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Preface

Third edition of the International Conference on Condition Monitoring of Machinery
in Non-Stationary Operations (CMMNO13) was held in Ferrara, Italy. This yearly
event merges an international community of researchers who met—in 2011 in
Wrocław (Poland) and in 2012 in Hammamet (Tunisia)—to discuss issues of diag-
nostics of rotating machines operating in complex motion and/or load conditions.

The growing interest of the industrial world on the topics covered by the
CMMNO13 involves the fields of packaging, automotive, agricultural, mining,
processing, and wind machines in addition to that of the systems for data acqui-
sition. The participation of speakers and visitors from industry makes the event an
opportunity for immediate assessment of the potential applications of advanced
methodologies for the signal analysis.

As a matter of fact, signals acquired from machines often contain contributions
from several different components as well as noise. Therefore, the major challenge
of condition monitoring is to point out the signal content that is related to the state
of the monitored component. This is before all else demanding when the machines
operate in non-stationary conditions.

The book is the collection of the CMMNO13 Proceedings, and it is divided into
the following parts, namely:

Part I: Keynote Speeches
Part II: Rolling Bearing Diagnostics
Part III: Modelling of Dynamics and Fault in Gear Systems
Part IV: Signal Processing for Machine Condition Monitoring
Part V: Experimental and Numerical Modeling of Machine Dynamics
Part VI: Mechanical Systems Diagnostics

Part I collects some of the speeches given at CMMNO13 by: Prof. Nicolò
Bachschmid, Prof. Cécile Capdessus and Prof. Diego Galar.

The topic of the Part II and III is the vibration analysis for the diagnosis of faults
in Gearbox and Bearings. De facto, these components play a pivotal role in the
rotating machine scenario. Even if the study on incipient failure detection of
gearboxes and bearings started over two decades ago, there is still a great need to
implement new algorithms for fault diagnostics especially when the machine
operates in nonstationary conditions.
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Part IV shows that modern condition monitoring extensively requires advanced
signal processing techniques. This part embraces complex techniques as well as
the use of the ‘‘Instantaneous Angular Speed’’ and the ‘‘Empirical Mode
Decomposition’’.

Part V addresses the expected steps for success of condition monitoring
methods: test rig development and the numerical modeling of machine dynamics.
As a matter of fact, the real behavior of machines can be only studied with
numerical models experimentally validated.

In the last parts of the book, a miscellaneous of particular case studies involving
cutting tools, excavators, rolling mills, and water distribution networks are pre-
sented. The papers presented in this part give the solution to individual applica-
tions of monitoring and diagnostics of such complex machines. The presented test
cases come directly from industry needs and observation of industrial real
problems.
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Dynamical Behavior of Rotating
Machinery in Non-Stationary Conditions:
Simulation and Experimental Results

Nicolò Bachschmid and Steven Chatterton

Abstract Condition monitoring of rotating machinery is generally performed in
stationary conditions or quasi-stationary conditions. Assuming linearity of the
system its dynamic behaviour can be simulated in the frequency domain. Simu-
lated results are then compared to measured results and the comparison allows to
apply model based diagnostic procedures. As soon as the system presents strong
non-linearity, simulation must be performed in the time domain, including also
iterative procedures, which may become cumbersome. When the dynamic
behaviour of linear or non-linear systems in non-stationary conditions is simulated,
the time domain integration must be necessarily used. Accuracy of simulated
results gets weaker; comparison with measured results for diagnostic purposes
becomes difficult or ineffective; model based diagnostic approach seems not
applicable. Monitoring of machines in ‘‘strong’’ non-stationary conditions is
generally performed only by means of accurate signal analysis, without modelling
the machine or the process. In this paper the simulation of some typical behaviour
of rotating machines in weak or strong non-stationary conditions in the time
domain is presented and discussed. Some experimental results are also presented
and compared to simulations. Further examples of systems with strong non-line-
arity, that in stationary conditions exhibit non-stationary vibrations, are also given.
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1 Introduction

Continuous condition monitoring of rotating machinery by means of vibration
measurements is a common praxis in all kind of industrial plants. The data col-
lected and the comparison with reference data allow to perform the surveillance of
the machine, to detect malfunctioning conditions and to trigger alarms or shut
downs. In intelligent monitoring systems these data can be processed in order to
enable the use of automatic diagnostic procedures. Among these the model based
diagnostic procedure, that allows to compare measured results with calculated
ones obtained by means of models of the machine and of the malfunctions, seems
to be the most promising procedure. In stationary conditions this procedure proved
to be highly effective when data are available in many different quasi-stationary
(or steady state) operating conditions, typically during the long lasting run-down
transients of turbo-groups which are considered a sequence of steady state oper-
ating conditions at different rotational speeds. Linearity of the system must be
assumed, simulations are made in the frequency domain, and the model based
diagnostic procedure is then developed in the frequency domain. As soon as the
system becomes non-linear, although being quasi-stationary, this approach is not
anymore accurate or even not applicable, depending on the strength of the non-
linearity. The simulation of highly non-linear systems must be effected necessarily
in the time domain. For smaller or weaker non-linearity also iterative procedures in
the frequency domain and the harmonic balance approach can be used.

When the condition of the machine is non-stationary, time domain simulation is
generally needed (instead of frequency domain) in order to enable the model to
follow the changing condition of the machine.

Non-stationary conditions may be generated by:

1. Rapidly changing the rotational speed or the frequency of excitation
2. Changing the excitation amplitude and frequency
3. Changing system parameters
4. Instability
5. Systems with strong non-linearity (which with stationary excitation exhibit

non-stationary motion).

Some of these changes in non-stationary condition may be slow, some others
are rapid.

When changes are slow and the system is linear, the approximation of con-
sidering discrete steps in time in which the condition is considered steady or
stationary (and the vibrations are then calculated in the frequency domain), can be
used, which is enormously convenient for computer time. The model based
diagnostic approach in the frequency domain can then be used.

Conversely, when changes are rapid, time domain integration must be neces-
sarily used.

The simulation in the time domain of systems modeled by means of 3D finite
elements with rather refined mesh, and still more when some non-linearity is
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present (like friction contacts for instance), may become so cumbersome that
simulations are not anymore affordable. Modal reduction can then be used for the
linear part of the system for strongly reducing the degrees of freedom: with few
degrees of freedom time domain integration is then affordable.

One of the problems in monitoring machines in non-stationary conditions is
certainly the definition of a reference situation. The actual transient conditions of
the machine should be identical to the reference conditions (e.g. same speed and
thermal transient, same initial conditions and so on), to allow a comparison and
define the deviation from normal behavior and therefore the malfunctioning
condition. Otherwise only an accurate model can predict the behavior in different
transient conditions, which could be a very difficult task.

A series of examples of simulations (sometimes compared to experimental
results) will be given and discussed in the following.

2 Simulation of Transient Behavior of Rotating Machinery
Driven by Electric Motors

In this example the start up of a three-phase electrical motor driving a centrifugal
pump under no load, modeled with finite beam elements (one torsional degree of
freedom per node) and concentrated mass and moments of inertia of the impeller,
is simulated. The start up torque time history is given by the electric motor
manufacturer. Figure 1 shows the driving torque (bottom diagram) and the results
obtained as rotation, velocity or speed, acceleration as typical example of Runge–
Kutta time integration.

Of course also torsional deflections are calculated in each element of the finite
element model, from relative rotations between the element nodes, from which
maximum stresses can be evaluated and compared to the material strength. Such
kind of calculation is always required for shaft lines in which electrical machines
(generators or motors) are present. Generally the worst conditions are the torsional
vibrations excited by short circuits, where the torque may have peaks higher even
by one order of magnitude with respect to rated torque. When a torsional natural
frequency is excited during this transient severe stresses may appear in some
section of the shaft line and shaft strength must be checked. Fortunately this is a
transient event and material fatigue may not be considered.

3 Simulation of Transient Behavior of Vibrations of Blades
During Steam Turbine Run-up Transient

This example is taken from [1]. The analyzed blade row is the last stage (con-
ventionally called L-0) of a low pressure (LP) steam turbine, composed by 12
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packs of 10 blades each. The blades are grouped in packs of 10 blades by welded
shrouds on the tip of the blades and snubbers or lashing wires at an intermediate
length of the blade. The first vibrating mode of the pack, which corresponds to an
in-phase tangential motion of the blades, has a numerical frequency of 115 Hz.
This frequency could be excited in resonance with an engine order 3 at a rotational
speed of 2,300 rpm during the run-up of the turbine. This is exactly what happened
during the run-up of the machine on the plant, as can be seen from the experi-
mental vibrations reported in Fig. 2. The excitation comes from a non uniform
static pressure distribution around the rotating blade row which has apparently a
rather strong 3rd harmonic component in the Fourier expansion of the steam
pressure around the circumference.

Figure 2 shows the vibration time histories of the first blade of each of the 12
groups as function of the rotational speed during the speed rise between 2,207 and
2,440 rpm which occurred in 7s (with an acceleration of 3.48 rad/sec2). For the
shaft lateral vibration measurement the acceleration is sufficiently low to consider
the transient as a sequence of steady state conditions at different rotational speeds.
Records were obtained by means of a tip-timing measurement system. Colors
indicate phase of vibration with respect to the 1xrev. reference, and show typical
phase rotation by passing resonance. Natural frequencies, damping and even

Fig. 1 Start up transient of electric motor driven pump evaluated in one node of the f.e. model
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excitation seem to be slightly different from pack to pack, due to manufacturing
and assembling tolerances, and to some irregularity in the excitation. Being the
excitation a 3rd engine order (with a 3xrev. exciting frequency) its acceleration is
10.45 rad/s2 (three times the rotational acceleration). The effect of this rather high
acceleration is clearly visible in the graph: the maximum peak is followed by a
series of smaller peaks due to a beating phenomenon between natural and exciting
frequency. From this experimental record it is possible to identify both the exci-
tation strength and the modal damping of the blade pack, which are both unknown.

A one d.o.f. modal model of the pack has been build: the stiffness of the pack
for this tangential deflection has been defined by applying static tangential unit
loads to a finite element model of the blade pack and evaluating the deflections.
The modal mass has been deduced from known natural frequency. The modal
damping has been defined by comparing the time histories calculated with different
values of damping ratios, and unit excitation, to the experimental curves: best
fitting defines the modal damping. These time histories are obtained with the usual
Runge–Kutta time integration. Being the system linear the time history shapes are
independent from intensity of excitation. These curves are shown in Fig. 3: in

Fig. 2 12 blade pack vibration time histories passing a resonant frequency

Fig. 3 a Vibration time history; b Vibration amplitude time histories for different damping ratios
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Fig. 3a one generic time history and in Fig. 3b the vibration amplitude as function
of time for different modal damping ratios. Resulting best fitting has been found
for modal damping between 0.2 and 0.3 % for the different packs.

Maximum amplitude with unit excitation (1 N) and 0.2 % damping ratio in
stationary conditions would have been 63 lm, to be compared to 42 lm reached
during transient excitation. With this damping ratio and measured vibration
amplitude of 2 mm then also the excitation amplitude of the blade pack has been
evaluated by proportionality: its value resulted something less than 50 N.

This example shows that system identification is possible with very simple tools
also for non-stationary conditions. Also the monitoring of blade vibration by
means of tip timing measuring system, for detecting cracks in blade roots, which
affect natural frequencies and vibration amplitude, could be possible provided that
the acceleration and operating condition of the machine are exactly the same in
each run-up transient.

4 Simulation of Blade Rows with Non-Linear Contact
Conditions: Single Blade Modeled as 1 d.o.f. System

This example is taken from [2]. A complete integrally shrouded blade row with
gaps between shrouds has been modeled by means of 1 d.o.f. per blade modal
model representing its first vibration mode, and with non-linear spring and
dampers for simulating the contact force between shrouds. Strong model reduction
is strictly necessary for having acceptable computer time in calculating blade row
behavior. Some gap is allowed between shrouds, harmonic excitation close to
resonance is applied and resulting vibrations are calculated. The real blade
mounted on a test block and its f.e.m. model showing its first vibration mode are
represented in Fig. 4b, and the circular reduced model of the complete row
composed of 120 blades is shown in Fig. 4a.

Due to non-linearity time step integration has to be used, and vibrations can
result with some chaos, as it is shown in Fig. 5, where vibration time histories of a
single blade are represented in two different excitation conditions. The red curve
indicates the behavior when shrouds are never in contact (in case of high gap
between shrouds) and black curve indicates the resulting vibrations when shrouds
get in contact. The contact state (0 open and 1 closed) is indicated by the blue line
below in two graphs one for each side of the shroud.

Diagram of Fig. 5a shows the start up transient from stand still before reaching
a steady state in resonant conditions: the contact between shrouds reduces con-
sistently the vibration amplitudes with respect to the case with blades with non-
contacting shrouds. Diagram of Fig. 5b shows a longer transient in non resonant
conditions, where contact generates random vibrations with higher amplitudes than
blades with non-contacting shrouds. Other blades behave similarly.
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This is an example of a system in stationary conditions, with a stationary
excitation, that behaves randomly which is not exactly a stationary condition, due
to a high contact non-linearity. Monitoring blade vibrations in these conditions
(which are stationary random) would be rather difficult, despite the fact that in the
vibration spectra as that one shown in Fig. 6, some lines are repetitive and could
be used as reference.

The contact model is obviously rather rough. More realistic models require to
define in the contact area parts which are in sticking contact, parts which are in a
sliding or micro-sliding contact, and parts which are separated, which are function
of friction coefficient and of contact normal and tangential stiffness, which in turn
depend on penetration depth. A more realistic calculation is presented in the
following.
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Fig. 5 Vibration behavior of one blade of the row in different excitation conditions: a in
resonance; b out of resonance

Fig. 4 Integrally shrouded blade row with non-linear contact conditions between shrouds
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5 Simulation of Groups of Blades with Non-Linear
Friction Contact Conditions: Full Finite Element Models
for Blades and Shrouds

Different contact conditions with different contact forces between shrouds of a
group of blades mounted on a test block (represented in Fig. 7a) have been sim-
ulated. The complete analysis is described in detail in [3] In the experimental tests,
the two internal blades (blades 2 and 3) will be excited independently by two
shakers with the same force, but with a predetermined phase shift in order to
simulate different engine order excitations of the blade row in the machine. A
screw on the top of the test block generates between shrouds a suitable preload
contact force which will be measured by a load cell. Resonant conditions are
investigated by simulations for emphasizing dynamical behavior. Load has been
applied in three steps: first the load from bottom to the blade roots (for simulating
centrifugal load on blades in the stationary test rig), then the contact preload, and
finally the harmonic loads on the blades, possibly in resonance. Contact pressure
distribution after the two load steps are also shown in Fig. 7b.

The natural frequencies and a frequency response curve have been previously
calculated with a linear model (with frictionless no separation contact between
shrouds). The maximum vibration amplitude in resonance (511 Hz) and out of
phase excitation resulted 30 lm. The non-linear frequency response with friction
contact on all shrouds has to be calculated at the end of 150 load cycles for getting
a steady state solution. Therefore the computation of the steady state response of
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the system in correspondence of one exciting frequency requires up to a maximum
of 150 h with a cluster of 32 processors. The results are stored only for the last
load step (when steady state condition has been reached) and may require up to
90 GByte. Several hours are required to download these results on a workstation.

Some results are shown in Fig. 8a: vibration amplitude has been reduced dra-
matically due to the increased stiffness in sticking contact areas, and to friction in
micro-slipping contact in the remaining contact areas: only 1.8 lm (Fig. 8a), with
a phase delay of 45� between the two excitations applied to the blades, was the
maximum amplitude compared to the frictionless result of 30 lm. Vibrations are
sinusoidal like the excitation force, apparently no non-linear behavior is visible.

But when contact preload is reduced (Fig. 8b) then non-linear behavior appears,
vibration is periodical but non sinusoidal, slipping is enhanced and vibration
amplitude reduces consistently. And when friction coefficient is reduced from 0.2
to 0.1 (Fig. 8c) vibration remains periodical, amplitude as well as slipping
increases. These behaviors are steady state.

Fig. 7 a F.e.m. model of the test rig with the group of blades b resulting shroud contact pressure
distribution

Contact preload 250N, µ=0.2 Contact preload 125N, µ=0.2 Contact preload 125N, µ=0.1

(a) (b) (c)

Fig. 8 Vibrations of the two blades in different contact conditions (blade 2 in red and blade 3 in
blue)
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Reducing further the friction coefficient to 0.01 vibration becomes non periodic,
and seems to be unstable but limited in amplitude. A kind of random vibration in
low frequency range (sub-harmonic with respect to the excitation frequency)
builds up. This behavior is an unsteady condition, despite the fact that the
mechanical system as well as the excitation is stationary.

Of course it must be checked (best by experiments) if this behavior is a physical
instability or if it could be attributed to a numerical instability.

6 Simulation of Rotor Rubbing Conditions at Constant
Speed

An interesting example of non-stationary thermal state of a shaft due to rubbing
which generates non-stationary vibrations concerns the so called spiral vibrations.
This behavior is described in detail in [4]. The heat which develops during rubbing
of a rotating shaft against a stator, generates a bow of the shaft which evolves in
time, and the changing bow generates vibrations. This is a typical example of a
rotating shaft in non-stationary conditions. This behavior should therefore be
studied in the time domain. But vibrations are 1xrev., at rotational speed frequency
of 50 Hz, and should be calculated in time domain with time steps of a fraction
(e.g. 1/100) of the rotation period (let’s therefore consider a suitable time step of
0.0002 s). Heat distribution due to the friction force evolves slowly, the rotor bow
shows appreciable changes in time periods of minutes, depending on shaft
diameter. A suitable time step for evaluating the thermal state of the rotor could be
1 min. Using a time step of 0.0002 s for calculating a transient of hours would be a
cumbersome exercise. Therefore we can consider the rotor state in each minute of
the thermal transient as stationary for the vibrations, and calculate the changes in
vibration of the shaft in the frequency domain. This has been done in the simu-
lation of the so-called spiral vibrations of a rotor. The designation comes from the
fact that the measured vibration vector moves on a spiral path in a polar plot.

Figure 9 shows the model of the shaft, beam elements for calculating shaft
vibrations and a refined mesh in radial, tangential and axial directions for heat
distribution calculation. The flow chart of Fig. 10 represents the cyclic computa-
tional procedure in time/frequency domain. In time domain the rub conditions are
defined from initial conditions and from actual vibration behavior and the conse-
quent temperature and strain distribution is calculated. In the frequency domain
strains are converted in equivalent bending moments that are applied to the shaft as
well as the contact forces (and the original unbalance) for calculating its vibrations.
Then the loop is repeated.

Results of the calculation are shown in Fig. 11a as a 3D plot for the temperature
at the contacting point which migrates in circumferential direction as function of
time. The contact point migrates because the thermal bow contributes to the ori-
ginal unbalance in generating the vibration excitation: the resulting vibration
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vector changes direction as well as the contact point. Figure 11b shows the thermal
power introduced in the rotor due to friction as function of time steps.

Figure 12a then shows the equivalent bending moments at a certain time instant
as calculated from thermal strains, which simulate the bow. Finally Fig. 12b shows
the polar plot of the spiral vibration (amplitude and phase) that could be measured
in correspondence of the bearings of the shaft, at the rotational speed of 3,300 rpm.
In this case it is an unstable spiral, because vibrations are increasing. But also
stable spiral vibrations can occur, when amplitude of vibration decreases and
finally the contact is lost. After that when heat is again uniformly distributed the
unbalance will force the shaft to rub again and the cycle repeats. This occurs at a
rotational speed of 3,500 rpm, as it is shown in Fig. 13a.

Finally also an experimental result compared to the simulated one is repre-
sented in Fig. 13b. The rubbing occurred close to a bearing in correspondence of a
oil seal ring in a 50 MW turbo-group.

7 Experimental Evidence of Full Annular Rubs During
a Speed Transient, and Model Based Identification
of the Generated Changing Bow

This is an example of a turbo-group (schematically represented in Fig. 14) in
which the HP-IP rotor experienced a full annular rub during a run-down transient
approaching its 1st natural lateral frequency: therefore we have a non-stationary
speed and a non-stationary thermal state. The complete case history is described in

Fig. 9 Model of the shaft of a HP-IP steam turbine rubbing at seal location
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Fig. 10 Flow chart of the computation method in time/frequency domain
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detail in [5]. The run-down transient occurs, as usual for big turbo-groups, with a
sufficient low deceleration so that the transient can be considered as a sequence of
steady state conditions. As in previous example also here the thermal transient is
rather slow: the generated bow is slowly changing, resulting vibrations are
changing slowly and this behavior can be analyzed by a sequence of steps with
different speed and heat conditions, in which vibrations can be simulated in the
frequency domain.

Measured vibrations in the two bearings of the rubbing turbine are reported in
the two Bode diagrams of Fig. 15. The run-down had been interrupted as vibration
amplitude reached alarm levels close to the shaft first critical speed, rotational
speed was increased to get out of the critical speed and trying to relax the thermal
stresses and straighten the shaft. Since this attempt was unsuccessful, the run-down

Fig. 11 a Temperatures on rotor surface; b Thermal power evolution in time

Fig. 12 a Equivalent bending moments simulating bow; b Unstable spiral vibration (3,300 rpm)
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was completed in rubbing conditions for a consistent part of the run-down. At
minimum speed a consistent thermal bow remained as can be seen from residual
amplitude at 500 rpm in bearing 2. That a severe full annular rub occurred can be
deduced also from phase changes: analyzing amplitude and phase of the 1xrev
vibration amplitudes measured in the two bearings in between 1500 and 1800 rpm,
we have at same rotational speed completely different vibration vectors (with
different amplitude and different phase). This is due to the changing thermal bow
generated by the rubbing friction.

In order to verify where the rubbing occurred with the aid of the beam element
model of the machine, from vibrations in the bearings during the run-down from
1,800 rpm the amount and the location of the rub and the developing bow were
identified.

Figure 16 shows the finite element model of the shaft line (composed of the
steam turbines only) and the model used to represent the thermal bow by equal and
opposite bending moments.

Figure 17a shows how the most probable position of the rub was identified from
best fitting of calculated vibrations to measured ones, by means of the evaluation

Fig. 13 a Stable cyclic spiral vibrations; b Measured and simulated spiral vibrations

#1 #2 #3 #4 #5 #6 #7

HP-IP turbine LP turbine Generator Exciter

Fig. 14 Turbo-group with a rub in HP-IP turbine rotor
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of the residues (kind of squared error as vector difference between measured and
calculated vibrations) in the model based identification procedure. This has been
done in the frequency domain considering stationary conditions at different rota-
tional speed steps. Minimum value of residue identified the most probable position
of the rubbing section.
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Fig. 15 Interrupted run-down transient of a rubbing steam turbine rotor: stopping at 1,500 rpm,
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Figure 17b shows the value and phase of the identified bending moment during
the run-down transient. Phase is almost constant showing that the contact was not
migrating around the shaft circumference, amplitude is increasing showing that the
shaft remained in contact with the stator during the whole run-down transient,
increasing the developed heat in the same position.

This is again an example where a slowly changing non-stationary condition has
been successfully modeled with different steps of stationary conditions, which
allowed to remain in the frequency domain, and to use the model based identifi-
cation procedure in the frequency domain.

8 Experimental Evidence of a Steam Whirl Instability

Instability is a typical strongly non-stationary condition of a rotating machine, which
must be overcome rapidly for avoiding failures. Vibrations increase rather suddenly
as will be shown in the following case history of a steam whirl instability that
occurred in the HP rotor of a 460 MW steam turbine, as described in detail in [6].

These vibrations can be simulated in the frequency domain, taking account of
negative damping in the eigen-value of the model of the machine, which defines
the rate of the vibration amplitude increase.

Figure 18 represents the sketch of the turbo-group, and Fig. 19 shows a
waterfall diagram of the vibration spectra measured in bearing 1 at different time
instants before, during and after the event.

In the first part of the diagram the speed (3,000 rpm) is constant, the power (not
shown) is increasing. 1xrev. vibration component at 50 Hz is rather low, but a
small sub-harmonic component at 32 Hz (first critical speed of the shaft) is present
which could indicate an arising instability. At hour 20.42 since power has further
increased, suddenly the sub-harmonic component amplitude increases and reaches
the shut down level in around 30 s. As the steam inlet valves have been closed, the
sub-harmonic component disappears and the speed of the machine decreases. This
is the typical symptom of a steam whirl instability, which occurs close to the
maximum power (and steam flow) of a turbine. Regarding the modeling the
excitation comes from cross coupled stiffness coefficients which develop in blade
rows as function of power and clearances, and from steam bearing effect in lab-
yrinth seals as function of the swirl motion. These effects must be taken into
account as well as the damping effects of the oil film bearings, for analyzing
stability of the machine. The evaluation of these effects are affected by some
uncertainties, therefore the design of the machine resulted stable: that means that

Generator
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HP

Exciter

#5#1 #2 #3

IP LP

#6

Fig. 18 Sketch of the
460 MW turbo-group where
the HP rotor experienced a
steam whirl instability
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the real part of the first eigenvalue of the model of the machine was negative. The
measured behavior showed instead a positive value of the real part of the eigen-
value, which was also rather high. Figure 20 shows with more detail one of the
spectra recorded during the event.

9 Blade Flutter Instability

This behaviour is described with more detail in [1]. The last stage of the low
pressure steam turbine was composed of 120 blades, grouped in packs of 8 blades
by welded lashing wires and fixed on the rotor by means of fir tree side entry roots.

Fig. 19 Waterfall diagram of the vibration spectra measured in bearing 1 of HP rotor during load
increase

Fig. 20 Vibration spectrum
in bearing 1 just before shut-
down
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During commissioning of the turbine the machine was operated in off design
conditions where the long last stage blades may experience high vibrations. An
inspection after this period revealed cracks in blade roots and failures in lashing
wires. Taking into account also the centrifugal field, the modal analysis allowed to
identify the following natural frequencies and associated modes: the 1st (tangen-
tial) mode at 115 Hz, the 2nd (axial) mode at 185 Hz and the 3rd (so called X-
mode) at 225 Hz. This last mode is shown in Fig. 21 and is the vibration mode that
was strongly excited as the cracks and lashing wire failures mostly developed in
the first and last blade of the packs. The machine was repaired and equipped with a
tip timing blade vibration measuring system. Figure 22 shows the deflections of
one blade (blade no. 53) during a speed transient from about 2,700 to 2,890 rpm.

The blade is deflected due to centrifugal force and is vibrating at a frequency of
217 Hz, which is close to one of the natural blade pack frequencies (which resulted
to be at 225 Hz at rated speed from calculation). The corresponding pack mode is
called X-mode. Resonant conditions could occur at 2,700 rpm with the 5th EO
excitation but did not appear. High vibrations are measured instead at a rotational
speed of 2,770 rpm, but are not related to the rotational speed (excitation is at a
non-integer engine order of 4.7), frequency of vibration is constant and not
changing with speed as occurs for the vibrations due to some engine order exci-
tation (that are marked with blue lines in Fig. 22). Vibrations growth and decay
depend on some other operating condition parameter, not on speed. Therefore
these vibrations must be due to some fluid-dynamic instability. Maximum apparent
vibration peak-to-peak amplitude in tangential direction was 14.1 mm, which
corresponds to 4.7 mm in the X-mode vibration direction. The fatigue stresses
corresponding to similar vibration amplitudes could have caused cracks and fail-
ures. Colours which indicate phase of vibration with respect to the 1x rev. refer-
ence are randomly distributed around maximum vibration peak, indicating a non-
synchronous vibration, where the phase is random. Figure 23 shows the distri-
bution of blade vibrationamplitudes over the blade row composed of 120 blades.
The vibration amplitude distribution shows clearly that maximum amplitude exists
each 8–9 blades: the first and the last blade of the group of 8 blades are vibrating
with maximum amplitude (typical for the X-mode shown in Fig. 21). These blades
were also those where cracks close to the roots and lashing wire failures had been

Fig. 21 3rd vibration mode
(225 Hz) of the blade pack as
calculated from f.e. model
modal analysis
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found. In the row of 120 blades there are 15 packs of 8 blades each, therefore 15
peaks and 15 nodes are found in the vibration distribution around the row.

During this non-stationary condition of the machine, small variation in output
power and condenser pressure cause apparently the onset of this instability, the
evolution over time of the vibrations, with its growth and decays that are extremely
difficult to be modeled and cannot be simulated or predicted with sufficient
accuracy.

Fig. 23 Vibration amplitude distribution along the blade row during instability

Fig. 22 Transient unstable vibrations of blades during a speed transient of the steam turbine
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10 Conclusions

The simulation of typical vibration behavior of rotating machines in ‘‘weak’’ or
‘‘strong’’ non-stationary conditions is presented and discussed. The behavior of
slowly changing systems (weak non-stationary condition) can be simulated in a
mixed approach using both time domain and frequency domain approach. This is
the case for instance when the vibration behavior of rotors during thermal tran-
sients are simulated. Some experimental results are also presented and compared
to simulations. Further examples of systems with strong non-linearity, that in
stationary conditions exhibit non-stationary vibrations, are also given. Finally two
strong non-stationary instability conditions (cases 8 and 9) are presented of
rotating shafts and blade rows: the first one can be simulated rather easily with a
linear model, the latter is very difficult to be simulated.
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Speed Transform, a New Time-Varying
Frequency Analysis Technique
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Abstract Due to the periodical motions of most machinery in steady state
operation, many diagnosis techniques are based on frequency analysis. This is
often performed through Fourier transform. Some extensions of these techniques
to the more general case of non stationary operation have been proposed. They are
based on signal processing advances such as time–frequency representations and
adaptive filtering. The technique proposed in this paper is based on the observation
that, when under non stationary operation, the vibrations of a machine are still
tightly related to the speed variations. It is thus suggested to decompose the
vibration signal over a set of time-varying frequency sine waves synchronized with
the speed variations, instead of fixed frequency sine waves. This set of time-
varying frequency sine waves is shown to be an orthonormal basis of the subspace
it spans in the case of linear frequency variations. An insight to the improvement
such decomposition can provide for spectral analysis, cyclostationary analysis and
time–frequency representation is given. Some application examples are presented
over both simulated signals and real-life signals.
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1 Introduction

In rotating machinery, under varying rotation speed, the vibration signal is
non-stationary and its statistic characteristics vary with time. For such a signal,
conventional general harmonic analysis, performed through Fast Fourier Trans-
form (FFT), doesn’t provide accurate information for the spectrum of the signal,
due to the non-constant speed. In order to overcome the limitations of this tech-
nique, appropriate methods have been dedicated to varying speed cases. The best
known methods are Order Tracking analysis by short-time Fourier transform
(STFT) [1], windowed Fourier transform (WFT) or angular resampling [2]. These
last years, new methods such as Vold Kalman filter [3] or Gabor Order Tracking
approach [4] have been introduced. The main characteristic of these methods is
that they are based on resampling scheme or sampled STFT. However in many
cases, all previous techniques have limited resolution or show a number of gaps
[5]. For the STFT, depending on the window used, analysis quality may be
affected. Regarding the angular resampling of the vibration signal, its drawback is
that the resonance frequencies of the rotating machine are disturbed by the process.

In order to avoid the previous shortcomings, we propose a new technique called
Speed Transform (ST) when the speed varies linearly. This new approach consists
in expanding the vibration signal into a series of elementary oscillatory functions,
whose frequencies depend on the variation of the speed. The main advantage of
the new approach is that it adapts to the vibration signal and components so that
the resonance frequencies are preserved.

The paper is organized as follows. In Sect. 2, ST is presented in both theoretical
and practical implementation aspects. In Sect. 3, ST is applied to simulated data
and in Sect. 4 it is applied to real-life data. Our conclusion is presented in Sect. 5.

2 Speed Transform, Theory and Practical Implementation

Applying Fourier analysis to a signal consists in decomposing that signal over a
basis of elementary oscillatory functions. The definition of the Fourier transform
of a signal sðtÞ is well known and is given by:

S fð Þ ¼ Zþ1

�1
sðtÞ e�2pjftdt ð1Þ

where the Fourier transform of the signal sðtÞ is denoted by Sðf Þ, t stands for time
and f for frequency. When actually applied to vibration signals, it usually comes to
a slightly different tool that can be described by:

S fð Þ ¼ 1
2T

ZþT

�T

sðtÞ e�2pjftdt ð2Þ
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It thus consists in evaluating the closeness of the signal sðtÞ to a set of ele-
mentary oscillatory functions e2pjft over a finite time interval T, or in other terms,
evaluating a mean contribution of each of these e2pjft functions to the signal over
that interval. In what follows, this practical tool will be considered as Fourier
transform.

The tool described by Eq. (2) exhibits a nice asymptotic property. Let us
evaluate the closeness of two functions of the basis e2pjf1t and e2pjf2t when the time
interval tends to infinity, i.e.:

lim
T!þ1

1
2T

ZþT

�T

e�2pjf1t eþ2pjf2t dt ¼ 0 for f12
1 for f1 ¼ f2

�
ð3Þ

This is equal to zero for f1 6¼ f2 (cross terms) and equal to one for f1 6¼ f2 (auto
terms). This property allows to evaluate the contribution of any e2pjft function to
the signal by applying Eq. (2), provided that the time interval is long enough to
ensure that the cross-terms vanish.

This tool is thus well fitted to the physical nature of vibration signals under
stationary operation. Indeed, the periodical movements of machinery generate
periodical components within the temporal moments of the signals. Due to the nice
property described by Eq. (3) these periodical components produce spectral lines
through Fourier analysis.

Under non stationary operation, Fourier analysis keeps its nice mathematical
properties but does not fit any more to the physical model of the data. Indeed,
many components of the vibration signal follow the speed variations, so that they
are not any more periodic. All the components that are tied to the rotation
frequency of the machine spread over a frequency band. Retrieving their amplitude
or even detecting them through Fourier analysis thus becomes difficult.

This is why we propose to use a basis of elementary oscillatory functions whose
frequencies follow the speed variations. This would allow preserving the main
advantage of frequency analysis, which is to fit to the physical model of the data.
But what about the mathematical properties of the decomposition over such a
time-varying basis? More precisely, do a set of e2pjR t

0Df ðuÞ du functions, whose
frequencies nDf ðtÞ follow the speed variations, still exhibit the property described
by Eq. (3)? We showed (see appendix) that provided the variations of nDf tð Þ are
linear versus time, that mathematical property still holds.

Let us give some specifications for this new analysis tool that will be called
speed transform:

• first, the frequencies of the basis functions should all be proportional to the
speed variations,

• their frequencies must always be smaller than the Nyquist frequency,
• they should be equi-spaced over the analysis band, in terms of proportion of the

rotation speed, rather than in terms of frequency band,
• they should be equi-spaced with such step Df tð Þ that no component tied to the

rotation speed could be missed in the analysis interval.
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In order to satisfy these specifications, let us first define some expressions: r tð Þ
will stand for the rotation speed in Hertz and T ¼ NTe for the duration of the
vibration signal, with N the total number of samples and fe the sampling period.
The different parameters used to generate the basis are shown on Fig. 1.
The rotation frequency (in green) and the basis functions frequencies (blue) are
represented versus the number of samples in reduced frequency.

The example is given for a N ¼ 64 samples base, with speed variations in
reduced frequency given by r tð Þ ¼ 0:1 þ 0:001 � t. The green plot represents the
rotation frequency variation r tð Þ and the red one represents the time-varying
frequency resolution Df tð Þ of the speed transform. It is proportional to r tð Þ and the
proportionality coefficient is an integer value k such that r tð Þ ¼ kDf tð Þ and
max Df tð Þf g� 1

T in order to have a sufficient resolution not to miss any component.
The basis B is composed of N

2 þ 1 ¼ 33 oscillatory functions bn tð Þ calculated as
follows:

B ¼ bn tð Þ ¼ e2pjnR t
0Df uð Þ du; 0� n�N=2

h i
ð4Þ

On Fig. 2 is displayed the modulus of the basis correlation matrix. As expected
from theory, it is a diagonal matrix with unitary diagonal terms. The non diagonal
terms should be zero but some side effects appear due to the fact that the basis
functions are finite length. These side effects can be minimized by applying an
apodisation window, such as Hamming window, as shown on Fig. 3.

As usual, the shape of the main lobe and side-lobes depends on the apodisation
window. The width of the main lobe and the maximum speed resolution
max Df tð Þf g are both related to the inverse of the length of the signal. This ensures
that one of the calculated samples at least will be located on the main lobe. This
prevents any component whose variations are not a integer multiples of Df tð Þ from
not being detected. In order to improve the amplitude estimation of these com-
ponents some interpolation can be applied, as in classical spectral analysis.
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3 Application to Simulated Data

We first applied this technique to the analysis of simulated toothed gearing
vibrations. The features of the simulated experiment are the following ones:

• the two wheels are respectively 20 and 22 toothed ones,
• the rotation frequency of the 20 toothed wheel is variable and given by

f20 tð Þ ¼ 16 þ 3t, the gearing frequency by feng tð Þ ¼ 20f20 tð Þ and the 22 toothed
wheel frequency by f22 tð Þ ¼ feng tð Þ=22.

• the vibration signal is given by s tð Þ ¼ seng tð Þ s20 tð Þ þ s22 tð Þð Þ with:
• seng tð Þ ¼ cos 2pR t0fengðuÞdu tð Þt þ ueng

� �
where ueng is a random phase

0
10

20
30

40

0
10

20
30

40
0

0.2

0.4

0.6

0.8

1

Fig. 2 Modulus of the
correlation matrix of the basis

0
10

20
30

40

0
10

20
30

40
0

0.5

1

1.5

Fig. 3 Modulus of the
correlation matrix of the basis
computed with apodisation

Speed Transform 27



• s20 tð Þ ¼
P8
m¼1

cos 2pmR t
0f20 uð Þduþ u20;m

� �
with u20;m random (resp. s22 tð Þ, f22 tð Þ

and u22;m).
• the total number of available samples is N ¼ 20000, i. e. a 1s time interval.

The amplitude spectrum of this simulated signal is displayed on Fig. 4. It was
calculated by applying a 65,536 sample Fourier transform over the whole signal,
with a Hamming apodisation window. Due to the speed variation, the energy of the
gearing fundamental and its sidebands spread over several frequency channels.
Only the lowest frequencies, corresponding to the inferior sidebands of the 36
toothed wheel modulation, can be separated. This comes from the fact that their
frequencies are varying slower than that of the higher frequency components.
Nevertheless, though they can be separated, the amplitude displayed on the
spectrum is erroneous, since the energy of each sideband is spread over several
neighboring frequency channels.

This problem cannot be totally overcome by the use of time–frequency dis-
tributions. Two spectrograms were calculated with different frequency resolutions.
The spectrogram displayed on Fig. 5 was computed over slices of 1,024 samples,
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Fig. 4 Amplitude spectrum of the simulated toothed gearing vibration signal

Time (s)

F
re

qu
en

cy
 (

H
z)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

700

Fig. 5 Spectrogram of the vibration signal computed over 1024 sample slices

28 C. Capdessus et al.



Hamming windowing and a� of a slice overlap. The frequency resolution is thus
Df ¼ 19:53 Hz and the temporal resolution Dt ¼ 0:05 s, which would be enough to
follow the temporal variations of the speed but does not allow separating the
sidebands. Whereas the second spectrogram (Fig. 6), calculated the same way but
over 8,192 sample slices, not only fails to follow the temporal variations
(Dt ¼ 0:4 s) but cannot either separate the sidebands, despite a better frequency
resolution (Df ¼ 2:44 Hz), because the sidebands spread over neighboring fre-
quency channels.

Whereas the speed transform of the signal, displayed on Fig. 7, succeeds in
separating all the sidebands and estimating their amplitude. Instead of being
represented versus frequency, it is represented versus the proportion of the speed
signal that was used to build the speed transform basis. Here the speed signal was
that of the 20 toothed wheel, so that all the sidebands corresponding to that wheel
appear at harmonic positions of the speed signal. The transform was computed
over the whole signal with Hamming windowing and interpolated by 8.
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Fig. 6 Spectrogram of the vibration signal computed over 8192 sample slices
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4 Application to Real-Life Data

Here the speed transform is applied to the vibration signal of a diesel engine.

In order to build the basis functions bn tð Þ ¼ e2pjnR t
0

rðuÞ
K du we first need to estimate

from the tachometer signal the function g tð Þ ¼ 2pR t0r uð Þ du, i.e. the angular posi-
tion of the shaft, if we suppose that it is zero for t ¼ 0. This can be easily done
based on the following properties:

• g tð Þ must be an order 2 polynomial
• It must be such that sin g tð Þð Þ ¼ 0 at each tick of the tachometer signal

A curve is built by associating an integer multiple of 2p to each tick time and a
curve fitting procedure allows finding the order 2 polynomial fitted to that curve.
The coefficients of this polynomial are then used to compute the value of g tð Þ at
any time t.

The speed transform has first been computed on the time interval between 30.6
and 32 s, where the rotation frequency is stationary and equal to 75 Hz (see
Fig. 8), in order to compare the result to Fourier transform.

The amplitude spectrum and the speed transform calculated on that interval are
displayed on Figs. 9 and 10. This confirms that the usual Fourier transform is
actually a particular case of the proposed speed transform. Note however a slight
improvement of the latter as compared to the former due to the compensation of
small speed fluctuations.

The technique has then been applied between 25 and 30 s, i.e., on a time
interval where the speed is linearly increasing. The amplitude spectrum and speed
transform are displayed on Figs. 11, 12 and 13. The capability of the speed
transform to adjust to linear speed variations is clearly demonstrated, even in the
high frequency range. Whereas one can only distinguish the H2 harmonic (firing
frequency of the engine) in the Fourier transform, all multiples of the H1
(crankshaft rotation) and H1/2 (thermodynamic cycle) are visible in the speed
transform. This opens a valuable perspective for order tracking at virtually no cost
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Fig. 8 The rotation speed of the diesel engine estimated from the tachometer signal
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Fig. 9 The Amplitude spectrum and speed transform calculated between 30.6 and 32 s
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Fig. 11 The Amplitude spectrum and speed transform calculated between 25 s and 30 s
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as compared to other techniques, such as those based on time-varying filters or
angular resampling preconditioning.

5 Conclusion

Fourier analysis plays a prominent role in the vibration analysis of rotating
machines. Strictly speaking, it applies only to the situation where the machine is
rotating at exactly constant speed. The extension of Fourier analysis to non-sta-
tionary operation is a current and active field of research. Whereas valuable
solutions exist, for instance based on angular resampling, this paper proposed a
new speed transform which inherits all the properties of the Fourier transform—in
particular the orthonormality of its functional basis—when applied to linear speed
variations. This not only has the advantage of simplicity, but it also returns
properly scaled results. The speed transform has potential in several applications,
and in particular in order tracking. Due to its resemblance to Fourier analysis, it
opens a bunch of signal processing possibilities dedicated to non-stationary sig-
nals, such as non-stationary demodulation, non-stationary envelope analysis,
cyclo-non-stationary analysis, etc. A short-time version of the speed transform is
also conceivable to track arbitrary speed variations that can be approximated as
piece-wise linear.
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Appendix

We are interested in:

lim
T!1

I Tð Þ

where:

I Tð Þ ¼ 1
2T

ZT

�T

e2pj f1 tð Þ�f2 tð Þð Þtdt

Let us suppose that the variations of f1 tð Þ and f2 tð Þ are linear. In this case, there
exist a et b such that:

f1 tð Þ � f2 tð Þ ¼ 2at þ b

Which leads to:

I Tð Þ ¼ 1
2T

ZT

�T

e2pj at2þbtð Þdt

I Tð Þ ¼ 1
2T

ZT

�T

e2pj a tþ b
2að Þ2�b2

4a

� �
dt ¼ 1

2T
e�2pjb

2

4a
ZT

�T

e2pj a tþ b
2að Þ2

� �
dt

The variable is changed from t to x:

x ¼ t þ b
2a

dt ¼ dx
�T þ b

2a � x� T þ b
2a

������
Which leads to:

I Tð Þ ¼ 1
2T

e�2pjb
2

4a
ZTþ b

2a

�Tþ b
2a

e2pjax2
dx

The integral can be decomposed into three parts:

ZTþ b
2a

�Tþ b
2a

e2pjax2
dx ¼ I1 þ I2 þ I3
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with:

I1 ¼ R�T

�Tþ b
2a

e2pjax2
dx

I2 ¼ R�T

�T
e2pjax2

dx

I3 ¼ RTþ b
2a

T
e2pjax2

dx

������������
The integrals I1 et I3 are finite so that the only problem is to calculate:

lim
T!1

1
2T

e�2pjb
2

4aI2 Tð Þ

Let J Tð Þ ¼ RT
�T

e2pjat2
dt

lim
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J Tð Þ ¼ J1 ¼
Zþ1

�1
e2pjat2

dt

Let us change variable t to: u ¼
ffiffiffiffiffiffiffiffi
2pa
p

t
The expression becomes:

J1 ¼
1ffiffiffiffiffiffiffiffi
2pa
p Zþ1

�1
eju2

du ¼ 1ffiffiffiffiffiffiffiffi
2pa
p 2

Zþ1

0

eju2
du

Which is proportional to the well known Fresnel integral: Rþ1

0
eju2

du ¼
ffiffi
p
p

2 ejp4

So that J1 ¼ 1ffiffiffiffi
2a
p ejp4

This proves that lim
T!1

I Tð Þ ¼ 0 whenever f1 tð Þ � f2 tð Þ 6¼ 0

If f1 tð Þ � f2 tð Þ ¼ 0, it is easy to show that I Tð Þ ¼ 1 for any value of T.
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SMART: Integrating Human Safety Risk
Assessment with Asset Integrity

Diego Galar, Peter Sandborn, Uday Kumar
and Carl-Anders Johansson

Abstract Maintenance activities are commonly organized into scheduled
and unscheduled actions. Scheduled maintenance is undertaken during pre-
programmed inspections. Maintenance operations try to minimize the risk of
deterioration based on a priori knowledge of failure mechanisms and their timing.
However, in complex systems it is not always possible to schedule maintenance
actions to mitigate all undesired effects, and SMART systems, which monitor
selected parameters, propose actions to correct any deviation in normal behavior.
Maintenance decisions must be made on the basis of accepted risk. Performed or
not performed scheduled tasks as well as deferred corrective actions can have
positive or negative consequences for the company, technicians and machines.
These three risks should be properly assessed and prioritized as a function of the
goals to be achieved. This paper focuses on how best practices in risk assessment
for human safety can be successfully transferred to risk assessment for asset
integrity.

Keywords SMART � Risk � Diagnosis � Prognosis � Maintenance

1 Introduction

Terms such as ‘hazard’, ‘integrity’, ‘reliability’, ‘risk’, ‘robustness’ and ‘surviv-
ability’ have become part of our daily vocabulary. For instance, the derogatory
term unreliable is used to describe the undependable behavior of an individual or
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an item, whereas the cautionary term risk is used to warn of possible exposure to
an adverse consequence. There is an increasing effort to sharpen the notions of risk
and reliability and to quantify them, as quantification is required for normative
decision making, especially for decisions pertaining to human safety and well-
being. The coupling of quantified measures of risk with normative decision
making is called risk management.

Risk management is the underlying concept of the currently popular SMART
devices and SMART approaches. Manufacturing environments typically include
large machines with many moving parts, such as factory robots, welding machines
and the like, which can pose a safety risk to factory workers who work in close
proximity to them. An assessment of the level of risk of harm to operators using a
machine or process entails the collection of qualitative and quantitative data with
regard to potentially hazardous situations. Added to this, failed machines result in
work slow downs and stoppages that cost companies money due to lost production
and maintenance costs. This paper focuses on how best practices in risk assessment
for human safety can be successfully transferred to risk assessment for asset
integrity.

International standard ISO 14121 [25]—‘Safety of machinery—Principles for
risk assessment’—defines ‘risk’ as comprising two factors: consequences (or
severity of injury) of a hazardous situation; and the probability of occurrence of
the hazardous situation. The probability of occurrence is further divided into two
constituent parts: frequency and duration of exposure to a hazard. Such factors can
be generically applied to all types of machinery to estimate the level of risk.

A risk assessment is routinely performed to determine various risk factors that
might be encountered in the machines. Such assessment includes determining the
types of risk and the degrees of risk associated with each type. To maximize the
effectiveness of the risk assessment and risk estimation, it is essential that accurate
and detailed data are available upon which judgments concerning the basic factors
above can be made. Risk assessments are used to implement risk reduction
measures and to reduce risk to acceptable levels.

Safety related control systems are commonly integrated into machinery to
reduce risk. In general, the standard approach to risk assessment is to mitigate all
the factors that can be anticipated. Often the factors are embedded in the usage and
training documentation supplied with the machine. But at all these stages, some
aspects are typically unknown and some decisions have to be based on assump-
tions about future machine usage characteristics. If the actual machine usage
characteristics differ from those assumed, the risk assessment becomes invalid.
Such unanticipated variations in the risk factors can arise due to both internal and
external conditions. Despite all the aforementioned variations, it is not uncommon
for a manufacturing operation to be working with an original risk assessment that
is no longer valid. This can result in unanticipated hazards to machine operators,
leading to worker injuries and unexpected machine servicing, accompanied by
production line delays. Such failures defeat the purpose of the initial risk
assessment.
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Traditionally, machines are equipped with safety controls that mitigate poten-
tial risks associated with the operation of that machine.

Figure 1 shows several devices commonly used to monitor critical parameters
to assure a safe environment. These parameters include: vibration, temperature,
load and other parameters that are used as condition monitoring indicators for the
health assessment of the machine. This is so important that most electronics
manufacturers have separate catalogues of products for condition monitoring or
safety assurance. Safety issues were strongly regulated by international organi-
zations, like ISO, IEC etc., during the 1980s and 1990s. Acceptable vibration,
noise and/or temperature values for the human body are now commonly accepted
by manufacturers, end users, etc. In other words, risk assessment and technology
have been moving forward for years.

The type of safety related control system depends on the risk assessment. If the
machine usage characteristics are such that the risk assessment becomes invalid, it
could mean that the safety-related control system does not provide the required
type of functionality or level of integrity. Protective decisions are based on a priori
risk assessment and when certain limits are reached, alarms will be activated and
safety actions will be performed. Paradoxically, there is a difference between the
risk assessment for the protection of humans (operators and maintainers), which is
extremely regulated, and the ‘protection’ of a productive asset. The production
required to meet customer expectations, is an additional aspect that requires risk
assessment as well.

Risk assessment is dynamic for all involved players. Variations in machine
usage that can modify the original risk assessment, include increased frequency or
duration of machine operation, higher power levels, improper maintenance, pro-
cessing of unexpected materials, unexpected environmental conditions, use by
persons with competency levels lower than expected, occurrence of mechanical
and software-related system faults, and non-standard system components or
operational modifications. These changing scenarios convert the risk assessment
into an iterative process that should be conducted at all phases of a machine’s
design, manufacture, commissioning and operation, with the results handed from
one stage to the next, so as to take into account variations in risk factors. These

Fig. 1 Safety/Condition Monitoring devices for vibration and temperature control
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risks can potentially affect the three players: humans, assets and businesses.
However, only human effects are regulated. Note that there have been recent
attempts like PAS55 [1], or the upcoming ISO 55000 [22–24] (inspired by PAS55)
where the asset will be recognized as a key stakeholder that needs to be taken care
of in terms of risk (Fig. 2).

For this risk assessment, the overwhelming amount of data is an issue. In the
past, risk assessments have typically been performed manually during installation
or maintenance of the machine components to determine safety barriers for per-
sons or recommended preventive programs to keep the asset in good condition.
Today, it is a prohibitively labor-intensive process to conduct ongoing manual risk
assessments of all machines in a factory setting. Therefore, there is a need to
overcome the aforementioned deficiencies associated with conventional systems
and devices by integrating the IT capabilities to perform these assessments with
accuracy in dynamic and changing environments.
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2 Risk Assessment for Maintenance Actions

Risk assessments are the basis of a risk based maintenance approach. The ‘S’ for
Safety in RAMS terminology has been a powerful driver in the transfer of risks
from people to machinery.

Well-known science fiction author Isaac Asimov [2] created the following three
laws of robotics:

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given to it by human beings, except where such
orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Laws.

Reading these statements carefully, one sees that Asimov has prioritized the
behavior of machines and created the basis for risk assessment. In summary, risk
assessment should be primarily performed to protect human integrity, since
maintainers or operators work closely with productive assets. However, once the
requirements to protect humans are fulfilled, the asset must protect itself. This
pinpoints the concept of SMART devices as protection for people and self-pro-
tection of the machinery.

SMART devices must perform evaluations of operational risks to aid mainte-
nance decisions concerning assets under certain conditions. These devices will
always prioritize the safety of humans but will adapt when the operating condition
modifies the scenario and the machine’s risk is changed.

The risk assessment will condition the real maintenance planning for the asset
according to the risks the humans want to accept for themselves and for the health
of the machinery. Risk tolerance is up to the individual to accept as a function of
economic, social or environmental conditions. For example, in vehicle health
monitoring, most direct interventions (not taking shop repairs into account) consist
of corrective actions aimed at replacing or repairing failing components or com-
ponents in the course of degradation, scheduled periodic inspections, and pre-
ventive actions such as replacement of equipment with a limited useful life.

These consequences will have risk implications for both human integrity and
asset integrity. Figure 3 shows the dilemma of a SMART maintenance system in a
railway context. On the one hand, the rolling stock must reach a certain destina-
tion. On the other hand, its condition may pose a threat to the integrity of the
vehicle, to the people travelling on it and, finally, to the business. The maintainer
must prioritize the performed action as a function of the acceptable risk, and
sacrifice either the vehicle or the business goals, since human safety cannot be
compromised.

The criteria used to evaluate risk-based decisions are moving from a purely
economic perspective to the consideration of social and environmental factors to
protect humans and assets [3]. This requires that asset maintenance practices must
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include financial performance as well as environmental protection and societal
impact; [4].

The most important steps in the procedure of risk assessment are summarized in
Fig. 4, and the role of models and methods for reliability evaluation and main-
tenance is emphasized. The concept of SMART maintenance proposes a plant
maintenance management based on Risk Based Maintenance (RBM) as an
extension of the well-known and establish Risk Based Inspection (RBI) for risky
and hazardous industries like oil and gas (API 580 [15] and 581 [16]). This
integrated approach to risk assessment and maintenance planning seeks to balance
acceptable risks of failure with mission accomplishment and improved safety and
health, reduce costs by repairing or replacing deteriorating equipment at the
optimal time and eliminate ineffective inspections or interventions.

2.1 SMART Maintenance Assessment

SMART maintenance proposes models and methods for supporting managers and
practitioners in planning and executing maintenance actions in the framework of
risk-based maintenance, as all stakeholders accept that maintenance decisions
involve the acceptance of certain intrinsic risks. SMART devices must have
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embedded methods for aiding in the decision making for maintenance operations
on assets and individual components. This assessment method is the core of
SMART’s decision support mechanism and must comprise the following steps:

• Analysis of the degradation of the components;
• Evaluation of the functional consequences, for the asset, of the analyzed

degradation according to the scheduled utilization of the machine; and
• Determination of an operational plan for the asset according to the evaluated

functional consequences.

The method to assess this risk should make it possible to optimize the main-
tenance operations on an asset according to its utilization by determining an
operational risk, or in other words, a risk of disturbance of normal utilization. The
operational risk is based on a prognosis of failure of at least one component, this
prognosis being determined by analysis of degradation of the component based on
measurement and historical data.
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The assessment should comprise the calculation of two relevant parameters: the
determination of a functional state of at least one of the components (critical), and
the determination of an operational index of the asset based on the evaluated
functional consequences and on the functional state, in order to improve mainte-
nance operations by combining diagnostic and prognostic functions.

The first parameter (functional state) will show the degradation of at least one
of the components and preferably will estimate the degradation trend of at least
one of the components and evaluate the probability of breakdown of this
component.

The second parameter (operational index) will display the estimation of the
risk. The evaluation of the functional consequences and analyzed degradation
according to the scheduled utilization of the asset will be connected with the first
parameter through a predefined failure model. The failure model can be deter-
mined by theoretical analysis or according to a statistical method based on
observation of the behavior of similar components of the same asset or of similar
assets.

These SMART maintenance techniques are based on information on potential
degradation mechanisms and threats obtained by a risk analysis, not only by
prescriptive practices based on industrial experience (e.g., historical experience,
industry guidelines for classes of equipment, as a prescribed fraction of the
estimated residual/remnant life). These analytical models are basic, but they can
effectively support the development of ad hoc decision making methods for the
analysts, owners, and users (e.g., safety managers, site inspectors, the so-called
competent persons, duty holders) of many industrial and service companies.

3 SMART Interface Standards for the Condition
Monitoring of Machines

Predictive maintenance uses many sensors, including temperature, pressure, and
vibration sensors. In the past, personnel have used portable instruments to peri-
odically measure a machine’s condition. Recently, continuous or real-time mon-
itoring of machinery has been made possible by mounting sensors on the machine
and using a data acquisition system and a host computer to collect the data.

Unfortunately, the application of permanently installed sensors on all machines
in a manufacturing plant is very costly. However, standardized smart sensor
interfaces can potentially drive down the equipment price and enhance its func-
tionality and features. Sensor-to-network interfacing is an important issue in the
machine maintenance and asset management industry for mission-critical and
safety–critical applications. Unexpected machine failures are not only costly to
correct but may take human lives, making safety for humans the real driver of
standardization. The high costs of machinery and maintenance software
management systems call for a high degree of operational reliability and machine
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uptime. Despite the technological advancements of recent decades, state-of-the-art
machine condition monitoring and diagnostic systems have yet to be widely
accepted and deployed on the factory floor. This is attributed mainly to the lack of
standardized sensor interfaces for data acquisition, the great variety of ad hoc
algorithms for information processing, data interchange, fault diagnosis, and
machine remaining life prognosis, and the lack of standards for a plug-and-play
sensor for interoperability.

A number of interface standards, including IEEE 1451.1 [18], 1451.2 [17],
1451.3 [19], and 1451.4 [20], are being drafted for networking smart transducers.
There are also a number of standardized digital interfaces and communication
protocols as well as networked smart transducer models. The IEEE 1451 standards
provide for self-describing measurement and control devices, allowing one to
choose best-in-class products from preferred vendors for true plug-and-play
capability. The IEEE 1451 set of standards defines a Transducer Electronic Data
Sheet (TEDS), electronic interfaces, and wired/wireless connection of analog and
digital communications, creating an ideal modular distributed architecture.

Many of these technologies are being developed by the armed forces all over
the world, especially the U.S. Navy. These technologies will eventually migrate to
industrial, commercial, and consumer markets for condition-based maintenance
(CBM) of machines. Machinery Information Management Open Systems Alliance
(MIMOSA [26]), a non-profit industry trade association, aimed to establish an
open architecture and a set of protocols for exchanging complex sensor infor-
mation between CBM systems. It focused on the development of a Common
Relational Information Schema (CRIS) protocol, a common language for trans-
ferring and exchanging machine condition monitoring and assessment data such as
pressure and temperature between a client’s proprietary database and another
remotely located user, using common data communication conventions such as
Java, XML, and Distributed Component Object Model (DCOM). Another related
effort, Open System Architecture for Condition Based Maintenance (OSA-CBM)
program (MIMOSA OSA-CBM v3.2 standard), developed an open architecture
and standard for distributed CBM software components. MIMOSA/CRIS has been
adopted by OSA-CBM as the core infrastructure for distributed machine mainte-
nance information communication.

However, neither the MIMOSA nor the OSA-CBM specifications defines a
sensor interface and communication protocols for acquiring sensor data. OSA-
CBM recommended interfaces between its program structure and other published
standards from the IEEE and International Organization for Standardization (ISO).
Thus, the IEEE 1451 smart transducer interface standard seemed to be able to play
a key role in completing the process from the acquisition of data at the sensor level
to the transfer of the sensor information to the enterprise level, where MIMOSA
and OSA-CBM are set up to manage the information. The approach of integrating
the IEEE 1451 standard with the MIMOSA and OSA-CBM specifications was
investigated. It was found to be feasible to establish a link between the IEEE 1451
standard and MIMOSA and OSA-CBM architecture.
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In summary, the distributed measurement control concept with networked
sensors and actuators would work quite well with distributed control, remote
condition monitoring and conditioned-based maintenance of machinery. Taking
this approach in advanced system design will reduce the total-life-cycle cost of a
system in terms of modular sensor system design, use of commercially off-the-
shelf sensors and actuators, ease of maintenance and upgrades by simply ‘plug-
and-playing’ components. Finally, with the use of standardized components and
interfaces, interoperability is no longer an issue.

The IEEE 1451 smart transducer interface standards are defined to allow
manufacturers to build transducers of various performance capabilities that are
interoperable within a networking system. The IEEE 1451 standards have provided
the common interface and enabling technology for the connectivity of transducers
to microprocessors, control and field networks, and data acquisition and instru-
mentation systems. The standardized transducer interface specified by the stan-
dards allows the self-description of sensors. It also provides a standardized
mechanism to facilitate the ‘plug-and-play’ of sensors to networks. The network-
independent smart transducer model defined by IEEE 1451.1 and common com-
mand, transducer interfaces, and functionality defined by IEEE 1451.0 will allow
sensor manufacturers to support multiple networks and protocols; therefore,
transducer-to-network interoperability is on the horizon. The expanding Internet
market has created an opportunity for sensor and network manufacturers to exploit
web-based and smart sensor technologies.

The advancement of wireless technology will revolutionize the use of sensors
and actuators. The emerging Bluetooth and Wi-Fi technologies have promised to
free the wires from the sensors and put billions of wireless devices into operation,
particularly in the field of condition monitoring and conditioned-based mainte-
nance of machinery and equipment; see Ramamurthy et al. [5]. The sensor com-
munity is carefully evaluating these wireless connectivity schemes in an effort to
find a better way to ease the connection and integration of sensors into the
application domain. Wireless sensor connectivity will continue to be explored until
it is proven that wireless connection is as good as and as secure as a wired
connection.

Advanced and high performance microprocessor technology will enhance the
performance of DAQ modules and reduce their size and cost. The next generation
of data acquisition systems, networkable, integrated sensing devices, will fuse
sensors and wireless technology into a single module. The modular wireless DAQ
will be embedded with various algorithms (Fast Fourier Transform, Wavelet
Transform, close-loop control, filtering, etc.), selectable remotely by the host to
perform a specific operation and monitor the health of an asset to predict its
remaining life. These low cost, wireless, modular, sophisticated, networkable
sensing devices based on the IEEE 1451 standards will be deployed easily by place
and play. Users stand to benefit from these innovations and new applications.
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4 Diagnosis and Prognosis as Maintenance DSS Enablers

Diagnostics is an intrinsic and valuable element of asset health assessment. Its
applications and contributions to the quality of maintenance span all aspects of
asset management. Beyond the value to individual machines, diagnostics also
contribute to the improvement of production systems and the development of new
technologies in various sectors. Diagnostic tests serve a role in the measurement
and tracking of standards and quality of maintenance by maintainers and end users,
thereby making an essential and multifunctional contribution to machine health. In
addition, the protection of machine health relies on diagnostics to detect non-
visible damage that reduces the Remaining Useful Life (RUL) of the asset.

Diagnostic information is indispensable for decision-making by maintainers,
end users, manufacturers, even regulators. With such information, decisions can be
made for asset specific and population wide treatments, measures, procedures, and
services. Diagnostics provides key and sometimes critical information at multiple
junctures along the life cycle, from risk assessment and early diagnosis, to machine
follow-up and breakdown management to minimize shutdowns and maximize
availability. The principal uses of diagnostics include diagnosis, primary risk
assessment (i.e., predictive and early problem identification), prognosis, selection
of corrective action if needed, selected condition monitoring and deterioration
management. Diagnostics provide maintainers with information essential to
making appropriate decisions. In diagnosis, one or multiple tests are used, typi-
cally in combination with machine history and technician experience, to identify a
particular existing problem or condition. Some tests or test combinations may
identify the existence of multiple degradations and machine health problems in
addition to the primary diagnosis, providing information that can inform selection
among alternative actions or adjusting a selected treatment.

Figure 5a shows a vibration velocity spectrum of a centrifugal pump with
numerous pathologies. Unfortunately, due to an aging effect, rotating machines
develop multiple problems simultaneously; all are visible in spectral analysis. The
real challenge is the correct identification of the most relevant and current problem
since incorrect identification can produce reduced mitigation. Problems like
imbalance, misalignment, looseness, oil problems or loose bolts are merged and
displayed simultaneously. By way of contrast, (Fig. 5b) shows one spectrum with
one clear defect; this seldom happens, but if it does, identification of the problem is
immediate and accurate.

Diagnostics can detect incipient problems or determine which machines are at
increased risk for developing certain types of deterioration. Determination of
increased risk may allow maintainers to take measures to prevent or reduce the risk
of developing an undesired condition, including increased condition monitoring,
operation changes and preventive interventions.

Detection of emerging deterioration before symptoms appear or at an early
symptomatic stage allows significant opportunities for early prevention and
treatment. Accurate and early detection and identification enable assessment of
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machine health status that can translate into fewer shutdowns, decreased life-cycle
costs, improved operation, and reduced maintenance costs. Diagnostics are
evolving continually to enable more sensitive and specific detection of failure

Fig. 5 (a) Spectrum of an asset with multiple pathologies, (b) Spectrum of an asset with one
identified problem
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mechanisms at earlier stages via measurement of multiple parameters. These
diagnostics offer new opportunities for timely disease prevention and treatment.

The ‘profile’ (manufacturer, environment, operations) or other predispositions
of a machine may influence its response to a maintenance action. Emerging
maintenance technologies use information about asset variability to allow targeted
treatment selection tailored to individual needs. Context diagnostics are profile-
based diagnostic tests used to determine the individual benefits or harms of taking
certain actions. The knowledge of targeted treatments can allow the maintainer to
avoid potentially harmful or ineffective maintenance actions, resulting in improved
machine health outcomes and cost savings as a result of more effective decision-
making. Context based decisions are contributing to an ideological shift within the
maintenance community from a ‘one size fits all’ approach to ‘right maintenance
actions for the right machine’. Databases that compile and present such infor-
mation are becoming available for scientists to study and maintainers to see how
profile variations may relate to actions outcomes; see Candell et al. [6]. As the use
of context data becomes more integrated into maintenance practice guidelines,
electronic records and decision support systems will increasingly include context-
based policies in routine treatment decisions. The increasing use of context
technologies has great potential to yield better treatment selection and failure
management strategies.

Diagnostic tests may also be used to assess the degree of damage progression or
severity and the likelihood of recovery or risk of future adverse outcomes. The
prognostic information is frequently used to inform treatment decisions tailored to
individual machine health status and needs. Prognostic assessment can include
testing for certain co-existing problems (e.g., unbalance, misalignment, wear, oil
problems). The presence of co-existing failure mechanisms may inform necessary
alterations in maintenance options and operation regimen. Certain chronic failures
require continuous monitoring to avoid serious consequences or maintenance
complications, so screening for emerging resistance to maintenance actions or co-
occurring failures is essential. When used for these purposes, diagnostics are
instrumental in helping maintainers manage complex, or later-stage machine
health problems or conditions. Effective failure monitoring and management is
often linked to reduced maintenance utilization, lower maintenance costs, and
improved operation.

SMART maintenance systems based on Real Time Condition Monitoring and
optimum Decision Support Systems allow maintainers to conduct rapid diagnostic
in situ tests, rather than sending data to centralized laboratories. Such rapid
diagnostics provide technicians with information on machine health status and
maintenance options during maintenance inspections or scheduled actions. This
immediate responsiveness reduces delays in effective decision-making; it also
allows rapid responses to critical situations such as sudden breakdowns caused by
the fast degradation of mechanisms and to routine and non-critical situations. As a
result, it has the potential to reduce maintenance department costs.

Consumer expectations for diagnostics, such as rapid results, increased auto-
mation, simpler operation, and enhanced portability continue to drive the
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development of SMART devices. As time goes on, SMART diagnostics will play a
significant role in maintenance decision-making, particularly in areas where rapid
and accurate responses are closely tied to outcomes, such as the diagnosis of an
imminent failure.

Diagnostics of large populations of assets are used to detect problems in
individuals and to track population-level outbreaks. of the numerous applications
for population diagnosis include global degradation, transmission of problems, and
identification of common failure mechanisms or resistance to maintenance
(preventive or corrective) actions to determine future risks. As novel diagnostics
continue to emerge, machine health threats can be characterized and contained
more quickly and efficiently, affecting fewer individuals and improving health
management options. Use of diagnostics for these applications informs appropriate
maintenance decisions and containment efforts to reduce the spread of the failure
mechanisms among the population. Diagnostics development in this area has
focused on rapid and accurate results, as well as portable, easy-to-use instruments.
Technological advances increase flexibility and responsiveness to changing
maintenance needs. Newly developed rapid detection diagnostics may help
decrease the time between introduction of a new failure mechanism and detection,
enabling faster and more effective maintenance response. Many of these emerging
diagnostics are being adapted for field use in emergency situations, ideally
allowing containment efforts through self-maintenance actions (via actuator) to
begin before maintenance crews come into the picture.

Emerging technologies, such as tribotronics, are useful for associating various
products with oil status or machine health. As new markers are validated, and as
the significance of various combinations of markers are better understood, these
technologies are being adapted rapidly for a range of diagnostic applications. One
expanding trend is multiplexing, which involves conducting tests for more than
one marker in the same test sample. This testing paradigm is also being developed
in array formats, where multiple multiplex tests can be performed on the same
platform or chip.

As diagnostics become increasingly integrated and capable of generating vast
amounts of data, analytical advances and ease of interpretation will facilitate
adoption and diffusion of these technologies into routine maintenance practice. For
example, interpretation of a tribology marker assay that includes several hundred
tests may be too complex for use in general maintenance practice without software
or information processing capabilities to assist with analysis and presentation of
diagnostic results. As products that identify many hundreds or thousands of
markers, sophisticated analytical tools will be necessary to decipher the relation-
ships between collected and processed information and the predisposition to ini-
tiate the failure mechanism.

Advances in electronic maintenance records and decision support software will
assist maintainers to extract meaning from increasingly complex diagnostic
results. Computerized systems are currently assisting with the processing of certain
tests, and similar systems will decrease the diagnostic interpretation time, allowing
more rapid translation into appropriate prevention or treatment efforts.
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Diagnostics play a profound role in the life cycle of an individual, the general
population, and the environment. The significance of diagnostics is anticipated to
increase as it evolves with other interventions and with machine health informa-
tion technology. Cloud computing interfaces are anticipated to better link the
profiles of machines, technicians, end users, manufacturers and regulators; see
Galar et al. [7]. The new diagnostic interfaces have the potential to redefine, on a
global scale, the relationship among participants through timely and relevant
information available at the ‘fingerprint’ level; see Wandt et al. [8]. The conver-
gence of diagnostics and machine health information technology is driving the
development of more rapid, accurate and high throughput diagnostic information.
In some instances, future diagnostic devices will need to incorporate advanced
information technology with greater integration capabilities, ease of use, and
compatibility with other instruments or information resources (e.g., electronic
records or databases). Despite current advances, portable diagnostic devices, for
example, instruments or field use devices, still lack features and capabilities to
further enhance the ability for maintainers and end users to capture, interpret, and
use diagnostic information with greater speed, precision, and context. Conven-
tional diagnostics provide minimal information such as a numerical value to a
maintainer but minimal contextual information as to the potential relevance of the
result at a higher plane of observation. The majority of conventional diagnostics
also fall short of providing rapid real-time assay results which is an essential
element for time critical diagnostic decision-making.

The recent technology development using SMART devices has enabled rapid
and highly sensitive diagnostics to be used for a plethora of tests. The capabilities
of these diagnostic technology platforms, when combined with advances in
computing, telecommunications, and satellite technologies, will enhance the
capacity and the potential of diagnostics, setting the stage for a paradigm shift in
the generation and management of machine health information and services,
Karim et al. [9].

5 Decision-Making Strategy: The Mitigation of the Risk

Fault detection and diagnosis, in general, are based on variables measured by
instruments and observed variables and states by human operators. The automatic
processing of measured variables for fault detection requires analytical process
knowledge, and the evaluation of observed variables requires human expert
knowledge or heuristic knowledge. Therefore, fault detection and diagnosis can be
considered within a knowledge-based approach, [10, 11, 12]. Figure 6 shows an
overall scheme of the proposed architecture for SMART maintenance applications.

In the first phase, the actual sensing elements must be deployed together with
the power supply, integrated computing and the wireless communication with the
surroundings. There are common condition monitoring techniques like vibrations,
ultrasound, oil analysis or thermography with increasingly less expensive
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acquisition systems, but besides these parameters, others provided by passive
electrical sensing (inductive, resistive, and capacitive), active electrical sensing
(electromagnetic fields, piezoelectric) can also reflect the condition of some parts
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of the machine. These sensing techniques should be used to measure the operating
conditions (speed, load, temperature) in order to configure the fingerprints. The
empirical relationships between sensor output and actual physical condition must
be established but there are multiple ways to do it.

Information extracted from the sensors can be manipulated in different ways.
Some relationships between variables’ values and potential consequences with
mitigating actions can result from personnel experience—mostly maintenance
crew and operators who know the behavior of the machine. This information is
valuable, and there are many efforts to retain this knowledge within companies due
to the aging of maintenance crews all over the world. However, the relationship
between acquired data and existing faults for further decision making requires the
systematization and automation of diagnosis and prognosis with optimum main-
tenance decision making.

Models can be data driven or physical based; see Galar et al. [7]. Data driven
models use a black box approach where acquired data are processed and a number
of features are calculated to find those with peculiar behavior, anticipating
anomalies and malfunctions of the asset. Physical models use physics of the failure
to mathematically model the failure mechanism, first to identify it, and then to
predict how long it will last.

According to Galar et al. [13], the information fusion of such relevant sources,
models and maintenance experience can provide a powerful tool because the
weaknesses of both methods are negated.

The hybrid models proposed in the SMART maintenance approach consider the
analytical knowledge about the process to produce quantifiable, analytical infor-
mation. To do this, data processing based on measured process variables is per-
formed to generate the characteristic values:

• Limit value checking of direct, measurable signals. The characteristic values are
the violated signal tolerances; these are usually supplied by experienced tech-
nicians and operators.

• Signal analysis of directly measurable signals using signal models like corre-
lation functions, frequency spectra, autoregressive moving average (ARMA) or
the characteristic values, e.g., variances, amplitudes, frequencies or model
parameters. These techniques, together with AI tools like ANN, SVM or LSM,
constitute the basis of data driven methods for diagnosis and prognosis

• Process analysis using mathematical process models together with parameter
estimation, state estimation and parity equation methods. The characteristic
values are parameters, state variables or residuals. Information provided by the
process and properly modeled constitutes the foundation of physics based
methodologies.

Features such as physically defined process coefficients or special filtered or
transformed residuals are extracted and then compared to the normal features of
the non-faulty process. To this end, methods of change detection and classification
are applied. The SMART architecture does not neglect the potential benefits of
either data or physics driven methods. The resulting changes (discrepancies) in
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measured signals, signal models or process models are considered as analytic
symptoms.

The real challenge is the comparison itself and the concept of discrepancy.
Maintainers and end users usually wonder how big the increment of a variable
should be to consider it a real threat. This consideration is the first step of the
decision making process; it determines if risk is really present or if this is a false
alarm. Figure 7 shows a taxonomy of analytical fault-detection methods.

5.1 Simple Thresholds

Some features have been proposed as single-shot diagnostic variables with an
absolute threshold; therefore, they do not required historical data to determine
trending. For example, kurtosis is said to indicate a damaged bearing for any value
significantly higher than 3, say 4.5. Realistically, such variables are too simple to
offer single-shot diagnosis under most circumstances.

Typically, a threshold has to be set in a case-by-case manner. It can be set
absolutely or relatively to, for example, the maximum of an exemplar signal (or
the average of a number of signals). An absolute maximum can be set for machine
life threatening events such as collision or spindle bearing seizure, or a threshold
can be set at, say, 200 % of the maximum of an exemplar signal. Usually, there is
more than one threshold for different purposes (see Fig. 8), such as tool fracture or
a missing tool. Response time is scheduled according to the seriousness and
urgency of an event. In some cases, immediate action is necessary while, in others,
a slower response is more appropriate. When the exemplar is the previous cycle,
the threshold is no longer fixed and is sometimes called a floating threshold.
Figure 8 shows this behavior in the dynamic thresholding of static thresholds as a
function of operation and maintenance issues where aging effects or changes in the
process may require different levels of actuation. A wrong static threshold is the
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one proposed by ISO 10816 [21]to characterize the severity of the vibration. This
severity does not depend on the age of the machine and conditions in the operation,
so the standard is equally applicable to new assets and to machines close to the
disposal phase. A dynamic threshold would solve these issues. In fact, one of the
main functions of SMART maintenance practices is the proposal of dynamic
thresholds based on contextual conditions.

5.2 Time/Position-Dependent Thresholds

As mentioned above, due to the highly non stationary nature of most manufac-
turing process cycles and their associated health indicators, a constant threshold is
frequently too limiting, as shown in Fig. 8. Unfortunately, these constant thresh-
olds are the most common in the standards and in manufacturers’ recommenda-
tions. Because of their simplicity and independency of maintenance and operation,
they are usually too conservative. The optimum way to consider the aging process
or changing environments is to use finite duration thresholds which can be placed
in or across different time or position segments of a cycle to enable more refined
monitoring, as shown in Fig. 8 with thresholds Td1, Td2 and Td3.

5.3 Statistical Process Control

When several variables are measured by sensors, absolute values may not reflect
the right information. Instead, statistical values are considered and the control
chart can be used directly. When indirect sensing is involved, an indirect method
must be used. In the case of displacement measurement using accelerometer, a
double integration process is needed, and the thresholds must take this process into
consideration. Gong et al. [14] proposed a two-step method integrating an online
sensor and a control chart for such an application. A manufacturing process is
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Fig. 8 Ordinary and time
dependent thresholds in part
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monitored by a sensor and a sample of parts is inspected whenever a warning is
issued by the sensor. If the sample mean is outside the predetermined control
limits, the process is suspended to conduct a diagnosis to determine the cause for
possible corrective actions.

5.4 Part Signature

A part signature can be produced from a single observation but is more frequently
produced from repeated observations of a cycle by averaging. The signature can be
represented by step functions or more flexible parametric or nonparametric curves
through curve fitting or nonparametric profiling such as principal curves.

Envelopes can then be placed over and under the signature to monitor process
stage or faults. Timing variations between the part signature and the current cycle
must be considered to minimize missed detection or false alarms. More sophisti-
cated classifications of the local or global deviations from the part signature have
also been developed. With this method, a signature with deviations can be fixed as
a pattern to check how different the acquired signal is from the previous signals
which produced the signature. Unfortunately, this averaging has a low pass effect,
minimizing the transitions and making the part signature smoother. This smooth
average result can compromise the impartiality of the decision system when one
spurious peak occurs.

5.5 Waveform Recognition

Another criterion to identify an anomaly is the recognition of an abnormal
waveform. This is especially relevant in non-stationary conditions, i.e. the opposite
of part signature or thresholding, when transients happen and the waveform of the
transient corresponds to different environmental or operating conditions. For
example, in some tool monitoring systems, a number of force waveform patterns of
tool breakage and chipping are stored in the system. When a carbide tool breaks,
the cutting force suddenly rises and then drops to zero, while the force mostly just
drops to zero when breakage occurs in ceramic tools. The system continuously
matches the incoming signal to the stored waveform patterns. Waveform recog-
nition could be devised not to be sensitive to variables such as cutting conditions
and material properties.

5.6 Pattern Recognition

With the features extracted by signal processing, one can take advantage of a
number of pattern classification methods, such as linear discriminant function,
fuzzy logic, neural net, fuzzy neural net, decision tree, support vector machine,
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etc., to monitor the process stage or machine/process faults. Typically, exemplars
are made available through empirical means, and features providing the most
discriminant power are identified through statistical analyses. A classifier is then
‘trained’ to optimally classify the exemplars in terms of some objective functions.
These functions measure the ‘distance’ between elements to detect outliers and
perform the clustering in the functions of different criteria. Figure 9 shows a
typical classifier using Support Vector Machine where the ‘distance’ between
elements depends on a previously selected kernel function. Classifiers are very
sensitive to these configuration parameters; they occasionally handle outliers and
anomalies in a less than optimum way.

In multi-sensor configurations, sensor fusion is frequently done in a similar
way. Due to the proliferation of feature extraction and classification tools, this is an
area where much research has been done, sometimes at the cost of more funda-
mental research from which more insights could have been gained. The commu-
nity will benefit greatly if further research is directed at the development of
theoretical guidelines and systematic utilization instead of just trying different
combinations of the tools made available by the AI community.

5.7 Severity Estimator: The Prognosis Step

Last but not least is the prognostication of the failure. Once a fault is detected, it is
usually desirable to determine its severity. Severity estimation must answer the
‘when’ question, since ‘what’ and ‘why’ have already been answered by diagnosis.
For example, it is desirable to track tool wear or a gear tooth crack to know when
one has to change the tool or perform a maintenance action. A severity estimator is
a mathematical representation of the relationship between some features and the
actual severity. It is best if an analytical model can be established, as this will
minimize the need for empirical data over an actual failure trajectory. When an
analytical model is unavailable or infeasible, a black box model calibrated by

Fig. 9 Classifier of faulty bearings using SVM with different kernels and same features: Kurtosis
value (Kur) and Crest value (Cresv)
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empirical run-to-fail data can be used; however, these models are not generally
appreciated in the industry due to their lack of transparency for decision making,
as technicians must trust in the black box outputs. Finally, discrete-time time-
invariant Markov models have been used to describe a machine’s deterioration
trajectory.

6 Conclusion

SMART maintenance approaches will become feasible solutions to maintenance
problems and replace the traditional concept of condition monitoring. Risk
assessment of maintenance decisions based on RUL estimations is a promising
strategy to evaluate the various possible consequences of performed maintenance
actions or deferred maintenance. This methodology relies on collected informa-
tion, creation of operational scenarios and potential deviations from expected
behavior. Underlying technologies like sensors and algorithms must be properly
connected, however, preferably according to existing standards if any.

At this point, these risk assessment policies are seldom considered in mainte-
nance decisions, and most existing policies focus on protecting human beings and
the environment. It is time to redirect safety issues towards asset integrity and the
accomplishment of business goals other than human safety.

A number of technologies are already available; the current lack of standard-
ization is a problem that will hopefully be sorted out in the upcoming ISO 55000.

Acknowledgments This work is partially supported by SKF-UTC. The authors gratefully
acknowledge the helpful comments and suggestions from the Advanced Condition Monitoring
Center in LTU and associated partners.

References

1. Woodhouse J (2006) PAS-55-asset management: concepts & practices. In 21st International
Maintenance Conference, IMC-2006, pp 5–8

2. Asimov I (1942) Runaround astounding science fiction, March, Robot Visions. Penguin
3. Wolff R, Zaring O, Furuholt E, O’Leary H, Gaasbeek AP, Thoem T (2000) Indicators for

sustainable development, paper presented at the SPE international conference on health,
safety, and the environment in oil and gas exploration and production, Stavanger, Norway,
June 26–28

4. Liyanage JP, Kumar U (2003) Towards a value based view on operations and maintenance
performance management. J Quality Maintenance Eng 9(4):333–350

5. Ramamurthy H, Prabhu BS, Gadh R, Madni AM (2007) Wireless industrial monitoring and
control using a smart sensor platform, IEEE sensors journal, 7(5):611,618, May 2007 doi:
10.1109/JSEN.2007.894135

6. Candell O, Karim R, Söderholm P (2009) eMaintenance—information logistics for
maintenance support. Robotics and Computer-Integrated Manufacturing 25(6):937–944

58 D. Galar et al.

http://dx.doi.org/10.1109/JSEN.2007.894135


7. Galar D, Palo M, Van Horenbeek A, Pintelon L (2012) Integration of disparate data sources
to perform maintenance prognosis and optimal decision making. Insight-non-destructive
testing and condition monitoring, 54(8):440–445(6)

8. Wandt K, Karim R, Galar D (2012).Context adapted prognostics and diagnostics.
International conference on condition monitoring and machinery failure prevention
technologies, London, UK

9. Karim R, Söderholm P, Candell O (2009) Development of ICT-based maintenance support
services. J Quality Maintenance Eng 15(2):127–150

10. Rasmussen J (1993) Diagnostic reasoning in action. IEEE trans on system, man and
cybernetics, 23(4):981–991

11. Struss P, Malik A, Sachenbacher M (1996) Qualitative modeling is the key to automated
diagnosis. In 13th IFAC World Congress, San Francisco, CA, USA

12. Isermann R (1994) Integration of fault-detection and diagnosis methods. In Proceedings
IFAC symposium on fault detection, supervision and safety for technical processes
(SAFEPROCESS), pp 597–609, Espoo, Finland

13. Galar D, Gustafson A, Tormos B, Berges L (2012) Maintenance decision making based on
different types of data fusion. Podejmowanie decyzji eksploatacyjnych w oparciu o fuzję
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Part II
Rolling Bearing Diagnostics



Incipient Fault Detection in Bearings
Through the use of WPT Energy
and Neural Networks

Maria Jesus Gomez, Cristina Castejon
and Juan Carlos Garcia-Prada

Abstract Bearings are one of the more widely used elements in rotating
machinery, reason why they have focused the attention of many researches in the
last decades. The aim is to obtain a methodology that allows a reliable diagnosis of
this kind of elements without dismounting them from the machine, and detecting
the failure in incipient stages before a critical failure occurs. This manuscript
develops and improvement of a technique showed in [1] of automated diagnosis of
bearings through vibration signals, using the coefficients of the Multirresolution
Analysis (MRA) and Multilayer Perceptron (MLP) neural network (NN). Data
were obtained from a quasi-real industrial machine, where bearings were sup-
porting axial and radial loads while rotating at different speeds. This technique
offered very good results when diagnosing healthy and faulty bearings, never-
theless the reliability decreased when distinguishing between different kinds of
failures. The novel technique showed in the present work, increases the success
rates obtained using the same data: not only allows detecting early faults but also
their location with high accuracy. The methodology exposed in this work is based
on the use of the relative energy of the Wavelet Packets Transform (WPT), and
NN, concretely, the RBF.
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1 Introduction

The aim of condition monitoring is to detect failures in rotating machines before a
critical damage occurs. This kind of maintenance has a lot of advantages, because
it makes no necessary the dismounting of a machine to check the status of its
elements. Besides, the probability of detecting a failure before it becomes critical
increases, avoiding losses and making the operations safer. By these reasons,
automation of fault diagnosis in industrial processes has been the aim of many
researchers in the last decades.

Concretely, rolling bearings are one of the more widely used elements in
rotating machinery, and its failure is one of the foremost causes of breakdowns in
this kind of machines. Bearings are fundamental elements in the support subsys-
tem, which hold great part of the static and dynamic loads, reason why they have
high risks of failure. Most of the researches related to bearing fault diagnosis
agrees with the use of vibration signals, due to they contain valuable information
about failures [2, 3], however Acoustic Emission (AE) have been also appropri-
ately used with accuracy to diagnose bearings, as in the case of [4].

Based on the use of this kind of signals, most authors classifies the techniques to
diagnose bearings in three approaches: time domain based on statistical parameters
[5], frequency domain analysis [6], and time–frequency analysis such as Wavelet
Transform (WT) [1, 7] and Hilbert-Huang Transform (HHT) [8].

Diagnosis based on time domain statistical parameters has shown low effec-
tiveness when it is applied to incipient faults or when the system is exposed to low
loads, as pointed in [9]. By this reason, the use of time domain statistical
parameters as unique way to extract features is not common.

The analysis of the frequency domain is the most classical approach to detect
failures in rotating machinery, and concretely the Envelope Analysis is the more
popular fault diagnosis method of rolling bearing. Envelope analysis means
exploiting cyclostationary of second order (CS2) that appears when bearing
defects exist [10]. However, this classical tool is seriously affected by the noise,
especially in early fault stage. Some studies have been carried out to improve the
results of this method, as for example in [11]. In other cases, to solve this problem,
the envelope analysis has been combined with other techniques as the Wavelet
Transform (WT), as in the case of [12]. Another tool usually applied to examine
the frequency domain of the signals is the Empirical Mode Decomposition (EMD),
used to obtain Intrinsic Mode Functions (IMFs), as shown in [13].

The Hilbert-Huang Transform (HHT) is a time–frequency analysis technique
based in the EMD. The HHT offers high reliability, as in the case of [14].

The same way as HHT, the Wavelet Transform (WT) also offers information
both in time and frequency domain, providing the proper treatment both for sta-
tionary and for non-stationary signals. WT gives also a multi resolution analysis, so
it is especially useful to diagnosis of defects [15]. With this purpose, WT have been
widely used and not only for bearings, but also for general rotating machinery as in
[16], for gears as shown in [17], for shafts [18], and for structural elements as in [19].
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However, the use of the WT is a complex task due to the great diversity of
critical parameters which must be chosen, such as the mother wavelet and the
decomposition level. On the other hand, until few time ago, the WT had another
bigger disadvantage: the incapability for decomposing the high frequency bands
trough the Multi resolution Analysis (MRA). Wavelet Packets Transform (WPT)
constitutes an improvement of the MRA [20], due to the ability to decompose all
the frequency bands. Thus, applications of WPT are highly increasing, and now-
adays is the most used technique to treat signals in many fields, as in the case of
speech recognition [21], denoising [22], and treatment of electrocardiographs [23],
among others.

WPT coefficients can be used directly as features, as they content reliable
information about failures [24]. However, other information related to the WPT
coefficients can be also used as features, as has been demonstrated in [25], where
statistical parameters are calculated, and in [26], where the energy of the WPT is
successfully used as crack indicator.

In a diagnosis procedure, after features extraction, an intelligent classification
system is also needed. A lot of intelligent classification systems have been
developed and used for monitoring systems, as fuzzy classifiers, used in [27, 28],
genetic algorithms [18], and the most used, the Support Vector Machines [29, 30]
and Neural Networks (NN) [31].

In [1], an algorithm was developed to diagnose four conditions of ball bearings:
healthy, inner race fault, outer race fault, and ball fault. The data were obtained at
three different rotating speeds: 10, 20 and 30 Hz. The algorithm was based in the
use of the MRA coefficients, after selecting of the optimal frequency band (the one
where the coefficients presented larger differences between health bearing and the
faulty conditions). This coefficients were used to train a Multilayer Perceptron
(MLP) NN. With this methodology, high success rates were achieved, obtaining no
false alarms, and distinguishing reasonably, for the speeds of 20 and 30 Hz, the
healthy bearings from the faulty. However, the MLPs generated had problems to
distinguish between different kinds of faults.

The aim of this work is to improve the results obtained from the analysis carried
out in [1] working with the same data. The energy of the coefficients of the
improved technique WPT will be used to feed, in this case, a Radial Base Function
(RBF) neural network.

2 Experimental Setup

The vibration signals were obtained from a rig developed by the UNED
mechanical department. FAG 7206 B single ball bearings were tested at three
different rotation speeds set to 10, 20 and 30 Hz, and controlled by a photo
tachometer. The rig is shown in Fig. 1.

In Fig. 1 the first elements observed, starting on the right hand-side, are axial
and radial pneumatic cylinders, which apply loads of 2.5 and 3 bars respectively.
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Following, the bearings assembly can be seen. A transmission pulley is directly
connected to the motor by a V-belt.

The measurement chain is composed by a B&K 4383 accelerometer, a B&K
NEXUS amplifier and a DAS-1200 Keithley acquisition card. The sampling rate
was set to 5,000 Hz, and all the acquired signals had 5,120 points.

The tests were carried out with healthy bearings. Later several faults were
induced to the bearings to carry out the tests, including inner race fault, outer race
fault, and ball fault. A pit 2 mm long was artificially induced in the inner or outer
race by an electric pen. In the case of the rolling ball, multiple slots in the surface
were performed to simulate the flacking phenomenon.

Finally, 284 signals are obtained: 196 signals for each rotation speed, and 49 for
each fault condition.

3 Wavelet Packets Transform

Wavelet Transform (WT) is specially efficient to carry out local analysis of non
stationary signals. It obtains correlation coefficients between a signal and a mother
wavelet function selected. When WT is applied in a discrete way, called Discrete
Wavelet Transform (DWT), the signal is decomposed in information of approxi-
mation and detail with recursive filters low and high pass. WPT consists on the
application of the DWT in a recursive way, until a decomposition level selected,
according to the scheme shown in Fig. 2.
where Wðk; jÞ represents the coefficients of the signal in each packet. k is de
decomposition level and j is the position of the packet within the decomposition
level. Then, each correlation vector Wðk; jÞ has the structure of the Eq. (1):

Wðk; jÞ ¼ fw1ðk; jÞ; . . .;wNðk; jÞg ¼ fwiðk; jÞg ð1Þ

Fig. 1 Bench bank used for
the measurements. UNED lab
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where i is the position of the coefficient within its packet.

3.1 Energy of the WPT Coefficients for Feature Extraction

The concept of energy used in the WPT analysis is very close to the Fourier
Theory [24]. The energy of the packets is obtained from the sum of all the squares
of the coefficients of each packet, according to Eq. (2):

Ek; j ¼
X

i

fwiðk; jÞg2 ð2Þ

The relative energy, as a normalized parameter proposed in [26], is calculated
as shown in Eq. (3):

Ek; jrel ¼
Ek; j

Et
ð3Þ

where Et is the total energy of the signal, calculated as the sum of all the energies
of the packets.

3.2 Features Extraction

Using the definition of the energy of the packets described above, the transfor-
mations are carried out. The mother wavelet used is the Daubechies 6 (DB6), due
to its effectiveness in this area has been already proved in previous related works
[1, 15, 16].

The decomposition level has been set to 3. This level was chosen because the
better classification results were obtained with this value. The patterns extracted

W(0,0)

W(1,1)W(1,0)

W(2,3)W(2,2)W(2,1)W(2,0)

W(3,7)W(3,6)W(3,5)W(3,4)W(3,3)W(3,2)W(3,1)W(3,0)

Fig. 2 WPT analysis, procedure of decomposition in approximation and detail information
through low pass filters and high pass filters, until decomposition level 3
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then, are vectors of 8 elements, which seems to be a proper number of inputs for
the NN. The decomposition level determines the frequency resolution offered by
each packet, that in this case is 312.5 Hz.

At each rotation speed, the features of all the conditions of fault are extracted.
An example of the results obtained is shown in Fig. 3.

4 Classification System

The architecture of NN used as intelligent classification system is the Radial Base
Function (RBF), because it has offered better results than the MLP and the
Probabilistic (PNN) in previous related works [15]. RBFs are constituted by three
layers of neurons, one of input, one or more hidden and one of output.

RBF architecture has a lot of advantages such as fast training and easy opti-
mization. This is due to the low number of design parameters that must be decided
by the designer, where the more critical are the number of neurons in the hidden
layer and the activation function.
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Fig. 3 WPT relative energies (%) at decomposition level 3 with mother wavelet DB6. a Healthy
bearing. b Inner race fault bearing. c Outer race fault bearing. d Ball fault bearing
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A critical parameter of the activation function is the spread. The spread is a
constant that means the critical distance between the input and the weight vector.
When this distance is reached, the output gets a value lower than a threshold.

The optimization of RBF parameters is carried out by a process examining the
number of neurons of the hidden layer, and the success rate versus the spread. The
value of spread that minimizes the number of neurons in the hidden layer (to
reduce the computational cost) and maximizes the success rate is chosen.

5 Results and Discussion

After training several NN to optimize the design parameters, a total number of
three RBFs were chosen, one for each rotation speed. Each NN is fed with 49
features of length 8 by each condition at every speed. The number of outputs of
each NN is 4, one for each condition. The characteristics of the trainings are
presented in Table 1.

During training process, the algorithm actualizes weight vectors between layers
until the sum squared error (SSE) falls beneath an error goal (set to 0.2) or a
maximum number of neurons in the hidden layer has been reached (700 neurons).

Success rates obtained at each speed are presented in Table 2, where the best
results exposed in [1] are also presented in order to make a comparison.

As can be observed, success rates have been increased in the present work. The
previous work used the coefficients of a narrow frequency band as features, while in
this work uses the energies of the whole signal (specifically the 8 packets generated

Table 1 Design parameters of the RBF at the three rotation speeds

RBF10 RBF20 RBF30

2*Data Distribution Training 75 % Training 75 % Training 75 %
Test 25 % Test 25 % Test 25 %

Spread value 0.6 1.3 1.4
Goal 0.2 0.2 0.2
Number of neurons in the hidden layer 30 19 7
Number of inputs at the pattern 8 8 8
Number of outputs 4 4 4

Table 2 Comparison of the success rates at different speeds with the obtained results in previous
related work with the same data

Current work Previous related work [1]

Speed (Hz) Hidden neurons Network accuracy (%) Hidden neurons Network accuracy (%)

10 30 91.38 30 85.71
20 19 91.78 30 81.63
30 7 92.58 30 77.04
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at decomposition level 3) are selected. The number of inputs has been reduced from
18 coefficients to 8 levels of energy; however the information is related to a wider
frequency band. The improvement can be assigned to other effects that occur in the
machine when a fault appears, and a narrower band cannot detect.

The improvement of the success rates can also be assigned to the use of WPT in
place of MRA, and to the use of the RBF architecture as a substitute for MLP.

From Table 2, it can be stated that the rotation speed of 30 Hz offers the best
results both in terms of success rate (with a 92.58 %), and of computational cost,
giving the lower number of neurons in the hidden layer with respect to the speeds
of 10 and 20 Hz.

In Fig. 4 the partial results of the classification are shown.
The increasing of the success rates in this work allows a considerably better

discrimination between the kind of fault with respect to the previous work [1],
especially in the case of 30 Hz. Regarding the discrimination between health and
faulty bearing, results are also better at 30 Hz, where zero false alarms can be
found. The probability of not detecting a faulty bearing has been significantly
reduced at this speed.
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6 Conclusions

With base on the data obtained in the previous related work [1], a new analysis has
been carried out to diagnose early faults in ball bearings at three different loca-
tions. The methodology has been changed: instead of using the coefficients of a
specific frequency band with a MRA analysis, the WPT relative energies of the
whole signal have been used. Besides, the architecture of the NN is the RBF,
instead of the MLP.

The results obtained in the previous work have been improved. The success
rates when distinguishing healthy from faulty bearings have been increased,
however the better improvements have been achieved when discriminating
between different kinds of fault, where the previous methodology had a serious
lack. In the present work, the RBFs can detect with high accuracy the location of
the fault at the three speeds.

It can be stated that both the diagnosis and the computational cost of the NN,
are improved when the rotation speed increases, so the better solution found in this
work is the NN trained with the data obtained at 30 Hz.
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Bearing Fault Detection Using
Beamforming Technique and Artificial
Neural Networks

Walace de Souza Pacheco and Fernando A. N. C. Pinto

Abstract The importance of predictive maintenance optimization has been rec-
ognized over the past decades. A relevant aspect in the process of machinery noise
control is the proper identification of noise sources. Microphone-array-based
methods are known as alternatives for noise source identification in machines. In
this work, the ‘‘Beamforming’’ technique is used to visualize the directionality
pattern of the noise emitted by a rotating machine and a study is presented to
compare the performance of machine condition detection using different archi-
tectures of classifiers based on Artificial Neural Networks. Sound maps from a
rotating machine are used as inputs to classifiers for two-class (normal or fault)
recognition. The classifier is trained with a subset of the experimental data for
known machine conditions and is tested using the remaining data set. The pro-
cedure is illustrated using data from experimental sound maps of a rotating
machine. The effectiveness of the classifiers and the network training is improved
through the use of the Karhunen-Loève transform on the sound map data.
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1 Introduction

Condition monitoring and diagnostics are widely used in almost every field of
industry with applications in automation, quality control and predictive mainte-
nance. The use of vibration signals is quite common in the field of condition
monitoring of rotating machinery and the use of acoustic measurements is a
promising way of complementing predictive maintenance systems. In this work,
the data analyzed are derived from monitoring of a experimental test rig. Sound
maps have been generated in order to observe the operating conditions of rotating
machinery through spatial patterns of sound emission. The conventional
Beamforming technique in the frequency domain is used to generate the sound
maps.

Artificial neural networks (ANNs) have been applied in problems of pattern
recognition, dynamic system identification, problems of pattern classification,
fitting function, process control, time series forecasting [1]. In the present work, it
will be applied in diagnosis of machine conditions and automated detection
treating these as classification problems based on learning pattern from empirical
data modeling.

A study is presented to compare the performance of bearing fault detection
using different architectures of classifiers based on Artificial Neural Networks,
namely, Multilayer Perceptron Neural Networks (MLP). A microphone array with
twelve elements acquires time-domain acoustical signals from a rotating machine
with normal and defective bearings. These signals are processed in order to obtain
sound maps. By comparing the sound maps of a machine running in normal and
faulty conditions, detection of faults like bearing defects is possible.

2 Sound Map Data

Figure 1 shows a rotating machine consisting of electric motor, mating gears,
unbalanced disks and rolling bearings and an array circular with twelve micro-
phones spaced by an angle of 30� at a radius r = 130 mm which was mounted
500 mm above from machine. Separate measurements were obtained for two
conditions, one with normal bearings and the other with a defective bearing on the
bearing block indicated in Fig. 1.

The signals of twelve microphones in the circular array were acquired with a
PXI-unit from National Instruments. The acquisition hardware can be seen in
Fig. 2. The signals were obtained under laboratory conditions, with low back-
ground noise. Shaft revolution was sensed by an optical sensor giving one pulse for
each turn of the shaft. This signal was also connected to the data acquisition
system. The machine was set up to rotate at 1,920 rpm. Measurements were
obtained at a sampling rate of 20,000 samples/s. In the present work, these time-
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domain data were processed to create the sound maps through a conventional
Beamforming algorithm in the frequency domain, implemented in Labview.

According to Brandstein and Ward [2], Beamforming is a method of mapping
noise sources by assessing sound pressure levels based upon the direction from
which they originate. The idea behind the technique is that a coherent sound, in the
form of a plane wave, coming from a specified direction and being received by
different microphones will lead to similar signals that are delayed on time based on
the different travel paths [3]. Beamforming allows a ‘‘real-time’’ analysis of the
incident sound, since it can picture a snapshot of the waves reaching the array. Of
course this snapshot is restricted by the amount of time necessary to acquire the
samples needed for the FFT-algorithm being used.

The sound maps generated by an array of microphones installed near the
experimental test rig, are analyzed in the 1/3 octaves band centered about 1,250,
1,600, 2,000, 2,500, 3,150, 4,000, 5,000, 6,300 and 8,000 Hz. The different
directionality patterns of the sound maps are related to machine running in normal
and faulty conditions, this variation can be observed in Figs. 3 and 4 respectively,
in the 1/3 octave band centered about 6,300 Hz.

Two sets of experimental data, with normal and defective bearings, were
considered. For each set, two signal groups consisting about 200,000 samples were

Fig. 2 Experimental setup
and Acquisition hardware

Fig. 1 Equipment and array used in the experiment. a Test-rig. b Array circular with 12
microphones
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obtained using the microphones monitoring the machine condition. These samples
were divided into 140 bins of 2,500 samples each with 50 % overlapping. These
bins were further processed, in Labview, to create one set of sound maps for each
1/3 octave band.

The total set is a matrix 1,080 9 140 9 2 consisting of 1,080 sound pressure
levels, 120 for each 1/3 octave band, associated with each direction of the sound
map, i.e., each row of the matrix represents a sound map orientation, 10 9 12
pixels for a specific 1/3 octave band. The columns represent the time series of the
sound maps, 140, and two bearing conditions, normal and defective. These data are
used as inputs to the classifier. The classifier is trained with a subset of the
experimental data for the known machine conditions and is tested using the
remaining set of data.

3 Karhunen-Loève Transform

The Karhunen-Loève transform (KLT), also called Principal Component Analysis
or Hotelling Transform, is a well-known statistical method for feature extraction,
data compression and so far it has been broadly used in a large series of signal and
image processing, pattern recognition and data analysis applications.

In this work, the KLT was adopted for dimensionality reduction. Using the KLT
technique, basically a higher dimensional data space can be transformed onto a
lower dimensional space [4]. The sound map data used for classification purpose
consist of 280 vectors with 1,080 dimensions, 140 vectors for each of the 2 classes

Fig. 3 Sound maps at different instants of time to machine running in normal conditions at
6,300 Hz

Fig. 4 Sound maps at different instants of time to machine running in fault condition at 6,300 Hz
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(normal and faulty). Initially all 1,080 dimensions were used for training. After
that was successfully implemented, the KLT technique was used to reduce the
number of dimensions from 1,080 to 49, according the Broken Stick test [5].

Essentially, the KLT uses the covariance matrix obtained from the input data
vectors. By looking at the covariance matrix of the data vectors, one can determine
which of the dimensions are highly variable across the data space. This leading to a
standard Eigenvalue problem. The KLT technique thus transforms the existing
data space into a new data space. The variance of the resulting, transformed data
set can be controlled along with the reduction in the dimension of the set, i.e., the
number of components in the data vector is reduced. At the same time, most of the
information contained in the original data set is retained. With KLT, new features
obtained are a linear combination of the original ones.

4 Artificial Neural Network

Artificial Neural Networks (ANNs) were introduced as models of biological neural
networks. An ANN is a system composed of interconnected processing elements,
called neurons, which are arranged in layers. Each neuron is responsible for
mapping linear and nonlinear data input and output, mainly determined by its
activation function [1].

Among different kinds of ANNs, multilayer perceptron (MLP) neural networks
are quite popular and will be used in this work. MLPs consist of an input layer of
source nodes, one or more hidden layers of computation nodes or ‘neurons’ and an
output layer [Haikin [6]]. Figure 5 shows an example of a ANN architecture that is
widely used in practical applications.

Fig. 5 Architecture of a multilayer perceptron (MLP) neural networks [6]
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The neuron can be represented mathematically through the following
expressions:

vk ¼
Xm

j¼1

wkjxj ð1Þ

and

yk ¼ uðvk þ bkÞ ð2Þ

where, x1; x2; . . .; xm are the input signals; wk1; wk2; . . .; wkm are the synaptic
weights; vk is the output of linear combiner; uð:Þ is the activation function and yk

is the output signal of neuron. The model neuron also includes a bias externally
applied, represented by bk. The bias has the effect of increasing or decreasing the
net inflow of the activation function, depending on whether it is positive or neg-
ative, respectively. The parameters weights and biases together, constitute the
adaptive parameters in the network.

The number of nodes in the input and the output layers depend on the number of
input and output variables respectively. The number of hidden layers and the
number of nodes in each hidden layer affect the generalization capability of the
network.

The MLP Neural Network, used in this work, consists of input layer, hidden
layer and output layer. The input layer has 1,080 nodes representing the sound
maps in the original way. Through the application of the KLT the number of input
nodes is decreased to only 49. Representing the two classes, ‘‘normal’’ and
‘‘failed’’ bearings the 2 binary output nodes are always complementary. The inputs
were normalized in the range of 0.0–1.0. In the ANN, sigmoid activation functions
were used in the hidden and in the output layers. The ANN was created, trained
and implemented using Matlab neural network toolbox with back-propagation and
the Levenberg–Marquardt training algorithm. The ANN was trained iteratively to
minimize the mean square error (MSE) between the network outputs and the
corresponding target values. At each iteration, the gradient of the performance
function (MSE) was used to adjust the network weights and biases. In this work, a
minimum gradient of 10-10, a mean square error of 10-6 and maximum iteration
number (epoch) of 100 were used. The training process would stop if any of these
conditions were met. The initial weights and biases of the network were generated
automatically by the program.

5 Results

The original data set, consisting of 1,080 sound pressure levels associated to each
direction of the sound maps, in nine different 1/3 octave bands, split in form of 140
bins, for each bearing condition, were divided into two subsets. The first 84 bins of
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each signal, or 60 % of bins, were used for training the ANNs and the rest were
used for validation. The target value of output node was set 1 and 0 for normal and
failed bearings, respectively.

The KLT technique was used to reduce the number of dimensions from 1,080 to
49, drastically reducing the number of input nodes.

The classification results are presented to see the effects of the Karhunen-Loève
transform for the diagnosis of machine condition using MLPs. To evaluate the
effect of the architecture of the neural network on the performance of classifiers,
neural networks of different architectures with one or two hidden layers were
tested for each classifier. These architectures were chosen on the basis of training
trials. Table 1 and 2 show a summary of the best results obtained with the training
of six types of architectures of MLP.

The neural network architecture 49 9 4 9 4 9 2 (49 neurons in the input
layer, 4 neurons in the first hidden layer, 4 neurons in the second hidden layer and
2 neurons in output layer) showed the lowest success rate of the patterns presented
to it, i.e., the network has recognized only 91.43 %. The architecture with better
ability to generalize the network was 49 9 19 9 2 with success rate of 98.93 %.
In general, it is noted in Tables 1 and 2 that the other architectures were also able
to classify with efficiency above 91.43 %. It should be noted that the increase in
the number of layers or neurons does not necessary leads to improved
performance.

The training time needed for the different architectures depends on the amount
of neurons used. With the dimension reduction achieved by the KLT the corre-
sponding times are much lower than those for the original set. For the same highest
success rate, of 98.93 %, the training time is reduced from 80.1 to 2.98 s. The
smallest time of only 0.64 s still allows a success rate of 98.57 %.

Table 1 Results of success rate of different MLP architectures without dimension reduction

Architecture Training time (s) Success rate (%)

1,080 9 3 9 2 28.7 97.86
1,080 9 5 9 2 80.1 98.93
1,080 9 9 9 2 413.5 95
1,080 9 4 9 3 9 2 59.8 98.93
1,080 9 3 9 6 9 2 18.35 93.21
1,080 9 6 9 5 9 2 187.6 98.57

Table 2 Results of success rate of different MLP architectures with dimension reduction

Architecture Training time (s) Success rate (%)

49 9 6 9 2 0.64 98.57
49 9 18 9 2 2.24 95.36
49 9 19 9 2 2.98 98.93
49 9 3 9 3 9 2 0.88 98.57
49 9 4 9 4 9 2 0.78 91.43
49 9 7 9 3 9 2 0.93 98.21
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Even with data with dimension reduced by KLT the failure introduced in the
experimental test rig could be recognized. The results show that the MLP can be
used satisfactorily as an alternative technique for fault diagnosis and classification,
using maps sound in conjunction with KLT.

6 Conclusions

In this work the performance of a bearing fault detection system is investigated.
The use of sound maps is proposed in order to correlate possible failures with their
spatial locations. The great amount of data from these maps, in different frequency
ranges, poses a difficulty for the training of ANN based classifiers.

The application of the KLT allowed the use of an approximation with fewer
dimensions than the original data set. It simplifies the database of the sound maps
and greatly improves the training of the ANN.

The recognition of patterns on the sound maps can also be used to detect the
incipient failures of the machine components, through the on-line monitoring
system, reducing the possibility of catastrophic damage and the machine down
time.

Further work includes the application of the classifiers in a real gas turbine to
the failure prediction in the framework of its maintenance system.
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HOS Analysis of Measured Vibration
Data on Rotating Machines with Different
Simulated Faults

Akilu Yunusa-Kaltungo, Jyoti K. Sinha and Keri Elbhbah

Abstract Vibration-based condition monitoring (VCM) has gained tremendous
successes in the detection and differentiation of faults associated with rotating
machines, through the installation of various numbers of vibration transducers at
individual bearing pedestals of the monitored machine. This chapter however
exposes the future potentials of the use of the higher order spectra (HOS) i.e., the
bispectrum and the trispectrum for rotating machines faults diagnosis (FD). The
aim of this is to achieve a significant reduction in the number of vibration trans-
ducers required at each bearing pedestal, without necessarily compromising
valuable information required for the diagnosis. Four cases (healthy, shaft mis-
alignment, cracked shaft and shaft rub) were simulated on an experimental rig with
two rigidly coupled shafts supported by four ball bearings. Only four acceler-
ometers (one at each bearing pedestal) were used for this study. The HOS results
were compared for the different conditions of the rig. The observations and
findings are presented in the chapter.
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1 Introduction

The impacts of machine failures with respect to safety, environment, profit and
market share losses are increasingly becoming enormous by the minute [1].
A huge proportion of the operations in most manufacturing as well as service
providing industries are dependent on rotating machines, which forms the basis for
a continuous search for tools and techniques that will effectively enhance the early
detection of incipient failures in these machines [2].

Vibration-based condition monitoring (VCM) over the years has been effec-
tively used for the diagnosis of faults in rotating machines, with one of its most
established and successful diagnostic techniques based on spectrum and other
signal analysis. The use of spectrum analysis for fault diagnosis in rotating
machines has been principally done through the examination of the presence of
different harmonics and sub-harmonics of the machine’s rotational speed in the
vibration spectrum, and this was clearly elaborated in the studies by Goldman and
Muszynka [3]. Similarly, studies by Sinha [4] provided tangible details about the
concepts and applications of VCM. Despite the tremendous successes that have
been achieved by these conventional techniques, their requirements for numerous
vibration transducers (accelerometers and/or proximity probes) at each bearing
location could be overwhelming. If a large rotating machine with an appreciable
number of bearings (such as some turbo-generators) is to be monitored, the number
of vibration transducers needed, the data to be analyzed and the time will be
enormous, which may in turn complicate the entire process of fault diagnosis.
Hence, capitalizing on the recent advances achieved in the area of computational
sciences may enhance the feasibility of tremendously reducing the transducer
requirements at each bearing location without necessarily compromising any of the
information needed for fault diagnosis.

Emerging studies have revealed the capabilities of higher order spectra (HOS),
namely the bispectrum and trispectrum [5] for the diagnosis of various faults
related to different rotating machines [6–11]. The greatest strength of HOS is in the
fact that it achieves a combination of the various frequency components present in
a signal; thereby providing the relationships between the harmonics and sub-
harmonics responses of the running speed of the rotating machine, through the aid
of one-point measurement per bearing [6, 12]. Through this, there exists a great
possibility of reducing the amount of transducers required per bearing, during
machinery vibration measurements. Therefore, this study simulates four different
cases (healthy, misalignment, crack and rub) on a medium scale experimental rig;
where two rigidly coupled shafts were supported on a relatively stiff support
through the aid of 4 ball bearings. The vibration experiments have been conducted
using 4 accelerometers for measurement (one installed at each bearing pedestal) in
the horizontal direction. Hence, the spectrum, bispectrum and trispectrum have
been computed. The chapter provides the results as well as the potentials of
combining bispectrum and trispectrum in vibration-based fault detection and
analysis in rotating machines.
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2 HOS

Bispectrum [6, 13–15] and trispectrum [5, 8] are the two types of HOS [10, 11]
used in the present study. The computational approaches used for the spectrum and
the HOS (bispectrum and trispectrum), are briefly discussed here.

2.1 Spectrum

The power spectrum of a time domain signal xðtÞ; is calculated by the discrete
Fourier transform (DFT) of the signal as follows;

SxxðfkÞ ¼ E XðfkÞX�ðfkÞ½ �; k ¼ 1; 2; 3; . . .; N ð1Þ

where SxxðfkÞ is the power density, XðfkÞ and X�ðfkÞ are respectively the DFT and
its complex conjugate at frequency ðfkÞ for the considered time domain signalxðtÞ.
N is the number of frequency points while the mathematical operator E [.] denotes
the mean.

