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Abstract. Goal-directed action selection is the problem of what to do
next in order to progress towards goal achievement. This problem is
computationally more complex in case of joint action settings where two
or more agents coordinate their actions in space and time to bring about
a common goal: actions performed by one agent influence the action
possibilities of the other agents, and ultimately the goal achievement.
While humans apparently effortlessly engage in complex joint actions, a
number of questions remain to be solved to achieve similar performances
in artificial agents: How agents represent and understand actions being
performed by others? How this understanding influences the choice of
agent’s own future actions? How is the interaction process biased by
prior information about the task? What is the role of more abstract cues
such as others’ beliefs or intentions?

In the last few years, researchers in computational neuroscience have
begun investigating how control-theoretic models of individual motor
control can be extended to explain various complex social phenomena,
including action and intention understanding, imitation and joint action.
The two cornerstones of control-theoretic models of motor control are the
goal-directed nature of action and a widespread use of internal modeling.
Indeed, when the control-theoretic view is applied to the realm of social
interactions, it is assumed that inverse and forward internal models used
in individual action planning and control are re-enacted in simulation in
order to understand others’ actions and to infer their intentions. This
motor simulation view of social cognition has been adopted to explain a
number of advanced mindreading abilities such as action, intention, and
belief recognition, often in contrast with more classical cognitive theories
- derived from rationality principles and conceptual theories of others’
minds - that emphasize the dichotomy between action and perception.

Here we embrace the idea that implementing mindreading abilities is
a necessary step towards a more natural collaboration between humans
and robots in joint tasks. To efficiently collaborate, agents need to con-
tinuously estimate their teammates’ proximal goals and distal intentions
in order to choose what to do next. We present a probabilistic hierar-
chical architecture for joint action which takes inspiration from the idea
of motor simulation above. The architecture models the casual relations
between observables (e.g., observed movements) and their hidden causes
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(e.g., action goals, intentions and beliefs) at two deeply intertwined lev-
els: at the lowest level the same circuitry used to execute my own actions
is re-enacted in simulation to infer and predict (proximal) actions per-
formed by my interaction partner, while the highest level encodes more
abstract task representations which govern each agent’s observable be-
havior. Here we assume that the decision of what to do next can be taken
by knowing 1) what the current task is and 2) what my teammate is cur-
rently doing. While these could be inferred via a costly (and inaccurate)
process of inverting the generative model above, given the observed data,
we will show how our organization facilitates such an inferential process
by allowing agents to share a subset of hidden variables alleviating the
need of complex inferential processes, such as explicit task allocation, or
sophisticated communication strategies.

Keywords: joint action, motor simulation, shared representations, human-
robot collaboration.

1 Introduction

Consider two agents (being human or artificial) collaborating on a joint task (e.g.
building something together). How do they coordinate their actions without
previous agreements or conventions? How do they adapt their actions during
task execution? How do they achieve their goals? What are the computational
mechanisms behind social interactions and joint action?

Here we argue that collaborative tasks (and social interaction problems, in
general) require that interacting agents solve complex mindreading problems
such as action and intention understanding, in parallel with motion planning
and control. Indeed, recent research in social neuroscience has revealed that
understanding the intentions of co-actors and predicting their next actions are
fundamental for successful social interactions (cooperative or competitive) and
joint actions [1,2]. In joint task such as building something together or running
a dialogue, predictive mechanisms help the real-time coordination of one’s own
and the co-actor’s actions and contribute to the success of the joint goal [3,4].

In the last years, there has been an increasing interest in joint action in
the fields artificial intelligence and robotics (for a survey of related works see
[5,6,7,8]) with the goal to make human-robot (or human-machine) collaboration
increasingly more natural. To this aim, early researchers in AI have recognized
the necessity to explicitly address the role of abstract social cues, such as in-
tentions and beliefs, to efficiently handle teamwork problems [9]. Since then,
various approaches have been built by adapting tools from symbolic reasoning
[10], probabilistic decision processes [11], game theory [12] or by adopting a
holistic approach based on cognitive architectures [13].

