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Abstract Bearings are one of the more widely used elements in rotating
machinery, reason why they have focused the attention of many researches in the
last decades. The aim is to obtain a methodology that allows a reliable diagnosis of
this kind of elements without dismounting them from the machine, and detecting
the failure in incipient stages before a critical failure occurs. This manuscript
develops and improvement of a technique showed in [1] of automated diagnosis of
bearings through vibration signals, using the coefficients of the Multirresolution
Analysis (MRA) and Multilayer Perceptron (MLP) neural network (NN). Data
were obtained from a quasi-real industrial machine, where bearings were sup-
porting axial and radial loads while rotating at different speeds. This technique
offered very good results when diagnosing healthy and faulty bearings, never-
theless the reliability decreased when distinguishing between different kinds of
failures. The novel technique showed in the present work, increases the success
rates obtained using the same data: not only allows detecting early faults but also
their location with high accuracy. The methodology exposed in this work is based
on the use of the relative energy of the Wavelet Packets Transform (WPT), and
NN, concretely, the RBF.

Keywords Early bearing diagnosis � Condition monitoring � WPT � Relative
energy � Neural networks � RBF

M. J. Gomez (&) � C. Castejon � J. C. Garcia-Prada
MAQLAB Group, Mechanical Department, Universidad Carlos III de Madrid,
Av. de la Universidad, 30 28911 Madrid, Spain
e-mail: mjggarci@ing.uc3m.es

C. Castejon
e-mail: castejon@ing.uc3m.es

G. Dalpiaz et al. (eds.), Advances in Condition Monitoring of Machinery
in Non-Stationary Operations, Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-39348-8_4, � Springer-Verlag Berlin Heidelberg 2014

63



1 Introduction

The aim of condition monitoring is to detect failures in rotating machines before a
critical damage occurs. This kind of maintenance has a lot of advantages, because
it makes no necessary the dismounting of a machine to check the status of its
elements. Besides, the probability of detecting a failure before it becomes critical
increases, avoiding losses and making the operations safer. By these reasons,
automation of fault diagnosis in industrial processes has been the aim of many
researchers in the last decades.

Concretely, rolling bearings are one of the more widely used elements in
rotating machinery, and its failure is one of the foremost causes of breakdowns in
this kind of machines. Bearings are fundamental elements in the support subsys-
tem, which hold great part of the static and dynamic loads, reason why they have
high risks of failure. Most of the researches related to bearing fault diagnosis
agrees with the use of vibration signals, due to they contain valuable information
about failures [2, 3], however Acoustic Emission (AE) have been also appropri-
ately used with accuracy to diagnose bearings, as in the case of [4].

Based on the use of this kind of signals, most authors classifies the techniques to
diagnose bearings in three approaches: time domain based on statistical parameters
[5], frequency domain analysis [6], and time–frequency analysis such as Wavelet
Transform (WT) [1, 7] and Hilbert-Huang Transform (HHT) [8].

Diagnosis based on time domain statistical parameters has shown low effec-
tiveness when it is applied to incipient faults or when the system is exposed to low
loads, as pointed in [9]. By this reason, the use of time domain statistical
parameters as unique way to extract features is not common.

The analysis of the frequency domain is the most classical approach to detect
failures in rotating machinery, and concretely the Envelope Analysis is the more
popular fault diagnosis method of rolling bearing. Envelope analysis means
exploiting cyclostationary of second order (CS2) that appears when bearing
defects exist [10]. However, this classical tool is seriously affected by the noise,
especially in early fault stage. Some studies have been carried out to improve the
results of this method, as for example in [11]. In other cases, to solve this problem,
the envelope analysis has been combined with other techniques as the Wavelet
Transform (WT), as in the case of [12]. Another tool usually applied to examine
the frequency domain of the signals is the Empirical Mode Decomposition (EMD),
used to obtain Intrinsic Mode Functions (IMFs), as shown in [13].

The Hilbert-Huang Transform (HHT) is a time–frequency analysis technique
based in the EMD. The HHT offers high reliability, as in the case of [14].