2.2 Bispectrum

The bispectrum on the other hand is the double Fourier transform of the third-order
moment of a time signal xðtÞ; which is computed by the DFT as [14, 15];

Bxxxðfl; fmÞ ¼ E XðflÞXðfmÞX�ðfl þ fmÞ½ �; lþm�N ð2Þ

The bispectrum gives the coupling between the frequencies at fl; fm and fl þ fm

for the considered time domain signal xðtÞ: Assuming that the frequencies fl and fm

denote the pth and qth harmonics of the running speed of a rotating machine
respectively, then the bispectrum (Bxxx) component could also be written as Bpq

[6].

2.3 Trispectrum

Similarly, the trispectrum represents the triple Fourier transform of the fourth-
order moment of a time signal, which is computed thus [5, 8];

Txxxx fl; fm; fnð Þ ¼ E XðflÞXðfmÞXðfnÞX�ðfl þ fm þ fnÞ½ �; lþmþ n�N ð3Þ
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Just as in the case of the bispectrum, if fl; fm and fn respectively denote the pth,
qth and rth harmonics of the running speed of a rotating machine, then the
trispectrum could also be represented by Tpqr [5].

3 Experimental Set-up

The photographic representation of the experimental rig is shown on Fig. 1, which
is situated in the Dynamics Laboratory of the University of Manchester. The rig
principally consists of two rigidly coupled steel shafts of uniform diameters
(20 mm) but varying lengths (1 and 0.5 m respectively), which were supported by
four ball bearings mounted on relatively stiff pedestals (just as indicated by Fig. 1).
The 1 m shaft is connected to the electric motor via a flexible coupling. There are
three balance steel discs of dimensions 125 mm (OD) 9 15 mm (thickness), with
two of the discs fitted on the long shaft (first disc is 30 mm from the drive motor
and the second is 19 mm from the second bearing) and the third on the shorter
shaft (21 mm from both bearings 3 and 4) as shown on Fig. 1 [6].

4 Simulation of Faults

The following four cases (healthy, misalignment, cracked shaft and shaft rub) have
been simulated in the experimental rig and vibration data have been collected at a
constant rotational speed of 2,040 RPM (34 Hz), which corresponds to half of the
first natural frequency of the rig. For all four cases, only four accelerometers (one
at each bearing pedestal in the horizontal direction, due to reduced stiffness in this
direction) were used for the collection of the vibration responses. All vibration
data were recorded on to a PC through the aid of a 16-channel, 16-bit Data
Acquisition Card (NI 6229), for subsequent signal processing using the MatLab
code. Further details about the simulated faults are also available in Elbhbah and
Sinha [6].

Fig. 1 Photographic representation of the experimental rig
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5 Data Analysis and Results

The measured vibration data at 4 bearings have been analyzed using spectrum,
bispectrum and trispectrum signal processing techniques. The FFT for all four
cases (healthy, misalignment, crack and rub) were calculated using an 80 %
overlap with a Hanning window, frequency resolution dfð Þ of 0.6104 Hz, a
sampling frequency (fs) of 5,000 Hz and number of data points, N = 8,192.

It was observed in the earlier study that the bispectrum analysis shows much
better diagnostic features than spectrum analysis [6]. Now, the trispectrum analysis
is also introduced and then both bispectrum and trispectrum are combined for the
observation of the best possible diagnostic features for different faults. The merit
of HOS is that they merge different frequency components of a signal, so that the
coupling between harmonics and sub-harmonics responses may generate peculiar
characteristics at several running speeds that could enhance fault diagnosis. The
measured vibration data from this experiment were also used to compute both the
bispectrum and the trispectrum. Some of the HOS plots from two bearings (1 and
3) at a running speed of 2,040 RPM (34 Hz) are shown on Figs. 2 and 3. In the
bispectrum, B11 signifies the coupling between 1x (twice) and 2x components of
the spectrum; B12 signifies coupling between 1x, 2x and 3x components in the
spectrum; B13 signifies coupling between 1x, 3x and 4x components in the spec-
trum; B22 signifies the coupling between 2x (twice) and 4x components in the
spectrum; Bss signifies coupling between 0.5x (sub-harmonic components twice)
and 1x; and Bs1 signifies coupling between 0.5x, 1x and 1.5x components in the
spectrum. Similarly, in the trispectrum, T111 signifies coupling between 1x (thrice)
and 3x components in the spectrum; T112 ¼ T211 ¼ T121 signifies coupling between
1x (twice), 2x and 4x components in the spectrum; Tsss signifies coupling between
sub-harmonic components 0.5x (thrice) and 1.5x components in the spectrum;
Tss1 ¼ T1ss ¼ Ts1s signifies coupling between sub-harmonic components 0.5x
(twice), 1x and 2x components in the spectrum. It is evident that both the
bispectrum and trispectrum plots shown in the Figs. 2 and 3 provided distinctions
between the four simulated cases (healthy, misalignment, crack and rub).

The research study by Elbhbah and Sinha [6] only made a comparison between
the spectrum and the bispectrum, and concluded that the appearance of compo-
nents B11 and B12 ð¼ B21Þ in the healthy case could be as a result of some residual
rotor unbalance and little misalignment between bearings 2 and 3. Furthermore,
the healthy case peaks were of significantly lower magnitudes when compared to
either the misalignment or crack cases. In addition to B11 and B12 ð¼ B21Þ; the
misalignment case also possessed a B22 component. Although the crack case
contained similar components as the misalignment case, it possessed an additional
B13 ¼ B31 components, which were of higher magnitudes than those of the
misalignment case. The rub case displayed an entirely different feature from the
other three cases, owing to the fact that most of the rotor’s unbalance energy have
been converted to sub-harmonic responses, which was responsible for the cluster
of peaks around Bss and Bs1 ð¼ B1sÞ [6].
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In the current study however, the trispectrum has been calculated (using Eq. 3)
and included. For the trispectrum plots, the healthy case at both bearings (1 and 3)
only possessed the T111 component, which was also adjudged to be due to residual
misalignment and unbalance between bearings 2 and 3. It must be mentioned
that the trispectrum responses were quite consistent across all bearings.

Fig. 2 Typical amplitude bispectra a, c, e and g and trispectra b, d, f and h for bearing 1; a,
b (healthy), c, d (misalignment), e, f (crack) and g, h (shaft rub)
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The misalignment case at bearing 1possessed components T112 ¼ T121 ¼ T211

which were small and equal in size, and a large T111 component. Misalignment at
bearing 3 showed small T212 ¼ T122 ¼ T221 and a large T222: The crack case
possessed a response that was somewhat a reverse of the misalignment case in
size, but similar in components (i.e., T112 ¼ T121 ¼ T211 were large and the T111

Fig. 3 Typical amplitude bispectra a, c, e and g and trispectra b, d, f and h for bearing 3;
a, b (healthy), c, d (misalignment), e, f (crack) and g, h (shaft rub)
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was small). Just as in the case of the bispectrum, the rub case displayed several
sub-harmonics ðTsss; Tss1; Ts1s; T1ss; etc:Þ. These observations conformed to the
findings of Sinha [13], except for the misalignment response at bearing 3, which
possessed T212 ¼ T122 ¼ T221 and T222 components. This variation is due to the fact
that the initial experiment involved the use of just 2 bearings and a single coupling,
as opposed to the current work that had four bearings and 2 couplings (one flexible
and one rigid). However, the appearance of the T212 ¼ T122 ¼ T221 and T222T212

components is due to the fact that bearing 3 is located next to the rigid coupling,
while bearing 1 is located near the flexible coupling and therefore some of the
energy generated by the misalignment at bearing 1 are absorbed by the flexible
coupling. The current study showed a strong consistency in the responses at all 4
bearings for all 4 cases, except for the misalignment case which had responses at
bearings 2, 3 and 4 being similar, but different from the response at bearing 1
(which is due to the fact that the misalignment is at bearing 1 and the flexible
coupling location).

From the HOS analysis, the features of bispectrum and trispectrum that aid their
differentiation of healthy and faulty conditions have been presented. For the four
cases, both bispectrum and trispectrum showed some consistent trends across all
bearing pedestals. In the healthy case at all bearings, the bispectrum showed
dominant B11 as well as small peaks of B12 ð¼ B21Þ; while the trispectrum
displayed the T111 component, which may be due to residual unbalance and small
misalignment. The components present in the misalignment case for both
bispectrum and trispectrum are quite similar to the healthy case, with B11 being
dominant but with higher amplitude than in the healthy case, while the trispectrum
also displayed a dominant T111: In addition to the dominant B11 and T111

components in the misalignment case, both HOS displayed additional components
(B22 for bispectrum and T112 ¼ T121 ¼ T211 for the trispectrum). The crack case for
both bispectrum and trispectrum contained multiple harmonics of the running
speed, while the shaft rub case was characterized by several sub-harmonics and
cluster of peaks.

6 Conclusion

The potentials of applying HOS for faults identification and differentiation in
rotating machines have been explored with the experimental simulation of four
cases (healthy, misalignment, crack and shaft rub) on an experimental rig. It was
noticed that the HOS provided a clear distinction between healthy and faulty
conditions, and also indicates the possibilities of identifying different faults using a
certain combinations of bispectrum and trispectrum components. For instance, the
presence and high magnitudes of bispectrum components B11, B12 and B22 could
be combined with trispectrum components T111 and T112 for the identification of
crack, while sub-harmonic components Bss and Tsss are indicators of shaft rub.
Hence, the current study highlights the possibilities of eliminating the use of
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multiple sensors in orthogonal directions in VCM. However, the consistency of the
fault classification and identification needs to be further established by simulating
more faults of varying sizes and locations on different rotating rigs.
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Signal Complexity and Gaussian Process
Models Approach for Bearing Remaining
Useful Life Estimation

Pavle Boškoski, Matej Gašperin and Dejan Petelin

Abstract Standard bearing fault detection features are shown to be ineffective for
estimating bearings remaining useful life (RUL). In this paper we propose a new
approach estimating bearing RUL based on features describing the statistical
complexity of the envelope of the generated vibrations and a set of Gaussian
process (GP) models. The proposed approach is shown to be sensitive to incipient
condition deterioration which allows timely and sufficiently accurate estimates of
the RUL. The proposed approach was evaluated on the data set comprising of
17 bearing runs with natural fault evolution.

Keywords Bearing prognostics � Statistical signal complexity � Gaussian process
models

1 Introduction

Several surveys show that bearing faults represent the most common cause for
failure of mechanical drives [1, 2]. As a result, a plethora of methods have been
developed addressing the problems of bearing fault detection and prognostics.
Most of the available methods rely on a well-established feature set, based on
characteristic bearing fault frequencies. However, these features are shown to
be ineffective for estimating bearing’s remaining useful life (RUL) [3]. Addressing
the problem of bearing fault prognostics, in this paper we propose a combination
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of new features based on the statistical complexity of the envelope of bearing’s
vibrations and Gaussian process (GP) models for estimating bearing’s RUL.

Majority of the available approaches describe the relationship between the
defect growth and the trend of some statistical characteristic of the generated
vibrations like energy, peak-to-peak values, RMS, kurtosis, crest factor etc. [3–5].
Usually these values are calculated from the generated vibrations filtered on spe-
cific frequency bands. The ratios of these features from various frequency bands are
employed for estimating the bearings RUL. The effectiveness of these ratios can be
explained through the relation between the time evolution of the excited bearing’s
natural frequency and the deterioration of the bearing’s RUL [6–8]. Based on this
assumption, bearing’s RUL was estimated using approaches such as: tracking the
evolution of the vibration energy using hidden Markov models [9] or tracking
the increase of the dimensional exponents of the generated vibrations [10].

Following these two approaches, we propose a set of features that quantify the
statistical complexity of the generated vibrations. The concept of statistical
complexity is readily applied for analysis of EEG signals [11, 12]. In the context of
bearing prognostics, any change in the bearing surface can be treated as a source of
additional signal components with complex dynamics, hence increasing the sta-
tistical complexity of the generated vibrations. Our results show that the evolution
of the statistical complexity of the generated vibrations can be directly related to
the bearings RUL. Additionally, the process for calculating the statistical com-
plexity requires no prior information about the operating conditions and no pre-
vious knowledge about the physical characteristics of the monitored drive [13, 14].

Using the Rényi entropy based statistical complexity, the bearing’s RUL was
estimated using GP models, which are probabilistic, non-parametric models. GP
models search for relationships among the measured data rather than approxi-
mating the modelled system by fitting the parameters of the selected basis func-
tions, which is common for other black-box identification approaches. The
predictions of GP models are represented by a normal distribution. Because of
their properties GP models are especially suitable for modelling when data is
unreliable, noisy or missing. Their uses and properties for modelling are reviewed
in [15]. In this paper the GP models are used for two purposes: filtering noisy
features and estimating the RUL.

The proposed approach consists of four main steps. In first step three features,
in-depth described in Sects. 2 and 3, are extracted from the acquired vibrations.
The process of the numerical estimation of these features is presented in Sect. 4. In
second step these features are filtered using GP models, described in Sect. 5.
Afterwards, GP models are used for the estimation of RUL values based on filtered
features. The final RUL estimation is obtained by fusion of all estimated RUL
values. The evaluation of the approached is presented in Sect. 6.
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2 Signal Complexity

The definitions of the statistical complexity of a signal varies depending of the
context. In context of signals one can define two extremes: periodic and purely
random signals. Both cases belong to the class of low complexity signals: the
former due to its repetitive pattern and the latter due to its compact statistical
description [16, 17]. Consequently, ‘‘complex’’ signals should be located some-
where in between, a typical candidates are signals generated by a system with
chaotic behaviour.

For a random signal, generated by a random source with probability distribution
P, the statistical complexity CðPÞ can be assessed through the information carried
by the generated signal [11]. The statistical complexity provides a link between the
entropy of the source HðPÞ and the ‘‘distance’’ between the probability distribu-
tion P and the uniform distribution Pe as [11]:

CðPÞ ¼ Q0Dw
a ðP;PeÞHaðPÞ; ð1Þ

where Pe is the uniform distribution and Q0 is a normalisation constant so that
Q0Dw

a ðP;PeÞ 2 ½0; 1�. The values HaðPÞ and Dw
a ðP;PeÞ are the Rényi entropy

and Jensen-Rényi divergence respectively, and are defined as [18, 19]:

HaðPÞ ¼
1

1� a
ln
X
p2P

paðxÞ; a� 0 a 6¼ 1 ð2Þ

Dw
a ðP;QÞ ¼ Ha wPþ ð1� wÞQð Þ � wHaðPÞ þ ð1� wÞHaðQÞf g: ð3Þ

The statistical complexity CðPÞ is usually plotted versus the entropy HaðPÞ
[11]. Such a plot always covers a specific pre-defined area, as shown in Fig. 1.
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defined area one can perform
the prognostics task
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3 Complexity of Bearing Vibrations

Healthy bearings produce negligible vibrations. However, in the case of surface
damage, vibrations are generated by rolling elements passing across the damaged
site on the surface. Each time this happens, impact between the passing ball and
the damaged site triggers a system impulse response sðtÞ. The time of occurrence
of these impulse responses as well as their amplitudes should be considered as
purely random processes. Consequently, the vibrations generated by damaged
bearings can be modeled as [20]:

yðtÞ ¼
Xþ1

i¼�1
Aisðt � tiÞ þ nðtÞ; ð4Þ

where Ai is the impulse of force that excites the entire structure and ti is the time of
its occurrence. The final component nðtÞ defines an additive random component
that contains all non-modeled vibrations as well as environmental disturbances.

Generally the impulse response sðtÞ is influenced by the transmission path from
the point of impact to the measurement point [21]. As the position of the damaged
spot on the bearing surface rotates the transmission path changes in time. How-
ever, regardless of its true form, sðtÞ is charaterised by its high-frequency signa-
ture. Since this is the only characteristic relevant for our analysis, we will adopt the
model (4) as sufficiently accurate one.

Evolution of the statistical complexity of the generated bearing vibrations The
main diagnostic information regarding bearing faults are the time moments ti in
(4). Therefore, the usual approach is to analyze the envelope of the generated
vibrations. In our case, we look for any changes in the statistical characteristics of
the envelope [13].

In the case of healthy bearings, due to the lack of impacts, the envelope of the
generated vibrations will be without any visible structure. Therefore, the envelope
will have low complexity but high entropy, i.e. such a signal would be positioned
in the lower right corner in Fig. 1. The occurrence of a surface fault will introduce
some ‘‘structure’’ in the envelope of the generated vibrations. Consequently, its
statistical complexity will increase while in the same time the entropy will
decrease. In the terminal phase, the envelope will contain impulse responses with
sufficiently high amplitude. As a result the signal complexity will sharply drop
accompanied with a significant decrease in its entropy, hence the final position will
be in the lower left corner in Fig. 1. By trending this evolution, one will be able to
estimate the bearing’s RUL.
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4 Wavelet Based Estimation of the Statistical Complexity
of the Signal Envelope

The first step in the calculation of the statistical complexity is the estimation of the
PDF P of the envelope of the generated vibrations. Due to the link between the
signal’s envelope and its instantaneous power [22], the PDF is estimated through
the energy distribution of the wavelet packet transform (WPT) coefficients [23].
WPT is described by a binary tree structure, as shown in Fig. 2. Each node in WPT
tree with depth dM is marked as ðd; nÞ, where depth d ¼ f1; 2; . . .; dMg and n ¼
f1; 2; . . .; 2dg stands for the number of the node at depth d. The wavelet coeffi-
cients, in the set of terminal nodes T , contain all information regarding the ana-
lysed signal.

Each of the n nodes at level d contains Nd wavelet coefficients Wd;n;t

t ¼ 0; . . .;Nd � 1, Nd ¼ 2�dNs, Ns is the sample length of the signal [24]. Using
these coefficients, the portion of the signal’s energy Ed;n for each node ðd; nÞ reads
[25]:

Ed;n ¼
XNd�1

t¼0

Wd;n;t

�� ��2 ð5Þ

and total signal’s energy becomes:

Etot ¼
XNd�1

d;n2T
t¼0

Wd;n;t

�� ��2¼
X

d;n2T

Ed;n: ð6Þ

The set Pd;n expresses the contribution of each wavelet coefficient to the energy
of the signal within the terminal node ðd; nÞ:

Pd;n ¼ pd;n
t ¼

Wd;n;t

�� ��2

Ed;n
; t ¼ 0; � � � ;Nd � 1

( )
: ð7Þ

A similar set can be defined for the contribution of the energy of each terminal
node ðd; nÞ 2 T in the total energy of the signal Etot:

PT ¼ pd;n ¼
Ed;n

Etot
; d; n 2 T

� �
: ð8Þ

Fig. 2 Example of a full
WPT tree with depth dM ¼ 3
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The elements contained in both sets Pd;n and PT can be treated as realisation of
a random process. Based on these realisations one can estimate the corresponding
probability distributions and calculate their entropies and statistical complexity
according to relations (1–3).

Condition monitoring based on the statistical characteristics of the sets Pd;n and
PT . The values of the selected features (1–3) are calculated on short non-over-
lapping windows, where the initial values are regarded as reference ones. As time
evolves, the presence of faults will alter the envelope PDF for particular node,
hence changing the feature values. As a result, RUL can be estimated by tracking
the evolution of their values. It is important to stress that the window length is
usually very short so that one can assume that within its duration the operating
condition is almost constant. If speed varies mildly the distribution pattern will not
change much as shifted harmonics will remain within the frequency band asso-
ciated to a particular node. If changes in the operating speed are severe, it might
happen that the frequency content from one node moves to the adjacent node, thus
fooling entirely the diagnostic reasoning. On the other hand, mild variations in
load normally have no significant impact on the frequency distribution pattern.

5 Gaussian Process Models

Features (1–3) based on Pd;n and PT are quite noisy. Therefore we filter them
using GP models.1 Afterwards based on these filtered features, GP models are used
for estimating RUL.

A Gaussian process is a collection of random variables which have a joint
multivariate Gaussian distribution. Assuming a relationship of the form y ¼ f ðxÞ
between input x and output y, we have y1; . . .; yN �Nð0;KÞ, where Kpq ¼
Covðyp; yqÞ ¼ Cðxp; xqÞ gives the covariance between output points corresponding
to input points xp and xq. Thus, the mean mðxÞ and the covariance function
Cðxp; xqÞ fully specify the Gaussian process.

The value of covariance function Cðxp; xqÞ expresses the correlation between
the individual outputs f ðxpÞ and f ðxqÞ with respect to inputs xp and xq. It should be
noted that the covariance function Cð�;�Þ can be any function that generates a
positive semi-definite covariance matrix. Most commonly used covariance func-
tion is a composition of the square exponential covariance function and the con-
stant covariance function presuming white noise:

1 Filtering is simply performed by modelling the data as time-series and then estimating the
mean value for whole series. Such a filtering does not introduce any additional lag in the time
series, which is not the case with other commonly used filtering methods.
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Cðxp; xqÞ ¼ v1 exp � 1
2

XD

d¼1

wdðxdp � xdqÞ2
" #

þ dpqv0; ð9Þ

where wd, v1 and v0 are the hyperparameters of the covariance function, D is the
input dimension, and dpq ¼ 1 if p ¼ q and 0 otherwise. Hyperparameters can be

written as a vector H ¼ ½w1; . . .;wD; v1; v0�T . Hyperparameters wd indicate the
importance of individual inputs. If wd is zero or near zero, it means that the inputs
in dimension d contain little information and could possibly be neglected.

To accurately reflect the correlations presented in the data, the hyperparameter
values of the covariance function need to be optimized. Due to the probabilistic
nature of the GP models, instead of minimizing the model error, the probability of
the model is maximized.

Consider a set of N D-dimensional input vectors X ¼ ½x1; x2; . . .; xN �T and a
vector of output data y ¼ ½y1; y2; . . .; yN �. Based on the data ðX; yÞ, and given a new
input vector x�, we wish to find the predictive distribution of the corresponding
output y�. Based on training set X, a covariance matrix K of size N � N is
determined. The overall problem of learning unknown hyperparameters q from
data corresponds to the predictive distribution pðy�jy;X; x�Þ of the new target y,
given the training data ðy;XÞ and a new input x�. In order to calculate this pos-
terior distribution, a prior distribution over the hyperparameters pðHjy;XÞ can first
be defined, followed by the integration of the model over the hyperparameters

pðy�jy;X; x�Þ ¼
Z

pðy�jH; y;X; x�ÞpðHjy;XÞdH: ð10Þ

The computation of such integrals can be difficult due to the intractable nature of
the non-linear functions. Therefore the general practice for estimating hyperpa-
rameter values is minimising the following negative log-likelihood function:

LðHÞ ¼ � 1
2

logðjKjÞ � 1
2

yT K�1y� N

2
logð2pÞ: ð11Þ

GP models can be easily utilised for regression calculation. Based on training
set X, a covariance matrix K of size N � N is calculated. The aim is to find the
distribution of the corresponding output y� for some new input vector
x� ¼ ½x1ðN þ 1Þ; x2ðN þ 1Þ; . . .; xDðN þ 1Þ�. The predictive distribution of the
output for a new test input has normal probability distribution with mean and
variance

lðy�Þ ¼ kðx�ÞT K�1y; ð12Þ

r2ðy�Þ ¼ jðx�Þ � kðx�ÞT K�1kðx�Þ; ð13Þ

where kðx�Þ ¼ ½Cðx1; x
�Þ; . . .;CðxN ; x

�Þ�T is the N � 1 vector of covariances
between the test and training cases, and kðx�Þ ¼ Cðx�; x�Þ is the covariance
between the test input itself.
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As can be seen from (13), the GP model, in addition to mean value, also
provides information about the confidence in prediction by the variance. Usually,
the confidence of the prediction is depicted with 2s interval which is about 95 %
confidence interval. This confidence region can be seen in the example in Fig. 3 as
a grey band. It highlights areas of the input space where the prediction quality is
poor, due to the lack of data or noisy data, by indicating a wider confidence band
around the predicted mean.

6 Results

The proposed approach was evaluated on the data set for the IEEE PHM 2012 Data
Challenge [26]. Provided data consist of three batches, each corresponding to to
different speed and load conditions. The generated vibrations were sampled with
22 for duration of 100, repeated every 5 min. The experiments were stopped when
the RMS value of the generated vibrations surpassed 20. The available vibration
signals were analysed using WP tree with depth dM ¼ 4, which results into 16
terminal nodes. All features are filtered using GP models. The filtered statistical
complexity CðPÞ for one particular node is shown in Fig. 4.

The time evolution of the statistical complexity CðPÞ has similar shape as the
theoretical one. In time the statistical complexity evolves from the area of low
complexity and high entropy towards the area of low complexity and low entropy.
During this evolution the value of CðPÞ passes through the apex of the predefined
area shown in Fig. 1.

Prediction results Using experimental runs from the first and the third batch as
training set, 16 GP models were defined, one for each of the 16 WP nodes. Each
GP model describes the most probable evolution of the three features
Dw

a ðPd;n;PeÞ, HaðPd;nÞ and HaðPTÞ in respect to the RUL normed in the interval
½0; 1�. At each time moment, we calculate the likelihood of the bearings RUL based
on the estimated GP model estimates.
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These likelihood estimates for one bearing run are shown in Fig. 5, which
shows that RUL sensitivity differs among the WP nodes. For instance, high fre-
quency nodes, such as node 13, give first indications that the bearing has reached
the end of its useful life. Conversely, RUL estimates of low frequency nodes, for
instance node 4, are over-optimistic during the majority of the experiment. The
actual bearing condition becomes visible only towards the end of the experiment.
Such an observation leads to a conclusion that the first signs of bearing condition
deterioration become visible in the high frequency parts of the signal. As the
condition deteriorates sensitivity shifts towards features extracted from the lower
frequency bands.

7 Conclusions

The combination of statistical complexity features coupled with Gaussian process
models provides a suitable solution for estimating beating RUL. The proposed
approach is generally applicable, as it requires no prior knowledge neither about
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the bearing physical characteristics nor about the bearing’s operating condition.
Therefore, the generated GP models were calculated using features extracted from
bearings operating under different operating conditions and were evaluated on
vibrations generated by bearings that operated under previously ‘‘unseen’’ con-
ditions. These GP models describe the evolution of the selected features in respect
to the bearing RUL. The results show that decrease in the bearing condition shifts
the sensitivity of the features, making the features extracted from high frequency
bands sensitive to initial damage and features from low frequency bands sensitive
to severe damage. Consequently, this relation between condition deterioration and
frequency dependent feature sensitivity can be employed for estimating the
bearing RUL.
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13. Boškoski P, Juričić Ð (2012) Fault detection of mechanical drives under variable operating
conditions based on wavelet packet rényi entropy signatures. Mech Syst Signal Process
31:369–381

100 P. Boškoski et al.

http://dx.doi.org/10.1002/qre.1396
http://dx.doi.org/10.1007/s10845-009-0353-z
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Estimating Rolling Element Bearing
Stiffness Under Different Operational
Conditions Through Modal Analysis

William Jacobs, Rene Boonen, Paul Sas and David Moens

Abstract This paper presents a novel test rig, developed to analyse the behaviour
of rolling element bearings subjected to highly varying loads. The design is
optimised to measure the bearing behaviour, free from dynamics of the
surrounding structure. In the current study, the test rig is used to evaluate the
stiffness of a deep groove ball bearing under different operational conditions. The
bearing behaviour is measured using the modal analysis technique. Then, an
analytical model of the test structure is fitted on the data to estimate the bearing
stiffness. The stiffness estimation is validated using a dummy bearing with a
known stiffness. Finally, the stiffness of a mounted ball bearing is estimated. The
paper evaluates the effect of a radial static load on the bearing stiffness. Stationary
and operational conditions are compared as well. A clear difference between the
stiffness of a rotating and non-rotating bearing is observed.

Keywords Rolling element bearing stiffness � Modal analysis

1 Introduction

In open literature, little information on the characteristics of rolling element
bearings under dynamic conditions is available. This is probably due to the
difficulty of performing a sufficiently accurate measurement and the multitude of
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parameters influencing the results [1]. Some information is available on the
dynamics of machine tool spindles, as part of research conducted in the seventies.
An overview is given in [2]. Special rigs were built for excitation and response
measurement of the rotor. It was concluded that the dynamics of the bearings are
mainly influenced by their preload, speed, lubricant and clearance.

Recently, a novel rolling element bearing test rig was developed at KU Leuven.
The test rig is able to apply a fully controlled multi-axial static and dynamic load
on the bearing. Also, different types and sizes of bearings can be mounted. As the
load acting on the bearing is well-known, load identification techniques can be
developed and validated. Furthermore, the influence of dynamic excitations on the
lifetime of bearings can be investigated. Finally, bearing models can be validated
using this test rig. In the current study, the relation between an external dynamic
load and the bearing response is analysed. Also, the bearing stiffness is
experimentally determined for different load and speed conditions.

This paper first introduces the test rig in Sect. 2. A full review of the test rig can
be found in an earlier publication of the authors [3]. In order to understand the
bearing response, the dynamics of the surrounding structure should be known.
Sect. 3 of the paper therefore details about the test rig dynamics. In Sect. 4, an
analytical model to estimate the bearing stiffness from modal measurements is
introduced. The stiffness measurement is experimentally validated in Sect. 5, using
a dummy bearing with a known stiffness. In the last section, the stiffness of a deep
groove ball bearing is analysed for different operational conditions.

2 Test Rig Design

The main concept of the test rig is outlined in Fig. 1. An electric motor drives a
shaft through a flexible coupling. The shaft is supported by two bearings, forming
a rigid spindle. At the end of the shaft, a third bearing is mounted. This is the test
bearing. The load is directly applied on the stationary outer ring of the test bearing.

The rig makes it possible to test bearings of different types, such as deep groove
ball bearings and tapered roller bearings, and bearings of different sizes. Using a
clamping mechanism called collet chuck, the shaft can be adjusted to fit different
bearings. The test bearing is mounted on a small auxiliary shaft, adapted to its bore

Actuators Spindle

Motor

Frame

Test bearing

Fr

Fa

(a) (b)Motor

Test bearing

Spindle

Fig. 1 Concept a and overview b of the test rig
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diameter. After inserting this auxiliary shaft into the main shaft of the spindle, the
locknut is tightened forming a stiff connection between both shafts. Also, using an
intermediate adaptor sleeve in between the bearing and the housing, different
bearings can be fitted in the housing.

The load imposed on the bearing is controlled in the radial and axial direction,
independent of each other. Furthermore, the load has a static and dynamic
component in both directions. In this way, it is possible to simulate different real-
life situations, where i.e. gear meshing forces are acting on the bearing. Air springs
apply a static force up to 10 kN, while electrodynamic shakers generate a dynamic
force with an amplitude up to 1 kN and a frequency up to 500 Hz, in each
direction. Figure 2 gives an overview of the actuator configuration. The static load
is generated by four air springs, transferring their force to the bearing using an arm
on the housing. Two air springs control the axial force (Fa;st) and two air springs
control the radial force (Fr;st). The dynamic load is directly introduced on the
bearing housing through the stingers of the shakers: one stinger for the axial
direction (Fa;d) and one stinger for the radial direction (Fr;d).

3 Test Rig Dynamics

In order to enable a correct interpretation of the bearing measurements, the
dynamics of the test rig should be analysed first. Both the housing of the test
bearing and the frame of the test rig are solid structures, designed to keep the
resonances of the rig outside the range of the bearing excitation up to 500 Hz.
According to finite element (FE) calculations, the first flexible mode of the
assembly housing and sleeve occurs at a resonance frequency of 695 Hz. The
frame shows a first flexible mode at 663 Hz. It is a closed and rigid structure,
mounted on four bushings. The bushings dynamically decouple the frame from the

Fa, st

Fa, d

Fa, st

Fr, st

Fr, st

Fr, d

(b)(a)

Fig. 2 Actuators a and their corresponding force vectors b

Estimating Rolling Element Bearing Stiffness 105



environment. The six rigid body modes of the test rig moving on its bushings are
all located between 4 and 16.4 Hz. An earlier publication of the authors [4] details
about the dynamics of the bearing housing and the frame, including modal
analyses to validate the FE calculations.

The spindle of the test rig consists of a solid shaft, supported by two tapered
roller bearings in a cylindrical housing. The tapered roller bearings are mounted in
O-configuration and axially preloaded to increase the bending stiffness of the
spindle. During design, a one-dimensional model of the stepped shaft is used to
evaluate its dynamics. The stiffness of the bearings depends on the axial preload,
and is estimated based on [6]. A radial stiffness of 510 9 106 N/m, an axial
stiffness of 263 9 106 N/m and a tilt stiffness of 160 9 103 Nm/rad is used. The
shaft is connected to the motor through a flexible coupling, decoupling both parts
dynamically. Only the mass of the vibrating part of the coupling should be taken
into account. It is modeled as a point mass. The test bearing housing is modeled as
a point mass as well, as its dynamics were analysed separately. In between the
bearing housing and spindle shaft, a stiffness element is added. It represents the
test bearing. The value of this stiffness is set to 35 9 106 N/m, an average value of
the possible test bearing stiffness’s. The FE model and the first five modes are
shown in Fig. 3. The third mode, at 1,012 Hz, is the rigid body mode of the shaft
in which the shaft axially translates.

In order to understand the test bearing movement, the frequency response
function (FRF) between an input force on the bearing housing and the displace-
ment of the test bearing is analysed. Figure 4 shows the displacement of the
housing mass (solid line) and the displacement of the bearing seat on the front of
the shaft (dashed line). At 530 Hz, a strong displacement of the housing mass
moving on the test bearing stiffness is observed. This resonance corresponds to the
second mode of Fig. 3. It is not a spindle mode, as it only appears due to the
connection with the test bearing and the housing mass. The other modes of Fig. 3

(c)

(a)

(e)

Spindle bearings

Housing of test bearing Coupling part

530 Hz

1246 Hz 1753 Hz

Test bearing

(b)

(d)

(f)

201 Hz

1012 Hz

Fig. 3 Model a and first five modes b–f of the spindle and test bearing assembly
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are spindle modes. Clear radial motion of the test bearing seat on the shaft first
appears at 1,753 Hz. Also recalling the third mode of Fig. 3, axial motion of the
test bearing seat first appears at 1,012 Hz. Therefore, it is concluded that the
bearing can be excited up to 500 Hz, without any influence of the spindle
dynamics.

To validate the spindle dynamics, the modes of the shaft were experimentally
measured. A shaker load is introduced on the test bearing housing, while 3
accelerometers measure the response of the shaft. As the spindle shaft is mounted
in a cylindrical housing, it was only possible to install accelerometers on the front
and the back of the shaft. Therefore, a full modal analysis could not be performed.
Figure 5 shows the sum of FRFs of the 3 accelerometer signals. To analyse the
effect of the air spring load on the spindle dynamics, the measurement was
repeated for different load levels of the air springs. The FRFs are highly influenced
by structural resonances of the different test rig components above 700 Hz. Also,
below 150 Hz, tilt modes of the test bearing influence the FRFs. Nevertheless, the
first and fifth spindle mode of the simulation, having a high response at the sensor
locations, could be identified. The first mode appears at 287 Hz. The fifth mode
was found at 1,899 Hz for 500 N radial load, 1,908 Hz for 1,000 N radial load and
1,915 Hz for 1,500 N radial load. As the radial load acting on the tapered roller
bearings, introduced by the air springs, is very small compared to the axial preload,
the stiffness of the spindle is only little affected by the air pressure. The location of
this fifth mode is used in the next section to improve the estimation of the test
bearing stiffness.

4 Analytic Model to Estimate the Bearing Stiffness

The FE model of the previous section shows a clear rigid body motion of the test
bearing housing moving on the bearing stiffness. The frequency of this rigid body
mode is mainly determined by the stiffness of the test bearing. Therefore, iden-
tification of the mode is used to estimate the bearing stiffness. In the current study,
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a deep groove ball bearing 6302 is mounted. Five accelerometers are used to
measure the motion of the test bearing housing. A full review of this measurement
is given in [4]. In order to estimate the bearing stiffness, a model is fitted on the
measured FRFs. For example an analytical model or a multi-body model can be
used. Here, the radial bearing vibrations is described by the analytical model of
Fig. 6. The parameters of the model are summarized in Table 1.

Each mass has one degree of freedom, namely a displacement in the vertical
direction. Also, a vertical force acts on mH, representing the shaker force. Since the
housing of the test bearing has its first flexible mode at 695 Hz, it is considered as
a single mass below this frequency. The value of this mass mH is known from
CAD. The spindle is represented by a single spring kS and mass mS. This is valid
for excitations up to 1,908 Hz. Above this frequency, flexible modes of the spindle
influence the results. The frame is considered as a single mass mF for excitations
up to 660 Hz, its first flexible mode. Both kB and kAS are derived from data
provided by the manufacturer of the bushings and air springs. In order to determine
the values of the combined stiffness kTB+MS, the bending stiffness kS and the
masses mS and mF, the model is fitted on measured FRFs. The stiffness kTB+MS is
the combination of kTB and kMS in series. The bending stiffness kS is considered
constant for different test bearing loads, as the measured bending mode of the
spindle is only little affected by this load. The masses mS and mF are the equivalent
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masses of both the spindle and the frame, concentrated at the location of the test
bearing. The simulated system has three natural frequencies, tuned according to
their value as experimentally measured:

• 4.7 Hz: the motion of mF moving on the bushing stiffness kB.
• 626 Hz: the motion of mH moving on the stiffness kTB+MS.
• 1,908 Hz: the first bending mode of the spindle shaft exciting the bearing.

The stiffness of the modular mounting system of the test bearing, as described
in Sect. 2, is combined into kMS. It comprises the stiffness of the bearing housing,
the intermediate sleeve, the auxiliary shaft and the collet chuck. All the connec-
tions, the line contact between the housing and the sleeve, the sleeve and the
bearing, the bearing and the shaft and the chuck connection between the auxiliary
shaft and spindle shaft are included as well. The stiffness kMS is measured
experimentally using a solid bearing, a steel disk with the same dimensions as the
test bearing. Since the stiffness of the steel disk is at least a factor 10 higher than
kMS, kTB+MS approximates kMS. Therefore, kMS is identified using the same modal
analysis as applied to determine the test bearing stiffness, now with the steel disk
mounted in the test rig and neglecting kTB in the model.

Figure 7 compares the measured (black lines) and calculated (grey lines) FRFs
when the test bearing is inserted. Below 150 Hz, the measured FRFs are influenced
by the tilt modes of the bearing, which are not modeled. Above 700 Hz, the
flexible modes of the surrounding structure appear. However, in between 150 and
700 Hz, the correspondence between the model and the measurements is good. It
can be noted that the axial translational mode of the bearing influences the
measurement around 300 Hz, an effect which is not observed in the simulated
FRFs.

5 Validation of the Stiffness Estimation

To validate the stiffness estimation, a dummy bearing with a known stiffness is
mounted in the test rig. The design of the dummy bearing is shown in Fig. 8a. It
consists of an inner ring, outer ring, and a flexible structure in between.

Table 1 Parameters of the 3DOF model

Parameter Description Value

mH Mass of the test bearing housing 2.566 kg
mS Equivalent mass of the spindle 2.8 kg
mF Equivalent mass of the frame 205 kg
kTB Stiffness of the test bearing To be determined
kMS Stiffness of the mounting system 114 9 106 N/m
kAS Combined stiffness of the air springs 650 9 103 N/m
kS Bending stiffness of the spindle 348 9 106 N/m
kB Combined stiffness of the bushings 180 9 103 N/m
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The intermediate structure contains 4 leaf springs, resulting in a stiffness
comparable to a normal test bearing stiffness. The stiffness is mainly determined
by the thickness of the leaf springs, and accurately defined using the 2D FE model
of Fig. 8b. The dummy bearing was manufactured through electric discharge
machining (EDM) of a Sverker steel disk, obtaining a precision on its dimension of
0.02 mm. To take into account the variability on the geometry and the material
properties, the stiffness was determined for two different models:

• Model 1: the thicknesses of the leaf springs are 0.02 mm smaller than their
nominal values, the Young’s modulus of the material is 200 GPa. This model
serves as a lower bound for the actual stiffness, the calculated stiffness is
31.14 9 106 N/m.

• Model 2: the thicknesses of the leaf springs are 0.02 mm bigger than their
nominal values, the Young’s modulus of the material is 210 GPa. This model
serves as an upper bound for the actual stiffness, the calculated stiffness is
34.12 9 106 N/m.

The stiffness of the dummy bearing is measured at different load levels of the
air springs. The measurement is repeated to check the repeatability. The results are
given in Fig. 9. The stiffness increases slightly as the load level increases. This,
most likely due to an increase of stiffness in the line contacts of the mounting
system, an effect which is not incorporated in kMS. The grey areas indicate the
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upper and lower limit of the stiffness, given by the FE model. In conclusion, the
estimated stiffness is within the limits of the model. Also, the repeatability of the
estimation is good.

6 Bearing Stiffness Under Different Operational
Conditions

In this final section of the paper, the measurements of the dynamic bearing
response are combined with the 3DOF model to estimate the bearing stiffness of
the mounted test bearing in different operational conditions. The influence of the
radial static load on the bearing is analysed. Also, the influence of the bearing
speed is investigated.

As the radial static load on a bearing increases, the stiffness of the bearing in the
direction of the static load increases. More rolling elements transfer the load
through the bearing and the contact surface between the rolling elements and the
rings increases. Also, the stiffness of all the line contacts in the system increases.
Table 2 summarizes the estimated bearing stiffness kTB for different radial loads.

Next, the influence of the bearing speed is analysed. Tests at the same and
different speeds are performed, and the bearing stiffness kTB is estimated. The
results are summarized in Table 3. It is concluded that the speed has no significant
influence on the stiffness. This conclusion corresponds to the observations of [1, 5].
The spread on the stiffness estimation at different speeds is very small, and equal to
the spread on the estimation at the same speeds.

Finally, the bearing stiffness of a non-rotating bearing is estimated. Table 4
shows the stiffness for three different positions of the shaft. When changing the
position of the shaft, the configuration of the rolling elements in the loaded zone of
the bearing changes. Therefore, a slight change in stiffness can be expected. More
importantly, the stiffness of the rotating bearing is significantly lower than the
stiffness of the non-rotating bearing. A mean decrease of 8.8 % is noted when the
bearing is put in operation. Future research will analyse the effect on the bearing
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stiffness of both the increased temperature and the formation of the lubricant film,
when the bearing is put in rotation.

7 Conclusion

An innovative and versatile bearing test rig has been developed. The test rig allows
easy adjustment to mount different types and sizes of rolling element bearings. The
bearings can be preloaded up to 10 kN, and excited up to 500 Hz. In this way, a
wide range of bearings can be tested in real-life conditions. The test rig is
developed to analyse the behaviour of rolling element bearings subjected to highly
varying loads. The paper shows that the design is optimised to measure the bearing
behaviour, free from dynamics of the surrounding structure.

In the current study, the test rig is used to evaluate the stiffness of a deep groove
ball bearing under different operational conditions. To estimate the stiffness, an
analytical model of the test rig is introduced. The stiffness estimation is then
validated using a dummy bearing with a known stiffness. It is shown that the
stiffness of the bearing can be accurately measured. Finally, the paper evaluates
the effect of a radial static load on the estimated bearing stiffness. Stationary and
operational conditions are compared as well. A clear difference between the
stiffness of a rotating and non-rotating bearing is observed. Future research will
aim to explain this difference.

Table 2 Influence of radial
load on bearing stiffness (at
600 RPM)

Load (N) Resonance (Hz) Stiffness (N/m)

500 551.7 46.1 9 106

1,000 570.1 51.3 9 106

1,500 586.9 56.6 9 106

Table 3 Influence of speed
on bearing stiffness (at
1,000 N radial load)

Speed (RPM) Resonance (Hz) Stiffness (N/m)

600 572.9 52.1 9 106

600 570.1 51.3 9 106

1,200 570.6 51.4 9 106

1,200 572.1 51.9 9 106

Table 4 Influence of shaft
position on bearing stiffness
(at 0 RPM and 1,000 N radial
load)

Position Resonance (Hz) Stiffness (N/m)

1 583.5 55.5 9 106

2 586.4 56.4 9 106

3 588.0 57.0 9 106

112 W. Jacobs et al.



Acknowledgments This research is funded by a Ph.D. grant of the Agency for Innovation by
Science and Technology (IWT). Part of this work was performed through the support of the IWT
SBO-project Prognostics for Optimal Maintenance.

References

1. Kraus J, Blech J, Braun S (1987) In situ determination of rolling bearing stiffness and damping
by modal analysis. J Vib Acoust Stress Reliab Design 109:235

2. Stone B (1982) The state of the art in the measurement of the stiffness and damping of rolling
element bearings. CIRP Annals-Manuf Technol 31(2):529–538

3. Jacobs W, Boonen R, Sas P, Moens D (2012) The effect of external dynamic loads on the
lifetime of rolling element bearings: accurate measurement of the bearing behaviour. J Phys:
Conf Series 364(1):

4. Jacobs W, Boonen R, Sas P, Moens D (2012) Measuring the rigid body behaviour of a deep
groove ball bearing setup. Proceedings of ISMA2012-USD2012, pp 715–726

5. Guo Y, Parker R (2012) Stiffness matrix calculation of rolling element bearings using a finite
element/contact mechanics model. Mechanism and Machine Theory, pp 32–45

6. Brändlein J, Eschmann P, Hasbargen L, Weigand K (1999) Ball and Roller Bearings: Theory,
Design and Application, Wiley, UK

Estimating Rolling Element Bearing Stiffness 113



Parametric Analysis Focused
on Non-linear Forces in Oil-film
Journal Bearings

Andrea Vania, Paolo Pennacchi and Steven Chatterton

Abstract Many investigation methods used to identify the most common faults in
rotating machines do not consider the non-linear behaviour of oil-film journal
bearings with an adequate care. This chapter shows the results of a parametric
analysis performed to study the sensitivity of non-linear effects in the oil-film
forces to changes of some parameters of the synchronous (1X) filtered orbit of the
journal. This study is focused on the influence on non-linear forces caused by
changes of the maximum amplitude and circularity of the journal orbit as well as
by changes of the inclination angle of the major principal axis of the 1X elliptical
orbit. Moreover, also the effects of the shaft rotational speed, bearing load and the
average journal position have been taken into account. A procedure to perform this
sensitivity analysis for different types of journal bearing is described. Then, the
results obtained by the analysis of the behaviour of a two-lobe elliptical oil-film
journal bearing are shown and discussed.

Keywords Oil-film journal bearings � Non-linear dynamics � Rotating machines �
Diagnostics

1 Introduction

It is well known that the oil-film forces in sleeve journal bearings are considerably
non-linear. The importance of this non-linearity depends on many factors like:
shaft rotational speed, journal average position, amplitude and shape of the journal
orbit, oil-film temperature. The effects of the non-linear component of the oil-film
forces on the shaft vibration can be rather limited as they are often smoothed by
the inertia forces of the shaft. However, the occurrence of very high non-linear
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oil-film forces can cause not negligible super-synchronous vibrations of the
rotating machine. With regard to diagnostic purposes, this phenomenon can cause
false fault identifications as the presence of shaft super-synchronous vibrations is
often ascribed to dangerous faults like: rotor-to-stator rubs, shaft-crack propaga-
tions, severe machine misalignments.

In fact, many fault symptom analysis techniques do not give an adequate
importance to the non-linear effects in the oil-film forces. Conversely, serious and
common primary faults like, for instance, a high unbalance and a high shaft
thermal bow, can cause unexpected super-synchronous harmonic components in
the frequency spectrum of shaft vibrations. This can occur when large journal
orbits generate considerable non-linear effects in the oil-film forces.

Some sleeve journal bearings are more sensitive to a non-linear behavior
depending on their geometrical characteristics. The sensitivity of the oil-film
forces of journal bearings to non-linear effects has been investigated, by means of
a model-based method, by evaluating the oil-film forces caused by 1X filtered
journal orbits having different amplitudes and shapes, that is by orbits caused only
by synchronous vibrations. This approach makes the results of this study inde-
pendent from the mechanical characteristics of the shaft and the characteristics of
the rotor-system excitations.

This paper shows the results of a parametric analysis performed to study the
sensitivity of the non-linear effects in the oil-film forces to changes of some
parameters of the 1X orbit of the journal. More in particular, the influence on non-
linear forces caused by changes of the orbit maximum amplitude and degree of
circularity Orbit Shape Factor (OSF), as well as by changes of the inclination angle
of the major principal axis of the elliptical orbit, has been considered in this study.
Moreover, also the effects of the shaft rotational speed and the average journal
position have been taken into account. A procedure to perform this sensitivity
analysis for different types of journal bearings is described. Then, the results
obtained by the analysis of the behaviour of a two-lobe elliptical oil-film journal
bearing are shown and discussed.

2 Investigation Method

It is important to specify that the goal of this investigation is to study the sensi-
tivity to non-linear dynamic effects in the oil-film forces of journal bearings, not to
simulate the non-linear vibrations of the journal. Therefore, contrary to other usual
methods [1, 2], the oil-film forces caused by only synchronous vibrations were
considered. Let us denote by x and y the horizontal and vertical displacements of
the journal with respect to the bearing centre. Then, the synchronous vibrations of
the journal, which rotate with the angular velocity X, can be expressed as:

xðtÞ ¼ X cosðXt þ uÞ
yðtÞ ¼ Y cosðXt þ bÞ

ð1Þ
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As said above, the method used in this study to investigate the oil-film
force does not require to define the time-history of the excitations that cause
the 1X vibrations expressed by Eq. (1). In this way, the presence of not null
super-synchronous oil-film forces is a symptom of non-linear effects.

The vibrations expressed by Eq. (1) cause the journal to describe an elliptical
orbit having a major and minor principal axes �a1X and �b1X; respectively. The
parameter �a1X is the maximum vibration amplitude of the journal. Then, let us
denote by h the inclination angle of the major principal axis with respect to the
horizontal axis x. In the case of null vibration amplitudes, the components of the
journal position, x0 and y0, are determined by the static bearing load, W, whose
horizontal and vertical components are Wx and Wy, respectively. The degree of
circularity of the journal orbit, which is often elliptical, can be expressed by the
ratio OSF between the minor and major principal axes of the orbit.

For each given set of values of X, Wx and Wy, the parameters �a1X, OSF and h
can be varied inside suitable ranges of interest. For each given couple of the
parameters OSF and h, the changes of the maximum vibration amplitude �a1X cause
changes of the orbit dimension without modifying the shape factor. For each
couple of the parameters �a1X and h, the changes of the OSF cause variations of the
flatness of the elliptical orbit. In the end, for each couple of parameters �a1X and
OSF, the changes of the angle h cause variations of the direction along which the
maximum amplitude of the journal vibration occurs.

In general, the increase of the parameter �a1X causes an increase of the non-
linear effects in the oil-film forces. However, the importance of these effects can be
highly influenced also by the orientation of the major principal axis of the orbit and
by the orbit flatness.

For a given bearing load the minimum thickness hmin of the oil-film depends on
the shaft rotational speed. Low values of hmin can cause a considerable increase of
the non-linear effects in the oil-film forces. The lowest instantaneous value of the
minimum thickness of the oil-film that occurs during a complete revolution of the
shaft is affected by the parameters �a1X, OSF and h.

For each set of these parameters the oil-film forces were evaluated, over an
entire orbit, for N samples (with N = 256) equally spaced in the time. For each
analysis, the average position of the journal was varied by applying an iterative
technique in order to obtain mean values of the horizontal and vertical oil-film
forces that equilibrate the corresponding components of the bearing load. Then, the
harmonic content of the oil-film forces was evaluated.

Being the journal vibration synchronous (1X), the presence of not null super-
synchronous oil-film forces is a symptom of non-linear effects. In general, the
amplitude of the 2X harmonic component is the highest in the super-synchronous
oil-film forces.

It is important to consider that, in general, the maximum 1X and 2X oil-film
forces do not occur in the same direction. Moreover, the direction of the maximum
nX oil-film force does not necessarily coincide with that of the maximum vibration
amplitude. Therefore, in order to make independent the results of this study from
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the directions along which the oil-film forces were estimated, the maximum and
minimum amplitude, �FanX

and �FbnX
; of the nX oil-film forces were evaluated.

The oil-film forces can be obtained on the basis of the evaluation of the oil-film
pressure, p (s, z), on the bearing: where s is the coordinate in the circumferential
direction of the i-th bearing lobe and z is the coordinate in the axial direction. For
finite length bearings, the pressure distribution p(s, z) is given by the following
Reynolds equation [3–5]:

o

os
h3 op

os

� �
þ o

oz
h3 op

oz
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¼ 6 l U

oh

os
þ 2

oh

ot

� �
ð2Þ

where l is the lubricant viscosity, h (s, z) is the oil-film thickness, and U is the
circumferential velocity of the journal. The oil-film forces were evaluated by
solving the Reynolds Eq. (2), numerically, by means of a finite difference method
[3–5]. With regards to this, classical boundary conditions were used: that is null
pressure in the inlet and outlet grooves, as well as null lateral pressure. Moreover,
the following classical Reynolds conditions were used in the cavitation regions:

op

os
¼ 0 p ¼ 0 ð3Þ

3 Case Study

This chapter shows the results obtained by the analysis of the behaviour of an
elliptical oil-film journal bearing (Fig. 1). The main geometrical characteristics of
this bearing are reported in Table 1. Owing to the short length of the chapter only
some of the results obtained for a shaft rotational speed of 1,000 rpm are shown.

In order to consider dimensionless quantities the amplitude of the major and
minor elliptical orbits were divided by the assembled radial clearance Cb of the
bearing. That is:

(a) (b)

Fig. 1 a Configuration of an elliptical oil-film journal bearing. b Section view of a real bearing
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a1X ¼ �a1X=Cb b1X ¼ �b1X

�
Cb ð4Þ

A vertical bearing load of 200 kN was considered in this study. The amplitude
of the parameter a1X was varied from 0.05 to 0.4 while the OSF was varied from
0.1 to 0.5. In the end, the inclination angle h of the major principal axis a1X was
varied from 5� to 55�.

For each case study, the oil-film forces were evaluated over a complete shaft
revolution. Then, the harmonic content of these forces was computed. Afterwards,
the maximum amplitude of the 1X and 2X oil-film forces generated during a
complete orbit, �Fa1X

and �Fa2X
, were evaluated.

Figure 2 shows some 1X elliptical orbits that have been obtained by changing
only the maximum vibration amplitude a1X. The clearance profile shown in Fig. 2
delimits the area of the bearing inside which the journal position can be contained
without causing any contacts between shaft and Babbit metal. These orbits do not
have the same centre because the increase of the orbit dimension causes changes
also of the mean value of the horizontal and vertical oil-film forces that must

Table 1 Bearing
characteristics

Symbols

Diameter D 457 mm
Length L 254 mm
Machined clearance Cp 0.608 mm
Assembled clearance Cb 0.304 mm
Lower lobe width Dh 160�
Pre-load factor mp 0.5
Oil viscosity l 26.57 cSt
Bearing load (vertical) W 200 kN
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equilibrate the assigned bearing load. However, all these orbits have the same
shape factor and the same orientation.

Figure 3 shows some 1X elliptical orbits that have been obtained, for a given
couple of values of the parameters a1X and h, by changing the OSF.

Also in this case, the journal orbits do not have the same centre, owing to the
above mentioned reasons. In the end, Fig. 4 shows some 1X elliptical orbits that
have been obtained, for a given couple of values of the parameters a1X and OSF,
by changing the inclination h of the major principal axis.

In order to manage dimensionless quantities, the maximum amplitude of the 1X
and 2X oil-film forces was divided by that of the bearing load W. That is:
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Fa1X
¼ �Fa1X

=W Fa2X
¼ �Fa2X

=W ð5Þ

Figures 5 and 6 show the influence of the parameters a1X and OSF on the
amplitude of the 1X and 2X oil-film forces, Fa1X

and Fa2X
, respectively.

These results were obtained for a value of the angle h equal to 20�. The results
illustrated in Fig. 5 show that, especially for the highest values of a1X; the decrease
of the orbit flatness causes an important increase of the 1X oil-film forces.

The results illustrated in Fig. 6 show that increasing values of a1X cause an
increase of the sensitivity of the 2X oil-film forces to the OSF.

Moreover, it is possible to find a limited range of values of the OSF parameter
inside which the 2X oil-film forces, that is the non-linear effects, are minimised.
Figures 7 and 8 show the influence of the parameters OSF and h on the amplitude
of the 1X and 2X oil-film forces, Fa1X

and Fa2X
; respectively.

These results were obtained for a value of the parameter a1X equal to 0.3. The
results illustrated in Figs. 7 and 8 show that the direction of the maximum
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vibration amplitude affects significantly both 1X and 2X oil-film forces associated
with given values of the parameters a1X and OSF.

Figure 9 summarizes the results provided by the parametric analysis about the
maximum 2X oil-film forces. The effect of the maximum vibration amplitude is
really evident. If the excitations acting on the shaft cause large journal orbits
whose maximum amplitude occurs in a direction that forms an angle h higher than
about 35� the non-linearity in the oil film forces considerably increases.

Figure 10 shows the influence of the parameters a1X and OSF on the direction,
b Fa1X

; of the maximum 1X oil-film forces. These results were obtained for a
direction of the maximum vibration amplitude h = 30�. Although the amplitude of
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the horizontal 1X vibration of the journal is higher than the corresponding vertical
one, the direction of the maximum magnitude of the 1X oil-film forces is nearly
vertical. This is a consequence of the considerable anisotropy of the oil-film
stiffness that characterized the elliptical journal bearings.

Similarly, Fig. 11 shows the influence of the parameters a1X and OSF on the
direction, b Fa2X

; of the maximum 2X oil-film forces. Also in this case study, these
results were obtained for a direction of the maximum vibration amplitude h = 30�.
Owing to the shape and mechanical characteristics of the oil-film that is generated
when the journal moves along the lower arc of the orbit, the direction of the
maximum magnitude of the 2X oil-film forces, caused by the non-linear effects, is
nearly vertical.

These results show that the most important non-linear effects, here represented
by the maximum magnitude of the 2X oil-film forces, not necessarily occur in the
same direction along which the highest journal vibration occurs. This is the reason
for which, in this investigation, the authors decided to take into account both shape
and amplitude of the 1X journal orbit to evaluate the harmonic content of the oil-
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film forces rather than considering the maximum vibration level evaluated in a
single pre-established direction.

4 Conclusion

A model-based method aimed to study the sensitivity of sleeve journal bearings to
non-linear phenomena in the oil-film forces has been shown in the chapter. The
results obtained by means of a parametric analysis have been shown and discussed.

The proposed method evaluates the oil-film forces caused only by synchronous
vibrations, that is by 1X elliptical orbits. The influence of the basic parameters that
define these orbits on the synchronous and super-synchronous oil-film forces have
been investigated. The results of this parametric analysis have been shown and
discussed.

The method proposed by the authors to evaluate the sensitivity of a fluid-film
journal bearing to give rise to non-linear effects in the lubricant forces has shown
to be able to point out the contribution of single factors to the non-linear phe-
nomena. The results provided by this investigation method can be very useful for
diagnostic purposes and for an optimization of the bearing design aimed at
improving its performances.
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Diagnostic of Rolling Element Bearings
with Envelope Analysis in Non-Stationary
Conditions

Pietro Borghesani, Roberto Ricci, Steven Chatterton
and Paolo Pennacchi

Abstract In the field of rolling element bearing diagnostics, envelope analysis has
gained in the last years a leading role among the different digital signal processing
techniques. The original constraint of constant operating speed has been relaxed
thanks to the combination of this technique with the computed order tracking, able
to resample signals at constant angular increments. In this way, the field of
application of this technique has been extended to cases in which small speed
fluctuations occur, maintaining high effectiveness and efficiency. In order to make
this algorithm suitable to all industrial applications, the constraint on speed has to
be removed completely. In fact, in many applications, the coincidence of high
bearing loads, and therefore high diagnostic capability, with acceleration-decel-
eration phases represents a further incentive in this direction. This chapter presents
a procedure for the application of envelope analysis to speed transients. The effect
of load variation on the proposed technique will be also qualitatively addressed.

Keyword Bearing diagnostics � Envelope analysis � Computed order tracking �
Jitter � Squared envelope spectrum

1 Introduction

The history of models of vibration signals coming from damaged rolling element
bearings starts with the famous and successful study of McFadden [1]. He pre-
sented the vibration signal as amplitude modulated Dirac comb in convolution
with the transfer function of the signal. The Dirac comb, representing the impacts
of the rolling elements on the damaged race, was modelled as deterministically
periodic, with frequency depending on the location of the defect (e.g. Ball Pass
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Frequency Inner for an inner ring damaged bearing). This model has been refined
and developed in the works of Randall et al. [2, 3], introducing the important
concept of jitter, i.e. a stochastic delay/anticipation of each impact with respect to
the average periodic behaviour, and consequently identifying the strong 2nd order
cyclostationary nature of this signal. A further step forward is due to Antoni et al.
[4], finally proposing a domain change for the description of the phenomenon,
from the time to the angular domain. This allowed extending the analysis of
damaged bearings to the cases with speed fluctuations around an average rotational
speed. To perform the digital signal processing of such signal, a coupling of
envelope analysis and computed order tracking (COT) was proposed. Envelope
analysis has gained in the last decades a leading role in the diagnostics of rolling
element bearings, owing to its simplicity and low computational effort. In par-
ticular, the squared envelope spectrum (SES), belonging to the family of cyclo-
stationary analysis tools [5], is prevailing against equally effective indicators,
thanks to the possibility of developing sound statistical tests for the presence of
damage symptoms.

The coupling with COT techniques, developed for other applications [6, 7, 8]
has relaxed the SES constraints on the constancy of speed, allowing its imple-
mentation in many industrial applications where uncontrolled fluctuations occur
around an average rotational frequency of the bearing shafts. The traditional
approach is to apply the envelope analysis to an angular resampled vibration signal
[9]. The effectiveness of such algorithms has been proved thoroughly in the case of
small speed fluctuations [10], however, the need for more robust, automatic
algorithms, suitable for different operating conditions, is pushing for a more
general relaxation of the constraint on speed constancy.

In particular, it happens often that load on the bearings is high only when the
machine is either accelerating or braking, as for instance it happens in the traction
system of a train. As demonstrated in [10], on the one hand high bearing load
increases the power of the vibration signals components indicating a fault, making
its symptoms clearer, on the other hand it reduces their sensitivity to deviations of
the characteristic bearing frequencies.

The aim of this chapter is therefore to describe a procedure, based on SES and
COT, for the analysis of bearing vibration signals in highly variable operating
conditions. The chapter will start introducing some modifications to the afore-
mentioned models, in order to understand the advantages of the newly proposed
technique Finally, in order to verify the sensitivity of this method to the typical
problems of real vibrations [11], an experimental test will be presented.

2 Modelling a Damaged Bearing Signal: Domain Definition

The last two models described in the introduction show a single difference: the
domain in which the signals are defined. In particular the model developed by
Randall et al. [2] describes the vibration signal xðtÞ in the time domain:
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xðtÞ ¼
Xþ1

i¼�1
Aisðt � iT � siÞ þ nðtÞ ð1Þ

The so modeled signal, except for the environmental noise nðtÞ, is represented
by a repetition of the impulse response of the structure sðtÞ, triggered and Ai-
modulated by the ith impact of the rolling elements with the fault. The train of
impacts is characterized by an average expected period T and a variable deviation
(delay/anticipation) si, called jitter, different for each ith impact.

On the contrary Antoni et al. [4] propose a full angular domain definition of the
same quantities:

xðhÞ ¼
Xþ1

i¼�1
Aisðh� iH� wiÞ þ nðhÞ ð2Þ

where H is the average angular period of two consecutive impulses and wi the
equivalent jitter in the angular domain.

Even if it might seem that the last formulation completely releases the model
from the rotational speed of the machine, actually both the models are valid only in
case of almost constant speed. If on the one hand a variable speed will clearly
invalidate the first model, introducing a bias in the time domain periodicity of the
impulse train, on the other hand the same variation of speed will distort the
replicas of the angular domain defined transfer function s hð Þ in the second model.

In case of significant speed variations, the physical dependence of the transfer
function on time (and not on the angle) leads to the necessity of defining different
si hð Þ for each impact, since the relationship h ¼ h tð Þ varies with the speed.

A more suitable signal model for highly variable speed is thus the following:

xðtÞ ¼
Xþ1

i¼�1
Aisðt � TiÞ þ nðtÞ with Ti ¼

Xi

k¼1

H
�xk
þ wi ð3Þ

where �xk is the average angular speed in between the k � 1ð Þth and the kth impact.
Therefore, the impulse train is effectively dominated by an average angular period
H, while the impulse response is defined in the time domain, where it keeps the
same form for each impact.

3 Combining SES and COT in Case of Variable Speed

A simple efficient algorithm to obtain a squared envelope spectrum (SES) is based
on the process on Fig. 1a, i.e. the traditional squared envelope spectrum (T-SES)
procedure. It combines the COT and SES in sequence, in particular transforming
the raw vibration signal in angular domain, and then obtains the SES by band-pass
filtering and squaring the resampled signal.
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However, if applied to harsh transients, the quality of the results can decrease
drastically. This is a consequence of the fact that this procedure relies on the signal
model described in Eq. (2), which is not anymore representative of the real
behavior of the system in strongly variable speed conditions. A more suitable
solution can be obtained on the basis of the signal model of Eq. (3), which
considers the impulse response function periodic in the time domain and, on the
contrary, defines the impulse train in the angular domain. Therefore the authors
propose that the demodulation is performed directly in the time domain, to later
apply COT on the so obtained envelope. This procedure, defined as reversed
sequence squared envelope spectrum procedure (RS-SES) is synthesized in
Fig. 1b. A potential drawback of the technique is the absence of a step of syn-
chronous averaging for pre-whitening, which can be in any case substituted by
alternative techniques like cepstrum pre-whitening [12]. The indexes obtained by
means of RS.SES are, in terms of statistical properties, equivalent to the traditional
ones, and can indergo to same statistical tests [13].

4 The Effect of Load

The speed is not the only factor affecting the dynamics of a damaged rolling
element bearing. As already shown in [14], a variation of load on the bearings
often induces a deviation of the bearing characteristic frequencies. In particular,
for low loads, the bearing characteristic frequencies measured experimentally can
differ significantly from the corresponding values calculated analytically on the
basis of the geometry of the bearing. As highlighted in Table 1, the link with the
fundamental train frequency (FTF) drives the behavior of all the bearing charac-
teristic frequency, under the hypothesis, verified experimentally, that FTF is
always lower than its theoretical value.

COT

Band Pass 
filter

Square

DFT

Square

COT

Square

DFT

Square

Band Pass 
filter

(a) (b)Fig. 1 a T-SES procedure,
valid in case of small
fluctuations of operating
speed. b RS-SES procedure,
for highly variable speed
(transients)
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A powerful tool for a first assessment of the significance of the deviation
phenomenon on a bearing vibration signal is the reversed sequence envelope
spectrogram (RS-ESg). Its calculation starts by following the same procedure of
RS-SES until angular-resampled envelope signal is obtained. Thus, RS-ESg is
finally obtained by computing the spectrogram of this angular resampled quantity.
RS-ESg is a 2 variables function of order and rotation, indicating the order content
of the signal at different rotations of the shaft.

5 Experimental Validation

Figure 2 shows the test-rig used for the experimental validation and consisting of a
main shaft, driven by an AC motor controlled by means of an inverter and coupled
to a spiral bevel gearbox with orthogonal axis. The gearbox output shaft is con-
nected to a rotating shaft supported by two roller bearings: the bearing under test is
located in the middle of the rotating shaft and it is preloaded by means of a simple
mechanism based on spring acting on the bearing. A screw governs the

Table 1 Deviations of bearing characteristic frequencies in case of outer ring fixed on the
support and rotating inner ring

Characteristic frequency Acronym Dependence on FTF Expected deviation

Fundamental train frequency FTF FTF Lower
Ball spin frequency BSF 1þ PD

BD

� �
FTF Lower

Ball pass frequency outer BPFO NB � FTF Lower
Ball pass frequency inner BPFI NB(1 - FTF) Higher

Fig. 2 Test-rig layout
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compression of the spring, allowing the setting of the load on the bearing. Another
AC motor, similar to the first one, is acting as a brake for power recovery.

The cylindrical roller bearing SKF NJ 206 ECP under test had been damaged with
a spall on the outer ring, thus, given the bearing geometrical data, a theoretical BPFO
with a frequency of 5.24 times (5.249) the bearing shaft frequency is expected.

In the first test, a constant acceleration has been imposed to the electric motor
so that the bearing shaft reaches 1,000 rpm in approximately 40 s, while bearing
load is maintained high and approximately equal to 500 N.

The results of the analyses, performed following the newly proposed procedure,
are presented in Fig. 3, where the RS-SES is shown. The actual value of the BPFO
is constant during the test and very close to the expected theoretical value,
resulting in high and concentrated peaks in the SES. The upper half of the
available frequency range has been chosen as demodulation band
(6,250–12,500 Hz), accordingly to the typical values for bearing diagnostics and
considering the spectrum of the signal.

The newly proposed procedure is, in this case, by far more suitable, since it
would be difficult to choose a single demodulation band for the whole angular
resampled signal for the T-SES, as a consequence of the wide range of operating
speeds obtained during the test. This is clearly demonstrated by the two spectro-
grams of Fig. 4a and b, respectively related to the original signal and the angular
resampled signal. As it is evident in Fig. 4a, the resonance of the test rig around
10 kHz is excited during almost all the test, thus it represents a good pass-band for
the demodulation filter in the RS-SES procedure. On the contrary, the same
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Fig. 3 RS-SES in case of high load acceleration ramp test

132 P. Borghesani et al.



resonance is no more constant in the angular resampled signal (Fig. 4b), where it is
impossible to choose a proper demodulation band to apply the T-SES.
The second test presented in this chapter has been obtained with lower load
(200 N). In this case, the jitters from the theoretical BPFO become more important
and more variable, as shown in the SR-ESg of Fig. 5. The variability of the BPFO
is probably due to a higher sensibility to small fluctuations of load, as a conse-
quence of the lower average load applied [14], making the roller more prone to slip
on the races.

Fig. 4 Spectrograms of the vibration signal: a in time–frequency domain; b after COT in
angular-order domain

Fig. 5 SR-ESg in case of
low load acceleration ramp
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As shown in this example, the newly proposed procedure allows detecting the
presence of a fault also in this more complex condition of variable speed and low
load. When load variability is high as well, and particularly in very low load
conditions, RS-ESg is the most suitable tool for bearing diagnostics, since the RS-
SES could be affected by a smearing effect due to the variability of the actual
BPFO order.

6 Conclusions

The newly proposed procedure for extending the applicability of envelope analysis
to highly variable speed cases has proven to be effective. This is a crucial step in
the effort to introduce bearing diagnostics in the industrial field, often character-
ized by highly variable conditions. Also the effect of load has been qualitatively
described by means of experimental tests on an outer ring damaged bearing in
highly variable speed conditions.
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Bearing Fault Identification using
Watershed-Based Thresholding Method

H. Fandiño-Toro, O. Cardona-Morales, J. Garcia-Alvarez
and G. Castellanos-Dominguez

Abstract In this work, a novel thresholding method is proposed to improve the
accuracy in segmentation process on thermal images. Characteristics of the ther-
mal distribution around convex Regions of Interest (ROI) are the core of this
method, used as input markers for a segmentation process based on watershed
transform. This method based on data variability reduces the classification error by
about 10 % and reduces the number of features by about 80 % from the set of 360
elements. Moreover, the proposed method provides some tracks for fault locali-
zation, demonstrated for a bearing unbalance test rig.

Keywords Fault identification � Thresholding � Region of interest � Thermal
images

1 Introduction

Bearing faults, like motor shaft misalignment, cause damages on rotating machine
parts such as couplings, bearings, engine components and loads, among others [1].
Therefore, the main goal of machine maintenance is to avoid the unexpected
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machine damages, using two maintenance strategies: corrective and preventive.
For the former one, the machine operator repairs or replaces the damaged part as
soon as the fault is present. In addition, the latter one suggests the frequent
inspection on the machine, assessing the machine part deterioration degree. Hence,
an adequate preventive maintenance would be accomplished by providing ade-
quate information of some Region of Interest (ROI) on thermal image, where the
hot spots would be located. However, due to the characteristics of thermal images,
conventional methods of ROI segmentation are not adequate [2], giving this
segmentation to be manually accomplished by the human expert.

In this work, the proposed multi-level thresholding method improves the ROI
segmentation method for thermal images, thus giving local information for
machine fault identification. Based on the local variability of the pixel distribution
of thermal images, the method gives the following features: first, the threshold
adjustment is invariant of the statistical distribution model estimated from the
image; secondly, the thresholding method fits with segmentation techniques for
images exhibiting variability around local maximal values.

2 Proposed Thresholding Method

Variations measured on thermal image are limited by the geometry of each
machine part. Thus, thermal changes occur at low contrast areas, bounded by
smooth edges. Therefore, ROI segmentation is adequate to characterize several
machine parts, depending on the thermal pattern exhibited in operation. In this
case, the Watershed Transform is a commonly segmentation technique, where the
topological gradient image generates borders, namely watershed lines, which
define the contour of a segmented object on the image.

Proposed method consists on a modified iterative extraction of disjoint inter-
vals, based on the pixel distribution in the image, generating the quantized image
with the weighted average of the values belonging each interval, and then assigned
to represent each element of image [3]: noting X as the original thermal image, k as
a threshold parameter, and [T1, T2] as the interval calculated for some iteration,
following algorithm describes the proposed method:

Step 1. The first interval (at the iteration n = 0) is defined as [Ta(0), Tb(0)] = [a, b],
where a = min (X) and b = max (X);

Step 2. For each interval [Ta(n), Tb(n)] at the iteration n, the weighted mean l and
standard deviation are calculated a [ j ]

Step 3. Thresholds for the next iteration n ? 1 are calculated as:
Ta(n ? 1) = l - kr and Tbðnþ 1Þ ¼ lþ krb c; where :b c denotes floor
operation;
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Step 4. A new interval is created as:
[Ta(n ? 1), Tb(n ? 1)] = [Ta(n ? 1) ? 1, Tb(n ? 1) - 1], the incre-
ment/decrement of the interval values by 1 avoids interval overlapping;

Step 5. Pixel values belonging inside remaining intervals TRa ¼ ½TaðnÞ; Taðnþ
1Þ� and TRb ¼ ½TbðnÞ; Tbðnþ 1Þ� are represented in quantized image with
the respective values lðTRaÞ and lðTRbÞ;

Step 6. If Ta nð Þ � Tb nð Þ� 2; update n ¼ nþ 1; then go to Step 2.

Hence, the proposed method suggests that those pixel sets containing a high-
grade of variability belong to a convex ROI. Moreover, parameter k is unknown.
An inadequate choice of this parameter can lead to inaccurate quantization of the
image, therefore a value of k is empirically estimated to get several intervals
related with convex ROIs.

Another problem concerns with objects not belonging to the fault identification
process, like cables and sensors, appearing as segmented ROIs. To address this
problem, the segmentation process uses a region–based masking, eliminating those
connected regions being less than z pixels in the image. This assumes that the
objects inside the ROI of size less than z pixels are not relevant to the identification
process. Thus, following algorithm describes the segmentation process:

Step 1. The proposed thresholding algorithm processes the thermal image, giving
quantized masks. The first high–valued quantized interval corresponds to
ROI–candidate areas, generating the binarized image by assigning ones at
the ROI–candidate areas, and zero otherwise.

Step 2. Watershed Transform segments the ROI on thermal image, using as local
minimal those values at the center inside of the watershed lines. It gives a
number of watershed regions.

Step 3. Comparison between statistical mode of the values of each watershed
region, and the statistical mode of same region in binarized image. If the
latter value is equal to zero, the watershed region is discarded. Thus,
labeling of the remaining watershed regions is ROIm; m ¼ 1; . . .; M;
where M is the number of remaining ROIs.

3 Feature Extraction for Fault Identification

If the thermal camera detects some isotropic heat propagation, then an isotropic
gradient operator (like Gaussian) is capable to identify a possible fault, by esti-
mating the probability that a pixel belongs to a relevant ROI [4]. However, faults
can appear as anisotropic contour regions; then, an anisotropic operator would
obtain information about the value and direction in which heat spreads. In this
case, the usage of Sobel and Prewitt gradient operators allow detecting changes of
heat propagation magnitude and direction in image for fault identification
purposes.
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Thus, the gradient operators Tx and Ty are calculated for the directions x and
y of the thermal image X, respectively, as

Tx ¼
�1 0 þ1
�2 0 þ2
�1 0 þ1

2
4

3
5; Ty ¼

�1 �2 �1
0 0 0
þ1 þ2 þ1

2
4

3
5 ð1Þ

Tx ¼
�1 0 þ1
�1 0 þ1
�1 0 þ1

2
4

3
5; Ty ¼

�1 �1 �1
0 0 0
þ1 þ1 þ1

2
4

3
5 ð2Þ

where Eqs. (1) and (2) refer to the Sobel and Prewitt operators, respectively. Thus,
the convolution between image and either vertical Tx or horizontal Ty gradient
operator gives the gradient vectors Gx ¼ Tx � X and Gy ¼ Ty � X; respectively.
Finally, Eq. (3) extracts the gradient direction feature a at each pixel position ðx; yÞ
as:

aðx; yÞ ¼ tan�1 Gy

Gx

� �
ð3Þ

4 Experimental Set-Up

Evaluation of the proposed method consists on its implementation on a rotating
machine fault identification system. Specifically, the method belongs to the ROI
segmentation process on the thermal image used for fault identification. The fol-
lowing steps are part of the evaluation process: (1) processing of acquired thermal
image by the proposed method, giving a quantized image under a selected
parameter k; (2) mapping of the quantized image, giving the watershed lines within
the ROI segmentation algorithm; (3) gradient feature extraction from segmented
ROIs; (4) calculation of classification error rate for different machine conditions,
using parameter k as variable and gradient values as inputs.

4.1 Test Rig and Image Database

Figure 1 shows the testing rotating machine of the fault identification system,
consisting of a three-phase induction motor, with a rigid coupling between its shaft
and another shaft containing 2 drilling wheels. Insertion of weights of arbitrary
mass in one of these wheels induces the following two unbalance types: the first
one, by inserting weights in the drilling wheel closer to 12 cm from the dock,
being labeled as First Wheel Unbalance (FWU); the second one, called Second
Wheel Unbalance (SWU), by inserting weights into the farther bearing at 43.5 cm

140 H. Fandiño-Toro et al.



from the coupling. Machine operation recording lasts 2 h since its startup. Thus,
there is an observation for each different operating condition: Normal, FWU and
SWU.

Thermal image is the result of the decomposition of recorded video frames into
a YUV-space color image sequence. At a video recording rate of 1 frame per 60 s,
and noting that the first and second hour of machine operation is an adequate
observation time (when the motor achieves a stable temperature), the total number
of recorded images per observation is then 60. Moreover, each required image
comes from the Y intensity plane of each element of YUV-space sequence, since
this plane is a projection of the thermal chroma values. Table 1 shows other video
recording parameters.

By observation of the operation conditions, a preliminary segmentation of a
ROI corresponding to the first and second bearing aims to improve the fault
identification process [5], because thermal variations in this ROI are directly
related to the mechanical effects due to unbalance. Thus, the ROI labeled as ROI12
in Fig. 2 is the database image, used for the segmentation algorithm.

4.2 Thresholding and Segmentation

The k-parameter adjustment assures a finite number of disjoint intervals related
with convex ROIs. So, at a determined value k, the high–valued intervals keep the
maximal information of thermal distribution. In this case, values of k = 1, 2, 3 are
previously assigned. Besides, a region–based masking is implemented after the
thresholding process to prevent including of non-relevant objects for the identi-
fication process, such as the sensor and cable objects placed along the machine.

Fig. 1 Test rig image
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By observation of non-relevant objects in image, an assumed ROI size threshold is
z = 200 pixels. This value would vary for another experiments and test rigs. The
coordinates of pixels belonging selected ROIs are part of the data required for the
feature extraction process.

4.3 Feature Extraction and Classification Error Rate

The Edge Direction Histogram (EDH), proposed in (6), determines the relevant
phase values a used for fault identification, for each segmented ROI M: (1) Eq. (3)
extracts the gradient direction afor each point, using either Prewitt or Sobel
operator; (2) rounding of each direction, up to the nearest integer value, gives the
direction vector ~p ¼ aðx; yÞf g 2 N; for each coordinate ðx; yÞ 2 N; (3) Principal
Component Analysis (PCA),based on histogram of direction vector ~p; gives the-
relevance weight for each direction.

After sorting of the relevant directions, evaluation of classification performance
requires 10 cross-validation trials (70 % training and 30 % validation images,
sorted randomly), by comparing the classification error between trials using all
directions and trials using the most relevant directions. Noting that location is the
main characteristic for considered fault conditions (FWU and SWU), the evalua-
tion for each selected ROI M would give a track for not only fault identification,
but also fault localization, defined as Localized Fault Identification (LFI) [2]. The
number of relevant directions a are found when the classification error value is less
than 10 %.

Fig. 2 Some preliminary
ROIs

Table 1 Video camera specifications

Camera parameters (FLIR A320) Emissivity 0.82
Reflected temperature 20 �C
Distance between camera and test rig 1.5 m
Relative humidity 50 %
Ambient temperature 20 �C
Thermal scale 10–50 �C
Frame size 640 9 480 pixels

Video acquisition parameters Video format MPEG-2
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5 Results

5.1 Thresholding and Segmentation

Figure 3 shows the mean and standard deviation of quantized values for the three
most high–valued intervals, for each considered operation condition, calculated by
proposed thresholding method, using k = 1, 2, 3. In this case, the optimal value k0

is found at the maximal distance between the mean value of first and second
interval. This condition implies that the method provides adequate thresholds for
the segmentation process, allowing this an accurate ROI segmentation [6]. As
result, the selected value is k0 ¼ 1:

Moreover, the mean number of iterations achieved in Table 2 measures the
proposed threshold method performance, for considered parameter values
k0 ¼ 1; 2; 3. In this case, the lower number of iterations is found at k ¼ k0 ¼ 1; for
the three considered conditions.

Figure 4 shows an example of the calculated intervals per iteration, using the
proposed thresholding method at k0 In this case, the test image corresponds to the
3600 s interval, under FWU condition; thresholding process stops at 4 iterations,
giving a total of 8 intervals. For the sake of illustration, interval labels are by
magnitude level order. As result, the interval number 1 gathers the highest thermal
values, related with high variability.

Thereafter, results on segmentation process (Fig. 5) describes the following: (1)
quantization of thermal database image, by the proposed thresholding method
using the parameter k0, gives the quantized image of Fig. 5a, where the highest

Fig. 3 Intervals with higher pixels for the considered operating conditions. a FWU. b SWU.
c Normal
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interval (in white) fits with convex ROIs; (2) the masks belonging to the first
interval composes the binarized image shown in Fig. 5b; (3) the watershed
transform segments the thermal image, using region borders as watershed lines
shown in Fig. 5c; (4) the region–based masking eliminates regions not belonging
to identification processes; in this case, the regions belonging to an accelerometer
sensor and a power cable disappear from segmented image (Fig. 5d); (5) finally,
the labels for each segmented ROI masks appears in Fig. 5e as
ROIm;m ¼ 1; . . .; 5.

5.2 Feature Extraction and Classification Error Rate

Direction feature extraction, for each labeled ROIm and for the database image
ROI12; gives correspondent sample vectors required as inputs of classification
process. Figure 6 shows the results on the comparison between classification error
of each ROIm and error of ROI12: For the Prewitt operator, ROI3; ROI4 and ROI5
achieve an error lower than ROI12, requiring less number of relevant a values.
Moreover, the classification error obtains less than 10 % using around of 8 ori-
entations at ROI3, 4 orientations at ROI4, and 10 orientations at ROI5. In the case
of the Sobel Operator, also ROI3, ROI4, and ROI5 achieve an error lower than
ROI12, requiring less number of relevant a values, giving classification errors less

Table 2 Thresholing iterations for different k values

Operating condition K value

1 2 3
FWU 4 7 13
SWU 4 7 17
Normal 4 7 18

Fig. 4 Resulting intervals
after thresholding process
using proposed method k = 1
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than 10 % using around of 8 orientations at ROI3, 3 orientations at ROI4, and 8
orientations at ROI5.

6 Discussion

Given results of Fig. 4 indicate that the proposed thresholding method is adequate
for fault identification, by observing the calculated intervals for different operation
conditions. For example, using adjust parameter k ¼ 1, a thermal variation
between 120 and 140 of the quantized value of the first interval means that the
machine is in Normal condition, whereas a thermal variation above 140 of the
quantized value, at the same interval, would be identified as a fault.

From given results of Fig. 5, the proposed method gathers the most measured
variations into one interval, using the fewest number of iterations at k ¼ 1: In this
case, the first interval achieves the most variable values, at the first iteration. Since
the thresholding process is not enough for adequate fault localization, results of
Fig. 5a and b give a relationship between the most variable interval and convex
ROI, relating both thresholding and segmentation processes. In this case, the
highest interval fits with convex ROIs of greater value variability. Using the given
results of Fig. 5c–e, the proposed method helps to the watershed segmentation
process with the following: firstly, avoiding the over–segmentation; secondly,
eliminating those regions not belonging for the identification process.

Results given from Fig. 6 show that the number of relevant elements of the
direction gradient feature a is around 10. Although the minimal number of relevant
directions correspond to ROI4 using the Sobel operator, the ROI4 and ROI5 can

Fig. 5 ROI12 thermal image segmentation process. a Quantized image. b Mask for ROIs.
c Preliminary Watershed segmentation. d Masks for ROIs after false object extraction. e Labeled
ROIs after segmentation
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achieve a less number of relevant directions a, using the Prewitt operator.
Therefore, selection of latter operator gives an adequate feature extraction process.
Hence, the proposed thresholding method, with parameter j ¼ 1, gives segmented
ROIs reducing the bearing fault classification error by about 10 % and reducing the
number of relevant features by about 80 %, in comparison with the image ROI12.
Finally, using results shown in Fig. 6, for both operators, ROI4 would be the key
region for fault localization.

7 Conclusion

In this work, a proposed multi–level thresholding method improves the segmen-
tation process of convex Regions of interest ðROIÞ for image–based fault identi-
fication and location systems.

Method evaluation uses a bearing fault identification system, requiring as input
database a thermal image acquired on related test rig, the watershed transform as
segmentation process, and the orientation gradienta as fault identification feature.
Results provide the following highlights: (1) the method provides an adequate
measure for fault identification, calculating an interval related with convex ROIs,
being candidates to enclose a fault zone; (2) reduction of feature elements is
suggested, to increase the fault classification rate, giving the Prewitt operator as
adequate for feature extraction; (3) for this test rig, segmented ROI3;ROI4 and
ROI5 are candidate regions for fault location.

Following works will be under consideration: firstly, a comparison between the
quantized value of the proposed thresholding method and other measures, such as
the statistical measures proposed in [7] for fault identification systems using
thermal images; secondly, the usage of another feature, like Local Binary Patterns,
to improve the accuracy of fault identification and localization system; finally, the
use of method on other test rigs related with machine faults, acquiring more
information about the fault phenomena.

Fig. 6 Classification error using gradient features from segmented ROIs. a Prewitt operator.
b Sobel operator

146 H. Fandiño-Toro et al.



Acknowledgments The authors acknowledge to Colciencias and the Universidad Nacional de
Colombia for the financial support of the research projects ‘‘Sistema autónomo de monitoreo de
vibraciones para diagnóstico de fallas no estacionarias’’ (with code 1101-521-28792).

References

1. Hoppler R, Errath R (2007) Motor bearings, not must a piece of metal. In: Proceedings of
IEEE cement industry technical conference record, pp 214–233

2. Fandiño-Toro H, García-Álvarez J, Castellanos-Domínguez G (2011) Performance evaluation
of measures for the thermographic detection of motor faults by mass unbalance. In:
Proceedings of the international conference surveillance 6

3. Arora S, Acharya J, Verma A, Panigrahi P (2008) Multilevel thresholding for image
segmentation through a fast statistical recursive algorithm. Pattern Recogn Lett 29(2):119–125

4. Ortiz-Jaramillo B, Fandiño-Toro H, Benitez-Restrepo H, Orjuela-Vargas S, Castellanos-
Domínguez G, Philips W (2012) Multi-resolution analysis for region of interest extraction in
thermographic, non-destructive evaluation. In: Proc SPIE 8295:82951

5. Widodo A, Satrijo D, Huda M, Lim G, Yang B (2011) Application of self organizing map for
intelligent machinefault diagnostics based on infrared thermography images. In: Proceedings
of IEEE 2011 sixth international conference on bio-inspired computing: theories and
applications (BIC-TA), pp 123–128

6. Gao X, Xiao B, Tao D, Li X (2008) Image categorization: graph edit distance ? edge
direction histogram. Pattern Recogn 41(10):3179–3191

7. Younus A, Yang B (2009) Wavelet coefficient of thermal image analysis for machine fault
diagnosis. In: Proceedings of the international conference on mechanical engineering,
ICME09, pp 1–6

Bearing Fault Identification using Watershed-Based Thresholding Method 147



Envelope Cepstrum Based Method
for Rolling Bearing Diagnostics

Milena Martarelli, Paolo Chiariotti and Enrico Primo Tomasini

Abstract The task of identifying a faulty roller element bearing has been so far
faced through the use of envelope analysis. As it is well known the main issue
linked to such approach is related to the definition of the optimal band-pass filter
which can enhance the defect characteristics when the vibration signal is affected
by severe noise. The Kurtogram has overcome this limit by letting the optimal
band-pass filter be selected in a semi-automatic way, that is by exploiting the
potentials of the Spectral Kurtosis. This paper aims at presenting an alternative
algorithm which is able to cope with faults characterised by an impulsive-periodic
nature. It is well known that faults characterised by periodic-impulsive nature are
identifiable by means of cepstral analysis while damages inducing modulation
effects are usually assessed via envelope processing. The presented algorithm
combine two instruments, since it is based on the Fourier spectrum of the cepstrum
squared envelope. Such spectrum allows to isolate the modulation effect by
centring the modulating frequency around the DC component. In this paper the
algorithm is applied to both synthesized data reproducing typical damaged rolling
bearing signals and experimental data. Results achieved by exploiting the
proposed algorithm are compared to the ones obtained by applying conventional
envelope analysis based on Spectral Kurtosis.
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1 Introduction

Quality control of rotating machinery is often based on the analysis of the machine
vibro-acoustic signature. Indeed, the potential defect induces an anomalous
vibration that becomes noise. By monitoring the trend of that signature is possible
to discover damages at the very initial stage; by checking the variations of the
frequency components the presence of a specific defect can be diagnosed. Typical
systems where such diagnostic approach is applied are rolling element bearings.
When the rolling element strikes a local fault on either the outer or inner race, the
structural high-frequency resonances of the system, between the bearing and the
measurement location, are excited. McFadden also showed in [1] that the series of
these bursts is further amplitude modulated by both the load borne by the rolling
element and the change in position of the fault, when the latter is moving, with
respect to the fixed measurement location.

The roller element bearing diagnostics is generally assessed monitoring its
vibration signature. As described in [2], however, it has to be recognised that the
characteristics which prove a bearing diagnostic technique to be efficient depend
on its ability in detecting and enhancing the impulsiveness of the signals. Several
signal processing techniques have been presented to the scientific community
during the last decades, ranging from linear prediction models to Minimum
Entropy Deconvolution, as reported in [3]. One the most popular approach relies
on the envelope analysis [4]. The main issue related to envelope analysis depends
on the necessity of band-pass filtering the raw signal in order to enhance the
bearing signature. The optimal frequency band of this filter is sometimes tough to
identify. For such reason Antoni [5, 6] proposed the use of the Kurtogram as a
semi-automatic procedure for the detection of the optimal band-pass filter. The
Kurtogram, especially in its Fast Kurtogram version [7], improves and speeds up
the selection of the optimal band-pass filter by the use of the Spectral Kurtosis.
Within the last years the technique has been become the reference technique for
rolling element bearing diagnostics.

This paper aims at reviewing the use of the Amplitude Cepstrum, firstly pro-
posed by Randall [8], for the identification of those kind of defects. The algorithm
consists in calculating the Fourier transform of the Squared Envelope of the
Cepstrum (hereafter named FSEC), which corresponds to the Fourier Transform of
the Squared Amplitude Cepstrum. The advantage of using this kind of approach
grounds on the possibility to link both the ability of the cepstrum in evidencing
echoes and periodic impacts and the capability of the envelope to extract
modulations.

The approach is tested on both simulated and experimental data. The usefulness
of a combined use of FSEC and wavelet denoising is also shown.
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2 Diagnostics Methodology

Spectral analysis is sometimes not the best instrument to highlight modulation
phenomena. Indeed when low frequency phase and amplitude modulations are
present the spectrum exhibits a large number of closely spaced peaks; moreover,
phase modulation induces the presence of several sidebands, which contribute in
enriching the spectral content as well. The spectral content is even richer if several
modulation groups are present. Those characteristics make spectral analysis quite
though.

The cepstrum analysis represents a valid technique to tackle such issue, since it
is capable of enhancing the periodic structures of a signal; moreover, if compared to
the autocorrelation function, the use of the logarithm allows the weaker components
be analysed. In this paper power cepstrum has been adopted following (1) [8]:

CPðsÞ ¼ F�1 ln Sxx fð Þ½ �f g ð1Þ

with:
F-1 the inverse Fourier Transform
ln[Sxx(f)] the zero-padded logarithm of the single-sided autopower spectrum of

the time signal.

A powerful method to enhance modulations is the signal envelope, which is the
modulus of the corresponding analytic signal [8], following (2):

env CPðsÞ½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2½CPðtÞ� þ HfRe½CPðtÞ�g2

q
ð2Þ

where H represent the Hilbert transform.
The Fourier transform of the Squared Envelope of the Cepstrum (FSEC) is

equal, for the cepstrum definition, to the autocorrelation of the logarithmic spec-
trum, but with the advantage of not requiring the use of correlation algorithms.

FSEC fð Þ ¼ F env2 CP sð Þ½ �
� �

ð3Þ

As it will be shown in the following such tool is able to evidence modulation
phenomena induced by periodic impulses generated by localized defects.

However, it is well known, when performing a vibration analysis on a
mechanical system, that acquired signals are commonly spoiled by noise. A useful
approach aiming at enhancing the capabilities of the FSEC when working on real
data consists in pre-processing these data applying some denoising techniques.
Among these approaches, a really useful denoising technique is represented by
wavelet filtering [9, 10]. The main advantage in using wavelets consists in working
with non-constant time–frequency resolutions (that is one of the main differences
with respect to the standard Short Time Fourier Transform approach) therefore
better balancing between the two domains.
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3 Analysis of Results from Synthetic Data

The main objective of a diagnostic algorithm is that of detecting a fault signal in the
presence of a strong background noise. That is quite typical when the main task is
for instance the identification of faulty bearings in complex machinery. The
understanding of the capabilities of a technique results easier if tests are performed
on a synthetic signal, since noise can be added in a controlled way. According to
Antoni [6] many incipient faults in rotating machinery produces a series of repet-
itive transient forces, which therefore excite the system structural resonances. That
holding, the noise-free signal of a faulty bearing can be synthesized according to (4)

xðtÞ ¼
X

k

Xkh t � skð Þ ð4Þ

where h(t) is the impulse response excited by a single impact and where Xkf gk2Z
and skf gk2Z are sequences of random variables which respectively take into
account for possible random amplitudes and random occurrences of the impacts
(which therefore describes the slips of the rolling element bearings). Moreover, the
difference sk+1 - sk is a non-negative random variable whose mean specifies the
average rate of repetition of the impacts. That holds for any index k.

Gaussian random noise n(t) can be further added to the signal in (4) in order to
test the performance of the algorithm in presence of a strong background noise,
following (5).

yðtÞ ¼ xðtÞ þ nðtÞ ð5Þ

Figure 1 shows the synthesised signal y(t) representing the vibration signature
of a faulty rolling element bearing (outer race fault—fdefect: 52 Hz). The presence
of impacts is attenuated by the addition of Gaussian noise which lowers the Signal
to Noise Ratio to 5 dB.

The envelope analysis performed filtering the original signal with the optimal
filter obtained from the SK represents the reference technique in assessing the

Fig. 1 Synthetized signal representing a faulty rolling element bearing (outer race fault)—5 dB
SNR

152 M. Martarelli et al.



presence of a faulty rolling element bearing. Figure 2 reports the envelope spec-
trum of the signal y(t) after the Wiener filtering step obtained from the SK cal-
culation. The Weiner filter is identified through the Fast Kurtogram approach [7]
(optimal band-pass filter central frequency: 1,171 Hz; optimal band-pass filter
bandwidth: 781 Hz). The defect characteristic frequency is clearly well identified
by the SK approach.

The application of the FSEC algorithm on y(t) results in the spectrum shown in
Fig. 3. The defect characteristic frequency (fdefect: 52 Hz) is again well identified
by the algorithm, which gives as good performances as the SK approach. The
FSEC performances can be further enhanced if a proper Wavelet Denoising (WD)
pre-processing step is performed on the raw signal y(t), as clearly demonstrated by
Fig. 4. The applied denoising method is based on soft-thresholding [11] and
minimax principle [12] to estimate the threshold which is rescaled on the basis of
the noise variance calculated from the wavelet coefficients at the first level. The
mother-wavelet Db11 at level 2 is exploited to denoise the raw signal.

As it is well known, to successfully perform a denoising pre-processing the
‘‘mother wavelet’’ should be chosen in such a way to better approximate and
capture the transient spikes of the original signal. The choice of the mother wavelet
can be based on eyeball inspection of the spikes of signal, or it can be selected based

Fig. 2 Envelope spectrum of the synthetized signal filtered through the SK approach

Fig. 3 FSEC of the synthetized signal y (t)
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on correlation between the original signal and the wavelet-denoised signal, or based
on the cumulative energy over some interval where the spikes due to the fault occur.
We chose the Db11 mother-wavelet since it gave the higher values for both the two
approaches. The optimal level to be used in the denoising procedure was chosen on
the basis of the signal to noise ratio (SNR), calculated according to (6),

SNR ¼ 10 log10

P
t

y2ðtÞ
P

t
�yðtÞ � ydðtÞð Þ2

0
B@

1
CA ð6Þ

where yðtÞ is the original signal, ydðtÞ is the denoised signal and �yðtÞ refers to the
mean value of yðtÞ.

Figure 5 shows the SNR values evaluated on the signals obtained from the WD-
FSEC and SK approaches. It can be seen that the WD-FSEC approach produces a
5 dB increment in the SNR.

Fig. 4 FSEC of the synthetized signal y (t)—comparison of the FSEC results with/without the
wavelet denoising pre-processing step

Fig. 5 SNR comparison of SK-based envelope spectrum of the vibration acceleration signal
versus FSEC
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4 Analysis of Results from Experimental Data

The FSEC algorithm was applied to experimental data measured on a test-bench
installing an SKF 1205ETN9 self-aligning ball bearing with a fault in the outer
race. The motor was driving the system at a stationary speed of 560 rpm: this
makes defect frequency equal to 49 Hz.

The vibration signature of the rolling bearing was measured by an acceler-
ometer mounted on the bearing case. Data were acquired with a sampling rate of
51,200 Samples/s. A scheme of the measurement set-up is shown in Fig. 6. The
acceleration time history of the acquired signal is given in Fig. 7.

The envelope spectrum of the signal filtered using the filter identified by the
spectral kurtosis is shown in Fig. 8, where the peak at the defect frequency (49 Hz)
is clear. The optimal band-pass filter (central frequency: 10,400 Hz; filter band-
width: 540 Hz) was found exploiting the Fast Kurtogram technique.

One of the main requirement of the FSEC approach relates to the presence of
well-structured periodic impacts on the signal. Whenever the noise masks these
impacts FSEC suffers. For this reason it is important, in order to usefully exploit
such technique, to perform, as pre-processing, a wavelet denoising operation.

Figure 9 shows the FSEC results after the cleaning operation performed
through wavelet denoising (Sym5 mother-wavelet at level 2). The peak at the
characteristic frequency of the defect is even more pronounced (if compared to the

Fig. 6 Scheme of the measurement set-up

Fig. 7 Time history of the vibration acceleration measured on the damaged bearing
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noise pedestal) with respect to the one appearing in Fig. 8. This is even clearer if
looking at the SNR values reported in Fig. 10. The improvement in the SNR
reaches almost 8 dB.

Fig. 8 Envelope spectrum of the vibration acceleration signal filtered with the filter identified by
the Fast Kurtogram

Fig. 9 FSEC of the vibration acceleration signal

Fig. 10 SNR comparison of SK-based Envelope spectrum of the vibration acceleration signal
versus FSEC
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5 Conclusion

This paper aimed at reviewing the use of the envelope of the cepstrum of a signal
(also known as amplitude cepstrum) for the detection of faulty roller element
bearing. This approach can be considered an interesting alternative to the classic
Fast-Kurtogram-based envelope analysis, which is in reason considered the refer-
ence technique in bearing diagnostics. The algorithm has been tested on both sim-
ulated and real vibration signals and results obtained have been compared to those
got from Fast-Kurtogram-based envelope analysis thus showing the capabilities of
the FSEC approach. It has been recalled that the cepstrum-based technique works
properly if well-structured impacts are present on the raw signal. Whenever the noise
masks these phenomena (containing the true information) the algorithm can still be
used so long as a proper denoising pre-processing procedure is also performed, for
instance wavelet denoising. In such case, the FSEC approach performs even better
than the SK approach, since the FSEC results in a better SNR. The slightly higher
computational complexity of the combined use of wavelet denoising and FSEC is
therefore repaid by the improvement in the identification of the defect.

Acknowledgments This work has been carried out in the framework of the COST Action TU
1105 ‘‘NVH analysis techniques for design and optimization of HYBRID and ELECTRIC
vehicles’’.
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Condition Monitoring of Rotating
Machines Using Vibration and Bearing
Temperature Measurements

Adrian D. Nembhard, Jyoti K. Sinha, A. J. Pinkerton and K. Elbhbah

Abstract Conventional vibration-based condition monitoring (VCM) of rotating
machines with a multiple bearing system, such as Turbo-generator (TG) sets, is
data intensive. Since a number of sensors are required at each bearing location, the
task of diagnosing faults on such systems may be impossible for even an expe-
rienced analyst. Hence, the current study aims to develop a simplified fault
diagnosis (FD) method that uses just a single vibration and a single temperature
sensor on each bearing. Initial trials on an experimental rotating rig indicate that
supplementing vibration data with temperature measurements gave improved FD
when compared with FD using vibration data alone. Observations made from the
initial trials are presented in this paper.
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1 Introduction

Conventional vibration-based condition monitoring (VCM) is a mature technique
for fault diagnosis of rotating machines, however it is a relatively involved process
that mandates judgment and expertise from a trained analyst. The limitations of the
method are further compounded when considering VCM of a rotating machine
with multiple bearings, say a multi-stage Turbo-generator (TG) set. In such case, a
number of vibration sensors and measurements are required at each bearing
location [1] which results in the acquisition of large volumes of data. The method
then becomes a computational burden during data processing and the task of
diagnosing faults on these systems may be daunting, if not impossible, for even an
experienced analyst. Thus a more simple but robust technique is usually required
and would be well appreciated by the relevant industries.

Recent studies [2, 3] have suggested two VCM methods that require signifi-
cantly reduced number of vibration sensors. Elnady et al. [2] proposed the use of
the on-shaft vibration (OSV) measurement technique that requires special
arrangement of the measurement instrumentation. Sinha and Elbhbah [3] used just
a single vibration sensor on each bearing and then data fusion for diagnosis, which
is slightly computationally involved. The present study aims to keep both data
acquisition and processing simple and develop a diagnosis technique that uses
fewer sensors while preserving moderate computational load. With the wide
availability of temperature monitoring systems on rotating machines in industries
and studies confirming the sensitivity of temperature to rotating machinery faults
[4–8], an opportunity exists to integrate temperature and vibration data for
effective fault diagnosis. Hence, a simplified fault diagnosis (FD) method is pro-
posed that uses just a single vibration and a single temperature sensor on each
bearing. The temperature measurement is expected to compensate for the reduc-
tion in vibration sensors while replacing the need for advanced and complex signal
processing of the vibration data in the fault diagnosis process.

The proposed vibration and the temperature measurements are made on an
experimental rotating rig with two coupled rotors supported through 4 ball bear-
ings. Different faults are simulated in the rig and both vibration and temperature
measurements are collected and analysed in Sect. 2. Earlier studies used Principal
Component Analysis (PCA) as a tool for the diagnosis in rotating machines [2, 9,
10], so this method is applied in the present study. Results from the analysis are
presented and discussed in Sect. 3 and finally conclusions are drawn in Sect. 4.

2 Procedure

2.1 Experimental Set Up

Figure 1 shows a photograph of the experimental rig used for the experiment [6].
The set up consists of two 20 mm nominal diameter dissimilar length (100 and
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50 mm) rigidly coupled rotors that are supported by four grease lubricated ball
bearings. These are secured atop flexible steel pedestals that are bolted to a large
lathe bed secured to the concrete flooring. Machined sections accommodating
balancing disks are mounted on each rotor. System drive is provided by a
0.75 kW, 3 Phase, 3,000 rpm motor that is mated to the rotor-bearing system via a
semi-flexible coupling.

Fig. 1 Experimental rig mechanical layout

Fig. 2 Schematic of software and instrumentation
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The instrumentation and software schematic for the set-up is depicted in Fig. 2.
Rig speed is varied with a speed controller that is operated from a personal
computer. The dynamic response of the system is then measured with 100 mV/g
accelerometers. Each bearing location has two accelerometers that are mounted
with adhesive in mutually perpendicular directions. The vibration data is trans-
mitted through two four channel signal conditioners to a 16 Bit Analogue to
Digital (A/D) Data Acquisition System. Data logging software then stores the
digitized vibration data on the personal computer. To measure the thermal
response of the system, K-type thermocouples are attached between the bearing
casing and outside of the outer race of each bearing. This mounting position was
used to get the most immediate and accurate temperature measurements possible.
All four temperature readings were captured with an eight channel data logger and
saved to the personal computer for later analysis.

2.2 Simulated Faults and Experiments

Experiments were performed at 2,400 rpm (40 Hz). Data for the healthy machine
condition was first collected in order to establish baseline conditions for the rig.
Data was then collected for three fault conditions; cracked rotor, rotor rub and
coupling misalignment. The cracked rotor condition was simulated with the crack
in three different positions, as shown in Fig. 3a. In each case a ‘‘breathing crack’’
[7], with a depth of 20 % shaft diameter was created (see Fig. 3b, c).

Fig. 3 Details of crack simulation: (a) locations tested, (b) crack dimensions and (c) shim details
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Fig. 4 Details of apparatus used for rub simulation

Fig. 5 Details of misalignment simulation at bearing 3

Table 1 Summary of experimental procedure used. One fault scenario was simulated at a time

No Codea Scenario name Data collection method

1 Healthy Healthy On starting system from rest, bearing temperatures were
recorded for a period of ten minutes at 5 s intervals.
Vibration data, at a sampling frequency of 10 kHz, was
collected at the ten minute point for a total sample time
of one minute. After each experiment the system was
allowed to cool to ambient temperature before
configuring the rig for a different scenario

2 Cr Nr1 Crack near Bearing 1
3 Cr Nr2 Crack near Bearing 2
4 Cr Nr3 Crack near Bearing 3
5 Mlign Misalignment
6 Rb Nr4 Rub near Bearing 4

a Same nomenclature is used in figures throughout rest of paper
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Rub was simulated by a Perspex apparatus consisting of a base bolted to the
lathe bed (at 115 mm from bearing 4) and a stand (see Fig. 4). Misalignment was
the final scenario tested in order to minimise the effect of any residual misalign-
ment that could be retained in the system after testing. A steel shim was installed
under Bearing 3 housing to induce angular misalignment in the y–z plane across
the rigid coupling located between Bearing 2 and Bearing 3 (see Fig. 5). Table 1
summarizes the experiments and data collection procedure employed.

2.3 Data Analysis

For each machine condition, the acceleration spectrum was generated from data
measured in the horizontal radial direction between 5 Hz and 1 kHz. Each spec-
trum was analysed to gain insight to the condition being simulated.

Principal Component Analysis [11] was then performed; first with vibration
data only and then with vibration and temperature data. Firstly, for each machine
condition, the measured vibration data was segmented into 20 observations. Each
observation was used to compute one time domain feature (root mean square
[rms]) and three frequency domain features (amplitudes of 1x, 2x and 3x harmonic
components). Each bearing location was treated as a separate set of features. Hence
a total of 16 features (4 bearings 9 4 features) were computed. These were used to
populate a feature matrix, Xv, for loading to the PCA algorithm. Each scenario
simulated was treated as a different set of observations; hence matrix Xv would
have 16 rows (features) and 120 columns (6 scenario x 20 observations). Before
computing of Principal Components (PCs), each element in Xv was converted to
zero mean and unit variance [2, 11].

Secondly, temperature measurements were processed to add to the vibration
data. Since temperatures were recorded during machine run up, it was necessary to
do an extrapolation to obtain steady state bearing temperatures. For this a simple
thermodynamic model of the bearing and a curve fitting process were used.
Assuming the majority of heat loss from a bearing was via conduction to the steel
pedestals, which could have acted as a large heat sink, the bearing temperature
change values would be as shown in Eq. (1).

DT ¼ Tmax � Toð Þe�At ð1Þ

(where DT is temperature increase, Tmax is steady state temperature, To is ambient
temperature, A is an arbitrary variable and t is time).

As shown in Fig. 6a, unknown variables in the equation for each condition were
adjusted until the model (dashed lines) matched the warm up curves (solid lines).
These variables were then used to generate full steady state curves (see Fig. 6b) for
each fault condition. Full interrogation of the acceleration spectra was also done to
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ascertain if any bearing fault was present; as this would have affected the tem-
perature measurements. The steady state temperatures calculated for each bearing
were included as an additional feature, which resulted in a 20 9 120 feature
matrix, Xt+v. The process of normalizing elements in Xt+v was repeated and PCs
were calculated.

Fig. 6 Sample showing progression of temperature trends in curve fitting process: a transient
curve fitting and b generation of steady state curves
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3 Results and Discussion

3.1 Spectral Analysis of Vibration Data Only

Figure 7 shows the typical amplitude spectra at Bearing 2 for all conditions tested. It
can be seen that the method did give an indication of the presence of fault conditions,
as there were noticeable increases in the 1x component for all fault conditions
relative to the healthy spectrum. However, fault diagnosis was not possible as dif-
ferent faults generated similar spectral features. In an attempt to improve the
diagnosis, the amplitudes of the 4x, 3x and 2x harmonic components for each
bearing location at all conditions tested was normalized with their respective 1x
component. These were used to generate plots of the normalized 3x harmonic
component against the normalized 2x harmonic component and the normalized 4x
harmonic component against the normalized 2x harmonic component, as shown in
Fig. 8a and b respectively. It was expected that different faults would form clusters
in each plots, however, the results obtained did not show any useful discriminative
feature. As expected, it seems the simple spectrum is not adequate for the diagnosis
of these simulated faults without phase information [12, 13].
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3.2 PCA with Vibration Data Only

Figure 9 shows a two dimensional (2D) PC plot which correlates the 2nd PC (PC2)
against the 1st PC (PC1). Healthy condition did not occupy a defined space as
there was some overlap with it and the Rub near bearing 4 data points. It was also
observed that there was overlap between Misalignment and Crack near bearing 1
and 3 data. This is analogous to results obtained in the spectrum analysis (see
Fig. 7) where it was not possible to distinguish cracked rotor from misalignment. It
therefore appears that PCA with vibration data alone is no more useful than
spectrum analysis in this case.

3.3 PCA with Vibration and Temperature Data

Figure 10 shows the 2D PC plot that was produced. It can be seen that the addition
of temperature fully separates healthy from all faulty data. The overlap between
Misalignment and Crack near bearing 1 and 3 that was noticed in PCA with
vibration data only (in Fig. 9) does not exist in this plot. Therefore the addition of
temperature puts each fault condition in a clearly defined region, which may be
useful for fault diagnosis. Additionally, when compared to the simple spectrum in
Fig. 7c; where Crack near bearing 2 was observed to be the most severe fault
(possessing the largest 1x component and with noticeable increase in 2x harmonic
component with respect to the healthy spectrum), a similar observation is made
here, as the said condition has the greatest separation from the healthy case.
Therefore, in addition to fault classification, it seems this method may be able to
provide useful information on fault severity. Further experimentation would be
required to verify this.
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4 Conclusion

A fault diagnosis technique for rotating machinery rotor-related faults is proposed
using a single vibration sensor together with a simple temperature sensor on each
bearing. Initial trials show that supplementing vibration data with temperature
measurements gives better separation of healthy and faulty data; allowing clearer
diagnosis of faults when compared with vibration data alone. The proposed method
also seems to be simple and non-intrusive and thus have the potential for future
application. However, further experimentation on different rigs with different
faults is required to fully explore the potential and validate the usefulness of the
method.
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A Comparative Analysis of Detecting
Bearing Fault, Using Infrared
Thermography, Vibration Analysis
and Air-Borne Sound

Nikolaos G. Athanasopoulos and Pantelis N. Botsaris

Abstract A comparative analysis has been performed as an effort to obtain a
better idea of how the fault is appearing over a rolling bearing. In this paper are
presented the results of this analysis between three methods of detecting faults on
bearings: infrared thermography, vibration analysis and air-borne sound. Those
methods are applied on a specific rolling bearing and developed on an experi-
mental set up. The conducted experiment depicted that this comparison is feasible
as the results of each method are relevant.

Keywords Rolling bearing � Fault detection � Vibration � Thermography �
Air-borne sound �Condition monitoring �Signal processing �Fast Fourier transform

1 Introduction

Ball and rolling element bearings are perhaps the most widely used components in
industrial machinery. They are used to support load and allow relative motion
inherent in the mechanism to take place. Different methods are used for the
detection and diagnosis of bearing defects; they may be broadly classified as
vibration and acoustic measurements, temperature measurements and wear debris
analysis [1].
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The temperature is an important value measured to present the bearing fault.
Measurements of the temperature are used in parallel with other parameters like
vibration measurements for the detection of fault. The temperature of the bearings
and the lubricant is an indication of the state of machine. Increased temperature in
outer rings bearings warns for the initiation of the damage.

As regards the temperature of the lubricant is usually from 10 to 20 �C lower
than the bearing. Most lubricants for each 15 �C increase in temperature over
70 �C, have their life halved (or even more), occurring negative effect on the life
of the bearing [2]. A recently used method to capture the temperature of the whole
bearing is the infrared thermography. The infrared thermography is the technique
that allows (from the radiation emitted by a scene, of adapted equipments and
techniques of mastery of the measure situation) to obtain the spatial and temporal
distribution of the temperatures of this observed scene. In this study, the mea-
suring of temperature based on infrared thermography allows us to detect the
presence of abnormally warm zones on the surface of the bearing [3]. Problems
with bearings are usually found by comparing the surface temperatures of similar
bearings working under similar conditions. Overheating conditions appear as
‘‘hot spots’’, within an infrared image as usually found by comparing similar
equipment [4].

