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Abstract Due to the periodical motions of most machinery in steady state
operation, many diagnosis techniques are based on frequency analysis. This is
often performed through Fourier transform. Some extensions of these techniques
to the more general case of non stationary operation have been proposed. They are
based on signal processing advances such as time–frequency representations and
adaptive filtering. The technique proposed in this paper is based on the observation
that, when under non stationary operation, the vibrations of a machine are still
tightly related to the speed variations. It is thus suggested to decompose the
vibration signal over a set of time-varying frequency sine waves synchronized with
the speed variations, instead of fixed frequency sine waves. This set of time-
varying frequency sine waves is shown to be an orthonormal basis of the subspace
it spans in the case of linear frequency variations. An insight to the improvement
such decomposition can provide for spectral analysis, cyclostationary analysis and
time–frequency representation is given. Some application examples are presented
over both simulated signals and real-life signals.
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1 Introduction

In rotating machinery, under varying rotation speed, the vibration signal is
non-stationary and its statistic characteristics vary with time. For such a signal,
conventional general harmonic analysis, performed through Fast Fourier Trans-
form (FFT), doesn’t provide accurate information for the spectrum of the signal,
due to the non-constant speed. In order to overcome the limitations of this tech-
nique, appropriate methods have been dedicated to varying speed cases. The best
known methods are Order Tracking analysis by short-time Fourier transform
(STFT) [1], windowed Fourier transform (WFT) or angular resampling [2]. These
last years, new methods such as Vold Kalman filter [3] or Gabor Order Tracking
approach [4] have been introduced. The main characteristic of these methods is
that they are based on resampling scheme or sampled STFT. However in many
cases, all previous techniques have limited resolution or show a number of gaps
[5]. For the STFT, depending on the window used, analysis quality may be
affected. Regarding the angular resampling of the vibration signal, its drawback is
that the resonance frequencies of the rotating machine are disturbed by the process.

In order to avoid the previous shortcomings, we propose a new technique called
Speed Transform (ST) when the speed varies linearly. This new approach consists
in expanding the vibration signal into a series of elementary oscillatory functions,
whose frequencies depend on the variation of the speed. The main advantage of
the new approach is that it adapts to the vibration signal and components so that
the resonance frequencies are preserved.

The paper is organized as follows. In Sect. 2, ST is presented in both theoretical
and practical implementation aspects. In Sect. 3, ST is applied to simulated data
and in Sect. 4 it is applied to real-life data. Our conclusion is presented in Sect. 5.

2 Speed Transform, Theory and Practical Implementation

Applying Fourier analysis to a signal consists in decomposing that signal over a
basis of elementary oscillatory functions. The definition of the Fourier transform
of a signal sðtÞ is well known and is given by:

S fð Þ ¼ Zþ1

�1
sðtÞ e�2pjftdt ð1Þ

where the Fourier transform of the signal sðtÞ is denoted by Sðf Þ, t stands for time
and f for frequency. When actually applied to vibration signals, it usually comes to
a slightly different tool that can be described by:

S fð Þ ¼ 1
2T

ZþT

�T

sðtÞ e�2pjftdt ð2Þ
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It thus consists in evaluating the closeness of the signal sðtÞ to a set of ele-
mentary oscillatory functions e2pjft over a finite time interval T, or in other terms,
evaluating a mean contribution of each of these e2pjft functions to the signal over
that interval. In what follows, this practical tool will be considered as Fourier
transform.

The tool described by Eq. (2) exhibits a nice asymptotic property. Let us
evaluate the closeness of two functions of the basis e2pjf1t and e2pjf2t when the time
interval tends to infinity, i.e.:

lim
T!þ1

1
2T

ZþT

�T

e�2pjf1t eþ2pjf2t dt ¼ 0 for f12
1 for f1 ¼ f2

�
ð3Þ

This is equal to zero for f1 6¼ f2 (cross terms) and equal to one for f1 6¼ f2 (auto
terms). This property allows to evaluate the contribution of any e2pjft function to
the signal by applying Eq. (2), provided that the time interval is long enough to
ensure that the cross-terms vanish.