The same way as HHT, the Wavelet Transform (WT) also offers information
both in time and frequency domain, providing the proper treatment both for sta-
tionary and for non-stationary signals. WT gives also a multi resolution analysis, so
it is especially useful to diagnosis of defects [15]. With this purpose, WT have been
widely used and not only for bearings, but also for general rotating machinery as in
[16], for gears as shown in [17], for shafts [18], and for structural elements as in [19].
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However, the use of the WT is a complex task due to the great diversity of
critical parameters which must be chosen, such as the mother wavelet and the
decomposition level. On the other hand, until few time ago, the WT had another
bigger disadvantage: the incapability for decomposing the high frequency bands
trough the Multi resolution Analysis (MRA). Wavelet Packets Transform (WPT)
constitutes an improvement of the MRA [20], due to the ability to decompose all
the frequency bands. Thus, applications of WPT are highly increasing, and now-
adays is the most used technique to treat signals in many fields, as in the case of
speech recognition [21], denoising [22], and treatment of electrocardiographs [23],
among others.

WPT coefficients can be used directly as features, as they content reliable
information about failures [24]. However, other information related to the WPT
coefficients can be also used as features, as has been demonstrated in [25], where
statistical parameters are calculated, and in [26], where the energy of the WPT is
successfully used as crack indicator.

In a diagnosis procedure, after features extraction, an intelligent classification
system is also needed. A lot of intelligent classification systems have been
developed and used for monitoring systems, as fuzzy classifiers, used in [27, 28],
genetic algorithms [18], and the most used, the Support Vector Machines [29, 30]
and Neural Networks (NN) [31].

In [1], an algorithm was developed to diagnose four conditions of ball bearings:
healthy, inner race fault, outer race fault, and ball fault. The data were obtained at
three different rotating speeds: 10, 20 and 30 Hz. The algorithm was based in the
use of the MRA coefficients, after selecting of the optimal frequency band (the one
where the coefficients presented larger differences between health bearing and the
faulty conditions). This coefficients were used to train a Multilayer Perceptron
(MLP) NN. With this methodology, high success rates were achieved, obtaining no
false alarms, and distinguishing reasonably, for the speeds of 20 and 30 Hz, the
healthy bearings from the faulty. However, the MLPs generated had problems to
distinguish between different kinds of faults.

The aim of this work is to improve the results obtained from the analysis carried
out in [1] working with the same data. The energy of the coefficients of the
improved technique WPT will be used to feed, in this case, a Radial Base Function
(RBF) neural network.

2 Experimental Setup

The vibration signals were obtained from a rig developed by the UNED
mechanical department. FAG 7206 B single ball bearings were tested at three
different rotation speeds set to 10, 20 and 30 Hz, and controlled by a photo
tachometer. The rig is shown in Fig. 1.

In Fig. 1 the first elements observed, starting on the right hand-side, are axial
and radial pneumatic cylinders, which apply loads of 2.5 and 3 bars respectively.

Incipient Fault Detection in Bearings 65



Following, the bearings assembly can be seen. A transmission pulley is directly
connected to the motor by a V-belt.

The measurement chain is composed by a B&K 4383 accelerometer, a B&K
NEXUS amplifier and a DAS-1200 Keithley acquisition card. The sampling rate
was set to 5,000 Hz, and all the acquired signals had 5,120 points.

The tests were carried out with healthy bearings. Later several faults were
induced to the bearings to carry out the tests, including inner race fault, outer race
fault, and ball fault. A pit 2 mm long was artificially induced in the inner or outer
race by an electric pen. In the case of the rolling ball, multiple slots in the surface
were performed to simulate the flacking phenomenon.

Finally, 284 signals are obtained: 196 signals for each rotation speed, and 49 for
each fault condition.

