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Foreword

Fungi, the “fifth kingdom” of living beings, comprise a wide variety of eukaryotic

heterotrophs including mushrooms, rusts, truffles, morels, molds, yeasts, and many

more families, genera, and taxa that are less well known. Their total number has

been estimated to be in the range of 1.5 million species. Fungi have traditionally

been considered to be microorganisms, because of the tiny hyphal filaments that are

formed in laboratory cultivations. However, these hyphae can form extensive

networks in their natural habitats, whose biomass is not smaller than that of large

animals or plants.

Fungi have also developed numerous lifestyles: saprotrophs break down dead

organic material and thus importantly contribute to nutrient cycling within the

ecosystem. Yet many other fungi are biotrophs and form symbiotic associations

with plants (mycorrhizae), algae (lichens), arthropods, and even prokaryotes. In

fact, more than 80 % of the vascular land plants are obligatorily dependent on

mycorrhizal symbioses with fungi. More recently, facultative and obligate

endophytes of various plant tissues have also been discovered, and there is evidence

that they can protect the plants against biotic and abiotic stress.

In order to be successful in their habitats, fungi have developed various success-

ful strategies such as the ability to export hydrolytic enzymes to break down

biopolymers or to produce chemicals that can antagonize competing organisms.

Some of these properties have been exploited by humans for the production of

goods for a long time: production of ethanol by the yeast Saccharomyces cerevisiae
is the oldest example of the use of fungi for mankind and is experiencing a revival

in this decade because of the interest in production of biofuels from renewable

resources. Other 60-and-more-year-old examples are penicillin production by Pen-
icillium chrysogenum and citric acid production by Aspergillus niger. These pro-

cesses led to a more systematic exploitation of fungi and consequently the

development of a number of biotechnological processes for the production of

enzymes (such as cellulases, amylases, lipases, and glucose oxidase); platform
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chemicals such as citric acid, itaconic acid, and gluconic acid; and numerous

secondary metabolites that proved successful in medicine (e.g., penicillin, cephalo-

sporin, cyclosporine, lovastatin). Due to the high secretory capacity that was

detected in the enzyme producers, fungi have also been used as workhorses for

the production of mammalian and plant proteins, which are only of limited avail-

ability from their native producer (e.g., chymosin). Finally, because fungi share a

significant part of their gene repertoire with higher organisms, but can easily be

studied and manipulated in the lab, some of them (e.g., S. cerevisiae, Schizosac-
charomyces pombe, Aspergillus nidulans, Neurospora crassa) have extensively

been used as model systems for basic biological processes such as the cell cycle,

reproduction, or the circadian rhythm.

On the other side, many fungi also have negative impacts on mankind: the

majority of contemporary plant diseases are caused by fungi and can achieve

epidemic dimensions like the Dutch elm disease caused by Ophiostoma ulmi or
chestnut blight by Cryphonectria parasitica. They also lead to large losses of

nutritionally required crop plants by either affecting plant biomass formation

(like the rice pathogen Magnaporthe grisea) or simply due to the secretion of

mycotoxins (such as aflatoxin formation by Aspergillus flavus) and thus spoiling

the harvest. Many other fungi can act as parasites of animals including humans,

such as Cryptococcus neoformans that causes fungal meningitis. More recently,

several fungi have proven to be opportunistic facultative pathogens, which do not

target animals or humans regularly but can establish themselves in the body of

immunocompromised individuals. In addition, many fungi have developed

mechanisms to settle in the most extreme habitats and can occupy, e.g., building

walls, thereby giving rise to “indoor contamination,” or simply cause biodeteriora-

tion of materials, particularly manufactured wood.

In view of all these diverse activities, it is not surprising that fungi have also been

intensively investigated towards detecting the mechanisms that form the basis of

the various positive or negative effects. The final aim is to find tools that can be used

either to increase their beneficial action or to combat their negative impact. This

was, however, significantly impeded in those fungi where appropriate genetic

systems to map mutations and cross mutants were unavailable. Today, the devel-

opment of techniques to sequence, assemble, and annotate whole genomes and

to functionally analyze their contents by systems biological approaches

(transcriptomics, proteomics, metabolomics, and other “omic” technologies) has

eliminated this bottleneck. The first major fungal genomics milestone was the

publication of the whole genome sequence of the yeast S. cerevisiae 17 years

ago. Today, more than 100 fungi had their genomes sequenced, and although this

number is dominated by fungi of medical importance, genomic insights are already

available for many other fungi. Today, we have arrived in several cases at first

systematic insights into how fungi use their genetic repertoire for their specific

behavior.
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This book reviews the current state in our genomic understanding of those fungi

which are primarily soil inhabitants and also those which interact with plants,

whereby both positive and negative interactions will be covered. The comparison

of their genomes reveals the various strategies, by which fungi use a basically

similar repertoire of genes for differing purposes, and offers fascinating

possibilities for future research.

Vienna, Austria Christian P. Kubicek
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Preface

Fungi have a major role in natural ecosystems and in agriculture. This is particu-

larly relevant for fungal species whose main niche is either soil, rhizosphere, plant

roots, or above-ground plant tissues. The sequences of fungal genomes provide a

new window to observe and understand how fungi recycle organic material in the

soil, engage in positive and negative interactions with plant roots, and attack plants

as pathogens. An unprecedented amount of sequence information has accumulated

over the past decade, and researchers are now looking for ways to extract biological

information. We assembled this volume in the hope that comparison across species

will help bring focus to what is similar or different in the genomes of soil

saprophytes, symbionts, and plant pathogens. There are now so many sequences

that any attempt to catalog what is known for all fungi would require not one but

tens of volumes and would quickly become out of date. Rather, we chose examples

of species where particular principles can be illustrated. The reasons are diverse:

from importance in ecology, agriculture, or medicine to model species that may

have been convenient for applying a certain technique. If the approaches from one

species eventually lead to fruitful work in another, we will be able to look back on a

successful contribution to the science of fungi in its new genomic framework.

We are grateful to the authors of the chapters of this volume for all their thoughts

and efforts. In particular, each chapter develops a unique approach that often

reflects not only the fungal species studied but also the viewpoint, research

priorities, and expertise of the research community studying each species. The

fungal genome sequencing projects are the source of this book, which two decades

ago would have been difficult to even imagine. Many of the contributors have been

central participants in the genome projects or guiding future ones, and we hope to

share the satisfaction of seeing a growing contribution of the genomics of soil,

rhizosphere, and plant-interacting fungi to ecology, biotechnology, and sustainable

agriculture. We would like to express our sincere thanks to the series editor

Prof. Dr. Ajit Varma for supporting this project from the start and for his help in
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bringing this volume to completion. It has been a pleasure to edit the volume,

primarily due to the stimulating cooperation of the contributors. We wish to

thank Hanna Hensler-Fritton and Jutta Lindenborn, Springer Heidelberg, for their

generous assistance and patience in finalizing the book.

Haifa, Israel Benjamin A. Horwitz

Nagpur, India Prasun K. Mukherjee

Nagpur, India Mala Mukherjee

Vienna, Austria Christian P. Kubicek

April 30, 2013
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Chapter 1

Genomic Contributions to the Study of Soil
and Plant-Interacting Fungi

Benjamin A. Horwitz, Prasun K. Mukherjee, Mala Mukherjee,
and Christian P. Kubicek

1.1 Introductory Remarks

The first filamentous fungal genome published was of Neurospora crassa (Galagan
et al. 2003), one of the classical genetic model systems (Davis and Perkins 2002;

Perkins 1992). It is obvious, though, that not everything can be learned from the

genome of a single species. Fungi are very versatile and degrade almost any

substrate. The niche occupied by a given fungal species can be anywhere from

very wide to very narrow. It was logical, therefore, to ask whether the genomes of

plant pathogens would differ from saprophytes, and how. The sequence of rice blast

as “the” model plant pathogen (Dean et al. 2005) indeed began to provide insight

into what makes a pathogen different, with expanded families encoding signal

transduction machinery, secondary metabolism, and possible virulence-related

proteins. Later, though, the choice of species to sequence followed a more compli-

cated path, guided by medical or agricultural importance, or by the activity of the

research groups working on a particular group of fungi. Although different

questions have been pursued in different species, there are unifying themes. Some

of these themes are set by basic biology, for example, protein kinase genes related

to the cell cycle, or the fundamental structure of the fungal cell wall. Others are

related to interaction with other organisms: small secreted proteins that act as

B.A. Horwitz (*)

Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel

e-mail: horwitz@tx.technion.ac.il

P.K. Mukherjee • M. Mukherjee

Central Institute for Cotton Research, Shankar Nagar PO, PB 2, Nagpur 440010, India

e-mail: prasunmukherjee1@gmail.com; malamukherjee1@gmail.com

C.P. Kubicek

Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering,

Vienna University of Technology, Getreidemarkt 9, 1060 Vienna, Austria

e-mail: ckubicek@mail.zserv.tuwien.ac.at

B.A. Horwitz et al. (eds.), Genomics of Soil- and Plant-Associated Fungi,
Soil Biology 36, DOI 10.1007/978-3-642-39339-6_1,

© Springer-Verlag Berlin Heidelberg 2013

1

mailto:horwitz@tx.technion.ac.il
mailto:prasunmukherjee1@gmail.com
mailto:malamukherjee1@gmail.com
mailto:ckubicek@mail.zserv.tuwien.ac.at


virulence effectors for pathogens, effectors required to establish symbiosis, and

enzyme repertoires that are tuned to a particular host or substrate.

1.2 Genetic Models

Neurospora crassa, as already mentioned, and Aspergillus nidulans are the most

advanced model systems and are used to ask basic questions. Neurospora (years

before its genome had been sequenced) was used to identify the clock geneFrequency
(McClung et al. 1989) and the “white collar” blue light photoreceptor (Ballario

et al. 1996). Aspergillus was established as a model of choice for developmental

studies (Adams et al. 1988). Signal transduction schemes advanced for both Neuros-
pora (Borkovich et al. 2004) and Aspergillus (Adams et al. 1998) are a standard for

work on other species (see the discussion and schemes in Chaps. 5 and 7).

As elsewhere in this volume, it is important to keep in mind work done in species

that are not represented here. As an example, work on the mitogen-activated protein

kinase (MAPK) pathway in fungi began with the finding that a MAPKK of Ustilago
maydis is needed for conjugation tube formation, filament formation, filamentous

growth, tumor induction on the maize host, and teliospore germination (Banuett and

Herskowitz 1994). Rice blast is a premier model for the study of fungal signal

transduction (Xu and Hamer 1996; Zhao et al. 2007). Model systems, though, can

be looked at in a different light. The tools available for Neurospora (Chap. 3), for

example, add a dimension to comparative work, where a well-understood process

can be compared in many accessions. A quantitative trait loci (QTL) analysis of the

circadian clock (Kim et al. 2007) identified 13 previously known clock loci but also

30 new ones. Magnaporthe is studied for the biochemistry (and physics) of appres-

sorium development, but recent years have seen a novel above- and belowground

view, addressing the question of what makes a pathogen attack either leaves or roots

(Chap. 4).

1.3 Soil Fungi

Fungi have central roles in recycling organic material in the soil. The natural niche

of the cultivated mushroom Agaricus bisporus is forest soil rich in humic

substances, which consist of nonwoody, partially degraded plant material. The

A. bisporus genome encodes a large set of carbohydrate-degrading enzymes

enabling the fungus to break down polysaccharides from plant cell walls (Morin

et al. 2012). In this respect, A. bisporus is similar to the sequenced wood-degrading

Basidiomycetes (Chap. 13), but has relatively few lignin or manganese peroxidase

genes (Morin et al. 2012). Soil inhabitants interact with the roots of living plants,

and these interactions can be either beneficial, damaging, or somewhere in between.

Fusarium oxysporum is the agent of vascular wilt, with a wide host range, but
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exhibiting host specificity at the subspecies level. The analysis of the genomes of

these fungi (Ma et al. 2010) revealed the presence of lineage-specific chromosomes

wherein most of the pathogenicity-related genes are concentrated. Interestingly,

horizontal transfer of these chromosomes rendered the nonpathogenic strains path-

ogenic (Chap. 7). Two species of Verticillium, related wilt pathogens, have also

been sequenced, and their genomes encode an expanded capacity to make pectin-

degrading enzymes (Klosterman et al. 2011). There is good reason to expect the

genomes to help us understand why some species are pathogens and others benefi-

cial to plants. Ancient symbioses (Remy et al. 1994) evolved together with land

plants. Mycorrhizal fungi interact with roots in two very different ways, both of

which result in exchange of minerals and nutrients between the partners. Plants and

symbionts have evolved signaling mechanisms to establish their interactions

(Oldroyd 2013; Oldroyd et al. 2009). The extensive hyphal network of the fungal

mycorrhizal partner effectively increases the surface area of the root, transferring

mineral nutrients (among which phosphate is a prominent factor) from the soil, and

the plant provides carbon sources for the fungus. Furthermore, it was recently

concluded from carbon isotope modeling that in boreal forests, in deeper soil layers,

a large proportion of soil carbon compounds are derived from roots and associated

mycorrhizal fungi, which thus have a central role in the sequestrating of carbon

(Clemmensen et al. 2013). Endomycorrhizal fungi (AMF) penetrate root cells

forming a distinctive intracellular network, the arbuscle (Bonfante and Requena

2011). The fungal members of this intimate symbiotic pair belong to the

Glomeromycota; no species in this lineage has been sequenced yet, but an immense

effort is under way. Moreover, transcriptomic (Gomez et al. 2009; Tisserant

et al. 2012) studies and molecular genetic investigations (Kloppholz et al. 2011)

of the mechanism of this important symbiosis are running ahead along with the

genome project. Another type, the ericoid mycorrhizal fungi, belongs to several

Ascomycete classes. There is a draft sequence for Oidiodendron maius, a member

of the Leotiomycetes which can colonize the roots of some ericoid plants intracel-

lularly (Joint Genome Institute). Ectomycorrhizae (EM) form an intercellular

network in the cortex of the root (Plett and Martin 2011). EM fungi often belong

to the Basidiomycetes, and the first sequenced EM species was Laccaria bicolor
(Martin et al. 2008). Paxillus involutus is another well-studied EM Basidiomycete

species, which has been sequenced to 36.2� coverage (Joint Genome Institute).

Studies on Paxillus involutus are unraveling the molecular basis for how

ectomycorrhizae act as both decomposers and mutualists. In particular, novel

spectroscopic strategies combined with transcriptomics have now provided insight

into the mechanism for how P. involutus obtains nitrogen by decomposing complex

substrates in the soil (Chap. 8). There are also Ascomycete EM fungi, belonging to

the classes Dothideomycetes (Chap. 9) and Pezizomycetes. The genome sequence

of the truffle Tuber melanosporum represents the latter class; comparison with

Laccaria bicolor shows that the set of genes enabling symbiosis has evolved

differently (Martin et al. 2010; Veneault-Fourrey and Martin 2011). In contrast to

L. bicolor, T. melanosporum does not have strikingly expanded gene families of

small secreted proteins and might have some potential for breakdown of host cell
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walls. Trichoderma spp. (Chap. 6) are mycotrophs that parasitize and destroy other

fungi, commonly aboveground Basidiomycetes. They can also interact with plant

roots and colonize the outer cortex layers in a way similar to EM, although it is

debated whether root-interacting Trichoderma spp. can be considered as true

symbionts. Similar to EM, Trichoderma spp. do not reach the vascular system, do

not break down plant tissue, and do not cause disease. Nevertheless, the

Trichoderma genomes encode enzymes for plant cell wall degradation which are

needed to establish themselves in pre-decayed wood (Chap. 6). Piriformospora
indica is a Basidiomycete root symbiont which interacts first as a biotroph,

followed by a second phase characterized by local plant cell death which does

not result in disease. The genome and transcriptome have some characteristics of

biotrophs, for example, expression of genes encoding small secreted proteins, early

in the interaction with roots (Zuccaro et al. 2011). Other species certainly can

invade roots and cause disease, for example, the destructive soilborne pathogen(s)

Fusarium oxysporum (Chap. 7). Comparison of these genomes should guide under-

standing of where symbiosis ends and disease starts. Finally, one must remember

that myriad species have not been sequenced or even studied. Chapter 14 introduces

the Archaeorhizomycetes, a novel group of soil fungi which is not yet represented

among the sequenced genomes.

1.4 Pathogens and the Soil

Some soilborne fungi are serious pathogens of roots or of the entire plant, and

several species have been sequenced. An isolate from the widespread Basidiomy-

cete pathogen Rhizoctonia solani (isolated from a lettuce plant) was sequenced. The

genome was characterized in detail (Wibberg et al. 2012), and impending func-

tional analysis may shed light on the difference between pathogens and symbionts.

Two widespread, destructive necrotrophic plant pathogens Sclerotinia sclerotiorum
and Botrytis cinerea persist in the soil, with the help of resistant sclerotia that

develop from mycelia. This contrasts with some other members of the

Leotiomycete class which are biotrophs on leaves. The sequences of Sclerotinia
sclerotiorum and Botrytis cinerea provided an opportunity for comparative geno-

mics (Amselem et al. 2011). The two species are close, and indeed, there was a high

level of sequence identity and synteny. There are also some revealing differences

and biological insight. S. sclerotiorum does not make conidia and relies on sclerotia

alone for survival and eventual dispersal, while B. cinerea disperses by numerous

small conidia, in addition to being able to survive as sclerotia in the soil. The

genomes, though, did not provide an explanation for why S. sclerotiorum does not

conidiate, since the relevant genes are present. Even though there were unique

secondary metabolite clusters, there were no obvious unique virulence determinants,

and regulation appears more important than the presence of sets of genes (Amselem

et al. 2011).

4 B.A. Horwitz et al.

http://dx.doi.org/10.1007/978-3-642-39339-6_6
http://dx.doi.org/10.1007/978-3-642-39339-6_6
http://dx.doi.org/10.1007/978-3-642-39339-6_7
http://dx.doi.org/10.1007/978-3-642-39339-6_14


The three pathogens just mentioned are bona fide soil residents, but the soil is a

reservoir for some foliar plant pathogens whose spores are distributed above

ground, for example, Southern corn leaf blight (Chap. 9). Thus, one can look

above ground without going too far from the main emphasis of this volume, a

case in point being rice blast and its relatives (Chap. 4). One of the plant pathogens

whose molecular biology and genomics is most advanced is Ustilago maydis
(Kamper et al. 2006).U. maydis was compared with the closely related Sporisorium
reilianum. Among the salient findings from this study was that the effector reper-

toire has diverged much more than the average over the genome (Schirawski

et al. 2010). If looking above ground, pathogens of humans are of vital importance.

Three Zygomycete fungi, whose natural niche is dung and soil, have been

sequenced: Phycomyces, Mucor, and Rhizopus. Mucor is one of many causes of

opportunistic filamentous fungal mycosis (Perusquia-Ortiz et al. 2012). Rhizopus is
an emerging pathogen (Chap. 11). The dermatophyte fungi are not normally life-

threatening but cause immense suffering. The dermatophytes are completely

adapted to life on the skin, rather than being opportunistic pathogens. Soil sapro-

phytic, geophilic species are closely related to those causing disease on human or

animal hosts, and when five dermatophyte species including the geophyte

Microsporum gypseum were sequenced and compared, the genomes were highly

collinear. There were also genes unique to each species, but signaling and regula-

tion of gene expression may play the major role in determining host and niche

(Martinez et al. 2012).

1.5 Contribution of Genomics: Progress and Outlook

Genomic sequences provide an unprecedented view into the diversity of fungi that

reside in the soil or spend part of their life cycle there and, of course, into their

relatives that have no association with soil. A recurring motif in the published

genome papers and in the chapters of this volume is that, sometimes, analysis of the

genomes directly answers a biological question. Biochemical analyses, though, are

often needed to go from genome to enzyme activity and function. When a group of

fungi was long known for a particular function, there is abundant biochemical

literature, but less so for species where new biochemical potential was found to

be encoded in the genomes. An example is lignin degradation by rot fungi of the

Agaricomycetes (Chap. 13), while the potential exists in Ascomycetes (Chap. 12),

where new biochemical questions can now be asked. Aspergillus spp. are the

classical models in which to study secondary metabolites, while the newly discov-

ered biosynthetic clusters in other species, some of them discussed here, are leading

chemists into new territory (Brakhage 2013; Lim et al. 2012). In other analyses,

huge efforts led to an understanding of genome structure, phylogeny, and evolution,

but cannot yet give a full answer as to why one species is a pathogen while a related

one is a saprophyte, or mutualist. There are many hints in the chapters that follow to

suggest that regulatory networks may provide the answers. From the technological
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point of view, the genomes are the first step, prerequisite to any attempt at

understanding these regulatory networks.
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Chapter 2

Fungal Genomics for Energy
and Environment

Igor V. Grigoriev

2.1 Introduction

The finite resource of fossil fuels and the adverse ecological impacts of their

exploration and use pose significant challenges for mankind. Development of

alternative energy sources goes hand in hand with restoring ecological balance.

This requires knowledge of how natural biological systems work. One such system

includes fungi that interact with plants as symbionts, pathogens, or decomposers.

These interactions, first, determine growth of biomass and, second, provide clues

toward efficient conversion of plant-produced lignocellulose into energy, offering

real alternatives to fossil fuels. Understanding these processes at the molecular level

is therefore a critical challenge.

The tools of molecular biology and genomics can help us meet this challenge.

Over the past decades, genomics, and genome sequencing in particular, have

emerged as powerful tools for biological research. In the last few years, due to

the introduction of the next-generation sequencing (NGS) technologies, these tools

went through dramatic transformations. The first genome projects like sequencing

the genome of Saccharomyces cerevisiae were colossal multi-institutional, multi-

national sequencing efforts (Goffeau et al. 1996), which reached their culmination

with the Human Genome Project (Lander et al. 2001). Though deemed an

extremely large quantity of data several years ago, the 3 � 109 base pairs of the

human genome represent only a fraction of the data produced from just a single lane

of an Illumina sequencer these days. Genomics technologies are thus poised to help

us study not just individual organisms but entire ecological systems.

With technology breakthroughs, the scope of the projects has evolved accord-

ingly. Genomics projects have reached an unprecedented scale like the 1000 human

genomes (2010) or ENCODE (2004) and enable scientists to ask new types of
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questions. How can genomics help to obtain a sustainable growth of biomass? What

is the role of microbial association with plants? Do genome features determine if a

fungus is a friend (symbiont) or a foe (pathogen)? How do microbes efficiently

convert biomass into energy? What biological mechanisms govern ecological

balance? Here, in the context of fungal genomics for energy and the environment,

we discuss tools, applications, and the most recent developments available to

explore the biology of soil fungi at the molecular level.

2.2 The Tools of Genome Sequencing

The first sequencing experiments were very laborious. Not long ago, a scientist

would have to make a significant effort to sequence a single gene. At the end of the

twentieth century, Sanger sequencing (Sanger et al. 1977) became the dominant

way to sequence genomes, including the human genome. At the beginning of the

twenty-first century, suddenly several new NGS platforms were introduced

(Metzker 2010). First, 454 (now Roche) offered a new technique called

pyrosequencing as a way to read DNA fragments in a high-throughput fashion

and for just a fraction of the cost of Sanger sequencing. Shortly after, Solexa (later

acquired by Illumina) developed a new way to produce very large numbers of very

short (initially 25 bp) reads at a much less cost. More recently, Pacific Biosciences

presented a single molecule sequencing approach to produce long reads but with a

relatively high error rate (up to 15 %). These are just a few among the larger

collection of sequencing platforms that are available today. Each of them dramati-

cally improved characteristics of the produced sequence reads—length, error rate,

throughput, and GC bias—during just the last few years. Innovation continues as

new players like Oxford Nanopore promise groundbreaking solutions in the near

future (Pennisi 2012).

Many sequence analysis tasks have been solved in the era of Sanger sequencing.

Genome assemblers like Arachne (Batzoglou et al. 2002) are capable of putting

together Sanger reads into assemblies for both small bacteria-size and large plant-

size genomes. However, some sequencing and analysis problems remain quite

challenging. Sequencing shows some platform-dependent bias. Repetitive

sequences make it difficult to place reads uniquely into an assembly. Polymorphism

and polyploidy interfere with clean separation of haplotypes.

A few dozen fungal genomes were sequenced using the Sanger platform and

have draft assemblies available in public databases like GenBank (http://www.ncbi.

nlm.nih.gov/genbank). Using multiple iterations of targeted Sanger sequencing,

many gaps in several draft genomes were closed in a process called genome

finishing. This resulted in at least a dozen small yeast-size finished genomes

(Dujon et al. 2004) starting with S. cerevisiae and only a couple of finished genomes

of filamentous fungi (Berka et al. 2011; Goodwin et al. 2011). Many others

including the model fungus Neurospora crassa went through multiple rounds of
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genome improvements but continue to keep “secret messages” in some as-yet

unresolved parts of their genomes (Galagan et al. 2003).

Genes encoded in the sequenced and assembled genomes can be predicted and

functionally annotated using different computational approaches (Grigoriev

et al. 2006; Haas et al. 2011). The complex intron-exon structure of a eukaryotic

genome makes annotation a challenge in comparison to the simpler problem of

calling ORFs in compact, gene-dense prokaryotic genomes (in which genes typi-

cally lack introns). Eukaryotic gene prediction usually combines several methods

including transcriptome-based (deriving genes from ESTs mapped to a genome

assembly), homology-based (based on proteins from other genomes mapped to a

translation of the assembly), and ab initio gene predictors. For the latter, which

sometimes is the last resort (since preference is usually given to genes predicted

from experimental data or similarity to known proteins), gene structure features are

derived from a collection of known genes and then are searched for in the entire

genome to predict new genes using these features. Gene structures or models

predicted using these methods also require annotation methods to predict possible

gene functions. For a given protein encoded in a genome, function can be inferred

from known proteins or protein domains if their protein sequences are sufficiently

similar as determined by various alignment programs like BLAST or HMMER

(Altschul et al. 1990; Bateman et al. 1999). The problem is that despite the quickly

growing number of sequenced genes, the number of biochemically characterized

proteins grows very slowly. In addition, computational methods for gene prediction

and annotation as well as reference databases themselves are error prone. There-

fore, both structural and functional annotations are often followed by manual

inspection in which trained analysts look at genomes, predicted genes and available

lines of evidence in genome browsers. The largest scale efforts in manual curation

have been achieved for the human genome, although several model fungi including

S. cerevisiae, S. pombe, and N. crassa also have curators devoted to iterative

improvement of these datasets (Howe et al. 2008).

The new sequencing technologies have brought new types of data, for example,

very short reads in large numbers from Illumina or longer and error-prone reads

from 454 and Pacific Biosciences sequencers. Variation in read sizes and numbers

demands completely different analytical approaches. Various implementations of

de Bruijn graph have been used in new assemblers such as Newbler, Velvet, and

AllPathsLG that were tuned for different platforms (Earl et al. 2011). Hybrid

sequencing and assembly has become the norm, with assemblies often being

constructed from Illumina, 454, and Sanger reads all pooled together, often with

different assembly algorithms used for the different kinds of reads. However, even

though NGS was much cheaper than Sanger sequencing, the resulting genomes are

generally of lower quality. To compensate for this, the questions posed and the

applications of these platforms were adjusted accordingly. For example, NGS has

given rise to massive re-sequencing and transcriptomics applications. Annotation

methods have changed as well using RNA-seq data as a primary source of data.
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Data integration and visualization problems formulated during the human

genome era from the need to put genome sequences, gene predictions, ESTs, and

protein homologs on one screen became even more complex when confronting

massive amounts of sequence data and large numbers of sequenced genomes. While

GenBank offers a large collection of sequenced genomes and many bioinformatics

tools are open access, the lack of their integration makes them difficult and time-

consuming to use. One solution has been developed specifically for fungal genomes

by the US Department of Energy (DOE) Joint Genome Institute (JGI): the

web-based fungal genome portal MycoCosm, which offers 200+ fungal genomes

and tools for their comparative analysis and manual curation (Grigoriev et al. 2012;

Fig. 2.1).

Fig. 2.1 JGI fungal genome portal MycoCosm (http://jgi.doe.gov/fungi) with 200+ fungal

genomes and tools for their comparative analysis and nomination of new fungal species for

sequencing
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2.3 Plant–Microbe Interactions and Evolution of Fungal
Lifestyles

The Human Genome Project started a revolution in health care. Similarly, plant

genomics became a game changer in plant breeding. The poplar genome (Tuskan

et al. 2006), for example, led to research investigating the role of various transcrip-

tion factors on plant growth. However, the genome only reflects the organism’s

potential to develop, while the actual growth and development depends on interac-

tion with the environment including microbial interactions. Fungal symbionts and

pathogens are important players in these interactions. The majority of plant species

are dependent onmycorrhizal associations. Pathogens can destroy a significant share

of agricultural and bioenergy crops like the Southern corn leaf blight, which in the

1970s destroyed the entire corn crop in several US states. Decomposers recycle dead

materials to provide nutrients for the new generations of primary producers and

microbes associated with them. These lifestyles—symbiosis, pathogenicity, and

saprotrophism—are encoded in genomes. Thus, genome analysis and comparison

of different genomics features are essential for understanding fungal lifestyles, their

evolution, and interactions to possibly lead to better management practices.

Genomes of several organisms involved in interactions with each other in natural

ecosystems have been sequenced. One such system includes a poplar tree and

associated ectomycorrhizal symbiont Laccaria bicolor and pathogenic rust

Melampsora laricis-populina. Interestingly, genomes of these symbiotic and path-

ogenic fungi share several things in common: large genomes inflated with repeats

and expanded gene families, the most interesting of which is a large number of

small secreted proteins (Martin et al. 2008; Duplessis et al. 2011). Despite being

very abundant, small secreted proteins are frequently lineage specific. They may

share some functional domains between symbionts and pathogens but hardly show

any sequence similarity even between closely related poplar rust and wheat rust.

Interestingly, in all these fungi, genes encoding the small secreted proteins are

among the most expressed in planta, during infection of the plant host.

Another important part of both plant symbiont and pathogen gene sets is

CAZymes, the carbohydrate-active enzymes (Cantarel et al. 2009) involved in

lignocellulose degradation, fungal cell wall reconstruction, and other important

processes. In contrast to pathogens, whose expanded CAZy families aim to modify

and destroy the host plant, the genome of symbiotic L. bicolor contains a relatively
limited arsenal of CAZymes and a lack of those involved in plant cell wall

degradation, which results in a protection mechanism to minimize the impact on

the plant host. The symbionts thus evade the plant’s defense responses (Martin

et al. 2008). Interestingly, this reduction is similar to the reduced CAZy profiles of

one group of saprobic, wood-decaying fungi called brown rot fungi. In contrast to

the white rot fungi (the second and dominant type of wood decay), brown rot fungi

have evolved to employ a less “expensive” mechanism for lignocellulose degrada-

tion (Eastwood 2011; Martinez et al. 2004, 2009). Instead of enzymatic attack

typical for white rot fungi, brown rot relatives are thought to use Fenton chemistry
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to generate highly reactive hydroxyl radicals to break cellulose chains. They also do

not degrade lignin and thus lack the corresponding genes in their genomes.

For some wood decayers, it is not always obvious if white or brown rot is their

natural mode of decay (R. Blanchette, pers. comm.) and their genomes may provide

some hints. On the other hand, the genome of Agaricus bisporus apparently encodes
enzymes involved in lignin degradation, though the fungus has not been observed to

do so in nature (Morin et al. 2012). Fungi efficiently combine different lifestyles.

L. bicolor as a saprobe extracts nutrients from decaying organic matter to provide

them to the host plant, with which it also forms mycorrhizal association. The white

rot fungus Heterobasidion irregulare, also a pathogen of conifers and other trees,

encodes both of these lifestyles into its genome and balances between these

lifestyles even when growing on the same host (Olson et al. 2012). Thus,

interactions between plants and fungi are complex, and lifestyles of members of

these interactors—symbionts, parasites, and saprobes—are hard to define with clear

boundaries. A better understanding of the genomics basis of different lifestyles will

require more complex analyses and large-scale comparative genomics studies.

2.4 Large-Scale Comparative Genomics

Discoveries based on the analysis of individual genomes become stronger in the

context of comparative analysis. Instead of sequencing genomes one after another,

analysis of groups of phylogenetically divergent fungi that share common traits or

lifestyles may enable mapping of these traits to a specific set of genes and genomics

features. JGI is one of the institutes partnering with numerous scientific groups

around the world to explore the diversity of fungi, which are important for solving

energy and environmental problems. Starting with the first sequenced basidiomy-

cete, the white rot fungus Phanerochaete chrysosporium in 2004, by 2012 JGI has

contributed to over a half of all fungal genome projects worldwide. After delivering

several “first of its kind” fungal genomes—wood decayers, ectomycorrhizae, and

thermophiles—JGI launched a project called the Genomic Encyclopedia of Fungi

(Grigoriev et al. 2011) devoted to several areas of plant health and biotechnological

applications for energy and the environment, the DOE mission areas. By 2012, the

first two chapters of the encyclopedia, the large-scale comparative genomics stud-

ies, were published (Floudas et al. 2012; Ohm et al. 2012), while sequencing for

several others was nearly complete.

Understanding the mechanisms of lignocellulose degradation by wood-decay

fungi is important to finding new ways for processing biomass into biofuels. The

first sequenced white and brown rot fungi, as mentioned earlier, revealed

completely different mechanisms of wood decay encoded in their genomes and

justified more extensive sequencing of this group of fungi. About 30 species of

wood-decay fungi were selected for sequencing at JGI, and recently 12 of them

were analyzed and reported in the context of 31 other sequenced fungal genomes

(Floudas et al. 2012). This work has catalogued the largest collection of genes
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encoding CAZymes while focusing on the analysis of the class II peroxidases

involved in lignin decay. The ancestor of both white and brown rot fungi (as well

as mycorrhizal L. bicolor) was capable of processing lignin, which was produced by
plants and converted into coal in prehistoric times. Molecular clock analysis

suggested that the white rot ancestor evolved approximately at the end of Carbon-

iferous, i.e., potentially in time to contribute to the significant decline of coal

accumulation observed at that time. In other words, what could have contributed

to the decline in fossil fuel accumulation ~300 Mya can help us today to make

progress in developing biofuels.

In order to convert biomass into biofuels, the former needs to be produced in a

sustainable fashion. Pathogenic fungi are notorious for destroying a significant

fraction of agricultural crops and can destroy bioenergy crops to the same or greater

extent. In order to protect plants, we should better understand the molecular basis of

different strategies of pathogenicity. The Dothideomycetes are an example of a

diverse class of fungi that contains a large number of plant pathogens. Several

independent research groups at various genome centers have been sequencing

fungal genomes from this class and converged in 2008 at JGI to consolidate the

genomics data for comparative analysis and propose a much larger set of sequenc-

ing targets. As a result of this effort, 14 newly sequenced Dothideomycete genomes

were compared with each other and fungi sequenced earlier to explore different

modes of pathogenicity and patterns of their evolution (Ohm et al. 2012). This

revealed common features of genome organization across the entire class: an

inversion-based mechanism for mesosynteny or gene reshuffling within the

boundaries of chromosomes; a variable number of dispensable chromosomes with

unclear role in pathogenesis; and blocks of genes conserved in most of these species

and expressed during plant infection in some of them. Gene family expansions and

contractions were traced along the evolution of major groups of Dothideomycetes,

Capnodiales, and Pleosporales and revealed larger sets of genes involved in sec-

ondary metabolism and plant cell wall degradation in necrotrophs vs. biotrophs

with stealth pathogenesis like Mycosphaerella graminicola (Goodwin et al. 2011).

This global genome comparison was followed by several functional studies focused

on specific gene families (Condon et al. 2013), plant-pathogen systems (Manning

et al. 2013), and functional platforms (Cho et al. 2012). One of them suggested that

differences in gene regulation may be the key in determining host specificity even

in very closely related species such as Dothistroma and Cladosporium fulvum
(de Wit et al. 2012) and that functional genomics would be the next critical step

in understanding fungal biology.

Besides the Agaricomycetes and Dothideomycetes, large-scale comparative

analysis of other groups of fungi has been progressing quickly: these include 30+

mycorrhizal fungi (Chap. 8), 20+ yeasts of biotechnology and taxonomic impor-

tance, and 10+ species of Aspergillus and Penicillium for various biotech

applications (Chap. 5). Finally, the desire to ask bigger questions through larger

scale sequencing transformed one of the chapters, fungal diversity, into a project of

unprecedented scale: the 1000 fungal genome project.
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2.5 The 1000 Fungal Genome Project

Advances in genome sequencing have allowed scientists to launch very large-scale

genomics projects like 1000 human genomes (2010), 1001 Arabidopsis genomes

(Weigel and Mott 2009), and GEBA (Wu et al. 2009). The 1000 fungal genome
project is one of the latest JGI large-scale genomics initiatives aimed at highly

divergent fungal species to obtain a comprehensive list of reference genomes, to

better assess fungal diversity, to explore evolutionary processes driving this diver-

sity, and to provide a comprehensive vocabulary for studying complex

metagenomes.

The Kingdom Fungi is estimated to contain over a million species. These

organisms developed a tremendous natural arsenal of enzymes, chemicals, decon-

struction, and synthesis mechanisms over millions of years of evolutionary history,

which are poorly understood. Despite the growing number of fungal genome

sequencing projects, the phylogenetic diversity of fungi covered by these projects

is still very limited. Ascomycetes of medical importance remain dominant among

the sequenced fungal genomes. In contrast, lower fungi are hardly represented

among the currently available reference genomes.

The goal of the 1000 fungal genome project is to sequence genomes for on

average two species for each of the about 500 known fungal families within 5 years.

The project started in close collaborations with several culture collections and

research groups providing DNA and RNA samples. JGI accepts nominations for

new species for sequencing and DNA/RNA samples from the scientific community

worldwide at http://jgi.doe.gov/fungi (Fig. 2.1). These will serve as references in

ecological genomics.

2.6 Ecological Genomics

Having a large collection of reference genomes may set a stage for eukaryotic

metagenomics. Metagenomes of bacterial and archaeal communities have been

successfully analyzed previously (Tringe and Rubin 2005; Kalyuzhnaya et al. 2008).

Even when metagenomes are poorly assembled but dominated by prokaryotes, the

assembled pieces provide sufficient information to predict genes. Unlike gene-dense

bacterial genomes, eukaryotic genomes, with their complex gene structure and genome

organization, present a significant bottleneck for metagenomics. Assembled DNA

pieces lack sufficient information to train ab initio gene predictors. Homology-based

methods may work but require a representative collection of reference genomes. While

this collection is being built over time, approaches to assess complexity of fungal

communities, for example, in soil, are being explored (Buée et al. 2009).

A standard method to identify fungal species is by their Internal Transcribed

Sequences (ITS). Targeted ITS sequencing can be applied to fungal communities
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composed of multiple species to assess their composition. Here transition to the

NGS imposes some challenges. In the days of Sanger sequencing, long sequence

reads would cover the entire region which is ~1 kb long. The first NGS products

were too short to cover the entire ITS, although several studies used

454 pyrosequencing to obtain ITS fragments, ITS1 or ITS2 regions (Buée

et al. 2009). The latest generation of Illumina machines, the benchtop MiSeq, offers

sequencing in the format of 2 � 250 bp reads, which with sufficiently short inserts

may overlap and produce contigs long enough to cover one of these regions. The

cycle time of these machines (1 day instead of 18 for HiSeq) allows sequencing a

multitude of samples.

Another strategy to overcome the complexity of fungal gene structure is

metatranscriptomics, which gives a functional portrait of the community as a

biological system and captures its dynamics. The challenge is the poly

(A) enrichment in complex communities like soil where fungi make up just a few

percent of the entire microbial transcriptome. Furthermore, total eukaryotic RNA

consists of only a few percent of mRNA.

2.7 Functional Genomics

The increased throughput in genome sequencing has created a situation where the

number of sequenced genes and genomes grows dramatically each year but does not

necessarily help us to better understand their functions. A thorough biochemical

characterization is required to determine gene functions, but its throughput is not on

par with sequencing.

Analysis of gene and protein expression under different conditions may suggest

roles of these genes in an organism’s growth, while genes’ co-regulation can be

inferred from patterns of their co-expression. Large-scale transcriptomics has been

broadly successful for a number of fungi and quickly progressed from in-depth

characterization of genes in single species to multispecies comparative functional

genomics, as with fission yeasts (Wilhelm et al. 2008; Rhind et al. 2011). Proteo-

mics of different flavors offer approaches complementary to gene expression

analysis and allows the characterization of proteins, protein complexes, and post-

translational modifications. Among fungi, this was applied to the greatest extent to

S. cerevisiae (e.g., Ho et al. 2002; Ptacek et al. 2005; Krogan et al. 2006). The

combination of transcriptome and proteome analyses is becoming more and more

often a part of genomics studies of many fungi (e.g., Berka et al. 2011; Martinez

et al. 2009).

The roles of genes can be also determined by turning genes on and off using

various techniques at reasonably high throughput. Transcriptomics and proteomics

studies of gene deletion mutants, especially transcription factors, can point to their

roles in an organism’s regulatory cascades. Several studies along these lines have

been done for fungi. For example, novel virulence factors have been identified in

the plant pathogen Alternaria brassicicola (Cho et al. 2009, 2012), factors
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influencing cellulose production have been studied in the industrial workhorse

Trichoderma reesei (Schuster et al. 2012), the role of transcription factors has

been explored for mushroom development in the basidiomycete Schizophyllum
commune (Ohm et al. 2010, 2011), and a much broader approach is taken in the

model ascomycete Neurospora crassa (Colot et al. 2006). For the models N. crassa
and S. cerevisiae, extensive collections of deletion mutants along with microarrays

and other functional genomics resources have been developed (Winzeler

et al. 1999; Giaever et al. 2002; Dunlap et al. 2007), which created a solid basis

for future experiments.

A different context for gene function studies comes from the analysis of

interactions of fungi with other organisms. Analysis of the transcriptome at differ-

ent stages of plant infection (O’Connell et al. 2012) or of interactions with a fungal

prey (Atanasova et al. 2013) has been revealing for the dynamics of such

interactions. However, looking at both partners at once can give more complete

and, therefore, more accurate picture. Indeed, transcriptomes of the fungus

L. bicolor and poplar tree upon their interaction provided clues for a metabolic

model of nutrient exchange between them (Larsen et al. 2011). For pathogens,

Skibbe et al. (2010) have shown that infection of maize by corn smut (Ustilago
maydis) depends on organ-specific gene expression by both host and pathogen.

Proteomics of such interactions was also studied in several different systems

(reviewed by El Hadrami et al. 2012). Much larger-scale transcriptomics studies

of several host-pathogen and mycorrhizal systems are also currently in progress at

JGI. Finally, along the lines of the human ENCODE, which recently generated a

very large amount of functional data (Skipper et al. 2012), N. crassa is a target of

fungal ENCODE at JGI to further understand this model organism and project this

knowledge to other fungi (Chap. 14).

2.8 Conclusion

Fungal diversity is enormous and so far poorly explored. Soil is the most abundant

ecosystem on Earth, enriched in microbial life including a large number of fungal

species. Very few microbial species inhabiting soil have been characterized.

Genomics and transcriptomics offer new ways to identify these poorly

characterized species and understand their function and interactions with environ-

ment, hosts, and other fungi. Metagenomics approaches can help to better under-

stand the complexity of microbial communities in soil, how they are formed, and

how they change in response to various environmental factors. Communities of

pathogens and symbionts are components of the rhizosphere and determine the

success of plant growth. Genomics analysis of these interactions will help us to

better understand natural biological systems and can lead to applications for

environmental protection and bioenergy production.

20 I.V. Grigoriev

http://dx.doi.org/10.1007/978-3-642-39339-6_14


Acknowledgments The work conducted by the US Department of Energy Joint Genome Institute

is supported by the Office of Science of the US Department of Energy under Contract

No. DE-AC02-05CH11231.

References

1000 Genomes Project Consortium (2010) A map of human genome variation from population-

scale sequencing. Nature 467:1061–1073

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J

Mol Biol 215(3):403–410

Atanasova L, Le Crom S, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS

(2013) Comparative transcriptomics reveals versatile strategies of Trichoderma
mycoparasitism. BMC Genomics 14:121

Bateman A, Birney E, Durbin R, Eddy SR, Finn RD, Sonnhammer EL (1999) Pfam 3.1: 1313

multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res 27

(1):260–262

Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, Mauceli E, Berger B, Mesirov JP, Lander ES

(2002) ARACHNE: a whole-genome shotgun assembler. Genome Res 12(1):177–189

Berka RM,Grigoriev IV, Otillar R, SalamovA,Grimwood J, Reid I, Ishmael N, John T, DarmondC,

Moisan MC, Henrissat B, Coutinho PM, Lombard V, Natvig DO, Lindquist E, Schmutz J,

Lucas S, Harris P, Powlowski J, Bellemare A, Taylor D, Butler G, de Vries RP, Allijn IE,

van den Brink J, Ushinsky S, Storms R, Powell AJ, Paulsen IT, Elbourne LD, Baker SE,

Magnuson J, Laboissiere S, Clutterbuck AJ, Martinez D, Wogulis M, de Leon AL, Rey MW,

Tsang A (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi

Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29(10):922–927
Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 Pyrosequencing

analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184

(2):449–456

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The

Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics.

Nucleic Acids Res 37:D233–D238

Cho Y, Kim KH, La Rota M, Scott D, Santopietro G, Callihan M, Mitchell TK, Lawrence CB

(2009) Identification of novel virulence factors associated with signal transduction pathways in

Alternaria brassicicola. Mol Microbiol 72(6):1316–1333

Cho Y, Srivastava A, Ohm RA, Lawrence CB, Wang KH, Grigoriev IV, Marahatta SP (2012)

Transcription factor Amr1 induces melanin biosynthesis and suppresses virulence in

Alternaria brassicicola. PLoS Pathog 8(10):e1002974

Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA,

Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals

functions for multiple transcription factors. Proc Natl Acad Sci U S A 103(27):10352–10357

Condon BJ, Leng Y,WuD, Bushley KE, Ohm RA, Otillar R, Martin J, SchackwitzW, Grimwood J,

MohdZainudin N, Xue C, Wang R, Manning VA, Dhillon B, Tu ZJ, Steffenson BJ, Salamov A,

Sun H, Lowry S, LaButti K, Han J, Copeland A, Lindquist E, Barry K, Schmutz J, Baker SE,

Ciuffetti LM, Grigoriev IV, Zhong S, Turgeon BG (2013) Comparative genome structure,

secondary metabolite, and effector coding capacity across Cochliobolus pathogens. PLoS

Genet 9(1):e1003233

de Wit PJ, van der Burgt A, Okmen B, Stergiopoulos I, Abd-Elsalam KA, Aerts AL, Bahkali AH,

Beenen HG, Chettri P, Cox MP, Datema E, de Vries RP, Dhillon B, Ganley AR, Griffiths SA,

Guo Y, Hamelin RC, Henrissat B, Kabir MS, Jashni MK, Kema G, Klaubauf S, Lapidus A,

Levasseur A, Lindquist E, Mehrabi R, Ohm RA, Owen TJ, Salamov A, Schwelm A, Schijlen E,

2 Fungal Genomics for Energy and Environment 21



Sun H, van den Burg HA, van Ham RC, Zhang S, Goodwin SB, Grigoriev IV, Collemare J,

Bradshaw RE (2012) The genomes of the fungal plant pathogens Cladosporium fulvum and

Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures

of common ancestry. PLoS Genet 8(11):e1003088

Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, De Montigny J, Marck C,
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Ramaiya P, Lucas S, Salamov A, Shapiro H, Tu H, Chee CL, Misra M, Xie G, Teter S, Yaver D,

James T,MokrejsM, PospisekM, Grigoriev IV, Brettin T, Rokhsar D, Berka R, Cullen D (2009)

Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports
unique mechanisms of lignocellulose conversion. Proc Natl Acad Sci U S A 106:1954–1959

Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46

Morin E, Kohler A, Baker AR, Foulongne-Oriol M, Lombard V, Nagy LG, Ohm RA,

Patyshakuliyeva A, Brun A, Aerts AL, Bailey AM, Billette C, Coutinho PM, Deakin G,

Doddapaneni H, Floudas D, Grimwood J, Hildén K, Kües U, Labutti KM, Lapidus A, Lindquist
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Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting

J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L,

Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-

Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher

C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC,
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Chapter 3

Advancement of Functional Genomics
of a Model Species of Neurospora and Its Use
for Ecological Genomics of Soil Fungi

Kwangwon Lee and John Dighton

3.1 Resources for the Functional Genomics

High-quality genome sequence and annotation of the genome is a key element for

successful functional genomics study. Since the release of the N. crassa genome

sequence in 2003 (Galagan et al. 2003), there were several updates in sequence

assembly and annotations. As of June 2010, the finished genome has 9,733 protein-

coding genes, 176 noncoding RNA genes annotated in the nuclear genome, and

28 protein-coding genes in the mitochondrial genome (http://www.broadinstitute.

org/annotation/genome/neuospora). As of November 2011, a whole-genome knock-

out project generated 11,721 knockout strains (http://www.dartmouth.edu/~neuro

sporagenome/knockouts_completed.html) (Dunlap et al. 2007). All the knockout

strains are available at the Fungal Genetics Stock Center (http://www.fgsc.net/

ncrassa.html). As part of the Neurospora Genome Project, a group of undergraduate

students have cataloged ten different developmental phenotypes of the knockout

strains (http://www.broadinstitute.org/annotation/genome/neurospora/Phenotypes.

html) (Turner 2011).

These genetic resources in the Neurospora community are useful for generating

a hypothesis for testing potential biological functions of an uncharacterized gene in

a less characterized fungal species. The knockout library also allows for screening

genes that are involved in a particular biological function of interest (Fu et al. 2011;

Hammond et al. 2011; Nargang et al. 2012; Watters et al. 2011). Instead of

screening the whole knockout library, one might choose to work on the smaller

set of knockouts of transcription factors (Sun et al. 2011b) and kinases
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(Park et al. 2011) to identify key regulators for phenotypes of interest. Once the list

of key regulators is identified in N. crassa, one might study the homologues of those

regulatory genes in other fungal species that are more relevant for soil ecology.

The mutant with a complete knockout of a gene does not always reveal all

biological functions of the gene. Diverse allelic phenotypes of a gene provide more

rich information of the roles of the gene. For example, one of the key circadian

clock genes, frequency, has different clock phenotypes depending on where in

the protein-coding region a mutation occurred; frq7 shows a 29 h long period,

frq1 16 h short period, and frqKO no rhythm (Heintzen and Liu 2007). Cloning and

characterizing the molecular nature of the mutation have become easier as a result

of technical advances in sequencing. In recent years, there have been a series of

improvements in identifying genome-wide single nucleotide polymorphism (SNP)

markers utilizing microarray chips and next-generation sequencing (NGS) for the

N. crassa genome (Baird et al. 2008; Dettman et al. 2010; Lewis et al. 2007; Rowe

et al. 2011). Restriction-site-associated DNA (RAD) markers rely on SNP at the

restriction enzyme recognition sites in the genome. Since developing RAD markers

does not require high-quality backbone sequencing data, and as the cost for NGS

sequencing is becoming reasonable, RAD markers have the potential to be used for

mapping and cloning fungal genes in non-model soil fungi.

There are useful tools developed for characterizing the expression of a gene and

the gene product in Neurospora. Although luciferase reporters have been success-

fully used in other organisms for studying real-time gene expression, this system

has been less successful in fungal species. Dunlap’s group developed an efficient

luciferase reporter system by synthesizing the firefly luciferase based on optimal

fungal codon usage (Gooch et al. 2008). Combining with a clever knock-in

approach, one can also study protein expression at the endogenous genome location

in real time (Larrondo et al. 2012). For biochemical studies, one has to express the

protein of interest. There are a series of versatile vectors available for expressing

proteins with commercial epitope tags (Honda and Selker 2009) with tight regula-

tion of their expression (Hurley et al. 2012).

3.2 Sensing Light

3.2.1 Introduction

Microorganisms can detect a variety of signals from the environment, including

light, temperature, gravity, and large or small molecule signals, often coming from

the neighboring species in the environment (Corrochano 2007; Elias-Arnanz

et al. 2011; Rockwell and Lagarias 2010; Rodriguez-Romero et al. 2010; Sharrock

2008). Responses to these signals may be to relocate to a favorable location, for

orientation, to alter gene expression and development, or to deploy small molecules

to cope with environmental conditions or survival in their host (Bahn et al. 2007;
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De Sordi and Muhlschlegel 2009; Rockwell and Lagarias 2010; Roux et al. 2009).

Light is probably the most central of all environmental signals. Thus, micro-

organisms have evolved sophisticated light-sensing mechanisms (Rodriguez-

Romero et al. 2010; Sharrock 2008). For example, light affects many developmental

transitions in fungi; it sets the phase of circadian rhythms and modulates the rate

and direction of growth. The blue end of the visible spectrum including the near

ultraviolet is most active, although longer wavelengths are also important in some

species and responses, and filamentous fungal genomes encode a variety of known,

or potential, photoreceptors (Bahn et al. 2007; Corrochano 2007; Purschwitz

et al. 2008). Much of what we know about molecular photophysiology in

microorganisms has been learned by studying a few selected model organisms,

for example, in the fungal kingdom, Neurospora, Aspergillus, Fusarium, and

Phycomyces (Avalos and Estrada 2010; Bayram et al. 2010; Chen et al. 2010;

Corrochano and Garre 2010; Rockwell and Lagarias 2010; Roux et al. 2009). Also

the interaction between light, microbial communities and litter decomposition in

natural ecosystems appears to be synergistic, although the mechanisms of inter-

action are not completely understood (Gallo et al. 2009).

3.2.2 Neurospora

Neurospora is the best-studied microorganism in molecular mechanisms of light

perception, signal transduction, and light-regulated development. In Neurospora,
all known light-induced phenotypes are regulated by blue light, and all blue-light-

induced phenotypes are absent in either white collar-1 (wc-1) or white collar-2
(wc-2) mutants (Ballario and Macino 1997). Attempts to find loci other than wc-1
and wc-2 have failed (Degli-Innocenti and Russo 1984; Linden et al. 1997),

suggesting that WHITE COLLAR-1 (WC-1) and WHITE COLLAR-2 (WC-2)

are the major nonredundant key components for blue-light transduction in Neuros-
pora. The wc-1 and wc-2 genes have been cloned (Ballario et al. 1996; Linden and

Macino 1997), and their products have been shown to interact with each other

(Ballario et al. 1998; Cheng et al. 2001; Denault et al. 2001). These findings and

more recent molecular studies showed that WC-1 and WC-2 are transcription

factors mediating light-induced gene expression (Corrochano 2007). Both WC-1

and WC-2 are regulated posttranslationally through phosphorylation (Lee

et al. 2000; Schwerdtfeger and Linden 2000, 2001; Talora et al. 1999). While

light-induced phosphorylation of WC-1 is transient (Heintzen et al. 2001), phos-

phorylation of WC-2 is stable under constant light. WC-1, working with WC-2 and

the cofactor FAD, has been confirmed to be a blue-light photoreceptor (Froehlich

et al. 2002; He et al. 2002).
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3.2.3 Soil Fungi

The importance of light conditions for microbial development has been well

documented. However, there is a lack of understanding of the roles of ambient

light at the community level, more specifically in the context of interspecies and

inter-kingdom interactions. Light could be an important factor determining com-

munity assemblages on surfaces exposed to light, for example, leaf surfaces. The

enhanced frequency of melanin-containing fungi in high-light environments has led

to investigations into the properties of melanin in fungal cell walls. For example,

melanized cell walls are thought to protect cell contents from UV light (Gauslaa and

Solhaug 2001) and may be a protectant against ionizing radiation (Durrell and

Shields 1960; Gauslaa and Solhaug 2001; Zhdanova et al. 1994). Melanin has been

shown to be an agent for entrapment of ionizing radiation for transfer of energy

from radioactive sources for fungal growth (Dadachova et al. 2007; Dadachova and

Casadevall 2008; Dighton et al. 2008; Tugay et al. 2006). Additionally, there is a

tentative suggestion that light regimes can also influence soil fungal growth

(Karpenko et al. 2006). Such responses of fungi to both light and ionizing radiation

warrant further research, especially an understanding of the molecular basis of their

function. As in the case of extensive light regulation studies in Neurospora
(as discussed earlier), blue-light regulation is the most prominent light regulation

in fungi. Thus, one might ask: “Do soil fungi have blue-light receptors, e.g., WC-1

orthologous genes, and could their presence influence the depth distribution of

fungi in the soil profile?”

Understanding the response of the microbial community to a specific wavelength

of light will provide a valuable insight into its adaptation to the ambient local

environment. For example, plant leaves absorb photosynthetically active radiation

(PAR, 400–700 nm) and transmit far-red/near-infrared radiation (700–1,000 nm)

(Kume et al. 2011). Thus, the microbial community under a forest canopy is

constantly exposed to higher flux densities of far-red light. It is tempting to

speculate that the microbial community in the open field and that in the forest

canopy are adapted to these unique light conditions. The differential response of

fungal taxa to light of contrasting wavelength may be important for regulating

community assembly and function of litter-dwelling fungi.

3.3 Lignocellulose Metabolism

3.3.1 Introduction

Biofuels derived from lignocellulosic biomass are a promising means of fulfilling

the crucial need for liquid transportation fuel not derived from fossil fuels or food

crops (DOE Office of Biological and Environmental Research). Lignocellulosic

biomass, which is composed of cellulose, hemicellulose, and lignin, forms woody,
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fibrous plant materials such as stems and leaves and is the most abundant renewable

biomass on earth (Eriksson et al. 1991; Sanchez 2009). Unfortunately, utilizing

lignocellulosic biomass as a biofuel feedstock is a challenging proposition owing to

the difficulty of degrading lignocellulose in comparison to simple sugars, and

current processes for producing cellulosic biofuel are not cost-competitive with

fuels derived from either fossil fuels or food crops. While current industrial

processes for degrading lignocellulose are too inefficient to be commercially viable,

some living organisms are proficient at the task. In particular, a number of

microorganisms have been identified that are capable of breaking down complex

plant biomass and can potentially be used in industrial fermentation (Wilson 2008).

For example, diverse fungal organisms in two phyla, Ascomycota and

Basidiomycota, are capable of degrading lignocellulose (Eriksson et al. 1991;

Lundell et al. 2010). Understanding the enzymes and metabolic pathways that

provide this capability, particularly at a systems level, has been identified as a

fundamental technical barrier that needs to be addressed to realize the goal of cost-

competitive cellulosic biofuel. Additionally, some of the potentially useful fungal

strains for biofuel production are slow growing, so there may be interest in

transposing specific enzyme-coding genes from these fungal species into strains

that grow more readily in a biofermentor environment.

3.3.2 Neurospora

Neurospora has been described as a “burning-adapted” fungus since the majority of

the natural isolates were collected from the fresh-burn sites (Jacobson et al. 2006).

After wild fire, abundant orange spores of Neurospora species appear on fire-

scorched weeds or wood. This was attributed to a unique mechanism for breaking

the dormancy of the ascospores by heat and by chemicals released from burning

natural objects (Pandit and Maheshwari 1996). Although Neurospora is not a major

fungal species in nature for lignocellulosic biomass degradation, it will be a useful

model organism to understand genetic and molecular mechanisms of lignocellulosic

biomass degradation. The first systematic study on the topic in Neurospora was

performed by the Glass’ research group (Tian et al. 2009). Using the whole-genome

microarray, they identified 769 genes that are preferentially expressed when Neuro-
spora was grown in ground stem tissue of Miscanthus, a potential crop for biofuel

production. The same authors characterized cellulase activities of mutants (from the

whole-genome knockout library) that lack the expression of 16 proteins that are

identified by both transcriptome and secretome analyses and found that some have

higher levels of cellulase activity and some have significantly lower levels of

cellulase activity in comparison to that of the wild type (Tian et al. 2009). For the

last 2 years, a series of studies were reported in an attempt to elucidate a compre-

hensive view on regulation and mechanisms of lignocellulose degradation in

N. crassa (Beeson et al. 2012; Bohlin et al. 2013; Coradetti et al. 2012; Dogaris

et al. 2012; Fan et al. 2012; Li et al. 2012; Phillips et al. 2011; Schmoll et al. 2012;
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Sun and Glass 2011; Sun et al. 2011a, 2012; Znameroski et al. 2012). With the help

of the functional genomics tools, N. crassa could become a model fungal organism

for understanding the lignocellulose degradation (Coradetti et al. 2012; Dogaris

et al. 2013; Znameroski et al. 2012).

3.3.3 Soil Fungi

There is significant interest in the study of the decomposition of plant litter in soil,

especially as this may be the source of many fungi of potential use in lignocellulose

fermentation. Many of these studies document the decomposition rates of the liter

itself and the changes in its chemistry. Others concentrate on descriptions of the

organisms involved in the decomposition process and link back to the chemistry of

litter by describing successions of dominant organisms based on their enzyme

expression (measured in a pure culture) to resources available. Lastly, the enzymes

produced by the microbial community have been studied by characterizing gross

measure of enzymes in soil (Sinsabaugh 2005).

The link between changes in the fungal community during the decomposition of

leaf litter has been described in terms of resource succession. Gross changes in leaf

litter chemistry dictate the changes in rates of decomposition as more labile

material is utilized by the initial fungal community, leaving more recalcitrant

materials to be utilized by later communities with appropriate enzyme capacity

(Swift et al. 1979). The communities of fungi, and presumably bacteria also, change

during the decomposition of specific resources in soil. Frankland identified changes

in fungal communities over time on decomposing fern petioles (Frankland 1966).

Similar studies revealed changes in fungal communities over time on decaying pine

needles and identified interactions between these fungi and other soil biota (Ponge

1990, 1991). Reviews of the literature on resource succession can be found in

Frankland (1992, 1998). Neurospora occupies a specific niche in the decomposition

process, occupying substrates that have recently been burned. However, our under-

standing of the ecology of this genus is far from complete (Lee and Dighton 2010).

Although the changes in fungal communities on decomposing leaves have been

described over time as a result of resource succession, most of the hypothesized link

to changes in leaf litter chemistry has been derived from gross changes in leaf

chemistry (analysis of whole or multiple leaves) (Frankland 1966; Ponge 1990,

1991). More recently, we have used FTIR-ATR to investigate changes in carbo-

hydrate chemistry of leaf material at a scale more relevant to that of the fungal

mycelium (Dighton et al. 2001) and with leaf litter burning as a surrogate to

decomposition (Lammers et al. 2009). Using a combination of IR and atomic

force microscopy, we are now able to map the influence of individual fungal hyphae

on resource surface physicochemical properties (Oberle-Kilic et al. 2013).

The ability to evaluate the functional contribution of each member of a commu-

nity is important as in natural ecosystems both bacteria and fungi and possible

synergistic or competitive interactions between them affect the decomposition of
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plant-derived materials. However, the research on plant litter decomposition usu-

ally focuses on single species of either bacteria or fungi as the major decomposers,

rather than the intra- or inter-kingdom interactions.

Each fungal species has a suite of enzymes that it can produce. These have

usually been described by the expression of enzymes in culture when provided with

single sources of substrate in culture conditions (e.g., clearing cellulose agar). The

enzyme expression of mixtures of microbial communities has rarely been examined.

Specifically we are looking for potential synergistic activities and optimization of

fungal community structure to maximize rates of decomposition. In other systems,

optimization of fungal communities has been shown. One example showed that it was

the absolute number of ectomycorrhizal fungal species on a root system that optimized

nutrient uptake by the host tree, rather than the specific fungal species comprising

that assemblage (Baxter and Dighton 2001, 2005). Similarly, competition between

saprotrophic phylloplane fungi and a weak plant pathogen was optimized by a mix of

4–6 species and declined with increasing numbers of saprotrophic species (Nix-Stohr

et al. 2008; Stohr and Dighton 2004). Thus, it is likely that at any one time the

saprotrophic microbial community on decomposing leaf material is optimized in

terms of number of species and their functional capabilities. The absolute composition

of the species mix may be independent of the starting community inoculated into

the system.

What can we learn from the genomics studies of model fungal species, such as

Neurospora, that will allow greater understanding of fungi in natural ecosystems?

Linking molecular methods of identification and transcriptomics, Stursova

et al. (2012) identified changes in fungal and bacterial communities over time in

relation to their ability to decompose cellulose. Taking the leaf litter (pine needles)

and upper soil from Czech forests into microcosms, they showed that the litter was

dominated by fungi and soil by bacteria (Stursova et al. 2012). To each soil

component (litter or soil), they added 13C-labeled Zea mays litter to represent a

cellulose resource and followed changes in fungal and bacterial communities over

the next 15 days. By pyrosequencing, they identified 12,111 bacteria, 7,075 fungi,

and 6,782 carbohydrolase (endocellulase) gene encoding fungi (cbhI). Morpho-

logically, they identified 1,164 bacterial OUTs, 493 fungi, and 297 fungi in the

cbhI cluster. There was a very close fit between the temporal changes in fungal

community with the increased use of cellulose towards an ascomycete-dominated

community. Community change was much less defined in the bacterial community.

Their data suggests that the ascomycete fungi are more important for cellulose

utilization than basidiomycetes. The three phases of oak litter decomposition

identified by Šnajdr et al. (2011) are also fungal dominated and show changes in

the suites of enzymes produced by the associated fungal communities at each stage

(Šnajdr et al. 2011). During the first 4 months that represent 16% mass loss,

β-glucosidase, β-xylosidase, and cellobiohydrolase enzymes dominate. Over the

next 8 months, endocellulase and endoxylanase enzymes dominate and account for

the 32 % mass loss. The final stage of decomposition up to 2 years, resulting in a

62 % mass loss, is largely due to ligninolytic activity.
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So, what codes for these enzymes and how different are contrasting groups of

fungi in their coding for these enzyme expressions? This appears to be an emerging

field of interest and is especially important if we are considering taking efficient

enzyme processes from one organism and inserting into other organisms with

desired traits to digest lignocellulose residues to manufacture biofuels. Using an

endophytic strain of the ascomycete Chaetomium globosum, Longoni et al. (2012)
identified eight genes with potential to decompose cellulose. These were in the

glucohydrolase (GH) families 5, 6, 7, 16, and 24, in common with many other

ascomycetes (Longoni et al. 2012). They also found two GH 61 enzymes

suggesting the possession of oxidoreductive systems in this fungal species. Simi-

larly, Ryu et al. (2011) identified 34 likely glycoside hydrolases from the brown rot

basidiomycete Postia placenta. However, only four of these had sequences with

suspected cellulose activity (two in GH family 5, one in 10, and one in 12). In a

comparison of two closely related white rot basidiomycete fungi (Phanerochaete
chrysosporium and Ceriporiopsis subvermispora), Fernandez-Fuego et al. found

13 genes encoding for manganese peroxidase in C. subvermispora, but only

5 in P. chrysosporium. Additionally, C. subvermispora had 7 genes encoding

for laccases, but P. chrysosporium had none (Fernandez-Fueyo et al. 2012).

This explains the greater oxidoreductive capacity of C. subvermispora and almost

exclusive lignin decomposition capacity of this species, whereas P. chrysosporium
decomposes both lignin and cellulose. A greater understanding of the genes coding

for and expression of enzyme suites in more fungal species would be of utility both

to provide greater understanding of the ecological role of these fungi and to provide

a resource of enzyme systems that might be exploited for commercial processes

either using the fungi in which the genes occur or to transpose into other organisms

that have better traits for growth in industrial processes.

Not only is it of interest to understand what enzymes fungi are capable of

producing, it is also of interest to find under what conditions these enzymes are

induced to be produced. The developing field of transcriptomics is likely to provide

tools to allow us to determine precise conditions under which a specific fungus

produces certain enzymes. However, despite literature describing details of

methodology (van Elsas and Boersma 2011; Yadav et al. 2010), the use of

transcriptomics in fungal ecology appears not to have been explored to a great

degree. Much of the work so far has concentrated on fungal species of economic

importance. For example, Nevalainen et al. (2005) investigated heterologous

proteins produced by fungi for industrial use. Their aim was to improve the

understanding of the process to allow gene manipulation to promote higher yield

of desired end products for industrial processes (Nevalainen et al. 2005). Similarly,

Andersen and Nielsen (2009) worked on the genus Aspergillus, where a genome of

a number of species has been sequenced (Andersen and Nielsen 2009). The

transcriptomics of these species has largely concentrated on the industrial uses of

coded proteins or on the production of aflatoxins. A comprehensive investigation of

the potential use of Aspergillus in polysaccharide degradation (cellulose,

hemicelluloses, xylan, etc.) was conducted by Coutinho et al. (2009). They

identified Carbohydrate-Active-enZyme (CAZy) family of genes coding for
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polysaccharide breakdown, identifying some species where genes code for a single

enzyme and other for multiple enzymes. They list 45 enzyme codes for seven

substrates and 40 CAZy families with only three enzyme codes utilizing multiple

substrates. Currently, the http://www.CAZy.org database lists 26 fungal species

including plant pathogens, yeasts, and fungi of industrial use, but virtually no soil

fungi.

Apart from transcriptomics applied to the field of mycorrhizae, few studies have

looked at saprotrophic fungi in their natural environment. Eastwood et al. (2011)

evaluated the evolutionary position of brown rot fungi, which utilize cellulose and

hemicelluloses being derived from white rot fungi where cellulose and lignin are

decomposed. Their results suggest the evolution of the ectomycorrhizal habit arose

by a further reduction of polysaccharide enzyme diversity as an adaptation to an

intercellular habit. Brown rot and ectomycorrhizal fungi have fewest CAZy hydro-

lytic enzymes, e.g., both lacking class II peroxidases.

In another study on soils of sugar maple-dominated hardwood forest across

eastern North America (Kellner et al. 2010), RNA was extracted from soil samples

to identify fungal genes coding for lignocellulolytic and chitinolytic enzymes. The

extracted RNA was reverse transcribed, and amplified cDNAs of interest were

detected at the transcript level of expression of 234 genes encoding 26 enzymes.

A limitation of this study is that they looked at transcript level gene expression and

not the posttranscriptional level, which means that their study does not really

represent expression of the gene only the potential for expression. Thus, there is a

need to look at posttranscriptional level to gain an idea of what genes are being

expressed by proteomics approaches. Urich et al. (2008) applied total community

RNA extraction from soil combined with reverse transcription to cDNA without

PCR, followed by direct pyrosequencing. This process yielded large numbers of

cDNA and rRNA tags that were deconvoluted using MEGAN software, resulting in

data on diversity of organisms (taxonomic community profile based on SSU and

LSU rRNA). The functional diversity of this soil community was based on broad

categories of function rather than discrete enzymes (e.g., photosynthesis, phosphate

metabolism, membrane transport, nitrogen metabolism). This paper seemed to have

potential but did not really provide information at the individual enzyme level.

These broad categories of function may be too coarse to provide useful information

on the function of fungal communities in soil processes.

Other studies have looked at specific groups of fungi that have some ecological

benefit. Haferburg and Kothe (2010) investigated metallomics, where they

identified metal-induced changes in transcriptome, proteome, and metabolome in

their search for metal resistance and metal-binding mechanisms in fungi and

bacteria. They report examples of enhanced phytoremediation using helper bacteria

and mycorrhizae. Lorito et al. (2010) review the large literature based on the role of

Trichoderma as a biocontrol agent in plant pathogenesis. They review knowledge

from genes to environment including transcriptome studies using ESTs (expressed

sequence tags). They list a variety of potentially important enzyme functions that

could be expressed by a variety of Trichoderma species and isolates. Their data

shows a complex suite of functions, especially related to possible biocontrol of
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other fungal diseases and secondary metabolites. However, most of the data are

derived from pure cultures grown in a variety of conditions and thus do not

represent growth in the natural environment.

In addition to the genome coding for degradative enzymes for fungal nutrient

acquisition and our use of these enzymes for lignocelluloses fermentation, fungi are

well known to produce a wide array of secondary metabolites. Of these, the

involvement of volatile organic compounds (VOCs) in fungal–fungal and

fungal–bacterial competitive interactions is an important and relatively unexplored

area of fungal community dynamics. Rossouw et al. (2008) used microarrays to

identify VOC production potential as secondary metabolites by wine yeasts. This

was derived from fermentation studies and would be very interesting to follow with

fungal–fungal interactions in the natural environment to help understand signaling

processes between organisms that regulate the expression of secondary metabolite

genes involved in competitive interactions.

Additional to the role of fungi in decomposition of lignocelluloses for biofuel

production, the suite of enzymes that many of these Basidiomycotina possess

enables them to decompose organopollutants (Šašek 2005). Potential use of these

fungi for mycoremediation of areas contaminated by chlorophenols, polycyclic

aromatic hydrocarbons, industrial dyes, dioxins, TNT, etc., has been proposed

(Šašek 2005). The ability to insert appropriate genes to express desired enzyme

suites in faster growing fungal species would be a benefit to these remediation

efforts. Again, a greater understanding of the genetic regulation of enzyme expres-

sion to degrade organopollutants would allow us to better select efficient strains and

optimize environmental conditions to promote degradation.