However, action understanding and prediction are hard (and often under-
constrained) computational problems, and it is still unclear how humans solve
them in real time while at the same time planning their complementary (or
competitive) actions. It has been argued that action and intention recognition are
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facilitated in joint action (but also more in general in social set-ups) because co-
actors tend to automatically align (at multiple levels, of behavior and of cognitive
representations), imitate each other, and share representations; in turn, this
facilitates prediction, understanding, and ultimately coordination[14,15,16,17].

Here we present a computational (Bayesian) account for joint action, in which
two or more agents act together so to realize a common goal. Inspired by ideas
from computational neuroscience, our model describes joint action as a hierar-
chical phenomenon: (1) at the higher level, agents have to understand actions
executed by other agents and their associated goals, and select actions that are
complementary to those of the other agents or at least do not conflict with them;
(2) al the lower level, agents have to coordinate their actions in real time and this
requires a precise estimation of the timing and trajectories that is not necessary
at the high level. Our model postulates that (shared) cognitive variables, such
as beliefs and intentions, govern the activity of the motor system involved both
in executing own actions and perceiving and understanding that of others via a
motor simulation process. The following section provides a scientific background
of our approach.

1.1 Background

Recognizing what another agent is doing and why (i.e., its distal intention) is
extremely useful in social scenarios, both cooperative and competitive. Humans
(and other animals adapted to social scenarios) are equipped with mechanisms
for predicting and recognizing actions executed by others, inferring their un-
derlying intentions, and planning actions that are complementary to them. An
important constituent of the social mind of humans and monkeys is a neural
mechanism for motor resonance, or the mapping observed actions into one’s
own motor repertoire: the mirror system [14]. This mechanism is part of a wide
brain network that gives access to the cognitive variables (e.g., action goals and
prior intentions) of another individual and permits to reconstruct the generative
process that it uses to select the observed movements [16].

In this vein, it has been suggested that control-theoretic models of individual
motor control can be extended to explain complex phenomena in social cogni-
tion [18,19]. The two cornerstones of control-theoretic models of motor control
are the goal-directed nature of action, and the widespread use of internal mod-
eling [20]. Indeed, when the control-theoretic view is applied to the realm of
social interactions, the core scientific hypothesis is that these can be expressed
through the overt and covert activity of predictive (i.e. forward) and prescrip-
tive (i.e. inverse) internal models used in individual action planning and control
[21]. In other words, an observing or interacting agent puts itself in others’ shoes
and and elicits its own goal-directed representations in simulation to provide
an embodied explanation of others’ behavior. Apparently unrelated phenomena
such as motor control [22], affordance recognition [23], imitation learning [24],
action understanding [25], and joint action [26] - just to name a few - can effi-
ciently and parsimoniously be explained by the process of internal re-enactment
of one’s own motor apparatus: a forward model can be used as simulator of the
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consequences of an action, and when paired with an inverse model a degree of
discrepancy between what I observe and what I do (or just “imagine” of doing)
can be produced affording better understanding of their underlying goal [21,27].
These mechanisms of motor simulation could act in concert with other cognitive
processes such as those regulating social attention, as well as with more de-
manding and deliberate ones, such as those that provide a full “theory of mind”
[28].

Action understanding can be related to the estimation of the (most likely)
current action another agent is performing, while deeper forms of mindreading
can be associated to the inference of its intentions and beliefs. According to
motor theories of cognition, the same architecture used for action planning and
execution can be reused for understanding actions performed by others, and
their underlying intentions. In addition to these high-level problems, the low
level details of action specification, prediction and adaptation are solved on-line
once a motor primitive is selected. However, low-level processes can influence the
choice of cognitive variables, too. Indeed, the interplay between the two levels is
bidirectional: the temporal unfolding of high-level constructs biases the action
recognition process which, in turn, provides necessary information to monitor
the execution of the joint task itself.

From a computational viewpoint, our model of mindreading implements the
idea of competition between coupled inverse and forward models [27,21], but uses
approximate Bayesian inference for solving the problem. A different proposal is
that of [11], in which action understanding is realized through “inverse planning”
methods, and for this reason is more closely related to the idea of teleological
reasoning [29] than to the idea of motor simulation that we have put forward.
Our model of joint action is related to the probabilistic model of [30] in that
it includes a hierarchy of representations, but it also emphasizes the formation
of shared representations and their role in guiding inferential processes. Finally,
our analysis is related to other initiatives that investigated the neurocognitive
mechanisms that make joint action so easy [31] .