This tool is thus well fitted to the physical nature of vibration signals under
stationary operation. Indeed, the periodical movements of machinery generate
periodical components within the temporal moments of the signals. Due to the nice
property described by Eq. (3) these periodical components produce spectral lines
through Fourier analysis.

Under non stationary operation, Fourier analysis keeps its nice mathematical
properties but does not fit any more to the physical model of the data. Indeed,
many components of the vibration signal follow the speed variations, so that they
are not any more periodic. All the components that are tied to the rotation
frequency of the machine spread over a frequency band. Retrieving their amplitude
or even detecting them through Fourier analysis thus becomes difficult.

This is why we propose to use a basis of elementary oscillatory functions whose
frequencies follow the speed variations. This would allow preserving the main
advantage of frequency analysis, which is to fit to the physical model of the data.
But what about the mathematical properties of the decomposition over such a
time-varying basis? More precisely, do a set of e2pjR t

0Df ðuÞ du functions, whose
frequencies nDf ðtÞ follow the speed variations, still exhibit the property described
by Eq. (3)? We showed (see appendix) that provided the variations of nDf tð Þ are
linear versus time, that mathematical property still holds.

Let us give some specifications for this new analysis tool that will be called
speed transform:

• first, the frequencies of the basis functions should all be proportional to the
speed variations,

• their frequencies must always be smaller than the Nyquist frequency,
• they should be equi-spaced over the analysis band, in terms of proportion of the

rotation speed, rather than in terms of frequency band,
• they should be equi-spaced with such step Df tð Þ that no component tied to the

rotation speed could be missed in the analysis interval.
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In order to satisfy these specifications, let us first define some expressions: r tð Þ
will stand for the rotation speed in Hertz and T ¼ NTe for the duration of the
vibration signal, with N the total number of samples and fe the sampling period.
The different parameters used to generate the basis are shown on Fig. 1.
The rotation frequency (in green) and the basis functions frequencies (blue) are
represented versus the number of samples in reduced frequency.

The example is given for a N ¼ 64 samples base, with speed variations in
reduced frequency given by r tð Þ ¼ 0:1 þ 0:001 � t. The green plot represents the
rotation frequency variation r tð Þ and the red one represents the time-varying
frequency resolution Df tð Þ of the speed transform. It is proportional to r tð Þ and the
proportionality coefficient is an integer value k such that r tð Þ ¼ kDf tð Þ and
max Df tð Þf g� 1

T in order to have a sufficient resolution not to miss any component.
The basis B is composed of N

2 þ 1 ¼ 33 oscillatory functions bn tð Þ calculated as
follows:

B ¼ bn tð Þ ¼ e2pjnR t
0Df uð Þ du; 0� n�N=2

h i
ð4Þ

On Fig. 2 is displayed the modulus of the basis correlation matrix. As expected
from theory, it is a diagonal matrix with unitary diagonal terms. The non diagonal
terms should be zero but some side effects appear due to the fact that the basis
functions are finite length. These side effects can be minimized by applying an
apodisation window, such as Hamming window, as shown on Fig. 3.

As usual, the shape of the main lobe and side-lobes depends on the apodisation
window. The width of the main lobe and the maximum speed resolution
max Df tð Þf g are both related to the inverse of the length of the signal. This ensures
that one of the calculated samples at least will be located on the main lobe. This
prevents any component whose variations are not a integer multiples of Df tð Þ from
not being detected. In order to improve the amplitude estimation of these com-
ponents some interpolation can be applied, as in classical spectral analysis.
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3 Application to Simulated Data

We first applied this technique to the analysis of simulated toothed gearing
vibrations. The features of the simulated experiment are the following ones:

• the two wheels are respectively 20 and 22 toothed ones,
• the rotation frequency of the 20 toothed wheel is variable and given by

f20 tð Þ ¼ 16 þ 3t, the gearing frequency by feng tð Þ ¼ 20f20 tð Þ and the 22 toothed
wheel frequency by f22 tð Þ ¼ feng tð Þ=22.