3.4 Concluding Remark

It is an exciting period of time in fungal biology. With the advancement of post-

genomics tools, we may be able to test age-old ecological questions and address

pressing environmental and renewable energy problems. It is our hope that more

open and rigorous communications among different fields of fungal studies would

enhance our understanding of both basic and applied fungal biology. The functional

genomics tools developed and successfully utilized in the model organism in

Neurospora would serve well in studying and utilizing less characterized soil

fungi in diverse areas of research. The whole-genome knockout libraries of fungal

species representing different functional groups (e.g., root and foliar plant

pathogens, saprotrophs of contrasting taxonomic groups involved in plant litter

decomposition, wood-rotting fungi) would lead to a significant progress in our

understanding of soil fungal ecology.
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Chapter 4

Major Plant Pathogens of the
Magnaporthaceae Family

Adriana Illana, Julio Rodriguez-Romero, and Ane Sesma

4.1 Taxonomy of the Magnaporthaceae Family

The Magnaporthaceae family (P.F. Cannon) has a complex taxonomic history.

Gaeumannomyces and Magnaporthe species were grouped in the Magnaporthaceae

based on the common morphology of their teleomorphs and similarities in host range

(Cannon 1994). The Magnaporthaceae family is included within the class

Sordariomycetes (Cannon andKirk 2007). Traditionally, the genusGaeumannomyces
belonged to the order Diaporthales. Since the Magnaporthaceae family expanded to

comprise fungal species that are not limited to Diaporthales fungi (Berbee 2001;

Castlebury et al. 2002), enough evidence has been found to classify these fungal

species at a neworder level, and currently the orderMagnaporthales has beenproposed

(Thongkantha et al. 2009). The Magnaporthaceae is a small family that comprises

17 genera and nearly a 100 species (Kirk et al. 2008; Thongkantha et al. 2009). The

genera Buergenerula, Ceratosphaerella, Clasterosphaeria, Clasterosporium,
Gaeumannomyces,Gibellina,Harpophora,Herbampulla,Magnaporthe,Muraeriata,
Mycoleptodiscus, Nakataea, Omnidemptus, Ophioceras, Pseudohalonectria,
Pyricularia and Yukonia belong to this family (Thongkantha et al. 2009). It is

interesting to highlight that marine fungal species are included within this family

such as Buergenerula spartinae, Gaeumannomyces medullaris (anamorph

Trichocladium medullare) and Pseudohalonectria halophila (Jones et al. 2009).
Some Phialophora species have been reported as anamorphs of several

Gaeumannomyces species including the take-all fungus Gaeumannomyces.
graminis. The Gaeumannomyces species together with their Phialophora anamorphs

and other root colonisers of non-pathogenic Phialophora species form the

Gaeumannomyces–Phialophora complex (Bateman et al. 1992; Bryan et al. 1995;
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Henson 1992; Ulrich et al. 2000). Within the genus Gaeumannomyces, taxonomists

have identified up to nine different fungal species (Table 4.1).

Phylogenetic analyses using partial sequences of the 18S and 28S ribosomal

genes of fungal isolates from different Magnaporthaceae genera suggested a mono-

phyletic origin of this family (Thongkantha et al. 2009). However, more recent

studies based on a six-gene phylogeny strongly support that both genera

Magnaporthe and Gaeumannomyces are polyphyletic (Zhang et al. 2011c), mean-

ing that they share a number of morphological signatures, but their origin probably

is not from a common ancestor (convergent evolution). Therefore, the classification

and evolution ofMagnaporthe/Gaeumannomyces species needs further analyses by
additional multigene phylogenies and whole genome comparison approaches (see

Sect. 4.5).

The first original report describing the fungus Pyricularia grisea as the causal

agent of grey leaf spot on the grass Digitaria sanguinalis appeared in 1880

(Saccardo 1880). A few years later, in 1892, Cavara published a report naming

Pyricularia oryzae as the causal agent of rice blast disease (Cavara 1892). Sub-

sequently, the name P. oryzae was applied for rice-infecting isolates; the isolates

from other cereals and grasses kept the name P. grisea. However, P. oryzae was

considered as a synonym of P. grisea based on morphological commonalities and

interfertility between P. oryzae strains from rice and P. grisea strains from different

grass hosts. Then, it was corrected to name rice-infecting isolates as P. grisea
(Rossman et al. 1990). Concomitantly, the teleomorph of P. grisea was identified as
Magnaporthe grisea (T.T. Hebert) M.E. Barr (Hebert 1971), and taxonomically it

was more correct to name the sexual stage of the fungus (see further information on

this subject below). As a result, scientists working on blast disease have been using

four different names to refer to rice-infecting blast isolates (P. grisea, P. oryzae,
M. grisea and M. oryzae).

To gain clarification on the taxonomy of Magnaporthe species, rice and all the

other grass isolates are currently included within the M. grisea species complex

(Couch and Kohn 2002). Globally, M. grisea species complex can infect a wide

range of plant hosts, although one strain infects only one or few host species.

Frequently one strain is susceptible only to a specific cultivar of the host (Borromeo

et al. 1993; Valent and Chumley 1991). Phylogenetic analysis has inferred the

presence of two monophyletic intersterile groups within the M. grisea species

complex based on three unrelated gene sequences (actin, β-tubulin and calmodulin)

and mating compatibility tests (Couch and Kohn 2002). The lineage M. grisea has

been kept for fungal isolates associated with the host grass Digitaria spp. The

second lineage contains rice and related fungal isolates and has been renamed as a

new species, M. oryzae, although no morphological differences exist between

isolates of these two groups.

The teleomorph is the sexual form (reproductive stage) of a fungus, while the

anamorph is its asexual form. It has been a common practice to name differently the

anamorph and teleomorph of a particular fungus. Based on the Article 59 of

the International Code of Botanical Nomenclature, a particular fungal species

with both reproductive stages, the teleomorph name takes prevalence over the
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anamorph name (Hawksworth 2011). However, molecular phylogenetic

approaches and whole genome sequences have revolutionised taxonomy, and this

dual nomenclature rule based on morphological features is going to disappear. The

rule “one fungus, one name” was approved at the Melbourne International Botani-

cal Congress in 2011 and will be applied from January 2013 onwards (Hawksworth

2011). This has originated an important debate about the maintenance of the genus

Magnaporthe or Pyricularia for the rice blast fungus among community members

(http://www.magnaporthe.blogspot.com.es/).

4.2 The Take-All Fungus Gaeumannomyces graminis

Take-all is an extremely damaging disease of cereals and grasses caused by

G. graminis, a homothallic soilborne fungus that colonises preferentially below-

ground plant tissues (Asher and Shipton 1981; Freeman and Ward 2004; Hornby

1998). Isolates of G. graminis are classified into four varieties based on morpho-

logical traits (ascospore size or hyphopodial structure) and pathogenicity features

(host range and aggressiveness):

1. Isolates ofG. graminis var. tritici infect mainly wheat (Triticum aestivum L.) but

also invade barley (Hordeum vulgare L.) and rye (Secale cereale L.; Walker

1972). G. graminis var. tritici isolates can be further classified as R or N isolates

based on their ability [R] or inability [N] to infect rye (Bryan et al. 1995).

2. Isolates of G. graminis var. avenae [Gaeumannomyces cariceti] infect oats

(Avena spp.) although they can also infect rice and wheat (Dennis 1960).

3. Isolates of G. graminis var. graminis are less aggressive and are normally found

on maize (Zea mays L.), rice and other grasses such as Bermuda grass (Cynodon
dactylon L.; Arx and Olivier 1952).

4. Isolates of G. graminis var. maydis are found in maize and can infect Sorghum
species (Yao et al. 1992).

It is noteworthy to mention that G. graminis var. tritici and avenae strains are

more closely related to each other than to G. graminis var. graminis isolates (Bryan
et al. 1995). Little is known about the molecular mechanisms underlying the

interaction of G. graminis with cereal roots due to the difficulty of generating stable
transformants in this fungal species, although genetic crosses and gene disruption

approaches have been successfully achieved in the past with Gaeumannomyces
strains (Bowyer et al. 1995; Frederick et al. 1999). In addition, it is a real challenge

to identify and introgress take-all resistance genes in polyploid hosts such as wheat

and oat.

The take-all caused by G. graminis var. tritici on wheat is one of the major

agronomical problems in this crop. The most characteristic symptom is the black-

ening of the root due to extended necrotic lesions preceded by a complete disruption

of the root architecture in severely affected crops (Fig. 4.1a). It is possible to

observe black mycelia at the stem base on diseased plants. As a consequence of
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the collapse of the root, diseased plants tiller poorly and do not fill their heads,

which become white (“whiteheads”). In the field, these symptoms are observed as

round white patches (Fig. 4.1b). Disease symptoms can be present at early stages on

seedlings (Fig. 4.1c). Penetration of roots by G. graminis is mediated by simple

or lobed hyphopodia (Fig. 4.1d). Lobed hyphopodia can be melanised, but the

role of the melanin in hyphopodia-mediated penetration is ambiguous in

Gaeumannomyces species. Melanins are dark pigmented secondary metabolites

produced by fungi and other organisms and play an important role in protecting

these organisms against environmental stresses (Henson et al. 1999). In some

phytopathogenic fungi, such as M. oryzae, melanin is required to keep the osmotic

pressure that exerts the force for appressorium-mediated leaf penetration (De Jong

et al. 1997; Howard and Valent 1996). M. oryzae melanin-deficient mutants are

non-pathogenic. However, the involvement of melanin in pathogenicity among

Gaeumannomyces species varies (Henson et al. 1999). Melanin-deficient mutants

of G. graminis var. graminis are as virulent as the wild-type strain on rice roots.

Fig. 4.1 G. graminis var.
tritici disease symptoms.

(a) Take-all symptoms on

roots of an adult wheat plant,

courtesy of Kansas State

University. (b) Visible white
heads and stunted plants on a

wheat field infected with

take-all, courtesy of Richard

Gutteridge (Rothamsted

Research, UK). (c) Necrotic
lesions of a 14 days-old

wheat seedling infected with

G. graminis. (d) Lobed
hyphopodia developed by

G. graminis strains, with
permission of Fungal

Genetics and Biology.

(e) Typical circular patches
of yellow-brown colour of

summer patch disease

(M. poae) on turfgrass,

courtesy of Dr. Lane

Tredway, North Carolina

State University
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By contrast, melanin is important for pathogenesis on G. graminis var. tritici
isolates although the corresponding Phialophora anamorphs which are heavily

melanised are non-pathogenic (Henson et al. 1999). This diverse role of melanin

in root penetration and colonisation might indicate a prevalence of the mechanisms

by which G. graminis varieties penetrate roots, i.e. turgor generation versus cell

wall-degrading enzymes. Several laccases, possibly involved in the melanin bio-

synthesis pathway, have been biochemically characterised in G. graminis var.

tritici. However, their participation in fungal virulence remains unclear due to

their functional redundancy (Litvintseva and Henson 2002).

Plant cell wall represents the first barrier that any invader has to overcome to

colonise the plant host. Fungal plant pathogens have developed combined strategies

to cross plant cell walls. One of them is the secretion of cell wall-degrading enzymes

during host invasion. Cellulose is the major polysaccharide polymer of plant cell

walls (Fry 2004). It is composed of linear β(1 ! 4)-linked D-glucose monomers.

G. graminis var. tritici secretes endoglucanases and β-glucosidases during in vitro

and in planta growth (Dori et al. 1995). In G. graminis, these enzymes have been

grouped based on their acidic (4.0–5.6) and basic (�9.3) isoelectric point. They are

supposed to play an important role in cell wall degradation during G. graminis var.
tritici growth on root tissues, but genetic approaches are required to confirm this

hypothesis (Dori et al. 1995).

Preformed antimicrobial compounds produced by plants play an important role

in plant immunity acting as first barriers to prevent pathogen attack (Field

et al. 2006). The saponin avenacin is a triterpene metabolite present in the epidermal

layer of oat root tips. Avenacins are a mixture of four glycosylated compounds

(avenacins A1, A2, B1 and B2), and avenacin A1 is the most abundant isoform in

oats (Crombie et al. 1984). Wheat roots cannot synthesise these triterpenes. While

strains of G. graminis var. avenae infect oats due to their ability to synthesise

avenacinase and also infect wheat, G. graminis var. tritici isolates only infect wheat
roots (but not oat roots) and lack the avenacinase enzyme (Crombie et al. 1986).

The fungal avenacinase detoxifies avenacin A1 into other less harmful compounds

that do not affect G. graminis var. avenae growth. Taking in account that isolates of
G. graminis var. tritici can infect a diploid oat species (Avena longiglumis L.) that
lacks avenacin (Osbourn et al. 1994), a correlation exists between the presence of

avenacins and the resistance of oats to non-host G. graminis fungal species. This
was further confirmed by generating avenacinase-deficient mutants of G. graminis
var. avenae, which no longer infected oat roots (Bowyer et al. 1995). Therefore, a

single gene confers to G. graminis var. avenae the ability to detoxify avenacin and

to control its host range.
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4.3 Magnaporthe poae: A Root-Infecting Fungus
of Turfgrasses

Magnaporthe poae affects roots and crowns of turfgrasses of the genera Poa,
Festuca and Agrostis that are widely used in golf and other sport courses, parks

and residential gardens (Landschoot and Jackson 1989a). Consequently, it is a

commercially significant root-infecting fungal pathogen. The disease caused by

M. poae is called summer patch due to the emergence of symptoms during the hot

season in circular patches, which can increase up to 1 m in diameter (Fig. 4.1e).

Temperature and high relative humidity favour fungal root penetration. Once inside

the host, the fungus can progress through the vascular tissue to the aerial parts of the

plant leading to subsequent foliar necrosis. Two new Magnaporthe species affect-
ing warm-season turfgrasses have been recently described in Australia whose

symptoms look similar to those produced by M. poae (Wong et al. 2012). These

are Magnaporthe garrettii [P. T. W. Wong and M. L. Dickinson sp. nov.] found on

couch (Cynodon dactylon) and Magnaporthe griffinii [P. T. W. Wong and A. M.

Stirling sp. nov.] associated with a disease complex (“summer decline”) of hybrid

couch (C. dactylon � C. transvaalensis). These Magnaporthe species can be

accurately identified in infected roots by PCR, providing a reliable method for

early detection and disease management of summer patch (Zhao et al. 2012).

There is very limited information about mechanisms regulating M. poae infec-
tion process or plant resistance genes against summer patch disease (Tredway

2006). Serine protease activity has been observed duringM. poae root colonisation
(Sreedhar et al. 1999), suggesting an important role for this enzyme during fungal

infection. Interestingly, the genome sequences of the M. poae strain ATCC 64411

and the Ggt isolate R3-111a-1 have been released since May 2010. The compara-

tive analysis of the currently available genomes of Magnaporthaceae strains is still

pending publication (Magnaporthe comparative Sequencing Project, Broad Insti-

tute of Harvard and MIT; http://www.broadinstitute.org/). A link may exist between

their genetic intractability and their ability to colonise roots, where they have to

subsist with other living organisms in the rhizosphere. Undoubtedly, the analysis of

their genomes will provide many insights that will help to understand the molecular

basis of ecological niche adaptation and pathogenicity in these fungal species.

4.4 Rice Blast Disease: An Important Constraint to
Rice Production

Rice (Oryza sativa L.) is one of the most important cereal crops and staple diet of

more than three billion people. Fungal blast is considered a major threat to rice

crops and costs farmers a loss of nearly $5 billion a year (Skamnioti and Gurr 2009).

Not surprisingly, it accounts for the world’s largest fungicide market. The Japanese

market alone for blast fungicides is estimated at US$400 million per year
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(Skamnioti and Gurr 2009). Rice blast is caused by the fungusMagnaporthe oryzae
(Couch and Kohn 2002), and this fungal species can also cause diseases in other

staple food crops including finger millet, maize and wheat, representing a serious

risk for food security globally and a significant challenge in developing countries

(FAO 2009). The damage produced by blast in rice crops oscillates between 10 and

30 % every year. Under disease-conducive conditions, the fungus can destroy the

entire crop (Thinlay et al. 2000). Rice blast is present in all rice-growing areas

worldwide, including Western Australia where rice-growing areas were free of this

disease until last year (You et al. 2012).

Rice blast is a polycyclic disease sinceM. oryzae can undergo multiple infection

cycles during a rice-growing season. However, disease progression highly relies on

favourable weather conditions, increasing the difficulty to effectively control blast.

High humidity or long periods of rain followed by relatively warm temperatures

favour spore germination and fungal penetration (Ou 1985). Wind-dispersed or

water-splashed conidia are the main source of inoculum in the field (Ou 1985).

However, M. oryzae can overwinter on alternative weed hosts and infested plant

debris for almost 3 years, playing possibly an important role in the epidemiology of

the disease (Harmon and Latin 2005). This fungus can form resting structures on

roots and plant debris such as microsclerotia and vesicles, which can germinate

even after 4 years of dormancy (Gangopadhyay and Row 1986; Sesma and Osbourn

2004) (Fig. 4.2a, b). M. oryzae can penetrate rice roots and spread through the

vascular system to the aerial parts of the plant to produce blast disease symptoms

(Fig. 4.2c, d), although the relevance of the underground infection process under

field conditions is not proven yet (Besi et al. 2009; Sesma and Osbourn 2004).

Domestic travellers and the transport of infected material (souvenirs made with

seeds, weeds or rice straw) probably also contribute to the dissemination of the

disease (You et al. 2012). PCR-based methods have been developed for detection of

the fungus, offering a quick method to control the dissemination of infected

material (Harmon et al. 2003).

In the field, rice blast disease symptoms are visible at any growth stage and at

any part of the aerial plant tissue: leaf, collar, nodes, panicle neck and panicles

(Fig. 4.2e–g). The shape, colour and size of the lesions largely depend on the rice

cultivar, the age of the lesion and environmental conditions (Ou 1985). On leaves,

blast lesions are eyespot shaped with white to grey colour and surrounded by a dark

red-brown margin. Lesion size varies but commonly ranges between 1–1.5 cm long

and 0.3–0.5 cm wide. The collar rot appears on the junction between the leaf blade

and leaf sheath affecting the entire leaf. The neck rot is the most damaging

symptom in the field. Typically a necrotic or rotten neck is visible at the base of

the panicle often affecting the entire panicle, which becomes white and partially

filled or completely unfilled. The blast symptoms in the panicle or nodes are brown

or black. On roots, blast lesions show brown necrotic areas, and root architecture is

maintained suggesting less aggressive damage compared to take-all symptoms

caused by G. graminis.
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4.5 From Genome Sequences into Underlying Mechanisms
Regulating Fungal Pathogenicity

Due to the genomic resources available for both the rice host and the fungus, the

genetic tractability of M. oryzae and the economic relevance of blast disease, the

rice–M. oryzae interaction has become a leading pathosystem for studying fungal

pathogenicity and plant immunity in crops (Dean et al. 2012). The laboratory strain

70–15 was the first M. oryzae rice-infecting strain whose genome sequence was

made available to the research community (Dean et al. 2005). It also represented the

first genome publication of a fungal plant pathogen. The genome of M. oryzae is

approximately 41 Mb in size (eight annotation, Magnaporthe comparative
Sequencing Project, Broad Institute of Harvard and MIT; http://www.

broadinstitute.org). Gene prediction programmes estimate the presence of 12,827

protein-coding genes, which are distributed in seven chromosomes. Optical

mapping has allowed an accurate DNA alignment of the seven chromosomes.

Fig. 4.2 Rice blast disease

symptoms. (a) Fungal
vesicles and

(b) microsclerotia produced

on root surfaces. (c) Cross
section of a barley root

infected with a GFP-tagged

M. oryzae strain showing

heavy colonisation of the

vascular system. (d) Necrotic
blast lesions of a 15-day-old

rice seedling infected with

M. oryzae. (e) Leaf blast
symptoms. (f) Panicle blast
in the field. (g) Neck blast

symptoms. Images f and
g courtesy of M. Pau Bretó

(IVIA, Spain)
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The genome sequence of M. oryzae has revealed several pathogenicity-

associated features. Predicted secreted proteins, which likely act as potential

effectors modulating plant physiology and reducing basal host immune response,

are more abundant inM. oryzae (~1,600) compared to Neurospora crassa (~800) or
Aspergillus nidulans (~900). In addition, these non-pathogenic saprophytic fungi

contain up to 10 genes encoding chitin-binding proteins, while M. oryzae genome

has undergone an expansion on this protein family (~40 genes), indicating the

complexity of chitin metabolism in M. oryzae. The rice blast fungus also presents

an increase in seven transmembrane integral proteins, normally involved in activa-

tion of signalling pathways that help the fungus to adapt to specific external stimuli.

A subgroup of these type of receptors contain CFEMs (conserved fungal-specific

extracellular motif), which include an extracellular cysteine-rich EGF-like domain

present exclusively in fungi (Kulkarni et al. 2005). One of the CFEM protein

members, PTH11, has been shown to be involved in appressorium development

and fungal virulence in M. oryzae (DeZwaan et al. 1999).

Different large-scale gene functional studies have been carried out since the

release ofM. oryzae genome sequence, including large-scale insertional mutagene-

sis (Betts et al. 2007; Jeon et al. 2007) and gene silencing (Nguyen et al. 2008).

Transcriptomic approaches have also revealed global gene expression profiles

during nitrogen starvation (Donofrio et al. 2006), appressorium development

(Oh et al. 2008; Soanes et al. 2012) and plant infection (Mosquera et al. 2009).

From the host perspective, at least 85 resistance gene loci (Pi genes), nine major

QTLs defined by molecular markers and additional 350 QTLs have been identified

on different rice germplasms to date (Ballini et al. 2008; Chen and Ronald 2011;

Liu et al. 2010a). Furthermore, 17 resistance genes and two QTLs have been

cloned since the release of the rice genome in 2002 (Table 4.2; Goff et al. 2002;

Yu et al. 2002).

In 2010, and as mentioned in Sect. 4.3, two additional genomes of the

Magnaporthaceae family have been made available to the scientific community

(Magnaporthe comparative Sequencing Project, Broad Institute of Harvard and

MIT; http://www.broadinstitute.org). These include the sequence drafts assemblies

of the G. graminis var. tritici strain R3-111a-1 and theM. poae strain ATCC 64411.

Although G. graminis var. tritici R3-111a-1 and M. poae ATCC 64411 genomes

have not been assembled as well as M. oryzae genome, little syntenic regions exist

among these three strains as shown by dot plot analysis (http://www.broadinstitute.

org/annotation/genome/magnaporthe_comparative/Dotplot.html), in accordance

with the polyphyletic origin of Magnaporthe and Gaeumannomyces genera found

by multigene phylogeny (Zhang et al. 2011c).

More recently, the genomes of M. oryzae rice-infecting field isolates Y34 and

P131 have been sequenced and compared against the genome reference of the

laboratory strain 70–15. This genomic comparison has pointed out some relevant

features of the field isolates (Xue et al. 2012). Y34 and P131 strains contain several

100 unique genes and have undergone unique DNA duplication events and

expansions of pathogenicity-associated gene families. Thousands of transposon-

like elements are present on the field isolates, although their genomic locations are
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poorly conserved among them. This suggests that transposition events might play

an important role in genome variation in the rice blast fungus, which can explain the

rapid adaptation of M. oryzae isolates to new resistant rice varieties (Kang

et al. 2001; Zeigler 1998).

4.6 Evolutionary Implications of M. oryzae Reproduction

M. oryzae is a haploid and heterothallic ascomycetous fungus. Blast isolates with

opposite mating types MAT-1.1 and MAT-1.2 (compatible strains) can conjugate

and enter into an heterokaryotic stage where mycelia contain unfused nuclei

(Valent et al. 1991). Subsequently, this heterokaryotic mycelium enters into a

sexual cycle by fusing both nuclei. Within 3 weeks, sexual fruiting bodies or

perithecia are formed. The perithecium is filled with asci, each of which contains

eight ascospores (sexual spores). The dissection of ascospores is used for classical

genetic studies to determine the genetic basis of phenotypic traits looking at the

segregation of genetic markers (Talbot 2003; Valent and Chumley 1991; Valent

et al. 1991). Blast strains isolated from finger millet (Eleusine coracana) or

weeping lovegrass (Eragrostis curvula) are normally hermaphrodites and have

been used to conduct early genetic studies (Valent et al. 1991). By contrast, rice

Table 4.2 Cloned rice blast resistance genes and associated M. oryzae effectorsa

R gene Protein domains Cognate effector References

Pib NBS-LRR – Wang et al. (1999)

Pita NBS-LRR AvrPita Bryan et al. (2000)

Pi9 NBS-LRR – Qu et al. (2006)

Pi2 NBS-LRR – Zhou et al. (2006)

Piz-t NBS-LRR AvrPiz-t Zhou et al. (2006)

Pi-d2 Receptor kinase – Chen et al. (2006)

Pi36 NBS-LRR – Liu et al. (2007)

Pi37 NBS-LRR – Lin et al. (2007)

Pit NBS-LRR – Hayashi and Yoshida (2009)

Pi5 NBS-LRR – Lee et al. (2009)

Pid3 NBS-LRR – Shang et al. (2009)

Pik-h NBS-LRR – Sharma et al. (2010)

Pik-m NBS-LRR AvrPik/km/kp Ashikawa et al. (2008)

Pik Two NBS-LRR AvrPik/km/kp Zhai et al. (2011)

Pik-p Two NBS-LRR AvrPik/km/kp Yuan et al. (2011)

Pi1 Two NBS-LRR AvrPik/km/kp Hua et al. (2012)

Pia Two NBS-LRR AvrPia Okuyama et al. (2011)

QTLs

Pi21 Proline rich – Fukuoka et al. (2009)

Pb1 NBS-LRR – Hayashi et al. (2010)
aAdditional information: Ballini et al. (2008), Chen and Ronald (2011), Liu et al. (2010a) and

Skamnioti and Gurr (2009)
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blast isolates from the same geographic location reproduce mainly asexually since

the same mating type is found normally among local populations and are female

sterile (Couch et al. 2005; Zeigler 1998). A few examples of fertile rice isolates

have been recovered from the field such as the strain Guy11 (Leung et al. 1988;

Valent et al. 1991). Transposable elements or mutations in the mating alleles are

directly involved in this lack of fertility (Zeigler 1998). Heterokaryosis and para-

sexual cycle have been reported for rice blast field isolates (Noguchi et al. 2006).

The presence in M. oryzae of repeat-induced point mutation (RIP)-like processes,

which only occur in the sexual phase of a fungal life cycle, suggests that sexual

reproduction in the rice blast fungus exists or existed in nature (Ikeda et al. 2002).

Under laboratory conditions, it is relatively easy to produce sexual crosses between

M. oryzae isolates from different grasses. This ability has been used to identify

several important gene loci and to generate fertile rice-infecting laboratory strains

such as 70–15.

The relevance of sexual reproduction in the field, with the advantage of increas-

ing pathogen fitness, has been addressed in the blast fungus (Saleh et al. 2012).

A direct evidence of contemporary sexual reproduction is the identification of

sexual structures (perithecia) in nature. However, their visualisation is challenging

since M. oryzae perithecia have small size and may be constrained to limited areas

or time periods. Molecular tools have been developed to identify recombination

events in field population samples such as linkage disequilibrium (LD) associations

and diversity of molecular markers (genotyping; Arnaud-Haond et al. 2007). In

populations where recombination occurs, high genotypic diversities exist, and the

non-random association of alleles at two or more loci (i.e. linkage disequilibrium) is

low or not significant.

As mentioned before, a similar mating type is normally found in field

populations of the rice blast fungus. Strikingly, ancestral populations of M. oryzae
from south and east of Asia, the geographical location where this fungus emerged,

show clear signatures of sexual reproduction (Couch et al. 2005; Kumar et al. 1999;

Saleh et al. 2012; Zeigler 1998). Molecular evidences such as genotypic richness

and linkage disequilibrium data support these findings (Saleh et al. 2012). Female-

fertile M. oryzae strains still can be recovered from these locations and can

complete the sexual cycle in vitro. This is the only region in the world so far

where evidences for sexual reproduction ofM. oryzae have been found, confirming

the loss of sexual reproduction outside its original location of emergence. In terms

of evolution, this geographical area may represent an initial point where M. oryzae
isolates have evolved by adaptive selection against new rice cultivars and different

hosts (Saleh et al. 2012).
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4.7 The M. oryzae Leaf Infection Process

Under high relative humidity conditions, a succession of developmental events

initiates the M. oryzae aerial infection (Fig. 4.3; Tucker and Talbot 2001), which

begins when a wind-dispersed or water-splashed conidium lands on the leaf surface.

Immediately after landing, a preformed adhesive material is secreted from the

conidial tip to attach itself to the highly hydrophobic surface. One hour later a

short germ tube develops from the apical cell of the conidium. Within a few hours,

the apex of the germ tube swells, and a specialised dome-shaped penetration

structure known as appressorium is formed. The appressorium is heavily melanised

and a tremendous turgor pressure is generated within this structure (De Jong

et al. 1997; Howard et al. 1991). A penetration peg emerges at the base of the

appressorium and crosses the plant epidermal cell by combining physical force and

secretion of cell wall-degrading enzymes (Skamnioti and Gurr 2007). Sub-

sequently, M. oryzae initiates a new morphogenetic programme to colonise the

plant epidermal cells. Five to six days after the initial penetration of the fungus,

Fig. 4.3 Rice blast disease infection cycle. Right panel:M. oryzae leaf cycle modified from Ribot

et al 2008.M. oryzae leaf infection cycle starts when a conidium lands on a leaf and attaches to the

surface. Shortly after, the conidium produces a small germ tube, which differentiates into a

melanised appressorium. A penetration peg formed at the base of the appressorium crosses the

plant cell wall initiating fungal invasion. Invasive growth is different compared to fungal growth

on surfaces. The invasive hypha moves beyond the first infected cell during a few days. Finally,

conidiophores emerge and the fungus initiates sporulation between 6 and 15 days, releasing

thousands of conidia to the environment. Left panel: M. oryzae root infection cycle potentially

begins from infected plant debris or dormant structures present in the soil. These resting structures

can germinate and penetrate into the plant roots. Fungal hypha colonises the vascular system of the

root spreading systemically. The fungus moves to the upper parts of the plant producing typical

blast lesions from which conidia are formed. These spores are dispersed to other plants by wind or

water, propagating the disease

4 Major Plant Pathogens of the Magnaporthaceae Family 57



conidiophores emerged on the leaf surface to initiate the last step of the infection

with the reproduction of the fungus.

The rice blast research community has built a large amount of information on

each of the steps of the blast disease cycle. Here, a description and latest findings of

the M. oryzae leaf infection biology follows.

4.7.1 An Extracellular Matrix Mediates Fungal Adhesion
and Differentiation

Spores ofM. oryzae get attached immediately to the highly hydrophobic leaf cuticle

by secreting a preformed mucilaginous extracellular matrix (ECM). This adhesive

material is passively released from the conidial apex upon hydration, meaning that

there are no metabolic costs involved in this process (Hamer et al. 1988; Tucker and

Talbot 2001). This attachment is required for conidial anchoring and recognition of

the surface, steps that precede the subsequent infection-related development.

M. oryzae mutants with altered ECM show reduced virulence (Ahn et al. 2004).

Initial studies identified components of M. oryzae adhesive material such as

glycoproteins and lipids which help to retain moisture, essential for

appressorium-mediated penetration (Hamer et al. 1988; Howard 1997).

α-Mannosyl and α-glucosyl residues are highly abundant in the ECM based on

lectin labelling and protease digestions (Hamer et al. 1988; Xiao et al. 1994).

Additional components of M. oryzae ECM have been identified by immunological

techniques using antibodies against animal cell adhesion factors (collagen VI,

vitronectin, fibronectin, laminin) and integrin α3 (Bae et al. 2007; Inoue

et al. 2007). Particularly, collagen (as a major component), vitronectin

(as cementing compound), laminin, fibronectin and integrins are present in M.

oryzae adhesive material (Bae et al. 2007; Inoue et al. 2007). Evidences suggest

that ECM components are synthesised at two different stages of the infection cycle

(Inoue et al. 2007). Collagen, vitronectin and integrins seem to be formed earlier

than fibronectin and laminin components.

Integrins are transmembrane glycoproteins located at the plasma membrane

and act as cell surface receptors modulating the cellular response to environ-

mental stimuli (Kim et al. 2011a; Shattil et al. 2010). Fibronectin and collagen

are extracellular ligands of integrin receptors (Kim et al. 2011a; Shattil

et al. 2010). Externally applied peptides containing Arg-Gly-Asp amino acids

and antibodies against fibronectin reduce conidial adhesion and appressorium

development indicating that these processes are modulated by integrin-like

proteins in M. oryzae. These defects are restored by manipulating the cAMP

response pathway with exogenously applied chemicals (cAMP, cutin monomers

and IBMX, a cAMP phosphodiesterase inhibitor; Bae et al. 2007). These

results suggest that integrin-like proteins and their cognate extracellular ligands

(fibronectin, collagen) activate the cAMP-dependent pathway and possibly
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other signalling pathways. This activation regulates the subsequent infection-

related morphogenesis (Bae et al. 2007; Tucker and Talbot 2001). Integrins are

also detected in conidial cell walls (Inoue et al. 2007), suggesting that these

transmembrane receptors may play a role in the recognition of substrates by

M. oryzae spores at earlier stages, immediately after landing.

4.7.2 Recognition of the Surface Precedes Appressorium
Differentiation

Upon hydration, the first germ tube emerges, usually from the apical compartment of

the conidium. If the fungus perceives that the surface is not adequate, the germ tube

will arrest, blocking any further differentiation. Alternatively, it can develop a

second germ tube from the opposite end of the conidium. Two germ tubes are

often seen in germinating conidia on artificial substrates (Tucker et al. 2010). It is

very unusual to see spores germinating from themiddle compartment. The germ tube

appears near the adhesion site of the spore in the apical cell and grows in direct

contact with the surface of the plant for a short distance. Then, it swells and starts to

change direction. This process known as “hooking” takes place before the appresso-

rium development, and it is believed to be an important recognition step (Fig. 4.4a;

Bourett and Howard 1990). During germ tube elongation, other processes such as

secretion of plant cell wall-degrading enzymes, mobilisation of the metabolic

reserves (trehalose) and synthesis of fungal cell wall occur (Tucker and Talbot 2001).

Concomitantly with the germination process, M. oryzae secretes additional

compounds that contribute to the adhesion of the germ tube and perception of

plant physical signals. Among them, hydrophobins have been shown to play a

significant role at the early stages of fungal infection (Kim et al. 2005; Linder

et al. 2005; Talbot et al. 1996). These specialised proteins are secreted at the

interface between the hyphae and a hydrophobic surface and are involved in fungal

development and environmental sensing (Linder et al. 2005). In M. oryzae, two
hydrophobins play a role during infection, Mpg1 and Mhp1. Mpg1 has been widely

characterised in the rice blast fungus (Beckerman and Ebbole 1996; Kershaw

et al. 1998; Lau and Hamer 1996; Soanes et al. 2002; Talbot et al. 1993; Talbot

et al. 1996). Mpg1 is a class I hydrophobin highly expressed during conidiogenesis,

appressorium development and carbon and nitrogen starvation. The Δmpg1
mutants show defects in conidiation and appressoria development, and conse-

quently are less virulent. Mhp1 is a class II hydrophobin and mutants lacking this

hydrophobin show pleiotropic effects. Similarly to Mpg1, the hydrophobin Mhp1 is

required for fungal morphogenesis, including appressorium development and inva-

sive growth (Kim et al. 2005).

Cutinases and other methyl esterases are relevant enzymes secreted by fungal

plant pathogens during early stages of infection (Kolattukudy 1985). Sixteen

methyl esterase-encoding genes are present in M. oryzae genome
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(Dean et al. 2005), and some of them can be components of M. oryzae adhesive

material. It is difficult to define their roles inM. oryzae infection biology since they
may have redundant functions. Two cutinases have been characterised in the rice

blast fungus. The CUT1 gene is dispensable forM. oryzae plant infection (Sweigard
et al. 1992). Among all the M. oryzae methyl esterases, CUT2 was selected for

further analysis because it is highly induced at 12 h after inoculation on barley

leaves (Skamnioti and Gurr 2007). In M. oryzae, Cut2 acts as a surface sensor

activating the cAMP/PKA and DAG/PKC signalling cascades which regulate

appressorium-mediated penetration. The Δcut2 mutants show that Cut2 is required

for appressorium differentiation and full disease symptoms production, but have no

defects in adhesion, indicating a specific role for a cutinase in signalling and fungal

development (Skamnioti and Gurr 2007).

4.7.3 Orchestrated Cellular Processes Govern Early Stages
of Plant Infection

Two important stages take place during the process of appressorium differentiation

in M. oryzae. During the recognition phase, the apex of the germ tube begins to

hook, and vesicles located in the apical area move towards the surface of the plant

(Bourett and Howard 1990; Tucker and Talbot 2001). Then, the tip of the germ tube

Fig. 4.4 M. oryzae
development on artificial and

root surfaces. (a) Scanning
electron micrograph of a

germinating conidium

(Co) forming an

appressorium (Ap) on

hydrophobic coverslips.

(b) A two-septate conidium

expressing a GFP-tagged

nuclear protein; septa

(Se) are indicated. (c) Sickle-
shaped microconidia (Mi).

(d) Conidiophore (Cf)-
producing conidia in the stem

of a rice seedling. (e) Conidia
on roots developing

hyphopodia (Hy).

(f) Differentiated
hyphopodia from fungal

hyphae producing infection

pegs (Ip) to penetrate rice

roots. Scale bar numbers

indicate micrometres

60 A. Illana et al.



swells and the appressorium is formed (Fig. 4.4a). This differentiation process is

highly orchestrated and is activated in response to starvation stress and physical

cues such as hardness and hydrophobicity (Dean 1997; Talbot et al. 1997; Tucker

and Talbot 2001). Several interconnected cellular processes regulate these early

stages of infection: cell cycle progression followed by cytokinesis and appresso-

rium differentiation (Saunders et al. 2010a, b), programmed cell death (Veneault-

Fourrey et al. 2006) and mobilisation of metabolic resources to generate high

concentrations of glycerol for turgor-mediated penetration (Howard et al. 1991;

Thines et al. 2000).

During germ tube elongation, the nucleus of the germinating cell moves towards

the middle of the germ tube. Subsequently, the nucleus undergoes mitosis and one

of the daughter nuclei moves towards appressoria, whereas the second nucleus

returns to the conidium (Veneault-Fourrey et al. 2006). Concomitantly, storage

products are transported towards the appressorium during this first nuclear division,

and a septum is formed separating the appressorium from the germ tube (Saunders

et al. 2010a). Then, appressorial melanisation begins. Melanin is deposited in the

space between cell wall and plasma membrane to maintain appressorium integrity.

High levels of glycerol derived from the degradation of stored lipids and glycogen

within the appressorium build the osmotic force required for penetration of the

cuticle (Thines et al. 2000). Finally, the conidium and germ tube collapse using an

autophagic mechanism which is vital for pathogenicity (Talbot and Kershaw 2009;

Veneault-Fourrey et al. 2006).

Appressorium morphogenesis, autophagic cell death and mobilisation of carbo-

hydrate and lipid reserves to the appressorium are processes regulated by the

mitogen-activated protein kinase (MAPK) Pmk1 pathway (Thines et al. 2000;

Veneault-Fourrey et al. 2006; Xu and Hamer 1996). In eukaryotes, MAPKs are

involved in the activation of cellular processes in response to environmental cues

that help to adapt the cell to the exterior (Zhao et al. 2007). In Saccharomyces
cerevisiae, five MAPK pathways exist and have been characterised in detail (Zhao

et al. 2007). InM. oryzae, the MAPK Pmk1 (pathogenicity MAP kinase1) has been

identified as the homologue of S. cerevisiae FUS3/KSS1 MAPK cascades, which

regulate mating and filamentous growth (Xu and Hamer 1996). The Δpmk1mutants

are unable to produce appressorium and are non-pathogenic. However, they can

recognise hydrophobic surfaces and react to exogenously applied cAMP. In

M. oryzae, Pmk1 is also required for invasive hyphae growth (Xu and Hamer

1996). Homologues of PMK1 are required for pathogenicity in all fungal plant

pathogens (biotrophs or necrotrophs) of monocot and dicot plants studied to date,

indicating that this MAPK pathway is widely conserved (Zhao et al. 2007). This

pathway is under extensive analysis, and genes acting upstream and downstream of

Pmk1 have been identified. These include the MAPK kinases Mst7 and Mst11

(Zhao et al. 2005); the PAK kinase Chm1 (Li et al. 2004); the Rho-GTPase MgRac1

(Chen et al. 2008); the scaffold protein Mst50 that interacts with Ras1, Ras2, Ccd42

and the Gβ subunit Mgb1 (Park et al. 2006); the membrane receptors MoMsb2 and

MoSho1 (Liu et al. 2011); several transcription factors including Mst12 (Park

et al. 2002), Mig1 (Mehrabi et al. 2008), MoSLF1 (Li et al. 2011) and MoMcm1
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(Zhou et al. 2011); and two novel Pmk1-interacting proteins Pic1 and Pic5 (Zhang

et al. 2011b).

Two other MAPK signalling pathways have been described in M. oryzae. The
Mps1-dependent MAPK pathway is implicated in appressoria penetration and cell

wall integrity (Xu et al. 1998), whereas the MAPK Osm1 is involved in the cellular

response to osmotic stresses and is not required for plant infection (Dixon

et al. 1999).

4.7.4 Signalling and Cytoskeletal Dynamics Regulate
Fungal Plant Penetration

At the base of the appressorium, a pore ring is formed and the fungus initiates the

turgor-driven penetration into plant tissues by developing a specialised hypha or

penetration peg (Talbot 2003). The penetration peg enables the fungus to cross the

plant cell wall and extend to the epidermal lumen of the plant. This structure is

enriched in actin filaments and lacks organelles in its cytoplasm (Bourett and

Howard 1992). Particularly two important signalling pathways regulate this step,

the Mps1 MAPK cascade (Xu et al. 1998) and the cAMP response pathway

(Xu et al. 1997).

The cAMP-dependent cascade acts cooperatively with the PMK1 pathway

during M. oryzae plant penetration (Xu and Hamer 1996). The cAMP cascade is

required for surface recognition and penetration peg emergence but not appresso-

rium differentiation (Xu et al. 1997). The generation of glycerol and high turgor

pressure within the appressorium requires a rapid degradation of lipid and glycogen

reserves which is under the control of the cAMP-activated protein kinase A (PKA)

pathway (Thines et al. 2000). Several key components of this signalling pathway

have been studied such as the adenylate cyclase Mac1 (Choi and Dean 1997), the

catalytic subunit of cAMP-dependent PKA CpkA (Xu et al. 1997), the

phosphodiesterases PdeL and PdeH (Zhang et al. 2011a) and the Mac1-interating

protein Cap1 (Zhou et al. 2012), which regulates the crosstalk between PMK1- and

cAMP-dependent pathways through its interaction with Ras2.

Additional genetic determinants have been found to play a role in M. oryzae
penetration including the tetraspanin PLS1 (Clergeot et al. 2001; Lambou

et al. 2008), the Pmk1-regulated genesGAS1 andGAS2 encoding unknown proteins
conserved in filamentous fungi (Xue et al. 2002), the aminophospholipid

translocase PDE1 (Balhadere and Talbot 2001) and the isocitrate lyase gene ICL1
of the glyoxylate cycle (Wang et al. 2003).

An actin network organised at the base of the appressorium forces the emergence of

a penetration peg (Bourett and Howard 1992). InM. oryzae, this process is regulated
by septins (Dagdas et al. 2012). Septins are highly conservedGTPases present in fungi

and animals that participate in cytoskeletal-dependent cellular processes such as

cytokinesis, polarity and secretion (Gladfelter 2006; Mostowy and Cossart 2012).
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Septins also act as diffusion barriers. M. oryzae genome contain five septin genes,

four of which are core septins present in budding yeast. M. oryzae septins form a

dynamic septin ring that contributes to the formation of a toroidal filamentous actin

network surrounding the appressorial pore, where the penetration peg differentiates

(Dagdas et al. 2012).

4.7.5 Insights into M. oryzae Invasive Growth

Within the host cell, the fungus develops several types of biotrophic invasive

hyphae (IH; Kankanala et al. 2007), which contain distinct morphological features

compared to the filamentous hyphae produced on the leaf surface or in vitro. Soon

after the M. oryzae penetration peg has crossed the epidermal cell wall, it

differentiates into a short and thin filamentous hypha known as primary IH. This

primary IH precedes the formation of a thicker intracellular pseudohypha called

bulbous IH. The bulbous IH grows within the cytoplasm and moves beyond the first

invaded cell by crossing with constricted infection pegs at regions of the plasma

membrane where plasmodesmata aggregate, also known as pit fields (Bell and

Oparka 2011). Thereafter, the bulbous IH differentiates into filamentous IH in the

new invaded cell and subsequent fungal invasion continues into neighbouring cells

(Kankanala et al. 2007). Importantly, bulbous and filamentous IH are not in direct

contact with the plant cell cytoplasm since a plant-derived plasma membrane called

extra-invasive hyphal membrane (EIHM) surrounds them. There is no well-

established matrix between IH and EIHM, and IH grows in close contact with the

EIHM (Kankanala et al. 2007). Secreted fungal proteins and other compounds are

retained inside this space such as Slp1 and Bas4 effectors or can be translocated into

the plant cytoplasm as it is the case for Pwl2 (described later). An additional

morphological feature of M. oryzae invasive growth is the formation of biotrophic

interfacial complexes (BICs) where effector proteins accumulate (Khang

et al. 2010). When M. oryzae penetrates the first cell, a BIC is formed at the tip

of the first bulbous IH, and is left behind, remaining as a discrete structure while the

bulbous IH continues growing. New BICs are observed at the tip of each IH

growing inside the plant cell. Five to six days after the initial fungal infection,

conidiophores start to emerge in the leaf surface, and spores are produced massively

during 2 weeks.

The elucidation of the molecular mechanisms involved in M. oryzae invasive

growth has been largely overlooked because many of the mutants characterised in

this organism are penetration defective. There is an extensive coupling between

penetration and invasive growth processes since cell wall degradation and mechan-

ical pressure are also involved during fungal growth inside the host cells (Heath

et al. 1992; Xu et al. 1997). As an example, Δmst12 fails to penetrate onion

epidermal cells and to infect wounded leaves although it differentiates melanised

appressoria, indicating that Mst12 is required for both penetration peg formation

and invasive growth differentiation (Park et al. 2002). Very few genes have been
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found to play specifically a critical role during M. oryzae plant invasion. MIG1 is

involved in the late stages of M. oryzae infection since the Δmig1 mutants form

normal appressoria, penetrate host cells and develop primary IH but fail to infect

wounded leaves. Mig1 is one of the two MADS-box transcription factors present in

M. oryzae and a downstream target of the MAPK Mps1 (Mehrabi et al. 2008). The

MIR1 gene specifically expressed in M. oryzae IH encodes a protein of unknown

function, which is present only in the M. grisea species complex. Despite the fact

that MIR1 expression is exclusively found in IH, Δmir1 mutants have no defects in

appressorial penetration and are fully pathogenic (Li et al. 2007).

4.7.6 Fungal Metabolism and Plant Infection

M. oryzae has to adapt to the changing nutritional environment during host inva-

sion, and consequently metabolism plays an essential role during M. oryzae inva-

sive growth. M. oryzae is considered a hemibiotrophic fungus based on its

nutritional mode during host invasion. However, genes regulating the switch in

life style and acquisition of nutrients during plant infection are largely unknown

(Fernandez andWilson 2012; Kankanala et al. 2007). The duration of the biotrophic

versus the necrotrophic phase inM. oryzae is also unknown. During early stages of

rice colonisation, M. oryzae grows and fulfils its nutritional needs from the plant

tissue without killing the host cells due to its ability to manipulate rice physiology

as many other biotrophs do (Mendgen and Hahn 2002; Mengiste 2012). During this

biotrophic stage, limited amounts of cell wall-degrading enzymes are produced and

toxin production is absent according to a biotrophic life style. By contrast, extensive

degradation of plant cell walls is observed at later time points of infection and in

heavily invaded tissues, both stages associated with the necrotrophic phase of the

fungus (Kankanala et al. 2007; Rodrigues et al. 2003). Typically, necrotrophs

produce phytotoxic compounds and cell wall-degrading enzymes to kill the cells

and cause leakage of nutrients (Mengiste 2012). Plant cell walls nearby M. oryzae
hyphae show strong enzymatic digestion, correlating with M. oryzae necrotrophic

phase (Kankanala et al. 2007).

Possibly one of the cues that trigger the switch from biotrophic to necrotrophic

hyphae in M. oryzae is the lack of carbon sources within the host cell. It is known

that nutrient starvation also can act as an environmental cue for infection-related

differentiation (Talbot et al. 1997). M. oryzae has to limit the acquisition of

nutrients during its biotrophic phase to maintain host cell integrity. Consequently,

the use of nutrients must be highly regulated duringM. oryzae biotrophic growth in
order to respond appropriately to nutrient availability. Several interconnected

pathways regulate M. oryzae growth in response to nutrients during plant invasion.

These include the target of rapamycin (TOR) signalling cascade, carbon catabolite

repression (CCR), nitrogen metabolite repression (NMR) and the integration of

carbon and nitrogen metabolism by trehalose-6-phosphate synthase 1 (Tps1).
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The TOR signalling cascade is an intracellular regulatory network used by

eukaryotic cells to regulate growth according to nutrient availability. The 14-3-3

proteins are involved in key cellular processes and integrate environmental cues

through the regulation of signalling pathways, including TOR. The TOR signalling

pathway is regulated by the RNA-binding protein Rbp35 (Franceschetti et al. 2011).

Rbp35 is a component of the polyadenylation machinery, and it is required for

alternative 3’ end processing of pre-mRNAs. One of the RBP35 targets is the

14-3-3 pre-mRNA, and this could explain the defects that Δrbp35 shows on TOR

signalling and plant infection.

NMR is a highly regulated process in which preferred nitrogen sources, such as

ammonia, glutamine and glutamate, are used preferentially. Ammonia is the pre-

ferred nitrogen source for M. oryzae. The NMR in M. oryzae occurs through the

transcriptional activator Nut1, the M. oryzae AreA/Nit2 orthologue (Froeliger and

Carpenter 1996). The expression of a large number of genes encoding enzymes that

are involved in the utilisation of various secondary nitrogen sources—nitrate,

purines or amino acids—is subject to nitrogen metabolic repression and is posi-

tively regulated by Nut1. The Δnut1 mutant can grow on ammonia, which does not

require an active Nut1, but Δnut1 is unable to grow on certain alternative nitrogen

sources such as nitrate. M. oryzae mutants in genes involved in nitrate assimilation

and whose expression is regulated by Nut1 such as NIA1 and NIR1 are fully

pathogenic on rice leaves (Lau and Hamer 1996; Wilson et al. 2010). This suggests

that NMR is not involved in M. oryzae leaf colonisation and consequently the

fungus can assimilate preferred sources of nitrogen (ammonia, glutamine or gluta-

mate) from aerial host tissues. However, genes involved in response to nitrogen

availability are important for infection. TwoM. oryzae nitrogen-regulatory genes of
unknown identity, NPR1 and NPR2, are required for growth on a wide range of

secondary nitrogen sources, including nitrate, and do not develop lesions on barley

(Lau and Hamer 1996). Therefore, nitrate is not required for M. oryzae leaf

infection, but secondary nitrogen sources assimilated via NPR1 or NPR2 are

necessary for development of full disease symptoms. Additionally, several studies

have shown that nitrogen-limiting conditions result in the expression of genes

required for fungal pathogenicity such as the genes encoding the hydrophobin

MPG1 and the vacuolar subtilisin-like protease SPM1 (Donofrio et al. 2006; Saitoh
et al. 2009; Soanes et al. 2002). We require further studies to understand the

molecular mechanisms underlying NMR and their involvement in nitrogen assimi-

lation during M. oryzae plant infection.
CCR is a genetic mechanism that ensures the preferential use of glucose over

other, less-preferred carbon sources, and it is also present in M. oryzae (Fernandez
et al. 2012). M. oryzae has the ability to use a wide range of mono- and

disaccharides as sole carbon source but has a strong preference for glucose

(Fernandez and Wilson 2012; Tanzer et al. 2003; Wilson et al. 2007). In

A. nidulans, CCR is mediated at DNA level by the global transcriptional repressor

CreA. A putative orthologue of CreA (MGG_ 11201) is present in M. oryzae, and
its role in fungal pathogenicity has yet to be elucidated.
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An interesting interconnection of NMR and CCR is mediated by the sugar sensor

trehalose-6-phosphate synthase (Tps1) and trehalose-6-phosphate (Fernandez

et al. 2012). Tps1 is one of the three mediators of CCR identified in M. oryzae.
The other two mediators are the Nmr1/2/3 inhibitor proteins and Mdt1, a multidrug

and toxin extrusion (MATE)–family pump. Tps1 is a metabolic enzyme that

synthesises trehalose-6-phosphate (T6P, a trehalose intermediate) from

UDP-glucose and glucose-6-phosphate (G6P). Tps1 has two roles, as a biosynthetic

enzyme and as signalling component of G6P. The sensing of G6P by Tps1 results in

activation of the activity of the enzyme glucose-6-phosphate dehydrogenase

(G6PDH), which converts NADP to NADPH using G6P in the pentose phosphate

pathway. Therefore, Tps1 controls intracellular levels of NADPH (depending on

the concentration of G6P) and subsequent activation of NADPH-dependent signal-

ling cascades that interconnect carbon and nitrogen metabolism. When NADPH

levels increase in a Tps1-dependent manner, three NADP-dependent inhibitor

proteins (Nmr1 to Nmr3) are inactivated. As a result of inactivation of Nmr

proteins, at least three GATA transcription factors become active, one of which is

the white collar-2 homologue involved in light sensing (Pas1). The other GATA

factor is essential for appressorium formation (Asd4), and the third GATA factor is

Nut1 (Wilson et al. 2010). The modulation of GATA factor activity in the NADPH-

dependent signalling pathway results in Tps1-dependent expression of at least three

known virulence factors: the melanin enzyme Alb1, the seven transmembrane

receptor Pth11 and the hydrophobin Mpg1 (Wilson et al. 2007). Accordingly,

Δtps1 mutants are non-pathogenic. Tps1 regulation of Nut1 results in similar but

not identical growth phenotype of Δtps1 and Δnut1 strains on a wide range of

nitrogen sources. An additional regulator of the CCR signal transduction pathway

in M. oryzae has been identified during a forward suppressor screening in Δnut1
background (Fernandez et al. 2012). Mdt1 is a member of the MATE protein family

required for sporulation and plant infection but not appressorium differentiation.

Mdt1 regulates carbon metabolism via extrusion of citrate during infection and

growth contributing to M. oryzae in planta nutrient adaptation.

In summary, NADPH signalling, CCR, NMR and TOR are mechanisms by

which M. oryzae can sense and adapt its metabolic status to nutrient availability

during in planta growth. Future research will determine the interplay among these

regulatory pathways that play a pivotal role in the establishment of plant disease.

4.7.7 Secretion Systems: Effectors, Toxins and
ABC Transporters

Plant recognition of conserved microbial features (pathogen- or microbial-associated

molecular patterns, PAMPs or MAMPs) such as chitin or flagellin (Howard et al.

1991) is mediated by pattern recognition receptors (PRRs; Zipfel 2008). During the

coevolution of plants and associated pathogens, plants have developed two levels of
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immune responses (Jones and Dangl 2006), the PAMP-triggered immunity (PTI)

and effector-triggered immunity (ETI). In general, PAMPs are conserved among

species of pathogens and play an essential role in pathogenicity. Therefore, PTI

represents the first level of immune response in a host. The second type of plant

innate immunity, the ETI, is activated upon recognition of highly diverse molecules

secreted by the pathogens known as effectors. Fungal effectors play an essential role

during invasion (Hogenhout et al. 2009; Stergiopoulos and de Wit 2009). Successful

pathogens have managed to produce effectors that overcome PTI. Conversely, some

plant resistance genes have evolved to recognise such type of effectors blocking

their effect (ETI). Then, plant pathogens no longer can infect their host and become

non-pathogenic or avirulent (Jones and Dangl 2006).

M. oryzae contains ~1,600 predicted secreted proteins that may play a role

during rice infection (Dean et al. 2005; Soanes et al. 2008). It is not easy to assign

a role in pathogenicity to an effector protein by gene disruption due to the large

amount of secreted proteins, possibly with functional redundancy, present in M.

oryzae (Saitoh et al. 2012). Two effector proteins with virulence functions have

been characterised in M. oryzae, MC69 (Saitoh et al. 2012) and Slp1 (Mentlak

et al. 2012). MC69 is a single secreted protein that is indispensable for virulence in

fungi pathogenic on both monocots and dicots. When MC69 is absent, M. oryzae
pathogenicity is severely reduced after penetration into the host cells. However,

there are no clear evidences supporting how MC69 contributes to pathogenicity or

virulence. The Secreted LysM Protein1 (Slp1) has two LysM domains involved in

carbohydrate recognition and is secreted into apoplastic space during initial inva-

sive growth inM. oryzae. This protein is only expressed during the biotrophic phase
of M. oryzae (Mentlak et al. 2012). Slp1 can be glycosylated and can form

oligomers (Mentlak et al. 2012). The Δslp1 mutants show reduced disease

symptoms due to their defects in invasive growth (Mentlak et al. 2012). The Slp1

effector competes with the plant chitin receptor CEBiP to attenuate the rice immune

response, the PTI, activated by the presence of M. oryzae chitin oligosaccharides.

To date, the majority of the effectors identified in M. oryzae act as avirulence

(AVR) proteins triggering effector-mediated cell death (or ETI) and blocking

subsequent pathogen invasion. However, their mode of action is still largely

unknown at the molecular level. De novo sequencing of the Japanese rice isolate

Ina168 genome and its comparison with the reference genome 70–15 has allowed

the identification of a genomic region present only in Ina168 that contained three

AVR genes (AVR-Pia, AVR-Pii and AVR- Pik/km/kp) (Table 4.2; Yoshida

et al. 2009). An additional effector gene identified by map-based cloning is

AVRPiz-t (Li et al. 2009). Knockout mutants in all these genes fail to show

virulence phenotypes except in their specific cultivars containing the matching

resistance genes. AvrPiz-t is able to suppress BAX-mediated programmed cell

death in tobacco leaves in transient expression experiments, providing evidence

that this effector may have a role in suppression of plant immunity. An interesting

case of a protein with AVR effector function is M. oryzae Ace1. Ace1 is a

polyketide synthase–nonribosomal peptide synthetase (PKS-NRPS) located within

a gene cluster involved in the biosynthesis of secondary metabolite(s). The
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metabolite synthesised by the ACE1 gene product represents the only secondary

metabolite found inM. oryzae so far with an avirulence role (Collemare et al. 2008;

Fudal et al. 2007).M. oryzae isolates containing the ACE1 gene are unable to infect
rice cultivars containing the resistance gene Pi33 (Berruyer et al. 2003). The ACE1
gene is exclusively expressed in planta, making it difficult to identify the Ace1-

dependent natural product. ACE1 expression is tightly coupled to the onset of

appressorium-mediated penetration of the host cuticle.

Effectors are also involved in determining M. oryzae host species specificity.

The M. oryzae AVR effector Pwl2 (pathogenicity towards weeping lovegrass 2)

prevents M. oryzae isolates from infecting weeping lovegrass (Sweigard

et al. 1995). The PWL gene family consists of four genes PWL1, PWL2, PWL3
and PWL4. Pwl1 is a functional AVR effector and has 78 % nucleotide identity with

Pwl2. Pwl2 accumulates in the BICs, and this property correlates with its trans-

location across the plasma membrane into the rice cytoplasm. There are no

evidences of avirulence roles for Pwl3 (63 % nucleotide identity) and Pwl4 (65 %

nucleotide identity; Kang et al. 1995). Additional AVR genes identified inM. oryzae
field isolates are AVR1-CO39, which is broadly present in M. oryzae populations

adapted to other host species, and AVR-Pita1 (Valent et al. 1991). AVR-Pita1 is a

subtelomeric effector gene which has been extensively studied to understand AVR
gene evolution among field isolates in order to generate valuable information for

the deployment of resistance genes in field crops (Chuma et al. 2011; Jia

et al. 2000).

Four additional biotrophy-associated secreted (Bas1 to Bas4) protein effectors

are expressed during biotrophic invasion but not in vitro (Khang et al. 2010). Bas1

is translocated into the rice cell cytoplasm and shows preferential accumulation in

BICs, like Pwl2. M. oryzae translocated effectors moved ahead of the fungus and

can be seen in the absence of invasive hyphae within the cells, suggesting that these

effectors prepare host cells prior to fungal invasion (Khang et al. 2010). It is not

clear how M. oryzae delivers effector proteins during its biotrophic phase into the

host cells. TheMgAPT2-dependent polarised exocytotic processes might contribute

to the secretion of effectors during M. oryzae plant colonisation (Gilbert

et al. 2006). Bas2 and Bas3 are found in BICs, but they also localise in cell walls

of invasive hyphae. Bas4 is a potential matrix protein that preferentially

accumulates between the EIHM and theM. oryzae cell wall. The knockout mutants

in the BAS genes show no particular phenotype, indicating the functional redun-

dancy of the fungal secretome. Some of these Bas proteins might be involved in

altering plant components required for biotrophic invasion, but no clear evidences

have been reported (Khang et al. 2010).

In addition to effector proteins,M. oryzae also secretes phytotoxins although this
is a largely unexplored area. Pyriculol, tenuazonic acid and pyrichalasin H have

been isolated from culture filtrates of M. grisea isolates (Tsurushima et al. 2005).

Pyriculol induces necrosis and it is widely distributed amongMagnaporthe species.
Tenuazonic acid is also present in Alternaria species. Pyrichalasin H is a cytocha-

lasin that prevents polymerisation of actin filaments and is able to inhibit rice seed

development although it is not required for leaf disease symptoms. Pyrichalasin H
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is exclusively produced by blast isolates that infect Digitaria plants, and possibly it
represents a host specific toxin (Tsurushima et al. 2005). Lately, the Mag-toxin has

been purified from M. oryzae isolates infecting Avena species. Mag-toxin is a

derivative of linoleic acid and only causes chlorosis in the presence of light. This

toxin is able to induce mitochondria-associated ROS production and cell death

(Tsurushima et al. 2010).

Plants secrete toxic compounds to defend themselves from pathogens. The

ATP-binding cassette (ABC) transporters play an essential role in fungal survival

allowing to efflux plant antimicrobial substances to the cell exterior (Coleman and

Mylonakis 2009). M. oryzae has about 50 ABC transporters (Coleman and

Mylonakis 2009). Four ABC transporters have been characterised in M. oryzae.
Abc1, Abc3 and Abc4 are required for pathogenicity but are dispensable for

appressorium differentiation (Gupta and Chattoo 2008; Sun et al. 2006; Urban

et al. 1999). Mutants in these genes differentiate normal appressoria and are either

unable to penetrate or die shortly after penetrating the host cell. The best

characterised ABC transporter is Abc3, which localises in the plasma membrane

of appressoria (Sun et al. 2006), and pumps out a plant-derived steroidal glycoside

(Patkar et al. 2012).

4.7.8 Conidiation and Light Regulation

The sporulation process is an essential step for fungal reproduction and dispersal

and influences largely the disease progression in the field. M. oryzae can produce

two types of spores. Some M. oryzae/grisea isolates produce single-celled

microconidia (Chuma et al. 2009; Kato et al. 1994) (Fig. 4.4b). Microconidia

have thin cell walls and lack nucleoli. They have been identified in other fungi—

N. crassa, Botrytis cinerea or Podospora anserina—where they play a role as

spermatia during sexual reproduction (Fukumori et al. 2004). Mature microconidia

show lower metabolic activity compared to germ tubes, indicating that they may be

quiescent or dormant. The M. oryzae MADS-box transcription factor MoMcm1

regulates microconidia production and is also involved in male fertility, supporting

the role of microconidia as spermatia during the sexual cycle of M. oryzae (Zhou

et al. 2011).

Macroconidia (also named conidia or asexual spores) represent the main dis-

persal forms of the blast fungus. M. oryzae conidia are pyriform (pear shaped) and

bisepted (occasionally 1 or 3 septa can be seen). These two septa generate three

distinct cellular compartments in the conidium, each of them enclosing a nucleus

(Fig. 4.4c). Conidia size ranges between 19–27 μm long and 8–10 μm wide.

Normally, conidia present a basal appendage at the point of attachment to the

conidiophore. Conidiophores are specialised hyphae up to 130 � 3–4 μm in size,

and conidia are formed in their apex (Fig. 4.4d). A mature M. oryzae conidiophore
rarely branches and can form between three and five conidia sympodially arranged.
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Conidiophores emerge to the plant cell surface and release conidia into the

environment.

Molecular mechanisms governing conidiation have been characterised in exqui-

site detail for the model organisms A. nidulans and N. crassa (Etxebeste et al. 2010;
Park and Yu 2012). Conidiation-defective genes and genetic loci have also been

identified in the rice blast fungus such as the CON mutants (Shi et al. 1998), ACR1
(Lau and Hamer 1998), COS1 (Zhou et al. 2009), SMO (Hamer et al. 1989), CDC15
(Goh et al. 2011) and COM1 (Yang et al. 2010). A genome-wide expression profile

using spores from the rice isolate KJ201 has identified several hundred genes to be

up- or downregulated duringM. oryzae conidiation, approximately 4.5 % of its total

gene content (Kim and Lee 2012). A further comparative transcriptome analysis

between the wild-type strain and the Δmohox2mutant under sporulation conditions

has identified a subset of conidiation-related genes regulated by the homeobox

transcription factor MoHox2/Htf1 (Kim et al. 2009; Liu et al. 2010b). ΔMohox2
mutants fail to produce conidia indicating that this transcriptional regulator plays an

essential role in M. oryzae conidiation process. Not surprisingly, expression of

M. oryzae genes MoCON6, ACR1, MoBRLA and MoFLBC is significantly

upregulated during conidiation in the wild type but not in Δmohox2. These genes

are also highly expressed during sporulation in other fungal species (Adams

et al. 1988; Etxebeste et al. 2010; Kwon et al. 2010; Springer and Yanofsky

1992). By contrast, the expression of M. oryzae MoFLBA and MoVOSA (the

A. nidulans flbA and vosA orthologues, respectively) is significantly downregulated

or unaltered in the wild type while is highly upregulated during conidiation in

A. nidulans. TheM. oryzaeΔvosAmutant has no defects in conidiation although the

A. nidulans VosA is a key regulator of the sporulation process. This may suggest

that gene pathways regulating conidiation differ between fungal species because

they derive from new mechanisms of gene regulation, rather than biochemical

function. Further investigation is necessary to define the genetic pathway and

molecular mechanisms controlling conidiation in M. oryzae.
The light is an environmental factor that influences several biological processes

inM. oryzae such as conidiation. It is necessary to growM. oryzae under light/dark
conditions to get good sporulation rates (Lee et al. 2006). Asexual development and

light regulation are interconnected processes in A. nidulans and N. crassa (Olmedo

et al. 2010a, b; Ruger-Herreros et al. 2011). The light during asexual development

affects mainly aerial hyphae and conidiophore differentiation. Conidiation in

M. oryzae is suppressed by blue light during light/dark cycling and the release of

conidia is controlled by both blue and red light (Lee et al. 2006). Therefore,

M. oryzae senses the light-to-dark transition, and this environmental cue triggers

asexual differentiation and spore release. It is clear that environmental light also

influences M. oryzae interaction with rice. It seems that a dark phase applied

immediately after pathogen–host contact plays a critical role for disease develop-

ment (Kim et al. 2011b). Significant light-dependent disease suppression is

observed in rice plants infected with M. oryzae when plants are exposed to light

(instead of darkness) directly after inoculation (Kim et al. 2011b). In nature, it is

difficult to establish the contribution of a particular environmental factor to disease
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progression since environmental factors are interdependent and can affect the host

physiology (plant), the pathogen physiology (fungus) and/or the interaction

between both organisms. A partial “blind” strain ofM. oryzae required for darkness
sensing (a knockout strain in MgWC-1, the blue light photoreceptor gene) has

allowed to dissect the effect of light in the fungus during disease development.

MgWc-1 is required for light-dependent disease suppression during the dark phase

(disease-conducive light condition) after pathogen–host contact. In other words, a

full disease progression requires a light/dark cycle after pathogen–host contact and

light-to-dark transition sensed by photoreceptors. However, appressorium differen-

tiation and penetration is not regulated by light, and therefore, light does not affect

early stages of M. oryzae plant infection. Plants are subject to an overall greater

pathogen challenge during the night. Possibly the fungus recognises darkness to

mobilise fungal effectors (and also possibly metabolic reserves) during invasive

growth, as has been suggested for Cryptococcus neoformans, as a mechanism to

avoid the light-regulated increased defence responses in plants (Griebel and Zeier

2008; Idnurm and Heitman 2005). Light-to-dark transitions must be taken in

account to understand the crosstalk between plant and associated fungal pathogens,

considering that both organisms have an active circadian clock.

4.8 The Dark Phase of Blast: M. oryzae Root Infection
Biology

Similar to its close relatives, M. oryzae infects roots (under laboratory conditions)

and undertakes a set of developmental programmes typical of root-infecting

pathogens (Sesma and Osbourn 2004; Tucker et al. 2010). Several key differences

have been found between the mode of penetration of leaves and roots. In contrast to

the melanised appressoria observed on leaves,M. oryzae produces hyphal swellings
to penetrate roots, resembling the simple hyphopodium seen in root-infecting fungi

of the G. graminis–Phialophora complex (Fig. 4.4e).M. oryzae hyphopodia are not
melanised andM. oryzaemelanin-deficient mutants are able to produce hyphopodia

and infect roots (Sesma and Osbourn 2004). The PKA regulates the high turgor

pressure within appressoria generated by the degradation of lipid and glycogen

reserves (Thines et al. 2000). The M. oryzae Δcpka mutant produces hyphopodia

and penetrates roots, indicating that root colonisation is not dependent on CPKA
(Sesma and Osbourn 2004). Consequently,M. oryzae penetrates the epidermal root

cells through a melanin-independent mechanism and the mechanical entry of the

hard leaf surface by osmotic force is not operational during hyphopodia-mediated

root penetration. From the host perspective, defence-related gene transcripts of rice

showed a different temporal induction pattern during M. oryzae infection of leaves

or roots (Marcel et al. 2010), which correlate with the different invasionmechanisms

that the rice blast fungus undertakes for colonisation of leaves and roots.
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Pre-invasive hyphae (pre-IH) are another type of fungal development observed

on root surfaces that also mediates direct penetration of epidermal root cells

(Tucker et al. 2010). M. oryzae pre-IH is developed from hyphopodia or germ

tubes and penetrates roots directly. The pre-IH can be followed by differential

labelling with concanavalin A and wheat germ agglutinin, which indicates that cell

wall changes accompanied to this morphogenetic programme. Artificial surfaces

such as hydrophilic polystyrene (PHIL-PS) can induce hyphopodia-like structures

and pre-IH. The mutant Δpmk1 is non-pathogenic on roots (Dufresne and Osbourn

2001), and this mutant is unable to develop pre-IH on roots and PHIL-PS. Conse-

quently, this fungal differentiation is regulated by the MAPK Pmk1 cascade. Other

structures typical of root-infecting fungi seen during M. oryzae root colonisation

include microsclerotia and resting structures such as vesicles and swollen cells

(Gangopadhyay and Row 1986; Lee et al. 2000; Sesma and Osbourn 2004).

Several lines of evidence have led to the hypothesis that the hyphopodium is an

intermediate step before appressorium penetration. It is possible that the primitive

hyphopodia evolved by acquisition of melanin and generation of high turgor pressure

into amore sophisticated penetration structure, the appressorium (Tucker et al. 2010).

The screening ofM. oryzae insertional library of 2,885T-DNA transformants looking

for altered pre-IH differentiationmutants on PHIL-PS has identified 20 transformants

that show reduced virulence or are non-pathogenic on leaves and/or roots (Tucker

et al. 2010). Further analysis of these mutants has revealed that appressorium,

hyphopodium and pre-IH formation are highly coupled developmental processes,

and very few mutants show an organ-specific involvement for infection (Tucker

et al. 2010). This indicates that a significant set of common genes are necessary for

fungal infection on both plant organs. Out of the 20 mutants, M1373 shows a root-

specific infection-deficient phenotype (Table 4.3). This mutant lacks the M. oryzae
orthologue of exportin-5/Msn5p (EXP5). The defects of the Δexp5mutant on disease

symptoms production are more evident on roots than on leaves. M. oryzae EXP5

presents a steady-state nuclear localisation under all the conditions tested. Δexp5
mutants show a reduction in conidia production (ca. 40 times lower) and altered

preinvasive growth on PHIL-PS. The perimeters of the leaf lesions produced by

Δexp5 are smaller, which suggests deficiencies in invasive growth. Pathogenesis-

related proteins and/or RNAs transported by this nucleocytoplasmic receptor play a

crucial role duringM. oryzae infection-associated development.