Another method of detecting the fault is through analyzing the mechanical
vibrations and transforming them into the Frequency-domain. Frequency-domain
or spectral analysis of the vibration signal is perhaps the most widely used
approach of bearing defect detection. The advent of modern fast Fourier transform
(FFT) analyzers has made the job of obtaining narrowband spectra easier and more
efficient. Both low and high frequency ranges of the vibration spectrum are of
great interest, in assessing the condition of the bearing [5]. The interaction of
defects in rolling element bearings produces pulses of very short duration when-
ever the defect strikes or is struck owing to the rotational motion of the system.
These pulses excite the natural frequencies of bearing elements and housing
structures, resulting in an increase in the vibrational energy at these high fre-
quencies. The resonant frequencies of the individual bearing elements can be
calculated theoretically. Each bearing element has a characteristic rotational fre-
quency. With a defect on a particular bearing element, an increase in vibrational
energy at this element’s rotational frequency may occur. These characteristic
defect frequencies can be calculated from kinematic considerations i.e., the
geometry of the bearing and its rotational speed [6].

Apart from the measurement of mechanical vibration that caused by the
machine, it is also measured the airborne acoustic (‘‘air-borne sound’’). Acoustic
noise from mechanical vibrations produced within a machine from metallic
components, lubricants, other moving objects or materials, from entrapped air or
steam in the inner part of the machine. This noise in the air around the engine,
called Air born sound. Measurement of acoustic noise can be used for the detection
of defects in rolling element bearings [7].

172 N. G. Athanasopoulos and P. N. Botsaris



2 Materials and Methods

2.1 Experimental Set-up

The instrumentation and experimental setup that was used for the needs of the
present work is presented in Fig. 1.

The ball bearing that was used for charging was a common deep groove ball
bearing with single mounting (type 6206 by Nachi). It was adapted in an axis and
inside the load device (Fig. 1). The accelerometer was placed on the top of the
load device. The bearing charged with a continuous radial load equal to 48,54 KN.
The sensor signals were of altered tendency and with suitable conditioning
circuitry leveled to the host computer, for storing and further processing with the
LabView (National Instrument) program.

2.2 Applying Load on the Bearing

The load device for the applying of charge of the bearing was studied for both
radial and axial stress. For radial stress, the surface growing tension is
r1 ¼ 57:6 N=mm2, while the yield point of steel St 37-2 is Re ¼ 210 N=mm2

(safety factor on the surface deformation = 3.6), while for axial the surface
stress in the cap of the structure is equal to r2 ¼ 34:3 N=mm2 (E2 ¼ 728 mm2)
(safety factor on the surface deformation in the cap = 6.1) [2]. After studying the

(a)

(b)

(c)

(g)

(f)

(d)

(e)

Fig. 1 Experimental setup: a One accelerometer (for vibration on the radial axis) (type 8702
B25 by Kistler), b A load device for the measurement of charge (constructed by a previous work
in our laboratory (Fig.2) [2]), c A DAQ card for acquired data (type CompactDAQ—9172 by
national instruments and the module NI 9233). d The coupling circuit for the accelerometer. e A
microphone for the measurements of the acoustic emissions (Voltcraft Digital Schallpegelmass-
gerat 329). f An Infrared thermometer (type KIRAY 100 by KIMO). g A portable thermal imager
(type IVN 780-P by IMPAC)
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strain-machine, there had to be calculated the load of the bearings, caused by the
screw, and therefore had to be calculated the torque from the torque wrench that
were used on the two radial screws, by using the equations of Mann :

Friction by Mann: Man ¼ MG þMA ¼ F� r2 � tan aþ q0ð Þ þ FlA�
rA = 49.99 Nm

where MG, is the friction torque of the thread and MA is the torque from the
torque wrench, for F = 24.27 kN, q0 = 9, r2 ¼ d2=2, a = 2; 9o; lA ¼ 0; 11;
ra ¼ 0:7 d, d2 ¼ 10; 863 mm.

The basic rating life of the bearing 6206 for radial load equals to 48.54 KN

according to ISO 281:1990 is: L10 = C
P

� �p
= 0.0731 or L10h = 106

60 n L10 = 1.219 h

or 73.14 min. Nevertheless, the experiment lasted 110 min so that the fault could
be easier detected.

2.3 Temperature and Infrared Thermography

The measuring of the rolling bearing temperature has been done with the infrared
thermometer (Fig. 3). After analyzing the increasing temperature, further details
had to be added in order to specify which parts of the bearing exactly did the fault
occurred. At this point were used the method of Infrared thermography. The
thermographs were acquired by a fixed thermographic camera and were processed
and recorded every 20 min. A study of machine tool spindle to obtain an assembly
presenting a limited temperature increase at high speed monitored the fatigue life
of bearings [8]. It showed by model and by experiment that a temperature rise
between 16 and 34 �C was to be expected in normal working conditions. In the
study of J.-S. and K.-W Chen, for bearing load for high speed spindle, it was
clearly showed that the temperature of the bearing depend on the load and on the
rotational speed [6].

Fig. 2 Steel construction
(Stall 37-2), with shear
modulus G equal to
80 KN=mm2
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2.4 Vibrations and Characteristic Frequencies

It is marked as mentioned before that, the vibrations width is an indicator of the
vibration power and depends from the speed (Rpm) and the load (N) of the
bearing. For a particular bearing geometry, inner raceway, outer raceway and
rolling element faults generate vibration spectra with unique frequency compo-
nents. It is these unique frequency components and their magnitudes that make it
possible to determine the condition of the bearing. The bearing defect frequencies
are linear functions of the running speed of the motor. Outer race and Inner race
frequencies are also linear functions of the number of balls in the bearing. For a
bearing, with the outer ring stationary, bearing key frequencies are calculated as
follows (1–4) [9]:

Fundamental Train Frequency FTFð Þ : f ¼ fs
2� 1� Bd

Pd

cos /

� �
ð1Þ

Inner Race Frequency IRð Þ : fi ¼ Z fs � FTFð Þ ð2Þ

Ball spin frequency BSð Þ : fb ¼
Pd fs

Bd2� 1� Bd

Pd

� �2

cos /

" #
ð3Þ

Outer Race Frequency ORð Þ : fo ¼ Z FTFð Þ ð4Þ

where fs, Bd, Pd, u and Z are the revolutions per second of the IR or the shaft, the
ball diameter, the pitch diameter, the contact angle and the number of balls,
respectively (Fig. 4). The contact angle for the ball bearings carrying no thrust
load is assumed to be zero.

By the above equations it is calculated the defected frequencies for the bearing of
this experiment. While knowing that is turning in the machine-tool of system with
speed of 1,000 Rpm with cosu = 1, Bd = 10.40 mm, Pd = 47, 25 mm and Z = 9,
the defected frequencies are: FTF = 58.49 Hz, IR = 91, 51 Hz, BS = 36, 03 Hz,
and OR = 6.5 Hz.

Fig. 3 Infrared thermometer
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The ball bearing, as all the machine elements have a characteristic natural
frequency vibration, while at the same time the frequencies with which their
components are vibrating can be calculated, as the exterior ring, the internal ring or
their balls. With the Fourier Transformation there can be distinguished the fre-
quencies of ball bearing’s elements and conceive if there is any damage in the
particular component, so that the fault of the bearing can be averted. The principal
advantage of the method is that the repetitive nature of the vibration signals is
clearly displaced as peaks in the frequency spectrum at the frequency where
the repetition takes place [10]. The FFT was applied on the signal acquired by
LabView on the software environment of MatLab.

2.5 Air-Borne Sound

In this paper the air-borne sound were measured by the portable microphone
(Fig. 5).

The microphone is a sensor that converts sound pressure into an electrical
signal. Of great importance is how to load the microphone right. It should be
placed always in the same place as the previous measurements so that the results

Fig. 4 Deep groove ball
bearing

Fig. 5 Portable microphone
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are comparable. The microphone should be placed at a distance greater than twice
the length of the machine but not too far away from it as the received signal will
permeate other sounds.

3 Results and Discussion

3.1 Temperature and Infrared Thermography

In Fig. 6, it is presented the evolution of temperature over time measuring by the
portable thermometer.

It is shown that at the beginning of the operation (the first 20 min) there was a
high increase of the temperature. A steady low increasing temperature followed
and at the end of the experiment a further increase had occurred depicting the fault
of the bearing. Those temperatures were above the limit of normal working
conditions of the bearing that is around 60 �C [11].

In the experiments that were conducted for the purpose of this paper there where
depicted faults in two parts of the bearing, by the portable thermal imager. On the
Fig. 7, it is shown that there was a hot spot with max temperature of 69.5 �C on
one part of the outer ring, while the rest parts temperature were about 26 �C below.

The other part that an increased temperature was occurred is on the rolling
elements (the balls), shown by Fig. 8.

At the Fig. 8 the numbers (1–9), represent the nine balls of the bearing, and at
the ball number 3 there was an increased temperature, about 5 �C more than the
others, declining a fault at this ball.
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3.2 Vibration Analysis-FFT

The analysis of the signal by the use of the FFT is presented on the Fig. 9.
It is depicted the appearance of fault in various part of the rolling element,

defined by the appearance of the characteristic frequencies and their harmonics.

Fig. 7 Thermal image depicting a hot spot on the outer raceway

Fig. 8 Thermal image depicting a difference of temperature in the balls of the bearing and also
the 3-D profile of it
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More precisely, on the plot it is visible the first second and forth harmonics of the
FB (FB = frequency when one point on a rolling element is damaged), declining
fault on the rolling elements (the balls). Also the first and second harmonics of the
FBPO (FBPO = frequency when one point on outer raceway is damaged),
showing the fault on the outer raceway of the bearing. Some fault can also be seen
at the parts of the cage (Fc) (fourth and fifth harmonics) and at the inner raceway
(fourth harmonic).

3.3 Cost Analysis

At this point, a comparison of the cost between thermography and vibration
analysis was also vital in order to compare those two methods on a more large
scale view. The Table 1 depicts the total cost of each method respectively for the
equipment they occurred. It is shown that the method of thermography is cheaper
than the one of the vibration analysis.

Fig. 9 The extracted plot from MatLab with the characteristics frequencies

Table 1 Total cost of vibration analysis and thermography equipment

Method Used equipment Total cost

Vibration
analysis

Accelerometer Software Coupling
circuit

DAQ—
9172

Work
hours

7,000–9,000 euro

Thermography Thermal
imager

Software Work
hours

5,000–7,000 euro
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3.4 Air-Borne Sound

In the Fig. 10, it is presented the sound pressure evolution over the time of the
conducted experiment. It is shown that over the time there was an increase of the
sound pressure depicting extensive use of the machine as well increased stressing
of the bearing element.

4 Conclusions

In this paper, a comparative analysis had been used, by applying three methods.
The results had shown that the data acquired by the analyzed thermal images, the
signal processing from the accelerometers and the rising levels of the air born
sound are all relevant between them. The vibration analysis is the most common
and precisely method of detecting fault on bearings but still it’s a method requiring
well trained staff and greater time and money for the acquisition of the results. So
the results are depicting that even if the vibration analysis is the most common
method of detecting fault on bearings, it still can be replaced by the use of other
methods less accurate but less difficult to operate. Further testing under variable
and/or axial loads is under investigation by the present research team before a final
conclusion can be made. The finite element analysis will be also examined, as
promising method of detecting the fault on bearings.
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Monitoring Lathe Tool’s Wear Condition
by Acoustic Emission Technology

Tobias Pinner, Hermann Sommer Obando, Georg Moeser and
Wolfgang Burger

Abstract Manufacturing of mechanical components with a large lot size is usu-
ally an automated process. The knowledge of the in situ condition of the tool can
help to tailor its exchange cycles in order to reduce costs by using it to its full
capacity, without compromising workpiece quality. We aim to monitor the con-
dition of a lathe’s tool cutting tip by use of acoustic emission (AE) technology in
order to increase its service life. Unlike previous research approaches that verified
the potential of AE to monitor tool wear, we concentrate on identifying and
overcoming application challenges of automated tool wear control that impede a
broad and economic use of tool condition monitoring (TCM) in industry.

Keywords Tool wear � Condition monitoring � Acoustic emission � Lathe tool
cutting tip � Cooling lubricant influence � Sensor requirements

1 Introduction

Manufacturing of mechanical components with a large lot size is predominantly
accomplished by automated tool machines. The manufacturing procedure is pro-
grammed and stored into a control device before starting the subsequent batch
production of the component. This period is characterized by the continuous
unattended execution of predefined manufacturing steps, using various tools
depending on the type of manufacturing plant.

The production quality is influenced by different parameters that can be opti-
mized by the manufacturer (like drilling speed, feed, tool material). Usually, the
quality lowers continuously with the amount of manufactured components because
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of the tool’s wear and it can worsen abruptly due to tool defects (e.g. drill breakage
or lathe tool rupture). In order to keep the fabrication tolerances within the
acceptable deviation, the manufacturing tools are replaced regularly. Due to
inconstancy of materials, tool faults and the variation of manufacturing parame-
ters, the time-based changing of tools can lead to a premature or belated exchange.
The late tool exchange leads to useless production output as the fabrication tol-
erances and quality can no longer meet the requirements. This outweighs the costs
for a premature exchange and thus, the time schedules usually tend to arrange for
an early tool exchange.

The knowledge of the in situ condition of workpiece quality and tool wear can help
to tailor tool exchange cycles in order to reduce costs by using the tool to its full
capacity. Furthermore, sudden tool failure can be recognized and the subsequent
output of unusable components can be anticipated and prevented. In this paper, we
present requirements for a sensor system to monitor a lathe tool’s condition in terms of
wear. After presenting the state of the art solutions for process monitoring of manu-
facturing machines (with a focus on lathes), we summarize boundary conditions and
define requirements for monitoring a lathe tool’s condition. We also present the results
of our first measurements on a CNC-lathe and how they affect the system requirements.
The paper addresses the question, which requirements arise from the objective of
monitoring a lathe tool’s wear and how they can be identified and sharpened.

Acoustic Emission (AE) Analysis turned out to be of advantage for our needs
and have been used for similar purposes, like condition monitoring of hydrody-
namic journal bearings [2, 3, 9]. Due to this fact, we accomplished ground
experiments with SAE-Sensors attached to the lathe tool. These experiments can
be regarded as one source for identifying and sharpening requirements for mon-
itoring a lathe-tool’s wear condition.

The paper is structured as follows: Sect. 2 deals with a more detailed specifi-
cation of the initial objectives, based on the presentation of the lathing process and
machine layout. Section 3 comprises the state of the art presentation and depicts
our methodological approach to concretise the system of objectives and to specify
fundamental design decisions. Within Sect. 4 we present first experimental results
from Acoustic Emission measurements on a lathe-tool. Section 5 presents the
derivation of requirements, based on the measurements of Sect. 4 and on other
considerations. Section 6 depicts first ideas for a technical realization and sum-
marizes the output of this paper.

2 System Description and Objective Definition

2.1 Monitoring of the Machining Process

Machining is one of the most important manufacturing processes. In order to
remove material from a workpiece it can be applied to metallic as well as non-
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metallic materials either [5]. Economic pressure drove the area of manufacturing
into developments that raise the overall efficiency. This results in high machining
speeds and increasing loads on machines and tools, accompanying an increased
wear. There is a need for great effort in process monitoring and control, diag-
nostics and maintenance in order to avoid machine malfunctions and machine
breakdown. Machine downtime must be minimized and process stability must be
maximized during manned and unmanned production to reach the goal of high
productivity [14]. Dornfeld [6] summarized: ‘‘These objectives are to ensure
safety, prevention of damage to the machine, prevention of rejected workpieces,
prevention of idle time on the machine and optimal use of resources.’’ Automated
surveillance of manufacturing machines is known to be a central factor to mini-
mize downtime, lower production costs and increase output quality.

In many cases the desired measure cannot be monitored directly. This applies
e.g. for the tool wear or the output quality that both could easily be examined
manually after manufacturing but not during the machining process itself. Because
of this lack of measurability, other measurable quantities linked to the desired
value (e.g. the output quality or the tool wear) are used by a mathematical model.
In our research, we concentrate on a number of CNC turning centres with milling
capabilities. Every turning centre features two independent spindles that have a
coaxial adjustment, and thus they can exchange the workpiece for a conjoint
machining. Every spindle has an overhead tool revolver that contains one or more
lathe tools or drills.

2.2 Definition of Objectives

We aim to monitor the condition of a lathe’s tool cutting tip as an indicator for the
output quality of the workpiece. With help of this condition monitoring the service
life shall be extended up to the maximum admissible. Hereby, average operating
life should be extended by more than 10 %. Furthermore, unpredictable tool
failures shall be recognized in order to halt the operation for tool replacement.
Potential necessary sensor or controller elements should work autonomously for at
least three months without any need for service (e.g. battery change) and their
costs are targeted to be kept below 50 % of those for current monitoring solutions.

3 State of the Art and Our Approach

Machining monitoring methods concerning tool wear have been under scientific
examination for over 25 years. Shiraishi [11] compares different methods of tool
wear detection in a paper of 1988. As is established in measurement technology, he
also distinguishes between direct methods that measure the occurring tool wear as
measurand and indirect measures that use indicators to deduce the correlating tool
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wear. He summarizes at that time indirect methods turned out to be of advantage,
as reliability of direct methods of wear measurement posed problems in reliability.
Back then, force detection and acoustic emission (AE) methods seemed promising
for industrial use.

Nowadays, commercially available CNC-Machining monitoring systems base
on a multitude of different sensors that can be integrated into manufacturing
machines. The range of sensor technologies reaches from force measurement and
vibration monitoring to AE-sensors. Usually, measures are proved to be within a
predefined (previously adjusted) scope and a notification is sent if there are any
discrepancies. Hence, tool wear in terms of breakage can be securely identified.
Nevertheless, no low-cost single-sensor application could be found that permits a
reliable and continuous flank wear monitoring. Abellan-Nebot and Romero Sub-
irón [1] give a review of machining monitoring systems basing on indirect mea-
surement methods and thus using artificial intelligence (AI) process models.
Widespread sensor systems for monitoring applications are dynamometers for
force and torque measurement to identify cutting forces, accelerometers for
vibrations on cutting tools, AE sensors for high frequency acoustic emission
during the cutting process and current sensors for measuring the motor current as
an indicator for motor torque that is, in turn, proportional to the cutting force [1].
Teti, Jemielniak, O’Donnell and Dornfeld give another profund review of methods
for monitoring machining operations in [13]. They summarize different scopes of
monitoring and referring sensor solutions. For the monitoring of tool condition (i.e.
tool wear, breakage, geometry, temperature) they found the application of AE and
vibrations measurement as well as cutting force, hydraulic pressure, motor power,
optical and sound sensors plus the combination of them. For the surveillance of
surface integrity, cutting force, vibrations and temperature are used as well.
Additionally, the spindle motion displacement had been used. The main reason for
lacking commercial availability of scientifically examined monitoring solutions
remains the complex and non-universal use of evaluation methods [13].

In our work, we try to find a technical solution for a sensor system that inte-
grates seamlessly within existing manufacturing environments without needing an
individual setup. Our approach bases upon the finding that AE signals serve as an
adequate source for the identification of lathe tool wear [4] and enable the dif-
ferentiation between various effects concerning tool behavior, like tool and chip
breakage (burst type signal, see [11]) or elastic deformation of material (contin-
uous type, see [8]). Additionally to the six key issues from [1] that deal with sensor
selection and signal processing, the overall measurement system has to be con-
sidered. Based on process considerations of lathe operations, fundamental
requirements are derived. Additionally to the findings of research groups on tool
wear analysis by acoustic emission [1, 7, 10, 13], we conduct further reference
studies with AE-sensors in order to validate existing correlations between AE-
signal and tool wear condition. Furthermore, the influence of environmental fac-
tors (like cooling lubricant, EMC, temperature) will be analyzed. First findings of
these examinations are presented below. To reach our objectives we develop a
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tailored AE-sensor that suits the identified requirements at the lowest possible cost.
This sensor will be evaluated based on reference measurements.

4 Experimental Results and Boundary Conditions

In order to determine the system requirements we designed a set of experiments to
be performed on-site monitoring a CNC turning center. They regarded the cutting
process as well as the machine environment influence on SAE measurements. In
this paper we describe the execution and present the results of these experiments.

The measurement chain employed consists of four main elements. The SEA-
sensor is a KISTLER sensor type 8152B1. It is a broadband acoustic emission
sensor suited for the frequency range from 50 to 400 kHz. Outside of this range,
sensor sensitivity, thus measurement reliability, drops. Along with the actual
vibrating piezoelectric element is an impedance converter that works as a pre-
amplifier. However, the high-frequency amplifier KISTLER 5125B1 is in charge
of both the main amplification and feeding the preamplifier. Additionally, it
contains a high- and a low-pass filter that are set to 500 and 50 kHz respectively.
The signal is then sent through a 16-Bit A/D-converter from the type NI USB-6251
with a sample rate of 1.25 MHz. Measurement data processing, storage and dis-
play are handled by a MATLAB framework developed at the institute.

4.1 Experimental Setup

In our experiments we measured the acoustic emissions during the machining of
different workpieces with cutting tips showing different grades of wear. For a
machine equipped with each a barely used cutting tip and later on a discarded one,
we measured emissions during the machining of aluminum, steel and brass parts.
The machining of each of the pieces took around four seconds and was conducted
using common cutting parameters depending on the material. The sensor bases on
a piezoelectric transducer that converts the mechanical acoustic wave into a
proportional voltage signal. From this signal, the AE-power of specific frequency
bands can be derived, which is specified as a positive squared voltage value.

4.1.1 Effect of Cooling Lubricant Application and Idle Running

In order to determine whether the cooling lubricant application has an influence on
the AE-signal, we performed a measurement of its application without any
machining taking place at the time. A time sample of 1 ms was analyzed for the
time before the application of cooling lubricant, thus the idle running, as well as a
sample during the application of lubricant, as illustrated in Fig. 1. The idle running
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of the lathe appears to have no effect on AE-measurements. However, the mere
application of cooling lubricant, even when no machining is taking place, produces
significant signals, comparable to those that occur while machining aluminum.
Early spectral analysis of the signal has shown the frequency range of this influ-
ence to be too wide to be neutralized through a band-stop filter without also
affecting important machining data. This effect makes it hard to ensure that the
measured AE actually corresponds to the machining itself. However, Sturm and
Förster [12] state the possibility of recognizing the part of the signal relevant to the
machining process performing an impulse density variation analysis on the raw
signal, where changes in the relative incidence of signal values exceeding a certain
threshold is analyzed.

4.1.2 Workpiece Material Influence

The before mentioned effect of the cooling lubricant application was present
during the machining of aluminum and steel parts but not during the lubricant-free
machining of brass parts. Figure 2 (left) shows a representative sample of the time
signal (1 ms) measured during the machining of aluminum parts. The upper part of
the figure shows the results when machining took place using a barely used cutting
tip. The lower graph depicts the results when using a worn out cutting tip. The
latter shows how worn out tips tend to cause interruptions, in which the amplitude
of the signal is at least very close to zero, much more often than new tips do. Using
a new tip causes the total amount of samples with a voltage lower than 0.2 V to
drop from 60.01 %. A worn out one leads to a value of 53.81 %. The results for the
machining of brass parts are depicted in Fig. 2 (right). The signal interruptions
now appear to occur more often, when a barely used cutting tip is equipped for
machining of the parts. This observation is supported by the fact that for the
measurements on brass with a worn out cutting tip 80.08 % of all samples showed
a voltage lower than 0.2 V, while only 75.04 % of samples using a new cutting tip
did so.

The third material studied was stainless steel (X5CrNi18-10). The corre-
sponding graphs are contained in Fig. 3. The presence of more interruptions
regardless of the cutting tip in use is evident. However, they seem even more
present when using a worn out cutting tip. The percentage of sample values below

Fig. 1 Raw AE-signals of active cooling lubricant application (left) and idle running (right)
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0.2 V for machining with a barely used cutting tip is 83.96 %, while a worn out
one caused it to raise to 93.05 %.

Further analysis of time signals and their spectrums are pending, as well as a
statistical analysis of the machining of higher lot sizes. Furthermore, the effect of
the application of cooling lubricant requires further investigation as it is the most
predominant source of undesired AE.

4.1.3 Sensor Positioning Influence

We placed the sensor at three different positions on the machine and repeated and
measured the acoustic emission of the same cutting process for each of them. In
order to determine whether the signal received by the sensor is adequate for our
purposes, we analyzed the AE-power within a set of different frequency bands
during the machining of stainless steel, and generated graphs for three seconds of
the process.

Fig. 2 Sample of the time signal (1 ms) measured during the machining of aluminum parts (left)
and during the machining of brass parts (right)

Fig. 3 Sample of the time signal (1 ms) measured during the machining of stainless steel parts
(X5CrNi18-10) (left) and AE-power of stainless steel within different frequency bands with the
predominant sensor positioning (right)
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Firstly, we positioned the sensor as close as possible to the tool center point
(TCP) by screwing it to the tool holder. This is depicted on Fig. 4 (left). This is the
same position the sensor was in, when all of the previously presented results were
measured. The resulting mean over 151 samples of the AE-power for different
frequency ranges is illustrated in Fig. 3 (right). Secondly, we attached the sensor to
the tool post using a magnetic clamp. The location of the sensor and the clamp can
be taken from Fig. 4 (middle). The positioning of the sensor further away from the
cutting process but closer to the tool post’s cooling-lubricant nozzle led to an AE
power increase across all frequency ranges. Only the frequency range between 100
and 150 kHz remained relatively unaffected, as illustrated in Fig. 5 (left). Lastly,
we used the magnetic clamp to position the AE-sensor even further away of the
TCP, at the body of the machine’s revolver (see Fig. 4, right). As expected, Fig. 5
(right) depicts how the power substantially dropped across all frequencies.

5 Result: Derivation of Requirements

The sensor system to be developed should be applicable to a broad variety of
different lathes and machine arrangements. This refers to different amounts of
lathe tools, spindles and the overall number of lathes that are integrated into the

Fig. 4 Sensor positions (left to right): Close to the TCP, at the tool post with magnetic clamp, at
the revolver

Fig. 5 AE-power of stainless steel within different frequency bands with the sensor at the tool
post (left) and at the revolver (right)
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automated manufacturing process of a specific company. Physical environment
and operating conditions have to be consistent for the fail-safe application of
identified analysis algorithms. This can be achieved by attaching the sensor ele-
ment to the ‘‘common denominator’’ of different lathes. By nature, the operational
contact appears to be the point of highest reproducibility: The contact is formed
only by the workpiece and the cutting tip that is identical on every other lathe.
Already the tool holder may be found in different materials and sizes, although it is
standardized to three specific shapes. The farther we move away from the oper-
ational contact, the more differences characterize a certain lathe.

The cutting tip itself is not suitable for a sensor integration due to its small size
and its single-use concept. The tool holder features an universal shape and an
adequate narrow distance to the operational contact. In order to be all-purpose by
means of different lathe layouts, the sensor element has to be integrated into the
tool holder without altering its outer shape. Every shape that differs from the
standardized tool holder design may conflict with any parts of the lathe, like the
spindle or the revolver. According to our measurements regarding sensor posi-
tioning and state of the art findings, signal quality suffers from a high amount of
surfaces between the signal’s source and the measuring point. Additionally, pro-
tecting the sensor from direct exposure to the cooling lubricant application may
reduce its influence on measurements. As we aim to integrate the sensor into the
tool holder, the signal transmitting surfaces are of low count anyway.

The requirement to integrate the sensor element into the tool holder, causes
other requirements to arise: The sensor must submit its data without being tethered
to the surrounding environment, as the revolver is multi-turn and would destroy a
data wire. This implicates that the acquired raw-data must be preprocessed and
prepared for a wireless transmission. A transmitter unit has to be integrated as well
as a power supply to provide electrical energy for the preprocessing and sub-
mission of data. To fully take advantage of an automated tool wear monitoring, the
sensing unit must be able to act autarkical for an adequate period of time. We
consider a service life of at least three months to be practical (Table 1).

The transmitted data must be received by a processing unit in order to analyze
the individual tool condition. Basically, one processing unit can handle one or
multiple lathe tools. We consider one processing unit per machine to form a
reasonable architecture of data processing. One unit per tool seems to be
impractical due to the high cost and because the continuous data analysis of every
tool is not necessary—a machine of two spindles can only have two tools under
operation at the same time. On the other hand, one unit per manufacturing hall
necessitates a high range of wireless communication for each sensor, resulting in a
high energy demand. Keeping transmitter and receiver close-by with a predefined
distance allows the reduction of transmitting power. Several machines can be
smoothly controlled via a central user interface that is installed additionally.
Alternatively, every single lathe could be equipped with an interface that visual-
izes the need for a tool change.

The presented experiments show a significant dependency between sensor
signal and workpiece material, as well as a high influence of cooling lubricant
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application on the measurement of AE, in addition to the expected influence of the
condition of the cutting tip. Therefore, a distinction between different materials
under operation and manufacturing states might be required, in order to use
tailored analysis algorithms. Nevertheless, the distinction could potentially be
made using the sensor signal only and a universal analysis algorithm. This would
simplify the integration of the monitoring system into existing machines in
comparison to acquiring this information from the lathe’s manufacturing data.
Overall, every manufacturing parameter that turns out to be of relevance should be
extracted from the acoustic emission signal only.

6 Conclusion and Outlook

While the potential of AE technology for tool condition monitoring is well-known,
we see the challenge in turning scientific results into a reliably working and
economic sensor system. Considering those questions regarding sensor positioning
and the effect of idle running of the lathe are satisfactorily answered, we came to
three main conclusions regarding further experimental endeavors. The first is the
need for additional analysis of the raw measurement data, i.e. the time signals,
with the state of the art methods presented in Sect. 3. Furthermore, the disturbing
effect on AE measurements of the application of cooling lubricant is to be either
reduced or neutralized so that tool wear detection is unaffected by it. This could
potentially be achieved either by an adequate signal post processing and/or the
new sensor positioning suggested in Sect. 5. Finally, data regarding experiments
considering the whole service life of a cutting tip are necessary. This should be
combined with the examination of bad cutting parameters’ influence towards the
AE signal. Finding regularities between AE signal and cutting parameters holds
potential for an extended use of the sensor for identifying bad cutting conditions.
Taking the presented conclusions into consideration, a first tool wear detection
solution for the presented purposes seems feasible in the near future.

Table 1 Derived Requirements

Requirement Description

1 Holder integration The sensor element must be integrated into the tool holder
2 Data submission The data submission of the sensor unit must be wireless
3 Data preprocessing Prior to the submission, the sensor data has to be prepared
4 Power supply There must be an integrated power supply that drives the unit for at

least three months
5 Processing

architecture
One processing unit per lathe executes the analysis algorithms and can

either forward or display the results
6 Tailored analysis Different materials require different analysis algorithms
7 Manufacturing data

acquisition
Manufacturing parameters (e.g. material, cooling lubricant) must be

acquired
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in Gear Systems



Joint Power-Speed Representation
of Vibration Features. Application
to Wind Turbine Planetary Gearbox

Jacek Urbanek, Marcin Strączkiewicz and Tomasz Barszcz

Abstract Wind turbine condition monitoring is essential task in the process of
maintaining machine operation at the optimal level. It is related to ensuring the
profitability of investment and the provision of security in the environment of the
turbine. However, operational conditions of turbine associated with non-stationary
nature of the stimulus which is the wind, impede the correct diagnosis of the
machine. In addition, a multitude of parameters adversely affects the clarity of
predictions and setting alarm thresholds. In the article, the authors evaluate the
impact of generator output power and rotational speed on selected vibration-based
feature value. The study was performed for wind turbine planetary gearbox during
fault development of the ring. It was possible due to historical data consisting
peak-to-peak (P2P) values together with corresponding values of rotational speed
and generator output power. For the purpose of the experiment the method that
bases on calculation of arithmetic mean of the data in the segments corresponding
to the chosen ranges of both rotational speed and generator output power is pre-
sented. Results are given in the form of three-dimensional charts, which allow
assessing the impact of parameters on the studied feature. The paper shows that for
machinery operating under varying regime proposed representation might serve as
a valuable method for fault detection. Additionally, authors highlight the impor-
tance of analysis of vibration-based features as a function of two variables
(rotational speed and power/load).
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1 Introduction

Over the last few years wind power is becoming an important sector of the energy
industry. Therefore more attention is paid to the aspect of operation maintenance
of the wind power generating machinery [1–4]. It does not only enable to limit the
possible breakdown cost and time of repair, but in addition it provides higher
productivity of the machinery [5].

Because of the fact that wind turbines operate under non-stationary wind
behavior [6], thus the analysis of vibration-based diagnostic features might often
lead to inconsistent conclusions. It has been shown that vibration-based features
strongly depends on the load of monitored machinery. Therefore, it has been
proposed in [7, 8] to use feature-load representation to present distribution of
features against the operating conditions. As has been presented it provides better
effectiveness in classification of data than simple statistical feature processing.

The issue of fault detection of machinery operating in non-stationary conditions
has been widely investigated in the recent time. Many diagnostic techniques has
been employed for this issue, including wavelets, the order analysis, adaptive filters
and exploiting cyclo stationarity of vibrations [9–11], etc. The offline processing for
multidimensional features has been investigated in [12, 13] and may include data
processing using Principal Component Analysis, data projection technique, outliers
analysis, etc. However, due to the economical and practical reasons building of
advanced feature extracting module for online processing is not justified and is
expected to be simplified. Such difficulty occurs not only for wind turbines, but also
in many fields where rotating machinery is employed, e.g. mining, marine or avi-
ation industries. It is important to remember that condition monitoring on this field
has not yet found complete solutions and still needs improvement.

Therefore, the main aim of this paper is to present the analysis of the influence
of operation parameters on the vibration-based features on the example of peak-to-
peak (P2P) as it is in authors’ opinion one of the most general analysis. Commonly
used industrial wind turbine is chosen as a test object for presented investigation.
For the purpose of the experiment, evolution of P2P estimator represented as a two
dimensional function of rotational speed and generator output power is investi-
gated during time period in which the wear of planetary gearbox has developed.

The paper is organized as follows. After the introductory part the investigated
wind turbine design is briefly described along with placement of sensors used for
the research. Next, the methodology of the investigation is explained. The results of
the research are described in the further section and followed by the conclusions.

2 Investigated Wind Turbine

For the purpose of the investigation, commonly used turbine with nominal power of
1,500 kW was selected. The turbine has two nominal states of operation which
depend on the wind speed—except for the nominal operational mode that corresponds
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to 1,800 RPM of generator rotational speed it also is enabled to operate on, so called,
the ‘‘low’’ operational state that corresponds to 1,050 RPM of generator rotational
speed.

In Fig. 1 one may find a kinematic system of the analysed wind turbine. The
main rotor is driven by three blades and supported by the main bearing. It passes
the torque to the planetary gearbox. Second bearing supporting the rotor is
incorporated into the gearbox. The planetary gear has three planets, which are
driven by the planet carrier. The planets transmit the torque to the sun gear, in the
same time increasing the rotational speed. The sun shaft passes the torque from the
planetary gear to the two-stage parallel gear. The parallel gear contains three
shafts: the slow shaft clutched to the sun shaft, the intermediate shaft and the high
speed shaft, which drives the generator. The generator produces AC current of a
varying frequency. This current is converted first into DC and then into AC current
of frequency equal to the grid frequency. Electric transformations are performed
by the controller at the base of the tower. The drive-train multiplies the rotational
speed from about 25 RPM on the main rotor to about 1,800 RPM at the generator.

Typical requirement for wind turbine drive-train condition monitoring systems
is to measure vibrations with six measurement channels that each covers separate
area of drive-train [14]. Namely: main bearing, planetary gearbox, 1st stage of
parallel gearbox, 2nd stage of parallel gearbox, front of the generator and back of
the generator

Additional required measurement covers rotational speed in order to asses
acquired vibration data to proper operational state. In majority of condition
monitoring systems dedicated for wind turbines value of generated power is
measured as well as a supporting feature.

Fig. 1 Kinematic scheme of the analysed wind turbine with location of vibration sensors (red
dots)
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Presented study is performed for the planetary gear of wind turbine that suffered
extended wear of the ring. Data used in described investigation was obtained from
industrial condition monitoring system operating on commercial wind-farm.
Presented measurements were carried out on the described turbine for over ten
months (from 25th June 2009 to 16th April 2010), which resulted in 29 000 data
points for each parameter (P2P, rotational speed and generator output power).

3 Proposed Representation of Vibration-Based Features

The main objective of this paper is to present selected vibration-based feature;
namely, P2P as a two dimensional function of power and rotational speed. It is the
authors’ belief that such representation will provide better understanding of the
influence of those parameters on measured vibration signals. In commonly used
industrial condition monitoring systems dedicated for wind turbines vibration-
based features are segregated according to rotational speed. Figure 2 presents P2P
of vibration signals measured on planetary gearbox casing for around 10 months
(from 25th June 2009 to 16th April 2010). Red color represents data obtained
during operation in ‘‘high’’ operational state (*1,800RPM), while blue color
corresponds to ‘‘low’’ operational state (* 1,050RPM). Please note that horizontal
axis represent subsequent samples number not the date time. Such representation is
used in order to simplify the description of proposed representation method.
According, to a commercial company that provided the data for described
experiment, monitored turbine suffered extensive wear of the ring of planetary
gearbox. Presented data covers time period in which mentioned fault has
developed.

In Fig. 2, for both operational states, insignificant increase of observed feature
(P2P) can be noticed during the observation period. Unfortunately, such low
increase of vibration feature usually can not be interpreted as a manifestation of
development of the fault of any mechanical component, especially when dealing
with complex machinery operating under varying conditions. Although, presented
data might be considered as insufficient for proper recognition of investigated fault
its relation to both rotational speed and generator output power might carry some
additional information regarding changes of technical conditions of monitored
object.

It is important to remember that the vibration estimators depend on two
parameters, therefore those parameters should be considered together when ana-
lyzing vibration-based features. Such three-dimensional representation should
allow observers to evaluate the significance of operational parameters. Since
provided database consist, beside vibration-based features (P2P), corresponding
rotational speed values together with generator output power there is a possibility
to define two-dimensional function that represents the relation between those three
parameters. Figure 3 presents three dimensional representation of described data.
It can be noticed that not whole power-speed surface is covered by corresponding
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P2P values. It is caused by operational character of observed wind turbine. When
wind turbine operates with relatively low rotational speed it can not generate
significant power. Therefore, there are no vibration-based features in database that
correspond to low rotational speed and high power values at the same time. Pre-
sented situation is similar when dealing with high rotational speed values but low
power. However, range of generator output power is much wider when turbine
operates with high rotational speed than when it operates with low speed. It is due
to the fact that wind turbines often use generated power to feed processes related to
their own operation (e.g. control mechanisms).

As shown in Fig. 3 representation of vibration-based features on power-speed
plane results in three-dimensional ‘‘cloud of scattered points’’. Such representation
might be relatively difficult for visual examination not to mention automatic data
processing algorithms. In order to present scattered data as a three-dimensional
surface that could be clear to analyze the authors wish to propose the method that
bases on calculation of arithmetic mean of the data in the segments corresponding
to chosen ranges of both rotational speed and generator output power. Mean value
of preferred feature calculated for chosen power-speed segment is given by:

FeatDP
DRPMðP;RPMÞ ¼ 1

n

Xn

n¼1

FeatP0
RPM0 ðnÞ; ð1Þ

P0 � P� DP=2; Pþ DP=2f g; ð2Þ

RPM0 � RPM � DRPM=2; RPM þ DRPM=2f g: ð3Þ
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Fig. 2 Evolution of P2P values from 25th June 2009 to 16th April 2010. Red ‘‘high’’ operational
state, blue ‘‘low’’ operational state. Brackets at the top of the figure covers data sets used for
experiment
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where P stands for Power. DP and DRPM are range-widths of power and rotational
speed respectively FeatP0

RPM0 ðnÞ is the nth vibration-based feature sample corre-
sponding to the range of power P’ and the range of rotational speed RPM’.

Figure 4 presents P2P values represented as a three-dimensional surface after
application of formula given by Eq. (1). For following presentation first 3,000
samples of P2P feature, power and rotational speed, from database was used
(marked by roman I in Fig. 2). Selected parameter DP was equal to 200 kW while
DRPMwas equal to 100 RPM.

Figure 4 presents average P2P value in relation to both: rotational speed and
power. It can be seen that resulted surface does not cover whole range of power for
each value of rotational speed. It is caused by previously mentioned lack of
vibration-based feature data that corresponds to those parameters. Additionally,
strong dependency between rotational speed and P2P might be seen in the range

Fig. 3 P2P values represented as a two dimensional function of generator output power and
rotational speed. Left three-dimensional plot, right colormap

Fig. 4 P2P values
represented as a two-
dimensional function of
generator output power and
rotational speed
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from 1,000 to 1,400 RPM. Above that value of rotational speed its relation to P2P
value becomes less significant. For each value of rotational speed relation of
observed feature value to power might be described as almost linear. When power
values increase P2P values increase as well. Please mind that given example was
calculated for planetary gearbox in proper technical condition. The next chapter
presents the investigation of the influence of technical condition of studied object
on proposed power-speed characteristics.

4 Results of the Experiment

Figure 5 contains proposed power-speed characteristics calculated for data
described in Sect. 3. In order to investigate the influence of technical condition of
planetary gearbox on proposed representation vibration-based feature data was
divided into six consecutive sub-sections. Selected sub-sections are circumscribed
by brackets in Fig. 1 and marked by roman numbering. Each sub-section contains

I II

III IV

V VI

Fig. 5 P2P values represented as a two-dimensional function of generator output power and
rotational speed for subsequent data segments. Roman numbers represents data segments marked
in Fig. 2
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3,000 samples of selected feature values (P2P) with corresponding values of power
and rotational speed. As seen in Fig. 2 each sub-sections overlapped each other by
approximately 40 %. As well as for results presented in Fig. 4, DP was equal to
200 kW while DRPM was equal to 100 RPM. Please note that all plots in Fig. 4
have the same scale.

Even though evolution of P2P values presented in Fig. 2 does not indicate clear
the change of technical condition of observed planetary gearbox, power-speed
characteristics show recognizable changes. Significant increase of P2P values
might be seen around 1,400 RPM, especially for lower values of generator output
power (marked in Fig. 5 VI). Additionally, slight increase of all P2P values can be
noticed within observation period. It is the authors’ belief that such irrelevant
increase of feature values is caused by relatively inconsiderable influence of
developed fault on measured vibration signal. Presented results confirms general
idea of data representation proposed by Bartelmus and Zimroz in Ref. [7]. It is
worth mentioning that subsequent representations of presented characteristic show
that mentioned changes have evolutionary character; therefore, they might indicate
development of planetary gearbox fault.

5 Summary

The paper presents the influence of both: generator output power and rotational
speed on selected vibration-based feature for wind turbines. Results are presented
in the form of three-dimensional charts, which allow assessing the impact of
parameters on the feature. As observed, for examined case both parameters have
strong influence on measured vibration signals. Variation of rotational speed
affects P2P rapidly particularly in its lower range. On the other hand, relation
between power and P2P might be considered almost linear. Despite development
of planetary gearbox fault, increase of values of P2P is relatively unnoticeable;
therefore simple observation of time-trend might not be sufficient for proper
condition monitoring of machinery operating under variable conditions. However,
observation of proposed power-speed characteristics clearly indicates changes of
technical condition of monitored object. Even though it is impossible to identify
particular cause of changes in observed characteristic; therefore; it can not provide
identification, hopefully it might be used as a novel technique for detection of
mechanical fault occurrence.

Additional value of proposed feature representation is that it can be helpful in
proper assessment of operational states of monitored machinery. Although,
majority of industrial vibration-based condition monitoring systems assess oper-
ational states based on rotational speed only, presented results clearly shows that
they should be assessed according to two operational parameters, namely: rota-
tional speed and power/load. Vibration features assessment without considering
the influence of varying load might often lead to erroneous conclusions regarding
technical condition of machinery in non-stationary operations.
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In general, it is the authors belief that representation of selected diagnostic
feature as a function of two main operational parameters (rotational speed and
power/load) can give comprehensive information about dynamic character of
observed machinery. It can be a valuable source of knowledge not only about the
influence of operational parameters on selected diagnostic feature but also about
object resonances or the character of its operation.
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Parallel Autoregressive Modeling
as a Tool for Diagnosing Localized
Gear Tooth Faults

Paweł Rzeszuciński and James R. Ottewill

Abstract One of the standard approaches widely used in the field of localized gear
tooth fault diagnosis is the creation of residual signals i.e. signals obtained after
removing the deterministic frequency components from a Time Synchronously
Averaged vibration signals. Most of the time these components are removed based
on the knowledge of the characteristic gearbox frequencies. Sometimes however
such information is not available. AR modeling, a type of time series modeling, has
been found to be capable of faithfully estimating the deterministic content of
the signal allowing meaningful residual signals to be created. An improvement to
the classic AR modeling approach is proposed in this text. The method is applied
to experimental data taken from a gearbox in both healthy and faulty condition. The
improvement derived from the new method is quantified through a comparison with
results obtained by applying Time Synchronous Averaging and the classic AR
modeling method to the experimental data.

Keywords Condition monitoring � Autoregressive modeling � Residual signal �
Localized tooth faults

1 Introduction

Autoregressive modeling, where the current value of a signal can be estimated
based on the weighted sum of its past values, is the most common type of time
series modeling [1]. In the mathematical terms the word ‘‘autoregression’’ informs
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that values of a given variable appear in an equation as a function of itself. In such
an arrangement the future values can be estimated by regressing the current values
on historical values of itself (hence the term auto) [2]. Used alone or in con-
junction with other signal processing techniques, it has been successfully applied
in the field of gearbox condition monitoring for the purpose of detecting localized
gear tooth faults [3–6]. The method has been found to be capable of precisely
estimating signals that contain clear, distinct peaks in their frequency spectra.
Because gear vibrations mainly comprise harmonic sinusoids, with the most pre-
dominant components relating to frequencies originating from the meshing of the
gears and the rotation of the shafts, AR models are capable of faithfully recon-
structing the deterministic part of a healthy gear signal [3]. Applying AR modeling
to gear vibration signals allows any changes within the signal that originate from
non-deterministic, transient events to be observed. This is achieved by creating
residual vibration signals through the subtraction of the waveform obtained using
the AR modeling method from the original signal. The expected residual signal for
a healthy gear is comprised of normally distributed noise [7]. In the case of a
localized gear tooth fault being present in one of the teeth, the residual signal
contains only information generated by the impulsive nature of contact during
the meshing action between the two gears [8]. In this paper, an improvement to the
classic AR modeling method for diagnosing localized gear tooth faults, based on
the creation of residual signals using a combination of AR models of different
order, is proposed.

2 Theoretical Background

Any autoregressive dataset may be estimated by using a finite number of its
historical values. For a signal xðnÞ the AR process can be defined as per Eq. 1 [5]:

x̂ nð Þ ¼
Xp

k¼1

a kð Þxðn� kÞ ð1Þ

where x̂ nð Þ is the estimated n-th value of the dataset, a kð Þ is the k-th coefficient of
the AR model and p is the order of the AR model. It can be seen that the n-th sample
can be estimated as the sum of the weighted previous samples. The AR model
coefficients are most commonly derived by means of the second-order statistical
characteristics of the signal. This is usually embodied in the form of the autocor-
relation matrix. The AR process satisfies the Yule-Walker equations, hence the AR
model coefficients can be found efficiently by solving them. Those equations can be
represented in a matrix form as per Eq. 2 [5] where rxx kð Þ is the autocorrelation
sequence of signal xðnÞ. The equations can be solved using a number of different
approaches, the most common including Levinson-Durbin recursion or the Burg
method. A number of different tools for solving the Yule-Walker equations are
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implemented in Matlab software, and the mathematical details can be found in
e.g. [9, 10].

rxx½0� rxx½�1� . . . rxx½p� 1�
rxx½1� rxx½0� . . . rxx½�pþ 2�

..

. ..
. . .

. ..
.

rxx½p� 1� rxx½p� 2� . . . rxx½0�

2
6664

3
7775

a½1�
a½2�

..

.

a½p�

2
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3
7775 ¼ �

rxx½1�
rxx½2�
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rxx½p�

2
6664

3
7775 ð2Þ

3 Application to Gear Fault Diagnosis

Performing diagnosis with the use of the AR model begins with estimation of the
parameters of the model, which are derived from vibration signal generated by the
monitored gears operating under healthy conditions. Once established, the coef-
ficients of the model can be used as a filter to perform signal estimation based on
linear prediction as per Eq. 1. Such an estimated signal has the same phase as the
original signal hence by subtracting one from another a residual signal can be
obtained. Since the filter coefficients are derived based on a healthy signal, the
components of the current vibration that is considered to have originated from
normal machine operations will be faithfully represented, and so filtered out during
the creation of the residual signal. The resulting residual signal is expected to be
randomly distributed and represents the AR model prediction error [3].

On the other hand, as the localized gear tooth fault develops, short duration
excitations modulate the vibration signal resulting in shaft speed sidebands that
appear around the GMF and its harmonics. This, in turn, changes the amplitude
distribution of the signal [11, 12]. The spacing of the sidebands is equal to
the relevant shaft speed—the driving or the driven—depending on which shaft the
faulty gear is attached to [8]. In addition to the sidebands appearing as a result of
the amplitude modulation of the signal, the tooth fault impulses excite a broad
spectrum of frequencies adding to the amount of baseline noise in the signal. As a
fault becomes more severe a greater number nondeterministic frequency compo-
nents appear in the spectrum. The AR model, derived from a healthy signal, is not
capable of faithfully estimating such changes and, as a result, new features start to
appear in the residual signal.

4 Optimal AR Model Order

In AR modeling, the current value of the signal is estimated based on the weighted
sum of the past values of the signal. It is therefore important to establish the
optimal amount of past samples to be included in the estimation of the value of the
current sample (i.e. establish the order of the model). The order value has an
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influence on the shape of the estimated power spectrum. Using too many samples
increases the uncertainty of the estimation and may cause some spurious spectral
peaks to appear in the estimated signal, whereas too few samples are likely to cause
inaccurate peak detection, hence lead to poor sample value prediction [5, 13]. For
this reason some a priori knowledge is essential to estimate the optimal order of the
model. There are many algorithms that are capable of tackling similar optimization
problems, however for gear fault diagnosis [4] suggested using solutions derived by
Akaike: the Final Prediction Error (FPE) or Akaike Information Criterion (AIC).
Both methods find the optimal relation between the changes in the variance of the
signal and the amount of AR model estimation error.

The algorithms can be implemented as per Eqs. 3 and 4 respectively [4]:

FPE kð Þ ¼ N þ k

N � k
qk ð3Þ

AIC kð Þ ¼ Nln qkð Þ þ 2k ð4Þ

where N is the length of the analyzed signal, k is the order of the AR model and qk

is the AR model estimation error power. Applying any of the techniques on the
vibrations generated by a healthy gearbox leads to optimization of the AR model
order.

Once the optimal AR model length is established, the appropriate filter coef-
ficients can be obtained by solving the Yule-Walker equations as per Eq. 2. In this
text the solution to the equations, together with the AR model error power have
been established with the use of the aryule Matlab function. The resultant filter
coefficients are then used to estimate the samples of the currently analyzed signal.
Since, as mentioned before, the estimated signal is in phase with its original
version, therefore the step of subtracting the estimated and the original signal is a
straightforward operation [1]. Eventually the residual signal can be analyzed for
any signatures of a localized gear tooth fault.

5 Parallel Autoregressive Modeling

The use of the AR model for creation of residual signals can be further improved
with the proposed extension to the method—Parallel Autoregressive modeling
(PAR). In the proposed method two residual signals are derived in parallel based
on the same vibration signal. One residual signal is derived from a signal estimate
created with the use of the optimal order of the AR model, whereas the second
signal uses a slightly higher model order. The output of the PAR is a residual
signal that is created as a result of subtraction of the two initially estimated
residual signals. The reasoning behind this approach is that by estimating the
signal based on two different, yet very similar, models the process of creation of
the final residual signal will lead to even greater decrease of the amplitude of the
‘‘healthy’’ part of the signal, while retaining clear presence of the faulty signatures.
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This is due to the fact that two estimations created using a filter of slightly different
model orders can both faithfully estimate the deterministic part of the signal, while
still being unable to reliably represent the transient components appearing in the
signal as a result of the incipient gear tooth fault. Even though some differences in
the estimation of the signal will be present for both residual signals, they will be
much greater in the case of the impulsive part of the estimation. Essentially the
resultant residual signal will have decreased amplitude in the healthy region, while
the section with the transient event will remain relatively high. This is likely to
give an earlier indication of tooth fault (through greater separation between the
healthy and faulty parts of the signal) and lead to an improved process of auto-
mated fault detection with the use of specific Condition Indicators e.g. kurtosis.

6 Results

Data used to validate the results were generated on an experimental rig in the
Diagnostics Laboratory of the ABB Corporate Research Centre in Kraków,
Poland. A schematic of the system is shown in Fig. 1. The system is comprised of
a 1.5 kW induction motor operating at a speed of 1,400 RPM which was driving a
two-stage, parallel shaft, helical reduction gearbox. The system was loaded by a
6 kW DC motor with nominal speed of 1,500 RPM which, in turn, was connected
with a permanent magnet motor. The last part of the system was used purely for
the purpose of obtaining an encoder signal which was permanently mounted to its
shaft. The encoder signals were later used to derive the Time Synchronous
Averages of the vibration signals. After 30 tests for a nominally healthy gearbox

Fig. 1 Schematic of the experimental test rig. Repeated from [14]
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condition were recorded, the gearbox had a pit artificially seeded to one of the
teeth on the 2nd stage output gear. The vibration generated by this gear was subject
to the analysis in this text. Vibration signals were recorded for 26.88 s at the rate
of 4,444 samples per second with the use of SKF CMSS 2110 accelerometers.
A much more detailed description of the test rig and the process of seeding the
fault can be found in [14].

Figure 2 shows two residual signals created during the implementation of the
PAR model. The first signal is created from a 68th order model, which was
computed by both order selection criteria (Eqs. 3 and 4) as being the optimal for
the estimation of the Time Synchronously Averaged original vibration signal. The
second signal is estimated with an 88th order model. Both presented waveforms
contain a lot of similarities, especially in the healthy part of the signal. Magnified
views on the healthy and the faulty parts of the residual signals show that the
healthy part has been estimated virtually identically (Fig. 3) however there are
clear differences in the part containing the signatures of the localized gear tooth
fault (Fig. 4). Subtraction of the two residual signals (Fig. 5) leads to creation of a
signal where the healthy section has significantly lower amplitude (compared with
the initial residual signal) and, as a result, the presence of the impulse is much
clearer. Consequently the kurtosis values derived on the final residual signal are

Fig. 2 Two residual signals
created based on the PAR
model

Fig. 3 Near perfect
alignment of the healthy
sections of the residual
signals
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greater when compared with the TSA and the classic AR based residual signal
(Fig. 6). It may be observed that the impulsive content within the residual signal
obtained with the use of the proposed method contained much clearer fault indi-
cation, which led to stronger reaction form the kurtosis indicator.

Fig. 4 Differences of the
sections of the residual
signals that contain signatures
of tooth fault

Fig. 5 Residual signal
created as an output from
the PAR model

Fig. 6 Kurtosis values for
the TSA, AR based residual
signal and PAR based
residual signal
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7 Conclusions

A new concept of deriving residual signals based on the classic AR modeling has
been proposed. The new technique—Parallel Autoregressive modeling—has been
tested as a tool for diagnosing the onset of localized gear tooth faults. The obtained
results suggest that applying the PAR modeling may increase the chances of early
fault detection compared to the classic AR model and the TSA signal alone. The
difference in kurtosis values between the AR and the PAR based residual signals
reached nearly 200 % immediately after the fault was seeded. The obtained
kurtosis values may not be immediately seen as very advantageous in a laboratory
environment however it might indicate increased capabilities of detecting local-
ized gear tooth faults in their early stages through higher sensitivity to the presence
of impulses. This might have great importance in noisy conditions where, through
the removal of the dominant peaks estimated by the model, all transient, broad-
band components within the signal may become much easier to detect. It is also
worth noting that in the dataset presented in this text the fault was artificially
seeded in the gear and the history of gear fault progress could not be observed. It is
believed that in field applications the use of the PAR model estimation might give
some advantage and lead to earlier detection of incipient faults.
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Modulation Sidebands of Planetary
Gear Set

M. Karray, F. Chaari, A. Fernandez Del Rincon,
F. Viadero and M. Haddar

Abstract In this paper a torsional model of planetary gear set test bench is
developed. This bench is composed by two identical planetary gears connected by
a common shaft. A tri axial accelerometer is mounted in both rings. The mecha-
nism leading to modulation sidebands is modelled. Time histories are character-
ized by a periodic fluctuation. Spectra showed sidebands around the mesh
frequency and its harmonics. Simulation is achieved to demonstrate amplitude
modulation and rich sidebands that agree well with the experimental results.

Keywords Planetary gears � Torsional model � Amplitude modulation �
Sidebands
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1 Introduction

Planetary gear sets are widely used in many applications due to advantages over
parallel shaft arrangement such as high power density and large reduction in a
small volume [1]. Despite their distinguishing advantages, noise and vibration
remain key concerns in these applications. Mesh and bearing dynamic forces are
the primary sources of such behavior. Two approaches were adopted model based
and experimental analysis. Major analytical studies proposed lumped-parameters
models to predict free and forced vibration characteristics of planetary gear sets
where the gears are rigid bodies interconnected by springs representing teeth in
mesh and support bearings. The modeling of the dynamic behavior of planetary
gear have been initiated by Cunliffe et al. [2] who developed a model with a 13� of
freedom to analyze the frequencies and mode shapes with single fixed carrier.
Kahraman [3] established an analytical model including variable mesh stiffness.
He extended this model to a 3-dimensional model for the case of helical gears and
determined the influence of mesh phasing between planets on the dynamic
response [4]. Using a 3D model Kahraman and Blankenship [5] determined the
distribution of loads on the planets. Kahraman [6] reduced the model to a purely
torsional model to find the natural frequencies and the corresponding vibration
modes. Parker [7] rigorously proved the effectiveness of the choice of mesh
phasing between planets to reduce vibration due to the process of meshing.

There are few experimental works on planetary gear vibrations to understand
the complex dynamics of planetary gears. Hidaka et al. [8–14] published a series of
reports, they studied some important issues such as load distribution, effect of
different meshing-phase among sun/ring-planet meshes, etc. [15] investigated with
experimental and theoretical approaches the influence of several system level
factors in gear stress. Few experimental researches were dedicated to two stage
planetary gear and this can be explained by the complexity of this transmission.

The study presented in this paper is expected to provide the understanding of
the dynamic behavior of two stages planetary gear and the origin of amplitude
modulation in vibration signals.

2 Dynamic Model of Planetary Gear Set

The planetary gear dynamic model presented in this paper is inspired from a
planetary gear bench set developed at the University of Cantabria of Spain
(Fig. 1).

This model is based on the one developed by [16]. Only rotational motions of
the gear bodies are considered and translational degrees of freedom in that model
are eliminated.
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The gear bodies are assumed rigid with moment of inertia Ic, Ir, Is, Ip of
respectively the carrier, the ring, the sun and the planets. The planetary gear set
have 3 planets.

The sun-planet and the ring-planet tooth meshes are modeled as linear spring
ksn, krn, n = 1…N. In our case we consider that all sun-planet mean mesh stiffness
are equal ksn = ksp and all ring-planet mesh stiffness are equal krn = krp. The
planets are assumed identical and equally spaced.

Fig. 1 Planetary gear set rig

Fig. 2 Planetary gear model
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The system’s equation of motion is given by: M€qþ K tð Þq ¼ F:
With q is the vector of degrees of freedom, M is the inertia mass, K(t) is the

stiffness matrix and F is the external applied forces.

3 Modeling of Amplitude Modulation Phenomenon

In this model an accelerometer is mounted on the outer surface of the ring (Fig. 2).
The measured acceleration for the accelerometer indicates a periodic fluctuation

variation in vibration amplitudes as planets pass through this transducer location.
This fact causes the apparition of an amplitude modulation of vibration in time
histories which results in amplitude modulation with sidebands around mesh
frequencies and harmonics.

For a complete revolution of the carrier, the accelerometer experiences the
disturbances from all 3 planets in sequence. The influence of every planet on
the transducer is assumed for duration of Tc/3 with Tc is the rotational period of the
carrier. According to this assumption, when the planet i approaches to the
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transducer location its influence in terms of vibration amplitude will increase for
the first Tc/6 to reach to its maximum level when the planet i is at the transducer
location, then it diminish to zero at the end of the next Tc/6 time period. This will
be followed by planet i ? 1 that will dominate the response of the transducer for
the next Tc/3, and so on.

This phenomenon can be modeled by a three Hanning function e1(t), e2(t) and e3(t)
as presented in Fig. 3. These functions will be introduced as additional displacement
on the different lines of action on the ring-planets meshes as shown in Fig. 2.

4 Numerical Simulation

The characteristics of the gear system are giving in Table 1. We choose 1,500 rpm
as rotational speed of the motor, so that the speed of the carrier is about 300 rpm
and the mesh frequency is 325 Hz.

Figure 4 shows the time varying acceleration on the ring without taking into
account the influence of transducer location. The corresponding spectrum is pre-
sented in Fig. 5. The mesh frequency and its harmonics are well observed.

Now the influence of the position of the accelerometer is introduced in the
model which will cause an additional force F1(t) to be added to the initial static
force F. Figure 6 shows the time varying acceleration on the same ring, it is well
observed a periodic fluctuation of the signal. The corresponding spectrum shown
in Fig. 7 reveal significant sidebands around the gear mesh harmonic frequency.

Table 1 Planetary gear characteristics

Carrier Ring Sun Planet

Number of teeth – 65 16 24
Moment of inertia (kg m2) 0.0021 0.697 0.0003 0.002
Base diameter (mm) 57.55 249.38 61.38 92.08
Mesh stiffness (N/m) ksp = 2.751108 krp = 4.1272108
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The sidebands are found to be at nfm ± 3mfc where fc is the carrier rotational
frequency and (n, m) are integer.

In order to validate the results an experimental test is made on the planetary
gear test bench with a carrier speed of 300 rpm.

Figure 8 shows the time evolution of the acceleration measured on the ring. An
apparent amplitude modulation is observed. As a result the spectra of this time
history presented in Fig. 9 exhibit significant number of sidebands around the gear
mesh harmonics.

The results obtained with numerical simulation are confirmed experimentally.
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5 Conclusion

In this work modulation sideband of planetary gear set is investigated analytically
and experimentally. A torsional model is developed. Then modulation sidebands
are taken into account by a suitable modelling. An experimental investigation
shows the validity of numerical results. The Time varying acceleration of the ring
is characterized by an amplitude modulation that results in significant number of
sidebands around the gear meshes harmonics. This result reveals one of the sources
of amplitude modulation. Practically, position of vibration transducer is very
important when diagnosing a planetary gear transmission.
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A Novel Method of Gearbox Health
Vibration Monitoring Using Empirical
Mode Decomposition

Jacek Dybała and Adam Gałęzia

Abstract Nowadays, many industrial types of machinery rely on different types
of gears to transmit rotational torque. Gearbox faults are one of the major reasons
for breakdown of industrial machinery. Therefore, gearbox diagnosing is one of
the most important topics in machine condition monitoring. A number of signal
processing techniques are described for the vibrodiagnostics of gearboxes, but
there are also different limitations for vibration based gear diagnostic methods. For
some specific requirements (e.g. time-triggered signal acquisition), not all of
described techniques can be always applied in industrial reality. This paper
introduces a novel, easy to use method of gearbox health vibromonitoring based on
Empirical Mode Decomposition (EMD) and a time-domain analysis of vibration
signal parts. Six sets of data collected from gearboxes are used to validate the
proposed method. The experimental results demonstrate that the gear tooth defect
can be detected and evaluated at an early stage of development when both
Empirical Mode Decomposition and statistical analysis technique are used.
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1 Introduction

Gearboxes are widely used in industrial machinery. Gearbox diagnostics is
important for guaranteeing machine safety and production efficiency, its damage
can cause the breakdown of a machine and lead to serious consequences. Con-
dition monitoring of the gearbox allows tracking the development of its technical
degradation. Monitoring of gearbox degradation helps to prevent unpredictable
downtimes and serious failures.

Gearbox is a complex vibration system whose components interact generating
complex vibration signal. The analysis of machine vibration signals is one of the
most important means used for condition monitoring of gearboxes. The vibration
signal of a gearbox carries information about the fault in the gears and fault
detection is possible through analyzing the vibration signal using different signal
processing techniques. Many researchers have proposed various methods for
vibrodiagnosing gearboxes. For fault diagnosis of gearboxes, researchers have
proposed statistical analysis [1], time domain averaging [2], time–frequency
analysis [3], cyclo-stationary analysis [4] and some special analyses based on
intermodulation phenomena [5], the local meshing plane concept [6] and the
pattern recognition approach [7]. These papers have considerably enriched the
knowledge of gearbox condition monitoring, but gearbox diagnostics, in general, is
still a challenging problem.

One of the most important issues in condition monitoring of gearboxes is to
detect a fault as early as possible, and alert operator before it develops into a
catastrophic damage. Generally one can distinguish two main degradation pro-
cesses of gears: degradation of contact surface and tooth breaks [8]. Degradation
of contact surface, such as pitting, evolves slowly in time causing that contact
surfaces degrade in an increasing number of teeth deteriorating meshing. It is
difficult to detect this at an early stage of degradation. Tooth breaks can be driven
by a sudden increase of load or can be caused by fatigue. If gears are constantly
working under loads which are slightly above designed values, fatigue-driven
break can occur. It is crucial to detect a break at an early stage of its development
as failure proceeds very rapidly.

Extraction of diagnostically useful features from vibration signal often requires
signal enhancement techniques such as: signal filtering (classical, adaptive and
optimal filters), modeling (cyclo-stationary, stochastic) or decomposition
(wavelets) [9–15]. Recently, a novel decomposition method called Empirical
Mode Decomposition (EMD) has been proposed [16]. Recent publications on
EMD [17–21] show its effective application in many diagnostic tasks.

The following paper investigates the EMD-based approach for gearbox diag-
nostics. By using EMD a raw vibration signal is decomposed into the first Intrinsic
Mode Function (IMF) and the final residue after the extraction of the first
empirical mode. Then, a novel index called Health Index (HI) is proposed to
describe the condition of a gearbox. Health Index is based on kurtosis of the first
empirical mode and kurtosis of the final residue. To validate the proposed method,
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six sets of data collected from gearboxes are used. Results of the analysis show
that the proposed method is effective in condition monitoring of gearboxes,
especially in the detection of gear tooth faults.

2 The Proposed Method

The values of many statistical parameters (e.g. kurtosis) of vibration signal are
known to increase when approaching the end of a gearbox life. However, operating
conditions (e.g. load) as well as construction solutions (e.g. stiffness of gear shafts)
cause that in certain operational cases the values of statistical parameters have
different levels and may vary significantly. This creates the need for an universal
indicator, which would be used for gearbox condition monitoring in different
construction and maintenance situations. Such an indicator would indicate that a
gear tooth is damaged and gearbox destruction can occur in short time.

In this section, we propose a Health Index to monitor gearbox condition.
Health Index proposed herein is based on Empirical Mode Decomposition and a
time-domain analysis of vibration signal parts. Empirical Mode Decomposition
(EMD) decomposes a signal into Intrinsic Mode Functions (IMFs) which represent
different oscillation modes embedded in the signal. Based on the EMD
algorithm, any signal x(t) can be reconstructed by a linear superposition of
empirical modes:

x tð Þ ¼
Xn

i¼1

ciðtÞ þ rn tð Þ ð1Þ

where ci(t) is i-th empirical mode and rn(t) is the final residue after the extraction
of n empirical modes. The successive modes include signal components from
different frequency bands ranging from high to low frequency. Therefore, EMD
corresponds to a non-stationary and nonlinear filtering [22].

Each empirical mode ci(t), called Intrinsic Mode Function (IMF), fulfills the
following two conditions [16]: (1) in the whole empirical mode, the number of
mode local extremes and the number of mode zero-crossings are equal or differ at
most by one and (2) at any point, the local average of upper and lower envelope is
zero. The algorithm for the extraction of IMFs from original signal x(t) is called
sifting process and it consists of the following steps [23]:

Step 1: Define the residue as r0(t) = x(t).
Step 2: Identify all the local extremes (maxima and minima) of x(t).
Step 3: Connect all the local maxima (respectively minima) with a line known as

the empirically determined upper envelope Emax(t) [respectively the lower
envelope Emin(t)].

Step 4: Construct the mean of empirically determined upper and lower envelope
m(t) = 0.5�(Emin(t) ? Emax(t)).
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Step 5: Define the detail (proto-IMF) as d(t) = x(t)-m(t) and replace x(t) by d(t).
Step 6: Repeat steps 2 7 5 until d(t) meets the IMF conditions and the stoppage

criterion of the sifting process is fulfilled, then derive i-th IMF from
d(t) and replace x(t) by ri(t) = ri–1(t)-d(t).

Step 7: If the stoppage criterion of the signal’s decomposition is fulfilled then
finish the decomposition process; otherwise, go to step 2.

The second IMF condition is too rigid to use, so it is necessary to change it to
implement the EMD. The local average of upper and lower envelope must be close
to zero according to some criterion. The evaluation of how small the amplitude of
the local average is may be done in comparison with the amplitude of the corre-
sponding mode. In [24] authors introduce a new criterion based on the local mode
amplitude a(t) = 0.5�(Emax(t)-Emin(t)) and the evaluation function r(t) = |m(t)/
a(t)|. In this paper, d(t) meets the second IMF condition, when max(r(t)) \ h (the
coefficient h was equal to 0.5).

A critical part of the EMD procedure is the stoppage criteria of the sifting
process and decomposition process. The stoppage criterion of the sifting process
determines the point when sifting is complete and a new IMF has been found. The
stoppage criterion of the decomposition process determines how many compo-
nents will be extracted from the signal.

A detailed description of Empirical Mode Decomposition together with the
sifting and decomposition stoppage criteria is provided in [23].

In the proposed approach, a raw vibration signal x(t) is decomposed into the
first empirical mode c1(t) and the final residue r1(t) using EMD:

x tð Þ ¼ c1 tð Þ þ r1 tð Þ ð2Þ

The value of Health Index (HI) is calculated for a gearbox vibration signal in
the following way:

HI ¼ Kc1 � Kr1

Kx
ð3Þ

where Kx is the kurtosis value of the raw vibration signal x(t), Kc1 is the kurtosis
value of the first empirical mode c1(t) and Kr1 is the kurtosis value of the final
residue r1(t). In case an early fault occurs, HI should be higher than the threshold
which equals 0. The fact that HI is higher than 0 indicates that Kc1 [ Kr1.

3 Case Study with Real Vibration Data

In this paper, six data sets of vibration signals collected from a diagnostics test
stand are used to validate the proposed HI. Vibration signals from experiments of a
fatigue break of the gear tooth were recorded on back-to-back tester (Fig. 1). This
test stand allows for performing accelerated durability tests of toothed wheels.
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The test stand consists of two gearboxes driven by an electric motor. The shaft
between the pinions is divided, which enables to tilt one of its parts versus the
other and thus to introduce relevant meshing forces. To enable the measurement of
the torsional moment introduced in shaft, tensometers were placed on it. Helical
gears were mounted in the closing gearbox which demonstrated bigger durability
than the spur gears mounted in the examined gearbox. Due to this, during all
experiments, always the examined toothed gear was damaged. The toothed wheels
were made of 20H2N4A steel, carbon-coated and hardened to 60 HRC. Each test
of accelerated fatigue break of the gear tooth was performed until complete tooth
break. During the research 3 experiments were performed with low stiffness shafts
and 3 with high stiffness shafts. Each experiment was of a different duration but
our analysis was limited to the last 600 s before the complete break of the gear
tooth.

The test stand was characterized by the following parameters: gearbox load
1,200 7 1,500 Nm; motor speed 1,450 7 1,500 rpm; gear ratio of both gear-
boxes 1.296; module of toothed wheels 4 mm; number of pinion teeth 27; number
of wheel teeth 35; distance of wheel axis 125 mm.

A triple-axle Bruel and Kjaer 4504A accelerometer was installed in the upper
part of the examined toothed gear’s body, over the place where the bearing of
pinions shaft is mounted. Vibration signals were recorded continuously with
sampling frequency 20,000 Hz. In the examined gearbox an induction sensor was
mounted which caused test stand shutdown upon tooth breaking. The momentary
speed of pinion shaft was also registered. Vibration signal measured in vertical
direction has been chosen for further analysis, as more informative, because this
direction was more parallel to the line of teeth contact.

It is worth pointing out that the crack at the base of the tooth was not initiated
artificially (e.g. by cutting it) and was only related with fatigue. In order not to
disturb the process of fatigue-related breaking of a tooth, the test was carried out
continuously from the start till the complete break of a gear tooth.

765431 2

8

Fig. 1 Diagram of a test stand: 1 engine, 2 clutch, 3 closing gearbox, 4 coupling shaft,
5 stretching clutch, 6 examined wheels, 7 examined gearbox, 8 shaft
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The values of kurtosis of raw vibration signals from 6 experiments are pre-
sented in Fig. 2. Presented values of parameter were calculated from the last 100
succeeding signal segments, each lasting for 6 s. For each case, the break of the
gear tooth occurred on the 100th signal segment. High variability of kurtoses of
machine vibration signals makes it difficult to infer about current condition of
gears (Fig. 2).

To investigate the usability of the proposed indicator, HI values were calculated
from the above mentioned 100 succeeding signal segments before the tooth break.
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experiments 1 and 2
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Figures 3, 4, 5 present kurtosis values of raw signal and corresponding HI values
for each experiment.

The research results show that the proposed Health Index, with fault detection
condition defined as the first occurrence of HI [ 0, demonstrates good perfor-
mance in the detection of a fatigue break of the gear tooth. In each presented case,
despite different operation conditions (e.g. load) as well as construction solutions
(e.g. stiffness of gear shafts), HI exceed threshold, which allows for detecting the
development of a fatigue break of the gear tooth.
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Fig. 4 Kurtosis values of raw vibration signals (black) and corresponding HI (red) for
experiments 3 and 4
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Fig. 5 Kurtosis values of raw vibration signals (black) and corresponding HI (red) for
experiments 5 and 6

A Novel Method of Gearbox Health Vibration Monitoring 231



4 Conclusion

The following paper proposes a novel method of gearbox health vibration
monitoring based on Empirical Mode Decomposition and statistical analysis
technique. In order to realize health warning, Health Index based on kurtosis of the
first empirical mode and kurtosis of the final residue was developed.

Six sets of lifetime vibration data collected from gearboxes were used to
validate this diagnostic approach. The research results show the applicability and
the effectiveness of the proposed method for gearbox condition monitoring and
automatic detection of gear fault.

Application of Health Index to vibration signals, recorded during experiments
with different operation conditions and construction solutions, proves universality
of the proposed indicator. Although in each presented case, overall course of
values of HI was different, the threshold was crossed before a complete break of
the gear tooth giving the operator enough time to stop the machine and avoid a
catastrophic damage.

The analysis results illustrate that the proposed method performs successfully in
detecting gear failure and has a big potential in engineering applications.
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Artificial Immune Systems for Data
Classification in Planetary Gearboxes
Condition Monitoring
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and Patryk Filipiak

Abstract In the paper a problem of diagnostic data classification is discussed. The
classic condition monitoring approach requires two examples of machines: one in
a good and one in a bad condition. From the industrial perspective such a
requirement is often very difficult to fulfill, especially in the case of machines with
an unique design. To overcome it, we proposed to use the Artificial Immune
System (AIS) based approach to classify multidimensional diagnostic data. AIS
allows to recognize a change of the machine condition based on a training phase
using the dataset related to a good condition. To validate the proposed procedure
and assess efficiency of the condition recognition, an extra data set from another
machine (of the same type) in a bad condition was used. In the paper several key
issues related to the selection of parameters have been discussed.
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P. Lipiński � P. Filipiak
Institute of Computer Science, University of Wroclaw, Wroclaw, Poland
e-mail: lipinski@ii.uni.wroc.pl

R. Zimroz
Diagnostics and Vibro-Acoustics Science Laboratory, Wroclaw University of Technology,
Wroclaw, Poland
e-mail: radoslaw.zimroz@pwr.wroc.p

G. Dalpiaz et al. (eds.), Advances in Condition Monitoring of Machinery
in Non-Stationary Operations, Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-39348-8_20, � Springer-Verlag Berlin Heidelberg 2014

235



1 Introduction

In this paper, we propose an efficient method of planetary gearbox vibration based
data classification based on biologically-inspired computing i.e. artificial immune
systems. Planetary gearbox is a crucial element of energy processing mechanical
systems. Requirements related to high-transmitted power, high transmission ratio
and small dimensions/weight cause that planetary gearboxes are complex and used
in advanced systems (helicopters, wind turbines, mining machines, etc.) so there is
a need to assure their reliability during operation. Feature classification problem in
condition monitoring of planetary gearboxes working in non-stationary conditions
was the subject of many research and publications [1, 2, 3, 4, 5], in which two class
data were taking into account. In practice sometimes we have no possibility to gain
data according to bad condition of machines, we have only good condition indi-
cators, so classification process is difficult or impossible to provide [6, 7]. In such
case we can use biologically-based algorithms i.e. artificial immune systems
[8–14]. The artificial immune system uses the negative selection algorithm (NSA),
resembling the positive and negative selection process of maturation of some cells
in the nature, which aims at detection of abnormal data samples by a number of
trained pattern detectors, where these pattern detectors are usually built on the
basis of normal data samples without using any abnormal data samples. In contrary
to many popular classification techniques, such as decision trees or neural net-
works, the artificial immune system approach does not require negative data
samples (i.e. feature vectors describing the planetary gearboxes in bad conditions)
in the training data set, because the negative selection algorithm creates the pattern
detectors discovering relations and similarities among positive data samples
without comparing to negative data samples. Such an approach has proved its
efficiency in many practical applications, ranging from simple classification
methods to complex real-time fault detection systems.

2 Data Description. Problem Definition

In this section, we will discuss the problem and available data obtained during
experimental work. Due to some redundancy, obtained data were subjected to
further processing in order to eliminate correlation and minimize dimension of
data used for classification. As it was said the purpose of this paper is to provide an
efficient procedure for condition monitoring of complex machine i.e. multistage
planetary gearbox used in one of the biggest machine working in the industry,
namely bucket wheel excavator, see Fig. 1. The problem of diagnosis this kind of
heavy machinery systems have been referred previously by Bartelmus and Zimroz
[4]. The novel solution proposed here is that in order to monitor the condition we
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don’t need bad condition data set that is usually used in order to perform the data
classification (to establish threshold value) and finally the condition recognition. In
this paper we used spectral based data (obtained from spectral analysis of vibra-
tions acquired from planetary gearbox) in order to estimate wear of geared wheels.
Please note that is it not related to localized damage, the most exploited subject for
gearboxes. In next sections we will provide short explanation how input data have
been formed.

2.1 Feature Extraction

In the proposed approach, the condition of the planetary gearbox used in the
bucket wheel excavator id described by 15 dimensional feature vectors, extracted
earlier from the original vibration signal via spectral analysis (SA) (Figs. 2, 3). So,
as an input data we have used matrix of diagnostic data MDD with 15 columns
related to 15 spectral components (where pp1 is amplitude of the planetary mesh
frequency PMF, pp2 is amplitude of second harmonic of the PMF, …pp15 is
amplitude of 15th harmonic of the PMF). A life time hG = 10,000 h has been
estimated for this machine, we will consider it in the paper as machine in good
condition. Final dimension of the diagnostic features matrix was 951 9 15. For
two data sets prepared based on these data we trained and tested our immune
system. We were lucky to acquire data also from second machine with lifetime
hB = 20,000 h (designated to major overhaul and called as machine in bad con-
dition). Dimension of the diagnostic features matrix for bad condition case was
hB = 1,232 9 15. These data were used for validation only, they were not con-
sidered during training of the system.

Fig. 1 Example of
investigated machine
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2.2 Data Preprocessing Using Principal Component Analysis

Principal Component Analysis (PCA) is a frequently used analytic method for pre-
processing or visualization of high dimensional data, features extraction, dimen-
sionality reduction, lossy data compression, etc. [15]. There exist a number of
formal definitions of PCA, each of which leads to the same algorithm described
below [16]. A commonly used definition states that PCA is the orthogonal pro-
jection of the data onto a lower dimensional linear space, known as the principal
subspace, such that the variance of the projected data is maximized. It is worth
noticing that such maximization is equivalent to minimization of projection error.
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Let {xn} be a set of observations where xn [ Rd (d [ 1) for each n = 1,…, N.
Let S be a covariance matrix of {xn}, calculated as follows

S ¼ 1
N

XN

n¼1

xn � �xð Þ xn � �xð ÞT ;

where

�x ¼ 1
N

XN

n¼1

xn

is a mean value of samples.
It is proved (e.g. in Bishop [16] that eigenvectors {v1, v2, …, vn} of S (with their

corresponding eigenvalues k1, k2, …, kn such that k1 C k2 C … C kn) form a
basis of Euclidean space Rd, arranged in such a manner that first m \ d eigen-
vectors (i.e. v1, v2, …, vm) constitute m principal components of given samples. It
means that samples {xn}, when mapped with transformation matrix [v1, v2, …, vn],
can be reduced to the first m coefficients assuring the maximal variance of pro-
jected data. In this paper PCA was used for the purpose of visualization of clas-
sification results. Due to high redundancy in investigated data [17, 18]
classification results could be clearly visualized in 2-dimensional space of first two
principal components. It should be noted that further research provided by Bart-
kowiak and Zimroz [19] proved that dependency between these data in fact
slightly nonlinear and require more than just 2 PC but it is neglected here.

3 One Class Classification: A Short Review

A typical classification procedure tries to split a given set of samples into groups of
elements that are similar in some sense (e.g. ones sharing the same features or
located in the same subspace). In such cases, a classifier is usually trained with a
portion of known data. After a successful training process, it is able to classify
previously unknown samples by recognizing similarities to data analyzed before.
One-class classification, introduced in [20], is a very specific classification prob-
lem because of both its simplification and complexification compared to the
procedure described above. The aim is to distinguish the elements, given a set of
samples, that belong to one class from the remaining ones. However, only samples
from this one class can be used in a training period and no prior knowledge about
the elements from outside the class is available. Such problem occurs frequently in
real life situations. For instance, in anomaly detection like frauds, medical con-
ditions or device malfunctions [21]. A commonly used approach in such cases is
an application of Artificial Immune System that is proposed in this paper.
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4 Artificial Immune Systems. A Theoretical Background

Artificial Immune Systems (AIS) are relatively new branch of Natural Computing.
Their key feature is an algorithm based on the behavior of living organisms
immune system. The Brunet [22] publication is considered one of the first in this
area. The design process of AIS includes the three following steps:

• Selecting a representation of system elements (i.e. mainly antigens and
antibodies),

• Defining a set of mechanisms for evaluating an influence of each component of
immune system and a system itself on the environment (usually by choosing an
appropriate distance metric),

• Adaptation procedure.

Elements of a system can be represented by many data structures that address
the requirements of a given problem. Choosing an appropriate data representation
is the key factor of AIS because the distinction between self and non-self mole-
cules and/or cells is strictly based on it. Most frequently used representation is a
sequence of attributes stored in a vector of real values, integers, binary data or
predefined symbols.

Let Ab = \ Ab1, Ab2, …, AbL [ (where L [ 0) represent an antibody and
Ag = \Ag1, Ag2, …, AgL [ represent an antigen. Hence, their mutual corre-
spondence can be evaluated with some similarity or complementarity measure that
allows for distinction between self and non-self elements.

In the case of real-valued vector based representation, commonly used metrics
are [23]:

1. Euclidean:

D Ab;Agð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XL

i¼1

Abi � Agið Þ2
vuut

2. Minkowski:

D Ab;Agð Þ ¼
XL

i¼1

Abi � Agij jL
" #1

L

3. Manhattan:

D Ab;Agð Þ ¼
XL

i¼1

Abi � Agij j
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4. Maximum:

D Ab;Agð Þ ¼ max
i¼1;...;L

Abi � Agij j

In the case of binary data representation, a Hamming distance can be used
instead:

D Ab; Agð Þ ¼
XL

i¼1

di; where : di ¼
1 for Abi 6¼ Agi

0 otherwise

�

Since Hamming distance measures a complementarity between two binary
vectors, it can be formulated equivalently as a subtraction L-D(Ab, Ag).

Let e[ 0 be the similarity threshold. If D(Ab, Ag) \ e then molecule Ab is
recognized as self. Otherwise, Ab is considered non-self and, as a consequence, an
immune response is initiated.

Basic mechanisms modeled in AIS are:

• Clonal selection,
• Negative selection.

Clonal selection mechanism imitates the behavior of B-cells during activation
and pathogen lysis. While intruder invasion is recognized immune cells are
stimulated to select the matching antigen and reproduce it. A reproduction process
is based on mitosis which is the reason why this sort of immune response is
referred to as clonal selection or clonal expansion. Each case of reproduction,
including B-cells reproduction, results in possible errors (called mutations). One of
distinctive features of immune system is the fact that the probability of mutation is
inversely proportional to the similarity between antibody and antigen that attacks
the parent cell. Thus, if the similarity is relatively high then the probability of
mutation is low. Otherwise, in the case of low similarity, the mutation rate is very
high (so called hypermutation).

It is worth mentioning that a presence of mutation can be very useful since it
helps for more precise adaptation of detectors to invading antigens. As a result,
such well-adapted detectors are partially released into plasma and partially stored
in the immune memory then circulating in organism as a part of adaptive immune
system.

Computational model of this process, named Clonal Selection Algorithm Castro
and Zuben [24] and its applications, are widely used in AIS dedicated to data
analysis [25], optimization problems [26] and many others.

Negative selection mechanism is a key part of T-cells selection observed in a
thymus. If some cell or molecule known as self is recognized and matched by an
immature T cell, then this T-cell is automatically destroyed and, as a result,
removed from the spectrum of T-cells. Only remaining lymphocytes, i.e. those that
doesn’t match any self cells, are able to get outside thymus and become a part of
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immune system. Such sort of selection can take place in living organisms because
a thymus is surrounded by a selective barrier that allows only host organism
molecules for passing through. As a result, T-cell learns to tolerate self cells by not
responding to self molecules present in thymus.

An algorithmic model of immune system selection based on T-cells called
Negative Selection Algorithm (NSA) was introduced in [27]. Numerous further
improvements were proposed in data representation [28], detectors generation [29]
and matching rules [30].

AIS models exploiting negative selection mechanism are commonly used for
detection of novelties [13] or anomalies [31], e.g. frauds, medical conditions or
device malfunctions [21].

Figure 4 depicts a negative selection algorithm introduced in [23] that was used
for experiments in this paper. A learning process (presented on the left diagram)
consists of a loop of consecutive generating random candidates for antibodies.
Each new candidate is exposed to the set of training data. Note, that only self
samples are stored in the training set, so if a candidate matches any sample from
this set, it is automatically erased, otherwise it is accepted as a new detector and
included in the set of antibodies. The distinction between matching and not
matching candidates is determined by the distance between this candidate and a
sample (using a predefined metrics) as it was described before in this section.
Clearly, the described process guarantees that after the training period all samples
in the training set will be recognized by the obtained AIS as self. A classification
process (presented on the right diagram) works very similar. New samples (of
previously unknown data) are exposed to the set of antibodies. If any antibody

START 

Generate random candidate 

Candidate matches 

Accept candidate as new detector 

Enough detectors? 

STOP 

Y 

N 

N

Y 

START

Get new sample 

Sample matches

Mark 

End of samples

STOP

Y

N

N

Y

Mark non-self 

any self sample? any detector ?

self 

?

Fig. 4 Negative selection algorithm [23]: learning process (left diagram) and classification
process (right diagram)
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matches such sample, it is automatically marked as non-self antigen, otherwise as
self.

1. The proposed classification procedure
Two sets of data were available for the experiments—951 samples of good

condition data and 1,232 samples of bad condition data. The 2/3 of randomly
selected good condition data (i.e. 637 samples) were used for the learning purpose.
Classification of the remaining 1/3 (314 samples) of good condition data and all
bad condition data (1,232 samples) was the subject of a validation process.

A classification result was considered true positive if a sample of good con-
dition data was recognized as good. Similarly, a result was considered true neg-
ative if a sample of bad condition data was recognized as bad. Similarity
thresholds e[ 0 for the distance D(Ab, Ag) between antigen Ag [ RL and antibody
Ab [ RL used in the experiment were even numbers from 2 to 40. Sets of 10, 20,
30, 40 and 50 thousands of antibodies were trained and tested for each run of the
algorithm.

(c)

(a) (b)

(d)

Fig. 5 Plots of averaged true positive (blue lines) and averaged true negative (red line) results
out of 20 runs of negative selection algorithm using the four distance measures: (a) Manhattan,
(b) Euclidean, (c) Minkowski, (d) Max; x-axis represent distance thresholds e (even numbers
from 2 to 40); y-axis represent percent of matches. Plots corresponding to 30,000 antibodies are
printed with bold lines
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Figure 5 presents the results of calculations. Plots of averaged true positive are
drawn with blue lines and averaged true negative with red lines. Values corre-
sponding to 30,000 antibodies are printed in bold.

The correspondence between the value of true positive and true negative is
evident. In the case of Manhattan distance, the greater value of similarity threshold
[, the greater percentage of negative. In the cases of remaining distance measures,
setting some threshold values strictly outperforms both lower and greater values.
Optimal settings are in the ranges: 12–26 (for Euclidean distance), 6–8 (Min-
kowski distance) and 8–18 (Max distance). Clearly, best results were obtained
using Manhattan and Euclidean distance. Choosing the number of antibodies also
plays a very important role. Too small number of antibodies leads to considerably
long distances between them. As a result, the search space is not sufficiently
covered with detectors causing high risk of misclassification.

On the other hand, an increment of antibodies leads to grow of computational
cost. The experiment revealed that the optimal number of detectors is about 30,000
since further increment of antibodies did not lead to significant improvement in
performance. As it is clearly seen, a key factor of AIS is the selection of learning
parameters. When a threshold e is too small, only good condition data can be

Fig. 6 Plots of first two principal components of good data (green dots) and bad data (red dots).
Blue circles represent locations of detectors with: (a) optimal settings, (b) surplus of detectors,
(c) deficiency of detectors, (d) oversized distance
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recognized which is completely useless. On the contrary, choosing great values of
threshold leads to misclassification of some negative samples, which are close to
the positive samples (c.f. Fig. 6d).

Another important configuration issue is the number of detectors. A large
number of detectors may lead to overfitting problem and possibility of detecting
unknown good condition samples as bad condition ones (c.f. Fig. 6b). On the other
hand, a small number of detectors may lead to some ‘‘gaps’’ in the space and
accepting negative samples from these gaps (c.f. Fig. 6c).

5 Conclusion

In paper a proposal of procedure of condition monitoring of the complex planetary
gearbox is shown. Due to unique type of design of these types of machines, in
many situations there is no chance to perform two class classification as it has been
already done by [4, 18] or [7, 17] in their previous works. Recent development in
the field of pattern recognitions, especially in biologically-inspired computing,
motivated us to apply AIS approach for the purpose of diagnosis of planetary
gearbox working under non-stationary operations. It has been done for the very
first time in that context. We successfully applied AIS to classification of planetary
gearboxes condition monitoring in good condition, and next thanks to possessed
data from the gearbox of the same type just before replacement, we have validated
of our system for bad condition data. During validation process classification error
at the level below 5 % was obtained. The obtained result is very good. One should
note that this classification error cannot be straightly compared with the classifi-
cation error of other techniques (such as Neural Network, Decision Trees, etc.),
because AIS use only positive samples in the learning process. Lack of ‘‘bad
condition’’ data makes impossible to use NN or DT. In practice, the classification
with AIS allows to construct monitoring systems without observations of negative
cases or with only a few such observations. Further development may improve the
proposed approach with regard to optimal dimension of detectors set and
parameterization of affinity measure.
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Gearbox Condition Monitoring
Procedures

Walter Bartelmus and Radoslaw Zimroz

Abstract There is a need to treat a gearbox as a subsystem which consist of
several elements like gears, bearings and shafts incorporated into a box. The
gearbox is incorporated into a system of a drive, for example an electric motor, and
a driven machine. When a system is in operation the mention elements interacts
each other. When preparing condition method one has for disposal results of the
research directed to evaluation of isolated faults like a tooth crack, tooth breakage,
pitting, scuffing, misalignment and so on. It is taken in advance that only one of the
mentioned faults occurs in the system. The research is done at the condition of
constant load or constant rotation speed. There is also done research under con-
dition of different constant levels of the load and rotation speed. The scenario of
degradation process of gearboxes is that only one fault occurs and developed in the
system. In real gearbox systems many different scenarios of degradation process
may occur. The presented paper will show gearbox condition monitoring proce-
dures, which is equivalent to different scenarios. There are given some steps,
which ought be considered when gearbox condition monitoring procedures are
developed. Having in mined these steps one can control the gearbox degradation
process extending a gearbox live and reducing maintenance cost, creating, what is
called, the failure prevention technology. For presenting this paper stimulates us
also the papers presented in the MSSP ‘‘Special Issue’’ on the ‘‘Condition moni-
toring of machines in non-stationary operations’’ where some authors have ten-
dency of treating the machine as the collection of separate not connected elements
in the same way as it was stated before.

Keywords Gearbox � Condition monitoring � Design factors � Operation factors

W. Bartelmus (&) � R. Zimroz
Diagnostics and Vibro-Acoustics Science Laboratory, Wroclaw University of Technology,
Pl Teatralny 2, 50-051 Wroclaw, Poland
e-mail: walter.bartelmus@pwr.wroc.pl

R. Zimroz
e-mail: radoslaw.zimroz@pwr.wroc.pl

G. Dalpiaz et al. (eds.), Advances in Condition Monitoring of Machinery
in Non-Stationary Operations, Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-39348-8_21, � Springer-Verlag Berlin Heidelberg 2014

249



1 Introduction

Vast literature on condition monitoring for example [1–3] do not gives the
diagnostics procedures for gearbox condition monitoring as one think a gearbox as
a system, which consists of many elements like: bearings, gears, shafts and there is
interaction between these elements, when the system is in operation. For devel-
oping the suitable gearbox condition monitoring procedures there is a need to
develop some steps:

• First step, one ought to understand the relation between factors having influence
diagnostic signals and condition of gearboxes as it is given in [4] and [5].

• Second step, one ought to know information on relation between the factors,
which have influence on vibration diagnostic signal and diagnostic signal pre-
sentation in the form of spectra as it is given in papers [6] and [7].

• Third step, one ought to understand the different form of gearbox degradation
processes as it is given [8–16].

On the bases of all the mentioned papers there is possibility do develop the
gearbox condition monitoring procedures.

2 Relation Between Factors Having Influence Diagnostic
Signals and Condition of Gearboxes

The factors [5] are divided as it is given in Fig. 1. The primary factors are divided
as the design and production technology.

The secondary factors are divided by operation and change of condition. The
design factors can be determined on a design specification presented in the form of
design drawings where all details of diagnosed object are presented. The pro-
duction technology factors are resulted from production that means, parts
machining and their assembling. They are imbedded into the product and they
reveal itself during object/machine operation. Because the operation condition
change during operation so they should be taken into consideration. The design,

design production technology

primary

operation change of condition

secondery

Factors division

Fig. 1 General division of factors influencing vibration signals
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production technology factors determine the reference machine condition. In this
paper the reference machine condition is determined by the load susceptibility
characteristics (LSC) [11] and [12]. It is the load trending of diagnostic features at
the current condition for a given stage of a gearbox. The LSC is the result of
regression analysis, presented later. The operation factors are determined by
outer load variation, which may be connected with excavation process in mining
industry or varying wind power in a wind turbine. The change of condition of
gearboxes is determined by all forms of faults, which occur during gearbox
operation. In the Fig. 2 [10] there is given the scheme of the system where an
interaction between components in multistage gearbox system and external
components to the gearbox such as: electric motor/engine, damping coupling,
external load are presented. The presented system operates in certain environment
(temperature, humidity, dustiness), which has influence on degradation—change
of a gearbox condition. Having in mined all the mentioned factors one can con-
trol the gearbox degradation process [8, 13, 14] extending a gearbox live and
reducing maintenance cost creating, what is called, the failure prevention
technology.

3 Diagnostic Signal Presentation in the Form of Spectra

Figure 3 shows two driving systems for the bucked wheel of a bucked wheel
excavator. In both systems there is used a planetary gearbox. In the system
given in Fig. 3a the planetary gearbox is characterised by standstill rim (gear z3)
and rotating sun (gear z1). The planetary gearbox in system Fig. 3b the rim
(gear z5) and the sun (gear z3) are rotating. Equivalently their ratios are given in (1)
and (2).

Fig. 2 Interaction between components in multistage gearbox system and external components
to the gearbox such as: electric motor/engine, damping coupling, external load
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up ¼ 1þ z3

z1
ð1Þ

up ¼ 1þ z5

z3
þ z5z7

z3z6
ð2Þ

These two systems are presented for comparison to show the difference in the
design of the system and the difference in the ratios of the planetary gearboxes.
Further consideration is directed to the system given in Fig. 3b. For planetary
gearbox condition monitoring there is a need to calculate a meshing frequency,
more about the meshing frequencies calculations look into [6] and [7]. According
the principle given there the meshing frequency for the planetary gearbox incor-
porating into the system Fig. 3b is given by the statement (3). More details of the
system presenting in Fig. 3b is given in Fig. 3c and Fig. 3d, so the meshing
frequency for the planetary gearbox in system Fig. 3b is

Z3
Z1

Z2

Z4

Z6

Z5
Z7

Z9

Z8

(a) (b)

(d)(c)

Fig. 3 Two schemes (a) and (b) of different designs of driving systems, (c) and (d) more details
for driving system (b), in (d) bucked wheel is neglected
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f34 ¼ f45 ¼
n2jz3

60
¼

n2 � nj

� �
z3

60
ð3Þ

where:
n2j related speed rotation of a shaft which rotates with the speed rotation n2

(RPM),
n2 absolute speed of the second shaft (RPM),
nj arm/carrier speed rotation (RPM),
z3 number of teeth in gear 3.

To use the above statement one ought have more statements which are
connected with the gearbox system given in Fig. 3b. The complete ratio of the
system is

uc ¼ usupuw ð4Þ

The bevel stage ratio equals to

us ¼
z2

z1
ð5Þ

The planetary gearbox ratio equals to as given in (2). The cylindrical stage gear
ratio equals to

uw ¼
z8

z9
ð6Þ

The arm/carrier speed rotation

nj ¼
n2

up
ð7Þ

For the gearbox condition monitoring there also needed other frequencies
connected with gearing local faults [6] and [7] and roller elements bearings faults.

4 Different Form of Gearbox Degradation Processes

As it is given in [15] when considering a gearbox failure one should take into
consideration primary and secondary misalignment of shafts which are in a
gearbox system. The presented paper is mainly concentrated on inner gearbox
shafts and gears misalignment (IGSGM). The IGSGM can be evaluated during
gearbox operation on the base of vibration signal and operation load of a gearbox.
On the base of vibration and load characteristic presented in two dimension space
the regression line can be evaluated. This regression line is called the susceptibility
characteristic (SC) [11], load trending. The primary cause of misalignment can be
assessed at the beginning of a gearbox operation by SC, load trending. The primary
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cause of misalignment evaluated by SC is the measure of gearbox quality. The
inner secondary cause of misalignment is developed during a gearbox operation in
the process of bearing wear. In the paper [11] it is discussed the issue of the cause
of a gearbox secondary misalignment. It is described the case of planetary gearbox
condition evaluation where is giving the evidence that the frictional wear of
bearings cause IGSGM. The IGSGM is evaluated on the base of SC and bearing
frictional wear is measured after the planetary gearbox dismantling and tooth
gearing faults as surface micro cracking has been noticed.

Some discussions on gearbox root cause analysis is given in [8]. Here is given a
case describing the root cause analysis (RCA) of a bevel gears, which shows that
the reason of gear condition change is IGSGM. The RCA is based on the
knowledge gained from experiment presented in [11]. The bevel gear (Fig. 4)
shows developed scuffing (there is more on surface distress in [16]) and a tooth
gear fatigue development, and heat tints. The heat tints show that the surface bulk
temperature would raise to about 250 �C. It was also inferred that the tooth
breakage is the fourth cause a tooth gear degradation process. The primary cause is
misalignment, second scuffing, third fatigue crack (details in Fig. 5), fourth brittle
tooth breakage. Figure 6 shows a scheme of fatigue fracture area with beach marks
and brittle fracture area. These two considered cases shows that the main cause of
gearbox failure is IGSGM. At the end ought to be underlined that primary cause of
misalignment, which comes for example from misaligned motor and gearbox shaft
position should be eliminated before putting system into operation according the
technologies given in [17].

To understand the increase of bulk temperature of gear teeth some computer
simulation study is given here, more theory is given in [4]. The reason of increased
temperature is the power lost during teeth friction.

Fig. 4 Heavily effected/
destructed gear teeth, and
colours heat tint
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The friction power is equal to a product of the slipping velocity and the friction
force. The slipping velocity can be calculated as an absolute value of the difference
between the tangent velocities to the gear teeth.

vp ¼ vt1 � vt2 ð8Þ

The instantaneous friction lost power is

Nlost ¼ vplPn ð9Þ

Plots of instantaneous friction loss are shown in Figs. 7 and 8 for different
friction coefficient values: l = 0.02 and 0.1.

Instantaneous efficiency value is defined as

g ¼ Ns � Nlost

Ns
ð10Þ

where: Ns—the motor’s power, W;
Nlost—the power of the losses due to friction in the meshing, W.

Plots of the above parameter when the gear is properly lubricated and the
frictional resistance is defined by friction coefficient l ¼ 0:02; Fig. 7. For com-
parison, plots of the power of the losses and efficiency plots for l ¼ 0:1 are shown
in Fig. 8. As it follows from Fig. 7, efficiency is in a range of 0.098–1 and at
l ¼ 0:1 it ranges from 0.98 to 1 (Fig. 8). A comparison of Figs. 7 and 8 shows that
for steady running (period 4) at m varying from 0.02 to 0.1, i.e. at a fivefold

Fig. 5 View of damaged
gear, fatigue fracture area
with beach marks, brittle
fracture area

Brittle fracture area

Fatigue fracture areaFig. 6 Scheme of fatigue
fracture area with beach
marks and brittle fracture area
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increase in the value of the friction factor, the maximum instantaneous losses are
respectively Nllost = 38 and 195 W and hence the loss ratio is 195/38 = 5. Thus
the fivefold increase in the friction factor corresponds to the fivefold increase in
the power of the frictional losses. For now has been given comparison when a gear
run in perfect condition l ¼ 0:02 and at oil dry friction l ¼ 0:1: It is dry friction
for fine roughness condition. When gear surface is in the scuffing condition Fig. 4
the friction coefficient may arise to l ¼ 0:4 even more. In the case of l ¼ 0:4
using linear relation which govern the above consideration an instantaneous
efficiency (10) g ¼ 0:245: This support the idea that surface bulk tempera-
ture assessed on heat tints Fig. 4 can be high, and in considered case is about
250 �C.

Fig. 7 Plot of power of system losses due to friction in meshing for l = 0.02: 1 7 4, different
periods of system run: 1 acceleration of the system, 2 free run, 3 loading of the system, 4 run
under constant load. Plot of instantaneous efficiency values for l = 0.02

Fig. 8 Plot of power of system losses due to friction in meshing for l = 0.02: 1 7 4, different
periods of system run: 1 acceleration of the system, 2 free run, 3 loading of the system, 4 run
under constant load. Plot of instantaneous efficiency values for l = 0.1
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5 Load Susceptibility Characteristics as a Measure
of Gearbox Condition

Load susceptibility characteristics according to [11] and [12] are the measure of
gearbox condition. The load susceptibility characteristics can be expressed by
linier relation [11]

y ¼ axþ b ð11Þ

where y—the value of the signal feature, x—the operating conditions (instanta-
neous speed in this case) indicator, a, b—the parameters to be determined.

Here is described the case of planetary gearbox condition evaluation where is
giving the evidence that the frictional wear of bearings cause IGSGM. The IGSGM
is evaluated on the base of SC and bearing wear is measured after the planetary
gearbox (Fig. 3b) dismantling and tooth gearing faults as surface micro cracking
has been noticed. In a paper [11] the term load susceptibility (LS) or SC is
introduced. The load susceptibility is given by the regression characteristics in
Fig. 9b as diagnostic features for planetary gearbox as a function of rotation speed
RPM; for a gearbox in good (‘‘o’’ dots) and bad condition (‘‘x’’ dots). In this case,
presentation of susceptibility characteristics for an electric motor is based on a
linear relationship between the transmitted moment and rotation speed. It means
that one may use the load susceptibility characteristics as the function of a load or
function of a rotation speed RPM as it is given in Fig. 9b. In the presented cases of
the load susceptibilities the characteristics are interpreted as follows. The case for
a good condition of gearbox shows that planetary gearbox behaves as a linear
system under increasing load, that means with increasing load the system elements
deflection increases, causing linear increase of diagnostic feature, which is
dynamic inter teeth force related. In the case of bad condition as result of frictional

Fig. 9 a Data distribution of measured diagnostic parameters. b Load susceptibility character-
istics as diagnostic features for planetary gearbox as a function of rotation speed RPM; for a
gearbox in good (o dots) and bad condition (x dots)
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wear of bearings the gear mesh under the condition of an IGSGM what gives a
linear increase of the gear cooperation error and linear increase of inter teeth force,
which cause linear increase of a vibration acceleration signal as it is presented by
linear regression line Fig. 9b in a case of the bad gear condition. Figure 9b also
shows very good separation of data for the good and bad condition. Better than is
given in Fig. 9a when the data distribution functions overlap each other.

6 Proactive and Failure Prevention Technology
and Concussions

In Fig. 10 there is given modified from [18] basic scheme of elements of vibration
gearbox diagnostic method and elements of failure prevention technology.

In the scheme Fig. 10 there are considered several elements as:
Factors influencing vibration signal, which are divided as is given in the

introduction into four groups namely: design, production technology, operation,
condition change.

Interaction of gearbox elements as is given in Fig. 2 and environment influence
should be considered.

On the basis of knowledge on a gearbox degradation process [8, 13–16], which
comes from the factors analysis, interaction of gearbox elements, environment
influence different degradation scenarios can be described.

Factors influencing vibration
design, production technology, operation, condition change

(chapter 2) 
Interaction of gearbox elements, environment influence

(chapter 2)
Scenario of degradation

Condition physical description
primary unbalance and misalignment, increase of rolling 

element bearing backlash, secondary misalignment. pitting, 
scuffing, tooth fracture, tooth breakage

(chapter 4)
Choice of proactive measures 

primary and secondary misalignment assessment, (chapter 5) 
oil particles and water content assessment   

Mental transformation
local faults, distributed faults

Signal analysis tools
vibration spectrum, time frequency spectrogram, envelope analysis, 

spectral kurtosis, cyclostationary, analysis and use the results of these 
analysis for presenting them in the form of  load susceptibility 

characteristics
(chapter 3 and 5)

Inferring
gear condition  

Fig. 10 Modified basic
scheme of elements of
vibration gearbox diagnostic
method and elements of
failure prevention technology
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Taking also into consideration knowledge on a gearbox degradation process
[8, 13–16] choice of proactive measures ought be used as like primary and sec-
ondary misalignment assessment, oil particles and water content assessment. For
the secondary misalignment the load susceptibility characteristics should be used.

In degradation scenarios there one ought to take into consideration order of
possible events, which describe: primary unbalance and misalignment, increase of
rolling element bearing backlash and secondary misalignment. Teeth or tooth
pitting, scuffing, fracture, breakage as it is described in the Chap. 4.

On the base of primary misalignment evaluation proactive measure should be
under taken eliminating some possible misalignment according to [17].

On the base of secondary misalignment evaluation proactive measure should be
under taken, which goes to rolling element bearings replacement.

On the base of oil particles and water content assessment oil should be purified
or replaced to reduce a gearbox elements wear.

For signal analysis should be used: vibration spectrum, time frequency spec-
trogram, envelope analysis, spectral kurtosis, cyclo-stationary analysis and used
the results of these analysis for presenting them in the form of, load susceptibility
characteristics.

Inferring on gear condition should be made during a gearbox operation from its
beginning and on the base of different signal analysis make suggestions on use
proactive measures, to reduce cost of maintenance.
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Vibration Monitoring of Winch Epicyclic
Gearboxes Using Cyclostationarity
and Autoregressive Signal Model

Bassel Assaad and Mario Eltabach

Abstract This paper proposes a model-based technique using a combination of
cyclostationary and autoregressive signal modelling in order to detect wear in a
multistage planetary gear of lifting cranes. The first-order cyclostationarity is
exploited by the analysis of the Time Synchronous Average part (TSA) of the
angular resampled vibration signal. Then an autoregressive model (AR) is applied
to the TSA part in order to extract a residual signal containing pertinent fault
signatures. The paper also explores the efficiency of a number of methods com-
monly used in vibration monitoring. Condition monitoring indicators are then
extracted from different treated signals. In the experimental part, all these tech-
niques are applied to a test bench data of a lifting winch. The goal is to trend the
evolution of the extracted features during the test. This study reveals that the
proposed procedure using this combination enhances the ability to detect and
diagnose mechanical wear of winch planetary gears.

Keywords Condition monitoring � Time synchronous averaging � Cyclostation-
arity � Autoregressive modeling � Epicyclic gearboxes � Winches

1 Introduction

The epicyclic (planetary) gear system refers to a compound gear system with planet
gears between a centre sun gear and an outer ring gear. Its compact design makes it
well suited for lifting machines, ranging from driving motors to driven machines,
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with reduced speed. These planetary gears are prone to several defects that reduce
their performance and give rise to adverse effects such as noise, vibration and
cracks. Therefore, it is crucial to identify the various faults emanating from these
types of gearboxes to avoid any unscheduled. The practical Condition Monitoring
(CM) based on vibration analysis has historically been the technique of choice for
machinery maintenance and fault diagnosis. It includes some specialized tech-
niques such as Time Synchronous Averaging (TSA) [1, 2], time–frequency analysis
[3, 4], spectral kurtosis [5], mathematical modelling [6–8], etc. It has been shown
that the TSA technique is important for the extraction of the vibration signal fea-
tures. Nevertheless, the TSA alone might not be sufficient in isolating the damage in
its infancy. Sometimes, it is preferable to combine the TSA with other techniques
such as the autoregressive filtering in order to improve the Detection ability of gear
faults. Since the residue signal (difference between the filtered signal and its ori-
ginal part) contains pertinent faults signatures, what we propose is to apply and
explore the pertinence of many usual statistical and power indicators to this last
signal (residue AR signal). This paper proposes many condition indicators (CIs)
extracted from the residual, the difference and the residue signals.

2 Vibration Induced by Epicyclic Gears

The epicyclic gear train vibrations are fundamentally different from those of the
fixed-axis gear train. They are difficult to analyse because of two reasons. First,
there are multiple planet gears producing similar vibrations. The second reason is
the relative motion of planet gears to the transducer located on the gearbox
housing. Indeed, the vibration transmission paths from the gear mesh point to the
transducer vary with time. Since rotating machines involve cyclic patterns, the
transmission of the vibration signal is periodic, and so its spectrum contains
components at the fundamental gear mesh frequencies (GMF) and their harmonics.
Each GMF can be subject to amplitude and phase modulation by any multiple of a
rotating component frequency. These modulation functions are periodic with the
considered gear rotational frequency.

3 Signal Processing Background

3.1 Time Synchronous Averaging ‘TSA’

The TSA is regarded as a powerful tool for the detection and diagnosis of epicyclic
gear faults. It is known as the first order cyclostationary analysis. TSA is intended
to extract a deterministic signal and enhance the synchronous vibration
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components related to the rotational frequency of the gear of interest while
reducing non-synchronous components and noise [1, 2]. Generally, rotating
machines are characterized by cyclic phenomena directly related to the speed,
which explains why a cyclostationary analysis is very well suited to diagnose these
machines. However, in a practical environment, the variation of the shaft speed
will result in smearing of amplitude energy in the frequency domain. To reduce
this effect and to reinforce cyclostationarity, it is very important to resample the
time domain signal into the angular domain. For healthy gear, the TSA signal is
normally composed of gear meshing component’s waveforms modulated by some
low shaft order functions. The introduction of some CIs to the resultant signal
following the application of TSA would help in detecting the availability and
severity of the fault.

3.2 AR Model Based Diagnosis

The idea behind mathematical modelling [6, 8] is to indicate changes in the
vibration signal due to damage. It is done by filtering the vibration data collected
from the operational transmission using a model that is based on data collected
from a healthy machine. An AR model seeks to represent a time series by a linear
regression of the series on itself plus a residual error. It is applied, for example,
when demanding high spectral re solution estimation. The purpose of the residual
error is to isolate the effect of the fault impulses coming from the faulty signal in
order to detect and monitor the health condition of the gear. The principle of
autoregressive model identification of undamaged gear is presented in Fig. 1.
Then, the AR filter created through this model is used as a linear prediction filter to
pass the future state averaged signal as shown in Fig. 2.

An AR model seeks to represent a time series x(n) by a linear regression of x on
itself plus a residual error e(n) (Eq. 1). It’s applied, for example, when demanding
high spectral resolution estimation [6, 7].

xðnÞ ¼
Xp

k¼1

aðkÞxðn� kÞ þ eðnÞ ð1Þ

where:
x(n) is the nth data sequence point,
a(k) is the kth coefficient in the AR model,

Model coefficients for
Undamaged gear

e(n)x(n)

+
-

x(n)

Fig. 1 Principle of AR
modeling: model
identification from
undamaged gear
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p is the order of the AR model,
e is the residual error

3.3 Features Extraction

Several indicators can be used to detect the mechanical abnormalities of a gear by
taking into account the kinematic analysis of the machine and the signal pro-
cessing (SP) techniques [9, 10]. For the success of any type of CM, effective
features should be extracted. The literature includes some statistical or power CIs
which track the amplitude of some frequencies or order components. The effec-
tiveness of these CIs is generally related to the signal from which the computations
are made. Figure 2 presents some CI used in this paper, associated with the dif-
ferent signal processing methods. It is worth noting that after applying the TSA
and AR process, the resultant signals pass through a notch filter which eliminates
the primary meshing and shaft components along with their harmonics to generate
the residual signals (TSA residual, resAR residual). This filter attenuates fre-
quencies in a narrow stopband around a cut-off frequency. Another filtering pro-
cess is applied to obtain what is called difference signals (TSA dif and resAR diff).
It consists of removing the first order sidebands from the residual signals.

AR process

Fig. 2 Processing flow chart: feature extraction methods for vibration analysis
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4 Experimental Setup

This section presents the winch test bench, the Accelerated Life Time test (ALT),
the use of different signal processing methodologies in order to extract appropriate
CIs and finally to present their historical trends.

4.1 Test Bench

Figure 3 shows a global view of the winch used to accomplish the ALT and an
overhead photo of its planetary gear. A tri-axe accelerometer is installed on the
bearing housing at the gear side to measure the vibration induced by the trans-
mission gearbox. In addition, a key phasor is used to get a phase reference of the
rotor rotational speed. The load levels applied to the winch during the test are
relatively high. The ALT began in September 2008 and a gear oil analysis carried
out in July 2012 revealed excessive metal debris. In July 2012, inspection was
conducted and the gear box was dismantled. Pitting has been found on the sun gear
of the 1st stage and severe degradation on the sun of the 2nd stage were found, see
Fig. 4.

