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Abstract. A familiar problem in neo-Riemannian theory is that the
P , L, and R operations defined as contextual inversions on pitch-class
segments do not produce parsimonious voice leading. We incorporate
permutations into T/I–PLR duality to resolve this issue and simultane-
ously broaden the applicability of this duality. More precisely, we con-
struct the dual group to the permutation group acting on n-tuples with
distinct entries, and prove that the dual group to permutations adjoined
with a group G of invertible affine maps Z12 → Z12 is the internal direct
product of the dual to permutations and the dual to G. Musical exam-
ples include Liszt, R. W. Venezia, S. 201 and Schoenberg, String Quartet
Number 1, Opus 7. We also prove that the Fiore–Noll construction of
the dual group in the finite case works, and clarify the relationship of
permutations with the RICH transformation.

Keywords: dual group, duality, Lewin, neo-Riemannian group, PLR,
permutation, RICH, retrograde inversion enchaining.

1 Introduction: Neo-Riemannian Groups and Voice
Leading Parsimony

The motivation for this paper was a working session of the three authors on
the article [1] back in September 2011. While we were discussing the task of
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properly defining neo-Riemannian operations for triadic pitch-class segments,
i.e. for triads with a concrete ordering of the three voices, we realized that there
are in fact several alternatives, all of which are music-theoretically attractive.

(i) The mathematically straightforward definition presupposes that the classi-
cal neo-Riemannian operations are already defined for “Oettingen/
Riemann”-root position forms in accordance with the classical dualistic
voice leading model. By conjugation with voice permutations one may then
extend the known definitions to all triadic pitch-class segments. In this per-
spective the transformations are applied with respect to the characteristic
tone roles within triads, regardless of their location in the voices.

(ii) A prominent competitor of the dualistic voice leading model is motivated
by the parsimonious voice-leadings between P , L, and R-related triads.
One may alternatively define these three transformations on ordered triads
simply through the condition that they literally mimic the parsimonious
voice leading. This definition is compliant with conjugation by voice per-
mutations, and therefore it is closely related to the definition (i). In fact
the definitions (i) and (ii) differ from each other by voice permutations.

(iii) A conceptual alternative are the contextual inversions, where two voices
are exchanged and where the third voice is mirrored at the center between
the two others. The three contextual inversions are always individually
compatible with the dualist neo-Riemannian transformations P , L, and R
on the underlying pitch class sets, but their roles are mixed up among the
various orderings of the three voices. In this perspective the transformations
are applied to the voices, regardless of the distribution of the tones of the
triad over the voices

(iv) Also with respect to definition (iii) it may be attractive to concatenate it
with particular voice permutations. For example, an adaption of Lewin’s
RI-chains from the transformational study of 12-tone series to that of tri-
ads, offers an attractive analytical potential, see [1].

Apart from the desire to balance these alternatives with respect to their musical
interpretation, there is also an immediate theoretical challenge: Is it possible
lift to the duality between the T/I and S/W groups to suitable groups acting
on triadic pitch-class segments? Robert Peck’s investigation [2] into generalized
commuting groups lays a good basis for such a project. The main focus of the
present paper is a combination of the cases (i) and (ii) in terms of a simply
transitive group action, where the Lewinian duality still holds. Section 4 briefly
demonstrates that the definitions in (iii) and (iv) lead to a quite different situa-
tion. The RICH transform is of order 24 and has powers with fixed points. This
opens an interesting working domain with cross connections to other investiga-
tions, such as the joint paper [3] by Julian Hook and Jack Douthett.

With the combination of (i) and (ii) we wish to touch a sore spot at the very
heart of neo-Riemannian theory. It concerns the remarkable solidarity between
voice-leading parsimony on the one hand and triadic transformations on the
other. How do the two aspects fit together, precisely? The study of voice leading
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requires the localization of chord tones within an ensemble of voices. The study of
triadic transformations, and in particular the investigation of the duality between
the T/I- and PLR-groups, seems either to require an abstraction of the triads
from their concrete construction from tones or it leads to a dualistic voice leading
behavior, which is in conflict with the principle of voice-leading parsimony (see
Fig. 1).