Exp5 may be involved in the nucleocytoplasmic transport of proteins implicated

in nitrogen assimilation. Differences have been found in the role played by

nitrogen-related genes duringM. oryzae leaf and root colonisation. The assimilation

of nitrogen by M. oryzae from underground plant tissues is regulated by the global

nitrogen regulator Nut1 (Froeliger and Carpenter 1996). The Δnut1 mutant is

non-pathogenic on roots but infects leaves as well as the wild-type strain (Dufresne

and Osbourn 2001). Consequently, M. oryzae absorbs nitrogen from less preferred

sources in root tissues, and therefore, the NMR plays a crucial role during root

infection. The mutants Δnpr1 and Δnpr2 are non-pathogenic on leaves and show

opposite phenotypes on roots (Table 4.3), representing an additional evidence of the

different roles that nitrogen-related genes play during M. oryzae colonisation of

leaves and roots.
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Table 4.3 Organ-specific and general pathogenicity genes regulate M. oryzae plant colonisation

M. oryzae
strains

Targeted gene

function APPa
Leaf

symptomb HYc
Root

symptom References

Wild type Yes +++ Yes +++

Root specific

Δmgfow1 Mitochondrial respiration Yes +++ + +/++ Sesma and Osbourn

(2004)

Δexp5 Karyopherin Yes ++ ND � Tucker et al. (2010)

Δnut1 Nitrogen global regulator Yes +++ + � Dufresne and

Osbourn (2001)

and Froeliger and

Carpenter (1996)

General

Δmagb Gα subunit Yes � ND � Fang and Dean

(2000)

Δabc1 ABC transporter Yes � ND � Dufresne and

Osbourn (2001)

and Urban

et al. (1999)

Δmgapt2 P-type ATPase No � ND � Gilbert et al. (2006)

Δnpr2 Nitrogen metabolism Yes � ND � Dufresne and

Osbourn (2001)

and Lau and

Hamer (1996)

Δapf1 App differentiation No � ND � Silué et al. (1998)

(Sesma,

unpublished)

Δpmk1 MAP kinase (MAPK) No � No � Dufresne and

Osbourn (2001)

and Xu and

Hamer (1996)

Δmps1 MAP kinase (MAPK) No � No � Xu et al. (1998))

(Sesma,

unpublished)

Leaf specific

alb1, buf1 Melanin synthesis No � Yes +++ Chumley and Valent

(1990), Dufresne

and Osbourn

(2001) and Sesma

and Osbourn

(2004)

ΔcpkA cAMP signalling No � Yes ++ Sesma and Osbourn

(2004) and Xu

et al. (1997)

Δigd1 Invasive growth Yes + Yes + Balhadere

et al. (1999) and

Dufresne and

Osbourn (2001)

(continued)

4 Major Plant Pathogens of the Magnaporthaceae Family 73



4.8.1 Rice Blast Underground Infection and
Arbuscular Mycorrhizal Symbiosis

There are similarities between M. oryzae and the ancient mycorrhizal associations.

A global transcriptome profile carried out with the arbuscular mycorrhizal fungus

Glomus intraradices and two different root-infecting fungal pathogens (M. oryzae
and Fusarium moniliforme) during root infection has demonstrated the presence of

common rice genes equally expressed in all three associations. This indicates a

common response of rice to fungal invasion (Guimil et al. 2005). A larger set of

different genes are shared between the symbiontG. intraradices andM. oryzae than
between the G. intraradices and the necrotroph F. moniliforme, as expected for the

biotrophic nature ofM. oryzae. From the fungal perspective, there are also common

protein domains shared by both M. oryzae and the symbiont G. intraradices
implicated in root colonisation, suggesting a conservation and expansion of protein

families with root colonisation-related functions (Heupel et al. 2010). This is the

case for the ERA-like GTPase Erl1 of M. oryzae and the Gin1 protein from the

symbiont G. intraradices. The root disease symptoms defects of M. oryzae Δerl1
mutant are restored by reintroduction of the G. intraradices GIN1 gene in Δerl1.
Interestingly, the expression of the G. intraradices symbiotic-related gene SP7 into

Table 4.3 (continued)

M. oryzae
strains

Targeted gene

function APPa
Leaf

symptomb HYc
Root

symptom References

Δmet1 Methionine biosynthesis Yes + Yes + Balhadere

et al. (1999) and

Dufresne and

Osbourn (2001)

Δgde1 Glycerophosphodiesterase Yes ++ Yes +++ Balhadere

et al. (1999) and

Dufresne and

Osbourn (2001)

Δmpg1 Hydrophobin rd + Yes +++ Talbot et al. (1993)

(Sesma,

unpublished)

Δnpr1 Nitrogen metabolism Yes � ND +++ Dufresne and

Osbourn (2001)

and Lau and

Hamer (1996)

Δpth11 Seven transmembrane

receptor

rd + Yes +++ DeZwaan

et al. (1999)

(Sesma,

unpublished)
aAPP, appressoria
bscoring system: �, no symptoms; +, strong reduction; ++, weak reduction; +++, wild-type

symptoms
cHY hyphopodia, ND not determined, rd reduced
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M. oryzae can decrease its necrotic behaviour on rice roots, indicating the general

ability of G. intraradices Sp7 protein to contribute to the development of the

biotrophic status of G. intraradices and M. oryzae (Kloppholz et al. 2011).
Mitochondrial respiratory activity of symbiotic fungi is stimulated by root

exudates (Tamasloukht et al. 2003). Similarly, evidences suggest that mitochon-

drial respiration is also important for root colonisation of fungal pathogens. The

MgFOW1 gene plays an important role during M. oryzae invasion of root cortical

cells, but it is dispensable for leaf infection (Sesma and Osbourn 2004). Fow1 was

initially identified in the fungal pathogen Fusarium oxysporum as a protein required

for colonisation of vascular tissues (Inoue et al. 2002). Fow1 is a mitochondrial

carrier protein that shares close sequence similarity with the yeast protein YHM2p

required for tricarboxylic acid transport. M. oryzae Δmgfow1 mutants, like Δfow1
mutants in Fusarium oxysporum, are unimpaired in their ability to utilise glycerol

as a carbon source in contrast to yeast Δyhm2 “petite” mutants, and deletion of

MgFOW1 gene has no effect in fungal growth on a range of rich and minimal media

and conidiation, indicating that MgFow1 is dispensable for saprophytic growth.

YHM2p associates with mtDNA in vivo and is implicated in replication and

segregation of yeast mitochondrial genomes. Maintenance of mtDNA during cell

division is essential for progeny to be respiratory competent. In addition, mitochon-

drial status is sensed by eukaryotic cells through retrograde signalling, a pathway of

communication from mitochondria to the nucleus under normal and pathophysio-

logical conditions that regulate changes in nuclear gene expression (Galluzzi

et al. 2012). These changes lead to a reconfiguration of metabolism to adapt cells

to defects in mitochondria. The function of Fow1-like proteins in phytopathogenic

fungi is not known. MgFow1 has the potential to act as a bifunctional protein

(mitochondrial carrier and mtDNA-binding protein). Elucidation of Mgfow1 func-

tion will represent an important step towards understanding invasion mechanisms

of roots and vascular tissues inM. oryzae. The relationship between senescence and
mitochondrial respiratory activity is found in ascomycetes (P. anserina, N. crassa),
and further investigation in this area may help to clarify the function of the MgFow1

protein during M. oryzae underground infection.

4.9 Concluding Remarks

In the past years, exquisite molecular and cellular approaches have been developed

to understand critical processes underlying M. oryzae pathogenicity. However,

M. oryzae shows a rapid evolution of host specificity by diverse mutational events,

and achieving durable blast resistance represents a challenge. Climate change is

likely to alter the geographical range of fungal pathogens, and cereal infection may

become more widespread and unpredictable. A clear example of this is the

emerging blast disease on wheat in South America (Cruz et al. 2012). As a result

of climate change, Europe may become a viable environment for M. oryzae on

wheat, our staple cereal crop. Preventing methods and improving protection of
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staple cereal crops will become vital during the following years. Undoubtedly, a

better understanding ofM. oryzae plant colonisation will have positive implications

for the food security and economic stability of rice- and wheat-dependent

populations worldwide. It will also have important implications for the develop-

ment of new strategies for plant breeding and durable disease control. Fungal root

infection processes are poorly understood within the Magnaporthaceae family due

to the genetic intractability of root-infecting strains of G. graminis (take-all fungus)
and M. poae species. Certainly, the dissection of M. oryzae root infection process

will contribute to understand root infection mechanisms undertaken by fungal

species of the Magnaporthaceae family.

4.10 Fungal Databases

– Magnaporthe grisea genome database (Broad Institute): http://www.

broadinstitute.org/annotation/genome/magnaporthe_grisea/MultiHome.html

– Magnaporthe comparative database (Broad Institute): http://www.broadinstitute.

org/annotation/genome/magnaporthe_comparative/MultiHome.html

– Ensembl fungi: http://www.fungi.ensembl.org/Magnaporthe_oryzae/Info/Index

– FungiDB, an integrated functional genomics database for fungi: http://www.

fungidb.org/fungidb/

– M. oryzae EST database (NIAS): http://www.mg.dna.affrc.go.jp/

– COGEME EST Database: http://www.ri.imb.nrc.ca/cogeme/index.html

– M. grisea MPSS database (Massively Parallel Signature Sequencing): http://

www.mpss.udel.edu/mg/

– Orygenes DB: an interactive tool for rice reverse genetics http://www.

orygenesdb.cirad.fr/

– Oryzabase: Integrated Rice Science Database http://www.shigen.nig.ac.jp/rice/

oryzabase/top/top.jsp

– MGOS, Magnaporthe grisea—Oryza sativa interaction database: http://www.

mgosdb.org/

– PHI base (Pathogen–Host Interaction database) offers molecular and biological

information on genes involved in host–pathogen interactions. http://www.phi-

base.org/

– Fungal Secretome Database: http://www.fsd.riceblast.snu.ac.kr/index.php?

a¼view

– Comparative fungal genomics platform: http://www.cfgp.riceblast.snu.ac.kr/

main.php

– M. oryzae T-DNA analysis platform: http://www.atmt.snu.ac.kr/ and http://

www.tdna.snu.ac.kr/

– Fungal transcription factor database: http://www.ftfd.snu.ac.kr/index.php?

a¼view

– Fungal Nomenclature databases: http://www.indexfungorum.org/ and http://

www.mycobank.org/
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Chapter 5

Aspergillus: Genomics of a Cosmopolitan
Fungus

Isabelle Benoit, Iran Malavazi, Gustavo Henrique Goldman,
Scott E. Baker, and Ronald P. de Vries

5.1 Aspergillus Taxonomy and Lifestyles

The genus Aspergillus consists of more than 250 species including both pathogenic

and beneficial species (Geiser et al. 2008). Several species are opportunistic

pathogens of plants, animals, and humans (e.g., A. fumigatus, A. terreus) and/or
produce toxins, such as aflatoxins and ochratoxins (e.g., A. flavus, A. parasiticus).
On the other hand, several species are widely used in industrial applications for the

production of foods, organic acids, and a large variety of enzymes (e.g., A. niger,
A. aculeatus, A. oryzae). The broad relevance and economic importance of the

genus have pushed it to the forefront of fungal research, with one of the largest

academic and industrial research communities dedicated to this genus.

Members of the genus Aspergillus are characterized by the unifying feature of

the “aspergillum,” an asexual reproductive structure, and form a broadly monophy-

letic group. However, there is surprisingly large taxonomic divergence in the group

both in terms of morphology (e.g., contrasting sexual states) (Geiser et al. 2008) and
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phylogenetic difference (e.g., up to 30 % or greater genome sequence divergence)

(Galagan et al. 2005). The first record of Aspergillus can be found in Micheli’s

Nova plantarum genera (Micheli 1729), but a more detailed description of the

Aspergilli did not appear until the middle of the nineteenth century. The Aspergilli

belong to the family of Trichocomaceae of the order Eurotiales of the class

Eurotiomycetes of the phylum Ascomycota, and Aspergillus is a sister genus to

Penicillium and Talaromyces. A recent study provided a detailed overview of the

taxonomic relations between these species (Houbraken and Samson 2011). Based

on this, the genus Aspergillus contains the subgenera Circumdati (including

sections Circumdati, Flavi, Candidi, Flavipedes, Nigri, and Terrei), Nidulantes
(including sections Nidulantes, Usti, Ochraceorosei, and Sparsi), Fumigati (includ-
ing section Fumigati, Clavati, and Cervini), and Aspergillus (including sections

Restricti and Aspergillus), as well as section Cremei and fungi originally named

Phialosimplex and Polypaecilum (Fig. 5.1).

Fig. 5.1 Best-scoring maximum likelihood tree presenting current Aspergillus phylogeny. Based
on Houbraken and Samson (2011)
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Several sections of this genus have received wide attention in research and

society due to their medical, agricultural, or biotechnological importance. The

section Nigri, also known as the black Aspergilli, is well known for its relevance

to food mycology, medical mycology, and biotechnology. This section contains

major spoilage fungi of various food products but also species that are used

industrially for the production of enzymes and metabolites (Varga et al. 2000). In

contrast, A. fumigatus is generally considered to be the most harmful opportunistic

filamentous fungus to people (Pringle et al. 2005). It is not only a major opportu-

nistic pathogen but also causes allergies globally (Denning 1998; Latge 1999). The

best known species from the section Terrei is A. terreus, which is used for the

production of itaconic acid and itatartaric acid (Bigelis and Arora 2009). It also

produces a number of valuable secondary metabolites, such as the cholesterol-

lowering drug lovastatin (Alberts et al. 1980) and the antitumor metabolites

asterriquinone and terrein (Kaji et al. 1998; Arakawa et al. 2008).

The availability of genome sequences for several Aspergilli has enabled a

genome-wide look at differences between closely and more distantly related spe-

cies. An initial study on six Aspergilli demonstrated that genome comparisons

follow the current view on Aspergillus taxonomy, in that closely related species

(e.g., A. oryzae and A. flavus or A. fumigatus and N. fischeri) are also highly similar

in genome content and organization (Rokas et al. 2007). Such analyses have also

been done for larger sets of fungi (Wang et al. 2009), in which the composition

vector method was used to create a fungal phylogeny. The relative position of the

Aspergillus species included in this tree matches well with the more extensive

phylogeny of the Aspergillus genus and its sister genera (Houbraken and Samson

2011). The availability of genomes also offers the possibility of quickly developing

novel strain typing methods to discriminate between multiple isolates of a species

or to aid in the recognition and identification of a species (Klaassen and Osherov

2007).

Many Aspergilli have a global distribution, although reports on this are strongly

affected by the number of isolates that were described for any given species, which

in itself is affected by the medical, agricultural, or biotechnological relevance of the

species. Based on the isolates present in the CBS collection (http://www.cbs.knaw.

nl/), global distribution can be observed for most of the well-studied Aspergilli,

such as A. nidulans, A. flavus, A. fumigatus, A. niger, and A. terreus. Evaluating the
biotope of the Aspergillus isolates in the CBS collection demonstrates that the

majority was isolated from soil, followed by food and feed spoilage and indoor

environments. Only a small number of isolates was obtained from wood, leaves or

litter, or dung. A significant number of medical isolates is also present, but the

majority of these are from A. fumigatus, confirming its status as the main human

pathogen of this genus.

Despite not being considered major plant pathogens, several Aspergilli do affect

plants and can cause significant spoilage problems on plant products, such as

rotting, development of off-odors and off-flavors, and discoloration (Perrone

et al. 2007). The most significant food problem originating from Aspergilli is the

production of mycotoxins, such as aflatoxin and ochratoxin A (Varga et al. 2004).
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The most important aflatoxin-producing species belong to the section Flavi, such as
A. flavus and A. parasiticus (Bennett and Klich 2003), while ochratoxin is mainly

produced by sections Circumdati and Nigri (Frisvad et al. 2004; Samson et al. 2004)

Some species, such as A. flavus, can also infect a broad range of agricultural

crops, including monocots and dicots (St Leger et al. 2000). A. flavus is also the

second most common (after A. fumigatus) fungus causing aspergillosis in immune-

compromised humans (Denning et al. 1991). This negative reputation is a strong

contrast with the positive reputation of its close relative A. oryzae that is widely

used in the Japanese fermentation industry and as an industrial enzyme producer

(Kobayashi et al. 2007). A recent study addressed the potential for biotechnology of

A. flavus and demonstrated that it has a large selection of genes related to the

production of secondary metabolites and carbohydrate-degrading enzymes

(Cleveland et al. 2009). More recently, it was suggested that A. oryzae has evolved
from A. flavus by domestication and selection by humans (Gibbons et al. 2012).

In soil, Aspergilli mainly use plant biomass as a carbon source and produce

extensive enzyme systems to degrade this substrate (de Vries and Visser 2001).

These enzymes have also found applications in a wide range of applications

(de Vries and Visser 2001; de Vries 2003; van den Brink and de Vries 2011), and

are discussed in more detail in Sect. 5.5.3.

5.2 Development and Current Status of Aspergillus
Genomics

Aspergillus genomics initiated with the genome sequence of A. nidulans that was
initially performed by Monsanto and later finished by the Broad Institute. During this

period, also the genome sequences of A. oryzae and A. fumigatus were obtained, and
publication of these first three genomes occurred in the same issue of Nature (Galagan

et al. 2005; Machida et al. 2005; Nierman et al. 2005b). Within a relative short time

after that, genome sequences also became available for A. niger (Pel et al. 2007;

Andersen et al. 2011), A. clavatus (Fedorova et al. 2008), A. terreus, A. flavus (Payne
et al. 2006), and N. fischeri (Fedorova et al. 2008), as well as a second genome for

A. fumigatus (Nierman et al. 2005b; Fedorova et al. 2008). More recently,

A. carbonarius, A. aculeatus, and Eurotium herbariorum (Aspergillus herbariorum)
have been sequenced by the Joint Genome Institute (JGI) of the Department of Energy

of the USA, and draft genomes have been published for A. kawachii (Futagami

et al. 2011) and A. sojae (Sato et al. 2011). A project of the Community Sequencing

Program (CSP2011) (Grigoriev et al. 2011) of the JGI involved sequencing of an

additional eight Aspergilli (A. brasiliensis, A. tubingensis, A. acidus, A. versicolor,
A. sydowii, A. wentii, A. glaucus, A. zonatus), most of which are already available

through the JGI MycoCosm website (http://genome.jgi.doe.gov/programs/fungi/

index.jsf) (Grigoriev et al. 2012). A recently granted CSP2013 project will sequence

an additional three Aspergilli (A. ochraceus, A. sparsus, A. cervinus) as well as
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12 Penicillia (P. glabrum, P. citrinum, P. brasilianum, P. simplicissimum,
P. araracuaraense, P. rapidoviride, P. oxalicum, P. corylophilum, P. anczewskii,
P. jamesonlandense,P. brevicompactum,P. funiculosum),Talaromyces thermophilus,
and Rasamsonia emersonii. Together with the already available genomes of the sister

genera from Aspergillus, Penicillium rubens (van den Berg et al. 2008), Penicillium
chrysogenum (sequenced by JGI), Talaromyces stipitatus, and Talaromyces marneffei
(Woo et al. 2011), this provides the most detailed set of genomes for any group of

filamentous fungi (Gibbons and Rokas 2013).

There is relative high variability in the genomes of different Aspergillus species,
which correlates with the taxonomic distance of the species (Rokas et al. 2007).

Interestingly, the difference between the genomes of A. oryzae and A. flavus is

similar to the difference between the two published A. niger genomes (Rokas

et al. 2007). Comparison of the two A. niger genomes revealed several genome

rearrangements, deletions, horizontal gene transfer, and a high frequency of single

nucleotide polymorphisms (SNPs), demonstrating the high level of genome evolu-

tion in these strains (Andersen et al. 2011). High variation in Aspergillus genomes

was also detected using synteny analysis of A. oryzae, A. nidulans, and

A. fumigatus, which demonstrated that the A. oryzae genome has a mosaic structure

consisting of syntenic and non-syntenic blocks, possibly caused by genome-wide

gene duplications events in A. oryzae (Machida et al. 2008).

The availability of several Aspergillus genome sequences has stimulated the

development of several databases and tools dedicated to (post-)genomic studies of

the genus. The first example of this was the comparative Aspergillus server at the

Broad Institute (http://www.broadinstitute.org/annotation/genome/aspergil-

lus_group/MultiHome.html). This was the first online resource that enabled com-

parative analysis of multiple Aspergillus genomes using various tools. Two other

resources for Aspergillus genomics are CADRE (http://www.cadre-genomes.org.

uk) and Aspergillus Genomes (http://www.aspergillus-genomes.org.uk) and

AspGD (http://www.aspgd.org). CADRE, the Central Aspergillus Data Repository,

was initiated in 2001 to support the international Aspergillus research community

by gathering all genomic information for this genome in one public resource. While

it initially focused strongly on medical issues, it has grown to a more general

resource that currently contains genomes and related data for eight Aspergilli

(Mabey Gilsenan et al. 2012). It has tools for BLAST and browsing, gene analysis,

and comparisons between genomes. Aspergillus Genomes is a union of CADRE

and the Aspergillus/Aspergillosis website and focuses more on medical issues in

relation to Aspergillus genomics (Mabey Gilsenan et al. 2009). AspGD was devel-

oped as comprehensive Aspergillus database through a collaborative effort of the

University of Maryland and Stanford University and aims to provide the scientific

research community with a web-based resource of structurally and functionally

annotated genomes, supported by manual literature-based curation (Arnaud

et al. 2012). Tools in AspGD include comparative and synteny analysis, BLAST,

ORF histories, and possibilities for improvement of gene structure. Currently,

AspGD hosts genomes for 12 Aspergilli, with more to be added in the coming year.
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The comparative Aspergillus genome project that is running at JGI has also

created a genome analysis infrastructure for these fungi within the MycoCosm

portal of the JGI (http://genome.jgi.doe.gov/programs/fungi/index.jsf) (Grigoriev

et al. 2012). Currently, MycoCosm contains genomes for 11 Aspergilli with more

coming out as a result of the ongoing projects (see above).

Following the availability of Aspergillus genomes, post-genomic technologies

such as transcriptomics and proteomics have been developed. Various types of

microarrays have been generated for Aspergilli, ranging from glass slides to

Affymetrix gene chips. While they have been mainly used for scientific studies,

they have also found applications in monitoring fermentations (Maeda et al. 2004).

More recently, RNAseq has started to replace microarrays in transcriptomics

studies, due to the significant reduction in costs of RNA sequencing. Proteomics

has been applied in several Aspergillus research areas. Two recent reviews of

proteomics studies for several Aspergilli demonstrated the breadth of these studies,

covering intracellular, extracellular, and cell wall proteomes and addressing topics

from stress response to polysaccharide degradation and modification (Kim

et al. 2008; Kniemeyer 2011). While the majority of the proteomics studies are

aimed at specific scientific questions, proteomics can also aid in genome annotation

and gene model validation. A recent study in A. niger mapped 405 identified

peptide sequences to 214 genomic loci, and for 13 % of these loci, new or improved

gene models could be constructed based on the proteomics data (Wright

et al. 2009).

These resources have had a tremendous effect on many aspects of Aspergillus
research, and some examples are listed below. Proteomics and transcriptomics

analyses of the response of A. fumigatus to antifungals, such as Caspofungin

(Cagas et al. 2011), Artemisinin (Gautam et al. 2011), and Coumarin (Singh

et al. 2012), have identified potential drug targets and biomarkers to assess the

relative efficacy of drug therapy. Such studies have also opened the door toward

systems biology studies of A. fumigatus infection (Albrecht et al. 2011). In

A. nidulans a detailed analysis of metabolic genes resulted in a metabolic pathway

model that improved the functional annotation of the genome (David et al. 2008). A

combination of genome-scale modeling with comparative genomics and

transcriptomics revealed insights into the evolution and role of the highly efficient

acidification by A. niger of its local environment (Andersen et al. 2009). The

discovery of genomic evidence for sex in species with no known sexual stage has

already resulted in the discovery of a sexual cycle in A. fumigatus (O’Gorman

et al. 2009) and other species are currently under investigation. Genome mining of

the Aspergilli has not only discovered many putative secondary metabolite gene

clusters (Bok et al. 2006) but also demonstrated that several of the secondary

metabolite gene clusters in A. nidulans are “silent” (not expressed under any

condition tested) (Scherlach and Hertweck 2006). Activation of such a silent cluster

was reported resulting in the discovery of novel metabolites (Bergmann et al. 2007).

Genome comparison in combination with biological studies also highlighted

differences between the Aspergilli, such as in regulation and metabolism of plant-

related carbon sources for A. niger and A. nidulans (Battaglia et al. 2011;
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Christensen et al. 2011; Gruben et al. 2012). A detailed genome analysis enabled an

inventory of the polysaccharide-degrading potential of A. niger (Andersen

et al. 2012), while comparative genomics highlighted the differences between

A. niger, A. oryzae, and A. nidulans for this topic (Coutinho et al. 2009).

To illustrate in more detail the impact and potential of genomics for Aspergillus,
three important Aspergillus research topics will be discussed in more detail in the

sections below: plant biomass utilization, signal transduction, and secondary

metabolism.

5.3 Plant Biomass Utilization

Estimating the total amount of plant biomass on earth is very difficult. Information

on plant biomass is available from a mixture of sources; the data are often regional

or national, based on different methodologies and not easily accessible. A database

of average biomass per country is produced by the Food and Agriculture Organiza-

tion of the United Nations (FAO). Plant biomass includes woody and nonwoody

vegetation, crops, waste, or by-products from agriculture or from industries but also

domestic garbage. Plant biomass is the most renewable material on earth and, with

the depletion of fossil energy, expected to be a valuable resource for sustainable

energy and chemicals. By 2020, the European Union aims to have 20 % of total

energy consumption from renewable energy sources with 10 % only for transport

which is a very challenging commitment. In 2005, 66.1 % of renewable energy

produced in the EU was from the breakdown of biomass (http://europa.eu/

legislation_summaries/energy/renewable_energy/l27065_en.htm). In 2011, bio-

mass fuels provided only about 4 % of the energy used in the United States

(http://www.eia.gov/energyexplained/index.cfm?page¼biomass_home). European

projects such as Hype (http://www.helsinki.fi/hype), Disco (http://www.disco-proj-

ect.eu), and Nemo (http://nemo.vtt.fi) are meant to develop novel-integrated

concepts for hydrolysis and fermentation of lignocellulosic material to obtain

bioethanol from second-generation biomass, i.e., from plant material that does

not compete with food production.

5.3.1 Plant Cell Wall Polysaccharides

Fungi secrete a broad range of enzymes, breaking down the plant cell wall polymers

into monomers that can be further taken up and metabolized as carbon sources. The

main components of the plant cell wall are polysaccharides, cellulose, hemicellulose,

and pectin, linked to each other and closely associated with lignin, a semi-random,

three-dimensional aromatic polymer. The lignin fraction is very recalcitrant to

degradation due to its complex structure and high molecular mass. The presence

of lignin limits the saccharification yields and is responsible for the darkness of pulp
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in high-quality white paper production. A limited number of enzymes are known to

depolymerize lignin (Chen et al. 2012). These are oxidative enzymes such as

peroxidases and laccases, and although some are present in Aspergillus genomes,

delignification is not a well-known ability of the Aspergilli (Pel et al. 2007).

Therefore, the focus is on the utilization and valorization of plant polysaccharides.

Cellulose is the main carbohydrate produced by plants and consists of a linear

polysaccharide of β-1.4-linked D-glucose units organized in microfibrils (Lavoine

et al. 2012). Hemicellulose is considered to be the second most abundant plant cell

wall component and consists of heterogeneous polysaccharides such as xylan,

xyloglucan, galacto-, and galactoglucomannan of which the amount varies

depending on plant origin (Peng et al. 2012). Pectin also consists of diverse and

complex polysaccharides, such as homogalacturonan, rhamnogalacturonan-I, and

substituted galacturonans (Hilz 2007).

Each of these polysaccharides has a broad range of applications. The worldwide

production of cellulose as a biopolymer, for instance, is estimated to be between

1010 and 1011 tons each year. Cellulose, hemicelluloses, and pectins can be

hydrolyzed into hexoses and pentoses and further fermented to produce bioethanol.

Monosaccharides or partially hydrolyzed polysaccharides can be converted into

added-value chemicals such as xylitol and furfural (Peng et al. 2012). Furfural is

used as a building block for chemical synthesis (Pace et al. 2012), and vanillin is

used in a broad range of flavors for foods, confectionery, and beverages (approxi-

mately 60 %); as a fragrance ingredient in perfumes and cosmetics (approximately

33 %); and for pharmaceuticals (approximately 7 %) (Priefert et al. 2001). Besides

being more environmentally friendly, enzymatic treatments of the polysaccharides

target specific linkages while chemical or mechanical treatments are less specific

(Benoit et al. 2006). Carbohydrate-active enzymes acting on the plant

polysaccharides are organized in several families based on amino acid sequence

of the structurally related catalytic modules (http://www.cazy.org) (Henrissat 1991;

Cantarel et al. 2009). Three different fungal hydrolases (β-1,4-endoglucanase,
cellobiohydrolase, β-1,4-glucosidase) divided over seven families (GH1, 3, 5, 6,

7, 12, 45) are acting on cellulose, while 15 types of fungal enzymes, including

hydrolases, lyases, and esterases divided over 21 families, are acting on pectin (van

den Brink and de Vries 2011). Based on the annotated genomes and the CAZy

database, transcriptomics and proteomics have become interesting tools to study the

different sets of enzymes involved in polysaccharide degradation.

5.3.2 Aspergilli: Industrial and Model Organisms

Aspergilli are used for industrial production of enzymes and metabolites. The

workhorse A. niger, for instance, produces high amounts of citric acid and is well

known for its efficient secretion of glucoamylase (up to 20 g/L) (Finkelstein 1987).

A. oryzae plays a central role in Asian traditional fermented condiments like soy

sauce, miso, or sake. In addition to being industrial organisms, these two Aspergilli
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became model organisms, together with A. nidulans, and have been for more than

50 years (Rittenour et al. 2009). These Aspergilli are relatively easy to grow and

maintain in a restricted environment. Nutrients and growth conditions are well

known. Their growth rate is relatively fast within the fungal kingdom, and they are

recognized by the United States Department of Agriculture as a Generally

Regarded As Safe (GRAS) organisms which makes them interesting to study

their development and be a reference for other fungi. Moreover, many molecular

tools were developed to transform them. Therefore, they are model organisms to

study eukaryotic protein secretion (Baker 2006). The fungal growth database

(http://www.Fung-Growth.org) displays the growth profiles of 42 Aspergilli

grown on a broad range of substrates from monosaccharides to more complex

substrates such as crude plant biomass. These substrates induce different responses

from the Aspergilli. Therefore, the analysis of the transcripts and/or the secretome

provides insights on how these fungi use their enzymes to efficiently degrade the

substrate. Recently, the extracellular proteome of A. nidulans grown on sorghum

stover was studied at different time points (Saykhedkar et al. 2012). A total of

294 extracellular proteins were identified including cellulases, hemicellulases,

pectinases, chitinases, and lipases. This 14-day time course study revealed that

most of the enzymes are already secreted at day 1, and only the relative abundance

of the enzymes changes over the time. These data suggest that the breakdown of the

plant polysaccharides is simultaneously done. The presence of main chain acting

enzymes, accessory enzymes, and protein that could contribute to an efficient

hydrolytic system make A. nidulans capable of degrading the major

polysaccharides in sorghum without chemical pretreatment (Saykhedkar

et al. 2012).

5.3.3 Comparative Proteomics: In Silico Versus In Vivo

Based on the presence of signal peptides in almost all secreted proteins, computa-

tional approaches coupled to mass spectrometric analysis have been used to predict

the secretome of A. niger, A. oryzae, and A. nidulans (Tsang et al. 2009; Braaksma

et al. 2010). The proteome size varies between strains and species and does not

necessarily correlate with the genome size. A. oryzae has the largest genome but

does not have the highest number of protein-coding genes nor signal peptide

predictions (Table 5.1). The secretome of A. niger grown under six conditions,

glucose, sorbitol, glycerol, birchwood xylan, citrus pectin and locust bean gum,

during 2 days, identified a total of 222 proteins. Fewer than 15 % of these have been

biochemically characterized (Tsang et al. 2009). Most of the putative enzymes

involved in the hydrolysis of cellulose, xylan, and arabinan were secreted in all six

conditions while mannanases and pectinases appeared to be more substrate depen-

dent. Mannanases were only detected on locust bean gum and pectin, and pectinases

were mainly detected on pectin. When the secretome of A. niger grown on

galacturonic acid was compared to the secretome of the same strain grown on
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sorbitol, the pectinolytic genes were clearly induced. For instance, pectin lyase A;

exopolygalacturonase A, B, C, and X; as well as putative arabinofuranosidase and

pectin acetylesterase were detected on galacturonic acid and not on sorbitol

(Braaksma et al. 2010).

5.3.4 Limitations in Protein Identification

It has been shown that some secreted proteins are retained in the cell wall after

being secreted (Levin et al. 2007). Some proteins secreted in solid-state cultures

were found to be trapped in the cell wall during submerged culture, such as most of

the secreted α-amylase and β-glucosidase of A. oryzae when grown in wheat bran

submerged cultures (Oda et al. 2006). A recent study shows the positive effect of

the cycloheximide on protein release into the medium. A. niger was grown on D-

xylose, and the secreted proteins were analyzed within the different zones of the

mycelium, from center to the periphery of the colony grown on solid medium.

187 proteins were identified from cultures without cycloheximide, of which

98 passed the filtering criteria, while 216 proteins were identified in the presence

of cycloheximide, of which 148 passed the filtering criteria (Krijgsheld et al. 2012).

Incomplete peptide sequence databases, due to missed protein-encoding genes or

gene model errors, affect the number of proteins identified in proteomics, but the

method used also has an influence. The precipitated extracellular proteins from the

culture filtrate can be directly digested by trypsin, followed by MALDI-TOF/MS

(matrix-assisted laser desorption ionization time-of-flight mass spectrometry), or

first be separated by 2-D or 1-D SDS gel electrophoresis, which is the most common

technique for protein extraction. Extra steps such as an in-gel deglycosylation with

PNGase F may increase the number of proteins that can be identified byMS (Bouws

et al. 2008). However, a large number of secreted proteins are lost or remain

unidentified. The hydrolysis of alkali pretreated rice straw by A. fumigatus has

been studied using zymograms, followed by proteomics. The cocktail of enzymes

Table 5.1 Genome size, proteome size, and signal peptide predictions of four Aspergilli

Species

A. niger CBS
513.88

A. niger ATCC
1015

A. oryzae
RIB40

A. nidulans FGSC
A4

Genome size (Mb) 33.93a 34.85a 37.6b 30.06c

Protein CDS 14,086d 11,197e 10,406e 10,665e

SignalP3 NN 1,831 1,540 1,751 1,469

Adapted from Braaksma et al. (2010)
aAndersen et al. (2011)
bMachida et al. (2005)
cGalagan et al. (2005)
dNumber obtained from the Refseq section of GenBank
eNumber obtained from http://www.broad.mit.edu/annotation/genome/aspergillus_group/

MultiHome.html
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produced by a thermotolerant A. fumigatus strain resulted in>90 % saccharification

of the substrate. β-glucosidase, cellobiohydrolase, xylanase, endoglucanase, and
acetyl esterase activities were identified by zymograms. Secretome characterization

revealed a combination of a variety of glycosyl hydrolases (Sharma et al. 2011).

Although the proteome of A. fumigatus has been previously documented in a

medically related context (Carberry and Doyle 2007), this study is the first report

on A. fumigatus’s CAZymes.

5.3.5 Intracellular Proteome and Transcriptomics

Other approaches such as microsomal proteome analysis of A. niger gave more

information on intracellular membrane traffic and protein secretion upon cellulase

and hemicellulase induction by D-xylose or amylase induction by D-maltose com-

pared to sorbitol (de Oliveira and de Graaff 2010; de Oliveira et al. 2010). Explora-

tion of the intracellular proteome of A. oryzae and A. niger resulted in the

identification of a much higher number of proteins. 522 proteins were identified

from A. oryzae, amongst which 451 proteins are potentially involved in the produc-

tion of soy sauce flavor (Zhao et al. 2012). From A. niger grown on D-xylose and

maltose, differences found in the two intracellular proteomes were related to the

first steps in carbon catabolism. The utilization of D-xylose or maltose affected the

composition of the secretome but had a minor influence on the composition of the

intracellular proteome. On the other hand, the different conditions of the cultures, in

particular pH and the aeration factor, had a strong effect on the intracellular

proteome (Lu et al. 2010).

Using transcriptomics, an overview of the expression of genes encoding (extra-

cellular) plant cell wall-degrading enzymes as well as the genes involved in the

related (intracellular) metabolic pathways is obtained. Transcriptome analysis of

A. niger grown on sugarcane bagasse, a bioethanol substrate, revealed the genes

specifically induced by this substrate. In addition to the predicted cellulases and

hemicellulases, many genes encoding unknown functions had increased expression.

Transporter-encoding genes potentially involved in oligosaccharide transport were

also expressed (de Souza et al. 2011). Hitherto the limiting step in a total and

efficient plant biomass valorization is the right enzyme cocktail. Combining the

great ability of the Aspergilli to grow on a wide range of substrates with the post-

genomic tools will help in designing novel-tailored enzymatic cocktails for bio-

technology as well as understand better the interactions between the fungi and their

environment (de Vries et al. 2011).
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5.4 Signal Transduction

The complete genome sequence of several Aspergillus species published over the

last 7 years has provided a valuable tool for the identification and deeper character-

ization of the gene function in this important genus. By these means, it has also led

to an unprecedented understanding of the molecular basis of some of the most

striking features of the fungal organisms and Aspergilli itself, i.e., their ability to

sense the environment and to colonize diverse ecological niches (in the case of the

saprobic lifestyle species) or to recognize and to adapt to the host’s milieu (in the

case of the pathogenic species). These events ultimately facilitate survival under

different temperature and nutrient limitation and to overcome the host intrinsic

defenses. Independently of the environments, the ability of the fungal cells to

interact with them highly relies on their capacity to recognize the external

boundaries of the cells and properly respond to the signals that emanate from this

environment. All this information must be gathered together by the fungal cell by

means of the well-orchestrated multiple circuits of a signal transduction system.

Such systems enable the effector proteins to launch the appropriate response for cell

homeostasis, proliferation, and quiescence, which finally represents an overall cell

metabolic adaptation. Fungi are organisms for which adaptation is mandatory, and

it is this capability that probably makes these organisms so versatile. Understanding

how these diverse signaling networks are organized in the fungal cell allowing such

versatility is an interesting point that Aspergilli genome exploitation can help to

unravel.

Many of the mechanisms that connect signaling proteins into networks are

thought to be highly modular; i.e., the catalytic core of a signaling pathway is

physically and functionally separable from molecular domains or motifs that

determine its linkage to both inputs and outputs. This high degree of modularity

may make these systems more evolvable, creating the possibility for new pathways

with different cell behaviors upon competitive or hostile environments [for a review

see Bhattacharyya et al. (2006)]. However, the signaling pathways and output

responses to external signals show a high degree of conservation and different

signaling factors contribute to fungal adaptation. Environmental signals such as

temperature, carbon source, pH, oxygen content, and mechanical or physical

elements or soluble factors such as drugs or xenobiotics are elements that can

trigger a variety of signaling pathways. Filamentous fungi are more tolerant to

various conditions than yeasts and are thus expected to have more extensive sensing

and signaling networks. Analysis of the genome of the Aspergillus species

demonstrated that the organization of the sensing and signal transduction systems

and particularly the upstream signaling mechanisms are more complex than those

found in yeasts (Abe et al. 2010). The main common pathways which are shared in

all Aspergillus species will be highlighted in the following sections of this chapter.
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5.4.1 cAMP/PKA-Signaling Cascade and G-Protein-Coupled
Receptors in Aspergillus

Although the fully sequenced genomes of several Aspergillus species have been

analyzed, little is known about the signal transduction pathways involving the

heterotrimeric guanine nucleotide-binding proteins (G-proteins). In eukaryotic

cells, these proteins interact with the cell surface plasma membrane proteins

which are members of a large superfamily of receptors having seven membrane-

spanning regions. Collectively this superfamily is named G-protein-coupled

receptors (GPCR). This signal transduction cascade becomes functional after the

extracellular stimuli arrive at these membrane receptors. In fungi, these stimuli

reflect those related to fungal cell survival and fitness, virulence, secondary metab-

olite production, morphogenetic events, and so on (Bolker 1998; Lengeler

et al. 2000). Heterotrimeric G-proteins are composed of three subunits α, β, and γ
forming a complex (Neves et al. 2002). The functioning dynamics of the GPCR

complex includes the activation of the G-protein upon ligand binding at the cell

surface. Figure 5.2 represents this sensitization step generally as the various extra-

cellular signals provide inputs from the extracellular compartment. GPCR sensiti-

zation promotes the interaction between GPCR and the GDP-Gα inactive form of

the Gα-Gβ-Gγ heterotrimeric complex (black circle in Fig 5.2) resulting in

Gα-GDP to Gα-GTP exchange. This alteration leads to the dissociation of

Gα-GTP from the Gβ-Gγ heterodimer. Once dissociated, the Gα-GTP subunit,

Gβ-Gγ, or both can amplify and propagate signals by modulating activities of a

number of effector proteins causing a given cell behavior [for a review, see Neves

et al. (2002)].

Through genome analysis of A. nidulans, A. fumigatus, and A. oryzae, it was
possible to identify at least 16 putative GPCR which were grouped in nine different

classes based on detailed phylogenetic studies [Lafon et al. 2006 and revised in Yu

(2006) and Yu and d’Enfert (2008)]. Figure 5.2 summarizes the GPCRs, the

G-protein subunits present in the genome of Aspergillus, and the main downstream

effectors which will be discussed in this chapter. Of these 16 GPCRs, up to now,

very few have been well characterized, and most studies address GprA, GprB, and

GprD (Han et al. 2004; Seo et al. 2004). Deletion of gprD resulted in hyphal and

germination defects and increased production of cleistothecia (fruiting bodies),

indicating that this GPCR is probably a negative regulator of sexual development

in A. nidulans (Han et al. 2004). In contrast, the deletion strains ΔgprA and ΔgprB
resulted in reduced cleistothecia which were significantly smaller than those in a

wild-type A. nidulans strain (Seo et al. 2004). Moreover, the double mutant ΔgprA/
ΔgprB exhibited complete absence of cleistothecia (Seo et al. 2004).

The most comprehensive characterization of the G-protein subunits is described

in A. nidulans and A. fumigatus. Among them, Gα of A. nidulans FadA presents the

so-called fluffy autolytic dominant phenotype since strains carrying dominant-

activating mutations of this gene have a striking phenotype of increased accumula-

tion of aerial hyphae and lack of development and conidiogenesis which leads to
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Fig. 5.2 Schematic representation of the cAMP-Protein kinase A-dependent pathway in

Aspergilli. The figure shows the 11 families (I–XI) of GPCR (G-protein-coupled receptor)

identified “in silico” for the A. nidulans, A. fumigatus, and A. oryzae. The description of those

with functional analysis is available is in the text. The information in this figure is adapted from

Lafon et al. (2006), Yu (2006), and Yu and d’Enfert (2008). *Only present in A. nidulans. **Not
present in A. oryzae. ***Only present in A. fumigatus. The names for the three genes encoding

different Gα subunits (black circle) are separated by a slash to indicate names in A. nidulans and
A. fumigatus, respectively, in each line. The Gβ (white rectangle) and Gγ (gray hexagon) subunits
encode a single gene in each organism. The genome of A. oryzae also contains a fourth Gα subunit

named GaoC, in addition to those mentioned here [for details refer to Lafon et al. (2006)]. The

protein kinase A (PKA) is activated upon the action of the second messenger cAMP (cyclic AMP)

which rises in concentration inside the cell by the increased activity of the adenylate cyclase gene

(cyaA and acyA in A. nidulans and A. fumigatus, respectively). Both A. nidulans and A. fumigatus
have two PKA catalytic subunit-encoding genes and a single gene encoding the regulatory subunit

(pkaR). The relevance of these genes in the cAMP-Protein kinase A-dependent pathway is

discussed in the text. MAP kinase can be a downstream effector of a GPCR response, and the

main MAP kinase pathways in Aspergilli are discussed in the Sect. 5.4.2. Phospholipases and

calcium/calcineurin can also function as downstream effectors but will not be discussed in this

text. The cellular behavior indicates the final element in the cell adaptation to the extracellular

input signals. In general regards to an enhanced transcriptional activation of key genes which

products ultimately drive the cell to adaptation and survival
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complete hyphal disintegration in cultures (Yu et al. 1996, 1999; Hicks et al. 1997;

Wieser et al. 1997). This phenotype indicates a clear role of fadA in vegetative

growth and inhibition of sexual and asexual development. In contrast, an

A. fumigatus strain containing a dominant-activating form of the fadA homolog,

gpaA, also shows increased hyphal proliferation but not the fluffy autolytic pheno-

type (Yu et al. 2006). The ΔgpaB mutant from A. fumigatus resulted in reduced

conidia production with normal growth rate but was almost avirulent in a mouse

infection model (Liebmann et al. 2003, 2004).

The only pathway where a link between a G-protein and its downstream effector

has been formally established is the GanB/CyaA cAMP-PKA cascade during

germination (Yu and d’Enfert 2008). Hence, one of the well-studied cellular

downstream effectors of the GPCR is the cAMP-PKA circuit. Signal transduction

coming from GPCR activity stimulates the plasma membrane-bound enzyme

adenylyl cyclase, encoded by the genes cyaA and acyA in A. nidulans and

A. fumigatus, respectively, but still uncharacterized in other Aspergilli, such as

A. oryzae and A. niger. The activity of CyaA/AcyA results in the production of the

second messenger cyclic AMP (adenosine 30,50-cyclic monophosphate) from ATP.

The increased intracellular levels of cAMP activate protein kinase A (PKA).

Activation of PKA takes place by the cAMP-induced conformational change in

the PKA regulatory subunits which is ultimately released from the PKA catalytic

subunit (see Fig. 5.2 for gene names), allowing it to phosphorylate downstream

targets at serine or threonine residues, culminating in the cellular response upon

stress or other signals. In this process, which is well conserved across eukaryotes,

two cAMP molecules bind to the homodimeric structure of PKA regulatory subunit

(encoded by pkaR in Aspergilli), releasing the catalytic PKA structure (Taylor

et al. 1990, 2004). Both in A. fumigatus and A. nidulans, null mutants of acyA
and cyaA, respectively, render defects in conidial germination, conidial production,

and vegetative hyphal growth due to the lowered intracellular levels of cAMP

(Fillinger et al. 2002; Liebmann et al. 2003).

The Aspergillus genomes contain two catalytic subunits of PKA which are

phylogenetically distant from each other. pkaA and pkaC1(Fig. 5.2) belong to

group I PKAs, which are closely related to the three protein kinase A catalytic

subunit (TPKs) homologs present in the genome of S. cerevisiae (Robertson and

Fink 1998). In contrast, pkaB and pkaC2 belong to the group II PKAs which are

exclusively present in filamentous fungi (Ni et al. 2005; Fuller et al. 2011). In

A. nidulans, the overexpression of pkaA causes reduced but not completely absent

conidia production. In contrast, deletion of A. nidulans pkaA caused a hyper-

conidiating phenotype and limited radial growth (Shimizu and Keller 2001)

indicating a role in vegetative growth. In addition, pkaA is a negative regulator

(at both transcriptional and posttrancriptional level) for production of the carcino-

genic secondary metabolite sterigmatocystin (Shimizu and Keller 2001). Curiously

in A. fumigatus the deletion of the pkaC1 gene resulted in a contrasting condition of
low conidia formation but the same phenotypes of impaired germination and

vegetative growth (Liebmann et al. 2004).
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Likewise in other fungal species such as fission and budding yeast, C. albicans,
and the filamentous saprophyte Neurospora crassa, there is only one adenylate

cyclase in the genome of Aspergillus. Deletions of this gene in A. nidulans and

A. fumigatus are not lethal, indicating that even in the absence of cAMP generated

by the activity of CyaA or AcyA, the level of PKA activity is sufficient to signal for

germination, hyphal growth, and conidiogenesis (Yu and d’Enfert 2008). In con-

trast, the loss of function of both genes encoding the two catalytic subunits of PKA,

i. e., ΔpkaA/ΔpkaB, is lethal in A. nidulans (Ni et al. 2005). Remarkably, the same

is not true for A. fumigatus where the double mutant strain ΔpkaC1/ΔpkaC2 is

viable although completely avirulent (Fuller et al. 2011).

The function of the single PKA regulatory subunit (pkaR) present in the genome

of A. fumigatus and A. niger has been described, but a deletion mutant of this gene

(AN4987) in the model organism A. nidulans has not been reported. In A. fumigatus
the ΔpkaR strain resulted in impaired germination, vegetative growth, and conidia

production as well as conidia hypersensitivity to oxidative stress agents (Zhao

et al. 2006; Fuller et al. 2009). In the industrially important species A. niger, loss
of function of the catalytic subunit of PKA (pkaC) resulted in a reduction of colony
diameter, but the most severe phenotypes were, interestingly, observed in the PKA

regulatory subunit (pkaR) disruption strain which resulted in very small colonies,

absence of sporulation, and complete loss of growth polarity during submerged

growth (Saudohar et al. 2002).

The current information in Aspergilli about GPCR and the cAMP-dependent

protein A kinases (PKA) indicates that there is a striking diversity at the GPCR

input level, but little diversity of components at the G-protein and cAMP-signaling

level which is minimally conserved among the studied species but with some

particularities. This may reflect the abilities of these fungi to adapt to various

ecological niches and to integrate diverse environmental cues into highly conserved

cellular processes (Lafon et al. 2006).

5.4.2 The Mitogen-Activated Protein Kinase Pathway

Mitogen-activated protein kinases (MAPK) are a family of serine/threonine protein

kinases, which are involved in the transduction of a variety of extracellular signals,

regulating growth and differentiation processes. For this reason, MAPKs are central

elements of several signaling pathways in eukaryotes. In addition, the MAPK

mechanism of action involves the sequential phosphorylation of downstream pro-

tein targets of the MAP kinase pathway. Protein phosphorylation is regarded as one

of the most important posttranslational modifications found in all eukaryotic

organisms (Mok et al. 2011). The essential organization of the MAP kinase

pathway consists of a sequential cascade of three protein kinases. On the top of

the cascade, there is a MAPKKK (MAP kinase kinase kinase) which functions to

phosphorylate the residues of serine and threonine of the immediately downstream

MAKK (MAP kinase kinase), the second component of the pathway, which
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becomes in turn activated. The activated MAPKK in a sequential manner dually

phosphorylates the last component of the pathway, MAPK.

The signal that leads to activation of the MAPK cascade is perceived by a variety

of types of receptors: G-protein-coupled (discussed in the previous section), histi-

dine kinases phosphorelay sensors (described in the next section), and integral

membrane proteins (Banuett 1998). After MAP kinase activation, the final target

of the pathway is, in general, a transcription factor whose phosphorylation and

activation enables the transcription of target genes to adjust the cell to the condition

sensed by the receptor (Hill and Treisman 1995; Treisman 1996). There are four

MAP kinases in the genome of A. nidulans, A. fumigatus, and A. oryzae, i.e., four
different kinases that phosphorylate different transcription factors to adapt the cell

to the extracellular stimuli (Reyes et al. 2006; Zhao et al. 2007; May 2008). These

genes are named mpkA, mpkB, sakA/HogA, and mpkC. The first three are homologs

of the yeast Slt2, Fus3, and Hog1, respectively, while mpkC has no orthologous

genes or a pathway in S. cerevisiae. Table 5.2 shows the MAP kinases identified in

A. nidulans and A. fumigatus because these three species cover the majority of the

functional characterization of the MAP kinase-signaling cascade which allows us to

infer the function of such components in Aspergillus genomes.

The Aspergillus MAP kinase mpkC is the least characterized. Its sequence is

very similar to sakA/hogA (Reyes et al. 2006). However, mpkC cannot be attributed

to a specific cascade with a well-established cellular function such as the cell wall

integrity (CWI) or the high-osmolarity glycerol pathways (HOG), which mainly

respond to cell wall or osmotic stress input, respectively. Moreover, it is currently

Table 5.2 Components of the MAP kinase cascades in Aspergillus species

Aspergillus S. cerevisiae counterpart

Cell wall integrity pathway

MAPKKK bckA/bck1 BCK1

MAPKK mkkA/mkk2 MKK1

MAPK mpkA MPK1 (SLT2)

High-osmolarity glycerol pathway

MAPKKK sskB SSK2

MAPKK pbsA or pbsB/pbsB PBS2

MAPK hogA/sakA HOG1

Mating pathway

MAPKKK steC STE11

MAPKK ste7/mkkB STE7

MAPK fus3/mpkB FUS3

mpkC pathway

MAPKKK – –

MAPKK – –

MAPK mpkC –

Additional information about each gene can be found at the Aspergillus Genome Database

(AspGD) available at <http://www.aspergillusgenome.org/> (Arnaud et al. 2012) using the

gene name provided here as entries. Gene names separated by a slash indicate aliases in the

same Aspergillus specie and/or between them
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unknown which MAPKKK and MAPKK signal leads to the downstream activation

of mpkC (May 2008). In A. fumigatus and A. nidulans, ΔmpkC deletion strain

showed a wild-type phenotype in minimal and complete medium under various

concentrations of salts and solutes (Reyes et al. 2006; Jun et al. 2011). Nevertheless,

it revealed an unexpected role in the assimilation of polyalcohol sugars, indicating

that mpkC is involved in the signaling for carbon source utilization only in

A. fumigatus (Reyes et al. 2006). Even though there is sequence similarity between

A. fumigatus mpkC and sakA/hogA MAP kinases (68 % amino acid identity) (May

et al. 2005), the transcriptional regulation of these two MAPK upon osmotic and

oxidative stress or in response to carbon source shift indicated no overlapping

patterns, suggesting that they may govern independent signaling pathways (Reyes

et al. 2006). The same results were observed in the analysis of the ΔmpkC in

A. nidulans which depicted no visible phenotype under standard growth conditions.
However, a cross talk with the MAPK hogA was verified since the MAPKK pbsA
was able to phosphorylate mpkC as well as its known target hogA in an

overexpressing mpkC strain of A. nidulans (Furukawa et al. 2005).
One of the most studied MAP kinase pathways is the CWI which underlines the

function and importance of the genempkA in Aspergillus. Deletion strains for almost

all of the MAP kinase pathway components in the cell wall integrity (CWI) have

been generated at least in A. nidulans and A. fumigatus, and results were sometimes

corroborative in both organisms. In A. nidulans, the deletion of mpkA showed

abnormal hyphal structure and vegetative growth defects which could be rescued

in the presence of osmotic stabilizers (Bussink and Osmani 1999), as well as

increased sensitivity to the β 1,3-glucan synthase inhibitor Caspofungin (Mircus

et al. 2009). In A. fumigatus, the CWI genes bck1, mkk2, and mpkA (Table 5.2) have

been associated with impaired filamentous growth, decreased resistance to cell wall-

disturbing and oxidative-stressing agents, thermotolerance defects, and abnormal

hyphal morphology (Valiante et al. 2008, 2009). However, A. fumigatus mpkA is

dispensable for virulence in a mouse model for invasive aspergillosis (Valiante

et al. 2008), while the mkk2 promotes virulence attenuation in the same model

(Du et al. 2002). Interestingly, all the components of the CWI MAP kinase circuit

in A. fumigatus are involved in the production of the melanin-related pigment

derived from tyrosine degradation, pyomelanin (Valiante et al. 2009).

In A. oryzae, the function of the mpkA in the CWI was observed in a study where

the subtilisin-like-processing enzyme hexB was deleted (Mizutani et al. 2004). The

hexB loss-of-function mutant showed constitutively upregulated levels of both

mpkA transcripts and the phosphorylation levels of MpkA in A. oryzae. This
indicates that the phenotypic traits observed in the hexB mutant could be attributed

to disordered CWI signaling.

The circuit coordinated by the mpkB MAP kinase homolog in S. cerevisiae
(Ste11-Ste7-Fus3) is known as the sexual pathway of the budding yeast since it

responds to pheromones, induces differentiation processes, and triggers sexual

mating of yeast (Bardwell 2005). The most studied gene in this pathway in

Aspergillus is MAPKKK steC (Table 5.2). A steC deletion strain exhibited reduced

growth, brown-pigmented mycelium, and aberrant-sized conidiophores.
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Furthermore, ΔsteC was unable to form cleistothecia under sexual development

conditions (Wei et al. 2003). More recently, some studies have devoted attention to

the deletion strain of the MAP kinase mpkB. Deletion of A. nidulans mpkB caused

slow vegetative growth, aberrant hyphal morphology, and also no cleistothecia

formation under several sexual-inducing conditions, indicating that mpkB has an

essential role during successful sexual reproduction in A. nidulans (Jun et al. 2011).
In addition, the ΔmpkB mutant exhibited a decrease in sterigmatocystin gene

expression and low mycotoxin levels. The mutation also affected the expression

of genes involved in penicillin and terrequinone A synthesis (Atoui et al. 2008).

mpkB was also necessary for normal expression of laeA (a methyltransferase-

domain protein), which has been found to regulate secondary metabolism gene

clusters (Bok and Keller 2004; Atoui et al. 2008; Bayram et al. 2008, 2012; Bayram

and Braus 2012).

5.4.3 Two-Component Histidine Kinase Phosphorelay
System

The two-component histidine kinase (HK) phosphorelay system (or tcs) is a signal-

ing pathway initially identified and characterized in bacteria. In eukaryotes it is

present only in slime mold, plant, and fungal cells. This system enables these cell

types to sense and react to the extracellular stimuli with intracellular responses

since it is connected to an output component such as activation of transcription or of

a MAP kinase-signaling cascade (Hoch 2000; Santos and Shiozaki 2001, 2004;

Catlett et al. 2003). As a consequence, several processes such as differentiation,

growth, osmosensing, and chemotaxis can be controlled by this signaling machin-

ery (Hoch 2000). The mechanisms and proteins involved in this two-component

phosphorelay system have received attention in fungi since no similar pathway has

been described in animal cells. In contrast, the other regulatory networks such as

MAP kinase and GPCR (discussed above) are also present in higher eukaryotes.

Therefore, it could be a promising target for the development of new antifungal

compounds (Santos and Shiozaki 2001; Bahn 2008; Li et al. 2010).

The architecture of HK in fungal cells differs from that in prokaryotes. In

bacteria, HK is composed of a sensor histidine kinase (HK) and a separate protein

called response regulator (RR). In response to external stimuli, the sensor HK is

autophosphorylated at the histidine residue followed by the transfer of this phos-

phoryl group to a conserved aspartate residue within a receiver domain of its

cognate RR protein [for reviews see Hoch (2000), Santos and Shiozaki (2001),

Catlett et al. (2003), and Li et al. (2010)]. In contrast, and although there are some

exceptions, fungal cells have a so-called hybrid HK which combines both functions

of sensor HK and RR in the same protein (Li et al. 2010). In other words, the

phosphoryl group from the sensor HK is transferred directly to the RR domain in

the same polypeptide (Catlett et al. 2003; McCormick et al. 2012). Fig. 5.3 depicts
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Fig. 5.3 Schematic representation and domain organization of the two-component histidine

kinase (HK) phosphorelay system (or tcs) appearing in prokaryotes (left) or eukaryotes (right).
Most eukaryotic and all fungal HKs are hybrids. An external stimulus is received by the sensor

domain of the HK localized in the cell membrane. This signal typically catalyzes an

ATP-dependent autophosphorylation reaction in which the protein kinase covalently attaches the

γ-phosphoryl group from ATP to itself on a conserved histidine residue (indicated as H) in the

phosphoacceptor domain. The phosphoryl group is subsequently transferred to a conserved

aspartic acid residue (indicated as D) on a response regulator protein (RR) activating the effector

domain to result in an output such as activation of transcription or a MAP kinase (MAPK) cascade

or a specific enzymatic activity required. Hence, for a simple two-component system (left), the HK
(sensor, phosphoacceptor, and ATP-binding domains) and the RR are separate proteins. On the

other hand, for a hybrid two-component system (right), the HK (sensor, phosphoacceptor, and

ATP-binding domains) and the second RR/effector protein are separate polypeptides. Structurally,

a hybrid HK protein presents both HK and RR domains in the same polypeptide but generally

requires additional rounds of phosphorelay events through an HPt domain (histidine-containing

phosphotransfer intermediate protein, indicated as the hexagon) and a second cognate RR protein.

The HPt domain can be part of the hybrid HK protein or a separate protein. The main components

of the two-component phosphorelay system identified and characterized in A. nidulans and

A. fumigatus are described. From the 15 putative HK sensors identified in these species, four of

them are characterized. There is a single Hpt protein in Aspergillus (ypdA). The four putative

cognate RR in these species have also been described. The gene names separated by a slash

indicate the names in A. nidulans and A. fumigatus, respectively. The genes marked with an

asterisk indicate those which belong to the circuit connecting the HK and HOG pathways in

A. nidulans (for details see the text). In this circuit, the RR sskA activates the MAPKKK sskB
ultimately activating the HOG pathway to drive the cell adaptation in conditions of hyperosmotic

shock. Adapted from West and Stock (2001), Catlett et al. (2003), and Capra and Laub (2012)
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the main differences in the prokaryote and eukaryote systems and highlights main

events on the hybrid HK-mediated signal transduction cascade.

The fungal phosphorelay systems consist of a single or several hybrid HKs, a

histidine-containing phosphotransfer (Hpt) protein, and one or two additional

downstream canonical RRs (Vargas-Perez et al. 2007; McCormick et al. 2012).

The Hpt component consists of a protein with a conserved motif (PFAM01627)

where a second residue of histidine serves as a receptor for a second transfer of the

phosphoryl group coming from the RR domain of the fungal hybrid HK (Fig. 5.3).

This additional phosphorelay step may allow the organism to integrate multiple

input signals arriving at the hybrid HK into a single output (Appleby et al. 1996;

Catlett et al. 2003). The second RR component of the hybrid HK pathway mediates

the activation of the effector, such as a MAP kinase cascade (Catlett et al. 2003).

Through analysis of Aspergillus and other filamentous fungal genomes, such as

Neurospora crassa, Fusarium verticillioides, Cochliobolus heterostrophus, and
Botrytis cinerea, 11 families of hybrid HK have been described in fungi, which

were classified according to their protein sequence and domain organization [for

reviews about HK families, see Catlett et al. (2003) and Hagiwara et al. (2007a)].

Compared to prokaryotes, yeasts such as S. cerevisiae, S. pombe, and C. albicans
have a much lower number of hybrid HKs. For instance, in S. cerevisiae there is

only one hybrid HK (Sln1), three RR (Ssk1, Skn7, and Rim15), and one Hpt (Ypd1)

(Abe et al. 2010; Jung et al. 2012). Conversely, the genome of A. nidulans contains
15 hybrid HKs, four RR, and also a single one Hpt (Hagiwara et al. 2009). Interest-

ingly, these hybrid HKs are more redundant than those identified in the essentially

saprobic fungus N. crassa, which indicates the importance of the HK phosphorelay

system to the Aspergillus species in the sensing and signaling of external stimuli

(Abe et al. 2010).

Comparison of the A. nidulans, A. oryzae, and A. fumigatus genomes identified

15, 15, and 13 putative hybrid HKs, respectively, in these organisms. These HKs

represent nine of the 11 families of HK described by Catlett et al. (2003)and Abe

et al. (2010). Besides its functional relevance, the characterization of the hybrid HK

in the Aspergillus species is still in its infancy compared to other families of

signaling pathways. The best characterized HKs in Aspergillus are those in the

model organism A. nidulans and in the opportunistic pathogen A. fumigatus. From
the 15 HK identified in the genome of A. nidulans (Hagiwara et al. 2007a, 2009;

Vargas-Perez et al. 2007), four have been characterized: nikA, tcsA, tcsB (or slnA,
the homolog of S. cerevisiae Sln1), and fphA (Virginia et al. 2000; Furukawa

et al. 2002; Blumenstein et al. 2005; Hagiwara et al. 2007b). Figure 5.3 shows

the gene families currently characterized and its function in the Aspergilli
phosphorelay system.

The nikA null mutant showed decreased radial growth but was not hypersensitive

to high osmolarity (Vargas-Perez et al. 2007; Hagiwara et al. 2009). It was also

required for efficient conidia production and expression of the transcription factor

BrlA in Aspergillus involved in the early stages of asexual reproduction, and

conidiogenesis was considerably lower in the ΔnikA strain (Hagiwara et al. 2009).

The tcsA disruption strain in A. nidulans showed a complimentary phenotype with
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the other HKs since it was also required for production of conidia but not for

vegetative growth (Virginia et al. 2000).

The other characterized HK in A. nidulans, tcsB (or slnA), presented no detect-

able phenotype regarding vegetative growth or conidiation or in response to various

stimuli such as osmotic and oxidative stressing agents and antifungal drugs

(Furukawa et al. 2002, 2005). However, in the model yeast S. cerevisiae, there
are strong evidences that the SLN1 (the homolog of A. nidulans tcsB) directly

senses osmotic changes providing a connection between the HOG MAP kinase

pathway and the HK pathway (Hohmann 2002). In yeast, the sensor Sln1p transfers

the phosphate from its receiver domain to the Ypd1p under low-osmolarity

conditions. Nevertheless, this phosphoryl transfer activity is reduced when the

cell senses an osmotic shift to hyperosmotic condition. This scenario indicates

that under hyposmolarity conditions, the HK is active and continuously

phosphorylates the Hpt protein Ypd1p. Ypd1 phosphotransfer signal transducer

therefore negatively regulates Ssk1p, thus preventing signaling beyond this step in

the cascade. On the other hand, upon a hyperosmotic shock, the HK activity of

Sln1p drops transiently, removing the negative regulation of Ssk1 eventually

leading to activation of the downstream MAPKKK Ssk2p (Table 5.1) (Hohmann

2002).

The same hypertonic stress response is thought to occur in A. nidulans in that the
loss of the negative regulation of the RR sskA (homolog of S. cerevisiae SSK1)

results in phosphorylation of MAPKKK sskB, followed by MAPKK pbsA and

consequent activation of the sakA/hogA MAPK pathway (Table 5.2 and Fig. 5.3).

Interestingly, in A. nidulans the deletion of tcsB alone does not cause sensitivity to

osmotic stress, which indicates that other HK may act in a compensatory manner

and that A. nidulans has a more complex and robust osmoregulatory system than the

yeast SLN1-YPD1-SSK1-HOG1 MAPK cascade (Furukawa et al. 2002, 2005; May

2008). The A. fumigatus tcsB counterpart is involved in partial tolerance to SDS, but

as in A. nidulans, no apparent growth differences were observed under various

growth conditions and stress induction. However, even with reports of minimal

phenotypes “in vitro,” the expression of tcsB (initially described as AfHK1) was

increased in fungal cells isolated directly from the infected host (Du et al. 2002).

Functional descriptions are also available for fos-1 (the homolog of A. nidulans
tcsA), tcsB (A. nidulans tcsB), and tcsC (the homolog of A. nidulans nikA) in the

pathogen A. fumigatus (Pott et al. 2000; Du et al. 2002, 2006; McCormick

et al. 2012). Deletion of A. fumigatus fos-1 greatly attenuated the virulence

(Clemons et al. 2002) although the deletion mutant showed only minimal pheno-

typic changes in liquid or solid cultures. Only in liquid medium there was a delay in

conidiophore development and strong resistance to the antifungal agents

dicarboximide and cell wall-degrading enzymes, thus indicating a regulatory role

of fos-1 in cell wall organization (Pott et al. 2000). The HK tcsC of A. fumigatus is
required for growth under hyperosmotic stress, hypoxia, and farnesol exposure but

dispensable for normal growth, sporulation, and conidial viability. A characteristic

feature of the ΔtcsC mutant is its resistance to certain fungicides, like fludioxonil.

Both hyperosmotic stress and treatment with fludioxonil result in a TcsC-dependent
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phosphorylation of the MAP kinase SakA, confirming a role for TcsC in this

signaling pathway. However, tcsC is dispensable for virulence in A. fumigatus
(McCormick et al. 2012).

The phytochrome fphA gene still remains uncharacterized in A. fumigatus. In
A. oryzae, the only HK partially described is the fphA homolog which is known to

be continuously expressed under red-light conditions (Hatakeyama et al. 2007). In

A. nidulans fphA functions as a red-light sensor, and deletion of fphA leads to partial

derepression of sexual development under red-light conditions (Blumenstein

et al. 2005). In A. niger although the same orthologs of HK are present, with the

exception of tcsB, none of them has been characterized yet.

The four RR in A. nidulans have also been functionally characterized (Hagiwara
et al. 2007a; Vargas-Perez et al. 2007). The deletion strains ΔssrB and ΔssrC
showed no phenotypes under the conditions tested. In contrast, A. nidulans ssrA
and sskA are involved in osmotic stress resistance and are also required for oxida-

tive stress tolerance (Hagiwara et al. 2007a; Vargas-Perez et al. 2007). In

A. fumigatus the deletion mutant of skn7 (S. cerevisiae SKN7) was morphologically

similar to the wild-type strain but showed a decreased resistance to hydrogen

peroxide and t-butyl hydroperoxide indicating the role of this gene in the detoxifi-

cation of reactive oxygen species (Lamarre et al. 2007). It was also dispensable for

virulence. Interestingly, the histidine-containing phosphotransfer intermediate pro-

tein, (Hpt) gene, ypdA is essential in A. nidulans (Furukawa et al. 2005; Vargas-

Perez et al. 2007). This essentiality is due to the fact that the deletion of ypdA
constitutively activates the HOG pathway by the reasons mentioned above.

Collectively these data indicate that the genome sequences of Aspergillus have
fostered the study of the HKs present in such organisms as an important component

of the signal transduction pathways. Depending on the species, the HK

phosphorelay system can be implicated in the response to external stimuli such as

osmotic and oxidative, hypoxia, resistance to antifungal compounds, and sexual and

vegetative development (Santos and Shiozaki 2001; Catlett et al. 2003; Vargas-

Perez et al. 2007; Bahn 2008; McCormick et al. 2012). Also, signaling pathways

mediated by hybrid HK in Aspergillus differ in some aspects from those in

S. cerevisiae or the pathogenic yeast C. albicans in terms of phenotypic traits

since different responses to stressing conditions were identified (Du et al. 2006).

5.5 Secondary Metabolites of Aspergilli

The secondary metabolites of Aspergillus species impact our lives on a daily basis

and span the range from harmful mycotoxins to beneficial pharmaceuticals, com-

modity chemical intermediates, and food additives. In addition, they are useful

markers for the polyphasic approach to Aspergillus taxonomy [reviewed in Frisvad

et al. (2008)]. The biosynthetic genes for secondary metabolites are often clustered.

It is clear from the genomes of the Aspergillus species sequenced thus far that the

molecules that have been characterized currently constitute a small percentage of
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the potential production of secondary metabolites by Aspergillus and other

ascomycetes. Progress in associating genetic pathways with production of specific

secondary metabolites has been most recently reviewed by Sanchez et al. (2012).

Advances in understanding regulation of secondary metabolite biosynthesis have

also facilitated the detection of “silent” gene clusters. A combination of pathway-

specific regulators working both in cis and trans with gene clusters as well as global

regulators are responsible for activation and repression of secondary metabolite

biosynthesis [reviewed by Brakhage (2013)]. In this section, we present a high-level

overview of some of the important secondary metabolites derived from species of

Aspergillus and for which a gene cluster is known and discuss current approaches

for secondary metabolite analysis that take advantage of Aspergillus genomic

resources.

5.5.1 Aflatoxin

In 1960, Turkey “X” Disease afflicted poultry in Great Britain. The course of the

disease was “. . .generally short, and once a poultry was seen to be affected it would
usually die within a week” (Bount 1961). The cause of the disease was quickly

traced to A. flavus-contaminated peanut-derived feed imported from South America

(Nesbitt et al. 1962; Van der Zijden et al. 1962). Subsequently members of the

aflatoxin family of compounds were purified and the structures determined (Asao

et al. 1963). Over the following decades a variety of approaches were used to

elucidate the biosynthetic pathway of aflatoxin using a host of Aspergillus species.
Gene clusters for production of aflatoxin or sterigmatocystin (a less toxic compound

found late in the aflatoxin pathway and the final product of Aspergillus nidulans)
have been elucidated (Yu et al. 2004b). Aflatoxin and sterigmatocystin are pro-

duced by the action of a polyketide synthase (PKS) and several modifying enzymes

(Yu et al. 1995, 2004a; Brown et al. 1996b; Cary et al. 2009). The “starter unit” for

aflatoxin is hexanoic acid, which is produced by the action a fatty acid synthase

encoded by two genes in the cluster (Brown et al. 1996a; Watanabe et al. 1996).

Interestingly, what appear to be nonfunctional versions of the aflatoxin biosynthetic

pathway are found in the genomes of A. oryzae and A. sojae, two fungi commonly

used in koji mold processes (Watson et al. 1999; Matsushima et al. 2001a, b;

Takahashi et al. 2002; Lee et al. 2006; Tominaga et al. 2006; Kiyota et al. 2011).

5.5.2 Ochratoxin

Discovered in 1965 (van der Merwe et al. 1965), ochratoxin A (OTA) is an

important contaminant of grains, meat, and wine. It is produced by a number of

Aspergillus species including A. carbonarius and some strains of Aspergillus niger
(Nielsen et al. 2009; Frisvad et al. 2011), as well as some species of Penicillium
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(van Walbeek et al. 1969; Pitt 1987). A putative gene cluster elucidated through the

genome sequencing of A. niger strain CBS 513.88 (Pel et al. 2007) supported the

existing hypothesis that the biosynthetic pathway involves both a PKS and a

non-ribosomal peptide synthetase (NRPS) (O’Callaghan and Dobson 2006).

There is a large deletion within this cluster found in the A. niger strain ATCC

1015—a non-OTA-producing strain—genome sequence (Andersen et al. 2011).

Orthologs of the putative A. niger OTA biosynthetic genes were identified in the

genome of A. carbonarius ITEM 5010, and the NRPS was subsequently deleted.

