e., the massively parallel hardware in the form
of hundreds of CUDA cores substantially speeds up the computation.

Fig. 4. Runtime of n-gram algorithms on CPU/GPU (left) and combined (right)
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In a second experiment, we evaluate how application on multiple cores either
without GPU (NoGPU) or in combination with GPU resources affects execution
times. As shown in Fig. 4 (right), we observe that parallel CPU processing is very
effective, e.g, when using four CPU threads, the execution time can be reduced
to 137 sec (factor of 3.5) for the whole match task. The combined execution on
CPU and GPU can further improve the execution time to about 67 sec for three
and four CPU threads (factor of 2). The fourth CPU thread does not further
improve the execution time due to the dedicated GPU thread for data transfer.
Overall, one can see that even a moderately powered GPU can substantially
reduce the execution time for string and thus for ontology matching.

5 Conclusion and Future Work

We studied how similarity functions like n-gram used for linguistic matching in
GOMMA can be optimized by algorithmic tuning as well as by massively parallel
processing on GPUs. The results indicate that intelligent pre-processing (e.g.,
integer conversion, sorting) of the input ontologies pays off substantially and
speeds up ontology matching. The GPU-based execution of algorithms like n-
gram matching requires some effort to overcome the GPU limitations but boosts
performance even further. In the future we plan to investigate further GPU-based
similarity computations and the impact of different kinds of GPU hardware.
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Abstract. The continuous evolution of life science ontologies requires the
adaptation of their associated mappings. We propose two approaches for
tackling this problem in a largely automatic way: (1) a composition-based
adaptation relying on the principle of mapping composition and (2) a diff-
based adaptation algorithm individually handling change operations to up-
date the mapping. Both techniques reuse unaffected correspondences, and
adapt only the affected mapping part. We experimentally assess and con-
firm the effectiveness of our approaches for evolving mappings between
large life science ontologies.

Keywords: mapping adaptation, mapping migration, mapping evolu-
tion, ontology evolution, ontology mapping, ontology alignment.

1 Introduction

Ontologies and their applications have become increasingly important especially
in the life sciences [1,2]. Typically there are many ontologies within a domain
with overlapping information, e.g., more than 30 anatomy-related ontologies in
the OBO foundry [3]. Mappings between such related ontologies are useful for
various data integration and enhanced analysis tasks. For instance, mappings are
needed to merge several ontologies into an integrated ontology, e.g., the multi-
species anatomy ontology Uberon [4]. While manually curated mappings are
especially valuable to interrelate the concepts of ontologies, it is often too time-
consuming for large ontologies. Hence, semi-automatic matching approaches are
increasingly needed for mapping creation [5,6,7].

The life sciences are a very dynamic field and new research results lead to
a continuous evolution of ontologies so that new versions are periodically re-
leased [8]. Ontology changes include the addition, revision or deletion of concepts
and relationships, and their frequency may substantially vary between ontolo-
gies or different parts of one ontology [9]. Ontology evolution can have an impact
on different dependent artifacts such as ontology mappings [10,11], annotation
mappings [12,13] and ontology-based queries [14,15]. As mappings may become
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invalid and out-dated their adaptation is required. For example, a new version
of an ontology in Bioportal [16] or UMLS [17] may require the adaptation of the
associated mappings, so that users and dependent applications can consume the
most recent ones.

In this paper, we study different methods for a largely automatic adaptation of
ontology mappings. In particular, we aim to avoid an expensive re-determination
of the complete mapping and to reuse all stable parts from the old mapping. Mi-
grating ontology mappings is not trivial for complex ontology changes such as
the split of a concept into several new concepts. In this case an earlier correspon-
dence with the unsplit concept may have to be changed to another or several new
correspondences, and an expert user should be supported to select the correct
result. Each type of ontology change may require different actions to update an
ontology mapping. There is only little research so far on how to best perform
the adaptation of mappings (see Sec. 2). Typically, previous approaches did not
consider the impact of different ontology changes on mappings and also ignored
new correspondences introduced by added concepts.

We therefore make the following contributions:

– We present a composition-based approach that uses ontology matching to cre-
ate mappings between versions of an evolved ontology as well as the principle
of mapping composition to create the adapted ontology mapping (Sec. 4).

– We propose a diff-based approach relied on a diff result consisting of the
set of changes that led from the old to the new version of an ontology. The
approach uses a library of change handlers to realize change-specific mapping
adaptations (Sec. 5).

– We evaluate the approaches by adapting mappings between three large life
science ontologies extracted from UMLS. Results reveal that we can adapt
mappings largely automatically. We can also suggest specific mapping adap-
tations for certain types of ontology changes to simplify mapping curation
(Sec. 6).

Additionally, we discuss related work in Sec. 2, present preliminaries on ontolo-
gies, mappings and the change model in Sec. 3, and conclude in Sec. 7.

2 Related Work

While a significant amount of research has already coped with the evolution of
ontologies [18], the evolution of dependent mappings has received relatively little
attention. In the context of schema evolution and model management [19,20],
it has been proposed to evolve a previously determined mapping by composing
it with a match mapping between the old and the new version of an updated
schema or model. This composition approach has been explored in [21] for schema
mappings and was shown to avoid the full re-calculation of existing mappings.
We investigate and enhance the composition approach for adapting ontology
mappings by not only reusing stable parts of the previous mapping, but by also
extending the mapping, e.g., for added ontology concepts.
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Only few studies specifically investigated the maintenance and evolution of
ontology mappings. In [22] the use of reasoners has been proposed for detecting
and repairing invalid correspondences after ontology changes. Khattak et al. [23]
propose to re-compute only those correspondences associated with changed on-
tology elements. Martins & Silva [24] propose that mapping evolution should
behave similarly to strategies applied for ontology evolution. However, corre-
spondences are only adapted when concepts are removed from the ontology.
Kondylakis & Plexousakis [14] focus on the automatic detection of queries af-
fected by ontology evolution. They assist developers to find and adapt invalid
queries by suggesting sequences of changes affecting such queries.

In our previous work, we empirically analyzed which ontology changes lead
to the addition or deletion of correspondences in an ontology mapping [11]. Dos
Reis et al. [10] have proposed a framework for mapping evolution highlighting
the role of different types of ontology changes for mapping adaptation, as well
as the importance of considering different semantic types of correspondences in
the adaptation process.

In contrast to prior studies, we not only aim at reusing stable parts of previous
ontology mappings, but also extend the mappings for new ontology concepts.
In addition to a composition-based method we propose a diff-based approach
to individually handle different types of ontology changes and to solicit user
feedback on adapted and newly determined correspondences. Unlike previous
studies, we also evaluate the quality of the adapted mappings for large life science
ontologies.

3 Preliminaries

We first define the considered ontology and mapping model (Sec. 3.1) and then
describe the general scenario we investigate in this paper (Sec. 3.2).

3.1 Ontology Versions and Mappings

An ontologyO = (C,R,A) consists of a set of concepts C interrelated by directed
relationships R. Each concept c ∈ C is identified by an unambiguous accession
number cacc. Further attributes a ∈ A describe a concept in more detail, e.g.,
labels, synonyms or definitions. A special attribute obsolete indicates whether a
concept is outdated and should thus not be used anymore. A relationship r ∈ R
interconnects two concepts and has a specific type, e.g., ’is a’ or ’part of’. An
ontology version is a release of O, i.e., a particular version is valid until a newer
version becomes available. In the following, we denote two versions of an evolved
ontology with O (old version) and O′ (new version), respectively.

An ontology mapping MO1,O2 interconnects concepts of two different ontolo-
gies O1/O2 by so-called correspondences:

MO1,O2 = {(c1, c2, sim, semType, status)|c1 ∈ O1, c2 ∈ O2, sim ∈ [0, 1],
semType ∈ {=,≤,≥,≈},

status ∈ {”handled”, ”toverify”}}
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O1

O2

MO1,O2 MO1‘,O2‘

diffO1,O1‘

diffO2,O2‘

O1‘

O2‘

MO1,O1‘

MO2,O2‘

(a) (b)
Change operation Description

addC(c), delC(c) addition/deletion of concept c

toObsolete(c), revokeObsolete(c) set/revoke ‚to obsolete‘ status of c

split(s,T) split a source concept s into several target concepts T

merge(S,t) merge several source concept S into one target concept t

substitute(c,c‘) Substitute concept c by concept c‘

move(c,P,P‘) move a concept c from parents P to parents P‘

addR(r), delR(r) addition/deletion of a relationship r

chgAttValue(c,att,v1,v2) change value of att in c from v1 to v2

addA(a)/delA(a) Addition/deletion of an attribute a

Fig. 1. (a) General scenario. (b) Considered change operations of COnto-Diff.

A correspondence (c1, c2, sim, semType, status) interrelates two concepts c1 ∈
O1 and c2 ∈ O2. We use three further independent attributes to describe a
correspondence in more detail. The sim value represents the similarity measure
between c1 and c2. The higher the value, the more related are both concepts.
We assign a similarity of 1 to manually created correspondences. We further use
a semType to differentiate the semantic connection type. For instance, concepts
can be equivalent (e.g., ’torso’=’trunk’), one concept can be less or more gen-
eral than the other (e.g., ’thumb’≤’finger’) or concepts can be somehow related
(≈). A status signals the state of the correspondences during adaptation. In
particular, a correspondence can be adapted (handled) or needs verification by
an expert (to verify).

To create new mappings between ontologies we rely on semi-automatic match
strategies because a purely manual mapping generation has become increas-
ingly infeasible for large and complex ontologies [6,7]. For this purpose we use
a successfully applied match strategy based on a concept’s name and synonyms
described in [25].

We also support the inversion of ontology mappings, e.g., to get a mapping
MO2,O1 out of MO1,O2 . To this end, we will use an inverse operator that inverts
each correspondence as follows: (c1, c2, sim, semType, status) �→ (c2, c1, sim, new
SemType, status). In particular, the order of matching concepts is reversed, the
similarity and the status values remain unchanged. The semType is adapted
using the following rules: = �→=, ≤�→≥, ≥�→≤ and ≈�→≈.

3.2 General Scenario and Change Model

The general scenario investigated in this paper is depicted in Fig. 1a. There
are two ontologies in their old (O1,O2) and new versions (O1′,O2′). A mapping
MO1,O2 interconnects the old versions of the two ontologies. The task investi-
gated is to determine the new mapping MO1′,O2′ which interrelates concepts
of the new ontology versions O1′ and O2′. For this purpose, we need further
mappings between the ontology versions involved. In particular, there are two
mappings MO1,O1′ and MO2,O2′ which interconnect concepts between the ver-
sions. These mappings provide information about how concepts in an old version
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Fig. 2. Mapping evolution example

are related with concepts in the new version. We generate these mappings by
matching, i.e., we match O1 with O1′ and O2 with O2′, respectively. The pro-
posed composition-based approach (Sec. 4) uses the mappings MO1,O2, MO1,O1′

and MO2,O2′ to create the adapted mapping MO1′,O2′ based on composition.
We further use so-called evolution mappings (diffO1,O1′ and diffO2,O2′) be-

tween the old and new ontology versions. These mappings integrate all changes
that occurred during evolution from O1 to O1′ and O2 to O2′, respectively. An
evolution mapping can be created using a Diff tool such as PromptDiff [26] or
COnto-Diff [27] and contains different types of changes (Fig. 1b lists changes
of COnto-Diff). For instance, there are concept changes such as add, delete,
merge and split, or changes of attribute values. The proposed diff-based ap-
proach (Sec. 5) uses the diff evolution mappings diffO1,O1′ and diffO2,O2′ to
create the adapted mapping MO1′,O2′ .