Fig. 1. Two “proto-transformational” networks representing different voice leadings
for a hexatonic cycle (left: parsimonious voice leading, right: dualistic voice leading)

In the light of the impact of dialectics upon the development of music the-
oretical ideas in the writings of Moritz Hauptmann and Hugo Riemann it is
remarkable that Nora Engebretsen portrays in [4] a main line of conceptual de-
velopment in the second half of the 19th century within the garb of a dialectical
triad:

(i) Hauptmann’s focus on common-tone retention in (diatonic) triadic progres-
sions (Thesis)

(ii) Von Oettingen’s focus on the dualism between major and minor triads
(Antithesis)

(iii) Riemann’s attempts to integrate both view points in a chromatic context
(Synthesis)

Despite of its historical attractiveness this dialectical metaphor remains eu-
phemistic, until a successful neo-Riemannian synthesis of voice leading and
Lewinian transformational theory has been achieved. The present paper takes
a step in this direction and, in particular, attributes precise transformational
meanings to the arrow labels in the networks of Fig. 1.

2 Construction of the Dual Group in the Finite Case

In preparation for our treatment of permutations in neo-Riemannian groups, we
briefly recall the well-known duality between the T/I-group and PLR-group,
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and present a new proof of the Fiore–Noll construction of the dual group in the
finite case. The basic objects upon which the T/I-group and PLR-group act are
pitch-class segments with three constituents. Recall that a pitch-class segment is
an ordered subset of Z12, or more generally Zm. We use parentheses1 to denote a
pitch-class segment as an n-tuple (x1, . . . , xn). The sequential order of the pitch
classes may, for example, relate to the temporal order of notes in a score, or
to the distribution of pitches in different voices in a certain registral order. In
connection with recent studies to voice leading, such as [5], one may wish to
include voice permutations into the investigation of contextual transformations
in non-trivial ways, as we do in Section 3.

2.1 Lewinian Duality between the T/I-Group and PLR-Group

The T/I-group consists of the 24 bijections Tj, Ij : Z12 → Z12 with Tj(k) = k+j
and Ij(k) = −k + j, where j ∈ Z12. Via its componentwise action on 3-tuples,
this dihedral group acts simply transitively on the set S of all the transposed and
inverted forms of the root position C-major 3-tuple (0, 4, 7). Note that the minor
triads in S are in Oettingen/Riemann root position, e.g., a-minor is (4, 0, 9). Like
any group action, this action corresponds to a homomorphism from the group
to the symmetric group on the set upon which it acts, namely a homomorphism
λ : T/I → Sym(S). The symmetric group on S, denoted Sym(S), consists of
all bijections S → S, while the group homomorphism λ : T/I → Sym(S) is
g �→ (s �→ gs). Since the action is simply transitive, the homomorphism λ is an
embedding (=injective group homomorphism), and we consider the T/I-group
as a subgroup of Sym(S) via this embedding λ.

The other key character in this by now classical story is the neo-Riemannian
PLR-group, which is the subgroup of Sym(S) generated by the bijections
P,L,R : S → S. These transformations, respectively called parallel, leading-
tone exchange, and relative, are given on major chords in root position and
minor chords in open second inversion by2

P (y1, y2, y3) := Iy1+y3(y1, y2, y3) = (y3,−y2 + y1 + y3, y1)

L(y1, y2, y3) := Iy2+y3(y1, y2, y3) = (−y1 + y2 + y3, y3, y2)

R(y1, y2, y3) := Iy1+y2(y1, y2, y3) = (y2, y1,−y3 + y1 + y2).

(1)

For instance,

P (0, 4, 7) = (7, 3, 0), L(0, 4, 7) = (11, 7, 4), R(0, 4, 7) = (4, 0, 9)

and

P (7, 3, 0) = (0, 4, 7), L(11, 7, 4) = (0, 4, 7), R(4, 0, 9) = (0, 4, 7).

1 We do not use the traditional musical notation 〈x1, . . . , xn〉 for pitch-class segments
because it clashes with the mathematical notation for the subgroup generated by
x1, . . . , xn, which we will also need on occasion.

2 Our usage of ordered n-tuples allows these root-free, mathematical formulations of
musical operations. See also [6, Footnote 20].
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These operations are sometimes called contextual inversions because the inver-
sion in the definition depends on the input.3 Note that input and output always
have two pitch classes in common, though their positions are reversed. In Exam-
ple 3.4, we will see how to use permutations to define variants P ′, L′, R′ : S′ → S′

which retain the positions of the common tones, and generate a dihedral group
of order 24 we call the Cohn group. We will also see in Section 3 how permuta-
tions allow us to mathematically extend P , L, and R to triads in first inversion
or second inversion. Note that the right-hand formulas in (1) correspond differ-
ently to P , L, and R when the input chords are not in Oettingen/Riemann root
position. For instance on a first inversion C-major chord, the first right-hand
formula yields R rather than P , namely I4+0(4, 7, 0) = (0, 9, 4) is a permuted
a-minor chord.

