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Abstract In this work, a novel thresholding method is proposed to improve the
accuracy in segmentation process on thermal images. Characteristics of the ther-
mal distribution around convex Regions of Interest (ROI) are the core of this
method, used as input markers for a segmentation process based on watershed
transform. This method based on data variability reduces the classification error by
about 10 % and reduces the number of features by about 80 % from the set of 360
elements. Moreover, the proposed method provides some tracks for fault locali-
zation, demonstrated for a bearing unbalance test rig.

Keywords Fault identification � Thresholding � Region of interest � Thermal
images

1 Introduction

Bearing faults, like motor shaft misalignment, cause damages on rotating machine
parts such as couplings, bearings, engine components and loads, among others [1].
Therefore, the main goal of machine maintenance is to avoid the unexpected
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machine damages, using two maintenance strategies: corrective and preventive.
For the former one, the machine operator repairs or replaces the damaged part as
soon as the fault is present. In addition, the latter one suggests the frequent
inspection on the machine, assessing the machine part deterioration degree. Hence,
an adequate preventive maintenance would be accomplished by providing ade-
quate information of some Region of Interest (ROI) on thermal image, where the
hot spots would be located. However, due to the characteristics of thermal images,
conventional methods of ROI segmentation are not adequate [2], giving this
segmentation to be manually accomplished by the human expert.

In this work, the proposed multi-level thresholding method improves the ROI
segmentation method for thermal images, thus giving local information for
machine fault identification. Based on the local variability of the pixel distribution
of thermal images, the method gives the following features: first, the threshold
adjustment is invariant of the statistical distribution model estimated from the
image; secondly, the thresholding method fits with segmentation techniques for
images exhibiting variability around local maximal values.

2 Proposed Thresholding Method

Variations measured on thermal image are limited by the geometry of each
machine part. Thus, thermal changes occur at low contrast areas, bounded by
smooth edges. Therefore, ROI segmentation is adequate to characterize several
machine parts, depending on the thermal pattern exhibited in operation. In this
case, the Watershed Transform is a commonly segmentation technique, where the
topological gradient image generates borders, namely watershed lines, which
define the contour of a segmented object on the image.

Proposed method consists on a modified iterative extraction of disjoint inter-
vals, based on the pixel distribution in the image, generating the quantized image
with the weighted average of the values belonging each interval, and then assigned
to represent each element of image [3]: noting X as the original thermal image, k as
a threshold parameter, and [T1, T2] as the interval calculated for some iteration,
following algorithm describes the proposed method:

Step 1. The first interval (at the iteration n = 0) is defined as [Ta(0), Tb(0)] = [a, b],
where a = min (X) and b = max (X);

Step 2. For each interval [Ta(n), Tb(n)] at the iteration n, the weighted mean l and
standard deviation are calculated a [ j ]

Step 3. Thresholds for the next iteration n ? 1 are calculated as:
Ta(n ? 1) = l - kr and Tbðnþ 1Þ ¼ lþ krb c; where :b c denotes floor
operation;
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Step 4. A new interval is created as:
[Ta(n ? 1), Tb(n ? 1)] = [Ta(n ? 1) ? 1, Tb(n ? 1) - 1], the incre-
ment/decrement of the interval values by 1 avoids interval overlapping;

Step 5. Pixel values belonging inside remaining intervals TRa ¼ ½TaðnÞ; Taðnþ
1Þ� and TRb ¼ ½TbðnÞ; Tbðnþ 1Þ� are represented in quantized image with
the respective values lðTRaÞ and lðTRbÞ;

Step 6. If Ta nð Þ � Tb nð Þ� 2; update n ¼ nþ 1; then go to Step 2.

Hence, the proposed method suggests that those pixel sets containing a high-
grade of variability belong to a convex ROI. Moreover, parameter k is unknown.
An inadequate choice of this parameter can lead to inaccurate quantization of the
image, therefore a value of k is empirically estimated to get several intervals
related with convex ROIs.