4 Composition-Based Adaptation

This section presents the composition-based approach for mapping adaptation.
Its strength is the reuse of the previous, already validated ontology mapping
to avoid an expensive re-computation of confirmed correspondences. Given that
changes are typically limited to a small subset of ontologies, this promises that
the largest part of the new mapping is easily determined. For illustration purpose,
we use a running example shown in Fig. 2 with an evolution of an anatomy on-
tology (O2 �→ O2′). The ontology changes require an adaptation of the mapping
MO1,O2, in particular to delete the previous correspondence (delCorr) and to add
the new correspondence (addCorr) shown on the right side. Our composition-
based approach achieves the adaptation by composing the previous ontology
mapping MO1,O2 with the mapping MO2,O2′ , as well as by checking whether
added concepts lead to new correspondences.

The composition of two mappingsMA,B andMB,C generates a mappingMA,C

between A and C. With mappings as introduced in Sec. 3.1, we define:

MA,C = compose(MA,B,MB,C) = MA,B ◦MB,C =
{(c1, c2, aggSim(sim1, sim2), getNewType(semType1, semType2),
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getNewStatus(semType1, semType2))|
c1 ∈ A, c2 ∈ C, b ∈ B : ∃(c1, b, sim1, semType1, status1) ∈ MA,B∧

∃(b, c2, sim2, semType2, status2) ∈ MB,C}
The generation of a correspondence (c1, c2) in MA,C requires the existence of
two correspondences (c1, b) and (b, c2) connecting to the same concept b ∈ B.
The attribute values of the new correspondence are derived from the values of
the two ’connecting’ correspondences. First, the new similarity is aggregated
from the similarities sim1 and sim2 by computing, e.g., their average or max-
imum (aggSim). Second, the new semantic type is derived from semType1 and
semType2 (getNewType) based on the rule set presented in Fig. 4a. For example,
the combination of ’=’ and ’≤’ would lead to the new semantic type ’≤’. Third,
the new correspondence is assigned the new status (getNewStatus, see Sec.5.2).

CompAdapt (Algorithm 1) shows how we perform composition-based mapping
adaption for the general case when both ontologies evolve (O1 �→ O1′, O2 �→
O2′). The algorithm uses as input the previous ontology mapping MO1,O2 as
well as the two mappings MO1,O1′ and MO2,O2′ .

Algorithm 1. CompAdapt(MO1,O2,MO1,O1′ ,MO2,O2′)

1 MO1′ ,O1 ← inverse(MO1,O1′ );
2 MO1′ ,O2 ← compose(MO1′,O1,MO1,O2);

3 MO1′ ,O2′ ← compose(MO1′,O2,MO2,O2′ );
4 return MO1′ ,O2′ ;

We first generate the inverse mapping MO1′,O1 (line 1) and compose it with
MO1,O2 to create an intermediate mapping between O1′ and O2 (line 2). We
then transitively compose the intermediate mapping with MO2,O2′ to produce
the adapted mapping MO1′,O2′ between O1′ and O2′ (line 3). When exclu-
sively one of the input ontologies evolve, we only need one of the two com-
positions. We perform the first two steps if O1 evolves to O1′, or only per-
form compose(MO1,O2,MO2,O2′) if O2 evolves to O2′. For the running exam-
ple (Fig. 2), we would create eight correspondences including retained corre-
spondences such as (’limbs’,’limbs’). Unfortunately, the composition also creates
the false correspondences ((’lower extremities’,’upper limbs’), (’upper extremi-
ties’,’lower limbs’)) since the concept ’limb segment’ in the intermediate ontology
is connected to several concepts in the ontologies to be composed. We will later
see how our alternate solution (Sec. 5) can cope with such situations.

Composition alone is also unable to determine new correspondences due to
added concepts in the ontologies, e.g., ’trunk’ in O2′. To address this shortcoming
we apply an additional match step as shown in the CompAdaptMatch algorithm:

Algorithm 2. CompAdaptMatch(MO1,O2,MO1,O1′ ,MO2,O2′ ,O1,O1′ ,O2,O2′)

1 MO1′ ,O2′ ← CompAdapt(MO1,O2,MO1,O1′ ,MO2,O2′ );
2 AddO1 ← O1′\O1;

3 AddO2 ← O2′\O2;

4 MO1′ ,O2′ ← MO1′ ,O2′
⋃

match(AddO1,O2′)
⋃

match(O1′,AddO2);

5 return MO1′ ,O2′ ;
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After adapting the mapping using composition (line 1) we identify the added
concepts (AddO1,AddO2) in both ontologies (lines 2–3). We match the added
concepts with the other ontology to find new correspondences (line 4) and include
them in the adapted mapping. We can simplify the algorithm when exclusively
one of the ontologies has changed by merely matching added concepts of the
changed ontology with the unchanged ontology. In the running example, we
would determine ’trunk’ as an added concept in O2′ and matching would result in
the additional correct correspondence (’trunk’,’trunk’) in the adapted mapping.

5 Diff-Based Adaptation

The Diff-based adaptation of ontology mappings considers the individual on-
tology changes, and so-called change handlers to adapt the ontology mapping.
This modular approach is highly flexible and can accommodate different types
of changes as well as distinct automatic or interactive approaches for mapping
adaptation. For example, a concept deletion would lead to the deletion of all
affected correspondences with the composition-based approach, while a change
handler could try to keep a correspondence with a neighbor of the deleted con-
cept. Furthermore, change handlers might request expert verification for pro-
posed mapping changes.

We first explain Diff-based mapping adaptation for the frequent case when
only one of two ontologies changes (Sec. 5.1). We then explain the different
change handlers and their approaches for mapping adaptation (Sec. 5.2). Fi-
nally, we discuss Diff-based adaptation for the general case with two evolving
ontologies (Sec. 5.3). Although the proposed approach is applicable for different
diff techniques to determine ontology changes, we assume the use of our algo-
rithm COnto-Diff [27] for concreteness. COnto-Diff is suited to identify a diff
evolution mapping for two successive versions of an ontology containing typical
change operations such as merge, substitute, split, addC or delC (see Fig. 1b).

5.1 Adaptation Algorithm for One Evolving Ontology

The input data of the algorithm DiffAdapt (Algorithm 3) are the ontology map-
ping to be adapted (MO1,O2), the two versions of the domain ontology O1, O1′,
a diff between them (diffO1,O1′) as well as the current version of the range on-
tology O2. We assume that the change handlers are listed in the order in which
they should be applied for mapping adaptation(CH). This ordering is feasible
since COnto-Diff ensures that a concept is the subject of at most one of the
considered change operations.

Algorithm 3. DiffAdapt(MO1,O2,diffO1,O1′ ,O1,O1′ ,O2,CH)

1 Minfl ← getInfluencedCorrs(MO1,O2, diffO1,O1′ , CH);

2 MO1′ ,O2 ← MO1,O2 \ Minfl; //reuse unaffected mapping part

3 foreach ch ∈ CH do
4 diffPart ← diff.filter (ch.getHandledOperations());

5 ch.handleChg(Minfl, diffPartO1,O1′ , O1, O1′, O2);

6 MO1′ ,O2 ← MO1′ ,O2 ∪ Minfl;

7 return MO1′ ,O2;
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Fig. 3. Change handlers

We first identify all correspondences that are influenced by changes from the
input diff. Therefore, we check if the domain concept of each correspondence
was subject to a change operation listed in CH. All influenced correspondences
in Minfl are initially set to status to verify, since they might require user veri-
fication. By contrast, we reuse unaffected correspondences (status handled) by
adding them directly to the new mapping MO1′,O2 (line 2). For instance, in the
running example (Fig. 2), ’limbs’ and ’body’ remain unchanged in O2 so that we
keep the correspondences (’limbs’,’limbs’) and (’body’,’body’). The influenced
mapping part Minfl is then handled by the specified list of individual Change
Handlers (lines 3-5). The mapping Minfl is iteratively adapted, i.e., each change
handler removes outdated correspondences from and adds new correspondences
to Minfl. Depending on the used method in the change handler, the status of
new correspondences is either set to handled or to verify. Finally, we take the
union of the reused correspondences in MO1′,O2 and the adapted mapping part
Minfl and then return the resulting mapping (lines 6-7).

5.2 Change Handlers

We provide a handler for each type of ontology change to implement appropri-
ate approaches for mapping adaptation. These handlers can easily be adapted
and extended to adjust mapping adaptation, request users’ feedback in certain
cases or deal with new types of ontology changes. Fig. 3 illustrates main adap-
tation choices for some major change operations namely merge, substitute, split
and delC. It shows how correspondences from MO1,O2 are adapted according to
the evolution from O1 to O1′. In the following, we present the change handlers
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in the order in which they are applied in the algorithm DiffAdapt: CHmerge,
CHsubstitute, CHsplit, CHdelC , CHtoObsolete, CHaddC and CHrevokeObsolete .

In the merge operation, two or more source concepts from O1 are merged
into one target concept in O1′. The merge handler migrates all correspondences
once associated with any of the O1 concepts to the target concept in O1′. Thus,
each correspondence from MO1,O2 associated with concepts to be merged are re-
moved and new correspondences to the target concept are added. In the running
example (Fig. 2) ’head’ and ’neck’ concepts are merged as ’head and neck’. All
correspondences once related to ’head’ or ’neck’ are assigned to the new concept
’head and neck’. Algorithm 4 details the sketched approach of the merge handler.
It checks for each correspondence corr (line 1) and merge operation merge (line
2) if the domain concept of corr is equal to one of the source concepts in merge
(lines 5-6). If so, the affected correspondence is adapted.

Algorithm 4. MergeHandler(M ,Merge,O1,O1′ ,O2)

1 foreach corr ∈ M do
2 foreach merge ∈ Merge do
3 S ← merge.getSourceIDs();
4 t ← merge.getTargetID();
5 foreach s ∈ S do
6 if s = corr.getDomainID() then
7 newType ← getNewType(corr.getType(),≤);
8 newStatus ← getNewStatus(corr.getType(),≤);
9 newCorr ← createCorr(t, corr.getRangeID(),

10 corr.getSim(), newType, newStatus);
11 M.remove(corr).add(newCorr);

The merge handler supports an adaptation of the semantic type of added cor-
respondences. For example, for merge({a, b, c}, d) it usually holds that concepts
a, b, c are less general (≤) than d. Hence, we combine ≤ with the semantic type of
the old correspondence (=,≤,≥,≈) to derive the new semantic correspondence
type.

Such an adaptation of the semantic correspondence type is needed for different
types of changes and was also applied for mapping composition. To combine
semantic types of correspondences (operation getNewType) and to determine
the new correspondence status (operation getNewStatus) we currently use a set
of combination rules as shown in Fig. 4a. The basic idea is that the semantic
type with lower binding strength imposes the new semantic type. Following the
definition of semantic relation in [28], = has a higher binding strength than ≤
and ≥ which in turn are stronger than ≈. ≤ and ≥ are of equal binding strength
such that the new semantic type of their combination can not be determined by
rules (gray fields). The status to verify is set to ≈ since a user necessarily needs
to check this correspondence and its semantic type. For all other combinations
as shown in Fig. 4a, the status of the correspondence is handled.

For the substitute(a, b) change operation, the applied strategy is similar to
the one used for merge. In this case, the concept a ∈ O1 is substituted by the
target concept b ∈ O1′. Since a is involved in a correspondence with z in O2, the
correspondence between a and z is removed and the new correspondence from b
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O1 O2 O2‘ O1‘ 
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Fig. 4. (a) Combining semantic types (getNewType) and determine the new corre-
spondence status (getNewStatus). (b) Example of conflicting changes for two evolving
ontologies.

to z is added. We can assume a = b as semantic type for substitute, and combine
this with the old semantic type of the correspondence to derive the new one.

The adaptation of correspondences affected by split change operations is more
complex. For example, split(a, {b, c, d}) caused a single source concept a ∈ O1
to be split into several target concepts b,c,d ∈ O1′. In the mapping adaptation,
we first remove all correspondences associated with the split source concept a.
We consider two strategies for adding new correspondences. First, one can add
all possible combinations of correspondences between the split target concepts
b, c, d and the unmodified range concept z in O2 (”take all”). Second, we can
restrict the output result to the best correspondence(s), i.e., the one(s) with the
highest similarity based on a local match between b, c, d and z (”take best”).