4.2 Signal Processing

Before the extraction of the condition indicators, it is important to evaluate the
performance of the TSA and the AR models and to compare the evolution of the
vibration signals between the beginning and the end of the ALT.

Winch drum Motor Break

X Y

Z

Proximity transducer 
8pulses /cycle

Motor sideGear side

(a) (b)

Fig. 3 Benchmark of the lifting crane. a General view. b Overhead photo of the gear
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It is substantial to define synchronous components (frequencies that are mul-
tiples of a reference speed) since they are expected to clearly appear in the
spectrum. Generally, the TSA can be applied to many epicyclic gearbox compo-
nents taking an appropriate reference. However, several factors are to be respected
which may influence the effectiveness of this approach, i.e. length of the signal,
number of samples per revolution, number of averages, etc. Thus, for the winch
monitoring, three main references are used: input shaft frequency of the 1st stage,
that of the 2nd stage (respectively denoted ‘frot’ and ‘fs2’), and Planet Pass
Frequency of the first stage (PPF1). It should be kept in mind that ‘fs2’ is equal to
the planet carrier frequency of the 1st stage (fps1 = fs2). Foremost, TSA is con-
ducted on the angular signal over 75 averages while taking ‘frot’ as reference. The
effectiveness of this technique to synchronize the signal with the considered fre-
quency and to reduce asynchronous components and noise is shown in Fig. 5. It
can be observed that GMF of the first stage ‘GMF1’ = 10.64*frot as well as
synchronous frequencies are attenuated while the GMF of the 2nd stage
GMF2 = 2*frot emerges.

Vibration signal measured from the gearbox at the beginning of the ALT was
used as the referential healthy-state signal in order to build the AR model. The

Fig. 4 Sun gears of epicyclic gearbox. a First stage. b Second stage
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Fig. 5 Order spectrum comparison between the resampled signal and its synchronous part at the
beginning of the ALT (Reference cycle)
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optimum length of the AR filter was determined based on the minimal value of the
Akaike Information Criterion (AIC) (corresponding to filter’s order 700). Figure 6
illustrates a comparison between the estimated AR signal and the TSA signal in
the time and frequency domain. This comparison shows that the filtered signal
perfectly fits to its original version. The error between these two signals is con-
sidered as the residual AR signal (resAR) at the reference cycle 5,500; this error
signal is depicted in Fig. 7b.
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4.3 Signal Comparison at the Beginning and the End
of the ALT

Figure 7a presents a comparison of vibration signals at the beginning (undamaged
gear) and the end of the ALT for both TSA and the residue of the AR model
‘resAR’. Order spectrum is used to compare the angular vibration signal between 0
and 100 orders. The spectral parameters are: 500 samples per revolution as sam-
pling frequency and 6 cycles as the length of the hamming window. By analysing
the two graphs, we notice an increase in the overall vibration levels. This feature
reveals the degradation and the wear of the gearbox. It can also be deduced that
power in some frequency bands is conspicuous i.e. [0–25x]. Specific gear char-
acteristic frequencies such as harmonics of input frequency (16x–19x) as well as
GMFs and their harmonics increase too. Moreover, the presence of pulse train
frequencies with a period of the GMF2 can be noticed. This last phenomenon is a
clear proof that there are impacts at GMF2 coming from the 2nd stage of the winch
gearbox and revealing its degradation. It is discernible that the use of AR mod-
elling has better highlighted the signature of the gear defects. According to Fig. 7b
the use of a simple threshold to detect gear faults may appears to be effective.

4.4 Feature Extraction

To reveal the state of health of the gearbox and to detect incipient failure of its
components, features were implemented and processed for the ALT. As seen
before, features can be divided into statistical CIs (They offer an overview on the
trend of temporal signals and the working condition of the machine) and power CIs
that give the possibility to follow the evolution of energy around some frequencies
related to defects, see Table 1.

Table 1 Power condition indicators (CIs)

Parameter n� Description Reference

P1 Variance [10] All
P2 RMS [10] All
P3 NA4* (kurtosis of the residual signal) [10] All
P4 FM0 for GMF2. [10] ‘fs1’
P5 4th order modulation at GMF2 ‘fs1’
P6 Power in band [48.fs2; 60.fs2] ‘fs2’
P7 4th order modulation at GMF2 ‘fs2’
P8 GMF1 amplitude at 31*fp1 ‘ppf1’
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5 Diagnosis, Results, and Discussion

The historical trends of all the defined CIs are depicted in Fig. 8. It should be
clarified that to normalize the values of the CIs, they are divided by the value
obtained from the reference cycle. Clearness and fluctuation level of these trends
are considered as criteria for selecting relevant features from the generated
parameters used for damage detection. The experimental result indicates that P1
and P2 have shown a remarkable increase over the ALT. They have clearly
described and tracked the condition of the tested gearbox condition. Between
January and March 2011, these two CIs increased rapidly, which may reflect the
beginning of the degradation of the planetary gear. The start point of the wear is
also confirmed by P3 (NA4*). Since P3 is calculated based on the residual signal,
it indicates that a distributed fault could emerge on the winch.

CIs extracted from difference signals did not reflect any explicit trends. In
general, these indicators detect heavy wears that give rise to high order sidebands.
We ascribe their fluctuation to the fact that some heavy defects such as teeth
breakages or gears cracks didn’t affect the winch’s gearbox.

Values of FM0 ‘P4’ (usually sensitive to impulsive type defects) increase in the
1st half part of the ALT and then decrease. Contrarily, P5 that describes a mod-
ulation phenomenon is not sensitive to these types of defects and does not evolve
like P4. Nevertheless, it increases in a linear pattern. P5 also reveals the presence
of modulation activity and distributed degradation of the gearbox second stage. P6
and P7 are specialized in detecting defects on the second gear stage according to
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the adopted TSA reference (fs2). These parameters increase monotonically during
the ALT and highlight the existence of faults related to the sun gear of the gearbox
second stage. The CI which is specialized in detecting defects on the first stage
with PPF1 taken as reference frequency is P8. It points out the amplitude of the
GMF1. P8, the last CI, evolves in a linear manner along the ALT and is considered
as pertinent, nevertheless its value is less significant than P6-P7 in relation to the
GMF2. The value of P8 reflects that degradation is more important in the second
stage than in the first one. This fact has been confirmed by the winch inspection,
see Fig. 4. As shown below, the trend of CIs extracted from signals filtered using
the AR process is sensitive to the type of the CI. Two cases are distinguished: No
improvement (Values of CIs of AR process following the values of CIs extracted
from TSA signal such as P4 or P6), or showing a clear improvement in the
detectability of the faulty states like RMS, Variance, NA4* or those who represent
the modulations phenomena (P5;P8).

6 Conclusion

One of the most important insights to be drawn from this work is that choosing a
suitable reference for the TSA and special CIs could lead to a better diagnosis of
wear in an epicyclic gearbox. This paper has shown that statistical CIs provide
global information about the gearbox condition. However, power CIs have pro-
vided appropriate information about the condition of the gearbox components. The
experimental results have shown the advantage of using AR filtering. The set of
both methods simultaneously has clearly improved the ability to distinguish faults
signatures from the fault-free states. We noticed that almost every CI extracted
from the resAR signal is more pertinent than the one extracted from the TSA
signal. The fact that which reinforces the pertinence of using AR models in the
detection procedure. The diagnostic results were confirmed after the winch was
dismantled. Finally, the winch will be re-instrumented, and a run to failure test will
be resumed. New faults such as heavy wear or localized faults like tooth crack will
emanate during this test. This will give us the possibility of exploring the
behaviour of the CIs upon approaching breakdown.
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Gear Parameter Identification in Wind
Turbines Using Diagnostic Analysis
of Gearbox Vibration Signals

Nader Sawalhi and Robert B. Randall

Abstract The correct diagnosis of faulty components in rotating machines
requires a pre-knowledge of the characteristics of the system being monitored and
the identification of the frequencies of interest. In gearboxes, the number of gear
stages and the number of teeth for each gear are required to calculate the gear mesh
frequencies and monitor these frequencies and their sidebands. It is not always
possible to have this information available, especially in old equipment. In this
chapter a fresh approach is presented to deduce such crucial information from the
measured vibration signal. The approach focuses on fine tuning harmonic/sideband
cursors to capture different gear mesh families. The approach is illustrated on a
signal taken from a wind turbine gearbox, which poses the extra challenge of the
variable speed within the measurement record. Results show the possibility of
identifying the number of teeth for the first two stages with much more confidence
than the planetary stage, where a trial and error approach was used to decide on the
most likely combination for the ring, sun and planetary gears. This chapter sets a
good practice example for understanding the system characteristics by detailed
analysis of the vibration signal using finely tuned harmonic and sideband cursors.
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1 Introduction

Monitoring the health of gears in a gearbox, using vibration signals, requires a
knowledge of the input or the output rotational speed, the number of stages as well
as their arrangement, and the number of teeth for each gear. Often, this information
is available to the vibration analyst by means of a speed reference signal and the
manufacturer’s details of the gearbox. Typically, a tachometer/encoder is installed
at the high speed shaft to enable estimation of the shaft speed and order tracking of
the signal [1] to remove speed fluctuations.

In cases where more limited information is available to the analyst, a harmonic
cursor approach has been recommended for the blind determination of the numbers
of teeth on a gear pair [2]. The use of a harmonic cursor in such occasions is
possible if the gear pair represents a ‘hunting tooth’ design [2]. The ‘hunting tooth
design’, which is considered as good practice, means that there is no common
factor between the pinion and the gear and consequently their harmonics are
completely separable except at the gear mesh frequencies (the closest the other
harmonics can reach is 1/(m 9 n), where m and n are the numbers of teeth on the
two gears. In order to use a harmonic cursor, the machine speed is required to be
stable to about 1:20000 [2]. If this is not the case, order tracking can be used to
increase the degree of stability. The harmonic cursor approach also requires the
presence of a reasonable number of harmonics of both shafts in the spectrum
(logarithmic/decibel scale) including sidebands around the gear mesh frequency.
The harmonic cursor approach as described in [2] starts by setting up a harmonic
cursor on each shaft in succession, first on the low orders and then progressively
adjusting it by zooming in higher frequency bands. This will eventually determine
the fundamental frequency to the required accuracy. If lists of the two harmonic
series are then compared, the gear mesh frequency corresponds to where they
match to better than 1:10000 [2]. Even if the design is not hunting tooth, the
approach can often still be used. The most likely common factor is 2 or 3, in which
case the first correspondence will be at 1/2 or 1/3 of the actual mesh frequency. For
the pinion, this will often lead to an unlikely minimum number of teeth, and in any
case if there is an inspection port, the tooth pitch can be measured sufficiently
accurately with a tape measure to exclude incorrect possibilities.

The situation presented in this chapter discusses the case where knowledge
about the characteristics of the gearbox, of a wind turbine, was very limited and
there was no speed signal. The challenge imposed in such a situation requires an
accurate estimate of the different shaft speeds (or at least their ratios) and the
numbers of teeth for each of the gears to calculate the gear mesh frequencies. The
case is complicated by the fact that the wind turbine does not run at constant speed
and in fact the measurements analyzed are actual signals from a full size wind
turbine running under normal conditions and being subject to varying wind con-
ditions and with no tachometer/speed reference signal available.
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The chapter is organized as follows: after this introduction, the experimental
data collected is described in Sect. 2. This is followed by an illustration of the data
handling and processing in Sect. 3. Results are presented and discussed in Sect. 4.
Finally the chapter is concluded in Sect. 5.

2 Experimental Data

The case presented in this chapter was taken from an actual wind turbine gearbox.
The gearbox has three stages (two helical parallel stages and one planetary). The
only information available about this gearbox was that it had three stages and an
overall gear ratio close to 78.472. There was no speed reference signal. The
generator was of the doubly fed induction type, for which the speed can vary by up
to ± 30 %.

Ten minutes of vibration data, sampled at 51,200 Hz were measured by the
company Mechanical Solutions Inc. (MSI) from a number of accelerometers
mounted on the machinery of a wind turbine. The four accelerometers were placed
as follows: one on the gearbox first stage (planetary), a second on the gearbox third
stage (close to the high speed shaft) and the other two on the inboard and outboard
bearings of the generator. No other information or data were made available. A
detailed analysis of one of the signals measured on the gearbox was made in order
to attempt to discover the numbers of teeth on the various gears. The signal
measured at the Gearbox 3rd Stage was chosen for this.

3 Data Processing Stages

The different stages of processing the signal are described in Fig. 1. In the first
stage, the signal from the third gearbox stage was decimated (down-sampled) by a
factor of 8, partly to allow analysis of longer records (in terms of time) and partly
because the information about the various gear mesh frequencies was contained in
the valid frequency range to 2,500 Hz after down-sampling. The second stage
utilized a Short Time Fourier Transform (Spectrogram) to observe the speed
variation within the measured record and decide on a part where speed variation is
small. The Spectrogram also gives very useful information about the different sets
of gear mesh frequencies and shaft speeds.

Order tracking was used in the third stage to remove speed fluctuations from the
signal and enable the tuning of harmonic/sideband cursors to a very high accuracy
for a confident analysis. As no tachometer signal was provided, the signal itself
was used to perform the order tracking. In cases where a tachometer signal is not
available, a reference signal can be obtained from the vibration signal itself and
used for order tracking [3, 4], Combet and Zimroz, [5, 6]. The approach used in
this chapter was developed by [5] and is based on phase demodulation, with the
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possibility to improve accuracy by successive iteration, perhaps starting with a
very low harmonic for which a much larger speed variation can be handled. In the
current application, phase demodulation around the first harmonic of the output
shaft speed was initially attempted and was then refined by demodulating around
the high speed stage gear mesh frequency. After the order tracking process, which
removes the speed fluctuations from the signal, harmonics of different shaft
families and gear mesh families become recognizable, and extremely localised. A
harmonic/sideband cursor [2] could then be used to identify the different harmonic
and sideband families, and thus determine the numbers of teeth on each gear.

4 Results

The Spectrogram (Short Time Fourier Transform) was initially used to examine
the speed fluctuation within the gearbox 3rd stage signal as shown in Fig. 2a. A
more detailed zoomed-in view (0–700 Hz) is shown in Fig. 2b. Figure 2a, b reveal
a number of pieces of useful information for the analyst. It gives an indication
about the speed fluctuations and the speed profile during the 600 s of measure-
ment. Note that a reasonably small variation section of the measured data can be
selected between 190 and 290 s.

Fig. 1 Data processing stages
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1. Presumed gear mesh frequencies and shaft speeds can be roughly identified.
The clearest is the supposed third stage gear mesh frequency (GMF) appearing
just shy of 500 Hz and the second stage gear mesh frequency around 100 Hz.

2. A further zoom in the low frequency region below 150 Hz, as presented in
Fig. 3, shows harmonics of the high speed shaft (HSS). In particular, the 4th
harmonic of the HSS is very clear and just slightly above it there appears to be
the intermediate stage GMF.

3. A section for further processing is selected between the time 190 and 290 s,
where speed fluctuation is minimum.
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The second stage of processing concentrated on this section for order tracking
to remove speed fluctuations. Two stages of order tracking were applied: the first
by demodulating a band around the HSS frequency and the second by demodu-
lating another band around the now clear third stage gearmesh frequency, which
appears to be the 20th harmonic of the HSS. The results showing the effect of the
order tracking process are presented in Fig. 4a, b and further zoomed and shown in
Fig. 4c, d. The HSS, 3rd stage GMF, 4 9 HSS, 4 9 3rd GMF and the 2nd stage
MF appear clearly as discrete lines. Note the amplitude increase at these fre-
quencies as the energy is now concentrated at the order tracked frequencies rather
than being smeared as before order tracking.

The harmonic and sideband relations on a logarithmic plot (dB scaled) are next
plotted and explained to try and identify the number of teeth on each gear. The first
step was to set up a harmonic cursor at the high speed shaft (HSS) and to fine tune
it using the suspected 3rd stage GMF (20 9 HSS) as presented in Fig. 5. A zoom-
in around this 3rd stage GMF was used for an exact tuning of the frequency. A
zoom-out was then used to ensure that all the HSS harmonics are well aligned with
the harmonic cursors. Figure 5a shows the harmonic cursor of the HSS, while
Fig. 5b shows the sidebands (also harmonics) spaced at the HSS around the 3rd
stage GMF. A zoom-in around the 20th harmonic (3rd stage GMF) is shown in
Fig. 5c to demonstrate the accuracy of the harmonic cursor. Note that an order
scale is usually recommended after the order tracking process, however a
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frequency scale has been used here and the mean output frequency is always
23.60618104 every time (order 1), even after resampling for each iteration.

In Fig. 6, it is shown how the 3rd stage GMF (20 9 HSS) is in fact the 113th
harmonic of a speed around 4.18 Hz. Figure 6b shows a family of sidebands
around the 3rd stage GMF spaced at around the 4.18 Hz [believed to be that of the
intermediate shaft speed (ISS)]. It can also be seen from Fig. 6c that the 25th
harmonic of this ISS aligns with the suspected 2nd stage GMF. A zoom-in around
the 3rd stage GMF shows how 113 9 ISS aligns perfectly with the 3rd stage GMF.
Note that Figs. 5 and 6 are exactly the same spectrum with the same adjustment of
the cursor. Zooming-in the spectrum to adjust the harmonic cursor was performed
to give the necessary alignment and fine tuning. Tiny adjustments of the cursor
cause some harmonics to lose alignment.

In Table 1, the harmonics based on the two identified fundamental frequencies
of the HSS and the ISS obtained from Figs. 5 and 6 respectively are shown to 11
figure accuracy. The 20 9 HSS and the 113 9 ISS are seen to be the same up to
the seventh decimal figure indicating an accuracy of 1:1010. The number of figures
shows how accurate the harmonic cursor can be after order tracking and gives the
confidence in the number of teeth for the pinion and gear of the 3rd stage. The ratio
20 9 113 is hunting tooth. The closest other harmonics can come is
1/(20 9 113) = 1:2260 (compared with 1:1010).
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Table 1 HSS harmonics (17–23) and ISS harmonics (105–120)

Harmonic
number

Frequency
(Hz)

Harmonic Frequency
(Hz)

17 401.30507768 105 438.69893970
18 424.91125872 106 442.87702484

HSS
fundamental

19 448.51743976 107 447.05510998

23.60618104 20 472.12362080 108 451.23319512
21 495.72980184 109 455.41128026
22 519.33598288 110 459.58936540
23 542.94216392 111 463.76745054

ISS
fundamental 112 467.94553568

4.17808514 113 472.12362082
114 476.30170596
115 480.47979110
116 484.65787624
117 488.83596138
118 493.01404652
119 497.19213166
120 501.37021680
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The numbers of teeth for the second stage pinion (thought to be 25: see Fig. 6c)
and matching sun shaft wheel (71) as well as the planetary stage are shown in
Table 2. The bases for filling in the rest of Table 2 are explained using Figs. 7, 8, 9
and 10. This parallel stage is also hunting tooth, and 1/(m 9 n) is 1:1750.

Another series of harmonics was sought for the sun gear shaft, which should
also have the 2nd GMF (104.45 Hz) as a member. In order to do this, the signal
was order tracked again, but this time by demodulating a band around the 2nd
GMF [a band taken between 104.53 Hz and 104.78 Hz, with the centre frequency
being 104.67]. Figure 7 shows the 2nd GMF before and after the order tracking.
Order tracking gives a more definite peak at the expected 104.45 Hz peak rather
than at around 104.67 before the order tracking.

Figure 8a, c–e show the series of harmonics at 1.4711567 Hz with the 2nd gear
mesh frequency as harmonic No. 71, and including a number of sidebands around
the gear mesh frequency. Note also that there is a pair of strong sidebands spaced
at about 0.902 Hz (Fig. 8b), with others at 1/3 of this spacing. These sideband
families are however not sub- harmonics of the gear mesh frequency, and are
suspected to be the input shaft speed (0.30 Hz) and its third harmonic the planet

Table 2 Estimated shaft and gear mesh frequencies (for generator mean speed
23.606 Hz)

Gear Parameter Identification in Wind Turbines 281



pass frequency (0.90 Hz). It is thus thought that the sun gear speed is 1.4711 Hz.
Note that the HSS is roughly around, but not exactly 16 9 Input Shaft Speed.

Figure 9 lends weight to the theory that the input speed is 0.30 Hz, by showing
some of the harmonics of a series spaced at 0.90 Hz (Nos. 28, 29, 30 and 57, 58,
59, respectively). Harmonics 29 and 58 have sub-harmonics at 1/3 of the spacing
as well.

It remains to find the details of the gears in the planetary section. These are
subject to considerable restraint, as follows. If S, P, and R are the numbers of teeth
on the sun, planet and ring gears, respectively, then in general the following
equations should be satisfied:

R ¼ Sþ 2P ð1Þ

and either, R and S must be both divisible by 3 (simultaneous meshing with all
planets) or the sum of R and S must be divisible by 3 (offset meshing of the
planets). By trial and error, the set of gears indicated in Table 2 were arrived at;
viz. R = 105, P = 39 and S = 27. These satisfy the rules given above, and also
give approximately the right gear ratio. The overall ratio of the gearbox with the
parameters in Table 2 is 78.447, whereas the actual is thought to be 78.472. It must
be admitted that the hypothetical planetary section is the least likely to be correct,
as little evidence could be found to confirm the details. For example, the planetary
gear mesh frequency (31.59 Hz in Table 2) could not be located with certainty.
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Figure 10 shows the harmonics of input speed 0.300 Hz, including the possible
planet gear mesh frequency No. 105, but this is very low. On the other hand, every
third harmonic to the left is well represented (some quite strong) and this some-
times occurs with planetary gears (i.e. the sidebands adjacent to the gear mesh
frequency are stronger than the gear mesh itself) [McFadden]. Another point is that
not all planetary gear sets obey the rules of Eq. (1), as other possibilities can be
accommodated by addendum/dedendum modification. Even so, it is believed that
there is strong evidence that at least the parallel section has been identified
correctly.

5 Conclusions

This chapter has discussed the case of a blind determination of the numbers of
teeth of a wind turbine gearbox with no speed signal reference, even in a variable
speed situation. A four stage approach has been presented. In the first stage, the
acceleration signal measured on the gearbox was decimated to allow analysis of
the longer records. The second stage utilized a Short Time Fourier Transformation
(Spectrogram) to observe the speed variation within the measured record and
decide on a part where speed variation is small. Order tracking was used in the
third stage to remove speed fluctuations from the signal and enable the tuning of
harmonic/sideband cursors to an extremely high accuracy for a confident analysis.
Finally harmonic/sideband cursors were used to track the different families and
sidebands around the gear mesh frequencies to discover the numbers of teeth on

24 25 26 27 28 29 30 31 32 33

-25

-20

-15

-10

-5

0

5

10

Frequency (Hz)

Po
w

er
 S

pe
ct

ru
m

 M
ag

ni
tu

de
 (

dB
)

Harmonic Spacing at :    0.3009165996 Hz

84

90

87

102

105

108

Fig. 10 Harmonics of 0.0.3009 Hz, including planetary gear mesh No.105

284 N. Sawalhi and R. B. Randall



each gear. Results indicated the ability to identify the numbers of teeth for the two
parallel stages with much more confidence than for the planetary stage, where a
trial and error approach was used to decide on the most likely combination for the
ring, sun and planet gears.
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Phase Monitoring by ESPRIT with Sliding
Window and Hilbert Transform for Early
Detection of Gear Cracks

Thameur Kidar, Marc Thomas, Mohamed Elbadaoui
and Raynald Guilbault

Abstract The detection of cracks in gears may be considered as among the most
complicated operations in the diagnosis of this type of machines. This paper
presents the crack signature in the vibration signal through a numerical model.
Then, a comparison of phase analysis is conducted between the phase estimated by
the Hilbert method and the proposed technique Estimation of Signal Parameters
via Rotational Invariant Technique (ESPRIT) by using a sliding window. This
comparison was made on signals coming from both a numerical model of a
cracked tooth and a multiplicative signal modulated in frequency. The proposed
method gives very interesting results despite the existence of the amplitude
modulation generated by the transmission error of the gear model.
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1 Introduction

The transmission of power by using gearboxes is present in almost all rotating
machinery. We find them in most industrial sectors such as gearboxes of vehicles,
aircraft engines and wind turbines. A lot of researchers are still interested in
detecting gear degradation [1]. About the existing methods for the diagnosis of
gears damage, the vibration monitoring is considered the most commonly used.
Several algorithms have been developed to process the data acquired from sensors
to detect vibration damages occurring at the level of teeth. Vibration analysis is
often based on Fast Fourier Transform (FFT) to detect common faults (unbalance,
misalignment, blade pass, shocks etc.) [2]. However, this classic approach is
somewhat limited because it is not reliable to describe non-linearity introduced by
wear or defects and may be asked for a high frequency resolution. Other tech-
niques have been proposed to solve some of these problems, such as we find the
time-frequency analysis (spectrogram, wavelets…) [3, 4] or high-resolution
techniques (MUSIC, ESPRIT, WSF…) [5–7]. When cracks appear, they generate
phase variations, non stationary vibrations, amplitude and frequency modulations
[8, 9] that affect the modal properties [10] and that are not easy to detect. In order
to understand the behavior of a cracked tooth and its vibratory signature, a gear
tooth has been modeled to define its gear meshing stiffness [11]. For processing the
signals resulting from these models, the technique of high-resolution ESPRIT [12]
which allows for estimating the frequency components and their energies from
vibration signals is used in this paper. In order to monitor the phase variation in
time due to the cracks, a sliding window is introduced in this paper. Then, the
results are compared to those obtained from the instantaneous phase calculated by
the Hilbert technique. Since amplitude and frequency modulations appear, a
multiplicative signal with frequency-modulation is first used to analyze the phe-
nomenon of amplitude modulation. In the next section, we present the numerical
model of a cracked tooth and the resultant vibratory signals. Then, in Sect. 3, we
present the formulation of the data model. Next, we discuss the high-resolution
ESPRIT technique with the sliding window in Sect. 4. In Sect. 5, we present the
estimation of phases by the Hilbert method. Then, we performed a comparison
between the ESPRIT and the Hilbert technique for estimating the phases of the two
models in Sect. 6. Finally, we discuss the results and we present the conclusions in
Sect. 7.

2 Tooth Crack Modeling

To understand and develop a model for the stiffness variation due to the crack, the
tooth is considered as a beam with a breathing crack [8]. The tooth sections are
2.88 9 20 mm with a length of 6 mm. The application of a harmonic force on the
tooth (Fig. 1) generates oscillations with compressive and traction stresses.
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In compression, the crack is closed and the structure behaves like a healthy
tooth. In traction the crack is opened. Consequently, the rigidity decreases as a
function of time [8]. From Eq. (1), the variation in the stiffness may then be
expressed as:

k tð Þ ¼ k0

k0 þ dk sin 2pt
T

� � if t\T=2
if t� T=2

�
ð1Þ

where

• T is the period of gear meshing (7.5E–3 s).
• k0 represents the mean stiffness for an intact tooth (1.1*E8 N/m).
• dkð1:25E7 N=mÞ is the amplitude of the stiffness variation due to the crack

(11.4 %).

This model was validated by measurements in previous studies [9]. The values
of the cracked tooth stiffness were extracted from finite element simulations [11]. By
assuming a one degree of freedom system, the equation of motion gives a non
stationary behavior after introducing the non-linear variation of stiffness, as follows:

0:396€x tð Þ þ 1744:1 _x tð Þ þ ð1:1E8þ 1:25E7 sin 8325:22tð ÞÞx tð Þ ¼ F tð Þ ð2Þ

The variation of stiffness leads to a variation of the natural frequency and the
critical damping, and thus the damping rate. Figure 2 shows the variation of the
stiffness, the natural frequency and the damping rate in function of time.

The variations due to the presence of a breathing crack have thus an influence
on the modal properties of the tooth, and their effect on the vibratory response. The
non linearity generates harmonics of the excitation frequency. When exciting
harmonically a structure at a frequency equal to half its natural frequency,
amplitude of the second harmonic is thus amplified by the coincidence with the
resonance (Fig. 3).

This results in amplitude and frequency modulations [8]. The crack generates a
variation in the instantaneous phase and thus a variation of the natural frequency of
the tooth. Figure 4 shows the phase shift of the acceleration signal between the
healthy tooth and a defective one.

Fig. 1 Principle of the breathing crack
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Fig. 2 Variations of the dynamic properties of a breathing cracked tooth

Amplitude 
modulation

Harmonic 
excitation

2ndharmonic=resonance

Frequency modulation

Fig. 3 Amplitude and
frequency modulation due to
a breathing crack
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3 Data Model Formulation

This part is aimed to define the problem for estimating the frequencies of d com-
plex sinusoids Sk tð Þ of the form: Sk tð Þ ¼ akejðwktþukÞ, where ak is the real amplitude
of the sin wave, xk is the searched frequency, and uk is the initial phase. We
assume that N samples are available from a noisy measurement zðtÞ defined as:

z tð Þ ¼
Xd

k¼1
SkðtÞ þ b tð Þ; t ¼ 1; . . .;N ð3Þ

The vector bðtÞ presents a complex noise, zero mean and Gaussian random
vector with E b tð ÞbHðtÞ½ � ¼ r2Im, where Im is a m� mð Þ identity matrix. As it
intends to apply a subspace approach [6, 7] in the vibration domain whereas only
one sensor is used, we define a data vector y(t) viewed as a windowed partition of

the whole data set acquired, where y tð Þ ¼ ðz tð Þzðt þ 1Þ � � � zðt þ m� 1ÞÞT , with m
is the window length. The signal may hence be represented accordingly with the
so-called matrix form:

y tð Þ ¼ ASx tð Þ þ bðtÞ ð4Þ

where

A ¼

1 � � � 1

ejx1 � � � ejxd

..

. ..
. ..

.

ejx1ðm�1Þ � � � ejxdðm�1Þ

2
66664

3
77775;

S ¼ diag a1eju1 ; � � � ; adejud
� �

; and x tð Þ ¼ ejx1t; � � � ; ejxd t
� ffiT

:

For subsequent use and simplifying notation, let us define L ¼ N � mþ 1.
Finally, the L data windowed vectors yðtÞ are stacked such as

Fig. 4 Responses of the healthy and defective teeth
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Y tð Þ ¼ y tð Þ; � � � ; yðt þ LÞ½ �. Each elements of one column of BðtÞ ¼
b tð Þ; � � � ; bðt þ LÞ½ � are independent whereas the columns are mutually correlated

(with respect to the window length). We also point that the matrix A could be re-
written in a centro-symmetric manner without loss of generality. The covariance
matrix of the observed data is usually estimated by means of temporal averaging

leading to R̂ tð Þ ¼ 1
L

PL�1

k¼0
y kð ÞyH kð Þ when the complex random vectors are reputed

proper. We suggests in this section a classical rotational invariance technique
applied to the model (4) supposed to have a better performances for estimation of
frequencies and phases.

4 ESPRIT Approach

The ESPRIT approach is based on the exploitation of the subspace signal of the
autocorrelation matrix R̂ðtÞ. This could be obtained by an Eigen- or singular value
decomposition of R̂ðtÞ. When using this technique, we have:

A#SD ¼ A"S ð5Þ

with D ¼ diagðejx1 ; � � � ; ejxdÞ and for any matrix B, the subscript :# means the
elimination of the last row of B and the subscript :" means the elimination of the
first row of B.

To improve the calculation time of this algorithm, [13] suggests a basic
selection matrix based on Kronecker product for eliminating the appropriate rows.

Let:

R̂ ¼ ÊsR̂sÊ
H
s þ ÊbR̂bÊH

b ð6Þ

be an Eigen-decomposition of R̂ where R̂s is a diagonal matrix which carries the
d largest eigenvalues, and columns 2m 9 d of Ês correspond to their eigenvectors.

In the same way, R̂b contains the 2m� dð Þ remaining eigenvalues and the
columns of Êb are the associated eigenvectors. A rough estimation of the noise

variance is given by r̂2 ¼ 1
2m�d Trace R̂b

� ffi
. In this position, we can now rewrite the

system (5) as follows:

Ês#Û ¼ Ês" ð7Þ

The Û matrix can be estimated by the Least Squares approach and the d fre-

quencies are next achieved by taking the argument of the eigenvalues of Û. On
other hand, the matrix Ŝ can be estimated as follows:

Ŝ ¼ AHA
� ��1

AH
� �

:y ð8Þ
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To well estimate the instantaneous phases by this technique, we propose to use
a sliding window with a step of Dt along the signal (Fig. 5). For each window, we
firstly estimate the desired frequency and then its phase by:

uk ¼ angle dkð Þ ð9Þ

where dk ¼ akejuk represent the elements of the first column of the matrix Ŝ given
on (8). This will allow for controlling the slightest variation in the phase.

5 The Phase of Hilbert

Hilbert transforms are essential in understanding many modern modulation

methods. Let xðtÞ denote a real signal and x
^ðtÞ its Hilbert transform. The analytic

signal of xðtÞ as proposed by [13] is given by:

xasðtÞ ¼ xðtÞ þ jx
^ðtÞ; where j ¼

ffiffiffiffiffiffiffi
�1
p

: ð9Þ

The amplitude modulation (AM), phase modulation (PM) and frequency
modulation (FM) are obtained by:

A tð Þ ¼ xasðtÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ jx

^2ðtÞ
q

ð10Þ

h tð Þ ¼ tan�1 x
^ðtÞ
xðtÞ

 !
ð11Þ

x tð Þ ¼ o h tð Þð Þ
ot

ð12Þ

where tan�1 :ð Þis the inverse of the tangent function, which gives the phase values
in the range �p;þp½ �:

Fig. 5 Sliding window to
estimate the instantaneous
phase of the signal
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In our study, we are only interested in the formulas (11) and (12) for the
estimation of the instantaneous phases and frequencies.

6 Numerical Analysis

In this section, we present some theoretical numerical simulations to illustrate the
performance of the technique ESPRIT with a sliding window for the estimation of
phases and detecting cracks.

6.1 Phase Analysis of a Multiplicative Signal with Amplitude
and Frequency Modulation

In order to investigate the efficiency of both methods (ESPRIT and Hilbert) when
amplitude and frequency modulations are both presents, a multiplicative signal
which has the same spectral shape than gear signals, has been generated. Consider
a multiplicative signal as follows:

G tð Þ ¼
Xþ1

n¼�1 Geð t � nseð Þ þ ;1ðtÞÞ
� �

1þ
Xþ1

m¼�1 Gr1ððt � msr1Þ þ ;1ðtÞÞ
�

þ
Xþ1

p¼�1 Gr2ððt � psr2Þ þ ;1ðtÞÞ
�

ð13Þ

where se, sr1 and sr2 represent the meshing period and the rotational periods of the
two wheels, respectively. Ge tð Þ;Gr1 tð Þ and Gr2 tð Þ represent the meshing signal and
the modulation caused by the two wheels, respectively. ;1 tð Þ is a square wave
which has the same pulsation than the defective pinion Gr1 tð Þ.

The variation of the phase depends on b ¼ T0
Tr1
; where T0 is the opening time of

the crack and Tr1 presents the period of the pinion.;1 tð Þ will affect the meshing
phase and the phase of the second wheel.

Figure 6a shows the instantaneous phase of the multiplicative signal, estimated
by Hilbert when amplitudes of Gr1 and Gr2 are negligible (no amplitude modu-
lation). Figure 6b shows the instantaneous phase when there only is an amplitude
modulation.

The results show that the Hilbert technique gives a good estimation of the
variation of the phase, which is corresponding to the period of the pinion (presence
of crack), when the signal is only modulated in frequency. However, when the
signal is also modulated in amplitude, it is more difficult to identify this frequency.
On the other hand, Fig. 7 presents the results obtained by ESPRIT with a sliding
window when both amplitude and frequency modulations are present. Despite the
existence of amplitude modulation in this case, ESPRIT clearly illustrates the
variation of the instantaneous phase unlike the method of Hilbert.
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6.2 Phase Analysis of a Breathing Cracked Tooth Model

By applying the principle to the cracked tooth model as described in Fig. 3, the
tooth has been harmonically excited to half of its natural frequency 1325 Hzð Þ. The
second harmonic which corresponds to the natural frequency is subjected to
amplitude modulation and the variation of natural frequencies between
2350–3120 Hz with a mean value at 2650 Hz, produce frequency modulations.

Figure 8 presents the behavior of phases obtained through Hilbert transform
(Eq. 11) for the case of intact tooth (Fig. 8a) and its FFT (Fig. 8b). It can be

(a)

(b)

Fig. 6 Phase estimation by Hilbert for signal: a without amplitude modulation b with amplitude
modulation

Fig. 7 Phase estimation by
ESPRIT with sliding window,
of a signal modulated in
amplitude and frequency
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noticed the frequencies of (1325, 2650 Hz) corresponding to the excitation and the
resonance respectively. When a crack is present, the FFT of the defect tooth
(Fig. 8d) shows several harmonics to the excitation frequency, with higher
amplitudes and the phase is harmonically modulated (Fig. 8c).

On the other hand, Figs. 9 and 10 show the phases as computed by ESPRIT
with a sliding window and its FFT respectively for the intact tooth. Figure 9 shows
the phase with constant amplitude and Fig. 10 only exhibits the mean natural
frequency (2650 Hz). For the case of cracked tooth, Fig. 11 shows the phase with a
large variation in amplitude and Fig. 12 shows the amplitude modulation around
the resonance frequency due to the crack. Figure 10 exhibits the natural frequency
when there is no crack while the natural frequency is modulated by the excitation
frequency (Fig. 12) when a crack is present. In this last case, the amplitude at the
natural frequency decreases with the crack depth while it increases at its modu-
lation frequency as it is generally the case when investigation a phase modulation.

Fig. 8 Instantaneous phases by Hilbert Transform: a and b Intact tooth and its FFT. c and
d Cracked tooth and its FFT
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Fig. 10 FFT of the phase
estimated by ESPRIT (intact
tooth)

Fig. 11 Phase estimation by
ESPRIT with sliding window
(cracked tooth)

Fig. 9 Phase estimation by
ESPRIT with sliding window
(intact tooth)

Phase Monitoring by ESPRIT with Sliding Window and Hilbert Transform 297



7 Conclusion

This study is aimed to investigate the efficiency of Hilbert and ESPRIT methods to
detect a breathing crack in gearboxes. It is shown that a breathing crack affect the
stiffness of the tooth, which produce non linearities. Since the non-linearity gen-
erates harmonics of the excitation frequency, a natural amplification is obtained by
harmonically exciting the tooth at half of its natural frequency. This results in
amplitude and frequency modulations at the second harmonic which affect the
efficiency of diagnostic when applying usual methods (FFT, etc.). By generating
an analytical signal with and without amplitude modulation, the application of
Hilbert transform for the estimation of the instantaneous phase has proven reli-
ability only if the signal was not amplitude modulated. The ESPRIT method
revealed in this case to be efficient even the signal is modulated in amplitude and
frequency. However, it is well known that the transmission error in gears produce
amplitude modulation. Consequently, it is not possible to practically separate these
two modulations. ESPRIT technique with the sliding window has been able to
distinguish the variation of the instantaneous phase, due to the opening and closing
of the crack, despite the presence of the amplitude modulation. On the other hand,
the Hilbert transform has been efficient to detect the phase variation due to the
crack but it can’t distinguish the amplitude modulation. These two methods should
be therefore considered in Structural Health Monitoring (SHM) of gears.
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Performance of Time Domain Indicators
for Gear Tooth Root Crack Detection
and Their Noise-Sensitivity

Omar D. Mohammed and Matti Rantatalo

Abstract There are different statistical fault detection indicators applied in the
time domain to detect crack propagation in the gear tooth root. ‘TALAF’ and
‘THIKAT’ are two newly presented indicators which have been designed and
recommended to improve the performance of ball bearing fault detection after a
certain stage of degradation. This chapter studies the performance of these two
new indicators, together with the RMS, kurtosis and crest factor indicators, in the
context of detecting faults in the gear tooth root. The chapter also presents an
investigation of the performance of these indicators in the presence of three levels
of random background noise. Gear mesh stiffness calculations and dynamic sim-
ulation have been performed using MatlabTM to obtain the residual gear centre
point displacement signals for different crack propagation cases. The simulations
indicate that the RMS and kurtosis perform well for crack depths up to approxi-
mately 50 % of the tooth root thickness. Kurtosis and THIKAT show the most
sensitive performance with an increasing noise level.
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1 Introduction

Applying fault detection indicators on the obtained vibration signal is considered
as an efficient tool for detecting the faults or damages existing in gears, and then
giving a warning as early as possible [1].

Background noise due to random impulses has an influence on the values of
fault detection indicators [2]. There are different methods for de-noising,
but there is still a possibility of some amount of background noise
remaining. Actually, this depends on the accuracy of the de-noising method
used.

Wu et al. [3] concluded that the residual signal is more sensitive for fault
detection. The RMS is the best indicator when using the residual signal and
kurtosis is the most robust indicator for all kinds of signals used. Chen and Shao
[4] presented an analytical approach to modelling crack propagation with a non-
uniform parabolic distribution. They studied the effect of the size of a crack
propagating along the tooth width and the crack depth on the statistical indicators
(the RMS and kurtosis). Many research studies have been conducted to study
fault detection in ball bearings. The sensitivity of the scalar indicators (the crest
factor and kurtosis) was investigated by Dron et al. [2], who studied the per-
formance improvement of these indicators by applying a method of de-noising to
reduce the background noise in the measured vibration signal. A comparison of
three de-noising methods was presented in [5] for improvement of the sensitivity
of the scalar indicators (the crest factor and kurtosis) which are used in detecting
bearing defects. There are differences in the effectiveness of the de-noising
methods implemented, and the existence of a certain amount of remaining
background noise due to random impulses has an effect on the values of the scalar
indicators.

The sensitivity of fault scalar indicators for bearing defects was analysed by
Sassi et al. [6], who showed that ordinary time indicators can be used for the
early prediction of a fault up to a certain stage of degradation. Thus these
indicators become less sensitive as the damage increases and becomes very
severe. To improve bearing fault diagnosis up to the level of probable cata-
strophic failure, the authors developed two new indicators called TALAF and
THIKAT, which combine the ordinary indicators. However the performance of
these new indicators in detecting gear tooth root cracks has not been
investigated.

The current chapter studies the performance of these two new indicators,
together with the RMS, kurtosis and crest factor indicators, in detecting gear
tooth root cracks with and without the presence of random noise.
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2 Gear Mesh Stiffness Modelling with a Crack in the Tooth
Root

Different crack propagation scenarios were studied in (Mohammed et al. Sub-
mitted), where it was found that the crack model of a constant crack depth along
the whole tooth width showed the most significantly increased performance for the
RMS and kurtosis. Accordingly, to study how the indicator performance decreases
with an increasing noise level, it is more meaningful to consider the crack prop-
agation scenario where these indicators have shown the most significant perfor-
mance. Therefore, in the current study the calculation model presented in [4] was
applied under the assumption that the crack extended through the whole tooth
width with a constant crack depth, as explained in Fig. 1.

3 Analytical Crack Propagation Model

The propagation case data of the crack propagation scenario which was considered
in our analysis are explained in Table 1. The crack level CL represents the crack
depth as a percentage to the root tooth thickness. A program was developed using
MatlabTM to investigate the time-varying mesh stiffness for two gears in contact.
The stiffness of a cracked tooth with a uniform crack distribution could be
investigated as illustrated in Fig. 2.

Fig. 1 Modelling of gear tooth crack. a Modelling of cracked tooth. b Tooth notation. c Uniform
crack distribution
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4 Gear Dynamic Modelling

A single-stage spur gear model was adopted in the present research work for
simulations performed to investigate the time-varying gear mesh stiffness of two
mating gears. The main gear modelling parameters that were used in the study
were taken from Chaari et al. [4, 7], and can be seen in Table.

A dynamic simulation of a 6 DOF model was performed based on the time-
varying mesh stiffness model which was explained earlier. Figure 3 shows the
dynamic model which was used in the present research study and which was
adopted in Chen and Shao [4, 8, 9]. A MatlabTM computer simulation using the
ODE45 function was used for modelling the equations of motion. The dynamic
simulation was performed for the healthy case, after which the simulation was
repeated to extract the dynamic behaviour for the faulty cases corresponding to the
crack sizes (Table 2).

Table 1 Case data of the crack propagation scenario applied

Case qo = q2 (mm) CL % Case qo = q2 (mm) CL %

1 0 0 11 0.9 24.19 Wc ¼W

ac ¼ 70�2 0.05 1.34 12 1.0 26.88
3 0.1 2.68 13 1.1 29.56
4 0.2 5.37 14 1.2 32.25
5 0.3 8.06 15 1.3 34.94
6 0.4 10.75 16 1.4 37.63
7 0.5 13.44 17 1.5 40.32
8 0.6 16.12 18 1.6 43.01
9 0.7 18.81 19 1.7 45.69
10 0.8 21.50 20 1.8 48.38

Fig. 2 The resultant time-varying gear mesh stiffness
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5 Statistical Fault Detection Indicators

Statistical indicators which are commonly applied to the obtained signal
permit efficient fault detection, which is necessary to prevent a sudden breakage
in the machinery system. In the current study, the indicators applied to
the obtained signal are the RMS, kurtosis, the crest factor, TALAF and
THIKAT.

Fig. 3 Dynamic model of a
reduction gear system with 6
DOF

Table 2 Parameters of gear-pinion set [4, 7]

Parameter Gear Pinion Parameter Gear Pinion

Number of teeth 30 25 Mass (kg) 0.3083 0.4439
Module (mm) 2 2 Mass moment of inertia

(kgm2)
0.96 9 10-4 2 9 10-4

Teeth width
(mm)

20 20 Radial stiffness of the bearing
in x, y direction (N/m)

6.56 9 108 6.56 9 108

Contact ratio 1.63 1.63 Radial damping of the bearing
in x, y direction (N/m)

1.8 9 103 1.8 9 103

Rotational speed
(rpm)

2,000 2,400 Coefficient of friction 0.06 0.06

Pressure angle
(degree)

20 20 Total damping between
meshing teeth (Ns/m)

67 67

Young’s
modulus, E
(N/mm2)

2 9 105 2 9 105 Poisson’s ratio 0.3 0.3
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The RMS is considered as one of the basic statistical indicators that measure the
energy level of a signal. The RMS can be defined as follows [1]:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1

ðx nð ÞÞ2
vuut ð1Þ

In the case where the mean value of the signal is not zero, the RMS indicator
can be obtained as follows [3]:

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1

ðx nð Þ � �xÞ2
vuut ; where x ¼ 1

N

XN

n¼1

x nð Þ: ð2Þ

Kurtosis is an indicator which measures the degree of peakiness of a distri-
bution and describes the signal shape as compared to the normal distribution. The
kurtosis value depends on the distribution tail length, so that the kurtosis value of
the residual signal is much higher than that of the original signal. The kurtosis
indicator can be defined as follows [1, 3]:

Kur ¼
1
N
PN

n¼1ðx nð Þ � �xÞ4

1
N
PN

n¼1ðx nð Þ � �xÞ2
h i2 ð3Þ

The crest factor is the ratio between the maximum absolute value reached by
the signal and the RMS of the signal. This indicator gives an idea as to whether
any impacting can exist in the signal [1].

CF ¼ max xðnÞj j
RMS

ð4Þ

TALAF is a new indicator developed by Sassi et al. [6] and combining the RMS
and kurtosis.

TALAF ¼ log Kurþ RMS
RMSh

� �
; where RMSh is for healthy case: ð5Þ

THIKAT is a new indicator developed by Sassi et al. [6] and combining the
RMS, kurtosis, the peak, and the crest factor.

THIKAT ¼ log ðKurÞCF þ RMS
RMSh

� ffipeak
" #

ð6Þ
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6 Results and Discussion

To study the influence of the remaining background noise on the five indicators’
performance, we introduced three levels of noise with the SNR values 21.54, 13.11
and 8.85 dB, with respect to the original signal without any crack. These assumed
noise levels were added to the simulated signal, and then the statistical indicators
were calculated every time to investigate how the indicator sensitivity was affected
by the noise level. In reality the background and measurement noise could differ
from the assumed Gaussian noise used in this study. This could affect the fault
detection abilities of the indicators if the noise has a time varying property. In this
study the effect of time varying noise is not considered.

Fig. 4 One revolution of the residual signal for different crack seizes and noise levels. a Crack
depth 0.6 mm. b Crack depth 1.2 mm. c Crack depth 1.8 mm
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Fig. 5 Changes in the performance of the fault detection indicators with the crack propagation
for the studied noise cases
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Figure 4 shows the residual signals for three crack sizes, and for each crack size
the effect of the four noise cases studied is given. Figure 5 shows the performance
of the indicators for the no-noise case and the other three cases of added noise. For
the no-noise case, the RMS performed very well and increased significantly,
furthermore in the 1st noise level it could give an indication at a crack level of
around 20 %. On the other hand kurtosis and the other indicators which depend on
kurtosis showed a better and more significant performance in the 1st case of noise
than in the no-noise case. The reason for this is that, for the residual signal in the
case where an amount of random noise is added, there is a random signal with a
normal distribution lying on the entire resultant residual signal. Thus the kurtosis
starts with the value 3 and then starts increasing significantly as the spikes become
stronger with the fault propagation. However, for the no-noise case there is defi-
nitely no random signal, and then the kurtosis value will rapidly be changed from
zero for the healthy case to a higher level when a crack is started.

Kurtosis performed well and gave a significant indication especially in the 1st
noise level, where the fault could be detected at a crack level of around 15 %. With
an increase in the background noise being added to the signal, the indicator per-
formance was affected correspondingly. In the 3rd noise level it was hard to detect
the fault within the early stage, and it is obvious that the performances of all
indicators deteriorated as can be seen in Table 3.

The plots show that the applied indicators kept performing normally and there
was no particular stage in which their performances start decreasing. THIKAT
performed well and better than the crest factor according to Table 3.

7 Conclusions

The two new indicators, TALAF and THIKAT, are applied together with the RMS,
kurtosis and crest factor indicators for gear tooth fault detection up to approxi-
mately 50 % crack level. The plots resulting from the simulations performed in the
present study show that kurtosis, the crest factor and the RMS kept performing
normally and there was no particular stage in which their performances start
decreasing like in the bearing case reported in [6]. Therefore, there is no limitation
for using these indicators for gear fault detection. Kurtosis and THIKAT, as seen
in Figure 5, show the most sensitive performance with an increasing noise level.
However the Crest factor seems to be able to react on cracks in an early stage in
the case of noise level 1.

Table 3 Percentage increases of the studied indicators obtained for the larger studied crack size

RMS (%) Kurtosis (%) Crest factor (%) THIKAT (%) TALAF (%)

No-noise 7,211.56 31.03 1.44 9.15 32.66
1st noise level 147.93 1,032.7 120.19 603.49 60.52
2nd noise level 30.91 264.32 81.48 292.91 80.44
3rd noise level 13.17 67.33 42.02 108.33 31.04
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Practically there is a possibility of some amount of background noise remain-
ing. With an increase in the background noise being added to the signal, the
indicator performance was affected correspondingly. In the 3rd noise-level case it
was hard to detect the fault within the early stage, and it is obvious that the
performances of all the indicators deteriorated.
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Cepstral Removal of Periodic Spectral
Components from Time Signals

Robert B. Randall and Nader Sawalhi

Abstract The use of the cepstrum for removing components from a signal which
manifest themselves as periodic spectral components has previously been descri-
bed. These include discrete frequency components with uniform spacing such as
families of harmonics and modulation sidebands, but also narrow band noise peaks
coming from slight random modulation of almost periodic signals, such as higher
harmonics of blade pass frequencies. The removal is effected by applying a notch
‘‘lifter’’ to the real cepstrum of the signal, thus removing the targeted components
from the log amplitude spectrum, and then combining the modified amplitude
spectrum with the original phase spectrum. Not much attention was previously
paid to the type of notch lifter, but two different situations occurring in conjunction
with analysis of signals from wind turbines showed that different lifters have
advantages in different situations. This chapter describes two different approaches,
illustrating them with the two examples of application.

Keywords Cepstrum � Harmonic removal � Sideband removal � Notch lifter �
Wind turbines

R. B. Randall (&)
School of Mechanical and Manufacturing Engineering, University of New South Wales,
Sydney 2052, Australia
e-mail: b.randall@unsw.edu.au

N. Sawalhi
School of Mechanical Engineering, Prince Mohammad Bin Fahd University, Al Khober
31952, Kingdom of Saudi Arabia
e-mail: nsawalhi@pmu.edu.sa

G. Dalpiaz et al. (eds.), Advances in Condition Monitoring of Machinery
in Non-Stationary Operations, Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-39348-8_26, � Springer-Verlag Berlin Heidelberg 2014

313



1 Introduction

The cepstrum is the inverse Fourier transform of a log spectrum, and thus con-
centrates periodic spectrum components, such as families of equally spaced har-
monics and sidebands into a small number of components called ‘‘rahmonics’’ in
the cepstrum. There are a number of types of cepstrum, but the most common are
the complex cepstrum, formed from the complex spectrum, with both log ampli-
tude and phase, and the real cepstrum (or power cepstrum) formed from the log
amplitude only [2]. Because the complex cepstrum includes the phase of the
spectrum, it is possible to reverse the whole procedure back to the time domain
after editing (or ‘‘liftering’’) in the cepstrum. However, to calculate the complex
cepstrum requires that the phase be ‘‘unwrapped’’ to a continuous function of
frequency, and this is only possible for well-behaved functions such as frequency
response functions, for which the phase is continuous and then only if the log
amplitude stays within the dynamic range of the measurement.

Phase unwrapping is not possible for stationary signals, either forcing functions
or responses, since by definition these consist of (mixtures of) discrete frequency
components, for which the phase is undefined between the components, and sta-
tionary random components for which the phase varies randomly from one fre-
quency to the next.

However, it was recently shown [5] that the log amplitude spectrum of sta-
tionary signals can be edited using the real cepstrum, and then the edited spectrum
amplitudes combined with the original phase spectrum to return to the time
domain. The procedure is illustrated in Fig. 1. This can be done for example to
remove a family of discrete frequency components, since these occupy only a
small proportion of the total spectrum. The phase will be incorrect at the fre-
quencies where the amplitudes are edited, but the latter will typically be greatly
reduced to the level of adjacent noise components, and are much fewer in number,
so the effects of such disturbance are often negligible.

Figure 2 shows a typical result [5] using the described method to remove all
shaft harmonics (including gear mesh components) from the signals from a
gearbox with a faulty bearing, where the result is almost as good as that obtained
by removing the synchronously averaged signal, synchronized with the shaft
rotational speed (only one average was required because the gear ratio was 1:1).
Even though the residual signal containing the effects of the bearing fault was
slightly noisier for the cepstral method, the envelope analysis for diagnosis of the
bearing fault was equally good.

In order to remove the harmonic/sideband family from the log amplitude
spectrum, a notch lifter must be applied to the cepstrum, and this chapter discusses
the different ways in which this can be done.
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Fig. 1 Schematic diagram of the cepstral method for removing selected families of harmonics
and/or sidebands from time signals
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Fig. 2 Time domain signals for gearbox test rig. a Raw signal. b Residual signal (after removing
the synchronous average). c Residual signal after editing the Cepstrum to remove the shaft
rahmonics
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2 Applying a Notch Lifter in the Cepstrum

2.1 Notch Lifter Type 1

One of the first applications of a notch lifter to the cepstrum was to remove
rahmonics corresponding to an echo. Figure 3 shows a typical lifter used to
remove the effects of a ‘‘double hit’’ with an impact hammer [3]. In principle, the
effects of an echo in the log spectrum are to give an additive periodic component to
the log spectrum, which translates into a series of discrete rahmonics in the cep-
strum. However, these would only occupy single lines if the frequency range of the
whole (2-sided) spectrum corresponded to an integer number of periods of this
frequency spacing (the reciprocal of the echo delay time T), and in general it
doesn’t. Consequently, the cepstrum is convolved with the Fourier transform of a
rectangular window, (a sinc function) and to remove all discrete rahmonics a notch
window with a width corresponding to the effective width of this sinc function
must be used. For this reason, the width D of all notches in the ‘‘lifter type 1’’
shown in Fig. 3 is made the same. Note that the overall lifter shown there (for that
application) includes a ‘‘highpass lifter’’, which at the same time removes the very
low quefrency components corresponding to the forcing function, a short impact
force with a smooth flat log spectrum.

The same reasoning applies to the use of a notch lifter to remove families of
discrete harmonics from the log spectrum, where the windowing effect in the
spectrum comes not only from a non-integer number of harmonics, but also from
the fact that not all members of the harmonic family extend from the noise level by
the same amount. Thus the family can be interpreted as multiplied by an amplitude
modulating function in the frequency domain, whose Fourier transform is likewise
convolved with the discrete components in the cepstrum. The (constant) width D
of the notch lifter is typically selected visually based on inspection of the first
rahmonic(s).

 

T T T 

Δ 

Fig. 3 Lifter to remove
rahmonics corresponding to
an echo (‘‘double hit’’
hammer blow)
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2.2 Notch Lifter Type 2

However, not all periodic spectrum components have this property of constant
width in the spectrum, for example those resulting from a pseudo-cyclostationary
signal such as that from local faults in a rolling element bearing. Because of
random slip, the series of impulse responses resulting from impacts of the rolling
elements on the fault are not uniformly spaced, and the intervals DTi ¼ Tiþ1 � Tið Þ
are random and result from a stationary Markov process Tif g [1]. This has been
studied in detail in [1], where it was shown that the uncertainty of the arrival time
of future impulses increases with time (measured from the one defined as the first),
meaning that the probability density (of arrival time) increases in width, but
decreases correspondingly in height, with increasing time from the reference point.
The DTi only vary by a small amount of the order of 1 or 2 %, and in this case the
probability density can be modelled as Gaussian around the mean arrival time of
each impulse, with mean spacing T. With this assumption the spectrum of a series
of unit impulses was shown [4] to be given by:

F1ðaÞ ¼ 1� U � ðaÞ½ ��1 where UðaÞ ¼ exp �r2a2 � jaT
� �

ð1Þ

a is the radian frequency, and r is a measure of the random variation (r=T is 1 %
for a standard deviation of 1 %).

Figure 4a shows the log amplitude spectrum for a 1 % variation, and it is seen
that the width of the ‘‘harmonics’’ also increases with increasing frequency at the
same time as the height decreases. Figure 4b shows the real cepstrum corre-
sponding to Fig. 4a, and it is seen that the ‘‘rahmonics’’ also increase with
increasing quefrency, though not proportionally to the latter.

Another case where this type of spectrum structure occurs, with uniformly
spaced spectral components but of gradually increasing width, is for the blade
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passing harmonics of bladed machines such as turbines and fans, where there is a
small amount of random frequency modulation of the perceived blade passage
intervals, because the only connection between the blades and fixed points on the
casing is via a turbulent fluid. Although coming from a much smaller percentage
variation, the higher harmonics still gradually become broader.

This led to the definition of a notch lifter Type 2, where the notch width D was
made proportional to quefrency. Even though not strictly necessary for the type of
signal just discussed, it had the practical advantage that the notches of increasing
width eventually merge into continuous zeros, giving a superimposed ‘‘lowpass
lifter’’, which tends to reduce noise in the high quefrency part and smooth the
corresponding log spectrum to some extent. Until recently, this notch lifter Type 2
was used for all our applications with the new cepstral method, and gave excellent
results in a number of different applications. These include the removal of fan
blade passage harmonics as well as other discrete shaft harmonics to reveal a
bearing fault [5], where it was found that time synchronous averaging (TSA)
removed the low harmonics of shaft speed but not all of the blade pass harmonics
of a fan, because only the centre frequency of each ‘‘harmonic’’ peak was removed
by TSA. It was also very successful in removing harmonics of the rotor blade pass
frequency from response signals measured on a helicopter in flight, to facilitate
performing operational modal analysis on the residual broadband signals [4]. In
that case, a slightly improved result was achieved by combining the notch lifter
with an additional exponential lowpass lifter in any case, to give even more
smoothing of the spectrum.

3 Application to Wind Turbines

Two separate applications to wind turbines gave an appreciation of the different
properties of lifters Types 1 and 2, so they are presented here.

3.1 Removal of One Set of Harmonics

The authors took part in a Round Robin organized by National Renewable Energy
Laboratory (NREL), Golden CO, USA, where a wind turbine gearbox was ana-
lysed for faults that had occurred due to a short term loss of lubricant. Signals
measured on the gearbox by NREL were initially analysed blind by the partici-
pants, and then again after they had received an inspection report on the dis-
mantled gearbox. It was initially difficult to comment on the condition of gears,
because it was only at the time of receiving the inspection report that spectra from
the gearbox in healthy condition were provided. Many of the faults on the failed
gears could then be detected and diagnosed, and most could in fact have been
diagnosed blind if the reference data had been provided earlier. The results of
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analysis by all Round Robin teams have been published in an NREL Report [7].
The analysis was made more difficult than usual by the fact that the design was far
from ‘‘hunting tooth’’, considered good design practice, where the numbers of
teeth in mating pairs have no common factors, so that each tooth on one gear
contacts every tooth on the other gear. In this case the final drive had a ratio of
exactly 4:1 (88:22), meaning that the 22 teeth on the pinion always had contact
with the same four groups of 22 teeth on the wheel. The drive from the sun gear to
the intermediate shaft did however have a hunting tooth design (82:23).

In our contribution to the NREL report, we performed a time synchronous
average (TSA) over the rotation period of the intermediate shaft (IS), which turned
out to be dominated by the high speed (HS) gear mesh (harmonics 88, 176…) and
strong sidebands around them at the HS shaft speed of approx. 30 Hz (4 9 IS
speed).

When compared with the spectra in original condition, the HS tooth mesh
harmonics had increased indicating general wear, and the strong sidebands which
had appeared were compatible with the severe scuffing that was reported around
both pinion and wheel, but dominated by the location on the pinion. The four
sections of 22 teeth were then averaged together to get the best estimate of the
contribution of the pinion, this being subtracted from the total signal to get a
residual dominated by effects other than from the HS pinion. This result is shown
in Fig. 5, and it is seen that the spectrum of the residual is dominated by the
harmonics of the IS pinion gear mesh (23 teeth), but without modulation side-
bands, although the noise level is quite high because of the small number of
averages. These mesh harmonics were also much higher compared with the ori-
ginal condition, and the lack of sidebands is compatible with the fact that the wear
was distributed uniformly by the hunting tooth design, a point remarked on in the
inspection report.

After the NREL report was completed it was decided to try the cepstral method
to separate the effects of the two sets of gears, using an appropriate notch lifter.
Normally, even without a hunting tooth design, the tooth ratio is not an exact
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integer, so the two shaft speeds will have separate sets of rahmonics in the cep-
strum. In this case, because of the exact 4:1 ratio, every fourth rahmonic of the HS
shaft corresponded with a rahmonic of the IS shaft, so the code had to be modified
to leave every fourth rahmonic. Complete separation cannot be achieved as it can
be appreciated that remnants of the HS rahmonics are left in the IS rahmonics, but
the same applied to the TSA method of Fig. 5. The cepstra before and after the
application of the notch lifter are shown in Fig. 6, where it is seen that the Lifter
Type 2 has been used, with increasing notch width. Note that the cepstra were
obtained from the raw signals, without the requirement for order tracking or TSA,
because the speed was reasonably stable.
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Figure 7 shows the log spectra corresponding to the cepstra of Fig. 6, and can
be compared with Fig. 5. It is scaled in Hz rather than harmonic order, but the HS
shaft speed is about 30 Hz (and IS shaft speed 7.5 Hz). It is seen that the results are
very similar, but the cepstral method gives better resolution and better definition of
the base noise level.
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3.2 Removal of Sidebands

One of the advantages of the cepstral method is its ability to remove families of
uniformly spaced sidebands, something that cannot be done by TSA (unless the
sidebands are also harmonics).

A study has been made by the company Mechanical Solutions Inc. NJ, USA, of
the possibilities for making diagnosis of wind turbine machinery from measure-
ments at the base of the tower. The initial measurements on a turbine with a
squirrel cage induction generator were reported in [6] and were very promising.
Later measurements were made on a variable speed machine with doubly fed
induction generator, where the rotor is supplied with a varying frequency field to
change the speed. It appears that the variable frequency supply is transmitted via
the tower, so it was found that the acceleration measurements made at the base of
the tower were corrupted by electrical components with a spacing of 120 Hz
(twice mains frequency). These did not appear in measurements made directly on
the machines in the nacelle. The carrier frequencies for the modulation are
unknown, but it is clear that they are not multiples of 120 Hz, so the sidebands are
not harmonics.

A typical section of a spectrum is shown in Fig. 8, where groups of sidebands
spaced at 120 Hz can be seen in the spectrum. As can be seen in Fig. 9a, the
rahmonics resulting from these sidebands are so spread by weighting in the fre-
quency domain that it was not possible to select the first manually, and so a
different approach was used. The spacing of the rahmonics was known exactly, so
the optimum width of notch lifter was found by trial and error. The result, using a
notch Type 1 is shown in Fig. 9, with a notch width of ±15 % of the spacing.

The original and liftered spectra are compared in Fig. 10, and it can be seen that
the remaining spectrum is little affected by the operation.

Initially a Type 2 notch lifter was used, as this had become standard practice,
but this had such a strong lowpass effect that the resulting liftered spectrum was
more distorted. It has since been realized that a good first estimate for the notch
width can be obtained by considering the windowing of the relevant components in
the frequency domain. From Figs. 8 and 10a, it can be seen that the groups of
sidebands cover 6-8 sideband spacings, and can be considered as equivalent to a
weighting by a rectangular window of this width. Thus the equivalent window in
the quefrency domain would be 1/8 to 1/6 of the spacing, i.e. 12.5–16.7 %, where
trial and error gave 15 %.

The reason for the sideband removal in this application was to remove extra-
neous effects from the spectra measured at the base of the tower, so that spectral
changes would be more likely to indicate a change in condition of the machinery.
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4 Conclusion

A new method has become available to edit time signals to remove components
that have a periodic structure in the frequency domain, such as families of har-
monics and sidebands. This requires a notch lifter to be applied in the real cep-
strum to edit the spectrum amplitudes, which are then combined with the original
phase to obtain edited time signals. Two different types of notch lifters have been
found to have different advantages in different situations and these are illustrated
by two applications to wind turbine machinery.
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The Local Maxima Method
for Enhancement of Time-Frequency Map

Jakub Obuchowski, Agnieszka Wyłomańska and Radoslaw Zimroz

Abstract In this paper a new method of failure detection in rotating machinery is
presented. It is based on a vibration time series analysis. A pure vibration signal is
decomposed via the short-time Fourier transform (STFT) and new time series for
each frequency bin are processed using novel approach called local maxima
method. We search for local maxima because they appear in the signal if local
damage in bearings or gearbox exists. Due to random character of obtained time
series, each maximum occurrence must be checked for its significance. If there are
time points for which the average number of local maxima is significantly higher
than for the others, then the machine is suspected of being damaged. For healthy
condition machinery, the vector of average number of maxima for each time point
should not have outliers. The main attention is concentrated on the proper choice
of required local maxima significance. The method is illustrated by analysis of
very noisy both real and simulated signals. Also possible generalizations of this
method are presented.
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1 Introduction

Time-frequency representation is very reasonable method of non-stationary signal
analysis. Local damage in rotating machinery is a form of change of machine
condition that causes cyclic, impulsive and non-stationary contribution in machine
vibration response. Expected impulsive and cyclic disturbances in time domain in
many industrial cases are masked by other vibration sources generated by machine
[1–4]. Time-frequency representation of complex signal is much easier to interpret
(impulsive excitation in time domain is represented by wideband disturbance of
the spectrum) so this method is very frequently used technique for vibration based
damage detection [5–12]. In fact, even time-frequency representation of complex
signal may require some extra activities, i.e. enhancement of time-frequency plane
readability before feature extraction and decision making. In this paper a novel
method of spectrogram enhancement for local damage detection in rotating
machinery is proposed. Spectrogram is used to present performance of the pro-
cedure because it is the simplest, intuitive and very often used in signal analysis
[6]. In the method we analyze/process energy flow in time domain but for single
frequency bin. It is assumed that complex raw vibration signal is decomposed into
set of narrowband sub-signals with much smaller complexity. The paper is orga-
nized as follows: in Sect. 2 a proposal of new time-frequency map enhancement
procedure is presented and next, in Sect. 3 and 4, validation to simulation and real
data is provided.

2 Methodology

Before the further analysis we transform the original signal into time-frequency map.
As a result we obtain the spectrogram which is denoted as STFTðt; f Þf gt2 0;T½ �; f2F .

Physically it is a two-dimensional array of real numbers calculated using a standard
procedure. Parameters of spectrogram are very important. This issue will be dis-
cussed in real case study part.

The proposed procedure is based on the local maxima finding. More precisely,
for each frequency band (i.e. time series adequate to selected frequency) we check
the local maximum occurrence. We assume that local maximum occurs in given
time point when value in the analyzed point is higher than the other values in its
neighborhood of a length not less than a certain value (in the further analysis we
assume the length of neighborhood equal to six). Discussion of the selection of the
minimal neighborhood length is included in the data analysis sections. Then, for
each frequency band we create a new binary time series which is a transformation
of the original data into zero-one series. More precisely, we put one for this time
point when the local maximum occurs and zero otherwise. Let us point that the
binary values obtained in this way minimize influence of insignificant signals for
local damage detection as well as maximize impact of characteristic signals for
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locally damaged machinery. Then, in our methodology for each time point we
suggest to use the vector of weights (VoW), which is a vector of averaged maxima
occurrence, i.e. VoW time series is defined as follows:

W tið Þ ¼
1

#F

X
f2F

M ti; fð Þ; ð1Þ

where M ti; fð Þ represents binary valued time series of the local maxima occurrence
for a time point ti and frequency f . After multiplying each previously computed
binary value by the value of VoW at the corresponding time point we obtain
enhanced spectrogram. Therefore the enhanced spectrogram at point ti; fj

� �
is

defined as follows:

ENH ti; fj

� �
¼ W tið ÞM ti; fj

� �
: ð2Þ

In Fig. 1 we present the scheme of creating the enhanced spectrogram. One of
the theoretical advantages of this method is its invariance under strictly increasing
transformations. The maxima remain maxima after strictly increasing transfor-
mations such as logarithms, scaling, the square root or square (for positive num-
bers). Thus we do not need to compute logarithm of squared magnitude of

STFTðt; f Þf gt2 0;T½ �; f2F as it is widely performed for spectrogram—only the mag-

nitude value is needed. Moreover no normalization of each sub-signal is needed.
Another advantage of the presented method is its possibility of generalization to
non-stationary conditions, e.g. changes at the speed of potentially damaged
rotating machinery parts. If the speed at point t increases, it will decrease time
interval between expected wide-range excitations. Then the minimum neighbor-
hood length must be reduced to avoid significant maxima omitting. The local
maxima method can be also applied to another time-frequency representation
where cyclic impulses are represented by broadband disturbances.

3 Simulated Data Analysis

In order to show the results of our method we have simulated complex raw
vibration signal of a machine without and with defect. The model describes real

Raw
vibration

signal

Local
maxima
finding

Spectrogram
Vector of 

weights

Enhanced spectrogram

Fig. 1 Diagram of time-frequency map enhancement procedure
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situations met in case of industrial signals analysis. Raw vibration signal is
modeled as an additive mixture of: (1) deterministic contribution related to mesh
frequency components, shaft components and other sources that generate nar-
rowband deterministic signal with discrete spectrum, (2) Signal of Interest (SOI)—
amplitude modulated wideband random process related to localized damage and
(3) Gaussian noise.

The SOI is obtained by simple amplitude modulation with depth of modulation
as a parameter stimulating damage growth, random wideband carrier with center
frequency corresponding to structural resonance, cycle of impulsive disturbance
related to fault frequency. Such a model was widely used in previous researches
[1, 3]. Figure 2 shows time-frequency representation of simulations for ‘‘undam-
aged’’ and ‘‘damaged’’ signals. From the Fig. 2 (right) one may notice set of
parallel horizontal lines in frequency range 2–6 [kHz]. They correspond to
impulsive disturbance in time domain. Unfortunately, they are not so clear, and
completely invisible in time domain due to low-frequency high-energy contribu-
tion related to first part of the signal model (note vertical concentration of energy
in frequency range \1 [kHz]). Figure 3 presents result of time-frequency map
enhancement obtained after application of the proposed procedure to simulated
data.

One of the most important questions for this method is how to choose the
minimal neighborhood length. We propose to make the choice dependent on
expected time intervals between broadband excitations caused by local damage.
The expected frequency of failure signals for our simulated data is 13 [Hz]. The
distance between time points on the spectrogram is

STFT window length

frequency sampling
¼ 200

20000 ½Hz� ¼ 0:01 ½s�: ð3Þ

Because of the expected fault frequency (or more precisely cycle related to
failure) we choose minimal neighborhood length of 12 adjacent time intervals, i.e.
0.12 [s]. It means that a point of sub-signal is called a local maximum when its

Fig. 2 Time-frequency representation of simulations for ‘‘undamaged’’ and ‘‘damaged’’ signals
(left and right respectively)
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magnitude is higher than past 6 and future 6 magnitudes. This choice is the
maximum symmetrical neighborhood which does not exclude maxima at time
points corresponding to the expected broadband excitations. Lower neighborhood
length results in more noise, i.e. even minor maxima are observed.

Figures 2 and 3 show the standard spectrograms compared to the enhanced ones
for both healthy and locally damaged machines. The spectrogram for signal of
locally damaged machine contains horizontal lines specific for a failure signal.
Because of magnitude values, these lines are colored similarly to the sub-signals
that contain more energy than others (see at frequency band of 3–5 [kHz]). Hence,
this band may be rejected as non-informative in further processing after standard
spectrogram-based analysis. One can see that the enhanced spectrogram for a
healthy signal contains no information of energy in each frequency band. Its
behavior on low frequencies (\1 [kHz]) is very similar to the highest frequencies
([7 [kHz]). Information about energy is unnecessary in the wide-range excitation
detection, so this feature, called energy-insensitivity, causes that these horizontal
lines are better visible on the enhanced spectrogram. In particular, one can see that
the frequency band of 3–5 [kHz], however, contains significant information about
damage and should not be rejected. Better visibility can be noticed not only in the
broader spectrum of excitations, but also in noise reduction between them. The
second advantage can be seen especially when vertical lines on the enhanced
spectrogram are almost continuous (see t * 0.6 [s] in Fig. 3, right panel).

Another output of the presented method is the vector of weights. VoW for
healthy and unhealthy signal (Fig. 4) show the averaged local maxima occurrence
for each time point. Local maxima of sub-signals are required to be higher than 6
past and future magnitudes, so 6 first and last values of VoW are zeros. Small
value of the modulation depth causes that local maxima are visible only at about
30–40 % of frequency band spectrum. Such a narrow informative band causes that
in the enhanced spectrogram one can observe many random maxima (especially in
the band of [7 [kHz]) which do not follow any wide-band excitation.

Average number of local maxima between excitations for the unhealthy signal is
significantly lower than the average number of local maxima at the corresponding

Fig. 3 Enhanced spectrograms for simulated data. Healthy case data (left) and simulated damage
(modulation depth m = 0.5)
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time points for the healthy one. This is caused by noise reduction—local maximum
at one point excludes local maximum at some time points before and after. After
statistical analysis, this feature can be a base in noise reduction procedure. Values
of the VoW significantly lower than those expected for a healthy signal certainly do
not represent broadband excitation hence can be filtered out.

Vector of weights is a great instrument to compare healthy and unhealthy
signal, but if we do not have comparative samples, we need a tool to say whether
the analyzed VoW represents machinery in a good condition or not. We propose to
use a famous tool widely-used in the stochastic analysis—the sample autocorre-
lation function (ACF). In this case we propose to measure correlation inside time
series from the VoW. In Fig. 5, ACF for a signal which comes from damaged
rotating machinery the VoW time series possesses significantly higher values than
the confidence interval, so it seems to be correlated. For the healthy signal the
VoW time series appears to be uncorrelated. One can see that VoW representing
the damaged machinery is autocorrelated with lags close to a multiple of 8, which
corresponds to time intervals close to a multiple of 0.08 [s] and frequency of
12.5 [Hz]. Precisely, the highest autocorrelation can be observed in lags equal to 8,
15, 23, etc., so time intervals are a little smaller than 0.08 [s], hence the frequency
is slightly higher than 12.5 [Hz].

4 Real Data Analysis

In this section we will validate our procedure for real vibration time series from
heavy machinery system used in mining industry. This problem has been widely
described in previous papers where different techniques have been tested [1, 2].
Due to lack of space detailed description of the machine will be omitted here. Just
to give a general idea to the reader: the problem is how to detect local damage in
the pulley bearing case of serious contamination from gearbox located nearby.

Fig. 4 Vectors of weights for simulated data—average numbers of maxima occurrence for each
time point. Unhealthy data with modulation depth m = 0.5 (bottom panel) and healthy data (top
panel)
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Parameters of the signal acquisition are: sampling frequency 19.2 [kHz], duration
2.5 [s]. Time-frequency map has been obtained using Matlab spectrogram function
with the following parameters: no overlapping, FFT length NFFT = 512 points
and Kaiser’s window of length 200.

Also the minimal neighborhood length used for enhancement procedure is fixed
at 6 adjacent points. This is caused by the expected frequency of disturbance
connected with damage which should be close to 12.69 [Hz]. Two cases were
considered: bearings in good and in bad condition. Time-frequency map for both
of them are presented in Fig. 6 (left panels). In these figures only a part of the
signal is presented (first second only). As for simulations, some horizontal lines are
visible for signal with damaged bearings (up to 6 [kHz]). Again, for frequencies
less than 1 [kHz] a non-informative contribution of high energy may be found. It is
related to gearbox vibration transmitted to the sensor through the shaft. Top and
bottom plots on the right side of Fig. 6 present results of time-frequency map
enhancement.

Looking at the spectrogram, one can divide whole spectrum into three energy-
similar parts: high-energy (\1 [kHz]), middle-energy (1–7 [kHz]) and low-energy
band ([7 [kHz]). Wide-band excitations do not always have enough energy to be
easily visible at the edges of these bands. This means that spectrogram analysis
fails in the band of variable energy (1 and 7 [kHz]). Analysis of local maxima in
the spectrogram sub-signals deal with this problem. Enhanced time-frequency map
for damaged bearing is characterized by many almost-continuous horizontal lines
in the band of 7 [kHz] that are not visible in the standard spectrogram. Healthy
signal represented on the top-right panel of Fig. 6 is totally random. No particular
band with specific behavior can be distinguished. This feature confirms that the
local maxima method is insensitive to energy, thus it is a better tool to search for
excitations than the standard spectrogram.

Comparing VoW time series for healthy and unhealthy signals (Fig. 7) one can
see that, again, the average maxima occurrence is lower than for healthy data
between two damage signals. As in the simulated vibration signal case study,
statistical analysis of healthy VoW distribution can provide rules to filter VoW and
receive clearer information about damage.

Fig. 5 Sample autocorrelation function for vector of weights for healthy simulated signal (left
panel) and unhealthy data with modulation depth m = 0.5 (right panel)
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What is worth mentioning, some of significant horizontal lines are barely vis-
ible on the standard spectrogram (compare bottom panels on Fig. 6, t1 = 0.3 [s]
and t2 = 0.6 [s]). Vector of weights confirms that these lines are of enough wide-
band character to be treated as a signal connected with damage (Fig. 7).

Figure 8 show that even in the real case study the sample autocorrelation
function can be useful to recognize the occurrence of damage as well as its
characteristic frequency. ACF for time series representing unhealthy bearing

Fig. 7 Vectors of weights for real data—average numbers of maxima occurrence for each time
point. Unhealthy data (bottom panel) and healthy data (top panel)

Fig. 6 Spectrograms (left panels) and their enhancements (right panels) for real unhealthy data
(bottom panels) and healthy data (top panels)
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exceeds confidence intervals in many lags. Correlation is highest for time series
shifted by 15, but ACF in lags of 7 and 8 is also well above confidence intervals. In
the case analyzed in this Sect. 1 lag represents * 0.0104 [s], i.e. time intervals
between broadband excitations are close to 0.083 [s] (12 [Hz]). Recall that the
characteristic damage frequency is 12.69 [Hz] which corresponds with * 7.8 time
intervals equal to 1 lag.

5 Conclusions

In the paper a novel method of time-frequency map processing for feature
extraction for local damage detection is proposed. It should be mentioned that the
procedure has been applied to spectrogram; however, it can be applied to other
time-frequency representation. After processing, new time-frequency map contains
clear information that can be also easily aggregated to one-dimensional time series
with cyclic impulses. Original raw vibration signal contains strong non-informa-
tive contribution so detection of cyclic impulses related to damage is not possible.
The advantage of the method is that after decomposition of raw vibration signal to
two-dimensional time-frequency map, further processing is applied to simple sub-
signal for each frequency bin. Non-informative sub-signals are in some sense
neglected; sub-signals with cyclic disturbances are enhanced. It provides new
time-frequency map with highlighted informative part.
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Fig. 8 Sample autocorrelation function for vector of weights for healthy bearing (left panel) and
damaged bearing (right panel)
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Reconstruction of the Instantaneous
Angular Speed Variations Caused
by a Spall Defect on a Rolling Bearing
Outer Ring Correlated with the Length
of the Defect

Adeline Bourdon, Didier Rémond, Simon Chesné and Hugo André

Abstract In the framework of monitoring of rotating machinery, this paper pro-
poses a simple signal processing tool to reconstruct the Instantaneous Angular
Speed (IAS) variations caused by the presence of spalled bearing. This tool is
applied to signals obtained on a specific test bench. Associated with an angular
sampling, the analysis of these variations can identify the length of the defect
whatever the mode of operation, particularly in non-stationary operating condi-
tions in rotation speed.

Keywords Instantaneous Angular Speed (IAS) � Bearing � Fault � Monitoring �
Fault length

1 Introduction

The works carried out for several years in the framework of monitoring and
maintaining rotating machinery have shown the advantage of the angular sampling
to overcome stationary operating conditions limitations [1, 2]. Angular sampled
signals can be analyzed using conventional signal processing tools such as Fourier
Transform that leads to spectrums of cyclic frequencies that are expressed as
number of events per revolution (ev.rev-1). These sampling techniques and tools
have been applied to the Instantaneous Angular Speed (IAS) signal and shown that
the presence of defects leads to the emergence of peaks in the associated spectrum
[3–6]. For a spall defect on the outer ring of a bearing the frequency localization of
these peaks corresponds to the harmonic of the rolling elements pass frequency on
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the outer raceway (BPFO). This means that the presence of a fault on the outer ring
of a bearing leads to variations of the Instantaneous Angular Speed [7, 8]. As an
example Fig. 1 shows IAS measured on a shaft with a defective bearing in non-
stationary operating condition. Zoom of Fig. 1a between 670 and 700 rev. is
presented in Fig. 1b.

Figure 2a presents the associated cyclic frequencies spectrum. Harmonics
associated with bearing defect (theoretical BPFO 7.26 ev.rev-1) are reported in
Fig. 2b.

Following these findings, studies have focused on the development of specific
tools and indicators [9, 10]. Although useful for industrial use of IAS signal in
rotating machinery maintenance, [11] these approaches are not sufficient to esti-
mate the magnitude and shape of the IAS variations due to bearing defect. Indeed,
as shown in Fig. 1b, even zooming does not enable to identify variations due to the
presence of the defect in the IAS signal. In their current developments, these tools
can not easily estimate the size of the defect. This last point is essential in order to
follow the evolution of a default and, in the long term, to estimate the remaining
life time of the bearing.
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Fig. 1 Example IAS signal in non stationary operating conditions
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Works presented in this paper offer an innovative tool based on the reconstruction
of a filtered signal to isolate and to identify the variations in Instantaneous Angular
Speed caused by a defect on a bearing ring. The filters are rectangular windows
applied on frequency domain and the signal is reconstructed using the usual inverse
Fourier transform. In a second part of this paper, this tool is used to analyze
experimental signals obtained for different levels of bearing defect and different
operating conditions. These experimental applications show that it is possible to
easily determine the length of the defect.

2 Reminders on Angular Sampling, Cyclic Frequencies
and IAS

As the originality of this work is based on the angular sampling and IAS, few
reminders seem necessary. For rotating machines, the angular sampling involves
selecting one of the rotations of the machine as a reference. Signals are then
sampled as a function of the angular position of this reference. Different meth-
odologies are widely reported in the literature [1, 2]. One advantage of angular
sampling is that the cyclic characteristic frequencies of the rotating elements are
independent of the macroscopic speed. For bearings, invariance of these fre-
quencies is only theoretical, in practice they may vary from 1 to 2 %. In the
following we consider that despite these small changes we are able to localize and
to identify these bearing frequencies in the spectrum.

In the present paper, Instantaneous Angular Speed signal is obtained by the
elapsed-time method. This method has also been the subject of numerous publi-
cations [2–6]. It is based on the simultaneous use of an optical encoder with a
resolution of R impulse per revolution and of a high-frequency clock (fc). It
consists in counting the number nc of clock ticks between two successive pulses of
the encoder signal. This allows estimating the average speed �xi for each angular
step Dhi by Eq. 1. By construction this signal is angular sampled

�xi ¼
Dh
Dt
¼ 2p

R
:

1
nc

fc: ð1Þ

3 Reconstitution of the Speed Disturbance Using Inverse
Fourier Transform

The proposed method is based on simple signal processing tools: Fourier and
inverse Fourier transforms. The originality of this work lies on the reconstruction
of IAS variations caused by the presence of a defect in bearing to estimate its
magnitude and get information on the length of the defect. For that, IAS is seen as

Reconstruction of the Instantaneous Angular Speed Variations Caused 337



a combination of an undisturbed component and of a component resulting from the
disruption caused by the defect. This second component appears with a constant
angular period, which is reflected in the cyclic frequency domain by the emergence
of peaks located at harmonics of the bearing characteristic frequency. The idea
implemented in this paper is to extract in the frequency spectrum the harmonics
associated with the disturbance and then to come back into the physical space
using inverse Fourier transform.

The following methodology is proposed:

1. Measuring IAS signal by the help of the elapse time method,
2. Computing its cyclic frequency spectrum,
3. Identifying the cyclic frequency fhC associated to bearing default,
4. Extracting, in the cyclic frequency spectrum, m rectangular windows of length

2Lw, centered around the first m harmonics of characteristic frequency fhC.
5. Using inverse Fourier transform on this modified spectrum to obtain a filtered

signal which represents IAS variations linked to the damage/default.

This methodology is based on the assumption that the cyclic frequency selected is
associated only with the monitored bearing. For bearings, the characteristic fre-
quencies are non-integer variables, which make the previous assumption realistic.

4 Application to Experimental Signals

The previous method is applied to the IAS signals measured on a test bench
described below for various defects and different operating conditions. All mea-
surements described below were performed using 6 million points. The Fourier
and inverse Fourier Transforms are computed using Matlab FFT and IFFT func-
tions. Calculations are performed on the first 221 points that leads to cyclic fre-
quency precision of 0.0024 ev.rev-1. IAS measurement is done using an encoder
with a resolution of 5000 impulses per revolution, that leads to a Nyquist’s Fre-
quency of 2,500 ev.rev-1.

IAS variations are built using 15 rectangular windows of length
Lw = 0.0477 ev.rev-1. These characteristic quantities were defined empirically.
We can note that the size of the passband windows is very small regarding the
length of the spectrum, we suppose, but future work can refute this assumption,
that the artifacts produced by the IFFT after this windowing are negligible.

4.1 Description of Test Bench

A specific test bench has been developed (Fig. 3a) to understand the relationship
between the presence of a defect in a bearing and the Instantaneous Angular Speed
variations. It consists in a shaft supported by two tapered roller bearings that may
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have defects in their outer ring (Fig. 3b). These defects correspond to a theoretical
characteristic angular frequency (BPFO) equals to 7.26 ev.rev-1. This frequency
can change a little bit with the load and operating conditions.

An original device composed of a spherical bearing and two springs allows
applying adjustable radial loads independently of rotation speed. An axial preload
can also be applied in the form of an imposed displacement of one bearing outer
ring. A high resolution optical encoder (R = 5,000 pulses per revolution), not
shown in Fig. 3a, coupled to an acquisition device with a clock frequency fc of
80 MHz ensures the angular sampling and measurement of the Instantaneous
Angular Speed as described before.

4.2 IAS Variations in Case of a Steady State Operation

In this section the instantaneous velocity is measured for a stationary operating
regime with a bearing having defect I (Fig. 3b) on its outer ring. Despite a constant
torque, the speed varies slightly and has a periodic phenomenon with a cyclic
frequency of 1 ev.rev-1 as seen in Fig. 4.

4.2.1 First Analysis

Cyclic frequency of the defect fho in these operating conditions is identified using
the frequency spectrum (Fig. 5), which is the peak closer to the theoretical BPFO
(7.26 ev.rev-1). In that case it is located at 7.348 ev.rev-1 1.2 % higher than the
theoretical frequency.

Fig. 3 a Specific test bench b Examples of bearing defects
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IAS variations reconstructed is shown in Fig. 6b for 2.5 periods of the fault.
Figure 6a shows the initial IAS signal for the same angular duration. Influence of
defect can not be detected in Fig. 6a.

IAS variation shows a localized phenomenon corresponding to a speed mag-
nitude increase of about 0.045 rad.s-1 or 0.06 % of the macroscopic speed
(74 rad.s-1) and with an angular duration about 0.03 rev.
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4.2.2 Correlation with the Size of the Defect

To correlate the angular duration of this phenomenon and the length of the defect
present in the outer ring, this length must be translated into an angular duration of
the reference shaft. A localized defect located on the outer ring with a length Ld at
a diameter d has an angular length of hd. For a bearing with Z rolling elements,
angular length between 2 rolling elements is ho. By definition of the cyclic fre-
quency fh in reference to the rotation of the shaft, the angular duration between two
consecutive rolling elements passing on a given point on the outer ring is ao. The
angular duration for a rolling element passing on the default will be ad. These
geometrical parameters are shown in Fig. 7 and their values given by:

hd ¼
2:Ld

d
; ho ¼

2:p
Z

; ao ¼
2p
fho

; ad ¼
Ld

ho

:ao: ð2Þ

In the studied case, bearing is a tapered roller bearing with Z = 17 rolling
elements, with a spalled defect of length Ld & 1.8 mm located on the outer ring at
a diameter d = 40 mm. Operating conditions lead to a default frequency of
7.348 ev.rev-1. In reference with the angular position of the shaft, the angular
duration for a rolling element passing on the default is ad = 0.033 rev which is
perfectly consistent with the width of the reconstructed velocity perturbation
shown in Fig. 6b.

4.2.3 Repeatability of Analysis

This correlation between the length of the fault and IAS variations is found for
other defects. Figure 8 shows IAS variations obtained for two other defects (II and
III) under stationary operating conditions. The red horizontal line is used to display
the angular duration for a rolling element passing on the default.

θο

d

θd

Ld

Fig. 7 Geometrical
parameters linked with the
defect

Reconstruction of the Instantaneous Angular Speed Variations Caused 341



4.2.4 Influence of Radial Load

For a given defect (II) and identical macroscopic speeds (60 rad.s-1), analysis
performs for various loads shows the influence of the radial load on the IAS
variation (Fig. 9). Amplitude of variations increases with the applied radial load,
which is 0.04 rad.s-1 for a radial load of 2,220 N and becomes 0.08 rad.s-1 for a
radial of 3,210 N.

4.3 Measurements in Non-Stationary Operating Regime

The proposed approach is now applied to 2 non-stationary operating regimes for
the default II. Results are presented in Figs. 10 and 11. Again a localized phe-
nomenon, whose length corresponds to the passage of a body rolling on the
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default, appears clearly on the reconstructed signal. It must be noticed that the non-
stationary conditions can be very smooth like for machine run-up (Fig. 10) or very
sharp with large changes in the speed history (Fig. 11).

4.4 Results Analysis

In presence of spalled bearing, IAS variations seem to be divided into two zones as
shown schematically in Fig. 12. This remark must be related to the work of
R.B. Randall and N. Sawalhi [12, 13].

A first area (in green) corresponds to the passage of a rolling body on the fault.
This zone is associated with the largest amplitude of speed variation. For a fault
and a given load condition, the general shape of this area does not seem very
sensitive to operating conditions. These results are likely to be very constructive to
understand the way of transfer between the defect and IAS. The second zone (in
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blue) has not yet been analyzed. However, the amplitudes of the fluctuations are
lower than in the first zone and the general shape seems to be more sensitive to the
operating conditions.

5 Conclusion

This paper proposes a tool able to identify IAS variations based on the recon-
struction of a filtered signal. The filters are rectangular windows applied in the
cyclic frequency domain, and the signal is reconstructed using the usual inverse
Fourier transform. This tool has been used to analyse measurements performed on
a specific test bench for different load levels and different operating conditions.
These first experimental results seem very promising. Indeed, from a rotational
speed measurement this tool provides simple access to the length of a defect
present on the outer ring of a rolling bearing. It just requires knowing the char-
acteristic frequency associated with this defect. This tool also allows estimating
the amplitude of IAS variations caused by the presence of the defect. Other works
in progress show that this amplitude can be correlated with bearing loading con-
ditions. Therefore it could be a first step towards the development of tools to
analyze the residual life time of the bearing. This tool must still be refined and
tested on other measurements and other devices. The influence of the character-
istics of filtering windows (number and frequency bandwidth) on the results should
be estimated. In parallel the experimental results can be compared to those
obtained with phenomenological models in order to understand the pathway
between the fault and its manifestation. More generally, these studies confirm the
richness of the IAS signal associated to a very sensitive measurement method that
both characterize speed variations less than 0.06 % of the macroscopic velocity.
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Instantaneous Angular Speed:
Encoder-Counter Estimation
Compared with Vibration Data

M. Spagnol and L. Bregant

Abstract In rotating machinery, actions of the moving parts take place at specific
angular positions rather than at specific times. For this reason, having a geomet-
rical reference, such as the one provided by an encoder, and studying the
Instantaneous Angular Speed (IAS) variations can provide a large amount of
information about the health status of the machine. In fact, from the variation of
the IAS during the machine loads’ cycle it is possible to identify defects and faults.
The current work focuses on the estimation of the IAS through the Elapsed Time
(ET) method, using a counter in order to measure the time elapsed between the
pulses of an encoder. Both IAS and vibration measurement are conducted on an
asynchronous four poles electrical motor driven by 50 Hz line current, without
load. The study compares the order analysis of both signals. The bearing’s Fun-
damental Train Frequency is detected using IAS estimation.

Keywords Instantaneous angular speed � Encoder � Elapsed time method � AC
DC electrical machine � Slip effect

1 Encoder-Counter System

Among the different processing strategies to obtain IAS [1], in this study, the
Elapsed Time (ET) method is used. In this case, the counter measures the time
elapsed between two successive pulses of the encoder. With this approach there
are as many measurement values as there are pulses/revolution of the encoder.
The frequency of the counter and the number of pulses determine the resolution of
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the IAS estimates. The method is strictly correlated to the real rotational angle of
the shaft, except from the encoder tolerances [2–4]. A National Instruments [5]
80 MHz counter is used for the measurements described in the following para-
graphs. The selected board allows a choice between three counting methods: the
Elapsed Time (ET) method, using one counter, and the High-Frequency (HF) and
Large-Range (LR) methods, using two counters. A comparison between these
methods is reported in [6]. In this paper ET method is used: the rising edge of the
input signal of the encoder triggers the counting of the timebase ticks (Fig. 1).
Since the timebase is of a known frequency, the frequency of the input signal can
be obtained as (3).

fcount ¼ 80 MHz ð1Þ

Dtcount ¼ f�1
count ¼ 1:25� 10�8 s ð2Þ

finput ¼
1

ncountDtcount
ð3Þ

IAS measurement errors come from different sources. Generally speaking, the
absolute error value, increases linearly with the speed and the resolution of the
encoder, considering that the upper measured speed limit is the ratio between the
encoder’s resolution and the clock frequency of the counter.

The ideal encoder assumes exactly equal geometric segments and any variation
causes the ET to be sampled on a non-uniform angular basis. Since the spacing
pattern repeats itself after each revolution, the error manifests itself as high-level
content at integer multiples of the shaft running speed. It is possible to use the
synchronous averaged encoder passage times to correct for the uneven encoder
spacing [7]. These errors are unavoidable, but the production standards are very
high and great precision can be obtained.

The ET measurement depends on the achievable time resolution, governed by
the clock rate and the zero crossing detection circuit. These lead to two main
problems: the counting method and the clock stability. Different authors [2, 4],
have analysed the problems and have suggested appropriate remedies.

Further errors can be experienced if the sensor undergoes lateral movement, if it
is installed with eccentricity or misalignment, or if any light-path transmission
variations are present, as shown from the test setup (Fig. 2).

Internal Timebase

Input Signal

PeriodFig. 1 Digital signal
frequency measured with ET
method
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2 Experimental Results

In this paper, the IAS is compared to the vibration measurement obtained from
accelerometer data. The motor used for the test is a 1 kW 4 poles electric induction
motor. It is driven by 50 Hz line current 380 V. The test was conducted without
load in order to emphasize speed variations. The encoder has 1,000 pulse per
revolution (ppr) and its shaft is rigidly connected to the motor’s one. The encoder’s
body is fixed at the baseplate through a spring. The accelerometer is a PCB
356A16 with the X axis in tangential, the Y in the axial and the Z in the radial
direction. The acquisition system is based on National Instruments hardware.
Analog signals are collected at 51.2 kHz, while the encoder’s signal uses a
80 MHz counter. The MATLAB software does the necessary signal processing.
Due to the motor type, the slip effect is present. It is possible to view this phe-
nomenon in Fig. 3, where signals from an AC and a DC motor are compared. The
main component of the signal is the electro-magnetic force seen by the rotor and
its frequency is given by (9), where p is the number of poles, fm is the mechanical
rotational frequency and fe is the electrical rotational frequency. In time/angular-
domain, it appears as a shifting waveform due to the fact that there is a difference
between the rotating speed to the magnetic field and the rotor. This effect doesn’t
appear with synchronous or DC machines because mechanical and electrical
speeds are synchronized.

fe ¼
fm

1� s

p

2
) oe ¼

1
1� s

p

2
ð4Þ

The motor under test has a working history. The measurements present electric
phase imbalance since the fourth order is dominant. The characteristic frequencies
of the installed bearing (type 6204-2RS1) are listed in Table 1.

In order to compare the measurements from the encoder and the accelerometer,
an order analysis is performed. To visualize the results the order domain is chosen.
The encoder signal is already in the proper domain, while the accelerometer output
needs an angular resampling. The comparison (Figs. 4, 5) compares the IAS orders

Fig. 2 Test setup: encoder
1,000 ppr, accelerometer
PCB, 1 kW 4 poles induction
motor
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obtained with the ET of the 1,000 ppr encoder signal and the accelerometer signals
resampled at 1,000 ppr. The encoder signal shows that at low order, the signal is
good, while at higher order there is some quantization error, [2]. The higher the
speed, the bigger the quantization effect.

The order analysis from IAS and accelerometer data presents similar sidebands
in the low order region. fm is the mechanical frequency, fe is the electrical supply
frequency, fs is the synchronous frequency and depends on the number of poles.
The motor actual speed is 1,497 rpm while the theoretical is 1,500 rpm. The slip
(6) between the two is 0.002 that appears in the orders plot.
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Fig. 3 Three cycles at 0-360� and zoom at 180-270�: a AC motor, 150rpm, encoder 1000ppr,
with slip effect; b DC motor, 515rpm, encoder 120ppr, without slip effect

Table 1 Characteristic orders, bearing 6204-2RS1

Defect Order

Bass pass frequency—Inner BPFI 4.948
Bass pass frequency—Outer BPFO 3.052
Fundamental train frequency (cage) FTF 0.382
Ball spin frequency (rolling element) BSF 1.992
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Fig. 4 IAS and accelerometer order analysis. The first subplot represents the encoder’s data,
while the three under are the accelerometer’s data in X,Y, and Z directions a full scale plot,
0–500 order, b zoom plot 0–10 order

Instantaneous Angular Speed: Encoder-Counter Estimation 351



0
0.3
0.6
0.9
1.2
1.5

x 10
-3

E
N

C
 [r

ad
/s

]

0
1
2
3
4
5
6

x 10
-5

A
C

C
 X

 [m
/s

2 ]

0
1
2
3
4
5
6

x 10
-5

A
C

C
 Y

 [m
/s

2 ]

3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3 4.4 4.5
0
1
2
3
4
5
6

x 10
-5

A
C

C
 Z

 [m
/s

2 ]

Order

(a)

0
0.3
0.6
0.9
1.2
1.5

x 10
-3

E
N

C
 [r

ad
/s

]

0
1
2
3
4
5
6

x 10
-5

A
C

C
 X

 [m
/s

2 ]

0
1
2
3
4
5
6

x 10
-5

A
C

C
 Y

 [m
/s

2 ]

7.5 7.6 7.7 7.8 7.9 8 8.1 8.2 8.3 8.4 8.5
0
1
2
3
4
5
6

x 10
-5

A
C

C
 Z

 [m
/s

2 ]

Order

(b)

Fig. 5 IAS and accelerometer order analysis. The first subplot represents the encoder’s data,
while the three under are the accelerometer’s data in X, Y, and Z directions a zoom plot, 3.5–4.5
order, b zoom plot 7.5–8.5 order
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fs ¼
2fe

p
¼ 2

4
50 Hz ¼ 25 Hz ð5Þ

s ¼ fs � fm
fs
¼ 25� 24:95

25
¼ 0:002 ð6Þ

It is present an order 0.008 due to the slip and pole pass. In this case there are
four poles, so pps is obtained in (7).

pps ¼ p � s ¼ 4 � 0:002 ¼ 0:008 ð7Þ

Due to (4), the phase imbalance is present at 2oe, obtaining order 4.008, (9).

oe ¼
1

1� s

p

2
¼ 1

1� 0:002
4
2
¼ 2:004 ð8Þ

2oe ¼ 2 � 2:004 ¼ 4:008 ð9Þ

Figure 5 zooms around the fourth order where the 4.008 order appears in all
signals. All the peaks are surrounded by sidebands at 0.008. These are more
evident at higher orders, especially in accelerometer data. IAS also shows side-
bands at FTF order 0.382. The same sidebands are present in accelerometer data,
but at higher orders and the peaks are smeared. Other sidebands are present at
order 0.070. These are related to the number of rotor bars, 35.

3 Conclusions

This research shows the capability of IAS to identify FTF bearing defect. The
electrical behaviour is the principal element of IAS order analysis, so the method
can be used for diagnosis for electrical and mechanical defects. Further analysis
has to be done to improve the signal processing technique but the comparison
between IAS and acceleration measurements showed interesting differences.
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Non-linear Geometric Approach
to Friction Estimation and Compensation

Marcello Bonfè, Paolo Castaldi, Nicola Preda and Silvio Simani

Abstract This contribution describes the application of differential geometry and
nonlinear systems analysis to the estimation of friction effects in a class of
mechanical systems. The proposed methodology, that has been developed for the
more general problem of fault detection and diagnosis, relies on adaptive filters
designed with a nonlinear geometric approach to obtain the disturbance de-cou-
pling property. The classical model of an inverted pendulum on a cart is consid-
ered as an application example, in order to highlight the complete design
procedure, including the mathematical aspects of the disturbance de-coupling
method as well as the feasibility and the efficiency of the approach. Thanks to
accurate estimation, friction effects can also be compensated by means of a con-
troller designed to inject the on-line estimate of friction force to the control action
calculated by classical linear state feedback. This strategy, which belongs to the
class of so-called Active Fault-Tolerant Control Schemes, allows to maintain
existing controllers and enhance their performance by introducing an adaptive
estimator of unmodeled friction forces.

Keywords Fault-tolerant control � Friction compensation � Nonlinear dynamic
systems � Adaptive filters
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1 Introduction

Feedback control systems for mechatronics engineering applications are most of
the times affected by challenges involved by friction in mechanical components.
Despite the fact that detailed modeling of friction effects has been the subject of
many research activities [7], robust on-line estimation of such effects is still an
open problem, especially because the parameters characterizing the friction phe-
nomena are commonly varying in time, as the effect of components ageing and
insufficient maintenance. Therefore, there is a growing demand for reliable and
adaptive algorithms for on-line estimation of friction forces in mechatronic
systems.

Friction estimation and compensation has been addressed in literature also as a
fault-tolerant control problem [8], namely the problem of designing a controller
that has the ability to accommodate component faults automatically. A fault-
tolerant control system can include a Fault Detection and Diagnosis (FDD)
module, which is mainly used to fulfill the requirement of fault estimation. Over
the last three decades, the growing demand for safety, reliability, maintainability,
and survivability in technical systems has drawn significant research in FDD. Such
efforts have led to the development of many FDD techniques, see for example the
survey works [5, 9].

In general, fault tolerant control methods are classified into two types, i.e.
Passive Fault Tolerant Control Scheme (PFTCS) and Active Fault Tolerant
Control Scheme (AFTCS) [3, 6]. In PFTCS, controllers are fixed and are designed
to be robust against a class of presumed faults, without explicit use of FDD
schemes or controller reconfiguration. In contrast to PFTCS, AFTCS react to the
system component failures actively by reconfiguring control actions so that the
stability and acceptable performance of the entire system can be maintained, by
means of FDD schemes providing on–line information about the true status of the
system.

This chapter is focused on the application of an AFTCS to address the problem
of friction compensation. The proposed AFCTS integrates a reliable and robust
friction estimation module, implemented according to an FDD procedure relying
on adaptive filters. The controller reconfiguration exploits a second control loop
depending on the on-line estimate of the friction force. The advantages of this
strategy are that a structure of logic-based switching controller is not required and,
instead, an existing controller can be preserved and enhanced.

The FDD method is based on the NonLinear Geometric Approach (NLGA)
developed by De Persis and Isidori [2]. By means of this framework, a disturbance
de-coupled adaptive nonlinear filter providing the fault identification is developed.
It is worth observing that the original NLGA FDD scheme based on residual
signals cannot provide, in general, fault size estimation.

Both the NLGA Adaptive Filters (NLGA–AF) and the AFTCS strategy are
applied to the well-known model of an inverted pendulum on a cart (also called
cart-pole system), an underactuated mechanical structure that is commonly used as
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a benchmark system for control design and mechatronics prototyping. A simula-
tion model for the complete AFTCS loop has been implemented in the Matlab

�

and Simulink
�

environments, and tested in the presence of nonlinear friction,
disturbances, measurement noise and modelling errors.

The work is organised as follows. Section 2 provides the description of the cart-
pole nonlinear benchmark system. Section 3 describes the implementation of the
FDD scheme and the structure of the AFTCS strategy. Stability and robustness of
the AFTCS method with are investigated in simulations reported in Sect. 4.
Finally, Sect. 5 summarises contributions and achievements of the chapter, pro-
viding some suggestions for possible further research topics.

2 The Cart-Pole Nonlinear Model

The dynamic model of a pendulum (or pole) on a cart shown in Fig. 1 is a classical
benchmark in Systems and Control Theory.

The interest in this mechanical system is motivated by the similarity between its
dynamic properties and those of several real-world engineering applications like,
for example, aerospace vehicles during vertical take-off, cranes, and many others.

Assuming that the cart has mass M and the pendulum mass m is concentrated at
the tip of a pole, with neglectable inertia, of length L, the dynamic model obtained
using Hamilton’s principle is the following:

M þ mð Þ€xp þ mL€h cos h� mL _h2 sin h ¼ Fa � Ffric

m€xp cos hþ mL€h� mg sin h ¼ s

�
ð1Þ

in which g is the gravity constant, Fa is the controllable actuator force, Ffric is the
friction involved by the contact between cart and ground, and t is a torque acting

directly at the base of the pole. Enumerating the state variables as x ¼

x1 x2 x3 x4½ �T¼ xp xp h _h
h iT

and considering u ¼ Fa; as the control input, and d ¼
s; as a disturbance, the model can be rewritten in the following state-space input
affine form:

Fig. 1 Scheme of the
inverted pendulum on a cart
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_x1 ¼ x2

_x2 ¼
mLx2

4 sin x3 � mg sin x3 cos x3

M þ m sin2 x3
þ u� Ffric

M þ m sin2 x3
� d

ðM þ m sin2 x3ÞL
_x3 ¼ x4

_x4 ¼
ðM þ mÞg sin x3 � mLx2

4 sin x3 cos x3

ðM þ m sin2 x3ÞL
� ðu� FfricÞ cos x3

ðM þ m sin2 x3ÞL

þ ðM þ mÞd
mðM þ m sin2 x3ÞL2

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð2Þ

The dynamic model of the cart-pole system fulfils the structural requirements
described in [2], which considers the following class of nonlinear systems:

_x ¼ nðxÞ þ gðxÞuþ pðxÞd ð3Þ

where nðxÞ; gðxÞ and pðxÞ are smooth vector fields. In the following section, the
proposed solutions to FDD and AFTC problems, based on the nonlinear geometric
approach, will be developed.

It is worth noting that other types of disturbance terms, different from the
s signal, can be also considered in Eq. 2 (e.g. measurement noise on the linear and
angular velocity signals). However, a disturbance described in terms of a torque
acting at the base on the pole represents a realistic situation, since it may be related
to the effect of an impact between the pole and some kind of obstacle.

3 FDD and AFTCS Design

The presented FDD scheme belongs to the NLGA framework, that allows to
de-couple disturbances by means of a nonlinear coordinate transformation. Such
transformation is then the starting point to design a set of adaptive filters that are
able to both detect additive fault acting on a single actuator and estimate the
magnitude of the fault. It is worth observing that in this chapter, we can consider
the effect of friction as a fault affecting the actuator, so that thanks to the NLGA
approach the friction estimate is de-coupled from disturbance d.

The proposed approach can be applied to nonlinear systems in the form:

_x ¼ nðxÞ þ gðxÞuþ ‘ðxÞf þ pdðxÞd
y ¼ hðxÞ

�
ð4Þ

where the state vector x 2 X (an open subset of R‘n ), uðtÞ 2 R
‘c is the control input

vector, f ðtÞ 2 R is the fault, dðtÞ 2 R
‘d the disturbance vector and y 2 R

‘m the
output vector, whilst nðxÞ; ‘ðxÞ; the columns of gðxÞ; and pdðxÞ are smooth vector
fields and hðxÞ is a smooth map.
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The model of Eq. 2 can be related to the form of Eq. 4 setting:

nðxÞ ¼

x2
mLx2

4 sin x3�mg sin x3 cos x3

Mþm sin2 x3
x4

ðMþmÞg sin x3�mLx2
4 sin x3cosx3

ðMþm sin2 x3ÞL

2
6664

3
7775 gðxÞ � ‘ðxÞ ¼

0
1

Mþm sin2 x3

0
� cos x3

ðMþsin2 x3ÞL

2
664

3
775 ð5Þ

and

pdðxÞ ¼

0
� cos x3

ðMþm sin2 x3ÞL
0

Mþm
mðMþsin2 x3ÞL2

2
664

3
775 ð6Þ

Assuming in addition that the full state vector is measurable (i.e. hðxÞ ¼ I4x),
the design of the strategy for the diagnosis of the fault f with disturbance de-
coupling is organised as follows:

• computation of RP
� ; i.e. the minimal conditioned invariant distribution con-

taining P (where P is the distribution spanned by the columns of pdðxÞ);
• computation of X�; i.e. the maximal observability codistribution contained in

ðRP
� Þ
?;

• if ‘ðxÞ 62 ðX�Þ?; fault detectability condition, the fault is detectable and a suit-
able change of coordinate can be determined.

The computation RP
� can be obtained by means of the following recursive

algorithm:

S0 ¼ �P

Skþ1 ¼ �Sþ
Pm
i¼0

gi; �Sk \ ker dhf g½ �

8<
: ð7Þ

where m is the number of inputs, �S represents the involutive closure of S; g;D½ � is
the distribution spanned by all vector fields g; s½ �; with s 2 D; and g; s½ � the Lie
bracket of g; s: It can be shown that if there exists a k� 0 such that Skþ1 ¼ Sk; the
algorithm 7 stops and RP

� ¼ Sk [2].
Once RP

� has been determined, X� can be obtained with the following algorithm:

Q0 ¼ ðRP
� Þ
? \ span dhf g

Qkþ1 ¼ ðRP
� Þ
? \

Pm
i¼0

Lgi Qk þ span dhf g
� �

8<
: ð8Þ

where LgC denotes the co-distribution spanned by all covector fields Lgx; with
x 2 C; and Lgx the derivative of x along g: If there exists an integer k� such that

Qk� ¼ Qk�þ1; Qk� is indicated as o.c.a ðRP
� Þ
?

� ffi
; where the acronym o.c.a. stands

for observability co-distribution algorithm.
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It can be shown that Qk� ¼ o.c.a. ðRP
� Þ
?

� ffi
represents the maximal observability

co-distribution contained in P?; i.e. X� [2]. Therefore, with reference to the model

4, when ‘ðxÞ 62 ðX�Þ?; the disturbance d can be de-coupled and the fault f is
detectable.

As mentioned above, the considered NLGA to the fault diagnosis problem,
described in [2], is based on a coordinate change in the state space and in the
output space, UðxÞ and WðyÞ; respectively. They consist in a surjection W1 and a
function U1 such that X� \ span dhf g ¼ span d W1 � hð Þf g and X� ¼ span dU1f g,
where:

UðxÞ ¼
�x1

�x2

�x3

0
@

1
A ¼

U1ðxÞ
H2hðxÞ
U3ðxÞ

0
@

1
A

WðyÞ ¼ �y1

�y2

� �
¼ W1ðyÞ

H2y

� �

8>>>><
>>>>:

ð9Þ

are (local) diffeomorphisms, whilst H2 is a selection matrix, i.e. its rows are a
subset of the rows of the identity matrix. By using the new (local) state and output
coordinates ð�x;�yÞ; the system 4 is transformed so that it exhibits an observable
subsystem that is affected by the fault and not affected by the disturbance, as
described in [2] :

_�x1 ¼ n1ð�x1;�x2Þ þ g1ð�x1;�x2Þcþ ‘1ð�x1;�x2;�x3Þf
�y1 ¼ hð�x1Þ

�
ð10Þ

In the case of the cart-pole system, the following result is obtained:

S0 ¼ �P ¼ cl pdðxÞð Þ ¼ cl

0
� cos x3

ðMþm sin2 x3ÞL
0

Mþm
mðMþsin2 x3ÞL2

2
664

3
775

0
BB@

1
CCA � pdðxÞ ð11Þ

By recalling that ker dhf g ¼ ;; it follows that RP
� ¼ �P as �S0 \ ker dhf g ¼ ;:

Thus, the algorithm 7 stops with S1 ¼ S0 ¼ RP
� :

Proceeding with algorithm 8, it can be observed that:

�Pð Þ?¼

0
� cos x3

ðMþm sin2 x3ÞL
0

Mþm
mðMþm sin2 x3ÞL2

2
664

3
775

0
BB@

1
CCA

?