Another problem concerns with objects not belonging to the fault identification
process, like cables and sensors, appearing as segmented ROIs. To address this
problem, the segmentation process uses a region–based masking, eliminating those
connected regions being less than z pixels in the image. This assumes that the
objects inside the ROI of size less than z pixels are not relevant to the identification
process. Thus, following algorithm describes the segmentation process:

Step 1. The proposed thresholding algorithm processes the thermal image, giving
quantized masks. The first high–valued quantized interval corresponds to
ROI–candidate areas, generating the binarized image by assigning ones at
the ROI–candidate areas, and zero otherwise.

Step 2. Watershed Transform segments the ROI on thermal image, using as local
minimal those values at the center inside of the watershed lines. It gives a
number of watershed regions.

Step 3. Comparison between statistical mode of the values of each watershed
region, and the statistical mode of same region in binarized image. If the
latter value is equal to zero, the watershed region is discarded. Thus,
labeling of the remaining watershed regions is ROIm; m ¼ 1; . . .; M;
where M is the number of remaining ROIs.

3 Feature Extraction for Fault Identification

If the thermal camera detects some isotropic heat propagation, then an isotropic
gradient operator (like Gaussian) is capable to identify a possible fault, by esti-
mating the probability that a pixel belongs to a relevant ROI [4]. However, faults
can appear as anisotropic contour regions; then, an anisotropic operator would
obtain information about the value and direction in which heat spreads. In this
case, the usage of Sobel and Prewitt gradient operators allow detecting changes of
heat propagation magnitude and direction in image for fault identification
purposes.
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Thus, the gradient operators Tx and Ty are calculated for the directions x and
y of the thermal image X, respectively, as
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�1 0 þ1
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where Eqs. (1) and (2) refer to the Sobel and Prewitt operators, respectively. Thus,
the convolution between image and either vertical Tx or horizontal Ty gradient
operator gives the gradient vectors Gx ¼ Tx � X and Gy ¼ Ty � X; respectively.
Finally, Eq. (3) extracts the gradient direction feature a at each pixel position ðx; yÞ
as:

aðx; yÞ ¼ tan�1 Gy

Gx

� �
ð3Þ

4 Experimental Set-Up

Evaluation of the proposed method consists on its implementation on a rotating
machine fault identification system. Specifically, the method belongs to the ROI
segmentation process on the thermal image used for fault identification. The fol-
lowing steps are part of the evaluation process: (1) processing of acquired thermal
image by the proposed method, giving a quantized image under a selected
parameter k; (2) mapping of the quantized image, giving the watershed lines within
the ROI segmentation algorithm; (3) gradient feature extraction from segmented
ROIs; (4) calculation of classification error rate for different machine conditions,
using parameter k as variable and gradient values as inputs.

4.1 Test Rig and Image Database

Figure 1 shows the testing rotating machine of the fault identification system,
consisting of a three-phase induction motor, with a rigid coupling between its shaft
and another shaft containing 2 drilling wheels. Insertion of weights of arbitrary
mass in one of these wheels induces the following two unbalance types: the first
one, by inserting weights in the drilling wheel closer to 12 cm from the dock,
being labeled as First Wheel Unbalance (FWU); the second one, called Second
Wheel Unbalance (SWU), by inserting weights into the farther bearing at 43.5 cm
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from the coupling. Machine operation recording lasts 2 h since its startup. Thus,
there is an observation for each different operating condition: Normal, FWU and
SWU.

Thermal image is the result of the decomposition of recorded video frames into
a YUV-space color image sequence. At a video recording rate of 1 frame per 60 s,
and noting that the first and second hour of machine operation is an adequate
observation time (when the motor achieves a stable temperature), the total number
of recorded images per observation is then 60. Moreover, each required image
comes from the Y intensity plane of each element of YUV-space sequence, since
this plane is a projection of the thermal chroma values. Table 1 shows other video
recording parameters.

By observation of the operation conditions, a preliminary segmentation of a
ROI corresponding to the first and second bearing aims to improve the fault
identification process [5], because thermal variations in this ROI are directly
related to the mechanical effects due to unbalance. Thus, the ROI labeled as ROI12
in Fig. 2 is the database image, used for the segmentation algorithm.