The strain containing the deletion was unable to produce OTA, confirming the

identification of the A. carbonarius OTA biosynthetic cluster (Gallo et al. 2012).

5.5.3 Fumonisins

Fumonisins are mycotoxins that have been well described in the ascomycete genus

Fusarium, having been initially characterized in the late 1980s (Bezuidenhout

et al. 1988; Gelderblom et al. 1988). It was therefore somewhat of a surprise

when clusters encoding orthologs of genes whose products are involved in the

fumonisin biosynthetic pathway were discovered in two A. niger strains whose

genomes had been sequenced, ATCC 1015 and CBS 513.88 (Baker 2006; Pel

et al. 2007). The production of fumonisin was later confirmed biochemically

(Frisvad et al. 2007).

5.5.4 Lovastatin

The statins have had an enormous impact on the health of millions. Akira Endo, a

researcher at Japan-based Sankyo, is credited with the discovery of a class of

compounds (compactins from Penicillium citrinum) that inhibited HMG coA

reductase, a key enzyme in cholesterol biosynthesis (Endo et al. 1976a, b, 1977).

In the late 1970s researchers at Merck isolated mevinolin (lovastatin) from

A. terreus (Alberts et al. 1980). By the late 1980s lovastatin had been approved

as a treatment for high cholesterol in the United States [see this concise history of

the statins (Tobert 2003)]. Lovastatin is a polyketide whose biosynthetic pathway

has been elucidated—the gene cluster involved in lovastatin biosynthesis encodes

two polyketide synthases as well as regulatory and numerous backbone

“decorating” enzymes (Hendrickson et al. 1999; Kennedy et al. 1999).
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5.5.5 Associating Secondary Metabolites with Biosynthetic
Pathways

One striking result from the early Aspergillus sequencing projects was the diversity of
secondary metabolite biosynthetic genes encoded within each genome (Galagan

et al. 2005; Machida et al. 2005). The diversity of the genes encoding secondary

metabolite biosynthetic genes has grown with each Aspergillus genome sequenced

(Pel et al. 2007; Andersen et al. 2011). This vast catalog of polyketide synthases,

terpene synthases, non-ribosomal peptide synthetases, and fatty acid synthases

represents an uncharacterized frontier of chemical diversity whose exploration has

been enabled by genome sequencing. The work of Kroken et al. (2003) is an excellent

example of a phylogenetic approach that was used to characterize polyketide

synthases. Similar analyses of secondary metabolite diversity have been performed

utilizing one or more Aspergillus genomes [see, for example, Varga et al. (2003),

Cramer et al. (2006), and Ferracin et al. (2012)].

There are a number of molecular genetic strategies for associating metabolites

with their respective biosynthetic genes (Sanchez et al. 2012). A computational tool

for identification of secondary metabolite gene clusters from Aspergillus genomic

sequences is SMURF (Secondary Metabolite Unknown Regions Finder) (Khaldi

et al. 2010; Sanchez et al. 2012). “Classical” genetic analysis combined with

genomic sequence information has also been successful in associating pigment

production with A. niger pigment biosynthetic genes (Jorgensen et al. 2011).

Another approach to characterizing pigment production in A. niger was to identify

orthologs of pigment pathways characterized in other fungal species (Baker 2008;

Chiang et al. 2011). Combining genomics with molecular genetic manipulation of

individual genes, whether through overexpression, deletion, or heterologous

expression, has greatly accelerated the pace of associating genes and gene clusters

with their respective secondary metabolites and biosynthetic pathways [reviewed in

Sanchez et al. (2012)].

5.6 Concluding Remarks

This chapter has summarized and given only some examples of the impact the

availability of genome sequences has had on Aspergillus research. It was predicted
previously that sequencing and annotation of the first three Aspergilli will be seen

as a transformational event in Aspergillus biology (Nierman et al. 2005a), and this

has certainly come through. Soon more than 50 genomes of Aspergilli and related

species will be available, providing a resource for both in-depth and comparative

studies on a variety of topics. The combination of a large community that addresses

nearly every aspect of Aspergillus biology; the medical, agricultural, and biotech-

nological relevance of the genus; and the development of high-quality tools and
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infrastructures for detailed (post-)genomic analysis will guarantee that Aspergillus
will remain at the forefront of fungal research, also in the field of genomics.

Acknowledgments GHG and IM were supported by the Fundação de Amparo à Pesquisa do
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Chapter 6

Trichoderma: Genomic Aspects of
Mycoparasitism and Biomass Degradation

Christian P. Kubicek and Irina S. Druzhinina

6.1 Introduction

Species of Trichoderma (teleomorph Hypocrea,1 Hypocreales, Ascomycota,

Dikarya) have been isolated from an innumerable diversity of natural and artificial

substrates, thus demonstrating their high opportunistic potential and adaptability to

various ecological conditions (Druzhinina et al. 2011). Trichoderma has a broad

impact on mankind: one of its species—T. reesei—has become the major industrial

producer of enzymes for conversion of plant biomass into soluble sugars for biofuel

and biorefinery production (Kumar et al. 2008; Kubicek et al. 2009). In addition, the

intrinsic ability of Trichoderma to parasitize or even prey on other fungi has been

widely used for the biological control of pests (mainly against fungi, but also

against nematodes), particularly with strains of T. cf. harzianum, T. atroviride,
T. virens, and T. asperellum (Benitez et al. 2004; Harman et al. 2004; Druzhinina
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et al. 2011). More recently, this ability was expanded by the findings that some

Trichoderma spp. can trigger and enhance the self-defense of plants towards

pathogens as well (Aly et al. 2011; Shoresh et al. 2010).

Yet some species of the genus Trichoderma also have negative impacts on

mankind. In a clinical context, some species (mainly T. longibrachiatum and

Hypocrea orientalis) have been shown to occur as opportunistic pathogens of

immunocompromised humans (Kredics et al. 2011). In addition, two species

(T. brevicompactum and T. arundinaceum) were proven to be the only trichothecene
producer within Trichoderma (Nielsen et al. 2005). Plant pathogenic strains

of Trichoderma have not been reported, but a small number of species

(T. aggressivum, T. pleuroticola, T. pleurotum, and T. mienum) have been found

as mycoparasites in the commercial mushrooms Agaricus and Pleurotus, respec-
tively (Seaby 1998; Samuels et al. 2002; Komoń-Zelazowska et al. 2007; Kim

et al. 2012).

All these properties make Trichoderma an interesting object for comparative

genomics, which may lead to the identification of genes and pathways responsible

for this panoply of interactions with the environment. Before discussing the results

that have been obtained so far, we shall briefly describe the biology of these fungi.

6.2 Biology of Trichoderma

6.2.1 Taxonomy and Phylogeny of Trichoderma

The genus Trichoderma was established by Persoon (1794) based on four species

collected in Germany (see Samuels 2006). Of these taxa only one species, T. viride,
remained in Trichoderma. Bisby (1939) postulated that Trichoderma consists only

of a single species, and this concept remained valid until the end of the 1960s.

Therefore, all Trichoderma strains that were isolated in this time were named

T. viride—a fact that led to a confusion about species producing enzymes,

mycotoxins, and acting as mycoparasites in the literature and even in textbooks.

In 1969, Rifai (1969) fundamentally revised the species concept of Trichoderma by
recognizing nine aggregate species and postulated that each of these aggregates

may actually turn out to be several species once appropriate methods for distinction

would become available. His work was expanded and revised by Bissett (1984,

1991a, b, c, 1992), who grouped Rifai’s aggregate species into the five sections,

each of which consisted of several species.

In the late nineties, PCR and DNA sequence analysis were introduced and

became widely accepted as a standard technique in fungal systematics. Application

of these tools and the development of appropriate theoretical frameworks for the

use of molecular analytical data in species recognition rapidly led to an increase in

the number of species in Trichoderma (Druzhinina et al. 2006). Today, the applica-
tion of the genealogic concordance phylogenetic species recognition concept
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(Taylor et al. 2000) is the gold standard of molecular species identification also in

Trichoderma and has led to a reappraisal of the phylogeny of all the sections

proposed by Bissett. Although some sections were proven to be monophyletic,

most other sections showed paraphyly. Consequently, molecular taxonomists prefer

to talk of Trichoderma “clades” in the sense of strains that emerge from statistically

supported hypothetical taxonomic units (nodes) or lone lineages. As of the time of

this writing, Trichoderma consists of at least 200 species that are contained in

16 phylogenetic clades and several lone lineages [for a detailed review, see

Atanasova et al. (2013a)].

6.2.2 Developmental Biology of Trichoderma

Trichoderma spp. have a heterothallic mode of sexual reproduction. Consequently,

mating is only possible between individuals that contain different mating types

genes, mat1-1 and mat1-2, which reside in the same chromosomal location but lack

sequence similarity. This “bipolar heterothallism” has recently been genetically

characterized in T. reesei (Seidl et al. 2008), but its occurrence is also evident in

T. virens and T. atroviride from the findings of only one of the two mating types in

the genomes of the respective strains.

Saprotrophic growth of Trichoderma is usually accompanied by the production

of asexual spores. Sporulation depends primarily on the type and availability of the

carbon source (Friedl et al. 2008) and can be modulated by other environmental

parameters such as illumination, nutrient deprivation, low pH, and mechanical

injury (Steyaert et al. 2010; Schmoll et al. 2010; Carreras-Villasenor et al. 2012).

Interestingly, sporulation in Trichoderma can also be induced by volatile organic

compounds (mainly medium chain alcohols) from neighboring colonies of the same

species (Nemcovic et al. 2008) or by water soluble metabolites (Friedl and

Druzhinina, 2012), suggesting the existence of a sort of quorum sensing
mechanism.

Results from field observations in Central Europe suggest that the Trichoderma
anamorphs usually develop before the teleomorph, but sometimes conidiophores

are also found on overmature stromata, illustrating the broader range of optimal

environmental conditions for anamorph compared to teleomorph (Jaklitsch 2009,

2011).

Molecular strain taxonomy has led to the identification of many teleomorph-

anamorph relationships in Trichoderma, but true clonality has so far been

confirmed for several species using in silico population analytic methods (e.g.,

T. longibrachiatum, T. parareesei, T. harzianum sensu stricto (Druzhinina

et al. 2008; Druzhinina et al. 2010a, b; Atanasova et al. 2010) and proposed for

T. asperellum and T. asperelloides; Samuels et al. 2010). Interestingly, all con-

firmed clonal species of Trichoderma appear to be cosmopolitan (at least for a

certain climatic range such as the tropics or temperate climates), suggesting a link

between intense asexual reproduction and environmental opportunism.
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6.2.3 Trichoderma and Its Habitats

A rather limited group of Trichoderma species, all being successful opportunists,

can be found in a wide range of habitats. They have consequently been isolated

from water, soil, decaying wood, walls, and even nonnatural materials such as

rubber foam or kerosene tanks (Klein and Eveleigh 1998). As explained recently

(Kubicek et al. 2011; Druzhinina et al. 2011), the innate nature of almost all

Trichoderma spp. is mycoparasitism or mycotrophy, i.e., the attack and eventual

killing of other fungi and feeding on them. The molecular physiology of this

process has been studied to some extent and can be divided into several stages:

recognition of the presence of a potential prey (“sensing”), induction of the bio-

chemical tools to besiege the prey, actual attack, and eventual killing and feeding

on the prey. In particular, the signaling between Trichoderma and the host and the

role of extracellular hydrolytic enzymes and secondary metabolites have been

studied intensively, and the results obtained are the subject of several reviews

(Viterbo et al. 2002; Seidl 2008; Vinale et al. 2008; Omann and Zeilinger 2010;

Susi et al. 2011; Mukherjee et al. 2012a, b; Druzhinina et al. 2012).

The second habitat that is frequently associated with some Trichoderma species

is the rhizosphere of plants. Trichoderma spp. have been known since decades to be
“rhizosphere competent,” i.e., to grow and develop within the soil volume

influenced by root exudates. This takes place without causing disease but eventually

antagonizing pathogenic microorganisms (Lewis and Papavizas 1984). However,

metagenomic analyses showed that Trichoderma spp. are rather infrequent in soils

(Bue et al. 2009; Lim et al. 2010). It is therefore difficult to decide whether

rhizosphere is in fact a natural habitat of Trichoderma, or if the fungus follows its
preys/hosts into the soil in general and to the rhizosphere in particular [for review

and arguments, see Druzhinina et al. (2011)]. However, in any case some

Trichoderma spp. can trigger an induced systemic resistance (ISR) in the plants.

This induction starts with the recognition of microbe-associated molecular patterns

by so-called pattern recognition receptors of the plant, which subsequently activates

a primary defense response in the plant. Trichoderma molecules that have been

shown to trigger ISR include secreted xylanases, cellulases, and the cellulose-

binding protein swolenin [see Shoresh et al. (2010)], small cysteine-rich secreted

proteins (Djonovic et al. 2006, 2007), peptaibols (Viterbo et al. 2007; Leitgeb

et al. 2007), and an unknown PKS-NRPS product (Mukherjee et al. 2012b). In all

these cases, knockout of the respective genes did not impair the ability of

Trichoderma to colonize the roots, although the induction of ISR was abolished

in most cases. Thus, Trichoderma, at first glance, does not seem to benefit from the

plant’s response. There is a debate as to whether the interaction between

Trichoderma and plants is a form of symbiosis (Harman et al. 2004). Based on

available data, this hypothesis cannot be proven (Druzhinina et al. 2011). However,

some Trichoderma taxa (including several novel species) are reported to live inside
the plants as endophytes and thereby contribute to the health of the plants by

promoting plant growth, delaying onset of drought stress and inhibition of
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pathogens (Bae et al. 2009; Bailey et al. 2006; Hanada et al. 2008, 2010; Jaklitsch

et al. 2006; Samuels et al. 2006; Tejesvi et al. 2006). Druzhinina et al. (2011)

proposed that mycotrophs may have become endophytes by entering the plant roots

via parasitism on mycorrhizal fungi as described by (de Jaeger et al. 2010).

The opportunistic nature of Trichoderma spp. has also allowed some species to

undergo various types of interactions with other organisms, including marine

sponges, terrestrial invertebrates, and mammals [for review, see Druzhinina

et al. (2011)]. Some Trichoderma spp. can successfully antagonize and kill plant

parasitic nematodes, offering a new not-yet-fully explored possibility to combat

these agricultural pests (Casas-Flores and Herrera-Estrella 2007). Trichoderma
recently also joined the emerging list of such opportunistic pathogenic fungi that

cause invasive mycoses of mammals, including humans, under conditions of an

impaired immune system (Kredics et al. 2011). So far mainly two species—

T. longibrachiatum and H. orientalis—have been proven to infect immunocompro-

mised patients. The mechanisms of these interactions have not been studied yet, but

the enhanced arsenal of proteases (as described above) may play an important role

in this trait [for review, see Druzhinina et al. (2011)].

6.3 Genomic Attributes of Trichoderma

6.3.1 General Genomic Features

The wild-type progenitor of the industrial cellulase producer strains of T. reesei, T.
reesei QM 6a, was the first Trichoderma species whose genome was sequenced

(Martinez et al. 2008). The rationale for this was that all T. reesei strains currently
used in industry or by academics are mutants of this single wild-type isolate.

Consequently, the genomes of several of these enhanced producers (QM 9123,

QM 9414, NG14, RUT C30) were subsequently also sequenced. The sequence was

compared to QM 6a in order to trace the genomic alterations that accompanied

selection for increased cellulase production (Le Crom et al. 2009; Vitikainen

et al. 2010; see Sect. 6.5, below). Three years later, the genomes of two

Trichoderma spp. that are vigorous mycoparasites—T. virens Gv29-8 and

T. atroviride IMI 206040—were also published (Kubicek et al. 2011). Today, the

genomes of two more strong mycoparasites, T. harzianum sensu stricto (CBS

226.95) and T. asperellum (CBS 433.97), and the two facultative human pathogens,

T. longibrachiatum (ATCC 18648) and T. citrinoviride, have also been sequenced

and are publically available at JGI (http://www.genome.jgi-psf.org/), and more

(e.g., T. parareesei, T. cf. harzianum, and T. koningii) were sequenced in proprie-

tary projects in Europe and China. However, at the time of this writing, all of them

are still in the process of analysis, and the preliminary data obtained so far will not

be used in this review. This review will therefore concentrate on data from T. reesei,
T. atroviride, and T. virens only.
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The genome sizes of T. reesei, T. atroviride, and T. virens are 34.1, 36.1, and

38.8 Mbp, respectively, and harbor 9143, 11865, and 12518 gene models, in the

range of average numbers for Pezizomycotina fungi (see DOE JGI program

MycoCosm http://www.genome.jgi.doe.gov/programs/fungi/index.jsf). All strains

examined appear to have seven chromosomes. The sizes of the chromosomal bands

in strain T. reeseiQM 6a are approximately 6.2, 6.0, 5.1, 2 � 4.2 (doublet), 3.6, and

3.2 Mb (Carter et al. 1992; Mäntylä et al. 1992). Their cumulative size (32.5 Mbp)

correlates with the 34.1 Mbps determined from genome sequencing. Herrera-

Estrella et al. (1993) reported the presence of six chromosomes in T. reesei QM
6a and T. “harzianum” (which was later reidentified to actually be T. atroviride)
IMI 206040, but this smaller number is likely the result of overlooking the doublet

chromosomal band. No chromosome numbers are yet available for T. virens.
Despite this information, genome mapping has not been performed yet because

the ability to cross Trichoderma spp. was not available until recently (Seidl

et al. 2008). The genome sequence of T. reesei is therefore still distributed among

71 scaffolds, of which the longest (scaffold 1) is 2.75 Mb and the shortest 8,513 bps.

A number of genes have been mapped to the chromosomes (Table 6.1), but they do

not yet allow the drawing of a draft map. In fact, the data suggest that the gene order

on some of the scaffolds does not resemble that on the chromosome, because the

sum of all scaffolds that contain genes that (Carter et al. 1992) mapped in chromo-

some 1 would far exceed the size of this chromosome (Table 6.1). Only a few genes

have been mapped on the T. atroviride chromosomes (Herrera-Estrella et al. 1993).

The comparably smaller gene repertoire in T. reesei is likely due to the operation
of the repeat-induced point mutation (RIP) effect (Selker 1990), because among

these three species, T. reesei is the only one that is known almost exclusively from

sexually propagating cultures (Kubicek et al. 2011). A similar small genome size

was also detected for T. citrinoviride (unpublished data), which in temperate

climates is also predominantly found in the form of its teleomorph Hypocrea

Table 6.1 Chromosomes of T. reesei and genes mapped on thema

Chromosome Size (mbp) Mapped genes Scaffolds Size (mbp)

1 3.6 pyr4, egl2, xyn1 1 2.75

cbh2 3 1.91

benA 16 0.82

xyn2 27 0.43

cbh1 29 0.38

2 3.2 pyr2 2 2.00

3 4.2

4 4.2

5 5.1 pma1a 11 1.15

6 6 tub1 37 <0.2

7 6.2 egl1 10 1.15

bgl1 6 1.45
aData taken form Carter et al. (1992)
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schweinitzii (Jaklitsch 2009), whereas the newly sequenced asexual species

T. longibrachiatum, T. harzianum sensu stricto, and T. asperellum display genome

sizes in the range of those found in T. atroviride and T. virens (data not given).

6.3.2 Gene Expansion in Mycoparasitic Trichoderma spp.

Sequence similarities between orthologous and syntenic proteins in T. reesei,
T. atroviride, and T. virens were 74 %, which resembles the evolutionary distance

between Osteichthyes (bony fish) and Hominidae (Fedorova et al. 2008). The vast

majority of the genes occur in all three Trichoderma species, but T. atroviride and
T. virens share 1,273 orthologues that are not present in T. reesei and in addition

contain 2,510 and 2,756 orphan genes, respectively. This is also reflected in the

shared protein clusters (Fig. 6.1), which reveal 3,733 shared PFAM clusters

(http://www.pfam.sanger.ac.uk), and only 124 and 116 unique for T. atroviride
and T. virens, respectively, whereas T. reesei contains 775 unique clusters. The

genes that were present in only T. atroviride and T. virens were enriched in PFAM

protein domains for fungal specific Zn(2)Cys(6) transcription factors (PF00172,

PF04082), solute transporters (PF07690, PF00083), and putative secondary metab-

olite synthesizing and modifying enzymes (oxidoreductases, monooxygenases,

AMP activation of acids, phosphopantetheine attachment, and synthesis of

isoquinoline alkaloids) (Kubicek et al. 2011).

Markov cluster algorithm (MCL) analysis of the three Trichoderma species,

together with 44 related genomes that were available at November 4, 2012, in the

JGI database (DOE JGI program MycoCosm http://www.genome.jgi.doe.gov/

programs/fungi/index.jsf), shows that T. virens and T. atroviride have a unique

genome inventory among all Pezizomycotina: they harbor the highest number of

genes that encode proteins with ankyrin and HET/ankyrin/NACHT domains among

all other fungi (Fig. 6.2). Ankyrin repeats play important roles in microbial patho-

genesis in bacteria and have been suggested to also exert an important biological

role in endosymbiosis of Wolbachia (Walker et al. 2007). Proteins containing the

ankyrin domain have not been studied systematically in Pezizomycotina so far. A

preliminary phylogenetic analysis of randomly chosen Trichoderma ankyrin

proteins and 99 homologous fungal sequences encoding proteins with ankyrin

domain revealed that the Trichoderma genes formed their own clades, suggesting

that the ankyrin-domain proteins may evolve by extensive gene duplication. Since

also the genomes of T. harzianum and T. asperellum harbor expanded sets of

ankyrin-domain proteins (unpublished data), it is possible that these genes contrib-

ute to the unique opportunistic success of Trichoderma.
Genes encoding proteins with HET (heterokaryon incompatibility)/NACHT

domains are part of the genetic systems that lead to recognition of and response

to nonself during cell fusion between different individuals belonging to the same

species. Fedorova et al. (2005) have proposed that the HET domain may represent a
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niche adaptation strategy of filamentous fungi to react to stimuli associated with

defense against pathogens, self/nonself recognition, differentiation, or analogous

roles. Paoletti and Saupe (2009) proposed that the het genes might also have a

function in the recognition and response to pathogens. It will be interesting to

investigate whether some of the HET proteins are involved in the reaction

mechanisms during mycoparasitism in Trichoderma.

6.4 Specific Genomic Features

6.4.1 The Secretome of Trichoderma

Unlike most of higher organisms, fungi digest their food outside of their cells and to

this end secrete enzymes and proteins for breaking down macromolecular nutrients

and for the interaction with components of the environment that cannot penetrate

through the cell wall. The inventory of secreted proteins may therefore be indicative

of the habitat to which a given organism has become adapted. To this end, several

studies used proteomic approaches to investigate Trichoderma spp. during

saprotrophic growth, growth on lignocelluloses or chitin, and during interaction

with other fungi and/or plants (Grinyer et al. 2005; Suarez et al. 2006; Marra

et al. 2007). However, as we have previously discussed (Druzhinina et al. 2012),

T. atroviride          T. reesei

T. virens

Fig. 6.1 Distribution of

shared and unique

orthologous Pfam families

between T. reesei, T. virens,
and T. atroviride. Ortho-
MCL (http://www.orthomcl.

cbil.upenn.edu) was used for

identification of clusters in

the three species
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these analyses provide only partial information. Here, we will concentrate only on

the in silico identification of secreted proteins (Druzhinina et al. 2012): the version

2 annotations of the genomes of T. reesei, T. atroviride, and T. virens encode—after

removal of membrane proteins—747, 968, and 947 proteins, respectively, that

contain a statistically highly supported signal peptide and thus enter the secretory

pathway. Roughly 85 % of them can be attributed to six groups (Fig. 6.3):

carbohydrate-active enzymes (CAZys), proteases, small secreted cysteine-rich

proteins (SSCPs), oxidative enzymes, hypothetical conserved proteins (i.e.,

proteins for which orthologues are found in other ascomycetes but whose amino

acid sequence does not allow the prediction of a function), and orphan proteins

(which are present only in Trichoderma). The high number of unknown proteins is

striking, indicating that our knowledge on the proteins secreted by this fungus is

very incomplete.

6.4.1.1 Small Secreted Cysteine-Rich Proteins (SSCPs)

As shown in Fig. 6.3, SSCPs comprise the largest group of proteins secreted by

Trichoderma. They are identified by the criteria that (a) their Mr should be less than

or equal to 300 amino acids long [as recommended by Martin et al. (2008)] and

(b) containing four or more cysteine residues (Kubicek et al. 2011). Similarity

searches and phylogenetic analyses allow their further subdivision into four groups:
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(1) hydrophobins and hydrophobin-like proteins; (2) elicitor-like proteins;

(3) proteins with similarity to MRSP1 (MAP kinase repressed secreted protein 1),

a 16 kDa protein that was identified to be strongly overexpressed in a delta-tmk1

(a MAPK) mutant of T. virens and which bears the conserved four-cysteine pattern

C-X29-C[P/G]C-X31-C; and (4) SSCPs for which no member with a known

function has as yet been identified (Kubicek et al. 2011). Among them the

hydrophobins, probably the best known SSCPs, are characterized by the presence

of eight positionally conserved cysteine residues of which 4 occur in conserved

C–C doublets. They are found on the outer surfaces of cell walls of hyphae and

conidia, where they mediate interactions between the fungus and the environment,

and are also secreted out of the cells to alter the hydrophobicity and/or hydrophily

of solid structures in the habitat, for example at the attachment to plant roots

(Viterbo et al. 2005) and to increase cutinase activities on hydrophobic polymeric

substrates (Espino-Rammer et al. 2013). Hydrophobins differ in their solubility in

solvents, hydropathy profiles, and spacing between the conserved cysteines, which

led to the postulation of two classes, I and II. Among ascomycetes, Trichoderma is

known to have the largest number of class II hydrophobins (Kubicek et al. 2008),

and some of its subgroups were even shown to be under positive selection pressure

(I.S. Druzhinina, unpublished data). In addition, T. atroviride and T. virens—but

not T. reesei—have hydrophobins that not only fail to fit into the characteristics of

class II but also deviate from the class I hydrophobins of other fungi in their

hydropathy, cysteine spacing, and protein surface pattern. These predicted proteins

thus form separate clades within ascomycete class I hydrophobins in phylogenetic

analysis (Seidl et al. 2011). Because of the widespread applications of

hydrophobins in biotechnology and biomedical technologies (Scholtmeijer

et al. 2004), some of them (including HFB1 and HFB2 of T. reesei) are the subjects
of structural and mechanistic investigations (Bayry et al. 2012).

A second SSCP group, for which interest has recently been emerging, is the

elicitor-like proteins. They are frequently named “cerato-platanins” or “Snodprot”

in the literature, due to their first description from Ceratocystis fimbriata and

Stagonospora nodorum (Pazzagli et al. 2006). One of them, T. virens Sm1 and its

T. atroviride orthologue EPL1, has been studied in some detail: EPL1 makes up for

the major portion of proteins secreted by T. atroviride during growth on glucose

(Seidl et al. 2008), and Sm1 induces systemic disease resistance in cotton and maize

(Djonovic et al. 2006, 2007). It is therefore likely that the group 2 SSCPs are factors

which aid in the interaction of Trichoderma with plants, as already shown for plant

pathogenic fungi (Rep 2005). However, their exact role is difficult to predict

because SSCPs are important for symbiotic interactions in the ectomycorrhizal

basidiomycetes Laccaria (Plett et al. 2011). This high number of these SSCPs in

Trichoderma and the functions already identified for these proteins in other fungi

suggests that they could play a mutualistic role in Trichoderma, which may be in

interaction with the plant, endophytism but also antagonization of fungi, bacteria,

and higher soil organisms.
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6.4.1.2 Polysaccharide Hydrolyzing Enzymes

Being non-plant pathogenic opportunistic saprotrophs and mycoparasites,

Trichoderma spp. should be expected to possess a strong arsenal of extracellular

enzymes capable of hydrolyzing both the polymers in their habitat (pre-decayed

wood, soil litter) as well as for feeding on living or dead fungi. This expectation is

nicely fulfilled in the case of the latter: the cell wall of asco- and basidiomycetes

consists mainly of chitin and β-(1,3)-glucan (Latgé, 2007), and Trichoderma—and

in particular T. atroviride and T. virens—consequently display a much higher

number of glycoside hydrolase (GH) family 18 chitinolytic enzymes, GH75

chitosanases, and various β-1,3-glucanases families (GH17, GH55, GH64, and

GH81) than other fungi. The properties of these hydrolases have been described

in detail in several recent papers and reviews, and the reader is referred to them

(Seidl 2008; Kubicek et al. 2011). Ihrmark et al. (2010) studied the evolutionary

patterns of the chitinase genes chi18-5, chi18-13, chi18-15, and chi18-17, which all
exhibit specific expression during mycoparasitism-related conditions, from 13 dif-

ferent Trichoderma spp. They found that two members (chi18-15 and chi18-17)
evolve under positive selection typical of rapid coevolutionary interactions, which

underlines the importance of chitinases in mycotrophy and perhaps also in

mycoparasitism.

The plant cell wall consists of the β-(1,4)-linked glucose polymer cellulose,

hemicellulose polysaccharides of varying composition, and lignin. Like most

ascomycetes, Trichoderma cannot degrade lignin. However, it secretes a powerful

enzyme system for the degradation of cellulose and hemicelluloses which was the

reason for developing T. reesei towards the industrial producer of these enzymes. It

was therefore expected that T. reesei would also display a considerable amplifica-

tion of the genes encoding the corresponding enzymes such as cellobiohydrolases

and endo-β-1,4-glucanases. Somewhat disappointingly, however, the T. reesei
genome contains only a minimal repertoire of these enzymes, two cellobiohy-

drolases (GH6 and GH7) and four endo-β-1,4-glucanases (GH5, GH7, GH12 and

GH45) (Martinez et al. 2008), and these numbers are similar in T. atroviride and T.
virens (Kubicek et al. 2011). This is in striking contrast to the cellulase repertoire of
other saprophytic fungi-like Aspergilli and plant pathogenic fungi (Gibson

et al. 2011). A very efficient system for induction of expression of these genes,

rather than a large cellulase repertoire, can account for the high cellulolytic activity

of T. reesei. A comparison with other fungi such as Neurospora crassa or Asper-
gillus nidulans reveals that in T. reesei, one single transcription factor (the

Zn2Cys6-type transactivator XYR1) induces not only the expression of xylanase

genes (as in N. crassa and A. nidulans) but also all cellulase genes and several more

hemicellulase genes (Stricker et al. 2006; Akel et al. 2009; Bischof et al. 2013). The

importance of this regulator is also reflected by the analysis of two cellulase hyper-

producing mutants (RUT C30 and CL847), which were shown to display a

deregulated and increased expression of xyr1. This coregulation of cellulases and

hemicellulases may be further augmented by another feature that distinguishes the
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genomes of T. reesei (and also T. atroviride and T. virens; unpublished data) from

that of other Pezizomycotina: the occurrence of the cellulase and hemicellulase

genes in clusters (Martinez et al. 2008). In T. reesei, 130 of the 316 (41 %) of the

GH and other carbohydrate-active proteins (such as glycosyl transferases, carbohy-

drate esterases, and carbohydrate-binding proteins; further termed “CAZyme”

genes) occur in 25 discrete regions ranging from 14 kb to 275 kb in length at an

average density of fivefold greater than the expected density for randomly

distributed genes. Most of these clusters occur near the end of the respective

T. reesei scaffolds and within or near nonsyntenic genomic areas (Kubicek 2012).

In particular, the genes encoding cellulose-binding proteins are exclusively found

in the syntenic gaps (Martinez et al. 2008). This suggests that these CAZymes are

either located near the chromosomal ends or in dynamic (repeat-rich) regions of the

genome.

The degradation of lignocelluloses by cellulases and hemicellulases could be

further augmented by oxidative enzymes: the Trichoderma secretome contains a

number of oxidative enzymes, including glucose oxidases, multicopper oxidases

(including laccases), and copper radical oxidases (glycolate oxidases), whose

induction by cellulose is accompanied by a strong upregulation of genes encoding

iron-uptake systems, ferric reductases, and oxalate decarboxylases (Bischof

et al. 2013). Together, these proteins could perform an oxidative attack on the

cellulose, thereby increasing the number of amorphous areas that serve as places for

attack by cellulases. This could also balance the low number of polysaccharide

monooxygenases (formerly called GH61 endo-β-1,4-glucanases), of which

Trichoderma possesses only a comparatively low number.

Despite the small number of cellulases in T. reesei, all three Trichoderma spp.

are enriched in some hemicellulolytic components, such as GH27 α-galactosidases,
GH30 glucuronyl-xylanases, GH43 α-arabinofuranosidases/β-xylosidases, GH67
and GH79 α-methyl-glucuronidases, and GH95 α-fucosidases (Kubicek 2012).

This suggests that Trichoderma has apparently specialized towards efficient hydro-
lysis of some hemicelluloses side chains. Interestingly, several of these enzymes are

encoded by genes that share no homologues in other fungi but only in bacteria.

These genes may thus have been obtained by horizontal gene transfer, further

stressing that they are important for successful competition in the natural habitat

of Trichoderma.
The reduced set of enzymes involved in the degradation of pectin (GH28

polygalacturonases and pectin/pectate lyases) is of further interest: a functional

analysis of an endopolygalacturonase gene from T. cf. harzianum T34 showed that

the enzyme is required for root colonization but does not induce plant defense

reactions (Moran-Diez et al. 2009). The reduced activity of Trichoderma on pectin

may thus minimize plant defense reactions and thereby facilitate the interaction of

Trichoderma with plants.
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6.4.1.3 Proteolytic Enzymes

Trichoderma also secretes about 20 % of its proteases into the medium (Druzhinina

et al. 2012). Their composition is dominated by aspartyl proteases, methionyl

peptidases, aminopeptidases S, subtilisin peptidases, dipeptidyl peptidases,

sedolisins, and prolyl peptidases. Some of these genes are highly expressed during

antagonism of Rhizoctonia solani by T. atroviride and T. virens (Seidl et al. 2009a,
b; Atanasova et al. 2012), and knockout strains in some proteases showed a reduced

antagonistic reaction (Benitez et al. 2004). There is also some evidence that

proteases may be involved in the attack of nematodes, and it was speculated that

they may aid in the interaction with human tissues (Kredics et al. 2004). Proteases

are also an important issue in the enzyme producer T. reesei, where they can lead to
massive degradation of the proteins secreted by the fungus. The regulation of

protease production by Trichoderma has not yet been investigated but obviously

presents a major gap in our understanding of this fungal genus.

6.4.2 Trichoderma Genes for Secondary Metabolites

Numerous secondary metabolites from various Trichoderma spp. have been

reported [for review, see Shivasithamparam and Ghisalberti (1998)], but due to a

high level of uncertainty about the true species nature of the producing organism

(most strains were identified only according to superficial morphological

characters), their production by T. reesei, T.virens, and T. atroviride cannot be

deduced. Also the genes for synthesis of these metabolites have in most cases not

been identified. Therefore, in silico identification of secondary metabolite genes

from genome data can only be performed for gene families that comprise typical

and unique features: this criterion is fulfilled with the nonribosomal peptide

synthetases (NRPS) and the polyketide synthases. T. reesei, T. virens, and

T. atroviride contain 11, 18, and 18 PKS gene, respectively. While the numbers

for PKS are average within fungi, the NRPS genes of Trichoderma—particularly of

T. virens—are among the highest of all fungi. We have recently shown that this is

apparently due to recent duplications of cyclodipeptide synthases, cyclosporin/

enniatin synthase-like proteins, and NRPS hybrid proteins (Kubicek et al. 2011).

6.4.2.1 Nonribosomal Peptide Synthases

The genomes of T. reesei, T. atroviride, and T. virens harbor 10, 16, and 28 NRPS-
encoding genes, respectively (Kubicek et al. 2011). Half of the NRPS genes present

in T. atroviride or T. virens are unique for the respective species and occur within

nonsyntenic islands of the genome, indicating their origin by recent genome

rearrangements, which is also reflected in a higher nucleotide dissimilarity (about
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30 %) than the average of genes between T. atroviride and T. virens. A unique

feature of Trichoderma and close relative fungal families (Hypocreaceae,

Clavicipitaceae, and Bionectriaceae) is the presence of two NRPSs that synthesize

modified peptides, termed peptaibols: these are small (500–2,000 Da) linear

peptides containing a high number of non-proteinogenic, α,α’-dialkylated
α-amino acids like isovaline and α-aminoisobutyric acid (Aib). In addition, their

N-terminal amino acid is acetylated and the C-terminus is reduced to an amino

alcohol, mostly phenylalaninol. These properties have given rise to the name

peptaibol (peptide, Aib, and amino alcohol). Peptaibols form a helical structure

with the hydrophobic side chains exposed to the surface. This structure allows them

to interact with natural and artificial bilayers to form pores or voltage-dependent ion

channels, increasing membrane permeability (Rebuffat et al. 1999). The structure

and properties of more than 700 peptaibols are collected in the Peptaibol Database

(http://www.peptaibol.cryst.bbk.ac.uk/home.shtml), and details of their biochemis-

try and structure are reviewed by Duclohier (2007).

Of the two genes encoding peptaibol synthases in Trichoderma, one synthesizes
the short (10–14 aa) and one the long (18–25 aa) peptaibols. Interestingly, the

former synthase synthesizes two small peptaibols (11 and 14 kDa; Mukherjee

et al. 2011; Degenkolb et al. 2012) which has been attributed to module skipping

(Mukherjee et al. 2011; Degenkolb et al. 2012) and could be further kinetically

regulated by the chemical structure of the intermediate peptides. By this mecha-

nism, the two synthases give rise to the multitude of peptides produced by these

enzymes depending on the available precursor concentrations. As an example,

Stoppacher et al. (2008), using LC-MS, detected 20 trichorzianes and

15 trichoatrokontins (representing the high and smaller peptaibols, respectively)

in culture filtrates of T. atroviride.
Two other NRPSs, for which genes are present in T. virens and T. reesei, but not

in T. atroviride, synthesize the epipolythiodioxopiperazine-type peptides gliotoxin
and gliovirin (Patron et al. 2007). The former is exclusively produced by so-called

“Q-strains” of T. virens, whereas the latter is only produced by “P-strains” of

T. virens (Mukherjee et al. 2012a, b). Gliotoxin has fungistatic action and is also

known from the opportunistic human pathogen Aspergillus fumigatus (Eurotiales,
Ascomycota) where it has been discussed as a virulence factor (Dagenais and

Keller, 2009). Its toxicity is due to the presence of a disulfide bridge in the molecule

which can inactivate proteins via reaction with thiol groups and generate reactive

oxygen species by redox cycling (Gardiner et al. 2005). Gliovirin has antimicrobial

properties particularly against Oomycota (Mukherjee et al. 2012a).

The T. virens strain whose genome has been sequenced is a “Q-strain” (T. virens
Gv29-8), and genomic data are therefore only available for gliotoxin biosynthesis.

The synthase and the auxiliary biosynthetic enzymes are located in a cluster

containing eight genes that are closely similar to those of A. fumigatus (Patron

et al. 2007). Transcriptomic data during the confrontation of T. virenswith R. solani
have shown that gliotoxin formation is an early and major trait in the antagonism

(Atanasova et al. 2012): almost all genes required for its biosynthesis were

upregulated. These include genes involved in the production of the precursor of
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gliotoxin, L-phenylalanine, synthesis of the glutathione required for the formation

of the central disulfide bond, and gliT, encoding a thioredoxin reductase that has

been shown to protect A. fumigatus against its own gliotoxin (Schrettl et al. 2010).

These data nicely complement earlier findings of detection of gliotoxin in the

rhizosphere (Lumsden et al. 1992), and it may thus be the major principle in the

antagonistic interaction of T. virens “Q-strains” with their preys.

Two NRPS of Trichoderma encode siderophores. Lehner et al. (2013) reported

that Trichoderma spp., despite having only two genes, produced 12–14

siderophores, with six common to all species tested. The highest number (15) of

siderophores was detected for Trichoderma harzianum, whereas T. reesei had the

most distinctive pattern, producing one unique siderophore (cis-fusarinine) and

three others that were present only in T. harzianum and not in other species.

These data suggest that the high diversity of siderophores produced by Trichoderma
spp. is—like in the case of the peptaibols—the result of further modifications of the

nonribosomal peptide synthetase (NRPS) products.

None of the other Trichoderma NRPSs have as yet been characterized and

consequently their products are unknown.

6.4.2.2 Polyketide Synthases

Out of a total of 47 PKS-encoding genes in the three sequenced Trichoderma spp.,

29 fall into a single orthologous group (Baker et al. 2012). The loci of these PKSs

are frequently flanked by cytochrome P450 monooxygenases, FAD-dependent

monooxygenases, short-chain dehydrogenases/reductases, or epimerases next to

PKS-encoding genes, suggesting that they are auxiliary components in the biosyn-

thesis of the respective metabolites. Three PKS genes are induced during interac-

tion of T. atroviride with R. solani and may therefore be involved in its antagonistic

activities (Atanasova et al. 2013a, b). The T. reesei PKS gene Trire2:82208 has

been shown by gene deletion to be responsible for the green color of the conidia but

interestingly also to be involved in protection against other fungi but less in the

direct attack on them (Atanasova et al. 2013a, b).

The genomes of the three Trichoderma spp. also harbor genes encoding mixed

PKS-NRPS hybrids (2, 4, and 4 in T. reesei, T. atroviride, and T. virens, respec-
tively). A mutation in one of the PKS-NRPS hybrid genes impaired the ability of

T. virens to induce the defense response gene encoding phenylalanine ammonia

lyase in maize roots, suggesting a putative role for the associated metabolite

product in ISR (Mukherjee et al. 2012b).

6.4.2.3 Isoprenoid Derivatives

In addition to the products of NRPS and PKS, microorganisms and plants also

synthesize secondary metabolites from isoprenoid precursors. The genomes of

T. reesei and T. atroviride do not contain genes that can obviously be related to
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these activities. However, Mukherjee et al. (2006) identified a cluster in the genome

of T. virens that included three cytochrome P450 genes and one terpene cyclase.

Because these genes are underexpressed in the mutant that is unable to produce

viridin and viridiol, they proposed that this cluster could be responsible for the

production of viridin.

One of the more prominent isoprenoid-derived secondary metabolites claimed to

be synthesized by Trichoderma are trichothecenes. These are compounds that

comprise a family of over 200 secondary metabolites with a common tricyclic

12,13-epoxytrichothec-9-ene (EPT) core structure and which are reported to be

produced by species in at least six genera of the fungal order Hypocreales (class

Sordariomycetes): Fusarium,Myrothecium, Spicellum, Stachybotrys, Trichoderma,
and Trichothecium. The structure of trichothecenes identifies them as small, amphi-

pathic molecules that can pass cell membranes by passive diffusion, which are

therefore easily absorbed via the skin and gastrointestinal systems and result in a

rapid effect on fast growing cells and tissues (Wannemacher and Winer 1977;

McCormick et al. 2011). Exposure to trichothecenes can cause a number of

symptoms, from feed refusal, immunological problems, vomiting, skin dermatitis,

to immunosuppressive effects and neurotoxicity (Ueno 1985).

The precursors of trichothecene biosynthesis are formed in the isoprenoid

biosynthetic pathway, from which the specific trichothecene biosynthetic pathway

branches off at farnesyl pyrophosphate by the action of the enzyme trichodiene

synthase (termed “Tri5” in Fusarium spp.) which catalyzes the cyclization of

farnesyl pyrophosphate to trichodiene (McCormick et al. 2011). Trichodiene then

undergoes a series of oxygenations catalyzed by the cytochrome P450

monooxygenase TRI4 to finally form the intermediate isotrichotriol. Detailed

reviews on the biosynthesis of trichothecenes have been published, and the reader

is referred to these sources for details [for review, see McCormick et al. (2011)].

The reputation of Trichoderma as a trichothecene producer is due to the

problems with Trichoderma species identification (see Sect. 6.2.1): trichodermin

was isolated from “Trichoderma viride” (Godtfredsen and Vangedal 1965); Watts

et al. (1988) reported the production of trichodermin by “T. reesei,” and Corley

et al. (1994) isolated the “harzianum A” from T. harzianum. The above named

“T. viride” isolate is not available, and its identity thus cannot be reassessed. As for
T. reesei, its genome sequence lacks a tri5 orthologue, so that, in principle, it is

unable to initiate trichothecene biosynthesis, a fact that is also underscored by the

absence of trichothecene metabolites in culture filtrates of T. reesei QM 9414

grown on various different conditions (M. Sulyok and C.P. Kubicek, unpublished

data). As for the harzianum A producer “T. harzianum,” Nielsen et al. (2005)

proved that this strain is in fact T. brevicompactum. They investigated several

molecularly assessed Trichoderma spp. and found that species from the

T. brevicompactum clade (T. brevicompactum, T. arundinaceum, T. turrialbense,
and T. protrudens) are the only source of trichothecene production within the genus
Trichoderma.
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6.4.2.4 Volatile Secondary Metabolites

In addition to terpenoids, several other volatile metabolites have been reported to be

produced by Trichoderma. A recent thorough investigation has been done on

T. atroviride (Stoppacher et al. 2010). Unfortunately, there is hardly any informa-

tion available on the genes of their synthesis. 6-n-pentyl-2H-pyran-2-one (6PP), a

volatile component with coconut aroma and antifungal activity, is one of the most

well-studied secondary metabolites from a biocontrol perspective (Bonnarme

et al. 1997; Cooney et al. 2001; Reithner et al. 2005, 2007; Vinale et al. 2008).

6PP formation has been detected in T. atroviride, but not in T. reesei and T. virens
(Reino et al. 2008). Its biosynthesis may occur via linoleic acid, analogous to

jasmonate synthesis in which the necessary hydroxyl group originates from an

oxidation by lipoxygenase (Serrano-Carreon et al. 1993). Atanasova et al. (2012)

detected a lipoxygenase gene (Triat1:33350) that is present in T. atroviride and not
in T. reesei and T. virens. It is overexpressed during contact with R. solani
(Atanasova et al. 2012) in correlation with the characteristic coconut smell of the

T. atroviride cultures (Aghcheh et al. 2013).

6.5 Genome Sequencing of T. reesei Cellulase-Producing
Mutants

The availability of the T. reesei wild-type (QM 6a) genome sequence and the

progress in high-throughput massive parallel sequencing technologies made it

possible to also sequence the genomes of several mutant strains that are either

improved or defective in cellulase production (Fig. 6.4). Le Crom et al. (2009)

compared the genome sequence of T. reesei QM 6a (Martinez et al. 2008) with two

isolates of the improved producer lineage developed at Rutgers University, NG14,

and RUT C30 (Eveleigh and Montenecourt 1979). Three mutations (a truncation of

the cre1 gene encoding the carbon catabolite repressor CRE1, Ilmen et al. (1996); a

frame shift mutation in the glucosidase II alpha subunit gene gls2 involved in

protein glycosylation which increases protein secretion, Geysens et al. (2005);

and an 85-kb deletion that eliminated 29 genes, including transporters, transcription

factors, and primary metabolic enzymes, Seidl et al. (2008)) had previously been

described to occur in strain RUT C30. The comparison of the genomic sequence of

strains NG14 and RUT C30 with that of QM 6a identified a further 18 and

additional 25, respectively, non-synonymous mutations in them. Nine of the

18 mutated genes in T. reesei NG14 are involved either in RNA metabolism

(3 genes), protein secretion/vacuolar targeting (3 genes), or transcriptional regula-

tion (3 genes). Genes affected in RUT C30 partially fall into the same categories but

also include genes involved in sugar transport and general metabolism (8 genes),

probably due to the selection for growth on glycerol in the presence of

2-deoxyglucose (Eveleigh and Montenecourt, 1979). Vitikainen et al. (2010),
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using tiling arrays and comparative genomic hybridization, identified additional

12 and 4 mutations in NG14 and RUT C30, respectively. These mutations, besides

unknown genes, comprised a transcription factor and a clathrin complex subunit in

NG14 and another transcription factor and a Gβ-WD40 protein in RUT C30. A

systematic functional analysis of these genes is currently under investigation in our

laboratory and may potentially identify novel components relevant to cellulase

production.

A reverse approach is the sequencing of mutants that are defective in cellulase

production. The genomes of two such strains have also been sequenced: T. reesei
QM 9136, which is unable to grow on cellulose and does not secrete any cellulases

when grown on soluble cellulase inducers (Mandels et al. 1971), and T. reesei QM
9978, which is also unable to grow on cellulose, but which grows and secretes

cellulases on soluble cellulase inducers (Zeilinger et al. 2000). In the case of

QM 9136, the key mutation was identified as a frame shift in the cellulase regulator

gene xyr1 which leads to a C-terminally truncated protein and whose cellulase-

negative phenotype can be recovered by transformation with the native xyr1 gene.

The mutations present in QM 9978 are less straightforward to interpret and are the

subject of current investigations.

6.6 Benefits From the Trichoderma Genome Sequences

Obviously, the availability of genome sequences provides only an overview about

the genetic repertoire of an organism, and an interpretation of the differences from

other organisms requires the integrated use of other “-omic” techniques (i.e.,

systems biology) and availability of high-throughput techniques to manipulate

and investigate genes. Due to the strong industrial interest, these have so far most

advanced in T. reesei: oligonucleotide arrays and tiling arrays have been

constructed for genome-wide analyses of gene expression under different cellulase

and hemicellulase-inducing conditions (Häkkinen et al. 2012; Ivanova et al. 2013),

under conditions of asexual sporulation (Metz et al. 2011) and UV-light signaling

QM 6a

RUT M-7 QM 9123 QM 9136

RUT NG14 QM 9414 QM 9978

RUT C30

Fig. 6.4 Genealogy of T.
reesei mutants, whose

genome has already been

sequenced. Strains over gray
background specify

cellulase-negative strains
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(Tisch et al. 2012). Microarray strategies were also devised to understand the

consequences of mutations in regulator genes (such as those encoding the carbon

catabolite repressor CRE1 or the protein methyltransferase LAE1, which is

believed to regulate the transcriptional activity of chromatin; Portnoy

et al. 2011a, b; Seiboth et al. 2012; Karimi-Aghcheh et al. 2012). The genome

sequence was also used for ChIP‐seq with antibodies against histone modifications

known to be associated with transcriptionally active (H3K4me2 and ‐me3) or silent

(H3K9me3) chromatin, in order to study chromatin changes during cellulase

production (Aghcheh et al. 2013). In combination with proteomic and metabolomic

investigations, these data can be used for relating protein production rate to

metabolic activities (Arvas et al. 2011). Also, manipulation of genes that are

significantly upregulated under these conditions led to the identification of new

regulators of cellulase and hemicellulase production (Ivanova et al. 2013).

To support such investigations, systems for high-frequency homologous trans-

formation have been developed: fungi contain two pathways for integration of

uptaken DNA, one leading to homologous and one leading to heterologous integra-

tion. Guangtao et al. (2009) and Steiger et al. (2011) deleted one of the genes

involved in ectopic integration (the orthologues of yeast ku70 or human LIG4). The
corresponding strains display more than 90 % integration of transformed DNA into

the homologous locus. By employing a Cre/loxP-based excision system, both

marker insertion and marker excision can be positively selected for by combining

resistance to hygromycin B and loss of sensitivity to fluoroacetamide, thus enabling

an unlimited use of the same markers. Alternatively, a blaster cassette has been

developed which also enables unlimited marker recycling (Hartl and Seiboth 2005).

Schmoll et al. (2012) have integrated the targeted transformation system into a

high-throughput gene knockout system which is based on yeast recombination for

fast vector synthesis and a genome-wide database of primers for amplification of

the respective gene fragments.

Corresponding developments with T. virens and T. atroviride lag somewhat

behind T. reesei. Towards studying the interaction of Trichoderma with plants,

E. Monte and coworkers designed arrays consisting of a combination of T. reesei
gene oligonucleotides and probes based on ESTs from seven different Trichoderma
spp. (including T. cf. harzianum CECT2413, T. atroviride, and T. asperellum grown

in the presence of plant pathogen cell walls). Samolski et al. (2009) investigated

gene expression of T. cf. harzianum CECT2413 when contacting the roots of

tomato plants using these arrays. They detected transcripts putatively encoding

proteins related to Trichoderma-host (fungus or plant) associations, such as the

SSCPs Sm1/Elp1 and QID74, proteases, endochitinases, biosynthesis of nitric

oxide, xenobiotic detoxification, mycelium development, and those responsible

for formation of infection structures in plant tissues. Rubio et al. (2012)—working

with T. harzianum CECT 2413 (T34), T. virens Gv29-8 (T87), and T. hamatum IMI

224801 and using the same arrays—showed that after 20 hours of incubation in the

presence of tomato plants, genes involved in chitin degradation (i.e., N-acetylglu-
cosamine-6-phosphate deacetylase, glucosamine-6-phosphate deaminase, and

some chitinases) were the most significantly upregulated.
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Towards the identification of genes related to mycoparasitism in T. atroviride,
Reithner et al. (2011) used a high-throughput sequencing approach to analyze the

changes in the transcriptome of T. atroviride IMI 206040 during interactions with

R. solani. The most abundant KOG group found during direct contact was “metab-

olism.” Relative gene expression analysis of these genes, conducted at different

stages of mycoparasitism against Botrytis cinerea and Phytophthora capsici,
revealed a synergistic transcription of various genes involved in cell wall degrada-

tion. Atanasova et al. (2012) compared the transcriptional responses of T. atroviride
IMI 206040 and T. virens Gv29-8 with that of T. reesei QM 6a during

confrontations with a plant pathogenic fungus R. solani. They found that the three

Trichoderma spp. exhibited a strikingly different transcriptomic response already

before physical contact with alien hyphae. T. atroviride expressed an array of genes
involved in production of secondary metabolites, GH16 β-glucanases, various

proteases, and SSCPs. T. virens, on the other hand, expressed mainly the genes

for biosynthesis of gliotoxin, respective precursors, and also glutathione, which is

necessary for gliotoxin biosynthesis. In contrast, T. reesei increased the expression

of genes encoding cellulases and hemicellulases and of the genes involved in solute

transport. Thus, the initial Trichoderma mycotrophy has differentiated into several

alternative ecological strategies ranging from parasitism to predation and efficient

saprotrophy.

Clearly, these studies only provide initial snapshots of the transcriptional pro-

cesses that go on during the interaction of Trichoderma spp. with plants or other

fungi, and functional gene analysis will be necessary to reveal the mechanisms that

are involved. To this end, Catalano et al. (2010) constructed a ku70-deficient strain
of T. virens which can be used for high-throughput gene deletion analysis. A first

approach towards a more comprehensive use of T. atroviride transcriptomics has

been recently published by Hernández-Oñate et al. (2012), using high-throughput

RNA-seq analyses of the triggering of conidiation by mechanical injury. Gene-

replacement experiments demonstrated that injury triggers NADPH oxidase (Nox)-

dependent ROS production and that Nox1 and NoxR are essential for asexual

development in response to damage.

6.7 Concluding Remarks

Although Trichoderma does not have the glorious biological history of Neurospora
or Aspergillus, and its research community is consequently smaller, it is neverthe-

less of high importance to mankind in several ways: T. reesei is one of the leading
filamentous fungi for enzyme and heterologous protein producing biotechnology,

and other species are employed as versatile fungicides and phytostimulating agents.

It is therefore not surprising that the three species that have been sequenced and

annotated (T. reesei, T. virens, T. atroviride) and two of those whose genome

sequences have recently been released (T. asperellum, T. harzianum sensu stricto)

are relevant to these two areas. While their analysis is still only at the beginning, the
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sequence of further species such as T. longibrachiatum and T. citrinoviride will

help to answer the question whether the ability to interact with animals is due to the

gain or loss of genes or a change in their regulation and—a significant difference

from the other species sequenced so far—what makes them capable of growing at

the body temperature of mammals. In addition, the further sequencing of

Trichoderma species that are obligate endophytes [e.g., see Druzhinina et al.

(2011)] may contribute to a deeper understanding of the mechanisms involved in

Trichoderma-plant interaction.
As for future research perspectives, the already available data offer a room for

basic and applied science. As an example, the large number of genes encoding

oxidative enzymes (cytochrome P450 monooxygenases, FAD-linked oxidases/

monooxygenases), methyltransferases, esterases, and transcription factors and

which are often found in clusters in the genome may encode enzymes for the

synthesis of unknown secondary metabolites. Aghcheh et al. (2013) have shown

that overexpression of the lae1 gene activates the expression of some silent

secondary metabolite genes in T. reesei, and this tool may aid in the above attempts.
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Nemcovic M, Jakubı́ková L, Vı́den I, Farkas V (2008) Induction of conidiation by endogenous

volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236
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Chapter 7

Fusarium oxysporum: A “Moving” View
of Pathogenicity

Apratim Chakrabarti

7.1 Introduction

The genus Fusarium is a large, complex one, and the saying goes that if something

is green, then there is some Fusarium growing on it, in it and with it. The diversity

of hosts that Fusarium attacks, the number of pathogenic taxa and the range of

habitats in which they cause disease are the greatest in plant pathology. This highly

diverse genus contains some of the most notorious plant pathogens that affect

agricultural and horticultural crop productions globally. Examples of havoc caused

by this disease include near wipeout of the banana industry by Fusarium (Panama)

wilt in the 1960s (Stover and Ploetz 1990) to recent outbreaks of Fusarium head

scab in wheat (Kazan et al. 2012). Members of this genus are important human

pathogens and is the second most important mould causing infections in immuno-

compromised patients, often with a lethal outcome (Ortoneda et al. 2004).

More than three centuries after the introduction of this genus, the great diversity

present within Fusaria represents a formidable challenge for classifying its

members into distinct species. Delineation depended on morphological features,

biological species concepts and, more recently, phylogenetic studies involving

polymorphisms in several gene sequences (Summerell et al. 2010; Taylor

et al. 2000). Depending on the methods applied, the number of identified species

ranged from 9 to over 1,000 (Leslie et al. 2006). At the time of writing this review,

the Fusarium-ID database (http://isolate.fusariumdb.org/index.php) lists 76 distinct
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species of Fusarium based on sequence of the translation elongation factor 1 alpha

(EF-1α) gene (Geiser et al. 2004).
The most significant development in Fusarium research in recent times has been

the availability of whole genome sequences. In 2007, the F. graminearum genome

sequence was first published (Cuomo et al. 2007b), and the Broad Institute released

a comparative genomics database containing assembled and annotated whole

genome sequences of F. graminearum (resequenced), F. verticillioides and

F. oxysporum (http://www.broadinstitute.org/annotation/genome/fusarium_group/

MultiHome.html). Soon after, the F. solani (teleomorph Nectria haematococca)
whole genome sequence became available (Coleman et al. 2009; http://genome.jgi-

psf.org/Necha2/Necha2.home.html). Availability of these high-quality, assembled

and annotated genome sequences has greatly facilitated both forward and reverse

genetic approaches to identify pathogenicity genes, novel modes of plant–pathogen

interaction as well as evolution of Fusarium species as a group.

This chapter will focus on the species complex Fusarium oxysporum, the most

commonly studied group causing vascular wilt diseases in a large number of plants.

Fusarium oxysporum is well represented amongst soilborne fungi and is present in

all types of soil across the globe.While all the strains exist saprophytically, some are

well known for their capabilities to infect and induce wilt in plants, while others are

not pathogenic to crops from whose asymptomatic roots (or rhizospheres) they were

isolated (Gordon and Martyn 1997). The disease-causing isolates have been of

natural interest to plant pathologists, and more than 100 different crops have been

identified as hosts to F. oxysporum (Dean et al. 2012). In contrast to this broad host

range at the species level, host specificity exists at the forma specialis level.

Designation of forma specialis is primarily a description of host-infection function

of an isolate rather than a taxonomical one and geneological discordance and

conflicting relation between different formae speciales have been observed when

sequence data from translational elongation factor 1-α and ribosomal intergenic

spacer region were analysed (O’Donnell et al. 2009). Isolates within a given forma

specialis group infecting one particular plant species can be of single or multiple

clonal lineage (mono- and polyphyletic) (O’Donnell et al. 1998; Skovgaard

et al. 2001). With the help of molecular markers, it was shown that isolates from

different formae speciales can be more closely related than isolates within a forma

specialis (Fourie et al. 2009, 2011). This polyphyletic origin of isolates within a

forma specialis suggests that pathogenicity has independently evolved several times.

Given that F. oxysporum predominantly, if not exclusively, reproduces through

asexual means, the origin of pathogenicity in F. oxysporum is highly intriguing.

At the sub-forma specialis level, isolates are classified into races based on

cultivar specificity of the host genotype. This corresponds with the gene-for-gene

hypothesis for host resistance and has been well documented in the case of tomato

and F. oxysporum f. sp. lycopersici (Takken and Rep 2010). The other classification
widely used at the sub-forma specialis level is vegetative compatibility group

(VCG). Isolates that can form a stable heterokaryon when two hyphae are fused

are grouped under the same VCG, while isolates that cannot do so are under

different VCGs. VCG grouping can identify isolates that share common alleles at
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the VCG determining loci. This does not necessarily imply that they share the same

lineage (Leslie et al. 2006).

7.2 Plant Infection by F. oxysporum

F. oxysporum can survive in the soil for extended periods of time as

chlamydospores and is notoriously difficult to eliminate once soil is infested

(Agrios 2004). Despite the large number of plants infected by F. oxysporum,
disease incidence and mechanisms of plant infection have been studied in a

limited number of plant species, e.g. tomato, cotton, banana, melon, bean,

chickpea and more recently Arabidopsis thaliana. The process of plant infection

has been visualised using light, fluorescence, electron and multiphoton micros-

copy(Bishop and Cooper 1983, 1984; Czymmek et al. 2007; Lagopodi

et al. 2002; Olivain and Alabouvette 1999; Olivain et al. 2006). Dormant

F. oxysporum chlamydospores present in the soil germinate under favourable

conditions and infect plants through their roots. Initially the hypha attaches itself

on the root surface and grows along the junctions of epidermal cells to form a

dense network intermingled with root hairs. Following surface colonisation,

direct penetration of the epidermal cells takes place. Although penetration occurs

primarily at root tips, penetrations at random positions along root hairs as well as

in the meristematic zones of primary and lateral roots have all been reported.

However, no specialised penetration structure has so far been observed. Follow-

ing penetration, the fungus continues to grow both inter- and intracellularly

through the cortex tissue until it reaches xylem vessels. Entry into xylem vessels

occurs through pits, and the fungus switches to a distinctive vascular phase

where it remains confined within the xylem vessels. At this stage, the fungus

proliferates within the xylem vessel and pervades through production of

microconidia that spread upwards with xylem sap flow (Fig. 7.1). In the

pre-vascular and vascular stages, plants respond to fungal invasion through

activation of defence response mechanisms which include production of callose

deposition, accumulation of phenolics, formation of tyloses (outgrowths of

adjoining xylem parenchyma cells through pits) and gels in infected cells

(Beckman 2000; Beckman and Roberts 1995). Characteristic wilt symptoms

appear as a result of severe water stress caused by fungal proliferation combined

with host-defence responses. At later stages of infection, as the plant dies, the

fungus switches from a biotrophic to a necrotrophic mode, invades the host

parenchyma and sporulates profusely. The whole process is highly coordinated

and involves recognition of the host root, penetration, suppression and/or evasion

of host-defence responses, toxin production, sporulation and growth. Cell-wall-

degrading enzymes, enzymatic detoxification of phytoalexins, signalling

pathways through mitogen-activated protein kinases (MAPK) and G-proteins,

peroxisome function, multiple transcription factors and more recently effector
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proteins have all been implicated in the process of plant infection (Di Pietro

et al. 2003; Michielse and Rep 2009).

7.3 Sensing the Environment

The first and foremost critical step in plant infection is sensing stimuli from plants

and responding with appropriate physiological and morphological changes. These

responses include spore germination, directed hyphal growth, adhesion to plants,

development of specialised infection structures and expression of lytic enzymes and

involve or are accompanied by changes in gene expression patterns triggered

through signalling pathways.

One environmental condition that F. oxysporum, like all other microorganisms,

must adapt to for its growth and proliferation is external pH. It responds to external

pH by tailoring expression of genes encoding proteins that are directly exposed to

the environment such as permeases, secreted enzymes and intercellular enzymes

involved in production of secreted toxins, antibiotics or compounds that can

influence external pH. A key component for adaptation to extracellular pH is

PacC, a Cys2-His2 zinc finger-type transcription factor (Peñalva et al. 2008).

PacC has been studied in great detail in Aspergillus nidulans where it controls

expression of number of genes including phosphatases, xylanase, GABA permease

and genes involved in penicillin biosynthesis, siderophore biosynthesis and Li+

tolerance. The F. oxysporum f. sp. lycopersici orthologue of the A. nidulans PacC
protein regulates expression of both alkaline and acidic condition-responsive genes

(Caracuel et al. 2003). The PACC gene itself is overexpressed under alkaline

conditions and a loss-of-function mutation in PACC resulted in poor growth

under alkaline condition, increased acid protease activity and overexpression of

acid-induced polygalacturonase genes. In contrast, a gain-of-function mutation

mimicked growth under alkaline conditions with increased alkaline protease activ-

ity and acid phosphatase levels (Caracuel et al. 2003). The PACC gene also

negatively regulates pathogenesis and a F. oxysporum f. sp. lycopersici mutant

Fig. 7.1 F. oxysporum f. sp.

vasinfectum growing inside

xylem cells of infected cotton

stem (longitudinal section).

The fungus was stained with

FITC-conjugated wheat

germ agglutinin and

observed using

epifluorescence microscopy
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carrying a dominant activating allele was less virulent on tomato plants than the

wild-type while loss of PACC function resulted in earlier induction of disease

symptoms (Caracuel et al. 2003). This is possibly due to negative regulation of

acid-expressed genes important for infection as spore germination, root attachment,

colonisation of vascular tissue and invasive growth was unaffected for both loss-

and gain-of-function mutants. In F. graminearum, production of trichothecene

mycotoxins is induced by low pH and is negatively regulated by PacC (Gardiner

et al. 2009; Merhej et al. 2012).

7.4 Signalling Pathways Involved in Pathogenesis

The environmental cues are widely perceived through membrane receptors and

translated into signalling response pathways through the action of G-proteins

(Bölker 1998; Hamm 1998; Marinissen and Gutkind 2001). G-proteins are

heterotrimeric proteins of α, β and γ subunits. In the inactive state, the Gα subunit

binds GDP and, upon perception of stimuli by G-protein coupled receptors,

exchanges its bound GDP for GTP and dissociates from the Gβγ subunit. The

free Gα:GTP and Gβγ subunits then activate distinct downstream effectors includ-

ing enzymes (adenylyl cyclase, phospholipases, phosphodiesterases and protein

kinases), ion channels and small GTPases, thus regulating multiple signalling

pathways and playing crucial roles in vegetative growth, sporulation, mating and

virulence in fungi (Bölker 1998).

Fungal Gα proteins are grouped into three classes. The gene FGA1 encoding α
subunit of class I G-proteins has been cloned and characterised inF. oxysporum f. sp.

cucumerium (Jain et al. 2002). Disruption of this gene had no appreciable effects on

hyphal growth, but colony morphology was altered and the FGA1mutants produced

approximately half the number of conidia as compared to the wild type. When

cucumber plants were challenged, disease development and severity of the disease

was significantly delayed in the case of the disruption mutant as compared to the

wild type. Cyclic AMP (cAMP) level was also reduced in the mutants to approxi-

mately 65% of the wild type which suggests that Gα protein of F. oxysporum, unlike
its mammalian counterpart, positively controls cAMP levels (Jain et al. 2002). In

comparison, disruption of the α protein subunit of class III G-protein (Fga2) resulted
in complete loss of pathogenicity, but growth, colony morphology and conidiation

was unaltered (Jain et al. 2005). The FGA1/FGA2 double mutants had phenotype

characteristics of either FGA1 or FGA2mutants, except heat survival of bud cells in

doublemutants was significantly increased over the single mutants which were more

resistant than the wild type (Jain et al. 2002, 2005). These observations suggest

presence of two different signalling pathways for Fga1 and Fga2 possibly involving

cAMP. When the gene for G-protein β-subunit (Fgb1) was disrupted, the mutant

showed characteristics similar to the FGA1 disruption mutant (Jain et al. 2003). In

the mutant, hyphal growth remained unaltered, colony morphology was affected,

conidia production was reduced, heat resistance was better and both cellular cAMP
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and pathogenicity were reduced.While this shows that Fga1 and Fgb1 have partially

overlapping functions and both positively regulate cAMP homeostasis, addition of

extracellular cAMP could not restore phenotypic effects observed in the case of the

FGB1mutant suggesting participation of Fgb1 inmore than one signalling pathways

that are not regulated by cAMP (Jain et al. 2003). The FGB1 gene has also been

studied inF. oxysporum f. sp. lycopersiciwhere it regulates polarised hyphal growth,
hyphal branching, microconidiation as well as virulence on tomato plants and fruits

(Delgado-Jarana et al. 2005). However, in this instance, two of the altered

phenotypes, hyper-elongation and reduced subapical branching could be reversed

by addition of cAMP.

Another well-conserved signalling pathway that plays critical role in plant

pathogenesis and infection-related morphogenesis in fungi is mitogen-activated

protein kinase (MAPK) pathway. MAPKs are a family of serine/threonine kinases

that are activated in response to environmental stimuli through a cascade of kinases

(MAPK kinase and MAPK kinase kinase) eventually resulting in regulation of

downstream transcription factors and target gene expression. In F. oxysporum the

FMK1 gene, encoding a member of the YERK1 (yeast extracellular signal-

regulated kinase 1) MAPK family, controls several key steps in pathogenesis

(Di Pietro et al. 2001, 2003). A disruption mutant of the FMK1 gene in

F. oxysporum f. sp. lycopersici failed to infect tomato plants and could not macerate

tomato fruit tissue when microconidial suspension was injected into fruit tissue

(Di Pietro et al. 2001). Expression of the pectate lyase genes was severely

compromised in the FMK1 mutant. In contrast, expression of endo- or

exo-polygalacturonase genes was hardly affected, and hyphal growth or conidiation

on potato dextrose agar in the mutant was similar to the wild type. On further

examination, it was found that conidia from the FMK1 mutant failed to germinate

into germ tubes and attachment to root surface could not be established. Fmk1 is

also needed for fungal hyphal fusion (Prados Rosales and Di Pietro 2008). How-

ever, phosphorylation status of Fmk1 remains unaltered in the FGB1 mutant, and

the FGB1 mutant shows reduced virulence, while the FMK1 mutant is totally

avirulent suggesting these two proteins function in independent pathways. How

these signalling cascades regulate virulence is not clear.

One upstream protein of the MAPK pathway is the transmembrane protein Msb2

which carries a large extracellular glycosylated mucin homology domain and a

short cytoplasmic region (Cullen et al. 2004; Perez-Nadales and Di Pietro 2011).

Msb2 is expressed at high levels at early stages of infection and regulates expres-

sion of two genes, FRP1 and a class V chitin synthase gene that are transcriptionally

activated by the MAPK cascade (Perez-Nadales and Di Pietro 2011). Msb2 is also

required for contact-induced phosphorylation of the MAPK Fmk1. The Δmsb2
gene knock-out mutants showed impaired root penetration, pectinolytic activity

and invasive growth on tomato fruits, but at lesser extent, than the Δfmk1 or the

Δmsb2Δfmk2 double mutants which suggests Msb2 contributes to Fmk1-mediated

pathogenesis (Perez-Nadales and Di Pietro 2011). Msb2 also contributes additively

to Fmk1 regulation of hyphal growth under nitrogen starvation conditions but does

not affect hyphal fusion (Perez-Nadales and Di Pietro 2011). These observations

indicate that Msb2 may not act exclusively as upstream component of the Fmk1
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MAPK cascade or other upstream components exists and there is significant

crosstalk amongst those components and MAPK pathways. Further research will

be required to define role of Msb2 in signalling through various MAPK cascades,

signalling partners as well as factors downstream of MAPK pathways that regulate

pathogenesis in F. oxysporum.
In yeast, the homeodomain transcription factor Ste12 functions downstream of

the MAPKs Fus3 and Kss1 (Rispail and Di Pietro 2009, 2010a). The Ste12 protein

is activated by Fus3 and Kss1 and controls mating, filamentous and invasive

growth. The F. oxysporum f. sp. lycopersici homologue of Ste12 is required for

surface penetration (judged by observation of development on cellophane

membranes), invasive growth on tomato fruit tissue and disease incidence in

whole plants. It is not, however, essential for hyphal fusion, surface adhesion on

plant roots or expression of pectinolytic enzymes (Rispail and Di Pietro 2009). This

gene is upregulated in planta at early stages of infection in highly virulent strains of

F. oxysporum f. sp. phaseoli as well as by nitrogen starvation. However, in contrast
to F. oxysporum f. sp. lycopersici, disruption of the STE12 gene in F. oxysporum
f. sp. phaseoli only delayed development of disease symptoms, but not severity. It

has been proposed that difference in organic and inorganic nitrogen status within

the xylem vessels of legume and the non-legume plant system under study may

account for this difference.

The other signalling gene that has been implicated in virulence in F. oxysporum
f. sp. lycopersici is a two-component histidine kinase (Rispail and Di Pietro 2010b).