¼
1 0 0 0
0 0 1 0
0 1 � mLx4 sin x3

Mþm
mL cos x3

Mþm

2
4

3
5 ð12Þ

and span dhf g ¼ I4: From algorithm 8 it follows that X� ¼ RP
�

	 
?¼ �Pð Þ?; and

X�ð Þ?¼ RP
� ¼ �P:. Therefore the fault f (i.e. the friction force) is detectable, since

‘ðxÞ 62 X�ð Þ?¼ RP
� ¼ �P.
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As dim X�f g ¼ 3; and dim X� \ span dhf gf g ¼ 3; it follows that U1ðyÞ :

R
4 ! R

3. Moreover, as X� \ span dhf g ¼ span d W1 � hð Þf g; H2 y : R4 ! R
1:

Thus, as hðxÞ ¼ I4x; the surjection W yðxÞð Þ is given by:

W yðxÞð Þ ¼ W1ðxÞ
H2x

� �
¼

x2 þ mLx4 cos x3
Mþm

x1

x3

2
4

3
5

x4½ �

0
BB@

1
CCA ð13Þ

where H2 ¼ 0 0 0 1½ �; the diffeomorphism U1ðxÞ is given by U1ðxÞ ¼ W1 xð Þ
and the state variable of the observable subsystem decoupled from disturbance is
�x1 ¼ U1ðxÞ.

Given this result, an NLGA–AF can be designed introducing the following new
constraints [1] :

• the observable subsystem is independent from the �x3 state components;
• there exists a proper scalar component �x1s of the state vector �x1 such that the

corresponding scalar component of the output vector is �y1s ¼ �x1s and the fol-
lowing relation holds:

_�y1sðtÞ ¼ M1ðtÞ � f þM2ðtÞ ð14Þ

where M1ðtÞ 6¼ 0; 8t� 0: Moreover M1ðtÞ and M2ðtÞ can be computed for each
time instant, since they are functions just of input and output measurements. The
proposed adaptive filter is based on the least-squares algorithm with forgetting
factor [4], and it is described by the following adaptation law:

_P ¼ bP� 1
N2 P2M

^ 2

1; P 0ð Þ ¼ P0 [ 0
_̂f ¼ PeM

^

1; f̂ 0ð Þ ¼ 0

(
ð15Þ

with the following equations representing the output estimation, and the corre-
sponding normalised estimation error:

�̂y1s ¼ M
^

1 f̂ þM
^

2 þ k�y
^

1s

e ¼ 1
N2 �y1s � �̂y1s

	 

(

ð16Þ

where all the involved variables of the adaptive filter are scalar. In particular,
k[ 0 is a parameter related to the bandwidth of the filter, b� 0 is the forgetting

factor and N2 ¼ 1þM
^ 2

1 is the normalisation factor of the least-squares algorithm.

Finally, the signals M
^

1; M
^

2; �y
^

1s are obtained by means of a low-pass filtering of the
signals M1, M2, �y1s.

In order to de-couple the effect of the disturbance d from the fault (i.e. friction)
estimator, it is necessary to select from the observable subsystem the following
state:
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�x1s ¼ �x11 ¼ x2 þ
mLx4 cos x3

M þ m
ð17Þ

whose differentiation allows to compute the full expression of M1 and M2.

4 Simulation Results

To compute with Matlab/Simulink the simulation results described in this section,
the AFTCS design has been completed by means of an optimal state feedback
control law, on the basis of the linear approximation of a frictionless version of
Eq. 2, in a neighbourhood of xo ¼ ½x1d 0 0 0�T ; in which x1d can be any value. In
fact, the linear approximation is independent from x1, so that the input vector of
optimal controller can be calculated as ~x ¼ ½ðx1 � x1dÞ x2 x3 x4� and the cart-pole
system will be stabilised in the upright position at any linear position reference.

The following values of the system parameters have been assumed: M = 1 kg;
m = 0.1 kg; L = 0.3 m; g ¼ 9:81 m=s2: The optimal controller has been designed
using the LQR approach in order to minimize the well-known quadratic cost
function with Q ¼ 10 I4 and R ¼ 1.

The simulation of the mechanical system has been completed by a nonlinear
model of friction affecting the linear motion of the cart, including viscous friction,
with coefficient Fx ¼ 0:6 N/m/s, and Stribeck friction with Coulomb part coeffi-
cient Fc ¼ 0:25 N, static part coefficient Fs ¼ 0:4 N and Stribeck velocity vs ¼
0:2 m/s; using the same mathematical description of [8]. The shape of the non-
linear friction model is shown in Fig. 2.

The NLGA-AF used as a friction estimator has been designed assuming the
nominal model of the cart-pole, but the simulated mechanical system included a
mismatch of 10% in the values of M and m, a random disturbance torque d (which
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Fig. 2 Nonlinear model of
Stribeck and viscous friction
effects affecting motion of the
cart
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is nevertheless de-coupled by design) and measurement noise on the state feedback
signals. As can be seen from Fig. 3, the proposed NLGA-based estimator provides
an accurate and robust measure of the actual friction force, even if the mathe-
matical model of friction effects is not explicitly included in the design of the
estimator. Such effective performance is achieved by means of a proper tuning of
the adaptation mechanism of the filter, in particular b ¼ 12 and k ¼ 8:8 have been
fixed for the simulated case.

Thanks to this accurate reconstruction, friction can also be compensated by
simply adding its estimated value to the output of the optimal controller. As a
result, the tracking of a time-varying linear cart position reference is dramatically
improved, as shown in Fig. 4. The figure shows that in the first half of the plot the
optimal controller by itself is not robust with respect to the nonlinear friction
disturbing action, while in the second part of the simulation, friction compensation
on the basis of the NLGA–AF estimation is introduced and tracking error is
reduced from a mean square value of 0.0128 m to a mean square value of
0.0007115 m.
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5 Conclusion

This chapter described the development of an active fault tolerant control scheme
for the purpose of friction compensation in mechanical systems, which integrates a
robust fault diagnosis method providing accurate estimation of friction effects. The
methodology relies on disturbance de-coupled adaptive filters designed via the
nonlinear geometric approach. The fault tolerant strategy has been applied to a
classical control design benchmark, namely the inverted pendulum on a cart,
which was simulated in presence of nonlinear friction, disturbing torque acting on
the pole pivot, measurement noise and modelling errors.

It is worth observing that the suggested active fault tolerant control was already
developed in works by the same authors, but applied to aerospace examples. Thus,
the contribution of this chapter consists of the application of the active fault
tolerant control scheme to the well-known benchmark, in order to highlight the
computational and mathematical aspects of the nonlinear disturbance de-coupling
design, and hence it can be considered also as a tutorial for researchers working in
mechanical systems monitoring and fault diagnosis, as well as fault tolerant
control and friction compensation.

The proposed fault tolerant scheme allows to maintain the existing controller,
since a further loop is added to the original scheme, thus providing the feedback of
the adaptive friction estimate provided by the nonlinear geometric approach
diagnosis module. The final performances of the developed fault tolerant control
strategy are mainly due to the fact that the estimate is unbiased, thanks to dis-
turbance de-coupling method. Further investigations will be carried out to evaluate
the effectiveness of the suggested approach when applied to real case studies and
to extend the control procedure to other mechanical systems (e.g. robotic
manipulators).

References

1. Castaldi P, Geri W, Bonfè M, Simani S, Benini M (2010) Design of residual generators and
adaptive filters for the FDI of aircraft model sensors. Control Eng Pract 18(5):449–459

2. De Persis C, Isidori A (2001) A geometric approach to non-linear fault detection and isolation.
IEEE Trans Autom Control 45(6):853–865

3. Edwards C, Lombaerts T, Smaili H (eds) (2010) Fault tolerant flight control: a benchmark
challenge. Lecture notes in control and information sciences. Springer, Berlin

4. Ioannou P, Sun J (1996) Robust adaptive control. PTR Prentice–Hall, Upper Saddle River, NJ,
USA

5. Isermann R (2005) Fault–diagnosis systems: an introduction from fault detection to fault
tolerance, 1st edn. Springer, Berlin. ISBN: 3540241124

6. Noura H, Theilliol D, Ponsart JC, Chamseddine A (2009) Fault-tolerant control systems:
design and practical applications. Advances in Industrial Control, 1st edn. Springer, London

7. Olsson H, Astrom K, de Wit C, Gafvert M, Lischinsky P (1998) Friction models and friction
compensation. Eur J Control 4(3):176–195

364 M. Bonfè et al.



8. Patton R, Putra D, Klinkhieo S (2008) Friction compensation as a fault-tolerant control
problem. In: European workshop on advanced control and diagnosis. Plenary Presentation

9. Simani S, Fantuzzi C, Patton RJ (2003) Model-based fault diagnosis in dynamic systems using
identification techniques. Advances in industrial control, 1st edn. Springer, London. ISBN:
1852336854

Non-linear Geometric Approach to Friction Estimation and Compensation 365



Empirical Mode Decomposition
of Acoustic Emission for Early Detection
of Bearing Defects

Mourad Kedadouche, Marc Thomas and Antoine Tahan

Abstract Empirical Mode Decomposition (EMD) is one of the techniques that
proved its efficiency for an early detection of defects in many mechanical appli-
cations like bearings and gears. The EMD methodology decomposes the original
times series data into intrinsic mode functions (IMF), by using the Hilbert-Huang
transform. In this study, EMD is applied to acoustic emission signals. The acoustic
emission signal is heterodynined around a central high frequency in order to obtain
an audible signal. Scalar statistical parameters such as Kurtosis and THIKAT are
then used in this study. These statistical descriptors are calculated for each IMF.
The technique is validated by experiments on a test bench with a very small crack
(40 lm) on the outer race of a ball bearing. It is found that the application of time
descriptors to different IMF decomposition levels gives good results for early
detection of defects in comparison with the original time signal.
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1 Introduction

Bearing defect diagnostic has been a topic of research interest for over 30 years
[1]. The most widely used technique for monitoring and diagnosing bearings is
vibration analysis which is usually conducted in the low and medium frequency
range (B20 kHz) [2], and which has conducted to many developments in improved
methods for signal processing, as well as improvements in algorithms for anomaly
detection, classification and failure prediction [3]. Most researches on the diag-
nosis can be classified in time, frequency or time–frequency domain. In industry,
scalar descriptors extracted from time signals are very often used to detect a defect.
The most popular descriptors are the RMS, Peak, Crest Factor, Skewness, K factor
and Kurtosis [1, 2]. Since these descriptors are not always effective, especially
when the defect increases, new descriptors, such as TALAF and THIKAT have been
developed [4]. In the frequency domain, the envelope analysis, also known as
amplitude demodulation has been widely used and proved to be very effective in
detecting bearing characteristic frequencies [2]. Recently, a new method, desig-
nated as Empirical Mode Decomposition (EMD), has been proposed by Huang
et al. [5]. By using EMD, any complex signal can be decomposed into a collection
of Intrinsic Mode Functions (IMFs) based on the local characteristic time scale of
the signal. The IMFs represent the natural oscillatory modes embedded into the
signal. EMD is a self-adaptive method because the IMFs are determined by the
signal itself rather than by pre-defined criteria. Therefore, EMD is highly efficient
in non-stationary data analysis [5, 6]. Several publications on the use of EMD for
fault diagnosis have appeared in literature [7]. Some applications of EMD in
mechanical fault diagnosis have been studied, for example, in structural health
monitoring [8] and gear fault diagnosis [9, 10]. The EMD may also be used for
monitoring bearing defects by vibration. Several improved EMD methods have
been proposed aiming to enhance the performance of EMD in bearing fault
diagnosis [11, 12]. Finally, many researchers have applied EMD combining with
other techniques to bearing fault diagnosis in recent years and achieved better
diagnosis results compared with the use of EMD alone [13, 14]. However, all the
studies based on vibration measurements were deficient for very early detection of
defects, most of them being studying defects greater than 100 microns. In fact,
when a defect arises, it creates vibration at very high frequencies and thus acoustic
emission may be a measurement method more efficient than vibration for an early
detection [15]. Some research studies have been published on the detection and
diagnosis of bearing defects by acoustic emission [16–18], but also based their
studies on relatively large defects (more than 100 microns). In this study, we
proposed to use the EMD method from acoustic emission measurements. The
scalar statistical parameters such as Kurtosis and THIKAT [4] are used in this
study. These statistical descriptors are calculated for each IMF [14], and the results
are compared with the same descriptors extracted from the original signal. All the
experiments are conducted on a test bench with a very small defect (40 microns)
artificially created on the outer race of a bearing.
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2 Empirical Mode Decomposition

The Empirical Mode Decomposition (EMD) method decomposes the time signal
into a finite set of oscillatory functions called Intrinsic Mode Functions (IMF). An
IMF is a function that meets the following conditions

1. The number of extrema and the number of zero crossings must either equal or
differ at most by one;

2. The value of the moving average envelope defined by local maxima and the
envelope defined by local minima is zero.

An intrinsic mode is the embedded time scale in the signal. It is defined as the
time between two successive extrema (Fig. 1).

It is not necessarily a harmonic function. In fact, it may include non-stationary
amplitudes and modulated frequencies. The decomposition method in IMF may be
summarized as follows [19]:

1. Initialize: r0 = x(t), and i = 1
2. Extract the ith IMF ci

a. Initialize: hi(k-1) = r(i-1), k = 1
b. Extract the local maxima and minima of hi(k-1)

c. Interpolate the local maxima and the minima by cubic spline lines to form upper and lower
envelops of hi(k-1)

d. Calculate the mean mi(k-1) of the upper and lower envelops of hi(k-1)

e. Let hik = hi(k-1)- mi(k-1)

f. If hik is an IMF then set cik = hik, else go to step(b) with k = k ? 1
3. Define the remainder ri+1 = ri- ci

4. If ri+1 still has least 2 extrema then go to step (2) with i = i ? 1, else, the decomposition
process is finished and ri+1 is the residue of the signal

Fig. 1 Principle of EMD method
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3 Experimental Investigation

3.1 Test Bench

The test bench used in this study is shown in Fig. 2a. A shaft is supported by two
bearings and connected to a motor with a flanged coupling bolted rubber. Two
system were investigated, one with a healthy bearing and the other with an arti-
ficially damaged bearing. The defect has been created as a long transversal strip
and a small width of 40 microns through the ball passing way, as shown in Fig. 2b.

The equipment for acoustic emission data collection is shown in Fig. 3. It
consists of an ultrasound detector (UE Systems UltraProb 10000). The sensor is
mechanically connected to the bearing housing with an adaptor. The sensor is
connected to an analogue digital converter (THOR Analyzer PRO: DT9837-
13310) with a sampling frequency of 48 kHz.

The acoustic emission sensor used in this study operates in the lower ultrasonic
spectrum from 20 to 100 kHz. A heterodyne circuit converts the high frequency
acoustic emission signal as detected by the transducer around a central frequency
Fc into an audible signal (0–7 kHz) (Fig. 4).

The heterodyned signal can then be recorded through conventional data
acquisition system at 48 kHz. The mechanical system is excited by an unbalance
mass rotating. The acoustic emission signals from the two bearings (healthy and
faulty) are recorded with two different central frequencies (Fc = 30 and 40 kHz)
when rotating at various speeds (300, 600 and 900 rpm).

Fig. 2 a Experimental test bed. b The artificial defect of outer ring

Fig. 3 Data acquisition
system
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3.2 Application of EMD to Acoustic Emission Signals

Figure 5 show the EMD decomposition of the acoustic emission signal acquired at
the central band of Fc = 30 kHz for the healthy bearing and for the defective one.
The right curves show spectra of the damaged bearing at each IMF and from the
original signal while the left curves show the spectra of the healthy one. We may
notice that some IMF of the defective bearing present an increase in energy over a
wide frequency band compared to the healthy bearing. These side bands are thus
due to the defect, since at an early stage, the defect occurs around the resonances
of the bearing at high frequencies. EMD decomposition showed this change.

Fig. 4 Heterodyne principle

Fig. 5 EMD applied to the acoustic signal: comparison between the healthy bearing and the
defective bearing (40 lm) for Fc = 30 kHz
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3.3 Statistical Descriptors

In time domain, the statistical descriptors: Peak (Max), RMS, Crest Factor (CF),
K-Factor, Kurtosis and Skewness may be used to compare their efficiencies for
monitoring the condition of the bearings (Table 1) [20].

We have also used two new descriptors which proved their effectiveness for
monitoring bearing developed by Sassi et al. [4] (Table 2).

In order to monitor these descriptors in time, we have used the ratio between the
indicator calculated for the defect bearing and the same indicator for the healthy
bearing.

Evolution of descriptor ¼ Indicator ðdefect bearingÞ
Indicator ðhealthy bearingÞ

� �
ð1Þ

3.4 Results Analysis and Applications

3.4.1 Sensibility of Scalar Descriptors to Detect the Defect

In this part, the Evolution of descriptor as described by Eq. (1) has been calculated
for each IMF (blue color), for the envelope of each IMF (red color) and also for the
original signal (black color). The previous indicators may be divided into two
families; the first group (group 1) is the RMS, Crest factor, Peak and K factor,
which depends on energy content of the signal, while the second group (group 2) is
Kurtosis, Skewness, TALAF and THIKAT, which depends on the amplitude dis-
tribution (sensitive to shock). Only the results computed at the central frequency
Fc = 30 kHz, are shown when rotating at 300 rpm (Fig. 6), but all the results
converge to the same conclusions.

Table 1 Usual time descriptors

Peak ¼ sup1 � i � N xij j
RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1

xi � xð Þ2
s

CF ¼ Peak
RMS

K factor ¼ Peak � RMS

Kurtosis ¼
1
N

PN
i¼1

xi � xð Þ4

RMS4 Skewness ¼
1
N

PN
i¼1

xi � xð Þ3

1
N

PN
i¼1

xi � xð Þ2
� ffi3=2

Table 2 New time descriptors

TALAF ¼ log kurtosis þ RMS
RMS0

h i
THIKAT ¼ log ðkurtosisÞCF þ RMS

RMS0

� �Peak
� �
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• The results show that most of the indicators calculated on the IMF or on its
envelope have a better sensitivity than indicators calculated on the raw signal,
except the Peak that revealed to be less sensitive to the defect.

• The IMF was generally more efficient than the envelope IMF for most indicators
but it is not true for all indicators.

• All the indicators were efficient to detect the default.
• The indicators of group 1 are more sensitive in the frequency content of IMF 3

(close to 4,000 Hz) while those of group 2 were more sensitive in the frequency
content of IMF 1 (highest frequencies: close to 14,000 Hz) and IMF 2 (highest
frequencies: close to 10,000 Hz).

• The indicators of IMF of group 2 are more effective than those of group 1 since
they detect the damage at the first IMF 1.

3.4.2 Effect of Speed and Central Frequency on Descriptors to Detect
the Defect

As the Kurtosis and THIKAT were found in the previous part more sensitive to
discriminate the effect of the default at specific IMF than from the original signal,
the following part describes the results obtained with these two descriptors. In this

Group 1

Group 2.

Fig. 6 EMD applied to the acoustic emission signal for Fc = 30 kHz (300 rpm)
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part, the Evolution of descriptor has thus been calculated for the Kurtosis and
THIKAT applied to each IMF (blue color), for the envelope of each IMF (red
color) and to the original signal (black color) at two central frequencies (Fc = 30,
40 kHz) when rotating at three different speeds (300, 600 and 900 rpm). These
results are shown in Figs. 7, 8 and 9 for the three rotating speeds.

For all speeds and central frequencies, both indicators revealed to be more
sensitive than indicators calculated on the original signal (black). For all speeds,
the results show that both descriptors computed at the 30 kHz central frequency
are more sensitive at the IMF 2 (10,000 Hz), while those computed at the 40 kHz

Fig. 7 EMD applied to the acoustic emission signal acquired at speed 300 rpm

Fig. 8 EMD applied to the acoustic emission signal acquired at speed 600 rpm

374 M. Kedadouche et al.



central frequency are more sensitive to the defect at the IMF 1 (highest frequency:
14,000 Hz). The IMF 1 and IMF 2 revealed to reflect the frequency contents that
are more excited by the defect. In fact, a defect when detected at its early stage
generates shocks that excite first high frequency components due to resonances. As
the EMD technique acts as frequency filters from the highest to the lowest fre-
quency, the two first IMF are more sensitive to the defect while the original signal
consider all the frequency spectra with noise. Since Kurtosis and THIKAT are more
sensitive to shocks (Group 2), these two indicators revealed to be sensitive to the
defect. There is no evidence that THIKAT is a better indicator than Kurtosis and
vice versa.

4 Conclusions

The study is aimed to detect very small bearing defects (40 microns) at their very
early stage of degradation. Since small defects produce vibratory signals in the
high frequency domain at their early stage of degradation, acoustic emission has
been used instead the vibration measurements. In this chapter, the EMD technique
combined with statistical indicators has been applied to acoustic emission signals
in order to improve the fault detection of ball bearing. This study showed the
efficiency of the Empirical Mode Decomposition method for the early detection of
mechanical defects. Using the EMD, the descriptors presents more evolution than
the same descriptors computed on the original signal. The results show that the
indicators THIKAT and Kurtosis descriptors applied to the IMF were the most

Fig. 9 EMD applied to the acoustic emission signal acquired at speed 900 rpm
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sensitive at the first and 2 levels of IMF decomposition accordingly with the
selected central frequency. It must be noticed that this study is the first one able to
detect a so small defect on bearings (40 microns). Further tests are planned with
several defects of different sizes to explore the full potential of this method; the
results will be confirmed later.
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Signal Processing Diagnostic Tool
for Rolling Element Bearings Using EMD
and MED

Steven Chatterton, Roberto Ricci, Paolo Pennacchi
and Pietro Borghesani

Abstract The signal processing techniques developed for the diagnostics of
mechanical components operating in stationary conditions are often not applicable
or are affected by a loss of effectiveness when applied to signals measured in
transient conditions. In this chapter, an original signal processing tool is developed
exploiting some data-adaptive techniques such as Empirical Mode Decomposition,
Minimum Entropy Deconvolution and the analytical approach of the Hilbert
transform. The tool has been developed to detect localized faults on bearings of
traction systems of high speed trains and it is more effective to detect a fault in non-
stationary conditions than signal processing tools based on envelope analysis or
spectral kurtosis, which represent until now the landmark for bearings diagnostics.

Keywords Bearing diagnostics � Empirical mode decomposition � EMD �
Minimum entropy deconvolution � MED

1 Introduction

In the case of small size mechanical components, like rolling element bearings,
signal processing of vibrating data is the most used approach to perform diag-
nostics procedures. Several signal processing techniques have been proposed
during time in addition to the more traditional ones like the Fourier Transform.
Time synchronous average was introduced to analyze data acquired on gearboxes
whose functioning is typically periodic [1]. Envelope analysis [2], second order
cyclostationary analysis [3, 4] and spectral kurtosis [5] are widely accepted and
used for bearing monitoring and diagnostics. Others smart signal processing
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techniques proposed to highlight the non-stationary behaviour of a phenomenon
are, for example, wavelet transform [6], which performs a scale-frequency anal-
ysis, and cepstrum analysis [7, 8], suitable to detect echoes in the signal.

The effectiveness of all the mentioned techniques for stationary signals has been
proven in various papers by means of laboratory tests. Unfortunately, some diffi-
culties arise when the considered signals are related to non-stationary phenomena
or the systems work in unsteady operating conditions. Moreover, a loss of effec-
tiveness can be observed in the case of complex systems, in which the measured
signals can be a mixture of different sources, and in real applications in which the
signals are affected by high level of noise. For these reasons, adaptive techniques
became very attractive in the last years. These techniques, also called data driven
techniques, are able to overcome the hypothesis of periodicity and stationarity of
the signals. Empirical Mode Decomposition (EMD) has been probably the first
technique belonging to this category. Proposed for the first time by Huang et al. in
[9], EMD is used either as an independent tool [10] or as a preliminary method for
the Hilbert-Huang Spectrum calculation with good results to signals measured on
mechanical systems [11]. The Minimum Entropy Deconvolution (MED) [12] is
another example of adaptive signal processing technique. Contrary to the EMD,
which is based on the decomposition of the experimental signal in different func-
tions corresponding to different signal modes, the MED algorithm enhances the
peakedness of the signal by highlighting the transient components by means of a
filter. The MED is particularly effective to separe subsequent bursts caused by
shocks generated by localized defects in experimental signals [13].

Notwithstanding the EMD and MED signal analysis techniques have been
proven in some laboratory applications, the diagnostics effectiveness of both of
them must be still tested for non stationary real applications.

In this chapter, Empirical Envelope MED (EEMED) tool is proposed by the
authors. The method has been developed and tuned for the detection of localized
faults on bearings installed in traction equipments of high speed trains. The
developed tool allows detecting the fault in transient conditions with better results
than those given by envelope analysis or spectral kurtosis, which nowadays rep-
resent the landmark for bearings diagnostics.

2 EEMED Algorithm

As previously introduced, the proposed tool is a combination of the EMD and the
MED algorithm. The former allows the extraction of the principal intrinsic mode
function of the signal whereas the latter the enhancement of the signal peakedness.
In the following, both of the two algorithms will be briefly described.
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2.1 Empirical Mode Decomposition Algorithm

For a generic signal x(t), the EMD is based on the research of its stationary points.
By indicating with smax(t) and smin(t) respectively the spline functions interpolating
the maxima and minima points of the signal x(t), their mean value function m(t) is
removed from the original signal:

x1ðtÞ ¼ xðtÞ � mðtÞ ð1Þ

The signal x1(t) is an intrinsic mode function (IMF) if the two particular conditions
are satisfied, described in detail in [9]. If the resulting signal x1(t) is not an IMF, smax(t),
smin(t) and m(t) must be recomputed starting from x1(t) with an iterative procedure
called sifting process. The sifting process stops when the first intrinsic mode function
C1(t) is extracted. Therefore, C1(t) can be subtracted from the original signal:

r1ðtÞ ¼ xðtÞ � C1ðtÞ ð2Þ

The residual signal r1(t) represents the input for the calculation of the second
IMF by means of the sifting process. The EMD algorithm for the original signal
x(t) stops when the residual signal rN(t) is a constant or monotonic function, after
the extraction of the N-th IMF. This stop condition of the decomposition algorithm
can be expressed in terms of standard deviation threshold and number of extremes.

The EMD is a deterministic decomposition; therefore, the original data can be
re-obtained by adding the extracted IMFs to the last residual signal.

2.2 Analytic Signal

The IMFs extracted by means of the EMD process can be considered a sort of sub-
signals of the original one since they enclose only some components of it. Therefore, the
IMFs represent favorable starting points for further analysis. With reference to roller
bearing diagnostics, it is widely accepted that the analytic signal is particularly sen-
sitive to the slippage occurring among the rolling elements and the rings of the bearings
as effects of the presence of localized faults. The analytic signal z(t) is defined as:

zðtÞ ¼ xðtÞ þ i yðtÞ ð3Þ

where x(t) is the experimental signal and y(t) its Hilbert transform defined as:

yðtÞ ¼ 1
p

Zþ1

�1

xðsÞ
t � s

ds ð4Þ

The analytic signal z(t) could be expressed as:

zðtÞ ¼ aðtÞeihðtÞ ð5Þ
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where a(t) and h(t) represent the envelope and the instantaneous phase of the
analytic signal respectively. Usually, the signal analysis techniques using the
Hilbert transform are devoted to the calculation of the instantaneous frequency
(e.g. the Hilbert-Huang spectrum). The attention is here focused on the treatment
of the analytic signal envelope a(t) which can be obtained by root squaring the sum
of the squares of the real and the imaginary components. The envelope of the
analytic signal considers simultaneously the variation in the time domain of the
original signal and the variations of the two components of z(t) along the real and
imaginary axis. In the proposed signal processing tool, the analytic signal is cal-
culated on the IMFs. Since the bearings functioning is characterized by high
frequency phenomena, the first IMF extracted by the EMD will be considered.

2.3 Minimum Entropy Deconvolution Algorithm

The aim of MED is to separate the components of a signal. The MED is based on
the concept of signal entropy, namely the randomness degree of the signal. The
MED algorithm reduces the randomness of a signal by minimizing its entropy. A
general signal v(t) could be considered as composed of two terms:

vðtÞ ¼ hðtÞ � wðtÞ þ gðtÞ ð6Þ

The first term is the convolution between the system behavior h(t) and its
excitation w(t). The second term g(t) considers the signal noise randomly dis-
tributed. If a filter f(t) is applied to the signal v(t), it is possible to obtain:

uðtÞ ¼ vðtÞ � f ðtÞ ¼ hðtÞ � wðtÞ � f ðtÞ þ gðtÞ � f ðtÞ ð7Þ

Expressing the previous equation as a function of sampled points, it follows:

un ¼ vn � fn ¼
XM
i¼1

fi vnþ1�i ð8Þ

where n = 1, …, N and N = T ? M - 1.
The convolution between the signal, with a length of T, and the filter with

length M, can be expressed as a sum of products. The crucial point of the approach
is the selection of a proper filter length M.

Considering the output of Eq. (8), the final signal is a simple solution, char-
acterized by the maximum possible order. A measure of the signal order is the
Varimax norm V:

VðuÞ ¼
XN

j¼1

u4
j

, XN

j¼1

u2
j

 !2

ð9Þ
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By exploiting the Varimax norm definition, the signal entropy can be mini-
mized by means of an iterative procedure as function of the filter f(t). The norm
maximization allows finding the output un which best fits the components of h(t).

The MED algorithm is applied to the envelope of the first IMF analytic signal,
obtaining the EEMED. In this is way, the MED is applied to simplified (due to
EMD decomposition) and enhanced signals (due to the Hilbert envelope of the
IMF), thus improving the effectiveness of MED itself.

3 Description of the Test-Rig

The EEMED algorithm described in the previous section has been applied to the
vibration signals measured on the test-rig shown in Fig. 1a. The test rig is
equipped with a complete traction system of a high speed train (HST): a 265 kW
4-poles asynchronous HST motor is connected to the input shaft of the HST
gearbox by means of a toothed coupling. The braking torque is provided by a
braking system composed of a braking motor and an industrial gearbox connected
to the HST traction system through a double cardan shaft.

Different operating conditions, as train speeds and motor supplied torques, were
tested. Stationary conditions, i.e. constant speed and torque due to cruise trip of the
train travelling on a flat track, and non-stationary conditions with train speed and
motor torque variations, i.e. train approaching or leaving the railway station, were
considered. In the paper, only the signals measured during the tests performed in
non-stationary conditions will be considered. Vibration signals were measured by
means of several accelerometers placed on the traction motor and the gearbox and
acquired with a sampling frequency of 20 kHz. The operating conditions are
shown in Fig. 2a and only the vibration data acquired during an interval of 10 s of
the test and indicated with [a] in Fig. 2b will be considered.

4 Experimental Results

Two damaged configurations will be compared with respect to a reference con-
figuration with all brand new bearings. In each configuration all the bearings are
new except the artificially damaged one:

• Configuration (1): localized damage on the inner ring of the four-contact point
ball bearing (Fig. 3a) placed in the non-driven end (NDE) side of the high speed
shaft of the gearbox (P5 in Fig. 2b);

• Configuration (2): localized damage on the outer ring of the roller bearing
(Fig. 3b) placed in the driven-end (DE) side of the traction motor (P2 in Fig. 2b).
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4.1 Configuration (1): Damaged Bearing on Gearbox NDE
Side

The configuration (1) concerns a ball bearing installed on the high speed shaft of
the gearbox (i.e. the shaft connected to the traction motor one) characterized by a
localized fault on the inner ring. The artificial damage consists in a spall.

The vibration signals are measured by the accelerometer A3 (Fig. 2b) placed on
the gearbox close to the considered bearing position and measuring the vibration
along the y-direction that is the direction of the motor shaft axis.

By applying a widely accepted technique in bearing diagnostics as the envelope
analysis to the measured signals, the results shown in Fig. 4 can be obtained. In
Fig. 4a, for the healthy bearing, no significant frequency component is detectable
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Fig. 2 a Operating conditions (train speed and supplied motor torque) for the considered test;
b Rotational speed of the traction motor measured during the interval [a]

Fig. 1 a Test-rig layout: (1) HST motor, (2) HST toothed coupling, (3) HST gearbox, (4)
Additional gearbox, (5) Braking motor; b Traction system arrangement with bearing position
(from P1 to P7) and accelerometer position (from A1 to A5)
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in the plot apart that corresponding to the average rotational speed of the motor
(29.9 Hz). Frequency components with high amplitude can be detected on the
contrary in Fig. 4b. All these components are harmonics of the motor rotational
speed and again, no indication about the presence of the fault on the bearing inner
ring can be obtained. It is worth noting that the same analysis performed in
stationary operating conditions offers better results since the characteristic fre-
quencies of the bearing fault can be traced in the envelope domain. This confirm
that the envelope analysis, is ineffective when applied to data acquired in transient
conditions and this remarks the necessity to develop a tool able to provide good
results in this kind of conditions.

The final results provided by the EEMED algorithm in time domain are then
treated with Fourier Transform as shown in Fig. 5, where the * symbol in the
vertical labels indicates that the amplitude is modified by the MED filter.

In Fig. 5a the frequencies components with higher energy are those related to
high order harmonics of the average supply frequency of the motor, whereas for
the damaged bearing of configuration (1) (Fig. 5b), the highest frequency com-
ponent is at the frequency of the passage of ball elements on the inner ring (with
reference to the actual average rotational speed, the nominal BPFI is equal to
273 Hz).
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Fig. 4 Envelope analysis of the signal for the reference configuration and the configuration (1)

Fig. 3 a Bearing damage for the configuration (1); b Bearing damage for the configuration (2)
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4.2 Configuration (2): Damaged Bearing on Motor DE Side

In this case, a defect on the outer ring of the roller bearing of the traction motor is
considered. The damages are the indentations shown in Fig. 3b. The vibration
signals are acquired by the accelerometer A1 (in Fig. 2b) placed very close to the
bearing and measuring the vibration along the z-direction.

For the sake of brevity, only the results provided by the EEMED algorithm are
shown in Fig. 6. While for the reference configuration (Fig. 6a) the frequency
components with high amplitude are those related to the high order harmonics of
the average supply frequency of the motor (2X component at 120.1 Hz and 6X
component at 359.7 Hz), for the configuration (2) with the damaged bearing
(Fig. 6b), the frequency component with the maximum energy is that due to the
passage of the rolling element on the bearing outer ring (BPFO). For the considered
speed profile indeed, the nominal BPFO for that damaged bearing, evaluated with
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Fig. 5 Fourier transform of the EEMED signals for the reference configuration and the
configuration (1)
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Fig. 6 Fourier transform of the EEMED signals for the reference configuration and the
configuration (2)
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the average value of the speed, is equal to 213 Hz. The identified frequency
component located at 212.8 Hz in Fig. 6b is very close to the nominal BPFO.
Therefore, also in this case, the EEMED tool is able to detect the bearing damage in
non-stationary condition.

5 Conclusion

The application of the proposed EEMED tool for bearing diagnostics in non-
stationary operating conditions has been discussed. The effectiveness of EEMED
has been tested on vibration signals measured on a test-rig reproducing the
functioning of high speed train traction equipments.

The application of EEMED to the vibration signals measured for different
bearing damages and for non-stationary operating conditions has provided
encouraging results. The comparison with the traditional and widely applied
technique as the envelope analysis shows the suitability of the EEMED for the
detection of bearing damages in non-stationary conditions.
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Influence of Stopping Criterion for Sifting
Process of Empirical Mode Decomposition
(EMD) on Roller Bearing Fault Diagnosis

A. Tabrizi, L. Garibaldi, A. Fasana and S. Marchesiello

Abstract Empirical mode decomposition (EMD) is a self-adaptive data driven
technique for analyzing nonlinear and non-stationary signals and decompose them
into some elementary Intrinsic Mode Functions (IMFs). Although EMD method
has been applied in various applications successfully, this method has some
drawbacks, i.e. lack of a mathematical base, no robust stopping criterion for sifting
process, mode mixing and border effect problem. Under the practical point of
view, the most relevant is possibly the sifting stop criterion. Although sifting as
many times as possible is needed to decompose the signal, too many sifting steps
will reduce the physical meaning of IMFs. To preserve the natural amplitude
variations of the oscillations, sifting must be limited to as few steps as possible.
The proposed criteria so far are: Cauchy-type convergence, three-threshold, energy
difference tracking, resolution factor, bandwidths, and orthogonality criterion.
There is not a thorough study yet regarding the fault diagnosis application, to
determine the effects of stopping criteria on the fault detection performance. In this
chapter, the influence of different criteria to this purpose is investigated.

Keywords Empirical mode decomposition � Support vector machine � Roller
bearing fault diagnosis � Sifting process

A. Tabrizi (&) � L. Garibaldi � A. Fasana � S. Marchesiello
Dynamics and Identification Research Group, DIMEAS, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Turin, Italy
e-mail: ali.tabrizi@polito.it

L. Garibaldi
e-mail: luigi.garibaldi@polito.it

G. Dalpiaz et al. (eds.), Advances in Condition Monitoring of Machinery
in Non-Stationary Operations, Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-39348-8_33, � Springer-Verlag Berlin Heidelberg 2014

389



1 Introduction

Empirical mode decomposition (EMD), introduced by Huang et al. [1, 2] is a
method for decomposing a multi-component signal into several elementary
Intrinsic Mode Functions (IMFs). Some drawbacks of this method are lack of a
mathematical base, stopping criterion for sifting process and border effect
problem.

The sifting process actually serves two purposes: to eliminate riding waves and
to make the wave profiles more symmetric with respect to zero. On the other hand,
too many sifting steps will reduce the IMF to be a constant amplitude frequency-
modulated function, which makes the results physically less meaningful. To pre-
serve the natural amplitude variations of the oscillations, sifting must be limited to
as few steps as are mathematically possible.

Different kind of criteria has been proposed so far. In the Cauchy-type con-
vergence criterion, standard deviation of two consequent sifting results is used as
the criterion (SD criterion) [1]. The main flaw of this approach named SD (because
of using standard deviation) is that it is unrelated to the definition of IMFs. The
mean fluctuations thresholds (MFT) utilize three thresholds to compare a specific
defined fraction [3]. The shortcoming of MFT is that the thresholds do not adapt to
the signal. The energy difference tracking (EDT) is based on the assumption that
the residue and IMFs are orthogonal mutually [4]. The difference between total
energy and energy of the original signal is tracked as the sifting stop criterion. The
resolution factor (RF) is defined by the ratio between the energy of the signal at the
beginning of the sifting and the energy of the envelopes means [5]. None of the
before-mentioned criteria uses the frequency or phase information of the analyzed
signal. Xuan and Xie [6] designed a new stop criterion-bandwidth criterion based
on two types of bandwidth (BW): instantaneous bandwidth and frequency band-
width which is caused only by frequency changes. Based on orthogonality defi-
nition, Lin and Hongbing defined orthogonality criterion (OC) [7].

In this study, we will investigate the influence of different criteria on fault
diagnosis to obtain if using different kind of stopping criteria can affect the result
of fault detections.

2 EMD Algorithm

EMD method decomposes a complex signal into a number of intrinsic mode
functions (IMFs).Decomposition consists of following steps:

1. Identify all the local extrema, and then connect all the local maxima by an
interpolation method. Repeat the procedure for the local minima to produce the
lower envelope.

2. Determine the difference between the signal x (t) and the mean of upper and
lower envelope value to obtain the first component. If it is an IMF, then it
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would be the first component of x (t). Otherwise, it is treated as the original
signal and step (1)–(2) are repeated. The sifting process can be stopped by any
of the predetermined criteria which will be discussed in the next section.

3. Separate IMF from the original signal x (t) to obtain the residue and consider it
as the new data and repeat the above described process.

4. Stop the decomposition process when the residue becomes a monotonic func-
tion from which no more IMF can be extracted.

3 IMF Sifting Stop Criteria

3.1 Cauchy-Type Convergence (SD)

Huang et al. [1] proposed a criterion where the size of the standard deviation of
two consequent sifting results hn; hn�1ð Þ should be limited and when it reaches a
certain predefined value, sifting must stop:

SD ¼
X

t

½hn�1ðtÞ � hnðtÞ�2

h2
n�1 tð Þ

\ 2 ð1Þ

3.2 Mean Fluctuations Thresholds

Rilling et al. [3] introduced a new criterion based on three thresholds h1; h2 and að Þ
aimed at guaranteeing globally small fluctuations in the mean while taking into
account locally large excursions. For 1 � að Þ fraction of data, sifting will be
continued when r tð Þ\ h1 and for remaining fraction when r tð Þ\ h2:

r tð Þ ¼ mðtÞ
aðtÞ

����
���� ð2Þ

where: a tð Þ ¼ emaxðtÞ�eminðtÞð Þ
2 ; m tð Þ ¼ emax tð ÞþeminðtÞð Þ

2 and e is envelope

3.3 Energy Difference Tracking

If h1 (separated out from the signal) is an orthogonal component of x tð Þ, the sum of
its energy and those of the residual signal Etotð Þ is equal to the original signal
energy Ex. Otherwise, there is a difference denoted as Eerr [4]. When it reaches a
certain minimum and the mean value of envelops becomes small enough, sifting
process is completed:
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Eerr ¼ Etot � Ex ¼
Z

h2
1ðtÞdt � Z

x tð Þ:h1 tð Þdt ð3Þ

3.4 Resolution Factor

Rato et al. [5] applied the ratio between the energy of the signal at the beginning of
the sifting Exð Þ and the energy of average of envelopes Emð Þ. The stopping point is
when the ratio ascends a predefined factor (resolution factor R:Fð Þ.

3.5 Bandwidth

Xie et al. designed a new stop criterion [6] which uses MFT criterion to get a result
that almost satisfies the two conditions of IMF. Then the sifting process continues
until to find the minimum of r2

f (variance of instantaneous frequency) or until the
difference of r2

f between two consequent sifting results is very small:

min r2
f or r2

f

� �
hn
� r2

f

� �
hn�1

���
���\ 2 ð4Þ

3.6 Orthogonality Criterion

Lin and Ji Hongbing [7] proposed the orthogonality criterion (OC) that when it
reaches to a pre-defined value, the sifting will be terminated:

OC ¼
XN

t¼1

m tð Þ:xðtÞ
m tð Þ:ðx tð Þ � m tð ÞÞ

����
���� ð5Þ

4 Support Vector Machine

Support vector machine (SVM) attempts to constructs a hyperplane that separates
two different classes of samples and orients it in such a way that the margin is
maximized. SVM could be applied in non-linear classification by mapping the data
onto a high dimensional feature space where the linear classification is then
possible. Various kernel functions could be used as the inner product of mapping
functions, such as linear, polynomial or Gaussian RBF (Radial basis function). It is
better for the smooth boundary to ignore few data points than be curved or go in
loops, around the outliers. This is handled here by using slack variable nð Þ [8]:
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min
1
2

w2
�� �� þ c

XN

i¼1
ni ð6Þ

Subject to yi w:Xh i þ b � 1 � ni; ni � 0

5 Methodology

The goal of this study is to investigate which sifting stop criterion is more efficient
for bearing damage identification. Normalized energy of IMFs is used as the
feature vector [9]. The fault diagnosis method is given as the following:

1. Apply EMD with different sifting stop criteria to decompose the vibration
signals into some IMFs. The first m IMFs which include the most dominant
fault information are chosen to extract the feature.

2. Create a feature vector with the energy of the first m IMFs and normalize it:

FVn ¼ E1=E; E2=E; . . .;Em=E½ � ð7Þ

where: Ei ¼
Rþ1
�1 ciðtÞj j2dt; E ¼

Pm
i¼1 Eij j2

ffi �1=2
; i ¼ 1; 2; . . .;m

3. Carry out the training procedure of SVM by utilizing the normalized feature
vectors. The 60 % of data (40 samples) are used for training and the rest are
taken as the test samples. After training the SVM successfully, it would be
ready to test samples to identify the different work conditions and fault patterns.

6 Application

6.1 Experiments

The vibration signals of Roller Bearings were collected using the test rig (Fig. 1)
developed and assembled by Dynamics & Identification Research Group (DIRG)
at Department of Mechanical and Aerospace Engineering of Politecnico di Torino
for three sizes of the artificial defect over the roller: A4(450 microns),
A5(250 microns), A6(150 microns). The speed of the shaft and the sampling
frequency were settled to 100 Hz and 102.4 kHz, respectively. This bearing test
rig has been designed to perform accurate testing of bearings under different levels
of damage in a controlled laboratory conditions, allowing speed, load and oil
temperature control.
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6.2 Analysis

Implementing the methodology described in Sect. 5, introduced feature vector for
each sifting stop criterion and defect size is obtained. The 2D normalized energy of
IMFs introduced as an efficient feature vector in fault diagnosis of roller bearing
[9], has been adopted just using only first and second element of the feature vector.
The results are shown in Fig. 2 for healthy (A0) and three different damage sizes
(A4, A5 and A6). Obviously, for great damage sizes (A4 and A5), there is perfect
distinction between the two classes of data and samples are easily recognized if
they are healthy or defective. For very small defects such as A6, there is a con-
fusion condition and classification will be with some errors in training or test. If
first and third IMFs are used, the results will be less confused as it is shown in

Fig. 1 DIRG test rig (a), damaged roller used in the tests with different defect sizes (b)
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Fig. 3 for all criteria. The results of soft margin SVM automatic classification
based on these two kind of feature vectors are proposed in Table 1(Gaussian kernel
with gamma = 2 had better performance). As it was expected (from Fig. 3), for
the all criteria, using the first and third IMFs has more accurate classification
results than using the first and second IMFs. For example, in MFT method, pre-
diction for both feature vectors are 100 %, whereas for training results are 91.7 and
95.8 % for first–second IMFs and first-third IMFs, respectively. Comparing these
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Fig. 3 Two different 2D feature vectors for all criteria (a–f)
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two feature vectors shows that for all the criteria larger margin would be obtained
using first-third IMFs, except for BW(in both A5 and A4 damage conditions) and
OC (for A5 defect condition), as it can be seen from Table 2. Increasing the
dimension of feature vector does not improve the classification accuracy, as it is
reported in Table 1.

Secondly, as it can be seen from Table 1, MFT and RF have obtained the most
accurate results with 100 % for test and 95.8 % for training. The classification
correct rate of EDT and BW is 100 % for test and 91.7 % for training which is
more accurate in comparison with OC but a little less than SD. The lowest result
has been obtained using OC which is 100 % for test and 83.3 % for training. In
Fig. 4, the classification of all criteria for the defect size of A6 and new normalized
energy feature vector (using first and third IMFs) are shown.

For larger defect sizes (A4 and A5), the accuracy is 100 % for all criteria. We
consider the margin to compare the results which are proposed in Table 2 for A4
and A5, respectively. The highest margin for both defects belongs to EDT method,
1.0420 for A4 and 0.9984 for A5. MFT also has higher margin than SD for both
defects, whereas RF obtained higher margin for A4 and lower for A5.

Table 1 Classification accuracy A6

Criterion 2D:IMF1, IMF3 2D:IMF1, IMF2 3D

Train (%) Test (%) Train (%) Test (%) Train (%) Test (%)

SD 93.3 100 91.7 100 95.8 100
MFT 95.8 100 91.7 100 95.8 100
EDT 91.7 100 86.1 100 91.7 100
RF 95.8 100 94.4 100 95.8 100
BW 91.7 100 75.0 95.7 100 93.3
OC 83.3 100 80.6 100 87.5 100.0

Table 2 Margin for A4 and A5

Criterion A5:IMF1, IMF3 A4:IMF1, IMF3 A5:IMF1, IMF2 A4:IMF1, IMF2
Margin Margin Margin Margin

SD 0.9011 1.0104 0.8888 1.0084
MFT 0.9693 1.0322 0.8941 1.0121
EDT 0.9984 1.0420 0.8105 0.9264
RF 0.9378 1.0358 0.8966 0.9683
BW 0.7286 0.8003 0.7887 0.8348
OC 0.7902 0.9302 0.8424 0.9176

396 A. Tabrizi et al.



7 Conclusions

In this study, a comparison among different sifting stop criteria in EMD decom-
position method is done. From damage identification point of view, it is important
whether an algorithm is able to distinguish the healthy or faulty condition of a
machine, as well as the severity of its damage. By using a normalized energy
feature vector (first and third IMFs); it seems that samples are classified more
properly with MFT and RF than others (high margin in larger defect sizes (A4, A5)
and the most accurate classification rate for small damages (A6)). EDT is able to
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Fig. 4 Classification the feature vectors obtained by all criteria (a–f)

Influence of Stopping Criterion for Sifting 397



classify a sample, more accurately than SD for larger defect size. In addition, its
accuracy is not far from SD for small defect size (A6). Although EDT obtained the
highest margin for both two larger damage sizes, MFT and RF also achieved large
margin. This work recognizes that EMD is a promising technique for analyzing
vibration data but its selected sifting stop criterion may give rise to different
solutions which, in turn, influence the SVM classification between healthy and
faulty data samples.
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On the use of Vibration Signal Analysis
for Industrial Quality Control: Part I

Gianluca D’Elia, Simone Delvecchio, Marco Malagò and Giorgio
Dalpiaz

Abstract Vibration signals can be successfully captured and analyzed for quality
control at the end of the production line. Various signal processing techniques and
their applications are presented in this paper. These applications demonstrate the
importance of selecting proper signal processing tools in order to extract the most
reliable information from the signals. The presented applications regards tooth
fault detection in helical gears and the detection of assembly faults in diesel
engines by means of cold test technology.

Keywords Vibration � Condition monitoring � Quality control � Helical gears �
Diesel engines � Cold test

1 Introduction

In industrial manufacturing rigorous testing is used to ensure that the delivered
products meet their specifications. In the last few years, a great effort has been put
into automating fault detection by using vibration measurements and processing
techniques, due to its non-intrusive character and ability to detect a wide range of
mechanical faults. In industrial environments there is an increasing demand for
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automatic on-line systems which are able to classify final products as pass or fail
and/or to diagnose faults. Firstly, the monitoring procedure involves the acquisi-
tion of vibration signals by means of piezo-electric accelerometers. Since the
selection of the acquisition parameters is critical, this data acquisition step is not of
minor importance. Sometimes, several operations (i.e. correct selection of time
histories, averaging and digital filtering) are needed in order to separate the most
informative part of the signal from the environmental noise (electrical and
mechanical). Secondly, signal processing techniques have to be implemented by
taking into account the characteristics of the signal and the type of machine from
which the signal is being measured (i.e. rotating or alternative machine with
simple or complex mechanisms). Finally, several features have to be extracted in
order to assess the physical state of the machine or to detect some incipient defects
and to determine the causes of their presence.

Mechanical faults in machines often show their presence through abnormal
vibration signals, thus techniques for machine condition monitoring based on the
analysis of these signals are widely used [1, 2]. However, most studies have been
carried out on simple mechanical parts, such as gears and rolling bearings, having
well-determined dynamic characteristics. Therefore, gearbox condition monitoring
and bearing defect analysis using vibration signatures are extensively reported ([3,
4] among a wide range of References). Moreover, some works related to the
condition monitoring of machining processes are present in literature ([5, 6] refer
to the drilling process as an example).

The aim of this paper is to present some quality control applications that are
primarily based on vibration analysis. The use of processing techniques that can be
considered well suited for implementation in on-line monitoring equipment at the
end of the production line is proposed. The presented applications are: (a) tooth
fault detection in helical gears; (b) the detection of assembly faults in diesel
engines by means of cold test technology.

2 Tooth Fault Detection in Helical Gears

The first application regards the use of Time synchronous Average (TSA) vibra-
tion signal for the on-line vibration quality control of gear unites. The diagnostic
capabilities of this simple technique have been tested on the basis of experimental
results concerning two different tooth faults in helical gears: poor tooth surface
quality and presence of tooth face bumps. The first fault condition concerns the
presence of oxide residuals on the tooth surface due to the heat-treatment and the
grinding process. The second one is caused by gear tooth impacts during gear
conveyance before the heat treatment, see Fig. 1b. During the test campaign the
faulty gears have been mounted on the first stage of a gear unit and the vibration
signals have been acquired from the gearbox case.

Concerning fault detection, two statistical parameters, i.e. root-mean-square
(RMS) and Kurtosis, extracted from faulty and sound TSA vibration signals have
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been evaluated in order to asses a reliable quality control strategy. The experi-
mental apparatus (see Fig. 1a) consists of a base, including two induction motors
controlled by inverters and a gear unit. The driving induction motor is controlled in
feedback speed loop, whilst the loading motor is controlled in feedback torque
loop. The gear unit contains two spur gear pairs, one having 18 and 71 teeth, the
other one 12 and 55 teeth, giving a global speed reduction ratio of 18.1. More
details concerning the test bench design can be found in [7].

Three kinds of test are performed:

• Test 1: all gears in sound condition;
• Test 2: the first stage gearbox pinion (18 teeth) exhibiting several oxide resid-

uals on tooth faces, so poor tooth surface quality (distributed fault);
• Test 3: the first stage gearbox wheel (71 teeth) showing tooth face bumps

(localized fault).

The results presented in this work have been obtained with a nominal driving
motor speed of 3,000 rpm (50 Hz) and a output shaft nominal torque of 36.6 Nm.
The vibration signal is captured from the gearbox case by means of a Brüel and
Kjær piezoelectric accelerometer mounted close to the bearing support of the first
stage pinion in the radial direction.

The sample frequency was 32,800 Hz, whilst the acquisition time was 60 s. In
all the tests the TSA vibration signal is calculated over 80 revolutions for both first
stage pinion and wheel, obtaining both pinion TSA and wheel TSA. Figure 2a and
b plot the TSA of the first stage pinion and wheel for Test 1, which can be taken as
a reference for the detection procedure. In particular, it is possible to notice that the
main signal component is the meshing frequency and no signal alteration can be
observed. Figure 2c shows the TSA of the first stage pinion for Test 2, concerning
poor tooth surface quality. Comparing Fig. 2a and c it is possible to notice that this
type of fault gives rise to an increase of the mean amplitude vibration level without
any local alteration. Therefore by the visual inspection of the TSA this type of fault
cannot be surely identified and so further analyses have to be performed, i.e.
evaluation of statistical parameters of the TSA signal. Concerning Test 3, the TSA

Fig. 1 a Test bench for gear units and b example of a tested gear
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of the first stage wheel is depicted in Fig. 2d. It is possible to notice a clear local
alteration of the vibration signal at about 230� due to the engagement of the faulted
tooth with bumps.

Here it is clearly evident that the TSA seems a pivotal tool in revealing local
alterations, i.e. localized fault in gear, nevertheless this techniques is not enough to
reveal distributed faults. Moreover, in order to assess the presence of a defect a
visual inspection of the TSA is needed; thus such a technique is not suitable to be
implemented in an automatic monitoring system at the end of the production line.
Ergo, for quality control purposes, we can link this achievement to the analysis of
statistical parameters of the TSA signal, i.e. RMS and Kurtosis. As a matter of fact
these parameters are of simple interpretation and they are linked to different
physical properties of the analyzed signal. In particular, RMS takes into account
the energy conveyed by signals and so it can be considered as an useful tool in
order to detect an increase of the mean signal amplitude (distributed faults). On the
other hand Kurtosis is exceedingly sensitive to local signal alteration (localized
faults). Table 1 summarises the RMS and the Kurtosis values for both pinion and
wheel TSA of the three different tests.

It is well know that these statistical parameters evaluated on the TSA signal,
have to be compared on the basis of the same mechanical component, i.e. pinion or
wheel. As a matter of fact TSA in practice extracts from the signal the genuine
portion containing only the components which are synchronous with the revolution
of the specific gear in question. Therefore, the statistical parameters evaluated on
the pinion TSA signal and on the wheel TSA signal, differ because they are
evaluated on the basis of different signal components.

As reported in Table 1, there is an increase of the RMS value of the pinion TSA
for Test 2 with respect to Test 1 (i.e. 0.35 vs. 0.21 g), whilst the RMS of the wheel
TSA does not show remarkable changes. Such an increase highlights the poor
surface quality of the tooth pinion. Concerning Test 3 (wheel localized fault) the

Fig. 2 Time-synchronous averages for the three tests: (a) Test 1: pinion TSA in sound condition,
(b) Test 1: wheel TSA in sound condition, (c) Test 2: pinion TSA with pinion distributed fault
and (d) Test 3: wheel TSA with wheel localized fault
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RMS of both pinion and wheel TSA does not reveal the fault presence, in fact the
energy conveyed by signal remains roughly the same (see Fig. 2b and d for the
wheel TSA). On the other hand, the Kurtosis of the wheel TSA for Test 3 shows a
marked increase with respect to Test 1 (i.e. 17.34 vs. 2.52), highlighting the
presence of a localized fault on the first stage wheel.

Concerning this application, we can consider TSA as a pivotal starting point for
on-line gear quality control. However, this techniques has to be linked to proper
statistical parameters, such as RMS value or Kurtosis coefficient, in order to detect
poor tooth surface quality or localized gear tooth faults. In particular, because
RMS value accounts for the energy conveyed by the signal, it is well suited for
distributed fault localization, while Kurtosis coefficient, which is sensitive to local
signal alterations, is a pivotal tool for the monitoring of localized faults.

3 Detection of Assembly Faults in Diesel Engine Cold Test

This application addresses the use of basic signal processing tools as means for the
quality control of assembly faults in diesel engines through the cold test tech-
nology. Nowadays, the main part of engine manufacturers tests their engines by
means of ‘‘hot tests’’, i.e. tests in which engine is firing. Hot tests mainly aim to
determine engine performances. Recently some companies have introduced ‘‘cold
tests’’ aiming at identify assembly anomalies by means of torque, pressure and
vibration measurements: this method has to be further improved [8]. In hot tests,
anomalies are detected through the deterioration of the engine performances.
Moreover vibration analysis is sometimes used to detect faults affecting com-
bustion efficiency. Cold tests are more oriented to identify the sources of anom-
alies since they are not affected by noise and vibration due to the firing.

The fault detection and diagnosis of i.e. engines can be carried out using dif-
ferent strategies. One strategy can consist in modelling the whole mechanical
system using lumped [10–14] or finite element methods in order to simulate
several faults and compare the results with what the experimental tests found.
Another strategy can adopt signal processing techniques in order to obtain features
or maps that can be used to detect the presence of the defect. Regarding this, a
decision algorithm is needed for a visual or automatic detection procedure.
Moreover the maps can be also analysed for diagnostic purposes. This method is
the most commonly used and well suited for the judgment of expert technicians.

Table 1 RMS and Kurtosis values of the TSA for the three tests

Pinion TSA Wheel TSA

RMS (g) Kurtosis RMS (g) Kurtosis

Test 1 (pinion and wheel in sound condition) 0.21 2.39 0.14 2.52
Test 2 (pinion distributed fault) 0.35 3.15 0.19 2.60
Test 3 (wheel localized fault) 0.13 2.80 0.13 17.34
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In this paper we try to investigate the problem of obtaining a strategy for the pass/
fail decision at the end of the assembly line.

As presented in [9], the normalized time histories of acceleration signals con-
cerning diesel engines can be represented as symmetrized dot polar (SDP) graphs.
The formulation used for the transformation of a discrete signal to a polar coor-
dinate graphs and the properties of this method are described in detail in [9].
Examples of the results are shown in Figs. 3 and 4. In order to implement this
technique in the cold test procedure for fault detection, it is necessary to develop
an image correlation system. The authors applied the algorithm of edge detection,
illustrated in [9], which represents the most common approach for detecting
meaningful discontinuities in intensity values. The basic idea behind edge detec-
tion is to find the points where the intensity rapidly changes. For each case, by
applying this edge detection algorithm on the image of the visual symmetrized dot
polar graph, the result will be a boolean matrix with entries equal to 1 (represented
as white pixels in the grey scale) located at the edge points, detected on the image,
and entries equal to 0, (black pixels) located elsewhere (Fig. 3c).

The goal is to identify a reference pattern that represents the normal condition
and then compare the images obtained from all the test engines with this ‘healthy
pattern’ by means of a similarity parameter. Among many possibilities, this
parameter was chosen as the percentage of common white pixels with respect to
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Fig. 3 SDP method: (a) time input waveform; (b) symmetrized dot polar graph and (c) image
obtained after the application of edge detection algorithm

Fig. 4 Symmetrized dot polar graphs: (a) healthy engine (reference pattern); (b) and (c) faulty
engines
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the total number of white pixels in the healthy engine pattern. Hereafter, this
parameter will be called correlation.

In order to set the detection threshold for the correlation, firstly the correlation
parameter is calculated for all the couples of engines from a sample of 21 healthy
engines: the engine that presents the minimum correlation with each other is
assumed as the reference pattern, unique for all investigations, and the corre-
sponding minimum correlation of 25.08 % is fixed as the correlation threshold
(CT). This pattern is compared with the images obtained from different faulty
engines and so the correlations are calculated, verifying if they are lower than the
CT in order to discriminate the faulty condition from the normal one.

Hereafter only the result concerning a specific fault is shown, as example. It
deals with a connecting rod with incorrectly tightened screws: the rod screws are
only tightened with the preload of 3 kgm, instead of the correct torque of 9 kgm.

Table 2 shows that this faulty engine gives a percentage of common white
pixels lower than the CT. Similar results were found for other faulty conditions. It
can be concluded that the percentage of common white pixels between each
pattern and the reference one can be considered as a reliable parameter. Thus, it
seems that this technique exhibits high sensitivity to faults, presenting some
advantages, as fast computational implementation and easy output evaluation.

4 Concluding Remarks

This paper describes some applications of vibration analyses for the quality control
of mechanical devices at the end of the production line. The following conclusions
can be achieved based on the presented results.

• Vibration signal is useful for quality control of the above-described applications,
but it should be properly processed in order to obtain reliable information.

• In case of rotating machines, Time Synchronous Average can be considered as a
powerful tool in detecting the presence of faults. It also permits the character-
ization of the source of alteration.

• The quality control at the end of assembly line requires the assessment of simple
parameters that can be easily used for implementing a strategy of pass/fail
decisions.

Table 2 Symmetrized dot polar patterns: correlation values

Comparison between symmetrized dot polar patterns Percentage of common white pixels
(%)

Healthy engine—healthy engine 25.08 (CT)
Healthy engine—faulty engine (incorrectly tightened rod

screws)
10.80
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On the use of Vibration Signal Analysis
for Industrial Quality Control: Part II

Simone Delvecchio, Gianluca D’Elia, Marco Malagò
and Giorgio Dalpiaz

Abstract Vibration signals can be successfully captured and analyzed for quality
control at the end of the production line. Various signal processing techniques and
their applications are presented in this paper. These applications demonstrate the
importance of selecting proper signal processing tools in order to extract the most
reliable information from the signals. The presented applications regards ball
bearings and threshing process in harvesting machines.

Keywords Vibration � Condition monitoring � Diagnostics � Quality control �
Ball bearings � Harvesting machines

1 Diagnostics of Distributed Faults in Ball Bearings

The study of localized failure detection in bearings started over two decades ago,
embracing a large number of signal processing techniques that can be roughly
subdivided with respect to their pertinence domain, i.e. time, frequency and time–
frequency domain [1, 2]. The aim of this work is to apply cyclostationary metrics
for the identification of both the appearance and the growth of distributed faults in
ball bearings, in order to overcome the pitfall of the usual approaches. Non-
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stationary signals can be defined as signals which satisfy a non-property, i.e. they
do not satisfy the property of stationarity. It is not possible to define a general
theory which treats non-stationary signals. The non-stationary behavior of each
signal has to be individually evaluated [3–9]. An important cyclostationary tool is
the Indicator of Second order cyclostationarity (ICS 2x) outlined in [10]. This
indicator tries to quantify the distance of a second-order cyclostationary process
from the closest stationary process having a similar power spectral density, giving
an indication of the presence of second-order cyclostationary components within a
signal. It is defined as (11):

ICS2x ¼
X
a2A

jð lim
T!1

R
T jxRðtÞj2e�j2patdtÞe2patj

lim
T!1

R
T jxRðtÞj2dt

ð1Þ

where A is the set of all possible cyclic frequencies a and xRðtÞ is the residual
signal. As reported by [10] this is a cumulant based estimator.

An experimental campaign was carried out on a ball bearing in order to obtain
distributed faults on the outer race, by using a test-bed composed of an asyn-
chronous 4-pole motor which moves a shaft by means of a driving belt. The shaft
is supported by a couple of cone-shaped bearings, Fig. 1a. The bearing under test is
a double-row self-aligning type SKF 1205; it is cantilever mounted on this shaft at
the opposite to the pulley. A radial external load supplied by a leverage system
acts on the test bearing. In the present test, the bearing was externally loaded with
a force of 1962 N, while the shaft was rotating at 26.6 Hz. The bearing was
degreased in advance in order to accelerate the wear process and then mounted on
the test machine. Three accelerometers were used to measure the vibration signal.
The vibration signals were acquired each 15 min with an acquisition time of
2 min, obtaining 21 acquisitions in total. The sampling frequency was 51.2 kHz.
At the end of the test the bearing was unmounted to check the status of the

Fig. 1 a Test rig; b Bearing outer race at the end of the test
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surfaces. The outer race of the bearing presented a groove corresponding to the
passage of the balls, see Fig. 1b. The groove length took more or less half of the
outer race circumference. The expected frequencies of the typical faults are
computed from the usual formulae [11]. Their values for the bearing under test are
collected in Table 1. Since the damage mainly involves the outer race in the actual
case, the outer race fault frequency is briefly referred as ‘‘fault frequency’’ in the
following.

In this paper it is considered only one of the three acceleration signals: it deals
with the vibration signal that has be proven to be less affected by the transmission
path. Figure 2 depicts the time signal captured during acquisitions n. 1 (first) and
21 (last) for a complete revolution of the shaft. As expected, the overall amplitude
level strongly increases from the first to the last acquisition, but no impulsive
content can be observed. Actually a distributed fault is not related to an impulsive
content, but to an increase of the signal energy. Therefore, the evaluation of the
RMS value can be an useful parameter for condition monitoring. As depicted in
Fig. 3 the RMS value gives an alarm on acquisition 5 where probably the con-
dition of the bearing is changed. However the RMS remains high until the end of
the acquisitions giving no information about the evolution of the fault. In addition,
due to its global nature, the RMS cannot give any information about the fault
position. In order to better investigate the fault behavior, the classical envelope
analysis is carried out by following these steps:

Table 1 Characteristic fault frequencies

Description Symbol [Hz]

Rotation frequency fr 26.6
Outer race fault frequency fo 127
Inner race fault frequency fi 192
Cage fault frequency fc 10.6
Ball fault frequency fb 121

Fig. 2 Time signal for one
shaft rotation: n. 1 first
acquisition; n. 21 last
acquisition
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• Band-pass filtering around a suitable frequency;
• Computation of the analytical signal, which is a complex quantity having the

acquired signal as real part and its Hilbert Transform as imaginary part;
• Computation of the Spectrum of the absolute value of the analytical signal.

It can be noted that the envelope analysis (Fig. 4) confirms what found by the
RMS value analysis trend. Moreover the envelope can identify the presence of a
localized fault on the outer race around acquisition n. 5. In more details this
localized fault gives origin to very slight but detectable impacts. The envelope is
sensitive to these impacts showing the ball passing frequency on the incipient
localized defect. Unfortunately this technique cannot supply further information
concerning the increase of severity and extension of the wear. As a matter of fact,
when the localized defect on the outer race grows, becoming a distributed fault, no
impulses are generated; thus, this technique cannot highlight the fault evolution.

At this stage the cyclostationarity analysis [12] has been applied as a powerful
tool in order to obtain information concerning the fault evolution. This type of
analysis is well suited in describing the vibration response signal captured from a
ball-bearing with a distributed fault. In fact, it is reasonable that this signal has
non-stationary properties with a second-order cyclostationary content, due to the
periodic variation of the bearing configuration. For example, the action of the balls
passing on a distributed fault on the outer race produces a cyclostationary vibration
with fundamental cyclic frequency corresponding to the ball passing frequency.
The ICS2x is evaluated in order to have a simple cyclostationary metric that can
track the fault evolution. In particular, this metric is computed in the cyclic fre-
quency range covering the first two fault harmonics. Figure 5 depicts the trend of
this cyclostationary metric for all the acquisitions: this metric highlights both the
fault appearance and the growth.

Fig. 3 RMS trend for
acquisitions 1–21

Fig. 4 Amplitude of the
fault frequency component in
the envelope spectrum of the
raw signal: trend for
acquisitions 1–21

410 S. Delvecchio et al.



2 Condition Monitoring of the Threshing Process
in Harvesting Machines

This section of the paper concerns the analysis of the relationship between the
threshing process in an axial flow harvesting machine and its vibro-acoustic
behaviour. Several indoor and outdoor measurements are performed in various
operational conditions in order to evaluate their influence on the vibration response
of the threshing unit. The main goal was to identify a possible link between sound/
vibration and crop distribution in threshing machines by using different signal
processing tools.

The combine harvesting machine is a machine which ‘‘combines’’ the tasks of
harvesting, threshing and cleaning grain plants. The desired result is the seed or
grain (including corn, soybeans, flax, oats, wheat, or rye among others). In an axial
combine harvester, as the crop spirals around the rotor, rasp bars mounted on the
rotor rub the grains out. An helicoidally flux of the crop is favoured by splitting the
incoming crop flow over two counter-rotating rotors. The threshing process is
mainly given by two principal effects: (1) the ‘‘grain over grain’’ effect (i.e. the
threshing of the grain kernels among themselves); (2) the threshing between
kernels and concave (i.e. the rotor cage). The crop processing unit of an axial flow
harvesting machine performs the following operations (Fig. 6): (1) after cutting the
crop the threshing unit performs the threshing and separation activities making the
kernels free from chaff and straw; (2) the cleaning unit cleans the crop separating
the kernels from other small particles like chaff and short straw. The first opera-
tions are performed by the rotors that induce an helicoidal flux of the crop. Spirally
arranged rasp bars and friction elements mounted on the rotors favor the friction of
the crop against the concaves. There are four concaves, two for each rotor. The
concave size, the number as well as the shape of the rasp bars changes as they go
from the threshing zone to the separation zone.

Fig. 5 ICS2x trend for
acquisitions 1–21

Concave

Fan

SievesRasp bar

Fig. 6 Threshing unit:
mechanical parts involved in
the threshing process

On the use of Vibration Signal Analysis 411



The frequency analysis was firstly carried out for signals measured by 3 con-
cave accelerometers in the radial direction. This direction was expected to be the
most excited by the threshing flow. The middle signal presents higher amplitudes
than the other signals from the front and rear concave accelerometers since they
are mounted close to the bolt joints connecting the concave to the frame. The
change in amount of crop processed between the concave front (beginning of the
threshing zone) and rear positions (end of the threshing zone and start of
the separation zone) does not affect the frequency behaviour, which is the same in
the first 600 Hz for both positions. Thus, it is proven that the signal amplitudes are
strongly dependent on the transducer location and not on the change of the amount
of processed crop between the two positions. The relevant characteristic fre-
quencies is supposed to be determined by the periodical rasp bar interactions of the
rasp bars with the concave. Because of their helicoidally placement along the
rotor, one rasp bar interacts with the concave three times during each rotor rev-
olution. Therefore, it is useful to define a characteristic frequency as Fbar that can
be expressed in Hz as Fbar ¼ 3nrotor=60; where nrot is the nominal rotor speed in
rpm.

On the basis of the first measurements the radial direction signal of the
accelerometer positioned on the concave middle could be considered as the best
correlated with the threshing process and it can be taken as the reference for the
condition monitoring procedure. Based on the frequency behaviour, this signal can
be decomposed into three different components: a component measured in idle
condition due to the vibration of the mechanical parts in operation; a sinusoidal
component given by the superposition of the Fbar and its harmonics; and a
broadband random component. It is worth noting that the broadband spectrum
component holds the response of the concave to two vibration sources: turbulence
due to the threshing flow and hits of the kernels impacting the concave. For this
reason the noise must not to be neglected during the analysis but has to be con-
sidered as ‘‘operational’’ noise generated by the process itself. In order to evaluate
the influence of the operational parameters some vibration metrics are extracted
from the raw vibro-acoustic signals: Root Mean Square value (RMS) reflecting the
signal energy; Crest Factor (CF), Temporal Kurtosis (TK) and Impulse Factor (IF)
reflecting the level of signal peakness. In particular the correlations among
acceleration features and concave distance have been reported here. Looking at
Fig. 7a, b and c it can be observed a very good correlation existing between the
energy of all concave accelerometer signals and the concave distance: as the
concave distance increases the Av. RMS decreases in a less than linear way. This
is true for all capacity settings tested. When capacity is set at 10 % higher values
are obtained. Based on these results we are able to link the concave vibration to the
concave distance. Through the evaluation of the Av. RMS trends we get an idea of
the global vibration of the concave. The TK of the concave middle radial signal for
both indoor and outdoor tests (but here plotted only for signals measured during
outdoor tests, see Fig. 7d) presents also good correlations with the concave dis-
tance variations. An increase of the concave distance causes an increase of the TK.
This behaviour is probably due to the changes in crop distribution: at higher
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concave distances the crop is more spread less densely between the concave and
the rotor. Therefore more space is available for the crop which interact more easily
the concave. Hence we can refer to a sort of saturation effect occurring at low
concave distances. Moreover, as confirmed by Fig. 8, it seems that the TK
parameters can be correlated with the amount of broken grains. This correlation
can be interpreted assuming that an increase of the concave distance, indicated by
higher TK values, may cause a decrease in the impact force existing between the
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Fig. 7 Features versus
concave distance: a Av. RMS
at rear position; b Av. RMS
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d Outdoor tests: Av. TK at
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kernels and the concave giving a low percentage of broken grains. This phe-
nomenon has to be investigated more in detail by further tests.

3 Concluding Remarks

This paper describes some applications of vibration analyses for the quality control
of mechanical devices at the end of the production line.

A cyclostationary approach in order to identify distributed faults in ball bear-
ings is proposed. The effectiveness of this approach is assessed through an
experimental test: a degreased bearing running under radial load developed
accelerated wear, while the vibration signal is periodically captured during the
bearing life in order to monitor its deterioration. Classical and cyclostationary
techniques are then applied to the signals. The results indicate that the usual
approach can detect the appearance of the fault but cannot track the successive
growth. On the contrary, cyclostationary tools are able to detect both the
appearance of a localized fault and its development in a distributed fault.

Regarding the application in harvesting machines, appropriate metrics have
been extracted from the time domain signals in order to explain the mechanism of
the noise and vibration generation during the threshing process. Some correlations
between these features and some operational and efficiency parameters have been
obtained with the aim of determining how the crop distribution is influenced by
varying these parameters. In particular, good correlations have been obtained for
the concave middle radial signal, calculating the trends of RMS and TK. Some of
these metrics can be assumed as good indexes that predict the efficiency of the
process. Moreover, the concave vibration has been proved to be well correlated
with the concave distance that is tuneable by the user during the field operations.
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Non-Clustering Method for Automatic
Selection of Machine Operational States

Adam Jablonski, Tomasz Barszcz and Piotr Wiciak

Abstract A reliable evaluation of technical condition of machinery working
under non-stationary conditions requires a rigorous tracking of operational
parameters. Therefore, modern condition monitoring systems (CMS) enable
reading and registering of process parameters (e.g. speed, load, pressure, etc.) in
parallel with acquisition of vibroacoustic signals. Although few tries have been
undertaken to develop state-free analysis of vibration signals, currently installed
systems still do rely on state-preclassified data. The paper shows how the process,
referential data might be automatically transformed into proposition of optimal
machine operational states in terms of their number and their range. As indicated
by the title, the paper shows common pitfalls coming from implementation of
popular clustering approach. The proposed algorithm illustrates is verified on real
data from a pitch-controlled wind turbine.

Keywords Machine operational states � Condition monitoring of machinery
working under non-stationary parameters

1 Introduction

In the field of vibrodiagnostics, a machine operational state is understood as an
accepted range of machine’s operational points enabling referential analysis [1]. In
practice, machine operating point is defined by values of available measurements
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of physical quantities such as speed, load, pressure, temperature, etc., usually
called ‘‘machine process parameters’’ [2]. Typically, from each vibration record, a
set of diagnostic indicators is calculated known as a ‘‘trends’’. Each trend point is a
combination of representation of true machine technical condition and behavior,
machine’s current operating point, measurement error and random factor. In a
typical condition monitoring set up, each trend is tracked against a precalculated
threshold value. In this case, operational states (hereafter called ‘‘states’’) are used
for data classification during the data acquisition and consequently in data analysis
process. Based on these states, data is combined into sets, which are assumed to
represent a particular machine.

As a result, the overall number of defined diagnostic indicators and estimators is
equal to the number of indicators and estimators calculated from machine kine-
matic configuration multiplied by the number of states. Therefore, from operator’s
point-of-view, it is desirable to have as little states as possible in order to minimize
the diagnostic workload. On the other hand, from reliability point-of-view, in order
to minimize the fluctuation of machine’s operating points, it is desirable to define
ranges of states as narrow as possible. In the latter case, the state configuration
would result either in (1) a single operational state with low permissible fluctuation
of operational parameters, (2) a large number of operational states with low per-
missible fluctuations of operational parameters within a state. The first solution
might cause a major part of data to be omitted, whereas the latter solution, as it
was mentioned, constitutes a major burden to both, computational capabilities as
well as to operators of condition monitoring systems.

In this paper, the authors aim in redefining the problem of configuration of
machine operational states enabling automatic selection of optimum states’ ranges.
The optimization is to be carried out with respect to the range of permissible
fluctuation of significant, predefined process parameters.

2 State of the Art

As demonstrated in [3], in many industrial branches, efficient condition monitoring
and fault detection of machinery working under non-stationary conditions is a
crucial factor in their overall revenue. As an example, the authors give popular
wind farms. In authors’ opinion, the subject of automated wind turbine data
classification has been explored in literature with the inclination towards clustering
methods. So far, it has been shown that clustering algorithms [4] and artificial
neural networks might be used for the purpose of states’ selection. According
to clustering algorithms, both probability-based methods [4] and so-called
‘‘k-means’’ algorithms [5] have already been applied to wind turbines data. Both
algorithms are well known clustering methods, which might be easily applied to
large data sets as well. However, within this paper, the authors claim that
implementation of popular clustering approaches leads to common pitfalls due to
mathematical assumptions which are not met in practice. Finally, the authors
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would like to mention that although few tries have been undertaken to develop
state-free analysis of vibration signals [6], currently installed systems still do rely
on state-preclassified data.

3 Redefinition of the Problem of Selection of Machine
Operational States

3.1 Number of States

According to a most popular design, the number of machine operational states
within a CMS is predefined. For instance, in case of wind turbines, it is common to
implement two operational states based on theoretical power curve, as endorsed by
norms [7]. On the other hand, as illustrated in [5], clustering-based methods cal-
culate the number of states (clusters) on the run.

However, as authors’ practices shows, it is very convenient to take advantage of
practical aspects of CMS performance, namely to make the number of states
flexible, yet to set the number of states to a reasonable number from a diagnostic
engineer point-of-view. In this way, the number of operational states of an
industrial object is desired to be from 1 to 3. Therefore, apart from scientific
justification, it seems permissible to design the algorithm, which will illustrate
three resultant propositions of operational states definitions, one for a single state,
one for two states, and one for three states.

3.2 Shape of State-Defining Sets

The second aspect concerning practical implementation of machine operational
states is the requirement of array-shaped sets, or regions. In this approach, it is
desired that selected ranges of process parameters must always create arrays.
Considering an exemplary two-variable state definition (commonly power and
speed), a selected state might be presented as a particular area, as illustrated in
Fig. 1. In Fig. 1, the operational state is defined for Speed variable from S1 to S3
and for Power variable from P1 to P3, but in case when Speed is from S2 to S3, the
Power must not be greater than P2.

Although graphical representation of these dependencies is easy to grasp, it
introduces unaccepted level of complexity into architecture beneath the logic of
industrial CMS. Unfortunately, as shown in Chap. 5, such selections are practi-
cally inevitable for clustering-based methods.
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3.3 Intersection of States

The third aspect of states selection refers to intersection of ranges of process
channels. From authors’ research it is concluded that machine operational states
should not have any common ranges. Considering an exemplary two-variable state
definition (commonly power and speed), two selected state might be presented as
areas with a common part, as illustrated in Fig. 2b.

In this case, as illustrated in Fig. 2a, the first process variable, e.g. ‘‘speed’’
varies from low to high, while the second process variable, e.g. ‘‘power’’ remains
at a low level. Such situation might be encountered for instance in wind turbines,
where the relation between wind speed, rotor speed, and generated power is
modified by complex control systems [8]. At this point, the authors would like to
draw a conclusion that from CMS point-of-view, for a given machine, only non-
intersecting sets of process parameters should be taken into account because other
variations are simply a transient state, which is to be avoided for data analysis.
Referring to Fig. 2b, the state characterized by low speed and low power should be
considered as valid, whereas the potential state characterized by high speed and
low power should be considered as transient, and consequently invalid. Apart from
scientific descriptions, in practice, conclusions concerning ‘‘normal’’ operation
parameters are easily available from machine operators. Unfortunately, as shown
in Chap. 5, such intersections are practically inevitable for clustering-based
methods as well.

Fig. 1 Representation of
non-array state definition

Fig. 2 Representation of
intersecting states definition
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3.4 Practical Parameterization of the Problem

Finally, the authors propose that states should cover as little multidimensional
space as possible, yet enough to meet required number of signals to be registered.
In this way, the input parameter to the method is the minimum required number of
instances (final time signals), whereas the output includes up to three states defined
by ranges of process parameters. In practice, considering process parameters data
from a given time interval (for instance three months), it is convenient to specify
the minimum (sufficient) number of samples as a percentage of this time. In this
way, the CMS designer might build states so that at least a particular percentage of
all possible data is to be state-defined.

Fig. 3 A schematic
representation of
transforming 2-dimensional
process data into a
2-dimensional grid

Fig. 4 Representation of
scanning of the 2-D grid
within the main, outer loop
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4 Algorithm Description

The algorithm is illustrated on the example of a wind turbine process data, where
operational states are to be calculated based on pairs of generator output power and
generator speed assigned to a grid, as illustrated in Fig. 3.

Next, the grid is scanned in two loops. The first loop, main loop covers cons-
ecutives areas within the grid, as illustrated in Fig. 4. The second, inner loop
performs scanning of all array-shaped combinations, as illustrated in Fig. 5. For
each combination, a quality coefficient (QC) is calculated as the number of

Fig. 5 Representation of scanning of all possible array-shaped combinations. Combinations
1–16 are calculated for cell ‘‘1’’ in Fig. 4, while combinations 17–28 are calculated for cell ‘‘2’’
in Fig. 4, etc
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instances, in this examples pairs (power, speed), divided by the range (conve-
niently by the number of covered grids).

For a square configuration of a grid, the total number of array combinations to
be checked (i.e. the length of the quality coefficient) is calculated by:

K nð Þ ¼
1 for n ¼ 1Pn

i¼2
i3 þ 1 for n� 2 : ð1Þ

Although for a reasonable grid step for real WT data (e.g. 10 Hz, 10 kW), the
number of configurations to be checked reaches millions (Table 1), it is easily
reduced by implementation of maximum variability of each process parameter
within a single array (for instance speed fluctuation less than 200 rpm).

5 Case Study: Wind Turbine Data

The exemplary data comes from a 1.5 MW pitch-controlled wind turbine. Figure 6
illustrates an XY (or scatter) plot of power with respect to generator speed.

Analyzing Fig. 6, it is extremely difficult to draw a conclusion about detailed
data distribution. Figure 7 illustrated the same data platted as a color map (note
that all cells with more than 30 points are plotted with the same dark-red color.

Table 1 Exemplary number
of necessary scanning steps

Size of main
grid (n by n)

Number of configurations
to be checked

3 36
10 3,025
20 44,100
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P
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Fig. 6 A scatter plot of power versus generator speed
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In Fig. 7, the ranges of first three optimal states are marked with white rect-
angles. The minimum required number of points to be covered was based on daily
acquisition need (1,600 out of 30,000 total). Moreover, the maximum allowable
range of speed and power within state were set to 200 rpm and 200 kW. The first
automatically calculated state (1) covers 4 cells and has a QC1 equal to 496. The
second state (2) covers 54 cells with QC2 equal to 30. The third state (3) covers
112 cells with QC3 equal to 15.

6 Conclusion

The application of the algorithm to real data has shown that operational states of
machinery should not be selected where we would like them to be but where the
desired data do exist. The paper proves that optimal operational states should be
constrained in their number, shape, location, and the required number of data in a
given time span. The real data example illustrates how most optimal operational
states might be different from states based on direct visual deduction.
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Simple Relations for Estimating
the Unknown Functions of Incomplete
Experimental Spectral and Correlation
Response Matrices

Jose Antunes, Laurent Borsoi, Xavier Delaune and Philippe Piteau

Abstract In this paper we suggest two simple approximate methods to estimate
the unknown terms of incomplete spectral or correlation matrices, when the cross-
spectra or cross-correlations available from multiple measurements do not cover
all pairs of transducer locations. The proposed techniques may be applied when-
ever the available data includes the auto-spectra at all measurement locations, as
well as selected cross-spectra which implicates all measurement locations. The
suggested formulae can also be used for checking the consistency between the
spectral or correlation functions pertaining to measurement matrices, in cases of
suspicious data. After presenting the proposed formulations, we discuss their
merits and limitations. Then we illustrate their use on a realistic simulation of a
multi-supported tube subjected to turbulence excitation from cross-flow.
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1 Introduction

Given a set of R response measurement locations in vibratory or acousti-
cal experiments, several system identification techniques make use of a complete
set of R� R cross-spectral response estimates Sijðf Þ, with i; j ¼ 1; 2; . . .;R.
Examples of such techniques include the SVD decomposition of cross-spec-
tral measurement matrices ½SYYðf Þ�, in order to identify the system modal
responses:

SYYðf Þ½ � ¼ Uðf Þ½ � Rðf Þ½ � Uðf Þ½ �H ð1Þ

where, at each frequency, the columns of matrix ½Uðf Þ� contain the singular
vectors of ½SYYðf Þ� and the terms of the diagonal matrix ½Rðf Þ� are the corre-
sponding singular values. Recently, such technique became widely used for the
purpose of the so-called operational modal identification, when dealing with large
structures subjected to unmeasured random excitations, such as bridges and tow-
ers, under the excitation of wind or traffic [2–4, 7].

Obviously, because of reciprocity, one has Sjiðf Þ ¼ S�ijðf Þ (where the starred
function refers to complex conjugate), meaning that only the ð0:5ðR� 1Þ þ 1ÞR
cross-spectra of the upper triangular terms must be measured, instead of the full R2

terms of the spectral matrix. Even so, this may represent a significant amount
of measurements to be performed, involving either many transducers or
many transduce location changes, and possibly the need for very long signal
cables. All these features are certainly inconvenient and often non-feasible.
Therefore, we believe that a procedure which would enable the ‘‘filling’’ of
incompletely measured spectral matrices might be very convenient and useful in
many instances. In the following we will show that, provided some essential
assumptions apply to the analyzed system and data, simple approximate methods
may be devised for such purpose. Two straightforward estimation methods are
suggested and discussed in this paper, which can be applied in many situations of
practical interest.

In the proposed approaches, the assumed minimum of available experimental
data includes the R auto-spectra Siiðf Þ from all the measurement locations, as well
as R� 1 cross-spectra involving all transducer locations. A specific set of available
cross-spectra, which will be of particular interest here because it fits the experi-
mental constraints of our work, involves measurements between consecutive
transducers: S12ðf Þ; S23ðf Þ; . . .; Siðiþ1Þðf Þ; . . .SðR�2ÞðR�1Þðf Þ; SðR�1ÞRðf Þ. The simple
formulations detailed in the following apply to spectral matrices ½SYYðf Þ�,
manipulations being easier in the frequency domain. Nevertheless results also
apply to correlation matrices ½RYYðsÞ�, as the former are related to the later through
the inverse Fourier Transform RijðsÞ ¼ F�1ðSijðf Þ Þ.

The suggested formulae may also be used for checking the consistency between
the spectral or correlation functions pertaining to measurement matrices, in cases
of suspicious experimental data. After presenting the proposed approximate
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formulations, we discuss their merits and limitations. Then we illustrate their use
on a realistic simulation of a multi-supported tube subjected to turbulence exci-
tation from cross-flow.

2 Estimation of Unknown Cross-Spectra

In order to estimate the unknown terms of spectral matrices, consider three generic
measurement locations i, j and k, from which the experimental cross-spectra Sijðf Þ
and Sjkðf Þ are known, but not the cross-spectrum Sikðf Þ. It will be discussed in
the following that, provided that none of the modes present near-identical
frequencies, the unknown cross-spectrum may be estimated through the approxi-
mate relation:

Sikðf Þ �
Sijðf ÞSjkðf Þ

Sjjðf Þ
ð2Þ

In order to establish the validity of Eq. (2), let us express the spectral products
of the physical responses Sijðf ÞSjkðf Þ and Sikðf ÞSjjðf Þ in terms of the system modal
responses, assuming N significantly excited modes. Then, if the response signals
are not contaminated by significant noise levels, we have:

Sijðf Þ � SYYðxi; xj; f Þ ¼
XN

n¼1

XN

m¼1

/nðxiÞ/mðxjÞSqnqmðf Þ; i; j ¼ 1; 2; . . .;R ð3Þ

and, further assuming that the modal responses are nearly uncorrelated—which is
most often true for structures subjected to distributed random loads—then the
cross-terms can be neglected, Sqnqmðf Þ 	 Sqnqnðf Þ ;8m; n. We may thus approxi-
mate (3) through the single summation:

Sijðf Þ �
XN

n¼1

/nðxiÞ/nðxjÞSqnqnðf Þ; i; j ¼ 1; 2; . . .;R ð4Þ

In matrix terms, this means that the exact expression:

S11ðf Þ S12ðf Þ � � � S1Rðf Þ
S21ðf Þ S22ðf Þ � � � S2Rðf Þ

..

. ..
. . .

. ..
.

SR1ðf Þ SR2ðf Þ � � � SRRðf Þ

2
6664

3
7775 ¼ U½ �

Sq1q1ðf Þ Sq1q2ðf Þ � � � Sq1qN ðf Þ
Sq2q1ðf Þ Sq2q2ðf Þ � � � Sq2qN ðf Þ

..

. ..
. . .

. ..
.

SqN q1ðf Þ SqN q2ðf Þ � � � SqN qN ðf Þ

2
6664

3
7775 U½ �T

ð5Þ

may be approximated through:
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S11ðf Þ S12ðf Þ � � � S1Rðf Þ
S21ðf Þ S22ðf Þ � � � S2Rðf Þ

..

. ..
. . .

. ..
.

SR1ðf Þ SR2ðf Þ � � � SRRðf Þ

2
6664

3
7775 � U½ �

Sq1q1ðf Þ 0 � � � 0
0 Sq2q2ðf Þ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � SqN qN ðf Þ

2
6664

3
7775 U½ �T

ð6Þ

where the columns of matrix ½U� are the system modeshapes /nðxiÞ, with n ¼
1; 2; . . .;N and i ¼ 1; 2; . . .;R.

In general, the cross-spectra Sijðf Þ obtained from (5) are complex quantities.
However, if we assume that the modeshapes /nðxiÞ are real, notice that the Sijðf Þ
obtained from (6) must be real, as they are built from the real auto-spectra of the
modal responses Sqnqnðf Þ. This may appear somewhat surprising, but comes as a
natural consequence of (6) whenever the modal responses are nearly decoupled,
which is actually the case for many situations of practical interest.

Accounting for the previous analysis, one can estimate the products Sijðf ÞSjkðf Þ
and Sikðf ÞSjjðf Þ as:

Sijðf ÞSjkðf Þ �
XN

n¼1

/nðxiÞ/nðxjÞSqnqnðf Þ
" # XN

m¼1

/mðxjÞ/mðxkÞSqmqmðf Þ
" #

¼
XN

n¼1

/nðxiÞ/nðxjÞ/nðxjÞ/nðxkÞ Sqnqnðf Þ
� �2þ

þ
XN

n6¼m¼1

XN

m 6¼n¼1

/nðxiÞ/nðxjÞ/mðxjÞ/mðxkÞSqnqnðf ÞSqmqmðf Þ

ð7Þ

Sikðf ÞSjjðf Þ �
XN

n¼1

/nðxiÞ/nðxkÞSqnqnðf Þ
" # XN

m¼1

/mðxjÞ/mðxjÞSqmqmðf Þ
" #

¼
XN

n¼1

/nðxiÞ/nðxkÞ/nðxjÞ/nðxjÞ Sqnqnðf Þ
� �2þ

þ
XN

n6¼m¼1

XN

m 6¼n¼1

/nðxiÞ/nðxkÞ/mðxjÞ/mðxjÞSqnqnðf ÞSqmqmðf Þ

ð8Þ

and it follows from (7) and (8) that the ‘‘diagonal’’ terms of both spectral products
are identical, but not the ‘‘cross’’ terms. However, following our assumption of
decoupling of the modal responses, one may assume that, in the frequency region
Dfn encompassing each modal peak fn, the corresponding modal term SqnqnðDfnÞ is
dominant when compared with other neighbor modes with responses SqmqmðDfnÞ,
with m 6¼ n. Then, one can write:

SijðDfnÞSjkðDfnÞ � /nðxiÞ/nðxjÞ/nðxjÞ/nðxkÞ SqnqnðDfnÞ
� �2 ð9Þ
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SikðDfnÞSjjðDfnÞ � /nðxiÞ/nðxkÞ/nðxjÞ/nðxjÞ SqnqnðDfnÞ
� �2 ð10Þ

which are identical. Hence, for sufficiently decoupled modes, one obtains:

Sijðf ÞSjkðf Þ � Sikðf ÞSjjðf Þ ð11Þ

from which follows the approximation (2).
In spite of its simplicity and potential practical usefulness, we could not find in

the literature any mention to expression (2), other than a single work in the context
of modal identification [6], where a similar expression HjjðfnÞHikðfnÞ ¼
HijðfnÞHjkðfnÞ, based on the system transfer functions at modal frequencies, was
suggested. This technique, designated as ‘‘triangular measurement’’, was proposed
as a practical alternative to avoid the measurement of collocated transfer functions,
considered by these authors prone to errors, or to avoid measurements which
would imply the use of very long signal cables, which is in our view perhaps the
most interesting application of such formulae.

Notice that, from the approximation (2), a more general expression can be
deduced relating the cross-spectra at four locations i, j, k and l. Considering a
relation similar to (2), but with respect to location l, we deduce:

Sikðf Þ �
Silðf ÞSjkðf Þ

Sjlðf Þ
ð12Þ

which obviously reduces to (2) when l � j. For the purposes of estimating the
unmeasured terms of spectral matrices, we will further generalize (2) to approx-
imate every other term of a spectral matrix, assuming that the auto-spectra and
cross-spectra of the following tri-diagonal subsystem are known:

SYYðf Þ½ � ¼

S11ðf Þ S12ðf Þ ? ? ? ? ?
S21ðf Þ S22ðf Þ S23ðf Þ ? ? ? ?

? S32ðf Þ . .
.

Sði�1Þiðf Þ ? ? ?
? ? Siði�1Þðf Þ Siiðf Þ Siðiþ1Þðf Þ ? ?

? ? ? Sðiþ1Þiðf Þ . .
.

SðR�2ÞðR�1Þðf Þ ?
? ? ? ? SðR�1ÞðR�2Þðf Þ SðR�1ÞðR�1Þðf Þ SðR�1ÞRðf Þ
? ? ? ? ? SRðR�1Þðf Þ SRRðf Þ

2
66666666664

3
77777777775

ð13Þ

Under the assumptions of non-noisy signals and of modal non-degeneracy, any
given term Sikðf Þ may be approximated using (2), however this can be achieved in
several manners. For instance, considering a 5� 5 matrix:
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SYYðf Þ½ � ¼

S11ðf Þ S12ðf Þ S13ðf Þ S14ðf Þ S15ðf Þ
..
.

S22ðf Þ S23ðf Þ S24ðf Þ S25ðf Þ
..
.

S33ðf Þ S34ðf Þ S35ðf Þ
..
.

S44ðf Þ S45ðf Þ
S51ðf Þ � � � � � � � � � S55ðf Þ

2
66666664

3
77777775

ð14Þ

the unknown term S25ðf Þ may be alternatively estimated as:

S25ðf Þ �
S23ðf ÞS35ðf Þ

S33ðf Þ
� S23ðf Þ

S33ðf Þ
S34ðf ÞS45ðf Þ

S44ðf Þ
ð15Þ

S25ðf Þ �
S24ðf ÞS45ðf Þ

S44ðf Þ
� S23ðf ÞS34ðf Þ

S33ðf Þ
S45ðf Þ
S44ðf Þ

ð16Þ

both (15) and (16) leading to the same result:

S25ðf Þ �
S23ðf ÞS34ðf ÞS45ðf Þ

S33ðf ÞS44ðf Þ
ð17Þ

which can be generalized, for any term Smnðf Þ:

Smnðf Þ �
Smðmþ1Þðf Þ Sðmþ1Þðmþ2Þðf Þ . . . Sðn�2Þðn�1Þðf Þ Sðn�1Þnðf Þ

Sðmþ1Þðmþ1Þðf Þ Sðmþ2Þðmþ2Þðf Þ . . . Sðn�2Þðn�2Þðf Þ Sðn�1Þðn�1Þðf Þ
ð18Þ

This estimation formula will be tested in Sect. 5, based on a realistic simulation
of a tube subjected to turbulence excitation. However, before proceeding, notice
that (18) reveals a potential for numerical problems if the product of auto-spectra
in the denominator leads to excessively low values. Such situation may arise at
several frequencies, whenever the locations chosen for measuring the auto-spectra
are near one or more nodal modeshapes. As the actual /nðxiÞ are unknown at this
stage, such unfortunate situation can easily arise, leading to ill-conditioning of (18)
and possibly wrong estimates of Smnðf Þ. Of course, one may attempt to mitigate
this difficulty using some form of regularization, such as Tikhonov technique.
However, we will develop in the following section another simple formulation
alternative to (18), in order to bypass the problem.

3 An Alternative Estimation Technique

The starting point for this approach is that, if as assumed the response signals are
not contaminated by significant noise and the modal responses are sufficiently
decoupled, then cross-spectral coherency at response peaks will approach the
maximum value. Then, we may write in the vicinity of the modal frequencies:
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c2
ikðDfnÞ ¼

SikðDfnÞj j2

SiiðDfnÞSkkðDfnÞ
� 1) SikðDfnÞj j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SiiðDfnÞSkkðDfnÞ

p
ð19Þ

therefore, if one adopts this assumption, the cross-spectra may be estimated as:

Sikðf Þ ¼ Sikðf Þj j exp ihikðf Þð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Siiðf ÞSkkðf Þ

p
exp ihikðf Þð Þ ð20Þ

where the phase angle hikðf Þ may be estimated based on (2):

Sikðf Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Siiðf ÞSkkðf Þ

p
exp ihikðf Þð Þ � Sijðf ÞSjkðf Þ

Sjjðf Þ
ð21Þ

or:

Sjjðf Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Siiðf ÞSkkðf Þ

p
exp ihikðf Þð Þ � Sijðf Þ

�� �� exp ihijðf Þ
ffi �

� Sjkðf Þ
�� �� exp ihjkðf Þ

ffi �
ð22Þ

so that, the phase of auto-spectra being always nil:

exp ihikðf Þð Þ � exp ihijðf Þ
ffi �

exp ihjkðf Þ
ffi �

) hikðf Þ ¼ hijðf Þ þ hjkðf Þ ð23Þ
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Fig. 1 Multi-supported tube subjected to flow turbulence excitation (uniform flow velocity
profile)
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Fig. 2 Typical time-domain response sample and auto-spectrum (transducer 1)
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Generalizing these results, an alternative formulation to (18) for approximating
a given cross-spectrum Smnðf Þ, is:

Smnðf Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Smmðf ÞSnnðf Þ

p
exp ihmnðf Þð Þ ð24Þ

with:

hmnðf Þ ¼ hmðmþ1Þðf Þ þ hðmþ1Þðmþ2Þðf Þ þ � � � þ hðn�2Þðn�1Þðf Þ þ hðn�1Þnðf Þ ð25Þ

which does not entail numerically treacherous computations, whatever the values
of the modeshapes at the measurement locations.

4 Illustrative Simulated System

We will now illustrate how the previous formulations perform in a realistic situ-
ation. The following results are based on computations performed when simulating
the vibratory response of a multi-supported tube subjected to the distributed ran-
dom excitation by a turbulent cross-flow with constant velocity profile (velocity
5 m/s), as shown in Fig. 1. Effective techniques for modeling the turbulence
excitation and the dynamics of such system have been thoroughly described
elsewhere by the authors [1, 2].

As shown in Fig. 1, the tube with total length 5 m, has 6 spans, each one
provided with a transducer (supports are shown using triangles and squares, while
measurement locations are shown using circles). Time-domain simulation of the
tube excitation encapsulates all effects connected with turbulence, namely
the spectral properties and space correlation of the turbulence eddies—see the
aforementioned references for modeling and implementation details.

Figure 2 shows a typical time-domain response from one of the transducers, for
a time-record of 5 s, from a total simulated motion time of 60 s, as well as the
corresponding auto-spectrum, where the many modal response peaks are apparent (in
the range 0–200 Hz, the modal basis frequencies used for performing time-domain
simulation are fn ¼ 33; 40; 49; 57; 64; 77; 130; 145; 163; 180; 187 Hz). In
order to strain the estimation methods, we added to the physical response signals
random gaussian noise, white in the frequency range 0–250Hz, (and nil beyond), with
RMS amplitude 10 % of the average response amplitude. The effect of such noise is
clearly apparent in the plots of Fig. 2.
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Fig. 3 Absolute value and coherency of the spectral matrix, as well as the corresponding
correlation functions estimated from the response vibrations at six locations along the tube;
Red = actual noisy data, Cyan = estimated data using Eq. (18)
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Fig. 4 Absolute value and coherency of the spectral matrix, as well as the corresponding
correlation functions estimated from the response vibrations at six locations along the tube;
Red = actual noisy data, Cyan = estimated data using Eqs. (24–25)
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5 Evaluation of the Estimation Techniques

The results from the approximation formula (18) are shown in Fig. 3, while those
obtained using approximation (24–25) are presented in Fig. 4. Shown are the real
noisy response data (Red) and estimated data (Cyan) of the 6 9 6 response
matrices, in the following manner: absolute value of the spectra (upper plots),
coherency of the spectra (central plots) and a zoom of the corresponding corre-
lation functions (lower plots).

Comparing the real cross-spectra and cross-correlation functions shown in these
plots—which were obtained directly from the time-domain simulation responses—
with the corresponding estimations, it appears that the proposed approximation
procedures behave fairly well, even if a significant amount of noise is added to the
system response signals. The most illuminating plots shown in Figs. 3 and 4 are
perhaps those of the cross-correlations RijðsÞ, which best display differences
between the real and estimated data. In particular, it is clear that the second
proposed approximation method (24–25) is more robust than the basic technique
(18), as expected. However, the coherency functions thus obtained are always
unity, see (19), a feature with no further unpleasant consequences.

6 Conclusion

In this work we proposed two straightforward methods that, under mild restric-
tions, can be used either: (1) to estimate unknown cross-spectra in incomplete
spectral or correlation matrices, or (2) to cross-check suspicious experimental data.
The proposed methods were tested using realistic numerical simulations of a multi-
supported tube subjected to the excitation by flow turbulence. The results obtained
are quite convincing and the presented analysis stresses the idea that, for coherent
vibratory or acoustical response measurements from linear systems, the full
spectral matrix can be approximated using only the diagonal auto-spectra and a
limited set of cross-spectra. However, if some of the modal frequencies are near-
degenerate, the estimated spectra will be erroneous in the frequency ranges of the
mode doublets. More sophisticated techniques are needed to address this problem.
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Condition Monitoring Under
Non-Stationary Operating Conditions
using Time–Frequency Representation-
Based Dynamic Features

O. Cardona-Morales, D. Alvarez-Marin
and G. Castellanos-Dominguez

Abstract Condition monitoring is useful to describe the machine state under
current operating regimes, especially, when non-stationary operating conditions
appears. Nevertheless, in actual applications the faulty data are not always
available. This paper proposes a novel methodology for condition monitoring
using dynamic features and one-class classifiers. The dynamic features set com-
prises the spectral sub-band centroids and linear frequency cepstral coefficients
computed from time–frequency representations. A one-class classification stage is
carried out to validate the performance of the dynamic features and commonly
used statistical features as descriptors of the machine state. Proposed methodology
is evaluated by using a test rig, which is composed by outliers (unbalance and
misalignment) and target objects (undamaged state). The data set is obtained under
variable speed conditions including start-up and coast-down. The attained results
outperform other state-of-the-art extracted parameters and the methodology is
robust to large speed fluctuations in the machine.

Keywords Condition monitoring � Dynamic features � Non-stationary � Vibration
signals � One-class classification

1 Introduction

In modern industries, fault detection in rotating machinery is a fundamental issue
since it helps to reduce the unnecessary expenditures in repairs while improving
machine performance. On this matter, the main challenge is to determine the
current state of the machine from a set of measurements, so called Condition-
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Based Maintenance (CBM). Usually, the state of the machine is assessed using
vibration analysis because it gives a high precision and it has a low cost. However,
two problems arise: the first one is regarded to the time-varying machine condi-
tions, either by changes in speed or load, yielding to non-stationary vibration
signals; the second problem is associated to the amount of available data char-
acterizing the different states of the machine, since in most of the cases the
recordings of the damaged machine are the only ones available; this fact hinders
the application of conventional classification techniques due to the strong imbal-
ance of the faulty/normal classes (states of the machine).

With regard to the former problem, several authors have proposed methods to
characterize the dynamic behavior of the machine under non-stationary operating
conditions taking into account an insufficient amount of damaged condition sig-
nals. Therefore, describing the time-varying behavior supposes the use of time–
frequency representations (TFR) in order to analyze frequency changes through
the time domain and how to associate the spectral components to some kind of
damage. For example, the full-spectrum and the continuous wavelet transform
(CWT) are used in [1, 2], respectively, in order to identify the dynamic behavior of
the machine. However, they visually show the difference between vibration signals
acquired from a test rig for several machine states. In [3] summarizes different
methods for estimating the energy concentration from several TFR according to a
set of test rig faults. Recently, a promissory TFR has been developed aiming to
reduce the problems associated to the interpretation of conventional TFR, which
means both improved concentration and eliminated misleading interference terms
[4]. Thereby, a wavelet-based TFR enhancement method is proposed in [5], known
as synchrosqueezing, which reallocates the energy around of instantaneous fre-
quency in the scale dimension. Nonetheless, those TFR comprise a lot of points,
and their post-processing imply a high computational cost [6]. On the other hand,
there are some statistical features, extracted from time and frequency domain, such
as mean, standard deviation, skewness, kurtosis, root mean square (RMS), crest
factor, shape factor and others, are commonly used because of their computation
easiness [7–9].

With regard to the second problem, one-class classification (OCC) techniques
have been used in order to determine when the machine state ceases to be normal
and when the first symptoms of damage appear. For instance, several standard one-
class classifiers such as the normal distribution classifier, the k-nearest neighbor
(k-NN) classifier and support-vector data description (SVDD) are compared in
[10]. Considered classifiers are trained and tested employing vibration signals at
different constant speeds by using a set of statistical-based features. However, the
data description performance is low. Therefore, several authors have proposed
different methodologies for improving the classification performance by estimat-
ing statistical features from piecewise segmented non-stationary vibration signals.
Some of the most commonly used methodologies are weighted SVDD [11],
moving-average model [12], wavelet packet transform [13] and subspace reduction
by principal component analysis (PCA) [14]. Those approaches reach a high
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classification performance but, in some practical cases, the signal segmentation
entails a loss of information either in time or frequency [15].

In this paper, a novel methodology for mechanical systems description with
non-stationary behavior is introduced. In particular, the proposed approach uses
the spectral sub-band centroids and the linear frequency cepstral coefficients, all of
them extracted from a TFR. Due to the large number of features obtained from the
TFR, a feature selection process is carried out in order to determine the amount of
most relevant dynamic characteristics. Finally, resulting dynamic features are
validated by a OCC and the performance is compared against state-of-the-art
statistical features. Proposed methodology is tested with a dataset collected in a
test rig for normal, unbalanced and misaligned assemblies. Recordings are
acquired for several intensity levels and under variable speed conditions including
machine Start-up and Coast-down.

2 Background

2.1 Generation of Time-Varying Features

Let fxðlÞ; l ¼ 1; . . .; Lg be a given vibration signal, defined along L 2 R time
instants and Sxðl; kÞ 2 R

L�K its respective time–frequency representation (TFR),
where fk; k ¼ 1; . . .;Kg denotes the ordinal index in frequency. The basic goal
of a TFR is to determine the energy concentration along the frequency axis,
ff ¼ kDf ; f 2 ð0; fs=2Þg, at a given time instant, where fs denotes the sample
frequency. Nonetheless, either TFR holds a huge amount of non-relevant
information. Therefore, it is of primal importance the definition of methods
allowing to extract salient and discriminant information from the vibration
signal [6].

Taking into account that the time–frequency (t–f) analysis models the signal
spectral density as a function of time under the assumption that the spectral content
remains stationary within the small time intervals of computation, then short–time
parameters extracted from TFR can be considered. Adequate candidates for feature
extraction methods are the Spectral Sub–band Centroids (SSC) [16] and the Linear
Frequency Cepstral Coefficient (LFCC) [17]. Both of TFR–based short–time
parameters are extracted by using a filter–banked decomposition, when efficiently
combining frequency and magnitude information from the short–term power
spectrum input signals. Time–variant outputs of these filters, that might be chosen
so as to cover the most relevant part of the frequency range, are regarded as the set
of time–variant features yn ¼ fynðlÞ : n ¼ 1; . . .; nf g; with ynðlÞ 2 R: Therefore,
sampled vector over discrete time, l, of each narrow–band feature, yn; is attained
by filter bank modeling. For instance, using the set of LFCC that is extracted by
Discrete Cosine Transform of triangular log–filter banks, fhmðkÞ : m ¼ 1; . . .;Mg;
linearly spaced in the frequency domain:
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ynðlÞ ¼
XM
m¼1

log sm lð Þð Þ cos n m� 1
2

p
nf

� �� �
ð1Þ

where nf is the number of desired LFCC features to be considered, and smðlÞ 2 R

is the weighted sum of each frequency filter response set, smðlÞ ¼PK
k¼1 Sxðl; kÞhmðkÞ; being m, l, and k the indexes for filter ordinal, time, and

frequency axes, respectively; K stands for the number of samples in the frequency
domain.

Other effective way of generating t–f-based time–variant features can be
achieved through computation of the histograms of the SSC that are estimated for
each filter in the frequency domain, hnðkÞ, by:

ynðlÞ ¼
PK

k¼1 khn kð ÞSc
xðl; kÞPK

k¼1 hn kð ÞSc
xðl; kÞ

ð2Þ

where c 2 R
þ is a parameter that represents the dynamic range of the spectrum,

used in the computation of the centroid, and the filters hnðkÞ are linearly distributed
along the spectrum. In addition, the energy around each centroid can be also
considered as time–variant feature that for a fixed bandwidth Dk is computed by
means of:

ynðlÞ ¼
XŷnðlÞþDk

k¼ŷnðlÞ�Dk

Sxðl; kÞ ð3Þ

where ŷnðlÞ is the actual value of the time–variant centroid estimated by 2.

2.2 One-Class Data Inference

Based on optimal signal detection inferring whether the signal is present, different
approaches to distinguish one class from the rest of the data feature space, Z ¼
½z1; . . .; zi; . . .; zq�; Z 2 R

r�q; had been developed, (being r the data dimension and
q the number of available objects). Particularly, the measured data space is related
to just one of the classes (termed target) that can be properly characterized as well
as compactly clustered, in such a way as to guarantee the discrimination of other
possible objects (that is, non-target class from which no measurements are
available) distributed outside of the target class. Therefore, to circumscribe the
target class within concrete bounds two concepts are introduced: (i) the distance,
dðziÞ 2 R

þ; that measures the closeness of a zi object to the target class, and (ii)
the threshold h 2 R

þ on this distance, that fixes the decision boundary of the target
class, that is:

dðziÞ\h; zi ! target class

444 O. Cardona-Morales et al.



dðziÞ[ h; zi ! non target class ð4Þ

The definition of the adequate classification boundary around target class
remains as the most important issue. Moreover, the threshold h should accept as
many objects as possible from the target class, while minimizing the chance of
accepting non-target (or outlier) objects [18]. In practice, used distances range
from the simplest Euclidean to more elaborated ones, by instance the statistical-
based distances. As regards the former distance, it may face several restrictions
describing a poor dense volume of the hyper-sphere, no mentioning that this
algorithm requires the tuning of number of neighbors k The latter distances are
more robust since they impose a model to the OCC that allows to provide a highly
dense volume of the decision hyper-sphere. Specifically for implementing the
OCC, the Gaussian distribution classifier (using Mahanalobis distance) [19] and
the Support Vector Data Description (using kernel based square distance) [10], are
employed.

3 Experimental Analysis

3.1 Collected database from experimental test rig

A set of experiments is performed with the supplied test rig shown in Fig. 1a,
which includes a 2 HP Siemens electromotors with a maximum speed of
1,800 rpm. The motor is connected to the shaft by means of a rigid coupling. The
shaft has two supports, each one with a SKF-6005 NR ball bearing and two drilling
wheels designed for simulating either static or dynamic unbalance. The sensors are
located in both horizontal and vertical directions. The vibration signals are
acquired by ACC102 accelerometers, with a measurement range of 0� 10 kHz

(a) (b)

Fig. 1 Supplied test rig and an exemplary of generated signals under undamaged condition.
a Test rig set-up, b Coast-down (top) and Start-up (bottom) conditions
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and 100 mV/g of sensibility. A National Instruments USB-6009 data acquisition
card is employed using a sampling frequency of 20 kHz.

The data set holds the following types of acquired outliers regarding the con-
sidered machine states: (1) two static and one dynamic unbalance, and (2) two
angular and two parallel misalignments. The data collection also includes an
undamaged condition type, which is taken as the only target class. The machine state
is measured for start-up and coast-down conditions, where each recording under
coast-down condition (Fig. 1b-top) contains three phases: (1) maximum speed
(1,800 rpm), (2) turning motor off, and (3) steady–state regime. The start-up con-
dition case (Fig. 1b-bottom) has the same phases, but in reverse order. Each
recording is ten seconds long and half of the time the machine spends to change its
phase. It is worth noting that considered working phases are not synchronized each to
other, that is, the second phase may begin at different times within each recording.

As a result, 20 recordings were acquired at each horizontal measurement point
for each one of the 8 considered types of machine states, i.e., in total 160
recordings were collected; nonetheless, each recording is downsampled to 4 kHz,
that is, the length of the recording is L = 40,000.

3.2 Estimation of Dynamic Features

In this work, two different TFR, the Short-Time Fourier Transform (STFT) [3] and
the Synchrosqueezing Wavelet Transform [5] are used. For the STFT, the TFR
matrix has dimension S40;000�256; where K = 256 is chosen as to exceed a rea-
sonable resolution of 0.1 Hz. Given the sampling frequency of 4,000 Hz, in case
of SWT, the number of scales is fixed according to [5], that is, K = 375, ranging
from 0.0001 to 1.649 So, TFR matrix has dimension 40,000 9 375 Figure 2 shows
the spectral decomposition of each signal using the TFR described above, i.e.
STFT (top) and SWT (bottom). As seen, spectral components expand (contract)
with increasing (decreasing) rotational speed. Besides, the TFR belonging to the
coast-down condition (Fig. 2a) presents better estimation of spectral decomposi-
tion than for the start-up condition (Fig. 2b); that situation can be explained since
there is a spectral component holding most of the TFR power. This behavior hides
the actual contribution of the others frequency components and it is probably
generated due to an unbalance of electromagnetic forces inside the electromotor
during the start-up condition. In addition, there is an appreciable spectral com-
ponent in the t–f map at frequency 1,300 Hz, which can be associated with any
possible structural resonance that might be present on the test rig.