• the vibration signal is given by s tð Þ ¼ seng tð Þ s20 tð Þ þ s22 tð Þð Þ with:
• seng tð Þ ¼ cos 2pR t0fengðuÞdu tð Þt þ ueng

� �
where ueng is a random phase
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• s20 tð Þ ¼
P8
m¼1

cos 2pmR t
0f20 uð Þduþ u20;m

� �
with u20;m random (resp. s22 tð Þ, f22 tð Þ

and u22;m).
• the total number of available samples is N ¼ 20000, i. e. a 1s time interval.

The amplitude spectrum of this simulated signal is displayed on Fig. 4. It was
calculated by applying a 65,536 sample Fourier transform over the whole signal,
with a Hamming apodisation window. Due to the speed variation, the energy of the
gearing fundamental and its sidebands spread over several frequency channels.
Only the lowest frequencies, corresponding to the inferior sidebands of the 36
toothed wheel modulation, can be separated. This comes from the fact that their
frequencies are varying slower than that of the higher frequency components.
Nevertheless, though they can be separated, the amplitude displayed on the
spectrum is erroneous, since the energy of each sideband is spread over several
neighboring frequency channels.

This problem cannot be totally overcome by the use of time–frequency dis-
tributions. Two spectrograms were calculated with different frequency resolutions.
The spectrogram displayed on Fig. 5 was computed over slices of 1,024 samples,
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Fig. 4 Amplitude spectrum of the simulated toothed gearing vibration signal
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Hamming windowing and a� of a slice overlap. The frequency resolution is thus
Df ¼ 19:53 Hz and the temporal resolution Dt ¼ 0:05 s, which would be enough to
follow the temporal variations of the speed but does not allow separating the
sidebands. Whereas the second spectrogram (Fig. 6), calculated the same way but
over 8,192 sample slices, not only fails to follow the temporal variations
(Dt ¼ 0:4 s) but cannot either separate the sidebands, despite a better frequency
resolution (Df ¼ 2:44 Hz), because the sidebands spread over neighboring fre-
quency channels.

Whereas the speed transform of the signal, displayed on Fig. 7, succeeds in
separating all the sidebands and estimating their amplitude. Instead of being
represented versus frequency, it is represented versus the proportion of the speed
signal that was used to build the speed transform basis. Here the speed signal was
that of the 20 toothed wheel, so that all the sidebands corresponding to that wheel
appear at harmonic positions of the speed signal. The transform was computed
over the whole signal with Hamming windowing and interpolated by 8.
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Fig. 6 Spectrogram of the vibration signal computed over 8192 sample slices
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Fig. 7 Speed transform (in black) displayed versus the proportion of the 20 toothed wheel
rotation frequency. Green lines are the true 22 toothed sidebands and red ones the true gearing
fundamental and true 20 toothed sidebands
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4 Application to Real-Life Data

Here the speed transform is applied to the vibration signal of a diesel engine.

In order to build the basis functions bn tð Þ ¼ e2pjnR t
0

rðuÞ
K du we first need to estimate

from the tachometer signal the function g tð Þ ¼ 2pR t0r uð Þ du, i.e. the angular posi-
tion of the shaft, if we suppose that it is zero for t ¼ 0. This can be easily done
based on the following properties:

• g tð Þ must be an order 2 polynomial
• It must be such that sin g tð Þð Þ ¼ 0 at each tick of the tachometer signal

A curve is built by associating an integer multiple of 2p to each tick time and a
curve fitting procedure allows finding the order 2 polynomial fitted to that curve.
The coefficients of this polynomial are then used to compute the value of g tð Þ at
any time t.

The speed transform has first been computed on the time interval between 30.6
and 32 s, where the rotation frequency is stationary and equal to 75 Hz (see
Fig. 8), in order to compare the result to Fourier transform.

The amplitude spectrum and the speed transform calculated on that interval are
displayed on Figs. 9 and 10. This confirms that the usual Fourier transform is
actually a particular case of the proposed speed transform. Note however a slight
improvement of the latter as compared to the former due to the compensation of
small speed fluctuations.