In yeast, histidine kinase Sln1 acts as a sensor protein upstream of the

osmoregulator MAPK Hog1 (Rispail and Di Pietro 2010a). The F. oxysporum
orthologue of the SLN1 gene, FHK1, is similarly required for adaptation to

hyperosmotic stress (Rispail and Di Pietro 2010b). The Δfhk1 mutant is more

sensitive to oxidative stress and demonstrated significant delay in symptom devel-

opment as compared to the wild type. However unlike Δfmk1 or Δfmk1Δfhk1
double mutant, deletion of only the FHK1 gene did not impair cellophane penetra-

tion or colonisation of host tissue in the mutant. This suggests that Fhk1 contributes

to plant virulence independent of Fmk1 (Rispail and Di Pietro 2010b). Opposing

roles of Fmk1 and Fhk1 in response to oxidative stress and additive roles in

response to hyperosmotic stress were also noted in this study. It is possible that

MAPK pathways in F. oxysporum are involved in more than one response pathway

and they possibly crosstalk.

Nutrient status of the surrounding environment is also a crucial factor in a

pathogenic life style, and nutrient stress plays a crucial role in pathogenicity. In

particular, nitrogen limitation has often been linked with expression of pathogenic-

ity genes, in a number of fungi (Bolton and Thomma 2008; Snoeijers et al. 2000).

Generally ammonium nitrogen is preferred as a source of nitrogen over less

available sources like nitrate. The nature of available nitrogen regulates nitrogen

assimilation through nitrogen catabolite repression. Genes needed for nitrogen

utilisation are downregulated in the presence of a preferred source. This control is

achieved through a GATA-binding zinc-finger transcription factor, AreA in Asper-
gillus nidulans and Nit2 in Neurospora crassa, which functions as a transcriptional
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activator of genes involved in uptake and utilisation of secondary nitrogen sources

(Schure et al. 2006). In response to ammonium, AreA transcription is

downregulated and also its co-repressor NmrA binds to AreA to alter its

DNA-binding activity, resulting in nitrogen catabolite repression. In

F. oxysporum f. sp. lycopersici, the AreA orthologue Fnr1 is present at a basal

level in hyphae growing on nitrate and is overexpressed when ammonia or gluta-

mine is the source of nitrogen (Divon et al. 2006). Growth of FNR1 gene-disruption
mutants was restricted on nitrate-containing media, and their ability to utilise a

number of secondary sources of nitrogen was impaired (Divon et al. 2006). In the

FNR1 disruption mutant, transcripts of genes that are involved in in planta acquisi-

tion of nitrogen, e.g. general amino acid permease (GAP1), peptide transporter

(MTD1) and uricase, were detected at a lower level. Moreover, nitrate-induced

expression of nitrate reductase (NIT1) and nitrite reductase (NII1) genes was not
detected in the Δfnr1/AREA null mutant, which suggests that Fnr1/AreA activates

nitrogen catabolism genes in F. oxysporum f. sp. lycopersici (Divon et al. 2006;

Lopez-Berges et al. 2010).

Apart from its role as transcriptional activator of nitrogen catabolism genes,

Fnr1/AreA is also involved in ammonium suppression of plant infection by

F. oxysporum. A delay in symptom development was observed in F. oxysporum-
infected plants growing on ammonium nitrate, but not sodium nitrate, suggesting

ammonium negatively regulates plant infection (Lopez-Berges et al. 2010). Ammo-

nium also negatively regulates various infection-related phenomena like cellophane

penetration, fusion of vegetative hyphae or root adhesion. This ammonium sup-

pression of development leading to plant infection is mediated through MeaB

protein in A. nidulans (Wong et al. 2007). MeaB is a negative regulator of AreA

and functions by activating transcription of the AreA co-suppressor protein NmrA.

However, contrary to what might be expected, this suppression in F. oxysporum
f. sp. lycopersici is not achieved through Fnr1/AreA. Instead, Fnr1/AreA acts as an

independent suppressor of cellophane penetration, hyphal fusion and root adhesion

(Lopez-Berges et al. 2010). Ammonium suppression of the plant infection was only

partially relieved in the Δfnr1/AREA mutant. Fnr1/AreA is also required for

ammonium-driven downregulation of STE12 expression. Together these

observations strongly suggest that Fnr1/AreA in F. oxysporum f. sp. lycopersici
serves a dual role; it acts as an activator of nitrogen catabolism genes and as a

repressor of nitrogen-regulated virulence functions (Lopez-Berges et al. 2010). A

similar loss of severity of disease symptoms and lower expression of pathogenicity

genes have been reported in AreA/Nut1� mutant in Magnaporthe grisea (Soanes

et al. 2002). In Cladosporium fulvum, however, disruption of the GATA-binding

nitrogen response factor gene NRF1 did not affect virulence (Pérez-Garcı́a

et al. 2001).

Another protein that is involved in nitrogen regulation of virulence functions in

F. oxysporum is the serine/threonine kinase TOR (target of rapamycin). TOR is a

key player in the nutrient response pathway in Saccharomyces cerevisiae, and
inhibition of TOR by rapamycin mimics nitrogen stress. In F. fujikuroi, blocking
TOR function resulted in perturbation of expression of number of AreA-regulated
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genes (Teichert et al. 2006). TOR inhibition in F. oxysporum f. sp. lycopersici
resulted in reversion of glutamine-induced suppression of cellophane penetration,

hyphal fusion, root adhesion and de-repression of nitrogen catabolism genes

(Lopez-Berges et al. 2010). Role of TOR in nitrogen catabolite repression is not

dependent on MeaB but possibly exerted through inhibition of Fnr1/AreA.

7.5 Breaking Barriers at the Gate

While invading plants, pathogenic fungi must breach through physical barriers like

the plant cell wall. Primary components of plant cell walls are polysaccharides like

cellulose, hemicellulose and pectin; pectic (homogalacturonan and rhamnoga-

lacturonan) and hemicellulosic polysaccharides (xyloglucans, glucomannans,

xylans and mixed-linkage glucans) form a matrix. The matrix embeds cellulose

microfibrils as well as number of cell-wall proteins. While fungi likeM. oryzae and
Ustilago maydis use specialised structures like appressoria and penetration pegs to

puncture through (Tucker and Talbot 2001), lack of such specialised structures in

F. oxysporum has always been an important factor in linking penetration with plant

cell-wall-degrading enzymes. Enzymes like exo- and endopolygalacturonases,

endo-xylanase and pectate lyase have been purified, characterised, cloned and

their roles in plant pathogenesis studied (Di Pietro et al. 2003; Di Pietro and

Roncero 1996a, b, 1998, 2006; Garc{ća Maceira et al. 1997, 2001; Gomez-

Gomez et al. 2001, 2002). A general theme that came out of these studies was

that disruption of the CWDE genes individually did not have any detectable effect

on virulence, possibly because of functional redundancy (Di Pietro et al. 2003;

Michielse and Rep 2009). Many of these CWDE genes are regulated in a concerted

manner and are subjected to glucose catabolite repression. For example, the

xylanase encoding genes XYL2, XYL3, XYL4 and XYL5 were induced in presence

of oat-spelt xylan and tomato vascular tissue but were suppressed by simple sugars

like glucose, xylose or arabinose in the media (Gomez-Gomez et al. 2001, 2002). A

transcription factor that acts as a common positive regulator of xylanase genes,

XlnR, has been identified in F. oxysporum f. sp. lycopersici (Calero-Nieto

et al. 2007, 2008). A null mutant of the XlnR regulator was impaired in expression

of all the three (XYL2, XYL3 and XYL4) genes, but disease induction on tomato plant

was not affected (Calero-Nieto et al. 2007). However, this mutant was able to grow

on xylan as sole carbon source indicating either residual xylanase activity is

sufficient for breaking down plant cell walls or there could be yet undiscovered

xylanase genes.

The SNF1 (sucrose non-fermenting) gene, which codes for a protein kinase, is

essential for de-repression of a battery of genes and invasive growth repressed by

glucose in S. cerevisiae (Palecek et al. 2002; Young et al. 2012). A mutant of the

SNF1 gene in F. oxysporum exhibited restricted growth on complex carbon sources

and expression of exo- and endopolygalacturonase and pectate lyase genes was

substantially lower than in the wild-type pathogen under de-repressive conditions
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(Ospina-Giraldo et al. 2003). The SNF1 mutants were also less virulent on

A. thaliana and cabbage plants, possibly as a result of less effective cell-wall

penetration. However, this could also be due to impaired ability of the mutants to

grow on complex carbon sources as symptom development was also delayed on

plants where roots were cut to facilitate entry.

Two other proteins that play a role in glucose repression of CDWE are Frp1 and

Cre1 (Jonkers and Rep 2009a; Jonkers et al. 2009). The Frp1 protein belongs to the

family of F-box proteins that form the SCF (Skp1–Cullin–F-box protein) complex

involved in ubiquitination and subsequent degradation of target proteins (Jonkers

and Rep 2009b). F-box proteins bind specific substrates destined for ubiquitination

and link them to the SCF complex by binding Skp1 through their F-box motifs. The

Frp1 protein was first identified as a protein required for pathogenesis in

F. oxysporum f. sp. lycopersici through insertional mutagenesis experiments

(Duyvesteijn et al. 2005). Reduced virulence of the Δfrp1 mutant on tomato plants

was related to its inability to penetrate tomato roots possibly due to reduced

expression of several CWDE genes including XYL2, XYL3, XYL5, PG1 (endo-

polygalacturonase), PL1 (pectate lyase) and ARA1 (arabinase) (Jonkers

et al. 2009). Interestingly, expression of the XlnR regulator protein was not affected

in the mutant, suggesting that deletion of the Frp1 protein resulted in permanent

repression of the CWDE genes. The Δfrp1mutant also failed to grow normally on a

number of complex sugar sources like organic acids, sugar alcohols and

polysaccharides. These growth defects are attributed to severely reduced expression

of the isocitrate lyase enzyme (ICL1) (Jonkers et al. 2009).
Attempts to generate a ΔcreA knock-out mutant in wild type or in Δfrp1

background was not successful, but when a N-terminal GST fusion with CreA

replaced wild-type CreA, the mutants behaved similar to ΔcreA mutants in Asper-
gillus nidulans and Neurospora crassa and wild-type colony morphology could be

restored by ectopic overexpression of wild-type CreA in the GST:CreA mutants

(Jonkers and Rep 2009a). Expression of the ICL1, ARA1 and XYL2 genes was

restored in this GST:CreA mutant in the Δfrp1 background (Jonkers and Rep

2009a). Accompanying these changes, the ability to grow on complex sugar sources

and infect plants was also restored in the ΔFrp1/GST:CreA mutant. In A. nidulans a
number of genes expressed during growth on glucose and ethanol and regulated by

CreA and Ara1, and XLY2 genes from F. oxysporum contain potential CreA binding

sites in their promoter regions (Jonkers and Rep 2009a). How Frp1 and CreA

function together in regulating carbon catabolite repression is currently unclear.

While the fungus tries to breach through the plant cell wall using the CWDEs,

integrity of its own cell wall is also equally important for successful invasion. An

important structural component of cell wall of filamentous fungi is chitin. Chitin

synthases which catalyse chitin chain formation are integral membrane proteins that

play essential roles in hyphal growth and differentiation (Roncero 2002). There are

several structural classes of chitin synthase, and representatives of classes I–V and

VII have been identified in F. oxysporum f. sp. lycopersici (Madrid et al. 2003;

Martin-Udiroz et al. 2004, 2008). Targeted disruption of the CHSV gene rendered

the fungus sensitive to tomato root extracts and in particular to the plant’s defence

166 A. Chakrabarti



compounds H2O2 and α-tomatine (Madrid et al. 2003). The mutant exhibited some

evidence of hyphal lysis and balloon-like swellings that are densely stained by the

chitin-binding dye calcofluor white. These abnormalities could be reversed by

addition of osmoprotectant to the growth media. All of these observations strongly

indicate that the cell-wall integrity of the fungus is affected in the deletion mutant.

Similar defects in cell-wall structure were documented in the gene-deletion mutant

of the CHSVb gene, a class VII chitin synthase, although unlike the ΔchsV mutant

some of these effects could not be reversed by addition of sorbitol into media

(Martinez-Rocha et al. 2008). Also, inter-hyphal septa were observed in the

ΔchsVb, but not the ΔchsV mutant indicating CHSV and CHSVb play somewhat

different roles in hyphal morphogenesis. Both of these gene-disruption mutants

were severely compromised in plant infection. Plants inoculated with these mutants

did not show any wilt symptoms and remained as healthy as mock-inoculated plants

(Madrid et al. 2003; Martinez-Rocha et al. 2008). Null mutants of the CHS1 and

CHS7 genes were reduced in virulence and were more sensitive to SDS, but hyphal

lysis, or sensitivity towards calcofluor white were like wild-type strains (Martin-

Udiroz et al. 2004). An association of chitin synthases and virulence in plants is

well documented in fungal pathosystems (Lenardon et al. 2010). Disrupted cell-

wall structures may lead to early leakage of fungal cell components triggering an

early defence response from plants and/or render these mutants more susceptible to

plant antimicrobial defence compounds. Interestingly, promoter regions of the

CHS2, CHS3, CHS7 and CHSV genes have a stress-response element binding

site. It is possible that chitin synthase genes function to maintain cell-wall integrity

in response to plant defence compounds and are thus an important part of patho-

genesis (Madrid et al. 2003; Martin-Udiroz et al. 2004, 2008). In line with this

suggestion, it was observed that deletion of the F. oxysporum f. sp. lycopersici gas1
gene encoding the glucan-processing enzyme, β-1,3-glucanosyl transferase,

resulted in substantially reduced virulence towards tomato plants(Caracuel

et al. 2005). However, at the same time, the deletion mutants were more resistant

to cell-wall-degrading enzymes. The null mutant also exhibited increased expres-

sion of CHSV and a Rho-type GTPase gene that acts as a master regulator of cell-

wall integrity (Caracuel et al. 2005; Levin 2005). The exact role of GAS1 in

pathogenesis remains to be determined. Loss of virulence in the null mutants can

be explained by possible defects in host surface recognition, hyphal morphogenesis

or increased secretion of potent plant defence elicitors like β-1,3-glucan- and

β-1,6-glucan-protein complexes as reported for GAS1 deletion mutants in yeast

(Kapteyn et al. 1997). Targeted disruption of the RHO1 gene in F. oxysporum also

resulted in alterations of cell-wall structures, changes in chitin and glucan synthase

enzymatic activities and reduced virulence on tomato plants (Martinez-Rocha

et al. 2008). In summary all these observations underline the importance of fungal

cell-wall architecture and morphogenesis in plant infection.
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7.6 Coping with Plant Defence Compounds

Apart from the structural barriers to pathogen entry, plants employ variety of

secondary metabolites and pathogenesis-related proteins many of which have

antifungal activities. One such secondary metabolite present in tomato plants is

α-tomatine, a glycosylated terpenoid phytotoxin with soap-like property (saponins)

that can induce apoptotic cell death in F. oxysporum f. sp. lycopersici (Ito

et al. 2007). Fusarium oxysporum, like many other pathogenic fungi, detoxifies

this terpenoid glycoalkaloid using the glycosyl hydrolase enzyme tomatinase

(Lairini et al. 1996), and hydrolysis products can suppress induced defence

responses in the plant (Ito et al. 2004). One tomatinase gene TOM1 encoding a

family 10 glycosyl hydrolase enzyme has been cloned and characterised from

F. oxysporum f. sp. lycopersici (Roldan-Arjona et al. 1999). This gene is induced

by tomatine and expressed in planta throughout the disease cycle (Roldan-Arjona

et al. 1999). Partial silencing of this gene in F. oxysporum f. sp. lycopersici resulted
in reduced virulence on tomato (Ito et al. 2002). On solid media containing

α-tomatine, growth of a Δtom1 mutant was reduced as compared to wild type,

and the null mutant was also delayed in symptom development (Pareja-Jaime

et al. 2008) confirming tomatinase activity is required for full virulence. In contrast,

symptom development and death were hastened for plants infected with a constitu-

tively TOM1 overexpressing line (Pareja-Jaime et al. 2008). However, some resid-

ual tomatinase activity was detected in the Δtom1 null mutant. This is possibly due

to presence of four more putative tomatinase genes with high homology to glycosyl

hydrolase family 3 genes in F. oxysporum f. sp. lycopersici, two of which, Tom2
and Tom5, are expressed in the null mutant (Pareja-Jaime et al. 2008).

The other class of chemicals plants employ in their defence are phenolic

compounds like flavonoids, anthocyanins, phytoalexins, tannins, lignin and

furanocoumarins. While phenolic compounds can act as precursors of physical

defence system (e.g. lignification) or antimicrobial/antifungal agents, pathogens

can not only detoxify them but also can exploit these chemicals as cues for host

recognition and/or source of nutrients. One way for F. oxysporum to deal with plant

phenolics is oxidising them through the action of laccase, a copper-containing

enzyme that has been implicated in morphogenesis, interaction with host, defence

and lignin degradation in fungi (Thurston 1994). So far, six laccase genes, LCC1–5
and LCC9 have been isolated from F. oxysporum f. sp. lycopersici (Canero and

Roncero 2008a). Of these, expression of LCC3 and LCC5 is pH dependent and

appears to be regulated by the pH-responsive transcription factor PacC, whereas

LCC1, LCC3 and LCC9 are differentially expressed during plant infection. How-

ever, although disruption mutants of the LCC1, LCC3 and LCC5 genes were more

sensitive to oxidative stress and phenolic compounds that can act as defence

chemicals and/or lignin precursors, they were as pathogenic as the wild type

(mutants for LCC2, LCC4 and LCC9 could not be generated) (Canero and Roncero

2008a). In contrast, a mutant of the chloride channel gene CLC1 was more sensitive

to oxidative stress, had reduced laccase activity and was delayed in disease
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symptom development (Canero and Roncero 2008b). This could be due to require-

ment of the chloride channel for effective loading of copper, an allosteric effector of

laccase enzymes. Thus, while not essential individually, cumulative laccase activity

may contribute towards fungal virulence.

Lignin breakdown products are further metabolised by soil microbes through the

β-ketoadipate pathway (Harwood and Parales 1996). Through this pathway, lignin

monomers generated through oxidative depolymerisation by peroxidases and

laccases along with other aromatic carbohydrates and amino aromatics are

converted to protocatechuate or catechol and finally to β-ketoadipate. Additional
enzymatic steps then covert β-ketoadipate into TCA cycle intermediates succinyl

CoA and acetyl CoA. In a random insertional mutagenesis experiment, two genes

coding for catechol dioxygenase and carboxy-cis,cis-muconate cyclase enzymes of

the β-ketoadipate pathway were identified as pathogenicity genes for F. oxysporum
f. sp. lycopersici (Michielse et al. 2009a). The carboxy-cis,cis-muconate cyclase

(CMLE1) gene-deletion mutant failed to develop any wilt symptom in tomato

plants verifying importance of this enzyme in plant infection (Michielse

et al. 2012). This enzyme was also essential for growth on number of aromatic

compounds, e.g. ferulic acid, coumaric acid, vanillic acid and cinnamic acid as well

as on lignin. Coumaric, vanillic and cinnamic acid can have an inhibitory effect of

growth and germination of F. oxysporum f. sp. niveum (Wu et al. 2008a, b, c), and

coumaric acid at high doses of 100 mg/L could reduce germination frequency in the

Δcmle1 mutant of F. oxysporum f. sp. lycopersici (Michielse et al. 2012). The

CMLE enzyme is required for in planta pathogen growth, but not for spore

germination and root colonisation. This implies that the loss of pathogenicity in

the Δcmle1 mutant could be due its inability to catabolise lignin and its breakdown

products. Toxic effects of various plant phenolics could also contribute to this loss

of pathogenicity in this mutant.

7.7 Fighting Back: Toxin Production

Fusarium species produce an array of secondary metabolites with equally diverse

mode of biosynthesis and function. Many of these secondary metabolites are toxic

to other organisms. In particular, fumonisins and trichothecenes are of great

concern due to their presence in Fusarium-infected cereals. While

F. verticillioides and F. graminearum gained worldwide importance as producers

of these two mycotoxins, F. oxysporum also produces number of secondary

metabolites (Luz et al. 1990), and the F. oxysporum f. sp. lycopersici genome

contains 12 clusters of genes predicted to be involved in secondary metabolite

production (Ma et al. 2010). While information on the role of individual

metabolites or genes is limiting, F. oxysporum culture filtrates and in particular

fusaric acid have been extensively used to screen for plants resistant to Fusarium
wilt (Bulk 1991; Matsumoto et al. 1995; Vu et al. 2004).
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In fungi, the velvet family of regulatory proteins regulate secondary metabolite

production and coordinate it with light response and morphological differentiation

(Bayram and Braus 2012). Members of the velvet family interact with each other

and also with LaeA, a regulator protein of secondary metabolism (Bayram and

Braus 2012; Bayram et al. 2008). In F. oxysporum f. sp. lycopersici, the first clue to
involvement of the velvet complex came through transposon mutagenesis

experiments. A loss-of-virulence mutant in which a transposon element was

inserted in a gene with homology to VelB of A. nidulans was identified (Lopez-

Berges et al. 2009). F. oxysporum f. sp. lycopersici homologues of veA, velC and

laeA have been isolated and demonstrated to have regulatory roles in hyphal

development, conidiation and light response (Lopez-Berges et al. 2013). The velvet

complex also regulates transcription of two nonribosomal peptide synthetase genes

involved in production of the siderophores ferricrocin and triacetyl fusarinine C,

two genes for biosynthesis of the mycotoxin beauvericin and an ABC transporter

(Lopez-Berges et al. 2013). Concordant with their roles, production of beauvericin

was reduced in the deletion mutants of the VEA, VELB and LAEA genes. The VEA
and VELB genes, but not VELC, also contribute towards virulence towards tomato

plants as significantly lesser number of plants died when challenged with ΔveA and

ΔvelB mutants, whereas the ΔvelC mutant was as virulent as the wild type. The

ΔlaeA mutant was even less virulent and was affected in colonisation of stems at

later stages of infection. VeA and LaeA are also required for successful infection of

immunodepressed mice. This reduced pathogenicity on both plant and mammalian

hosts was attributed to attenuated production of the mycotoxin beauvericin (Lopez-

Berges et al. 2013).

7.8 Effector Proteins

One of the most exciting recent developments in the field of Fusarium wilt research

has been the discovery of disease effector proteins produced by Fusarium
oxysporum. Effectors are small proteins or molecules that alter host cells and

function to promote pathogen growth. They may or may not elicit host-defence

responses (Ellis et al. 2009; Hogenhout et al. 2009). At times an effector protein is

recognised by corresponding plant resistance proteins and triggers defence

mechanisms in plants. Such effectors are classically defined as avirulence proteins

(Hogenhout et al. 2009). While effector proteins have been detected in a number of

forma specialis of Fusarium oxysporum, their role in virulence to plants has only

been demonstrated for a limited few.

Fusarium effectors were first described in the model wilt pathogen F. oxysporum
f. sp. lycopersici as proteins secreted in the xylem (SIX) of infected tomato plants

(Rep et al. 2004). So far, 11 SIX proteins have been described (Houterman

et al. 2008; Lievens et al. 2009; Rep et al. 2004; Takken and Rep 2010), and the

number is likely to increase (Martijn Rep, personal communication). SIX1, the

founder member of these secreted proteins, is a small cysteine-rich protein that is
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required for full virulence towards tomato (Rep et al. 2004). SIX1 is expressed

specifically at early stages of infection, and using a GFP reporter gene fused with

the SIX1 promoter, it was demonstrated that the SIX1 promoter is specifically

induced upon entry into roots and only on living, but not dead plant material (van

der Does et al. 2008). This induction was also observed in the presence of cultured

cells as well as non-host cells, although only a fraction of the hyphae expressed GFP

under these conditions. In tomato, the SIX1 protein is recognised by the I-3

resistance protein. However, absence or mutations in the SIX1 gene do not always

correlate with virulence on I-3 tomato plants and led to the idea that I-3/SIX1

(Avr3)-dependent resistance can be suppressed by other effector proteins (Rep

et al. 2005). Such a suppressive function is indeed played by SIX4/Avr1 protein

which is present only in race 1 isolates and recognised by the tomato I and I-1

resistance proteins (Houterman et al. 2008). SIX4/Avr1 can also suppress the

tomato I-2 gene-mediated resistance, but is not needed for full virulence. The I-2
gene-mediated resistance is triggered in response to the SIX3/Avr2 effector protein

from F. oxysporum f. sp. lycopersici race 2 (Houterman et al. 2009). SIX3/Avr2 is

also required for full virulence on susceptible tomato plants (lack I-2 genes), and

functional mutants of the SIX3/Avr2 proteins can evade their detection by I-2, thus

breaking the I-2-mediated resistance. This deployment of various resistance genes

by tomato and emergence of strategies in F. oxysporum f. sp. lycopersici for

continued virulence on tomato fits well into the current zigzag model of plant-

pathogen co-evolution (Jones and Dangl 2006; Takken and Rep 2010).

Discovery of these effector proteins in F. oxysporum f. sp. lycopersici prompted

search for similar effectors in other formae speciales of Fusarium. Among the SIX

proteins tested so far, SIX6 is the most widely distributed and was found in

F. oxysporum f. sp. vasinfectum (cotton wilt), F. oxysporum f. sp. niveum (water-

melon wilt), F. oxysporum f. sp. radicis-cucumerinum (crown and root rot of

cucurbits), F. oxysporum f. sp. melonis (muskmelon wilt) and F. oxysporum f. sp.

passiflorae (passion fruit wilt) among the 26 formae speciales screened in two

different studies (Chakrabarti et al. 2011; Lievens et al. 2009). In F. oxysporum
f. sp. vasinfectum, the SIX6 gene was detected in pathogenic isolates from two

different VCGs but was absent from closely related non-pathogenic F. oxysporum
isolates collected from cultivated cotton fields (Chakrabarti et al. 2011). This wide

occurrence, along with loss of virulence in Δsix6 mutants of F. oxysporum f. sp.

lycopersici (Martijn Rep, personal communication), suggests a general role for

SIX6 in pathogenesis. Paradoxically, SIX6 was detected only in the Australian

isolates of Fov and was absent from all the non-Australian isolates tested

(Chakrabarti et al. 2011). It is possible that Australian isolates of F. oxysporum
f. sp. vasinfectum, which are phylogenetically distinct from the overseas isolates,

uniquely employ SIX6 in infecting the cotton plants (Chakrabarti et al. 2011).

SIX6 also shows an extraordinary pattern of sequence variation between differ-

ent formae speciales. All of the SIX6 proteins are 214/215 amino acids long and

have conserved cysteine residues most likely involved in disulphide-bond forma-

tion (Chakrabarti et al. 2011). Most of the Fov-SIX6 protein shows high sequence

identity with the other SIX6 proteins, but there is a 48-amino-acid region of high

7 Fusarium oxysporum: A “Moving” View of Pathogenicity 171



sequence divergence (only 35 % sequence identity) which includes a stretch of

14 amino acids with no sequence identity to Fol-SIX6. On the N-terminal side of

this 48-amino-acid region, Fov-SIX6 shows complete identity with Fol-SIX6 and

an 89 % identity on the C-terminal side. In contrast to Fov-SIX6, the SIX6 proteins
from other subspecies have fewer variant residues compared to Fol-SIX6, and these
are more evenly distributed. It is likely that the conserved cysteine residues are

important for structural integrity while intervening residues are involved in effector

function and have evolved to avoid detection or acquire a novel virulence function.

Intriguingly, the 14 divergent residues in Fov-SIX6 are flanked by cysteine residues
and so probably form a variant protein loop anchored at either end by disulphide

bonds. The Fov-SIX6 and Fol-SIX6 proteins therefore offer a unique opportunity to
compare both protein structure and function in different pathosystems.

Recently SIX1, SIX4, SIX8 and SIX9 homologues have been detected in the

genome of the Arabidopsis-infecting F. oxysporum isolate Fo5176 (Thatcher

et al. 2012). Conservation at the amino acid sequence level between the

F. oxysporum f. sp. lycopersici effectors and their Fo5167 counterparts varied

from 65 % (SIX9) to near identity (SIX4). The Fo5176-SIX4 gene is highly

expressed during plant infection, and deletion of this gene resulted in loss of

virulence (Thatcher et al. 2012). A positive role of Fo5176-SIX4 effectors was

also demonstrated by increased susceptibility of Arabidopsis plants expressing

Fo5176-SIX4. Jasmonic acid response genes were also downregulated in the dele-

tion mutant. Jasmonic acid response plays a significant role in wilt disease devel-

opment in Arabidopsis, and it has been proposed that Fusarium oxysporum
promotes jasmonate signalling to induce host susceptibility (Kidd et al. 2009;

Thatcher et al. 2009). Thus, the Fo5176-SIX4 protein may function through

activation of jasmonate signalling pathways. However, other Fusarium proteins

must be involved as activation of the jasmonate signalling pathway was not

observed in Arabidopsis plants expressing Fo5176-SIX4 (Thatcher et al. 2012).

Similar attempts were made to identify effector proteins in F. oxysporum f. sp.

cubense, and genes with homology to Fol-SIX1 were detected in all pathogenic

races of F. oxysporum f. sp. cubense, whereas SIX7 and SIX8 homologues were

detected only in the race 4 isolates (Meldrum et al. 2012). However, in no case full-

length genes have been isolated, nor have their functions been studied.

In the cotton F. oxysporum f. sp. vasinfectum system, microarray experiments

detected more than 2,100 genes that are expressed during plant infection under

tissue culture conditions (Dowd et al. 2004; McFadden et al. 2006). Bioinformatic

analysis of these differentially expressed genes identified 30 genes encoding

SIX-like proteins (cysteine-rich secreted proteins) for which homologues were

present in the Fusarium database but no function was predicted (Chakrabarti

et al. 2011). An additional 31 genes encoding similar cysteine-rich secreted proteins

were detected for which no similar genes could be found in any databases (poten-

tially cotton or F. oxysporum f. sp. vasinfectum genes). These 61 genes were further

tested for their presence or absence in F. oxysporum f. sp. vasinfectum isolates and

related non-pathogenic F. oxysporum isolates collected from cultivated cotton

fields. Two putative effector protein genes, PEP1 and PEP2, were detected only
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in F. oxysporum f. sp. vasinfectum isolates, but not in the non-pathogens

(Chakrabarti et al. 2011). PEP1 encodes a 270-amino-acid protein with eight

cysteines, and a homologue of PEP1 interrupted by a transposon is present in the

chromosome 14 of F. oxysporum f. sp. lycopersici (pathogenicity chromosome; see

later). PEP1 appears to be an intact expressed gene and member of a small gene

family. PEP2 encodes an 86-amino-acid protein and was absent in non-Australian

isolates of F. oxysporum f. sp. lycopersici. However, sequences similar to PEP1 and
PEP2 genes could be detected in F. oxysporum isolates collected from native

Australian Gossypium spp. (Chakrabarti et al. 2011). Whether PEP1 and PEP2

are true effectors and if so, their role in pathogenesis remains to be established.

7.9 Transcription Factors

Generally pathogenicity genes are defined as genes that are unnecessary for vege-

tative growth but required for plant infection. It is only natural that expression of the

pathogenicity genes will be controlled by transcription factors in response to

physical, physiological or environmental cues. There are almost 900 putative

transcription factors identified in F. oxysporum f. sp. lycopersici with a preponder-

ance of fungal specific Zn2Cys6-type transcription regulators (Ma et al. 2010). Not

surprisingly, two such transcription factors, Fow2 and Sge1, were identified as

pathogenicity genes in random mutagenesis experiments (Imazaki et al. 2007;

Michielse et al. 2009b). Fow2 is a Zn2Cys6-type transcription factor identified in

F. oxysporum f. sp. melonis as essential for plant infection but dispensable for

hyphal growth on complete media, conidiation and utilisation of 95 different carbon

sources (Imazaki et al. 2007). Initial stages of infection like spore germination and

root attachment were unaffected in the Δfow2 mutant, but the mutant failed to

invade root and colonise plant tissue. Homologues of Fow2 were detected in six

other formae speciales of F. oxysporum, and disruption of Fow2 in F. oxysporum
f. sp. lycopersici also resulted in similar loss of pathogenicity on tomato plants

suggesting a conserved role of this transcription factor in plant infection (Imazaki

et al. 2007).

FTF1 is another Zn2Cys6 transcription factor that is specifically expressed

during plant infection in F. oxysporum f. sp. phaseoli (Ramos et al. 2007). The

FTF1 gene is present in multiple copies only in the highly virulent strains of this

pathogen and is absent from weakly virulent or non-pathogenic isolates. Further-

more, in planta expression level of FTF1 correlated with degree of virulence

(de Vega-Bartol et al. 2011; Ramos et al. 2007). Whether FTF1 is required for

plant infection or how it functions is not clear. Interestingly, in Australian isolates

of F. oxysporum f. sp. vasinfectum, at least 12 copies of this gene are present, while
non-pathogens isolated from cultivated cotton fields had only 3–5 copies

(Chakrabarti et al. 2011).

The SGE1 gene encodes a nuclear protein homologous to the WOR1 and RYP1

transcriptional regulators that regulate the infection-related dimorphic switch in
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Candida albicans and Histoplasma capsulatum. A SGE1 ortholog was initially

identified in Agrobacterium-mediated random insertional mutagenesis experiments

as a non-pathogenic mutant of F. oxysporum f. sp. lycopersici (Michielse

et al. 2009a). A deletion mutant of the SGE1 gene could successfully colonise

root surface and penetrate roots but was impaired in parasitic growth within xylem

tissue (Michielse et al. 2009b). The Δsge1 mutant also produced significantly less

conidia, but conidia germination was unaffected. The SGE1 gene also regulates

expression of at least four SIX genes (SIX1, SIX2, SIX3 and SIX5; Michielse

et al. 2009b). SIX1 and SIX2 genes are not expressed in axenic culture but are

induced post-penetration and/or in presence of tomato cells, while SIX3 and SIX5
are expressed under both conditions. Expression of FOW2 and FTF1 genes were

also altered in the Δsge1 mutant, and production of fusaric acid and beauvericin

was also lowered (Michielse et al. 2009b). Expression of the SGE1 is 3–5-fold

upregulated during plant infection. SGE1 may also be regulated at the post-

translation level, as it carries a putative protein kinase A phosphorylation site that

is required for its role in pathogenicity (Michielse et al. 2009b). Whether or how

SGE1 acts as a global regulator of plant infection or how expression/function of

SGE1 itself is regulated remains to be elucidated. FGP1, a WOR1-like protein from

F. graminearum, is similarly involved in conidiation and regulates a number of

genes involved in secondary metabolism including trichothecene production

(Jonkers et al. 2012). However, SGE1 could not complement FGP1 and vice

versa, and hence these two regulators, despite their sequence similarity, are func-

tionally divergent (Jonkers et al. 2012).

HapX is a transcription factor of the bZIP family that plays a role in iron

homeostasis and virulence in F. oxysporum f. sp. lycopersici (Lopez-Berges

et al. 2012). Iron is an essential element for any organism, and its level is tightly

regulated as increased iron levels are toxic. Loss of the HAPX gene resulted in

reduced growth under iron-limiting conditions, but iron content in the ΔhapX
mutant was similar to the wild type (Lopez-Berges et al. 2012). However, this

also caused an increase in intercellular siderophores and de-repression of iron-

regulated genes that are repressed under iron starvation. Interestingly, many genes

were also induced under iron-limiting conditions in a HAPX-dependent manner and

included number of known pathogenicity genes, e.g. glucanase, pectate lyase and

SIX3 (Lopez-Berges et al. 2012). Many iron-starvation-induced genes, e.g. SRBA,
SIDA and HAPX, are also dramatically induced at early stages of plant infection;

wilt symptom development was significantly delayed in the ΔhapX mutant as

compared to wild type (Lopez-Berges et al. 2012). Mortality of immunocompro-

mised mice challenged with F. oxysporum was also significantly lower for the

ΔhapX mutant (Lopez-Berges et al. 2012). This shows that reprogramming of iron-

dependent genes through HapX is an important aspect of both mammalian and plant

infection by F. oxysporum. In line with this observation, both growth and plant

infection by theΔhapXmutant were further impaired in presence of root-colonising

Pseudomonas putida and P. fluorescens (Lopez-Berges et al. 2012). The antagonis-
tic activity of these pseudomonads was dependent on siderophore production,
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suggesting that direct competition for iron is important for biocontrol by these

bacteria.

7.10 Genomics of Fusarium oxysporum: Lineage-Specific
Regions and Pathogenicity Chromosomes

The first available F. oxysporum genome is from the tomato pathogen F. oxysporum
f. sp. lycopersici strain 4287 (NRRL 34936) and is 60 Mb in size which is

significantly larger than the nearest F. verticillioides (42 Mb) and related

F. graminearum (36 Mb) genomes (Cuomo et al. 2007a; Ma et al. 2010). The

F. oxysporum f. sp. lycopersici genome sequence has been assembled in

15 chromosomes and contains 17,735 coding genes (Ma et al. 2010). A significant

part of the genome is composed of repetitive sequences (16.8 Mb) and transposable

elements (3.98 %) and accounts for much of the increased size in F. oxysporum
f. sp. lycopersici genome. A three-way comparison between F. oxysporum,
F. verticillioides and F. graminearum genomes identified more than 9,000

orthologous genes with high sequence similarity (an average identity of 91 %

with F. verticillioides and 85 % with F. graminearum counterparts; Ma

et al. 2010). When compared to other Ascomycetes, these three Fusarium species

are enriched in genes for predicted transcription factors, lytic enzymes, transmem-

brane transporters and G-protein-coupled receptors (Ma et al. 2010). Altogether

2,280 transcription factors from 46 different families have been predicted in these

three Fusarium species. Within this group, F. oxysporum is particularly enriched in

transcription factors from the bHLH, Zn2Cys6 and bZIP families (Ma et al. 2010).

All three fungi also carry the full complement of plant cell-wall-degrading enzymes

in which pectate lyases are particularly over-represented due to an increase in copy

number (members of the pectate lyase 1, 2 and 4 family) as well as presence of

unique members (pectate lyase 9; Ma et al. 2010). Members of all the five classes of

ABC transporters are also over-represented in all the three Fusarium species with

F. oxysporum having the highest number of these transporters (Ma et al. 2010). This

increase in number of ABC transporters is quite significant, because members of the

pleiotropic drug resistance protein transporter family (or ABCG family) are respon-

sible for tolerance to toxic compounds and plant secondary metabolites. This may

explain Fusarium species tolerance to various azoles. Additionally there are five

unique ABC transporters in Fusarium that are not present in any other sequenced

fungal genomes. Members of the G-protein-coupled receptor family like the cAMP-

receptor-like proteins, opsins/opsin-related proteins, homologues of human mem-

brane progestin receptor and homologues of M. oryzae PTH11 are also over-

represented in all the three Fusarium species (Ma et al. 2010). In particular,

homologues of PTH11, a known pathogenicity factor in M. grisea (DeZwaan

et al. 1999) are far more prevalent in Fusarium species; 98 members of this family

are present in F. oxysporum as compared to 60 in M. grisea. In line with the
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diversity of secondary metabolites produced by Fusarium, a number of secondary

metabolite genes grouped into clusters was also identified in all the three Fusarium
species (Ma et al. 2010). Genes from the majority of these clusters are co-regulated.

However, only few of these secondary metabolite gene clusters are shared amongst

these three species.

Genome sequences of the three Fusarium species were also analysed for synteny

and chromosomal rearrangements (Kistler et al. 1998; Rep and Kistler 2010). Most

of the F. verticillioides 11 chromosomes aligned in large, almost end-to-end blocks

with any one of the four large chromosomes of F. graminearum. In addition to

polymorphism-rich telomere proximal regions, F. graminearum chromosomes also

have discrete interstitial regions of diversity. These interstitial polymorphic regions

of F. graminearum chromosomes aligned well with ends of F. verticillioides
chromosomes and mark sites of chromosomal fusion in F. graminearum.

When F. oxysporum and F. verticillioides genomes were aligned, over 90 % of

the F. verticillioides genome was found to be syntenic to F. oxysporum, and all the

11 chromosomes of F. verticillioides had their corresponding ones in F. oxysporum
with little local rearrangement and only one major translocation event

(Ma et al. 2010). In contrast there were no significant orthologous sequences in

F. verticillioides for the whole of chromosomes 3, 6, 14 and 15; part of chromosomes

1 and 2 andmost of the unmapped regions fromF. oxysporum. These are the lineage-
specific (LS) regions in F. oxysporum. These lineage-specific regions of the

F. oxysporum genome are rich in transposable elements, particularly DNA

transposons, and arose through segmental duplications, with little exchange of

genetic information with conserved regions of the genome (Ma et al. 2010). When

short sequence reads from F. oxysporum strain 5176, a pathogen on Arabidopsis,
were aligned with F. oxysporum f. sp. lycopersici genome sequences, the short

alignments did not uniformly cover the genome. While conserved regions of the

genome had greater than 80 % coverage, genomic regions corresponding to the

lineage-specific regions of the F. oxysporum f. sp. lycopersici genome were covered

at a very low level (0–10 %). Thus, the lineage-specific regions of the F. oxysporum
f. sp. lycopersici genome are also enriched in strain- or forma specialis-specific

sequences (Ma et al. 2010). In line with this, it was also observed that all the fungal

ESTs detected in F. oxysporum f. sp. vasinfectum infected cotton plants aligned with

conserved regions of the F. oxysporum f. sp. lycopersici genome.

The lineage-specific regions of the F. oxysporum f. sp. lycopersici genome are

particularly enriched in secreted proteins (Ma et al. 2010; Rep and Kistler 2010).

These include nine SIX proteins, several other small cysteine-rich proteins of

unknown function (potential effectors), necrosis- and ethylene-inducing proteins

(NEP) and carbohydrate active enzymes (CAZY). All of these proteins either have

been demonstrated or are predicted to play important roles in plant pathogenesis.

F. oxysporum f. sp. lycopersici genes encoded in the lineage-specific region are

very similar to the NEP genes from Verticillium dahliae, the only other wilt-

producing fungus (Klosterman et al. 2011). Among the CAZYs, glycoside

hydrolases are particularly over-represented in the lineage-specific regions, and

many of them are expressed during plant infection (Ma et al. 2010). This expansion
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of CWDEs may account for the broad host range of F. oxysporum. Other proteins
that have been expanded in F. oxysporum are secreted peroxidases that provide

protection to oxidative stress and proteins involved in lipid metabolism and gener-

ation of lipid-derived secondary messengers, GPCRs and regulator of G-proteins

signalling (RGS; Ma et al. 2010). Examples include a perilipin-like Cap20 protein

that regulates release of free fatty acids and is a pathogenicity determinant in

Colletotrichum gloeosporioides. This protein is present in nine copies in

F. oxysporum as opposed to single copies in F. graminearum and F. verticillioides.
The small non-orthologous chromosomes, chromosomes 3, 6, 14 and 15, of

F. oxysporum f. sp. lycopersici are absent from a F. oxysporum strain
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Fig. 7.2 A pathogenecity chromosome is present in F. oxysporum f. sp. lycopersici. Antibiotic-
resistant pathogenic strains (Fol-007), nonpathogenic strains (Fo-47) and double-drug-resistant

strains obtained by cocultivating of Fo-47 and Fol-007were tested for disease incidence on tomato

(a). All but one of the double-drug-resistant strains were virulent (Fo-47+; 1A-3C). Fol-4287
(sequenced strain), Fol-007, Fo-47+ and Fo-47 strains (H1–H3) were karyotyped using contour-

clamped homogenous electric field (CHEF) gel electrophoresis (b). All the Fo-47+ strains have the

same karyotype as Fo-47 except for the presence of one or two small chromosomes from Fol-007
(black arrowheads). The larger of these two transferred chromosomes carries the SIX6 gene

present in the chromosome 14 of Fol-4287 (c) and is the “pathogenicity” chromosome in

F. oxysporum f. sp. Lycopersici. Adapted by permission from Macmillan Publishers Ltd: Nature

(Ma et al. 2010), copyright 2010
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non-pathogenic on tomato (Ma et al. 2010; Rep and Kistler 2010) (Fig. 7.2).

Likewise, non-conserved supernumerary chromosomes carrying genes for resis-

tance to plant antimicrobials, utilisation of specific carbon and nitrogen sources and

host-specific pathogenicity are also described in Nectria haematococca (anamorph

F. solani; Coleman et al. 2009) and Alternaria alternata (Hu et al. 2012). A

supernumerary chromosome has been described for the cotton pathogen

F. oxysporum f. sp. vasinfectum (Chakrabarti et al. 2011). This ~3.6-Mb chromo-

some is present in F. oxysporum f. sp. vasinfectum isolates from two different VCGs

but is absent from phylogenetically related non-pathogenic F. oxysporum isolates

collected from cultivated cotton fields and carries all three putative effector genes

(Fov-SIX6, PEP1 and PEP2) identified in F. oxysporum f. sp. vasinfectum and at

least one copy of the FTF1 and SCD1 genes that are specifically amplified in

F. oxysporum f. sp. vasinfectum (Fig. 7.3).
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Fig. 7.3 A supernumerary chromosome is present in F. oxysporum f. sp. vasinfectum.
Chromosomes from F. oxysporum f. sp. vasinfectum isolates from two different VCGs, related

nonpathogenic F. oxysporum isolates collected from cultivated cotton fields (Fo-CC) and

F. oxysporum f. sp. lysopersici (Fol) were karyotyped. The supernumerary chromosome in

F. oxysporum f. sp. vasinfectum isolates carries Fov-SIX6, PEP2 and at least one copy of PEP1,
SCD1 and FTF1. Fov-SIX6, PEP1 and PEP2 are present only in the pathogenic isolates, and the

FTF1 and SCD1 genes are amplified in the pathogenic isolates. This supernumerary chromosome

is an ideal candidate for pathogenicity chromosome in F. oxysporum f. sp. vasinfectum
(Chakrabarti et al. 2011)
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Over-representation and expansion of genes coding for potential effectors,

virulence factors, CWDEs, transcription factors and other pathogenesis-related

genes and a near-absence of housekeeping genes in the lineage-specific regions of

the F. oxysporum f. sp. lycopersici genome combined with their specific presence in

pathogenic isolates strongly suggest a connection between presence of these

lineage-specific regions and plant infection as well as host range. In particular,

the supernumerary chromosome 14 of F. oxysporum f. sp. lycopersici contains all
the known genes for in planta secreted proteins (Ma et al. 2010; Rep and Kistler

2010). Conidia from F. oxysporum f sp. lycopersici strain 007 (Fol-007) with a

selectable marker gene (Zeocin, BLE) inserted in the chromosome 14 was

cocultured with conidia from a hygromycin-resistant F. oxysporum strain that

does not infect tomato (Fo-47) and double-drug-resistant strains thus obtained

were able to cause wilt disease on tomato (Ma et al. 2010) (Fig. 7.2a). All the

double-drug-resistant strains (Fo-47+) had a karyotype similar to the Fo-47 parent

except for the presence of one or two small chromosomes from Fol-007 (Fig. 7.2b).
All the pathogenic Fo-47+ strains were found to carry the chromosome 14 from

Fol-007 (Fig. 7.2c), and two of the pathogenic ones, which showed highest level of
virulence, also received another chromosome corresponding to the smallest chro-

mosome of Fol-007. This smallest chromosome was positive for one marker

associated with a 1.3-Mb region from chromosome 3 and another marker for a

1.0-Mb region on chromosome 6. Both of these regions correspond to large

duplicated lineage-specific regions of the F. oxysporum f. sp. lycopersici genome.

None of the conserved chromosomes were transferred. Thus, acquisition of the Fol-
007 chromosome 14 by Fo-47 rendered the non-pathogenic Fo-47 capable of

infecting plants (Ma et al. 2010). Interestingly, no double-drug resistant strain

containing a tagged chromosome of Fo-47 in Fol-007 background could be

obtained even when a randomly generated Zeocin-resistant Fol-007 strain was

used. This preferential transfer may be determined by factors like size, composition

and stability of the mobile chromosome. Although information is lacking on how

frequently they occur under natural conditions, existence of such a transfer process

threatens the practice of using non-pathogenic Fusaria as biological control, many

of which are used on a commercial scale.

Transfer of supernumerary chromosomes has also been experimentally

demonstrated in Colletotrichum gloeosporioides and Alternaria alternata. In

Colletotrichum gloeosporioides, two distinct pathotypes, types A and B, exist that

are morphologically identical in culture but are asexual, vegetatively incompatible

and genetically distinct (He et al. 1998). A 2-Mb supernumerary chromosome is

present in pathotype A and some, but not all, field isolates of pathotype

B. Cocultivation of a pathotype A transformant carrying hygromycin resistance

marker in the 2-Mb supernumerary chromosome with phleomycin resistance

pathotype B resulted in double-drug-resistant transformants carrying the entire 2-

Mb supernumerary chromosome from pathotype A (He et al. 1998). Like chromo-

some 14 of F. oxysporum f. sp. lycopersici, double-drug resistance could only be

obtained when the hygromycin resistance marker was present in the 2-Mb supernu-

merary chromosome.
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Alternaria alternata is another asexual filamentous fungus where both patho-

genic and non-pathogenic types occur. A small conditionally dispensable chromo-

some of varying size carrying genes for Alternaria toxin biosynthesis is present in

the pathogenic isolates of this fungus (Akagi et al. 2009; Akamatsu et al. 1999;

Hatta et al. 2002; Johnson et al. 2001). Spontaneous or induced loss of this extra

chromosome in tomato and apple pathotypes of A. alternata resulted in loss of

pathogenicity (Johnson et al. 2001; Akagi et al. 2009). Protoplast fusion of tomato

and strawberry pathotypes produced a fusant that could infect both tomato and

strawberry. This fusant produced both tomato and strawberry pathotype-specific

toxins, and conditionally dispensable chromosomes derived from both the parental

pathotypes were detected in the hybrid. The hybrid’s genetic make-up was that of

the strawberry pathotype except for the additional pathogenicity chromosome from

the tomato pathotype.

While this demonstrates that conditionally dispensable chromosomes can be

transferred and stably maintained in a new genome, how this occurs remains a

question. Although formation of bridges though pili or pili-like structures is not

reported in fungi, fusion between fungal cells can occur through conidial, germ tube

or hyphal anastomosis (Read and Roca 2006; Roca et al. 2006). While conidial

anastomosis and germ tube fusions appear to be different processes, similar regu-

latory processes are involved in conidial and hyphal fusions. In F. oxysporum,
fusion between germinating conidia and vegetative hypha frequently occurs at early

stages of plant infection (Mesterhazy 1973; Rosales and Di Pietro 2008; Ruiz-

Roldan et al. 2010), and although not essential for plant infection, such fusion

appears to contribute towards effective adhesion and colonisation of the root

surface (Rosales and Di Pietro 2008). Hyphal fusion is achieved through directed

growth of fusing hyphae towards each other and formation of anastomosis tubes

(Ruiz-Roldan et al. 2010). Once the bridge is formed, one of the nuclei undergoes

division and the daughter nucleus moves into the recipient compartment through

the anastomosis tube. After that, the resident nucleus is degraded (Ruiz-Roldan

et al. 2010). Similar movement of nucleus has been observed in conidial anastomo-

sis in Colletotrichum and N. crassa (Roca et al. 2003, 2005). Such heterokaryosis

can result in mitotic crossing over and haploidisation leading to parasexual recom-

bination and thus contribute to genetic variation, including horizontal gene or

chromosome transfer in fungi lacking sexual production. Anastomosis between

individuals is controlled by Het or Vic loci (heterokaryon or vegetative incompati-

bility) and most frequently observed between genetically identical individuals (self-

anastomosis; Glass et al. 2000). Although heterokaryons formed between

non-identical genotypes of different Het group are followed by cell death or severe

growth impairment, non-self-anastomosis (both intra- and interspecies) has been

reported to occur (Qu et al. 2008; Roca et al. 2004; Toda and Hyakumachi 2006),

and slow-growing heterokaryons formed have been suggested as an intermediate

form through which horizontal chromosome transfer can take place (Manners and

He 2011). In a recent study it was observed that fused conidia from incompatible

strains of C. lindemuthianum could escape incompatibility triggered cell death for

at least 30 min (Ishikawa et al. 2012). Following anastomosis, heterokaryon
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formation and nuclear fusion or transfer of nuclear proteins were noted which at

times resulted in uninucleate heterokaryons. Colonies formed from such uninucle-

ate heterokaryons were resistant to both the antibiotics to which parental strains

were individually resistant, and their race specificities were altered as well

(Ishikawa et al. 2012). This strongly suggests that conidial anastomosis in

C. lindemuthianum can survive, at least under the experimental conditions;

incompatibility-related cell death and parasexual recombination can occur in such

cases leading to new genetic variability. Such a scenario could explain horizontal

gene and/or chromosome transfers between genetically distant lineages of

F. oxysporum, emergence of new pathogenic lineages and their apparent polyphy-

letic origins. Loading one mobile chromosome with pathogenicity genes would be

of great ecological advantage to the fungus for such one-step conversion of a benign

strain into a pathogenic one on a new host plant. What is the frequency of such

transfer in nature, what are the proteins involved in such flow of genetic informa-

tion, how such a process would be controlled and whether transposable elements

and repeats present in supernumerary chromosomes plays a role in horizontal

transfers are questions that need answers.

7.11 Outlook

In recent years, genome sequencing and analysis of plant pathogenic Fusarium spp.

has shed new lights into both molecular mechanisms and evolution of pathogenic-

ity. While major progress has been made in the discovery of small effector proteins,

lots remain to be determined about their role in disease incidence and their mode of

action. It is expected that these findings will help devise novel strategies for

management of the menace called Fusaria.

Another finding of immense practical significance is that most of the host-

specific virulence genes are present on lineage-specific chromosome(s) that are

devoid of house-keeping genes and that these chromosomes can be horizontally

transferred to non-pathogenic strains rendering these pathogenic. Horizontal chro-

mosome transfer can explain independent evolution of host-specific virulence

within a forma specialis where members are grouped together based on their

virulence on a host but are genetically distant. While the universality of this

phenomenon needs to be established involving more members of this group, a

possibility exists that many non-pathogenic Fusaria used as biocontrol agents for

management of pathogenic Fusaria (competitive exclusion) can acquire novel

virulence through horizontal transfer of “pathogenicity chromosomes” which

might pose a serious problem in future. Till questions are answered regarding

mechanism, natural occurrence and role of horizontal chromosome transfer in

evolution of Fusarium, use of non-pathogenic strains as a mean to control Fusarium
diseases should be dealt with caution.
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Chapter 8

Genomics and Spectroscopy Provide Novel
Insights into the Mechanisms of Litter
Decomposition and Nitrogen Assimilation
by Ectomycorrhizal Fungi

Anders Tunlid, Francois Rineau, Mark Smits, Firoz Shah, Cesar Nicolas,
Tomas Johansson, Per Persson, and Francis Martin

8.1 Introduction

A large part of the nitrogen (N) in forest soils is present in organic forms including

proteins but also other compounds like amino sugars and heterocyclic N molecules

(Nannipieri and Eldor 2009). Several studies have demonstrated that forest trees

have the capacity to acquire organic N in the form of amino acids. However, free

amino acids generally account for only a small fraction of the organic N pool, and

the ecological significance of this uptake is a matter of discussion (Näsholm

et al. 2009). Moreover, organic N compounds in soils are found in association

with polyphenols, polysaccharides, and other degradation products of plant and

microbial polymers (Piccolo 2001). To get access to the organic N embedded in

such complexes of soil organic matter (SOM), at least part of the shielding

compounds, including polyphenols, needs to be degraded. For these reasons, it is

generally thought that forest trees are dependent on the depolymerizing activity of

microorganisms to access the organic N fraction (Schimel and Bennett 2004; Read
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and Perez-Moreno 2004). Frank (1894) proposed already at the end of the nine-

teenth century that fungal symbionts, i.e., mycorrhizal fungi, might be one of the

key organisms performing this activity. However, the “organic nitrogen theory” of

mycorrhizal fungi was largely ignored until the mid-1980s (Trappe 2005; Read and

Perez-Moreno 2003). As a result, the view has emerged that soils contain two

distinct functional groups of fungi: the decomposers, which are involved in the

decomposition of complex organic material and release of their nutrient content,

and the fungal mutualists that absorb the mineral nutrients released by the decom-

position process.

In boreal forests saprotrophic fungi are primarily found in the surface litter

layers, while mycorrhizal fungi are dominating in underlying layers containing

more decomposed litter and humic-rich SOM (Lindahl et al. 2007). Humic

substances originate from the microbial decay of leaf litter, root litter, and root

exudates. The main constituent of the plant litter is lignocellulose. Lignin, one of

the most abundant components of lignocellulose, is a recalcitrant aromatic polymer

consisting of phenylpropane units joined by C–C and ether linkages (Ralph

et al. 2004). During the initial stages of SOM decay, the lignin polymers are

chemically modified, and C and nutrients become available for saprotrophic fungi

and bacteria, thereby promoting further degradation. The undecayed portion of the

plant litter remains in the soil together with microbially derived compounds and

residues. This mixture, operationally defined as humic substances, consists of

relatively small molecules that associate with each other in supramolecular

aggregates. These aggregates are stabilized by hydrophobic interactions and hydro-

gen (H) bonding, and their properties are determined by all of the constituents and

their associations (Sutton and Sposito 2005) (Fig. 8.1).

Lignin decay mechanisms have been studied almost exclusively in the context of

wood decomposition. Two main types of mechanisms have been characterized in

detail: decomposition by white-rot fungi and by brown-rot fungi (Hatakka and

Hammel 2010). The white-rot fungi degrade all components of lignocellulose

including cellulose, hemicelluloses, and lignin. Lignin degradation in these fungi

depends on the concerted action of dedicated peroxidases and hydrolytic enzymes

that include various cellulases and hemicellulases. The brown-rot fungi have

developed a different decay strategy being able to degrade most of the cellulose

and hemicelluloses, leaving the lignin polymer essentially undigested albeit chem-

ically modified. The brown-rot fungi express a distinct set of hemicellulases,

endoglucanases, and oxidases during the degradation of lignocellulosic material

but lack ligninolytic peroxidases, as well as many of the exocellulases present in

white-rot fungi. Of major importance for the disruption of the lignin barrier of

brown-rot fungi is the production of free radicals by a Fenton mechanism (Martinez

et al. 2009; Eastwood et al. 2011). During this reaction, Fe2+ reacts with H2O2 to

produce hydroxyl radicals (OH.) that can unspecifically oxidize both lignin and

cellulose molecules (Fig. 8.1).

In contrast to the decay of lignin in wood, little is known about the decomposi-

tion of lignin residues and other recalcitrant aromatic compounds in humic-rich

SOM. Recently, it was shown that the genome of the humicolous fungus Agaricus
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bisporus is rather similar to those of wood-decaying fungi (Morin et al. 2012). The

genome of this fungus encodes a full repertoire of polysaccharide-degrading

enzymes similar to that of wood decayers. However, a striking expansion of gene

families encoding heme-thiolate peroxidases and β-etherases is distinctive from the

Agaricomycotina wood decayers and suggests abilities to broadly attack lignin

residues in humic-rich environments (Morin et al. 2012).

The interfaces between microorganisms and soil constituents, including SOM

and soil mineral particles, are the zone in which the oxidative SOM degradation

reactions occur (Fig. 8.1). These complex interfaces constitute less than 1 % of the

soil volume and are distributed heterogeneously in small-scale habitats, connected

by water-saturated or water-unsaturated pore space. The biological, chemical, and

physical heterogeneity of these microhabitats is likely to have a large effect on the

turnover of SOM (Schmidt et al. 2011). At the molecular level, this turnover is

controlled by the properties of the fungal hyphae–SOM–mineral assemblies.

The interactions between the ensemble of biologically produced molecules

required for oxidative degradation and the components of these assemblies need

to be uncovered to understand C decomposition at the molecular level. We consider

that this can be accomplished only by unifying experimental information about the

gene expression of the fungi with information about the molecular structure and

properties of the SOM (Fig. 8.2). The growing wealth of genome sequences of fungi

and the application and development of novel spectroscopic methods have open up

new possibilities for such research. This review covers some recent studies using

such approaches and the insight that they provide regarding mechanisms for litter

Fig. 8.1 A schema of the complex interactions between fungal hyphae and soil components,

which ultimately determine the extent and rate of soil organic matter (SOM) degradation (see main

text for explanations)
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decomposition and N assimilation by ectomycorrhizal (ECM) fungi. However, we

will first give a short background to the ecology of litter decomposition by ECM

fungi highlighting areas of uncertainty.

8.2 Ectomycorrhizal Fungi as Decomposers

8.2.1 The Extramatrical Mycelium: The Interface Between
ECM and Soil

Ectomycorrhizae (ECM) is the dominant type of mycorrhiza found in association

with tree roots in a boreal forest (Smith and Read 1997). Development of the ECM

tissue proceeds through the differentiation of a fungal mantle surrounding the plant

root, inwardly directed hyphae which form the Hartig net around root cortical cells

and externally directed hyphae forming the extramatrical mycelium in the soil

(Fig. 8.2). Supported by carbon (C) from the host plant, the extramatrical mycelium

can grow extensively within the soil and efficiently prospect for nutrients, often at

considerable distances from the plant root system (Read and Perez-Moreno 2003).

The mycelial system is regarded as indeterminate, structurally and physiologically

heterogeneous network that interconnects multiple plant root systems (Cairney and

Burke 1996). The development and differentiation of the extramatrical mycelia

Fig. 8.2 The extrametrical mycelium developed from an ectomycorrhizal fungus. A birch (Betula
pendula) seedling colonized by the ectomycorrhizal fungus Paxillus involutus. The fungus

colonizes the plant’s root tips (TIP). Supported by plant C, the fungal mycelia grow extensively

and fuse to form thick rhizomorphs (RZM). When the mycelia encounter a patch (PCH) with

organic material, the material is degraded, and the assimilated nutrients are transferred to the plant.

Reprinted from Wright et al. (2005) with permission
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differ between different taxa of ECM fungi, and it has been proposed that the

morphology of the mycelia can be used as a trait to classify ECM into various

ecological groups (Agerer 2001). Such exploration types explore the surrounding

soils by extramatrical mycelia which are either concentrated in vicinity of the

mycorrhizal mantle or formed as far-reaching strands (i.e., rhizomorphs)

(cf. Fig. 8.2). When encountering a patch of nutrients, the hyphae can proliferate

extensively. Hydrolytic and oxidative enzymes are secreted, and nutrients are

released and assimilated by the mycelium and transported to the host plant. Once

the organic material is fully colonized by the fungus and the available nutrients

withdrawn, the amount of plant C allocated to the mycelium in the patch rapidly

decreases, and the mycelium dies (Leake et al. 2001). Residues of the ECM fungal

mycelium can persist in soil for long time and may constitute a large fraction of

SOM (Clemmensen et al. 2013).

Direct evidences that ECM fungi could assimilate organic N from complex

organic matter and transfer the N to the host plant emerged from a number of

seminal experiments performed by David Read and colleagues using soil

microcosms (Abuzinadah et al. 1986; Read and Perez-Moreno 2003). By using

soil microcosms, it could be demonstrated (Abuzinadah et al. 1986) that mycorrhi-

zal plants of Pinus contorta associated with the ECM fungi Paxillus involutus,
Suillus bovinus, and Rhizopogon roseolus could grow on a substrate supplemented

with protein as the sole N source. Since then, numerous studies have shown that

ECM fungi can assimilate organic N from proteins and other complex natural

organic substrates like litter material, pollen grains, and chitin (that is the main

component of necromass of fungal mycelia and soil mesofauna) (Read and Perez-

Moreno 2004). In these experiments the N sources were exploited and a significant

portion of N was delivered to the host plant (Read and Perez-Moreno 2004). More

recently, field studies using isotope analyses also provide evidences that ECM fungi

mobilize N during litter decomposition in boreal forest soils (Lindahl et al. 2007).

8.2.2 Nutrient-Mobilizing Enzymes

Assimilation of N from organic sources requires the secretion of a range of different

enzymes. It has been reported that ECM fungi can indeed express extracellular

enzymes that can degrade proteins and, at least to some extent, other organic

compounds in plant-litter material (such as cellulose, hemicellulose, and

polyphenols) in which N is embedded (Zhu et al. 1990; Norkrans 1950;

Haselwandter et al. 1990; Trojanowski et al. 1984). Moreover studies of soil

microcosms have shown that the assimilation of N from patches of plant-litter

material by the ECM fungus P. involutus is associated with an enhanced protease

and polyphenol oxidase activity (Bending and Read 1995).

There have been numerous attempts to measure the activities of nutrient-

mobilizing enzymes secreted by ECM in the field. Microplate enzymatic tests
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have been developed to measure secreted enzyme activities by freshly harvested

ECM root tips. These assays are using commercially available substrates for

peptidase, hydrolytic and oxidative enzymes involved in the decomposition of

lignocellulose, chitin, and phosphorous containing organic compounds (Courty

et al. 2005). These cultivation-independent methods have been used in field studies

examining the temporal and spatial dynamics of enzyme activities involved in

nutrient cycling and how they are influenced by disturbance (Pritsch and Garbaye

2011). One intriguing result from these studies is that the enzyme activities were

elevated at some periods when the level of photosynthate was low (Courty

et al. 2007; Cullings et al. 2008). This observation suggests that ECM fungi may

live as facultative saprotrophs, i.e., they can degrade and metabolize SOM as an

alternative C source when the energy supply from the host plants is low. Hence, it

has been proposed that the saprotrophic activity of ECM fungi might represent a

significant pathway of C loss in forest ecosystems (Talbot et al. 2008).

8.2.3 The Mechanism of Litter Decomposition Is Unclear

However, the efficiency by which ECM fungi can degrade and metabolize SOM is

not clear, and the evidences that they can act as facultative saprotrophs have been

questioned. As compared with saprotrophic fungi, ECM genome sequence infor-

mation show a reduced set of genes encoding plant cell wall-degrading enzymes

(Martin et al. 2008; Nagendran et al. 2009), which suggests that ECM fungi have

limited capacity to degrade plant-litter material. Furthermore, there are several

reports showing that ECM fungi have—particularly in comparison with saprophytic

fungi—only a limited enzymatic ability to degrade and mobilize N from

protein–polyphenol complexes (Bending and Read 1996; Wu et al. 2003). The

conclusions drawn from field studies using enzyme activity profiling have also been

questioned based on the fact that the assays are unspecific and therefore may

overestimate the decomposing activities of ECM fungi (Baldrian 2009). Moreover,

it has been argued that the ECM fungi are mostly found in humic soil layer (Lindahl

et al. 2007), which is composed only of low-energy-content molecules that cannot

support an extensive saprotrophic growth of ECM fungi (Baldrian 2009).

8.3 Conversion of Organic Matter by ECM Fungi

8.3.1 Probing Chemical Modifications of SOM Using
Spectroscopy

To examine the mechanisms by which ECM fungi degrade complex organic

material extracted from plant-litter material, the fungus Paxillus involutus was

grown in an axenic model system that allowed careful control of growth conditions
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and precise sampling of the substrate for spectroscopic analyses and harvesting of

mycelium for transcriptome profiling (Rineau et al. 2012). P. involutus (Batsch)

Fr. (Basidiomycetes, Boletales) is widely distributed in the Northern Hemisphere

and is one of the best-studied ECM fungi, especially with respect to the physiology

related to the uptake and transformation of nutrients (Wallander and Söderström

1999). The SOM constituents of organic material extracted from forest litter and

from maize compost material. Low-molecular-weight material such as inorganic N

sources was removed from the extracts by ultrafiltration, and the fungus was starved

for N before the SOM extracts were added.

A range of spectroscopic techniques was used to characterize the conversion of

the major components of the SOM by P. involutus. Fourier transform infrared

(FTIR) spectroscopy provides a chemical fingerprint of the functional group com-

position (e.g., carbonyls, carboxyls, hydroxyls, phenols, and phenyls) as well as

information on the alteration of these groups as a result of degradation. Synchro-

nous fluorescence spectroscopy was used for a more detailed characterization of the

aromatic molecules. This technique allows for measurement of the degree of

condensation and substitution of humic substances (Senesi et al. 1991). Finally, a

quantitative in-depth analysis of the composition of the SOM was conducted by

pyrolysis gas chromatography (Py-GC/MS). This technique also allowed the mea-

surement of the degree of oxidation of the lignin building blocks. The results

obtained with those three techniques demonstrated that, while P. involutus
assimilated half of the organic N in the SOM, the polyphenols and polysaccharides

were at least partially degraded. Of particular interest were the chemical

modifications of the lignin residues as detected by Py-GC/MS (Fig. 8.3). They

included the removal and oxidation of side chains, which are modifications that

have also been observed during the degradation of lignin through Fenton reactions

by brown-rot fungi (Martinez et al. 2011; Yelle et al. 2011).

8.3.2 Production of Iron-Reducing Compounds

A key requirement for the Fenton mechanism is a system for reduction of Fe3+ to

Fe2+, which might be accomplished by extracellular fungal metabolites or reductive

enzymes (Hatakka and Hammel 2010). The iron-reducing activity was indeed

significantly increased during decomposition of the organic matter extracts by

P. involutus (Rineau et al. 2012), suggesting that iron-reducing compound(s) was

secreted during organic matter degradation. The chemical structures and the role of

secondary metabolites in iron redox cycling have been studied in the brown-rot

bolete Serpula lacrymans (Eastwood et al. 2011). It remains to be determined

whether P. involutus produces similar metabolites during the decomposition of

plant-litter material.
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8.3.3 Trancriptome Profiling

The involvement of a Fenton-based biodegradation system during the decomposi-

tion of the SOM extracts was confirmed by analyzing the transcriptional response in

P. involutus using DNA microarrays. The array contained probes for 12,214

transcripts (isotigs) that were obtained by sequencing the transcriptome of

P. involutus when grown on the SOM extracts (Rineau et al. 2012). Based on

manual annotations, we identified 269 transcripts encoding enzymes known to be

Fig. 8.3 Degradation of organic material extracted from forest litter by P. involutus. The material

was analyzed using pyrolysis GC/MS after 7 days of incubation (Inoculated) and before incubation

(Reference). (a) Relative amounts of the major groups of organic compounds. A ratio below the

“no change line” indicates that this particular class of pyrolysis products was depleted in the

Inoculated as compared to the Reference samples. “Lignin” does not refer to genuine plant lignin

but rather parts of the lignin molecule that are present in the humic acids as residuals of the

degradation process. (b) Chemical modification of lignin residuals subunits. Numbers indicate the

relative peak area of the different lignin subunits in the reference sample against the average

relative peak area in the incubated samples (N ¼ 5, error bars denote standard error). Reprinted

from Rineau et al. (2012) with permission
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involved in the degradation of organic matter in white-rot and brown-rot fungi. In

total, 44 of these transcripts were significantly upregulated during the conversion of

organic material. Notably, the set of genes was similar to those expressed by the

brown-rot fungus Postia placenta when grown on cellulose medium (Fig. 8.4).

When in contact with organic matter, P. involutus overexpressed a number of

transcripts of oxidases like laccases, catechol dioxygenase, heme peroxidase,

tyrosinases, and cytochrome p450 monooxygenases that have also been shown to

be produced by the brown-rot fungus P. placenta when grown on wood or cellulose
media (Martinez et al. 2009; Vanden Wymelenberg et al. 2010). No transcripts

encoding class II peroxidases (Mn or lignin peroxidases) that are signatures for a

white-rot mechanism were detected in the transcriptome of P. involutus.

Fig. 8.4 Regulation of genes potentially involved in organic matter degradation by P. involutus.
(a) Expression profile of 44 genes that were manually annotated as potentially involved in organic

matter degradation and were upregulated more than twice (false discovery rate q < 0.01) in at

least one of pairwise comparisons in media containing extracts of complex organic material versus

mineral nutrient medium (MMN). The data presented are average ratio of expression (N ¼ 3).

Four different types of organic substrates were used: forest litter extracted with hot water (FH),

maize compost extracted with hot water (MH), maize compost extracted with cold water (MC),

and carboxymethyl cellulose (CMC). Isotigs and isogroups refer to transcripts and genes, respec-

tively. In gray boxes are four isotigs that were also identified in a (TAST) screening for secreted

proteins. (b) Comparison of the transcriptional response of P. placenta, P. chrysosporium, and
P. involutus when growing on a cellulose medium as compared to a medium containing glucose as

the carbon source. The number of genes that were upregulated at least twofold (in average of three

replicates) and those with annotations consistent with a potential role in organic matter degrada-

tion are shown. Reprinted from Rineau et al. (2012) with permission
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However, considering the expression of genes encoding carbohydrate-active

enzymes (CAZymes) involved in the degradation of the plant cell wall, there

were large differences between the symbiotic P. involutus and saprophytic

P. placenta. Although, none of them expressed genes coding for enzymes of the

canonical crystalline cellulose decomposition system (Lynd et al. 2002), the tran-

scriptional profile of P. placenta employs an array of CAZymes like

endoglucanases, β-glucosidases, and hemicellulase when it is grown on cellulose

or aspen (Martinez et al. 2009; Vanden Wymelenberg et al. 2010). Except for

endoglucanase (GH9), no glycosyl hydrolases were induced in P. involutus during
growth on plant litter or cellulose. In addition to the GH9, a member of the GH61

family was significantly upregulated in P. involutus. GH61 is the most abundant

CAZyme family acting on the plant cell wall in the genome of L. bicolor (Martin

et al. 2008). Recently, it has been reported that GH61 can depolymerize cellulose

oxidatively in cooperation with cellobiose dehydrogenase or low-molecular-weight

reducing agents (Langston et al. 2011; Quinlan et al. 2011). Hence, GH61 could be

an important component of the radical-based cellulose-degrading mechanism of

ECM fungi.