The main properties of the PLR-group were observed by David Lewin: it acts
simply transitively on S, and it consists precisely of those elements of Sym(S)
which commute with the T/I-group. For instance RT7(0, 4, 7) = (11, 7, 4) =
T7R(0, 4, 7).

Definition 2.1 (Dual Groups in the Sense of Lewin, see page 253 of
[8]). Let Sym(S) be the symmetric group on the set S. Two subgroups G and
H of the symmetric group Sym(S) are dual in the sense of Lewin if their natural
actions on S are simply transitive and each is the centralizer of the other, that
is,

CSym(S)(G) = H and CSym(S)(H) = G.

For an exposition of T/I–PLR duality, see Crans–Fiore–Satyendra [9], and for its
extension to length n pitch-class segments in Zm satisfying a tritone condition,
see Fiore–Satyendra [6]. Childs and Gollin both developed the relevant dihedral
groups in the special case of the pitch-class segment X = (0, 4, 7, 10), i.e., for
the set class of dominant seventh chords and half-diminished seventh chords (see
[10] and [11]).

2.2 Construction of the Dual Group in the Finite Case After
Fiore–Noll [12]

The dual group for a simply transitive action of a finite group always exists. This
was pointed out in [12], though not proved there, so we present a proof now. Let
S be a general finite set, as opposed to the specific set of pitch-class segments
in Section 2.1.

Proposition 2.2 (Construction 2.3 of Fiore–Noll [12], Finite Case).
Suppose G is a finite group which acts simply transitively on a finite set S.
Fix an element s0 ∈ S and consider the two embeddings

λ : G �� Sym(S)

g � ��
(
s �→ gs

) ρ : G �� Sym(S)

g � ��
(
hs0 �→ hg−1s0

)
.

3 For an approach to contextual inversions in terms of indexing functions and a choice
of canonical representative, see Kochavi [7].
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Then the images λ(G) and ρ(G) are dual groups in Sym(S). The injection ρ
depends on the choice of s0, but the image ρ(G) does not.

Proof. If j, k ∈ G, then λ(j) and ρ(k) commute because

λ(j)ρ(k)(hs0) = j(hk−1)s0 = (jh)k−1s0 = ρ(k)λ(j)(hs0)

for any h ∈ G. Simple transitivity of both λ(G) and ρ(G) is fairly clear. Thus,
so far we have ρ(G) ⊆ CSym(S)

(
λ(G)

)
and |ρ(G)| = |G| = |S|. Recall from the

Orbit-Stabilizer Theorem that a finite group acting on a finite set acts simply
if and only if it acts transitively, and in this case the cardinality of the group is
the same as the cardinality of the set.

We next claim that the centralizer CSym(S)(λ(G)) acts simply on S. If c, c′ ∈
CSym(S)

(
λ(G)

)
and cs1 = c′s1 for some single s1 ∈ S, then chs1 = c′hs1 for all

h ∈ G, which means c and c′ are equal as functions on S. Thus this centralizer
acts simply and |CSym(S)

(
λ(G)

)| = |S|, and consequently the inclusion ρ(G) ⊆
CSym(S)

(
λ(G)

)
from above is actually an equality. A similar counting argument

shows that λ(G) = CSym(S)

(
ρ(G)

)
. ��

We will use this construction several times in the following sections to find
the dual group for the symmetric group Σn acting on n-tuples and to include
permutations into T/I–PLR duality.

Two immediate corollaries to Proposition 2.2 are as follows.

Corollary 2.3. If S is a finite set, and a subgroup G of Sym(S) acts simply
transitively on S, then the centralizer of G in Sym(S) also acts simply transi-
tively.

Corollary 2.4. If S is a finite set, and a subgroup G of Sym(S) acts simply
transitively on S, then the centralizer of G is isomorphic to G.

In connection with Corollary 2.4, we remark that Peck [2] has studied the struc-
ture of centralizers in non-simply transitive situations, with numerous examples
in music theory.

