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Abstract Power generation performance is a fundamental metric that all wind
farm operators use to determine whether expected power throughput is actually
being met. IEC 61400-12-1 has been drafted as an exhaustive power performance
measurement scheme for wind turbines. The primary weakness of such a standard
is the required level of depth of the associated performance tests, which is more
than sufficient for operators to use to run daily wind farm activities. In addition,
since this IEC test is not really meant for frequent evaluation, it also fails to
capture any loss in power generation performance over time. This paper addresses
the aforementioned weaknesses of the IEC standard by the application of data-
driven approach to model a wind turbine’s power curve. A set of measurements
during a known good condition is utilized to setup a baseline model. Regular
power curve measurements are then compared while taking into account the multi-
regime dynamics of the turbine. The approach was implemented using NI Lab-
VIEW’s Watchdog Agent� Toolkit and was successfully validated using actual
SCADA data collected from an on-shore wind turbine.
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1 Introduction

The wind power industry is experiencing capacity installations that continuously
increase, engineered by advancements in turbine technologies and surging market
needs. According to Global Wind Energy Council (GWEC) 2011 Annual Market
Update [1], global wind power capacity increased by 18 % and reached 238 GW.
While turbine manufacturing and capacity installation have been the main focus of
wind power industry, another key issue that has gradually received considerable
attention is wind turbine reliability and maintenance. As U.S. Department of
Energy reported [2], Operation and Maintenance (O and M) costs possess over
20 % of total life-cycle cost for offshore wind turbines and 15 % for onshore
turbines. To monitor and improve the reliability of wind turbines, development of
fundamental research and pioneering technology is required to evaluate turbine
power performance, detect faults of critical components and predict failure.

To offer a generic methodology to standardize power performance measure-
ment for different participants of the industry, The International Electrotechnical
Commission (IEC) has provided a standard IEC 61400-12-1 [3] as a guideline.
Participants, including Original Equipment Manufactures (OEM), wind farm
operators, service providers, regulators and academic researchers, have adopted
the standard [4]. Although recognized as an accurate and comprehensive method,
the IEC standard has the following disadvantages, inherently and observed from
practices:

1. To achieve the accuracy advocated by the standard, it requires high data fidelity
and inherently expensive monitoring routine. The standard is an exhaustive
approach that operators hesitate to perform.

2. The approach and metrics defined in the standard do not generate continuous
monitoring value for users, mainly because the cost and time incurred with the
measurement. For example, the standard advises 180 h of data for evaluation,
which usually takes longer to accumulate enough volume of the data. There-
fore, it does not provide a deeper insight of turbine performance deterioration.

3. The method used to calculate energy distribution in wind speed bins and annual
energy production (AEP) strongly implies that the projection of wind speed will
follow a deterministic distribution, and the turbine will be available and
operating at a constant performance level for the next year.

To address the issues above, a data-driven approach is applied to model power
curve continuously, which is entailed within a two-tier framework that employs
Prognostics and Health Management (PHM) techniques for wind turbine moni-
toring. Prognostics and Health Management (PHM) is an engineering discipline
‘‘focusing on detection, prediction, and management of the health and status of
complex engineered systems’’, defined by the International Society of PHM and
IEEE Society of Reliability. Having been successfully implemented in industries
such as rotary machinery, semiconductor manufacturing and aerospace, data-
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driven PHM has been proposed and developed to ensure continuous and efficient
operation of wind energy assets.

In the domain of wind energy, two types of frequently used data are supervisory
control and data acquisition (SCADA) data and condition monitoring system
(CMS) data. SCADA system is commonly used by operators to monitor turbine
parameters and report alarms. It retains sparse measurements including tempera-
ture readings, rotation speed and wind speed, which is used to determine daily site
activity [5]. In this paper, selected SCADA variables are used to model the
deviation of turbine power performance over time.

On the other hand, CMS data is high-resolution sensor data, which may
includes vibration, acoustic emission or oil debris analysis data, and used to decide
fault indicator for gearbox, generator and bearings [6, 7]. Critical wind turbine
components and their reliabilities have been largely surveyed and studied [9–11].
Integrating component downtime distribution and failure probabilities can gener-
ate a criticality analysis chart (Fig. 1).

In this chart, quadrant 4 contains components with low failure probability but
require longer lead-time for repair when they fail. These components are identified
as critical components for turbine system, and are appropriate for opting predictive
maintenance strategy and PHM techniques to monitor component health condition
much more closely with CMS data.

This paper presents an enhanced framework of wind turbine monitoring and a
case study for turbine power performance monitoring. The reminder of the paper is
organized as following: Sect. 2 presents the methodology and analytic framework;
Sect. 3 introduces how proposed method for wind turbine power performance
monitoring is applied to a real-world wind farm; and Sect. 4 summarizes and
concludes the work.