The lack of transcription of extracellular CAZymes needed for metabolizing C

released by the Fenton reaction could be expected in P. involutus considering the

fact that many of these enzymes are lacking in the genome of P. involutus
(A. Tunlid, F. Martin et al. unpublished data). This observation implies that the

decomposing mechanism has been tuned for assimilating organic N rather than C

from the SOM and that the ability to assimilate the released C has been lost as an

adaptation to growth on the host photosynthate (Rineau et al. 2012).

8.3.4 Ecological Implications of a Trimmed Saprophytic
Activity

The C and nutrients released during the radical-based decomposition of SOM by

fungi may become available for further degradation and assimilation by

saprotrophic microorganisms. Several studies have shown that the mycelia of

ECM fungi are surrounded by distinct communities of saprophytic bacteria and

fungi (De Boer et al. 2005; Izumi and Finlay 2011). Most likely, some of these

microorganisms are commensals that grow on the C resources that become avail-

able during the radical-based degradation. Other microorganisms may be

competitors that strive for the same nutrient resources as the ECM fungi. Thus, it

can be expected that ECM fungi have evolved mechanisms that could control the

activity of saprophytic microorganisms. The first evidence for such a mechanism

was reported already in 1971, when it was demonstrated that the presence of

mycelium of ECM fungi suppressed litter decomposition (Gadgil and Gadgil

1971). More recently, studies in soil microcosms have shown that the ECM

mycelium of P. involutus can reduce the activity of saprophytic bacteria (Olsson
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et al. 1996). The mechanism of the “Gadgil effect” is not clear; proposed

explanations are the production of toxic metabolites and the removal of nutrients

or water by the ECM mycelium (Bending 2003).

8.4 Regulation of the Decomposing Activities in ECM
Fungi by Carbon and Nitrogen

8.4.1 Carbon Availability Triggers SOM Decomposition

The finding that P. involutus does not express the hydrolases needed for

metabolizing the released C fragments suggests that the decomposing activity is

dependent on sugars from the host plant. Assuming that glucose is the main form of

plant C supplied to the ECM fungus (Nehls et al. 2010), we have recently examined

the decomposition of litter material regulated by glucose (Rineau et al. 2013).

Spectroscopic analyses revealed that degradation of SOM did only occur when

glucose was added to the extracts. Hence, glucose triggered the decomposition of

the litter material. Concomitantly, the expression of genes encoding enzymes

involved in oxidative degradation of polysaccharides and polyphenols (i.e., Fenton

chemistry) was upregulated. Addition of glucose also stimulated the assimilation of

N and the expression of genes encoding enzymes and transporters of all the major

steps of organic N assimilation of ECM fungi (Rineau et al. 2013). This involved

the degradation of proteins, uptake of released amino acids and peptides, and

internal transformation of amino acids. Taken together, data supports the hypothe-

sis that the SOM-degrading activity and assimilation of N by P. involutus is

dependent on sugars from the host plant.

The physiological mechanism providing the stimulating effects of glucose is not

known. Adding glucose to the extracts of SOM significantly stimulates the expres-

sion of metabolic pathways involved in energy generation (glycolysis, pyruvate

metabolism, and the TCA cycle). Transcripts encoding enzymes mediating the

oxidative parts of the pentose phosphate pathway are also upregulated. Thus,

apart from generating energy, the added glucose most likely stimulates the produc-

tion of reducing power (NADPH) needed for biosynthetic reactions. Another

possibility is that the added glucose triggers the activity of extracellular enzymes

involved in the oxidation of the SOM. Such mechanisms have been proposed to

explain the so-called priming effects, i.e., the stimulation of SOM turnover caused

by the addition of easily available organic C or N sources (Bengtson et al. 2012).

The above findings suggest that the regulation of the plant cell wall-

decomposing machinery may differ significantly between saprophytic and ECM

fungi. In saprophytic fungi, the expression of plant cell wall-degrading enzymes

including cellulases, hemicellulases, ligninases, and pectinases is commonly

repressed in the presence of glucose (Aro et al. 2005). Furthermore, several studies

of the brown-rot fungus P. placenta have shown that the oxidative degradation of
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cellulose and wood substrates can occur without adding glucose to the medium

(Martinez et al. 2009; Vanden Wymelenberg et al. 2010). Accordingly, both a

reduction in gene content of plant cell wall-degrading enzymes and mutations

affecting the transcriptional regulation have contributed to the symbiotic

adaptations of the decomposing mechanism in ECM fungi in the Boletales.

8.4.2 Ammonium Has Relatively Minor Effects
on the Decomposing Activities

The fact that the decomposition of SOM by P. involutus is linked to the degradation
of organic N suggests that the degradation activity should be controlled by environ-

mental factors known to regulate the activity of enzymes involved in the breakdown

of soil organic N sources such as proteins. In many filamentous fungi including the

ECM fungus Hebeloma crustuliniforme, the expression of proteolytic activity is

repressed in the presence of the favorable (or primary) N source like ammonium

(Marzluf 1996; Zhu et al. 1994). Moreover, studies in saprophytic fungi have shown

that N availability may also affect the expression levels of lignocellulolytic

enzymes including cellulases, peroxidases, and laccases (Aro et al. 2005; Fenn

and Kirk 1981; Chen et al. 2003; Edwards et al. 2011). However, the addition of

ammonium—which is the most abundant form of inorganic N in boreal forest

soils—had relatively minor effects on both the transcription and the decomposition

of litter material by P. involutus and only occurring when glucose was present

(Rineau et al. 2013).

8.4.3 Interactions Between C and N

ECM fungi assimilate nutrients including N from soil and exchange them for

photosynthetically fixed C. The mechanism that regulates this exchange is not

known, but it has been proposed that the plant host reduces the C supply to the

fungus if it fails to supply adequate amount of nutrients (Nehls et al. 2007). Recent

studies on the arbuscular mycorrhizal (AM) symbiosis have demonstrated that the

symbiosis is stabilized by reciprocal rewarding of nutrients and C resources

according with the nutritional benefit provided by the other partner (Kiers

et al. 2011). Experiments using AM mycorrhizal root organ cultures have also

shown that the C availability of the plant triggers the uptake and transport of N

uptake by the AM fungus (Fellbaum et al. 2012). The finding that P. involutus does
not degrade litter material without glucose suggests that the C flux from the host

plant can control the assimilation of organic N in ECM fungi. Studies of ECM fungi

in association with a host plant will be needed to verify this hypothesis.
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Moreover, regulation of the decomposing activities of ECM fungi by the plant

photosynthate needs to be considered for the understanding of environmental

factors that control the C cycles in forest ecosystem. Talbot et al. (2008) proposed

three hypotheses for mechanisms by which mycorrhizal fungi act as decomposers.

The first hypothesis (“Plan B”) is that mycorrhizal fungi metabolize significant

quantities of SOM when the supplies of plant photosynthate are low. The second

hypothesis (“Coincidental Decomposer” hypothesis) is that mycorrhizal fungi

decompose soil C as a consequence of mining SOM for organic nutrients. The

third hypothesis (“Priming Effects” hypothesis) is that mycorrhizal fungi decom-

pose SOM when allocation of plant C to mycorrhizal roots is high. Data from the

study by Rineau et al. (2013) provides support for both the “Priming Effect” and

“Coincidental Decomposer” hypotheses, but not for the “Plan B” hypothesis.

8.5 Molecular Components of the Protein Degradation
Pathways in ECM Fungi

Proteins contribute to major part of the organic N in forest soils (Nannipieri and

Eldor 2009). The assimilation of N from proteins involves several steps including

the degradation of organic N polymers, assimilation of released mono- and

oligomers, internal metabolism, and transfer to the host plant (Chalot and Brun

1998; Talbot and Treseder 2010). Proteases are key enzymes involved in the

extracellular degradation of proteins by fungi, and experiments have shown

abilities of P. involutus to capture N from plant-litter material associated with

increased protease activities in colonized material (Bending and Read 1995).

Furthermore, studies in pure culture systems using protein as a sole N source

have shown that abilities to produce extracellular proteases are common among

ECM fungi (Ramstedt and Söderhäll 1983; Zhu et al. 1990; Nehls et al. 2001;

Nygren et al. 2007). The proteolytic activity is typically expressed at an acidic pH

(<5.0) and is mainly inhibited by compounds active against aspartic proteases.

Characterizations of the extracellular proteolytic activity in Hebeloma
crustuliniforme and Amanita muscaria have shown that this is due to aspartic

proteases (Zhu et al. 1990; Nehls et al. 2001). More recently, analysis of the genome

and transcriptomes of L. bicolor reveals that ECM fungi can express a large number

of proteases and peptidases, not only including aspartic proteases but also members

of the serine, metallo, and cysteine classes of peptidases (Martin et al. 2008).

Furthermore, studies on amino acid and peptide transporters suggest that ECM

fungi have a large capacity to assimilate the catabolites of extracellular proteases.

Although only few transporters have fully been characterized (Nehls et al. 1999;

Wipf et al. 2002; Benjdia et al. 2006), in silico analysis of the L. bicolor genome

revealed that ECM fungi have a large gene repertoire of amino acid and

oligopeptide transporters (Lucic et al. 2008).
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We have recently examined the proteolytic machinery expressed by P. involutus
during the assimilation of N from various protein sources and extracts of organic

matter (Shah et al. 2013). All substrates induced a similar proteolytic activity that

was almost completely suppressed by the aspartic peptidase inhibitor pepstatin.

However, a transcriptome analysis showed that the fungus expressed a large

diversity of extracellular endo- and exopeptidases. The expression levels of these

peptidases were regulated in concert with N transporters and enzymes involved in

the assimilation and metabolism of the liberated peptides and amino acids.

8.6 Challenges and Future Prospects

8.6.1 Novel Spectroscopic Methods

In recent publications we have shown that infrared (IR) spectroscopy is an excellent

tool to qualitatively trace the oxidative degradation of SOM induced by ECM fungi

and Fenton mechanisms (Rineau et al. 2012; Rineau et al. 2013). However, from

these data it is difficult to exactly pinpoint the nature of the functional groups

consumed and produced during the degradation processes as well as to quantita-

tively estimate the extent of the oxidative reaction. These possibilities are offered

by synchrotron-based techniques such as X-ray photoelectron spectroscopy (XPS)

and near-edge X-ray absorption spectroscopy (NEXAFS) as indicated by new but

unpublished results from our group. For instance, the high spectral resolution of

synchrotron C 1s XPS data resolves classes of SOM functional groups (Fig. 8.5a),

and the individual peak areas in these spectra can be used as a relative measure of

the quantitative changes of SOM, which directly indicate the extent of oxidative

processes. The example provided in Fig. 8.5 shows that 7 days of incubation with

P. involutus results in a substantial increase of oxidized carbon in the form of

carboxyl groups.

We also know from recent progress in soil science that molecular structure alone

does not control SOM stability. Instead, the persistence of SOM arises from

complex interactions between SOM and the biological and physicochemical envi-

ronment (Schmidt et al. 2011). Furthermore, SOM itself is a complex mixture

consisting of relatively small molecules that associate with each other in supramo-

lecular aggregates. These aggregates are stabilized by hydrophobic interactions and

hydrogen (H) bonding, and their properties are determined by all of the constituents

and their associations. It follows that to understand SOM degradation by unifying

the gene expression information of the fungi with information about the molecular

structure and properties of the SOM, spectroscopic probes are needed to determine

SOM properties at high spatial resolution and under in situ conditions. More

specifically, techniques are required that will allow, at high spatial resolution

(from micrometers to nanometers), to follow molecular-scale changes in SOM in

terms of chemical states and relative abundances of atomic species and to precisely
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identify the reaction pathways of the degradation process. Such possibilities are

now emerging primarily due to development of spectroscopic imaging techniques

at synchrotron radiation sources but also by the use of conventional light sources;

an example of IR imaging of SOM using conventional IR light is shown in

Fig. 8.5b. Some studies have already demonstrated the importance and potential

of analyzing the chemical structures of intact SOM at high sensitivity and spatial

resolution using synchrotron methods (Lehmann et al. 2008). Further developments

that allow dynamic processes to be assessed are likely to revolutionize the under-

standing of the molecular interactions between SOM, mineral particles, and

microorganisms in the soil and how these interactions affect the stabilization of

soil C. In addition to XPS, NEXAFS, and IR spectroscopy already mentioned,

scanning transmission X-ray microscopy (STXM) and Raman spectroscopy will

play important roles in this area. Finally, the continued development of synchrotron

sources with increasing brilliance and coherence will certainly make important

contributions to the understanding of SOM degradation and stabilization.

IR microscopyba
1700

1650

1600

1550

2

1

0

-1

-2

-2900 -2950 -3000 -3050
X(Micron)

Z
(M

ic
ro

n)

1700

1650

1600

1550

-2900 -2950 -3000 -3050

X(Micron)

Z
(M

ic
ro

n)

0.04

0.03

0.02

0.01

0.00

Fig. 8.5 Synchrotron- and IR-based methods for characterizing SOM (C. Nicolas, A. Tunlid and

P. Persson, unpublished results). (a) Carbon (1 s) spectra obtained by XPS analysis of organic

matter extracts of forest litter before (FH0) and after 7 days of incubation with P. involutus (FH7).
Measured data ( full line) were fitted by Gaussian curves (dashed line). (b) IR microscopy images

of a thin layer of SOM, obtained by plotting the intensity of second derivative peaks representing

carbohydrates (top) and carbonyl groups (bottom). The images indicate a physical separation

between regions rich in carbohydrate and carbonyl, respectively
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8.6.2 Development of Novel Biomarkers

There is accumulating evidences that mycorrhizal fungi have a key role in impor-

tant ecosystem processes such as C cycling and nutrient mobilization. However,

there is a lack of methods that can measure the functional activities of these

organisms in the field. The current biomarkers include hydrolytic and oxidative

enzymes (Pritsch and Garbaye 2011), yet the understanding of the involvement of

such enzymes in decomposing and nutrient cycling processes is limited. For

example, several of these enzymes are not expressed during the decomposition of

litter material by ECM fungi (Rineau et al. 2012). Moreover many of the commer-

cial substrates used are not relevant for inferring the decomposition of the complex

C sources and nutrients that are present in SOM. The decomposing activity of soil

fungi is also analyzed on the basis of transcriptional gene expression (Kellner

et al. 2010). A major challenge of using such markers is that many of them belong

to large gene families, and only a few of their members may have a role in the

decomposition of SOM (Rineau et al. 2012).

The combination of spectroscopic methods and transcriptomic analyses offers

new possibilities to identify specific genes or chemical signatures that can be used

as biomarkers for probing the decomposing activity of microorganisms in soils.

Statistical methods can be used to correlate gene expression levels with

modifications in the substrate. Recently, such an approach was used to show that

in P. involutus the expression levels of specific sets of genes encoding lignocellu-

lose and protein-degrading enzymes can be correlated with specific modifications

of the plant-litter material (Rineau et al. 2013). A similar experimental system can

be used for analyzing the decomposing activities in a wide range of mycorrhizal and

saprophytic litter fungi. Through systems biology approaches, the changes in

spectra—and thus in the chemical modifications of the SOM—can be correlated

with changes in gene expression. In the long run, it should be possible to generate

models that will predict how a given change in transcriptional levels of a smaller set

of biomarkers would change the chemical composition of the substrate. A challenge

in analyzing such biomarkers in the field is to identify the relative contribution of

saprotrophic mycelium vs the symbiotic one. An approach to tackle this issue is the

use of ingrowth mesh bags that are either accessible or inaccessible to ECM fungi,

using cylinders to block the connection between tree roots and fungi colonizing the

mesh bags (Wallander et al. 2011). The contribution of ECM mycelium can then be

deduced by subtracting the activity within the cylinder to the activity in other mesh

bags. The mesh bags can be amended with plant-litter material or specific litter

material. The decomposition of this material can be followed by measuring either

the expression levels of specific transcripts or chemical modifications of the

substrate that are proxys for free radical production.

The use of high-throughput sequencing and the next-generation molecular tools

will provide ecologists with unprecedentedly large datasets describing the diversity

and composition of microbial and fungal communities. Associating genes to func-

tion is of major importance for translating the growing sequence data into

206 A. Tunlid et al.



ecologically meaningful traits including nutrient cycling and decomposition of

organic material. Studies in model systems with reduced complexity that is amena-

ble to integrate genomic and functional analysis offer unparalleled opportunities to

dissect such associations. The increasing availability of sequenced fungal genomes

will make it possible to identify which taxa have the genetic potential to produce the

key enzymes or metabolic machinery that contribute to the ecological process.

Then the genetic potential for enzyme production could be linked to phylogeny.

Such information will be important for predicting how microbial community

composition will relate to ecosystem functioning (Martiny et al. 2013; Zimmerman

et al. 2013).
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Wallander H, Söderström B (1999) Paxillus. In: Cairney JWG, Chambers SM (eds)

Ectomycorrhizal fungi: key genera in profile. Springer, Berlin

Wallander H, Ekblad A, Bergh J (2011) Growth and carbon sequestration by ectomycorrhizal

fungi in intensively fertilized Norway spruce forests. Forest Ecol Manage 262:999–1007

Wipf D, Benjdia M, Tegeder M, Frommer WB (2002) Characterization of a general amino acid

permease from Hebeloma cylindrosporum. FEBS Lett 528:119–124
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Chapter 9

Cochliobolus heterostrophus: A
Dothideomycete Pathogen of Maize

Benjamin A. Horwitz, Bradford J. Condon, and B. Gillian Turgeon

9.1 Biology and Plant Pathology

9.1.1 Cochliobolus heterostrophus and Southern Corn Leaf
Blight

Cochliobolus heterostrophus, a pathogen of maize, belongs to the

Dothideomycetes, a large and ecologically diverse class within the Ascomycota.

The biology of C. heterostrophus and its history as a plant pathogen and genetic

model system have been reviewed recently (Turgeon and Baker 2007); a brief

summary is given here. The Dothideomycete class currently consists of 12 orders.

C. heterostrophus is a member of the Pleosporales, which includes aggressive

pathogens of both monocots and dicots, as well as saprobes. Among pathogenic

Cochliobolus spp. are several species that are exquisitely specific to cereal hosts,

and their tight phylogenetic relationship suggests that diversification happened

quite recently, i.e., <17MYA (Ohm et al. 2012) (Fig. 9.1). Seven Cochliobolus
sequences, representing six species, are available through the Joint Genome

Institute’s (JGI) portal (Grigoriev et al. 2012), and several were included in a

large comparative study of Dothideomycete genomes (Fig. 9.1) (Ohm et al. 2012).

C. heterostrophus, found as two races (O and T), causes Southern Corn Leaf

Blight (SCLB) (Yoder 1988; Turgeon and Yoder 2000; Turgeon and Baker 2007).

C. heterostrophus race T produces the host-specific polyketide, T-toxin, which in

combination with URF13, a mitochondrial protein found in Texas male-sterile
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maize (Dewey et al. 1988), results in toxin-associated chlorosis around necrotic

lesions, followed by severe wilting and often death of the entire leaf. T-cytoplasm

maize was used because its male sterility facilitates easy cross hybridization; its

mitochondria, however, are sensitive to T-toxin (Lim and Hooker 1971; Dewey

et al. 1988; Turgeon and Baker 2007). SCLB is not usually a very destructive

disease, causing lesions on the leaves like those shown in a laboratory experiment

(Fig. 9.2). In 1970, however, a severe epidemic began in Florida and spread

throughout the eastern USA and as far west as Nebraska and eastern Texas and

north to Canada. The severe disease coincided with the emergence of toxin-

producing race T of the SCLB pathogen. Farmers no longer grow T-cytoplasm

maize, and other male-sterile genetic backgrounds are now used to produce maize

hybrids (Ullstrup 1972; Levings 1993; Weider et al. 2009). Three race T and two

race O strains, including highly inbred as well as field isolates, have been sequenced

(Condon et al. 2013). C. heterostrophus represents the Dothideomycetes in this

volume for several reasons. It was one of the very first filamentous ascomycete

plant pathogens sequenced, in the early 2000s by Celera Genomics for the Torrey

Mesa Research Institute (TMRI)/Syngenta (Kroken et al. 2003). Moreover, it is a

good genetic model. Not being a devastating plant pathogen, C. heterostrophus has
an advantage for basic research: standardizing molecular genetic work on brown

spot of rice, for example, would entail obvious difficulties in sharing material. A

high frequency of homologous recombination and the development of tools for

molecular and classical genetics (Turgeon et al. 1985, 2008; Catlett et al. 2003;
Debuchy and Turgeon 2006) make this an attractive system. The following discus-

sion in this section follows the life cycle and the disease cycle, beginning with

sporulation.

9.1.2 Asexual and Sexual Sporulation

Asexually produced C. heterostrophus spores (conidia) are the main type of

propagule infecting plants and are spread by wind and rain. C. heterostrophus
conidiates on the plant, allowing re-dispersal. In the laboratory, colonies produce

few or no spores when grown in total darkness. In continuous light conidiation is

profuse, and under light/dark cycles rings of conidia are produced, and melanin

production is also periodic (Wu et al. 2012) (Fig. 9.2). It is not yet clear whether an
endogenous circadian rhythm underlies this periodic development. In the field,

under conditions favorable to the pathogen, the disease cycle from germination to

conidiation can be completed in a week.

Fig. 9.1 Sequenced genomes of Cochliobolus and other Dothideomycetes. (a) Phylogeny and

estimated divergence of the Dothideomycetes. From Ohm et al. (2012); sequenced species (end

2012) are indicated by an asterisk. (b) SNPs relative to the reference genome C5, in

C. heterostrophus, other Cochliobolus species, and S. turcica. Data are plotted from Table 3A

of Condon et al. (2013)

9 Cochliobolus heterostrophus: A Dothideomycete Pathogen of Maize 215



Fig. 9.2 Biology and pathogenicity of C. heterostrophus. Left to right and top to bottom: Asexual
sporulation and melanin production result in dark rings on a colony growing under 8 h light, 16 h

dark cycles (photo: Kent Loeffler and B.A.H.). This species forms small appressoria when conidia

are germinated on a glass slide; nuclei in hyphae and the appressoria formed at their tips are

visualized here by DAPI staining and fluorescence microscopy (photo: Sophie Lev). Conidia

germinating on a maize leaf were stained with lactophenol blue; note bipolar germination and

formation of appressoria on the leaf surface (photo: Sophie Lev). Pseudothecia (the filamentous

hyphal network enclosing the developing asci is formed from vegetative, haploid mycelium of the

“female” parent) developed on a senescent maize leaf on which an albino strain (MAT1-1) met a

wild-type strain (MAT1-2); note white (albino) and black (WT melanized) pseudothecia. Asci and
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C. heterostrophus is heterothallic, with mating type defined by the MAT1 locus

which exists in one of two alternate forms (idiomorphs) known as MAT1-1 and

MAT1-2 (Turgeon et al. 1993). Mating is apparently rare in the field, but profuse

formation of pseudothecia can be observed easily in the lab. To obtain the sexual

stage, two strains of opposite mating type are allowed to meet on the surface of an

autoclaved senescent maize leaf (Fig. 9.2). The developmental program leading to

pseudothecia, meiosis, and formation of ascospores depends on the MAT1 tran-

scription factors (Debuchy and Turgeon 2006; Martin et al. 2010). The signaling

hierarchy acting upstream of the transcription factors remains to be elucidated. It is

clear that heterotrimeric G proteins, MAPK (Fig. 9.3) and two-component sensor

kinases, and response regulators participate at several stages. Many signaling

mutants are female-sterile but are competent as males and can still be crossed to

a female-fertile partner of opposite mating type (Horwitz et al. 1999; Lev et al.
1999; Igbaria et al. 2008; Oide et al. 2010).

9.1.3 Germination of Conidia and Initial Development

Moisture activates a very rapid adhesion mechanism. Extracellular matrix secreted

from the tips of the conidia allows them to stick tightly to the surface of maize

leaves. This adhesion can be demonstrated in vitro: by 20 min after placing a spore

suspension on a glass slide, they can no longer be easily washed off (Braun and

Howard 1994). The large, multicellular conidia germinate on the leaf within about

4 h, usually from both ends. The strict polarity that is a hallmark of filamentous

growth is lost, and some of the germinating hyphal tips differentiate into small

appressoria (Fig. 9.2, top right). The bipolar germination pattern is reflected in one

of the earlier names of the anamorph, Bipolaris maydis. Mutants in the MAPK

gene, CHK1, fail to produce conidia (Lev et al. 1999), while loss of the cell-

integrity MAPK MPS1 prevents conidiation, yet the hyphal tips form appressoria

on a glass or plastic surface (Igbaria et al. 2008). Nevertheless, the two signaling

pathways defined by these kinases share some co-regulated target genes (Igbaria et

al. 2008), suggesting further, genome-wide, experiments to find more such targets

of combined regulation by the Chk1 and Mps1 MAPK pathways. Mutants in one of

�

Fig. 9.2 (continued) ascospores, as drawn by Drechsler (1925): note the elongated, filamentous

ascospores within the asci. Symptoms, on N-cytoplasm maize line W64AN, caused by spraying a

conidial suspension of each of the two isogenic, sequenced laboratory strains (Fig. 9.1) C4 and C5

onto 3-week-old maize plants, followed by overnight incubation in a mist chamber (photos: 5 dpi,

Dongliang Wu and Kent Loeffler). Invasive growth visualized by confocal fluorescence micros-

copy of transgenic strains, in which Gfp expression was driven by the promoters of two cellulase

genes, EG6 and CBH7 (Lev and Horwitz 2003); in the upper panel (11 h hpi), strong background

fluorescence (red channel) is mainly from the underlying chloroplast-containing mesophyll layers,

while in the lower panel (24 hpi), green fluorescent mycelia are seen between mesophyll cells, in

which chlorophyll fluorescence has faded as necrosis progressed (images: Sophie Lev)
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Fig. 9.3 Signal transduction. Top, scheme of a part of the signaling network. Existing mutants are

shown in darker frames. Left, development on a glass slide of WT (strain C4) or a loss of function

mutant in the G protein Gα subunit gene CGA1 (Horwitz et al. 1999); note formation of

appressoria by the WT and straight polar growth of the mutant (photos: B.A.H.). Bottom, visuali-
zation of the activation of one of the transcription factors involved in processing signals from the

environment in C. heterostrophus. The redox-sensitive transcription factor ChAp1 is retained in

the nuclei of hyphae growing within a maize leaf, as detected by Gfp::ChAp1 fluorescence, in

response to oxidant or other plant signals (Lev et al. 2005). Red autofluorescent ellipsoids are

mesophyll chloroplasts; part of a pair of stomatal guard cells is also visible at the lower left (green
autofluorescence). Imaged at 12 hpi (M. Ronen, B.A.H. and Maayan Duvshani-Eshet)
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the three G protein alpha subunit genes, CGA1, conidiate normally but upon

germination show a clear phenotype: instead of forming appressoria, hyphae

continue to grow in a straight path, apparently oblivious to the presence of a hard

surface (Fig. 9.3). Surprisingly, cga1 mutants are able to infect maize (Horwitz

et al. 1999), though the mutant phenotype depends on the host leaf age (Degani

et al. 2004).

9.1.4 Entry into the Leaf

Appressoria are not necessary for penetration into the leaf (Horwitz et al. 1999).
Entry occurs with the help of enzymes that break down the cuticle and cell walls, or

via the stomatal pores. C. heterostrophus thus enters the leaf using a strategy that is
different from some other foliar pathogens like rice blast (Chap. 4). Although

appressorial turgor pressure generation does not seem to be important,

C. heterostrophus appressoria detect the plant surface. An endoglucanase promoter

drives strong expression of a Gfp reporter gene already at the appressorial stage and

during invasive growth (Lev and Horwitz 2003) (Fig. 9.2). This suggests that the

appressorium could have an exploratory, signaling role rather than directly

“breaking in” through the epidermis. Loss of polar tip growth occurs on plastic or

glass. The plant likely supplies a variety of additional signals, but it is not clear at

what stage they act or through what mechanism. The redox-sensing transcription

factor ChAp1 (ortholog of yeast YAP1) becomes localized to nuclei upon exposure

to oxidative stress in C. heterostrophus and other plant pathogens (Lev et al. 2005;
Molina and Kahmann 2007; Kim et al. 2009; Temme and Tudzynski 2009; Huang

et al. 2011). C. heterostrophus appressoria formed in water on a glass surface do not

activate ChAp1, but Gfp::ChAp1 localizes to the nucleus when conidia germinate

on the leaf surface. Plant extracts, even if treated with catalase to remove H2O2, are

able to activate ChAP1 (Lev et al. 2005). Phenolic compounds, ubiquitous in plants

and encountered early on by the invading pathogen, promote nuclearization of

ChAp1, but cannot induce its antioxidant target genes (Shanmugam et al. 2010;
Shalaby et al. 2012). Nevertheless, plant extract has both activities, suggesting that

more active plant molecules need to be isolated.

9.1.5 Invasion and Virulence

Once inside the leaf, the fungus grows between the mesophyll cells which at first

appear to remain viable (Figs. 9.2 and 9.3), but cell death can be observed as early

as 6 hpi. C. heterostrophus is thus considered a necrotroph with no (hemi)

biotrophic stage, though a necrotrophic lifestyle cannot always be sharply

delineated from a hemibiotrophic one (Oliver and Solomon 2010). The hyphae

initially tend to run parallel to the vascular bundles but later branch and invade
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tissue in all directions (Lev and Horwitz 2003) (Fig. 9.2). By 12 h, the fungus

produces visible lesions. Some of the same signaling pathways needed for devel-

opment (Fig. 9.3) also participate in attack on the plant: these include MAPK (Lev

et al. 1999; Igbaria et al. 2008), G protein (Ganem et al. 2004), and two-component

signaling pathways (Oide et al. 2010). The developmental regulators ChLae1 and

ChVel1 (Wu et al. 2012), like their Aspergillus orthologs (Chap. 5), modulate

secondary metabolite biosynthesis and development in response to darkness

or light. Loss of these regulators also affects sexual and asexual sporulation

(Wu et al. 2012).
The infection court presents an unfriendly environment to the invading patho-

gen. Plants fight infection with an oxidative burst. Nevertheless, necrotrophs

actually thrive in an oxidant environment, as shown first for Botrytis cinerea
(Govrin and Levine 2000; Heller and Tudzynski 2011). This may explain the

apparent paradox that ChAp1 is retained in the nucleus during invasive growth

(Fig. 9.3) yet is nonessential for virulence, at least on the maize cultivar studied by

Lev et al. (2005). The Botrytis cinerea YAP1 ortholog is essential for oxidative

stress response in vitro, yet does not induce its antioxidant targets during infection

(Temme and Tudzynski 2009). This suggests some very special regulatory circuits

used by necrotrophs in their adaptation to the host environment. Induction of

ChAp1 targets has not yet been followed in planta in C. heterostrophus. Stress
response machinery other than ChAp1 is, however, required for virulence. Loss of

the C. heterostrophus gene encoding the stress-activated MAPK (Hog1) or its

upstream two-component signal receiver (response regulator Ssk1) decreases viru-

lence (Oide et al. 2010) (Fig. 9.3). The transcriptional regulators ChLae1 and

ChVel1 are needed to tolerate oxidative stress and are required for full virulence

(Wu et al. 2012).

9.2 Genome

9.2.1 Statistics and SNPs

The Joint Genome Institute (JGI, CA) has sequenced two inbred laboratory strains

and three field isolates, as well as one strain each of five more species of the genus,

C. victoriae, C. carbonum, C. miyabeanus, C. lunatus, two strains of C. sativus, and
one member of the closely related genus Setosphaeria, S. turcica (http://genome.jgi.

doe.gov/programs/fungi/index.jsf). For a complete discussion, see Condon et al.
(2013). The laboratory race O strain C5, inbred by six backcrosses (Leach et al.
1982), is the reference strain to which the other members of the genus are com-

pared. With only 68 scaffolds, the C5 assembly is most resolved. The Cochliobolus
genome sizes of 32–38 Mb are typical for Ascomycetes and do not suggest any

duplications of large regions. The numbers of gene models, 11,700–13,200, are also

typical of these fungi. The S. turcica genome, 43 Mb, is a little larger than the six
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representatives of Cochliobolus, but the predicted transcriptome is encoded by

11,700 genes. Single-nucleotide polymorphisms (SNPs) provide a good indication

of the extent to which closely related genomes differ. Software (Kurtz et al. 2004) is
available to call (identify) SNPs. The two inbred laboratory strains, C4 and C5, are

an obvious case in point: they differ at the Tox1 locus (loci, actually, see discussion
below) and at the MAT1 locus where C5 has the MAT1-1 idiomorph and C4 the

MAT1-2 idiomorph. Other than these two major differences, C4 and C5 are nearly

isogenic, confirming the assumption that guided work on these strains over the

years: only 1,584 SNPs differentiate C4 from the reference C5 (Fig. 9.1). Looking

outside Cochliobolus, only 16 % of the S. turcica genome could be aligned to the

C. heterostrophus reference strain C5. The aligned regions, nevertheless, contain

fewer SNPs than some of the other species within Cochliobolus (Fig. 9.1). All three
C. heterostrophus field isolates differed from C5 by an order of magnitude more

SNPs than the inbred C4 (Fig. 9.1). The race O field strain has more SNPs than the

two race T strains, in agreement with RFLP data implying that race T arose from

race O (Yang 1995; Yang et al. 1996; Kodama et al. 1999). Looking at other

members of Cochliobolus, the alignment of reads to C5 remains high considering

that they are distinct species, but the numbers of SNPs are in the millions (Fig. 9.1).

The phylogeny and evolutionary view (Fig. 9.1) provide the starting point for

detailed investigation of classes of genes that could provide some understanding of

why one species is a pathogen and another a saprobe, has a narrow or wider host

range, or particular developmental patterns. This is no easier for Cochliobolus than
for other fungi, but extensive previous work suggested, as a first choice, for

necrotrophs secondary metabolite biosynthesis genes and small secreted cysteine-

rich proteins (SSCPs) for hemibiotrophs (Condon et al. 2013). We know from

previous work on C. heterostrophus that secondary metabolites are important for

virulence and stress resistance [e.g., T-toxin, a family of polyketides biosynthesized

by polyketide synthases (Turgeon and Baker 2007), and siderophores,

biosynthesized by nonribosomal peptide synthetases (Oide et al. 2006, 2007)].
We also know from classic (Doubly et al. 1960; Joosten and de Wit 1999) and

recent studies on “avirulence” genes, now referred to as pathogen effectors [see

Win et al. (2012)], that SSCPs are key words (or weapons) in the pathogen-host

molecular dialog. The possibilities for bioinformatic study beyond these two groups

are very large. Having focused, though, on these two groups, we proceed to discuss

them briefly, along the lines described in the Cochliobolus genome paper (Condon

et al. 2013).

9.2.2 Secondary Metabolites

9.2.2.1 Nonribosomal Peptide Synthases

These multimodular enzymes produce an amazing variety of peptide secondary

metabolites. Some have conserved functions. Acquisition of iron, for example, is a
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common need for all microorganisms. Mutants deleted for all genes encoding

Nonribosomal Peptide Synthases (NRPS) (NPS) in C. heterostrophus were

constructed by introducing a selectable marker in place of each gene, by homolo-

gous integration (Lee et al. 2005; Bushley and Turgeon 2010). Only one, NPS6,
resulted in a virulence phenotype when compared to wild type (Lee et al. 2005;
Oide et al. 2006). Identification of the product as the extracellular siderophore

coprogen linked siderophore-mediated iron uptake to virulence in C. heterostrophus
and other plant pathogens, including the wheat pathogen Fusarium graminearum
and the Arabidopsis pathogen Alternaria brassicicola (Oide et al. 2006). The
evolutionary relationships of NRPS in Cochliobolus species and S. turcica were

studied using the fungal AMP-binding (AMP) domain hidden Markov model

(HMM) developed by Bushley and Turgeon (2010). Phylogenetic trees were

built based on a comparative NRPS AMP domain inventory. Within Cochliobolus,

conservation of NRPSs is almost complete, while at the genus level, only seven of

the 14 NRPS in C. heterostrophus reference strain C5 were conserved. When the

related maize pathogen S. turcica was added to the comparison, this number

dropped to six of the 14. The conservation within species, and its loss when looking

outward at the species and genus levels, suggests that NRPSs and consequently

the peptide metabolites have diversified rapidly, along with the choice of host

and niche (Condon et al. 2013).

9.2.2.2 Polyketide Synthases

Polyketide synthases (PKSs) are responsible for the biosynthesis of secondary

metabolites, including some host-specific toxins. Like NRPS, PKSs are large,

multidomain enzymes. 23 and 25 PKS genes are annotated in the C5 and C4

genomes, respectively (Kroken et al. 2003; Condon et al. 2013). Using the PFAM

ketosynthase domain (KS) HMM as a query to search for orthologs, it was found

that most of the PKSs annotated in the reference genome are conserved across all

C. heterostrophus strains (Condon et al. 2013). There are some exceptions: field

strain Hm338 lacks PKS16, PKS25 is missing from strain Hm540, and PKS13, a

pseudogene, is found only in strains C5 and C4. PKS1 and PKS2, genes required for
biosynthesis of T-toxin, are present in, and only in, T-toxin producing

C. heterostrophus race T strains.

As mentioned above, the polyketide T-toxin is responsible for the super-

virulence of race T against T-cytoplasm maize. Production of T-toxin requires

two unlinked loci, Tox1A and Tox1B, which have been mapped to the breakpoints

of a reciprocal translocation of two race T chromosomes (12;6, 6;12) relative to

their counterparts in race O. Tox1A and Tox1B belong to 1.2 Mb of DNA that is

absent from T-toxin nonproducers. Loss of either PKS1 or PKS2 eliminates the

production of T-toxin (Baker et al. 2006; Inderbitzin et al. 2010). Known Tox1
genes, such as PKS1, are located on very small scaffolds (~25 kb) in race T strains

C4, Hm338, and PR1x412. These small scaffolds could not be further assembled

due to the repetitive and AT-rich nature of the Tox1 locus (Condon et al. 2013).

222 B.A. Horwitz et al.



As with the NRPSs discussed in the preceding section, conservation of PKS
genes is not as high across Cochliobolus species as between C. heterostrophus
strains and still less when S. turcica is added to the phylogeny. Seven PKSs out of

the 23 in reference strain C5 are conserved in all Cochliobolus species and

S. turcica. Of these, the only one responsible for a known metabolite is PKS18,

which starts the biosynthesis of DHN melanin. Thus, there are conserved PKSs that

are likely to synthesize unknown, but important, products.

9.2.3 Small Secreted Cysteine-Rich Proteins

The gene model catalogs for each species were filtered for small size (<200 amino

acids), at least 2 % cysteine residues, secretion signal, and lack of transmembrane

domains (Condon et al. 2013). The number of SSCPs identified in this way was

141–289. The numbers would change, of course, depending on the bioinformatic

cutoff criteria used, but it is clear that each strain and species has unique SSCPs.

Only 1–21 were unique to a particular C. heterostrophus strain, providing interest-

ing candidates for functional analyses. The highest number of unique SSCPs,

191 and 167, respectively, was found in C. sativus and S. turcica; it might not be

coincidental that both these species are hemibiotrophs, perhaps needing more

effectors to set up the complex initial interaction with living host cells (Condon

et al. 2013). Of the 180 SSCPs in the reference C. heterostrophus C5 genome,

72 have no EST support. The genome thus seems to be a reservoir of “virtual”

effector genes that are not expressed under conditions tested so far; in planta
expression experiments need to be done. It is important to keep in mind that any

such analysis rests on the quality of the gene models. There is no evidence for

clustering of SSCP genes in the genomes as in Leptosphaeria maculans (Rouxel et
al. 2011) or Ustilago maydis (Schirawski et al. 2010). They are, however, often

located in proximity to or within regions identified as C. heterostrophus species

unique (Condon et al. 2013).

9.3 Dothideomycete Soil Biology

In the field, C. heterostrophus overwinters in crop debris and soil, but is not really a
member of the rhizosphere or soil community. Some other Dothideomycetes have

closer ties to the soil. The closely related C. sativus causes leaf spot blotch of wheat
and other cereals, and also crown (location where the stems of grasses emerge from

the soil) and root rot (Kumar et al. 2002). C. victoriae is a crown pathogen of oats

and wheat. Setosphaeria pedicellata is noted (http://www.cabi.org) as a root patho-
gen (though apparently not a serious one). Cenococcum, an ectomycorrhizal fungus

with a wide distribution, is now firmly classified in the Dothideomycetes based on

multigene phylogenetic evidence (Spatafora et al. 2012). The genus Cenococcum is
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Fig. 9.4 Infection of maize roots by C. heterostrophus. Top (N), C. heterostrophus WT strain C4

is not able to infect the root of corn cv. W64-A with N-cytoplasm successfully. Plant roots

challenged by strain C4 (WT) are shown. Image was taken 10 days after inoculation. Mock-

inoculated control is shown on right. Inoculation of corn roots with C. heterostrophus was carried
out as described by Dufresne and Osbourn (2001) on inoculation of rice roots with Magnaporthe
oryzae. No clear difference was observed between the plants challenged by C4 and mock-

inoculated plants, indicating that C. heterostrophus strain C4 is not able to infect the roots of

maize cv. W64A with N-cytoplasm. Bottom, C. heterostrophus strain C4 infects the roots of maize

cv. W64A with Tcms (T) successfully. Roots of corn cv. W64-A with Tcms challenged by

C. heterostrophus strain C4 (WT). Images were taken 10 days after inoculation. Mock-inoculated

controls are shown on right. Development of roots and shoots was severely attenuated in the plants

infected by WT strain (K. Oide and B.G.T, unpublished; photos: K. Oide and Kent Loeffler)
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closely related to the Pleosporales (Ohm et al. 2012) (Fig. 9.1). Thus, a mutualistic

species keeps bad company (phylogenetically) with some destructive pathogens of

plants. Cenococcum geophilum is currently being sequenced at the JGI. Compari-

son with related pathogens (Fig. 9.1) may shed light on what makes a symbiont

different from a pathogen. From the physiological side, a first experiment has been

done, along the lines that led to the discovery that rice blast can infect rice roots

(Dufresne and Osbourn 2001; Sesma and Osbourn 2004) (Chap. 4) and that

Colletotrichum graminicola can infect maize roots (Sukno et al. 2008).

C. heterostrophus can indeed infect roots, intriguingly, only when the interaction

is between race T of the pathogen and T-cytoplasm maize, where T-toxin is a

virulence factor (Fig. 9.4).

9.4 Conclusions

C. heterostrophus has been a useful model to study how development, secondary

metabolites, stress physiology, and signaling pathways are involved in virulence.

Among the questions to be addressed in this and other systems are as follows: why a

particular species can infect roots or shoots, the molecular basis of host range, and

what makes the difference between a pathogen and a symbiont. The genus

Cochliobolus and Dothideomycetes in general have been the focus of an unusually

intense genomic sequencing effort. This raises the exciting possibility that these

often destructive pathogens may be among the first to yield the answers to some of

the most challenging questions in plant pathology.
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Chapter 10

Penicillium chrysogenum: Genomics
of an Antibiotics Producer

Marco A. van den Berg

10.1 Introduction

The species Penicillium chrysogenum1 was originally described by Thom (1910).

The conidiophore of the fungus resembles a paintbrush; hence, the genus name

Penicillium is derived from penicillus, the Latin word for paintbrush. The species

identification chrysogenum comes from the yellow pigment chrysogenin produced

by the natural isolates. Penicillium has long been considered to be a member of

the deuteromycetes, fungi with no known sexual state. Still, various studies

identified several remnants of sexual activity in the past (Braumann et al. 2008;

Hoff et al. 2008; Henk et al. 2011; Böhm et al. 2013).

Through history the fungus has also been known as P. notatum being

documented as the source for the discovery of penicillin (Fleming 1929). Penicillin

is active against gram-positive bacteria (i.e., Staphylococcus and Pneumococcus)

by disrupting bacterial cell wall synthesis, i.e., by inhibition of the transpeptidase

required for cross-linking of the peptidoglycan polymers. This leads to weakened

cell walls and uptake of excess water, which causes cell burst. Moreover, peptido-

glycan precursors accumulate due to the inhibition of transpeptidase, which in turn

induces autolytic hydrolases that will digest existing peptidoglycan (Moreillon

et al. 1990) without the production of new peptidoglycan. This enhances the

bactericidal action of penicillin.
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The ability to produce penicillin, as well as a range of other metabolites

(Table 10.1), has evolved over millions of years and is shared with several other

related fungi2 (Fig. 10.1). Producing this array of compounds is believed to give the

fungus a selective advantage during competition for carbon and nitrogen. Natural

isolates with the capability to grow submerged while producing penicillin were the

founding strains of all current industrial derivatives. These industrial strains can

produce enormous amounts of penicillins under harsh conditions in 100–200 m3

fermenters. The penicillin biosynthetic genes, pcbAB, pcbC, and penDE, are physi-
cally linked, forming a cluster that is amplified in industrial production strains.

10.2 Origin and Evolution

With the long industrial use of P. chrysogenum, there has been an equally long

debate on the evolutionary benefit of penicillin production as well as the natural

habitat of this fungus. Genome sequencing makes it possible to understand genetic

changes in the lineage leading to the current strains.

10.2.1 Natural Habitats

Often, P. chrysogenum is described as an “airborne fungus,” a term that is used to

describe that its conidia are spread through air towards various new habitats which

the fungus can colonize. In fact, it is a quite common fungus that can be found

almost anywhere in temperate, tropical as well as arctic locations (Ismail 2001;

Bancerz et al. 2005; Henk et al. 2011). Fleming’s isolate (1929) was obtained in the

classical way: spores transported through the air in St. Mary’s hospital, whereas the

ancestral strain of the current production strains—NREL1951—was isolated from

rotting fruit (Raper et al. 1944). Other isolates are from a range of habitats: salted

food products (Samson et al. 2010), indoor environments such as archives (Roussel

et al. 2012), compost heaps (Adeleye et al. 2004), and damp buildings (Andersen

et al. 2011).

All P. chrysogenum isolates are capable of secreting a versatile range of

enzymes and metabolites. In soil, fungi have to work under the most complex

conditions with limited free nutrition, limited oxygen, and many competitors. Like

most soil fungi, Penicillium can secrete various factors to liberate complexated

minerals [like phosphorus by producing phosphatases, chelating compounds, and

organic anions (Richardson et al. 2011)] and metals [like iron by producing a range

2 In total 8 species of Penicillium are reported to produce penicillin in culture: P. allii-sativi,
P. chrysogenum, P. dipodomyis, P. flavigenum, P. nalgiovense, P. rubens, P. tardochrysogenum
and P. vanluykii (Houbraken et al. 2012).
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P. rubens

species A

P. chrysogenum

NRRL 824

-0.8 Ma

-0.6 Ma

-0.5 Ma

1928

1943

1954

2012

Cephalosporin producing ancestral fungus

Penicillin producing ancestral fungus

- decreased PAA oxidation
+ improved auto processing IAT

+ penicillin gene cluster amplification
- loss of other (hypothetical) gene clusters

“Empty” fungus

+ prokaryotic cephalosporin biosynthesis genes

- loss of cef genes
+ recruitment of fungal copy penDE gene   

- loss of function PcaatC  

Acremonium
Kallichroma

Aspergilli Penicillia

species B

Industrial production strains

NRRL 1951

Q176b

Wisconsin54-1255

- loss of function cephalosporin esterase
- ABC transporter mutation
- 3.2 kb region, including erg25 gene, flipped 

- loss of chrysogenin production
- further decrease PAA oxidation

Fig. 10.1 Schematic overview of the evolutionary path of penicillin production by Penicillium.
NRRL 824 (Fleming 1929), Fleming’s isolate; NRRL 1951, first isolate for submerged growth

(Raper et al. 1944); Q176b, first isolate with decreased chrysogenin (Anderson et al. 1953);

Wisconsin54-1255, international laboratory strain standard (Elander 2002)
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of siderophores as trihydroxymates, coprogen, and ferricrocin (Hördt et al. 2000)].

Esterases hydrolyze the iron-containing siderophores into hydroxamates to make

the metal available for absorption. Also under laboratory culture conditions, this

iron scavenging machinery is used in order to acquire sufficient iron for growth and

penicillin production (Charlang et al. 1981; Leiter et al. 2001), as one of the key

biosynthetic enzymes—isopenicillin N synthase—is dependent on iron (Burzlaff

et al. 1999). Some of the siderophore synthetase genes—Pc13g05250 for

ferrichrome and Pc16g03850 for triacetyl fusarinine—were readily identified

from the genome (van den Berg et al. 2008). Transcription analysis using

Affymetrix GeneChips suggests that the former is more important than the latter

under laboratory conditions (data not shown), which corroborates earlier findings

(Charlang et al. 1981).

Indirectly, fungi associated with plant roots can trigger responses in the plants’

defense system, amongst others leading to a so-called state of induced systemic

resistance, wherein the plant expresses several defense proteins leading to improved

seed germination and growth (Chen et al. 2006; Murali et al. 2012). In fact, aqueous

extracts prepared from dried commercial P. chrysogenum mycelium can be used as

a spray or soil additive to enhance crop yield. Detailed studies showed that the

extract itself did not have any antimicrobial activity and low molecular weight

molecules—below 2,000 Da—are necessary to induce the defense mechanism in

plants (Thuerig et al. 2006).

10.2.2 Antimicrobial Compounds

In order to eliminate competing microbes for available nutrients in the same niche,

P. chrysogenum produces a range of secondary metabolites (Table 10.1), of which

the antibacterial β-lactams are studied most extensively. However, compared to the

production levels of current industrial strains, natural isolates produce only a minute

amount of β-lactam antibiotics under laboratory conditions [reviewed in van den

Berg (2011)]. Only a limited number of studies attempted to describe production of

antimicrobial metabolites in its natural habitats as the levels are difficult to quantify.

Hill (1972) clearly demonstrated penicillin production in soil and on seeds, while

being counteracted by Bacillus species producing β-lactamases. Besides β-lactam
antibiotics,P. chrysogenum is able to produce a range of other secondarymetabolites

including antifungal, antibacterial, and cytotoxic compounds (Table 10.1). For some

products, the biosynthetic gene clusters have been identified. Interestingly, in the

penicillin production strains, these other secondary metabolite gene clusters seem to

be downregulated. Gene transcription of at least three clusters is induced under

non-penicillin-producing conditions (Table 10.2).

The genome also contains remnants of other secondary metabolites, not reported

to be produced by P. chrysogenum. The gene clusters for viridicatumtoxin

and griseofulvin were most likely lost during evolution while being retained in
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P. aethiopicum (Chooi et al. 2010). The genes for melanin are dispersed over the

genome (Pc21g16000, Pc21g16380-Pc21g16440, and Pc06g01310), while in black

fungi, they are clustered and functional (Woo et al. 2010). Interestingly, the main

PKS-encoding gene (alb1 in P.marneffei; Woo et al. 2010) lost a copy during strain

improvement: 2 gene copies can be found in Wisconsin54-1255 but only one in

DS17690 (van den berg et al. 2008). Moreover, expression of the putative scytalone

dehydratase (arp1 in P. marneffei; Woo et al. 2010) was lost during strain improve-

ment (Jami et al. 2009b). Both observations could explain why spores of the

industrial strains are less intense green than the Wisconsin54-1255 strain.

In contrast to what has been reported, P. chrysogenum does not produce the

carcinogenic mycotoxin sterigmatocystin (Rank et al. 2011). Furthermore, it has

been suggested that some isolates produce fumigaclavine (Kozlovsky et al. 1998;

Zhelifonova et al. 2010) and ochratoxin A (Gherbawy et al. 2012). However, this is

not in line with detailed studies by Frisvad et al. (2004). Still, the genome might

encode enzymes that could have played a role in synthesizing these compounds: the

P. chrysogenum homologue of 6-methylsalicylic acid synthase, Pc22g08170, is

60 % identical to the PKS of P. nordicum involved in ochratoxin A biosynthesis

(otapksPN; Karolewiez and Geisen 2005). Fumigaclavine is an ergot alkaloid,

which biosynthesis starts with dimethylallyltryptophan synthase (dmaW) as

reported for P. commune [reviewed in Wallwey and Li (2011)]; the P. chrysogenum
homologue is Pc21g15430. Therefore, it could very well be that specific isolates

from specific niches could produce these compounds.

In addition to metabolites, Penicillia produce a range of antimicrobial proteins,

which can induce apoptosis-like cell death in sensitive fungi (Leiter et al. 2005). The

most studied example is PAF (Pc24g00380), a cysteine- and lysine-rich antifungal

protein (Marx et al. 1995). This small (6.25 kDa) protein is highly stable through a

broad range of pH (1.5–11), heat (60 min, 80 �C), and proteases. Interestingly,

PAF-producer P. chrysogenum is resistant through an unknown mechanism, but

closely related fungi as Aspergillus are sensitive. Metabolically active cells take up

the protein via an endocytosis-like process which triggers a very extensive signaling

pathway negatively influencing several elements in sensitive cells [reviewed in

Hegedus et al. (2011)]. The genome encodesmore putative small antifungal proteins.

One of them (Pc21g12970) is homologous to the bubble protein (BP) of

P. brevicompactum, themycophenolate-producing fungus, which inhibits Saccharo-
myces cerevisiae in a dose-dependent manner (Seibold et al. 2011). However, under

laboratory conditions, this gene is not transcribed (van den Berg et al. 2008). A third

Table 10.2 Secondary metabolite gene clusters induced under non-penicillin-producing

conditions (Harris et al. 2009a; Veiga et al. 2012a)

Contig Gene ID’s

Gene

number Putative function

Pc06 Pc06g02040–Pc06g02100 7 Unknown

Pc12 Pc12g06310–Pc12g06400 11 Involved in aristolochene biosynthesis

Pc21 Pc21g05060–Pc21g05110 6 Involved in the biosynthesis of sorbicillins

and derivatives

10 Penicillium chrysogenum: Genomics of an Antibiotics Producer 235



ORF, Pc12g08290, is closely related to the PAF protein. Interestingly, expression of

both PAF and Pc12g08290 is repressed under penicillin-production conditions when

the phenylacetic acid side-chain precursor is present (van den Berg et al. 2008),

whereas this repression does not occur in strains lacking the whole penicillin

biosynthetic cluster (Harris et al. 2009a).

Fungi also have to protect themselves against the molecules produced by other

microbes. Most likely, many of the 830 putative transporters of P. chrysogenum
(van den Berg et al. 2008) will have a crucial role in this, although reported

examples are limited to fluconazole and cycloheximide resistance proteins, induced

by glucose (Castillo et al. 2005).

10.2.3 Biochemical Arsenal

As many saprophytic fungi, P. chrysogenum is able to grow on lignocellulosic

material (Mishra et al. 1979; Rodrı́guez et al. 1994) via a wide range of secreted

enzymes. In addition, proteome studies confirm the presence of the biochemical

weaponry, including proteases, phosphatases, and oxidases, required for plant bio-

mass degradation (Jami et al. 2009a). Besides enabling growth on plant material,

many of these enzymes are useful in industrial applications as food processing and

biofuel production. The P. chrysogenum genome harbors 174 ORF’s encoding

putative enzymes involved in plant polysaccharide degradation (van den Brink and

de Vries 2011), allowing the fungus to grow on hemicellulosic, cellulosic, as well as

on lignin-containingmaterials. Several of these have been purified and characterized

from a sugar-beet pulp isolate (Sakamoto et al. 2011, 2012, 2013a, b). Besides all

major glycosyl hydrolase classes, four genes encoding the polysaccharide monooxy-

genases of the GH61 family have also been identified in the P. chrysogenum genome

(Gusakov and Sinitsyn 2012). This class was recently identified as crucial for cost-

efficient biomass hydrolysis for biofuel production (Langston et al. 2011).

Some of this biochemical arsenal is also used in order to compete out other fungi.

An antifungal chitosanase PgChP (Pc12g07820) produced by an isolate from

dry-cured ham was described by Rodrı́guez-Martı́n et al. (2010). Under laboratory

conditions, transcription of this gene was very low in low-penicillin-producing

strains such as NRRL1951 and Wisconsin54-1255 and, quite unexpected, much

higher in production strains (MA van den Berg, IS Snoek et al. unpublished results).

This is opposite for enzymes related to plant pathogenesis and infection, which are

downregulated in the high production strains (Jami et al. 2009b), as these functions

became redundant under laboratory and industrial conditions.
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10.2.4 Taxonomy

Several species of the genus Penicillium do produce penicillins (Frisvad et al. 2004):

P. chrysogenum, P. dipodomyis, P. flavigenum, P. griseofulvum, and P. nalgiovense.
Fleming (1929) identified his fungus originally asP. rubrum and later re-identified it as

P. notatum. However,morphological, extrolite, andmolecular studies re-identified not

only Fleming’s isolate but also the NRRL1951 isolate as well as the sequenced strain

Wisconsin54-1255 as P. rubens strains (Houbraken et al. 2011). P. chrysogenum is a

highly related species but retained as a separate clade due to significant interspecific

inhibition (Henk et al. 2011) as well as two other clades of Penicillium (species A and

B in Fig. 10.1).

10.2.5 Evolutionary Path

Production of β-lactam antibiotics is not limited to saprophytic fungi as Acremonium,
Aspergillus, and Penicillium; also some dermatophytic fungi from the genus

Trichophyton (Hammadi et al. 2007) can produce β-lactam structures and do contain

the respective biosynthetic genes. As two of the three penicillin biosynthetic genes

(pcbAb and pcbC) are from bacterial origin (see, e.g., van den Berg et al. 2008) and the

clustering of genes is well preserved among both cephalosporin- and penicillin-

producing fungi (van den Berg et al. 2007), it is most likely that a full β-lactam
biosynthetic pathway was acquired from prokaryotes producing cephalosporin

(Fig. 10.1). From this ancestral β-lactam-producing fungus, a long evolutionary tract

was initiated. The so-called expandase activity was lost, leading to a divergent class of

fungi only producing penicillins. Next, a fungal gene encoding acyltransferase activity

was “recruited” by the penicillin machinery, enabling more efficient penicillin pro-

duction via hydrophobic side chains. The genewas duplicated and physically linked to

the other penicillin biosynthetic genes (Spröte et al. 2008). Furthermore, the copied

gene—penDE in P. chrysogenum—acquired via evolution a C-terminal targeting

signal sorting the enzyme to the peroxisome where also CoA ligases are present

(van den Berg et al. 2008; Kiel et al. 2009) that activate natural side chains enabling

efficient production (Fig. 10.2). Further selection pressure made the original acyl-

transferase copy in Penicillia redundant and inactive, while in Aspergilli, it remained

active (Spröte et al. 2008; Garcı́a-Estrada et al. 2009; van den Berg et al. 2010).

Interestingly, comparable evolutionary events took place in P. brevicompactum, pro-
ducer of mycophenolate (MPA). One of the genes now present in the gene cluster,

IMP dehydrogenasemediatingMPA resistance, was duplicated before it was recruited

to the MPA gene cluster. In this case, this duplication event took place before

P. chrysogenum diverged from P. brevicompactum, but also before the MPA cluster

was acquired (Hansen et al. 2012). The enzymes of P. chrysogenum have no clear

function and are not very active.
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With the isolation of strain NRRL1951 from an infected cantaloupe bought on the

local market in Peoria (Raper et al. 1944), submerged cultivation of P. chrysogenum
became possible, with concomitant increased penicillin production. The concurrent

need for antibiotics due toWWII spurred the development of an industrial production

process. Classical strain improvement programs [reviewed by Lein (1986)] by

several multinationals lead to the parallel development of the current industrial

production strains producing several dozens of grams per liter, a staggering

20.000-fold higher than Fleming’s isolate. This enormous improvement has been

facilitated by many adaptations in fungal metabolism [reviewed in van den Berg

(2011)]. The most prominent changes are the following:

• Elimination of side-chain (phenylacetic acid, PAA) catabolism

• Increased level of biosynthetic enzymes (via amplification of the gene cluster)

• Increased carbon flux towards the amino acid building blocks (aminoadipate,

cysteine, and valine)

IPN ACV

peroxisome

mitochondrion

vacuole

IPN

PenG

PenG

PAA-CoA

PAA

cytosol

Cys

Val

Glucose

Cys
AA

Cys

Val

Cys
Val

bisACV

AA AA

AA Lys

PenG

PAA

PCL

IAT

IPNS ACVS

TRX

PA- + H+

PA- + H+

penV

penV

penV

paaT

*

ABC40

Fig. 10.2 Schematic overview of penicillin biosynthesis by P. chrysogenum. Cys cysteine, AA
aminoadipate, Lys lysine, Val valine, ACV L-δ-(α-aminoadipoyl)-L-cysteinyl-D-valine, bisACV
oxidized dimer of ACV, IPN isopenicillin N, PAA phenylacetic acid, PA phenyl acetate, PAA-
CoA phenylacetyl-Coenzyme A, PenG penicillin, ACVS ACV synthetase, TRX thioredoxin reduc-

tase (Cohen et al. 1994), IPNS IPN synthase, PCL PA-CoA ligase, IAT isopenicillin N:
acetyltransferase, penV vacuolar amino acid MFS transporter (Pc22g22150; Fernández-Aguado

et al. 2013a), ABC40 ABC transporter for PA secretion (Pc22g17530; Weber et al. 2012a), paaT
peroxisomal MFS transporter for PAA (Pc21g01300; Fernández-Aguado et al. 2013b), asterisk,

peroxisomal MFS transporter for IPN (most likely Pc22g22150, homologue of cefP; Ullán

et al. 2010)
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10.3 Penicillin Biosynthesis

Genetic analysis of mutants producing significantly reduced levels has provided

the initial information for understanding the basics of penicillin biosynthesis

(Queener et al. 1978; Cantoral et al. 1993; Fierro et al. 1995). The P. chrysogenum
genome sequence (van den Berg et al. 2008) allows a more directed approach

towards full understanding. Still, after more than 80 years and its genome

displayed, penicillin production is not fully understood and opportunities for further

improvement are identified.

10.3.1 Biosynthetic Pathway

The biosynthesis of all naturally occurring penicillins and cephalosporins starts

with the condensation of three amino acids (Fig. 10.2): α-aminoadipic acid (AAA),

L-cysteine, and L-valine into the tripeptide L-δ-(α-aminoadipoyl)-L-cysteinyl-D-

valine (ACV). A large, non-ribosomal peptide synthetase (NRPS) ACV synthetase

(ACVS) catalyzes as a single multifunctional enzyme the activation, fusion, and—

in the case of valine—the epimerization (Wu et al. 2012) of the three amino acids.

The enzyme sometimes makes “mistakes” and incorporates other amino acids, or

the reaction is aborted too early (van den Berg et al. 1999), which is considered to

be a potential energy drain during industrial production (van Gulik et al. 2000).

Secondly, the first β-lactammolecule is formed after oxidation and ring closure of

ACV by the enzyme isopenicillin N (IPN) synthase (IPNS). IPN contains the

characteristic β-lactam ring as well as the five-membered thiazolidine ring. Both

ACVS and IPNS are cytosolic enzymes. In contrast, the two final steps of penicillin

biosynthesis are located in a specialized organelle, the peroxisome (Fig. 10.2; see

also next section). Here, the AAA moiety is exchanged for a novel side chain:

phenylacetic acid (PAA) for penicillinG (PenG) or phenoxyacetic acid (POA) for

penicillinV (PenV). Isopenicillin N-acyltransferase (IAT) first hydrolyses IPN into

6-aminopenicillinic acid (6-APA) and AAA, followed by the coupling of the

activated side chain (PAA-CoA or POA-CoA). This latter activation is done by the

peroxisomal enzyme phenylacetyl-CoA ligase, PCL (Lamas-Maceiras et al. 2006).

10.3.2 Compartmentalization

Penicillin biosynthesis is highly compartmentalized (Fig. 10.2). The synthesis of the

amino acid precursors follows classical biochemical pathways via cytosol and

mitochondria [reviewed by Evers et al. (2004)], the surplus being stored for later

use in the vacuole (Affenzeller and Kubicek 1991). L-cysteine can be produced via
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two different pathways in β-lactam-producing fungi: the transsulfuration and the

sulfhydrylation pathway (Pieniazek et al. 1973). Theoretically, the yield of penicillin

on glucose is higher when L-cysteine is synthesized via the direct sulfhydrylation

pathway (Jørgensen et al. 1995). Here, cysteine synthesis is initiated through direct

acetylation of L-serine by the cytosolic O-acetyl-L-serine sulfhydrylase (OASS).

P. chrysogenum mutants lacking the direct sulfhydrylation pathway are disturbed

in growth, suggesting it has another role than penicillin biosynthesis (Evers

et al. 2004). The transsulfuration pathway on the other hand is located in the cytosol,

where the cysteine is directly available for the cytosolic ACVS and IPNS (van der

Lende et al. 2002). Moreover, transcriptome analysis of various strains of the

Penicillium lineage shows that Pc12g05420 (encoding OAHS) was more induced

than Pc21g14890 (encoding OASS) in higher producing strains, confirming the

hypothesis that the transsulfuration pathway provides the cysteine for β-lactam
production. The surplus of amino acids is stored in the vacuole and transported

back into the cytosol by a MFS transporter named PenV (Pc22g22150; Fernández-

Aguado et al. 2013a). Intriguingly, the transcript level of this gene is throughout all

strains and conditions rather low and constant (MA van den Berg, IS Snoek

et al. unpublished results), suggesting that the enzyme is always present at a basal

level making sure that there is no limitation in the availability of amino acids.

Because of the compartmentalization, both IPN and the PAA side chain have to

be transported into peroxisomes for further processing. Currently, it is still unclear

how IPN and the final penicillin product(s) are transported across the peroxisomal

membrane. Overexpression of pex11 led to a massive proliferation of peroxisomes

(Fig. 10.3c, d) with a concurrent twofold increase in penicillin titers, while the

levels of IAT and PCL remained constant (Kiel et al. 2005), suggesting that

transport over the membrane was limiting penicillin synthesis. Two MFS

transporters are involved in the translocation of biosynthetic intermediates essential

for cephalosporin production by Acremonium over the peroxisomal membrane

(Teijeira et al. 2009; Ullán et al. 2010). The closest P. chrysogenum homologue

of the penN transporter cefM, Pc21g09220, is highly induced under penicillin-

producing conditions in all strains tested (MA van den Berg, IS Snoek

et al. unpublished results), suggesting its protein product has a role in penicillin

biosynthesis. Unfortunately, the putative proteins from both species have no clear

peroxisomal targeting sequence, and therefore, no solid conclusions can be drawn.

IPN import into the peroxisomes is done by cefP; the closest P. chrysogenum
homologue, Pc22g22150, is constitutively transcribed at low levels independent

of penicillin production (MA van den Berg, IS Snoek et al. unpublished results).

A third MFS transporter, Pc21g01300, is off under nonproducing conditions and

has a high transcript level under producing conditions with PAA in the medium

(van den Berg et al. 2008). The enzyme encoded by the gene, aka paaT (Fernández-

Aguado et al. 2013b), is located in the peroxisomal membrane and essential for

import of PAA into the peroxisome.

The last barrier to be tackled is the cell membrane; the side-chain precursor has

to be imported and penicillin has to be exported. PAA is imported by passive

diffusion (Hillenga et al. 1995), but being a weak acid, it causes acidification of the
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cytosol, and at high concentrations, it can become toxic to the cell (White

et al. 1999). Therefore, while being imported, it is at the same time actively

excreted by an ATP-binding cassette transporter (Pc22g17530 or ABC40; Weber

et al. 2012a), leading to a futile cycle dissipating energy (Douma et al. 2012). The

export of penicillin is dependent on ATP (van den Berg et al. 2001) and therefore

most likely mediated by an ABC transporter, similarly to A. nidulans (Andrade

et al. 2000). However, the closest homologue to this A. nidulans atrD is

Pc20g01220, which is downregulated under (higher) penicillin-production

conditions and therefore not the most likely candidate (MA van den Berg, IS

Snoek et al. unpublished results). Several studies have attempted to identify the

penicillin exporter through comparative and knockout studies but so far without any

result (van den Berg et al. 2001, 2008; Weber et al. 2012c).

a b

c d

Fig. 10.3 Peroxisomes in

P. chrysogenum. (a, b) High-
producing strain DS17690

with DsRed-SKL under the

control of PpcbC (Kiel

et al. 2009). (c)
Wisconsin54-1255; D,

Wisconsin54-1255 with

Pex11 overexpressed under

the control of PpcbC (Kiel

et al. 2005). Peroxisomes are

indicated by the arrows
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10.3.3 Penicillin Gene Cluster

Production of secondary metabolites is highly regulated, often by means of a

clustered gene set, including specific transcription factors and/or transporter(s).

And while the genes (pcbAB, pcbC, and penDE) encoding the three penicillin

biosynthetic enzymes (ACVS, IPNS, and IAT, respectively) are clustered on the

genome (Fierro et al. 1995), neither specific regulators nor transporter genes can be

identified (van den Berg et al. 2007) (Fig. 10.4).

Although pcbAB and pcbC are recruited via horizontal gene transfer from

prokaryotes, the penicillin genes are positively controlled via a range of general

ACVS
IPNS

IAT

IAT

PCL

ACL

EXP

b

a

Fig. 10.4 Genome organization and metabolic pathway of β-lactam biosynthesis. (a) Genomic

organization. The penicillin cluster is located on chromosome I and, as part of a larger region,

amplified as tandem repeats in high-producing strains. The genes encoding the CoA ligases for the

PAA and adipate side-chain precursors are both located on chromosome II as one gene copy. The

expression construct encoding expandase, needed to produce adipoyl-7ADCA, under control of

the pcbC promoter and penDE terminator, is integrated randomly in the genome. (b) Metabolic

pathway. The three amino acid precursor aminoadipate, cysteine, and valine are fused together to

form L-δ-(α-aminoadipoyl)-L-cysteinyl-D-valine (ACV) by ACVS. IPNS catalyzes the oxidative

ring closure to form isopenicillin N. The PAA and adipate side-chain precursors are activated by

their respective CoA ligases, PCL (Lamas-Maceiras et al. 2006) and ACL (Koetsier et al. 2010).

IAT catalyzes the exchange of the aminoadipate module with the activated side chain to form

penicillinG and adipoyl-6APA, respectively. Expandase (EXP) transforms the latter molecule into

adipoyl-7ADCA
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filamentous fungal transcriptional regulatory mechanisms [summarized in van den

Berg et al. (2008)] including pH control (through PacC), carbon derepression

(through the CCAAT-complex), nitrogen regulation (through Nre), and chromatin

remodeling (through LaeA/VeA). Although no specific regulator was identified in

the cluster, two specific transcriptional activators are known: Pta1 (Kosalková

et al. 2007) and Rfx1 (Domı́nguez-Santos et al. 2012). Carbon catabolite repression

is mediated by CreA and can be relieved by deleting the binding sites in the

biosynthetic gene promoters (van den Berg 2011). Deletion of the creA gene led

to unstable or cripple isolates, suggesting an essential role for CreA next to its role

in controlling penicillin biosynthesis (van den Berg 2011).

10.3.4 Genome Insights

The 32 Mb genome of P. chrysogenum (van den Berg et al. 2008) revealed two

remarkable secrets. First and most surprising, several ORFs encoding a range of

putative β-lactam modifying enzymes were identified [see supplementary Table 6 in

van den Berg et al. (2008)]. Laboratory P. chrysogenum strains cannot produce any

cephalosporin and are dependent on the introduction of functional variants of IPN

epimerase, expandase/hydroxylase, and deacetylcephalosporin C acetyltransferase in

order to produce deacetylcephalosporin C and cephalosporin C (Ullán et al. 2008).

Therefore, the identification of an isopenicillinN epimerase homologue (Pc12g11540)

is unexpected, especially while it is actively transcribed and increased in higher

producing strains (van den Berg et al. 2008). It is tempting to speculate this being a

remnant of the original cephalosporin pathway in the ancestral fungus (Fig. 10.1), but

this cannot be substantiated. Preliminary deletion studies suggest a minor role in

penicillin biosynthesis (van den Berg et al. 2008); possibly it encodes an active

competing enzyme. Other competing enzymes could be encoded by one or more of

the hypothetical β-lactamases (3) or cephalosporin esterases (3). The presence of

cephalosporin esterases hydrolyzing β-lactams has been reported counterintuitively

for the cephalosporin producer A. chrysogenum (Velasco et al. 2001). Although

P. chrysogenum does not produce cephalosporin C, these esterases are rather promis-

cuous and can hydrolyze a range of substrates. The transcript level of all six

P. chrysogenum genes is rather low (van den Berg et al. 2008). Still, one of them

(Pc12g13400, a cephalosporin esterase) is translated into protein, as it was identified

during proteome analyses (Jami et al. 2009a). A mutation was introduced by classical

strain improvement in a second putative cephalosporin esterase gene which will have

hampered its function (van denBerg 2010).Ongoing functional studies have to resolve

their role in β-lactam biosynthesis.

Secondly, comparative DNA analyses of different strains revealed changes in

copy numbers of large clusters of genes. Six considerably large regions with

different copy numbers between the sequenced strain and a high-producing strain

were found [see supplementary Table 19 in van den Berg et al. (2008)]. As for the

penicillin gene cluster, most of these regions are flanked by one or more
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transposable elements, which may have played a role in the duplication or deletion

of DNA. Two gene clusters with over 50 hypothetical genes, which were mostly

low or not transcribed, are completely deleted from the genome of DS17690, the

high-producing strain (van den Berg et al. 2008). Three clusters of genes have been

amplified, including the penicillin biosynthetic gene cluster. The latter is present in

6–7 copies in DS17690.

