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Abstract Standard bearing fault detection features are shown to be ineffective for
estimating bearings remaining useful life (RUL). In this paper we propose a new
approach estimating bearing RUL based on features describing the statistical
complexity of the envelope of the generated vibrations and a set of Gaussian
process (GP) models. The proposed approach is shown to be sensitive to incipient
condition deterioration which allows timely and sufficiently accurate estimates of
the RUL. The proposed approach was evaluated on the data set comprising of
17 bearing runs with natural fault evolution.
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1 Introduction

Several surveys show that bearing faults represent the most common cause for
failure of mechanical drives [1, 2]. As a result, a plethora of methods have been
developed addressing the problems of bearing fault detection and prognostics.
Most of the available methods rely on a well-established feature set, based on
characteristic bearing fault frequencies. However, these features are shown to
be ineffective for estimating bearing’s remaining useful life (RUL) [3]. Addressing
the problem of bearing fault prognostics, in this paper we propose a combination
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of new features based on the statistical complexity of the envelope of bearing’s
vibrations and Gaussian process (GP) models for estimating bearing’s RUL.

Majority of the available approaches describe the relationship between the
defect growth and the trend of some statistical characteristic of the generated
vibrations like energy, peak-to-peak values, RMS, kurtosis, crest factor etc. [3–5].
Usually these values are calculated from the generated vibrations filtered on spe-
cific frequency bands. The ratios of these features from various frequency bands are
employed for estimating the bearings RUL. The effectiveness of these ratios can be
explained through the relation between the time evolution of the excited bearing’s
natural frequency and the deterioration of the bearing’s RUL [6–8]. Based on this
assumption, bearing’s RUL was estimated using approaches such as: tracking the
evolution of the vibration energy using hidden Markov models [9] or tracking
the increase of the dimensional exponents of the generated vibrations [10].

Following these two approaches, we propose a set of features that quantify the
statistical complexity of the generated vibrations. The concept of statistical
complexity is readily applied for analysis of EEG signals [11, 12]. In the context of
bearing prognostics, any change in the bearing surface can be treated as a source of
additional signal components with complex dynamics, hence increasing the sta-
tistical complexity of the generated vibrations. Our results show that the evolution
of the statistical complexity of the generated vibrations can be directly related to
the bearings RUL. Additionally, the process for calculating the statistical com-
plexity requires no prior information about the operating conditions and no pre-
vious knowledge about the physical characteristics of the monitored drive [13, 14].

Using the Rényi entropy based statistical complexity, the bearing’s RUL was
estimated using GP models, which are probabilistic, non-parametric models. GP
models search for relationships among the measured data rather than approxi-
mating the modelled system by fitting the parameters of the selected basis func-
tions, which is common for other black-box identification approaches. The
predictions of GP models are represented by a normal distribution. Because of
their properties GP models are especially suitable for modelling when data is
unreliable, noisy or missing. Their uses and properties for modelling are reviewed
in [15]. In this paper the GP models are used for two purposes: filtering noisy
features and estimating the RUL.

The proposed approach consists of four main steps. In first step three features,
in-depth described in Sects. 2 and 3, are extracted from the acquired vibrations.
The process of the numerical estimation of these features is presented in Sect. 4. In
second step these features are filtered using GP models, described in Sect. 5.
Afterwards, GP models are used for the estimation of RUL values based on filtered
features. The final RUL estimation is obtained by fusion of all estimated RUL
values. The evaluation of the approached is presented in Sect. 6.
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2 Signal Complexity

The definitions of the statistical complexity of a signal varies depending of the
context. In context of signals one can define two extremes: periodic and purely
random signals. Both cases belong to the class of low complexity signals: the
former due to its repetitive pattern and the latter due to its compact statistical
description [16, 17]. Consequently, ‘‘complex’’ signals should be located some-
where in between, a typical candidates are signals generated by a system with
chaotic behaviour.

For a random signal, generated by a random source with probability distribution
P, the statistical complexity CðPÞ can be assessed through the information carried
by the generated signal [11]. The statistical complexity provides a link between the
entropy of the source HðPÞ and the ‘‘distance’’ between the probability distribu-
tion P and the uniform distribution Pe as [11]:

CðPÞ ¼ Q0Dw
a ðP;PeÞHaðPÞ; ð1Þ

where Pe is the uniform distribution and Q0 is a normalisation constant so that
Q0Dw

a ðP;PeÞ 2 ½0; 1�. The values HaðPÞ and Dw
a ðP;PeÞ are the Rényi entropy

and Jensen-Rényi divergence respectively, and are defined as [18, 19]:

HaðPÞ ¼
1

1� a
ln
X

p2P
paðxÞ; a� 0 a 6¼ 1 ð2Þ

Dw
a ðP;QÞ ¼ Ha wPþ ð1� wÞQð Þ � wHaðPÞ þ ð1� wÞHaðQÞf g: ð3Þ

The statistical complexity CðPÞ is usually plotted versus the entropy HaðPÞ
[11]. Such a plot always covers a specific pre-defined area, as shown in Fig. 1.