Also for split, new adapted correspondences obtain an individual new semantic
type based on the rules in Fig. 4a and assuming that d ≥ a, b, c holds for split. All
correspondences get status to verify since these are only recommendations and
an expert needs to decide about their validity. In the running example (Fig. 2)
’limb segment’ was split into ’lower limbs’ and ’upper limbs’. Using the ”take
all” strategy, we would present all four possible combinations between ’lower
extremities’, ’upper extremities’ and ’lower limbs’, ’upper limbs’ to the user.
Using the ”take best” strategy, we can correctly identify the most adequate
correspondences ’lower limbs’ with ’lower extremities’, and ’upper limbs’ with
’upper extremities’.

For deletion of concepts (delC(a)) we also consider two strategies. First, all
correspondences referencing deleted concepts in O1′ are removed (see Fig. 3)
(strategy ”del corr”). This is the case for ’tail’ in the running example. Second,
correspondences can be transferred to their parent concept, if possible (”keep
corr”). Thus, correspondences related to the deleted concept a are removed, but
new ”more general” correspondences are created. In particular, the domain of
the new correspondence is the first super concept (asup) of a. In case of multiple
inheritance, the correspondence can be transferred to all parents. The status is
set to to verify since a user has to check the adapted correspondences. The new
semantic type is derived by following the ≤ parent relationship in O1 combined
with the semantic type of the old deleted correspondence. For toObsolete changes
we apply the same handler.

For all concept additions and revokeObsolete operations in O1′ we apply an
automatic matching step with the whole range ontology O2. The status of the
new recommended correspondences is set to to verify. One can either apply a
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very restrictive selection of correspondences to show only the best matches to
experts, and avoid many false positives, or to be less restrictive in order to get
a perfect recall and let the selection up to the user. In the running example,
diffO2,O2′ contains an addition of the concept ’trunk’ which is matched to O1
such that (’trunk’,’trunk’) is correctly identified by selecting only the top result.

5.3 Adaptation Algorithm for Two Evolving Ontologies

In case where both ontologies change (domain and range of the correspondences),
we can adapt the mapping by applying the DiffAdapt (Algorithm 3) twice as
follows:

Algorithm 5. DiffAdaptBoth(MO1,O2,diffO1,O1′ ,diffO2,O2′ ,O1,O1′ ,O2,O2′ ,CH)

1 MO1′ ,O2 ← DiffAdapt(MO1,O2, diffO1,O1′ , O1, O1′, O2, CH);

2 MO2,O1′ ← inverse(MO1′,O2);

3 MO2′ ,O1′ ← DiffAdapt(MO2,O1′ , diffO2,O2′ , O2, O2′, O1′, CH);

4 return inverse(MO2′,O1′ );

The input of algorithm DiffAdaptBoth (Algorithm 5) is similar as for DiffAdapt
but requires two versions for both input ontologies O1, O1′, O2, O2′, as well as
two diff mappings diffO1,O1′/diffO2,O2′. First, we adapt the given ontology
mapping with respect to changes in the domain ontology to get MO1′,O2. To
adapt the mapping regarding changes in the range ontology we call DiffAdapt
with the inverse mapping MO2,O1′ and the range diff diffO2,O2′ (line 3). Finally,
we invert the mapping again and return it (line 4).

When both ontologies change, some correspondences might be affected by
changes of the domain and range concept at the same time. For instance, if both
concepts of a correspondence are split into several concepts, we can produce
wrong results by independently handling these changes one after the other. A
possible problem scenario is shown in Fig. 4b. Applying the ”take all” strategy
twice would create too many correspondences, namely the local cross-product.
By contrast, ”take best” might lead to a wrong selection of (’lower extremi-
ties’,’limbs’) in the first step, such that we can only find (’lower extremities’,’lower
limbs’) after the adaptation concerning the range ontology. To deal with such
situations when both ontologies have evolved, we propose to handle these con-
flicting changes together in an extra step. We can first identify correspondences
involved in conflicts and modify the input mapping before we run DiffAdaptBoth.
In particular, we recommend to check conflicting change combinations as split-
split, merge-split and substitute-split where it is helpful to do the migration on
both sides in one step.

6 Evaluation

To evaluate the proposed approaches for mapping adaptation, we use three large
life science ontologies: SNOMED-CT (SCT), NCI Thesaurus (NCI) and FMA.
We use the integrated ontology UMLS to extract two mappings NCI-FMA and
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Fig. 5. (a) Ontology changes (b) Ontology size (c) Mapping size (d) Mapping changes

SCT-NCI in two versions for 2009 and 2012 (see [29] for extraction details).
We adapt the mapping versions from 2009 with the proposed algorithms, and
use the 2012 versions as reference mappings for evaluating the quality of the
mappings adapted. It is important to notice that such reference mappings can
be considered as a ’silver standard’, i.e., these mappings are not complete, and
curators manually correct them by modifying also correspondences associated
with concepts that did not underlie changes. In this evaluation we eliminate such
correspondences from the mappings since they do not change due to ontology
modifications and can thus not be detected. To assess the quality of the adapted
mappings with respect to the 2012 reference mappings, we calculate the standard
metrics of Precision, Recall and F-Measure.

In the following we first analyze the used data sets (Sec. 6.1) and then evaluate
the quality of the proposed mapping adaptation approaches (Sec. 6.2).

6.1 Ontology and Mapping Analysis

Fig. 5 gives an overview of changes in the considered ontology versions (a) and
mapping versions (d) as well as of their sizes (b,c). From 2009 to 2012, FMA
remains completely stable while NCI and SCT have been revised considerably.
Besides some merge operations (22 for NCI) there was a notable number of ∼180
(240) concept splits for NCI (SCT). In SCT an enormous amount of >22.000
concepts has been set to obsolete while NCI has been extended by ∼20.000 con-
cepts during 2009 and 2012. The 2009 mapping version of NCI-FMA is relatively
small (∼2300) compared to SCT-NCI (∼20400) (Fig. 5c). During the considered
time interval of three years, the NCI-FMA mapping grew by ∼5% and SCT-NCI
by even 14%. The SCT-NCI mapping has been affected by more changes, namely
8% of the correspondences have been deleted from the old and 19% were added
to the new mapping version. Thus, NCI-FMA has a higher rate of unchanged
correspondences and might be easier to adapt than SCT-NCI.

6.2 Mapping Adaptation Results

Fig. 6 shows the quality of the mapping adaptation results for NCI-FMA (left)
and SCT-NCI (right). To have a basic reference for analyzing how much each
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Fig. 6. Results on the Quality of Mapping Adaptation

adaptation approach contributes, we mark the impact of unaffected (stable) cor-
respondences in the adapted mapping (Unaff ). The dotted and dashed lines high-
light the recall (Recunaff ) and F-Measure (F -Measunaff) of Unaff. We compare
results with the composition-based adaptation (CA) and its match extension
(CA+m). Moreover, we apply the diff-based adaptation (DA) using the major
handlers CHmerge, CHsubstitute, CHsplit (”take best”), CHdelC and CHtoObsolete

(”del corr”), and as an extension (DA+C) the CHaddC and CHrevokeObsolete han-
dlers. Note that our approach is flexible and can be easily extended to handle
also attribute and structural changes. In the evaluation scenario, this showed to
have a negative impact on the quality of adapted mappings, such that we omit
it in this study. We consider this an issue for future investigations.

For both cases analyzed, the basic quality of Unaff is already very high, since
94% (80%) of the NCI-FMA (SCT-NCI) mappings were unaffected and could
be reused. For the adaptation of the relatively stable NCI-FMA mapping all
considered approaches perform similarly well and achieve a very high F-Measure.
SCT-NCI is a more challenging mapping adaptation scenario and helps to better
differentiate the relative effectiveness of the proposed approaches. Compared to
Unaff, CA is less precise and increases the recall only marginally. This is caused
by the fact that the applied compose approach takes all possible combinations
of existing correspondences, and no further selection takes place. An additional
match of new concepts (CA+m) significantly increases the recall by 18.6% for
SCT-NCI and slightly improve F-Measure compared to Unaff (despite a reduced
precision for automatically generated match correspondences).

For SCT-NCI, the diff-based approaches clearly outperform the composition-
based approaches. They not only reuse unaffected correspondences but can fur-
ther improve recall with relatively high precision due to the individual change
handling. DA+C performs best overall since it utilizes additional change han-
dlers. In particular, it can find additional match correspondences for added con-
cepts leading to a significant increase in recall and F-Measure. While this is
similar to the high recall of CA+m, the precision and thus F-Measure remains
higher for DA+C (∼94% instead of ∼90%). The recall could even be further
increased by using a lower match threshold than the applied 1.0, and let experts
select the correct correspondences out of the recommended matches in DA+C.
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Based on these results, we recommend that ontology mappings might be
adapted in a semi-automatic manner as follows: (1) first, determine a consis-
tent adapted mapping using the DA approach; (2) apply further strategies such
as DA+C that provide recommendations of new correspondences; (3) apply ex-
pert knowledge based on the adaptation results to complete the mapping and
validate those correspondences with to verify status.

7 Conclusion

Ontology evolution can potentially invalidate previously created mappings. We
proposed a composition- and a diff-based approach for adapting ontology map-
pings as a consequence of ontology evolution. Both approaches can reuse un-
affected correspondences from existing mappings and adapt only the changed
parts in a (semi-)automatic way. The composition-based approach is conceptu-
ally simpler but can be already sufficient for ontologies that change only slightly.
The diff-based approach is more powerful by supporting different change-specific
approaches for mapping adaptation and by enabling experts to verify proposed
correspondences. The conducted evaluation for large life science ontologies con-
firmed the high effectiveness of the proposed approaches. Both of them benefit
from matching new concepts to produce a more complete mapping.

For future work, we plan to realize a more refined adaptation of semantic
mappings. The techniques presented already support the migration of semantic
mappings, but this has to be investigated in more detail and evaluated for real-
world semantic mappings. Additionally, in further evaluation expert users should
analyze the quality of mappings for the different adaptation strategies.
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Abstract. To encourage data sharing in the life sciences, supporting
tools need to minimize effort and maximize incentives. We have created
infrastructure that makes it easy to create portals that supports dataset
sharing and simplified publishing of the datasets as high quality linked
data. We report here on our infrastructure and its use in the creation of
a melanoma dataset portal. This portal is based on the Comprehensive
Knowledge Archive Network (CKAN) and Prizms, an infrastructure to
acquire, integrate, and publish data using Linked Data principles. In
addition, we introduce an extension to CKAN that makes it easy for
others to cite datasets from within both publications and subsequently-
derived datasets using the emerging nanopublication and World Wide
Web Consortium provenance standards.

1 Introduction

Peer-reviewed publications remain the principal means for exchanging cancer
research information, despite the critical need for other researchers to access
supporting data so that they may progress their own (or others’) investiga-
tions. Critical ancillary data, such as gene expression data, are usually shared
at time of publication, but there is a paucity of data sharing outside the realm
of publications and it is usually limited to large consortia (ENCODE, TCGA),
or government-mandated data sharing (data.gov). The National Institutes of
Health and National Science Foundation both pass data-sharing mandates on to
their awardees, but leave the implementation of those mandates to the awardees.
An easy solution to data sharing would help federal grantees comply with award
requirements and also help create more open, shareable data resources. Addi-
tionally, from our own experience there is a wealth of data that is rarely shared,
such as ancillary data that does not make it into publications, negative findings,
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and findings from investigations that were not fully completed due to resource
issues. Many institutions lack the expertise to transform local data into accepted
data standards. There are also data that are ready to be shared (such as lists of
specimens, and annotations), but few institutions have the technical means to
host it for others using a grid-enabled system.