It emerges from our discussion that actions of an agent engaged in joint activi-
ties are governed by a continuous process of (joint) goal pursuing and adaptation
to (1) the environment with its contextual constraints, and (2) the physical and
interpersonal constraints offered by the actions of the co-actor and its abilities.
The interplay of deliberate processes, which act on longer time scales, and faster
processes of adaptation to the environment and the others, points to hierarchical
models of action organization, with motor elements that belong to multiple levels
of hierarchy (and give rise to processes that have different duration in time).

1.2 Are Shared Representations the Key for Successful Joint
Actions?

Even if we assume the aforementioned hierarchical organization of action, it is
currently unknown how the brain solves high- and low-level problems of joint
action in real-time, given that their complexity is high even in simple scenarios
[11].
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We propose that co-actors do not solve interaction problems in isolation, but
rather with the others (as well as with the environment): co-actors align their
cognitive variables (beliefs, intentions and actions) and form shared representa-
tions (SR). We argue that what is shared during an interaction are the same
representations for action (beliefs, intentions and actions) as used in individu-
alistic action selection, performance and monitoring. For this model to work, it
is not necessary that co-actors maintain separated representations for their own
and another’s actions, additional “we-representations”, or meta-representations
of what is shared. Rather, we call “shared” the subset of action representations
that become aligned during interaction, being the co-actors aware of it, or not.

A first advantage of SRs is that the same cognitive variables can be used for
action execution and prediction of another’s actions (as well as for monitoring of
the joint goal). Second, by sharing representations, an agent can help the other
to understand and predict it’s own actions, and to select the next action to take;
although this would not be optimal from an individualistic viewpoint, it can
become so if the two agents are pursuing a joint action1.

From a computational viewpoint, shared representations help solving interac-
tion problems in that they afford an interactive strategy for coordination that
makes action selection and understanding easier. Put in simple terms, each agent
involved in the joint action can:

1. Use motor simulation to infer what the other agent is doing (i.e., its actions)
and why (up in the hierarchy of actions and intentions);

2. Infer which belief (and thus the associated sequence of intentions and actions)
is the most likely one given the observed action, and ‘align’ it’s own belief;

3. Predict what is likely to happen next by using it’s own (chain of) inten-
tion and action representations, and in doing so, recognize affordances made
possible (now or in the future) by the ongoing actions of the other agent;

4. Select complimentary (or successive) action by simply inferring what comes
next in one’s own intention and action representations (e.g., if I recognize
that you are executing a certain action, I can start executing the next one
in the sequence leading to the common goal);

5. While executing, lower level details are solved by other mechanisms of coor-
dination and synchronization of action (e.g automatic entrainment, feedback,
and motor simulation); in turn, as these mechanisms influence the choice of
motor primitives, they have a bottom-up effect on the choice of cognitive
variables;

6. When the confidence on the alignment of the joint goal is high - or when the
details regarding the execution of the other agent are not essential - parts of
this process can be skipped; for instance, in many circumstances co-actors
can simply monitor the joint goal and use motor simulation only if an error
is detected.

1 An additional benefit of using shared representations is that, if each agent is confident
that the other will facilitate it, for instance by signaling important events at the right
time, then they can skip many costly mindreading and predictive processes.
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We briefly mention that shared representations can be formed automatically or
intentionally [32]. While in this paper we study automatic formation of shared
representations, it is worth mentioning the role of intentional strategies that
aim at influencing another’s cognitive variables so as to align them to one’s own.
For instance, explicit communicative strategies such as the use of language, ges-
ture, and deictics have the goal of forming or modifying shared representations.
However, in [ ?? ] we focus on another - less studied - form of sensorimotor
communication called signaling. Pushing a jointly-lifted table in a specific di-
rection, over-articulating in noisy environment, and over-emphasizing vowels in
child-directed speech are all examples of signaling. In all these examples, humans
intentionally modify their action kinematics to make their goals easier to recog-
nize. Thus, signaling acts in concert with automatic mechanisms of resonance,
prediction, and imitation, especially when the context makes actions and inten-
tions ambiguous and difficult to read. An in-depth discussion of how signaling
helps joint interactions is out of the scope of the present paper (an interested
reader can consult [26]).