Fig. 1 4-Quadrant criticality analysis for wind turbine components
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2 Systematic Methodology

2.1 Overall Framework

A systematic methodology for wind turbine prognostics is proposed and shown in
Fig. 2. In this two-tier framework, SCADA data is first used to model turbine
overall performance, which is defined as its capability to generate electricity power
under varying wind condition. SCADA parameters including output power, wind
speed, wind direction and pitch angle are selected to input to a multi-regime model
corresponding to turbine’s dynamic operating conditions and density function
parameters are estimated for each operating regime. In the next step, performance
assessment is conducted where current or recent behavior that are represented by
the model parameters are compared with normal behavior learned with the same
parameters while turbine is known to be new or healthy. A performance indicator
frequently generated from the comparison, called Confidence Value (CV) as a
Global Health Estimator (GHE) for turbine performance, is then trended over time
and predicted with an upper limit R1 and a lower limit R2. The predictions can be
converted to forecast when the revenue per unit cycle will drop below a prede-
termined breakeven level and investigations should be triggered for component
Local Damage Estimator (LDE) values.

LDE values are generated from CMS data. Depending on the availability of
sensors, the types of data may include vibration, acoustic emission, temperature,
and oil debris. Different signal processing tools are used to extract features to

Fig. 2 Systematic methodology for wind turbine prognostics
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represent the high-dimension datasets. The features can be used to identify the
health degradation status of each instrumented component, and locate component
failure that is causing turbine performance reduction. For the located compo-
nent(s), the specific failure mode can also be identified with diagnosis tools so that
correct maintenance action can be suggested.

The proposed framework for wind turbine prognostics can improve existing
wind turbine monitoring methods as following:

(1) The highly dynamic environmental condition and operating condition for wind
turbines are taken into account with the application of multi-regime modeling
method.

(2) Under the framework, various techniques with similar capabilities can be
compared and optimized to generate a performance indicator. At the mean
time, the indicator is updated frequently and can represent real-time power
performance.

(3) A correlation between turbine overall performance and key component defect
is investigated, so that the performance metric of CV value can prioritize the
effects of degrading components. It allows users to optimize maintenance
strategy with a simple yet effective objective.

To aggregate frequently used PHM techniques, the Watchdog Agent� Toolbox
is developed as a reconfigurable hardware and software platform for various PHM
applications [12]. In National Instruments LabVIEW software, the toolbox
includes four categories (as shown in Table 1) of algorithms as Virtual Instruments
(VI) for rapid deployment.

The signal processing and feature extraction tools filter, transform and analyze
acquired sensor data to extract representative features that are highly related with
operation, failure mode or health condition. The feature set then serves as an input
to health assessment tools, where pattern recognition and artificial intelligence
tools model the similarity between baseline features and features from latest sig-
nal, to evaluate overall degradation of the system. Health diagnosis tools, usually

Table 1 Watchdog agent� toolbox algorithms
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classification algorithms, can identify the specific impending failure mode at its
early stage upon the detection of degradation. Performance prediction tools model
the trend of degradation and developing failure mode, to project these indications
and estimate the remaining useful life of the system and its components.

For wind turbine PHM, main effort of the estimation of LDE is usually
accomplished by selecting suitable tools from numerous algorithms in signal
processing category, to extract best features for sensors with different locations and
targeted drivetrain components. The computation of GHE, wind turbine’s power
performance, can be achieved with appropriate health assessment tools.

2.2 Global Health Estimator

To evaluate turbine GHE over time, SCADA data is input to a pre-processing
module to be filtered, segmented and normalized. Then parameter selection
module determines the relevant variables that will be used to interpret turbine
overall performance. As aforementioned that a wind turbine is subjected to
dynamic operating conditions, wind turbine data can be represented with as a
mixture of distributions through regime partitioning. Several tools can be used
here from Watchdog Agent� Toolbox, including Gaussian Mixture Model
(GMM), Self-organizing Map (SOM) and Neural Networks. Finally, distance
metrics depending on the choice of multi-regime modeling method can be com-
puted to interpret the wind turbine CV through comparing the mixture within
similar regime [13] (Fig. 3).

Fig. 3 The overall turbine health represented by GHE
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2.3 Local Damage Estimator

Data-driven analytical tools from different categories of Watchdog Agent�

Toolbox are employed here to obtain LDE values for each component. For gen-
erators, bearings and gearbox, signal processing and feature extraction, feature
selection, health assessment and health diagnosis tools can be applied to examine
the root cause of turbine degradation and health deterioration at component level
[13–15] (Fig. 4).