Efforts to facilitate data sharing are common, but few are truly successful.
We believe that most data sharing initiatives do not adequately address two key
ingredients for a working data sharing environment: few constraints on how to
share data, and a recognized avenue for receiving academic recognition (such as
recognized citations). Most data sharing initiatives are built on data standards,
which promise seamless data exchange at the expense of flexibility. Such initia-
tives (such as caBIG [1]) can also be overly technical without offering avenues
for straightforward data sharing. Finally, few initiatives specify how academic
credit is established for shared content. One reason that the scientific community
is not sharing data fully is that there are no commonly accepted standards to
publish and cite researchers’ data-level contributions. We propose a new mode
of data-sharing that we believe will be successful for the following two major
reasons: First, the use of natural language provides a low barrier to entry for
authors to express their research findings; and second, authors value publications
as they offer the standard accepted proof of their academic work.

Towards this end, we are building a data sharing infrastructure with the fol-
lowing key features: first, a flexible data sharing setup, which allows for the
sharing of plain text, excel, and other similar documents, with the ability to
gracefully add metadata when needed; and second, the use of nanopublications,
tiny and highly standardized statements that are useful for establishing prove-
nance and academic credit, and for expressing high-level insights into the shared
data. Our architecture is built upon Semantic Web technology, and is thus com-
patible with existing linked data sharing efforts.

Our infrastructure, calledPrizms, is built entirely on open source software, lever-
aging existing data exchange software such asCKAN.1 Wehave deployed instances
of CKAN and Prizms at melagrid.org to serve the SPORE in skin cancer institutes
to sharing melanoma related data.2 The SPOREs have an active data sharing cul-
ture, and have recognized the need for exchanging research information.We are us-
ing the Prizms infrastructure (lod.melagrid.org) to extend the existing MelaGrid
data portal (data.melagrid.org), used for sharing SPORE-related data. To encour-
age the use of data.melagrid.org by the melanoma community, we have populated
it withmelanoma-relateddatasets fromArrayExpress using a CKANharvesterwe
developed.3 We currently have over 331 datasets in our repository.

The Prizms architecture leverages the Linked Data philosophy: use identifiers
for things (URLs) that are addresses where consumers can get more information.
When a human visits that address, they get a human-readable web page, with
useful information, visualizations, and links to other resources. When a machine

1 http://ckan.org
2 http://trp.cancer.gov/spores/skin.htm
3 https://github.com/jimmccusker/ckanext-arrayexpress

http://ckan.org
http://trp.cancer.gov/spores/skin.htm
https://github.com/jimmccusker/ckanext-arrayexpress
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visits the page, it gets an RDF representation of the thing identified by the
URL. The RDF should re-use existing resources that also follow the Linked
Data philosophy, thereby providing aggregate benefits to both resources [2]. We
will show how we provide a simple means of dataset discovery and citation
for scientists and present a framework we use, composed of proven semantic
technologies, to provide on-demand enhancement of that data into high-quality
Linked Data.

2 Requirements: Levels of Data Sharing

Our experience suggests that only a few basic levels of data description are
needed to promote successful data sharing. We want to make the value received
from data description to be at least linearly related to the effort put into that
description, and we want the value to pay off even at very simplistic levels of
description. We therefore propose 5 levels of data sharing that will take data
providers from very little effort (Level 1) to fully integrated and semantically
enriched data that is easy to discover, integrate, and use (Level 5). Each of these
levels serves as a broad use case for data sharing based on increasing levels of
sophistication.

Level 1: Basic data sharing Basic data sharing consists of users 1) posting
data somewhere, 2) telling the world about it (such as where it is, when
it was modified, who controls it, or a simple description to make it more
searchable). This information, often called provenance [3], consists of the
basic information about data, such as who controls it, what is it about,
when was it created, where can one get it, why was it created, and how was
it created and used?

Level 2: Automated Conversion Using no domain knowledge, tools can cre-
ate “naive”, or non-knowledge driven, conversions of tabular data into struc-
tured formats such as RDF to provide basic search, browsing, and data
integration.

Level 3: Semantic enhancement Semantic enhancement is performed using
tools that allow users to specify improved data representations beyond what
a computer can provide without additional knowledge. This can be by the
data originator or other parties.

Level 4: Semantic eScience Further annotation and enhancement can be per-
formed by describing the metadata for the dataset using vocabularies with
well understood semantics. This provides a foundational component of Se-
mantic E-Science, and corresponds to caBIG-style data sharing.

Level 5: Community-Based Standards By providing a framework for com-
munication and discovery of consensus ontology use, a system can assist
communities to converge on standard representations of data that result in
interoperability across organizations. Further, by giving credit to contribu-
tors, the system can make it easier to find a community member that is able
to assist in data representation challenges, which enables content-oriented
collaborations among geographically or organizationally disparate commu-
nity members.
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3 Nanopublications for Datasets: Datapubs

MelaGrid reuses the existing open-source cataloging system CKAN to list and
describe publishers’ datasets. CKAN accounts for a majority of the basic Level
1 data sharing information that we identify in the previous section. However, it
is incomplete, only providing information about dataset publication dates, data
locations and hosting, but does not provide a means to describe how the data
was produced, nor does it provide a sophisticated mechanism for identification of
data owners. We have extended the CKAN RDF publication template to make
better use of the available metadata in CKAN using DCAT, DC Terms, and
PROV-O. This generates a novel form of nanopublication [4] we call a data-
publication, or datapub. We have also included an interface (see Figure 1) that
makes it easy to cite published datasets using plain text for non-technical users
such as biologists and clinical researchers, BibTeX, PROV, or direct use of a
nanopublication [4]. This functionality is available as an Open Source CKAN
extension in GitHub called ckanext-datapub.4 We have manually uploaded a
dataset from a recent publication [5] and have cited it here using BibTeX. All
citation modalities, including plain text, provide a Linked Data URL that pro-
vides human and machine-readable representations of the dataset using content
negotiation.

Fig. 1. Citing a datapub dataset using plain text, BibTeX, or PROV

4 https://github.com/jimmccusker/ckanext-datapub

https://github.com/jimmccusker/ckanext-datapub
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4 The Prizms Architecture

The Prizms architecture provides the technical foundation to support the re-
maining four levels of data sharing that we outline above. Prizms combines tools
that the Tetherless World Constellation has developed during the past several
years for use both internally and externally in many semantic web applications
of scientific domains, such as a population science project that integrated health
data, tobacco policy, and demographic data [6] and a system for the HHS De-
veloper Challenge developed to integrate a wide variety of health data. The
overall workflow of how MelaGrid uses the Prizms architecture and the Datapub
extension is shown in Figure 2.

Fig. 2. Data flow through Prizms. A data owner (a) submits a dataset to a CKAN
instance. This data can be in any format, including Excel (shown), CSV, XML, JSON,
or other formats. The Prizms Autonomic System (b) recognizes the addition or change
of a dataset and triggers tools that are “interested” in particular new datasets. It is then
hosted by a standards-compliant SPARQL endpoint (c). The datapub CKAN extension
then (d) generates RDF to describe the dataset as a Datapub. Human data consumers
(e) can then browse the full dataset listing and access the data itself using either the
traditional CKAN web interface or a Linked Data portal created using LODSPeaKr.
Computational data consumers (f) can then access the data in conjunction with the
Linked Open Data ecosystem.
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While MelaGrid uses CKAN with the Datapub extension to address Level
1 “Basic” data sharing requirements, Prizms exposes the essential data ac-
cess information as Linked Data using the W3C’s Dataset CATalog vocabu-
lary (DCAT),5 the Dublin Core Terms (DC Terms) vocabulary,6 and the W3C’s
PROV-O [7] provenance ontology. Prizms addresses Level 2 data-sharing require-
ments (automated RDF conversion) by using the access metadata to retrieve,
organize, and automatically translate data posted to CKAN (such as Excel files)
into RDF data files and hosting portions of each in a publicly-accessible SPARQL
endpoint. All processing steps record a wealth of provenance described in best
practice vocabularies such as Dublin Core, VoID,7 and PROV-O, which enables
transparency of any of Prizms’ data products. For example, any RDF triple or
RDF file can be traced back to the original data file(s) and the original pub-
lisher(s) [8]. This is important to maintain the reputability of Prizms, which
serves as a third party integrator of others’ data.

Prizms addresses Level 3 data-sharing (semantic enhancement) by transform-
ing the original data to user-defined RDF. In the case of tabular data, such as
Excel or CSV, transformations are specified using a domain-independent declar-
ative description which itself is encoded in RDF. For example, one can specify
that the third column in the data is mapped to a user-specified RDF class
for concepts like gender or diagnosis. These concise transformation descriptions
can be shared, updated, repurposed, and reapplied to new versions of the same
dataset or within other instances of Prizms; they can also be maintained on code
hosting sites like GitHub.com or Google Code. The transformation descriptions
also serve as additional metadata that can be included as part of queries for the
data (e.g., finding all datasets that were enhanced to use the class “specimen”).

Reusing existing entities and vocabularies is the heart of Level 4 data-sharing
(Semantic eScience), and using community-agreed ontologies and vocabularies
are essential to Level 5 data sharing. We use new parameters of the same seman-
tic conversion tools that are described in Level 2 for this purpose. In addition,
datasets can be automatically augmented to produce inferences based on well-
structured data that appears in Prizms’ data store. For example, Prizms will
augment any address encoded using the vCard RDF vocabulary8 with the cor-
responding latitude and longitude (which it computes using the Google Maps
API). When clients request Prizms’ data elements, Prizms includes links to other
available datasets based on a variety of curated and heuristic connections. These
link suggestions can motivate community effort to mature the data towards more
matures levels of data sharing.

At all levels of data-sharing, Prizms uses the LODSPeaKr web framework to
create Linked Data applications and publish RDF data quickly and with minimal
effort. LODSPeaKr provides a set of functionalities that not only improves the
accessibility of the data for humans but also for machines by providing content

5 http://www.w3.org/TR/vocab-dcat/
6 http://purl.org/dc/terms/
7 http://www.w3.org/TR/void/
8 http://www.w3.org/Submission/vcard-rdf/

http://www.w3.org/TR/vocab-dcat/
http://purl.org/dc/terms/
http://www.w3.org/TR/void/
http://www.w3.org/Submission/vcard-rdf/
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negotiation (i.e, the ability to return different formats depending on the client’s
request for the data element URL). This increases accessibility of the data while
minimizing the workload for the development team. Additionally, the system
allows the creation of new web pages to display particular subsets of the data
that users may considered important. Data consumers can also perform query
operations against the backing SPARQL endpoint.

5 Discussion

The MelaGrid initiative provides usable, integrated informatics systems that
enable collaboration, data sharing, and enhanced analysis to research groups
studying skin cancer. Specimen and associated Omics data sharing is a high
priority for the MelaGrid initiative. Clinical annotations and phenotyping of
specimens, along with Single Nucleotide Polymorphism (SNP), transcription,
methylation, and copy number are just a few of the types of data that have
become important in cancer research. All of these data have representation in
the ArrayExpress subset of data.melagrid.org, and we will be extending its use
with additional information from tools like caTissue.

The consortium’s first priority is to increase the number of shared data enti-
ties, and Prizm’s flexible architecture is assisting in this goal. Melagrid has the
support of all four national skin SPOREs for use of this infrastructure. Cur-
rently, all shared data is at Level 1 (raw data with associated datapubs), and
Level 2 (automatic RDF conversion). We will be using the Prizms architecture
for converting institution-specific data descriptions into an accepted SPORE
OWL/RDF Ontology (currently CDEs, as defined on melagrid.org) as appropri-
ate. This is Level 5 data sharing in Prizms, as it involves a community-agreed
standard (Level 3 is using a locally developed ontology, and Level 4 is re-use of
ontologies, but not necessarily in a community-agreed manner).