Irrespective of how a shared representations are established, the common
ground can be used as a coordination tool between two or more agents, like
a blackboard in which two agents can read and write, which facilitates predic-
tion of another’s behavior by drastically reducing uncertainty, and implicitly
favors the unfolding of interactive sequences of behaviors in the two agents. It
emerges from our analysis that the use of shared representations changes the
nature of the (high level) interaction problem from the understanding and coor-
dination with another’s actions to the active guidance of its beliefs, expectations
and decisions. An agent can solve the problems of “what should I do next?” and
“what will you do next?” by first inferring “what is the joint task?” and then
using this information to solve the former problems. The next section provides
a computational account of this process.

2 A Probabilistic Model of Joint Action

Social interaction in real world scenarios is an inherently stochastic process:
perception and execution of motor acts are corrupted by noise and subject to
failure, while planning of one’s own acts is subordinated to the recognition of
others’ intentions and beliefs which are not directly observable. Furthermore,
processes involved are tightly coupled (e.g. recognizing your goal-directed actions
helps me updating my belief of the shared task being executed and predicting
and anticipating your next steps).

We adopt the formalism of probabilistic graphical models embedding the idea
of two levels of processing: at the lowest level the same circuitry used to execute
my own actions are used to infer and predict the actions performed by my
interaction partner via motor simulation, while at the highest level the two agents
share action representations relative to the goals and tasks to be performed. The
prior assumptions and beliefs about the joint task bias the action recognition
process, while the specific motor acts confirms or disconfirms our current beliefs.
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It is worth noting that two processes operate on different time scales: while the
lowest level operates in real-time, providing an updated recognition of others’
actions, the highest level is involved with less frequent transitions and it depends
on the successful outcome of the lower levels.

In the next sections we will present our computational model focusing sepa-
rately on the high- and low-level processes represented as Dynamic Bayesian Net-
works (DBNs). DBNs are Bayesian networks representing temporal probability
models in which directed arrows depict assumptions of conditional (in)dependence
between variables [33]. The general DBN model is defined by a set of N random
variables Y = {Y (1), Y (2), ..., Y (N)} and a pair {BNp, BN t} where BNp repre-
sents the prior P (Y1) and BN t is a two-slice temporal Bayesian network which
defines

P (Yt|Yt−1) =
N∏

i=1

P (Y i
t |Pa(Y i

t )) (1)

where Y i
t is the i-th node at time t and Pa(Y i

t ) are the parents of Y i
t in the graph

(being in the same or previous time-slice). Usually, the variables are divided into
hidden state variables, X , and observations, Z2. From the computational point
of view, the task of an inference process is to estimate the posterior joint distri-
bution of hidden state variables at time t, given the set of observed variables so
far3. By marginalizing the posterior distribution it is possible to answer ques-
tions about particular variables in the network (e.g. what is the probability that
a particular motor act has been executed at time t?). Next two sections provide
an overview of our architecture for joint action (for a detailed description of
various processes, and for an analysis of the experimental results, please consult
[25,26].

2.1 Low-Level Model

The low-level model implements a motor simulation process that guides percep-
tual processing and provides action recognition capabilities. In motor simulation,
it is the reenactement of one’s own internal models, both inverse and forward,
used for interaction that provides an understanding of what others are doing.

The entire process of action understanding can be cast into a Dynamic Bayesian
Network (DBN) shown in Figure 1(a). As usual, shaded nodes represent observed
variables while others are hidden and need to be estimated through the process
of probabilistic inference. The model embeds the idea of motor simulation by in-
cluding a probabilistic representation of forward and inverse models activation.
In our representation, the process of action understanding is influenced by the
following factors expressed as stochastic variables in the model (fig. 1b):

1. MP : index of the agent’s own repertoire of goal-directed motor primitives;
each motor primitive directly influences the activation of related forward and
inverse models;

2 By convention the observed variables are represented as shaded nodes in the network.
3 This process is also known as filtering.
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2. u: continuous control variable (e.g. forces, velocities, ...);
3. x: state (e.g. the position of the demonstrator’s end-effector in an allocentric

reference frame);
4. z: observation, a perceptual measurement related to the state (e.g. the per-

ceived position of the demonstrator’s end-effector on the retina).