In the beginning, a set appraising n SSC as well as n LFCC features is extracted
from a given TFR. Based on [20], the needed number of dynamic features in
Eqs. 1 and 2, initially, is fixed to be nf = 25 In addition, the other free parameters
needed for the dynamic feature estimation are fixed empirically. Namely, in case
of LFCC features, m = 32 triangular filters comprise the log–filter banks used,
which are linearly spaced in the frequency band. Likewise, the SSC features are
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estimated using a dynamic range c ¼ 1 to preserve the spectral power of the TFR.
Consequently, 50 dynamic features are extracted from considered TFRs; each one
having 40,000 samples of length. Therefore, extracted feature set holds a huge
amount of information to be fed into the classifier.

From the above huge achieved dynamic feature set, it follows that there is a
need for an adequate dimension reduction, which in this cases, is provided in two
stages: Firstly, each dynamic feature is adequately represented by the first statis-
tical moment, i.e., EfznðlÞ : 8l 2 Lg, that is, RL�1 7!R

1; being Ef�g the expecta-
tion operator. Secondly, the obtained feature space matrix has dimension
25 9 160 for each considered TFR. Therefore, a multivariate latent approach is
used to select the data set to be fed into the one-class classifier, for either TFR.
Lastly, we determine the optimal number of features, nf that are required to
properly characterize the vibration signal, inasmuch as this parameter controls the
computational cost and the performance within the classification framework. To
select an adequate number of features, the following criterion of multivariate
reconstruction error is carried out: min8nfEfk xðtÞ � x̂ðtÞ k2g � gg ¼ 0; where
x̂ðtÞ is the reconstructed signal, h is a small enough real positive value, k � k2 is the
norm squared value. As result, the minimum number of LFCC features to achieve
an explained variance value of 97:6 % is nf ¼ 16, while nf ¼ 20 for SSC
parameters are needed for to reach a variance of 96:2 %: Roughly speaking, the
explained variance can be fixed as 0.976 Therefore, the value g � 0:024.

Fig. 2 Time-frequency representations from acquired signals on the test rig under two
conditions, using STFT (top) and SWT (bottom). a Coast-down, b Start-up
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3.3 Target Class Classification Validated on Test Rig Data

For classifier validation, the OCC error performance is computed by using the
commonly used 10-fold cross-validation procedure, where the target data is split
into 70 % for training and the rest 30 % is merged with the outlier data (nontarget
class). When outliers are available, an acceptable discrimination between target
and outlier objects means both a small fraction of outlier accepted (false-posi-
tive––fp) and a large fraction of target objects accepted [10]. However, in cases
where outliers are not available, it is recommended to use a weighted measure
known as recall, which means the proportion of target accepted [15].

As measures of classifier performance, the accepted outliers (false positive––fp)
and the classifier recalls (rec) are shown in Table 1 (upper part) for start-up
condition. The feature set is extracted using the first statistical moment (mean
value) reducing each dynamic feature. As seen, the estimated LFCC extracted
from STFT present the best performance regardless of the considered classifier.
Nonetheless, it is worth noting that the higher performance is achieved using
Gauss classifier since it does not misclassify outliers while preserving the highest
value of achieved recalls. It is worth noting that the inclusion of Principal Com-
ponent Analysis (PCA) leads to improve the achieved performance. For sake of
comparison, performance values are also computed for statical feature set (SFS)
(24 features statical extracted in time and frequency domains [8, 9]); values
achieved in this case exhibit worse outcomes.

Table 1 Outlier accepted fp
� �

and recall (rec) in (%), using the recordings from test rig under
considered non-stationary operating conditions

Start-up Coast-downFeatures

Gauss SVDD Gauss SVDD

fp rec fp rec fp rec fp rec

STFT-LFCC 0 100 0 92 0 92 0 80
STFT-LFCC-PCA 0 100 0 88 0 94 1 82
STFT-SSC 0 92 0 98 0 98 0 86
STFT-SSC-PCA 0 98 0 94 0 90 0 86
SWT-LFCC 0 90 0 88 0 68 0.5 48
SWT-LFCC-PCA 0 90 0 88 0.1 70 1.1 56
SWT-SSC 0 74 0 64 1.5 56 3.5 64
SWT-SSC-PCA 0 82 0 78 0 68 0.7 44
SFS 2.3 94 0.5 44 0.8 92 0 52
SFS-PCA 4.2 88 3.1 80 20 86 0.9 28

The outcomes using the proposed dynamic features (upper part) and the state-of-the-art statistics
features (lower part)
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4 Discussion

After testing of discussed training methodology for rotating machine diagnosis,
some assertions can be stated regarding the time–frequency representations from
the dynamic features are extracted as follows:

• With respect to used TFRs, the best performance results are obtained when the
STFT is employed, despite the SWT holding better energy concentration, at
least, for both tested experimental databases. Although, the difference in term of
achieved classifier performance remains close for both TFRs when the dynamics
of input vibration signal becomes slow enough. The STFT preserves high rates
of classification, having in most of the cases no outliers accepted; that perfor-
mance should be considered as an acceptable result in CBM, since it reduces the
possible expenses associated to any rotating machine damage.

• The static features (SFS) are useful when changes observed in the dynamics are
of smooth nature, since this type of features are strongly dominated by the
amplitude and the localized frequencies in the signal. However, it is possible to
reach more precision in the condition monitoring if the estimated features are
related with the energy. Also, it is worth noting that the generalization capability
reached by using statistical features is low to distinguish normal samples from
outliers. Therefore, this type of features may face serious restrictions to be
considered for fault diagnosis, specially, in attempting to track for time-variant
damages within the CBM program. Instead, the proposed dynamic features
achieve better performance, particularly, if they are extracted from the STFT.

5 Conclusions

A novel methodology for CBM based on the estimation of dynamic features such
as LFCC and SSC from TFR is proposed. The methodology improves the char-
acterization of the dynamic data behavior allowing to get a high classification of
target class. The proposed characterization process allows completely to analyze
the vibration signal reducing the loss of information caused by the signal seg-
mentation, and it estimates the amount of required dynamic features in order to
describe the behavior of rotative machines offering a properly reconstruction.
Using the dynamic features several statistical features are estimated in order to
compare with the best statistical features proposed in the state-of-the-art. As a
result, the methodology overcomes the obtained performance by means those
statistical features. In general, the proposed dynamic features allow to classify
different time-variant behaviors and it presents a high performance, either rejecting
outliers or accepting targets. Finally, using this methodology, it is possible to
reduce the classifier complexity improving the data description based on the
presented dynamic features. In order to do further research, this methodology
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should include more wide class of dynamic features. Also, the methodology will
be test with other types of mechanical systems.

The authors acknowledge to Colciencias and the Universidad Nacional de
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Comparison of Torsional Vibration
Measurement Techniques

Karl Janssens and Laurent Britte

Abstract Noise and vibration performance plays an important role in the devel-
opment of rotating components, such as engines, drivelines, transmission systems,
compressors and pumps. The presence of torsional vibrations and other specific
phenomena require the dynamic behaviour of systems and components to be
designed accurately in order to avoid comfort and durability related problems. This
paper provides an overview of the instrumentation and challenges related to tor-
sional vibration testing. The accuracy and performance of various measurement
techniques are investigated by measurements on a Fiat Punto 1.4 l engine. The
potential sources of error are discussed for each technique.

Keywords Torsional vibration testing � Measurement techniques

1 Introduction

With eco-engineering comes a new range of NVH issues to solve. New powertrain
designs like start-stop systems, downsized engines, advanced torque lock-up
strategies and the generic trend for weight reduction of the powertrain raise the
importance of an in-depth understanding of torsional vibrations as they negatively
impact comfort and ultimately engine and driveline efficiency. Torsional vibra-
tions are of importance whenever power needs to be transmitted using rotating
shafts or couplings, like is the case for e.g. automotive, truck and bus drivelines,
recreation vehicles, marine drivelines or power-generation turbines.

Torsional vibrations are angular vibrations of an object, typically a shaft along
its axis of rotation. As mainly rotational speeds are measured, torsional vibrations
are assessed as the variation of rotational speed within a rotation cycle. These
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RPM variations are typically induced by a non-smooth driving torque or a varying
load. Structural sensitive frequencies along a driveline may then amplify and
transfer these phenomena, leading to comfort, durability or efficiency problems.

Despite tremendous progress in modeling accuracy, overall system complexity
still necessitates accurate qualification and quantification of these torsional
vibrations, under controlled or real-life operating conditions, in order to better
understand and refine counter measures.

This paper provides an overview of the instrumentation and challenges related
to torsional vibration testing. The accuracy and performance of various mea-
surement techniques are investigated by measurements on a engine test bench.

2 Torsional Vibration Measurement Sensors

Various measurement techniques are available for torsional vibration testing. The
best sensor can be selected for each individual case based on the physical quantity
to be measured, the type of analysis, the accessibility of the shaft, the ease of
instrumentation and the required accuracy.

2.1 Direct Measurements

2.1.1 Linear Accelerometers

Two linear accelerometers are fixed in a face-to-face configuration on the rotating
shaft. The two accelerometers will measure the tangential acceleration. As they have
opposite direction in the fixed system of the rotation axis, any translational accel-
eration of the shaft is cancelled by taking the average of both accelerometer signals.

Advantages:

• High dynamic range directly determined by the dynamic range of the
accelerometers

• Low sensitivity to shaft translational vibrations when the accelerometers are
well aligned.

Disadvantages:

• Expensive telemetry system or sensitive slip rings are needed to transfer the
acceleration signals from the rotating shaft to the measurement hardware

• Mass loading for relatively small shafts influencing the structural behaviour of
the shaft, e.g. causing torsional resonances to shift in frequency or shaft
unbalance

• Bigger shafts at relatively high RPM cause centrifugal forces that may lead to
dangerous loss of accelerometers and measurement equipment when not suffi-
ciently well glued
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• Since acceleration is measured, and angle and speed can only be derived by
integration, no absolute angular position is available. Angle domain processing
will not be possible.

2.1.2 Dual-Beam Laser Interferometers

Laser interferometers can be used as well to measure torsional vibrations. Laser
manufacturers typically propose specific systems for rotating measurement based
on dual beam techniques to cancel the effect of translational movement of the
shaft. The angular velocity is computed from the velocity measured in the
direction of the laser beams on the two pointed areas through the Doppler shift.

Advantages:

• Contactless measurement
• Low sensitivity to shaft translational vibration
• Low sensitivity to the shape of the shaft
• Easy instrumentation.

Disadvantages:

• Expensive device. Since it is often required to measure torsional vibrations at
different shaft locations simultaneously, this is often a large drawback

• Exact angular speed and position are not known. Since velocity is measured,
angle can only be derived by integration, no absolute position is available.
Angle domain processing for example will not be possible

• The size of the device does not allow using it in a confined environment. Its use
in real-life mobile conditions is very difficult or nearly impossible.

2.2 Coder-Based Techniques

Coder-based techniques make use of equidistantly spaced markers on the shaft or
rotating component. The system measures every time a marker passes in front of a
sensor and the time difference between two markers is used to estimate the angular
velocity. The coder-based techniques have the advantage to deliver RPM and
discrete angle position. The data resolution is determined by the number of
markers: the more markers, the more accurate information.

Different types of coders are used, for example stripes drawn or glued on the
shaft or the teeth of gears. Also different sensors are available to detect the
markers, such as electro-magnetic pick-ups or optical sensors. Incremental
encoders are devices combining the coder and sensor in one single hardware.
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2.2.1 Magnetic Pick-ups

Magnetic pick-ups detect changes in the magnetic field or magnetic flux, typically
resulting from metallic teeth passing the sensor. They are often used in industrial
applications because of their robustness and low sensitivity to ambient dust. Set-
ups for this are often very practical as well, since existing gear sets on the machine
can be used as coder, e.g. the gear teeth on flywheels of transmissions. Resulting
from that, magnetic pick-ups are very popular for measuring torsional vibrations,
as they are easy to set up, as they work very well with existing gear teeth and as
they are very robust. Most combustion engines today are equipped, by default,
with these sensors to transfer the different shaft positions to the engine or gearbox
controllers.

Advantages:

• Price. Mass production of magnetic pick-ups for automotive and industrial
applications has a very positive influence on their end-user price

• Simplicity of instrumentation. The sensor is typically fixed on non-rotating
components, which avoids the need for e.g. telemetry. Coders are mostly gen-
erated by existing gear sets

• Robust sensors with low sensitivity to ambient dust.

Disadvantages:

• The number of gear teeth sets limits to the number of pulses per revolution
which could be insufficient to capture all torsional content

• The accuracy of the measurement is very much dependent on the machining
accuracy and deformation of the gear teeth

• The sensor must be fixed very close to the rotating shaft which is sometimes
difficult, e.g. when the shaft has an important translational movement

• Relative displacements between the magnetic pick-up and the shaft, due to shaft
bending or due to displacement of the sensor attached on a too soft mounting,
influence the quality of the measured pulses and generate a fictive torsional
vibration.

2.2.2 Optical Sensors

Many types of optical sensors can be found on the market, however most of them
are designed for object detection. To measure torsional vibrations, the sensor not
only needs to be able to detect a high rate of events per second, also the timing
accuracy of the detection is very important and this accuracy is often insufficient.

Optical sensors generate an electric signal proportional to the received light
intensity. Optical fibers are used to conduct the light from the emitter to the sensor
head and back from the sensor head to the receptor. They can be configured in
reflection or transmission configuration.
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Optical sensors can be used with many different types of coders as long as the
visible contrast between the stripes is sufficient. Most optical sensors deliver a
TTL output signal.

Advantages:

• The instrumentation is very simple as the sensor is typically fixed on non-
rotating components. Only the coder needs to rotate.

• Optical sensors can be directly instrumented on gears as is the case with
magnetic pick-ups, under condition that the reflection of the material gear
surface is sufficient

• Coders can easily be implemented on shafts with contrasted paint or zebra tape
• The fast response and good phase accuracy of high-quality optical sensors allow

the measurement of very high pulse rates.

Disadvantages:

• The sensitivity to ambient light and/or the quality of the material reflection
complicate the direct instrumentation of the gears in gearboxes

• The sensor must be fixed very close to the rotating shaft which is sometimes
difficult when the access is limited or when the shaft has some translational
movement

• Relative displacements between the optical sensor and shaft influence the quality
of the measured time stamps and lead to torsional vibration measurement errors.

Black and white tapes are more and more used to quickly implement a coder on
a shaft. They can be used to create a coder when no gear wheel is available or
when a higher number of pulses per rotation is required. There are two families of
tape depending on whether it must be glued around the shaft (zebra tape) or on the
extremity (zebra disc). Zebra tapes and discs exist in multiple stripe width to adapt
the number of pulses per revolution in function of the shaft diameter.

Although zebra tape is very easy to instrument, an error will be introduced onto
the measurement at the location where the two zebra tape endings come together.
When this point passes the optical sensor it will introduce a discontinuity in the
RPM signal. A butt joint correction should therefore be applied before analysing
the measurement signal (Janssens et al. [1]).

Zebra discs do not suffer from this butt joint problem, however proper care
needs to be taken to properly center the disc. Since perfect centering is never
possible, torsional order 1 is typically not reliable when using this coder set-up.

2.2.3 Incremental Encoders

Incremental encoders are devices typically used in automat or robotic applications
for accurate detection of shaft positions. Their high accuracy makes them very
attractive for torsional vibration analysis applications as well. Often based on
optical technology, incremental encoders combine the coder and the sensor in one
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single device. They consist of both a rotating (rotor) and static (stator) component
and the full sensor needs to be mounted on the set-up. Incremental encoders come
in many different shapes and sizes, to cover all required applications.

The incremental encoder makes use of three embedded coders: one detecting
one single pulse per revolution, called index, as absolute angle reference and two
more high resolution encoders called A and B. The A and B signals have exactly
the same number of pulses but the B signal is phase shifted with a quarter of a
pulse cycle (90�) compared to A. The combination of these two coder signals
allows detecting the sense of rotation of the coder.

Advantages:

• The fully integrated approach allows developing accurate coders with poten-
tially very high pulse rate. Incremental encoders can be delivered with the
appropriate number of pulses, depending on the application and desired accu-
racy typically 50–500

• The sense of rotation can be a great advantage, e.g. for the investigation of the
start/stop behaviour on engines

• The integrated index signal allows duty cycle related analysis with accurate
TDC identification (e.g. engine combustion analysis).

Disadvantages:

• The relative complex instrumentation limits their usage for in-vehicle or mobile
measurements. Incremental encoders are mainly used when working on test
benches where the instrumentation makes part of the test bench equipment.

3 Test Campaign

3.1 Test Set-up

An experimental test campaign was carried out on a 4-cylinder Fiat Punto 1.4 l
engine (Fig. 1 left). The engine was driven by an electric motor controlling the
speed profile. The engine crankshaft and electric motor were connected by a
pulley. Torsional vibration measurements were conducted on the camshaft (Fig. 1
right). The shaft was instrumented as follows:

• Dual beam laser (RLV 5500 Polytec system)
• High speed incremental encoder (Heidenhaim ROD 426, 1,024 pulses per rev)
• Zebra tape (142 stripe pairs, 1 mm stripe width, Optel Thevon optical sensor)
• Zebra disc (120 pulses per revolution, Optel Thevon optical sensor).

Various constant speed and run-up tests were carried out in the following two
conditions: (1) 4 cylinders open (spark plugs removed): rather small torsional
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content related to the piston movements; and (2) 1 cylinder closed: large torsional
content due to the high pressure changes (compression and expansion) in the
closed cylinder, once per rotation of the camshaft.

3.2 Test Results

3.2.1 Four Open Cylinders

Figure 2 shows the RPM-frequency colormap of the torsional vibration mea-
surements on the camshaft by the dual beam laser, incremental encoder, zebra disc
and zebra tape in a run-up test with 4 open cylinders. There is obviously a good
match between the analysis results within a 30 dB dynamic range. The dominant
orders 4, 12 and 16 are well captured by all methods. Only slight differences are
noticeable for the less significant orders. The zebra disc results are of lower quality
in the 70–90 Hz frequency range, possibly due to the vibrations of the optical
probe which is not idealy fixed. One can also notice that the zebra disc is not
perfectly centered on the shaft, causing an order 1 misalignment error.

Figure 3 shows the amplitude and phase profile of torsional orders 4 and 16 as
obtained with the 4 measurement techniques. There is a good match in amplitude
and phase all along the RPM axis, even when the order becomes less important
with amplitudes lower than 0.01�.

Figure 4 compares the RPM time variations obtained from the zebra tape
measurements with those of the incremental encoder before (lower graph) and
after (upper graph) application of a zebra tape butt joint correction. The spikes in
the RPM data are clearly removed, illustrating the effectiveness of the correction
method. The corrected zebra tape measurements and incremental encoder RPM
data match very well.

Zebra 
tape

Incremental
encoder

Zebra 
disc

camshaft

crankshaft

pulley

Fig. 1 Fiat Punto engine set-up (left), instrumentation of camshaft (right)
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Fig. 3 Camshaft torsional order cuts in run-up test with 4 open cylinders
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3.2.2 One Cylinder Closed

The torsional vibration results for a run-up test with 1 cylinder closed are shown in
Figs. 5, 6, and 7. The large pressure changes (once per camshaft revolution) in the
closed cylinder cause strong RPM variations which are clearly visible in Fig. 5.
The large RPM drop every rotation yields multiple torsional orders as shown in
Fig. 6. Here again, the torsional vibration results of the 4 measurement methods
are similar within the 30 dB dynamic range. This is also clear from the order
sections in Fig. 7, showing a similar amplitude and phase profile.
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Fig. 4 Camshaft RPM fluctuations measured with zebra tape (with and without butt joint
correction) and incremental encoder in a test with 4 open cylinders
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Fig. 5 Camshaft RPM fluctuations measured with zebra tape (with and without butt joint
correction) and incremental encoder in a test with 1 cylinder closed
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4 Conclusions

It is known since a long time that the dual beam laser and incremental encoder are
good and accurate measurement techniques for torsional vibration testing. How-
ever, the set-up space of the laser system and relative complex instrumentation of
the incremental encoder limit their usage for in-vehicle and mobile measurements.
Zebra tape and disc measurements do not suffer from these limitations which is
obviously a benefit. Next to this, they also perform well in terms of accuracy. With
various experimental tests on a Fiat Punto engine, we have demonstrated that the
torsional vibration results obtained with these measurement techniques correspond
very well to those of the dual beam laser and incremental encoder.
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Numerical Investigations on the Accuracy
of an Automated Modal Identification
Technique

Carlo Rainieri and Giovanni Fabbrocino

Abstract Systems and techniques for fast damage detection play a fundamental
role in the development of effective Structural Health Monitoring systems. Modal-
based damage detection algorithms are well-known techniques for structural health
assessment but they need reliable and accurate automated modal identification and
tracking procedures in order to be effective. In this chapter, the performance of a
recently developed algorithm for automated output-only modal parameter esti-
mation is assessed. An extensive validation of the algorithm for continuous
monitoring applications is carried out based on simulated data. Different levels of
damping are considered. The numerical study demonstrates that the algorithm
provides fairly robust, accurate and precise estimates of the modal parameters,
including damping ratios.

Keywords: Automated operational modal analysis � Damping measurement

1 Introduction

Several algorithms for automated identification [1] and tracking [2] of modal
parameters based on Operational Modal Analysis (OMA) methods have been
developed in recent years. As a consequence, modal based damage detection
techniques [3] are again gaining in popularity, even if they suffer limitations in
terms of damage localization and quantification, as well as drawbacks related to
sensitivity to measurement quality and to environmental and operational factors.
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Nevertheless, continuous monitoring of modal parameters has a large potential in
performance and health assessment of civil engineering structures [4]. Applica-
tions range from prompt detection of damage and degradation phenomena to post-
earthquake health assessment and emergency management.

The available solutions for automated output-only modal identification show
some drawbacks [1] which can affect their reliability and accuracy in the frame-
work of continuous monitoring:

• threshold based peak and physical pole detection;
• need of a preliminary calibration phase at each new application;
• static settings of thresholds and parameters which may be unsuitable to track the

natural changes in modal properties of structures due to damage or environ-
mental effects;

• sensitivity to noise, problems of false or missed identification.

Moreover, a number of algorithms do not provide damping estimates; whenever
they are able to estimate modal damping, the resulting values are usually very
scattered. The fairly large scatter associated to damping estimates, compared with
natural frequency and mode shape estimates, is well documented in the literature.
Even if it can be partially addressed to inherent limitations of the estimators and
the adoption of an equivalent viscous damping model [5], appropriate data pro-
cessing procedures have to be adopted in order to minimize the estimation error.
As a consequence, a careful design of the algorithm is fundamental to enhance
reliability, robustness and accuracy of automated modal identification procedures.

A thorough performance assessment of automated modal identification algo-
rithms is rarely reported in the literature but it is a fundamental step in view of
proper post-processing of modal parameters for damage detection and perfor-
mance evaluation purposes.

In the present chapter, the performance of a recently developed procedure for
fully automated output-only modal identification is analyzed. The performance of
the algorithm is assessed through the analysis of the modal identification results
obtained from four case studies, each one consisting of 10,000 simulated datasets.
The analysis of the obtained results and the comparisons with the reference values of
the modal properties show that the algorithm is characterized by a very high success
rate and that it is able to provide accurate estimates of the modal parameters,
including damping. The performance assessment of the algorithm is still in progress.
However, the herein illustrated results are definitely promising, so the algorithm has
a potential in the continuous vibration based monitoring of civil structures.

2 The Automated OMA Algorithm

The proposed algorithm (Fig. 1) is based on the combination of different OMA
techniques in order to faclitate the analysis and interpretation of the stabilization
diagram. The method is based on Stochastic Subspace Identification (SSI) [6] and
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the selection of physical poles in the stabilization diagram by clustering tech-
niques, but it takes advantage of the Blind Source Separation (BSS) [7], operated
at a preliminary stage according to the Second Order Blind Identification (SOBI)
[8, 9]) procedure, in order to simplify the interpretation of the stabilization
diagram.

In fact, as a result of the BSS phase, the raw data associated to the measured
structural response are transformed into sources which can be well-separated (they
show the contribution of a single mode to the structural response), not well-
separated (noise or minor contributions from other modes could be superimposed
to the contribution of the main mode) or just noise sources [9]. Thus, the BSS
simplifies the analysis of the data and the interpretation of the stabilization dia-
gram, allowing the extraction of the modal information from the individual sources
and not the multivariate time series of raw data. The interpretation of the stabil-
ization diagram, therefore, becomes easier since it basically reports information
about only one mode at the time. The sources are analyzed one-by-one according
to the SSI method and the physical poles are separated from the spurious ones by
means of clustering techniques [10] and mode validation criteria. The final values
of the natural frequency and damping ratio for the identified modes are obtained by
a sensitivity analysis with respect to the number of block rows in SSI, for a fixed
value of the maximum model order in the stabilization diagram. The cluster
characterized by the minimum variance of the estimates when i ranges in a certain

DATA LOADING 

SSI OF THE SOURCES 

JAD (SOBI) 

TRACKING/REPORT 

START 

END 

FINISH   

CLUSTERING 
(physical and noise modes)

MODE SHAPES 

Fig. 1 Flowchart of the
automated OMA algorithm
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interval with a certain step Di is then selected as the one providing the best
estimate of the modal parameters for a given structural mode [11]. Mode shape
estimates are finally obtained from Singular Value Decomposition (SVD) of the
output Power Spectral Density (PSD) matrix at the previously estimated frequency
of the mode [12].

The key feature of the algorithm is the absence of any analysis parameters to be
tuned at each new monitoring application. In fact, it has been shown [13] that the
results are insensitive to the setting of the two parameters governing the Joint
Approximate Diagonalization (JAD) [14] for source extraction, while the influence
of the number of block rows [6] is taken into account by sensitivity analyses.
Moreover, the parameters governing the JAD play a primary role in the control of
response time and computational burden [13]. This is relevant, in particular, for
SHM applications in seismically prone areas [2].

3 Case Studies and Analysis of Results

The performance of the proposed algorithm in terms of accuracy and reliability of
estimates has been investigated through a statistical analysis of the results obtained
from simulated data continuously generated through the excitation of a 4-DOF
system by a Gaussian white noise.

The mass and stiffness properties of the system are reported in Fig. 2. Rayleigh
damping is adopted. The modal properties of the system are reported in Table 1.
The four case studies differ for the assumed values of damping or the signal-to-
noise ratio (SNR).

The system matrices and, therefore, the associated modal parameters are the
same in all runs, since only the uncertainties associated to inherent limitations of the
estimator are the key focus of the investigation. The performance of the method in
the presence of uncertain system matrices, that is when modal parameters can
slightly change at each run as an effect of the deviation of the system matrices from
their nominal values, is out of the scope of the present paper. Specific numerical
analyses are under development and will be discussed elsewhere.

The system response to Gaussian white noise N(0, 1) has been simulated 10,000
times. The input has been applied at DOF #1. Each simulated dataset consisted of

Fig. 2 The benchmark 4-DOF system
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four measurement channels; the total record length was 3,600 s and the sampling
frequency was 10 Hz. Gaussian white noise has been added to the system response
in order to simulate the effect of measurement noise. The SNRs are reported in
Table 1. Each dataset has been then processed using the described algorithm in
order to automatically extract the modal parameters of the system. The analysis of
the simulated datasets has been carried out considering a number of block rows
i ranging between 20 and 80 with Di = 2 and considering a maximum model order
of 16 in the construction of the stabilization diagram for each analyzed source.

The analysis of the obtained results has pointed out that the algorithm carries
out automated output-only modal identification in a very robust way. In fact, a
success rate [15] larger than 99 % has been obtained for all modes (Table 2). Just
in a few runs missed identification of the modal properties of a mode occurred.
This was probably due to a combined effect of weak excitation and low SNR,
which affected the quality of separation and stabilization.

The results in terms of natural frequency and damping estimates are summa-
rized in Tables 3 and 4. Very accurate natural frequency estimates, associated also
to a low standard deviation r, have been obtained. The error in natural frequency
estimates is much lower than 1 % in the 95 % of the runs for all case studies. The
accuracy of estimates slightly improves when the SNR increases. The analysis of
the coefficient of variation c associated to the natural frequency estimates in the
cluster selected by the sensitivity analysis with respect to the number of block rows
in each run points out that the estimates are also very precise (cf, cluster much lower
than 0.1 % in the 95 % of the runs). When damping increases, the error associated
to the estimates also increases, but the results are still very accurate.

Table 1 Modal properties of the simulated 4-DOF system

Mode
#

Natural frequency
[Hz]

Damping ratio [%]

Case study #1
(SNR = 5 dB)

Case study #2
(SNR = 15 dB)

Case study #3
(SNR = 5 dB)

Case study #4
(SNR = 5 dB)

I 0.668 1.00 1.00 2.00 2.00
II 1.137 0.88 0.88 1.31 1.76
III 1.526 0.92 0.92 1.09 1.84
IV 1.879 1.00 1.00 1.00 2.00

Table 2 Success rate of automated modal identification over 10,000 runs

Mode # Success rate [%]

Case study #1
(SNR = 5 dB)

Case study #2
(SNR = 15 dB)

Case study #3
(SNR = 5 dB)

Case study #4
(SNR = 5 dB)

I 99.79 100.0 99.71 99.87
II 99.96 100.0 99.97 100.0
III 99.95 100.0 99.98 100.0
IV 100.0 100.0 100.0 100.0
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Damping estimates are fairly accurate and characterized by moderate uncer-
tainty (r lower than 0.2 %). In particular, the variability of estimates slightly
increases when the nominal damping values increase. Larger errors are associated
to damping estimates with respect to natural frequencies. However, the scatter with
respect to the nominal values is lower than 10 and 20 % in the 50 and 95 % of the
runs, respectively. The errors slightly decrease when the SNR increases. Damping

Table 3 Automated modal identification results: natural frequencies

Case
study

Mode
#

fnominal

[Hz]
fav

[Hz]
rf [Hz] Df [%] 50th

centile
Df [%] 95th
centile

cf,cluster [%] 95th
centile

1 I 0.668 0.668 0.000730 0.072 0.216 0.0254
1 II 1.137 1.137 0.000911 0.052 0.156 0.0285
1 III 1.526 1.526 0.001157 0.047 0.143 0.0269
1 IV 1.879 1.879 0.001568 0.048 0.151 0.0363
2 I 0.668 0.668 0.000665 0.067 0.196 0.0319
2 II 1.137 1.137 0.000879 0.050 0.152 0.0234
2 III 1.526 1.526 0.001090 0.047 0.140 0.0232
2 IV 1.879 1.879 0.001425 0.047 0.149 0.0296
3 I 0.668 0.668 0.001275 0.121 0.359 0.0598
3 II 1.137 1.137 0.001324 0.070 0.219 0.0509
3 III 1.526 1.526 0.001309 0.054 0.166 0.0345
3 IV 1.879 1.879 0.001469 0.048 0.148 0.0346
4 I 0.668 0.668 0.001368 0.117 0.358 0.0729
4 II 1.137 1.137 0.001636 0.086 0.278 0.0814
4 III 1.526 1.526 0.002054 0.083 0.260 0.0798
4 IV 1.879 1.879 0.002825 0.085 0.277 0.0991

Table 4 Automated modal identification results: damping ratios

Case
study

Mode
#

nnominal

[%]
nav and (mode,
median) [%]

rn

[%]
Dn [%] 50th
centile

Dn [%] 95th
centile

cn,cluster [%]
95th centile

1 I 1.00 1.02 (1.0, 1.02) 0.108 7.2 21.6 7.0
1 II 0.88 0.89 (0.9, 0.89) 0.080 6.0 18.0 4.4
1 III 0.92 0.93 (0.9, 0.93) 0.072 5.1 15.3 2.5
1 IV 1.00 1.01 (1.0, 1.01) 0.075 4.9 14.9 3.1
2 I 1.00 1.01 (1.0, 1.01) 0.099 6.7 19.4 2.2
2 II 0.88 0.88 (0.9, 0.88) 0.075 5.7 16.6 1.6
2 III 0.92 0.92 (0.9, 0.92) 0.073 5.3 15.5 1.7
2 IV 1.00 1.00 (1.0, 1.00) 0.074 4.7 14.6 2.1
3 I 2.00 2.03 (2.0, 2.03) 0.179 5.9 17.9 7.7
3 II 1.31 1.32 (1.3, 1.32) 0.109 5.4 16.7 5.1
3 III 1.09 1.10 (1.1, 1.10) 0.081 4.9 14.7 2.4
3 IV 1.00 1.01 (1.0, 1.00) 0.075 4.9 14.9 2.8
4 I 2.00 2.03 (2.0, 2.02) 0.183 6.0 18.3 6.7
4 II 1.76 1.78 (1.8, 1.78) 0.138 5.2 15.6 4.6
4 III 1.84 1.85 (1.8, 1.85) 0.129 4.5 13.9 3.0
4 IV 2.00 2.02 (2.0, 2.02) 0.143 4.3 14.0 3.6
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estimates are also fairly precise (cn, cluster much lower than 10 % in the 95 % of the
runs). The mean, mode and median of the identified damping ratios after 10,000
runs are very close each other and to the nominal values of modal damping ratios.
Taking into account the uncertainty associated to damping estimates, the mode of
damping values is given with one decimal place only.

Marginal refinements can be obtained by outlier removal, confirming the
robustness and accuracy of the algorithm.

4 Conclusions

A hybrid automated OMA algorithm has been described in the present paper. Its
performance has been assessed against simulated data generated by a 4-DOF for
different damping levels and SNRs. The system was excited by a Gaussian white
noise. The results obtained from 10,000 runs have been analyzed and robustness,
accuracy and precision of the algorithm have been checked. Encouraging results
have been obtained, in particular as the possibility to estimate damping ratios in an
accurate and fully automated way is concerned. Further investigations are in
progress to assess the performance of the algorithm in the case of uncertain system
matrices in view of continuous, long term vibration based SHM applications.
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The Principles of Operation
and Equipment Design in Modelling
of Separating-System Dynamics

Vladimir D. Anakhin and Timur V. Anakhin

Abstract This paper describes the principles of operation of equipment design
which may be used in the field of application of vibration technology for efficient
separation of free-flowing dry materials on the thickness differences of the solids
present in the mixture. An initial prototype equipment is constructed to simulate
actual operating conditions for monitoring the condition of machinery and for
selecting a suitable design of equipment characterized by properly selected types
of components. The inventive aspect of process design includes development of
completely new separation method and the arrangement of the equipment design
for application in operation processes depending essentially on characteristics of
oscillation in a mechanical system. Through mathematical modelling, a better
understanding of the processes motivated by the rectangular acceleration of
translational vibrational motion and steps in exact solution of transcendental
equations of particle movement are presented. Design methods using analytical
procedures is profitable in general for theoretical prediction. Technical feasibility
of some types of suitable designs are used for the purpose of studying the effects of
rectangular acceleration of vibration on particle size separation which may be
attractive from engineering perspective.

Keywords Condition of Machinery � Equipment Design � Vibration Technology

1 Introduction

In the field of the mechanical design and application of vibration technology for
efficient separation of minerals, chemicals, pharmaceuticals, foods, plastics,
grinding and other non-coherent dry materials and powder products in particle
sizes from 0.02 to 15 mm, the pioneering works of authors in the late 1990s have
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developed completely new separation methods and a wide variety of possible
choices of separation processes in some industries is then summarized. A vibratory
separator (VS) is distinguished from a well-known screen and a sieve in that it is
complete with a non-perforated vibrating deck (separating surface) which includes
provisions for separating the particles directly on it. Conceptually, the time-history
of deck vibration may be considered to be sinusoidal or simple harmonic in form.
For a particular multicomponent separation, there might be several ways in which
products could be separated. In general, separability is dependent on two tilts of
the deck: [1] longitudinal and [2] lateral. Either tilt could be the controlling factor.
Positioning is estimated by doing an optimal balance. The particle size and shape,
and the friction coefficient are main factors with the separation processes. Many
variations of parallel-decks constructions are now available: some have flat decks,
some use concave decks. Most of the decks are placed on two tilt angles to allow
the components of the mix to disengage as they pass through the deck section.
Parallel decks added to VS can greatly improve separation quality and increase
capacity.

Advantages of the new screenless methods used in dry process of VS and
application of vibration technology for all types of products for efficient separation
by particle size or shape are evident. This method can be effectively used, par-
ticularly, in the abrasive industry to produce materials in which more than 90 % of
the grains is isometric. Grindings wheels made from such grains are twice as
effective as those made from regular grains which are unclassified by shape. Lead,
zinc or copper powders generally are separated without forming dust. In the
powder metallurgy, steel powders can be effectively separated. Also, spherical
particles can be collected to form the bronze powders used in production of metal-
ceramic filters. In the diamond tool industry, VS are used for selecting isometric,
plane and needle-shaped diamond grains. In the agriculture and food industry,
these vibrating decks can utilized for removing harmful inclusions in grains.

The deck vibration may be a combination of two sinusoidal quantities, the
second frequency and amplitude components having an integral multiple of the
lowest frequency and the amplitude. Graphical methods have been applied in
studies of these effects on the behavior of solids in the mix. Since vibration
separation processes are based on the creation of velocity differences within and
between solid particles, whether minerals or powder products, a collection of
useful relations was obtained to monitor the condition of machinery such as its
performance, the selection of the appropriate vibration parameters, particularly, for
separating the mixture into desirable products, by products, and waste materials.
The analysis of rectangular acceleration of vibration when the single degree-of-
freedom system of VS is acted upon by the rectangular step excitation involves
certain physical concepts that are different from those applied to the analysis of
harmonic and biharmonic vibration. Available vibration exciters of biharmonic
and rectangular acceleration of vibrations which may be involved in the operation
of such equipment as conveying and separating machines are described in.

The thickness factor of the solids present in the mix is also essential with the
screenless separation motivated by the rectangular acceleration of vibration. The
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design of equipment for this particular separation is less developed aspects of
vibration technology. Selection of the separation technique or techniques to be
used for a particular system can be also broken down into the task to use the
translational vibration motion in the direction of the Y axis of the deck of VS
(longitudinal vibration). The technical feasibility and engineering perspectives of a
given method must be attractive.

2 Types of Dynamic Models and Principles of Operation

Mixtures of dry solids can be separated by the specific thickness differences of the
components. The proper introduction to feed to a vibratory separation is one of the
keys to its performance. The batching and removal of solids require a good control.
For some critical designs, the performance cannot be predicted theoretically and
such systems require experimental work to determine concentration of feed, sizing
(spacing for equipment), material of construction, operating conditions and costs,
quality required, etc. For consistence performance dynamic models are useful in
evaluating optimal performance. The model shown in Fig. 1 demonstrates prac-
ticality of separating mixtures according to the particle thickness.

The principal parts of such a VS are bar (part1) which can be turned into three
positions of 10, 20, and 300, and deck (part 3). The disturbance force from elec-
tromagnetic exciter (part 4) moves the deck and the bar in opposite directions. The
deck and reactive frame (part 5) are supported by elastic damper (part 8) to prevent
vibrations from being transferred from the upper part of the machine to the turning
frame (part 6).The machine rests on base (part 7). The base usually comprises
handwheel (part 9) and screw mechanism (part 10). The initial mixture is separated
into fractions: finer grains (thin) pass a clearance under the bar (part 1); larger
grains (thick) with dimensions exceeding the gap are caught by the bar and
directed upwards.

Characteristics of vibratory separator (see Fig. 1)
The frequency range of the simple harmonic motion 3,000 min-1

The amplitude of the displacement 1 mm
The angle of vibration b 258
Longitudinal tilt of the deck 10–208
Lateral tilt of the deck 0–88
Simultaneous oscillatory movements of the bar and the deck in opposite

directions prevent the narrow gaps from being clogged and promote passing fine
particles through. This mechanism is provided by the device shown in Fig. 2. A
schematic diagram of a typical motion is shown in Fig. 3. The gap may be cal-
culated by the expressions:

dy:max¼ d þ ðA1 þ A2Þ Sin b

dy:min¼ d � ðA1 þ A2Þ Sin b
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where dy:max is the maximum linear shift in the direction of Y- axis;dy:min is the
minimum linear shift in the direction of Y- axis;d is a gap between the bar (part 1)
and the deck (part 2) as shown in Fig. 3.;

• A1 is a shift amplitude of the deck;
• A2 is a shift amplitude of the bar, and
• b is the angle of vibration.

The schematic representation of the displacement amplitudes of the mechanical
parts of VS used in the design and operation of separation process arising from
differences in particle thickness illustrates possibility of passage of thin particles
through opening d between the bar and deck plane. The device has been tried
experimentally but are not in use commercially. This horizontal device can be used
to estimate the performance of VS of various sizes and it can be used to predict the
effect of specific thickness difference of solids, and allows prediction of capacities

Fig. 1 Vibratory device for sorting particles according to their thickness 1 = Separating bar;
2 = Lever; 3 = Deck; 4 = Electromagnetic exciter; 5 = Reactive frame; 6 = Turning frame;
7 = Base; 8 = Damper; 9 = Hand wheel; 10 = Screw mechanism
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at various flows of the mixtures as a function of dynamic parameters. This
information will be adequate to determine the final design of a vibratory separator,
provided the solids of the mix are readily characterized and the solids concen-
tration in the feed is steady. For applications where the solids widely in thickness,
a test program should be undertaken. The VS of this type is applicable where
separated solids are expected to be very dry. In horizontal vibratory separators
mathematical modeling is useful in evaluating their performance.

Theoretical calculations are recommended for potential design of VS with the
deck generally placed horizontally and acted upon by the rectangular step exci-
tation. Alternate forms of the excitation and methods of solution in terms of one of
them are referred to [1-5]. The mathematical basis for separation motivated by the
rectangular acceleration of translational vibration motion and steps in exact
solution of transcendental equations of particle movement are presented below.

Fig. 2 Electromotive device: 1-Leaf spring; 2-Reactive frame; 3-Active frame; 4-Deck plane; 5-
Vibration exciter; 6-Isolators; 7-Separating bar

Fig. 3 Diagram depicting shift of mechanical parts of the machine used to illustrate the principle
of vibrational separation by particle thickness
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3 Process Modelling and Solution of Equation of Motion

Motion of single degree-of-freedom system of the VS deck acted upon by the
rectangular step excitation (the rectangular acceleration pulse of magnitude w and
duration t) is discussed for theoretical prediction which can be obtained from the
governing differential equation. The corresponding velocities of time histories are
also for various conditions. The magnitude of the velocity u change defines the
intensity of the process. The longitudinal displacement of the deck during the
vibration is characterized by three steps (for purposes of illustration in the fol-
lowing examples the primary time history is that of acceleration, time-histories of
velocities may be derived there from by integration). If the velocity u is zero at
time t = 0, then the velocity time-history is a line of constant slope, the corre-
sponding acceleration time-history is the acceleration step of constant value as was
shown in [3]. The first step is defined as a forward motion which has value u of
zero and a value of w slightly greater than zero w1 [ 0; u1H ¼ 0ð Þ; the second step
describes forth and back motion for the conditions w2\0; u2H ¼ u1H [ 0;ð
u2K\0Þ; that is the acceleration step has a value less than zero significantly; the
third step is defined as backwards motion which has a value of acceleration
somewhat greater than zero w3 [ 0; u3H ¼ u2K\0; u3K ¼ 0ð Þ; where wi is the
acceleration step, uiH , uiK are initial and finite deck velocity steps.

The motivated particle movement is defined mathematically as a function of
w1;w2;w3; u1K; u2K. If the accelerations are w1 ¼ w3, w1\� w2, with the simplest
representation of the Coulomb friction force and the effect of air resistance
Fc ¼ 3plDtð Þ the mathematical expressions describing the motion of a particle of

mass m are

m
dt
dt
¼ v � f � g� 3plDt

m
;

or

dt
dt
¼ v � f � g� 3plDt

m
;

ð1Þ

where f is the coefficient of friction, D is the particle diameter, l is the air
viscosity, g is the acceleration of gravity. The algebraic sign of the friction term
changes when the velocity changes sign (�I� v� þ I). For forward sliding when
t\u it must have a positive sign v ¼ þI; for backwards sliding : t[ u; v ¼ �I; at
rest t ¼ u it is v 6¼ �I.

By performing transformation of the latter equation the following differential
equation of the particle motion is obtained

dt
dt
¼ v � f � g� nt; ð2Þ

where n = 3plD/m.
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Rewriting,

dt ¼ v � f � g � dt � nt � dt:

The solution for the latter equation is of the form

t ¼ v
fg

n
þ v

fg

n
� tiH

� �
exp �n t � tHð Þ½ �; ð3Þ

l ¼ v
fg

n
t � tHð Þ � 1

n
v

fg

n
� tiH

� �
1� exp �n t � tHð Þ½ �f g; ð4Þ

where the required values of particle displacement l and its velocity t are found.
Consider the following operating conditions:

(1) w1\� w2\\fg is a stationary rate.
(2) w1\fg\� w2. A brief review of the complete solution evaluated from a

knowledge of these starting conditions is given as follows: the particle size is a
somewhat factor with the moving and separation motivated by the rectangular
vibration. They occur at values of velocities not greatly different from each
other; hence, attention is devoted to the next case.

(3) fg\w1\w2. For the forward sliding mode t\uð Þ the highest possible value
of the velocity is described by the following equation:

t1K ¼
fg

n
� fg

n
� t2K

� �
exp �n T � T

0
� �h i

; ð5Þ

and the expression for the response particle displacement is

l1 ¼
fg

n
T � T

0

1

� �
� 1

n

fg

n
� t2K

� �
1� exp �n T � T

0
� �h in o

: ð6Þ

For the backwards sliding mode t [ uð Þ the terminal velocity and displacement
function are defined by

t2K ¼ �
fg

n
þ fg

n
� t1K

� �
exp �nT

0
� �

; ð7Þ

l2 ¼ �
fg

n
T
0 þ 1

n

fg

n
� t1K

� �
1� exp �nT

0
� �h i

; ð8Þ

where T
0 ¼ t2 � t1.

The foregoing equations are alike, mathematically, and a solution may be
applied to any of the others by making simple substitutions. Therefore, the ‘‘Eqs.
(5, 6, 7 and 8)’’ may be expressed in the general form of Eq. (9):
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T
0 � T

2

ffi �
1� exp �nTð Þ½ �

fg
n

¼
1þ exp �nTð Þ � 2 exp �n T � T

0ffi �� 	ffi �
w2j j

�
1þ exp �nTð Þ � 2 exp �nT

0ffi �
w1

;

t1K ¼
fg

n 1� exp �nTð Þ½ � � 1þ exp �nTð Þ � 2 exp �n T � T
0

� �h in o
¼ w1s� w2j j � t1 � sð Þ;

t2K ¼
fg

n 1� exp �nTð Þ½ � � �1� exp �nTð Þ þ 2 exp �nT
0

� �h i
¼ w1 T2 � t2ð Þ;

l ¼ l1 þ l2 ¼
fg

n
T � 2T

0
� �

ty ¼
l

T

If the air resistance is negligible (n = 0), the Eq. (9) reduces to the form of
Eq. (10):

t1K ¼ fgs;

t2K ¼ fg s� T

2


 �
;

ty ¼ fg s� T

4


 �

Within each case there are variations and differences of effects. For the third
case 3, separation depends essentially on the size differences of the particles
present in the mix. The maximum value of the velocities will hold in this case:
w1� fg. w1� fg n! 0ð Þ w2.

The particle velocity forward the deck plane directly related to the friction
coefficient which is a function of the particle shape and size [4]. Rectangular pulse
excitation: the excitation function given by s and T includes the natural period of
the responding system and a significant period of the excitation. The excitation
may be defined in terms of various physical quantities, and the response factor may
depict various characteristics of the response. The purpose is to compare vibration
motions, to design equipment and to obtain useful information. Care must be taken
to assure that the same VS and its performance can be predicted theoretically but
such vibratory separators require experimental work. The mechanical design,
however, may be used commercially by the application of vibration considered to
be sinusoidal or simple harmonic in form. Alternate form of the excitation may be
applied after making simple substitutions of vibration exciters.

4 A Suitable Design of Equipment and its Operation

An improved design of VS and for its application for efficient separation of
mixtures on the thickness differences of the solids is shown in Fig. 4. The VS
consist of active frame (part 1) and two top and bottom plate decks (part 2) and
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(part 3), respectively; reactive frame (part 6) with bosses (part 7) for attaching
springs, barrels (part 8) for shock-absorbers, and dividing bars (part 9); stack of
springs (part 10); the direct-drive vibration exciter (part 11) consists of a rotating
unbalanced mass driving a positive linkage connection between the base and decks
of the machine; the bed (part 12) with turning frame (part 13) and screw mech-
anisms (parts 14 and 15) for regulation of longitudinal tilt of the decks and lateral
tilt of the bed; electric motor (part 16) with step belt pulley (part 17); rubber
shock-absorbers (part 18) isolating the upper part of the machine from the
base; receptacles (part 19) for removing separated components from a mixture.
A constant-displacement vibration machine of this type attempts to maintain
constant-displacement amplitude while the frequency is varied. Similarly, a con-
stant-acceleration vibration machine attempts to maintain a constant-acceleration
amplitude as the frequency is changed. The primary independent parameters that
influence the ability of VS of this type to make separation are the thickness
differences of the solids and mixtures loading.

The VS is applicable where the amount of the material to be processed is
reduced to the thin layer and where the separated solids are expected to be dry.
Separations using horizontal VS are very similar in principle to those for tilted VS.
In this situation, the force driving the separation could also be several orders of
magnitude greater than that of gravity. The proper introduction to feed to a sep-
aration is provided by a special vibrating feeder. The feed material should be
introduced uniformly across the active cross-section of the deck and done in a way
of metering its amount.

Fig. 4 The mechanical design for vibratory separation on the thickness differences of the solids:
1 = active frame; 2 = top deck; bottom deck; 4 = boss; 5 = distant strip; 6 = reactive frame;
7 = boss; 8 = barrel; 9 = dividing bar; 10 = springs; 11 = vibration exciter; 12 = bed;
13 = turning frame; 14, 15 = screws; 16 = electric motor; 17 = drive belt; 18 = isolator;
19 = receptacle
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An initial mixture of solids that must be separated into individual products
inflows or arrives on the top deck (part 2). The driving force directs the mix toward
dividing bar (part 9). The finest solids directly related to particle thickness selected
by the dividing bar and are passed under it downwards collection at the bottom
deck (part 3). Discharge of the solids is shown schematically by pointers to
receptacles (part 19). The other components are ordered to be driven along the
driving bars and downward by lateral side. Efficient removal of the solids increases
with acceleration of vibration. Active frame (part 1) is suitable for transmitting a
vibratory force to the dividing bars contrary to the top deck vibration to correlate
vertical distance d for the finest solids to travel through the space between them
and deck opening before get trapping.

The method relies on the taking of experimental data and on empirical analysis
of the data to obtain a design. For this reason the recommended approach is best
presented by considering a specific example. The potential problem with separa-
tion of clear bulb glass from open-circuit primary crushing of electric lamps is
probably best supported by this type of VS. For very efficient operations, two-stage
combinations of separation are used. The VS is applicable for efficient removal of
needed thin bulb glass (in a way shown in Fig. 4 by arrow-pointers). The second
stage may be secondary crushing with screening or vibratory processing to obtain
metal wires. Caps, their fillings and glass stems are non-utilizable waste. The VS,
however, may be used commercially in some other industries.

5 Conclusions

1. In the design and operation of separation processes depended essentially on the
thickness differences of the solids present in the mix a problem is approached
logically by first preparing an initial design. A subsequent analysis point to
desirable modifications.

2. An initial prototype equipment has been designed and is then constructed in
which actual operating conditions preferably are determined and considered
from practical point of view.

3. From the analytical point of view and to provide some perspective for later
improvement of existing processes the single degree-of-freedom system of the
horizontal VS model acted upon by rectangular step excitation is considered
with mathematical method of analysis to obtain useful information. The tech-
nical feasibility of a given separation method might be essentially attractive.

4. The optimum design must arise from careful consideration of all feasible
alternatives and represents the further inventive aspect of process design.
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Test Bench for the Analysis of Dynamic
Behavior of Planetary Gear
Transmissions

A. Fernández del Rincón, R. Cerdá, M. Iglesias,
A. de-Juan, P. García and F. Viadero

Abstract In this paper a back-to-back test bench for experimental characteriza-
tion of planetary gear transmissions is described. Some considerations related to
the design of this kind of devices as well as the compromises and general features
of the proposed design are presented. Particular attention is given to the instru-
mentation layout and the alternatives foreseen for measurement. In the last
chapter, some results are presented in order to show the capabilities of the bench
configuration.

Keywords Planetary Testing � Gear Dynamics � Vibration

1 Introduction

Power transmission systems based on planetary gears are nowadays under a great
demand to enhance their performance in terms of power level, speed, efficiency
and compactness, with the subsequent increase in the load value they must
withstand. The proportional growth in the computing cost of these requirements, as
well as higher and higher demanding expectations in terms of durability and
reliability has resulted in an increasing interest in the development of statistical
models of prediction that would allow the prognosis of the systems in progress [1].
Besides, different physical models have been developed trying to simulate the
dynamic behaviour of the gear transmissions [2]. However, both types of model,
either those ones based on previous statistical data or the behavioural physical
models; both require a detailed experimental study which can provide this field of
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knowledge with valuable and reproducible data about the dynamic behavior of the
transmissions. Along the same lines, the current state of the art denotes the
increasing interest on the different designs of test benches [3, 4], that will allow
the adequate experimentation of planetary gear trains for the study of its dynamic
behavior.

The first decision to be made when designing a test bench for gear trains is the
type of layout, referring to the power flow through the bench. According to this
criterion, the bench can adopt two different configurations: the direct and the
power circulating one. The direct configuration is the simplest layout to conceive,
with the Gears Under Test (GUT) being placed between a motor and a resistant
load, the latter allowing the establishment of the transmitted torque. In the direct
configuration, the power loop is open and the energy consumed in the tests is lost
by heat dissipation in the load, which generally is a frictional brake, hydraulic or
magnetic, depending on the scale of test power.

According to its installation, this direct configuration is the easiest and the least
expensive layout. Furthermore, it is highly versatile as the system can easily adapt
to different test specimens just by changing the distance between shafts. However,
test benches with direct configuration are not appropriate for high power tests (e.g.
wind turbine gearboxes), as the whole transmitted power is to be dissipated in the
load, leading to a system with high energy consumption. This fundamental
drawback motivates the appearance and usage of power circulating test benches.

In circulating power rigs, the load receiving the power form the gear train is
also an energy recovery system, so that this energy is transformed (if necessary)
and reintroduced at an initial point of the power loop, closing it. This feedback
point where the power is re-injected can be a point somewhere before the actuator
typical for hydraulic [5] or electric circulating systems, or after the actuator
(dashed line), a type of loop common in systems with mechanical power
circulation.

Test benches with electric power circulating systems are versatile and efficient,
but their cost is a problem. Both the generator that acts as a recovery device and
the whole electrical system that conditions and transforms the signal before its re-
entry to the motor make cost to rise heavily. Moreover, in the test case of planetary
gear trains, it will always be necessary to install another auxiliary planetary
gearbox in a back-to-back configuration with the first one. This is caused by the
high gear ratio that planetary gearings present, which would force the motor and
generator to work out of their nominal speed range.

From the energy viewpoint, the most efficient circulating solution is the one
carried out by purely mechanic means [6]. In this type of circulating systems (four-
square gear tester [7]) the power follows a closed loop inside the bench, with the
only external energy to supply being the one due to the internal losses.

The GUT is installed parallel to an auxiliary train (mechanically oversized to
avoid it from getting damaged during the test), with identical gear ratio as the first
one. The movement and the loss power are introduced by the motor while, in order
to introduce the torque, the torsion of one of the shafts is needed as it is indicated
in Fig. 1, thus preloading the whole group.
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The number of non-pure mechanical components in this type of configuration is
reduced to just one: the motor. This motor has to be chosen only to supply the
losses of the system, thus being significantly smaller than if the direct configu-
ration is implemented. As a main drawback, the versatility of these test benches
with mechanical circulation is very limited, as the whole recirculating system is
determined by the test train itself. Moreover, the presented method of bringing in
the torque is impractical and prevents the existence of a variable torque during the
test and its introduction with the train in motion in most types of train gearings
(those with a single degree of freedom). In order to avoid this drawback some
devices [8] have been proposed to allow torque variations.

2 Test Bench Description

Based on the different design alternatives that have been discussed previously, and
taking into account the particularities of planetary gear trains, the adopted layout
for the test bench is presented below. Firstly, the characteristics of the GUT must
be considered. These are reduction gearboxes for agricultural machinery, with the
number of teeth presented in Table 1. As the test campaign is centered on this
gearbox model in particular, versatility of the bench is not a priority. On the other
hand, the gear size (module greater than 4) focuses part of the design decision on
the needed test power, which has to be enough to work for load levels capable of
causing deterioration in the tested train. Both for economic and energy efficiency
criteria, the adopted layout will be the one with mechanical power circulation. In
this particular case, this configuration is also more compact, consuming less space
than any of the other alternatives.

Considering a four-square layout with mechanical recirculation, the first step of
the installation consists in two planetary transmissions with the same gear ratio,
the auxiliary gearbox and the GUT. Unlike the relatively easy assembly for trains
with external gears, the internal gear of the ring of a planetary transmission does

Auxiliar Gear Train GUT

Drive

Torque

Fig. 1 Test bench with
mechanic power circulating
(Four-square)

Table 1 External torque required in order to achieve the failure

Ring Sun Planet

Number of teeth 65 16 24
Ring torque (Nm) bending – 8,534 5,548
Ring torque (Nm) pitting – 7,982 8,535
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not allow for the same coaxial configuration shown in Fig. 1, so the introduction of
two more auxiliary trains is needed.

Making these two additional auxiliary ordinary trains to have the same 1:1 gear
ratio, it is easy to prove that both the carriers and the suns are joined by shafts
rotating at the same speed. Thus, a simplifying option to avoid the usage of ordinary
gear trains could be intuited. The two planetary transmissions could be placed
facing each other and sharing the suns and carriers as it is shown in Fig 2 [9].

Moreover, this layout allows an alternative way to introduce the torque. Instead
of the torsional pre-stress of the shaft that has been presented in the previous
section, as the planetary transmission has two degrees of freedom compared to the
single one of ordinary transmissions, the degree of freedom of the auxiliary
planetary box ring can be left unconstrained in order to introduce the torque using
that ring (Fig. 3).

3 Motor-Drive Selection: Power Losses

As the goal of the presented test bench is to allow the study of the dynamic
behavior of planetary gears, both in normal working conditions and in limit sit-
uations, it is vital to determine the power and torque values that the bench must
provide to the testing specimen. The pair power-torque must be sufficient not only
to propagate and increase the typical defects of the gears, but even to create them.
This study has focused its attention in the mechanical failure of the teeth caused by
bending and pitting. Thus, an estimation of the minimum tangential forces that will
produce the mechanical failure in case of teeth bending and pitting for the sun,
planets and ring gears is necessary.

Following the ISO 6336-2 and 3 [10, 11], and considering a safety factor of one
the tangential force required to produce the bending or pitting failure in the teeth of
each gear is determined. Once the minimum tangential force values required to
reach each type of failure in all the gears are determined, these data are converted
into exterior torque that need to be supplied through the ring, arriving to the values
presented in Table 1.

Drive 

Fig. 2 Back-to-back layout
as assembled in the bench
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Aiming a torque value able to cause both type of defects of our study, the value
7,982 Nm was chosen, as it causes pitting failure both in the sun and the planet and
bending failure in the planet. This will be the maximum torque value that the
bench must be able to supply and, therefore, the power of the required motor will
be determined based on it (only the associated losses). Two devices were defined
for applying the external torque. The first one was a lever arm with a dead weight
at the end. This approach provides a good control of the input torque but don’t
allow a big load and moreover modifies the rotational mass of the free ring and
therefore the resonance frequencies. As second option an automotive jack was
disposed, pushing the arm in the opposite direction. This device provides higher
loads although it does not provide the same control on the applied torque level.

In order to determine the motor power, it is necessary to take into account that
the power to supply corresponds just to the losses in the bench. Therefore, the
knowledge of the system efficiency is a primary and essential condition before
selecting the motor. The efficiency of the system is obtained following the method
described by Molian [12] that produces an efficiency value of 0.9584. Knowing
that the input speed to the system (to the sun of the gear train to test) is 1,500 rpm
and that the maximum external torque is 7,982 Nm, the power is calculated as:

PSun ¼ TSun � xSun ¼ 317kW! PMOTOR ¼ PSun � 1� gSISTð Þ ¼ 16kW ð1Þ

At this point of the selection process, it is remarkable the difference in the
required driving powers, either with the bench adopting a circulating one or in the
layout without recirculation, with a power system of even 20 times in this new
case. The impact that the selection of the bench layout has in the cost of the
components and energy used turns to be even more evident now.

Fig. 3 General view and top section of the test bench assemble
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4 Instrumentation Layout

The selection of the magnitudes to be measured and the transducers to do so has
been taken into account since the very initial phases of the design. The complexity
and richness of the vibratory spectrum of planetary gears demand a special
attention from the viewpoint of the instrumentation to be installed. The acquisition
of vibratory signals in the frame is strongly affected by the appearance of mod-
ulations of the same spin frequency as the carriers. In order to avoid this phe-
nomenon, the installation of a slip ring has been conceived. It spins jointly with the
hollow shaft that connects the carriers and, therefore, it allows the installation of
accelerometers on these elements. The slip ring selected (HBM SK5/95), highly
determined by the external diameter of the hollow shaft, only allows 5 wires to be
connected. Additionally, another two slip rings with 8 wires have been used
(model: Michigan Scientific S8). One of them spins jointly with one of the planets,
while the other one is placed at the free end of the suns’ shaft. The adopted layout
is presented in a schematic way in Fig. 4. In this figure, an empty circle represents
a strain gauge channel whilst an empty square represents an acceleration measure
point. The dashed lines (coloured in red) represent the connections with the slip
rings whereas solid lines are direct connections to the acquisition system. The
combination of the slip ring on the hollow shaft connecting the carriers and the one
that spins jointly with one of the planet provides a great versatility regarding the
measurement options and multiple scenarios can be observed:

• Register of the torque by the installation of a complete strain gauge bridge (of 4
wires) in the hollow shaft.

Drive 

Aux. Tain GUT 

Slip Ring 

 (5 whires) 

Tachometer 

Strip Band 

Slip Ring 

LMS 316 

NI 9162 

+

U

Acelerometer 

Strain Gauges 

PC 

Fig. 4 Schematic representation of the instrumentation layout
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• Register of the acceleration on the suns’ bearings in the carrier. Two acceler-
ometers (4 wires each) can be installed with different orientations: radial or
tangential.

• Register of the angular acceleration of the carriers. Using two accelerometers
place at the same radial distance (4 wires), orientated in the tangential direction
averaging out both signals.

• Measure of the acceleration in the planet up to two directions combining both
slip rings in such way that four wires in each one are used.

• Measure of strains in the base of the planet’s teeth by two quarter—bridge
(4 ? 4 wires).

The slip ring at the end of the shaft that connects the two suns will be used to
measure the actuating torque in the gap between both by a full bridge (4 wires) as
well as to measure the strains at the base of the teeth. The signals coming from the
slip rings located on the hollow shaft and on the shaft between the suns will be
acquired by a LMS SCADAS 316 system. The use of this system permits the
acquisition of up to 12 dynamic channels simultaneously, 8 coming from ICP
sensors and 4 from strain gauges, and to combine them with two tachometric
channels. Furthermore, in this way, apart from the signals from the slip rings,
accelerometers could be placed on the frame and measure the strain at the base of
the teeth of the annulus gear.

The main disadvantage of the slip rings is the possible pollution of the electric
signal with noise due to the contact friction. This will be specially critic in the case
of the signals obtained by means of strain gauges. Moreover, the limited number of
available tracks on the slip ring located on the hollow shaft restricts the signals that
can be sent out to its acquisition. To avoid these drawbacks, and taking into
account the dimensions of the hollow shaft and its rated speed, the possibility of
installing a low-cost acquisition module which could spin jointly with it has been
considered. In particular, a NI USB-9162 device that allows the control of different
acquisition modules with a USB connection (5 wires) with a PC has been selected.
This device can be combined with a NI9233 module for the acquisition of signals
coming from ICP transducers or with a NI9237 module for the acquisition of
signals coming from strain gauges. Thus, the acquisition and conditioning of the
dynamic signal would be done within the system, by sending the resulting infor-
mation in a digital form via the USB connector using the slip ring for its transfer to
the PC. This way, the noise inherent to this kind of elements would not affect the
resultant measurement. This possibility has been represented in Fig. 5 with a bold
dotted line from the acquisition device to the slip ring and with a continuous line in
order to represent the final connection with the PC. Additionally, three optic
tachometers (Compact VLS7) were used. Two of them were placed on two distant
positions along the hollow shaft while the third will be placed in the motor axis.
These tachometers will be combined with pulse tapes along the axes in order to
measure their instantaneous angular velocity.

The actuating torque can be obtained by determining the length and the sus-
pended mass of the arm but also from the electrical power consumed by the drive.
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Regarding the velocity control, this is achieved by a variable-frequency drive
whereas the power consumption can be estimated from the drive parameters.

5 Preliminary Results

The test bench described previously has been used in a first experimental campaign
in order to identify the most important features of the vibratory signal. For these
preliminary tests, only acceleration signals were recorded, in radial and tangential
direction, with triaxial accelerometers located on the fix and free rings. Moreover,
the lever arm and dead weights were used to calibrate the relationship between the
applied torque measured by the motor controller and the torque actually applied to
the system. Thus, the same level of torque was introduced by using the automotive
jack, although this time the torque was applied in the opposite direction. These
preliminary tests allowed to discern the impact of the loading system on the
vibration at the auxiliary gear box and particularly at the GUT arriving at the
initial conclusion that the jack constraints the movement of the free ring reducing
the vibration amplitude with minor consequences on the GUT.

Then, the first task was to analyze the resulting vibration for the system under
several torque levels. With this aim, five torque levels were applied (0; 900; 1,900;
2,900; and 3,900 Nm) through the jack. Accelerometer signals were recorded
using a sampling frequency of 6,400 Hz jointly with a tachometric signal from the
hollow shaft which rotates with an average speed (equal to the carrier speed xc) of
300 rpm. The left column of Fig 5 shows the radial acceleration recorded on the

0.00 0.20s

0.00 0.20s

0.00 0.20s

0.00 0.20s

0.00 0.20s

-27.00

23.00
R

ea
l

( m
/s

2 )

-27.00

23.00

R
ea

l

( m
/s

2 )

-27.00

23.00

R
ea

l

( m
/s

2 )

-27.00

23.00

R
ea

l

( m
/s

2 )

-27.00

23.00

R
ea

l

( m
/s

2 )

0.00

1.00

A
m

pl
itu

de

0.00

1.00

A
m

pl
itu

de

0.00

1.00

A
m

pl
itu

de

0.00

1.00

A
m

pl
itu

de

0.00

1.00
A

m
pl

itu
de

0.00

7.50

R
ea

l

( m
/s

2 )

1.82e-3

4.77

R
ea

l
( m

/s
2 )

1.99e-3

2.08

R
ea

l
( m

/s
2 )

1.12e-3

2.43

R
ea

l
( m

/s
2 )

0.00 2200.00Hz
FixRingBoard (r):+X (CH5)  

0.00 2200.00Hz
FixRingBoard (r):+X (CH5)  

0.00 2200.00Hz
FixRingBoard (r):+X (CH5)  

0.00 2200.00Hz
FixRingBoard (r):+X (CH5)  

0.00 2200.00Hz
FixRingBoard (r):+X (CH5)  

1.84e-3

0.51

R
ea

l
( m

/s
2 )

0.00

1.00

A
m

pl
itu

de

0.00

1.00

A
m

pl
itu

de

0.00

1.00

A
m

pl
itu

de

0.00

1.00

A
m

pl
itu

de

0.00

1.00

A
m

pl
itu

de

Fig. 5 Recorded data on time and frequency domain in radial direction for several torque levels
(upper to lower 0; 900; 1,900; 2,900 and 3,900 Nm)
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GUT’s fix ring corresponding to a rotation of the carrier for each applied torque.
As expected, the time signal becomes higher as the torque is increased but also it
stands out the signal modulation due to the carrier rotation. Regarding the cor-
responding spectra on the right column, it is clear the change on the relative
amplitudes of the different harmonics of the Gear Mesh Frequency (GMF) which
is equal to Zr xc. In particular, the increment of the torque exchanges the maxi-
mum peak between the first two GMF harmonics. A more detailed view of the
order spectra for the maximum torque is presented in Fig. 6 to discern better where
are located the higher peaks for the first and second GMF harmonics. For the first
GMF (see Fig. 6a) which is located at the order 65, the highest peak appears at
order 63 followed by the 66 while the amplitude for the 65 order is reduced. This
fact agrees with the theoretical predictions provided in [13]. According to these
authors, planetary gear sets can be classified in five different types based on the
sideband activity. The configuration of the GUT belongs to the category of
equally-spaced planets and sequentially phased gear meshes as it verifies.

wi ¼
2pði� 1Þ

N
;
Zrwi

2p
6¼ n; and

XN

i¼1

Zrwi ¼ mpðm,n ¼ integersÞ ð2Þ

where wi is the angular position of planet i, N is the number of planets and Zr is
the ring’s number of teeth. Following this classification the higher amplitudes
correspond to orders which are multiple integers of N in the vicinity of the GMF
harmonics. This fact is more remarkable for the second GMF (see Fig. 6b) where
the higher peaks correspond to orders 42, 43 and 44 N. Nevertheless, more peaks
can be appreciated for the first GMF distributed in orders 59–69, probably related
with planet position errors and eccentricities which cannot be explained with the
theoretical approach described in [13]. Moreover, the higher amplitude should be
obtained for the multiple integer of N closer to GMF which in Fig. 6a corresponds
to the order 66. Nevertheless, the largest peak is obtained at order 63 although this
situation changes when the applied torque is lower.
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Fig. 6 Order spectra at radial direction in the vicinity of the (a) first GMF order and (b) second
GMF order (Torque 3,900 Nm and 300 rpm)
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6 Conclusions

In this work a planetary test rig with mechanical power recirculation is presented.
It allows for the modification of the applied torque during the test, with the aim to
reproduce non-stationary conditions. Details about the design are described,
highlighting the procedure followed for determining the drive power, which in this
type of configuration is related only to the power losses.

Regarding the measurement capabilities of the test rig, several slip rings have
been disposed in order to extract dynamic signals from the planets and carrier.
Moreover, two different possibilities of acquisition have been considered. On one
hand, the vibratory signals can be extracted through the slip rings and sent to the
acquisition device. On the other hand, the acquisition can be done on-board, and
only digital signals are extracted through the slip rings to the computer.

Tests have been carried out and preliminary results have been discussed. The
acceleration spectra under several torques have been assessed and the results have
been positively correlated with the behavior found in the literature.

For the future it is foreseen the use of the testing bench for validation of
numerical models, but also to assess condition monitoring techniques particularly
those which involve non-stationary conditions as load susceptibility [14].
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A Novel Gear Test Rig with Adjustable
Shaft Compliance and Misalignments
Part I: Design

A. Palermo, J. Anthonis, D. Mundo and W. Desmet

Abstract This paper describes the design aspects for a new gear test rig aimed at
adjusting the influence of shaft compliance on gear meshing stiffness, while allowing
the operator to impose gear misalignments. Static and dynamic testing is possible for
the most important gear-related physical quantities: Transmission Error, relative
displacements, tooth root strain, transmitted torque. The discussed test rig has a
mechanical power circulation arrangement, where two sides can be identified. One
side is dedicated to testing a cylindrical gear pair; the other side is needed for retaining
a torque preload in the system by means of a second gear pair. Relative misalignment
can be imposed between the test gears in the five possible degrees of freedom (three
parallel misalignments, two angular misalignments). Shaft compliance can be
adjusted by setting the axial position of the gears before fastening them to the shafts.

Keywords Angular Misalignment � Gear Test Rig � Lead Modifications � Parallel
Misalignment � Profile Modifications � Shaft Stiffness � Vibration Isolation

1 Introduction

Experimental dynamic characterisation of mechanical transmissions requires
measurement of vibrations related to motion or forces in response to excitations.
Gear test rigs allow overcoming the limitations related to typically poor
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accessibility of gears in service and offer the chance of heavily instrumenting the
gears to seek validation of numerical gear meshing models.

Considering mechanical power, gear test rigs described in literature can be
divided in two main categories: power absorption and power circulation. In both
cases, electric machines are typically used to power the system thanks to their
flexibility in speed and torque ranges and thanks to their suitability for control units.
For a cylindrical gear system with one input shaft and one output shaft, power
absorption test rigs rely on a motor which provides input power and a generator
which absorbs the output power. Power circulation test rigs are self-balanced
systems and only one motor is required to overcome losses to spin the system.

Design choices are discussed in the next paragraphs for a power circulation test
rig for parallel cylindrical gear pairs.

2 Objectives and Global Design

Objectives for the discussed gear test rig are the static and dynamic measurement of
typical gear-related physical quantities, under imposed conditions of misalignment
and with a given degree of influence of shaft compliance on gear meshing stiffness.
One of the final goals is to experimentally validate the gear multibody element
proposed in [1]. Focus for the experimental campaign is on a gear pair belonging to
families of spur or helical cylindrical gears. Both gear families have different
amounts of profile and lead microgeometry modifications for the tooth surfaces
(Sect. 4). Parallel or angular misalignments, can be imposed along the five degrees
of freedom for relative orientation of the gears (Sect. 5). Shaft torsional and bending
stiffness are by nature placed in series with gear mesh stiffness and affect the total
stiffness of the gearing. The ratio between the shaft stiffnesses and the gear pair
stiffness can be adjusted to impose which of the two elements will dominate the
dynamic response (Sect. 6). All the tests can be performed in a range of speed, for a

Fig. 1 Test rig three-dimensional representation. 1. Test gears; 2. Reaction gears; 3. Bearings
support plates; 4. Flexible couplings; 5. Flywheels; 6. Clutch flange for preload
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set of transmitted torque values. The CAD model of the test rig is represented in
Fig. 1, while its specifications are reported in Table 1.

The test rig is mounted on a concrete base suspended on air springs which
fulfils three functions. First, it provides reference pin holes to align the test side
and the reaction side. Second, it provides rigid anchoring islands for the two sides
and isolates the overall system. Third, it separates the two sides to avoid propa-
gation of stray vibrations from the reaction side to the test side; such vibrations are
damped through the concrete. A temperature-controlled pressurized lubrication
system feeds oil to the test and reaction side bearings and gears. Bearings are
lubricated through channels leading to the lubrication groove in their external race.
Gears are lubricated by oil jet. A Plexiglas enclosure collects lubrication oil for the
test gears which is returned to the lubrication circuit. Safety grids, acting also as
safety retention elements for the flywheels, cover the rotating components between
the test and the reaction side.

The quantities to be measured are: gear Transmission Error, speed, torque, tooth
root strain along the axial direction, relative displacements of the gear bodies, shaft
displacements and imposed misalignments. Detailed discussion of the measure-
ments and the related instrumentation is addressed in the second part of this paper.

Speed can be set by means of a 9 kW asynchronous motor controlled by a
frequency inverter. Each torque value is imposed as a preload in the system by
using a torque wrench and a set of weights, executing the following sequence: the
flywheel connected to the clutch is fixed to the base by using a pin; the clutch is
released untightening the fastening screws; the torque wrench is fitted on the clutch
disk and the required weights are hung; the fastening screws are tightened at the
prescribed torque; the weights and the torque wrench are removed. Shafts are
verified at the maximum gear torque of 500 Nm and provide a static safety factor
of at least 4 to yield point, using the Von Mises criterion, considering combined
bending moment and torsion at the worst locations. Materials are a ductile med-
ium-carbon C45 steel (360 MPa yield stress) for the massive parts and a low-alloy
1.2312 steel (820 MPa yield stress) for shafts.

Bearings (Fig. 2) are chosen to maximise stiffness and their rating provides
infinite service life under maximum loading conditions. In particular, high-preci-
sion spherical roller bearings are chosen to support test gears; more details on such
bearings are provided in Par. 5 and 6. For improving turning accuracy, a conical
adapter sleeve is used to adjust inner race interference and bearing clearance. Light
interference fit is used for the external race to improve turning accuracy. Both
bearings are in a locating configuration and require careful tuning of their relative

Table 1 Test rig specifications

Parameter Range Uncertainty

Speed 0–4,500 rpm (0–75 Hz) Measured
Torque 0–500 Nm ± 0.05 %
Angular misalignments 0–2 mrad 0.1 mrad
Parallel misalignments 0–0.3 mm 0.020 mm
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distance. Bearings for the reaction side are chosen to support flywheels and
reaction gears. Radial loads from the flywheels are supported by Y-bearing units
and by wide-face single-row cylindrical roller bearings. Y-bearings are chosen
because they do not require precise alignment of their supporting base; cylindrical
roller bearings are chosen with flanges on both races and are placed in a non-
locating configuration allowing light clearance fit on the external race (which is
stationary with respect to load). The same cylindrical bearings support radial loads
originating from reaction gears, together with double-row tapered roller bearings
in a locating configuration. The locating configuration is achieved using a housing
shoulder on one side and a bearing cap with laminated shim on the opposite side.
Tapered rollers allow absorbing thrust originated by the reaction gears.

3 Vibration Isolation Between Test and Reaction Sides

Vibration isolation between the two sides is achieved by decreasing torsional
stiffness and increasing rotary inertia for the reaction side. The overall effect is to
obtain the lowest possible rotational natural frequencies for the reaction side, so
that the reaction gears meshing excitation can be filtered out as soon as possible.
Torsional stiffness is decreased by using flexible couplings and by increasing shaft
lengths. When preloading the system, low torsional stiffness implies high twist
angle (1.5̊ at 500 Nm). This condition ensures that rotational vibrations generated
by the test gears (hundredths of degree) do not influence the torque preload, since
the latter comes from an elastic deformation. Furthermore, flexible couplings
prevent non-torsional loading between the two sides, allowing eccentricity up to
0.28 mm and angular misalignment up to 35 mrad between the two sides.

Analytical equations for a rotational model (Fig. 3) were solved to obtain the
rotational natural frequencies along with their related mode shapes. Four degrees
of freedom were used in total, allowing rotation for each gear.

The term k12 represents the equivalent torsional stiffness for the series between
the test gear pair mesh stiffness (equal to 1:6 � 106Nm=rad), the two shafts torsional
stiffness and the two (adjustable, Par. 6) shafts bending stiffness. The term k34

represents the torsional stiffness for the reaction gear pair (equal to
1:8 � 106Nm=rad), since supporting shafts there are very short. The terms k13 and

Fig. 2 Bearings arrangement for one shaft branch of the test rig and average bearing stiffness in
the loading range. 1. High-precision spherical roller bearing (1 9 109 N/m); 2. Y-bearing unit; 3.
Wide-face single-row cylindrical roller bearing (6 9 108 N/m); 4. Double-row tapered roller
bearing (1 9 109 N/m radial, 3 9 108 N/m axial)
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k24 represent the torsional stiffness of the flexible couplings. The terms Ji represent
the moments of inertia around the rotation axis for each gear plus the related shafts.
Moments of inertia for the test side (J1 ¼ 0:0218 Kg � m2, J2 ¼ 0:0118 Kg � m2) are
two orders of magnitude lower than the ones for the reaction side
(J3 ¼ J4 ¼ 0:2 Kg � m2). The obtained rotational mode shapes and their natural
frequencies are illustrated in Fig. 4.

The first 0 Hz natural frequency is due to the allowed rotational degree of
freedom. The second mode at 280 Hz involves in-phase rotation for both the test
and the reaction gear pairs with opposite rotations for the two sides. Therefore, this
mode involves minimal mesh deflections in proportion to the deformation of the
flexible couplings. The third mode at 680 Hz involves reaction gears with out-of-
phase rotation (namely mesh deflection) and very limited motion of the test gears
(3 % of the reaction gears modal amplitude). The fourth mode at 1,968 Hz
involves test gears similarly with very limited motion of reaction gears (0.2 % of
the test gears modal amplitude). The third and fourth represent modes for the
reaction gear pair and the test gear pair respectively. Limited motion of the test
gears at a resonance for the reaction gears, and vice versa, is a first evidence of
decoupling between the two sides.

The same model was used to obtain the forced-response Transmission Error for
the test gear pair, applying twice the maximum variable contact force expected at
the reaction side. This quantity allows estimating how much of the reaction gears
excitation is able to reach the test gears. A typical value of 5 % was chosen for
gears modal damping ratio [2]. Results in Fig. 5 show an induced Transmission
Error higher than the encoder measurement resolution only in correspondence of
gear resonances. Resonance conditions for the reaction gears must therefore be

Fig. 3 Illustration of the 4-DOF rotational model of the test rig

Fig. 4 Histogram representation of mode shapes for the 4-DOF rotational model of the test rig
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avoided. Resonance conditions for the test gears do not represent a problem, since
the Transmission Error amplifies and a decrease in accuracy can be allowed (See
Part II: Instrumentation).

4 Gear Design

Gear design is performed following different purposes for the test side and the
reaction side, which have specifications reported in Table 2. Different tooth
numbers are chosen for test and reaction gears to be able to distinguish excitation
belonging to each gear pair.

Main requirements for test gears are identified in:

1. Providing very repeatable meshing excitation;
2. Possessing a gear mesh stiffness calculated to determine a desired;
3. gear pair resonance frequency;
4. Allowing room for mounting root strain gauges;
5. Not failing under load.

Fig. 5 Forced-response transmission error for the test gear pair when exciting the reaction gears
with twice the maximum expected dynamic contact force

Table 2 Gear specifications

Test gears (Spur) Reaction gsears

Number of teeth 57 64
Normal module 2.60 mm 2.25 mm
Normal pressure angle 20 deg 14 deg
Helix angle at theoretical pitch circle 0 deg 13 deg
Tip diameter 154.50 mm 155.00 mm
Root diameter 141.70 mm 142.00 mm
Face width 23 mm 41 mm
Normal circular tooth thickness at theoretical pitch circle 3.780 mm 3.074 mm
Total contact ratio 1.456 3.0
Average gear mesh stiffness along the line of action 3.3 9 108 N/m 3.5 9 108 N/m
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Repeatability is substantially enhanced by two choices: first, the gear ratio is
equal to one; second, gears are precision ground to ISO 1328 Quality 3. Unity gear
ratio implies that one tooth will always mesh with the same tooth of the mating test
gear. This excludes deviations introduced by manufacturing variability. Tolerances
for quality ISO 3 were outperformed in the manufacturing execution, with typical
values within ±1 micron for both lead and profile. All the teeth for all the gears
were measured on both flanks along the mid-plane profile and the operating pitch
circle lead to ensure tolerance quality. To achieve a stable and durable tooth
surface, before grinding, gears were made of 16 MnCr5 alloy special steel and
case-hardened to 60 HRC until 0.8 mm depth. The value reached for test gear
mesh stiffness, combined with shaft stiffness, provides a gear pair resonance fre-
quency which can be adjusted in the range described in Par. 6. Mesh stiffness is
tuned mainly by selecting appropriate tip and root circles diameters, operating
centre distance and tooth thickness. Tip and root diameters and centre distance are
also chosen to leave sufficient room for the installation of the root strain gauges.

Both families of spur and helical test gears are composed of two unmodified
gears, two with parabolic profile modifications and two with parabolic lead
modifications, which can be combined to achieve extensive validation of mi-
crogeometry effects. One modification value is designed to be sub-optimal for the
median applied load, the other value to be optimal and the combination to be
above-optimal (Fig. 6).

Main requirements for reaction gears are identified in:

1. Generating the lowest possible meshing excitation;
2. Being insensitive to small misalignments;

(b)(a)

0 Nm 

500 Nm

STE 

Fig. 6 a Static transmission error curves from 0 to 500 Nm for a test spur gear pair having
10 lm profile crowning modification. b Example of sub-optimal (5 lm), optimal (10 lm) and
above-optimal (10 ? 5 lm) profile modifications for minimizing peak to peak static transmission
error, with respect to the median applied load. Simulations performed using LDP [6]
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3. Providing the lowest possible mesh stiffness;
4. Having long service life.

Meshing excitation is limited first by using helical gears with high and integer
total contact ratio (the latter property was verified under load and including mi-
crogeometry effects). Subsequently, profile modifications are optimized to minimize
gear transmission error peak to peak value. Sensitivity to angular misalignment is
reduced by applying end relief and parabolic lead crowning to the teeth surfaces.
Mesh stiffness is reduced (to lower the gear pair resonance frequency) by reducing
root circle diameter, tooth thickness and normal pressure angle.

Gear strength was verified using three software tools: Ansol Helical 3D [3] for a
Finite Element full-field verification, OSU Gearlab LDP [2] for a confirmation and
KISSsoft [4] for rating according to the norm ISO 6336. Ratings are provided
hereafter for the already manufactured family of spur gears and for reaction gears.
Helical gears have been designed, but will be manufactured after experimentally
verifying the design for the spur family. According to the ISO 6336 norm, spur
gears have high static safety factor (3.7 against yield at tooth root), but short
service life (8.5 h at maximum speed and load) due to sharp handover between
tooth pairs. This compromise is reached for test gears to verify the above-men-
tioned requirements, since test gears are appointed to operate for a limited time
and then to be changed. Reaction gears have high static safety factor (5.3 against
yield at tooth root) and infinite service life at maximum speed and load. Stresses
were lowered for reaction gears by increasing the facewidth value. Higher face-
width value provides the additional advantage of increasing the total contact ratio,
but also the disadvantage of increasing the mesh stiffness. The trade-off is bal-
anced by tuning the helix angle.

5 Setting Misalignments

Angular misalignment in an arbitrary plane and parallel misalignment in the
transverse plane can be set by a technique proposed by [5]. Bearings are mounted
in eccentric caps; these caps can be turned to orient the eccentricity at a given
angle. Same angles for the two caps on the same shaft result in imposing a parallel
misalignment; opposite angles result in imposing an angular misalignment. Angles
in-between result in a combination of angular and parallel misalignment. Angular
misalignments motivate the compulsory need of spherical roller bearings. Axial
parallel misalignment can be imposed thanks to expansion locking units to fasten
the gears on the shafts. Each unit is composed of two self-centring tapered conical
elements with cylindrical bore for the shaft and cylindrical outer surface for the
gear. Gears can first be axially displaced of a known quantity by using a calibrated
thickness and then fastened to the shafts.

Given the significant sensitivity of gears to small amounts of misalignments,
manufacturing and assembly tolerances acquire paramount importance. Geometric
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tolerance constraints were calculated quantitatively and will be discussed here only
qualitatively for the sake of conciseness. Holes in bearings support plates require
tight positioning tolerance to avoid initial misalignments and cylindricity to centre
bearing caps; cylindrical surfaces for bearing caps require tight cylindricity to
centre bearings and accurate eccentricity to set misalignment; bearings and shafts
require tight turning accuracy with very limited radial runout. Alignment and
cylindricity for bearing support plates holes are achieved by assembling the plates
and finishing rough holes with a single operation of wire electrical discharged
machining (EDM). Wire EDM is also used to manufacture bearing caps. High
precision bearings are selected to restrict to 30 % the normal amount of runout for
the inner race (Kia parameter). High precision pre-ground and hardened shafts are
selected for minimized radial runout and improved cylindricity.

6 Adjusting Shaft Compliance

Expansion locking units are used to allow axial positioning of the gears and thus to
adjust shaft stiffness. In particular, bending and torsional stiffness are maximum
when the loaded shaft segment is shortest (i.e. the test gears are closest to the
bearings within the loaded path). Two configurations will be used: gears at half
shaft length and gears closest to the bearings. In the maximum shaft stiffness
configuration, bending and torsional shaft stiffness values are substantially higher
than the mesh stiffness. In the minimum shaft stiffness configuration, bending and
torsional shaft stiffness values are substantially lower than the mesh stiffness.
Using the beam theory of elasticity, bending and torsional stiffness assume values
reported in Fig. 7. Corresponding resonance frequencies for the test gear pair are
expected to be close to 1,968 Hz for maximum shaft stiffness and close to 800 Hz
for minimum shaft stiffness.

Two additional aspects need to be clarified: the effects of bearing stiffness on
test gears resonance frequency and on load-dependent misalignment. Average
bearing stiffness in the loading range is three times the mesh stiffness for the test

Fig. 7 Comparison of gear mesh stiffness with shaft bending and torsional stiffness with respect
to the axial position of the gears
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gears. Load dependent misalignment can be induced only in the minimum shaft
stiffness configuration. In the maximum shaft stiffness configuration gears are
equidistant from bearings and rotation induced by bending is zero. In the minimum
shaft stiffness configuration, the closest bearing absorbs almost the complete
meshing loads, while the opposite bearing is virtually unloaded. Bearing deflec-
tions at maximum load are below 10 microns, leading to a maximum misalignment
of 0.03 mrad (three times below uncertainty on imposed misalignment).

7 Conclusions

The main steps of the design process for a cylindrical gear pair test rig have been
described. Solutions already available in literature have been used to impose
angular misalignment in an arbitrary plane and parallel misalignment in a trans-
verse plane. A new solution has been proposed to impose axial misalignment and to
select the influence of shaft compliance on gear mesh stiffness. The use of flexible
couplings and flywheels has been discussed to isolate the test side from stray
excitation belonging to the reaction side. The main criteria identified for gear design
have been reported for the test and the reaction side. A 4-degrees-of-freedom
rotational model has been used to estimate rotational resonance frequencies of the
test rig. Contributions on mesh stiffness coming from shafts have been considered
for test gears. Special care has been paid to tolerances, for ensuring repeatability of
measurements and accurate values of imposed misalignments.
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A Novel Gear Test Rig with Adjustable
Shaft Compliance and Misalignments.
Part II: Instrumentation

A. Palermo, J. Anthonis, D. Mundo and W. Desmet

Abstract This paper describes the instrumentation aspects for a new parallel
cylindrical gear test rig aimed at adjusting the influence of shaft compliance on
gear meshing stiffness, while allowing the operator to impose gear misalignments.
Static and dynamic testing is possible for the most important gear-related physical
quantities. Transmission Error can be measured in a wide frequency range by high-
resolution analogue encoders, low-cost digital encoders and accelerometers
attached to the test gears. The latter are also used to obtain dynamic relative
displacements between the gears in 6� of freedom. Tooth root strain is measured by
a linear pattern of strain gauges, either wired in a quarter-bridge configuration or
with direct measurement, to capture axial strain distribution. Signals from rotating
sensors are fed out to the stationary acquisition system by means of slip rings.
Transmitted torque is measured using a rotating torque flange with contactless
signal transmission to its stator.
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1 Introduction

The evaluation of mechanical transmission dynamics is a prerequisite for ensuring
good noise and vibration (N&V) and durability behaviour. Issues in both areas are
typically related to gear Transmission Error (TE), a quantity describing the devi-
ation between the actual and the theoretical kinematic transmission of motion as
gears rotate. Gears allow transmission of mechanical power with very limited mesh
deflections (10-3–10-2 mm), or, equivalently stated, with very high mesh stiffness
(105–106 N/mm) [1]. This is the reason why oscillating mesh deflections, even of a
few microns, due to variable TE are relevant for N&V and durability evaluations.
Measuring such small displacements requires high measurement accuracy and
represents a significant challenge, especially at high speed. Further complications
arise from gear sensitivity to manufacturing errors [2] and variations of transmitted
load [3], angular misalignment [4] and centre distance [5]. This holds not only from
a measurement point of view, but also from a design and simulation perspective. A
major design focus is on selecting values for deliberate microgeometry modifica-
tions of tooth surfaces to compensate for variations of the above-mentioned factors.
Modifications along the tooth lead are typically designed to minimise stress peaks
assuming one value of misalignment and an expected excursion on top of this value
(arising from deflections or assembly/manufacturing errors) [6]. Modifications
along the profile of the teeth are designed to minimize static and dynamic TE [7].
The underlying design considerations, when not obtained by expensive trial and
error approach on prototypes, are based on simulations which first estimate the
variations of transmitted load, angular misalignment and centre distance and then
their effects on key gear-related quantities, combined with microgeometry modi-
fications and manufacturing errors. In a nutshell, issues in design and simulation
stand in the validation of meshing static and dynamic behaviour, which involve
non-linearity due to contact; issues in measurements stand in closely reproducing
the conditions of transmitted load, misalignment and centre distance to be tested
and to set up a measuring system which is insensitive to their variations.

The authors aim at solving these issues in the proposed gear test rig, which will
be used, among other research purposes, also to validate experimentally the pro-
posed multibody gear dynamics element proposed in [8]. A more detailed dis-
cussion on the motivations for a dedicated test rig are reported in Part I: Design of
this paper; however, given the complexity of the problem, the need of tailor-made
design to accurately set operating conditions and to isolate a simple subsystem
appears evident. The focus of this paper is on the definition of the most important
gear-related quantities to be investigated, on the measuring systems and methods
to be used, and on the implications that measurements determine on the test rig
design.

TE has been already mentioned as being the most relevant quantity for N&V
and durability evaluations; this quantity has been measured in literature using a
wide variety of techniques [9, 10]. The two most established methodologies cur-
rently use encoders and tangentially-mounted accelerometers [11]. TE provides
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information on gear dynamics along the line of action, however gears are also
coupled to the supporting structure and are typically affected by its vibration. A
method to measure dynamic gear translations and rotations in 6� of freedom was
recently proposed using accelerometers [12]. Together with quantities related to
motion, it is relevant to analyse quantities related to load. Measurement of
transmitted torque and tooth strain allow direct assessment of the loading condi-
tions of the gears. Torque measurement was performed by Raja Hamzah and Mba
[13] using shaft-mounted strain gauges in a half-bridge configuration. Strain
measurement was performed by Haigh and Fawcett [6], Hotait and Kahraman [14].
In [6] separate strain gauges were placed along the tooth root, while in [14] pre-
arranged linear patterns of strain gauges were used.

Details will be provided in the present paper also about the acquisition system
used to perform the measurements and the slip rings used to feed signals from
rotating components to the stationary equipment.

2 Transmission Error and Motion Measurement

Target for this section is the measurement of gear displacements, considering 6� of
freedom per gear, together with shaft and bearing orbits. TE can be measured by
using incremental encoders and accelerometers over the angular speed range
spanned by the test rig. Measurement redundancy is foreseen to increase trust in
the measurement (overlapping frequency bands in Fig. 1). Two types of encoders
are used; one to have a reference high-resolution measurement in quasi-static
conditions, performed by established techniques [1], and one to investigate low-
cost encoders suitability for both quasi-static and dynamic TE measurement.
Accelerometers can be used only for dynamic TE measurement.

High-resolution encoders (Heidenhain RON 285C) have 18,000 divisions and
output a corresponding number of sinusoidal voltage waves. Each sinusoid repeats

Fig. 1 Frequency bands of TE measurement by different measurement instruments
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accurately within ±1 % of the grating period, so that interpolation on this ana-
logue signal can be performed to read an angle increment of 0.0001� (0.36 arcsec)
on each encoder. This yields a combined resolution of 0.24 lm on the TE along
the line of action. Low-cost encoders (Heidenhain ERN 120) have 5,000 division
and output a corresponding number of digital TTL voltage square-waves.
The pulse timing method is used on each square wave rising edge to measure TE
up to a speed of 2,450 rpm. At this speed the maximum acquisition frequency is
reached. However, using the pulse-skip functionality of the acquisition system, one
rising edge will be skipped (halving therefore the pulse rate) and the same
encoders can be used for TE measurement up to the full speed range of 4,500 rpm.

High-resolution and low-cost encoders are mounted together in pairs on the
same shaft. This allows a direct comparison of the angle measurements for
accuracy evaluations. Particular care has been taken for encoder mounting toler-
ances. For each shaft and the supporting bearings, the measured combined radial
run-out tolerance lies within 10 lm. This value is circa half of the one suggested
for the high-resolution encoders by the manufacturer. Stator and rotor of the low-
cost encoders are aligned on each shaft by means of high-precision bearings
embedded in the encoders themselves. Stator and rotor of the high-resolution
encoders are instead floating with respect to each other; since the rotor is mounted
on the shaft it is intrinsically aligned. To align the stator, measured positioning
references are taken on the low cost encoders to form a single assembly.

Together with low-cost encoders, two or four uniaxial tangentially-mounted
accelerometers can be used to measure the alternating TE components in dynamic
conditions [15] by double integration of angular acceleration. Four seats are pre-
pared on an accelerometers carrier (Fig. 2) to be fastened on each of the two gears
being tested. Particular care has been taken to ensure symmetry of the acceler-
ometers around the gear body, since the acceleration signals from the different
accelerometers need to be combined. Measured distances from the axis of the
carrier bore are accurate up to ±5 lm, perpendicularity of seat surfaces lies within
0.1�, coaxiality between the gear collar and the gear axis lies within 0–5 lm.
Triaxial accelerometers are used to obtain alternating motion for each gear in 6� of
freedom, performing vector composition of accelerations [12].

Analysis of gear motion can be performed in conjunction with shaft and bearing
orbits analysis. Orbits are obtained using pairs of 5 mm diameter proximity probes
SKF MC SS65 with sensitivity of 7.87 mV/lm, oriented at 90� and pointing
towards each rotating shaft at the desired locations.

3 Torque

Torque measurement can be performed using a rotating flange mounted on one test
shaft. Signals are transmitted via a contactless interface across a gap between the
rotating flange and the stator (Fig. 3), allowing misalignments to be accommodated.

The torque sensor covers three functions:
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1. Measure and verify torque preload retention in the recirculation loop;
2. Measure instantaneous torque transmitted by the test gears;
3. Verify tooth root strain measurements.

Verification that the torque preload maintains constant average value is required
to ensure that no (micro) slip is happening in the clutch flange and in the expansion
bushings used to fasten the gears. It is worthwhile to point out how, besides

Fig. 3 Torque-measuring
rotating flange and its stator
for contactless signal
transmission

Fig. 2 Accelerometers
carrier and its centring on the
gear collar
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isolating the test and the reaction sides of the test rig, flexible couplings ensure that
the twist fluctuations caused by test gears TE excitation do not determine signif-
icant fluctuation of the torque preload. Flexible couplings in fact store an elastic
twist three orders of magnitude bigger than the one caused by variable mesh
deflections.

On the other hand, the instantaneous torque transmitted by test gears does
fluctuate, especially in resonance conditions. Torque overloads in the latter case
are relevant to be measured. To capture these torque fluctuations at a frequency
between 800 and 2,000 Hz (primary resonances of test gears reported in Part I:
Design) it is important to fulfil two main requirements: firstly, use an accurate
measurement instrument with sufficiently wide bandwidth; secondly, achieve a
sufficiently stiff connection between the gear and the measurement instrument. An
HBM T40 sensor has been chosen to verify the first requirement. Rated torque for
the instrument has been chosen equal to 1,000 Nm, allowing room for overloads
on the maximum nominal load of 500 Nm. The accuracy class of the instrument is
0.05 %, allowing a measurement uncertainty in a similar order of magnitude. The
bandwidth of the instrument is 6,000 Hz, allowing to measure torque fluctuations
at resonance. Evaluations using the torsional model illustrated in Part I: Design,
including an additional rotational degree of freedom for the torque sensor, show
however that the latter adds a non-negligible rotary inertia and prevents a stiff
connection to be reached with the gear. In particular, the torque sensor torsional
stiffness is 25 % lower than the equivalent torsional stiffness of the test gear pair.
This yields a new resonance frequency due to the torque sensor below the original
test gear pair resonance frequency. Moreover, modes of vibration related to the
torque sensor induce significant rotation on the test gear pair and vice versa;
therefore the measured torque is in both cases affected by resonance of the mea-
surement instrument. To cope with this issue, the torque sensor can first be used to
calibrate a torque-sensing rosette of strain gauges mounted on the test shaft and
can then be replaced by a flexible coupling as shown in Fig. 4.

Different levels of measured transmitted torque are required for correlating
tooth root strain measurements against static simulations for different positions
along the mesh cycle, levels of misalignment and centre distance.

Fig. 4 Torque sensor
replaced (on the bottom left)
by a long flexible-coupling
hub

512 A. Palermo et al.



4 Strain and Slip Rings

Strain measurement at tooth root provides a direct evaluation of instantaneous
tooth loading conditions. Since the total contact ratio of the test gear pairs is
between 1 and 2, two teeth of one test gear will be instrumented to measure strain
(access and recess phases) over simultaneously meshing tooth pairs. Moreover, to
assess the effects of lead microgeometry modifications and imposed misalignment,
multiple strain gauges will be placed along the face width. Strip gauges of type
Vishay Micro-Measurement EA-06-031PJ-120 will be used. Each strip gauge has
22.7 9 4.8 mm dimensions and consists of a linear pattern of 10 strain gauges
(Fig. 5) each having base length of 0.79 mm and width of 1.78 mm.

A short base length is chosen to have a local measurement of deformation.
Accurate local measurement however requires careful gauge positioning and
alignment [16] because of the steep strain gradients at the tooth root. Two mea-
surement methods will be used to obtain dynamic strain: a conventional quarter-
bridge configuration and a direct measurement of resistance (described in the next
section). In both cases limitations may be caused by the data acquisition system
and by the slip rings used to transfer the signals from the rotating components. The
acquisition system needs to provide sufficient sensitivity to gauge resistance
fluctuations, dynamic range and bandwidth. These characteristics are discussed in
the next section. Slip rings need to cause the least possible resistance variation at
their interface between races and brushes, since this directly results in an apparent
strain. Two models of slip rings were chosen: a 12-channels HBM SK-12 and a
20-channels Michigan Scientific SR-20. Specifications from the manufacturer for
the two models of slip rings report resistance fluctuations below respectively 0.002
and 0.1 X. The number of channels differs because the SK-12 will be used only to
connect accelerometers, while the SR-20 will be used both for accelerometers and
strain gauges. Slip rings performance was however preliminarily assessed in both
cases connecting an unloaded strain gauge (Fig. 6a) and measuring apparent strain
at different angular speeds up to 1,500 rpm. Considering a true strain to be
measured in the order of 500 lm/m, the test provided encouraging results for both
the slip rings. Highest amplitude of 6.3 lm/m was recorded at the first order of
rotation (Fig. 6b) and noise vanishes from the fourth order onwards.

Fig. 5 Strip gauge
positioning at the root of a
test gear tooth
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5 Data Acquisition System

All the signals are acquired with a single LMS SCADAS acquisition system and
managed using the LMS Test.Lab software platform. Channels are synchronized
and can be sampled up to 204.8 kHz, each with a 24-bit analog-to-digital converter
having 150 dB dynamic range. Direct strain measurement is performed using the
BDS-4 module: instantaneous value of resistance, with a bandwidth of 80 kHz, is
obtained via the Ohm’s law injecting a constant current in the strain gauge and
measuring voltage. The RV4 module is used to acquire incremental encoder sig-
nals: a clock running at 820 MHz yields a time resolution equal to 1.2 ns on
encoder pulse events, with a maximum input pulse rate of 204.8 kHz or 1 MHz in
combination with the pulse skip functionality.

6 Conclusions

Instrumentation aspects for a new parallel cylindrical gear test rig have been
discussed. Relevant gear-related physical quantities were identified and mea-
surement methods were outlined with focus on the main factors affecting the
accuracy of each measuring chain. In particular, misalignments can be accom-
modated by the arrangement foreseen for the measurement instruments. The
available measurements will allow, on a first stage, achieving validation of gear
contact models and obtaining insights on gear dynamics over a broad frequency
range and for various operating conditions for the gears.
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Fig. 6 (a) Unloaded strain gauge, measuring apparent strain, mounted on the rotating part of the
SK-12 slip ring; (b) Waterfall diagram of the apparent strain caused by slip ring resistance
variation. The vertical line is related to electromagnetic noise induced by the electric grid
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A Distributed Control System for a Field
of Spin-Elevation Heliostats

Alessandro Carandina, Mirko Morini, Claudio Pavan
and Michele Pinelli

Abstract The aim of this paper is to describe the architecture of a distributed
control system designed to handle several heliostats in a solar concentration field.
The system foresees the use of solar power to achieve the necessary temperature to
activate a dry reforming process in order to convert landfill gasses into hydrogen
that will be exploited for energy production. Between the manifold solar con-
centration technologies the Central Tower Heliostat Field was adopted. This paper
includes a first section regarding the most common geometry of solar receivers and
concentrators and a set of equations for the main sun tracking techniques. The
chosen hardware components and the software solutions will be illustrated as well.

Keywords Spin-elevation solar tracking � Central tower heliostat field � Dis-
tributed control system � LabView � Arduino

Nomenclature

a elevation angle between the heliostat frame and the Zenith-North-East
frame

f azimuth angle (clockwise) between the heliostat frame and the Zenith-
North-East frame

k elevation angle between the target and the North-East plane in the Zenith-
North-East frame

/ azimuth angle (clockwise) from North on the North-East plane in the
Zenith-North-East frame

U local latitude
d declination angle of the sun
x solar hour angle of the sun
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hi incidence angle of sunrays on the reflector of heliostat
qH rotation along the normal to the heliostat surface (Azimuth angle in the

case study)
hH rotation along the direction normal to the previous one and tangent to the

heliostat surface (Elevation angle in the case study).
DH298 Enthalpy of reaction at 298 K, [kJ�mol-1].

1 Introduction

Nowadays, more than ever, the global energy demand, along with the awareness of
the depletion of non-renewable energy sources and a pronounced sensitivity to the
environment, has led to the development of several techniques for the exploitation
of solar energy with growing efficiency. Several geometries have, indeed, been
developed over the years, and each one provides a different solution for specific
end-users with the best efficiency available. This led to the fulfillment of parabolic
trough concentrators, compact linear Fresnel receivers, parabolic dishes, central
tower heliostat fields and so on. Each one of these systems must track the sun
during the day rotating around one or more axes as a function of the geometry of
the receiver and of the mounting solution adopted. The project consists in the
development of a sun powered reformer to crack the CH4 and CO2 produced by a
garbage dump. These gases, if released in the atmosphere, would have a severe
greenhouse effect. The synthetized H2 gas produced, can then be exploited for both
electric an thermal energy production in specific distributed energy conversion
systems, such as fuel cells. The CO2 reforming of methane, (or dry reforming) is
an endothermic reaction, like steam reforming, but it yields a syngas with a lower
ratio of H2/CO2, for a complete conversion. The stoichiometric balance can be
written as:

CH4 þ CO2 ¼ 2H2 þ 2CO

DH298 ¼ þ247 kJ �mol�1

Dry reforming is favored by high temperatures and low pressures. Thermody-
namically, it can occur at temperatures higher than 640 �C but, technically and
assuming a fixed stoichiometric ratio of CH4/CO2 in the feedstock, temperatures
higher than 800 �C are needed to achieve acceptable conversions. The choice of a
central tower heliostat field is due to the necessity of achieving these high tem-
peratures. Many heliostats can be installed on the same field to increase the solar
concentration onto the reformer, and each one will be positioned at a specific
distance from the target. Hence, the tracking angles will be different for each
heliostat as a function of the relative position of the heliostat compared to the
tower.
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2 Main Solar Receivers and Concentrators

In the described system, a Central Tower Heliostat Field is adopted. However, a
number of different technologies can used. The most common are reviewed and
described in the following.

Parabolic Trough Concentrator. This technology uses reflectors curved
around one axis using a linear parabolic shape, which has the property of col-
lecting parallel rays along a single line focus and almost-parallel rays from the
solar beam in a line image [1]. A pipe receiver is placed on the focus of the
parabolic trough and is usually made of two concentric components: a metallic
pipe in which the heat transfer fluid flows, and an external glass pipe to provide
greenhouse effect inside the receiver. To avoid both convection and conduction
thermal loss, these receivers are usually evacuated. Internal pipes can have black
chrome selective coatings to increase the energy absorption, or even metal-ceramic
coatings which allow the achievement of higher temperatures, such as 391� C [1].
This is the most developed and commercially tested solar concentration-based
technology. Since parabolic trough concentrators are used to produce steam to
generate electricity with a conventional Rankine cycle, these systems can be
readily hybridized with fossil fuel (typically natural gas) Rankine cycles, so the
plant can produce electricity even when the sun is not shining [2].

Compact Linear Fresnel. The basic idea is to exploit the compact shape of a
Fresnel reflector, that is to split up a parabolic receiver in a series of segments
positioned at the same height. The solar beams are reflected in the same focus as in
the case of the parabolic trough receiver, so the absorber is fixed in space above the
mirror field and the reflector is composed of many long row segments which focus
collectively on an elevated long tower receiver running parallel to the reflector
rotational axis [1]. The use of flat mirrors in a Fresnel configuration is much less
expensive than building a parabolic shaped solar mirror. Unlike the parabolic
trough concentrator the tubular absorber is not coupled with the receiver, but is
fixed at a defined height; this avoids the issues linked to a flexible connection of
the receiver with the installation pipes. A particular kind of Fresnel receiver is the
CLFR (compact linear Fresnel), that employs a strategy based upon multiple
parallel receivers which allows area coverage to be significantly reduced by par-
tially intermeshing two adjacent single tower arrays [1].

Parabolic Dish. Several types of this kind of receiver have been developed
over the years, but the shape is basically a paraboloid reflecting the solar beams
onto the focusing point. Here a direct end user can be positioned, such as con-
centration photovoltaic cells or a Stirling engine, able to directly convert thermal
power to mechanical power. This kind of concentrator can only exploit direct solar
radiation, that is the portion of the incoming solar radiation that travels from the
sun to the Earth’s surface in an essentially straight line, without being reflected,
deflected or absorbed and transmitted by particles or gasses in the atmosphere.
Thus a parabolic dish must have a two-axis tracking system moving continuously
to face the sun throughout the day. The end user converts the thermal power into
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electricity without producing steam as an intermediate step. Individual parabolic
dishes coupled with Stirling engines typically produce 3–25 kW each. The high
fluid temperature attainable by the two axis tracking solar parabolic dish leads to
high conversion efficiency of solar power to electricity. The association of a
parabolic dish with a Stirling engine can be used as a relatively small distributed
power source, and with an array of many units, a MW plant of electricity from
solar power can be set up. In addition, this system has a very minimal water
requirement since the Stirling engine is air cooled. Otherwise, due to the distrib-
uted nature of the parabolic dish, this type of system does not lend itself well to
thermal energy storage, to allow electricity generation when the sun is not shining
[3].

Double Parabolic Reflection Dishes. The configuration is basically the same
as in a normal parabolic dish, but in the focus of the first parabolic receiver, instead
of the end user, a second parabolic reflector is positioned. In this way the solar
beam is reflected twice, striking the target positioned on a clamp. The high con-
centration level allows the achievement of very high temperatures in a precise spot
and the second receiver can be calibrated by micrometric movements to com-
pensate eventual optical aberration errors due to physical imperfections of the
primary reflector. Otherwise the double reflection involves a lower optical effi-
ciency and requires the use of a secondary reflector operating at elevated tem-
peratures. The shading effect is another undesired issue due to the projection of the
structures holding the secondary reflector, but the effect is proportional to the size
ratio between the two reflectors (Fig. 1).

Double Parabolic Trough Concentrator: the trough design is suitable for
applications requiring concentrations up to about 200 suns, such as steam gener-
ated power or concentrated photovoltaic operations, while the bowl design is
suited for high temperature applications, such as Stirling engine power generation,
high temperature water splitting, and thermochemical fuel production [4]. The
point focusing double parabolic trough concentrator is made from two reflective
parabolic troughs, a primary and a secondary, with longitudinal axes in perpen-
dicular directions [4]. This configuration offers great flexibility because of the high
temperature and high concentration achievable, together with a relative ease of
realization, compared to a paraboloidal bowl. Unlike a single parabolic trough
concentrator, this system requires two axes for tracking since it is basically a point
focusing device. One of the peculiarities of this concentrator is the oval shape of

Fig. 1 Double parabolic
reflection dishes
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the spot due to the different path length of rays from the primary to the secondary
reflector, because of the elongated shape of the trough collectors in the direction
perpendicular to the parabolic section and parallel to the focus line.

Central Tower Heliostat Field: this kind of concentrator uses a field of two
axes, tracking solar mirrors called heliostats. Each heliostat reflects the incoming
solar radiation and focuses it on a receiver at the top of a tall tower. These systems
allows the achievement of very high temperatures and the spots of the heliostats
are all concentrated on a heat exchanger on the top of the tower. The steam
produced in the heat exchanger can be exploited to feed a classic Renkine cycle.
This system leads to the creation of sizable power plants, and because of the very
high temperatures achieved, diathermic oil or eutectic salts are employed as a
thermal vector to convey the thermal energy from the heat exchanger to the
evaporator of the Renkine cycle. Moreover this system can be easily integrated
with a salt heat storage and with a fossil fuel power plant (typically natural gas) in
order not to interrupt the electricity production even in the case of a cloudy sky.
Although the heliostat solar tower approach to solar power production is not as
commercially developed as the solar parabolic trough system, it is more com-
mercially developed than either the parabolic dish-stirling engine or linear fresnel
systems [3].

Distributed Multiple Towers Heliostat Field: multi-tower solar array
(MTSA) goes one step further toward an urban tower technology. The MTSA is
based on a unique, optical concentration technology which allows extremely
closely spaced reflectors ([90 % of ground area) and high delivered output from
an area of roof or ground [1]. The reflector field uses extremely closely spaced
silver-plated glass reflectors of a special shape to allow extremely close spacing.
There are multiple receivers of radiation that advanced thermal and photovoltaic
absorber technology placed above the reflector field between 8 and 12 m high. For
the receiver of radiation, MTSA can simultaneously use high-temperature and
photovoltaic absorbers in parallel by splitting the incoming solar beam spectrally.
The high exploitation of the ground allows the achievement of high concentration
levels and the possibility of splitting the solar radiation on different receivers, as a
function of the beam specter which leads to an electricity production optimization
but the visual impact on the territory is considerable and the high density of the
heliostats may cause possible maintenance issues.

Solar Furnace: the idea is to split the solar concentration into two levels. One
or more heliostats track the sun and reflect the solar beams on a fixed secondary
parabolic receiver that focalizes them onto a target positioned in the focal point of
the parabola. The aim is to ensure that the rays come in parallel on the parabolic
receiver. This allows a lower precision for the primary reflectors, since the fine
focusing can be carried out by micrometric screw actuators in the focal point of the
parabolic receiver. The advantage of this solution lies in the fact that the fine
focusing occurs in the static portion of the system avoiding optical aberration due
to the sun tracking movements of the heliostats. By using a large number of
heliostats the temperatures achieved can be rather high and this can be exploited
for several usages:
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– about 1,000 �C for metallic receivers producing hot air for next generation solar
towers as will be tested at the Themis plant with the Pegase project [5]

– about 1,400 �C to produce hydrogen by cracking methane molecules [6]
– up to 2,500 �C to test materials for extreme environments such as nuclear

reactors or space vehicle atmospheric reentry
– up to 3,500 �C to produce nanomaterials by solar induced sublimation and

controlled cooling, such as carbon nanotubes [7]or zinc nanoparticles [8].