3 Permutation Actions

We now turn to the main theorem of this paper, Theorem 3.2. Let Σ3 denote the
symmetric group on {1, 2, 3}. Its coordinate-permuting action on 3-tuples in Z12

commutes with transposition and inversion. When we consider all transpositions
and inversions of all reorderings of (0, 4, 7), the T/I-group and symmetric group
Σ3 form an internal direct product denoted Σ3(T/I). Recall that a groupH is an
internal direct product of subgroups K and L if K and L commute, K∩L = {e},
and every element of H can be written as k� for some k ∈ K and � ∈ L. As a
consequence, in such a direct product, each decomposition h = k� with k ∈ K
and � ∈ L is unique. See [13, Chapter 2, Section 9] for background and an
equivalent definition. Another reference is [14].
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Theorem 3.2 essentially says in the case X = (0, 4, 7) that the dual group to
Σ3(T/I) is the internal direct product of the dual group to Σ3 and the PLR-
group, where P , L, and R are defined on a reordering σ(0, 4, 7) by σPσ−1,
σLσ−1, and σRσ−1. Theorem 3.2 is formulated more generally for n-tuples and
any group of invertible affine maps instead of just for 3-tuples and T/I. The
method for constructing dual groups is always Proposition 2.2. For the case
n = 3, we indicate in Section 3.2 specific generators of the group ρ(Σ3), which
is the dual group to the standard permutation action recalled in Section 3.1.

Of course, everything in this section works just as well for general Zm beyond
Z12, but we work with Z12 for concreteness.

Permutations have been considered in music theory before, for instance by
Mazzola [15, I.2].

3.1 The Standard Permutation Action on n-Tuples and Its Dual
Group

Let Σn denote the symmetric group on {1, . . . , n}. Consider the standard left
action of the symmetric group Σn on all n-tuples with Z12 entries,

Σn × (Z12)
n �� (Z12)

n

defined4 by σ(y1, . . . , yn) :=
(
yσ−1(1), . . . , yσ−1(n)

)
. Let X = (x1, . . . , xn) denote

a particular pitch-class segment with n distinct pitch classes, and consider its
orbit

ΣnX =
{(

xσ−1(1), . . . , xσ−1(n)

) |σ ∈ Σn

}
.

This orbit ΣnX consists of all the reorderings of X , or all the permutations of
X . The restricted left action on the orbit

Σn × (ΣnX) �� ΣnX

is clearly simply transitive, as the components of X are distinct. Consequently,
we have an associated embedding

λ : Σn
�� Sym(ΣnX) ,

the image of which we call λ(Σn).
As in Construction 2.3 of [12], recalled in Section 2.2 above, we now construct

the dual group ρ(Σn) for λ(Σn) in the symmetric group Sym(ΣnX). The fixed
element s0 is X . By simple transitivity, any element of ΣnX can be written as
νX for some unique ν ∈ Σn. On the set of X-permutations ΣnX , we define in
terms of the standard left action a second left action

Σn × (ΣnX)
· �� ΣnX

4 The inverses must be included because the first inclination to define σ(y1, . . . , yn) =(
yσ(1), . . . , yσ(n)

)
is not a left action, since we would have (σσ′)Y = σ′(σY ).
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by σ ·(νX) := (νσ−1)X . One can quickly check from the axioms for the standard
left action that

(στ) · (νX) = σ · (τ · (νX))

e · (νX) = νX

and that this second left action is simply transitive. This second left action gives
us a second embedding

ρ : Σn
�� Sym (ΣnX) ,

the image of which we call ρ(Σn). The groups λ(Σn) and ρ(Σn) commute because

σ(ντ−1)X = (σν)τ−1X

for all σ, ν, τ ∈ Σn. We have sketched a proof of the following proposition (and
by example also some details of Proposition 2.2).

Proposition 3.1. The order n! groups λ(Σn) and ρ(Σn) are dual subgroups of
Sym(ΣnX), which has order (n!)! .

3.2 The Standard Permutation Action and Its Dual Group in the
Case n = 3

The standard permutation action λ(Σn) and its dual group ρ(Σn) in the case n =
3 are of particular interest for our present paper. We now work out explicitly this
special case of Section 3.1. Let X = (x1, x2, x3) denote the pitch-class segment
of a trichord. The symmetric group on 3 letters in cycle notation5 is

Σ3 = {id, (123), (132), (23), (13), (12)}.

We obtain

Σ3X =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X = (x1, x2, x3)
(123)X = (x3, x1, x2)
(132)X = (x2, x3, x1)
(23)X = (x1, x3, x2)
(13)X = (x3, x2, x1)
(12)X = (x2, x1, x3)

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

5 We follow the standard cycle notation without commas. For example, the cycle (123)
is the map 1 �→ 2 �→ 3 �→ 1. Cycles are composed as ordinary functions are. For
example, (123)(23) = (12) because we do (23) first and then (123).
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As generators for the actions λ(Σ3) and ρ(Σ3) we may choose λ(123), λ(23) and
ρ(123), ρ(23), respectively, which have the following explicit form.