4.2 Thresholding and Segmentation

The k-parameter adjustment assures a finite number of disjoint intervals related
with convex ROIs. So, at a determined value k, the high–valued intervals keep the
maximal information of thermal distribution. In this case, values of k = 1, 2, 3 are
previously assigned. Besides, a region–based masking is implemented after the
thresholding process to prevent including of non-relevant objects for the identi-
fication process, such as the sensor and cable objects placed along the machine.

Fig. 1 Test rig image
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By observation of non-relevant objects in image, an assumed ROI size threshold is
z = 200 pixels. This value would vary for another experiments and test rigs. The
coordinates of pixels belonging selected ROIs are part of the data required for the
feature extraction process.

4.3 Feature Extraction and Classification Error Rate

The Edge Direction Histogram (EDH), proposed in (6), determines the relevant
phase values a used for fault identification, for each segmented ROI M: (1) Eq. (3)
extracts the gradient direction afor each point, using either Prewitt or Sobel
operator; (2) rounding of each direction, up to the nearest integer value, gives the
direction vector ~p ¼ aðx; yÞf g 2 N; for each coordinate ðx; yÞ 2 N; (3) Principal
Component Analysis (PCA),based on histogram of direction vector ~p; gives the-
relevance weight for each direction.

After sorting of the relevant directions, evaluation of classification performance
requires 10 cross-validation trials (70 % training and 30 % validation images,
sorted randomly), by comparing the classification error between trials using all
directions and trials using the most relevant directions. Noting that location is the
main characteristic for considered fault conditions (FWU and SWU), the evalua-
tion for each selected ROI M would give a track for not only fault identification,
but also fault localization, defined as Localized Fault Identification (LFI) [2]. The
number of relevant directions a are found when the classification error value is less
than 10 %.

Fig. 2 Some preliminary
ROIs

Table 1 Video camera specifications

Camera parameters (FLIR A320) Emissivity 0.82
Reflected temperature 20 �C
Distance between camera and test rig 1.5 m
Relative humidity 50 %
Ambient temperature 20 �C
Thermal scale 10–50 �C
Frame size 640 9 480 pixels

Video acquisition parameters Video format MPEG-2
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5 Results

5.1 Thresholding and Segmentation

Figure 3 shows the mean and standard deviation of quantized values for the three
most high–valued intervals, for each considered operation condition, calculated by
proposed thresholding method, using k = 1, 2, 3. In this case, the optimal value k0

is found at the maximal distance between the mean value of first and second
interval. This condition implies that the method provides adequate thresholds for
the segmentation process, allowing this an accurate ROI segmentation [6]. As
result, the selected value is k0 ¼ 1:

Moreover, the mean number of iterations achieved in Table 2 measures the
proposed threshold method performance, for considered parameter values
k0 ¼ 1; 2; 3. In this case, the lower number of iterations is found at k ¼ k0 ¼ 1; for
the three considered conditions.

Figure 4 shows an example of the calculated intervals per iteration, using the
proposed thresholding method at k0 In this case, the test image corresponds to the
3600 s interval, under FWU condition; thresholding process stops at 4 iterations,
giving a total of 8 intervals. For the sake of illustration, interval labels are by
magnitude level order. As result, the interval number 1 gathers the highest thermal
values, related with high variability.

Thereafter, results on segmentation process (Fig. 5) describes the following: (1)
quantization of thermal database image, by the proposed thresholding method
using the parameter k0, gives the quantized image of Fig. 5a, where the highest

Fig. 3 Intervals with higher pixels for the considered operating conditions. a FWU. b SWU.
c Normal
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interval (in white) fits with convex ROIs; (2) the masks belonging to the first
interval composes the binarized image shown in Fig. 5b; (3) the watershed
transform segments the thermal image, using region borders as watershed lines
shown in Fig. 5c; (4) the region–based masking eliminates regions not belonging
to identification processes; in this case, the regions belonging to an accelerometer
sensor and a power cable disappear from segmented image (Fig. 5d); (5) finally,
the labels for each segmented ROI masks appears in Fig. 5e as
ROIm;m ¼ 1; . . .; 5.