10.4 Industrial Production

Classical strain and process improvements have led to a staggering annual β-lactam
production of 65,000 metric tons (Lowe 2001) in large fermenters of 100–200 m3.

Moreover, metabolic engineering is applied to develop a direct fermentation route

for cephalosporins (Cantwell et al. 1990), which is since the early 2000s performed

at industrial scale at DSM in Delft, the Netherlands (Xie et al. 2001).

10.4.1 Classical Strain Improvement

The isolation of the NRRL1951 strain, which could produce penicillin during

submerged fermentation (Raper et al. 1944), was the start of an unprecedented

sequence of strain (and process) improvement leading to the current, highly

optimized industrial P. chrysogenum strains (Fig. 10.1). Mutagens like

UV-radiation, X-ray, or DNA-alkylating agents introduced the random DNA

variations necessary to isolate improved mutants. Next to increased titers, one of

the first targets was the reduction of the yellow chrysogenin pigment (Backus and

Stauffer 1955). The later derived Wisconsin54-1255 strain isolated at the Univer-

sity of Wisconsin became the world laboratory standard (Elander 2002). This strain

is the basis of most industrial strain lineages, and its DNAwas used to determine the

genome sequence for P. chrysogenum (van den Berg et al. 2008).

Besides the reduction in chrysogenin production, themany rounds ofmutagenesis

introduced a vast array of modifications in the genome; however, only two direct

gene mutation-penicillin phenotype relations are known:

• pahA: The homogentisate pathway (phenylacetic acid catabolism) is largely

inactivated in Wisconsin54-1255 and derived strains (Rodrı́guez-Sáiz

et al. 2001), leading to an increased availability of side chain and thus increase

in penicillin.

• pcbAB-pcbC-penDE: The penicillin gene cluster is amplified several times in

production strains (Fierro et al. 1995; van den Berg et al. 2007).

A few other seemingly relevant mutations are known, for which the annotation

or the physical location suggest a correlation with penicillin synthesis or secretion,

but the direct relation with β-lactam biosynthesis was not shown:

244 M.A. van den Berg



• erg25: Encoding C4-setrol methyl oxidase, of which the orientation was reverted

in Wisconsin54-1255 on the outer edge of the amplified region in production

strains (van den Berg et al. 2007), possibly effecting the ergosterol content of the

membranes.

• Pc12g04030: Encoding a putative cephalosporin esterase, of which the ORF was

disturbed due to a 14 bp repeat, possibly decreasing β-lactam hydrolysis (van

den Berg 2010).

• Pc12g00440: encoding a ABC transporter, which acquired a mutation during

strain improvement, suggesting an effect in β-lactam transport (van den

Berg 2010).

Some other obvious modifications to the fungal metabolism do contribute

significantly to the improved penicillin titers, but the underlying mutations are

not yet identified:

• Enhanced penicillin production rates correlate with increasing peroxisomal

volumes (van den Berg et al. 2008; Meijer et al. 2010); this seems associated

by the increase in transcript levels of 27 genes encoding peroxisome associated

proteins (van den Berg et al. 2008).

• Expression of virulence factors, useful for natural isolates, is decreased in higher

producing strains (Barreiro et al. 2012).

• NADPH generation is increased in higher producing strains (Barreiro

et al. 2012).

• Transcript levels of amino acid biosynthesis genes and amino acid levels are

increased in higher producing strains (van den Berg et al. 2008; van den

Berg 2011).

• Morphological changes are associated with high-producing strains (Pócsi

et al. 2007).

• High penicillin producer strains seem to have lost the ability to utilize cellulose,

sorbitol, and other carbon sources (Jami et al. 2009b).

10.4.2 Genomics-Based Strain Improvement

The availability of the genome sequence stimulated the application of “omics”

analyses in order to identify new leads for further improvement of the penicillin

titers. The leads can be classified as follows: increase flux through primary meta-

bolism, increase flux through biosynthetic pathway, improve energy balance,

decrease side-chain catabolism, and improve organelle homeostasis (Table 10.3).

The latter class is specifically oriented at the peroxisome, which after the recruit-

ment of IAT became a very important compartment for high penicillin production

in P. chrysogenum. Meijer et al. (2010) showed that there is a direct correlation

between the number of peroxisomes and penicillin titer, which was extrapolated by

either increasing peroxisome proliferation (Kiel et al. 2005) or preventing peroxi-

some autophagy by the vacuole (Bartoszewska et al. 2011), both modifications
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leading to a further increase in peroxisome number and penicillin titer. This latter

finding is corroborated by the opposite experiment by Xu et al. (2012) where

deletion of pcvA (Pc21g07250), encoding Rab GTPase, increased vesicle-vacuolar

fusion and result in a decrease of penicillin titer.

10.4.3 Other β-Lactam Molecules

Classically, P. chrysogenum is used for producing penicillins, like penicillinV and

penicillinG. The latter molecule was used for chemical modification towards the

cephalosporin intermediate 7-aminodesacetoxycephalosporanic acid (7-ADCA, see

Skatrud 1992), which is used a building block for semisynthetic cephalosporins

such as cephalexin and cefadroxil. With the identification of the expandase enzyme

in Streptomycetes and the subsequent introduction of the cefE gene in

P. chrysogenum, an adipoylated version of the 7-ADCA molecule could be

fermented (Cantwell et al. 1990; Skatrud 1992; Robin et al 2003). The adipoyl

side chain can be easily removed by a specific acylase (Sio et al. 2002), and specific

Table 10.3 Gene modification leading to increased penicillin production (rates) in P. chrysogenum

Modification Enzyme Gene

Fold

improvement References

Deletion Serine-threonine kinasea Pc18g03490 1,37b Bartoszewska

et al. (2011)

Acyl-oxidasec Pc20g01800 1,6d Veiga

et al. (2012b)

Acyl-CoA dehydrogenasec Pc20g07920 3,7d Veiga

et al. (2012b)

Oxalate hydrolasee Pc22g24830 1,36d Gombert

et al. (2011)

L-aminoadipate-semialdehyde

dehydrogenasef
Pc22g06310 2g Casqueiro

et al. (1999)

Overexpression IAT Pc21g21370 1,6b Weber

et al. (2012b)

PEX11h Pc12g09400 2b Kiel et al. (2005)

pptA Pc13g04050 1,3g Garcı́a-Estrada

et al. (2008)

PCL Pc22g14900 1,35g Lamas-Maceiras

et al. (2006)
aInvolved in autophagy (peroxisome sequestration by vacuoles)
bBased on penicillinV titer
cInvolved in β-oxidation
dBased on adipoyl-6APA production rate
eFormation of oxalate (precipitates with calcium)
flysine and amino acetate pathway
gBased on penicillinG titer
hPeroxisome proliferation factor
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side chains can be coupled either chemically or enzymatically in order to form the

active pharmaceutical ingredient (API). Further fermentative modification of the

adipoyl 7-ADCA into hydroxylated, acetylated, and/or carbamoylated versions is

also possible in order to reduce even more additional chemical steps towards API’s

as cefuroxime (Harris et al. 2009b).

10.5 Conclusion

Eighty years after Fleming’s discovery, penicillin production by P. chrysogenum is

still the basis of one of the world’s leading antibiotics. The genome sequence has

shed new light on questions like why fungi are producing β-lactam antibiotics and

why this particular fungus has become such a good producer. Continuous mutation

and selection, both in nature and in the laboratory, has changed the blueprint

of P. chrysogenum into a very efficient machinery, wherein several genes and

enzymes needed to survive in nature have become obsolete and dysfunctional.

Interestingly, some of these functions (i.e., synthesis of other secondary metabolites)

are just suppressed by the penicillin production; when production is halted, the

repression on these genes is relieved and synthesis might start. With respect to

penicillin biosynthesis, new functionalities have been acquired, adapted, and

duplicated in order to sustain the high flux from carbon source to the final product

in the industrial production strains.
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Chapter 11

Rhizopus oryzae: Genetic Secrets of
an Emerging Human Pathogen

Brian L. Wickes

11.1 Introduction

Rhizopus oryzae, sometimes referred to as a synonym of Rhizopus arrhizus, is a
filamentous fungus that grows exclusively as a mold and is the most frequent cause

of human mucormycosis (Ibrahim et al. 2012). Agents of mucormycosis include

members of the family Mucoraceae (sometimes referred to as “pin molds” after the

pin-like appearance of the sporangiophore and sporangia) and include fungi in the

genus Rhizopus, Absidia, Rhizomucor, and Apophysomyces. Fungi in these genera,

as well as the other families in the Mucorales order (Cunninghamellaceae,

Mortierellaceae, Saksenaceae, Syncephalastraceae, Thamnidiaceae) combined

with the order Entomophthorales, comprise a large group of fungi formerly classi-

fied as the zygomycetes (derived from the phylum Zygomycota). Clinical infections

caused by these fungi are typically described as zygomycotic infections or

zygomycosis, which are general terms suggestive of an infection caused by a

member of the Mucorales or Entomophthorales (Kwon-Chung and Bennett 1992).

However, there have been recent taxonomic changes to the phylum Zygomycota,

which have led to a reclassification of the fungi in this phylum. Unfortunately, these

changes have complicated the clinical study of Rhizopus oryzae and other members

of the Zygomycota because the field of medical mycology encompasses both

mycologists and clinicians, for whom taxonomy has a slightly different function.

Clinicians typically must have a basic knowledge of all infectious diseases.

Although many do specialize in medical mycology, it is difficult for clinicians to

keep up with changes in taxonomy, particularly in the molecular era where revision

of taxonomy often occurs as new technologies are applied to a given field. Basic

researchers, on the other hand, need a naming system that is always current and
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clearly categorizes the similarities and differences between members of the fungal

kingdom due to a need to understand relationships among organisms. Conse-

quently, with regard to this chapter, although the current taxonomy will be covered,

the older classifications and names will be employed (Zygomycota, zygomycetes,

Mucorales, etc.).

R. oryzae is arguably one of the best models of the pathogenic zygomycetes.

This fungus causes ~70 % of the infections in humans (Roden et al. 2005) and

exhibits typical zygomycetous phenotypes that include rapid growth rates, aseptate

hyphae, wide distribution, and a saprobic lifestyle. These fungi are found through-

out the world and are often associated with decaying vegetable matter including

food, such as fruit, nuts, and cereal grains (Ribes et al. 2000). It is also one of the

few zygomycetes in which a genome sequence has been completed and annotated

(Ma et al. 2009). A transformation system exists and there are animal models of

infection. Consequently, understanding R. oryzae at the genetic and molecular

levels is an important strategy for understanding other zygomycetes, many of

which are becoming increasingly important as pathogens.

11.2 Phylogeny

The phylogeny of R. oryzae has recently undergone some modifications. In medical

mycology, new species are constantly discovered and changes in phylogenetic

classification and nomenclature regularly occur. However, a recent driver of phy-

logeny has been the application of molecular biology to issues of phylogeny,

taxonomy, and nomenclature. In many instances, molecular methods of phylogeny

are quantitative and allow firmer species boundaries to be established, versus the

descriptive nature of morphology, which can often be variable or insensitive. In

fact, the phylum Zygomycota has undergone a large phylogenetic change in

addition to the changes at the species level of R. oryzae.

11.2.1 Description of the Species

The names R. oryzae and its synonym R. arrhizus continue to be used interchange-

ably, including the research literature published as recently as 2012. This disagree-

ment is not easily resolved as the discrepancy arises from differences in how to

apply the rules of fungal nomenclature. R. oryzae was first described by Went and

Geerling in 1895, while R. arrhizus was first described 3 years earlier by Fischer

(Kwon-Chung and Bennett 1992). The arrhizus species epithet, therefore, has

preference over the oryzae species epithet. However, there is some evidence that

the original R. arrhizus isolate was an atypical form of R. oryzae (Scholer

et al. 1983); thus, it was argued that R. oryzae is the proper name (Ellis 1998;

Schipper 1984). This discrepancy is illustrative of the problems in fungal
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nomenclature, which adversely impact medical mycology. Unfortunately, resolu-

tion of the discrepancy would require material from the original isolate, which is

not available. Because this chapter is research oriented, R. oryzaewill be used as the
species name, which also is the name attached to the isolate from which the genome

sequence was derived. This sequenced isolate will be the strain used for any

molecular references (genome information, genes, etc.) in this chapter as well.

The genus Rhizopus consists of approximately 8–13 species (Abe et al. 2006,

2010), depending on classification method (morphological vs. molecular) with

five species being clinically significant: R. oryzae, R. microsporus, R. schipperae,
R. azygosporus, and R. stolonifer. R. microsporus is further subdivided into three

varieties (var. microsporus, var. oligosporus, var. rhizopodiformis) (Fig. 11.1).

These species can be difficult to routinely discriminate in a clinical microbiology

laboratory due to the rarity of isolation and, consequently, unfamiliarity with

distinguishing features. However, molecular methods such as sequence-based

identification can be straightforward in separating the five species. For the

purposes of discriminating the different species of Rhizopus, the actin (act-1)

and translation elongation factor 1 alpha (EF1α) genes have the most unique

species GenBank entries. Sequences derived from these genes can be searched

using the BLASTn algorithm at the NCBI GenBank website http://blast.ncbi.nlm.

nih.gov/Blast.cgi. The three R. microsporus varieties, on the other hand, cannot

be reliably discriminated based on sequence analysis or other molecular methods

and can only be distinguished morphologically by the most experienced

mycologists. Pathological specimens cannot be accurately identified to either

the genus or species level; instead, they are generally just diagnosed as a

zygomycotic infection.

Fig. 11.1 Rhizopus oryzae taxonomy. R. oryzae is a zygomycetes found in the phylum

Zygomycota. Importantly, the class Mucorales contains many, but not all, of the human patho-

genic zygomycetes. The Rhizopus genus contains five pathogenic members, although other

pathogenic species may be rarely isolated. R. microsporus can be further subdivided into three

varieties, oligosporus, microsporus, and rhizopodiformis. Adapted from Ribes et al. (2000)
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11.2.2 Rhizopus oryzae vs. Rhizopus delemar

The genus Rhizopus is subdivided into three groups, the stolonifer group, the oryzae
group, and the microsporus group, with the groupings based on morphologic

characteristics such as size of the sporangia and sporangiophore, and rhizoid

branching (Schipper and Stalpers 1984). Current methods utilizing sequence-

based classification to establish phylogenetic relationships continue to support the

initial morphologic grouping scheme (Abe et al. 2006). Subsequent phylogenetic

investigations of R. oryzae arose, in part, due to its commercial importance as an

organic acid producer. Use of R. oryzae in silage production requires strains that

produce lactic acid; consequently, it is economical to use a strain that produces the

optimal amount under the appropriate conditions. Variation in lactic acid produc-

tion, specifically the existence of R. oryzae strains that either could or could not

produce lactic acid, was already known (Oda et al. 2002). In an effort to efficiently

screen strains for lactic acid producers, Abe et al. found a molecular method that

utilized the rDNA sequence of the ITS region to devise a simple PCR-based method

for identifying lactic acid-producing strains (Abe et al. 2003). This finding was

extended by analyzing the sequences and gene organization of two genes required

for lactic acid production, ldhA and ldhB, which had previously been cloned and

characterized by Skory (2000). It was found that R. oryzae strains that possessed

both an ldhA and ldhB gene formed one group within this species, which was called

the lactic acid group, while strains that contained only the ldhB gene clustered as a

separate group and were able to produce fumaric and malic acid, but not lactic acid

(Oda et al. 2003; Saito et al. 2004). This group was called the fumaric–malic acid

group.

Strong evidence for organic acid production serving as a basis for taxonomic

discrimination was provided by Abe et al. (2007) who used extensive sequence

analysis of multiple loci, as well as a genome sampling method called Amplified-

Fragment Length Polymorphism (AFLP), to analyze these two groups to determine

if the phenotypic differences had a phylogenetic basis. In this study, the sequences

of a region within the ribosomal genes (ITS region), actin (act-1), translation

elongation factor alpha (EF-1α), and the lactate dehydrogenase B gene (ldhB), as
well as AFLP, were used to test the two organic acid clusters to determine if the

same clustering was observed using molecular methods. The sample set was chosen

from an earlier report using morphology for classifying the genus, which was the

basis for the current Rhizopus classification scheme (Schipper and Stalpers 1984).

The results of the molecular studies supported dividing the two organic acid clusters

into distinct species. The cluster that produced fumaric and malic acid (FMA) was

proposed to be renamed Rhizopus delemar (Rhizopus delemar (Boidin) Wehmer &

Hanzawa), and the cluster that produced lactic acid (LA) was proposed to retain the

Rhizopus oryzae name (Rhizopus oryzaeWent & Prinsen Geerligs). Importantly, in

addition to the molecular and phenotypic data being consistent with this classifica-

tion, in the original study that was used to form the three groups, Schipper and

Stalpers observed that mating studies of the FMA and LA groups revealed that only
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strains originally classified in the LA group were fertile, which provided genetic

evidence for the two observed clusters (Schipper and Stalpers 1984). In spite of

some disagreement and lack of common use in clinical disciplines, there is strong

support for the R. delemar–R. oryzae distinction.

11.3 Mycology

Medical interest in R. oryzae has recently been increasing due to the more frequent

identification of the zygomycetes from patients. However, in spite of the impor-

tance of R. oryzae and other zygomycetes, the field has not reached critical mass in

terms of investigators making new observations about these fungi. They can be

harder to identify than other fungi and their overall rarity in clinical specimens

means microbiologists are less familiar with them when they do arrive in the

laboratory. However, completed genome sequences will encourage new

investigations into R. oryzae and other zygomycetes, which should yield both

commercial and medical benefits.

11.3.1 Growth and Identification

Morphologically, R. oryzae is typical of many of the zygomycetes in that it exhibits

extremely rapid growth rates, quickly spreading horizontally and vertically on a

petri dish, often reaching the side borders and the lid within a matter of days. If

grown on slants, hyphae can fill the whole tube (Fig. 11.2). There is abundant growth

at 25–37 �C, good growth at 40 �C, and no growth at 45 �C. Younger cultures are
whitish but become brownish gray to darker gray with a wooly texture. Mature

sporangia can appear as black spots on the colony and tend to be on the edges or in

the center. Sporangiophores can reach a length of 1,500 μm long � 18 μmwide and

may be simple or branched, smooth-walled, and nonseptate (coenocytic) and are

opposite rhizoids that are usually produced in groups of three or more (Fig. 11.3)

(Ellis 1998). Sporangia are grayish black, globose, with diameters of up to 175 μm,

and contain sporangiospores that are usually rhomboid or lemon-shaped and striated

(Kwon-Chung and Bennett 1992). Most isolates will grow on standard mycological

media such as potato dextrose or Sabouraud’s, or a defined glucose-salts basal

medium, depending on what is being studied. Identification of R. oryzae and other

members of the genus is done mainly through morphology, although other methods,

which are based primarily on DNA sequence of a variety of genes, is gaining

prominence (Balajee et al. 2009). In fact, sequence-based diagnostic methods can

often discriminate at the species and sometimes the subspecies (i.e., varietal) level,

depending on the target locus or loci.

11 Rhizopus oryzae: Genetic Secrets of an Emerging Human Pathogen 259



Fig. 11.2 Rhizopus oryzae growth rate. Growth rate of R. oryzae. (a) Growth on a 16 � 100 mm

screw cap potato dextrose agar slant incubated at 37 �C for 72 h. Slant was photographed with an

Olympus SZX12 microscope at �5 power. (b) Growth on a 100 � 15 mm potato dextrose agar

petri dish incubated at 37 �C for 72 h. Lids were elevated above the lip of the dish and then fixed in

place with tape. The lid was then sealed with parafilm that was punctured to allow air circulation.

Note sporangiophores that have grown above the top edge of the petri dish. Plate was

photographed with an Olympus SP-560UZ optical zoom camera

Fig. 11.3 Rhizopus oryzae microscopy. Microscopic slide cultures produced on potato flakes

agar. (a) Slide showing a collapsed sporangium, sporangiospores, sporangiophore, and the

rhizoids. Stolons are hyaline to brown. Sporangiophore is unbranched. (b) Slide showing

sporangiospores, which are lemon-shaped and striated. Pictures courtesy of Deanna Sutton,

Department of Pathology, Fungus Testing Laboratory, The University of Texas Health Science

Center at San Antonio, San Antonio, TX, USA
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11.3.2 Sexual Cycle

R. oryzae is heterothallic with a bipolar mating system containing two mating types,

(+) and (�) (Schipper 1984). Mating in R. oryzae is seldom observed under any

conditions, and in spite of the production of zygospores from paired matings,

germination is rare and the demonstration of recombinant progeny under laboratory

conditions has been difficult (Gryganskyi et al. 2010). Consequently, the utility of a

sexual phase as a research tool in R. oryzae has not been demonstrated. Crosses

involving tester strains to confirm species identity are not useful in R. oryzae
diagnostic studies because not all strains are fertile, and induction of the sexual

state can occur across species (Schipper 1984; Gryganskyi et al. 2010). Neverthe-

less, Schipper was able to use this characteristic to assign mating types to multiple

culture collection isolates by crossing a mating-type (�) R. microsporus strain with
a number of R. oryzae strains to induce zygospore production and assign mating

type, of which both (�) and (+) were observed. However, none of the zygospores

were fertile in these crosses, demonstrating the difficulty of using the mating

reaction as a molecular tool, such as for crossing out undesirable characteristics

or for following inheritance of genetic markers.

The only molecular study of the R. oryzae mating-type locus was conducted by

Grygansky et al. (2010). In their study of the R. oryzae complex, they used

knowledge of the genes within the mating loci of Phycomyces blakesleeanus and
Mucor circinelloides (Idnurm et al. 2008; Lee et al. 2008) to identify the genes

within the R. oryzae locus and how they were organized. Consistent with earlier

studies using tester strains, it was observed that only two molecular types were

found within a collection of R. oryzae isolates, with each strain displaying an

organization that allowed it to be classified as either (+) or (�) (Fig. 11.4). The

(�) mating-type allele contained the Phycomyces blakesleeanus and Mucor
circinelloides homologs, TPT (triose phosphate transporter), SexP, and an RNA

helicase. The (+) allele was also syntenic with Phycomyces blakesleeanus and

Mucor circinelloides and had homologs of TPT, SexP, and an RNA helicase. The

Fig. 11.4 Rhizopus oryzae mating locus. Organization of the R. oryzae mating-type locus

showing genes found in the (�) and (+) mating type. The mating-type-specific information of

either locus is shown within the brackets, which delineates the boundaries of the two loci. The

darker lines on either side of the brackets show common regions of the mating-type chromosome,

which flanks the locus
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(+) allele, in addition, had a chimeric section containing three parts, BTB/Ankryn/

RCC1, based on comparison to the R. oryzae genome sequence annotation. This

region lies between the TPT and SexP genes; however, its function is unclear. In

addition to a potential functional role, it may also serve to block recombination

within the mating loci due to absence of homology with the (�) locus, thus

contributing to keeping the locus intact. Similarly, the roles of the common helicase

and TPT genes are unclear; however, one or both may insure the inheritance of the

locus by being essential for viability.

Although obtaining recombinant progeny in the laboratory via the production of

zygospores has been difficult to demonstrate in R. oryzae, it appears that mating

may be an important part of the life cycle and might actually occur quite frequently.

Grygansky et al. (2010) actually found zygospore production to be quite frequent in

their sample collection, with sporogenesis occurring in about 33 % of their isolates.

Schipper (1984) also found many R. oryzae isolates capable of producing

zygospores when crossed with the appropriate tester, so obtaining viable progeny

that are truly recombinant may require novel mating conditions in the laboratory or

perhaps recovering isolates from a breeding population from a common niche. In

fact, the recent description of mating in Aspergillus fumigatus reported mating

reactions that initially took almost 6 months to produce cleistothecia and ascospores

(O’Gorman et al. 2009), but when studies were undertaken to optimize conditions

and search for a suitable tester pair, mating efficiency was increased greatly (Sugui

et al. 2011). Consequently, further development of mating in R. oryzaemay yet lead

to a powerful and useful genetic tool for future studies.

11.4 Commercial Uses

Most of the early knowledge of R. oryzae came from food and commercial interest.

In fact, while the medical importance of R. oryzae has been recognized for a little

over 100 years, its role in food production is centuries old. Ironically, the basic

research interest of R. oryzae focused mainly on strain characterization and strain

improvement.

11.4.1 Tempe

Although R. oryzae is an important human fungal pathogen, perhaps its greatest

impact on humans is via commercial products produced by the fungus. R. oryzae
produces an extremely wide variety of commercially useful metabolites, including

a number of enzymes, polymers, alcohols, esters, and organic acids (Ghosh and Ray

2011). Interestingly, this metabolic diversity has been confirmed by the number,

type, and organization of genes found within the R. oryzae genome (Ma et al. 2009).
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Among the oldest commercial use of R. oryzae, which dates back more than

1,000 years, is in the production of Tempe or Tempeh. Tempe is an important food

source for some cultures and is produced by the fermentation of soybeans, which in

contrast to fermented beverages, actually incorporates the fungus into the final

product such that Tempe consists of the fermented beans bound together with

fungal mycelia and flavored with fungal metabolites produced during the fermen-

tation process. Just as for alcoholic beverages, discriminating species and strains of

Rhizopus is crucial to the qualities of the final product, whether it is food or a

Rhizopus metabolite. In fact, R. microsporus var. oligosporus may be the most

common species of Rhizopus used to produce Tempe (Hachmeister and Fung

1993). Strain improvement and selection have moved Tempe production from the

smaller home-based fermentations to industrial-level production (Steinkraus 1985;

Nout and Kiers 2005). As a result, the increased commercial value has generated

more interest in improving the fermentation process, which has driven more basic

microbiological and genetic studies. These studies have provided a more mecha-

nistic understanding of what genes are responsible for some of the metabolic

characteristics that R. oryzae is known for (Meussen et al. 2012).

11.4.2 Enzymes

Some of the enzymes produced by R. oryzae and other species include cellulases

(enzymes useful for biomass degradation, which function by hydrolyzing cellulosic

plant material, including cell walls), pectinases (needed for fruit juice and wine

processing), tannase (tannic acid decomposition), phytase (releases inositol from

plant seeds), amylase (degrades starch), lipase (fat and oil degradation), protease

(protein degradation, often used in the food, leather, tanning, and detergent

industries), RNASE (ribonuclease, which degrades RNA), urease (urea degrada-

tion), and others (Ghosh and Ray 2011). The saprophytic lifestyle of R. oryzae
undoubtedly played a role in the evolution of numerous enzymes that facilitated the

breakdown and metabolism of plant biomass. Additionally, this nutritional versa-

tility also likely has contributed to the success of R. oryzae as a pathogen. The

production of numerous types of cellulases makes R. oryzae a potentially useful

microbe in bioengineering since these enzymes can degrade cellulosic or agricul-

tural wastes into products that can be used as fuel or chemicals, depending on

downstream processing steps. In some cases, these processes can be coupled, such

as during the production of lactic acid, which yields ethanol during the fermentation

process (Zheng et al. 2009). Strain modification can be used to enhance or alter

these processes in commercially useful ways (Bai et al. 2004).

11 Rhizopus oryzae: Genetic Secrets of an Emerging Human Pathogen 263



11.4.3 Organic Acids

R. oryzae is able to produce a number of useful and important organic acids. Among

them are lactic acid, fumaric acid, and malic acid. Ethanol can also be produced

during this process since the pathways leading to the production of all four products

start with pyruvate (Skory and Ibrahim 2007). Organic acid production from

R. oryzae has been studied for almost 100 years (Ghosh and Ray 2011) with the

type of acid produced (lactic or fumaric–malic) being useful for R. oryzae strain

characterization (see above). While R. oryzae can produce other types of organic

acids, the production of lactic acid and fumaric acid is the most important and the

most studied.

Fumaric and malic acid are Krebs (or TCA) cycle intermediates that are derived

from fermentative growth on high carbohydrate substrates to produce pyruvate,

which can enter the Krebs cycle through conversion to citrate and then be

metabolized to fumarate and malate. These acids are often used as “acidulants,”

which are food additives that function to lower pH and/or increase tartness

(Meussen et al. 2012). Subsequent steps to produce fumarate from succinate, and

then malate directly from fumarate, follow the traditional Krebs cycle pathway.

However, in R. oryzae, experimental evidence suggests that these two organic acids

are produced by an alternate pathway of the Krebs cycle starting from pyruvate and

proceeding through oxaloacetate to malic acid and finally fumaric acid via the

reductive branch of the Krebs cycle (Romano et al. 1967). As noted above (see

Sect. 11.2), not all species of R. oryzae traditionally were able to produce fumaric

acid, which led to an early interest in R. oryzae genetics. These studies ultimately

identified the genetic basis that determines which organic acids were produced

based on the presence or absence of lactate dehydrogenase. R. delemar lacks this
enzyme and thus produces fumaric and malic acid (Skory and Ibrahim 2007; Skory

2004). The other group, which contains both ldhA and ldhB, retains the R. oryzae
name and produces lactic acid from pyruvate.

Lactic acid, or more specifically, L-(+)-lactic acid, is used as a food or feed

acidulant, but it can also be used for the production of plastics, solvents, cosmetics,

food antimicrobials, or oxygenated chemicals (Ghosh and Ray 2011; Datta and

Henry 2006). While bacteria are major sources of commercially produced lactic

acid, R. oryzae has been increasingly used as a source of this compound, due in part

to its ability to produce an optically pure form on defined growth media (Skory

2003). In addition to modifying growth conditions (i.e., temperature, aeration),

strain modification, such as using mutagenesis or recombinant DNA methods, has

led to increases in the amount of lactic acid that can be produced per gram of

substrate (Bai et al. 2004; Skory 2004; Skory et al. 1998).

The focus on the genetics and molecular biology of R. oryzae was driven by the

potential commercial applications of the fungus. However, this interest also

facilitated new avenues of investigation into R. oryzae, which eventually led to a

genome sequence project. Analysis of the genome sequence has yielded extensive
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information related to commercial applications of R. oryzae. However, the main

justification of sequencing this fungus arose from its role as the most frequent

pathogen in mucormycosis.

11.5 Pathogenicity

In general, infections caused by the zygomycetes are rare compared to other

medically important fungi. Within the phylum, genera within the order Mucorales

are the most frequent cause of disease, with R. oryzae being the most common of all

the zygomycetes (Roden et al. 2005). Importantly, zygomycotic infections are often

referred to as mucormycosis or zygomycosis. Mucormycosis refers to pathogenic

members of the Mucorales; however, there are other non-Mucorales genera that can

be human pathogens. These non-Mucorales zygomycotic pathogens are typically

members of the Entomophthorales, such as Basidiobolus sp., but are very rarely

recovered. Nonetheless, the term zygomycosis is a catch-all term to indicate that the

fungus is a member of the phylum Zygomycota. Mucormycosis simply reflects

more specific taxonomic information in that the identity of the isolate has been

narrowed down to the order Mucorales. From a clinical perspective, both terms are

used and combined with the recent recommendations for changes in taxonomy due

to the emergence of the R. delemar species epithet reflect the ongoing confusion of
naming and categorizing these fungi.

11.5.1 Host Status

In spite of being a generally rare infection, mucormycosis is typically an aggressive

one, reflecting, in part, the rapid growth rate of these fungi. The aggressive nature of

these infections has lead to mortality rates of approximately 45–80 %, with under-

lying disease affecting the rate (Lanternier et al. 2012). When dissemination to

other sites in the body occurs, mortality rates can approach 100 % (Eucker

et al. 2001). Risk factors for infection by R. oryzae and for most zygomycotic

agents in general include diabetes, certain types of cancers, immunosuppression,

particularly in organ transplantation, diseases, and therapies that affect iron homeo-

stasis, drug abuse, and trauma that includes traumatic implantation of environmen-

tal material (dirt, debris, plant material) (Ibrahim et al. 2012; Ribes et al. 2000;

Lanternier et al. 2012; Eucker et al. 2001). AIDS in and of itself is not a risk factor

for infection; however, underlying factors such as drug abuse or neutropenia have

resulted in mucormycosis appearing in this patient population with increasing

frequency (Van den Saffele and Boelaert 1996). In general, most patients that are

infected with R. oryzae or other mucormycotic agents will have some underlying

immunosuppressive condition that predisposes to opportunistic mycosis. The

exception is trauma, which can lead to infection in two ways. In the first way,
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although initially healthy, trauma patients can become susceptible to infection due

to trauma-induced immunosuppression. An example would be burns, which result

in substantial alteration of host stasis as well as allowing access to external

pathogens due to breach of skin. Secondly, trauma can lead to skin breaches that

allow aerosolized fungal spores to cross the skin barrier by entering a wound, or

fungal elements in the form of spores and/or hyphae can cross the skin barrier by

direct inoculation via impacted trauma debris that carries fungal elements. Spores

can then germinate, or hyphal elements can colonize tissue. If the host response

cannot control the colonizing fungus, tissue invasion can follow, which can lead to

necrosis, angioinvasion, dissemination, and ultimately death.

11.5.2 Clinical Manifestations and Infection Sites

For R. oryzae infections, one of the most common risk factors is diabetes with

accompanying ketoacidosis. The most common sites of infection tend to be the

skin, lung, gastrointestinal tract, and paranasal sinus (Kwon-Chung and Bennett

1992; Hagensee et al. 1994; Record and Ginder 1976; Rammaert et al. 2012). Sinus

infections that initially manifest or progress to rhinocerebral infections are over-

whelmingly caused by R. oryzae (~90 %) (Scholer et al. 1983). Infections typically

are caused by inhalation of spores, which can germinate in the sinus or reach the

lung alveoli where they germinate, colonize, and then invade tissue, often with a

tropism for blood vessels from which dissemination can occur, depending on the

host status. Rhinocerebral infections progress rapidly and are life threatening due to

proximity to the brain. These infections must be diagnosed quickly and are usually

treated with extensive surgical debridement, antifungal therapy, and reversal of

underlying immunosuppressive conditions if possible. However, even with aggres-

sive treatment, rhinocerebral infections still usually have poor outcomes (Rinaldi

1989). Pulmonary infections can mimic infections caused by Aspergillus sp. and
may need live culture or histopathology for proper identification due to nonspecific

symptoms that can appear with imaging or other diagnostic methods (Fig. 11.5).

Unfortunately, in the absence of live culture or molecular-based methods, species

determination is almost impossible, and in many cases, obtaining specimens for live

culture is not possible. Cutaneous infections can arise from the insertion of intrave-

nous lines that carry contaminating fungal elements from the skin or from direct

inoculation of fungal elements into the skin. The infection site can undergo necrosis

with the formation of black eschar if the fungus successfully invades the

surrounding tissue (Eucker et al. 2001). Gastrointestinal infections also can occur

and probably reflect oral transmission due to consumption of contaminated material

(Neame and Rayner 1960). However, the disease can occur in premature babies

with or without skin lesions and obviously in the absence of any contaminated food

consumption, suggesting an unknown origin (Zaoutis et al. 2007).
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11.5.3 Virulence Factors

Factors that affect and enhance virulence in R. oryzae are coincident with the

phenotypes most important for survival in the natural niche as R. oryzae infections
are opportunistic in nature. R. oryzae is not a commensal of humans or animals, nor

is it shed during infection; therefore, mammalian or other animal immune systems

have not played a role in the evolution of genes that could make the organism

pathogenic. Instead, the genes or phenotypes that R. oryzae displays that enhance

virulence reflect the normal ecosystems in which R. oryzae lives. However, in spite
of the saprophytic lifestyle of R. oryzae, a number of phenotypes have been

identified that play a role in virulence, and in a few instances, the corresponding

genes that influence these phenotypes have been identified. Unfortunately, the

majority of what is known about the repertoire of virulence factors that R. oryzae
possesses has been deduced from studies of other specific Mucorales. These are,

therefore, possible virulence factors of R. oryzae suggested by taxonomic

relationships, but their function remains to be proven.

The role of iron in fungal pathogenesis, including the major systemic fungal

pathogens, is well known (Hilty et al. 2011; Haas 2012; Jung and Kronstad 2008;

Chen et al. 2011). R. oryzae is no exception with regard to the importance of iron in

virulence. Numerous studies ofR. oryzae virulence have identified amajor virulence

factor, which involves how the fungus acquires iron in vivo and how host iron

availability influences the probability of being infected by R. oryzae. Much of the

host–pathogen relationship, however, seems to revolve around iron availability

during R. oryzae infection. This dynamic makes iron acquisition, and how the host

tries to deny access to iron, the most studied of the R. oryzae virulence factors (Nairz
et al. 2010). Non-trauma R. oryzae infections often involve some aspect of iron

availability, specifically levels of unbound iron in the serum that are accessible to the

fungus (Howard 1999). Mammals use multiple methods to sequester iron, such as

the carrier proteins ferritin, lactoferrin, and transferrin, which keep free iron away

Fig. 11.5 Rhizopus oryzae
histopathology. Gomori

methenamine silver (GMS)

stain of infected tissue.

Hyphae are coenocytic,

flattened, and ribbon-shaped

with irregular branching
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from pathogens, while reducing potential toxicity. R. oryzae grows poorly in serum,

unless exogenous iron is added (Artis et al. 1982). However, there is a second

component to iron acquisition by R. oryzae, which involves pH. Because diabetes

is a risk factor for mucormycosis, much of what is known about how R. oryzae uses
iron in vivo comes from these patients. Diabetics who are in ketoacidosis due to their

disease have elevated levels of iron in their serum. It is the combination of free iron

and the acidotic state of these patients that makes iron available to the fungus since

adding free iron to serum does not stimulate fungal growth unless the serum is acidic

(7.3–6.88) (Artis et al. 1982). Furthermore, using diabetic mice, Ibrahim

et al. provided further proof of this mechanism by showing that chelation of iron

can be used therapeutically to keep iron away from R. oryzae, even in the conditions
(diabetic ketoacidosis) that would make it available (Ibrahim et al. 2006; Ibrahim

et al. 2007). In fact, R. oryzae is genetically primed to grab iron any way it can.

Indeed, patients who are treated with deferoxamine, a bacterial siderophore, are at

elevated risk for infection because R. oryzae recognizes this compound as a

xenosiderophore, which will strip iron from transferrin and then, in turn, allow it

to be bound by R. oryzae (Boelaert et al. 1993). Using traditional molecular methods

for studying genes involved in pathogenesis, Ibrahim et al. demonstrated the role of

FTR1, an R. oryzae permease, in iron uptake by disrupting the gene and using an

anti-Ftr1 antibody to show that elimination of the Ftr1 function reduces virulence

(Ibrahim et al. 2010). Finally, the genome sequence project has revealed the pres-

ence of heme oxygenase homologs, which may function in allowing the fungus to

obtain iron from host hemoglobin, perhaps suggesting in part, the tropism for blood

vessels during infection (Ibrahim et al. 2012; Ma et al. 2009).

In addition to obtaining iron from the host, another key phenotype that is almost

always required for a pathogen to be virulent is the ability to adhere to host tissue.

Adherence is generally going to precede invasion, and in the case of R. oryzae
pathogenesis, invasion of tissue and blood vessels is a key component of tissue

damage, which is a hallmark of infection. R. oryzae has been shown experimentally

to adhere to, and damage, endothelial cells in a specific manner since adherence to

nonliving tissue, such as plastic, is not observed (Ibrahim et al. 2005). The process

requires direct contact but can be blocked by the addition of iron chelators, again,

showing the importance of iron to pathogenesis (Ibrahim et al. 2005). Interestingly,

there is some suggestion of the role of a toxin in this process. R. oryzae produces a
toxin (agroclavin) and other members of the genus have also been shown to produce

toxins (Ribes et al. 2000). Furthermore, endothelial killing can be brought about by

dead cells, suggesting that this killing may be mediated by a factor that could be a

toxin or toxin like (Ibrahim 2011).

Virtually all microbial pathogens need the ability to grow at host ambient

temperature, which is 37 �C for humans. Although this temperature is a given for

pathogens, most fungi cannot grow at this temperature, let alone deal with the

multiple aspects of host defenses, both active and passive. R. oryzae grows well at
this temperature and is, therefore, not inhibited in normal hosts nor by elevation of

body temperature through fever. In fact, since most infections likely begin via

introduction of spore aerosols, evidence of R. oryzae growing satisfactorily at this
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temperature comes from animal models in which inocula are introduced as a spore

suspension, which ultimately results in the hyphal morphology in tissue as the

spores germinate and invade tissue (Ibrahim et al. 2010).

11.5.4 Treatment

Treatment of R. oryzae infection, as well as many mucormycotic infections, must

consider the aggressive nature of these infections and how rapidly they can prog-

ress. Consequently, a strong index of suspicion is needed so that treatment is not

delayed, something that is often not possible due to the large number of other

factors, many more common, which could be mimicking symptoms of an R. oryzae
infection. Two other factors are crucial to infection management, surgical debride-

ment and antifungal therapy (Arnaiz-Garcia et al. 2009), although even with

surgical intervention, mortality can be as high as 60 % (Rabie and Althaqafi

2012). Unfortunately, the Mucorales are a diverse collection of zygomycetes that

display various phenotypes, including selective resistance to antifungals, further

demonstrating the necessity of identifying these fungi correctly. Vitale et al. (2012)

published an extensive study on antifungal susceptibility of the Mucorales.

R. oryzae was resistant to terbinafine, 5-FC, caspofungin, micafungin,

voriconazole, and fluconazole, but was sensitive to posaconazole, itraconazole

(less susceptible than most zygomycetes), and amphotericin B (although somewhat

reduced susceptibility). However, for disseminated infections, R. oryzae can be

refractive to most antifungal agents.

11.6 Genome Sequence

The genome sequence for R. oryzae was completed at the Broad Institute http://

www.broadinstitute.org/annotation/genome/rhizopus_oryzae/MultiHome.html and

reported in 2009 (Ma et al. 2009).One of the major arguments for sequencing this

fungus was that the sequence would represent the first sequence obtained from an

early lineage of the fungal phylogenetic tree. Based on the distinguishing

characteristics of R. delemar and R. oryzae, the isolate that was sequenced,

99–880, was actually phenotypically R. delemar. Nonetheless, a substantial amount

of information was obtained from the annotation of the genome, including some of

the genetic foundations for pathogenesis. The major findings of the genome

sequence centered around evidence of a whole-genome duplication followed by

subsequent duplications of selected gene families. Analysis of the genome focused

on developing a better understanding of the genetic basis of pathogenesis.
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11.6.1 Genome Annotation

Final assembly of the sequence data revealed 15 linkage groups, which was

supported by combining sequence data with optical mapping data

(Ma et al. 2009). Putative telomeric sequences were identified (CCACAA)n with

the help of the optical maps. The total number of predicted protein coding genes

was 17,467 with most genes having introns (avg 2.32 introns/gene) that averaged

79 bases in length (Ma et al. 2009). The two most significant observations from the

assembled sequence were the existence within the genome of an enormous amount

of repetitive sequences and evidence that the genome had undergone a whole-

genome duplication.

The number of repetitive elements consumed more than 9 Mb of the genome

(approximately 20 %) and was made up mostly of transposable elements and their

remnants. The most abundant type of element was Ty3/gypsy like. The transposons

could be divided into two classes: Class I, which were the retrotransposons, and

Class II, which were the DNA transposons (Ma et al. 2009). Insertion sites showed a

bias, with many localizing close to tRNA genes. Some of the elements were active

as they were detected in expressed sequence tags.

The second major observation from the genome sequence assembly was the

existence of an apparent genome duplication. Initial evidence that the genome was

duplicated came from the detection of a paralog for almost half of the genes in the

genome. The duplicated sequences cover the entire genome and consist of 648 gene

pairs that appear in duplicated sections, which contain 3–9 duplicated genes per

section (Ma et al. 2009). Much of the evidence for concluding that a genome

duplication occurred was derived from the conservation of the order and orientation

in which the paralogs appeared. After the genome was duplicated, genes were

gradually lost, yielding the “modern” R. oryzae genome, which retained roughly

650 of the original duplicates. Importantly, the study by Ma et al. (2009) allowed

these investigators to use the sequence to make certain inferences about the

phenotypes that R. oryzae exhibits both as a saprophyte and a pathogen. These

inferences related the observation of gene families that were created from the

whole-genome duplication to the specific phenotypes that R. oryzae exhibits,

which could be attributed to the genes that constitute each family.

11.6.2 Duplicated Protein Complexes

The lifestyle of R. oryzae is consistent with an organism that has an extensive

genetic reserve to draw upon depending on the local environment. This flexibility is

consistent with the commercial utility of the fungus in which its fermentative and

degradative abilities have been exploited. Conversely, the organism can also be an

aggressive pathogen that is characterized by rapid growth once an infection is

established and the organism begins to invade tissue. In fact, the rapidly invasive
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phenotype is a hallmark of Rhizopus infections. A crucial requirement for the

nutritional flexibility and rapid growth of R. oryzae is the need to generate energy

for these metabolic processes. The protein complexes that are duplicated in the

genome fit this requirement and include proteins that constitute the electron trans-

port chain, the V-ATPase complex, and the ubiquitin–proteasome systems

(Ma et al. 2009). For each system, the core subunit is duplicated.

Electron transport proteins mediate the flow of electrons to oxygen while

generating ATP during the process. The electron transport complexes that were

predicted to be duplicated in R. oryzae include complex I (NADH–ubiquinone

oxidoreductase), which accepts electrons from NADH; complex II (succinate

dehydrogenase–CoQ oxoreductase), which accepts electrons from succinate; com-

plex III (cytochrome reductase), which accepts electrons from coenzyme Q; and

complex IV (cytochrome oxidase), which accepts electrons from cytochrome

C. The duplication of these complexes may enhance the metabolic flexibility of

R. oryzae while also contributing to the rapid growth rate of this fungus.

V-ATPases are proton pumps that require ATP and are found in intracellular

compartments as well as the plasma membrane. They are important for acidification

of intracellular compartments, membrane trafficking, protein degradation, and

coupled transport (Forgac 1998). Individual V-ATPase components have not been

studied in detail in R. oryzae; however, they have been studied in other fungi,

including fungi pathogenic for humans. In Histoplasma capsulatum, the V-ATPase
catalytic subunit A, VMA1, was found to be required for dimorphism, iron acquisi-

tion, and virulence (Hilty et al. 2008). Similarly, the Cryptococcus neoformans
VPH1 gene was found to negatively affect melanin production, capsule production,

and growth at 37 �C, all of which are required for virulence (Erickson et al. 2001).

Finally, the Candida albicans VMA7 gene, a V-ATPase subunit, was shown by

Polterman et al. (2005) to be required for vacuolar acidification, growth at alkaline

pH, metal ion homeostasis, dimorphism, and virulence.

Most of what is known about the ubiquitin–proteasome pathway in pathogenic

fungi comes from Saccharomyces cerevisiae and to a lesser degree Candida
albicans. None of the individual components of this pathway have been studied

in R. oryzae; however, homologs of other fungal proteasome subunits have been

identified in the R. oryzae genome sequence including homologs of the PRE, PUP,
RPT, and RPN proteins, which make up the central component. In eukaryotes, the

pathway’s main function is the degradation of proteins, particularly short-lived

proteins that often have regulatory functions, which likely makes the pathway

crucial to phenotypes that reflect the diverse niches that R. oryzae is found

in. Similar to the other two complexes, the ubiquitin–proteasome pathway contains

a major complex (proteasome), which together with related genes, constitutes a

large number of interacting proteins such that random duplications of individual

components could lead to an imbalance of function and ultimately a deleterious

outcome. Therefore, Ma et al. argue that in R. oryzae, the fact that roughly 80 % of

the individual members of the three complexes were retained as duplicates implies

whole-genome duplication as the best explanation for the multiple copies of each

gene (Ma et al. 2009).
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11.6.3 Expanded Gene Families

In addition to the duplication of the large protein complexes described above, a

number of gene families appear to have also been expanded in the R. oryzae
genome, with the affected phenotypes again related to cell growth

(Ma et al. 2009). These families include the P-loop GTPases, which regulate

basic cellular processes and include homologs of RAS, RHO, CDC, ARF, YPT,

as well as other genes that often function as molecular switches that can rapidly

coordinate gene expression with varied environmental conditions. A second

expanded family is the proteases, which contain the aspartic proteases, subtilisins,

caspases, and aminopeptidases among others. These enzymes enhance degradation

of organic matter and perhaps most importantly, contain members that are proven

virulence factors in other fungi [secreted aspartic proteases, subtilisins (Magee

et al. 1993; Monod et al. 2002)]. A third expanded family consists of cell wall

biosynthetic genes, in particular the chitin synthases and chitin deacetylases, which

is consistent with the high percentage of chitin and chitosan in the cell wall of

R. oryzae (Ma et al. 2009). The ability to grow rapidly in response to a changing or

rich environment requires the fungus to be able to rapidly synthesize new hyphae,

which requires substantial amounts of chitin and chitosan, which are encoded by the

chitin biosynthetic genes. Finally, in conjunction with cell wall growth, hyphae also

need to synthesize the plasma membrane at a rate that keeps up with new cell wall

synthesis. Sterols are a major component of cell membranes, and in fungi, the major

sterol is ergosterol. The R. oryzae genome sequence shows that this fungus, like

virtually all fungi, contains all of the components of the highly conserved ergosterol

pathway (Ma et al. 2009). Importantly, some of the genes in the pathway, including

the major azole target (lanosterol 14α-demethylase), are present in multiple copies,

which may affect response to the azole antifungals.

11.7 Genetics and Molecular Biology

Because of the commercial and medical importance of R. oryzae, there has been,

and continues to be, an interest in the development of the molecular biology and

genetics of this fungus. Unfortunately, for the major fungal pathogens that have

developed molecular and genetic tools, R. oryzae arguably possesses the most

problematic aspects of each of the major fungi, with the possible exception of it

being dangerous to work with. Since R. oryzae is a filamentous mold, a spore

preparation must be made, which is more cumbersome than growing yeast cells.

Additionally, since numerous genes of the genome have been duplicated,

depending on the target, multiple disruptions may be needed, which is cumbersome

since there are few markers for this fungus. The transformation systems utilize

either biolistics, which requires expensive instrumentation, or spheroplasting,

which requires protoplasting enzymes that can be hard to obtain, and a laborious
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protocol. There are few genetic markers and the fate of transforming DNA,

depending on the input molecule, often is a large multimeric plasmid or

concatenated molecules that may or may not be rearranged, both of which have a

high tendency to remain episomal. Homologous integration is possible, but of low

frequency. However, in spite of numerous inefficiencies of the “molecular tool-

box,” most of the common molecular and genetic manipulations used in a labora-

tory are possible with R. oryzae, but need to be improved. Importantly, virtually all

of the major human fungal pathogens (i.e., Candida albicans, Cryptococcus
neoformans, Histoplasma capsulatum, Aspergillus fumigatus, Coccidioides
immitis) presented large challenges that needed to be overcome before a working

molecular system could be developed. But for each of these fungi, once a critical

mass of researchers was established, the major hurdles were rapidly overcome.

11.7.1 Transformation

Transformation of R. oryzae is possible and has been reported to be successful using
the biolistic method, CaCl2/PEG, and Agrobacterium tumefaciens (Skory 2002;

Michielse et al. 2004). Skory used a uracil auxotroph that was a pyrG (orotidine

monophosphate (OMP) decarboxylase) mutant as a host for transforming DNA,

which consisted of the wild-type pyrG gene released from a plasmid by restriction

enzyme digestion (Skory 2002). The transformation frequency was low, from 1 to

50 transformants per μg of DNA; however, this number is high enough to perform

some basic molecular manipulations and can probably be increased by multiple

transformation events. The transformation host in Skory’s study was germinated

spores, as is typical for filamentous fungi. However, a clear problem with this

system is the lack of general integration and as a result, a lack of homologous

integration. This problem is not unheard of in fungal pathogens. Both Cryptococcus
neoformans and Histoplasma capsulatum have similar problems since transforming

DNA tends to remain episomal but is able to replicate without a clearly defined

ARS-like or 2 μm-like origin of replication. For both fungi, incoming DNA is

telomerized; however, it is unknown whether or not this is the fate of transforming

DNA in R. oryzae.
Transformation with circular plasmids was found to rarely lead to integration;

however, homologous integration can occur, which is Type I in nature (Hinnen

et al. 1978). Interestingly, for non-integrated DNA, circular plasmids are

maintained intact and can be recovered in E. coli without any apparent

rearrangements, suggesting that the original native plasmid was replicated as a

circle, although these molecules may be multimeric. Linearized plasmid DNA

usually resulted in large multimers of concatenated molecules, which had been

repaired by the host cell. When the R. oryzae pyrG gene was released from the

vector with restriction enzymes that only cut within the vector, homologous inte-

gration was the primary outcome, suggesting that the transformation system can be

improved. For example, in C. neoformans, which tends to maintain transforming
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molecules episomally after telomerization, integration can be forced to occur at a

higher frequency by using variations of transforming constructs such as a

PCR-generated split marker (Fu et al. 2006).

In addition to biolistic transformation, Michielse et al. were able to successfully

employ CaCl2/PEG-mediated transformation of spheroplasted spores and a heter-

ologous uracil marker derived from Aspergillus nidulans to recover recombinants

(Michielse et al. 2004). Importantly, in this same study, they were able to adapt a

dominant marker as a transformation system. The dominant marker was the Asper-
gillus nidulans acetamidase gene, amdS, which allows transformants to grow on

acetamide, providing selection if the recipient strain does not carry a homolog of

the gene (Kelly and Hynes 1985). The outcome of transformation with either

marker and with the CaCl2/PEG-mediated transformation approach again was to

yield primarily episomal transformants. Although the tendency to remain episomal

can result in a reduced frequency of homologous integration, this inefficiency is

preferable to a high frequency of ectopic integration. Consequently, although the

transformation frequency per μg of DNA is somewhat low, there are avenues for

improvement that should be achievable using other fungal transformation

strategies.

11.7.2 Mutagenesis

One of the most important steps in developing an efficient molecular toolbox is the

ability to create and select for mutants. A number of methods have been described

for R. oryzae. Skory described the use of the chemical mutagen, NNG (1-methyl-3-

nitro-1-nitrosoguanidine), as a way to enhance lactic acid production in R. oryzae
(Skory et al. 1998), while Purohit et al. used NTG (3-nitro,5-methylguanidine)

mutagenesis to recover a mutant enhanced for tannase production (Purohit

et al. 2006). Bai et al. used diethyl sulfate (DES) to recover mutants that

overproduced lactic acid (Bai et al. 2004). Chemical mutagenesis is among the

oldest methods for creating useful mutants in virtually any microbe studied in the

laboratory. However, there are two concerns when using chemical mutagens. First,

the mutagenic nature of the chemical itself can make it hazardous to work with.

Second, chemical mutagenesis is random and can lead to a second unlinked

mutation elsewhere in the genome that may be undetected, but still exert a pheno-

type. Having a working genetic system that allows for backcrossing to a wild-type

strain in order to reduce the likelihood of the strain of interest carrying a second

mutation is helpful. This method would be possible with R. oryzae since sexual

reproduction has been known to occur; unfortunately, good tester strains that are

easy to work with and yield progeny spores at high frequency are not yet available.

An alternate method that is less hazardous but still is a random mutagenic

method utilizes UV radiation to create mutants. UV light can be employed in safely

enclosed containers to avoid laboratory exposure. Once a kill curve is established,

mutagenesis then can be performed on however many colony-forming units are
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plated. UV mutagenesis has been used to recover mutants enhanced for tannase

(Purohit et al. 2006), lactic acid (Bai et al. 2004), glucoamylase (Suntornsuk and

Hang 2008), and fumarate production (Huang et al. 2010). Importantly, for UV

mutagenesis and, in general, for any random mutagenesis, it is important to have a

good screening technique that can be used to discriminate a desired mutant from a

background of nonmutants and non-desired mutants with high efficiency.

11.7.3 Markers, Reporters, and Inducible Promoters

Once a transformation system has been developed for any model organism, useful

molecular reagents must follow that expand what is possible to study at the

molecular level. These reagents typically include vectors that have regulatable

promoters, additional markers that confer transformation flexibility, including the

ability to complement disrupted genes, and reporters that allow investigators to

measure or locate gene expression or protein function. The molecular toolbox of

R. oryzae has most of these characteristics, with new reagents continually

expanding this versatility.

In many fungi, an early tool is development of markers that are useful for

transformation or genetics but also have counterselection capabilities. Arguably

the most common of these markers are two mutations in the uracil biosynthetic

pathway: orotate phosphoribosyltransferase and orotidine 50-phosphate decarbox-

ylase (Saccharomyces cerevisiae URA3 and URA5 genes, respectively). The value

of these genes as markers lies in their ability to be selected for by growing on media

containing the toxic analog 5-fluoroorotic acid (5-FOA). Wild-type enzymes of

orotate phosphoribosyltransferase and orotidine 50-phosphate decarboxylase incor-
porate 5-FOA into pathway intermediates and are killed (Boeke et al. 1984). Both

the orotate phosphoribosyltransferase (pyrF) and orotidine 50-phosphate decarbox-
ylase (pyrG) have been cloned in R. oryzae (Skory and Ibrahim 2007; Skory 2002).

Importantly, because of the counterselectability of 5-FOA against functional pyrF
and pyrG genes, it is possible to recycle either mutation in a host strain by selection

for loss of the transforming selectable marker if it is pyrF or pyrG because cells that

have the marker are killed by the compound. In the case of R. oryzae, which has a

tendency to maintain transforming DNA as episomally replicating molecules at

high frequency, loss of the transforming construct and marker can be selected for

very fast as the construct can be easily lost from the cell because it is not integrated.

Similar to this system is the amdS system, which uses the compound acetamide, the

gene amdS, and the toxic analog fluoroacetamide to function as a selection–coun-

terselection system (Debets et al. 1990). The amdS gene has been shown to work as
a selectable marker in R. oryzae, although counterselection with fluoroacetamide

has not been reported (Michielse et al. 2004). Another advantage of the amdS gene

is that it is a heterologous dominant marker, with no R. oryzae homolog, which can

function to reduce integration in the genome due to the absence of homology.
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A third marker that has been reported for R. oryzae is a homolog of the S. cerevisiae
his3, although it has not been characterized (Ibrahim et al. 2010).

Following the development of a transformation system, secondary tools usually

follow and enable a deeper investigation of gene function. These secondary tools

typically consist of reporter genes and vectors that have regulatable or inducible

promoters (Mertens et al. 2006). In R. oryzae, multiple promoters have been

described, and one reporter gene has been shown to function by Mertens et al.
(2006). In this study, they used a vector containing the R. oryzae pyruvate decar-

boxylase (pdcA) promoter and terminator, the R. oryzae pyrG gene as selectable

marker, and pBluescript II KS- as the plasmid backbone. Two additional promoters

were tested, pgk1, from the phosphoglycerate kinase 1 gene, and amyA, from the

glucoamylase A gene, by swapping them into the vector in place of the pdcA
promoter. The three promoters were selected to test different types of regulation

using GFP as a reporter; the pgk1 promoter is constitutive, pdcA promoter is

inducible by glucose, and amyA is highly inducible by starch or cellobiose. All

three promoters were found to be functional as evidenced by observation of GFP

fluorescence, with expression levels being the highest in pdcA and lowest in pgk1.

11.7.4 Agrobacterium tumefaciens-Mediated
Transformation

Agrobacterium transformation is becoming an increasingly powerful tool in mycol-

ogy, with virtually every fungus in which it has been tried being transformable

(McClelland and Wickes 2009). The major significance of this bacterium in fungal

molecular biology is that it is a transkingdom pathogen that can move DNA into

cells with very little specificity. The system works by simply taking the

A. tumefaciens native Ti plasmid, inserting a selectable marker, and then

transforming the plasmid back into the A. tumefaciens host. The plasmid still

maintains its infectivity and can be transferred into the target host by appropriate

co-culture conditions in which the bacterium is mixed with the fungal host under

conditions that induce plasmid mobilization. After allowing time for the plasmid

DNA to be inserted into the host fungal cells, the bacterial–fungal mixture is

harvested and then replated under conditions that include an antibiotic to kill

residual A. tumefaciens and an antibiotic (in the case of the marker being drug

resistance) or minimal medium (in case the marker complements an auxotrophy) to

select for transformed fungi. The outcome of this infection is predominantly

integrated transformants, usually in single copy, which makes this method of

transformation extremely powerful for fungi that have inefficient or difficult trans-

formation systems.

In an effort to overcome the tendency of transforming DNA in R. oryzae
to remain episomal, Michielse et al. (2004) developed an Agrobacterium-
mediated transformation system for R. oryzae. Their reason for exploring
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Agrobacterium-mediated transformation centered around developing a transforma-

tion method that resulted in stable transformants, which typically occurs after

integration of transforming DNA. They used a CaCl2/PEG method for comparison

of transformation fates. They found, using the Agrobacterium-mediated method,

that integration of transforming DNA occurred 100 % of the time whereas the

CaCl2/PEG method using linear or circular molecules resulted in a <5 % integra-

tion frequency regardless of selectable marker. Further investigation concluded that

the transforming DNA integrated at a hotspot; however, they were unable to

identify the locus. Importantly, experiments were not performed to see if this

method could be used for gene disruption, which would be the real value of an

Agrobacterium-mediated method since it appears that this method solves the

problem of episomal maintenance of transforming DNA.

11.7.5 Gene Disruption

Much of the investigation into transformation systems is needed in order to obtain

gene disruptions at high efficiency, or at least at a level where a disruptant can be

detected after a simple PCR screen of multiple colonies. Screening 10 or 20 colonies

after a transformation is not hard, but as this number gets to be 50, 100, or higher,

obtaining a disruptant becomes laborious, and it becomes further complicated

because one can never be sure they are not dealing with an essential gene that

cannot be disrupted.

A major issue that affects disruption frequency is the fate of transforming DNA.

If it is difficult to get DNA to integrate, this problem is the most important hurdle to

overcome. Presently, integration frequency is a challenge for R. oryzae transforma-

tion. A second major issue is homologous integration frequency. If integration

frequency at the target locus is very low, screening for disruptants again becomes

laborious, which becomes grossly inefficient if integration frequency is low to

begin with. These are current challenges in R. oryzae molecular biology; however,

there have been some successes. Ibrahim et al. were able to disrupt the R. oryzae
FTR1 gene by using a simple transformation construct in which the marker gene,

pyrF, was flanked with FTR1 sequences that lie outside the FTR1 coding region,

thereby targeting the disruption cassette to the FTR1 locus due to flanking sequence
homology (Ibrahim et al. 2010). This technique worked, as a clean replacement of

the FTR1 coding sequence occurred. However, another problem with R. oryzae
transformation was revealed. Almost all zygomycetes are coenocytic, which means

that there are no septa in the hyphae. Consequently, all of the transformation host

cells are multinucleate. Since the transforming DNA is only going to enter a single

nucleus, and the probability is likely low that all of the nuclei of the same cell will

be transformed, transformed cells must undergo posttransformation manipulation,

usually in the form of subculturing, in order to recover a homokaryon. In the case of

FTR1, creating a homokaryon was not successful.
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Given the ever-present problem of dealing with heterokaryons and essential

genes, another method to study gene function is needed. Based on results from

the genome sequence, it was predicted that R. oryzae contains the genes that would
allow RNAi to work as a gene disruption method. The genome is predicted to

contain two copies of Argonaut, one Dicer homolog, and five RNA-dependent

polymerases (RdRP) (Ma et al. 2009; Meussen et al. 2012). This information was

used to develop an RNAi construct, which was successfully used to knockdown

FTR1 expression (Ibrahim et al. 2010), therefore adding an important tool to the

molecular biology of R. oryzae.

11.8 Conclusions

R. oryzae is currently the model fungus for the study of the pathogenic

zygomycetes. The present genetic and molecular system is clearly in its infancy

and currently seems laborious and inefficient. However, the molecular biology of

all the major human fungal pathogens started off in the same way, and some still

have residual problems that have remained after more than 20 years of investiga-

tion. However, knowledge from these systems can be applied to new model fungi to

help establish working models. Continued investigation then ultimately leads to

improvements until virtually all required manipulations become possible. In the

case of R. oryzae, this fungus is becoming increasingly important as a pathogen and

remains an important commercial and food industry organism. All of these areas

require continued advancement of what we know about this fungus, which will

attract more investigators into the field who will collectively be able to solve current

and future problems associated with the study of R. oryzae.
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Chapter 12

Podospora anserina: From Laboratory
to Biotechnology

Philippe Silar

12.1 Introduction

In a typical grassland or savannah, a large part of the plant biomass ends up in the

digestive tracks of animals such as herbivorous mammals or birds. However, these

animals are able to retrieve only part of the nutrients present in their food and

release in the form of dung, a ready-to-use meal already invaded when deposited on

the ground by many fungi, the coprophilous fungi. These are usually present in form

of spores in the plant diet, germinate while passing through the digestive track and,

after growth, have evolved special designs to disperse their spores, so as to

maximise the chances that they are ingested by another herbivore. Apart from the

chytrids, species from all major fungal taxa may grow and fruit on dung. Usually,

they appear in a succession that somewhat reflects the evolution of terrestrial

Eumycota fungi, starting with Mucoromycotina (e.g. Mucor, Phycomyces and

Pilobolus) followed by basal Pezizomycotina such as Orbiliomycetes and

Pezizomycetes, then supposedly more advanced ones such as Dothideomycetes,

Eurotiomycetes, Leotiomycetes and Sordariomycetes. The sequence finishes with

some Basidiomycota belonging to the Agaricomycetes. The succession likely

reflects a combination of choices in life strategies and enzymatic equipments

selected during evolution, whereby the first to appear have very little competitive

ability and are able to use moderately complex carbohydrates polymers but grow

and fruit fast, while the later ones use more complex food sources,

i.e. lignocellulose, and have antagonistic abilities enabling them to grow and fruit

slower in dung. Overall, these fungi are part of a food chain that enables materials
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contained in droppings to go back to the soils, rendering them fertile. Indeed, what

better fertiliser than manure?

Among the 2–3,000 fungal species that inhabit dung obligatorily or faculta-

tively, a few of them have been used as model organisms to study various phenom-

ena ranging from isolation of fungal compounds and meiotic recombination to

ageing and cell differentiation. However, three species have mostly been used for

these studies: Podospora anserina, Sordaria macrospora and Ascobolus immersus.
Table 12.1 presents some of their characteristics in comparison to those of the two

most popular fungal models Aspergillus nidulans and Neurospora crassa. The most

salient feature, especially for P. anserina and S. macrospora, is the shortness of

their generation time: it is 2–3 times shorter than that of A. nidulans and N. crassa,
making them excellent tools to rapidly obtain mutants. Yet, they lack conidia,

which may impair some studies. However, the development of machines, such as

“FastPrep”, or efficient protoplast formation enabling fragmentation of mycelia into

uninucleated cells makes the lack of conidia a less important drawback than before.

The three coprophilous species have now their whole genome sequence publicly

available. A. immersus is part of the “1000 fungal genomes” project from JGI

(http://1000.fungalgenomes.org/home/). S. macrospora has its genome published

(Nowrousian et al. 2010) and is mostly utilised to study meiosis (Espagne

et al. 2011; Storlazzi et al. 2010) and fruiting body development (Engh

et al. 2010). P. anserina (Fig. 12.1) is used in a wider array of studies dealing

with ageing, sexual development, prions and other non-conventional hereditary

units, signal transduction and differentiation, plant biomass degradation, cell fusion

and vegetative incompatibility, interactions with other fungi, mitochondrial physi-

ology, translation, secondary metabolism, etc. Moreover, the availability of its

genome sequence has enabled the development of several tools, as well as its

utilisation in some biotechnology applications. The purpose of this chapter is to

review the biology of P. anserina and to what extent the availability of genomic and

postgenomic tools has furthered the research with this organism.

12.2 The Pre-genome Era

12.2.1 Early History of the Research on P. anserina

Because of the ease of its manipulation, P. anserina was chosen very early on as a

model, first to study ascospore formation (Wolf 1912) and hyphal fusion (Buller

1933). Later, Georges Rizet worked out the complex genetic analysis resulting from

the atypical ascus development linked to pseudohomothallism (Fig. 12.2; Rizet

1939, 1941) and initiated a French school of geneticists that worked with filamen-

tous fungi (mostly P. anserina and A. immersus). The visit of Karl Esser in Rizet’s

laboratory (Esser 1954; Rizet and Esser 1953) further fuelled research in Germany,

especially with the addition of biochemical studies (Esser 1963). This opened an era
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when several important biological phenomena were discovered and their genetic

determinants elucidated.

The “barrage” phenomenon lead to the study of vegetative (heterokaryon)

incompatibility and to the discovery of an unusual form of inheritance (Beisson-

Schecroun 1962; Rizet 1952; Rizet and Delannoy 1950), which is now known to be

due to a prion (Coustou et al. 1997; Maddelein et al. 2002; Ritter et al. 2005; see

Sect. 4.2). The discovery that P. anserina cannot be cultivated infinitely permitted

studies on senescence (Marcou 1961; Rizet 1953) and mitochondrial physiology

(Cummings et al. 1978; Jamet-Vierny et al. 1980; Tudzynski and Esser 1977). Note

that Rizet published his study 12 years before the seminal paper of Leonard

Hayflick disproving immortality of human cells (Hayflick 1965). Among the

other topics studied are the first fungal meiotic drive (now known as spore killer;

Padieu and Bernet 1967), translation accuracy (Coppin-Raynal et al. 1988; Picard

1973), rhythmic growth (Chevaugeon and van Nguyen 1969; Esser 1969) and

fruiting body formation (Esser and Graw 1980; Labarere and Bernet 1979; Lysek

1976). In parallel, field studies of coprophilous fungi showed that P. anserina was

frequently recovered from dung (Furuya and Udagawa 1972; Lundqvist 1972). At

the end of these early studies, the ecology and the life cycle were fully known,

sexual reproduction was mastered in the lab on fully defined media, genetic analysis

Podospora anserina
Life Cycle

fertilization

perithecium maturation

gamete
differentiation

germination

ascospore formation

mycelium
growth

ascospore
ejection

hyphal differentiation

meiosis

spermatia

ascogonium

appressorium-like 
formation

anastomosis

Fig. 12.1 Podospora anserina life cycle. See text for details
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used routinely (Marcou et al. 1982) and a genetic transformation system was

available (Begueret et al. 1984; Brygoo and Debuchy 1985).

12.2.2 Ecology and Life Cycle of P. anserina

Podospora anserina (Ces.) Niessl, also known as Pleurage anserina (Ces.) Kuntze

or Podospora pauciseta (Ces.) Traverso, appears to grow exclusively on dung,

although there is one report indicating that it may also live as a plant endophyte

(Matasyoh et al. 2011). However, the strain isolated by Matasyoh et al. is not

available for crossing, rendering final attribution to the P. anserina species difficult.
P. anserina has been found in many regions, including northern and southern

Europe, Brazil, New Zealand, Kenya, etc., on droppings from a large array of

herbivore species, suggesting that this species is now cosmopolitan. This lifestyle

has two important consequences on P. anserina life cycle. Firstly, its reproduction

FDS

SDS

99%

99%

1%

1%

Fig. 12.2 Podospora anserina ascus structure. Most asci contain four binucleated ascospores. In a

few (~1 %) asci, a “binucleated” (or big) spore is replaced by two “uninucleated” (or small) ones.

In Fig. 12.1, enlargement shows a typical 4-spored ascus along with a 5-spored one. FDS asci

originate from meiosis in which no crossing over occurs between the marker and its centromere.

Each half of the ascus is genetically homogeneous. In SDS asci, one crossing over between the

marker and its centromere yields asci having four ascospores heterokaryotic for the marker. FDS to

SDS ratio depends upon the position of the marker with respect to its centromere. Centromere-

linked marker have a 100 % FDS, while telomere linked may reach almost 100 % SDS (instead of

66 % due to multiple crossing overs), thanks to a crossing-over interference which limit crossing to

one in some regions
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is purely sexual, which may result from the necessity of actively dispersing its

spores away from its dung substrate (herbivores tend not to eat their faeces), a

feature easily achieved by perithecia, but not so much by conidiophores. Secondly,

its restricted biotope is likely responsible for development of senescence, a feature

shared by other coprophilous fungi (Geydan et al. 2012), as in nature P. anserina
likely never grows enough to actually present senescence. Finally, P. anserina is

one of the fungi that fruits late in the succession on dung. This is correlated with an

enzymatic repertoire that enables it to degrade lignin to access cellulose (Espagne

et al. 2008) and a defence mechanism, called Hyphal Interference, which likely

permits P. anserina to eliminate some competing fungi (Silar 2012).

P. anserina is very easy to grow, and the complete cycle (Fig. 12.1) can be

mastered by using two media. The standard growth and crossing medium (M2 or

SU) contains dextrin as the carbon source and urea as the nitrogen source. The pH is

maintained at 7 by a phosphate buffer and minerals as well as biotin and thiamine

are added as traces. On this medium the fungus grows at a rate of 7 mm/day and

starts to differentiate male (spermatia) and female (ascogonia) gametes after 3 days.