6 Future Work

Currently, Prizms can be applied to dataset collections with other content do-
mains, and it offers the same benefits that MelaGrid provides for melanoma
data. We look forward to developing Prizms as we apply it to other applications,
and we expect that others will find value by doing the same. For example, we
are starting a portal for clinical depression treatment based on the Prizms in-
frastructure. Because using CKAN and the Datapub extension with Prizms has
been so useful, we expect to extend Prizms to include both of them in future ver-
sions, so that we can facilitate others’ adoption of all three components. We also
look forward to developing additional out-of-the box capabilities for any datasets
that Prizms is used to integrate, such as better connected exploration, better
overviews, and better recommendations or guidance on how the data could be
better modeled using best practice modeling techniques.
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7 Conclusion

We have described an infrastructure for creating and using next generation sci-
ence data portals. We have used the infrastructure to create two data portals
- one reported on here in melanoma data and one in response to the human
health services data challenge.9 We have described how our infrastructure sup-
ports assimilating, publishing, and enhancing science data into best practices
formats. The CKAN infrastructure makes it easy to aggregate data from multi-
ple sources through its harvester framework and we have developed and used a
CKAN harvestor to obtain and populate data.melagrid.org with 330 melanoma
datasets that are now published as linked data. Further, we have provided a
citation method for people to cite datasets from within both publications and
subsequently-derived datasets using the emerging nanopublication (via our use
of datapubs) and World Wide Web Consortium provenance standards.
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Abstract. The context for bioinformatics continues to change as new
technology brings more varied data in greater volume. We present the
preliminary design of a pipeline for functional annotation of fungal
genomes. Genome-wide functional annotation benefits from the variety
and volume of data available from “-omics” technology, and benefits from
the perspective of systems biology.

1 Introduction

The outcome of genomics-related research rests on the quality of the genome
assembly, the gene predictions, and the functional annotation of the genes. Ad-
vances in biotechnology are providing the volume, variety, and quality of data
to greatly improve the quality of assemblies, gene models, and functional anno-
tations, and allow improved analysis of expression data and the construction of
models for systems biology.

The annotation of prokaryote genomes is mature [1] compared to eukaryote
genomes: they are smaller, simpler, and many have been sequenced. Genome
assembly, structural annotation, and functional annotation for eukaryotes is rel-
atively less mature. Here we focus on fungal genomes, as they are our area of
expertise, and are the simplest starting point amongst the eukaryotes. Fungi are
important but often overlooked organisms that affect our daily lives as causative
agents of disease, as sources of food, as agents for recycling of biomass, and
as key ingredients in industrial processes. The information contained in their
genomes can enhance our understanding of how they function, and on their uses
and impacts. There is no open-source software that embodies a comprehensive
pipeline for structural and functional annotation of a fungal genome, thereby
limiting the access of genomics by the fungal research community.

In this paper, we look at the problem of functional annotation and how to
utilise the available data for a species about the genome, transcriptome, and
proteome for that purpose. We consider the problem of functional annotation in
the context of the existing databases of gene annotations, and other resources, as
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well as in the context of modern techniques such as network analysis, metabolic
pathway reconstruction, and systems biology.

Functional annotation generally focuses on protein functional prediction from
the protein sequence, though predictions may also use protein structural infor-
mation when available. The reviews [2, 3] clearly explain the difficulty of protein
function prediction, the types of errors that are common, and the concerns about
the quality of existing annotations in databases. The difficulty is inherent due to
the multifunctional roles of proteins, the potential binding with many substrates,
and the significant impact that a change of a single amino acid can have on struc-
ture and function. There are many roles for functional annotation: (1) Collecting
evidence for manual curation; (2) Understanding the role(s) of a gene; (3) Under-
standing the roles and relationships of a set of genes; (4) Understanding the gene
complement of the organism; (5) Forming the basis for the analysis of expression
data, metabolic reconstruction, and system models; and (6) Forming the basis for
publications about the genome through stories about specific genes, or interesting
comparisons across several organisms. So a functional annotation pipeline must
do more than associate a list of GO terms with each gene [4]. We augment GO
term annotations with phylogenomic classification into protein families and sub-
families as in PANTHER [5], and include predicted protein domain architecture,
secondary structure, and post-translational modifications sites as in ANNIE [6],
and construct a feature space and a set of gene networks for data mining.

2 Background

Major centres have published brief descriptions of their procedures for functional
annotation of fungal genomes: JGI [7], Broad [8], MIPS [9], and Génolevures [10].
None has made their pipelines available. IGS has published their standard op-
erating procedure (SOP) [4] for functional annotation of prokaryote genomes
and released the pipeline as part of the CloVR system [11]. Functional annota-
tion [3, 8, 12–16] is performed by gathering evidence of function from various
sources, integrating the evidence, and presenting the inferred function. Evidence
is inferred from properties of related sequences using annotation transfer by ho-
mology (ATH), guilt-by-association, or other prediction methods. Integration
occurs through statistical summary of GO terms, classical machine learning ap-
proaches, or network analysis [16]. The major steps are: (1) Annotation transfer
by homology (ATH) using sequence similarity; (2) Protein family recognition for
ATH using Hidden Markov Model (HMM) classifiers, sometimes including reso-
lution of orthologs, paralogs, and protein subfamily membership; (3) Case-based
reasoning for specific types of genes and proteins [8, Section 7]: carbohydrate-
active enzymes, transporters, transcription factors, effectors, proteases, protein
kinases, histidine kinases, G protein-coupled receptors, secondary metabolite
gene clusters; (4) Feature recognition for signals, motifs, and domains, and map-
ping features to annotation terms; in particular, the prediction of localization
relies heavily on this approach, as does PRIAM [17] for predicting EC numbers,
and InterPro2GO for GO terms; (5) Integration and summary of GO terms
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of related sequences; (6) Guilt-by-association using genome context [18] (such
as gene clusters, gene fusion, phylogenetic profiles), pathway reconstruction,
and network analysis; (7) Post-processing by rules to detect common annota-
tion errors, e.g. the Swiss-Prot HAMAP system [19] for prokaryote annotation,
and SAAS [20] and UniRule (www.uniprot.org/program/automatic annotation)
rules at EBI when annotating Trembl from Swiss-Prot; and (8) Post-processing
data mining [21–23] to detect anomalies for investigation manually by curators,
and to automatically infer rules [20]. This is dependent upon existing sequence
databases with annotations, existing databases of HMMs with annotations, and
existing predictors for signals, motifs, and domains; ie, a trusted set of data as
the foundation for the annotation such as CharProtDB [24] for prokaryotes at
JCVI. While we concur with Ross Overbeek that this dependence on a founda-
tion of trusted data links functional annotation with the continued maintenance
of the foundation, i.e. that “curation is forever” [25], it is not clear that the sub-
system approach [26] that is taken for prokaryotes, and is the basis of RAST [1],
is appropriate for eukaryotes.

2.1 Types of Functional Annotation

The primary annotation is the role of a gene product. A GO triple is a triple
(p,m, c) of Gene Ontology (GO) terms indicating the biological process p, the
molecular function m, and the cellular component c for the role. A family pair
is a pair (F, f) of family F and subfamily f for the gene product. A functional
annotation of a gene consists of a GO triple together with a family pair. The
functional annotation described as a GO triple and a family pair allows us to
make distinctions in the role of genes that is supported by existing sequence data
in the foundation but not yet formalized in the Gene Ontology. Furthermore, it
brings in distinctions and terminology, such as glycoside hydrolase (GH) family,
which are in common use by genomics researchers but not in the Gene Ontology.

Since many genes cannot be assigned a primary annotation as complete as
this, a collection of features will be included in the annotation. Features include
individual GO terms (that are not part of a GO triple) inferred from various
searchers and predictors; EC (Enzyme Commission) numbers; information about
gene or protein regions or sites such as signals, binding modules, or catalytic
sites, secondary structure, post-translational modifications, and transcription
factor binding sites.

Ametabolic pathway reconstruction is included in the annotation as a Pathway-
Genome database (PGDB) as produced by Pathway Tools.

Gene networks are constructed as part of the annotation. Each gene network
consists of nodes representing genes or proteins, and edges that represent the
existence of a relationship or shared property of the pair of genes and/or proteins.
Types of gene networks include interaction, shared protein domains, and co-
localization networks. Important to this work are co-expression networks that
encode the information in the expression data; co-pathway networks derived from
the metabolic pathway reconstruction; and networks for comparative genomics
relationships such as orthology and synteny.
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2.2 Resolving Orthology

The application of annotation transfer via homology is prone to errors. Homol-
ogy is about the evolutionary relationship of genes through the processes of
speciation, gene duplication, and horizontal gene transfer. Orthologs are homol-
ogous sequences derived from a speciation event, while paralogs are derived from
duplication. In general, orthologs are more likely to retain their function, while
paralogs more often do not [27]. Therefore, it is important to resolve orthologs
and paralogs during comparative genomics using phylogenetic and phylogenomic
techniques [27, 28]. Many functional annotation pipelines use databases of or-
thologous groups of genes. Other pipelines like PANTHER [5] and Sifter 2.0 [29]
apply phylogenomics across the board during annotation to help resolve or-
thologs and paralogs.

2.3 Integration of Evidence

Most functional annotation pipelines have a stage to reconcile descriptions and
GO terms for a protein that are obtained from the diverse search hits, such as
Blast Extend Repraze (BER) [4], Gotcha, Blast2GO, or Ontologizer. These give
more weight to strong specific hits but can also treat weaker or more remote hits
when that is the only evidence available for a protein. Daisuke Kihara’s PFP [30]
and ESG [31] showed that, for the analysis of expression data, it is worthwhile
to annotate poorly characterized proteins with GO terms which may be high in
the GO hierarchy even when there is low confidence in those terms [32]. ESG
performs better than PFP, PSI-Blast, Gotcha, and iprscan with InterPro2GO.

2.4 Pathway Reconstruction

An important task in systems biology is the modeling of metabolism [33] which
uses “-omics” data to fill in gaps in the models [34]. Pathway reconstruction
is typified by Pathway Tools [35] which uses the MetaCyc knowledgebase of
pathways curated from the literature to provide a template of metabolic, trans-
port, and regulatory pathways against which to match the roles of proteins in
a genome. The tools construct a Pathway Genome Database (PGDB). Using
an existing functional annotation, the tools first match genes to reactions, then
determine whether each pathway is present or not in the organism [36, 37].
The pathways present may have holes, which means that certain reactions in
the pathway are not matched with a gene. The hole-filling algorithm [38] uses a
Bayesian approach to rank the unmatched genes in the genome with each hole as
a potential match, and the software allows curators to accept or reject a match.
An accepted match assigns a molecular function (the reaction) and a biological
process (the pathway) to the gene. For pathways that are not in MetaCyc, there
are approaches to analyse expression data [16] or comparative genomes [39] to
discover novel subsystems such as protein complexes and pathways.



Genome-Wide Functional Annotation 117

2.5 Network-Based Annotation

Network analysis [16] is typically applied to co-expression networks as part of ad-
vanced analysis of expression data. Network analysis is one approach to integrate
diverse evidence. Its usefulness in functional annotation is established [13–16].
GeneMANIA [40] is a system for network analysis that had success in the Mous-
Func annotation competition.