λ(123) :

X �→ (123)X
(123)X �→ (132)X
(132)X �→ X
(23)X �→ (12)X
(13)X �→ (23)X
(12)X �→ (13)X

, ρ(123) :

X �→ (132)X
(123)X �→ X
(132)X �→ (123)X
(23)X �→ (12)X
(13)X �→ (23)X
(12)X �→ (13)X

λ(23) :

X �→ (23)X
(123)X �→ (13)X
(132)X �→ (12)X
(23)X �→ X
(13)X �→ (123)X
(12)X �→ (132)X

, ρ(23) :

X �→ (23)X
(123)X �→ (12)X
(132)X �→ (13)X
(23)X �→ X
(13)X �→ (132)X
(12)X �→ (123)X

We may write these generators more compactly in cycle notation.

λ(123) =
(
X (123)X (132)X

)(
(23)X (12)X (13)X

)

λ(23) =
(
X (23)X

)(
(123)X (13)X

)(
(132)X (12)X

)

ρ(123) =
(
X (132)X (123)X

)(
(23)X (12)X (13)X

)

ρ(23) =
(
X (23)X

)(
(123)X (12)X

)(
(132)X (13)X

)

3.3 Affine Groups with Permutations and Their Duals

Now consider a pitch-class segmentX = (x1, . . . , xn) with n distinct pitch classes
xk and a group G ⊆ Aff∗(Z12) of invertible affine transformations. We let G act
componentwise on n-tuples, and consider the orbit GX of X . We assume, for the
sake of simplicity, that the underlying set of X is not symmetric with respect to
any element of G. That is, we require f{x1, . . . , xn} 	= {x1, . . . , xn} for all f ∈ G.
This condition guarantees that G acts simply transitively on GX and that none
of the affine transformations f ∈ G, except the identity transformation, acts on
X merely like a permutation. We now extend the action of Σn on ΣnX to an
action on ΣnGX .

The group ΣnG = GΣn is the subgroup of Sym
(
(Z12)

n
)

generated by Σn

and G. Since Σn and Aff∗(Z12) commute, the group ΣnG is an internal direct
product of Σn and G, and every element of ΣnG can be written uniquely as σg
with σ ∈ Σn and g ∈ G.

The orbit of X under ΣnG decomposes as a disjoint union, which gives a
principle Σn-bundle over the pitch-class sets underlying the G-orbit of X .

GΣnX =
∐
g∈G

Σn(gX) �� G{x1, . . . , xn}
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As detailed in Section 3.1, on each set Σn(gX) in the disjoint union we have
dual groups λg(Σn) and ρg(Σn) in Sym(Σn(gX)). In light of the disjoint union
decomposition, these actions fit together to give commuting, but not dual,6 sub-
groups of Sym(GΣnX). However, these commuting groups form part of dual
groups as in the following theorem.

Theorem 3.2 (Affine Groups with Permutations and their Duals). Let
X = (x1, . . . , xn) be a pitch-class segment in Z12 with n distinct pitch-classes
x1, . . . , xn. Let G be a subgroup of the group Aff∗(Z12) of all invertible affine
transformations Z12 → Z12, which acts componentwise on all n-tuples in Z12.
Suppose f{x1, . . . , xn} 	= {x1, . . . , xn} for all f ∈ G. Let Σn denote the symmet-
ric group on n letters, which acts on n-tuples as in Section 3.1. As above, let
λ(ΣnG) be the subgroup of Sym(ΣnGX) determined by the action of the internal
direct product ΣnG on the orbit ΣnGX. Recall that the dual group ρ(ΣnG) has
elements ρ(νh) for ν ∈ Σn and h ∈ G where

ρ(νh)σgX := σg
(
νh

)−1
X

for all σ ∈ Σn and g ∈ G.
Then:

(i) The restriction of the subgroup ρ(Σn) to ΣnX is the dual group for λ(Σn)
in Sym(ΣnX), and similarly the restriction of the subgroup ρ(G) to GX is
the dual group for λ(G) in Sym(GX).

(ii) The subgroups ρ(Σn) and ρ(G) of Sym(ΣnGX) commute, that is ρ(ν)ρ(h) =
ρ(h)ρ(ν) for all ν ∈ Σn and h ∈ G.

(iii) The group ρ(ΣnG) is the internal direct product of ρ(Σn) and ρ(G), as
defined in the introduction to Section 3.

(iv) If Y ∈ σGX and h ∈ G, then ρ(h)Y = σρ(h)σ−1Y .