3 Main Tracking Methods

A key aspect for the correct design of a solar concentration field is the tracking
method to be used. Basically the solar tracking methods can be divided into two
categories: the first one is based on the feedback response of some kind of sensor
(PV cells, pireliometers, piranometers..) positioned on the heliostat or on the
receiver, and capable of measuring the solar radiation and moving the heliostat
move to the desired position. This is called closed loop. The other category, based
on tables of astronomic data, the ephemeris, can predict the apparent trajectory of
the sun day by day without any feedback. This second one is called open loop. The
most advanced systems are based on an integration of these two methods to
provide a fine tracking. Another way of classifying the tracking methods is by the
number of axes: so we have one axis tracking methods (e.g., for polar or latitude
mounted heliostats) and two axis tracking methods (e.g. for alt-azimuth or spin-
elevation heliostats). Referring to the [9] a complete set of solar tracking formulae
for an arbitrarily oriented heliostat toward an arbitrarily located target is presented.
The paper of Chen explains how to locate an object in the sky by two angles, qH,
the rotation along the normal to the heliostat surface and hH, the rotation along the
direction normal to the previous one and tangent to the heliostat surface.

The orientation of the normal vector to the heliostat’s reflecting surface (NH) is
computed by using as inputs:

– the relative angles between Heliostat Frame (R,H,U) and the Earth Surface
Frame (North, East, Zenith)

– the local hour angle and the declination of the sun.

If we consider an absolute frame whose axes are oriented to North, East and
Zenith and the heliostat frame in the Fig. 2, we can write the conversion matrixes a
and f to transpose a generic vector from one frame to another:
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a ¼
cosa 0 sina

0 1 0

�sina 0 cosa

2
64

3
75

f ¼
1 0 0

0 cosf �sinf

0 sinf cosf

2
64

3
75

Referring to [9], we can write qH and hH for the general case as:

hH ¼
p
2
� arc sin

� sin a cos U cosd cosxþ sinU sindð Þ � cos a sin f cos d sin x

þ cos a cos f � sin U cos d cos xþ cos U sin dð Þ þ
þ sin a sin kþ cos a sin f cos k sin /þ cos a cos f cos k cos /

2 cos hið Þ

2
66666664

3
77777775

qH ¼ arc sin
� cos f cos d sin xþ sin f sin U cos d cos x� cos U sin dð Þ þ cos f cos k sin /� sin f cos k cos /

2 cos hið Þ cos bH

� �

with:

hi ¼ 0:5 arccos � sin k cos U cos d cos xþ sin U sin dð Þ½
� cos k sin / cos d sin xþ cos k cos / cosU sin d�� sin U cos d cos xð Þ�

Fig. 2 Heliostat frame
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The following cases derive from these general equations, which are simplified
by substituting some specific angles values. Always referring to [9] we have:

Alt-Azimuth: the observer is positioned in the center of a hemisphere identified
by a plane, whose normal is the vector directed from the Earth’s centre to the
observer’s head, and the portion of the sky above him. In this hemisphere it is
possible to draw an ideal arch in the sky from South to North, called Local
Meridian. The observer in the centre of this system, upright on this plane and
looking northbound, can localize an object in the sky by two angles:

– The Azimuth angle, defined as a horizontal angle measured clockwise from a
north base line or meridian. Azimuth has also been more generally defined as a
horizontal angle measured clockwise from any fixed reference plane or easily
established base direction line.

– The Elevation angle,which is included between the plane and the line joining the
object to the centre of the system.

Referring to the [9] the heliostat is oriented in such a way that OH points to the
zenith and the azimuth angle is denoted as qH while the elevation is related to the
angle hH . Thus the angle a is set at a ¼ �90� and the equations become,
respectively:

hH ¼
p
2
� arc sin

� sin kþ cos U cos d cos xþ sin U sin d
2 cos hið Þ

� �

qH ¼ arc sin
cos k sin /� cos d sin x

2 cos hið Þ cos bH

� �

hi ¼ 0:5 arccos sin U cosd cosx� cosU sindð Þ � cos k cos /ð Þ½
� cos d sin x cos k sin /� sin k cos U cos d cos xþ sin U sin dð Þ�

Polar Mounted: in this type of heliostat, one of the axes is always parallel to
earth rotation axis. Mathematically it means that a ¼ U and f ¼ 180 �. Referring to
a case with / ¼ 180 �, the angles of the two tracking axes can be written as:

hH ¼ 0:5 arccos½ sin U cosd cosx� cosUsindð Þ � cos k cos /ð Þ
� cos d sin x cos k sin /� sin k cos U cos d cos xþ sin U sin dð Þ�

qH ¼ arc sin
cos d sin x

2 cos hið Þ cos bH

� �

hi ¼ 0:5 arccos cosd cosx sinðU� kð Þ � cosðU� kÞ sin d½ �

Spin Elevation: in this case the target is set to be aligned with one of the
rotational axes of the heliostat and this rotational axis is called spinning axis. In
this method the orientation of the tangential and sagittal planes are always kept
constant with respect to the reflector surface during tracking [9]. The heliostat has
the dual function of focusing and tracking, and in this configuration it is possible to
obtain the minimum optical aberration [10]. The constraints of this kind of
tracking method are : k ¼ a and / ¼ f, so the equations become:
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hH ¼
p
2
þ

� arcsin
1� sin k cos U cosd cosxþ sinUsindð Þ � cos k sin /cosd sin xþ cos k cos / � sin U cos d cos xþ cos U sin dð Þ

2 cos hið Þ

� �

qH ¼ arc sin
� cos / cos d sin xþ sin / sin U cos d cos x� cos U sin dð Þ

2 cos hið Þ cos bH

� �

hi ¼ 0:5 arccos � sin k cos U cosd cosxþ sinU sindð Þ � cos k sin / cos d sin xþ cos k cos / cos U sin d� sin U cos d cos xð Þ½ �

Latitude Oriented: this is a special case of spinning elevation in which the
target is defined such that k ¼ a ¼ U� 90 � and / ¼ f ¼ 180 �. With these special
conditions we obtain:

hH ¼
p
2
� arcsin

1� sin k cosU cosd cosxþ sinU sindð Þ � cos k sin / cos d sin xþ cos k cos / � sin U cos dcosxþ cos U sin dð Þ
2 cos hið Þ

� �

qH ¼ arcsin
� cos / cos d sin xþ sin / sin U cos d cos x� cos Usindð Þ

2 cos hið ÞcosbH

� �

hi ¼ 0:5 arccos cos d sin x½ �n

Polar Oriented:in this method one of the rotation axes is always parallel to the
Earth’s rotation axis. This type of heliostat fulfills the requirement of constant-
velocity single-axis tracking since the rotation speed of spinning axis is clock rate,
while the movement of for elevation is very small throughout a tracking day. This
configuration can be obtained by substituting a ¼ k ¼ Uand / ¼ f ¼ 180�.

hH ¼
p
4
þ d

2
qH ¼ �x

4 Distributed Control System

The idea at the basis of the tracking system is to achieve the union between a
centralized system for the heliostats angles calculation and a distributed system for
movements of the actuators. The centralized system consists of a server on which
runs a program in LabVIEW for the calculation of the position of the sun
according to the Solar Position Algorithm (SPA) and the calculation of the relative
positions of all heliostats. The distributed system consists instead of n units
(DCU), each one placed on a given heliostat. Each unit is responsible for receiving
data, sent from the server (the angles of Spin and Elevation), and read the actual
angular position of the heliostat by two absolute encoders. An electronic board
(Arduino) computes the deviation between these angles and controls the linear
actuators to align the heliostat in the correct position. The communication between
the server and the DCU is on a LAN using a TCP-IP protocol. The ‘‘brain’’ of each
DCU is a control board ARDUINO MEGA 2560, appropriately programmed, with
a different IP address assigned. Thus, the program running on the server can
control each unit by sending a data packet to a specific IP address. In order to
connect the server to all 42 units is therefore necessary to add a network switch.
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Thanks to this centralized system, the operator can choose whether move auto-
matically the heliostats according to the SPA calculations or by defining the angles
manually.

On each heliostat a distributed control unit is mounted and it consists of:

• A 220 Vac to 5 Vdc transformer from for powering ARDUINO boards and the
encoders

• Two absolute encoders for measuring the actual angles of SPIN and
ELEVATION

• An ARDUINO MEGA 2560 board with Ethernet Shield
• 4 Solid State Relay (SSR) for the power contacts of the actuators (two for the

Spin actuator extension and contraction and two for the Elevation actuator
extension and contraction)

• 4 limit-switches to cut the power to the actuators in case of exceeding the limit
angles

• A terminal block to connect the whole cables

5 Packet Data

There are two types of data packets that the server can exchange with the dis-
tributed control unit:

• Handling Packet: the packet handling is constituted by a string of 5 fields of 4
bits of scalars (integer 32) with a value between 0 and 1024, as follows: the
angles of SPIN and ELEVATION are translated into two numbers between 0
and 1023 and sent to the controller as such. The third and the fourth field
together represent the duty cycle of the square wave for handling the heliostat
and are expressed in milliseconds. The last field concerns the tolerance angle
within which the movement ceases. The conversion angle is according to the
expression:

[(Maximum range in degrees)/1024] * target angle in degrees.
For example, if the maximum excursions of Spin both of which are Elevation of

60� and the packet data is:
0560 0455 0500 0100 0020

it means that the heliostat of must lead to an angle of spin equal to (60/1024) *
560 = 32.81�, and to an elevation angle equal to (60/1024) * 455 = 26.66� with
jerking movement that provides a feed for 100 ms every 500 ms. The movement
will end when the angles will be in a range of (60/1024) * 20 = 1.17�. The system
encoders mounted on the Spin and Elevation axes measure the actual angle
position of the heliostat and, which is compared by the ARDUINO microcontroller
with the target provided by the server by means of the packet data. Thus the whole
motion control is carried out by the DCU, while the server has the only function of
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computing the S-E angles for each heliostat and monitoring the proper functioning
of the whole system.

1023 1023 1023 1023 1023
SPIN

ANGLE
ELEVATION

ANGLE
OFF

INTERVAL
ON

INTERVAL
TOLLERANCE

DUTY 
CYCLE

• Read-only Packet: in case of operator doesn’t want an heliostat to move but just
wants to know its angular position, another packet data can be sent: when all the
values in the fields equal to zero:

0000 0000 0000 0000 0000
the control unit sends back a packet to the server with the angles measured by the
encoders. This same package can also be sent to stop at once a the motion of an
heliostat. Whether no packets are sent to the DCU, the microcontroller just keeps
the heliostat in the last position and doesn’t feed the actuators. The position can be
kept thanks to the irreversibility of the motion due to the pressure angle and to the
transmission ratio of the gear worm inside the actuator itself.

ELEVATION AXIS ABSOLUTE 
ENCODER

SPIN AXIS
ABSOLUTE ENCODER

24Vcc & 9Vcc POWER 
SUPPLY

ARDUINO MEGA2560 
WITH ETHERNET SHIELD

SPIN AXIS
DC MOTOR

ELEVATION
AXIS DC 
MOTOR

SOLID STATE RELAY
CLUSTER

6 The Server Control Program

The chosen software to carry out the solar position computation was LabVIEW.
The choice was mainly due to the program implementation simplicity and to the
communication libraries availability for the ARDUINO device interface. The
tracking program that runs on the server relies on Solar Position Algorithm (SPA):
according to the location of the heliostat field (latitude, longitude and altitude), the
date and time of the day, it can determine the position of the sun in the sky. Then,
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considering the relative position of the heliostats compared to the target, the Spin
and Elevation angles are computed for each heliostat. In the first screen of the
control software allows the operator to monitor the real-time calculations of the
SPA and to set the summer/winter time. In the second screen, the operator can see
the corners of Spin and Elevation computed for every single heliostat and activate
(by means of Boolean buttons) or deactivate the movements of each of them. The
program creates and sends data packets to one heliostat after the other cyclically
with a frequency that con be set via software (Fig. 3).

In the last screen, eventually, it is possible to set the movement parameters
including:

– The delay between two subsequent movements of a heliostat
– The duty cycle
– The angular tolerance for stopping the movement

The control software also allows to monitor the system status, the solar radi-
ation, the number of working heliostat and the temperatures in several points of the
plant.

Each angle is computed though the equations (10) to (12) and using as inputs
the data of the solar position given by the NREL Solar Position Algorithm (SPA)
(Fig. 4).

7 NREL Solar Position Algorithm [11]

Beyond the rotation around its axis, the Earth undergoes a cyclic series of tra-
jectory changes due to tidal interaction with other objects of the solar system and

Fig. 3 Main screen of the lab view implemented solar position algorithm program
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to the shape of the ecliptic around the Sun. The data collected in the Ephemeris are
the basis of several sun-tracking algorithms developed in the years, but one of the
most widely used is the Solar Positioning Algorithm [11] drafted by Ibrahim Reda
and Afshin Andreas and edited by the Nationa Renewable Energy Laboratory. The
algorithm considers a high number of variables to locate the Sun during the day.
First of all, the relative position of the Earth to the Sun is used. To translate it into
an angle we must consider the ephemeris and refer to an absolute time: the first
step is hence to calculate the Julian date (JD). Julian day is a system of time
measurement for scientific use by the astronomy community, presenting the
interval of time in days and fractions of a day since January 1, 4713 BC Greenwich
noon. The use of this timing system is usually considered to be incorrect although
it is widely used anyway. The Julian date (JD) is the interval of time in days and
fractions of a day. Thus each moment is translated into a different progressive
number (considering the year, the month, the day, hours, minutes and seconds).
Several tables of empiric coefficients are used to calculate the Earth’s heliocentric
longitude, latitude and radius vector with high accuracy, so that the algorithm can
adjust the angles by knowing the relative position of the Earth to the Sun.

Once the Earth’s position in the heliocentric frame is known, the algorithm
considers a series of disturbing factors of the Earth’s trajectory:

The nutation, that is a rocking and swaying motion in the axis of rotation of a
largely axially symmetric object, and occurs because of tidal forces that cause

Fig. 4 Heliostat field control panel
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the precession of the equinoxes to vary over time, so that the speed of precession
is not constant. In the case of the Earth, the principal sources of tidal force are
the Sun and Moon, which continuously change location relative to each other and
thus cause nutation in the Earth’s axis. The largest component of the Earth’s
nutation has a period of 18.6 years, the same as that of the precession of the -
Moon’s orbital nodes. To account even for this factor, the algorithm calculates the
nutation correction in longitude and obliquity through another series of tables of
empiric coefficients.

The obliquity of the ecliptic. Since the angle between the Earth’s trajectory and
the sky equator changes over the centuries the algorithm can prevent optical
aberration by considering the variation of the obliquity of the ecliptic. This tra-
jectory is well known and can be computed by using the JD.

The aberration of light. This is an astronomical phenomenon which produces
an apparent motion of celestial objects about their real locations. At the moment
of any observation of an object, the apparent position of the object is displaced
from its true position by an amount which depends solely upon the transverse
component of the velocity of the observer, with respect to the vector of the
incoming beam of light (i.e., the line actually taken by the light on its path to the
observer). The result is a tilting of the direction of the incoming light which is
independent of the distance between the object and the observer.

The apparent sidereal time correction. Since a mean sidereal day is about 23 h,
56 min, 4.091 s (23.93447 h or 0.99726957 mean solar days), and not 24 h like
the solar day.

The altitude of the observer and the climatic conditions. The refraction angle
depends on the air density, which, in turn is a function of temperature and pressure.

The Solar Positioning Algorithm returns the position of the Sun in the sky in the
topocentric frame of the observer, in terms of the topocentric sun right ascension
and the observer local hour angle or even in the geocentric frame in terms of the
geocentric sun right ascension and the geocentric sun declination. These angles
can be converted as a function of the chosen tracking method to allow the con-
centration of the solar beams upon the specific target.

8 Conclusions

The control system can be improved by refining the parameters of the motion
control via software. A smoother movement of the heliostats can be achieved
varying the delay between two subsequent movements of a heliostat, the duty
cycle of the square wave that controls the steps of the actuators and the angular
tolerance for stopping the movements. These whole parameters must be set as a
result of a series of field tests: the dynamic behavior of the heliostats can’t, indeed,
be foreseen since a great verity of parameters rules the actual way of moving
(wind, weight, misalignment of axle loads).Moreover each actuator could have a
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different response even if fed with the same voltage. Once carried out the final
enhancement, the system could concentrate a very high energy over the target,
reaching several hundred degrees, contributing to the reduction of greenhouse
gases from the landfill.
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Preliminary Investigations on Automatic
Detection of Leaks in Water Distribution
Networks by Means of Vibration
Monitoring

Alberto Martini, Marco Troncossi, Alessandro Rivola
and Davide Nascetti

Abstract The efficiency of water supply networks is an important issue. In order
to reduce water losses, policies of leak reduction are essential. The paper deals
with a preliminary study on the use of vibration monitoring tools for the detection
of leaks in water service pipelines. The long-term project is the development of a
system for automatically detecting burst leaks occurring in service pipes. Pre-
liminary experimental tests were performed on both a test rig and an actual service
pipe of the water distribution system. Three main objectives were achieved: firstly,
the effectiveness of vibration monitoring for leak detection purposes was assessed
providing a positive response; then, a prototypal detection procedure was studied,
implemented and tested on the preliminary experimental data; finally, the speci-
fications for a prototypal acquisition equipment were also determined. This paper
illustrates the experimental campaign and its main results.

Keywords Water Supply Networks � Monitoring � Leaks � Vibration

1 Introduction

All the utilities concerned with drinking water supply are making efforts to
increase the efficiency of their distribution systems. Official statistics about the
North America show that water losses typically reach 30 % of the production [1].
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In some Italian areas water losses exceed 60 %, the national average being about
40 % [2].

Water losses include both background leaks (very small leaks at pipe joints and
fittings, generally undetectable) and burst leaks (resulting from pipe holes and
damages). While the former are mostly assumed as irremovable (i.e. associated
with the normal system functioning), the latter should be detected and repaired.
Indeed non revenue water represents a very high cost. Moreover water losses
represent a danger for the public health since the leaking flow may damage the
foundations of buildings and roads, and contamination by pollutants may occur.
Last, but not least, water is a limited resource that should not be wasted at all.

In order to reduce and prevent water losses, a policy of leak detection and
reduction is essential.

Conducting periodic water audits helps monitoring water losses of the whole
distributing system. District Metered Areas (DMA) management [3] generally
offers better leak detection performance and allows focusing the efforts to locate
leaks on restricted portions of the network. Optimized distribution of noise loggers
over the water supply network may be also adopted [4], although their economic
viability and leak detection effectiveness are not guaranteed [5].

Several techniques and equipments for pinpointing leaks are available [5–8].
The most common equipments are listening devices (such as listening rods and
geophones, whose efficiency largely depends on the operator skills) and noise
correlators (which automatically pinpoint leaks by means of signal correlation
techniques), both generally relying on vibration or pressure transducers.

This study deals with the detection of burst leaks occurring in service pipes, by
using vibration measurements. The long-term project, planned by the R&D
department of the multi-utility Hera S.p.A. (Bologna, Italy), aims at developing a
device for the automatic early detection of bursts located in the customer con-
nection branches running from the mains to the user’s water meter [9].

The research (still at an early stage) was started by performing the preliminary
activities that are described in this paper: evaluation of the effectiveness of
vibration monitoring for leak detection purpose; study and development of a
prototypal algorithm for leak detection; definition of the hardware specifications
for the development of a prototypal monitoring device to be adopted in a massive
experimental campaign in the actual water distribution network. In order to
accomplish these tasks, experimental tests were carried out on both a test rig and
an actual service pipe.

2 Materials and Methods

The desired system for leak detection should measure vibrations, analyze the
recorded signals and automatically send a warning to the control centre in case of
leak detection. This implies the detection algorithm to be executed on board. The
system is not precisely intended for locating bursts. Indeed it is conceived for
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operating on water service pipes, which are relatively short pipes (up to 10 m):
operations of leak pinpointing by maintenance teams (through standard listening
devices) are reasonably expected to be straightforward, once leak detection has
been achieved. Low cost represents an essential requirement of the hardware
components, due to the planned widespread installation. In order to meet cost
requirements the system should operate with the simplest hardware as possible,
thus requiring a very careful definition of all the technical specifications to opti-
mize costs and to guarantee adequate performance. Moreover the algorithm should
involve only rather basic analysis techniques in order to require limited compu-
tational resources, thus further limiting costs the of hardware components.

A preliminary experimental campaign was performed for pursuing the fol-
lowing goals:

• verifying the leak detection capabilities of different approaches based on the
analysis of vibration signals, and assessing how the variation of boundary and
functioning conditions affects the detection performance;

• identifying the most suitable metrics for revealing the presence of water leaks
and implementing a trial detection procedure based on it;

• defining the specifications of a prototypal acquisition device for further exe-
cuting extensive measurements on real burst leaks occurring in the water supply
network managed by the utility.

The preliminary experiments took into account the following variable factors:

• distance of the burst from the transducer (from 0 to 10 m);
• water pressure of the network (from 3 to 7 bar);
• presence of a water flow in the service pipe due to consumer water usage;
• value of the flow rate related to consumer water usage (from 0 to 54 l/min);
• non-zero flow rate in the main pipe induced from water consumption in service

connections different from the monitored one (from 0 to 100 l/min);
• material of mains and service pipes (PE and PVC);
• type of soil where the pipes are buried (wet soil, dry soil, sand);
• transducer sensitivity (100, 1000 mV/g);
• transducer mounting (petroleum wax and cyanoacrylate adhesives);
• A/D bit resolution (from 8 to 24 bit).

Two different kinds of tests were carried out: experiments on a test rig, spe-
cifically developed and arranged for this study; measurements on an actual service
connection of the public water supply network.

2.1 Test Rig Experiments

The experiments carried out on the test rig were designed for investigating all the
above mentioned factors under controlled conditions.
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An experimental facility was arranged in a buried testing site of the Hera R&D
department. Two PVC pipes with diameter of 90 mm (DN 90) were used as water
mains. Several small diameter pipes (DN 32) were connected to the distribution
pipes for simulating typical customer connections running from the mains to the
metering points. Each connection was about 10 m long (this value being derived
from the statistics concerning the entire company water distribution network) and
laid 0.5 m under the ground. Two valves located at the proximal and terminal
extremities of each branch allowed flow regulation.

A pressure tank fed the system, thus permitting modifications of the input
pressure parameter. The transducers were mounted on the pipe inside the terminal
valve chamber.

First tests were carried out with no leaks, considering different combinations of
functioning parameters and boundary conditions. Damages were then artificially
caused, one per service pipe, at different distances from the junctions to the main
pipe. The crack, a longitudinal cut 20 mm long, reproduced the most common pipe
damage which typically characterizes burst leaks.

2.2 Actual Service Pipe Experiments

Experimental tests on a real customer service pipe were meant to monitor vibration
signals in real working conditions. In order to have a good control of the exper-
iment parameters, a leak was artificially introduced in the connection pipe. The
buried service pipe of a residential customer was intentionally damaged by making
a 20 mm long longitudinal cut (Fig. 1a). A special device for controlling the water
flow through the crack was built and installed (Fig. 1b). The device, made of an
adjustable sleeve and an operating lever, was arranged in a manhole, thus per-
mitting to regulate the water loss (till completely stop the leak) even after that soil

Fig. 1 Tests performed on the real customer service pipe: a leak close up, b control device
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and asphalt had been restored, i.e. permitting to keep unchanged boundary con-
ditions when a transition from a non-leaking to a leaking state was induced.

All the other parameters of interest were fixed for the experiments, with the
exception of the water flow inside the monitored pipe. Indeed the consumer water
consumption could induce a non-zero flow rate.

The transducers (adhesively mounted on the service pipe) and the acquisition
system were located close to the customer meter. Measurements were performed
during 8 consecutive nights, recording 90 acquisitions per night. For the first 7
nights the water leak was kept closed. On the last night the leaking condition was
set by operating the regulation device.

2.3 Data Acquisition and Analysis

Two PCB piezoelectric accelerometers with sensitivity of 100 and 1,000 mV/g
were used. A National Instruments 24 bit A/D card (NI USB-9233) was adopted
for acquiring and conditioning the signals. As for the acquisition parameters, a
sampling frequency of 5 kHz was adopted. The single acquisition duration was set
to 2 and 10 s for the test rig campaign and the real service pipe tests respectively.
Tens of acquisitions were performed for each test condition.

The experimental data were investigated by using different approaches in order
to possibly identify the most suitable analysis for an effective detection of leaks.
Complex analysis techniques were disregarded. Indeed the final leak detection
algorithm will require a relatively simple analysis procedure to be implemented.

The raw signals were processed in the time domain where the most common
statistics, such as mean value, standard deviation, RMS value, crest factor,
skewness, and kurtosis were computed. A second analysis was performed in the
frequency domain, where the signal power spectra (PSD) were calculated.

3 Results and Discussion

A huge database was collected from the experiments. Only the most relevant
results are presented and discussed hereinafter.

Figure 2a reports the time histories of two signals recorded from the test rig
with and without water leak, respectively, and with all the terminal valves being
closed. The corresponding PSD in the frequency range 0–2.5 kHz are shown in
Fig. 2b. Time domain analysis permits to clearly detect the presence of the burst
due to a significant increase of the vibration level induced by the leaking water.
Apart from the amplitude, the PSD comparison shows that the signal in leaking
condition exhibits characteristic frequency content clearly distinguishable from the
background noise, thus allowing leak detection in the frequency domain as well.
These results are also supported by the analysis of experimental data obtained from
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tests on the actual service connection (Fig. 4), and are therefore promising with
respect to the overall research goals.

Two factors appeared to mainly affect the recorded signals, i.e. the presence of
a non-zero flow rate inside the service pipe, due to water usage, and the distance of
the leak from the vibration transducers.

The effects on test rig signals of a non-zero water flow inside the monitored
pipe (obtained by opening its terminal valve) are reported in Fig. 3. Figure 3a
displays the comparison in the time domain between vibration measurements
carried out with and without water leak, for a constant flow rate. The signals
exhibit comparable amplitudes and trends. Vibration levels appear to be two orders
of magnitude higher than those measured in case of leak and closed terminal valve
(Fig. 2a).

Figure 3b reports the corresponding PSD. Frequency domain analysis shows
that the presence of water flow causes higher vibration levels which cover the
effects of the leak. In particular the frequency content characterizing the leak can
be no more identified.

Hence the water leak is no longer detected. It is worth noticing that even very
small values of the flow rate prevent the burst to be revealed.

Experimental data from the tests performed on the actual service connection
revealed equivalent behaviour. The complete time histories relative to the fifth and
the eighth days (obtained by aggregating all the daily 90 records) are shown in
Fig. 4a and b respectively, as examples.

The condition of non-zero flow rate induced by customer water usage causes
the abrupt and temporary increment of the measured vibrations, which, as already
seen for the previous tests, makes the detection of leak impossible. The effects
generated by water consumption may be then considered as the result of generic
perturbations of the system superimposed to the ‘‘normal’’ steady-state signal.
Hence such effects will be referred to (and treated) as ‘‘perturbations’’ hereinafter.

Distance between leak and transducers considerably influences measurements
as well. Its increment causes the perceived vibration levels to significantly lower.

The PSD of the signals obtained by varying the distance between transducers
and water leak are reported in Fig. 5. As the distance increases a consistent

Fig. 2 Leaking and non-leaking conditions in case of zero flow rate: a time history, b PSD
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reduction of the vibration levels is observed. In particular the damping of higher
frequency spectral components appears to rapidly increase.

All the other investigated factors did not exhibit appreciable influence on
vibration measurements.

The use of vibration monitoring thus appeared to be a viable approach for
detecting burst leaks.

Fig. 3 Leaking and non-leaking conditions, with maximum flow rate: a time history, b PSD

Fig. 4 Real service pipe measurements, time histories: a non-leaking and b leaking conditions

Fig. 5 PSD of signals recorded (by two sensors) for different leak-transducers distances
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3.1 Prototypal Algorithm

The results obtained from the experimental tests, in particular the measurements
on the actual service pipe, permitted to define the prototypal detection procedure.

Provided that no perturbations affect the measured vibrations, the signal level
resulted as the simplest characteristic that could be used to satisfactorily detect the
presence of leaks. The signal standard deviation (STD) was defined as the metrics
used to this purpose: in fact, as the RMS value, high values of STD are associated
with high vibration levels. A strategy based on the signal STD computation
appeared to be potentially profitable due to some essential advantages. Firstly, only
basic signal processing is required, since STD can be easily computed from the
raw signal. In addition STD allows detecting (and consequently discarding) all
acquisitions affected by perturbations. Indeed a non-null flow rate in the pipe,
which may prevent the leak from being revealed, entails a STD value increment up
to 2 orders of magnitude, thus making it straightforward distinguishing the
acquisitions affected by perturbations among all those recorded during a single day
(or night). Finally, differently from the RMS value, STD is not affected by the
presence of DC offsets that may characterize the recorded signals (it is worth
recalling that RMS and STD values coincide for zero-mean signals). Based on
these considerations, the following procedure was therefore defined.

First of all, the measurements are performed by night, when the occurrence of
external perturbations (above all due to water usage by the customer) is expected
to be less frequent.

An amount of 60 acquisitions per night is executed. Such quantity was con-
sidered as adequate for ensuring a high probability of obtaining records not
affected by perturbations.

The core algorithm computes the signal STDs of each record. A proper index
(referred to as Monitoring Index, MI, hereinafter) is determined from a proper
subset of the computed STD values. In particular MI is defined as the average of
the 10 lowest STD values among the 60 acquisitions per night (implicitly assuming
that at least 10 over 60 acquisitions are free from perturbations). The MI is then
compared with the MI relative to the previous nights. If a proper threshold is
crossed, a warning is communicated.

The implemented procedure showed satisfactory leak detection capabilities
considering the available experimental data. Figure 6a reports the MI (normalized
to the highest value) computed by running the algorithm on the records from the
real service pipe experiment: the leak can be easily identified, being the corre-
spondingly computed MI almost twice the values assumed in no-leak conditions.
Also the data from the test rig experiments led to the same conclusions. Further
tests in other real facilities will be performed in order to verify and improve the
algorithm effectiveness.

542 A. Martini et al.



3.2 Prototypal Measuring Device

The results obtained from both the test rig and the real service pipe contributed to
the definition of the hardware specifications of the prototypal measuring device
devised for the next experimental campaign.

The sample frequency was defined at 4 kHz by considering that no relevant
frequency content was observed over 1.5 kHz.

The analysis of experimental data showed that vibrations may exhibit very low
levels, in particular when the leak is distant from the measuring point. On this
point, the experimental data were further post-processed for simulating bit reso-
lutions lower than the 24 bit of the NI board. The conclusion of that investigation
was that a minimum resolution of 16 bit is required to the A/D card in order to
limit the quantization distortion. Moreover accelerometers with high sensitivity are
required in order to increase the signal to noise ratio. A signal amplifier was
considered advisable as well: its actual adoption will depend on the corresponding
incidence on the final system cost.

Some prototypal devices were then manufactured by a third party. They will be
adopted in future extensive tests for performing acquisitions in case of real bursts
occurring in the water distribution network. The collected data will be used both
for further testing the detection algorithm and for refining the specifications of the
definitive leak detection system.

4 Conclusions

The preliminary investigations concerning a project for leak detection in water
distribution pipes by using vibrations were presented. An experimental campaign
was carried out on both a test rig and an actual service pipe by artificially inducing
burst leaks. The performed tests showed that if the system is free from external

Fig. 6 a detection algorithm results, b prototypal measuring device
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perturbations (being the flow rate inside the service pipe the most important), the
detection of burst leaks may be achieved by using proper statistics computed on
raw acceleration signals. The first results were adopted for the design of some
acquisition devices and for the implementation of a prototypal detection algorithm.
The devices will be adopted in a larger experimental campaign for collecting data
from real burst leaks located and repaired in the water supply network.

Limited to the available experimental data, the prototypal algorithm proved
effective for leak detection, further improvements still being required. Additional
investigations will be thus performed on data obtained from the planned future
tests in order to achieve the following goals:

• to assess the algorithm effectiveness on a statistically representative database;
• to increase the algorithm robustness in case of signals affected by noise or

numerous perturbations, thus maximizing its detection effectiveness.

Different analysis techniques will be also tested in order to examine alternative
approaches that may enable an effective detection of water leaks.

The leak detection device should be integrated, in the future, with the system
for automatic meter reading (AMR), i.e. they should share the same power supply
and data transmission network. The leak detection system is expected to provide
early warnings in case of occurrence of bursts. Hence the leak runtime should be
significantly reduced by decreasing awareness time. In addition the device is also
expected to enable the detection of several unreported bursts, due to the foreseen
widespread installation. Hence a global reduction of costs related to water leaks is
expected thanks to the relevant reduction of water losses, integration with the
AMR, and the possibility of remote data handling.
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An Application of Statistical Tools
in the Identification of the Transient
Vibrations of Bucket-Wheel Excavators
Under Random Loads

Weronika Huss

Abstract Due to fatigue cracks appearing in atypical places at construction of
bucket-wheel excavator’s body, it was supposed that they are a consequence of
transient vibrations associated with impulse loadings. This work presents a pro-
cedure for identification of such phenomenon. Operating loadings as well as
vibration of bucket-wheel excavators’ structures are strongly random and non-
stationary, what makes any analysis difficult. Moreover they reveal continuous
changes in the structure of the frequency spectrum. For that reason the procedure
was based on statistical measures and relativity of power spectral densities of
vibration in succeeding time periods. As a result it was found that indeed transient
vibration accompany impulse loading, but it isn’t full correlation, and it also
happens for quite low impulses.

Keywords Excavators � Transient Vibrations � Statistical Tools

1 Description of Excavator and Excitations

Bucket-wheel excavators (Fig. 1), with their mass often exceeding 2,000 tons,
form a group of the largest engineering machines. In Poland such machines are
commonly used in lignite mining.

An operation of bucket-wheel excavators is based on four working motions.
Each of them resulting from rotation of appropriate subassemblies. Hence one
could expect the operational vibrations of an excavator to be highly cyclical.
However, this is not the case since besides the bucket-wheel excavator the con-
sidered system includes the slope being mined (particularly the overburden).
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The overburden in Poland is highly heterogeneous as regards its grading. The
largest of the fractions—boulders (more than 200 mm in diameter) are it’s per-
manent component. Also excavators often encounter boulders much larger than a
single bucket. The presence of such inclusions is the cause of the high randomness,
nonstationarity and even transients in the vibrations of the whole excavator
structure. This has been known for years and attempts have been made to take it
into account in the modelling of the vibrations of bucket-wheel excavators and in
operational recommendations [1, 2]. But breakdowns and disasters, especially
under pulse loads, have continued to occur.

Therefore a hypothesis was proposed that during operation some impulse
loadings are accompanied by transients, which are responsible for fatigue cracks in
unpredictable places and for accelerated propagation of existing cracks.

It should be noted that as regards the observation of the vibrations of the whole
bucket-wheel excavator body the most representative measuring section is located
in the bucket-wheel boom. It is ‘‘a direct recipient of the external load’’ [3].
Through this assembly the load is transferred to the other parts of the body. It’s
vibrations (in frequency domain) are the most complicated. For this reason the
vibrations of the bucket-wheel boom in the orthogonal directions (vertical bending,
horizontal bending and compression) are most often used to model the dynamics of
such constructions. The vibrations are recorded by means of strain gauges. Due to
the character of work of bucket-wheel excavators no active experiment can be
carried out. This means only passive observations of many-hour continuous
recording can be employed in this situation. The procedure presented further below
is illustrated with a case of vertical vibrations of an SRs-1200 excavator (Fig. 1).

2 Existing Model

The history of the modelling of bucket-wheel excavator load-bearing structure
vibrations dates back to the 1950s. Beginning with deterministic linear models [4],
through statistical models [1], attempts have been made to estimate service loads

Fig. 1 Excavator SRs-1200
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in order to predict the residual reliability of the existing machines and to use the
obtained results in the design of new machines. In particular, attention has been
drawn to incidentally occurring extreme loads. For the first time this was men-
tioned in D. Dudek’s monograph [2], but without looking into the nature and
effects of such loads on the durability of the constructions. The data were used to
built statistical models of maximum loads, which were found to be coherent and
reproducible for each of the investigated bucket-wheel excavators. The research
conducted since that time resulted in another comprehensive work by the same
author [3], in which the term ‘‘stroke load’’, understood as a load rapidly
increasing to abnormal magnitudes, was introduced. It was determined on the basis
of numerous measurements that stroke loads produce stresses in the load-bearing
structures of the excavators, which may exceed the maximum peaceful operation
loads as much as five times. At the same time it was found that the stroke load
waveforms were highly random and so—unrepeatable. The study culminated in a
probability distribution of the stresses generated by stroke loads, constructed for an
exemplary machine.

The building of the above model started with the statistical distributions of
maximum stresses, obtained from three orthogonal load waveforms. After the
distributions were superimposed on the Gumbel grid, they could be approximated
with straight lines. Than an assumption that maximum stresses in the boom’s cross
section constitute sums of the moduli of bending stresses (horizontal and vertical
vibrations) and compressive stresses, was made. Next a distribution of the prob-
ability of occurrence of that sum was also superimposed on the Gumbel grid
(Fig. 2). The values obtained in this way were approximated with three straight
lines with different slope coefficients. The points of contact between the successive
line segments were adopted as the boundaries defining the difficulty of mining
conditions. Similar probability distributions, differing in only their linear regres-
sion coefficients, were obtained then for each of the machines. In each of the cases,
the last so defined interval was referred to as ‘‘exceptional loadings’’.

Fig. 2 Probability
distribution of extreme
stresses for different difficulty
of operating conditions
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The above model is valid for absolute load values and constitutes a good
measure enabling one to quickly determine the current mining conditions for a
given machine in terms of its capacity. However, the model does not take into
account the individual character of the extreme loads and so it does not provide a
full picture of the actual dynamics of the construction.

Yet, the vibrations of the bucket-wheel excavator structure are nonergodic
relative to the average [6]. It is not difficult to notice that the model does not take
this into account and treats vibrations having a narrow range, but high instanta-
neous average values, in the same way as large deviations whose instantaneous
values are lower (Fig. 3).

It often happens that changes in the instantaneous average value are at the level
of dynamic amplitudes. Hence the above model gives information about the
absolute values of strains (or stresses), but not about the latter’s character.
Moreover, it is obvious that the particular frequencies are bound with certain forms
of the construction’s vibration and the shape of the forms indicates the way in
which the construction is loaded. Thus the neglect of this aspect significantly
weakens the analysis of the strain of the excavator structure. Also the impact of
low-amplitude vibrations and that of the high-amplitude vibrations are different.
Therefore no conclusions about the dynamics of the strains can be drawn from the
values of the local extrema alone.

3 Transient Vibrations in Load-Bearing Structures

The frequency spectra of the operational vibrations of the bucket-wheel excavator
structures are characterized by high values in the neighbourhood of the constant
component (wide fluctuations of the average). In addition, because of the high

Fig. 3 Narrow-range vibrations and wider-range vibrations but at different instantaneous
average value give similar values of local extrema
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inertia of machines, no vibrations with frequencies higher than 20 Hz arise in such
structures. For this reason, particularly for the SRs-1200 excavator power spectral
density in a range from the first operational frequency f0 = 0.19 to 12 Hz were
used.

On the basis of the definition of transient vibrations given in [5] it can be said
that they correspond to the system’s free vibrations while steady vibrations
correspond to forced vibrations from external excitation. If the system is
(asymptotically) stable, after sufficiently long time the free vibrations are damped
and then one can observe only the forced vibrations having the same frequency as
the external excitation. Therefore when one examines this phenomenon in a
spectrogram one should expect instantaneous disturbances in its structure. Several
such spectrograms were generated for the vertical vibrations of the bucket-wheel
boom of the SRs-1200 excavator (ex. in Fig. 4). It is characteristic that the
structure of the spectrum undergoes practically continuous transformations.
Particularly significant changes can be observed in the places corresponding to
the distinct local maxima. The dark brown colour represents the maximum height
of the fringes and according to the spectrogram, it appears in the places of the
supposed strokes. Against the whole spectrogram, such events greatly disturb the
earlier image of the spectrum. Even though a wide-range signal clearly results in
high fringes in the frequency spectrum, it does not have to lead to a change in it’s
structure. This happens, however, when some pulse deformations occur in the
construction.

Fig. 4 Sample waveform of vertical vibration (0.19–12 Hz) of excavator SRs-1200 bucket-
wheel boom and its spectrogram
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4 Identification of Vibrations on Basis of Power Spectral
Density

The presented procedure is based on the relativity of the structures of the fre-
quency spectra for the vibrations accompanying pulse deformations and for the
vibrations occurring in the subsequent period of time. Therefore first the principal
pulses in the waveform of the local maxima had to be identified. Instead of using
their absolute value, the maxima were defined through their excess D above a
certain environment. Also the stroke period was defined as period s whose length
is equal to the inverse of the first operational frequency (for SRs-1200:
s = 5.26 s), in whose central point the analyzed pulse is located. Because of the
relative character of the stroke response also a pre-stroke period of the same length
had to be defined (Fig. 5). By adopting the length of period s to be the inverse of
the first operational frequency (for SRs-1200: f0 = 0.19 Hz) it became possible to
capture the most significant changes in the continuously changing spectrum and at
the same time to correctly read all the frequencies above f0.

In order to identify the pulse strains dominant among the local maxima in the
analyzed waveforms, the following conditions which a potential stroke strain must
meet were specified:

(1) the strain has the highest value from among the maxima which have not been
analyzed yet in the course of the procedure,

(2) there exists such a neighbourhood of the analyzed maximum that at instant t0
when the latter arises there exists a waveform in the interval [t0- 1.5s, t0
+ 0.5s]; in other words, there exists a vibration waveform in the stroke period
and in the preceding (pre-stroke) period;

(3) no local maximum higher than the considered one occurs in the interval [t0-

1,5s, t0 ? 0,5s].

Fig. 5 Strain pulse as potential stroke response along with pre-stroke and stroke period
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Local maxima satisfying the above conditions will be called potential stroke
strains and will be denoted as xmax, and the accompanying vibrations will be
referred to as potentially significantly transient vibrations. In the course of 427 h
of observation 115 140 xmax values were found for the SRs-1200 excavator, which
amounts to 0.7 % of all the local maxima.

Let us express excess D of local maximum xmax through a difference between
the average (�x) from the local maxima in the pre-stroke period and the value of the
considered extremum xmax:

D ¼ xmax � �x ð1Þ

The power spectral densities in both the stroke periods and the pre-stroke
periods were reduced to a cumulative and normalized form in order to make
comparison of their structures without absolute values possible. These are
dimensionless quantities (functionals) and they were denoted as respectively: Gu(f)
and Gp(f). One should bear in mind that for the SRs-1200 excavator, argument
f[[0,19, 12] Hz.

The total signal power (Hu) contained in the stroke interval was adopted as the
measure of the force of the impact of the vibrations accompanying pulse loads.
Because of the adopted relative strain unit (per mille) the power is expressed in the
latter’s square (%2).

It should be noted that after it is presented in the logarithmic coordinate system
(Fig. 6a) the dependence of power Hu on excess D becomes almost linear (Pear-
son’s r = 0.96). Whereas the dependence of Hu on xmax does not assume an
explicit form regardless of the adopted coordinate system (Fig. 6b and c). This
calls for the use of excess D instead of the xmax value to identify the analyzed strain
pulses.

Fig. 6 Correlograms of excess D and value xmax relative to total power Hu in stroke period
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The procedure is based on the assumption that the occurrence of a transient
state in the vibration of the construction is correlated with local maxima xmax.

According to conditions i. 7 iii, the values of local maxima xmax are the
highest among the local maxima situated in the respective pre-stroke and stroke
periods. Exploiting the relativeness between the periods one can say that if value
xmax is within the confidence level for the average value, built on the local maxima
in the pre-stroke period, then the character of the vibrations in the two periods is
similar and the probability that significantly transient vibrations will occur is
slight.

Thus for each value xmax one can calculate the excess:

D ¼ xmax � ci ð2Þ

where ci is the upper limit of the confidence interval for the average of the maxima
from the pre-stroke period for the considered xmax. Because of the considerable
variation in the vibrations of the bucket-wheel excavator structure and their
inherently transient character, when constructing limits ci the relatively high
confidence level of 99 % was adopted.

Then the pre-stroke and stroke periods accompanying the xmax values for which
the following condition is satisfied:

D� 0 ð3Þ

can be referred to as relatively peaceful operation and they form a standard set.
For the SRs-1200 excavator the set contains 864 observations (0.75 % of all the
xmax in the set).

By characterizing in the frequency domain the dependence between the periods
for which the above condition is satisfied, one could prove the hypothesis through,
as it were, negation. However, because of the transient character of the operational
vibrations of the bucket-wheel excavators it is impossible to sharply distinguish
the significantly transient vibrations generated by a pulse load from the other
vibrations. The tools offered by mathematical statistics are helpful in such a sit-
uation. Using the tools two dimensionless measures making it possible to divide
the operational vibrations of bucket-wheel excavators on the basis of the changes
taking place in the frequency spectra were constructed.

The first of the measures is based on the changes in the structure of consecutive
spectra without taking into account the total signal energy contained in the com-
pared periods. Using the standard set, for the stroke and pre-stroke periods the
difference was calculated:

dD� 0 fð Þ ¼ Gu;D� 0 fð Þ � Gp;D� 0 fð Þ ð4Þ

The formed set of functionals dDB0(f) for each frequency f has a symmetrical
and heterogeneous distribution [6]. Thus by analogy to the normal distribution, the
triple standard deviation value was adopted as the first value demarcating steady
vibrations and significantly transient vibrations for dDB0(f):
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c1 fð Þ ¼ 3 � sd;D� 0 fð Þ ð5Þ

where:
c1(f)—a threshold of the permissible variation in the structure of the power

spectral density over the length of the considered transform, sd,DB0(f)—the
standard deviation calculated from differences dDB0(f).

Similar, but magnitude differences were calculated for all the normalized
cumulative power spectral density in the pre-stroke and stroke periods—d(f) and
were compared with threshold c1(f):

d fð Þ� c1 fð Þ ð6Þ

If for the given xmax the inequality [6] is satisfied, this means that the change in
the shape of the spectrum, produced by this impulse, is wholly within the limits of
the vibrations defined as relatively steady. The rate of change in the shape of the
spectrum is within the acceptable limits for this state. Hence such a maximum can
be removed from further analysis. Condition [6] for the data used is illustrated in
Fig. 7. In this way for the SRs-1200 excavator, 95,082 observations (82.6 % of the
initial set) from all the local maxima xmax were rejected as being relatively steady.

The changes taking place in the spectra can be expressed not only through their
shape, but also through the transformations of the total power contained in them.
Considering that pre-stroke periods and stroke periods, the increase of amplitudes
translates into the rate of changes in the power of the signal. This rate can be
expressed in a simple way through a ratio of the total signal power in the stroke
period (Hu) to the total signal power in the pre-stroke period (Hp). In order to
determine the permissible value of this ratio, again the standard set was used:

bD� 0 ¼
Hu;D� 0

Hp;D� 0
ð7Þ

The value of the 9th decile (from the set of bDB0 ratios) specifies the maximum
permissible increase in signal power (c2). For the SRs-1200 machine: c2 = 1.36.

Fig. 7 Differences d(f) relative to threshold of permissible variation in structure of power
spectral density c1(f) (dotted line)
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A similar ratio was calculated for the periods remaining in the set of potentially
significant stroke strains—b and compared to the permissible value of c2:

b� c2 ð8Þ

the stroke periods for which condition (8) is satisfied were classified as transient
vibrations with a relatively constant power while the local maxima xmax accom-
panying them were classified as stroke strains not accompanied by a significant
increase in vibration amplitude. The number of both stroke periods and stroke
strains is 11,924 (10.4 % of the initial size of the set).

The other 8116 observations (7 % of the initial size of the set) can be called
significantly transient vibrations and the local maxima xmax accompanying them
can be referred to as stroke strains. The vibrations are accompanied by changes in
the spectrum structure, and the significance of the changes is expressed through the
threshold of the permissible variation in power spectral density (c1(f)) and through
the maximum permissible increase in signal power (c2).

Figure 8a shows the proportions between the so defined stroke strains and the
values of D from the initial set of potential transient strains. This graph is at the
same time a graph of the conditional probability that the given excess D is
accompanied by insignificantly transient vibrations. It should be noted that this
probability increases linearly with excess D.

A similar graph (Fig. 8b) of the dependence on xmax as in Fig. 8a does not show
a distinct correlation, which is also confirmed by PCC: r = 0.74 for xmax and
r = 0.98 for D. Again this is evidence of the greater importance of the relativity of
load values, in comparison with absolute load values, in the characterization of the
vibrations of bucket-wheel excavator structures.

Fig. 8 Conditional
probability distributions of
occurrence of transient
vibrations accompanying
stroke loads—dependence on
excess D (a) and xmax (b)
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5 Conclusion

The triple standard deviation and the 9th decile, used to construct measures c1(f)
and c2 constitute the significance of transients in bucket-wheel excavator’s
vibrations. If other values are adopted, the hypothesis still will be true. Only a
change in proportions between amounts of elements in the sets of relatively steady
vibrations, transient vibrations with a relatively constant power and significantly
transient vibrations will happen. Depending on the purpose of further study, the
measures can be made more adjusted to the context and needs of the analysis.

If the presented algorithm is used in the diagnosis of bucket-wheel structures,
the determination of the conditional probability distribution, for each excavator
individually, and the identification of all the excavator’s modal parameters are the
prerequisites for evaluating the strain of the construction and estimating the
unknown loading history.
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Effectiveness of Advanced Vibration
Processing Techniques for Fault Detection
in Heavy Duty Wheels

Marco Malagó, Emiliano Mucchi and Giorgio Dalpiaz

Abstract This paper assesses the application of different processing techniques on
acceleration signals extracted from faulty heavy duty wheels. Heavy duty wheels
are used in applications as automatic vehicles and are mainly composed of a
polyurethane tread glued to a cast iron hub. The adhesive application between
tread and hub is the most critical assembly phase, since it is completely made by
an operator and a contamination of the link area may happen. Furthermore the
presence of rust on the hub surface can contribute to worsen the adherence
interface, reducing the operating life. Several wheels with different types of faults
have been manufactured ‘ad hoc’ with anomalies similar to the ones that can really
be originated. Synchronous average is calculated over the wheel rotation in order
to highlight the phenomena that have the wheel rotation as periodicity (e.g. the
contact between defect and test bench drum). Successively, cyclostationary theory
is applied to extract information from the frequency/order domain of the processed
signals. Eventually, well-suited indicators/coefficients are applied to the processed
signals, objectifying the anomaly presence and defining pass-fail reference values
based on the non-statistical Tukey’s method.
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1 Introduction

This article, presented as a continuation and development of a previous work
reported in [1], addresses a methodology and a procedure for the condition
monitoring and diagnostics of heavy duty wheels based on vibration measure-
ments. In particular, Synchronous Average (SA) and Cyclostationary analysis have
been applied.

The Synchronous Average of the vibration signal allows to attenuate the
periodic events not synchronous with the rotating component of interest and to
reduce background noise [2–4]. The resulting signal average is the ensemble
average of the angle domain signal, synchronously sampled with respect to the
component rotation. The main advantage of SA is to extract from a complex
vibration signal, its deterministic part, i.e. the events that are repeated periodically
with the rotation of interest.

A further advanced tool adopted for investigating the relationships between
spectral components is the cyclostationary theory [5, 6]. More specifically, a signal
is cyclostationary if some of its statistics present periodicities. As previously
described, averaging can make it possible to extract the deterministic part of the
signal. If the signal obtained after subtracting this deterministic part from the
synchronized signal does not exhibit cyclostationarity, the signal is said to be
cyclostationary at an order 1. In general terms, a signal is cyclostationary at an
order n if its statistical properties at order n are periodic.

The pass/fail thresholds are generally defined starting from the analysis of a large
group of healthy components applying statistical techniques with the a priori
knowledge of the real data distribution. However, in case of a small number of
samples, it is advisable to use non statistical techniques. This is the case adopted in
this research activity in which Tukey’s non statistical method has been applied to a
group of 15 healthy wheels. The Tukey’s method [7] is a simple but effective pro-
cedure for the identification of anomalies in a distribution of data. Unlike common
statistical procedures, Tukey’s method is a non-parametric technique that does not
consider any distributional assumptions about the statistical behavior of the data.

In Sect. 2, a preliminary description of the analyzed heavy duty wheels and the test
set up used in the experimental analysis are given. Section 3 presents the application
of different processing techniques: synchronous average is calculated over the wheel
rotation in order to highlight the phenomena that have wheel rotation as periodicity.
Moreover, Kurtosis and Root Mean Square parameters are utilized as statistical
coefficients in order to define the state of health of a wheel and to obtain upper
thresholds for the pass/fail decision. Successively, ciclostationary theory is applied
to extract information from the frequency/order domain of the processed signal.

The originality of this activity consists of the attempt to study the presence of
anomalies in heavy-duty wheels and to compare the detection capability of syn-
chronous average and ciclostationary using well-suited indicators.

558 M. Malagó et al.



2 Test Set up

The wheels being studied are composed of a polyurethane tread and a cast iron
hub, with 100 mm radius, 50 mm of width and 1,200 kg of maximum load. The
adhesive application between tread and hub is the most critical assembly phase,
since it is completely made by an operator and a contamination of the link area
may happen. The operator has to be particularly careful to not touch the surface of
the adhesive in order to prevent contamination with impurities that would lead a
failure of the polyurethane-hub adherence. If this processing phase is not done
properly some defects can arise as non-uniform adhesion of the adhesive on the
metal surface or not complete wettability of the metal surface.

In this context, wheels with different types of faults have been manufactured ad
hocwith anomalies similar to real ones. Such anomalies consist of:

• incorrect adherence zones between tread and hub (namely MA) of about 0.3 cm
dimensions in the axial and tangential directions;

• localized and distributed rust presence in the hub surface (namely LR) of about
5 cm dimension in axial and 2 cm in tangential direction and distributed rust on
the entire hub (namely DR).

Eventually, a set of 15 wheels without any defect has been analyzed for the
estimation of a reliable reference pattern. The vibration parameters relative to
these 15 wheels are referred as healthy wheels (HW).

The test bench consists of a bottom support, including a drum driven by an
electric motor controlled by an inverter and an upper part composed by two
hydraulic pistons that apply the load to the wheel under test, as depicted in Fig. 1.
During tests, the vibration signal is acquired by means of a piezoelectric tri-axial

Fig. 1 Test bench
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accelerometer (PCB 356A01, frequency range 1–10,000 Hz). The signals are
acquired with a sample frequency of 12,800 Hz for a duration of about 23 s by
using LMS hardware and software instrumentation [8]. Simultaneously with the
acquisition at constant sample frequency, an on-line order tracking analysis has
also been performed through the use of two optical tachometer sensors (KEY-
ENCE-LVS series) both positioned near the wheel-drum contact.

3 Application of Advanced Signal Processing Techniques

3.1 Synchronous Average Analysis

The Synchronous Average technique has been applied on the measured signals in
order to highlight the phenomena that are linked to the presence of faulty wheels.
The Synchronous Average mxð#Þ of a measured signal x(#), synchronized with the
rotational element in the angle domain #, is evaluated as the ensemble average
over a number of rotations M, each corresponding to one angular period
H = 360 deg, as follows:

mxð#Þ ¼
1
M

XM�1

l¼0

xð#þ lHÞ; with 0�#\H ð1Þ

where MH is the whole length of the signal. Synchronous Averaging (SA) is a
signal processing technique which enables periodic waveforms to be extracted
from noisy signals.

Two different Synchronous Averages have been computed. Firstly, the Syn-
chronous Average of the acceleration signal over the drum revolution (called SAd)
has been performed starting from the synchronized acceleration signal, by using
the tachometer signal of the drum as a reference. Then, the purified signal has been
calculated as the difference between the synchronized signal and the SAd,
obtaining a new signal with reduced periodicities related to the driving drum and
increased information concerning the manufactured faults linked to the wheel
periodicities. Consequently, the purified signal has been synchronized (by using
the tachometer of the wheel) and averaged over the wheel rotation obtaining the
Synchronous Average of the acceleration signal over the wheel revolution (namely
SAw). Eventually, the residual signal was determined as the difference between
the above purified signal and SAw.

As an example of results of such a procedure, Fig. 2 depicts the raw acceler-
ation signal measured at the operational condition of 4 km/h (speed) and 10,00 kg
(load) in the case of a missing adherence localized defect and the further pro-
cessing phases. The purification process gives a strong reduction of the compo-
nents related to the driving drum rotation and the possibility of analyzing the
residual signal depurated from all the known periodicities of the system.
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The Kurtosis parameter can be considered as a monitoring feature for faults
producing impulsive excitations and it can be used to obtain a reliable upper
threshold [1]. Although this parameter is well suited for the recognition of
extended missing adherence localized faults, it is not really sensitive to small

Fig. 2 Processing procedure: (a) raw acceleration signal, (b) SAd, (c) purified signal, (d) SAw
and (e) residual signal at the operational condition of 4 km/h and 1,000 kg
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localized defect (MA) and to rust presence (LR and DR), as it shows almost the
same value as healthy wheels. As a consequence, a further statistical parameter,
the root mean square (RMS) has been considered and compared to the previous
one. The RMS is a statistical metrics able to recognize the degree of irregularities
of a signal and for this reason it appears well-suited for the recognition of defects
such as rust or small localized defect that do not produce significant localized
peaks.

Eventually, Tukey’s method has been applied to Kurtosis and RMS parameters
evaluated for the group of healthy wheels in order to identify the pass/fail
threshold value. Let x1; x2; . . .; xn be a series of observations such as statistical
parameter values or cyclostatonarity indicators. These data are arranged in
ascending order and then ordered into four quarters. The boundary of each quarter
is defined by Q1, Q2 and Q3, called the 1st quartile, 2nd quartile and 3rd quartile,
respectively. The difference Q3 � Q1j j is called the inter-quartile range. The Tu-
key’s threshold for anomalies is defined as Q3 þ 3 Q3 � Q1j j. Observations falling
beyond this limit are called serious anomalies and any observations xi such that
Q3 þ 1:5 Q3 � Q1j j � xi�Q3 þ 3 Q3 � Q1j j are called possible anomalies. With
this approach, the threshold value that discriminates healthy wheel from a possible
faulty wheel has Kurtosis of 4.55 and RMS of 0.033 m=s2 (accordingly to the
method). The thresholds that give the certainty of faultiness are 5.48 and 0.039 for
the Kurtosis and the RMS, respectively. The comparison of the pass/fail threshold
values with the Kurtosis and RMS values of the faulty wheels are highlighted in
Fig. 3, giving rise to the following conclusions:

• the Kurtosis parameter is able to certainly identify only a wheel with LR fault
(LR1) and a wheel with DR fault (DR3) as a possible fault. This low monitoring
skill can be ascribed to the fact that the SAw signals do not contain high
localized peaks, in case of MA, LR and DR defects.

• The RMS parameter is able to certainly identify two wheels with LR fault (LR1,
LR2) and the three wheels with DR fault (DR2, DR3, DR4). Moreover, one
wheel with MA fault (MA2) was recognized as possibly faulty. As result the
RMS can be considered as a good monitoring parameter since it is sensitive to
missing adherence localized defect or localized-distributed rust. Nevertheless
this parameter is not able to recognize all the defects giving the possibility of
undesirable alarms.

3.2 Cyclostationary Analysis

A further investigation has been carried out based on the study of cyclostationarity
properties of the signal.

The first order cyclostationarity content has been computed as the Discrete
Fourier Transform (DFT) of the sampled purified signal synchronized with the
wheel rotation x½n�, called first order cyclic cumulant (Ĉa

1x) [9–11]:
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Ĉa
1x ¼ N�1DFT x n½ �f g að Þ ð2Þ

The second order cyclostationarity content of the signal has been evaluated
through the second order cyclic cumulant (Ĉa

2x) estimated as the Discrete Fourier
Transform of the squared residual signal r2½n�:

Ĉa
2xðu ¼ 0Þ ¼ N�1DFT r2 n½ �

� �
að Þ ð3Þ

It has to be noted that Eqs. 2 and 3 are consistent estimators of the cyclic
cumulants at the zero angle lag (u ¼ 0) for a sampled signal. Moreover, the first
and second order cyclic cumulants can be conveniently used to summarize the
information related to first- and second-order cyclostationary contents by defining
the following indicators of cyclostationarity [6]:

ICS1x ¼

P
a6¼0

Ĉa
1x

�� ��2

Ĉ0
2xð0Þ

�� �� ð4Þ

Fig. 3 Kurtosis and RMS pass-fail distributions in case of MA, LR and DR defects
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ICS2x ¼

P
a 6¼0

Ĉa
2xð0Þ

�� ��2

Ĉ0
2xð0Þ

�� ��2 ð5Þ

Fig. 4 Ĉa
1x and Ĉa

2x pass-fail distributions in case of MA, LR and DR defects
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where a 2 �A and �A is the set of wheel orders a presenting non-zero Fourier series
coefficients. It is worth noting that indicators ICS1x and ICS2x are dimensionless, as
they are normalized by the energy of residual signal Ĉ0

2x 0ð Þ; they quantify the
presence of first and second-order cyclostationary components within the signal,
respectively. In the particular case, a has been considered in the range 1st–100th
order since the higher spectrum amplitudes lie in this order range.

As done for the statistical parameters, the Tukey’s method has been applied to
the ICS1x and ICS2x metrics evaluated for the group of 15 healthy wheels in order
to identify the threshold pass/fail values. Possible faults can occur for values
between 0.0893 and 0.1226 in the case of ICS1x and for values between 0.0167
and 0.208 for ICS2x metrics. Moreover assured faults can occur for values
exceeding to 0.1226 and 0.0208 for ICS1x and ICS2x, respectively. The com-
parison between the threshold values and the results of the faulty wheels, high-
lighted in Fig. 4, gives rise to the following conclusions:

• the ICS1x parameter is able to detect only two certain faults (LR1 and DR2). The
main reason of this apparent discrepancy between the monitoring capability of
the first cyclic order cumulant and its indicator is due to the large value of
dispersion characterizing the healthy wheel, which causes a large increase of the
threshold level.

• the ICS2x is able to recognize the presence of anomalies or of possible anom-
alies for all the known faulty wheels, in the case of both missing adherence and
rust defect. In case of healthy components, the ICS2x values do not present this
dispersion effect so, as a result, the ICS2x monitoring skill is particularly sen-
sitive to fault recognition.

4 Concluding Remarks

This research addresses a methodology and a procedure for the condition moni-
toring and diagnostics of heavy-duty wheels based on vibration measurements,
passing through a simplified explanation of the physical phenomena that cause the
faulty signal signature. Although this method and relative results are referred in
this paper to wheels, they can be applied to a large variety of mechanical systems
and give useful guidelines for similar applications.

A number of different processing techniques are developed and applied in order
to recognize faults in heavy-duty wheels. Defects of different dimensions repro-
ducing missing adherence between the polyurethane tread and the hub are artifi-
cially created. In these defects, the adhesive was not correctly applied due to the
local absence of adhesive or due to the presence of rust in the hub, as can happen
during the manufacturing process. These defects cause incorrect wheel rotations
and fast failure. The synchronous average (SAw) has been evaluated and statistical
parameters for fault detection (Kurtosis and RMS) have been used. Furthermore,
the cyclostationary nature of the signal has been investigated through the first and
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second order cumulants and relative indicators. A non statistical approach (Tu-
key’s method) has been used in order to calculate threshold values for the sound/
fault discrimination (Figs. 3 and 4). This activity has enabled the conclusion that
the ICS2x of the residual signal represents a very useful indicators of tread/hub
connection anomalies both for missing glue and rust (Fig. 4). Thus, ICS2x can be
considered as the key parameter to be adopted in a monitoring test station at the
end of the production line.

Considering the presented research activity, the main original contributions
concern the application of advanced vibration processing techniques to monitoring
and diagnostics of heavy-duty wheels and the assessment of their effectiveness.
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Chatter Marks and Vibration Analysis
in a S6-High Cold Rolling Mill

Maria Cristina Valigi, Sergio Cervo and Alessandro Petrucci

Abstract S6-high rolling mill is an advanced mode to work the steel: it allows the
use of very small work rolls laterally guided by individually adjustable side
support rolls, which are supported by two rows of roller bearings mounted in
cassettes. In this paper the vibrations generated in a S6-high cold rolling mill are
analyzed with the aim to investigate the problem of skid marks generation. Such
marks are regular, parallel marking across the width of strip metal that not only
significantly affects the mill performance, but also reduces surface quality of the
strip steel. The defects of the strip are the consequence of insurgence of vibrations,
generically denominated ‘chatter’. The analyzed rolling mill has six rolls able to
roll steel strip coming directly from hot rolling mill train. The purpose of the
present work is to identify the reason of the excitation in order to limit the
problem. A solution based on empirical observations, vibration analysis and
considerations of a model is proposed.
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1 Introduction

In this work the authors will be discussed some problems relative to the vibrations
generically denominated ‘chatter’, occurring in a S6-high cold rolling mills.
Chatter can result in not good surface finish for some applications and, rare cases,
in gauge variations in the rolled strip. It manifestation is the classical regular
regular, parallel marking across the width of strip metal called ‘‘chatter marks’’
[1–5]. Chatter in rolling is considered to be the result of interactions between the
mill structure and the rolling process. The dynamic forces which are generated in
the rolling process deflect the structure of the mill, leading to variations in the roll
gap, rolls speed, tension,etc. These, in turn, result in further variations in the
rolling forces [6–8]. Chatter is a particular case of self-excited vibrations. Self-
excited systems begin to vibrate of their own accord spontaneously, the amplitude
increasing until some non-linear effect limits any further increase. The alternating
force that sustains the motion is created by the motion itself and stops when the
motion stops. Three basic types of rolling chatter have been observed in rolling
mills which causes significant chatter bands across the strip and small thickness
fluctuations [9]. Torsional chatter, occurs in the 5–25 Hz range. Third-octave-
mode chatter, which produces large thickness variations and strip rupture, lies in
the 125–240 Hz range. Fifth-octave-mode chatter occurs in the 500–800 Hz range.
The third-octave-mode chatter is considered the most critical because it generates
large gauge variations in the rolled materials. It therefore has the most detrimental
effects in terms of loss productivity due to the lower rolling speeds required to
avoid the phenomenon. To understand the conditions which lead to the dynamic
instability of the rolling process, the interaction between the structural dynamics of
the mill and the dynamics of the rolling process must be investigated. This
investigation is often carried out by modelling the rolling mill and the rolling
process and their interaction [9–12]. Lumped parameter models have been widely
used to represent the mill dynamic [11]. In this paper a new rolling mill, S6-high
rolling mill, is studied; it is able to realize in one pass, high reduction of strip (until
1:12). The analyzed plant presents the problem of chatter marks on the strips that
cause a short life of grinded side support rolls. The objective of this paper is to
investigate the reason of chatter-marks using a vibration analysis, in order to
understand which of parameters is involved in the self-exiting behaviour and how
a rolling mill can be adjusted to ensure maximum productivity and highest quality.

2 S6-High Rolling Mill

A new two-stands S6-High rolling mill, designed for highest quality standards, has
been installed at the entry section of the Hot Annealing&Pickling line LAC10 of
Acciai Speciali Terni S.p.A., in order to reduce the thickness of the incoming hot
rolled strips to produce new products and to serve new range dimensions for the
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following processes.With the integrated tandem S6-High rolling mill positioned at
the beginning of the Annealing&Pickling stainless steel line, the hot strip trans-
ported to the line is cold rolled, heat treated, shot blasted and chemically pickled in
one step. With this process it is possible obtain a finished product (ZI finishing) or
a material able to be re-workable on a Sendzimir cold rolling mill for new
thickness reduction and new surface quality (2D-2B finishing). The main advan-
tage for the ZI finishing is the availability of strips with geometrical tolerances
comparable to the standard cold rolled strips but with lower production costs due
to a shorter cycle, while an increasing of Sendzimir productivity is the benefit for
the thickness reduction on strips to be re-rolled for 2B–2D surface finishing.

The S6-high rolling mill (Fig. 1) has six rolls with different diameters arranged
horizontally one above the other, symmetrically to the neutral rolling plane. In
addition to these six rolls (two work rolls WR, two intermediate rolls IMR and two
back-up rolls BUR) there are four cassettes fixed with an additional cylinder called
‘‘Side Support Roll’’ (SSR). The aim of the SSR is to support the horizontal load
created on the work roll during the process. The vertical rolling force is transmitted
through an hydraulic system that acts on back-up rolls which then transmit the
force up to the work rolls.

The motion is transmitted from a motor to the intermediate rolls through the
gearboxes linked by mean of spindles. While the others ones are moved by rolling
motion, the IMR are the only motorized and transmit the motion to the stand.

They are tapered on one extremity in order to reduce the high thickness
reduction on the strip edges, and they can shift perpendicularly and horizontally
with respect to the rolling direction to assume proper positions according to the
thickness and the width to roll. The real rolling process is realized by WRs that are

Fig. 1 High rolling mill: transversal section (on the left) and stand section (on the right)
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idle and maintained in vertical axis with the BUR and IMR by the adjustable SSR
of the cassettes and held sideways by two rows of roller bearings (Fig. 2).

The cassettes have the function to get a rolls packing condition helpful to
provide a sufficient compression inside the rolling stand. The two rows of roll
bearings have the axis parallel to the side support roll and they have the function to
reduce the strokes originated by work rolls during the process. During the rolling
process the WR is pushed on SSR because of the horizontal force and transmitted
to the roll bearings with the aim to restrain the force. Little fluctuation on the
process parameters take to little fluctuations on the forces values so that WR is
pushed towards SSR with a vibration mode. When the WR pushes SSR towards its
roll bearings with little force, SSR must react to follow the WR contact in order to
damp the stroke effects of the following load increasing. This is the important role
played by the springs located on the extremities of the SSRs necks into the cas-
sette. The SSRs rolls have a limited grinded life of about some hundreds of rolled
strip because they have to resist to the horizontal loads and because they are made
with a softer material than the WRs.

3 Chatter Marks and Vibration Analysis

Transversal marks have been note on the rolled strip surface since the start-up of
the plant: a series of chatter marks, perpendicular to the rolling direction, com-
promising the aesthetically quality of the product. The frequency of the defect was
about two marks per centimeter that for a rolling speed of 40 m/min gives a
characteristic frequency of about 130 Hz. Usually the main cause of chatter marks
is the inaccurate grinding of involved rolls in the process, but a promptly analysis
of the grinding process parameters, measurements and inspection reports checks
excluded this hypothesis. Experimental evidences showed that the gravity occur-
rence of chatter marks followed a periodic trend of rolling mill campaigns with to

spring 

SSR  Bearings 

Rolling direction

Horizontal loades 

Work Roll

Fig. 2 Side support cassettes
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the replacement of SSR cassettes. In particular an early deterioration of the SSRs
was noted (chatter marks were on their surfaces, the so called facets) so that after
just 150 km of rolled strip the cassettes had to be replaced. Disappearing the
problem with the replacement of the cassettes, the immediate relationship between
the age of the SSR rolls and the skid marks on the strip was deduced and in order
to investigate the influences of individual parts of the plant, a vibration monitoring
of the motor gear-box systems and the rolling mill stands have been evaluated for
the rolling speeds 40 m/min. Since the vibration behavior of the gear-box systems
presents a prevalent and admissible component of 108 Hz attributable to tooth
mesh frequency the gear-box system was left out the possible origin of self-excited
vibration.

The vibration measurements made directly on the rolling stand before the
change of the cassettes, showed a critical value of 124.5 Hz at 40 m/min rolling
speed (Fig. 3). This result show the origin of the chatter inside the stand and
specifically in the cassettes.

Fig. 3 Vibration in the stand at 40 m/min before the sides support rolls grinding
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4 Model and Proposed Solution

In order to investigate the influence of individual parameters on the dynamic
instability, a lumped parameter model of the rolling mill have been proposed, as
the conventional, linear-mass–damping-spring system [13]. Firstly a model having
ten degree of freedoms (Fig. 4a) where the masses are reduced to the ten rolls
involved in the process can be considered but, to simplify the problem, the stand
was assumed symmetrical in relation to the rolled strip and symmetrical to the
vertical axis of the stand so that the ten degrees of freedoms model was reduced
into the simplest system with two degree of freedoms (Fig. 4b). Equations for the
two degree of freedoms model are:

m1 0
0 m2

� �
€y1

€y2

( )
þ c1 0

0 0

� �
_y1

_y2

( )
þ k1 þ k2 �k2

�k2 k2 þ k3

� �
y1

y2

( )
¼

F

0

( )

ð1Þ

This model takes into account the equivalent mass m1 of the working rolls, the
intermediate rolls and the back-up rolls and the equivalent mass m2 of the side
support rolls [13].

Then k1 e c1 represent the stiffness and the damping of the mass frame con-
nection, k2 the contact stiffness between working rolls and side support rolls, and

mb_u

 mb_d

 mw_d

 mi_d

 mi_u
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m 1

m 2

K3

K2

K 1 C 1

y1

y2

(a) (b)

Fig. 4 Lumped parameter model with 10 DOF (a) reduced to a model with 2 DOF (b)
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k3 is the stiffness of spring in the cassettes. The vertical component F of the rolling
force acting between strip and working rolls can be evaluated by a wide used
model: the slab theory (Fig. 5).

dp ¼ 2
k

y
dy� lp

y
þ 2dk ð2Þ

It supposes infinitesimal segments in deformation delimited by two surfaces
that remain flat during the process where p is the rolling pressure,l is the coeffi-
cient of friction and k is the mean yield stress in plane strain [1, 12]. The model
determines the rolling force that, assuming that the roll radius is constant, may be
implicitly written as a function of several variables:

F ¼ Fðye;yd; rxe; rxd; l; kÞ ð3Þ

where ye, yd, are the half thickness of rolled strip at the entry and at the exit of the
stand, rxe rxd, are the horizontal tensile stress at entry and at exit of the stand and k
is the resistance to deformation dependent on strain hardening characteristics [14].

The disturbances and the variations of the strip thickness due to roll vibration
generate the dynamic component of the rolling force. This dynamic component
deflects the structure of the mill leading to variations in the roll gap, y1, which in
turn result in further variations in the rolling force. Under certain conditions,
however, this interaction between the structure and process leads to dynamic
instability. By applying the Laplace transform to the above Eq. (1), the following
relationships are obtained:

p

p

xσ xσ xσ+ d

τ

τ

2y 2y-2dy

dx

φ

p

τ

yσ

dx

Fig. 5 Slab method principle
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L½y1�
L½F� ¼ G1ðsÞ ¼ ðm2s2þk2þk3Þ

ðm1s2þc1sþk1þk2Þðm2s2þk2þk3Þ�k2

L y2½ �
L F½ � ¼ G2ðsÞ ¼ k2

ðm2s2þk2þk3Þ
ðm2s2þk2þk3Þ

ðm1s2þc1sþk1þk2Þðm2s2þk2þk3Þ�k2

8<
: ð4Þ

As partial solution of the problem, a change of spring stiffness in the cassettes
was realized in order to have an anti-resonance at 124 Hz.

The Fig. 6 shows the diagrams of G1(s) with two different values of k3: the red
line regards the system with the current value of 260 N/mm and the blue one with
the proposed value of 485 N/mm. Immediately after replacing the springs the
presence of skid marks appeared after 350 km of rolled strip so that the proposed
solution has resulted in doubling of the side support rolls life.

5 Conclusion

In this work the source of the chatter in a rolling mill was identified in side support
rolls so that a proposed solution based on a linearized two degrees of freedoms
model has improved the mill performances. This just the beginning of the study of
chatter problem in the analyzed plant; the authors are going to investigate the
phenomenon with a more complex models using non-linear models in closed loop
and considering more refined model of the process (e.g.the Orowan’s model) with
the aim to analyze the problem and further increase the productivity of the mill.
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574 M. C. Valigi et al.



References

1. Yun IS, Wilson WRD, Ehmann KF (1998) Review of chatter studies in cold rolling Int J
Mach Tools Manuf 38:1499–1530

2. Tlusty J, Chandra G, Critchley S, Paton D (1982) Chatter in cold rolling. Ann CIRP 31:195
3. Tamiya T, Furui K, Hida H (1980) Analysis of chattering phenomenon in cold rolling. In:

Proceedings of international conference on steel rolling, vol 2, pp 1191–1207
4. Keller NL (1992) Spindle involvement in rolling mill vibration. Iron steel Eng 79–84
5. Nessler GL, Cory JF (1993) Identification of chatter sources in cold rolling mills. Iron steel

Eng 70:40–45
6. Evans PR, Hill DE, Vaughan ND (1996) Dynamic characteristics of a Rrolling mill. Proc

Instn Mech Engrs 210:259–271
7. Rinchi M, Rindi A (1999) Fenomeni vibratori autoeccitati nei laminatoi finitori. In: XIV

Congresso Nazionale AIMETA, Como, 6–9 ottobre 1999
8. Malvezzi M, Rinchi M (2000) Control systems of strip tension in hot steel rolling mills trains.

In: Proceedings of 19th IASTED international conference—MIC 2000—modeling,
identification and control, Innsbruck, Austria, 14–17 Feb 2000

9. Pei-Hua Hu1 Huyue Zhao1K F Ehmann (2006) Third-octave-mode chatter in rolling. Part 1:
Chatter model. Proc Inst Mech Eng Part B J Eng Manuf 220:1267–1277

10. Chen Y, Liu S, Shi T, Yang S, Liao G (2002) Stability analysis of the rolling process and
regenerative chatter on 2030 tandem mills. Imeche Part C J Mech Eng Sci 216:1225–1235

11. Bland DR, Ford H (1948)The calculation of roll force and torque in cold strip rolling with
tensions. Proc Mech Eng 159:144–163

12. Misonoh K (1980) Analysis of chattering in cold rolling of steel strip. J JSTP
21(238):1006–1010

13. Swiatonoswki A, Bar A (2003) Parametrical excitement vibration in tandem mills-
mathematical model and its analysis, J Mater Process Technol 134:214–224

14. Malvezzi M, Valigi MC (2008) Cold rolling mill process: a numerical procedure for
industrial applications. Meccanica 43(1):1–9

Chatter Marks and Vibration Analysis 575



Advanced Testing of Heavy Duty
Gearboxes in Non-Stationary Operational
Conditions

Paweł Kępski, Bartłomiej Greń and Tomasz Barszcz

Abstract Paper presents the approach of testing of heavy duty gearboxes
dedicated to mining machinery. Main focus is on non-stationary operational
conditions and advanced monitoring of vibration, process parameters and other
signals connected with gearbox operation such as temperatures, pressure and flow
in cooling system. Famur’s Group advanced test rig is presented with description
of its technical parameters and advanced control and monitoring system. The
system features unique capabilities in scope of system dynamics enabling to
simulate overloads of impacts often present in real life mining machine load
characteristics. The case study shows exemplary test performed on heavy duty
gearbox of 250 kW power both with recorded parameters and analysis results.
Observed dependencies between vibration and time-varying process parameters
were presented and discussed. Currently Famur Group develops and implements
several signal analysis algorithms, taking into account recent research in this field.
Further development of the test rig will allow to verify suitability of these methods
in industrial systems for monitoring machines working in non-stationary opera-
tional conditions. This verification is possible thanks to ability of simulation of
conditions comparable with real-life machine operation.
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1 Introduction

Gearboxes are part of nearly every drive in industry and its performance is critical
especially in mining applications. Heavy duty drives used in conveyors and
shearer loaders are subject to varying operational conditions (Kępski and Barszcz
2012), [1–3]. It is important to test gearboxes in near to real life conditions before
deploying to ensure their reliable performance and provide data to prognostics and
health management (PHM) systems [4]. Above mentioned facts lead to a con-
clusion that such testing should be a part of gearbox quality control in the pro-
duction stage.

Famur Group as a leading mining machines producer developed a high power
test rig for testing heavy duty gearboxes with complex monitoring of its param-
eters like temperature and vibration. Advanced control system enables to simulate
load and speed profiles simulating the real life conditions of tested machines.

2 Test Rig Features

Famur’s Group test rig consists of two Siemens 1,8 MW motors having
11,569 Nm of nominal torque. In order to increase the accuracy of torque control
in lower power range test rig is additionally equipped in smaller Siemens 340 kW
motor with nominal torque of 1865 Nm. All motors operate at 1,485 RPM nominal
speed. Control accuracy parameters are presented in Table 1.

During operation one of the drives works in speed control mode. Second drive
is in torque control mode as a breaking motor. Energy generated in braking motor
is used in loop cycle and its excess can be returned to the power grid (Fig. 1).

Test rig design enables to perform tests with different kinematic configurations.
Motors are moveable on dedicated base plate (13.2 9 9.6 m) and by using addi-
tional instrumentation it is possible to test all the gearboxes manufactured by
Famur. Exemplary configuration is presented on Fig. 2.

Every motor has dual encoder -1,024 and 4,096 pulses per revolution and
temperature sensors mounted on bearings and winding. All motors have dedicated
cooling system. Implementation of chilled water plant ensures stable temperature
in cooling system entry.

Standard procedure of gearbox testing includes break-in mode. Break-in pro-
cedure is divided into steps defined by speed and torque and its duration. This

Table 1 Control system parameters

Parameters

Torque control accuracy for high power drive ±1.5 % of nominal torque
Torque control accuracy for lower power drive ±3.6 % of nominal torque
Speed control accuracy ±0.001 % nominal speed
Time of torque stabilization on drive shaft 2.6 ms
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mode enables protection against rapid growth of speed or moment by control
characteristics which are responsible for smooth transitions between speed and
torque levels.

Special tests involve brake, rapid start under load and impact load mode.
During braking mode one of the drives can generate 150 % of nominal torque
which enables to stop gearbox having moment of inertia of 8 kg*m2 from speed of
1,500 RPM in 0,6 s. Rapid start under load enables to accelerate to 1500 RPM in
the same time.

Impact load mode enables to operate with load profiles consisting of pulses with
amplitude up to 30 % of defined nominal value with frequency up to 10 Hz.

Additionally it is possible to operate in expert and LabVIEW modes which
enable to generate nearly arbitrary load and speed profiles.

3 Dynamic Capabilities of Test Rig

Test rig has unique capabilities in terms of its dynamic behavior. This enables to
simulate load profiles with characteristic often observed on mining machinery.
Figure 3 shows exemplary load profile recorded on underground machine during

Load
Motor

Tested
Gearbox I

Tested
GearboxII

Drive
Motor

Drive 
System

Drive 
System

Power
Grid

D.C. Bus (Regenerated Power) 

Power

Fig. 1 Electrically closed
loop drive configuration
scheme

Fig. 2 Exemplary test rig
setup
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its normal operation and for comparison load recorded during exemplary run on
test rig. It can be seen that test rig enables to generate load profile with higher
frequency and comparable amplitude dynamics. This feature is critical for testing
for example shearer loader arms.

4 Case Study

As a case study a test of 250 kW heavy duty gearbox is discussed. Gearbox was
subject to break-in procedure with different load levels. Certain parameters were
monitored including temperatures, flow in the cooling system, pressures and
vibration signal with tacho channel. Gearbox included one bevel stage, two spur
stages and planetary stage at output.

Break-in procedure was a part of production plan and was the last stage of
quality control before deploying the gearbox in target machine. Main goal of the
test was to examine its dynamic and thermal behavior in nominal and overload
conditions and collect vibration data with process parameters to examine corre-
lation between vibration estimates and those parameters. This allows to select a
method suitable for vibration based diagnostics of such machines possible and
reasonable to implement in online monitoring systems.

First start of the gearbox setup is presented on Fig. 4 with load profile and oil
temperatures in gearbox chambers.

Fig. 3 Comparison of load profiles obtained form real-life operation on underground machine
(a) and exemplary load profile generated on test rig (b)

580 P. Kępski et al.



5 Vibration Analysis

Collected vibration data was analyzed, and according to methodology from [5–8],
certain CI’s (Condition Indicators) were computed. Calculation was performed
only on signals valid due to validation algorithms [9–11], Kępski and Barszcz
2012) and (Jabłoński). Besides standard vibration estimates like acceleration peak
to peak, RMS and velocity RMS according to ISO, residual and differential
parameters where obtained.

Residual and difference signal where calculated according to definitions pro-
vided by [12], where residual signal is the TSA data with the shaft, mesh and their
harmonic orders removed. The difference signal is obtained from residual signal
by removing the first order sidebands. To trace bearing condition and potential
tooth cracks during tests spectral kurtosis methodology according to [13] was
adapted. Example of the results of this analysis is presented on Fig. 5. Scheme of

Fig. 4 First start of the gearbox with loads less than 100 % of the nominal

Fig. 5 Example of spectral kurtosis analysis results over time for overload steps for planetary stage
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analysis algorithm flow is presented on Fig. 6. Behavior of CIs was investigated
with correlation to test conditions.

None of the CI’s showed damage symptoms. Visual inspection of the gearbox
after testing confirmed that gearbox is in good condition.

Calculation

Acquisition System

Validation of vibration signal

Standard vibration 

estimates:

- RMS

- VRMS

- PP

- HFE

- Kurtosis

Spectral Kurtosis

Signal Valid

Signal not valid

Save to file

Visualization

TSA

Difference Signal 
Residual Signal

Difference and 
Residual based 

parameters

Fig. 6 Scheme of the analysis algorithm

Fig. 7 Correlation between load and residual variance of signal synchronized with rotation of
one of the spur gear
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Influence of load on residual and differential parameters was tested. Also spur
gear stages where observed closely as the ones that produced highest vibration.

Analysis of the residual and differential signal parameters showed that its
variance is strongly correlated with load level Fig. 7. This conforms to the
observations presented in [14]. Further findings on correlation between vibration
signal parameters and load are presented of Fig. 8. It can be seen, that parameters
like simple vibration signal peak to peak, residual signal variance and difference
signal variance are load level dependent.

For all measurement points of the gearbox in question analysis of spectral
kurtosis was performed. It showed no warning signs connected with any damages
of the gears or bearing which was also confirmed by visual inspection after test.
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Fig. 8 Dependency between load and vibration parameters a Peak to Peak, b residual signal
variance, c difference signal variance
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Figure 5 present spectral kurtosis over time calculated for signals recorded during
the overload stages of test.

By registering a large number of vibration signals (with sample rate of
25,600 Hz) it is possible to perform statistical analysis, and examine correlation
between vibration data and process data, which could be used to determine
machine state based only on vibration signals. This issue is the subject of ongoing
work of authors.

6 Conclusion

Gearbox testing is important part of production quality control. Simulation of near
to real-life operating conditions enables to evaluate gearbox behavior on target
machine. Collecting of vibration data in different operating conditions is essential
in optimal methods selection for online monitoring.

In discussed case of 250 kW heavy duty gearbox test it was shown that residual
and differential signal are load dependent. Further study is recommended to
investigate the opportunity of load level information reconstruction basing on the
vibration data.

Further research planned by authors include testing of gearboxes after service
before and after overhaul to evaluate methods of wear assessment.
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10. Kępski P, Barszcz T (2012) Validation of vibration signals for diagnostics of mining
machinery. Diagnostyka: applied structural health, usage and condition monitoring 4:25–30
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Spatial Acceleration Modulus for Rolling
Elements Bearing Diagnostics

Michele Cotogno, Marco Cocconcelli and Riccardo Rubini

Abstract Rolling Elements Bearing (REB) condition monitoring is mainly based
on the analysis of acceleration (vibration) signal in the load direction. This is one
of the three components of the acceleration vector in 3D space: the main idea of
this paper is the recovery of additional fault information from all the three
acceleration vector components by combining them to obtain the modulus of the
spatial acceleration (SAM) vector. The REB diagnostic performances of the SAM
are investigated and compared to the load direction vibration by means of two
rough estimators of the ‘‘Signal-to-Noise’’ ratio (SNR) and the Spectral Kurtosis.
The SAM provides a higher SNR than the single load direction. Finally, Spectral
Kurtosis driven Envelope analysis is performed for further comparison of the two
signals: its results highlight that demodulation of the SAM isn’t strictly necessary
to extract the fault features.
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1 Introduction

Rolling Elements Bearing (REB) condition monitoring is mostly based on the
analysis of the vibration signal [1, 2]. This is typically obtained from an accel-
erometer which measures the intensity of vibration (i.e.: acceleration) along the
load direction. Many signal processing techniques are available for the REB fault
features extraction. These techniques mainly deal with the fact that the measured
vibration signal is the sum of different components (mechanical/electrical noise,
the effect of vibration path from the REB to the sensor, vibrations coming from
other moving parts in the machinery, etc.) which mask the fault signature. The
main idea of this paper is the recovery of additional fault information from all the
three acceleration components by analyzing the modulus of the spatial acceleration
vector (SAM throughout the rest of this paper). In particular, it is supposed that
one effect of the vibration path could be the spread of the signal of interest along
other axes of acceleration rather than preserving it in the load direction only.
Indeed, a faulty bearing produces a series of vibration pulses that excite all the
vibration modes of the system, including the transversal modes (with respect to the
load direction): thus traces of this pulse series could also be embedded in vibration
data along the non-load directions. The SAM should embody this extra informa-
tion, and is obtained for every instant t by the following Eq. 1:

SAMðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxðtÞ � lxÞ

2 þ ðyðtÞ � lyÞ
2 þ ðzðtÞ � lzÞ

2
q

ð1Þ

where x(t), y(t) and z(t) are the acceleration vector projections acquired by the
triaxial accelerometer at time t, and lx, ly and lz are the temporal averages of the
respective axis. In this paper the SAM is compared with the acceleration signal
along the load axis (i.e.: the classically analyzed signal in REB condition moni-
toring) from the diagnostic ability point of view. Equation 1 highlights that the
SAM will exhibit larger (and non-negative) values than any single axis of accel-
eration, and this consideration can be extended also to the respective amplitude
spectra. Consequently, a direct quantitative comparison between the SAM and any
single acceleration axis (including their spectra) can’t be completely truthful. In
order to overcome this issue, some attempts of estimation of the Signal to Noise
ratio are performed on real REB data and reported in the next section.

2 SNR Estimation

The bearing used in this series of experiments is SKF1204ETN9. The data are
recorded at 25 kHz sampling frequency by a PCB356A01 triaxial accelerometer,
from healthy and faulty bearing at five different bearing rotation speed (fr = 15,
25, 35, 45 and 60 Hz). The (artificial) fault is made on the outer race. The only
load applied is weight, directed along the y axis of the accelerometer: this axis of
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vibration is the classically analyzed in REB condition monitoring and is therefore
used in this paper for performance comparison with the SAM. The analysis is
performed on the raw data in order to evaluate the amount of information spon-
taneously embodied in the signals. In Fig. 1a (healthy bearing) and Fig. 1b (faulty
bearing) extracts of the vibration data along the load axis (y axis) are reported and
compared to the correspondent time sections of the SAM (Fig. 1c, d).

Figure 1 confirms that the amplitude of the signal is larger for the SAM.
Moreover, it seems to have a more ‘‘spiky’’ nature than the load axis, particularly
in presence of a fault (Fig. 1d): this observation is acknowledged by the global
Kurtosis index (4,33 for the load axis and 13,6 for the SAM in case of faulty
bearing); i.e., the SAM is representing the pulses of vibration in a clearer manner.

Fig. 1 Time sections of vibration data. a load axis, healthy bearing; b load axis, faulty bearing;
c SAM, healthy bearing; d SAM, faulty bearing

Fig. 2 Autospectra of a load axis, healthy bearing; b load axis, faulty bearing; c SAM, healthy
bearing; d SAM, faulty bearing. (fr = 35 Hz, BPFO = 167 Hz). The Y scales are different in
order to highlight the amplitudes of interest more clearly
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In Fig. 2 are reported the autospectra of the load axis and the SAM in case of
healthy bearing (resp. Fig. 2a and c) and in case of outer race fault (resp. Fig. 2b
and d): in these cases the bearing rotation speed (fr) is 35 Hz giving a theoretical
BPFO of 167 Hz. Figure 3 is equivalent to Fig. 2 except for fr of 45 Hz (theo-
retical BPFO of 214,7 Hz).

As expected, the SAM spectrum is higher (usually 3 order of magnitude) than
the load axis spectrum, thus hindering a direct spectra comparison. There are slight
differences in the frequency position of the main spectrum peaks, probably
because of the extra information gathered from the additional axes of vibration. In
general, for the SAM the authors observe a ‘‘cleaner’’ and more communicative
spectrum, in particular in case of a healthy bearing. In case of faulty bearing the
SAM spectrum is dominated by the BPFO line, while the same isn’t for the load
axis spectrum (e.g.: Fig. 2). In order to perform a more meaningful comparison
between the two signals, the ‘‘Signal to Noise’’ ratio (SNR) is approximated by
two estimators, SNRA (Eq. 2) and SNRCF (Eq. 3). SNRA comes from the pragmatic
definition of ‘‘signal’’ as the power in the BPFO ±1 % frequency band and
‘‘noise’’ as the mean spectrum power. The SAM exhibits higher SNRA than the
load axis in all our experiments (Table 1). The SAM SNRA increases when the
fault is introduced except in case of high speeds (45 and 60 Hz), where it
decreases; this behavior is almost the exact opposite of the load axis SNRA (which
exhibits also larger variations). This could be explained by the larger energetic
content of the vibration signals at higher speeds which increases the denominator
in Eq. 2, thus lowering the SAM SNRA indicator; in contrast, the load axis SNRA

increases probably because at higher speeds its BPFO line shows a larger ampli-
tude (Fig. 3b with respect to Fig. 2b) thus increasing the numerator in Eq. 2. The
sum of these two effects and the slightly different nature of the two signals could
explain the SNRA trends highlighted in Table 1. SNRCF attempts to evaluate the
SNR via the Crest Factor of the spectrum, which is obtained dividing the

Fig. 3 Autospectra of a load axis, healthy bearing; b load axis, faulty bearing; c SAM, healthy
bearing; d SAM, faulty bearing. (fr = 45 Hz, BPFO = 214,7 Hz). The Y scales are different in
order to highlight the amplitudes of interest more clearly
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amplitude of the highest spectral peak by the RMS of the spectrum. Consequently,
estimating the SNR with the Crest Factor is equivalent to defining ‘‘signal’’ as the
spectral component with maximum amplitude and ‘‘noise’’ as the RMS of the
spectrum. SNRCF is again always higher for the SAM (Table 1) than for the load
axis. Interestingly, the SNRCF of the SAM is almost constant (approx. 30.8 dB) in
every experiment while a wide range of variation (17,2–29 dB) is observed for the
SNRCF of the load axis. The uniformity of the SAM SNRCF and the variations of
the load axis SNRCF can be explained by the fact that the SAM represent the total
vibration energy flow at the measurement point while a single axis of vibration
represent only a fraction of this flow. In the conducted experiments the load was
only gravitational and this could cause a larger spread of the energy flow along the
non-load directions, because a light load have (consequently) a lighter ‘‘polarizing’’
effect on the directions of vibration. This joined with the fact that different speeds
produce different excitations should explain the behaviors in Table 1. SNRA and
SNRCF values are interpreted by the authors as (light) symptoms of the SAM actually
embodying more information or making it more readable than the load axis.

SNRA ¼
power in the BPFO � 1 % frequency band

mean spectrum power
ð2Þ

SNRCF ¼
amplitude of the main peak in the spectrum

RMS of the spectrum
ð3Þ

A more refined way to estimate the SNR is represented by the Spectral Kurtosis
(SK) [3, 4], a useful tool in condition monitoring [5] that can be used in REB
diagnostics to find the optimum frequency band for the signal filtering prior to the
Envelope analysis [2, 6, 7]. Antoni and Randall [4] reveals that the SK is proportional
to the square of the Wiener filter W(f), which is defined by the following Eq. 4:

Wðf Þ ¼ 1
1þ qðf Þ ð4Þ

Table 1 Estimates of the signal-to-noise ratio

fr (Hz) Signal SNRA (dB) SNRCF (dB)

Healthy bearing Faulty bearing Healthy bearing Faulty bearing

15 Load axis 8.9 0.4 26.2 17.2
SAM 49.7 51.4 30.9 30.8

25 Load axis -9.7 -12.2 27.8 29.0
SAM 38.2 43.9 30.6 30.9

35 Load axis -9.8 -18.5 24.6 18.8
SAM 40.8 41.7 30.9 30.8

45 Load axis 1.4 -13.5 27.3 27.7
SAM 43.9 40.8 30.8 30.8

60 Load axis 0.8 2.5 27.8 25.4
SAM 43.7 34.1 30.9 30.8
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where q(f) is the ‘‘Noise-to-Signal’’ ratio, i.e. the inverse of the SNR. ‘‘Signal’’
here is interpreted as ‘‘randomly occurring pulses of random amplitude’’ [4] which
is a model that has proven its effectiveness in describing the vibration signal of a
faulty REB. Thus, larger SK values are related to larger SNR of the data. In this
paper, the SK is obtained by the following formula (Eq. 5), which is an unbiased
STFT-based SK estimator proposed in [8]:

SKðf Þ ¼ M

M � 1
M þ 1ð Þ

PM
i¼1 Xiðf Þj j4

PM
i¼1 Xiðf Þj j2

� �2 � 2

2
64

3
75 ð5Þ

where M is the number of non-overlapping blocks of the STFT and Xi(f) is the DFT
of the ith block of data. As highlighted in [4], the STFT block length (i.e.: the
STFT window length, Nw in the rest of this paper) must be set to have a temporal
duration lower than the expected mean time between impacts (i.e.: BPFO) in order
to get consistent results: this yields Nw = 128 samples in case BPFO = 167 Hz
and Nw = 64 samples in case BPFO = 214,7 Hz. In Fig. 4 are reported the SK for
these two experiments.

Figure 4 shows that in case of healthy bearing (Fig. 4a and b) the SK of the
SAM is lower (and closer to zero) than the SK of the load axis, and it increases
more decisively when a fault is present (Fig. 4c and d, where the SAM SK graph is
always over the load axis SK). In absence of the fault, the SAM SK overcomes the
load axis SK in the 6,5–12,5 kHz (when fr = 35 Hz, Fig. 4a) and in the
8–12,5 kHz (when fr = 45 Hz, Fig. 4b) frequency bands. Zero-valued SK indi-
cates that the signal is more similar to Gaussian noise rather than a series of

Fig. 4 Spectral Kurtosis of load axis and SAM; a healthy bearing, fr = 35 Hz; b healthy
bearing, fr = 45 Hz; c faulty bearing, fr = 35 Hz; d faulty bearing, fr = 45 Hz
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transients, while the presence of the latter is highlighted by higher SK values: thus,
the SAM SK is communicating more explicitly the existence of a fault. The
frequency bands with higher Kurtosis indicated by the two SK are similar when the
fault is present, and correspond to a system resonance band (approximately
7,5–9,5 kHz). It’s notable that in the majority of the experiments the SAM SK
exhibits the highest values also in the low frequency zone (i.e.: near the DC
component), thus communicating that demodulation isn’t strictly necessary to
extract the fault signature from the SAM. This is in accord with the raw signals
spectra comparison (Figs. 2, 3 and Table 1). These considerations about the SAM
SK seem to confirm the higher SNR of the SAM than the load axis. In the next
section the REB diagnostic ability of the SAM is tested via the Envelope analysis.

3 Envelope Analysis

Envelope Analysis [1, 2, 7] is the benchmark signal processing tool for REB
diagnostics. It performs a demodulation of the bandpass filtered signal. In this
paper the filtering band is selected as the band in which the Spectral Kurtosis is
maximized. The selected bands in case of fr = 35 Hz are 7,7–8,8 kHz for the load
axis and 7,5–8,5 kHz for the SAM; in case of fr = 45 Hz they are 9,5–10,5 kHz
for the load axis and 900–1900 Hz for the SAM. In Fig. 5 the Envelope spectra of
the filtered load axis and SAM are reported for the case of faulty bearing rotating at
fr = 35 Hz.

It can be seen that the Envelope spectra of the SAM exhibit larger values,
highlighting almost the same frequency of the load axis. The dominating fre-
quency is the BPFO (167 Hz) for both signals, but other notable frequencies (e.g.:
the fr = 35 Hz frequency) exhibit higher magnitude in the SAM Envelope

Fig. 5 Envelope Spectra. a Load axis; b SAM. (fr = 35 Hz, BPFO = 167 Hz)
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spectrum. This is about one order of magnitude higher than the load axis at those
frequencies, while the average difference between the autospectra of the two
signals is about 3 orders of magnitude (these considerations are valid for all the
experiments). The BPFO magnitude in the SAM Envelope spectrum is about two
times the correspondent magnitude in the raw SAM spectrum (respectively, 3,1
and 1,7); in contrast, the BPFO magnitude of the load axis Envelope spectra is
about one million times the correspondent magnitude in the raw spectra (respec-
tively, 0,3 and 1,75�10-6). This observation confirms the indication of the Spectral
Kurtosis of presence of high SNR in the low frequency zone of the SAM spectrum,
signifying that demodulation isn’t necessary for the SAM for the fault signature
extraction.

4 Conclusion

In this paper the modulus of the spatial acceleration vector (SAM) is presented as a
starting signal for rolling element bearings (REB) condition monitoring. Con-
cerning the diagnostic capability, the SAM is compared to the acceleration com-
ponent directed along the load axis, which is the classical analyzed signal in REB
diagnostics. The comparison is performed on real raw REB data to evaluate the
information spontaneously embedded in the signals. Considering the amplitude
difference between the two signals and their spectra (about three orders of mag-
nitude), two rough approximation of the Signal-to-Noise ratio (SNR) are used to
compare them: these SNR estimators indicate always a higher SNR for the SAM.
This is confirmed also by the Spectral Kurtosis (SK): higher SK is related to higher
SNR and the SAM exhibit higher SK in case of faulty bearing. Finally Envelope
analysis is performed and it confirms the diagnostic capability of the SAM; its
Envelope spectrum is one order of magnitude higher than the load axis Envelope
spectrum. A comparison between the BPFO magnitude in the SAM Envelope
spectrum and the correspondent in the raw SAM spectrum confirms that demod-
ulation isn’t necessary to extract the fault features, as indicated previously by the
SK. The SAM thus appears as a valid starting signal for REB diagnostics, but
further investigations are required to confirm this. Indeed in these experiments the
load applied was only gravitational: this condition should degrade the diagnostic
capability of the load axis with respect to a higher load condition.
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Artificial Neural Networks-Based
Decoupling Approach in the Vector
Control Block of the Single-Phase
Induction Machine
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Abstract The vector control of single phase induction machine using conventional
decoupling approaches has a remarkable decrease of rotor flux when the machine is
powered by a real voltage source inverter. To solve this problem, we propose as an
efficient solution, a decoupling approach based on artificial neural networks in the
vector control block of single phase induction machine. The application of this
approach to the single-phase machine increases its dynamic performance and con-
stitutes a contribution to the study of this machine. Indeed, this type of machine has not
yet taken its whole share from various works present until now, compared to the three-
phase induction machine. For three different decoupling approaches with two types of
supply: perfect voltage source and real voltage source inverter; a comparative study
through numerical simulations is presented. The simulation results show the feasi-
bility and good performance obtained by the proposed approach.
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1 Introduction

Single-phase induction machines have been used for a long time because of their
simple construction and because the single-phase power supply is available in
almost every household. They are found in washers, air conditioners and many
other applications. They are traditionally used in constant speed home appliances,
usually in locations where only single-phase energy supply is available without
any type of control strategy. Now, variable speed controls of electric motors are
necessary in industrial applications. However, there is more research on the three-
phase motor which is used in industrial frequency conversion control technology
than single-phase motor control technology research relatively. Actually, the
single-phase structure is simpler than three-phase motor, production costs are
compared cheap, and more application, so single-phase motor control research is
significant particularly important [1–3]. Moreover, the cost reduction and high
efficiency of power electronic are motivating to implement single-phase motor
drives in both industrial and domestic applications. These years, research labo-
ratories focus on variable speed drives, especially for single phase induction
machine, and major improvements are underway for achievement [4–11].

Control principles are considered as very important for the overall perfor-
mances of electrical drives and power electronics. In the past two decades, the
controls based on the tools of the artificial intelligence such as: artificial neural
networks (ANN), fuzzy logic and genetic algorithm, expert systems, and particle
swarm optimization; are distinguished from the others existed controls. They have
made great progress in recent years to solve problems encountered in control
system or just improve their operation, especially in electric motors because
roughly half of all electricity generated is consumed in motors. Indeed, recent
efforts to apply artificial intelligence to improving electric motors are receiving
attention worldwide and are attracting much research; some applications can be
founded in [3, 12–16] and even in the renewable energy field, some applications
have already started to develop [17, 18]. Since most of modern applications are
using AC electrical machinery, two key variables have to be feedback-controlled
in motor: the flux and the torque. Invented in the early 70s, the field-oriented
control is the most popular control technique since it allows AC electrical
machines to have good transient performances. Nowadays, it is also known as
vector control since it is more general. The vector control of single phase induction
machine using conventional decoupling approaches has a remarkable decrease of
rotor flux when the machine is powered by a real voltage source inverter (VSI) of
PWM type with voltage control. These voltages contain variable terms that can
deteriorate the desired functioning. They lead to lack of accuracy in current
control; so, remarkable flux decreasing. To solve this problem, we propose by the
means of this chapter, a new decoupling approach in the vector control block,
based on artificial neural networks. A comparative study through numerical sim-
ulations between the proposed decoupling approach and the decoupling conven-
tional approaches is presented, for two types of power: perfect voltage source and
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real voltage source inverter. The simulation results show the effectiveness and
good performances obtained by the proposed approach.

The remainder of this chapter is organized as follows: a presentation of the
single phase induction machine is presented in the Sect. 2 follows by its mathe-
matical model at the Sect. 3. The proposed approach based on the artificial neural
networks is developed in the Sects. 4, 5, 6, where, it also presented, as comparison,
two conventional decoupling approaches. The Sect. 7 is devoted to illustrating by
simulation the performances of the proposed approach. Conclusion and reference
list end the paper.

Nomenclature

as auxiliary winding index
d, q synchronously rotating reference frame index
ms main winding index
n rated value index
r rotor index
ref reference value index
s stator index
sp speed index
AC alternative current
AI artificial intelligence
ANN artificial neural networks
Csp speed controller
f frequency
f viscose friction coefficient, Nm.s/rad
LM mutual inductance, H
Lr rotor inductance, H
Ls stator inductance, H
Rr rotor resistance, X X
Rs stator resistance, X X
I current, A
J moment of inertia, Kg.m2

NC neural controller
NCcd neural current Ids , lqs

NCcq controller
PI proportional integral
p pole pair number
Pn rated power, W
PWM pulse width modulation
SPIM Single-Phase Induction Machine
SPIM WC Single-Phase Induction Machine Without Capacitor
Tem electromagnetic and
TL load torque, N.m
Tr = Lr/Rr rotor time constant, s
Ts = Ls/Rs stator time constant, s
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V voltage, V
Vn rated voltage
Vr rectified voltage
VSI voltage source inverter
r leakage coefficient
W flux, Wb
h angle, rad
xr rotor angular frequency, rad/s
Xr mechanical speed, rad/s
xs stator angular frequency, rad/s.

2 Presentation of the Single-Phase Induction Machine

The single-phase induction machine (SPIM) consists of: Stator (fixed part) with a
single-phase winding; supplied with a single-phase voltage; and rotor (revolving
part); did not supplied by any kind of electrical energy. The current in the rotor is
only induced by the synchronously field [19].

The stator winding is supplied by a single-phase voltage. The current of this
winding creates a pulsatory magnetic field [20]. It can be divided into two fields of
same amplitudes, equal to half of the amplitude of the pulsatory field, turning in
opposite directions at the same speed. In a single-phase induction motor, the
currents induced in rotor by the two fields, create equal and opposed electro-
magnetic torques. Thus, the resulting motoring torque is null and the motor can not
start-up [21].

To have no null starting up torque which makes turning the motor; one solution
is to place an auxiliary winding on the stator. That the field produced by the
auxiliary winding will be perpendicular to the field produced by the main winding.
The auxiliary winding is supplied through a capacitor which shifts the currents in
the two windings of an angle lower than p=2, but sufficient to create a synchronous
rotating field [19, 21].

So, the single-phase induction machine consists of a stator with two windings:
the main winding and the auxiliary winding; displaced of 90 electrical and
mechanical degrees. The rotor is squirrel cage that can be represented by two
short-circuited windings, as shown in Fig. 1. If the two windings do not have the
same parameters, we speak about an asymmetrical single-phase induction
machine. In the contrary case, they have identical parameters; we speak about a
symmetrical single-phase induction machine.
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3 Mathematical Model of the Single-Phase Induction
Machine

In the single-phase induction machine without capacitor (SPIMWC), we supply
separately the two stator phases of the machine by voltages shifted of 90� (Vms,
Vas). We speak about two-phase induction machine. This operation can provide
significant improvement to its performance [7]. The model of single-phase
induction motor without capacitor in the stator reference frame is represented by
the Eq. (1). Rotor flux, stator currents and rotor speed are considered as the state
variable of the system.

dWmr

dt
¼ �Rr

Lr
Wmr � pXrWar þ

Rr

Lr
LMIms

dWar

dt
¼ pXrwmr �

Rr

Lr
War þ

Rr

Lr
LMIas

dIms

dt
¼ LMRr

rLsL2
r

Wmr þ
pLMXr

rLSLr

War �
L2

MRr þ L2
r Rs

rLsL2
r

� �
Ims þ

Vms

rLs

dIas

dt
¼ � pLMRr

rLSLr

Wmr þ
LMRr

rLSL2
r

War �
L2

MRr þ L2
r Rs

rLsL2
r

� �
Ias þ

Vas

rLs

dXr

dt
¼ PLM

JLr
WmrIas �WarImsð Þ � f

J
Xr �

TL

J

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð1Þ

By using the transformation matrix (2), we obtain the model of two-phase
induction motor in the synchronously rotating reference frame (3).

A ¼ cos hs sin hs

� sin hs cos hs

� �
with : hs ¼

Z
xs dt ð2Þ

(m,a): Stator reference frame.
(α,β): Rotor reference frame.
(d,q): Synchronously rotating 

reference frame.

0

q

d

ms

as

rβ

rαθ

rθ

sθ

rIβ msV

msI

cV

rIα

asV

asI

msV

Fig. 1 Space representation
of the single-phase induction
machine
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dWdr

dt
¼ �Rr

Lr
Wdr þ ðxs � pXrÞWqr þ

RrLM

Lr
Ids

dWqr

dt
¼ ðpXr � xsÞWdr �

Rr

Lr
Wqr þ

RrLM

Lr
Iqs

dIds

dt
¼ LMRr

rLSL2
r

Wdr þ
pLMXr

rLSLr

Wqr �
L2

MRr þ L2
r Rs

rLsL2
r

� �
Ids þ xsIqs þ

Vds

rLs

dIqs

dt
¼ � pLMXr

rLSLr

Wdr þ
LMRr

rLSL2
r

Wqr � xsIds �
L2

MRr þ L2
r Rs

rLsL2
r

� �
Iqs þ

Vqs

rLs

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð3Þ

Mechanical equation:

dXr

dt
¼ pLM

JLr
ðWdrIqs �WqrIdsÞ �

f Xr

J
� TL

J
ð4Þ

The block diagram of the single-phase induction machine without capacitor is
shown in Fig. 2.

4 Vector Control of the Single-Phase Induction Machine

By considering the electromagnetic torque Tem and the rotor flux Wr as reference
variables, we invert the system, Eq. (3). After, having directed the flux along the d-
axis [22], we obtain the Eq. (5a).

Ids ¼
Lr

RrLM
:
dWr ref

dt
þ 1

LM
Wr ref ð5aÞ

Iqs ¼
Lr

LM
:
Temref

Wr ref
ð5bÞ

xs ¼ xr þ
RrLM

LrWr ref
Iqs ð5cÞ

Fig. 2 The block diagram of
the SPIMWC
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Vds ¼ rLs
dIds

dt
þ L2

MRr þ L2
r Rs

L2
r

� �
Ids �

LMRr

L2
r

Wr ref � xsrLsIqs ð5dÞ

Vqs ¼ rLs
dIqs

dt
þ L2

MRr þ L2
r Rs

L2
r

� �
Iqs þ

LM

Lr

pXrWr ref þ xsrLsIds ð5eÞ

with: xs ¼ xr þ xs1 and xs1 ¼ ðRrLM=LrWr ref ÞIqs

– The reference electromagnetic torque Tem ref is obtained through a speed con-
troller Csp, type PI.

– The reference rotor flux Wr ref is obtained through a field weakening block;
operates as follows:

Wr ref ¼
Wn Xrj j �Xrn

Wn
Xr n
Xr

Xrj j[ Xrn

ffi
ð6Þ

– The reference control voltages Vds ref, Vqs ref are calculated using three different
decoupling approaches.

5 Decoupling Approaches

First Conventional Approach
The control voltages are used directly from Eqs. (5d), (5e).

Vds ref ¼ rLs
dIds

dt
þ L2

MRr þ L2
r Rs

L2
r

� �
Ids �

LMRr

L2
r

Wr ref � xsrLsIqs

Vqs ref ¼ rLs
dIqs

dt
þ L2

MRr þ L2
r Rs

L2
r

� �
Iqs þ

LM

Lr

pXrWr ref þ xsrLsIds

xs ¼ xs1 þ pXr

8>>>>><
>>>>>:

ð7Þ

Second Conventional Approach
The variables Vds, Vqs of the Eqs. (5d), (5e) are approximated. The reference

control voltages become:

Vds ref ¼ RsIds � xsrLsIqs

Vqs ref ¼ RsIqs þ xsrLsIds

xs ¼ xs1 þ pXr

8><
>: ð8Þ

Proposed Approach
The calculation of this method is presented as follows:

– From Eq. (5a), we have:
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Wr ref ¼ LMIds �
Lr

Rr
:
dWr ref

dt
ð9Þ

By replacing the Eq. (9) in the Eq. (5d), we obtain:

Vds ¼ RsIds þ rLs
dIds

dt
þ LM

Lr

dWr ref

dt
� xsrLsIqs ð10Þ

• From Eq. (5c), we have:

xr ¼ xs � xs1 ¼ xs � ðRrLM=LrWr ref ÞIqs ð11Þ

The replacement of the Eq. (11) in the Eq. (5e), p Xr¼xr, gives:

Vqs ¼ RsIqs þ rLs
dIqs

dt
þ xs

LM

Lr
Wr ref þ xsrLsIds ð12Þ

In order to decouple the Eqs. (10) and (12), they are putting in the form:

Vds �
LM

Lr

dWr ref

dt
þ xsrLsIqs ¼ RsIds þ rLs

dIds

dt

Vqs � xs
LM

Lr
Wr ref � xsrLsIds ¼ RsIqs þ rLs

dIqs

dt

8>><
>>:

ð13Þ

We introduce new variables Vds1, Vqs1, such as:

Vds1 ¼ RsIds þ rLs
dIds

dt

Vqs1 ¼ RsIqs þ rLs
dIqs

dt

8><
>: ð14Þ

Finally, we obtain the reference control voltages Vds ref and Vqs ref by correcting
the error introduced during decoupling.