Graph-based semi-supervised learning represents evidence as (weighted) edges
between vertices (i.e. genes or proteins) and as labels on vertices representing
annotations. Unlabelled vertices denote a lack of annotation and the goal of
machine learning is to propagate annotations to these unlabelled vertices from
the set of nearest relevant neighbours. The field began in 2004 at Tübingen [41]
solving the problem using Support Vector Machines with graph-specific kernels,
but also developing rank propagation algorithms (as in Google’s PageRank), and
linear algebra based approaches for a matrix representation of the graph. The
linear algebra approach led to fast graph integration [42], and to advances in ef-
ficiency in GeneMANIA [43] offering real-time response as a web service. There
are two subproblems in graph integration: learning the weights to apply to each
graph when combining them into a single graph; and learning the solution for the
integrated graph. The GeneMANIA algorithm solves both subproblems at the
same time. GeneMANIA also provides tools to gauge the impact of each graph on
the analysis. GeneMANIA currently has graphs representing protein and genetic
interactions, pathways, co-expression, co-localization, and protein domain shar-
ing. Its format for graph data is generic, so one can encode other data as graphs
for use by GeneMANIA. A strength of GeneMANIA is its collection of datasets
for model organisms. A weakness is that it only addresses model organisms. To
utilise the datasets from Saccharomyces cerevisiae, our functional annotation
pipeline needs to relate other fungal genomes to that of yeast which we can do
in various ways with graphs representing sequence similarity (see SIMAP [44]
and STRINGv7 [45]), ortholog and paralog relationships (see eggNOG [46]), or
synteny (see STRINGv8 [47]).

2.6 Structural Annotation

The impact of good quality gene models percolates throughout the downstream
processing since a correct gene model, and therefore CDS, allows further analysis
to detect features such as signal peptides, binding sites, protein domains, sites of
post-translational modification, and anchors, that might be missed due to trun-
cated C- or N-terminals, missing exons, or missing parts of exons. In proteoge-
nomics [48–50] proteins undergo de novo sequencing, or terminal sequencing,
and the peptides are mapped to the six-frame translation of the genome.

Gene prediction programs can be classified as ab initio or homology-based.
Ab initio predictors search the genome sequence with Hidden Markov Models
to detect signals that indicate coding potential, such as open reading frames,
intron donor and acceptor sites, and transcription start and stop sites [51].
Homology-based predictors search for sequences similar to known genes in related
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organisms, or sequences that translate to the sequences of known proteins. Prac-
tical gene prediction pipelines combine the outputs of multiple predictors with
additional evidence [52], including transcriptomics and proteogenomics, which
requires that data be mapped to the genome.

3 Specification of the Pipeline

For the functional annotation pipeline, the inputs are

– the genome assembly;
– the genome defined as a set of genes, as a gff file for the gene models, and

the corresponding fasta sequence files for genes, CDS, transcripts, proteins,
upstream and downstream regions;

– the expression data from transcriptomics and proteomics; and
– reference datasets, classifiers, and predictors, etc.

The output produced by functional annotation consists of a set of gene pages
(one for each gene model), a summary table of the genes and their annotation,
the expression data from transcriptomics and proteomics, a Pathway-Genome
Database for the reconstructed metabolic pathways, a set of networks, and a
gene feature space for data mining. These can be accessed and viewed by web
browsers, Pathway Tools, and Cytoscape. They can be exported to other systems
for further analysis, such as Kbase, Galaxy, R/Bioconductor, and Weka.

The gene page presents the primary functional annotation. Each functional
annotation identifies the GO triple and the family pair. The gene page includes
several organized views of features: the genome context of the gene; the struc-
ture of the gene model in terms of introns and exons; the site information for
upstream and downstream regions; the protein domain architecture including
signals, cleavage sites, binding modules, catalytic domains, and low complexity
regions; protein secondary structure; and the sites of post-translational modifi-
cations. Features that are not accommodated in the organized views are listed
individually. Links are provided to supporting evidence such as alignments and
tool output, as well as to the syntenic blocks and orthologous groups to which
the gene belongs. The gene pages are in html.

A gene table provides a summary annotation of each gene in the genome.
This includes an identifier; a descriptive name; the GO triples and family pairs;
individual GO terms by category of biological process, molecular function, and
cellular component; EC number; and InterPro domains. The gene table in html

acts as an index into the gene pages. For convenience, the gene table is also
provided as a tab-separated value (tsv) file. Furthermore, the common informa-
tion on GO annotation terms, EC numbers, and InterPro results are provided
as separate files in the standard formats. An extended gene table is provided
as a tsv file and contains the organised views (encoded as readable text), and
information on orthologous clusters, and on the phylogenetic distribution of ho-
mologs across the foundation fungal genomes, the model organisms, the fungal
phyla, and the kingdoms of life.
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Fig. 1. Functional Annotation Stages

The gene feature space consists of an extensive set of features and classifi-
cations for the purpose of machine learning and data mining. Each gene has a
vector of atomic features consisting of numbers or identifiers. There are standard
approaches to encode information such as sequence composition, and annotation
terms in classification schemes like EC, GO, and InterPro whether they be hier-
archical or multi-valued.

4 Design of the Pipeline

The functional annotation process consists of three main stages. The first stage
is the initial annotation; the second stage is metabolic pathway reconstruction;
and the third stage is network-based annotation. The second and third stages
can be repeated as further new annotations may be produced. The first stage
consists of a number of steps, each of which is independent of the others. A wide
variety of tools are run in order to produce features (including individual GO
terms and EC numbers), and networks. Functional annotation in the sense of
a GO triple and a family pair are only produced from strong matches to the
foundation data by applying rules for annotation transfer by homology from the
foundation data annotations.

4.1 Stage One: Initial Annotation

The first stage can be viewed as six parts: part one matches the proteins to the
foundation data; part two applies the extended similarity group (ESG) method
to the proteins; part three performs major tasks of applying iprscan against In-
terPro, and predicting localization; part four applies numerous useful predictors,
including PRIAM, to detect features; part five considers the genome context in-
formation; and part six considers comparative genomics information including
orthology and synteny.
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Table 1. Outputs of the Stages of Functional Annotation

Stage Part Tool Outputs
Features

GO Family GO other Network Pathway
triple pair term type PGDB

1 1 Foundation Match Y Y

1 2 ESG Y

1 3 InterPro MF Y shared domain
localization CC Y co-localization

1 4 predictors Y
PRIAM MF EC

1 5 Genome context Y co-chromosomal

similarity
1 6 Comparative genomics orthology

synteny

2 Pathway Tools Y co-pathway Y

3 GeneMANIA Y

Part one matches proteins in the target genome against the foundation using
similarity searches, hmmer3 searches against Hidden Markov Models (HMM) of
families and subfamilies, and specialized predictors for specific families. Each
sequence in the foundation is associated with a trusted functional annotation
as a GO triple and family pair. Each family and subfamily is associated with
an annotation that is as specific as possible while still being conserved across
all members of the family or subfamily. The general rule for annotation transfer
by homology is that when there is a strong match between a protein in the
target genome and a sequence, family or subfamily, then transfer the associated
annotation. Rules to handle exceptions to the general rule are applied.

Part two matches each protein in the target genome against sequence databases
in the foundation and against external datasets (supplied as a parameter) using
the extended similarity group method (ESG) [31] to summarize GO terms from
matches to poorly annotated proteins. It is more sensitive than PSI-Blast. For
the analysis of expression data, it is worthwhile to annotate poorly characterized
proteins with GO terms which may be high in the GO hierarchy even when there
is low confidence in those terms [32].

Part three matches each protein in the target genome against the InterPro
database using iprscan to produce a set of protein domain features for the pro-
tein. Corresponding individual GO terms are produced using the InterPro2GO
mapping. A network based on shared domains is also produced. Part three also
runs a series of tools related to the prediction of localization on each protein and
produces a set of features, an individual GO term for its cellular component, and
a co-localization network. The tools used include SignalP 4.0 [53], Phobius [54],
TargetP [55], TMHMM [56], WolfPSORT [57], and MultiLOC2 [58].
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Part four runs PRIAM [17] on each protein to produce an EC number as
a feature. Part four also runs a series of predictors for secondary structure;
low complexity regions; post-translational modifications; GPI anchors; promoter
binding sites, etc; to produce features of regions and sites.

Part five considers genome context for the target genome. For each gene it
computes a gene copy number counting the number of paralogs in the genome.
Part five also produces a genome context network where there is an edge between
two genes if and only if the genes lie on the same chromosome (or scaffold).

Part six considers comparative genomics. Part six performs similarity searches
against genomes in the foundation and for model organisms to produce a sim-
ilarity network. Part six also runs a series of predictors for orthologous groups
such as eggNOG [46], orthoMCL [59], InParanoid [60], and OMA [61] to pro-
duce various orthology networks, including one based on reciprocal best hits
(RBH). Part six also runs tools for determining synteny [62, 63] between the
target genome and those genomes in the foundation and for model organisms to
produce several synteny networks where there is an edge between two genes in
the target genome if and only if they lie in same syntenic block.

4.2 Stage Two: Metabolic Pathway Reconstruction

The second stage is metabolic pathway reconstruction done by Pathway Tools.
The input consists of the annotation of each gene in terms of a text description,
GO terms, and EC numbers. The output consists of the assignment of genes
to reactions in pathways for both metabolic reactions and transport reactions.
This assignment provides a GO triple as an annotation for the gene. This stage
also produces a co-pathway network; and a Pathway-Genome Database. When
the second stage is repeated following the third stage of network-based annota-
tion, then the metabolic pathway reconstruction only requires updating rather
than re-computation. Following the updates to the annotation, the hole-filling
methods in Pathway Tools may assign further genes to reactions.

Pathway Tools [35] uses the MetaCyc knowledgebase of pathways that have
been curated from the literature to provide a template of metabolic, transport,
and regulatory reactions and pathways. Using an existing functional annotation,
the tools first match genes to reactions, then determine whether each pathway
is present or not in the organism [36, 37]. The pathways present may have holes;
that is, there are orphan reactions in the pathway that are not assigned to a
gene. The hole-filling algorithm [38, 64] uses a Bayesian approach to rank the
unassigned genes in the genome with each hole, and the software allows curators
to accept or reject a match. There are alternative hole-filling approaches that
use orthology (AutoGraph [65]) and expression data (GLOBUS [66]). The use
of orthology should be redundant here in our pipeline because of our inclusion
of metabolic pathway reconstructions in the foundation. Similarly, the use of
expression data should be redundant because network-based annotation will use
expression data to assign genes to molecular function GO terms. We need to
determine appropriate thresholds for when to transfer an annotation for ranked
candidate genes to fill a hole automatically.
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4.3 Stage Three: Network-Based Annotation

The third stage is network-based annotation done by GeneMANIA [40]. The
input is the set of networks produced by the first and second stages. The output
is new gene annotations as GO terms, or an increase in confidence for an existing
GO term annotation of a gene. The third stage also provides integration of the
evidence for functional annotation of each gene.

GeneMANIA currently has graphs representing protein and genetic interac-
tions, pathways, co-expression, co-localization, and protein domain sharing. Its
format for graph data is generic, so one can encode other data as graphs for use
by GeneMANIA. The datasets in GeneMANIA includes the yeast S. cerevisiae.
Information from prior steps will be encoded as graphs representing pathways,
co-expression, co-localization, and protein domain sharing in the target genome.

GeneMANIA is used to study a single model organism. We need to study non-
model organisms, yet benefit from the available datasets for model organisms.
Hence we propose to develop new types of gene networks representing sequence
similarity [44, 45], ortholog and paralog relationships [46], or synteny [47]. These
networks connect the genes of target genomes to genes in existing datasets.

4.4 Foundation

The foundation data for fungi will include experimentally characterized and
trusted data. It will be built out in stages: (a) lignocellulose-active proteins [67];
(b) the manually curated genes and annotations of S. cerevisiae, S. pombe, C.
albicans, N. crassa, A. nidulans, and A. fumigatus; (c) Swiss-Prot; (d) tRNA
genes and tRNA synthetase genes; (e) the metabolism reconstructions of fungi,
including transporters, from the BioMet collection [68]; (f) transcription factors
in fungi; (g) genes related to the secretory pathway; (h) genes related to cell wall
biosynthesis; and (i) fungal core genes.