Proof. Statement (i) follows directly from the construction of the dual group in
Section 2.2. Statements (ii) and (iii) follow from the analogous facts about Σn,
G, and ΣnG because ρ is an embedding (and consequently an isomorphism onto
its image). Alternatively, we may prove Statement (ii) as follows. For ν ∈ Σn

and h ∈ G we have

ρ(ν)ρ(h)σgX
def
= σgh−1ν−1X

= σgν−1h−1X

def
= ρ(h)ρ(ν)σgX,

where the unlabeled equality follows from the fact that ν−1 and h−1 commute
because Σn and G commute as remarked above. Statement (iv) follows from the
fact that ρ(h) commutes with σ and σ−1 by duality. ��
6 These two groups cannot be dual, because they do not act simply transitively: their
cardinalities are n! while the set upon which they act has cardinality |G| · n!.
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Example 3.3 (Permutations with T/I and PLR Duality). If in Theo-
rem 3.2 we take X to be (0, 4, 7) and G to be the T/I-group, then we have
the incorporation of permutations into T/I and PLR-duality. In particular,
Σ3(T/I)(0, 4, 7) is the set of all possible orderings of major and minor tri-
ads, and ρ(Σ3(T/I)) is the internal direct product of ρ(Σ3) and the extended
PLR-group. By part (iv) any operation h of the PLR-group is extended to
act on Y = σTj(0, 4, 7) or Y = σIj(0, 4, 7) by first “translating to Oettingen/
Riemann root position, then operating, and then “translating back”, namely
hY := σhσ−1Y . For instance,

R(7, 0, 4) = (123)R(321)(123)(0, 4, 7) = (123)(4, 0, 9) = (9, 4, 0).

Another way to justify this is that the extended R operation commutes with
permutations, so

R(7, 0, 4) = R(123)(0, 4, 7) = (123)R(0, 4, 7) = (123)(4, 0, 9) = (9, 4, 0).

Thus, Theorem 3.2, in combination with the Sub Dual Group Theorem of Fiore–
Noll [12, Theorem 3.1], gives a theoretical justification for the constructions at
the end of [1, Section 5] concerning an analysis of Schoenberg, String Quartet
Number 1, Opus 7.

Example 3.4 (Cohn Group). We may now define new versions of P , L, and
R which retain the positions of common tones in the ordering of any triad. Let
P ′ := ρ(13)P , L′ := ρ(23)L, and R′ := ρ(12)R. Then we have for instance

L′(4, 7, 0) = ρ(23)L(4, 7, 0) = Lρ(23)(321)(0, 4, 7) =

L(13)(0, 4, 7) = (13)L(0, 4, 7) = (13)(11, 7, 4) = (4, 7, 11)

by the table for ρ(23) in Section 3.2. See Fig. 1 for further examples. We call
the group generated by P ′, L′, R′ the Cohn group. It is dihedral of order 24
(the relations can be checked directly using those of the PLR-group and the
commutativity of ρ(Σ3) with the PLR-group).

Example 3.5 (Venezia). Below we have a rhythmic reduction of Liszt, R. W.
Venezia, S. 201, measures 31–42. For our analysis we identify the first strong-
beat bass arrival of B	 in measure 33 as a relatively well articulated root position
chord, since in measures 31–32 the weak-beat instances of B	 in the bass do not
overturn the impression of a first-inversion position. Subsequent root position
chords in the analysis were chosen similarly. The transformations in each of the
three phrases are permutations, P , and R operations, as pictured in the rows
of the subsequent network. The vertical arrows of the network indicate that
the three phrases are related by transposition by 3 semitones. All the squares
commute by Theorem 3.2, since the four groups λ(Σn), λ(T/I), ρ(Σn), and
ρ(T/I) = PLR commute.
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B� 1st inv
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T3

��

(10, 2, 5)
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(13) ��

T3

��

(5, 2, 10)
B� 2nd inv op

(123)P ��

T3

��

(5, 10, 1)
B�m 2nd inv

(13)R ��

T3

��

(5, 8, 1)
D� 1st inv

T3

��
(5, 8, 1)