Figure 1c shows the conditional distributions which arise in the model. The
semantics of the stochastic variables, and the concrete instatiation of the con-
ditional distributions depends on the experimental setting. Suppose we can ex-
tract the noisy measurements of the true state of the demonstrator, zt, through
some predefined perceptual process described probabilistically by the observa-
tion model p(zt|xt). Motor primitive index variable, MP , is associated with a
paired inverse-forward model, and it implicitly encodes the demonstrator’s goal
(in terms of the perceiver’s one). The initial choice of which internal models to
activate is biased by the prior probabilities (here set by the high-level network).
Each paired internal model MPt is responsible of both generating a motor con-
trol ut, given the (hidden) state xt−1 (inverse model), and of predicting the
next (hidden) state xt, given the motor control ut and the previous state xt−1

(forward model).
Given that in our model each goal-directed action is encoded as a coupled for-

ward/inverse model, to predict and understand the actions performed by others
it is sufficient to compute the posterior distribution over possible forward-inverse
action pairs given all the observations so far, p(MPt|z1:t). This distribution can
be obtained by marginalizing the full conditional posterior (i.e. belief) over all
hidden variables in the model. Let us denote with Xt the set of hidden variables
at time t, and with Zt the set of observed variables at the same time step, the
full conditional posterior can be obtained by the well-known recursive Bayesian
inference schema [33]:

p(Xt|Z1:t) = ηp(Zt|Xt) ·
∫

p(Xt|Xt−1) · p(Xt−1|Z1:t−1)dXt−1 (2)

where p(Xt|Xt−1) and p(Zt|Xt) are called prediction and observation models,
respectively.

However, in order to compute the most likely observed action, the recursive
propagation of the posterior density p(Xt|Z1:t) in equation 2 is only a theoret-
ical possibility, and in general it cannot be determined analytically. By casting
the problem of action prediction and understanding in a Bayesian framework
permits to adopt efficient techniques for approximate probabilistic inference un-
der the constraint of limited resources. We adopt particle filters, a Monte Carlo
technique for sequential simulation [34]. The key idea of particle filters is to rep-
resent the required posterior density function by a set of random samples with
associated weights and to compute probabilistic estimates of interested quan-
tities based on these samples and weights. Each random sample is therefore a
weighted hypothesis of an internal model activation in the action prediction task,
where the weight of each particle is computed according to the divergence be-
tween the predicted state of the internal model the particle belongs to and the
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observed state; intuitively, severe discrepancies between predictions produced by
coupled internal models and observed percepts will lead to assigning low weights
to internal models less involved in explaining the current action observation. Our
approach permits to solve the problem of intention recognition in real-time under
the assumption that what I am observing can be adequately explained through
my own internal models. The particle filter schema allows to use a multitude of
internal models, for various skills and contexts, and to focus only on those able
to accurately explain the current observations [25].

(a) Low-level graphical
model

MPt goal-directed motor primitive discrete ∈ {1, . . . , NMP }
ut control continuous
xt state continuous
zt observation continuous

(b) Stochastic variables

p(ut|xt−1,MPt) inverse model
p(xt|xt−1, ut,MPt) forward model
p(zt|xt) observation model (prediction error)

(c) Probability distributions

Fig. 1. Graphical model (DBN) for action understanding based on coupled forward-
inverse models; Adapted from [25]

2.2 High-Level Model

During observation of actions executed by others, motor simulation provides
information that can be used to filter perceptual processing by allocating more
resources (i.e., more particles in the particle filtering algorithm) to the most
likely observations. This process achieves two objectives at the same time: first,
it helps perceptual processing (like in Kalman filtering), and second, it permits
to recognize the observed actions at the goal level by mapping them into the
perceiver’s repertoire of internal models.