In the construction of the foundation, we perform clustering, multiple se-
quence alignment, and build HMMs for well-understood families so as to resolve
orthologs and paralogs, and thereby sidestep the general use of phylogenomics.
Subfamilies are determined using SciPhy [69], and Secator and DPC [70]. It is
for such well-understood families that rules governing transfer of annotations
were developed for prokaryotes in HAMAP.

4.5 Rules, Anomalies, and Data Mining

Rules are implemented for annotation transfer by homology (ATH) first by iden-
tifying the functional annotation (as a GO triple and family pair) that is con-
served across a family or subfamily amongst the well-understood protein families
in the foundation. Exceptions to ATH in this context may arise based on phy-
logenetic variation between the foundation proteins and the target genome, in
which case they will be captured by additional rules (for the exception) as in
HAMAP (for prokaryotes). Rules will also be developed when curators notice
common errors in annotation made by the tools or pipelines. The conditions
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under which those errors occur may be identified by mining the gene feature
space; if so, a rule can be developed to catch such errors. The rules can be applied
as post-processing steps. The rules need to relate available annotated features
of proteins, together with phylogenetic location of the fungi, to the functional
annotation (primarily GO terms) and errors in functional annotation. Further-
more, there are machine learning techniques for anomaly detection that can be
applied to the gene feature space. Anomalies raise concerns about the accuracy
of annotations that can be investigated by the curators.

Features include sequence composition (EMBOSS pepstats generates 61 fea-
tures, Expasy ProtParam generates 36 features); 37955 GO terms (v1.3418);
23232 Interpro entries (v38.0); membership in families or clusters; and results
from the various predictors.

5 Benchmarking

Datasets and benchmarking are critical for the development of pipelines. Progress
is made during development by examining false positive and false negative re-
sults when benchmarking, trying to identify the cause for the errors, and making
improvements to the pipeline. When testing on novel genomes, a curator sam-
ples a small number (about 100) of results manually to determine which can be
classified as false positive or false negative.

The primary datasets for the benchmarking of the functional annotation
pipeline are those for Aspergillus niger, Thermomyces lanuginosus, and Phane-
rochaete chrysosporium, that were used for our structural annotation pipeline.
We have curated functional annotations for some genes but not for all genes.

We use Candida albicans and S. cerevisiae, as “gold standard” datasets, tak-
ing care to remove related entries from the foundation data that is the basis for
functional annotation. In cases where the benchmarking shows differences be-
tween the result of the pipeline and the gold standard, we can refer to the yeast
biologists at the Centre for Structural and Functional Genomics for adjudication.

6 Conclusions

Structural and functional annotation of a genome are basic steps in genomics-
related research. It is important that these tasks produce quality results, in terms
of coverage of the genome and accuracy of the annotations. The incompleteness of
functional annotation of genomes, even for model organisms, is a significant gap
in our knowledge. The inaccuracies in annotation databases lead to propagation
of erroneous annotations to new genomes which poses a major threat to the
validity of any ensuing analysis of experimental data. It is essential that we
advance the coverage and accuracy of structural and functional annotation.

This paper presents the design of a pipeline for functional annotation tai-
lored for fungal genomes. The pipeline uses input data from genomics (DNA
reads), transcriptomics (RNA reads), and proteomics (mass spectrometric spec-
tra). The pipeline integrates pathway reconstruction, network analysis, and rule-
based post-processing. It builds on a foundation of trusted annotations to derive
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detailed functional annotations of the role of a gene product where possible, and
to provide a broad set of evidence as features, expression data, and networks for
further analysis by other tools for system biology and “-omics” data analysis.
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Quebec, and NSERC.
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Abstract. By nature, healthcare data is highly complex and voluminous. While 
on one hand, it provides unprecedented opportunities to identify hidden and 
unknown relationships between patients and treatment outcomes, or drugs and 
allergic reactions for given individuals, representing and querying large 
network datasets poses significant technical challenges. In this research, we 
study the use of Semantic Web and Linked Data technologies for identifying 
potential drug-drug interaction (PDDI) information from publicly available 
resources, and determining if such interactions were observed using real patient 
data. Specifically, we apply Linked Data principles and technologies for 
representing patient data from electronic health records (EHRs) at Mayo Clinic 
as Resource Description Framework (RDF), and identify PDDIs for widely 
prescribed anti-coagulant Warfarin. Our results from the proof-of-concept study 
demonstrate the potential of applying such a methodology to study prescription 
trends based on gender and age as well as patient health outcomes. 

Keywords: Drug-drug interactions, SPARQL, Federated querying, DrugBank, 
Electronic Health Records. 

1 Introduction 

An important aspect in realizing the vision of translational research lies in the ability 
to access, integrate, analyze and manage multiple and heterogeneous datasets within 
and across functional domains. This necessitates a systematic study of clinical 
phenotypes and health-related treatment outcomes to better understand the impact of 
effective patient-care management. The Semantic Web, and its related tools and 
technologies provide the underlying infrastructure for large-scale data integration and 
knowledge acquisition, and are being increasingly adopted by the biological, clinical 
and translational science communities to serve their information management and 
querying requirements. In particular, the Linked Open Data (LOD [1]) community 
project at the World Wide Web Consortium (W3C) is publishing various open data 
sets as Resource Description Framework (RDF [2]) on the Web and extending it by 
setting RDF links between data items from different data sources containing 
information about genes, proteins, pathways, diseases, and drugs. While this presents 
a very powerful platform for federated querying and heterogeneous data integration, 
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its true potential can only be realized when combining such information with “real” 
patient data from electronic health records. However, in practice, due to several 
privacy, security, ethical, policy and confidentiality issues, patient data is closely 
guarded and monitored for unauthorized access within institutional firewall 
boundaries. Consequently, projects such as the LOD rely on “sample” patient data 
that do not represent the inherent idiosyncrasies and complexities of information 
contained within an electronic health record system.  

In this manuscript, we report early experiences by leveraging our prior work [3, 4] 
in applying linked data principles for representing patient data from electronic health 
record systems at Mayo Clinic to study drug-drug interaction patterns for a widely 
prescribed anti-coagulant Warfarin. In particular, we use open-source tooling and 
standardized ontologies for creating virtual RDF graphs (i.e, “views”) from Mayo’s 
clinical enterprise warehouse and demonstrate federated querying for potential drug-
drug interaction (DDI) information using public data available from the Linked Open 
Data cloud. It is well-known that adverse drug events are a major health risk, and 
DDIs are one of the causes of such events. However, while thousands of DDIs have 
been reported, only a handful is worth any attention. Furthermore, a set of DDIs that 
suit one medical center or patient care facility might not be entirely appropriate to 
others. Consequently, there is significant research and on-going debate on how DDI 
information can be leveraged for better care, particularly in the context of clinical 
decision support and EHRs [5]. 

The work presented in this study is informed by such advances and focuses 
primarily on mining DDI information from EHR systems using Semantic Web 
technologies. Specifically, our proof-of-concept described in this manuscript is based 
on DDI information for Warfarin (Brand Name: Coumadin). Our reasoning behind 
selecting Warfarin for demonstration of our methods was not only due to the fact it is 
a commonly prescribed anti-coagulant medication, but also because existing literature 
[6, 7] have demonstrated the role of genes to guide the drug administration and dosing 
recommendations—an area of future interest and relevance to our project [4]. The 
preliminary results from our study further illustrate the strong potential for 
considering Semantic Web technologies to enabling Web-scale data integration and 
federation in biomedical research and development.  

We begin by providing a brief background to Semantic Web technologies and their 
benefits, followed by a description of Mayo Clinic’s clinical data repository and the 
DrugBank and NCBO BioPortal public knowledgebases.  

2 Background and Materials 

2.1 Semantic Web and Related Technologies 

A key benefit of using Semantic Web technologies is a rigorous mechanism of 
defining and linking data using Web protocols for automation, integration and reuse 
across various applications. Specifically, an “attractive” element of the Semantic Web 
is its simple data model, called Resource Description Framework (RDF), which 
represents data as a labeled graph connecting resources and their attribute values with 
labeled edges representing properties. The graph can be structurally parsed into a set 
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of triples (subject, predicate, object), making it very general and easy to express any 
type of data. Such a model coupled with (i) dereferenceable Uniform Resource 
Identifiers (URI’s) for creating globally unique names, and (ii) standard languages 
such as RDFS, OWL, and SPARQL for creating ontologies as well as modeling and 
querying data, provides a very powerful framework for the integration of 
heterogeneous data. Of particular relevance to this study is the Linked Open Data 
(LOD [1]) initiative from the World Wide Web Consortium (W3C) that aims to 
bootstrap the Web of data by publishing existing data sets in RDF on the Web and 
creating numerous links between them. As of February 2013, the LOD project has 
more than 300 public datasets from multiple domains (e.g., genes, drugs and side 
effects, diseases, anatomy) with approximately 300 billion triples connected via more 
than 500 million links, and comprises resources such as DBpedia [8]) that provide an 
RDF representation of Wikipedia.  

2.2 Enterprise Clinical Data Warehouse at Mayo Clinic 

Mayo Clinic has a history of over 100 years in organizing patient records to support 
research and quality improvements [9]. Starting with structured paper documents 
storing patient information about laboratory results or physical examination findings, 
Mayo has supported the notion of explicitly missing information since 1907. Around 
1990, efforts to integrate and organize information into semantically well-formed 
structure were initiated in tandem with infrastructure development for registry 
creation and information retrieval. The Mayo Clinic Life Sciences System (MCLSS 
[10]) is a rich clinical data repository maintained by the Enterprise Data Warehousing 
Section of the Department of Information Technology.  MCLSS contains patient 
demographics, diagnoses, hospital, laboratory, flowsheet, clinical notes and pathology 
data obtained from multiple clinical and hospital source systems within Mayo Clinic 
at Rochester, Minnesota. Data in MCLSS is accessed via the Data Discovery and 
Query Builder (DDQB) toolset, consisting of a web-based GUI application and 
programmatic API.  Investigators, study staff and data retrieval specialists can utilize 
DDQB and MCLSS to rapidly and efficiently search millions of patient records.  
Users are able to quickly build, save and share complex queries without programming 
or database knowledge. A unique text search engine provides the capability to rapidly 
search for specific words and phrases within unstructured text documents, such as 
clinical notes and pathology reports, freeing investigators from many hours of tedious 
manual chart reviews.  Data found by DDQB can be exported into CSV, TAB or 
Excel files for portability.  It implements full data authorization and audit logging to 
ensure data security standards are met. 

For this project, we leverage MCLSS to access and retrieve patient demographic 
and diagnosis data, and represent such knowledge using Resource Description 
Framework (RDF). We also leverage patient clinical information from Mayo’s 
Electronic Medical Record and Genomics (eMERGE [11]) project comprising 
approximately 7000 patients. In particular, we represent the medication prescription 
data from this cohort as RDF graphs for querying. We discuss additional details and 
processes involved in the remainder of this manuscript. 
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2.3 DrugBank and Drug-Drug Interaction Information 

DrugBank [12] is a publicly available rich source of annotated drugs and drug target 
information. At the time of writing this manuscript in February 2013, DrugBank 
contained 6711 drug entries including 1447 FDA-approved small molecule drugs, 131 
FDA-approved biotech (protein/peptide) drugs, 85 nutraceuticals and 5080 
experimental drugs. Additionally, 4227 non-redundant protein (e.g., drug transporter 
or carrier) sequences are linked to these drug entries. The data is represented via a 
DrugCard where each entry comprising 150 data fields contains information on 
drug/chemical and drug target or protein data. Specifically, the data fields include 
information drug-action pathways, drug transporter data, drug metabolite data, 
pharmacogenomic data, adverse drug response data, ADMET data, pharmacokinetic 
data, computed property data and chemical classification data, and more recently 
drug-drug and drug-food interactions. Additionally, the DrugBank data is also 
available as RDF via the Bio2RDF [13] SPARQL endpoint.  