D� 1st inv

(123) ��

T3

��

(1, 5, 8)
D� root pos

(13) ��

T3

��

(8, 5, 1)
D� 2nd inv op

(123)P ��

T3

��

(8, 1, 4)
D�m 2nd inv

(13)R �� (8, 11, 4)
E 1st inv

(8, 11, 4)
E 1st inv

(123) �� (4, 8, 11)
E root pos

(13) �� (11, 8, 4)
E 2nd inv op

Example 3.6 (Schoenberg, String Quartet in D Minor, Op. 7). One of
the main motivations of the present paper was our discussion [1] of Schoenberg’s
String Quartet in D Minor. We excerpt below the first two rows of Figure 15 of
that paper. The first row (pictured below) is a piece-wide narrative constructed
from the opening motivic cell of measures 1–2. The second row (also pictured
below) is the triadic melody from measures 88–92. The up arrows 77 are the
affine transformation x �→ 7x+ 7. The horizontal arrows can be labelled as the
composite of (13) with R or P , or as RICH (discussed in the next section). The
notes for these two rows are in [1, Figures 1 and 3]. Taking G to be the 48-
element affine group generated by T1, I0, and multiplication by 7, we see that
all the squares commute by Theorem 3.2, since the four groups λ(Σn), λ(G),
ρ(Σn), and ρ(G) ⊇ PLR commute.
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4 Properties of Other Contextual Transformations
on Pitch-Class Segments Not Contained in
ρ(Σ3(T/I)) = ρ(Σ3)PLR

The remainder of this paper illustrates some properties of contextual inversion
enchaining transformations. These are certain transformations on pitch-class
segments not contained in the dual group ρ(Σn(T/I)). In particular, we will dis-
cuss the RICH transformation, which goes beyond the scope of simply transitive
actions as well as beyond the orbifold construction via voice permutation.

Consider the situation and notation of Theorem 3.2, and for 1 ≤ q, r ≤ n
consider the globally defined contextual inversion7

Jq,r(Y ) := Iyq+yrY. (2)

Composites of contextual inversions with permutations yield instances of con-
textual inversion enchaining transformations. Within the symmetric group Σn,
consider the order 2 cycle8 (r s). On pitch-class segments (y1, . . . , yn), the per-
mutation (r s) acts through voice exchange by mutually exchanging the pitch
classes yr and ys at their respective positions in (y1, . . . , yn).

(r s) : (y1, . . . , yr, . . . , ys, . . . , yn) �→ (y1, . . . , ys, . . . , yr, . . . , yn)

Definition 4.1. Consider a pitch-class segment X = (x1, . . . , xn) and select
three distinct indices 1 ≤ q, r, s ≤ n. A contextual inversion enchaining trans-
formation is any composite

(r s) ◦ Jq,r : Σn(T/I)X → Σn(T/I)X

of a contextual inversion Jq,r and a voice exchange (r s) sharing the common
index r.

The effect of enchaining will be illustrated by example. For n = 3 the cycle
(1 3) behaves like a retrograde, which motivates Lewin’s notation RICH in [8]
for the transformation (1 3)◦J2,3, meaning retrograde inversion enchaining. If Y
is a pitch-class segment, then RICH(Y ) is that retrograde inversion of Y which
has the first two notes y2 and y3, in that order. This transformation was used
in our analysis of Schoenberg in [1]. See Straus [16] for some recent analyses
using RICH transformations. See also Catanzaro [17] for a classification of the
trichord Tonnetz spaces in the unordered case, and also Fiore–Satyendra [6] for
the group theory of contextual inversions and an analysis of Hindemith, Ludus
Tonalis, Fugue in E.

7 As we remarked earlier, the formulas in equation (1) for P , L, and R are only valid
for major triads in root position, or minor triads in the ordering In(0, 4, 7). For other
orderings of consonant triads, conjugation must be used, as in Example 3.3. Thus,
J1,3, J2,3, and J1,2 do not agree with the respective extended functions P , L, and
R beyond the T/I-class of (0, 4, 7), and the name “contextual inversion” for Jq,r is
not optimal.

8 Of course, an order 2 cycle is more commonly called a “transposition” in the mathe-
matics literature, but we avoid using that term here because “transposition” already
has other meanings in this article.
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The explicit cycle notation of the RICH transformation on consonant triads
is displayed in Table 1. More specifically, in Theorem 3.2, we take X to be
(0, 4, 7) and G to be the T/I-group, so that Σ3(T/I)(0, 4, 7) is the 144 = 6× 24
possible orderings of major and minor triads, and ρ(Σ3(T/I)) is the internal
direct product of ρ(Σ3) and the PLR-group. The group ρ(Σ3(T/I)) is also the
subgroup of Sym(Σ3(T/I)) generated by ρ(Σ3) and the PLR-group. But RICH
is not in the simply transitive group ρ(Σ3(T/I)) as we now explain.