3 Wavelet Packets Transform

Wavelet Transform (WT) is specially efficient to carry out local analysis of non
stationary signals. It obtains correlation coefficients between a signal and a mother
wavelet function selected. When WT is applied in a discrete way, called Discrete
Wavelet Transform (DWT), the signal is decomposed in information of approxi-
mation and detail with recursive filters low and high pass. WPT consists on the
application of the DWT in a recursive way, until a decomposition level selected,
according to the scheme shown in Fig. 2.
where Wðk; jÞ represents the coefficients of the signal in each packet. k is de
decomposition level and j is the position of the packet within the decomposition
level. Then, each correlation vector Wðk; jÞ has the structure of the Eq. (1):

Wðk; jÞ ¼ fw1ðk; jÞ; . . .;wNðk; jÞg ¼ fwiðk; jÞg ð1Þ

Fig. 1 Bench bank used for
the measurements. UNED lab
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where i is the position of the coefficient within its packet.

3.1 Energy of the WPT Coefficients for Feature Extraction

The concept of energy used in the WPT analysis is very close to the Fourier
Theory [24]. The energy of the packets is obtained from the sum of all the squares
of the coefficients of each packet, according to Eq. (2):

Ek; j ¼
X

i

fwiðk; jÞg2 ð2Þ

The relative energy, as a normalized parameter proposed in [26], is calculated
as shown in Eq. (3):

Ek; jrel ¼
Ek; j

Et
ð3Þ

where Et is the total energy of the signal, calculated as the sum of all the energies
of the packets.

3.2 Features Extraction

Using the definition of the energy of the packets described above, the transfor-
mations are carried out. The mother wavelet used is the Daubechies 6 (DB6), due
to its effectiveness in this area has been already proved in previous related works
[1, 15, 16].

The decomposition level has been set to 3. This level was chosen because the
better classification results were obtained with this value. The patterns extracted

W(0,0)

W(1,1)W(1,0)

W(2,3)W(2,2)W(2,1)W(2,0)

W(3,7)W(3,6)W(3,5)W(3,4)W(3,3)W(3,2)W(3,1)W(3,0)

Fig. 2 WPT analysis, procedure of decomposition in approximation and detail information
through low pass filters and high pass filters, until decomposition level 3
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then, are vectors of 8 elements, which seems to be a proper number of inputs for
the NN. The decomposition level determines the frequency resolution offered by
each packet, that in this case is 312.5 Hz.

At each rotation speed, the features of all the conditions of fault are extracted.
An example of the results obtained is shown in Fig. 3.

4 Classification System

The architecture of NN used as intelligent classification system is the Radial Base
Function (RBF), because it has offered better results than the MLP and the
Probabilistic (PNN) in previous related works [15]. RBFs are constituted by three
layers of neurons, one of input, one or more hidden and one of output.

RBF architecture has a lot of advantages such as fast training and easy opti-
mization. This is due to the low number of design parameters that must be decided
by the designer, where the more critical are the number of neurons in the hidden
layer and the activation function.
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Fig. 3 WPT relative energies (%) at decomposition level 3 with mother wavelet DB6. a Healthy
bearing. b Inner race fault bearing. c Outer race fault bearing. d Ball fault bearing
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A critical parameter of the activation function is the spread. The spread is a
constant that means the critical distance between the input and the weight vector.
When this distance is reached, the output gets a value lower than a threshold.

The optimization of RBF parameters is carried out by a process examining the
number of neurons of the hidden layer, and the success rate versus the spread. The
value of spread that minimizes the number of neurons in the hidden layer (to
reduce the computational cost) and maximizes the success rate is chosen.

5 Results and Discussion

After training several NN to optimize the design parameters, a total number of
three RBFs were chosen, one for each rotation speed. Each NN is fed with 49
features of length 8 by each condition at every speed. The number of outputs of
each NN is 4, one for each condition. The characteristics of the trainings are
presented in Table 1.

During training process, the algorithm actualizes weight vectors between layers
until the sum squared error (SSE) falls beneath an error goal (set to 0.2) or a
maximum number of neurons in the hidden layer has been reached (700 neurons).