Our objective is to use the SPARQL endpoint to demonstrate how we can integrate 
publicly available data with institutional EHR data in a flexible manner. Since our use 
case for this work is investigate DDI information for Warfarin (Coumadin), we 
restrict our SPARQL query searches to these entities (see more details in Section 3.2). 
Table 1 below illustrates a partial listing of DDI information extracted from 
DrugBank for Warfarin and how the combination of the two effects the INR 
(international normalized ratio) levels. 

Table 1. Partial listing of Warfarin drug-drug interactions 
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the mappings between the relational schema and RDFS/OWL ontologies to create the 
RDF triples. This language generates a mapping file from table structures of the 
databases in eMERGE and MCLSS that can then be customized by replacing the 
auto-generated terms with concepts from standardized ontologies. In our case, we 
modified the custom ontology generated by Virtuoso for creating these mappings with 
terms and concepts from the SNOMED-CT [15] standardized ontology.  

SPARQL endpoint. The RDF graphs created from MCLSS and eMERGE using the 
above approach was exposed via two different endpoints. This allows software 
application clients to query the MCLSS RDF data using the SPARQL query language. 
Given that our overarching goal is to integrate the eMERGE, MCLSS and DrugBank 
RDF graphs, our objective is to execute federated queries across multiple SPARQL 
endpoints. The MCLSS and eMERGE endpoints were placed on two different servers 
in order to reduce the bandwidth load on the machines during the query execution.  
We discuss the details of SPARQL-based federated querying in the next section.   

3.2 SPARQL-Based Federated Querying for Drug-Drug Interactions 

As shown in Figure 1, our goal is to federate between three main data sources: 
eMERGE, MCLSS and DrugBank, where  eMERGE is a MySQL database containing 
prescription data, MCLSS is a DB2 database containing patient clinical and 
demographic data, and the  DrugBank is a public drug data repository. Since our 
interest lies in querying for DDI pairs in DrugBank and determining such potential 
interactions using Mayo's EMR data, in its current form, one would have to execute 
multiple SQL query across all these datasources to retrieve the appropriate resultset. 
Instead, by leveraging RDF and Semantic Web technologies, we demonstrate how 
this can be achieved using a single SPARQL query. 

In particular, there were four different endpoints queried during this study.  The 
first endpoint was DrugBank where we state the drug for which is the basis for our 
investigation into patient prescription histories.  By stating Warfarin in the first 
service statement we are able to retrieve the list of drugs which have been established 
in DrugBank to have a DDI.  The next service statement uses that list of medications 
to find the patients who have been prescribed both Warfarin and a DDI medication on 
the same clinic visit.  The form of the results from this portion of the query is in 
patient clinic numbers.  A decision was made at this point of the query that the list of 
patients would be distinct so those who were prescribed a specific DDI combination 
with Warfarin would not be duplicated in the list. 

When creating the mapping file for the RDF view, SNOMEDCT concept code 
422549004 was used to represent patient clinic numbers in order to align our database 
concepts with accepted ontology descriptions.  In this case, the concept id represents a 
“patient related identification code”.  For the same reasoning, SNOMEDCT concept 
code 432213005 was mapped to the clinic visit dates in the database as they represent 
the “date of diagnosis”.  Medications listed in the table were mapped to SNOMEDCT 
concept code 33633005 as we considered them a “medication prescription”.  
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Fig. 2. SPARQL query to retrieve patient diagnosis information 

The next service statement queries the MCLSS endpoint against two different 
graphs.  The demographic graph was required to transform the list of patient clinic 
numbers into internal MCLSS key ids as they are used as primary keys on all the 
tables in the database.  The query then matches the internal primary key from the 
demographic graph with the internal primary key in the diagnostic graph.  Once that 
match is made, we are able to extract the list of diagnoses made for the patients on the 
date of the clinic visit.   

When mapping the MCLSS tables, SNOMEDCT concept code 422549004 was 
also used to map the patient clinic identification numbers.  Another advantage to 
using known ontologies while doing the mappings is to provide a common 
understanding of what the values within each table represent.  If we were to use 
column names, the patient numbers in eMERGE would use the predicate “clinic” 
while the ones in MCLSS demographics table would use the predicate “mcn”.  To 
differentiate patient clinic numbers with internal table identification numbers, we used 
SNOMEDCT concept code 396278008 to map the primary table keys to the 
ontology’s “identification number” representation.  The relationship between patient 
and the diagnosis was mapped as SNOMEDCT concept code 8319008 to represent 
the “principle diagnosis”. 
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The list of diagnoses from the MCLSS diagnostic graph is in the form of ICD9CM 
codes.  Rather than manually matching up codes with their descriptions, we end the 
query by using a service statement against the ICD9CM graph located at the BioPortal 
endpoint. This endpoint was added to the initial three to help us match the list of 
diagnosis code values with the code descriptions to include in the final result set.   

The results of the query are 
grouped by medication and 
diagnosis.  We used a count 
function on the diagnosis values in 
order to analyze the results 
outlined in the next section.  A 
graphical representation of the 
query process is shown in Figure 3. 

Two other queries were run to 
further the analysis of patient 
data.  One query provided a 
breakdown of the ages of the 
patients when they were 
prescribed the DDI combination 
and the other broke it down in 
terms of gender.  Patient age 
information is included as a part 
of eMERGE, and hence service 
calls to MCLSS and DrugBank 
were not required.  Similarly, 
gender information is included in  
MCLSS, and hence the diagnosis 
graph matching was not required 
nor the DrugBank service call.  In 
the interest of space in this paper, the queries have been posted to our project wiki: 
http://informatics.mayo.edu/LCD/index.php/Project_Warfarin_DDI. 

4 Results 

We retrieved DDI information from the prescription medication data using the 
SPARQL endpoints for Warfarin (Coumadin) on a cohort of 6758 patients that are 
participating in the Mayo Clinic eMERGE (Electronic Medical Records and 
Genomics) study [11]. This cohort primarily comprises of elderly patients who have 
been diagnosed with cardiovascular diseases; a detailed description of the cohort is 
presented elsewhere [11]. Figures 4 and 5 show the gender and age distributions, 
respectively, on the eMERGE cohort for which potential DDIs were observed using 
the electronic health record data retrieved from the MCLSS SPARQL endpoint. 
Figure 4 highlights the gender distribution and as such, each distinct patient was 
included only once in the result set data.  Figure 5 highlights the age distribution and 

Fig. 3. SPARQL query process 
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although with appropriate dosing considerations. For example, we observed that 37 out 
of 38 patients prescribed Clopidogrel and Warfarin concomitantly were 50 years old or 
above. This would make clinical "sense" since individuals in this age group frequently 
receive drug-eluting stents (Clopidogrel prevents blood clotting). Similarly, 
concomitant prescription for Ciprofloxacin was observed in 51 out of 55 patients that 
were above 50 years since it is an important antibiotic used widely to treat several 
respiratory, urinary tract, gastrointestinal and abdominal infections. Consequently, 
while concurrent administration cannot be avoided entirely, and hence may increase or 
decrease Warfarin activity, the clinical protocols and guidelines recommend close 
monitoring of daily INR levels, and appropriately adjusting Warfarin dosing. For 
instance, Isoniazid—a commonly used drug to prevent and treat tuberculosis—when 
co-administered with Warfarin, often increases the anticoagulant effects of Warfarin by 
interfering with the enzyme in the liver that eliminates Warfarin, thereby necessitating 
dose adjustments (lowering the Warfarin dose in this case).   

5.2 Limitations 

The proof-of-concept system developed in this study has several limitations. First, 
while we demonstrated the applicability of the system via sample use case queries, a 
more robust and rigorous evaluation along several dimensions (e.g., performance, 
query response, precision and recall of query results etc.) is required before it can be 
deployed within an enterprise environment. Note that since our use cases are based on 
federated querying of several public SPARQL endpoints, the system performance and 
query responses are dependent on the behavior of the endpoints. Nevertheless, we 
plan to perform a thorough system evaluation after the integration of additional 
MCLSS sources (e.g., laboratory, clinical and pathology reports) that contain large 
amounts of patient data. Second, the use-case queries were executed on a small cohort 
of approximately 7000 patients, and only drug prescription data was available. It 
remains to be seen if the preliminary findings for the DDI pairs can be replicated in a 
larger cohort, and more importantly, using drug administration data. Finally, while 
one of the Linked Data principles is to make data publicly available and accessible, 
due to privacy and HIPPA constraints of identifiable patient data, the MCLSS RDF 
views remain private. Consequently, only appropriate personnel within Mayo’s 
firewall approved by Mayo’s Institutional Review Board participating in this study 
can access our application. 

5.3 Future Work 

In addition to addressing the limitations aforementioned, there are several activities 
that we plan to pursue in the future. Firstly, in this study, we studied only a handful of 
DDI pairs. Our immediate goal is to expand the DDI pair list that are of clinical 
significance and consider both drug prescription and administration data. Secondly, 
our experience in discussing and demoing the proof-of-concept to clinicians made it 
amply clear that we should focus on developing visual and interactive interfaces for 
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Table 2. Top 5 ICD-9-CM diagnosis (for the cohort in Figures 4 and 5) 

 
 
 

Drug interacting 
with Warfarin

ICD-9-CM 
diagnosis codes

Top 5 observed ICD-9-CM diagnosis

401.9 Unspecified essential hypertension

V58.61 Encounter for long-term (current) use of anticoagulants

250 Diabetes mellitus without mention of complication

272.4 Other and unspecified hyperlipidemia

414 Coronary atherosclerosis of nonautologous biological bypass graft

414 Coronary atherosclerosis of nonautologous biological bypass graft

401.9 Unspecified essential hypertension

250 Diabetes mellitus without mention of complication

272.4 Other and unspecified hyperlipidemia

414.01 Coronary atherosclerosis of native coronary artery

401.9 Unspecified essential hypertension
250 Diabetes mellitus without mention of complication
414 Coronary atherosclerosis of nonautologous biological bypass graft

272.4 Other and unspecified hyperlipidemia

714 Felty's syndrome

250 Diabetes mellitus without mention of complication

V58.61 Encounter for long-term (current) use of anticoagulants

V42.0 Kidney replaced by transplant

401.9 Unspecified essential hypertension

272.4 Other and unspecified hyperlipidemia

401.9 Unspecified essential hypertension

250 Diabetes mellitus without mention of complication

414 Coronary atherosclerosis of nonautologous biological bypass graft

272.4 Other and unspecified hyperlipidemia

714 Felty's syndrome

401.9 Unspecified essential hypertension
250.01 Type 1 diabetes mellitus
V58.61 Encounter for long-term (current) use of anticoagulants
427.31 Atrial fibrillation

272.4 Other and unspecified hyperlipidemia

250 Diabetes mellitus without mention of complication

401.9 Unspecified essential hypertension

272.4 Other and unspecified hyperlipidemia

V58.61 Encounter for long-term (current) use of anticoagulants

414 Coronary atherosclerosis of nonautologous biological bypass graft

401.9 Unspecified essential hypertension

V42.0 Kidney replaced by transplant

V58.61 Encounter for long-term (current) use of anticoagulants

250 Diabetes mellitus without mention of complication

V42.1 Heart replaced by transplant

401.9 Unspecified essential hypertension
V58.61 Encounter for long-term (current) use of anticoagulants
427.31 Atrial fibrillation
272.4 Other and unspecified hyperlipidemia

414 Coronary atherosclerosis of nonautologous biological bypass graft

Prednisone

Lovastatin

Triamcinolone

Acetaminophen

Gemfibrozil

Hydrocortisone

Ibuprofen

Clopidogrel

Doxycycline
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forming the SPARQL queries. To this end, we plan to explore visual SPARQL editing 
tools, such as SPARQLMotion [16]. Finally, as depicted in Figure 1, we plan to use 
the Linked Data API for creating our service layer to provide application developers a 
friendlier access to the data, for example, using JSON. 
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