Vds ref ¼ Vds1 þ
LM

Lr

dWr ref

dt
� xsrLsIqs

Vqs ref ¼ Vqs1 þ xs
LM

Lr
Wr ref þ rLsIds

� �
8>><
>>:

ð15Þ

The variables Vds1, Vqs1 are obtained through neural current controllers NCcd,
NCcq. The overall diagram of the proposed system is shown in Fig. 3.
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6 Synthesis of the Neural Controllers

The adopted control law is based on the discrete approach:

O(t) ¼ O(t - 1) þ P0 I(t) þ P1 I(t - 1). . . ð16Þ

I(t), I(t-1) Inputs controller calculated respectively at the times t, t-1
P0, P1 Controller parameters
O(t), O(t-1) Output controller calculated respectively at the times t, t-1

After several tests, concerning input number, hidden layers number, number of
neurons in the hidden layers, training algorithm, squared error and type of learning
examples. We obtain the parameters presented in Fig. 4 and Table 1.

Fig. 3 The overall diagram of the proposed approach for control the SPIM

Fig. 4 Graphical
representation of the neural
currents controllers. with:
i = d, q; ei = Iis - Iis ref :
error; Vis1 : control tension

Artificial Neural Networks-Based Decoupling Approach 605



7 Simulation Results

For the three decoupling approaches, the behavior of the overall system is tested
by simulation for the parameters of the SPIM represented at the Appendix. The
simulation results are presented in Figs. 6 and 7. We consider two types of supply:
perfect voltage source and real voltage source by two-phase inverter with four legs
controlled by the PWM technique, shown in Fig. 5. The control signals of the
switches are obtained by the triangular-sinusoidal strategy.

The simulated values are: the speed, the rotor flux and the two components of
rotor flux along the two axes d,q. We have simulated a start-up unloaded at
100(rad/s), then applying a load torque at t = 0.4(s) and we finish by inversing
speed at t = 0.7(s).

In Fig. 6, it clearly appears that the results for the three approaches are similar,
when using a perfect voltage source. When we use the real voltages source by
inverter (Fig. 7), we can observe that only in the case of the third approach (the
proposed), the rotor flux and the flux along the axis d, follow the value of the
reference flux. However, in the other approaches a remarkable decrease of flux is
observed. We can notice also at the figure of speed, a good performance obtained
by the proposed control. Namely, improved response time and robustness of the
system against the disruption caused by the application of a load torque or speed
rungs on the dynamics of the global system.

Table 1 Neural network characteristics for NCcds, NCcqs

Principal
characteristics

Characteristics details

Type Feed-forward backpropagation network
Activation

functions
Hyperbolic tangent sigmoid transfer function for hidden layers and linear

transfer function for output layer.
Training algorithm Levenberg–Marquardt backpropagation
Architecture [3 6 1]
Nature
of examples

A start unloading with inversing speed then applying a load torque with
another inversing speed; obtained from a simulation on the fuzzy speed
controller.

Examples number 30,000 iterations

Fig. 5 Diagram of
association SPIMWC - static
converter
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Fig. 6 Simulation results for three different decoupling approaches: a supply by perfect voltage source
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Fig. 7 Simulation results for three different decoupling approaches: a supply by a real voltage
source inverter
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8 Conclusion

This study compares the performance of the control of SPIM for three different
decoupling approaches with two types of supply. The three approaches have
similar results for an ideal voltage source. When, it is a real voltage source by
inverter, the proposed approach based on ANN presents a clear improvement in
the flux; that allowed us to validate this approach. The Analysis of these results
shows that the proposed approach is simple, fast, robust and may be implemented
in real time.

Acknowledgments This work is supported by the national research project under the
J0200220100059 Code. The authors also gratefully acknowledge the helpful comments and
suggestions of the reviewers, which have improved the presentation.

Appendix

Single-phase induction machine data: Pn = 37(W), f = 50(Hz), P = 2,
Vn = 220(V), Rs = 115(X), Rr = 90.5(X), Lr = Ls = 1.71(H), LM = 1.41(H),
J = 1.2 10-4(Kg.m2), f = 7.63 10-4(Nm.s/rad).
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Fault Identification on Electrical
Machines Based on Experimental Analysis

H. Balan, M. I Buzdugan and Karaisas P.

Abstract The paper reviews the main faults identification of electric machines
based on amplitude versus time and amplitude versus frequency vibration analysis.
The aim of the paper is to introduce a new method in determining rotor faults
based on stator vibration. The analysis method uses a multi-channel vibration
analyzer provided with three accelerometers, set in a plane perpendicular to the
stator axis. The method is suitable for determining rotor faults generated by the
stator vibrations, other than those due to current harmonic components or supply
voltage unbalance. The SvanPC software allowed the determination of the char-
acteristics regarding velocity vibration versus time and versus frequency. Their
interpretation permitted to determine the fault points on electrical machines in two
industrial applications.

Keywords Motor vibrations signature analysis (MVSA) �Motor current signature
analysis (MCSA) � Experimental analysis (EVA)

1 Introduction

Monitoring and diagnosis of electrical machines significantly reduce maintenance
costs and unexpected fault hazard, allowing an early detection of their improper
operation.
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Incorrect operating conditions [1, 2], may lead to faults on the main parts of an
electrical machine: stator, rotor, slide bearings and other types of faults.

Almost 38 % of the faults are located in the stator [3]. Stator windings are
placed in slots and a lower insulation resistance leads to overloads or short-circuit
currents. Faulty currents determine the stator overheating, leading to unbalanced
magnetic fields in the air gap and unacceptable magnitudes of the vibration of the
machine.

On the other hand, rotor faults [4, 5, 19], represent approximately 10 % of the
total amount of faults (usually faulty rotor bars which lead to local overheating and
vibration of the rotor [6]).

Most electrical machines are provided with slide bearings (ball bearings) [20],
their faults representing 40 % of the total amount of faults, determining undesired
rotational speed changes [23] and bearing eccentricities [21].

Other types of faults (12 % of the total amount of faults) are represented by
rotor eccentricities with respect to the stator determining air gap non-uniformities.
Changes in the air gap modify the magnetic field distribution and consequently a
magnetic force on the minimum air gap direction, leading to mechanical
vibrations.

Monitoring and diagnosis techniques of the electric machines operation are
divided in passive and active techniques. The passive ones consist in measure-
ments which do not affect the normal operation of the machines, while the active
ones use control elements (e.g. inverters), modifying their operating conditions.

There are different monitoring techniques, depending on the signals involved:

• electrical signals monitoring (currents or voltages) or of the angular difference
between the rotor and the armature, is suitable in detecting and evaluating
electric faults [7].

• magnetic values monitoring, is based on measurements of the induced voltage in
the rotating coils placed in the armature slots or outsides them, similar to Ro-
gowski coils [8].

• vibrations monitoring, uses accelerometers measuring the velocity and the
acceleration due to mechanical unbalances; this method is used in mechanical
fault diagnosis, this type of faults being difficult to detect using electrical signals
measurement.

• temperature monitoring can be performed using direct measurements or analysis
performed on different models, because modifications in the temperature’s field
derive from electrical or mechanical faults [9, 19].

• acoustic emission monitoring, is based on the acoustic noise emitted by elec-
trical machines in operation [22]. This type of monitoring is quite difficult to be
used in industrial environment, due to the ambient noise which alters the
measuring process.

The difficult part comes after monitoring the process, consisting in the analysis
of the monitored data. The most known techniques on this issue are the time
domain analysis [10, 11] and in the frequency domain analysis [12].

Lately several new techniques in locating the fault were developed:
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• use of wavelet transform technique [13, 14].
• analysis of the dynamic time warping technique[15].
• vector techniques [16, 17].

2 Motor Vibrations Signature Analysis-MVSA

Analysis performed in amplitude versus time and amplitude versus frequency
domains are the basis of electric machines vibration signature. The limit values in
electric machines standards set vibration velocity as a compulsory value to be
measured. The diagrams representing vibration velocity versus frequency permit to
determine the RMS value of the vibration damping meff , according to the following
procedure.

m � d
2x

dt2
þ c � dx

dt
þ k � x ¼ FðtÞ ð1Þ

where:
m mass of the system;
k dynamic stiffness coefficient
c dynamic viscosity coefficient
x(t) vibration of vertical amplitude
F(t) vibration excitation force

Neglecting the damping of the system, the instantaneous amplitude of vibration
x(t) becomes:

xðtÞ ¼ F0

kð1� r2Þ � sin xt ð2Þ

where:

r ¼ x
xn

and xn ¼
ffiffiffiffi
k

m

r
ð3Þ

If the system presents natural oscillations (oscillates at the resonance fre-
quency), the vibration amplitude is high even for a low excitation force. The
frequency value is:

fn ¼
xn

2 � p ¼
2

2 � p

ffiffiffiffi
k

m

r
ð4Þ

and the corresponding speed of the critical frequency:
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RPMcr ¼ 60 � fn ¼
60

2 � p �
ffiffiffiffi
k

m

r
ð5Þ

The force transmitted to the floor is:

FT ¼ k � x ð6Þ

In the case of harmonic vibrations, with the instantaneous value of the vibration
velocity:

vi ¼ v̂ � cos x1t ð7Þ

or of complex vibrations (i.e. a superposition of harmonic vibrations), vibration’s
intensity is defined as the root mean square value (RMS value) of the oscillation
velocity.

The RMS value is calculated from the time diagrams of the vibration’s velocity
using Eq. (8):

veff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

ZT

0

v2ðtÞ � dt

vuuut ð8Þ

Acceleration, speed and displacement amplitudes ðâj; v̂j; ŝj; j ¼ 1; 2. . .; nÞ can
be derived as functions of the rotating speed ðx1;x2; . . .xnÞ. The RMS value was
calculated according to ISO 10816 Standard, using Eq. (9):

veff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� â1

x1

� �2

þ â2

x2

� �2

þ � � � þ ân

xn

� �2
" #vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

ŝ2
1 � x2

1 þ ŝ2
2 � x2

2 þ � � � þ ŝ2
n � x2

n

� ffir

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� v̂2

1 þ v̂2
2 þ � � � þ v̂2

n

� ffir
ð9Þ

If there are no vibration components with slightly close frequencies which
could generate a beat phenomenon, the RMS value of the vibration velocity can be
calculated as:

veff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� v̂2

max þ v̂2
min

� ffir
ð10Þ

where:
v̂max the peak value at the maximum value of the envelope curve
v̂min the peak value at the minimum value of the envelope curve
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If the RMS value is measured using a measuring device, the RMS velocity will
be approximately:

veff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
� R2

max þ R2
min

� ffir
ð11Þ

where:
Rmax the maximum value indicated by the measuring device
Rmin the minimum value indicated by the measuring device

As the RMS value calculated according to (11) is not an accurate one, it is
advisable to use this method only for very low beat frequencies.

The above analysis allows setting vibration’s velocity in the limits imposed in
the standards. If the limits are exceeded, analysis of the vibration velocity versus
frequency permits the fault identification on the electrical machine [26]:

• in the case of dynamic unbalance (Fig. 1a), a 1X harmonic component, different
from the rotational speed occurs;

• rotor and stator misalignment issue (Fig. 1b) determines in the frequency
spectrum three components, i.e. 1X, 2X and 3X;

• improper connections, insulation faults between laminates and phase unbalance
(Fig. 1c) determine the frequency components 1X, 2X and 2FL, the latest
having the same frequency as the supply voltage;

• rotor eccentricity (Fig. 1d), caused by faults on rotor bars, commutator or
bearings, determine the frequency components 1X, 2X, 3X and –PPF and +PPF
(due to adjacent poles);

• bearing faults (Fig. 1e) determine a continuous high frequency spectrum,
beyond the frequency 1X.

3 Motor Current Signature Analysis-MCSA

The purpose of this approach is the fault detection on electrical machines using
vibrations’ signature analysis as a diagnosis and maintenance tool, so electrical
values (supply voltage unbalance or current’s harmonics) are not taken into
account. The point is to locate non-electrical faults, i.e. mechanical faults, their
location being established after measuring the current signature determined by
vibrations.

The stator current amplitude-frequency signature highlights electrical and
mechanical faults:

• Current unbalance (Fig. 2) is determined by stator infrastructure faults: insu-
lation damage of the laminated sheets or high contact resistance and overloads
or short-circuits.
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• Vibrations due to asymmetries can be highlighted using an asymmetric supply
system of the electric motor provided by a programmable source (15003iX-CTS,
California Instruments). The RMS voltages in the supply lines are: line a-
220 V, line b- 165 V and line c- 110 V. The vibration amplitude versus time
waveforms are depicted in Fig. 3, the vibration measurements being performed
using three transducers coplanar mounted on the stator, displaced by 120�.

• Vibrations due to current harmonics can be generated using the same pro-
grammable source. Harmonic components determined by the motor or by the
source (Fig. 3) cause vibrations. As the ratio between the harmonic components
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and the fundamental component becomes more significant, it generates a large
spectrum of vibrations, depicted by the amplitude versus frequency character-
istics (Fig. 4).

• Rotor electrical faults are represented by the breaking of bars and/or slip rings
and higher contact resistance. The frequency spectrum of the current presents
harmonic components around the fundamental frequency. The frequency of the
harmonic components can be calculated using Eq. (12) [4] (Fig. 5):

fb ¼
k

p � 1� sð Þ � s

� �
� f1;

k

p
¼ 1; 3; 5. . . ð12Þ

where f1 is the frequency of the power supply, s the motor slip and p the pole pairs
number. The adjacent poles are determined from the ratio k/p and correspond to
the oscillation frequencies of the rotor [6]. The spectrum of the current (Fig. 6a)
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Fig. 2 Stator current asymmetry

Fig. 3 Vibrations amplitudes of the asymmetric supplied stator
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presents frequency side bands modulated around the oscillating frequency of the
rotor (1X).

• Eccentricities with respect to the rotation axis are present both in the case of the
rotor and stator. The spectrum of the current differs, depending on the fault
location: in stator (static eccentricity) or in rotor (dynamic eccentricity).

Static eccentricity is determined by the modification of the stator axis with
respect to the rotation axis and occurs when the ball bearing lager is oval. This
type of fault determines in the spectrum of the current distortions whose fre-
quencies are calculated using Eq. (13):

fstatic ¼ k � nð Þ � 1� s

p

� �
� v

� �
� f1 ð13Þ

where k is a positive constant, n the slots number and m the harmonic order.
Static eccentricity of the stator leads to the premature aging of the slide bear-

ings and balls damage.
Current spectrum analysis highlights the presence of the side bands �FL and

�3 FL, around the rotation frequency of the rotor slots (Fig. 6b).

Fig. 4 Motor supplied at the line frequency and the third harmonic component
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Dynamic eccentricities [10] occur when the rotor axis does not correspond with
the normal rotation axis and are present in the case of bent rotors or in the presence
of mechanical resonances. These types of faults determines overheating, ball
bearings aging and operation of the machine at critical speeds (see Eqs. (4–6). The
current spectrum analysis highlights the presence of the side bands �FL and �3
FL, around the rotation frequency of the rotor slots which does not correspond to
the rotation frequency RS (Fig. 6c).

• Misalignment between the electric motor and the coupling device determines
the presence in the current spectrum of the frequency 1X, different from the
rotation frequency (Fig. 6d).

4 Applications and Experimental Results

In the present section are presented two applications of the vibration signature
method in determining faults on electrical machines.

Measurements must be properly performed, using an accurate system (accel-
erometers—vibration analyzer), in order that vibration amplitude versus time and

Fig. 5 Vibration spectrum of harmonic current
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versus frequency characteristics reflect the actual operation of the electrical
machine.

The accelerometer is the primary device used in vibrations monitoring, repre-
senting a transducer which converts the acceleration generated by static and
dynamic forces in electrical signals. It offers a large voltage excursion, covering
the maximum vibration level, usually presenting a sensitivity of 1,000 mV/g. Its
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sensitivity and frequency range are decisive for the selection. In case of electrical
machines monitoring 10,000 Hz frequency range accelerometers should be
selected.

A very important issue is to comply with standards from the point of view of
mounting.

Accelerometers are connected to vibration analyzers, which can be set to mea-
sure vibration amplitudes, velocities and accelerations, along with the analysis
versus time or frequency.

In the following applications, mono-channel [27] and three-channel [28]
accelerometers were used, conceived for 3D determinations in a three-axis
orthogonal system and adapted for three mono-axial accelerometers, placed
coplanar on the electrical machine stator.

A first application (Fig. 7) refers to a production line for secure glass [29],
where the monitoring system detected an overcome of the levels of the vibration
velocity admitted by the standards.

Vibration measurements must be performed in compliance with ISO 10816
Standard [24], which provides vibration amplitude acceptance guidelines for
rotating machinery operating from 600 until 12,000 rpm, applied to electric gen-
erators, gas or steam turbines, turbo-compressors and vertical, horizontal or
inclined shaft fans.

ISO 10816 Standard specifies the RMS vibration velocity limits on a basis of
machine horsepower, and covers a frequency range from 10 Hz to 1,000 Hz. The
limits in the standard are set in RMS values.

As measuring points, the ISO 10816 Standard guidelines recommend:

• for vertical or inclined mounted machines, areas with maximum value of
vibrations must be chosen;

Fig. 7 The main measuring
points
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• measurements must be performed on accessible parts of the machines;
• measurements outcomes must have a high level of accuracy, representing the

main vibrations and not the local resonation ones.

The ISO 10816 Standard Operation defines also the measurements conditions:

• measurements should be performed only in the steady state regime of rotor
operation for constant speed and constant load drives;

• for adjustable speed drives (ASD), measurements must be performed in extreme
conditions, covering the operation characteristics;

Moreover, ISO 10816 Standard, differentiates between rigid and elastic build-
ing foundations (Table 1), setting admissible vibration velocity limits.

The calculus of the RMS value of the vibration velocity using (Eqs. 8–11) is
rather complicated, especially if there are a lot of points in which the FFT (Fast
Fourier Transform) must be considered.

A first set of measurements was carried out using mono-axial accelerometers in
the case of the driving motor, in horizontal and vertical plane (Fig. 7).

Diagrams corresponding to the stator measuring points: acceleration versus
time (point C19, Fig. 8a) and acceleration versus frequency (point C19, Fig. 8b)
analyzed using the vibration signature method [26], could not identify the nature
and the location of the fault, so a further examination became necessary.

The vibration acceleration in a plane perpendicular to the rotational axis, in
three coplanar points displaced first at 120� and then at 90� respectively. Using
Eqs. 8–11, the velocity vector of for the two measurements setup can be deter-
mined (Fig. 9).

The main drawback of the method used in this application consisted in the use
of mono-channel vibration analyzer [27], measurements in the three points being
not simultaneous.

Table 1 Admissible vibration velocity limits according to ISO 10816 Standard

Vibration intensity Foundation type

veff [mm/s] Qualification

Rigid foundation Elastic foundation

0.46 Good Good
0.71 Good Good
1.12 Good Good
1.8 Good Good
2.8 Satisfactory Good
4.6 Satisfactory Satisfactory
7.1 Admitted Satisfactory

11.2 Admitted Admitted
18.0 Not allowed Admitted
28.0 Not allowed Not allowed
71.0 Not allowed Not allowed
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Following the recommendations of the European Directive 2002/44/EC [30],
ISO 5349:2001 [31] and ISO 2631:1997 [32] Standards, vibration analyzers for tri-
axial accelerometers were developed. These are especially dedicated to perform
analyses of the vibrations transmission from building floors to humans.

Measurements were carried out using such an analyzer, namely SVAN 958
[28], and instead of the tri-axial accelerometer, three mono-axial accelerometers
were mounted, in a plane perpendicular to the rotation axis of the electrical motor
under diagnosis.

The fault direction on the electric motor’s stator was determined, its value
provides an indication concerning the faulty area: in the stator or in the rotor area
of the electric motor.

The analysis versus time and frequency of the measurements carried out using
the software SVAN PC [33] eliminates the previous drawback, because it has the
capacity of performing simultaneous measurements and calculus of the vibrations’
directions in the three locations, making needless the use of the Eqs. 8–11.

Fig. 8 Horizontal component of the vibration acceleration—point CI 19. a Acceleration versus
time. b Acceleration versus frequency
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The evaluation of the vibrations level is based on a vibrations level per hour
A(1), expressed as a continuous equivalent vibration in one hour.

There is no need to perform measurements which overcome this duration,
because in this time interval the vibration speed increases significantly. The data
are normalized to one hour and the vibration level can be calculated using Eq.
(14):

Að1Þ ¼ vae �
ffiffiffiffiffi
Te

T0

r
; ð14Þ

where:
vae represents the mean value of the weighted vibration speed during the

measurements;
Te represents the total measurement interval;
T0 the time reference (one hour).

If the measurements are performed using three accelerometers (the analyzer
SVAN 958 is designed for tri-axial accelerometers, so its connectors have been

Fig. 9 The fault direction in
the two measurement setups
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adapted for three mono-axial accelerometers), the total vibration speed of the
electric motor under diagnosis being calculated using Eq. 15:

vve ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

w1 þ v2
w2 þ v2

w3

q
ð15Þ

the indices 1, 2 and 3 corresponding to the three accelerometers respectively.
The presented technique has been used in an application in which the vibration

signature for two electric motors has been determined. The first was a faulty one
(1.55 kW, 230 V/50 Hz, 1,500 rpm), the second was a normal operating one
(2.2 kW, 400 V/50 Hz, 2,880 rpm). The two motors have been used in driving the
pumps of the heating central in an office building [25, 29].

5 Conclusions

The vibrations signature analysis determined by the electric motors is quite a
difficult task because in real situations the shape of the amplitude versus frequency
characteristics (see Figs. 8b, 10b, and 11b) is much more complex than the shape
of the ideal ones (see Fig. 1a–e), recommended in literature [26].

The experimental results of the first application highlights a vibration velocity
vector determined using three accelerometers, mounted in two different positions
on the stator periphery, which presents different magnitude and phase in the two
situations depicted.

For a normal operation of a motor, the magnitude of the vector must be as lower
as possible, having the same phase displacement or slightly different. However, for
an accurate interpretation of the amplitude versus frequency vibrations it is advi-
sable to analyze also the amplitude-frequency characteristics of the stator current,
in order to be convinced that current distortions or harmonics do not lead to extra-
vibrations.

The result of the analysis obtained with mono-channel vibration analyzers
presents the major drawback of the non-simultaneous measurements. The mag-
nitude and the phase displacement between the two mounting positions (Fig. 9)
highlights that the fault location is on the rotor, confirmed also by the comparison
between the amplitude versus frequency characteristics (see Figs. 1e and 8).

The multi-channel analyzer used in the second application is more straight-
forward in measuring and interpretation of the measuring results. The amplitude
versus frequency characteristics in the case of the normal operating motor high-
lights that the fundamental component of the frequency is the power frequency
(i.e. 50 Hz, in Fig. 10b), while for the faulty one is 1,000 Hz (Fig. 11b).

Another important advantage of the multi-channel analyzers consists in their
software, which directly determines the vibration velocity vector, simultaneously
for the three accelerometers and for the entire measurement duration.

For the normal operating motor, only a slight variation of the acceleration
vector is recorded, its magnitude tending asymptotically to 160 m/s2 (Fig. 11a).

Fault Identification on Electrical Machines Based on Experimental Analysis 625



Fig. 10 The normal operating motor. (a) Vibration versus time signature. (b) Vibration versus
frequency signature. (c) Vector analysis
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Fig. 11 The faulty motor. (a) Vibration versus time signature. (b) Vibration versus frequency
signature. (c) Vector analysis
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For the faulty motor, the vibration velocity is changing permanently, from the
minimum value of 250 m/s to the maximum one of 1,300 m/s.

As further work, the authors consider that a theoretical approach of the
experiments depicted here is needed, along with the buildup of a data base, con-
taining the direction diagrams corresponding to different faulty situations [18, 34].
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Fault Diagnosis in Induction Motor
Using Motor’s Residual Stator Current
Signature Analysis

Khalid Dahi, Soumia Elhani, Said Guedira and Nabil Ngote

Abstract In this paper, we present fault prognosis and diagnosis technique in a
three phase asynchronous machine. Based on statistical analysis of scalar indicator
resulting from the TSA method (Time Synchronous Averaging), this technique
will be dedicated to condition monitoring of machines. In addition, spectral
analysis, using the Fast Fourier Transform (FFT) algorithm of the stator- current
signature MCSA (Motor Current Signature Analysis), determines their frequency
composition, and therefore, allows finding the spectral lines associated to the fault.
This work highlights our first results related to the comparison of the spectral
representation of the stator current and that of the residual current obtained by the
TSA method. We proved the effectiveness of these techniques by simulation and
experimental tests made on a wound rotor induction machine. The fault rotor is
taken into account by an additional resistance of one of the rotor phases. The
results of simulations and experiments underline the practical utility of this
method.
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1 Introduction

The use of asynchronous machines is mainly due to their robustness, their power
and their fabrication cost. Nevertheless, various faults may appear in this type of
machines. The appearance of these defects has pushed industrial and scientific
communities to find solutions to make these systems more efficient, more com-
petitive and safer within the framework of the conditional preventive maintenance.

Among the recommended methods to detect and characterize defects, we are
particularly interested to the analysis of the signature of stator current MCSA
(Motor Current Signature Analysis). Its particularity lies in the fact that the current
contain more information on almost all defects [1, 3, 9].

Our results cover on the temporal and spectral analysis of the stator current that
can extract information about the fault.

However, the stator current signal in the presence of electrical faults (specifi-
cally fault of broken bars) shows a behavior related to non-stationary mode and
fluctuations in the electrical phase. It has been shown that the formalism of
cyclostationarity reflects better the analysis of such signals compared to conven-
tional approaches dedicated to stationary behavior [6].

By the application of this formalism, we conditioned a temporal indicator by
using Time Synchronous Averaging method (TSA) [4, 8], whose reliability has
been confirmed by our experimental results, this first analysis can concluded the
existence of a failure. We remind that conventional diagnostic methods show more
appropriate to stationary signals. In order to analyze the electrical current taking
account of cyclostationarity we analyzed the stator current residual obtained by
synchronous averaging. The experimental results are encouraging.

2 Asynchronous Machine in the Presence of a Rotor Fault

Although the asynchronous machine is deemed to be robust, degraded modes of
operation may appear during use. References [5, 7] review a large number of cases
of failures and associated detection techniques. In this work we are interested in
rotor fault remains ranked among most frequently encountered faults in the
machine.

Experimental results of fault rotor
In order to verify experimentally the impact of the presence or absence of fault

on the machine; we developed a test bench including a wound rotor induction
machine.
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2.1 Presentation of the Test Bench

The experimental bench that we used was developed in the laboratory of CPS2I
ENIM-Rabat-(National School of Mineral Industry) in the research axis ‘‘Diagnosis
and monitoring of rotating machinery.’’ This bench has an asynchronous machine
power 3 kW and a data acquisition system based on data acquisition card with its
software DATA Acquisition (Fig. 1).

2.2 Experimental Results

The rotor fault has been carried out by adding an extra 40 mX resistance on one of
the rotor phases (i.e. 10 % of the rotor resistance value per phase, Rr = 0,4X)

From Fig. 2, with the creation of a rotor fault on the bench, we are interested to
the stator current and we note well the envelope modulation of the current.

2.3 RMS Indicator

In this section we focus on the signal conditioning elaborated for the development
of an indicator for monitoring the induction motor. For that we realize three tests:
no loaded motor, 65 %loaded and full loaded motor.

We define a first indicatorK1,such as the RMS of the stator current, according
to the relationship:

K1 ¼
IsRMSðHealthyÞ � IsRMSðdefectiveÞ

IsRMSðHealthyÞ

The following table summarizes the values for the three tests (Table 1):

Fig. 1 Test bench laboratory (Control , Protection et surveillance des installations industrielles)
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From the table we notice too little variation of the K1indicator between healthy
and defective cases. Therefore, it cannot be used as a sensitive indicator of rotor
defect.

For this and with the use of the concept of cyclostationarity and exploitation of
the TSA method we develop an algorithm for conditioning a statistical indicator
for rotor fault detection.

3 Conditioning of an Indicator with the TSA Method

In this work we focus on the current signal which presents a non-stationary
behavior related to the mode of operation of the machine and the electrical phase
fluctuations, For this we exploit the cyclostationary features for electrical signals
in the case of detection of rotor fault [6], [2], [10].

In this frame work we aim to reduce or eliminate the dynamics of 50 Hz electric
currents, thus, using thetas method allowed us to develop an organizational
structure of conditioning a sensitive indicator to detect rotor fault, the steps are:
[4, 8].

• Synchronization of electrical signals,
• Synchronous Averaging
• Extraction of the residual signal
• Conditioning of the indicator.
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Fig. 2 Experiments with a
rotor fault

Table 1 Variation of RMS current with different load levels

Stator current RMS (A) Indicator K1 (%)

Healthy case Faulty case

No-loaded motor 2.88 2.95 2.55
Full-loaded motor 3.78 4.06 7.45
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3.1 Synchronization of Electrical Signals

In this work, we exploit the first order cyclostationarity of stator current and
voltage (Fig. 3a). However, we note a problem of derives cycle of an electrical
cycle to another, due to electrical supply fluctuations. The idea will be to
decompose the signal into overlapping period and thereafter.

Figure 3b represents a superposition of 500 electrical cycles acquired tempo-
rally. The sampling rate is 1 kHz, we have 20 samples per cycle average of 50 Hz
(1,000/50 = 20).

To do this,

• Voltage signal is first cut out in slices, each one corresponding to one period
(20 ms), and each period containing an integer number of samples N. In our case,
the sample rate is 1 kHz, so N = 20 samples per period (20 =1 kHz 9 20 ms).

• Then, we estimate the shift between the first period, taken as a reference, and the
others. We then shift each period to make it coincide with the first one (refer-
ence). If the two periods are already synchronous, the shift is then null. The
obtained signal is represented in Fig. 3c
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The current signal will be similarly synchronized; but by using the voltage-shift
values: the fluctuations due to the supply frequency will be compensated.

Figures 4b, c and 5b, c) illustrates the following cases.
Once all cycles are synchronized, the signal is rebuilt by setting these cycles

end to end. (Figs. 4d and 5d) illustrates synchronized current in healthy and faulty
cases. All cycles are now synchronous and the ‘‘synchronous averaging’’ can be
carried out.

3.2 Synchronous Averaging (Time Synchronous Averaging)

A fault of the rotor can be detected by highlighting of the stator current amplitude
or phase modulation. However, the band modulated signal low frequency is too
difficult to detect the modulation. To overcome this difficulty, research works have
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used the TSA method [4]. It is a way to reshape the signal before processing. It
allows the separation between the excitation sources and therefore, the identifi-
cation of a fault.

We can decompose the stator current is (t) as follows:

Is tð Þ ¼ Ish tð Þ þ Ismec tð Þ þ b tð Þ ð1Þ

With
Ish The stator-current harmonic component,
Ismec The mechanical-structure-related stator current
b (t) the noise

The asynchronous motor monitoring consists of supervising the signal har-
monic part. So we have to separate between harmonic frequency (50 Hz) which is
related to electrical phenomena and mechanical-structure-related frequency.

For this purpose, we will apply the TSA method to the stator current. In fact, the
stator current is the sum of a determinist signal (ISh) and a random signal (sum of
ISmec t and b(t)); whose average value is zero:
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Is tð Þ ¼ Ish tð Þ þ Isrand tð Þ ð2Þ

Isrand (t) is the stator current random component. The synchronous average stator
current of N samples is done by:

IsN
moyðn � TsÞ ¼ 1

N

Xk¼N

k¼1

Ik
s ðn � TsÞ ð3Þ

where: Is
k is the kth synchronized stator current and Ts is the sampling time.

For large value of N, we have:

lim
N!1

IsN
moyðtÞ ¼ IshðtÞ ð4Þ

The average synchronous allows an effective separation between electrical and
mechanical components linked.

Subtraction between the stator current Is (t) and the average synchronous Ismoy

(t) = Ish (t) (for the high value of N) gives the residual current

Ires tð Þ ¼ Isrand tð Þ ð5Þ

This is a very interesting property that will allow us to conclude about the status
of a mechanical structure related to the monitoring of any defects (such as defects
of the rotor.) We note that the current Ismoy (t) the same form as the current signal.
Figures 4e and 5e show respectively the residual currents with healthy and faulty
machine functioning at full load.

3.3 Conditioning of the Indicator

We have seen in paragraph 1.2.2, that an indicator based on the RMS stator current
cannot be used as an indicator for fault detection due to the low variation between
non load and full load of the machine.

We will try to calculate the RMS residual current obtained after TSA stator
current.

The RMS residual current is calculated by the relation

IresRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn¼N

n¼1

I2
resðn � TechÞ

vuut ð6Þ

where: N is the number of samples (20,000). 20 samples per cycle 9 1,000.
We define a second indicator K2, obtained from the residual RMS stator current

according to the equation (Fig. 6):

K2 ¼
IresRMSðHealthyÞ � IresRMSðdefectiveÞ

IresRMSðHealthyÞ ð7Þ
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The indicator conditioning K2, on the other hand, allows easy distinction
between healthy and defective cases (Table 2).

4 Comparative Study Between the Signatures of the Line
Current and the Residual Stator Current

We have seen that among the best known approaches for the diagnosis of rotor
faults in induction machines is based on processing of the stator currents. How-
ever, the signature analysis of residual stator current obtained by the TSA method
may have advantages, we list below, as the current line, a comparative study
between the two analyzes is the subject of this next paragraph.

4.1 Spectral Analysis

4.1.1 Stator Current Analysis

The rotor defect of an asynchronous machine induces changes in the stator currents
and therefore leads to the appearance of characteristic harmonics in the signal
spectrum. Indeed, the frequency of occurrence of this type of fault is:

fR ¼ fs 1� 2:k:gð Þ ð8Þ

The results of experimentation with a Hanning window are gathered in Fig. 7.
Figure 8 shows the fundamental harmonic of the stator current spectrum of the

induction machine operating at full load.
In one hand, we can see an increase in amplitudes of frequency components at

fs - fr and fr ? fs that are already present in the spectrum of the healthy machine
due to the natural eccentricity.

On the other hand, considering the defective rotor, default frequencies are
clearly visible in the spectrum; we can easily observe that the harmonics induced
by the undulation current are consistent with the generalized formula given by
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Table 2 Variation of the RMS residual current with different load levels

Residual Stator current RMS (A) Indicator K2 (%)

Healthy case Faulty case

No-loaded motor 0.069 0.103 49.21
Full-loaded motor 0.298 0.921 209.06
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Fig. 7 Spectrum of the stator current at full loaded motor. a Healthy. b Defective
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fR ¼ 1 � 2 kgð Þfs:

g: is the slip.

4.1.2 Residual Current Analysis

Figure 8 shows the spectrum of the residual current of the machine obtained after
application of the TSA method with a Hanning window at full loaded motor, we
can clearly see the appearance of additional harmonic components induced by the
rotor defect.

And to make a comparison between the two analyzes, we will look in detail the
values of the amplitude of the harmonics of the two signals for different loads,
from the non loaded motor to the full load. The results obtained are shown in
Table 3, and we are interested in amplitudes of frequency around the harmonic
(1 +2 g) fs.

Table 3 The amplitudes associated to the fault characteristic frequency

The amplitudes of frequencies (1 ? 2 g)fs Stator current Residual current stator

Load (%) Slip. Fault fr (Hz) Healthy Defective Healthy Defective

0 0.022 52 -33.8 -32.8 -40 -36.42
65 0.044 55.18 -43.23 -34.5 -45.8 -31.57

100 0.068 56.8 -14.9 -31.76 -51.5 -23.54

The amplitudes of frequencies (1 - 2 g)fs Stator current Residual current stator

Load (%) Slip. Fault fr (Hz) Healthy Defective Healthy Defective

0 0.022 47.8 -37.35 -38.13 -38.5 -36.42
65 0.044 45.6 -43.86 -24.63 -43.77 -27.16

100 0.068 43.2 -38.37 -18.54 -44.43 -23.13

1 2 3

Résiduel courant stat. 
Défecteux

Résiduel courant sta. 
Sain

Courant statorique 
défectueux

Courant statorique sain

Fig. 9 Evolution of the amplitudes of spectrum function of the load for a healthy and defective
case
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Figure 9 shows the variation of the harmonic amplitude (1–2 kg). fs of the two
currents depending on the load in the case of a healthy and defective machine
according to the values listed in Table 3.

A simple comparison between the diagnostic analysis of the stator current and
the residual obtained by applying the TSA method, shows the change in the
evolution of the amplitudes of the second analysis (residual current) between the
defective and healthy case (even lower amplitudes), and secondly from the Fig. 8
we can say that the spectral analysis of the residual current improves window, and
consequently the good appearance of specific lines of the existence of defects.

5 Conclusion

In this paper, we studied the feasibility of prognosis and diagnosis of rotor faults in
asynchronous machine by analyzing the stator currents. For a first step of prog-
nosis, the conditioning of a statistical indicator, by synchronous averaging, for the
fault detection is applied to the signal current. The experimental results have
allowed us to approve the reliability of the indicator conditioning and that the
stator current has a harmonic (1±2 kg) fs very sensitive to this type of fault.
Spectral analysis is then applied to determine the composition of the current signal
frequency and therefore find the harmonics characterizing rotor defects. In this
spectral analysis we are interested to the comparison between the spectrum of the
stator current and the residual current obtained by the TSA method, and we notice
that the last analysis (residual current) improves the windowing and increases the
variation in amplitudes between the healthy and defective case.
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Advanced Data Mining Techniques
for Power Performance Verification
of an On-Shore Wind Farm

Francesco Castellani, Alberto Garinei, Ludovico Terzi,
Davide Astolfi, Michele Moretti and Andrea Lombardi

Abstract The monitoring of wind energy production is fundamental to improve
the performances of a wind farm during the operational phase. In order to perform
reliable operational analysis, data mining of all available information spreading out
from turbine control systems is required. In this work a Supervisory Control and
Data Acquisition (SCADA) data analysis was performed on a small wind farm and
new post-processing methods are proposed for condition monitoring of the aero-
generators. Indicators are defined to detect the malfunctioning of a wind turbine and
to select meaningful data to investigate the causes of the anomalous behaviour of a
turbine. The operating state database is used to collect information about the proper
power production of a wind turbine, becoming a tool that can be used to verify if the
contractual obligations between the original equipment manufacturer and the wind
farm operator are met. Results demonstrate that a proper selection of the SCADA
data can be very useful to measure the real performances of a wind farm and thus to
define optimal repair/replacement and preventive maintenance policies that play a
major role in case of energy production.
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1 Introduction

The monitoring of wind energy production is fundamental during the operational
phase of a wind farm. Usually numerical modelling and experimental campaigns
are carried out for wind-resource assessment and power performance prediction of a
wind farm prior the installation of the turbines. Even if many techniques were
developed for this purpose, disagreement between the predicted and the real pro-
duction of a wind farm is often remarkable. Thus it is necessary to analyse the
operational conditions of a wind farm both to increase the reliability of the
assessment techniques and to define optimal repair/replacement and preventive
maintenance policies, that play a major role in case of energy production. The
Supervisory Control and Data Acquisition (SCADA) system is able to generate and
organize a very functional database that can be used to monitor the wind farm and
thus to set the optimal configuration for the aerogenerators, in order to maximize
the energy production. Starting from the first methods based on the fault detection
and analysis, more refined techniques were developed for wind turbines perfor-
mance assessment [1, 2] and for the prediction and diagnosis of wind turbine faults
[3]. In [3] the SCADA data, collected on a 5 min scale, are classified in four groups
(wind parameters, energy conversion parameters, vibration parameters, tempera-
ture parameters) and are crossed against a database of status codes, entering at given
times, ranked in four categories of decreasing fault severity. The power curve is
studied both from filtering operational anomalies directly from the SCADA mea-
surements, or crosschecking with the status code database, and a model curve is
obtained by training neural networks to interpolate the scattered points. Compu-
tational models are developed to predict with certain accuracy a single severe fault
occurring one hour before the fault itself appears in the status code report.

In order to increase wind farm efficiency, wind farm power performance tests
were defined [4] and wind turbine condition assessment has been performed
through the analysis of the power curve [5]: in particular in [6] a systematic analysis
of three different operational curves (power curve, rotor curve, blade pitch curve) is
set up from SCADA measurements. Reference curves are built, from a 4 year
database, for each month independently by removing outliers due to anomalous
behaviours: a multivariate outlier detection approach based on Mahanobis distance
is used. Therefore skewness and kurtosis of the reference curves are computed and
the performance monitoring is based by comparing these moments of the measured
operational curves against the reference ones on a 2D-plot.

In [7] the wind control centre performances are analyzed globally and in par-
ticular the nature of SCADA analysis is depicted for its increasing role of cross-
checking estimated power offer (from forecast) and actual one, measured from
historical and meteorological data.

In [8] wind turbine condition monitoring has been developed applying Adaptive
Neuro-Fuzzy Interference Systems (ANFIS) to SCADA measurements. A three
step strategy has been followed: firstly normal behaviour models are used, by
training Neural Networks, in order to monitor and detect anomalies on the relevant
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SCADA data. Subsequently occurred anomalies are related to reported faults, and
relations are obtained to implement a knowledge database used by the Fuzzy
Interference System to output diagnosis.

Modern wind turbines are equipped with a complex monitoring system, so
SCADA can provide a very large dataset that requires the development of new
post-processing methods. In the present work a SCADA dataset of a wind farm
installed in southern Italy is analysed and new post-processing methods are pro-
posed for the monitoring of the aerogenerators. The wind farm is composed of nine
wind turbines with a rated power of 2 MW installed on an hillside area with quite
gentle slopes. The most important turbine parameters are identified on the SCADA
dataset and data mining is performed both for the performance analysis and for the
understanding of the wind turbines behaviour during operations.

2 The SCADA Database Analysis

2.1 The Structure of the Database

The SCADA database consists on a series of measurements (e.g. blade pitch, hub,
gearbox, inlet temperature, active, reactive and apparent power and so on) per-
formed on a 10 min basis. For each parameter, minimum, maximum, average and
standard deviation are recorded. Thus, for each turbine, around 140 data are
recorded every 10 min. To understand the real operational conditions of the wind
turbines, the analysis was focused on the machine parameters that could be strictly
related to the turbine performances. Among the data available from the machine
control systems, the following parameters were considered more significant for the
present study: active power output (kW), reactive power (kW), inlet temperature
(C), nacelle position (�), blade pitch (�), rotor speed (rpm). Measurements from a
met mast (wind speed and direction at hub height and hub minus radius) were also
used on post-processing to complete the SCADA dataset analysis.

Measured parameters were analysed considering also the control system status
code report, that lists the incoming or phasing out of a status. The code report is
divided in two groups of data: operating states, which are mutually exclusive, and
status codes (error, warning, info and operating state), some of which can coexist
at a given time. Thus the complete dataset is composed of the status code database,
that is a read only database, and of the SCADA measurement database, that can be
cut or modified with respect to appropriate status codes, to obtain a filtered
database. The interactions between the databases are shown in Fig. 1.

2.2 The Condition Monitoring Procedures

The first step of post-processing procedures was done developing routines to
crosscheck and perform a series of controls on the acquired data. Because of the
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high level of IEC standards, the available data exceeds the typical data used for
routine monitoring, so solid mathematical and computational tools are required. A
first control was done considering the percentage in which each of the 9 turbines
was in every operating state. The status code database coherence was checked
summing these percentages and verifying that it was 100, being the operating
states mutually exclusive. Then operating states statistics were obtained consid-
ering the status of each wind turbine. Considering the whole database (4 month of
operational conditions), the Grid Operating State percentage is around 70 %,
whereas 20 % of the time the turbines operating state is the automatic start-up, that
follows a brake program. Depending on the brake program, the sequence of the
other phases that follows the automatic start up may have a different length, but
they are of short duration. The graph of Fig. 2 highlights these states and, being a
clear indicator of the power availability of each wind turbine, it can be used to
detect the malfunctioning of a wind turbine.

Then, for each operating state and status code, the average and standard
deviation were calculated on a daily, weekly and monthly basis.

By analysing the operating states of the nine turbines, a malfunctioning was
detected for wind turbine T53, as shown in Fig. 3. This has been obtained by an

Fig. 1 The available dataset structure

Fig. 2 Operating states statistics for a sample turbine
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automatic routine that computes mean and standard deviation on the whole turbine
park of the percentages of each operating states: whereas significant deviations are
met from the mean values, the statistics are performed on a shorter scale, weekly
or even daily rather than monthly, in order to isolate the anomaly and thus cut a
temporal window for which significant crosscheck with SCADA data can be done
in order to investigate the causes of the anomaly.

A closer examination can be done by analysing the operating states for each
status code. Even if a malfunctioning was detected by the operating states, the
percentage of the status code system ok for turbine T53 is comparable with those
of the other turbines, as shown in Fig. 3b. This crosscheck between status codes,
turbine operating states and SCADA data helps in pointing out the reasons of the
anomaly, unveiling if the underproduction comes from environmental condition
(strong or rapidly variable wind), or if it comes from network or electrical prob-
lems: actually Status Code System OK on indicates that the turbine is potentially
in condition of producing power, but if the operating state is not power output
production, the anomaly must not come from the machine itself. It might be due,
for example, to an electrical problem. Performing also a crosscheck and filtering of
the SCADA data helps in verifying diagnosis hypothesis.

Fig. 3 a Grid Operation deviation statistics with respect to a reference turbine (T40) b System
OK status code deviation statistics with respect to a reference turbine (T40)

Fig. 4 Grid operating availability for turbine T40
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The Grid Operating State and thus the turbine availability was then analysed for
each wind turbine on a weekly basis, as shown in Fig. 4.

Wind (direction and intensity) and temperature (the wind farm is located in an
hot site) are the main parameters related to the operating availability of each wind
turbine, so a similar behaviour for all the turbines was attended, but from graph in
Fig. 4 it is clear that the wind turbine T53 has a remarkable collapse in maximum
power performance. This can be highlighted using the operating states statistics
and analysing the duration of Run Up operating state, that is a phase between a
brake program and the subsequent returning of power availability. From the fol-
lowing graph in Fig. 5, the malfunctioning of wind turbine T53 can be easily
detected.

Because this malfunctioning may be detected or not depending on the scale of
observation (i.e. daily, weekly, monthly, global), this check can be used as an
indicator to investigate the causes of the anomalous behaviour of a turbine in a
certain period. This can be done by selecting the SCADA measurements corre-
sponding to the Operating State Run Up active and analysing them in detail. This
is a clear example of how the Status Code database can be used to select mean-
ingful data from the measurement SCADA database.

The operating state database can also be used to collect information about the
proper power production of a wind turbine. The theoretical available power curve
(Betz limit) of a wind turbine is:

f ðvÞ ¼ 16
27

p
8

q � d2 � v3 ð1Þ

.
Where q is the density and d is the rotor diameter. If we simply graph the active

power measurements of a wind turbine (e.g. wind turbine T40) against the wind
speed at the nacelle we obtain the first graph of the following Fig. 6.

A first operation can be the renormalization of the wind speed with the density
factor, which is available from the SCADA data. Then, to filter these data, it is
necessary to select the operating state significant for the proper power production.
The output power can be curtailed due to rapidly changing winds, with the blade

Fig. 5 Run-up statistics
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pitch angle being not fast enough to adjust to the wind direction, and might
therefore not be due to a degradation of the wind turbine. A first condition to select
significant data is that, for accepted data, the power-speed product is greater than
1. The filtered power curve is the (b) shown in Fig. 6.

An interesting crosscheck can be done by analysing the data excluded by this
filter considering the status code database, to inquire whether the turbine is in any
problematic operating state, and considering the SCADA measurements.

Then, as a second step, only data acquired when the operating state of maxi-
mum power production was on were accepted (Fig. 6c).

Data are now filtered on the operating state, which gives information about the
proper power production, and thus they can be used to compare active power
measurements against the wind velocity at the nacelle with the theoretical power
curve. This tool can be used to verify if the contractual obligations between the
original equipment manufacturer and the wind farm operator are met.

2.3 The Study of the Wind Farm Behaviour

An analysis of the behavior of the turbine park has been performed by the point of
view of the nacelle response to the wind: discrepancies between the wind direction
measured respectively by the anemometer and by the turbine nacelles have been
investigated throughout the park and plotted on a three-dimensional graph along
all the wind rose.

It is intuitively expected such discrepancy being a function of the distance
between the turbine and the anemometer: this effect is clearly visible in the sub-
sequent three-dimensional graph, Fig. 7.

Yet, such amplitude, increases with the nacelle-anemometer distance, is not
homogeneously distributed along the wind rose, as might be expected and as is
shown in Fig. 8. This should be due to wake effects, which can be further
investigated with numerical tools such as Computational Fluid Dynamics (CFD)
and the actuator disc model [9].

Fig. 6 Unfiltered a filtered on power-speed product b and double filtered c power curve
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Fig. 7 Anemometer-nacelle wind direction shift calculated referring to the met mast

Fig. 8 Anemometer-nacelle wind direction spread vs distance, sector by sector
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3 Results and Conclusions

In this work a SCADA data analysis was performed on a wind farm composed of
nine wind turbines and new post-processing methods are proposed for the moni-
toring of the aerogenerators. The most important turbine parameters were identi-
fied on the SCADA dataset and data mining was performed both for the
performance analysis and for the understanding of the wind turbines behaviour
during operations. Then routines were developed to crosscheck and make a series
of controls on the acquired data. An automatic routine, providing indicators of the
power availability of the wind turbines was defined. Significant deviation from the
mean statistics on the whole park, and thus the malfunctioning of wind turbine T53
was detected. The operating states were then used both to confirm the malfunc-
tioning of wind turbine T53 and to select data to be analysed to investigate the
causes of its anomalous behaviour. The operating state database was then used to
collect information about the proper power production of the wind turbines, to
verify if the contractual obligations between the original equipment manufacturer
and the wind farm operator are met. Also the measured values can be fundamental
to study critical operating situations such as strong wakes loads due to the rotor
misalignment. Results demonstrate that a proper selection of the measured
parameters, considering the operating and status code dataset, can be very useful to
investigate the real performances of a wind farm and to understand the behaviour
of each wind turbine. The analysis of the operational conditions of a wind farm can
be helpful both to increase the reliability of the assessment techniques and to
define optimal repair/replacement and preventive maintenance policies that play a
major role in case of energy production.
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Virtual Assessment of Damage Detection
Techniques for Operational Wind
Turbine

Emilio Di Lorenzo, Simone Manzato, Bart Peeters
and Herman Van der Auweraer

Abstract Operational Modal Analysis (OMA), also known as output-only modal
analysis, allows identifying modal parameters only by using the response mea-
surements of the structures in operational conditions when the input forces cannot
be measured. These information can then be used to improve numerical models in
order to monitor the operating and structural conditions of the system. This is a
critical aspect both for condition monitoring and maintenance of large wind tur-
bines, particularly in the off-shore sector where operation and maintenance rep-
resent a high percentage of total costs. Although OMA is widely applied, the wind
turbine case still remains an open issue. Numerical aeroelastic models could be
used, once they have been validated, to introduce virtual damages to the structures
in order to analyze the generated data. Results from such models can then be used
as baseline to monitor the operating and structural condition of the machine.

Keyword Wind turbine � Damage detection � Operational modal analysis � Fault
simulation

1 Introduction

The objective of this paper is to apply advanced Operational Modal Analysis
(OMA) techniques to predict in advance failures or damages with a monitoring
application based on the analysis of modal parameters and their variations in
operating conditions. In this way, the risk to have catastrophic failures and cost
associated can be significantly reduced. OMA is a technique that allows extracting
the modal parameters from vibration response signals. The main difference com-
pared to the traditional experimental modal analysis is that it does not need the
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measurement of the input forces so that also structures under operating conditions,
or in other situations where it is impossible to measure the input forces, can be
tested. The information obtained from this analysis can then be used to improve
numerical models, to predict the dynamic behavior of new designs, to identify the
modal parameters of prototypes and to monitor systems in operating conditions.

The problem associated with the dynamic identification of wind turbines has its
roots in 1990 when a special technique known as Natural Excitation Technique
(NExT) was developed to estimate modal parameters of wind turbines excited in
their operating environment [1]. In the following years, this technique has been
applied to other fields such as civil structures as well as automotive and aerospace
applications. Although the first application of an Operational Modal Analysis
methodology was related to a vertical-axis wind turbine, not many other appli-
cations to wind turbines were studied later on. The main reason is the fact that
most of the OMA assumptions are violated by operating wind turbines.

With this paper, an advanced OMA technique, the so-called PolyMAX Opera-
tional Modal Analysis technique is applied to different set of simulated data obtained
introducing virtual damages to the unit under test. The main objective is to predict
damages by means of modal parameters variations for condition monitoring and
maintenance (O&M) purposes. In Sect. 2 the PolyMAX Operational Modal Analysis
technique is briefly presented. The NREL offshore 5-MW baseline wind turbine is
sketched out in Sect. 3. Section 4 describes the virtual damages introduced in the
wind turbine such as ice on all the blades and unbalanced masses. Finally in Sect. 5
the mentioned OMA technique is applied to the different load cases.

2 PolyMAX Operational Modal Analysis

Operational modal analysis has attracted a significant amount of research interest
in the past years. Several operational modal analysis techniques such as Frequency
Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and
Operational PolyMAX have been developed and evaluated [2]. In this paper, the
PolyMAX method is selected to perform the operational modal analysis. It has
been developed as a polyreference version of the least-squares complex frequency-
domain (LSCF) estimation method using a so-called right matrix-fraction model.
This method, in case of OMA, requires output spectra as primary data. It can be
demonstrated that, under the assumption of white noise input, output spectra can
be modeled very similarly to FRFs [3].

In case of Experimental Modal Analysis [4], the modal decomposition of an
FRF matrix [H(x)] is:

H xð Þ½ � ¼
XN

i¼1

vif g lTi
� �

jx� ki
þ

v�i
� �

lHi
� �

jx� k�i
ð1Þ

where l is the number of outputs; N is the number of modes and half of the system
order, * is the complex conjugate operator, H is the complex conjugate transpose of
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a matrix, vif g are the mode shapes, lT
i

� �
are the modal participation factors and ki

are the poles. The system poles are recurring in complex-conjugate pairs and are
related to the eigenfrequencies xi and damping ratios ni as:

ki; �ki ¼ �nixi � j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

i

q
� xi ð2Þ

Now, the input spectra [Suu(x)] and output spectra [Syy(x)] of a system rep-
resented by the FRF matrix in Eq. (1) are related as:

Syy xð Þ
� �

¼ H xð Þ½ � Suu xð Þ½ � H xð Þ½ �H ð3Þ

In case of operational data, output spectra are the only available information.
The deterministic knowledge of the input is replaced by the assumption that the
input is white noise, which is characterized by a constant power spectrum and is
independent of the frequency. The modal decomposition of the output spectrum
matrix can be obtained now by inserting Eq. (1) in Eq. (3) and converting to partial
fraction form:

Syy xð Þ
� �

¼
XN

i¼1

vif g gih i
jx� ki

þ
v�i
� �

g�i
� �

jx� k�i
þ gif g vih i
�jx� ki

þ vif g gih i
�jx� k�i

ð4Þ

where gih i are the so-called operational reference factors, which replace the modal
participation factors in case of output-only data. Their physical interpretation is
less obvious as they are a function of all modal parameters of the system and the
constant input spectrum matrix. The main goal of OMA will then be to identify the
right-end side of Eq. (4) by using measured output data pre-processed into output
spectra.

The PolyMAX algorithm greatly facilitates the operational modal parameter
estimation process by producing extremely clear stabilization diagrams, making
the pole selection a lot easier by means of estimating unstable poles (i.e. mathe-
matical or noise modes) with negative damping making them relatively easy to
separate from the stable poles (i.e. system modes).

The PolyMAX technique has been widely employed for OMA of civil engi-
neering and mechanical structures including bridges, a football stadium [5], a
satellite and many others [6]. It has also been computationally optimized to ana-
lyze large data sets with a broad frequency band up to high model orders. In the
next sections, the Operational PolyMAX method is applied to a 5 MW wind
turbine in several conditions.

3 NREL Offshore 5 MW Baseline Wind Turbine Model

In this section the virtual wind turbine model used as test case is described. The
NREL offshore 5-MW baseline wind turbine has been developed by the National
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Renewable Energy Laboratory (NREL) to support concept studies aimed at
assessing offshore wind technology. It is a conventional three-bladed upwind
variable-speed variable blade-pitch-to-feather-controlled turbine [7].

The main objective is to analyze the global dynamic behavior of the full-scale
turbine; for this reason, the model has been built as simple as possible. The
generated model is shown in Fig. 1 and it can be divided in three main
components:

• Tower: it is modeled as 5 elastic beam elements with lumped masses and hinged
to the ground foundation. The total tower height is 90 m.

• Rotor: in the 3-bladed rotor, each blade is identical and is modeled with 17
sections with specific mass, elastic and aerodynamic properties.

• Drivetrain: the transmission is simplified into a 1 degree-of-freedom system
with a gear-ratio of 97 between the Low Speed Shaft (LSS) and the High Speed
Shaft (HSS). The generator torque is regulated by the controller model.

The software SAMCEF for Wind Turbines (S4WT) allows the user to define both a
structural and an aerodynamic model which are then solved together to obtain the
coupled aero-elastic solution [8]. Different parameters can be assigned; in this
analysis a turbulent wind has been applied because the interest of the analysis lays in
the turbine dynamic response in real conditions. The wind dominant component is in
the X direction (in the model, from LSS to HSS), but to have a more realistic response
also turbulent fluctuations on the other two directions are included (Table 1).

3.1 Load Cases

The model of the wind turbine is analyzed in different operating conditions and the
modal parameters are extracted from the generated acceleration signals by means

Fig. 1 NREL 5 MW S4WT model (left) and Test.Lab geometry (right)
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of Operational Modal Analysis. The different models are solved in S4WT and
accelerations are computed and exported in LMS Test.Lab for processing and
identification [9].

In order to have simulated accelerations that can be considered as accelerations
obtained from tri-axial accelerometers mounted on the blades, it is necessary to
consider them in the local reference frame in which the X axis is the blade axis
(oriented toward the blade tip), the Y axis is aligned with the chord-line and
belongs to the blade section plane (oriented toward the leading edge) and the Z
axis is normal to the chord line and belongs to the blade section planes. Using this
axis configuration, the edge-wise modes are described by bending along the Y axis
while flap-wise modes bend the structure along the Z axis. Axial modes along the
blade pitch axis can be neglected since they appear at frequencies much higher
than those the analysis will focus on in this paper.

The locations selected to measure the accelerations are:

• 3 sensors distributed along the tower
• 1 sensor at the hub center
• 5 sensors per-blade located on the pitch axis.

After analyzing the response of the structure in reference and ideal conditions,
different possible damages will be introduced to understand how they affect the
measured accelerations. In this preliminary assessment, two main damages are
introduced:

• Blade icing
• Mass unbalance on a blade.

The presence of ice on the blades can create excessive turbine vibration and can
change the natural frequencies of the blades as well as increase the fatigue loads. It
is very important to predict when the icing phenomena occur. Icing has two main
effects [10]; on one hand it modifies the blade shape increasing the drag and
decreasing the lift and on the other hand the presence of an additional and not
uniformly distributed mass could cause unbalancing of the rotor. Effect of ice is
not only related to performance issues, but also to safety ones; in fact, during the
operational conditions, lumps of ice can detach from the blade and cause damage
to people or things.

Table 1 Wind turbine main
parameter

Blade length 61.5 m
Blade overall mass 17,740 kg
Tower height above ground 87.6 m
Tower overall mass 347,460 kg
Hub mass 56,780 kg
Nacelle mass 240,000 kg
Gearbox ratio 97:1
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Within the software S4WT, the conditions ‘‘ice formation on all rotor blades’’
and ‘‘ice formation on all rotor blades except one’’ can be investigated. Calculation
is based on the guidelines for certification of wind turbines [11], where it is
suggested that the mass distribution (mass/unit length) is assumed at the leading
edge of the rotor blade and it increases linearly from zero at the rotor axis to the
maximum value lE at half the radius and then it remains constant up to the
outermost radius. The value lE is calculated as:

lE ¼ qE � k � cmin � cmax þ cminð Þ ð5Þ

k ¼ 0:00675þ 0:3 exp �0:32 � Rð Þ ð6Þ

where lEis the mass distribution on the leading edge of the rotor blade at half of
the rotor radius, qE is the ice density, R is the rotor radius, cmax is the maximum
chord length and cmin is the length at the blade tip, linearly extrapolated from the
blade contour.

The second damage condition which was simulated is the presence of an
unbalanced mass that is added to a particular location on the wind turbine. A little
cubic mass, which properties can be found in the Table 2, was considered for this
preliminary analysis.

Below, the different operating conditions investigated in this paper are
summarized:

• Reference parked conditions.
• Parked conditions with ice on all blades.
• Parked conditions on all blades but one.
• Reference power production.
• Power production with ice on all blades.

Table 2 Unbalanced mass properties

Location Mass 30 kg

Ixx 0.325 kg*m2

Iyy 0.325 kg*m2

Izz 0.2 kg*m2
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• Power production with ice on all blades but one.
• Power production with unbalanced mass.

4 Data Analysis

First of all, the wind turbine is analyzed in parked conditions. This load case
represents the condition in which the blades are parked and the generator is dis-
connected; the first seconds are used to place the pitch in its parking position and
the rotor at the angle specified as initial rotor angle. At the start time, the rotor is
released, but the pitch remains fixed.

To perform Operational Modal Analysis, the point at the tower top is chosen as
reference for the correlations and spectra computation, which are then used to
extract the modal parameters by means of PolyMAX method [12]. To simplify the
entire procedure, the accelerations along the blade axis are neglected. The iden-
tified modes are then compared to those one obtained using both the FAST model
and the ADAMS model; in FAST the natural frequencies are calculated by per-
forming an eigenanalysis on the first-order matrix created from a linearization
analysis, while in ADAMS a command that linearizes the complete model and
compute eigenparameters is used.

The results are summarized in Table 3 and the agreement between them is quite
good. By using PolyMAX all the first 10 modes can be identified and the biggest
differences exist in the predictions of the blades second asymmetric flapwise yaw
and pitch modes. ‘‘Yaw’’ and ‘‘pitch’’ mean that these blade asymmetric modes
couple with the nacelle-yaw and nacelle-pitching motions, respectively.

The natural frequencies shown in Table 3 are obtained in the standard con-
figuration; they can be compared to those one obtained in other cases such as that
one in which the presence of ice is simulated on all the blades or that one in which

Table 3 Numerical modes in parked conditions: STS: side-to-side, FA for-aft; blade modes are
described based on their main motion orientation

Mode Description Natural frequencies [Hz]
Test.Lab FAST ADAMS

1 1st tower STS 0.312 0.312 0.319
2 1st tower FA 0.329 0.324 0.316
3 1st flap yaw 0.666 0.666 0.630
4 1st flap pitch 0.675 0.668 0.669
5 1st flap sym 0.720 0.700 0.702
6 1st edge pitch 1.056 1.079 1.074
7 1st edge yaw 1.059 1.089 1.088
8 2nd flap yaw 1.853 1.934 1.651
9 2nd flap pitch 1.888 1.922 1.856
10 2nd flap sym 1.900 2.021 1.960
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the ice is on all the blades but one. In order to perform a better analysis, the point
at the blade root is chosen as reference for the correlations and spectra compu-
tation and the blade axis accelerations are neglected. The results, in the form of
frequencies and damping values, are shown in Table 4 for some of the modes. A
frequency shift due to the added ice mass on the blades can be observed and, as
expected, increasing the mass decreases the natural frequencies. Not so many
considerations can be done regarding the damping values because a global trend
cannot be seen moving from one condition to another one, but it should be ana-
lyzed mode by mode. Besides, possible effect on damping should be more visible
in operating conditions. It should also be mentioned that during ice events, ice
accumulates on the rotor blades modifying the blade shape and reducing the
aerodynamic efficiency. The amount of lift and the drag variation depends on the
quality, shape and position of the ice. In S4WT, the aerodynamic performance
modifications introduced by icing are not simulated. The only thing that is cur-
rently considered is the mass variation, which leads to changes mostly in natural
frequency values and partly on the damping. In real conditions, however, icing will
greatly influence both the structural behavior and the power production perfor-
mance of the machine. In real condition, damping variations, pitch control
responses and power production could be also used for detecting icing events, but
analyzing the real effects by means of numerical models can be quite difficult [13].

For a qualitative analysis of the signals, the PSD from some sensors is com-
puted and shown in Fig. 2. One point along each one of the three blades at the
same distance from the rotor center is taken into account.

Table 4 Numerical modes in parked conditions for the different analyzed configurations

Mode Standard configuration Ice on all blades Ice on all blades but one
Frequency/damping Frequency/damping Frequency/damping

1st tower FA 0.329 Hz/5.59 % 0.324 Hz/5.13 % 0.324 Hz/5.24 %
1st flap yaw 0.666 Hz/6.20 % 0.588 Hz/7.05 % 0.585 Hz/7.06 %
1st edge yaw 1.059 Hz/0.75 % 0.948 Hz/0.95 % 0.948 Hz/0.99 %
2nd flap yaw 1.853 Hz/3.24 % 1.696 Hz/2.05 % 1.695 Hz/2.33 %

Fig. 2 PSD of acceleration measured on one point on each blade in parked conditions. Standard
configuration (left) compared to the one with ice on all blades but one (right)
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First of all, parked conditions are analyzed. Two different configurations are
considered, the standard one and that one with ice formation on all the blades
except one. The curves are shown in Fig. 2. Almost all peaks for the two blades
with ice in the plot on the right are shifted to lower frequencies, as a consequence
of the mass increase.

Figures 3 and 4 show the PSDs in operating conditions for different configu-
rations. The fundamental harmonic frequency is 0.217 Hz because of an averaged
rotational speed equal to 13.02 rpm. The PSD amplitude in correspondence of the
first harmonic increases for ice configuration in comparison with the standard
configuration; the same considerations can be done regarding the mass unbalance
configuration, also if the blade mass is quite bigger than the unbalanced mass and
the differences between the two curves are not so evident. The other harmonics can
also be identified, but the amplitudes are less high than the first one.

5 Conclusions

In this paper, an advanced OMA technique has been applied to a wind turbine to
predict in advance failures or damages with a monitoring application based on the
analysis of modal parameters and their variations in operating conditions. The

Fig. 3 PSDs from acceleration measured on one point on each blade in operating conditions; ice
on all the blades (left) compared to ice on all the blades but one (right)

Fig. 4 PSDs from acceleration measured on one point on each blade in operating conditions;
standard configuration (left) compared to mass unbalance configuration (right)
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simulation model of a wind turbine has been built using an aero-elastic code; first
of all, data have been generated for parked conditions and processed using the
OMA technique to identify a reference set of modes. Then, different load cases
have been considered and data have been processed to analyze the difference in
frequency and amplitude from one case to another. For example, adding ice on all
the blades causes a frequency shift toward lower frequencies for all the natural
frequencies; if on one blade there is no ice formation, the difference between this
blade and the other two in terms of PSD can be identified. Then an operating case
has been simulated and the data have been processed and analyzed for different
conditions, with the icing and with the presence of an unbalanced mass on one of
the three blades. In operating conditions, the presence of harmonic components in
the signals makes the modal identification process critical because these compo-
nents have a much higher energy than the ones related to the structural response. In
the literature different techniques to separate the components and enhance the
identification process have been implemented. In this preliminary study, the har-
monics components were not removed, but in the future the prediction in advance
of failures and damages will be analyzed after using harmonic removal methods. In
addition, more possible damage cases such as random ice distribution (modeled by
different unbalancing masses distributed along the blades) or pitch control errors
will be analyzed.
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Data-Driven Wind Turbine Power
Generation Performance Assessment
Using NI LabVIEW’s Watchdog� Agent
Toolkit
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Abstract Power generation performance is a fundamental metric that all wind
farm operators use to determine whether expected power throughput is actually
being met. IEC 61400-12-1 has been drafted as an exhaustive power performance
measurement scheme for wind turbines. The primary weakness of such a standard
is the required level of depth of the associated performance tests, which is more
than sufficient for operators to use to run daily wind farm activities. In addition,
since this IEC test is not really meant for frequent evaluation, it also fails to
capture any loss in power generation performance over time. This paper addresses
the aforementioned weaknesses of the IEC standard by the application of data-
driven approach to model a wind turbine’s power curve. A set of measurements
during a known good condition is utilized to setup a baseline model. Regular
power curve measurements are then compared while taking into account the multi-
regime dynamics of the turbine. The approach was implemented using NI Lab-
VIEW’s Watchdog Agent� Toolkit and was successfully validated using actual
SCADA data collected from an on-shore wind turbine.
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1 Introduction

The wind power industry is experiencing capacity installations that continuously
increase, engineered by advancements in turbine technologies and surging market
needs. According to Global Wind Energy Council (GWEC) 2011 Annual Market
Update [1], global wind power capacity increased by 18 % and reached 238 GW.
While turbine manufacturing and capacity installation have been the main focus of
wind power industry, another key issue that has gradually received considerable
attention is wind turbine reliability and maintenance. As U.S. Department of
Energy reported [2], Operation and Maintenance (O and M) costs possess over
20 % of total life-cycle cost for offshore wind turbines and 15 % for onshore
turbines. To monitor and improve the reliability of wind turbines, development of
fundamental research and pioneering technology is required to evaluate turbine
power performance, detect faults of critical components and predict failure.

To offer a generic methodology to standardize power performance measure-
ment for different participants of the industry, The International Electrotechnical
Commission (IEC) has provided a standard IEC 61400-12-1 [3] as a guideline.
Participants, including Original Equipment Manufactures (OEM), wind farm
operators, service providers, regulators and academic researchers, have adopted
the standard [4]. Although recognized as an accurate and comprehensive method,
the IEC standard has the following disadvantages, inherently and observed from
practices:

1. To achieve the accuracy advocated by the standard, it requires high data fidelity
and inherently expensive monitoring routine. The standard is an exhaustive
approach that operators hesitate to perform.

2. The approach and metrics defined in the standard do not generate continuous
monitoring value for users, mainly because the cost and time incurred with the
measurement. For example, the standard advises 180 h of data for evaluation,
which usually takes longer to accumulate enough volume of the data. There-
fore, it does not provide a deeper insight of turbine performance deterioration.

3. The method used to calculate energy distribution in wind speed bins and annual
energy production (AEP) strongly implies that the projection of wind speed will
follow a deterministic distribution, and the turbine will be available and
operating at a constant performance level for the next year.

To address the issues above, a data-driven approach is applied to model power
curve continuously, which is entailed within a two-tier framework that employs
Prognostics and Health Management (PHM) techniques for wind turbine moni-
toring. Prognostics and Health Management (PHM) is an engineering discipline
‘‘focusing on detection, prediction, and management of the health and status of
complex engineered systems’’, defined by the International Society of PHM and
IEEE Society of Reliability. Having been successfully implemented in industries
such as rotary machinery, semiconductor manufacturing and aerospace, data-
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driven PHM has been proposed and developed to ensure continuous and efficient
operation of wind energy assets.

In the domain of wind energy, two types of frequently used data are supervisory
control and data acquisition (SCADA) data and condition monitoring system
(CMS) data. SCADA system is commonly used by operators to monitor turbine
parameters and report alarms. It retains sparse measurements including tempera-
ture readings, rotation speed and wind speed, which is used to determine daily site
activity [5]. In this paper, selected SCADA variables are used to model the
deviation of turbine power performance over time.

On the other hand, CMS data is high-resolution sensor data, which may
includes vibration, acoustic emission or oil debris analysis data, and used to decide
fault indicator for gearbox, generator and bearings [6, 7]. Critical wind turbine
components and their reliabilities have been largely surveyed and studied [9–11].
Integrating component downtime distribution and failure probabilities can gener-
ate a criticality analysis chart (Fig. 1).

In this chart, quadrant 4 contains components with low failure probability but
require longer lead-time for repair when they fail. These components are identified
as critical components for turbine system, and are appropriate for opting predictive
maintenance strategy and PHM techniques to monitor component health condition
much more closely with CMS data.

This paper presents an enhanced framework of wind turbine monitoring and a
case study for turbine power performance monitoring. The reminder of the paper is
organized as following: Sect. 2 presents the methodology and analytic framework;
Sect. 3 introduces how proposed method for wind turbine power performance
monitoring is applied to a real-world wind farm; and Sect. 4 summarizes and
concludes the work.

Fig. 1 4-Quadrant criticality analysis for wind turbine components
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2 Systematic Methodology

2.1 Overall Framework

A systematic methodology for wind turbine prognostics is proposed and shown in
Fig. 2. In this two-tier framework, SCADA data is first used to model turbine
overall performance, which is defined as its capability to generate electricity power
under varying wind condition. SCADA parameters including output power, wind
speed, wind direction and pitch angle are selected to input to a multi-regime model
corresponding to turbine’s dynamic operating conditions and density function
parameters are estimated for each operating regime. In the next step, performance
assessment is conducted where current or recent behavior that are represented by
the model parameters are compared with normal behavior learned with the same
parameters while turbine is known to be new or healthy. A performance indicator
frequently generated from the comparison, called Confidence Value (CV) as a
Global Health Estimator (GHE) for turbine performance, is then trended over time
and predicted with an upper limit R1 and a lower limit R2. The predictions can be
converted to forecast when the revenue per unit cycle will drop below a prede-
termined breakeven level and investigations should be triggered for component
Local Damage Estimator (LDE) values.

LDE values are generated from CMS data. Depending on the availability of
sensors, the types of data may include vibration, acoustic emission, temperature,
and oil debris. Different signal processing tools are used to extract features to

Fig. 2 Systematic methodology for wind turbine prognostics
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represent the high-dimension datasets. The features can be used to identify the
health degradation status of each instrumented component, and locate component
failure that is causing turbine performance reduction. For the located compo-
nent(s), the specific failure mode can also be identified with diagnosis tools so that
correct maintenance action can be suggested.

The proposed framework for wind turbine prognostics can improve existing
wind turbine monitoring methods as following:

(1) The highly dynamic environmental condition and operating condition for wind
turbines are taken into account with the application of multi-regime modeling
method.

(2) Under the framework, various techniques with similar capabilities can be
compared and optimized to generate a performance indicator. At the mean
time, the indicator is updated frequently and can represent real-time power
performance.

(3) A correlation between turbine overall performance and key component defect
is investigated, so that the performance metric of CV value can prioritize the
effects of degrading components. It allows users to optimize maintenance
strategy with a simple yet effective objective.

To aggregate frequently used PHM techniques, the Watchdog Agent� Toolbox
is developed as a reconfigurable hardware and software platform for various PHM
applications [12]. In National Instruments LabVIEW software, the toolbox
includes four categories (as shown in Table 1) of algorithms as Virtual Instruments
(VI) for rapid deployment.

The signal processing and feature extraction tools filter, transform and analyze
acquired sensor data to extract representative features that are highly related with
operation, failure mode or health condition. The feature set then serves as an input
to health assessment tools, where pattern recognition and artificial intelligence
tools model the similarity between baseline features and features from latest sig-
nal, to evaluate overall degradation of the system. Health diagnosis tools, usually

Table 1 Watchdog agent� toolbox algorithms
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classification algorithms, can identify the specific impending failure mode at its
early stage upon the detection of degradation. Performance prediction tools model
the trend of degradation and developing failure mode, to project these indications
and estimate the remaining useful life of the system and its components.

For wind turbine PHM, main effort of the estimation of LDE is usually
accomplished by selecting suitable tools from numerous algorithms in signal
processing category, to extract best features for sensors with different locations and
targeted drivetrain components. The computation of GHE, wind turbine’s power
performance, can be achieved with appropriate health assessment tools.

2.2 Global Health Estimator

To evaluate turbine GHE over time, SCADA data is input to a pre-processing
module to be filtered, segmented and normalized. Then parameter selection
module determines the relevant variables that will be used to interpret turbine
overall performance. As aforementioned that a wind turbine is subjected to
dynamic operating conditions, wind turbine data can be represented with as a
mixture of distributions through regime partitioning. Several tools can be used
here from Watchdog Agent� Toolbox, including Gaussian Mixture Model
(GMM), Self-organizing Map (SOM) and Neural Networks. Finally, distance
metrics depending on the choice of multi-regime modeling method can be com-
puted to interpret the wind turbine CV through comparing the mixture within
similar regime [13] (Fig. 3).

Fig. 3 The overall turbine health represented by GHE
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2.3 Local Damage Estimator

Data-driven analytical tools from different categories of Watchdog Agent�

Toolbox are employed here to obtain LDE values for each component. For gen-
erators, bearings and gearbox, signal processing and feature extraction, feature
selection, health assessment and health diagnosis tools can be applied to examine
the root cause of turbine degradation and health deterioration at component level
[13–15] (Fig. 4).

3 Case Study

A SCADA dataset acquired from an onshore large-scale turbine is used to validate
the proposed methodology for estimating GHE. The duration of the data is
26 months, during which SCADA module stores the mean, maximum, minimum
and standard deviation of all parameters every 10 min. The actual power output is
shown in Fig. 5, where three major downtime events are highlighted in grey
shadowed areas: (1) Q1-08–Q20-8, (2) Q1-09–Q3-09 and (3) Q4-09–Q1-10.

Data pre-processing methods are used to reject data instances that will even-
tually not benefit the analysis. First type is when the actual power is less than zero
(when turbine is not generating power), which corresponds to when wind speed is
below the wind turbine’s cut-in speed. The rest of the wind speed range, even

Fig. 4 Systematic approach to estimate LDE for critical turbine components
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when beyond the turbine’s rated cut-out speed, is all kept in this step. Second type
of data rejection is based on turbine control mechanism, where power generation is
curtailed due to pitch control as counteraction to wind gust rather than turbine’s
actual degradation. For the wind turbine used in this case study, there is an
embedded pitch regulation module designated to adjust the blade’s angle of attack
with respect to wind direction when high wind speed is observed, so to slow down
rotor rotation and limit the drivetrain workload. In the data, power production
drops, after high wind speed and rapid change of pitch angle, can be observed.
Such instances are rejected to ensure model accuracy.

After pre-processing, wind speed related variables and power output are
selected and standardized respectively. All variables are transformed to have zero
mean and unity standard deviation. The data is then segmented into 7-day intervals
so that the sample size of each segmentation is proper for modeling turbine per-
formance. In this case study, Gaussian Mixture Model (GMM), as shown in Eq.
(1), is selected for regime partitioning and health assessment while L2 Distance, as
shown in Eq. (2), is selected correspondingly as distance metric to evaluate health
degradation.

H xð Þ ¼
Xn

i¼1

pih x; hið Þ ð1Þ

CV ¼ H xð Þ � G xð Þk kL2

H xð Þk kL2� G xð Þk kL2

ð2Þ

The number of mixture Gaussian components, n, is first selected to represent
the distribution of selected parameters. Then the baseline turbine performance is
modeled with the data during first three time intervals where turbine status is
assumed to be healthy. For each of the rest intervals, an equivalent Gaussian
mixture representation is found and CV is computed using L2 distance between

Fig. 5 Actual power generation for the turbine unit
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baseline and each of the representation [13]. The trend of CV over time shows that
the technique captures the gradual degradation of the turbine unit. With appro-
priate selection and configuration of a prediction algorithm, providing early alarms
of ongoing deterioration could prevent major downtime before it happens.

The implementation of the approach in LabVIEW is shown in Fig. 6 through
Fig. 7.

As the process of configuring model training is shown in Fig. 6, pre-processed
SCADA data variables, including wind speed, power output and their timestamp,
are loaded in step 1 and step 2. Step 3 is where the GMM parameters for training a
baseline model are configured, including baseline duration, number of clusters and
number of iterations. While model training is triggered, the normalized baseline
power curve is displayed to provide an evident observation.

Performance evaluation through testing of the GMM model obtained from
remaining data is shown in Fig. 8. As continuation from baseline modeling, step 5
is for configuring GMM parameters for testing and step 6 initiates the calculation
of CV value based on the configured parameters. Once testing is completed, CV is
shown over time on the right hand side of the panel.

Eventually, the progression of turbine unit power performance, shown as CV,
together with wind speed and power output is visualized for user (Fig. 9).
Furthermore, a scalable monitoring platform for an entire fleet can be constructed
by executing a configured and validated algorithm for each individual turbine.

Fig. 6 Configuration of power performance model training with GMM
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Fig. 7 Demonstration of wind turbine health monitoring system using national instruments
LabVIEW [14]

Fig. 8 Configuration of power performance model testing with GMM
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4 Conclusion

This paper presents an advanced framework for wind turbine prognostics and
health management. A Global Health Estimator is proposed to enhance current
performance testing practices advised by an IEC standard. It is generated with
SCADA data to indicate and predict turbine unit overall performance. A Local
Damage Estimator is computed to evaluate degradation status of critical turbine
drivetrain components, and locate the fault that is the root cause of turbine per-
formance degradation. A case study is presented where Gaussian Mixture Model
and L2 Distance are used to compute the GHE. The implementation of GHE
computation is presented with Watchdog Toolbox� in National Instruments
LabVIEW.

The presented work benefits the wind power industry, as it helps to establish an
effective and systematic PHM solution that is capable of dealing with turbines’
constantly changing operating conditions and provides predictive maintenance
suggestions for wind farm operator. The calculation of GHE utilizes existing
SCADA system, provides progressive evaluation of actual power performance and
offers opportunities to predict turbine downtime.

Fig. 9 Visualization of wind turbine power performance
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generation industry. The largest cost for the wind turbine is its maintenance. A
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1 Introduction

In recent years wind energy is the fastest growing branch of the power generation
industry. The average yearly growth in the years 1997–2003 achieved 32 % in the
United States and 22 % in the European Union [1] and these figures will hold for at
least the next decade. The distribution of costs during the life cycle of the unit for
wind energy is significantly different from that of traditional, fossil fired units [1].
First of all, initial investment costs are relatively higher, whereas in traditional
units cost of fuel plays important role (usually it is the second largest cost). After
commissioning, the largest cost for the wind turbine (WT for abbreviation) is
maintenance. With proper maintenance policies, wind turbines can achieve the
highest level of availability in the power generation sector—even up to 98 %.

Therefore, condition monitoring of wind turbines, including fault diagnostics,
in particular at the early stage of a fault occurrence or even participatory actions, is
an essential problem in wind turbines engineering in particular [2–4] and in
rotating machinery engineering in general [5]. There were several attempts to
develop various monitoring tools, in most cases based on various classification
methods. Some of them are based on artificial neural networks (ANNs for
abbreviation). In most types of ANNs the learning process is unsuitable for cases
of continuous machinery intelligence monitoring. This means, among others, that
adding a new patterns as inputs requires repetition of the learning process. In ART
networks, introduced by Carpenter and Grossberg [6, 7], the learning process is not
separated from its operation. Furthermore, ART neural networks are capable to
add new states when necessary [8–10]. Therefore, this sort of ANNs was tested as
a tool for classification of states in continuous monitoring.

2 The Machine Description

The faults which are sought in wind turbines are primarily of mechanical origin.
The wind turbine with the gearbox, which is the most popular type, can be
described in the following way. The main rotor with three blades is supported by
the main bearing and transmits the torque to the planetary gear. The main rotor is
connected to the plate which is the gear input. The planetary gear has three planets,
with their shafts attached to the plate. The planets roll over the stationary ring and
transmit the torque to the sun. The sun shaft is the output of the planetary gear. The
sun drives the two-stage parallel gear which has three shafts: the slow shaft
connected to the sun shaft, the intermediate shaft and the fast shaft, which drives
the generator. The overall gear ratio is in the range of 1:100. The generator
produces alternating current of slightly varying frequency. This current is con-
verted first into direct current power and then into alternating current power of
frequency equal to the grid frequency. Electric transformations are performed by
the controller at the base of the tower—see Fig. 1.
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In the field of vibrodiagnostics, a machine operational state is understood as an
accepted range of machine’s operational points enabling referential analysis. In
practice, machine operating point is defined by values of available measurements
of physical quantities such as speed, load, pressure, temperature, etc., usually
called ‘‘machine process parameters’’ [11]. Typically, from each vibration record,
a set of diagnostic indicators is calculated known as ‘‘trends’’. Each trend point is a
combination of representation of true machine technical condition and behaviour,
current operating point of the machine measurement error and random factor. In a
typical condition monitoring set up, each trend is tracked against a precalculated
threshold value. In this case, operational states (shortly called ‘‘states’’) are used
for data classification during the data acquisition process. On the basis of these
states, data is combined into sets, which are assumed to represent a particular
machine. Consequently, the overall number of defined diagnostic indicators and
estimators is equal to the number of indicators and estimators multiplied by the
number of states. Therefore, from operator’s point of view, it is desirable to have
as little states as possible. On the other hand, from reliable-diagnostics point of
view, in order to minimize the fluctuation of operating points of the machine it is
desirable to define ranges of states as low as possible. In this case, the state
configuration would result either in (a) single operational state with low permis-
sible fluctuation of operational parameters, (b) a large number of operational state
with low permissible fluctuations of operational parameters.

Fig. 1 The mechanical structure of the wind turbine. Location of vibration measurement sensors
is shown by An symbols
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3 Classification Problem of Wind Turbine Vibration
Signals and Operational States

In recent years large development of monitoring and diagnostic technologies for
WTs has taken place. The growing number of installed systems created the need
for analysis of gigabytes of data created every day by these systems. Apart from
the development of several advanced diagnostic methods for this type of
machinery there is a need for a group of methods, which will act as an ‘‘early
warning’’. The idea of this approach could be based on a data driven algorithm,
which would decide on a similarity of current data to the data, which are already
known. In other words, the data from the turbine should be accounted for one of
known states. If this is a state describing a failure, the human expert should be
alarmed. If this is an unknown state, the expert should be informed about the
situation and asked for a definition of such a new state.

This approach could be called ‘‘the blunt expert’’, which maybe sounds strange,
but gives the most important feature of the proposed method. This approach may
brake the biggest barrier of application of artificial neural networks (ANNs) in
diagnostics, which is availability of significant amount of training data. As in real
cases it is not possible to acquire it, it is only possible to train ANNs for a few
cases covered by available data.

The problem of classification was investigated by several authors. One of the
first works was research by Shuhui et al. [12], who compared classification
techniques for the wind curve estimation. This work was often referenced by
others, but only multi-layred feed-forward ANNs were studied there. Another
important contribution was given by Kim [13], who compared performance of
several classification methods. His experiments showed that if the number of
independent variables in the system is low, then ANNs perform better than other
methods. Again, the investigated network was the multi-layer feed-forward net-
work trained by the back-propagation algorithm.

There are no works, known to us, which would consider application of ART
networks for the classification of WT states. There were also works applying
ANNs for wind and power generation prediction, but this issue is outside the scope
of this paper.

As the ART networks are capable to perform efficient classification and to
recognize new states when necessary [6, 7], we performed research of initial
classification task. The goal of the experiment was verification of ART classifi-
cation capabilities with comparison to the human expert. This type of data is
acquired in the majority of cases and the successful classifier should create a
reasonable number of classes, similar to these by a human expert. This task is the
main goal of the following paper.

As such a classification was shown, it is thus possible to filter out states, which
are known to be correct. The expert can then focus only on ‘‘suspicious’’ states
returned by the algorithm.
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4 Characteristics of the ART-2 Neural Networks

Let us briefly recall ART-2 neural network properties [7, 14, 15].
The ART-2 is an unsupervised neural network based on adaptive resonance

theory (ART). A typical ART-2 architecture, introduced by Carpenter and
Grossberg [6, 7], is presented in Fig. 2 (only one unit of each type is shown here).
In the attentional sub-system, an input pattern s is first presented to the F1 layer,
which consists of six kinds of units—the W, X, U, V, P and Q cells. It then
undergoes a process of activation, including normalization, noise suppression and
updating. This results in an output pattern p from the F1 layer. Responding to this
output pattern, an activation is produced across F2 layer through bottom-up
weights bij. As the F2 layer is a competitive layer with a winner-takes-all mode,
only one stored pattern is a winner. It also represents the best matching pattern for
the input pattern at the F1 layer. Furthermore, the pattern of activation on the F2

layer brings about an output pattern that is sent back to the F1 layer via top-down
weights tji: For the orienting sub-system, it contains a reset mechanism R and a
vigilance parameter q to check for the similarity between the output pattern from
the F2 layer and the original input pattern from the F1 layer. If both patterns are
concordant, the neural network enters a resonant state where the adaptation of the
stored pattern is conducted. Otherwise, the neural network will assign an
uncommitted (inhibitory) node on the F2 layer for this input pattern, and thereafter,
learn and transform it into a new stored pattern.

Fig. 2 ART-2 architecture
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5 Results

A simulation of a wind turbine work using historical data has been done. Changes
of operational states and vibration signals were investigated. Historical data
contain 27,000 measuring points in time (sampling frequency is 1 per 15 min).
Each point has three operational states values and one vibration signal value.
Simulation step was taken every 1,000 measuring points. ART-2 network
(described in Sect. 4) was used in the simulation in a following way.

1. ART-2 network is initialized.
2. Time t as a pointer of measuring point is set to 1,000.
3. All measuring points’ values are scaled to ½0; 1�.
4. While t is not greater then 27,000.
(a) ART-2 learning process is performed for each measuring point in ½1; t�. The

order of points is randomized. Each point is taken once. The vigilance
parameter is set to 0.982.

(b) Figures of classification states are plotted. Each network pattern determines
some state of machine.

Figure 3 presents how the ART-2 network has classified states for first 5,000
measuring points. There were 3 dominate states. After 15,000 measuring points 4-
th dominate state has joined. That situation is presented on Fig. 4. At the end
classification states look like in the Fig. 5.

Table 1 describes how numbers of classified states were changing during
simulation process.

Looking at last the column there can be observed first changes of numbers of
states. First change has happened after 8,000 measuring points. Next ones after
10,000 and after 14,000 points. Figure 6 presents the vibration signals for all
measuring points (ordered by time). After about 14,000 points the biggest damage
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happened. There must have been some symptoms of that damage. Mentioned two
first changes could be candidates of that symptoms.

6 Concluding Remarks

As it has been mentioned, monitoring is crucial in wind turbines exploitation. On
the other hand, there are very few attempts to create system for intelligent mon-
itoring based on artificial intelligence—see [2] and references given there. The
experiments described in this paper show that ART ANNs can be effective tool for
such task performing—the symptoms of a turbine damage can be detected using
ART ANN. It should be stressed however, that the obtained results are preliminary
ones—only one vibration channel has been used whereas, usually, a few vibration
channels are observed simultaneously—see [16]. The monitoring module based on
ANNs is planned to be a module of expert system for intelligent monitoring and
fault diagnostics in wind turbines.

The paper was supported by the Polish Ministry of Science and Higher Edu-
cation under Grant No. N504 147,838.
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Software Applications for Wind Turbine
Vibrations Analysis

I. Cozorici, H. Balan, R. A. Munteanu and P. Karaisas

Abstract In this paper is presented the implementation of a software for the
analysis of vibration generated by wind turbines components. This software appli-
cation was built in LabWiew programming environment and for vibration analysis
and fault detection were used techniques as: wavelet analysis, envelope detection,
FFT analysis, Cepstrum analysis, Vector RMS analysis. Vibration signal envelope
detection was performed using a virtual instrument based on Hilbert transform and
rms analysis was performed using virtual instrument ‘‘Vector RMS’’ specifically
designed for vibration analysis. The experimental results were obtained by mea-
suring the vibration signals of a bearing with a simulated fault on outer raceway.

Keywords Vibrations � RMS � Hilbert transform

1 Introduction

Vibration signal processing usually is performed by means of analysis in time
domain and frequency domain, mainly, due to the simplicity of these methods. In
nonstationary signal analysis applications, time domain analysis or frequency
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domain analysis, generates errors, which in some cases are significant. In the case
of nonstationary signals, the spectrum changes over time and hence the need for
time-frequency analysis.

Signal processing techniques in the time-frequency domain must highlight non-
stationarity of the analyzed signal structure by spectro-temporal analysis of energy
density, which is the physical significance of the time-frequency representations.

For bearings fault diagnosis, Fig. 1 uses several signal processing techniques,
which include: Fourier analysis, Cepstrum analysis, signal analysis methods based
on time domain analysis and Wavelet analysis [1, 2, 6–8].

Given that bearings are critical components of the gearboxes which are non-
linear operating components of wind turbines, it requires the use of advanced
signal processing methods.

Today state of the art in the field of computing, allows the implementation of
mathematical algorithms, though known for a long time, have had limited appli-
cability. Among these methods, Hilbert transform is a signal processing technique
suitable for the envelope vibration signal analysis.

2 Theoretical Considerations

Hilbert transform is defined in the time domain as the convolution of Hilbert
transformation parameter 1/(pt) with the time domain real vibration signal x (t)
[12]:

yðtÞ ¼ HfxðtÞg ¼ 1
p

Zþ1

�1

xðtÞ
t � s

dðsÞ ð1Þ

Knowing the time variation of the signal x(t) and Hilbert transform y(t) it can be
introduced the notion of complex analytic signal associated x(t) signal, according
to the relationship:

zðtÞ ¼ xðtÞ þ i � yðtÞ; ð2Þ

Frequency (Hz)
A

m
pl
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de

 (
m

m
)

1X

Broadband high frequency vibrations

Fig. 1 Amplitude-frequency
characteristic of a bearing
defect
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which has the advantage that it can be represented as a function of the instanta-
neous amplitude and phase:

zðtÞ ¼ AðtÞ � exp i � uðtÞð Þ; ð3Þ

where A(t) is the envelope of z(t) signal, defined by:

AðtÞ ¼ xðtÞ þ j � yðtÞj j; ð4Þ

and u(t) is the phase of z(t) complex analytic signal, defined by the relation:

uðtÞ ¼ ctg
yðtÞ
xðtÞ ð5Þ

Square of A(t) function is the expression of instantaneous power signal,
depending on time. Hilbert analysis allows to determine the power and instanta-
neous frequency of a signal.

In [3] the authors proposed a method for detecting bearings faults using
vibration signal analysis. The signal is translated into time-frequency domain by
the use of Wavelet transform, and then the envelope analysis of the detail coef-
ficients of the high frequency components is performed using the Hilbert transform
thus being able to identify the bearing fault characteristic frequencies.

3 Vibrowind Software

The monitoring and diagnosis system GUI software application is realized using
Labview programming language.

LabWiew is a visual programming language provided by the National Instru-
ments company [4]. Its name comes from the abbreviation of ‘‘Laboratory Virtual
Instrument Engineering Workbench’’.

Thanks to exclusively graphical programming interface, LabWiew is an ideal
programming language for the use in process monitoring applications. The library
contains several predefined functions, focusing on the following areas:

• data quisition;
• control devices;
• data analysis;
• display and data storage.

LabWiew programs are called virtual instruments (VI) and are based on the
concepts of modularity and hierarchy tree. Thanks to the virtual instruments
modular nature can be used both as main programs and subroutines in which case
they are called ‘‘SubVI’’. These subroutines have the advantage that they can be
developed and tested independently.
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LabWiew applications have two distinct parts: the front panel and the block
diagram. When the program is running these two windows carry out a continuous
data exchange between them.

The front panel is the graphical user interface that displays graphical elements
as indicators or controls. For the front panel designing are available predefined
objects such as buttons, graphics objects, switches, tanks, sliders etc.

For the block diagram implementation are used nodes representing execution
elements, terminals representing gates through which data is transferred and wires
representing data flow block diagram.

Software ‘‘VibroWind’’ is composed of two modules: data acquisition module
(Fig. 2) and data analysis module (Fig. 3). In the window ‘‘DATA ACQUISI-
TION’’ data acquisition is performed, the user being able to select specific data
acquisition parameters such as channel acquisition, channel dynamic range, mode
and sample rate and also the user can view, both monitored waveforms in real
time, for example vibrations from accelerometers (Fig. 2), and histogram of the
monitored parameters.

In this window the user can save the data in TDMS file type by selecting the
memory address and name in the ‘‘TDMS File Path’’. The user can create a new

Fig. 2 Data acquisition module GUI
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file or add data to an existing file. If the user add data to an existing file, the #
symbol is added automatically to the group name followed by a number until the
user chooses a new group name. The window is provided with a set of three blue
LEDs for each acquisition channel, which are designed to alert the operator. These
LED turn color to red when the signal amplitude on a particular channel exceeds
the value set in the ‘‘ALARM LEVEL’’ field, at which time the operator can
proceed to analyze in detail the respective signal.

In the ‘‘Data Analysis’’ window the user can select a file saved in the previous
window, or other previously saved file for signal envelope analysis, FFT analysis,
Cepstrum analysis and Wavelet analysis. Files which contain saved vibration
signals can be selected by specifying the file name and the desired channel.

In this window, in the ‘‘File Name’’ field the user can select the file containing
vibration signal. In the ‘‘scale info’’ field it can be selected the vibration sensor
sensitivity and measurement unit. In the ‘‘threshold settings’’ field it can be
selected the method of Wavelet tresholding implementation for vibration signal

Fig. 3 Data analysis module GUI
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denoise. Resulting vibration signal after noise removal is shown in the ‘‘Signal
Denoised’’ window.

For the analysis of vibration signal envelope was built a virtual instrument
called ‘‘Envelope VI’’ which has been embedded in the main application. The
detected vibration signal envelope is presented in the ‘‘Envelope’’ window.

In Fig. 4 is shown the virtual instrument ‘‘Envelope VI’’ block diagram and
icon. The implementation of this virtual instrument is based on Hilbert transform
algorithm.

In ‘‘Wevelet Scales’’ and ‘‘Scalogram time steps’’ fields are set the parameters
of ‘‘Scalogram’’ window.

The ‘‘RMS VECTOR’’ window displays built quadratic average values com-
puted for each period of the analyzed signal. This parameter is proposed to be used
as indicator of machine condition in the diagnosis of wind turbine structure.

In Fig. 5 is shown the virtual instrument ‘‘RMS VECTOR VI’’ icon and block
diagram.

Virtual instrument shown in Fig. 5 uses for the calculation of the RMS value
the application ‘‘RMS VI’’ available in Probability and Statistics Labview library.

Figures 6 and 7 shows the block diagram of VibroWind application acquisition
module and analysis module.

4 Experimental Results

As shown in Sect. 2, tire vibration signal, defined by the relation (4) is a low
frequency signal which follows the rectified input signal peaks.

In the envelope frequency spectrum are found components with frequency
equal to the occurrence rate of pulses and amplitude proportional to their energy.
The main stages of envelope vibration analysis are filtering, enveloping and

Fig. 4 Icon and block
diagram of virtual instrument
‘‘Envelope VI’’
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spectral analysis. Filtering must be band-pass type. The effectiveness of this
technique is closely related to the selection of filter band frequency [9].

This technique is most often used to diagnose bearings and gearboxes and is
based on bearings constructive particularities, emphasizing the presence of the
impulses and friction defects at an early stage [10, 11].

In the case study was simulate a fault of a bearing by performing two holes with
a diameter of 4 mm on the outer race, Fig. 8.

Virtual instrument ‘‘RMS VECTOR’’ is used to display the waveform con-
structed from RMS values computed for each period of the analyzed signal. This
parameter is proposed to be used as an indicator for diagnosis of bearing condition.

In Fig. 9 are shown the results obtained using ‘‘RMS Vector VI’’.

Fig. 5 Icon and block diagram of virtual instrument ‘‘RMS Vector VI’’

Fig. 6 Acquisition module block diagram
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Fig. 7 Analysis module block diagram

Fig. 8 Bearing with artificial fault
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5 Conclusions

Waveform linearity or lack of is closely related to the variation signal amplitude.
So sudden variations in signal amplitude will be characterized by an irregular
waveform similar to that in Fig. 10, while a signal whose amplitude variations are

Fig. 9 Vector RMS analysis. Bearing without fault

Fig. 10 Vector RMS analysis. Bearing with fault
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less significant will be characterized by an almost linear waveform (Fig. 9).
Analyzing the two figures we can see that the waveform of the faulty bearing
(Fig. 10) has a much greater and irregular variation than the waveform of the good
bearing (Fig. 9), where the amplitude tends to a horizontal asymptote.

Vibration signature analysis generated from wind turbine gearbox is a difficult
operation because the real amplitude-frequency characteristics are more complex
than ideal characteristics recommended by the literature [5].

For accurate interpretation of amplitude-frequency characteristics of vibration
is advisable to analyze the amplitude-frequency characteristics of the current
generated by the wind turbine to be sure that the current harmonic distortion does
not cause additional vibrations.

For the future research, the authors propose to integrate in the software
application VibroWind a module for the analysis of current signals.
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Experimental Characterization of Chatter
in Band Sawing

Tilen Thaler, Primož Potočnik and Edvard Govekar

Abstract In the paper the results of the characterization of the chatter phenom-
enon in the band sawing process are presented. In particular, the influence of the
cutting speed and of the distance between the cutting blade supports on chatter
characteristics was investigated. In addition to the cutting forces, and emitted
sound, the machine vibrations described by the measured acceleration signals were
used to characterize the chatter. Based on an analysis of these signals, a hysteresis
of the chatter onset and chatter die-out cutting speeds was observed. The observed
chatter hysteresis indicates that the chatter onset in band sawing is caused by a
Hopf-like bifurcation, and that cutting speed is a promising parameter for chatter
control. Additionally a strong effect on chatter characteristics of the distance
between the cutting blade supports was experimentally confirmed.

Keywords Band sawing � Chatter � Cutting

1 Introduction

In cutting processes, chatter is a phenomenon that can be described as self-excited,
high amplitude vibrations of the cutting tool or workpiece [1]. It is caused by the
instability of a nonlinear cutting process, and can have harmful effects on the
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process performance from the point of view of quality, economy, and ecology [2].
The chatter phenomenon has been investigated intensively in finalizing machining
operations such as turning [3, 4], milling [5] and, grinding [6]. Contrary to these
machining operations, band sawing is most often used at the beginning of the
machining chain, and as such does not influence the final product properties so
significantly. However, with the development of expensive and sometimes difficult
to cut materials and metal alloys, minimization of waste material for final
machining operations and corresponding surface quality are also becoming more
and more important.

In band sawing, the negative impact of chatter was first noticed in lumber
cutting [7, 8], and was reflected in the so-called wash-boarding [9] of the cut
surface. To understand, predict and avoid chatter vibration in band sawing, several
mathematical models were derived in order to predict the natural frequencies of
the moving continuum representing a band saw blade [7, 8, 10]. Directions for
practical solutions take into account control of the cutting speed, avoidance of
excitation of cutting blade natural frequencies, and maximizing the tension of the
cutting blade [7, 8]. Several theoretical studies have shown that cutting speed and
the distance between blade supports are very influential process parameters for the
natural frequencies of the band saw blade [7, 8, 10]. However, a description of the
experimental characterization of the influence, on chatter characteristics, of cutting
speed and of the blade support distance has not been found in the literature. In this
paper the results of an experimental characterization of chatter onset, occurring in
a band sawing process performed on a horizontal double column band saw, are
presented. This characterization was performed based on the acquired signals of
the cutting forces, the machine vibration, and the sound emitted during the process.
Particular attention was paid to the investigation of the influence, on chatter
vibrations, of the cutting speed and the distance between the two blade supports.
For this purpose, an experimental system that enables presetting of the blade
support distance, controlled variation of the cutting speed, and simultaneous
measurements of the cutting forces, machine vibrations and sound signals during
the band sawing process was constructed. The experimental system and the per-
formed experiments, including controlled variation of the cutting speed at different
blade support distances, are described in the next section. The results of the
analysis of selected signals and the corresponding chatter characteristics, such as
the chatter onset and chatter die-out cutting speeds, the chatter duration, and the
observed hysteresis, as they are related to the distance between the blade supports,
are presented in the section preceding the conclusions.

2 Experimental Setup

The experiments were conducted on a double column PE-TRA Toolmaster 300DC
band saw of 300 mm maximum cutting width capacity. The cutting width capacity
is defined by the distance between the cutting blade supports Lb, i.e. the distance
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between the two vertical blade supporting arms. This distance Lb can be preset
within the range from 230 to 420 mm. A bimetal cutting blade of length 4,150 mm
and pitch 2–3 [teeth per inch] was used, and tensioned at approximately 2.0 kN.
The detailed characteristic parameters of the cutting blade are given in Table 1. In
order to investigate the influence of the cutting speed vc on the band sawing
process, the band saw machine was equipped with a system for controlled varia-
tion of the cutting speed vc.

For the characterization of the band sawing process and the related chatter
phenomenon, a three-component Kistler 9257 dynamometer, a three-component
PCB piezo accelerometer, and a Brüel and Kjaer microphone were used. The
frequency responses of the dynamometer and accelerometer were, in terms of their
first natural frequency and according to the manufacturers, 2 and 10 kHz
respectively, for the applied type of mounting. The microphone frequency
response was ±2 dB in the frequency range 3.15 Hz–20 kHz. Placement of the
sensors is shown in Fig. 1. The dynamometer was placed below the workpiece in
the vicinity of the cutting blade, in order to measure the cutting force components
(Ff, Fc, Fl). The subscripts c, f, and l denote components in the cutting, feed, and
lateral directions. In order to measure the machine vibrations (af, ac, al) a three
component accelerometer was mounted on the left blade supporting arm. The
supporting arm is in direct contact with the cutting blade and represents one of the
most dynamically exposed parts of the machine structure.

To measure the sound pressure S emitted during the band sawing process the
microphone was positioned approximately 32 cm above the workpiece and
directed toward the cutting zone. All the sensory data obtained during the band
sawing process were acquired by means of a 16-bit resolution A/D data acquisition
card, and were transferred into a computer for off-line analysis. The sampling
frequencies for the cutting force components (Ff, Fc, Fl), machine vibration (af, ac,
al), and the sound pressure p signals, were 20, 25.6 and 20 kHz, respectively.

In the band sawing experiments, solid profile workpieces with a width of
100 mm and a height of 60 mm, made of structural steel of type St37 (according to
DIN 17100) were used. The main control parameters of the experiments were the
cutting speed vc and the distance between the blade supports Lb. To investigate the
influence of the distance Lb on the band sawing process, cutting experiments at
predefined values of Lb within the interval [250, 400] mm, with increments of
25 mm, were performed. During the band sawing, the cutting speed vc was linearly
increased, at a preselected value of Lb, from a minimum value of vcmin = 35 m/

Table 1 Cutting tool
parameters

Tool parameters

Material M42
Loop length [mm] 4150
Width/thickness [mm] 34/1.1
Teeth pitch [teeth per inch] 2–3
Rake/clearance angle [�] 10/32
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min to a maximum cutting speed of vcmax = 135 m/min. After this, the cutting
speed vc was linearly decreased back to the minimum cutting speed vcmin. The
described variation of the cutting speed was performed within a 60 s time interval,
ensuring that the changes occurred slowly and smoothly. The feed speed vf during
the all band sawing experiments was set at a constant value of vf = 50 ± 5 mm/
min.

Examples of the described triangular cutting speed profile vc(t) and the corre-
sponding feed force Ff, the feed acceleration af, and the sound pressure p measured
during band sawing of the workpieces at a preset distance between the blade
supports of Lb = 375 mm are shown in Fig. 2.

Fig. 1 Experimental setup on an industrial horizontal band saw
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From the time history of the signals it can be seen that, at the beginning and at
the end of the workpiece sawing, low amplitude signals of all the variables are
typical. With an increase in the cutting speed to vc & 59.3 m/min an abrupt onset
of large amplitude fluctuations occurs at time t & 7.7 s. These large amplitude
vibrations remain present with a further increase of the cutting velocity to its
maximum value of vc = 135 m/min. They die-out during the decrease of the
cutting speed to vc & 49.3 m/min, at time t & 55.1 s. The observed onset of large
amplitude oscillations at t & 7.7 s and a cutting velocity of vc = 59.3 m/min is
presumably caused by the onset of chatter.

In the cutting force signal, there is, in addition to the observed large amplitude
vibration, a time-dependent offset component, which is due to change of the
cutting speed and the effects of the workpiece geometry [11].

In general it has been observed that all of the acquired signals appear to be
informative with respect to chatter. However, from the point of view of potential
practical applications the acceleration signal af has several advantages, so this
variable was used in the following analysis for the characterization of chatter in
band sawing.

3 Analysis and Detection of Chatter Onset

As shown in the previous section, chatter is presumably reflected in high amplitude
oscillations of the feed force Ff, the feed acceleration af, and the sound pressure
p. However, apart from high amplitude vibrations, vibrations with specific pro-
nounced chatter inherent frequencies are characteristic. In order to characterize
this property and to overcome the problem of non-stationarity of the signals
imposed by the variation of the cutting speed, Short-Time Fourier Transform
(STFT) was used to perform further analyses of the acceleration signals af. Fig-
ure 3 shows examples of spectrograms of the feed acceleration signals af acquired
during the band sawing process, with variation of the cutting speed vc performed at
three different distances between the blade supports Lb. Horizontal stripes, indi-
cating the excitation of chatter related frequencies, were found to occur in the
spectrograms, regardless of the size of the distance between the blade supports Lb,
whereas regular chatter-free cutting was characterized by the relatively homoge-
nous, low power frequency pattern in the spectrograms.

From the spectrograms it can be observed that chatter onset takes place at
higher and dies out at lower cutting speeds vc. The observed difference indicates
the presence of hysteresis, which is characteristic for the nonlinear chatter phe-
nomenon in cutting, and can be described by a subcritical Hopf bifurcation [1]. It
can also be seen that chatter characteristic frequencies depend on the cutting speed
vc. Additionally, the strong effect of the distance between the blade supports Lb on
chatter characteristics such as the chatter onset and die-out cutting speeds vc, the
chatter duration, and the length of the hysteresis is evident from the spectrograms.
This has also been observed in other theoretical studies [7, 8]. In the following the
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influence of the blade support distance Lb on chatter characteristics is described in
more detail.

In order to experimentally characterize the observed chatter dependence on the
distance Lb, spectrograms of all the acquired signals were examined, and cutting
speed chatter regions were defined based on the frequency content in the spec-
trograms. Based on the defined chatter regions, the statistical influence of the
distance between the blade supports Lb on chatter characteristics such as the
chatter onset speed vco, the chatter die-out cutting speed vcd, the chatter duration s,
and the cutting speed hysteresis Dvc, can be determined as shown in Fig. 4.

Figure 4 shows a box plot diagram of the chatter onset vco, (blue) and the die-
out cutting speed vcd, (red) versus the distance between the blade supports Lb. In
order to generate the diagram at each investigated support distance Lb a sample of
6 measurements was used. The box plot indicates the median as the central hor-
izontal line, whereas the upper and lower box boundaries are located at the 1st and
3rd quartiles respectively, with whiskers placed at 3-times the standard deviation
of the sample, and points (+) outside the whiskers representing outliers. From the
box plot (Fig. 4) it can be seen that both the onset chatter and chatter die-out mean
cutting speeds are around 100 m/min for the first two shorter distances Lb. At a

Fig. 3 Spectrograms of the
acceleration signal af versus
cutting speed vc at three
different distances between
the blade supports Lb
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distance of Lb = 300 mm, the die-out chatter cutting speed drops to vcd = 62.4 m/
min, whereas the chatter onset cutting speed remains equal to vco = 100 m/min.
With a further increase in the distance to Lb = 325 mm the median cutting speed
of chatter onset drops to approximately vco = 68.1 m/min and further decreases to
a value of vco = 53.4 m/min at a distance of Lb = 400 mm. The chatter onset
cutting speeds vco are always slightly higher than the corresponding die-out chatter
cutting speeds vcd what indicates the presence of the hysteresis. To characterize the
length of the cutting speed hysteresis Dvc the difference between the chatter onset
and chatter die-out cutting speed Dvc = |vco - vcd| was used. The influence of the
distance between the blade supports Lb on the length of hysteresis Dvc is shown in
Fig. 5. Using the median values, it can be seen that in the case of smaller distances
Lb no hysteresis can be observed.

The largest hysteresis value Dvc = 34.8 m/min occurs at a blade support dis-
tance of Lb = 300 mm, denoting the largest bi-stable region of the band sawing
process. With a further increase in the blade support distance Lb the length of the
cutting speed hysteresis Dvc decreases, and scatters around 8 m/min.

A box plot of chatter duration s versus the distance between the blade supports
Lb is presented in Fig. 6. Considering the median values of s, it can be observed
that chatter duration s, in the case of small distances Lb, is short, and is not affected
by the distance Lb. In the case of distances larger than Lb = 275 mm, the duration
of the chatter s increased nonlinearly as the blade support distance Lb was
increased.
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As expected, the longest duration of the chatter s = 51 s took place in the case
of the largest blade support distance Lb = 400 mm.

4 Conclusion

In the paper the results of characterization of observed chatter phenomena in a
band sawing process performed on a double column horizontal band saw are
presented. The characterization was based on the analysis of the acquired cutting
force signals, the machine vibrations, and the sound emitted during the sawing
process. In particular, the influence, on chatter characteristics, of the cutting speed
and of the distance between the cutting blade supports was investigated. For this
purpose the cutting speed was increased linearly from vcmin = 35 m/min to
vcmax = 135 m/min, and then linearly decreased back to vcmin = 35 m/min. The
cutting blade support distance was increased stepwise from 250 to 400 mm, with
steps of 25 mm. Although reflected in all the measured signals, the machine
vibration as described by acceleration signal in the feed direction was used in this
paper for chatter characterization. For this purpose characteristics such as the
chatter onset vco, and the die-out cutting speed vcd, the chatter duration s, and
the cutting speed hysteresis Dvc, were analyzed. With respect to the influence of
the cutting speed vc the following findings were made:

• the specific characteristic frequencies excited by the chatter onset depend on the
cutting speed vc,

• in general, chatter onset takes place at higher cutting speeds vc, and dies out at
lower cutting speeds,

• the observed cutting speed differences Dvc between the chatter onset and die-out
cutting speeds indicate the presence of a hysteresis which is characteristic for
the onset of a nonlinear chatter phenomenon, which corresponds to a Hopf-like
bifurcation.

Additionally, the strong effect of the distance between the cutting blade sup-
ports Lb on chatter characteristics (the chatter onset cutting speed vco, the chatter
die-out speed vcd, the chatter duration s, and the length of the cutting speed
hysteresis Dvc) was confirmed from inspections of the spectrograms of the
acceleration signal in the feed direction. Statistically it was determined that:

• the chatter onset cutting speed vco and the corresponding chatter die-out speed
vcd decrease nonlinearly as the distance Lb between the cutting blade supports is
increased,

• the chatter duration s also increases nonlinearly as the distance Lb between the
cutting blade supports is increased,

• in the case of smaller distances Lb, no cutting speed hysteresis Dvc was evident.
The largest cutting speed hysteresis Dvc = 37 m/min was observed at a distance
of Lb = 300 mm.
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The presented results show that the cutting speed vc and the distance between
the blade supports Lb have a significant influence on the chatter phenomenon in
band sawing. The defined characteristics (the chatter onset cutting speed vco, the
chatter die-out speed vcd, the chatter duration s, and the length of the cutting speed
hysteresis Dvc) provide basic information which will be useful for the further
development and analysis of process stability in terms of stability diagrams.
Furthermore, apart from the blade support distance Lb, which is predominantly
predefined by the geometry of the workpiece, the cutting speed vc appears to be a
promising parameter for chatter control in band sawing processes.
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