However, in order to initialize the low-level portion of the network, we need to
set the prior probability distribution over the goal-directed internal model pairs.
In a joint task this distribution should be estimated by a higher-order process
connected with the more abstract task representation. Some motor acts, viewed
as paired forward-inverse models, are more probable at a point in time during
the execution of a particular joint task. Therefore, the high-level portion of our
computational model should bias the action recognition process, while at the
same time providing a parsimonious way to encode the shared representations.
Additionally, the interplay between the low- and high-level portions of our net-
work shall not be unidirectional: the recognition of others’ motor acts helps also
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monitoring the joint act itself by revising hypotheses on the distal goal of the
task in a similar vein as done in the low-level network. Here, recognized motor
primitives act as observations for an abstract probabilistic representation of joint
tasks and finess agents’ current belief. In addition, the high-level model provides
a parsimonious way to encode shared representations as explained below.

In our computational model, a joint action is influenced by three main fac-
tors: intentions, contextual information (representing the observable state of the
world and its affordances) and possible actions each actor can perform given
the context and intentions. The temporal evolution of these factors can be rep-
resented once again by using the formalism of probabilistic graphical models
(DBN). However, each joint task requires a different motor plan, and its repre-
sentation should account for possible failures in the execution. For this reason,
the high level portion of our computational model includes a battery of DBNs,
each one representing a possible evolution of the joint task over time (figure
2(a)). A full DBN corresponds to a belief, which intuitively encodes knowledge
of “what is the task we are performing?”. The stochastic variables and conditional
distributions of the high-level DBN are described in figure 2(b-c).

As an example, suppose two agents (e.g. a human and a robot) have to jointly
build one out of several types of towers (λ1, λ2, . . .λn) given a set of available
red and blue blocks. Each high-level network (figure 2(a)) represents a particular
type of tower and can be seen as implicitly encoding the beliefs each actor has
regarding the execution of the task. For instance, the tower can be made of
blocks having the same color (e.g. red or blue), or of two interleaved colors
(e.g. red-blue-red-blue-. . . ). The prior probability, p(λ) reflects the knowledge of
which tower is more probable. The variable It models the intention to pick and
place a block of a particular color onto the tower, while the contextual variable
Ct could model the availability of red and blue blocks. The action variable At

represents the action of manipulating a particular object in the world, and it
directly influences the activation of motor primitives (MPt) used to efficiently
execute the action. Motor primitives represent the observed variable and they are
estimated by the low-level portion of our network at every step (see 2.1). Once
an action is executed, the network models the transition to the next intention
and next context through the corresponding transition probabilities.

We assume that the same set of models is shared across the two joint ac-
tors. However, their probabilistic parameters (prior, transition and observation
probabilities) can be different according to individual actor’s knowledge and ex-
pertise. The goal of the actors is to align their beliefs. From the probabilistic
standpoint the machinery involved differs if the actor has to perform an action
or if it has to recognize the action performed by another actor and update its
belief. However, both computational problems have at its core the process of
estimating the likelihood of each model given the observations.

If we denote the prior probability of a model as P (λ), the goal is to compute
the probability of the model given the set of observations so far (e.g. the likeli-
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(a) High-level graphical model

It intention discrete ∈ {1, . . . , NI}
Ct context discrete ∈ {1, . . . , NC}
At goal-directed action discrete ∈ {1, . . . , NA}
MPt goal-directed motor primitive discrete ∈ {0, . . . , NMP }
λ belief discrete ∈ {1, . . . , Nλ}

(b) Stochastic variables

p(It|It−1) intentional dynamics
p(Ct|Ct−1, At−1) contextual dynamics
p(At|It) action induction
p(Ut|At) utility function
p(MPt|At) motor primitive induction

(c) Probability distributions

Fig. 2. High-level battery of Dynamic Bayesian Networks (DBN) for joint-action. Every
network in the battery is a probabilistic representation of the shared task. Adapted from
[26].

hood): P (λi|MP1:t)
4. The most plausible model is the one that maximizes the

posterior probability of the model:

argmaxλiP (λi|MP1:t)P (λi), ∀i ∈ {1, . . . , Nλ} (3)