5.2 Feature Extraction and Classification Error Rate

Direction feature extraction, for each labeled ROIm and for the database image
ROI12; gives correspondent sample vectors required as inputs of classification
process. Figure 6 shows the results on the comparison between classification error
of each ROIm and error of ROI12: For the Prewitt operator, ROI3; ROI4 and ROI5
achieve an error lower than ROI12, requiring less number of relevant a values.
Moreover, the classification error obtains less than 10 % using around of 8 ori-
entations at ROI3, 4 orientations at ROI4, and 10 orientations at ROI5. In the case
of the Sobel Operator, also ROI3, ROI4, and ROI5 achieve an error lower than
ROI12, requiring less number of relevant a values, giving classification errors less

Table 2 Thresholing iterations for different k values

Operating condition K value

1 2 3
FWU 4 7 13
SWU 4 7 17
Normal 4 7 18

Fig. 4 Resulting intervals
after thresholding process
using proposed method k = 1
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than 10 % using around of 8 orientations at ROI3, 3 orientations at ROI4, and 8
orientations at ROI5.

6 Discussion

Given results of Fig. 4 indicate that the proposed thresholding method is adequate
for fault identification, by observing the calculated intervals for different operation
conditions. For example, using adjust parameter k ¼ 1, a thermal variation
between 120 and 140 of the quantized value of the first interval means that the
machine is in Normal condition, whereas a thermal variation above 140 of the
quantized value, at the same interval, would be identified as a fault.

From given results of Fig. 5, the proposed method gathers the most measured
variations into one interval, using the fewest number of iterations at k ¼ 1: In this
case, the first interval achieves the most variable values, at the first iteration. Since
the thresholding process is not enough for adequate fault localization, results of
Fig. 5a and b give a relationship between the most variable interval and convex
ROI, relating both thresholding and segmentation processes. In this case, the
highest interval fits with convex ROIs of greater value variability. Using the given
results of Fig. 5c–e, the proposed method helps to the watershed segmentation
process with the following: firstly, avoiding the over–segmentation; secondly,
eliminating those regions not belonging for the identification process.

Results given from Fig. 6 show that the number of relevant elements of the
direction gradient feature a is around 10. Although the minimal number of relevant
directions correspond to ROI4 using the Sobel operator, the ROI4 and ROI5 can

Fig. 5 ROI12 thermal image segmentation process. a Quantized image. b Mask for ROIs.
c Preliminary Watershed segmentation. d Masks for ROIs after false object extraction. e Labeled
ROIs after segmentation
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achieve a less number of relevant directions a, using the Prewitt operator.
Therefore, selection of latter operator gives an adequate feature extraction process.
Hence, the proposed thresholding method, with parameter j ¼ 1, gives segmented
ROIs reducing the bearing fault classification error by about 10 % and reducing the
number of relevant features by about 80 %, in comparison with the image ROI12.
Finally, using results shown in Fig. 6, for both operators, ROI4 would be the key
region for fault localization.

7 Conclusion

In this work, a proposed multi–level thresholding method improves the segmen-
tation process of convex Regions of interest ðROIÞ for image–based fault identi-
fication and location systems.

Method evaluation uses a bearing fault identification system, requiring as input
database a thermal image acquired on related test rig, the watershed transform as
segmentation process, and the orientation gradienta as fault identification feature.
Results provide the following highlights: (1) the method provides an adequate
measure for fault identification, calculating an interval related with convex ROIs,
being candidates to enclose a fault zone; (2) reduction of feature elements is
suggested, to increase the fault classification rate, giving the Prewitt operator as
adequate for feature extraction; (3) for this test rig, segmented ROI3;ROI4 and
ROI5 are candidate regions for fault location.

Following works will be under consideration: firstly, a comparison between the
quantized value of the proposed thresholding method and other measures, such as
the statistical measures proposed in [7] for fault identification systems using
thermal images; secondly, the usage of another feature, like Local Binary Patterns,
to improve the accuracy of fault identification and localization system; finally, the
use of method on other test rigs related with machine faults, acquiring more
information about the fault phenomena.

Fig. 6 Classification error using gradient features from segmented ROIs. a Prewitt operator.
b Sobel operator
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