3 Case Study

A SCADA dataset acquired from an onshore large-scale turbine is used to validate
the proposed methodology for estimating GHE. The duration of the data is
26 months, during which SCADA module stores the mean, maximum, minimum
and standard deviation of all parameters every 10 min. The actual power output is
shown in Fig. 5, where three major downtime events are highlighted in grey
shadowed areas: (1) Q1-08–Q20-8, (2) Q1-09–Q3-09 and (3) Q4-09–Q1-10.

Data pre-processing methods are used to reject data instances that will even-
tually not benefit the analysis. First type is when the actual power is less than zero
(when turbine is not generating power), which corresponds to when wind speed is
below the wind turbine’s cut-in speed. The rest of the wind speed range, even

Fig. 4 Systematic approach to estimate LDE for critical turbine components
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when beyond the turbine’s rated cut-out speed, is all kept in this step. Second type
of data rejection is based on turbine control mechanism, where power generation is
curtailed due to pitch control as counteraction to wind gust rather than turbine’s
actual degradation. For the wind turbine used in this case study, there is an
embedded pitch regulation module designated to adjust the blade’s angle of attack
with respect to wind direction when high wind speed is observed, so to slow down
rotor rotation and limit the drivetrain workload. In the data, power production
drops, after high wind speed and rapid change of pitch angle, can be observed.
Such instances are rejected to ensure model accuracy.

After pre-processing, wind speed related variables and power output are
selected and standardized respectively. All variables are transformed to have zero
mean and unity standard deviation. The data is then segmented into 7-day intervals
so that the sample size of each segmentation is proper for modeling turbine per-
formance. In this case study, Gaussian Mixture Model (GMM), as shown in Eq.
(1), is selected for regime partitioning and health assessment while L2 Distance, as
shown in Eq. (2), is selected correspondingly as distance metric to evaluate health
degradation.

H xð Þ ¼
Xn

i¼1

pih x; hið Þ ð1Þ

CV ¼ H xð Þ � G xð Þk kL2

H xð Þk kL2� G xð Þk kL2

ð2Þ

The number of mixture Gaussian components, n, is first selected to represent
the distribution of selected parameters. Then the baseline turbine performance is
modeled with the data during first three time intervals where turbine status is
assumed to be healthy. For each of the rest intervals, an equivalent Gaussian
mixture representation is found and CV is computed using L2 distance between

Fig. 5 Actual power generation for the turbine unit
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baseline and each of the representation [13]. The trend of CV over time shows that
the technique captures the gradual degradation of the turbine unit. With appro-
priate selection and configuration of a prediction algorithm, providing early alarms
of ongoing deterioration could prevent major downtime before it happens.

The implementation of the approach in LabVIEW is shown in Fig. 6 through
Fig. 7.

As the process of configuring model training is shown in Fig. 6, pre-processed
SCADA data variables, including wind speed, power output and their timestamp,
are loaded in step 1 and step 2. Step 3 is where the GMM parameters for training a
baseline model are configured, including baseline duration, number of clusters and
number of iterations. While model training is triggered, the normalized baseline
power curve is displayed to provide an evident observation.

Performance evaluation through testing of the GMM model obtained from
remaining data is shown in Fig. 8. As continuation from baseline modeling, step 5
is for configuring GMM parameters for testing and step 6 initiates the calculation
of CV value based on the configured parameters. Once testing is completed, CV is
shown over time on the right hand side of the panel.

Eventually, the progression of turbine unit power performance, shown as CV,
together with wind speed and power output is visualized for user (Fig. 9).
Furthermore, a scalable monitoring platform for an entire fleet can be constructed
by executing a configured and validated algorithm for each individual turbine.

Fig. 6 Configuration of power performance model training with GMM

Data-Driven Wind Turbine Power Generation Performance 675



Fig. 7 Demonstration of wind turbine health monitoring system using national instruments
LabVIEW [14]

Fig. 8 Configuration of power performance model testing with GMM
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4 Conclusion

This paper presents an advanced framework for wind turbine prognostics and
health management. A Global Health Estimator is proposed to enhance current
performance testing practices advised by an IEC standard. It is generated with
SCADA data to indicate and predict turbine unit overall performance. A Local
Damage Estimator is computed to evaluate degradation status of critical turbine
drivetrain components, and locate the fault that is the root cause of turbine per-
formance degradation. A case study is presented where Gaussian Mixture Model
and L2 Distance are used to compute the GHE. The implementation of GHE
computation is presented with Watchdog Toolbox� in National Instruments
LabVIEW.

The presented work benefits the wind power industry, as it helps to establish an
effective and systematic PHM solution that is capable of dealing with turbines’
constantly changing operating conditions and provides predictive maintenance
suggestions for wind farm operator. The calculation of GHE utilizes existing
SCADA system, provides progressive evaluation of actual power performance and
offers opportunities to predict turbine downtime.

Fig. 9 Visualization of wind turbine power performance
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