The likelihood is used in both action recognition and selection. In action recogni-
tion, it is used to initialize the process of motor simulation; in action selection, it
is used to choose the best action to perform so that it does not lower the current
likelihood. The presence of shared representations permits to describe the pro-
cess in an unconventional way. Specifically, both agents use the same high-level
network, in which observed and executed intentions and actions are treated on a
pair, independent on who executes them. Note that the same formulation can be
used to model tasks in which two agents act synchronously, such as for instance
when they lift together a block, and turn-based tasks, in which one agent acts
at times t, t+ 2, t+ 4, . . . and another agent acts at times t+ 1, t+ 3, t+ 5, . . ..

The first part of the inference is the same for action observation and action
selection: at each turn agents compute the likelihood of all the available models
given all the observations so far (rather recognized or performed motor prim-
itives, MP ), and the belief with the highest likelihood is treated as the goal
state. Action observation is then implemented as a filtering process; first, the
intention It+1 belonging to the current belief is predicted, which is then used to
bias the recognition of MP by accordingly setting the prior probabilities needed
to trigger the low-level network activation. For instance, if the system believes
that the task is to build a tower made of six red blocks, it predicts that the
next intention (It+1) will be to place a red block, and then it uses this infor-
mation to bias the perception of actions executed by the other agent (i.e., the
estimation of MPt+1). In turn, the lower level affects high-level goal selection,
as prediction errors drive belief revision (this is typical of hierarchical generative

4 Likelihood computation in this network can be performed exactly by the forward-
backward algorithm or approximately by the abovementioned particle filters.
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models [35,36]): the recognized action is treated as an observation for the high-
level network, and it is used by the observing agent to revise its current belief
and eventually to align its shared representation to that of the other actor by
computing the current likelihood (cf. equation 3).

Action selection is different from action observation in that MP cannot be
observed (in fact, it has to be produced). Still, the process is conceptually the
same: first, the intention It+1 belonging to the belief with the highest likelihood
is predicted; then, the most probable MP is selected for execution. For instance,
if the system believes that the task is to build a tower made of six red blocks, it
first predicts the most probable next intention (It+1) compatible with this belief
(i.e., the intention to place a red block), then it generates an associated action
(i.e., taking a specific red block), and finally an associated MP (i.e., the motor
process for grasping the selected block).

3 Conclusions

Joint actions between humans and artificial agents are notoriously difficult to
implement and the issue of what kind of cognitive processing is required in co-
operation, coordination, and joint action is still debated. We postulate that joint
actions (and social interactions in general) are heavily guided by abstract cog-
nitive variables, such as goals, intentions and beliefs, and that the interaction
itself is facilitated if interacting agents could have access to such variables. We
present a computational account that allows agents to automatically align their
internal representations (i.e., inferring “what task are we pursuing?” and choos-
ing the hypothesis with higher likelihood) and then using this information in a
generative scheme to both (i) decide what to do next, and (ii) predict what the
other agent will do next. To cope with uncertainty, our model is developed as
a two-level dynamic Bayesian network, where the lowest level implements the
process of motor simulation to understand and anticipate other agent’s (prox-
imal) action intentions, while the highest level provides an abstract encoding
of the task and the (distal) goals. The two levels are deeply intertwined: the
temporal unfolding of high-level constructs biases the action recognition process
which, in turn, provides necessary information to monitor the execution of the
joint task itself. In a nutshell, our model exports the ideas from individual motor
planning, control and monitoring to the realm of social interactions, by adopting
the the motor view of social cognition augmented with more abstract cognitive
constructs that guide the interaction.

Since any observable behavior can generally be explained by many under-
lying intentions and beliefs, in order to disambiguate them it is necessary to
adopt costly inferential processes processes. Part of this cost can be alleviated
by forming shared representations (SR) and using them as a coordination tool.
Here we do not investigate the origin of shared representations; we see SR as a
blackboard in which two agents can read and write and which facilitates predic-
tion of another’s behavior by drastically reducing the uncertainty of mindreading
inferential processes.
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