Success rates obtained at each speed are presented in Table 2, where the best
results exposed in [1] are also presented in order to make a comparison.

As can be observed, success rates have been increased in the present work. The
previous work used the coefficients of a narrow frequency band as features, while in
this work uses the energies of the whole signal (specifically the 8 packets generated

Table 1 Design parameters of the RBF at the three rotation speeds

RBF10 RBF20 RBF30

2*Data Distribution Training 75 % Training 75 % Training 75 %
Test 25 % Test 25 % Test 25 %

Spread value 0.6 1.3 1.4
Goal 0.2 0.2 0.2
Number of neurons in the hidden layer 30 19 7
Number of inputs at the pattern 8 8 8
Number of outputs 4 4 4

Table 2 Comparison of the success rates at different speeds with the obtained results in previous
related work with the same data

Current work Previous related work [1]

Speed (Hz) Hidden neurons Network accuracy (%) Hidden neurons Network accuracy (%)

10 30 91.38 30 85.71
20 19 91.78 30 81.63
30 7 92.58 30 77.04

Incipient Fault Detection in Bearings 69



at decomposition level 3) are selected. The number of inputs has been reduced from
18 coefficients to 8 levels of energy; however the information is related to a wider
frequency band. The improvement can be assigned to other effects that occur in the
machine when a fault appears, and a narrower band cannot detect.

The improvement of the success rates can also be assigned to the use of WPT in
place of MRA, and to the use of the RBF architecture as a substitute for MLP.

From Table 2, it can be stated that the rotation speed of 30 Hz offers the best
results both in terms of success rate (with a 92.58 %), and of computational cost,
giving the lower number of neurons in the hidden layer with respect to the speeds
of 10 and 20 Hz.

In Fig. 4 the partial results of the classification are shown.
The increasing of the success rates in this work allows a considerably better

discrimination between the kind of fault with respect to the previous work [1],
especially in the case of 30 Hz. Regarding the discrimination between health and
faulty bearing, results are also better at 30 Hz, where zero false alarms can be
found. The probability of not detecting a faulty bearing has been significantly
reduced at this speed.

1 2 3 4
10 20 30

0
10
20
30
40
50
60
70
80
90

100

Kind of defectRotation speed

P
er

fo
rm

an
ce

Inner race fault
Outer race fault
Ball fault
Health Bearing

1234102030

0

20

40

60

80

100

Kind of defect
Rotation speed

P
er

fo
rm

an
ce

Inner race fault
Outer race fault
Ball fault
Health Bearing

1 2 3 4

10
20

30

0
10
20
30
40
50
60
70
80
90

100

Kind of defect
Rotation speed

P
er

fo
rm

an
ce

Inner race fault
Outer race fault
Ball fault
Health Bearing

1 2 3 4

1020
300

10
20
30
40
50
60
70
80
90

Rotation speedKind of defect

P
er

fo
rm

an
ce

Inner race fault
Outer race fault
Ball fault
Health Bearing

(a) (b)

(c)
(d)

Fig. 4 Performance (%) of the three different NNs. a Health bearing classification. b Inner race
fault classification. c Outer race fault classification. d Outer race fault classification
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6 Conclusions

With base on the data obtained in the previous related work [1], a new analysis has
been carried out to diagnose early faults in ball bearings at three different loca-
tions. The methodology has been changed: instead of using the coefficients of a
specific frequency band with a MRA analysis, the WPT relative energies of the
whole signal have been used. Besides, the architecture of the NN is the RBF,
instead of the MLP.

The results obtained in the previous work have been improved. The success
rates when distinguishing healthy from faulty bearings have been increased,
however the better improvements have been achieved when discriminating
between different kinds of fault, where the previous methodology had a serious
lack. In the present work, the RBFs can detect with high accuracy the location of
the fault at the three speeds.

It can be stated that both the diagnosis and the computational cost of the NN,
are improved when the rotation speed increases, so the better solution found in this
work is the NN trained with the data obtained at 30 Hz.
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