H ( )

(
)

0 0.5 0.6 0.7 0.80.1 0.2 0.3 0.4 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35Fig. 1 Signal’s statistical
complexity area. The pre-
defined shape of the plot
outlines the possible time
evolution of the signal’s
complexity. By trending the
evolution of the statistical
complexity within the pre-
defined area one can perform
the prognostics task

Signal Complexity and Gaussian Process Models Approach 93



3 Complexity of Bearing Vibrations

Healthy bearings produce negligible vibrations. However, in the case of surface
damage, vibrations are generated by rolling elements passing across the damaged
site on the surface. Each time this happens, impact between the passing ball and
the damaged site triggers a system impulse response sðtÞ. The time of occurrence
of these impulse responses as well as their amplitudes should be considered as
purely random processes. Consequently, the vibrations generated by damaged
bearings can be modeled as [20]:

yðtÞ ¼
Xþ1

i¼�1
Aisðt � tiÞ þ nðtÞ; ð4Þ

where Ai is the impulse of force that excites the entire structure and ti is the time of
its occurrence. The final component nðtÞ defines an additive random component
that contains all non-modeled vibrations as well as environmental disturbances.

Generally the impulse response sðtÞ is influenced by the transmission path from
the point of impact to the measurement point [21]. As the position of the damaged
spot on the bearing surface rotates the transmission path changes in time. How-
ever, regardless of its true form, sðtÞ is charaterised by its high-frequency signa-
ture. Since this is the only characteristic relevant for our analysis, we will adopt the
model (4) as sufficiently accurate one.

Evolution of the statistical complexity of the generated bearing vibrations The
main diagnostic information regarding bearing faults are the time moments ti in
(4). Therefore, the usual approach is to analyze the envelope of the generated
vibrations. In our case, we look for any changes in the statistical characteristics of
the envelope [13].

In the case of healthy bearings, due to the lack of impacts, the envelope of the
generated vibrations will be without any visible structure. Therefore, the envelope
will have low complexity but high entropy, i.e. such a signal would be positioned
in the lower right corner in Fig. 1. The occurrence of a surface fault will introduce
some ‘‘structure’’ in the envelope of the generated vibrations. Consequently, its
statistical complexity will increase while in the same time the entropy will
decrease. In the terminal phase, the envelope will contain impulse responses with
sufficiently high amplitude. As a result the signal complexity will sharply drop
accompanied with a significant decrease in its entropy, hence the final position will
be in the lower left corner in Fig. 1. By trending this evolution, one will be able to
estimate the bearing’s RUL.
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4 Wavelet Based Estimation of the Statistical Complexity
of the Signal Envelope

The first step in the calculation of the statistical complexity is the estimation of the
PDF P of the envelope of the generated vibrations. Due to the link between the
signal’s envelope and its instantaneous power [22], the PDF is estimated through
the energy distribution of the wavelet packet transform (WPT) coefficients [23].
WPT is described by a binary tree structure, as shown in Fig. 2. Each node in WPT
tree with depth dM is marked as ðd; nÞ, where depth d ¼ f1; 2; . . .; dMg and n ¼
f1; 2; . . .; 2dg stands for the number of the node at depth d. The wavelet coeffi-
cients, in the set of terminal nodes T , contain all information regarding the ana-
lysed signal.

Each of the n nodes at level d contains Nd wavelet coefficients Wd;n;t

t ¼ 0; . . .;Nd � 1, Nd ¼ 2�dNs, Ns is the sample length of the signal [24]. Using
these coefficients, the portion of the signal’s energy Ed;n for each node ðd; nÞ reads
[25]:

Ed;n ¼
XNd�1

t¼0

Wd;n;t

�� ��2 ð5Þ

and total signal’s energy becomes:

Etot ¼
XNd�1

d;n2T
t¼0

Wd;n;t

�� ��2¼
X

d;n2T

Ed;n: ð6Þ

The set Pd;n expresses the contribution of each wavelet coefficient to the energy
of the signal within the terminal node ðd; nÞ:

Pd;n ¼ pd;n
t ¼

Wd;n;t

�� ��2

Ed;n
; t ¼ 0; � � � ;Nd � 1

( )
: ð7Þ

A similar set can be defined for the contribution of the energy of each terminal
node ðd; nÞ 2 T in the total energy of the signal Etot:

PT ¼ pd;n ¼
Ed;n

Etot
; d; n 2 T

� �
: ð8Þ

Fig. 2 Example of a full
WPT tree with depth dM ¼ 3
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The elements contained in both sets Pd;n and PT can be treated as realisation of
a random process. Based on these realisations one can estimate the corresponding
probability distributions and calculate their entropies and statistical complexity
according to relations (1–3).

Condition monitoring based on the statistical characteristics of the sets Pd;n and
PT . The values of the selected features (1–3) are calculated on short non-over-
lapping windows, where the initial values are regarded as reference ones. As time
evolves, the presence of faults will alter the envelope PDF for particular node,
hence changing the feature values. As a result, RUL can be estimated by tracking
the evolution of their values. It is important to stress that the window length is
usually very short so that one can assume that within its duration the operating
condition is almost constant. If speed varies mildly the distribution pattern will not
change much as shifted harmonics will remain within the frequency band asso-
ciated to a particular node. If changes in the operating speed are severe, it might
happen that the frequency content from one node moves to the adjacent node, thus
fooling entirely the diagnostic reasoning. On the other hand, mild variations in
load normally have no significant impact on the frequency distribution pattern.

5 Gaussian Process Models

Features (1–3) based on Pd;n and PT are quite noisy. Therefore we filter them
using GP models.1 Afterwards based on these filtered features, GP models are used
for estimating RUL.

A Gaussian process is a collection of random variables which have a joint
multivariate Gaussian distribution. Assuming a relationship of the form y ¼ f ðxÞ
between input x and output y, we have y1; . . .; yN �Nð0;KÞ, where Kpq ¼
Covðyp; yqÞ ¼ Cðxp; xqÞ gives the covariance between output points corresponding
to input points xp and xq. Thus, the mean mðxÞ and the covariance function
Cðxp; xqÞ fully specify the Gaussian process.

The value of covariance function Cðxp; xqÞ expresses the correlation between
the individual outputs f ðxpÞ and f ðxqÞ with respect to inputs xp and xq. It should be
noted that the covariance function Cð�;�Þ can be any function that generates a
positive semi-definite covariance matrix. Most commonly used covariance func-
tion is a composition of the square exponential covariance function and the con-
stant covariance function presuming white noise:

1 Filtering is simply performed by modelling the data as time-series and then estimating the
mean value for whole series. Such a filtering does not introduce any additional lag in the time
series, which is not the case with other commonly used filtering methods.
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Cðxp; xqÞ ¼ v1 exp � 1
2

XD

d¼1

wdðxdp � xdqÞ2
" #

þ dpqv0; ð9Þ

where wd, v1 and v0 are the hyperparameters of the covariance function, D is the
input dimension, and dpq ¼ 1 if p ¼ q and 0 otherwise. Hyperparameters can be

written as a vector H ¼ ½w1; . . .;wD; v1; v0�T . Hyperparameters wd indicate the
importance of individual inputs. If wd is zero or near zero, it means that the inputs
in dimension d contain little information and could possibly be neglected.

To accurately reflect the correlations presented in the data, the hyperparameter
values of the covariance function need to be optimized. Due to the probabilistic
nature of the GP models, instead of minimizing the model error, the probability of
the model is maximized.

Consider a set of N D-dimensional input vectors X ¼ ½x1; x2; . . .; xN �T and a
vector of output data y ¼ ½y1; y2; . . .; yN �. Based on the data ðX; yÞ, and given a new
input vector x�, we wish to find the predictive distribution of the corresponding
output y�. Based on training set X, a covariance matrix K of size N � N is
determined. The overall problem of learning unknown hyperparameters q from
data corresponds to the predictive distribution pðy�jy;X; x�Þ of the new target y,
given the training data ðy;XÞ and a new input x�. In order to calculate this pos-
terior distribution, a prior distribution over the hyperparameters pðHjy;XÞ can first
be defined, followed by the integration of the model over the hyperparameters

pðy�jy;X; x�Þ ¼
Z

pðy�jH; y;X; x�ÞpðHjy;XÞdH: ð10Þ

The computation of such integrals can be difficult due to the intractable nature of
the non-linear functions. Therefore the general practice for estimating hyperpa-
rameter values is minimising the following negative log-likelihood function:

LðHÞ ¼ � 1
2

logðjKjÞ � 1
2

yT K�1y� N

2
logð2pÞ: ð11Þ

GP models can be easily utilised for regression calculation. Based on training
set X, a covariance matrix K of size N � N is calculated. The aim is to find the
distribution of the corresponding output y� for some new input vector
x� ¼ ½x1ðN þ 1Þ; x2ðN þ 1Þ; . . .; xDðN þ 1Þ�. The predictive distribution of the
output for a new test input has normal probability distribution with mean and
variance

lðy�Þ ¼ kðx�ÞT K�1y; ð12Þ

r2ðy�Þ ¼ jðx�Þ � kðx�ÞT K�1kðx�Þ; ð13Þ

where kðx�Þ ¼ ½Cðx1; x
�Þ; . . .;CðxN ; x

�Þ�T is the N � 1 vector of covariances
between the test and training cases, and kðx�Þ ¼ Cðx�; x�Þ is the covariance
between the test input itself.
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As can be seen from (13), the GP model, in addition to mean value, also
provides information about the confidence in prediction by the variance. Usually,
the confidence of the prediction is depicted with 2s interval which is about 95 %
confidence interval. This confidence region can be seen in the example in Fig. 3 as
a grey band. It highlights areas of the input space where the prediction quality is
poor, due to the lack of data or noisy data, by indicating a wider confidence band
around the predicted mean.

6 Results

The proposed approach was evaluated on the data set for the IEEE PHM 2012 Data
Challenge [26]. Provided data consist of three batches, each corresponding to to
different speed and load conditions. The generated vibrations were sampled with
22 for duration of 100, repeated every 5 min. The experiments were stopped when
the RMS value of the generated vibrations surpassed 20. The available vibration
signals were analysed using WP tree with depth dM ¼ 4, which results into 16
terminal nodes. All features are filtered using GP models. The filtered statistical
complexity CðPÞ for one particular node is shown in Fig. 4.

The time evolution of the statistical complexity CðPÞ has similar shape as the
theoretical one. In time the statistical complexity evolves from the area of low
complexity and high entropy towards the area of low complexity and low entropy.
During this evolution the value of CðPÞ passes through the apex of the predefined
area shown in Fig. 1.

Prediction results Using experimental runs from the first and the third batch as
training set, 16 GP models were defined, one for each of the 16 WP nodes. Each
GP model describes the most probable evolution of the three features
Dw

a ðPd;n;PeÞ, HaðPd;nÞ and HaðPTÞ in respect to the RUL normed in the interval
½0; 1�. At each time moment, we calculate the likelihood of the bearings RUL based
on the estimated GP model estimates.

Mean value
Training points

2 (95% C.I.)

Measurement number

O
ut

pu
t

[
H

T
(

)]

2

2

10000 500 1500 2000 2500
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6Fig. 3 Modelling with GP
models: in addition to mean
value (prediction), we obtain
a 95 % confidence region for
the underlying function f
(shown in grey)

98 P. Boškoski et al.



These likelihood estimates for one bearing run are shown in Fig. 5, which
shows that RUL sensitivity differs among the WP nodes. For instance, high fre-
quency nodes, such as node 13, give first indications that the bearing has reached
the end of its useful life. Conversely, RUL estimates of low frequency nodes, for
instance node 4, are over-optimistic during the majority of the experiment. The
actual bearing condition becomes visible only towards the end of the experiment.
Such an observation leads to a conclusion that the first signs of bearing condition
deterioration become visible in the high frequency parts of the signal. As the
condition deteriorates sensitivity shifts towards features extracted from the lower
frequency bands.

7 Conclusions

The combination of statistical complexity features coupled with Gaussian process
models provides a suitable solution for estimating beating RUL. The proposed
approach is generally applicable, as it requires no prior knowledge neither about
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the bearing physical characteristics nor about the bearing’s operating condition.
Therefore, the generated GP models were calculated using features extracted from
bearings operating under different operating conditions and were evaluated on
vibrations generated by bearings that operated under previously ‘‘unseen’’ con-
ditions. These GP models describe the evolution of the selected features in respect
to the bearing RUL. The results show that decrease in the bearing condition shifts
the sensitivity of the features, making the features extracted from high frequency
bands sensitive to initial damage and features from low frequency bands sensitive
to severe damage. Consequently, this relation between condition deterioration and
frequency dependent feature sensitivity can be employed for estimating the
bearing RUL.
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