Table 1. Cycle decomposition of RICH action on all 144 permutations of the major
and minor triads

Type Consonant Triad Cycles for RICH

RL (4, 7, 11) (7, 11, 2) (11, 2, 6) (2, 6, 9) (6, 9, 1) (9, 1, 4) (1, 4, 8) (4, 8, 11)
(8, 11, 3) (11, 3, 6) (3, 6, 10) (6, 10, 1) (10, 1, 5) (1, 5, 8) (5, 8, 0) (8, 0, 3)
(0, 3, 7) (3, 7, 10) (7, 10, 2) (10, 2, 5) (2, 5, 9) (5, 9, 0) (9, 0, 4) (0, 4, 7)

RL (4, 0, 9) (0, 9, 5) (9, 5, 2) (5, 2, 10) (2, 10, 7) (10, 7, 3) (7, 3, 0) (3, 0, 8)
(0, 8, 5) (8, 5, 1) (5, 1, 10) (1, 10, 6) (10, 6, 3) (6, 3, 11) (3, 11, 8) (11, 8, 4)
(8, 4, 1) (4, 1, 9) (1, 9, 6) (9, 6, 2) (6, 2, 11) (2, 11, 7) (11, 7, 4) (7, 4, 0)

PR (0, 7, 3) (7, 3, 10) (3, 10, 6) (10, 6, 1) (6, 1, 9) (1, 9, 4) (9, 4, 0) (4, 0, 7)

PR (0, 4, 9) (4, 9, 1) (9, 1, 6) (1, 6, 10) (6, 10, 3) (10, 3, 7) (3, 7, 0) (7, 0, 4)

PR (1, 8, 4) (8, 4, 11) (4, 11, 7) (11, 7, 2) (7, 2, 10) (2, 10, 5) (10, 5, 1) (5, 1, 8)

PR (1, 5, 10) (5, 10, 2) (10, 2, 7) (2, 7, 11) (7, 11, 4) (11, 4, 8) (4, 8, 1) (8, 1, 5)

PR (2, 9, 5) (9, 5, 0) (5, 0, 8) (0, 8, 3) (8, 3, 11) (3, 11, 6) (11, 6, 2) (6, 2, 9)

PR (2, 6, 11) (6, 11, 3) (11, 3, 8) (3, 8, 0) (8, 0, 5) (0, 5, 9) (5, 9, 2) (9, 2, 6)

PL (7, 4, 11) (4, 11, 8) (11, 8, 3) (8, 3, 0) (3, 0, 7) (0, 7, 4)

PL (7, 0, 3) (0, 3, 8) (3, 8, 11) (8, 11, 4) (11, 4, 7) (4, 7, 0)

PL (8, 5, 0) (5, 0, 9) (0, 9, 4) (9, 4, 1) (4, 1, 8) (1, 8, 5)

PL (8, 1, 4) (1, 4, 9) (4, 9, 0) (9, 0, 5) (0, 5, 8) (5, 8, 1)

PL (9, 6, 1) (6, 1, 10) (1, 10, 5) (10, 5, 2) (5, 2, 9) (2, 9, 6)

PL (9, 2, 5) (2, 5, 10) (5, 10, 1) (10, 1, 6) (1, 6, 9) (6, 9, 2)

PL (10, 7, 2) (7, 2, 11) (2, 11, 6) (11, 6, 3) (6, 3, 10) (3, 10, 7)

PL (10, 3, 6) (3, 6, 11) (6, 11, 2) (11, 2, 7) (2, 7, 10) (7, 10, 3)

A close look at the cycle decomposition of RICH shows that there are cycles
of length 24, behaving like RL-cycles, cycles of length 8, behaving like PR-
cycles, and cycles of length 6, behaving like PL-cycles. Consequently the sixth
and eighth powers RICH6 and RICH8 have fixed points, and RICH cannot be
part of a simply transitive group action on all 144 ordered triads. In application
to suitable subsets of Σ3(T/I)X , e.g., to selected pitch-class segments in an
octatonic cycle, the fixed-point effect disappears, and RICH can be part of a
simply transitive group action on those.

For instance, each of first two PR-cycles in Table 1 gives rise to a simply
transitive group action. These triadic pitch-class segments are over the octatonic
scale {0, 2, 3, 4, 6, 7, 9, 10}. The second PR-cycle is precisely the PR-cycle in
measures 88–92 of Schoenberg, String Quartet Number 1, Opus 7 pictured in
[1, Figures 1 and 2]. This octatonically restricted RICH-transformation involves
two (and only two) Flip-Flop Cycles of length 8 in the sense of John Clough [18].
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Analogous orbits can be obtained for pitch-class segments of jet and shark triads
in [1]. The last PR-cycle in Table 1 contains the cello motive in measures 8–10,
which is pictured in [1, Figures 13 and 14], and located in the octatonic scale
{2, 3, 5, 6, 8, 9, 11, 0}. See also the Summary Network in [1, Figure 15].
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