The technique has then been applied between 25 and 30 s, i.e., on a time
interval where the speed is linearly increasing. The amplitude spectrum and speed
transform are displayed on Figs. 11, 12 and 13. The capability of the speed
transform to adjust to linear speed variations is clearly demonstrated, even in the
high frequency range. Whereas one can only distinguish the H2 harmonic (firing
frequency of the engine) in the Fourier transform, all multiples of the H1
(crankshaft rotation) and H1/2 (thermodynamic cycle) are visible in the speed
transform. This opens a valuable perspective for order tracking at virtually no cost
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Fig. 8 The rotation speed of the diesel engine estimated from the tachometer signal
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Fig. 9 The Amplitude spectrum and speed transform calculated between 30.6 and 32 s
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Fig. 11 The Amplitude spectrum and speed transform calculated between 25 s and 30 s
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as compared to other techniques, such as those based on time-varying filters or
angular resampling preconditioning.

5 Conclusion

Fourier analysis plays a prominent role in the vibration analysis of rotating
machines. Strictly speaking, it applies only to the situation where the machine is
rotating at exactly constant speed. The extension of Fourier analysis to non-sta-
tionary operation is a current and active field of research. Whereas valuable
solutions exist, for instance based on angular resampling, this paper proposed a
new speed transform which inherits all the properties of the Fourier transform—in
particular the orthonormality of its functional basis—when applied to linear speed
variations. This not only has the advantage of simplicity, but it also returns
properly scaled results. The speed transform has potential in several applications,
and in particular in order tracking. Due to its resemblance to Fourier analysis, it
opens a bunch of signal processing possibilities dedicated to non-stationary sig-
nals, such as non-stationary demodulation, non-stationary envelope analysis,
cyclo-non-stationary analysis, etc. A short-time version of the speed transform is
also conceivable to track arbitrary speed variations that can be approximated as
piece-wise linear.
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Appendix

We are interested in:

lim
T!1

I Tð Þ

where:

I Tð Þ ¼ 1
2T

ZT

�T

e2pj f1 tð Þ�f2 tð Þð Þtdt

Let us suppose that the variations of f1 tð Þ and f2 tð Þ are linear. In this case, there
exist a et b such that:

f1 tð Þ � f2 tð Þ ¼ 2at þ b

Which leads to:

I Tð Þ ¼ 1
2T

ZT

�T

e2pj at2þbtð Þdt

I Tð Þ ¼ 1
2T

ZT

�T

e2pj a tþ b
2að Þ2�b2

4a

� �
dt ¼ 1

2T
e�2pjb

2

4a
ZT

�T

e2pj a tþ b
2að Þ2

� �
dt

The variable is changed from t to x:

x ¼ t þ b
2a

dt ¼ dx
�T þ b

2a � x� T þ b
2a

������
Which leads to:

I Tð Þ ¼ 1
2T

e�2pjb
2

4a
ZTþ b

2a

�Tþ b
2a

e2pjax2
dx

The integral can be decomposed into three parts:

ZTþ b
2a

�Tþ b
2a

e2pjax2
dx ¼ I1 þ I2 þ I3
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with:

I1 ¼ R�T

�Tþ b
2a

e2pjax2
dx

I2 ¼ R�T

�T
e2pjax2

dx

I3 ¼ RTþ b
2a

T
e2pjax2

dx

������������
The integrals I1 et I3 are finite so that the only problem is to calculate:

lim
T!1

1
2T

e�2pjb
2

4aI2 Tð Þ

Let J Tð Þ ¼ RT
�T

e2pjat2
dt

lim
T!þ1

J Tð Þ ¼ J1 ¼
Zþ1

�1
e2pjat2

dt

Let us change variable t to: u ¼
ffiffiffiffiffiffiffiffi
2pa
p

t
The expression becomes:

J1 ¼
1ffiffiffiffiffiffiffiffi
2pa
p Zþ1

�1
eju2

du ¼ 1ffiffiffiffiffiffiffiffi
2pa
p 2

Zþ1

0

eju2
du

Which is proportional to the well known Fresnel integral: Rþ1
0

eju2
du ¼

ffiffi
p
p

2 ejp4

So that J1 ¼ 1ffiffiffiffi
2a
p ejp4

This proves that lim
T!1

I Tð Þ ¼ 0 whenever f1 tð Þ � f2 tð Þ 6¼ 0

If f1 tð Þ � f2 tð Þ ¼ 0, it is easy to show that I Tð Þ ¼ 1 for any value of T.
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