Spermatia are not conidia and they are unable to germinate, although previous

reports suggest they may do so in some conditions (Beisson-Schecroun 1962; Esser

and Prillinger 1972). Alternatively, hyphal fragment can act as male gamete. If

gametes compatible for mating are present, fertilisation ensues and the fruiting

body matures in 4 days, yielding a progeny of hundreds of ascospores that are

continuously expelled for up to 5 more days. P. anserina is pseudohomothallic,

meaning that it is formally a heterothallic fungus with two mating types (mat+ and

mat�) and fertilisation is possible only between mat+ and mat� gametes; how-

ever, ascospores are binucleated and nuclei usually contain alternative versions of

the mating type. Hence, the mycelium germinating from P. anserina ascospores is

normally heterokaryotic and self-fertile. This facilitates genetic analysis, because

mat+ and mat� wild-type strains differ only by a small region around the mating-

type locus. On standard medium, ascospore germination occurs with a very low

efficiency (about 0.01 % if the ascospores are not collected and about 1 % if they are

collected on a needle). This is likely due to the fact that in nature, ascospores are

triggered to germinate by passage through the digestive tract of an herbivore. This

can easily be recreated in the lab, by incubating the ascospores on a medium

containing ammonium acetate and Bacto Peptone. Ascospores transferred one by

one at the tip of a needle on this medium germinate at nearly 100 % efficiency. All

protocols to work with P. anserina are currently available at http://podospora.

igmors.u-psud.fr/. This site also hosts the latest version of the P. anserina genome

as well as information and bibliography on this organism.

12.2.3 Doing Genetic Analysis with P. anserina

The early studies identified many mutants, obtained spontaneously or induced by

UV or chemical treatments, and segregation analyses resulted in a genetic map with
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nearly 150 markers located on seven nuclear linkage groups (Marcou et al. 1982)

and a mitochondrial chromosome (Belcour et al. 1978), which was in line with the

seven chromosomes observed during meiosis (Beckett and Wilson 1968; Franke

1962).

Although in decline during the 1980s and 1990s, identification of mutants

affected in various processes is still going on (Haedens et al. 2005; P. Silar,

unpublished data) and, thanks to the new “next-generation sequencing” (NGS)

technologies, may regain favour. To this end, UV mutagenesis procedures are

now improved, owing to easier protoplast recovery and new tools for mycelium

fragmentation. Indeed, protoplasting (Belcour 1976) results in formation of ~5 μm
roundish cells, many of which appear uninucleated. Typically, 104 protoplasts are

spread delicately onto a Petri plate containing M2 medium osmostabilised with

200 g/L of sucrose, irradiated with by 200–300 J/m2 of UV at 254 nm (such as those

produced in cross-linkers for DNA) and left in the dark overnight. Typically,

around 100 thalli regenerate after 1 or 2 days from such plates and can be replica

plated individually to screen mutants as desired. Alternatively, for direct screens,

such as those of suppressors of mutants affected in sexual reproduction, mycelium

can be fragmented in a “FastPrep” or similar machine, spread onto M2 plates and

regenerated overnight. This yields plates finely covered with a mycelium veil that

can then be irradiated as above. Note that additional methods of mutagenesis may

be used depending on the mutants desired.

The next step of mutant analysis is mapping, which thanks to P. anserina ascus

structure (Fig. 12.2) is quite simple: ordered tetrad analysis can be made from

unordered asci! A cross with wild type enables to check if the mutant phenotype is

caused by a single mutation by observing 2:2 segregation on small ascospores or

five-spored asci. First-division segregation (FDS) and second-division segregation

(SDS) analysis from the same cross permits a first rough mapping of the mutation

with respect to the centromere, and analysis of the phenotypes of strains issued from

SDS asci gives some clue as to whether the mutation is dominant or recessive.

Moreover, heterokaryon formation is very straightforward and rapid in this species:

mixing of mycelium fragments results in a heterokaryotic culture overnight, which

facilitates dominance/recessivity and “complementation” tests. To locate mutations

more precisely, the genetic map of P. anserina (Fig. 12.3) is now replete with

markers, often generated by gene replacement with a dominant resistance marker to

antifungal substances (see next section). Alternatively, we now have the complete

genome sequence of the distantly related “T” strain available (P. Silar

et al. unpublished data). This strain presents numerous polymorphisms with the S

(“big S”) and s (“small s”) strains that are typically used to screen for mutants, the S

strain being the first one sequenced (Espagne et al. 2008). Analysis of polymorphic

markers in a S � T cross has confirmed and refined the assembly of the genome of

the S strain (Espagne et al. 2008), and similar analysis has been used to identify

mutations through positional cloning (Adam et al. 2012; Espagne et al. 2011;

Sellem et al. 2009). New-generation sequencing techniques now allow for more

rapid identification of the mutant genes (see Sect. 4.1).
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Mutants obtained through genetic screens are stored easily at �80 �C, simply by

adding small 2 mm � 2 mm � 2 mm mycelium explants to 1 ml of RG medium,

which is M2 medium supplemented with 200 g/L of sucrose. In such conditions,

wild type and mutants can be frozen and thawed several times without loss of

vigour. This method may be of widespread utilisation as in our hands all Eumycota

(alas not Oomycetes) can be safely stored for an extended period of time (our oldest

strains have been stored for now nearly 20 years).
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Fig. 12.3 Podospora anserina genome map. On this map of strain S genome, which is in scale

with the sequence and not the genetic distances, classical genetic markers are on the left and
polymorphisms (mostly microsatellites and indels) with strain T on the right
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12.2.4 Genetic Transformation of P. anserina

Early studies also yielded an efficient transformation system. It is based on the

transformation of protoplasts with the help of PEG. It does not require complex

centrifugation steps in sucrose or KCl gradients for protoplast purification, and

those can been stored for an extended period of time before utilisation. The first

description of transformation was made with a plasmid, which lacked a dominant

marker (Stahl et al. 1982). Then, systems using either uracil auxotrophy (Begueret

et al. 1984) or suppressor tRNAs correcting leucine auxotrophy (Brygoo and

Debuchy 1985) were developed. Now, dominant makers conferring resistance to

drugs are usually used. Four are routinely used in our lab, resistance to

hygromycin B, phleomycin, nourseothricin and geneticin, and special vectors

have been designed for easy cloning, firstly with hygromycin B and phleomycin

(Silar 1995) and now with nourseothricin and geneticin (H. Lalucque and P. Silar,

unpublished data). Further improvements on this transformation system have been

made to delete or replace genes since the availability of the genome sequence

[(El-Khoury et al. 2008) and see Sect. 3.3].

12.3 The Genome of P. anserina

12.3.1 The Roadmap Towards the Genome Sequence

With the release of the Saccharomyces cerevisiae genome sequence and the

proposals for sequencing other genetic models (Escherichia coli, Drosophila,

Arabidopsis, etc.), the French Podospora community decided very early on

(in 1999) to sequence the P. anserina genome in order to access new tools that

would facilitate research with this model. A sequence of the complete mitochon-

drial genome was already available since 1990 (Cummings et al. 1990), and for a

long time it was the longest contig present in the GenBank database! The first pilot

project aimed at sequencing the region surrounding the centromere of chromosome

5 was proposed in 1999 and accepted in September 2000 by Genoscope, the French

sequencing agency. Five bacterial artificial chromosomes covering 500 kb around

the centromere were completely sequenced and manually annotated (Silar

et al. 2003). These first results showed that the P. anserina was likely to be poor

in repeated sequences and introns and defined consensus for intron splicing and

translation start sites.

The pilot study was then followed with acceptance by Genoscope in 2002 of a

0.5-fold coverage of the genome (at that time the N. crassa genome became

available and could be used to help with assembly) and in 2003 of the complete

sequence with a 10-fold coverage. The project was also proposed by the Broad

Institute (at that time the Whitehead Institute) in its “October 10, 2003, White

Paper” of the Fungal Genome Initiative, and after agreement between the two
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agencies, Genoscope proceeded with sequencing and assembly. 33 large scaffolds

comprising 1,196 contigs were obtained along with a few more small ones devoid

of unique regions. To help annotation, about 50,000 cDNA were also sequenced

from both ends. Annotation was custom-made with a mixture of comparative

predictions, using the N. crassa, Swiss-Prot and GenBank data, mapping to the

sequenced ESTs and de novo prediction, as, at that time, purely de novo prediction

programmes did not perform very well. The genome sequence and its analysis were

published in 2008 (Espagne et al. 2008). Since then Genoscope has generated

sequences with the 454 technology and over 20-fold coverage, and we have

generated over 100� coverage of the genome with the Illumina technology. This

has enabled us to correct numerous sequencing errors (P. Silar et al. unpublished

data). A few remaining gaps located in unique sequences were manually filled by

PCR amplification and sequencing of the recovered products. Today, the genome is

thus assembled into seven large scaffolds corresponding to the seven nuclear

chromosomes and a small one corresponding to the mitochondrial genome

(Fig. 12.3). All scaffolds are free of gaps in the unique regions (but unfortunately

not in repeated ones!), and resequencing shows that they contain minimal amounts

of sequence errors (some regions rich in similar bases may still contain a few

errors). Manual examination of the annotation has also enabled us to correct

mistakes, to reclassify some predicted CDS as pseudogenes and also to create

new CDS. Although not yet perfect, the community has now at its disposal a very

good quality annotated sequence. All data are available at http://podospora.igmors.

u-psud.fr and are updated frequently.

12.3.2 Main Features of the Genome Sequence

The P. anserina genome has a size of about 35.5 Mb, which is similar to that of

related species, and a GC content of about 50 %. Presently, it contains 10,635 CDS,

most of which are only “predicted” and not fully ascertained by any other means

afforded by the gene-by-gene analysis. However, microarray analysis evidenced

expression for most of them (see Sect. 3.3). Such number is typical for filamentous

fungi. Comparisons show that N. crassa and P. anserina share about 6,800 genes

with an average of 60 % identities in orthologous CDS. Each species has thus nearly

3–4,000 CDS, which are not present in the other species (Espagne et al. 2008).

Actually, P. anserina and N. crassa genetic divergence is more pronounced than

that of mammals and fishes! This is also reflected by the overall lack of gene

synteny between the two species, most genes being on the same chromosomes but

in different positions and orders: the largest synteny block is 37 genes surrounding

the mating type, in a region devoid of recombination during meiosis in P. anserina
and N. crassa (Espagne et al. 2008). Despite the widespread belief that P. anserina
is a facsimile of N. crassa, the genome data clearly show that it is not the case,

which reflects their completely different lifestyles (Table 12.1). Like the genes of

the other Pezizomycotina, P. anserina genes are tightly packed with often less than
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1 kb between consecutive genes. They contain few introns (frequently none or a

single one) of short sizes (~50–60 nucleotides), and some alternative splicing,

antisense RNA and “non-coding” transcription units have been evidenced (Espagne

et al. 2008).

The total amount of the repeated regions is unknown because telomeres,

centromeres and the rDNA are poorly assembled and a few short scaffolds com-

prising only repeated regions are not yet incorporated into the assembly. Several

class I and class II transposons are present, often in clusters associated with

segmental duplication, and represent about 3.5 % of the genome. Lack of obvious

mutations in the CDS of the transposases and the reverse transcriptases in some

copies suggests that some are still functional. Confirming this, the de novo insertion

of a “rainette” DNA transposon has recently been detected (M. Dequard-Chablat,

personal communication). Segmental duplications represent about 1.5 % of the

genome and are nearly always close to transposons, suggesting that they are likely

associated with incorrect transposition events. Most repeated sequences have traces

of repeat-induced point mutations (RIP) showing that in the long term this phe-

nomenon is indeed able to inactivate potentially harmful sequences, although in

P. anserina this phenomenon is much less efficient than that in N. crassa
(Bouhouche et al. 2004; Coppin and Silar 2007; Graı̈a et al. 2001). This lesser

efficiency is correlated with the presence in the genome of a few multigenic

families, including the Het genes involved in vegetative/heterokaryon incompati-

bility, whose evolution may even be fuelled by RIP (Paoletti et al. 2007). Finally, a

few repeated sequences of unknown affinities have been discovered, some of which

could code for RNAs with various functions (Espagne et al. 2008).

Overall, the genome of P. anserina does not present any obvious structural

features that would make it different from those of the other Pezizomycotina. In

this sense, N. crassa with its strong RIP may be less typical than P. anserina
(Galagan et al. 2003). With respect to its coding content, P. anserina appears to

possess classic amounts of genes for primary and secondary metabolism (see

Sect. 4.3), transporters, signalling, cytoskeleton, basic molecular biology processes

as well as a large proportion of CDS with unknown functions that await

characterisation.

12.3.3 Tools Created by the Genome Project

In addition to providing important information on the biology of P. anserina, the
genome project has also generated a set of tools accelerating research with this

organism. Firstly, an interactive website dedicated to the fungus (http://podospora.

igmors.u-psud.fr) was set up. On this site, information on P. anserina is available,

and BLAST analyses against the genome, the predicted CDS, the EST dataset and

the raw sequence traces can be performed. Chromatograms are available at the

NCBI Trace Archive if needed. Moreover, the P. anserina genome data have been

12 Podospora anserina: From Laboratory to Biotechnology 293

http://podospora.igmors.u-psud.fr/
http://podospora.igmors.u-psud.fr/


integrated to the FUNGIpath resource (Grossetete et al. 2010), which enables rapid

location of metabolic pathways of P. anserina and orthologous gene in other fungi.
All DNA banks generated by the project, including 3-kb, 12 kb, BAC and

cosmids are available for research purposes and are used, for example, in transfor-

mation experiments. cDNAs of the EST project are also available. Some are cloned

into a yeast expression vector under the control of the strong PGK promoter and

may be directly transformed into S. cerevisiae for transgenic expression (Espagne

et al. 2008).

The genome assembly also required verification, which was done by establishing

a new genetic map with more than 120 polymorphic markers (Espagne et al. 2008).

These markers, along with some older ones (Coppin and Silar 2007; Dequard-

Chablat and Silar 2006) and numerous new ones discovered since (Fig. 12.3), are

now available for mapping genes during positional cloning (Adam et al. 2012;

Espagne et al. 2011; Sellem et al. 2009) and also for locating crossing overs

(Espagne et al. 2011).

12.4 After the Genome: New Tools for Fundamental and
Applied Research

12.4.1 New Tools Created After the Genome Project

Since the release of the genome sequence, additional tools have been developed.

Firstly, strains devoid of their mus51 gene involved in non-homologous recombi-

nation were constructed by replacing the mus51 coding sequence with a

phleomycin resistance marker (El-Khoury et al. 2008) or the su8-1 suppressor

tRNA (Lambou et al. 2008). As described earlier in N. crassa (Ninomiya

et al. 2004), recombination proceeds almost exclusively between homologous

regions in these strains, which facilitates gene inactivation. Without mus51 inacti-

vation, plasmid transformation could be messy with tandem insertions of several

copies often truncated (Razanamparany and Bégueret 1988; Rossignol and Silar

1996). Nevertheless, cosmids containing 40 kb of genomic DNA often integrate

through homologous recombination in wild type (Picard et al. 1987). However,

these integrations are unstable and excise during meiosis by a single crossing over

event (Coppin-Raynal et al. 1989; Picard et al. 1987). For gene deletion, many

strategies may be followed, including one similar to the high-throughput method

used for inactivating the whole set of N. crassa genes (Bidard et al. 2011; Colot

et al. 2006). In our lab, the strategy that we found most effective is the “split

marker” described in Fig. 12.4. This method requires two successive PCR reaction

sets and the co-transformation of two DNA fragments carrying part of the deletion

cassette. P. anserina finishes the job by making three homologous recombination

events. In a typical experiment, 5–50 transformants may be recovered, over 80 % of

them being correctly inactivated, as judged by Southern blot analysis. Because the
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Fig. 12.4 Gene inactivation with the “split marker” method. In the first step, two PCR reactions

amplify the 50 and 30 flanking regions of the gene to be deleted using primer couples (A, B) and (C,

D) respectively; a third PCR reaction amplifies the resistance marker using primers E and F. To

enable fusions, primers B and C and primers E and F contain complementary sequences. In the

second step, two separate PCR reactions fuse the 50 flanking fragment with the resistance marker

and the other the 30 flanking fragment with the resistance marker using primer couples (A, F) and

(E, D), respectively. A 2-piece deletion cassette is obtained with the resistance marker with either

one of the flanking region: the split marker deletion cassette. The two fragments are introduced

together by transformation into P. anserina. Thanks to three recombination events (red crosses),
the gene is then deleted and replaced by the resistance marker
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sexual cycle is so easy to undergo, the primary transformants are backcrossed to the

wild type, and “clean” homokaryotic strains inactivated for the gene and devoid of

the mus51 inactivated allele are recovered in the progeny.

Using the mus51-deleted strains, green fluorescent protein (GFP) tags may also

be added through a single recombination event at the end of any gene enabling to

localise the protein through GFP fluorescence (Malagnac et al. 2013). Interestingly,

in this case the tagged protein is expressed thanks to the natural promoter of the

gene, which remains in its proper chromosomal location. In addition, two vectors

that target the integration of exogenous DNA at two defined loci in single copies

have been created to use with mus51 deletion (Déquard-Chablat et al. 2012). They

should permit to better monitor construct expression and make, for example,

comparison between alleles more straightforward.

Down to single nucleotide, changes within the P. anserina genome may also be

introduced using the mus51-inactivated strains (El-Khoury et al. 2008). A strain

carrying both mating-type loci in tandem has been created this way (E. Coppin and

R. Debuchy, personal communication). In this strain, the mat+ idiomorph was

introduced, without additional sequences, upstream of the mat� idiomorph,

recreating a composite mating-type locus resembling that of the homothallic

S. macrospora (Poggeler et al. 1997). This PM154 strain is self-fertile as a

homokaryon and can also fertilise mat+ and mat� strains: however, meiosis and

spore formation are not as efficient as in a mat+ � mat� crosses (likely because

haploid nuclei engage in meiosis and abort). It is presently used to select for

recessive mutations affecting fruiting body formation (P. Silar, unpublished data).

Agilent microarrays have also been designed and optimised for the 10,556 CDS

defined by the genome project (Bidard et al. 2010). These are able to probe with

high statistical significance the transcriptional expression of more than 10,000

genes (Bidard et al. 2012). They have been used to detect genes differently

transcribed between the mat+ and mat� strains (Bidard et al. 2011), during myce-

lium growth (Bidard et al. 2012), perithecium development (V. Berteaux-Lecellier

and F. Bidard, personal communication) and ascospore germination (M. Dequard-

Chablat, personal communication). We thus now have an overview of the

transcriptomes of P. anserina during its major developmental stages in laboratory

conditions.

With the advances of the new sequencing technology (Next Generation

Sequencing or NGS), resequencing genomes is affordable and turns out to be the

cheapest way to identify mutations. To this end, UV-induced mutants are

backcrossed five times with the wild type to eliminate spurious mutations. Genomic

DNA is then sequenced in multiplex (e.g. a single Illumina lane can be used to

sequence the genome of three strains with coverage of more than 40-fold, which is

more than enough to detect mutations). Moreover, strains carrying two different

mutations to be identified may be constructed, which permits to cut costs even

more. Analysis with the SAMtools package (Li et al. 2009) efficiently identifies the

mutated sequence in the generated sequences. If several candidate mutations are

detected, genetic mapping analysis may help to narrow the search for the true

culprit (see Sect. 2.3). Final identification can be made using the molecular tools
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already available for P. anserina; especially, transformation with a DNA fragment

encompassing the actual mutation should restore a wild-type phenotype (if the

mutation is recessive!). Papers in which mutations are identified this way should

be published shortly (P. Silar et al. unpublished data). In comparison, the sib

selection (e.g. Berteaux-Lecellier et al. 1995; Turcq et al. 1990) and positional

cloning methods (Adam et al. 2012; Espagne et al. 2011; Sellem et al. 2009) used

previously are more time consuming and expensive. This should foster the

utilisation of forward genetics, instead of reverse genetics, to gain insight into the

mechanisms of many biological processes as presented in the next section.

12.4.2 The Main Areas that Benefit from the Research with
P. anserina

With nearly 600 publications indexed in “PubMed”, including nearly 250 from the

last 10 years, research with P. anserina is fairly active. It is thus impossible in the

scope of this chapter to present a comprehensive review. Only active fields of

research with the most relevant references will be briefly presented.

The first major field of research, both historically and in terms of publication, is

senescence. The early works (Marcou 1961) suggested that this phenomenon is

triggered by the appearance and subsequent exponential amplification of a cyto-

plasmic and infectious “determinant”, whose nature is at the present time still

unknown (Jamet-Vierny et al. 1999). However, cytosolic translation (Belcour

et al. 1991; Silar et al. 2001) and especially mitochondria (Cummings et al. 1979;

Jamet-Vierny et al. 1980; Tudzynski and Esser 1977) have been implicated as

major factors. This has led to numerous studies that connect mitochondrial physi-

ology, including its role in apoptosis, with longevity control and abnormal mito-

chondrial DNA molecule accumulation (e.g. Adam et al. 2012; El-Khoury and

Sainsard-Chanet 2010; Rexroth et al. 2012; Scheckhuber et al. 2011; Sellem

et al. 2009; van Diepeningen et al. 2010). Respiration is likely one of the key

factors for senescence, as diminution of the respiratory activity leads to increased

lifespan (Dufour et al. 2000; Sellem et al. 2007) and restoration of the electron flow

by an alternative oxidase restored senescence (Lorin et al. 2001). Most research is

relevant to general ageing as the factors discovered in P. anserina are likely to be

conserved in human (Fischer et al. 2013; Osiewacz et al. 2010; Scheckhuber

et al. 2007; Scheckhuber and Osiewacz 2008; van Diepeningen et al. 2010).

The second active line or research is that of prion biology. Indeed, an unusual

case of inheritance discovered 70 years ago (Beisson-Schecroun 1962; Rizet and

Delannoy 1950) is now demonstrated to be due to the prion properties of the Het-s

protein involved in vegetative incompatibility (Coustou et al. 1997; Maddelein

et al. 2002; Seuring et al. 2012). Because the Het-s proved to be more tractable than

the other prion proteins, it has been used to decipher the structural determinants of

prion formation (Greenwald et al. 2010; Ritter et al. 2005; Wasmer et al. 2008). It
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has also enabled to clarify the role of prions. On the one hand, the Het-s prion acts

as a detrimental selfish element during meiosis (Dalstra et al. 2003), and on the

other hand, it is involved in the incompatibility reaction which prevents the

spreading of deleterious genetic elements and is thus maintained at a balanced

level in natural populations (Debets et al. 2012).

Third, developmental processes accompanying the life cycle, including asco-

spore ejection (Yafetto et al. 2008) and germination (Lambou et al. 2008; Malagnac

et al. 2004), hypha differentiation (Brun et al. 2009) and fruiting body formation

(Coppin et al. 2012; Espagne et al. 2011; Grognet et al. 2012; Jamet-Vierny

et al. 2007; Malagnac et al. 2004; Peraza-Reyes et al. 2011; Silar 2011) are

intensely studied in P. anserina. More integrated behaviours of the mycelium are

also under investigation. These include the mechanisms of cell death during the

vegetative incompatibility reaction (Pinan-Lucarre et al. 2007; Seuring et al. 2012)

and crippled growth, an epigenetic cell degeneration caused by a non-conventional

hereditary unit based on MAP kinases (Haedens et al. 2005; Kicka et al. 2006;

Lalucque et al. 2012; Silar et al. 1999). The recognition phenomena that accompany

these mechanisms are also under scrutiny: gamete recognition during fertilisation

(Bidard et al. 2011; Coppin et al. 2005; Turgeon and Debuchy 2007), self-versus-

non-self recognition during vegetative incompatibility (Chevanne et al. 2009, 2010;

Paoletti et al. 2007) or interspecies recognition during Hyphal Interference (Paoletti

and Saupe 2009; Silar 2005, 2012).

Although most of the phenomena presented above may appear restricted to

P. anserina and closely related fungi, they are in fact archetypes of larger classes

of processes that are universally present in all domains of life: How cells recognise

each other? How cells die and how cells transmit information not directly encoded

in their DNA to their daughter cells (epigenetic phenomenon)? How are the

regulatory networks that regulate cell growth and differentiation wired? etc.

There is no doubt that P. anserina still has much to offer as a convenient experi-

mental model for research conducted on such topics. Moreover, because it is related

to N. crassa, yet often presents contrasting characteristics, comparison between the

two species is fruitful, especially if one seeks to encompass the behavioural

diversity of fungi.

12.4.3 P. anserina: Its Gene Repertoire and Its Application
in Biotechnology

The P. anserina genome sequence has uncovered a plethora of genes encoding

enzymes that in nature help the fungus to successfully invade its growth substrate

and leave an abundant progeny, and some interestingly may have potential appli-

cation in biotechnology.

Analysis of the CAZy repertoire showed that P. anserina has a large repertoire of
enzymes involved in cellulose and xylan hydrolysis, but a smaller one for pectin
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degradation (Espagne et al. 2008). P. anserina also lacks invertase and other GH32
enzymes and is unable to use saccharose or inulin as carbon source. This is in line

with the fact that this fungus is rather late in the succession of fungi fruiting on

dung: easy to digest carbon sources, such as saccharose, inulin and pectin, are likely

no longer available, and P. anserinamust be able to scavenge those that remain, i.e.
xylan and cellulose. More unexpected was the discovery of many genes involved in

lignin breakdown including 10 laccases/copper radical oxidases, 29 glucose/meth-

anol/choline (GMC) oxidoreductases, 2 cellobiose dehydrogenases, 1 pyranose,

1 quinone, 1 copper radical and 1 galactose oxidase, 1 versatile peroxidase and

4 vanillyl-alcohol oxidases (Espagne et al. 2008; Poggeler 2011; P. Silar unpub-

lished data). While the final proof of actual ligninolytic activity in P. anserina
awaits the demonstration of mineralisation of lignin by chemical analysis, several

arguments suggest that P. anserina is able to degrade lignin. Firstly, most of the

enzymes harbour a secretion signal, suggesting that they act outside the cells.

Secondly and interestingly, P. anserina is able to grow better on medium containing

lignin as sole carbon source than on water agar (Espagne et al. 2008). Possibly,

P. anserina is able to scavenge some usable carbon from lignin. Thirdly, it can

complete its cycle on wood-derived materials, such as wood shavings or toothpicks!

It is therefore able to efficiently degrade such food sources, possibly by partially

removing lignin to gain access to the cellulose fibres. Other ascomycetes have

demonstrated ligninolytic activities, including P. chrysogenum (Rodriguez

et al. 1996), Fusaria (Lozovaya et al. 2006; Regalado et al. 1997) and especially

many Xylariaceae, Sordariomycetes related to P. anserina common in decaying

wood, which have a demonstrated brown rot ability (Pointing et al. 2003). It was

recently established that brown rot (partial degradation of lignin) has evolved after

white rot (complete degradation of lignin) in the Agaricomycetes (Floudas

et al. 2012). The former rot being less energy consumptive than the latter is likely

a more evolved strategy. Conceivably, coprophilous ascomycetes like P. anserina
have evolved directly some rot akin to brown rot, as no ascomycete white rot is

presently known.

In addition to producing enzymes, P. anserina differentiate dedicated hyphae

resembling appressorium-like hyphae to penetrate the biomass (Brun et al. 2009),

and the underlying signalling pathways are being explored (Lalucque et al. 2012).

This permits a digestion from inside the material, which greatly accelerates the

process (Brun et al. 2009) and likely increases recovery of energetic compounds to

fuel reproduction (Malagnac et al. 2008). The availability of an efficient genetic

analysis now permits to better define the modalities of biomass degradation in a

model fungus, a feat not so easy to perform in Basidiomycetes in which gene

inactivation is often not straightforward. For example, we recently genetically

demonstrated the necessity of catalase for efficient lignin, but not cellulose, break-

down (Bourdais et al. 2012), likely to protect from the reactive oxygen species

(ROS) associated with lignin depolymerisation. Intriguingly, inactivation of some

catalase genes appears to increase the ability of the fungus to scavenge nutrient

from wood, showing that a delicate balance in ROS production and elimination

must be achieved to permit both efficient degradation and healthy growth and
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reproduction. P. anserina, like N. crassa (Coradetti et al. 2012; Tian et al. 2009), is
thus a good model to genetically study lignocellulose breakdown (Bey et al. 2013),

especially with respect to the developmental processes involved in biomass pene-

tration (Brun et al. 2009), which will have to be mastered if filamentous fungi are to

be used in the future to directly transform waste products into valuable compounds.

Moreover, its genes have been used to improve biomass saccharification by

Trichoderma (Couturier et al. 2011; Turbe-Doan et al. 2012) and to produce

vanillin (Hansen et al. 2009) or muconic acid (Curran et al. 2013), already showing

exploitation in the bioenergy and food industries.

Another area in which P. anserina enzymes may be valuable is the remediation

of polluted soils. Indeed, fungi with their peculiar lifestyle and their non-specific

enzymes acting on plant biomass are likely in the future to be major organisms in

pollution removal strategies (Harms et al. 2011; Silar et al. 2011). Often targeted

fungi are basidiomycetes, because their enzymatic machinery appears more effec-

tive, or common soil ascomycetes such as Fusaria and to a lesser extent

Trichoderma, as these seem to persist in soils (unlike the basidiomycetes). Prelimi-

nary experiments on the remediation of soils containing the toxic arylamine 3,4

dichloroaniline (DCA) indicate that P. anserina may efficiently inactivate this

highly toxic pollutant by acetylation (Martins et al. 2009). It does so thanks to

two acetyl transferases PaNat1 and PaNat2. PaNat2 appears to be the most impor-

tant and is presently the enzyme that most efficiently acetylates DCA. Cosmopoli-

tan coprophilous fungi may thus offer additional candidates for efficient removal of

pollutants. What spectrum of molecules they are able to remove is yet unknown.

However, the plethora of cytochrome P450 and oxidases encoded in the genome of

P. anserina suggest that they may be able to detoxify a large spectrum of

compounds. This is not unexpected as in their dung biotope they must be able to

remove noxious metabolites secreted by competing bacteria and fungi, as well as

those that may remain in the plant debris. Interestingly, these fungi are not known to

generate disease in plant, animal or human and may be competitive in soils. They

also often lack conidia and have short lifespans, which may prove valuable to limit

spreading of the cleaning organism beyond the contaminated area.

The genome sequence revealed that P. anserina has the ability to produce many

secondary metabolites. Indeed, it contains 18 polyketide synthases (PKS),

8 non-ribosomal peptide synthase (NRPS) and 3 enzymes with dual PKS/NRPS

activity. It also has 2 terpene cyclases, 107 cytochromes P450 enzymes and a large

array of oxidases acting on various putative substrates (Espagne et al. 2008).

Among these, only the PKS1 gene has been characterised (Coppin and Silar

2007). It is involved in the production of melanin, and its inactivation causes lack

of pigment production at all stages of the life cycle. As in other fungi, these

enzymes are encoded by gene clusters, one of which results from a horizontal

transfer, likely from some Aspergillus (Slot and Rokas 2011). This cluster should

confer the ability to produce sterigmatocystin. What metabolites are produced by

these clusters is presently unknown, nor are the conditions for their expression.

However, molecules with larvicidal activity against mosquito larvae, including

sterigmatocystin, secosterigmatocystin and 13-hydroxyversicolorin, were purified
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from an endophytic Podospora sp. closely related, if not identical, to P. anserina
(Matasyoh et al. 2011). The role of these secondary metabolites in the physiology of

the fungus is unknown. However, it is acknowledged that dung is a highly competi-

tive biotope. Possibly, secondary metabolites are part of the repertoire that enables

P. anserina to fight against other microorganisms for its place in the dung or to repel

small animals such as nematodes, mites and collembola that may feed on it. Note

that our P. anserina cultures are seldom attacked by mites, whereas we frequently

find them on our plate cultures for other species, suggesting that P. anserina
mycelium may not be very palatable!

Secondary metabolites are not the only tools that P. anserina uses to win

competition. Indeed, it is able to kill other fungi by simple contact, a phenomenon

called Hyphal Interference [see Silar (2012), for a review]. In addition to directly

eliminating the competition, Hyphal Interference may also provide nitrogen, as

dead hyphae contain chitin, a nitrogen-rich polymer. Intriguingly, P. anserina
possesses an above average number of chitinases that could do the job (Espagne

et al. 2008). The way Hyphal Interference operates is not clear and the potential

fungicidal compounds are unknown. Interestingly, a MAP kinase pathway and an

NADPH oxidase are crucial for this phenomenon, which involves a self-versus-

non-self discrimination as observed in the immune systems of both plants and

animals. Is it an ancient phenomenon already present in the ancestral eukaryotes

or the result of some more recent convergent evolution? Only further studies in

P. anserina and the other fungi exerting Hyphal Interference will tell. These

researches may also end up with new sources of potent and safe antifungal

compounds.

The final aspect for which P. anserina may be interesting is as a model to study

appressorium biology. Indeed, not only does P. anserina differentiate some

appressorium-like structures as stated above, but the germination of its ascospore

appears to use the same machinery as the one used by true appressoria to penetrate

living plants (Lambou et al. 2008). P. anserina thus offers an alternative to study

this developmental process, especially to define the genes involved. Mutations

affecting the germination have already been selected, and determination of the

affected genes is underway (P. Silar et al. unpublished data).

12.5 Perspectives

With efficient systems for forward and reverse genetics in hand, development should

now focus on establishing convenient tools for cytology and biochemical analyses.

We have at our disposal strains with various organelles tagged with GFP: ribosomes

(Lalucque and Silar 2000), peroxisomes (Ruprich-Robert et al. 2002), vacuoles

(Pinan-Lucarre et al. 2005) and mitochondria (Sellem et al. 2007). New strains

with nuclei, endoplasmic reticulum and cytoskeletal elements tagged with various

fluorescent proteins are currently being constructed. Proteomic analysis has

identified protein changes during senescence (Groebe et al. 2007). Similar
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technology should be applied to identify changes during the various stages of the life

cycle, which would complement the microarray data for the transcriptome. An

inducible promoter, in addition to the strong promoters already available, may

also come in handy, as at the present time none is available. The problem appears

to be to find one that is truly off, as in our hands we always observed some leakiness

of the promoters.

With the genome sequence and the new resulting tools, research with

P. anserina appears still competitive. The size of the community working with

this model is still small, so tools developed for more popular models, such as the

complete deletion collection available for N. crassa, remain a long way ahead.

Nevertheless, P. anserinamay be considered as a “niche” fungus, in which peculiar

and interesting phenomena with potential broad implication can be studied

conveniently.
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Chapter 13

Recent Advances on the Genomics of
Litter- and Soil-Inhabiting Agaricomycetes

Phil Kersten and Dan Cullen

13.1 Introduction

Woody biomass makes up the major portion of terrestrial carbon, and forest

ecosystems contain enormous reservoirs of lignocellulose belowground, in dead

trees, and litter. Decomposition of this recalcitrant material and mobilization of

nutrients are essential for forest health [reviewed by Boddy and Watkinson (1995)].

Although mechanisms are incompletely understood, initial decomposition of ligno-

cellulose is efficiently carried out by certain filamentous fungi, and the genomes of

representative species have been recently sequenced. This review covers these

genome studies and the insight they provide regarding lignocellulose degradation.

Emphasis is placed on extracellular oxidative systems which are widely thought to

be involved in lignin degradation but increasingly implicated in the depolymeriza-

tion of cellulose and hemicellulose. Areas of uncertainty are highlighted. Detailed

descriptions of the voluminous literature are not provided. Instead, interested

readers are referred to earlier reviews (Cullen and Kersten 2004; Hatakka and

Hammel 2010; Kersten and Cullen 2007).

13.2 Microbiology of Woody Litter Decay

Wood cell walls represent a complex and formidable substrate. Cellulose, essen-
tially linear chains of β-1,4-linked cellobiose organized into microfibrils, is the

major component. Where chains are tightly stacked, the polymer is crystalline and

resistant to hydrolysis. Nevertheless, many microbes are capable of cellulose

utilization by hydrolyzing the β-1,4 linkages [reviewed by Baldrian and Valaskova
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(2008)]. Hemicellulose is also widely utilized although a more diverse set of

hydrolases are needed to fully degrade the branched polymer [reviewed by van

den Brink and de Vries (2011)]. In contrast to cellulose and hemicellulose, lignin is
a complex phenylpropanoid polymer (Higuchi 1990; Ralph et al. 2004). Few

microbes have the capacity to depolymerize lignin, and none have been convinc-

ingly shown to utilize native lignin as a sole carbon source (Hatakka and Hammel

2010).

Efficient wood degradation is typically attributed to Agaricomycetes, and two

basic forms are recognized: white rot and brown rot. White rot fungi depolymerize

and mineralize all cell wall components including cellulose, hemicellulose, and the

more recalcitrant lignin. Decay patterns vary among fungal species and strains as

well as among wood species, morphology, and composition (Blanchette 1991;

Daniel 1994; Eriksson et al. 1990; Schwarze 2007). Cell wall erosion by most

white rot fungi, including “Phanerochaete chrysosporium”, involves simultaneous

degradation of all three polymers, whereas Ceriporiopsis subvermispora selectively
degrades lignin in advance of cellulose and hemicellulose (Blanchette et al. 1992,

1997; Srebotnik and Messner 1994). In this context, it should be noted that reports

of lignin depolymerization should be suspect in the absence of persuasive experi-

mental support such as cleavage of non-phenolic lignin model compounds (below)

and the degradation of radiolabeled lignin or synthetic lignins. Experiments relying

on commercially available “lignin” should be carefully interpreted as these

preparations typically contain contaminants and sulfonated lignin of varying

molecular weight.

In contrast to white rot, brown rot fungi modify lignin but the polymeric residue

remains (Niemenmaa et al. 2007; Yelle et al. 2008, 2011). Also distinctive, brown

rot fungi rapidly depolymerize cellulose (Gilbertson 1981; Kirk et al. 1991;

Kleman-Leyer et al. 1992; Worrall et al. 1997) in advance of extensive weight

loss. This observation, together with microscopic localization of decay and studies

of cell wall porosity, strongly argue for the involvement of small molecular weight

oxidants diffusing into cell walls (Blanchette et al. 1997; Cowling 1961; Flournoy

et al. 1993; Srebotnik and Messner 1991; Srebotnik et al. 1988). Hydroxyl radical

has been repeatedly implicated as the diffusible oxidant, and its production

attributed to Fenton reactions (H2O2 + Fe2+ + H+ ! H2O + Fe3+ + �OH)
(Arantes et al. 2011; Cohen et al. 2002, 2004; Xu and Goodell 2001). Typically

invoked to explain brown rot, such reactive oxygen species may also be operative in

white rot as recently suggested (Arantes et al. 2011; Gomez-Toribio et al. 2009). In

any case, the role of hydroxyl radical in situ is unresolved, and any reasonable

model must accommodate the generation of highly reactive radical at or near the

substrate as well as the need for a plausible redox system [reviewed by Arantes

et al. (2012) and Goodell (2003)]. The involvement of small molecular weight iron

chelators (Xu and Goodell 2001), cellobiose dehydrogenase (Henriksson

et al. 2000a, b), and hydroquinone redox cycling (Paszczynski et al. 1999; Suzuki

et al. 2006) has been proposed.

Beyond the wood-decay Agaricomycetes, several litter-inhabiting fungi have the

capacity to degrade lignin, albeit less efficiently. These include the commercial
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button mushroom Agaricus bisporus (Durrant et al. 1991), other basidiomycetes

and a few higher ascomycetes [reviewed by Eriksson et al. (1990) and Hatakka

(2001)]. Certain litter-decomposing fungi likely play a crucial role in the transfor-

mation and degradation of humic substances, a major fraction of soil organic matter

(Kluczek-Turpeinen et al. 2005; Snajdr et al. 2010; Steffen et al. 2002). Recently, a

white rot fungus Trametes sp. has been shown to degrade humic substances, and a

Fenton-based mechanism implicated (Grinhut et al. 2011a, b).

Unexpectedly, recent studies have also connected hydroxyl radical-based degra-

dation of humic substances by ectomycorrhizal (ECM) fungi. Ectomycorrhiza

obtain carbon from plant hosts, but under some conditions, soil organic matter

may be at least partially degraded (Baldrian 2009; Cullings and Courty 2009). As

described below, scant ECM genome evidence (Martin et al. 2008; Vaario

et al. 2012) supports a role for facultative saprotrophy, but transcriptome analyses,

together with lignin structure determinations, suggest mechanisms by which soil

organic extracts could be degraded by Paxillus involutus (Rineau et al. 2012).

13.3 Physiology and Genetics

13.3.1 Peroxidases

Peroxidases catalyze oxidations of diverse substrates with reduction of peroxide,

which groups these enzymes under EC 1.11.x [donor: hydrogen peroxide oxidore-

ductase] in the NC-IUBMB system of nomenclature (Fleischmann et al. 2004).

Beyond this description of chemical reaction, the classification of peroxidases

based on protein properties is evolving as new enzymes are discovered and struc-

tural details are delineated indicating structure–function relationships. Not only

may a single peroxidase have diverse substrates, but peroxidases of distinctly

different structures may catalyze the same reaction. Furthermore, peroxidases

may have different modes of oxidation while catalyzing the same net overall

reaction. This presents significant challenges for classification of peroxidases into

groups that adequately reflects function, protein structure, and phylogenetic relat-

edness (Hofrichter et al. 2010).

The first opportunity to classify a selection of secreted fungal peroxidases based

on their crystal structure occurred in the early 1990s; lignin peroxidase (LiP),

manganese peroxidase (MnP), and Coprinus cinereus peroxidase (CiP) were

shown to be sufficiently similar in overall 3D structure and active site to group as

Class II peroxidases, distinct from Class I intracellular peroxidases, and Class III

secretory plant peroxidases (Welinder 1992). Versatile peroxidase (VP), more

recently discovered, shows properties of both LiP and MnP and is likewise a

Class II peroxidase. However, other newly discovered heme-thiolate peroxidases

(HtPs) and the dye-decolorizing peroxidases (DyPs) are clearly distinct in

sequence, protein structure, and catalysis, justifying establishment of HtP-like
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and DyP-like peroxidase superfamilies, separate from the Class II peroxidases.

These complexities of fungal peroxidases and differences between “new” and

“classic” families have been recently reviewed (Hofrichter et al. 2010). Salient

properties of peroxidases as they may relate to litter and soil ecosystems are briefly

summarized here.

13.3.1.1 High Oxidation Potential Class II Peroxidases (LiP, MnP,
and VP)

Three Class II peroxidases, the LiPs (systematic name 1,2-bis

(3,4-dimethoxyphenyl)propane-1,3-diol:hydrogen-peroxide oxidoreductase; EC

1.11.1.14), VPs (systematic name reactive-black-5:hydrogen peroxide oxidoreduc-

tase; EC 1.11.1.16), and MnPs (systematic name Mn(II):hydrogen peroxide oxido-

reductase; EC 1.11.1.13) are able to modify lignin and other recalcitrant aromatic

molecules in part due to their high oxidation capacity, in contrast to low redox

potential peroxidases (e.g., CiP and NoP, also Class II peroxidases; see following

section). LiP and VP are the most powerful of the peroxidases with redox potentials

of approximately 1.5 V and able to oxidize non-phenolic lignin model compounds

directly by one electron (Kersten et al. 1985; Kirk et al. 1986; Miki et al. 1986).

Another feature of both LiP and VP is an enzyme surface tryptophan that mediates

oxidation through long-range electron transfer (LRET) enabling oxidation of larger

sterically hindered non-phenolic substrates (Choinowski et al. 1999; Doyle

et al. 1998).

Unlike LiPs and VPs, the MnPs do not have a conserved Trp at the enzyme

surface and are not able to efficiently oxidize non-phenolic aromatics directly.

Instead, MnPs have a conserved solvent-exposed Mn-binding site in the vicinity

of a heme propionate and therefore are able to catalyze the oxidation of Mn2+ to

Mn3+ in the presence of peroxide and suitable Mn3+ chelators (Sundaramoorthy

et al. 1994; Wariishi et al. 1992). The VPs similarly have a Mn-binding site and

therefore have hybrid characteristics of both LiPs and MnPs (Ruiz-Dueñas

et al. 2009). A likely physiological Mn3+ chelator for the MnP- and VP-catalyzed

reactions is oxalate, which is known to be secreted by these fungi (Kuan and Tien

1993). Therefore, one role of MnPs and VPs is thought to be generation of

diffusible Mn3+ chelates, which can oxidize phenolics directly. A more complex

role may also be possible via oxidation of the chelates, thus generating other

oxidizing species such as superoxide and perhydroxyl radical, which initiate radical

chain reactions (e.g., in the presence of lipids) to generate ligninolytic radicals

(Kapich et al. 1999). Phylogenetic analyses show the rise to two groups of MnPs,

the so-called long-MnPs and the short-type hybrid MnPs which are more closely

related to LiPs and VPs (Lundell et al. 2010).

The oxidizing capacity of these Class II peroxidases is achieved through the

classical peroxidative cycle where “resting” enzyme is oxidized with peroxide by

two electrons to generate Compound I enzyme intermediate. Compound I oxidizes

substrates by one electron to produce oxidized substrate and Compound II enzyme
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intermediate. The Compound II also oxidizes substrate, returning the enzyme back

to “resting” state. In the case of LiPs and VPs with non-phenolic aromatics, the

oxidized substrate are cation radicals and, as demonstrated with various substrates,

the fate of the cation radical substrate intermediates is in large part determined by

the substrate structure. Importantly, these reactions result in fragmentation of lignin

model compounds and lignin (Miki et al. 1986; Tien and Kirk 1983).

Genes encoding Class II peroxidases have been identified in all lignin-degrading

fungi, but not in brown rot or ECM. Trametes versicolor and P. chrysosporium
genomes each feature ten LiP genes, but the corresponding proteins were not

identified after 5 days growth in media containing ground aspen as sole carbon

source (Table 13.1). On the other hand, ground pine wood and nutrient limited

defined media support high transcript levels and secretion of several

P. chrysosporium LiP and MnP isozymes (Vanden Wymelenberg et al. 2005,

2006b, 2009, 2010, 2011). Relative to LiPs, MnP-encoding genes appear more

widely distributed. Sixteen MnP genes were identified in the genome of white rot

fungus Fomitiporia mediterranea, and the corresponding proteins of seven are

secreted in aspen cultures. Two A. bisporus MnP genes have been identified, and

significant transcript accumulation occurs for one of these in compost (Morin

et al. 2012). No Class II peroxidases were detected in the Schizophyllum commune
genome. Although often classified as a white rot fungus and thereby presumed

ligninolytic, the genetic repertoire of S. commune is consistent with weak or

nonexistent lignin degradation (Boyle et al. 1992; Schmidt and Liese 1980).

Many wood- and litter-inhabiting fungi are clearly able to transform lignin or

structurally related components of humic substances, but little is known about the

role, if any, of high oxidation potential peroxidases in litter and soils. 14C-labeled

lignin and humic acid are degraded by litter decomposers Gymnopus erythropus
and Hypholoma fasciculare when cultured on sterile leaf litter. MnP activity was

higher in G. erythropus colonized litter, but degradation was less efficient for both

species on non-sterile material, presumably due to interspecific competition (Snajdr

et al. 2010). Similarly, laboratory experiments demonstrated degradation of 14C-

labeled humic acid and production of MnP by the litter decomposer, Collybia
dryophila (Steffen et al. 2002). Laboratory studies of P. chrysosporium-colonized
wood chips and soil have quantified transcript levels of specific LiP and MnP genes

(Bogan et al. 1996b; Janse et al. 1998), and MnP activity was measured in

organopollutant-contaminated soil (Bogan et al. 1996a).

13.3.1.2 Low Oxidation Potential Class II Peroxidases (CiP and NoP)

“Coprinopsis cinerea peroxidase” or CiP (systematic name phenolic donor:hydro-

gen-peroxide oxidoreductase; EC 1.11.1.7) is not able to oxidize non-phenolics

such as veratryl alcohol; neither does it have the manganese-binding site of VP or

MnP. Rather, CiP very efficiently oxidizes phenolics as a low oxidation peroxidase.

As with other Class II peroxidases, CiP is similar in structure with conserved

proximal and distal histidines near the heme active site; however, when compared
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to LiP, the distal side substrate channel is more open to easily oxidized reducing

aromatic substrates (Kunishima et al. 1994; Petersen et al. 1994). However, CiP can

be engineered to have activity with veratryl alcohol, the standard high redox

potential substrate for LiP, by mutations to introduce the surface Trp and negatively

charged microenvironment (Smith et al. 2009). Based on sequence analysis, genes

encoding such low oxidation peroxidases have also been identified in brown rot

fungi F. pinicola, P. placenta, and W. cocos as well as the white rot fungi

C. subvermispora, C. strigosozonata, F. mediterranea, H. annosum, S. hirsutum
(Floudas et al. 2012), and P. chrysosporium. Designated NoP, the P. chrysosporium
structure has been studied in some detail (Larrondo et al. 2005). High transcript

levels and secreted proteins have not been observed, and the role of these

peroxidases remains uncertain.

13.3.1.3 Heme-thiolate Peroxidases

Heme-thiolate peroxidases (HtPs) comprise a superfamily of secreted fungal

peroxidases distinguished from the Class II peroxidases, not only by the proximal

cysteine and distal glutamate heme ligands but also by distinctive 3D structure,

protein sequence, and remarkable catalytic capacity. HtPs are classified based on

dominating reactions that are consistent with chloroperoxidase (CPOs; systematic

name chloride:hydrogen-peroxide oxidoreductase; EC 1.11.1.10) and aromatic

peroxygenase (APOs; systematic name substrate:hydrogen peroxide oxidoreduc-

tase (RH-hydroxylating or -epoxidizing); EC 1.11.2.1) activities.

CPO from Caldariomyces fumago halogenates suitable organic substrates in the

presence of peroxide and halide (Morris and Hager 1966; Shaw and Hager 1959).

The primary function of CPO here is oxidization of chloride (Cl�) to hypochlorous
acid, which is a strong oxidant and able to chlorinate the organic compounds

(Murali Manoj 2006). Bromide and iodide are also oxidized by CPO, but not

fluoride. If halide is absent, CPO oxidizes suitably substituted phenols and anilines

directly. In the case of chlorinated phenols, oxidations with CPO are much more

efficient than with horseradish peroxidase, LiP or VP (Casella et al. 1994; Longoria

et al. 2008; Osborne et al. 2007). Besides halogenation and phenol oxidation

capability, CPO also has peroxygenase properties, resembling cytochrome P450-

dependent monooxygenase (also a heme-thiolate) in catalysis and structure (Manoj

and Hager 2008; Sundaramoorthy et al. 1995). CPO is able to epoxidize alkenes and

hydroxylates benzylic carbons via a peroxygenase mechanism (Manoj and Hager

2008), but oxygen transfer to less-activated molecules such as alkanes or aromatic

rings is not catalyzed. The proposed functional roles of the enzyme are varied, from

biosynthesis of chlorinated metabolites (Morris and Hager 1966) to antimicrobial

activity, due to the biocidal activity of hypochlorite (Bengtson et al. 2009). A

consequence of the nonspecificity of CPOs and the reactive chemical species

generated is the chlorination of lignin (Ortiz-Bermúdez et al. 2007).

In contrast to CPO, the fungal peroxygenases (APOs) from Agrocybe aegerita
(AaeAPO; Ullrich et al. 2004), Coprinellus radians (CraAPO; Anh et al. 2007;
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Aranda et al. 2009), andMarasmius rotula (MroAPO; Gröbe et al. 2011) are all able

to catalyze oxygen transfer reactions to aromatic rings, in addition to other divers

reactions. AaeAPO was first described as a haloperoxidase but with further charac-

terization shown to be a functional hybrid with properties of both a peroxidase and a

monooxygenase (Hofrichter et al. 2010). APOs have a wide variety of substrates

including polyaromatics (e.g., naphthalene), recalcitrant heterocycles (e.g., pyri-

dine), ethers (with O-dealkylation resulting), and alkanes (e.g., propane and hex-

ane). The chemical transformations include hydroxylation, epoxidation,

N-oxidation, sulfooxidation, bromination, and one-electron oxidations. However,

the array of reactions is not shared by all APOs; the MroAPO ofM. rotula does not
have the brominating activity of AaeAPO and CraAPO (Gröbe et al. 2011).

All sequenced Agaricomycete genomes feature genes encoding HtPs, but their

number and expression vary substantially. Peptides were identified in culture

filtrates of A. delicata and F. pinicola (Floudas et al. 2012). LC-MS/MS could

not detect HTPs in P. chrysosporium or P. placenta cultures (VandenWymelenberg

et al. 2011), although each species exhibited significant transcript accumulation of

two HtP genes in wood-containing cultures relative to glucose medium. More

impressive, 24 HtP genes were predicted in the A. bisporus genome, and 16 of

these were significantly upregulated in compost (Morin et al. 2012). This observa-

tion suggests that HtPs may play an important role in metabolism of partially

decomposed litter and humic substances. A Dacrymycete classified as a brown

rotter, Dacryopinax sp., contains six putative HtP-encoding genes, and the

corresponding protein has been detected for two of these (Floudas et al. 2012).

13.3.1.4 Dye-Decolorizing Peroxidases

Prototypical DyP was isolated from the Agaricomycete Bjerkandera adusta [first

reported as Geotrichum candidum Dec 1, re-identified as Thanatephorus cucumeris
Dec 1, and then B. adusta (Ruiz-Dueñas et al. 2011)] because of its

dye-decolorizing activities (Kim and Shoda 1999; Kim et al. 1995; Sugano 2009).

Subsequent structural and sequence comparisons indicate that the peroxidase is

unlike any previously characterized peroxidase (Sugano et al. 2007; Zubieta

et al. 2007). DyPs (systematic name Reactive-Blue-5:hydrogen peroxide oxidore-

ductase; EC 1.11.1.19) have a proximal histidine, but unlike the Class II and HtP

peroxidases, DyPs have a distal Asp. The model substrate, Reactive Blue 5, is

converted to products by a combination of oxidation and hydrolytic steps. Other

dyes, anthraquinone derivatives and typical peroxidase substrates, are also

oxidized. Structural and biochemical characterization of DyP-like peroxidases

from bacteria is also reported (Brown et al. 2012; Zubieta et al. 2007). In the case

of Amycolatopsis, the DyP2 appears multifunctional, showing high peroxidase

activity, manganese peroxidase activity, and also a mode of oxidase activity with

4-methoxymandelic acid (Brown et al. 2012). Liers et al. (2013) have recently

compared activities of fungal DyP with heme peroxidases, and considering the
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complex catalytic properties of the DyPs, the physiological roles are most likely

diverse.

The number of DyP-encoding genes varies significantly among Agaricomycetes.

Certain efficient lignin degraders such as P. chrysosporium and C. subvermispora
have none, while 11 genes are predicted in the A. delicata genome (Table 13.1). Of

eight white rot cultures subjected to LC-MS/MS analysis, four contained the

corresponding peptides. Five brown rot fungi have no DyP genes. Only one

brown rot fungus, P. placenta, is predicted to have DyP genes, but the

corresponding proteins were not detected in aspen-containing medium (Vanden

Wymelenberg et al. 2011). Significant protein levels occur in ground wood culture

filtrates of T. versicolor, D. squalens, A. delicata, and P. strigozonata where a

single DyP constituted 2.2 %, 1.3 %, 0.1 %, and 0.08 %, respectively, of the total

spectra (Floudas et al. 2012).

13.3.2 Extracellular Peroxide Generation

It is readily apparent that extracellular peroxide is a key player in lignocellulose

biotransformation in view of the importance of peroxide-dependent peroxidases

secreted by fungi (previous section). Even prior to the discovery of these

peroxidases, a correlation was observed between peroxide production and the

physiology of ligninolysis by P. chrysosporium (Faison and Kirk 1983; Forney

et al. 1982; Keyser et al. 1978). There appears to be several possible mechanisms

for peroxide production, including by MnP with fungal metabolites oxalate and

glyoxylate; peroxide is evidently generated as a consequence of reactions of oxygen

with carbon-centered radical substrate intermediates (Kuan and Tien 1993; Urzúa

et al. 1998). Oxidases that catalyze reduction of oxygen to peroxide, and where

evidence indicates an extracellular role in supporting peroxidase activities, are

briefly summarized here.

13.3.2.1 Copper Radical Oxidases

Glyoxal oxidase (GLX) was first reported in cultures of P. chrysosporium where its

activity was correlated with substrates glyoxal and methylglyoxal in culture, and

with LiP activity (Kersten and Kirk 1987). Importantly, the activity of GLX was

activated by interaction with LiP (Kersten 1990). Sequence comparisons and

spectroscopic comparisons indicate that GLX has a similar active site to that of

the copper radical oxidase (CRO) galactose oxidase (Kersten and Cullen 1993;

Whittaker et al. 1996, 1999). Copper radical oxidases have two one-electron

acceptors: a copper (II) metal at the center of the active site and a Cys-Tyr radical

forming a metallo-radical complex (Whittaker 2005). Alignment of galactose

oxidase with GLX indicates that the catalytic domain of GLX supplies copper

ligands Tyr135 Tyr377 and His378 while Cys70 is cross-linked with Tyr135 to

13 Recent Advances on the Genomics of Litter- and Soil-Inhabiting Agaricomycetes 319



form an internal radical cofactor of the sevenfold β-barrel domain (also described as

a super-barrel or β-flower). The C-terminal domain supplies His471 copper ligand

on a loop through the center of the catalytic barrel. Analysis of the

P. chrysosporium genome indicates multiple CROs where predicted mature protein

sequences diverge substantially from one another, but the residues coordinating

copper and constituting the radical redox site are conserved (Vanden Wymelenberg

et al. 2006a).

More recent analysis of Agaricomycete genomes has revealed widespread dis-

tribution of GLX and related copper radical oxidases (Table 13.1). GLX homologs

are lacking from brown rot fungi, C. cinereus and L. bicolor, but present in most

lignin-degrading fungi. Notable exceptions include C. subvermispora, a selective

and highly efficient lignin degrader. Possibly, the related copper radical oxidases

cro2, cro3, and cro6 compensate by oxidizing an array of metabolites unique to

C. subvermispora decay. Along these lines, elevated transcript levels of the

C. subvermispora cro2 gene were observed in wood-containing medium, and

peptides corresponding to CRO5 were detected in medium using microcrystalline

cellulose as sole carbon source (Fernandez-Fueyo et al. 2012). Earlier reports

showed that the substrate preference of P. chrysosporium CRO2 differed sharply

from GLX (Vanden Wymelenberg et al. 2006a).

13.3.2.2 GMC Oxidoreductases

Another oxidase produced by P. chrysosporium and a select number of other white

and brown rot fungi is pyranose 2-oxidase (P2O), which oxidizes glucose at C-2 to

produce D-arabino-hexos-2-ulose (glucosone) with reduction of oxygen to perox-

ide (Baute and Baute 1984; de Koker et al. 2004; Dietrich and Crooks 2009;

Giffhorn 2000). The protein is a large homotetrameric flavoprotein with a subunit

size of about 70 kDa (Hallberg et al. 2004). It is a member of the glucose-methanol-

choline oxidoreductase family (Albrecht and Lengauer 2003), a superfamily of

proteins including Drosophila melanogaster glucose dehydrogenase, Aspergillus
niger glucose oxidase, Hansenula polymorpha methanol oxidase, and Escherichia
coli choline dehydrogenase (Cavener 1992). The periplasmic and extracellular

distribution of pyranose 2-oxidase in wood decayed by P. chrysosporium is consis-

tent with that of MnP, suggesting a role in extracellular peroxide generation (Daniel

et al. 1994). An alternative role for pyranose 2-oxidase is the synthesis of the

antibiotic cortalcerone (Koths et al. 1992), but many fungi that have pyranose 2-

oxidase do not have aldo-2-ulose dehydratase required for cortalcerone synthesis

(Baute and Baute 1984). Quinones are alternate electron acceptors in place of

oxygen, and therefore, the oxidase may have a role in redox cycling during

lignocellulose degradation (Pisanelli et al. 2009). P2O-encoding genes are

predicted in the genomes of brown rot fungi G. trabeum and S. lacrymans as well
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as the white rot fungi A. delicata, P. strigosozonata, T. versicolor, and

P. chrysosporium.
Another GMC oxidoreductase involved in peroxide generation is the extracellu-

lar monomeric aryl-alcohol oxidase (AAO) [recently reviewed by Hernández-

Ortega et al. (2012)]. AAO substrates may be both lignin-derived metabolites, as

well as aromatic fungal metabolites synthesized de novo (de Jong et al. 1994;

Gutiérrez et al. 1994). The aromatic alcohol substrates are oxidized to the

corresponding aldehydes by AAOs, and these aldehydes reduced back to alcohols

by intracellular aryl-alcohol dehydrogenases, thus establishing a redox cycle for the

generation of extracellular peroxide using reducing equivalents derived from intra-

cellular metabolism. A possible role for AAO in preventing polymerization of

lignin fragments by reduction of quinone and phenoxyradicals is also described

(Marzullo et al. 1995). The AAO from P. eryngii has been heterologously expressed
in E. coli (Ruiz-Dueñas et al. 2006) and crystal structure determined (Fernandez

et al. 2009). The GMC oxidoreductase methanol oxidase is also proposed to have a

role in peroxide production using methanol released from lignin methoxyls

(Nishida and Eriksson 1987). Although a signal peptide is not evident from gene

structure, the oxidase appears to have an extracellular role in wood decay with

G. trabeum (Daniel et al. 2007). Putative methanol oxidase- and AAO-encoding

genes have been identified in a wide range of white rot and brown rot fungi

(Hernández-Ortega et al. 2012). In C. subvermispora and P. chrysosporium, the
AAO genes show no transcript accumulation in medium containing ground wood

relative to glucose-containing media (Fernandez-Fueyo et al. 2012; Vanden

Wymelenberg et al. 2011).

A potentially important oxidoreductase, cellobiose dehydrogenase (CDH),

oxidizes cellodextrins, mannodextrins, and lactose. In addition to the dehydroge-

nase, the mature protein contains a heme prosthetic group and a cellulose-binding

module (Hallberg et al. 2000). Electron acceptors include quinones,

phenoxyradicals, and Fe3+, and involvement in hydroxyl radical generation has

been proposed. CDH genes are widely distributed (Table 13.1) as are “glycoside

hydrolase” family 61 (GH61) genes. Recently shown to act as copper-dependent
monooxygenases (Quinlan et al. 2011; Westereng et al. 2011), the GH61s can act

together with CDHs to boost cellulose depolymerization (Harris et al. 2010;

Langston et al. 2011). The precise roles(s) and interaction(s) between these genes

remain to be clarified.

While the abovementioned oxidoreductases can be functionally categorized on

the basis of sequence conservation, many variants defy simple classification. For

example, peptides corresponding to S. hirsutum protein model #118344 (http://

genome.jgi.doe.gov/Stehi1/Stehi1.home.html) constitute 5.3 % of the total spectra

observed in wood-containing medium. The protein features a secretion signal and

InterPro domains that point toward a GMC oxidoreductase, but little additional

information allows a firm definition.
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13.3.3 Laccases

Laccases are diverse in origin (plants, fungi, and bacteria) and properties [see

review (Thurston 1994)]. Brief description of fungal laccase is presented here to

highlight the essential properties distinguishing it from the enzymes in the forego-

ing sections. Laccase (systematic name benzenediol:oxygen oxidoreductase; EC

1.10.3.2) catalyzes the four-electron reduction of oxygen to water with the electrons

derived by four one-electron oxidations of substrate (typically phenols or aryl

amines). The four-electron reduction is achieved with four copper ions at three

enzyme sites: the T1 site contains a type 1 copper in tight coordination with

cysteine which gives laccase its blue color, the T2 site has a type 2 copper with

characteristic EPR signal, and the T3 site has a pair of strongly coupled EPR-silent

type 3 coppers (Bertrand et al. 2002). The T1 site mediates oxidations with transfer

of electrons to the T2/T3 trinuclear center where electrons are transferred to

oxygen. The capacity for single-electron oxidations by laccase from T. versicolor,
in comparison with LiP and Class III HRP, was demonstrated with 1,2,4,5-

tetramethoxybenzene producing the corresponding cation radical as immediate

product (Kersten et al. 1990). Although the laccase oxidized this methoxybenzene

congener, it did not have the same capacity as the peroxidases to oxidize

methoxybenzenes of higher potential. Laccase oxidation of phenols generates

intermediates which may undergo further enzyme-catalyzed oxidation (e.g.,

generating quinones) or the unstable intermediates may undergo nonenzymatic

reactions such as polymerizations (Thurston 1994). Laccase genes are widely

distributed among fungi (Table 13.1) but not essential for ligninolysis as

demonstrated by the lack of the enzyme in P. chrysosporium (Martinez

et al. 2004). Differential expression among paralogs is commonly observed (see,

e.g., Castanera et al. 2012; Floudas et al. 2012), although the role of genetic

multiplicity is poorly understood. Excluding P. chrysosporium, considerable evi-

dence suggests that laccase may have a role in lignin modification or plant litter

decay (Bourbonnais et al. 1997; Kellner et al. 2007).

13.3.4 Hypothetical and Uncharacterized Proteins

A persistent concern has been the incomplete understanding of predicted proteins

lacking significant homology to those of known function (herein referred to as

“hypothetical”), some of which are translated and secreted (herein referred to as

“uncharacterized”). The dimensions of this issue are staggering. For example, 21 %

of the 13,761 C. puteana protein models showed no significant similarity to NCBI

NR database entries (Floudas et al. 2012). Mass spectrometry analysis of filtrates

from aspen-containing media identified 269 separate proteins, and 49 of these were

designated “uncharacterized” (Table 13.1). High expression levels, conserved

domains, and/or structural features are sometimes observed for these
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uncharacterized proteins. Thus, C. puteana protein #125481(http://genome.jgi.doe.

gov/Conpu1/Conpu1.home.html) constitutes 1.9 % of total spectra and has a

predicted secretion signal and an InterPro conserved domain of unknown function

(DUF 1793).

13.4 Challenges and Future Prospects

The daunting number of hypothetical proteins and the lack of appropriate experi-

mental tools present significant obstacles to progress in this area. Transcript and

secretome profiles provide clues, but detailed functional analysis requires biochem-

ical characterization of heterologously expressed proteins and/or targeted gene

replacement/suppression. The latter goal has been particularly difficult to achieve

because genetic transformation of filamentous basidiomycetes has typically

involved low rates of homologous recombination. Recently, this obstacle has

been overcome by isolating Ku knockouts that impair nonhomologous end joining

in S. commune (de Jong et al. 2010), C. cinereus (Nakazawa et al. 2011), and

P. ostreatus (Salame et al. 2012). Demonstrating the power of the approach, Salame

et al. demonstrated the importance of P. pleurotus MnP4 by successfully

inactivating the VP gene. Likely, this experimental approach will be applied to

additional Agaricomycetes in the future.

Availability of increasing numbers of genome sequences facilitates high-

throughput approaches for elucidating community structure and physiological

processes in soils. In addition to the widely used ribosomal DNA and/or the internal

transcribed spacer region (ITS) (Buee et al. 2009), the distribution of highly

conserved genes such as those encoding laccases and cellobiohydrolases gauge

fungal diversity in different soils and soil horizons (Baldrian et al. 2012; Luis

et al. 2005). When combined with rRNA sequence, a more complete picture of

microbial populations and active metabolism emerges. Degenerate primers

amplified cDNAs corresponding to basidiomycete laccases, MnPs, and HtPs

(Kellner et al. 2010), and more recent “metatranscriptomic” investigations have

provided a more global view of transcript levels (Simon and Daniel 2011).

Examples include the assessment of soil gene expression in response to phenan-

threne contamination (de Menezes et al. 2012) and the measurements of transcript

and populations in various forest soils (Damon et al. 2012). Both investigations

identified transcripts corresponding to Agaricomycete degradative enzymes, and

the latter study also employed 18S rRNA sequencing to assign broad taxonomic

affiliations (Damon et al. 2012).Metatranscriptome approaches can be enhanced or
extended to functional analysis by expression of full-length genes in Saccharomy-
ces cerevisiae (Bailly et al. 2007; Damon et al. 2011; Kellner et al. 2011).

Also promising are the prospects for direct detection of fungal proteins and

enzyme activities in natural substrates and/or field soils. Immobilization of fluores-

cent substrates allows visualization of hydrolytic enzymes on decaying litter,

leaves, and wood (Baldrian and Vetrovsky 2012). In addition to such localization,
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metabolite identification could play a key role in defining the processes involved in

decomposition. Thus, NMR and GC/MS of field-collected decayed wood provided

evidence for Fenton-based brown rot (Martinez et al. 2011). Fenton chemistry was

also implicated in laboratory studies of P. involutus cultured on soil extracts using

FTIR and GC/MS coupled to enzyme activities and to mRNAseq (Rineau

et al. 2012). Metaproteomics [reviewed by Hettich et al. (2012)] offer unparalleled

opportunities for understanding microbial processes as demonstrated by recent

mass spectrometry of soil (Keiblinger et al. 2012) and leaf litter samples (Schneider

et al. 2012). Although challenging technical issues remain, these experimental

approaches are beginning to shed light on the roles and interactions of fungi in

forest soils.
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Chapter 14

Archaeorhizomycetes: Patterns of
Distribution and Abundance in Soil

Anna Rosling, Ina Timling, and D. Lee Taylor

14.1 Introduction

Archaeorhizomycetes represents one of the most ubiquitous lineages of soil fungi,

and its formal description adds a prominent branch to the Taphrinomycotina among

the basal Ascomycota (Rosling et al. 2011). Fungi in the class are strongly

associated with soil environments containing plant roots. However, experimental

analyses suggest that interactions with roots are neither mycorrhizal nor patho-

genic. Instead, species in the Archaeorhizomycetes may exist along a continuum

from root endophytic to free-living saprophytic life strategies. It is possible that

Archaeorhizomycetes are mycoparasitic, but these life strategies have not yet been

studied. Among thousands of published environmental sequences belonging to the

class, only one was neither from soil nor roots. The sequence (GenBank Acc

nr. EF67470) was cloned from samples of particulate organic matter collected in

sediment from a freshwater stream (Bärlocher et al. 2008). While this could

indicate that Archaeorhizomycetes is not restricted to terrestrial habitats, a more

likely explanation is that the sequence originated from terrestrial material, i.e.,

spores, soil, and organic matter, that were deposited in the stream. Hence, all
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available evidence supports the notion that Archaeorhizomycetes is restricted to

vegetated terrestrial ecosystems (Porter et al. 2008; Rosling et al. 2011).

Based on similarity to environmental ITS and LSU sequences available in public

databases, the class has been estimated to comprise more than 250 putative species

(Rosling et al. 2011). Strong biogeographic patterns with significant global associ-

ation between geographic and phylogenetic distance were detected across the class.

Despite these strong biogeographic patterns, a number of putative species, such as

A. finlayi, have a broad geographic distribution. Habitat specificity towards host

species or genus, e.g. Tsuga, Picea, and Pinus, was detected for many putative

species, while others have a broader habitat range (Rosling et al. 2011). It is

possible that species that show habitat specificity are more closely associated

with roots than species with broad distribution. It is important to keep in mind

that Archaeorhizomycetes is an ancient class of fungi and may thus encompass

diverse life strategies and ecologies.

In this chapter we analyze available ITS, LSU, and SSU sequences and their

associated publications to discuss global distribution and abundance of Archaeor-

hizomycetes. Furthermore we expand our knowledge about Archaeorhizomycetes

by analyzing publicly available ITS-LSU sequences from ten studies, seven with

sequences in GenBank as well as unpublished sequence data from three studies: the

North American Arctic Transect (NAAT) (Timling et al. unpublished), black

spruce forest (TKN), and successional gradient in an upland ecosystem

(UP) (Taylor et al. 2010).

14.1.1 Global Distribution

Based on new analysis of available environmental sequences of the ITS, LSU, and

SSU regions, we demonstrate that species in the class Archaeorhizomycetes occur

on all continents, except Antarctica, and in most terrestrial biomes, including

tundra, taiga, tropical rainforest, temperate forest, and grasslands (Fig. 14.1). The

size of dots in Fig. 14.1 illustrates the number of sites from which sequences of

Archaeorhizomycetes have been identified in different regions. The number of

observations is strongly biased towards regions where many studies of soil fungal

communities are performed using molecular identification methods, i.e., Europe

and North America. Ecosystems in these regions are mostly comprised of conifer-

ous forests (Buscardo et al. 2010; Cox et al. 2010; Lindahl et al. 2007; Parrent and

Vilgalys 2007; Rincon and Pueyo 2010; Taylor et al. 2008; Urban et al. 2008) and

tundra-/shrub-type ecosystems (Bjorbaekmo et al. 2010; Bougoure et al. 2007;

Deslippe et al. 2012; Schadt et al. 2003) but also include mixed deciduous forests

(Edwards and Zak 2011; Stefani et al. 2009).

Observations of sequences belonging to the Archaeorhizomycetes in the South-

ern Hemisphere include the following: tropical rain forest in southwestern Costa

Rica (Porter et al. 2008); tropical mountain pine forest in North Eastern Australia

(Curlevski et al. 2010); dry sclerophyll forest in New South Wales, Australia (Chen
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and Cairney 2002); wet sclerophyll forests in Tasmania (Tedersoo et al. 2009);

subtropical pine forests in south central China (Huang et al. 2012); and in roots of

the terrestrial orchid Phaius pulchelus collected on La Reunion, in the Pacific

Ocean (Martos et al. 2012). Recent samples from unpublished studies in tropical

regions add four more locations for Archaeorhizomycetes to the world map. These

include samples collected from bulk soil associated with unhealthy Axonopus
compressus (Blanket grass) in Singapore (HQ436085), root tips of Allanblackia
stuhlmannii (a flowering tree indigenous to Tanzania) in the East Usambara

Mountains in North Eastern Tanzania (unpublished data, Helena Ström, SLU

Sweden), and brinjal (eggplant) rhizosphere soil in India (JQ989336) as well as

one more tropical pine forest in Zhenjiang, China (HE814241) (Fig. 14.1). We

expect that increased sampling and molecular identification of soil fungi in the

Southern Hemisphere will increase the number of observations of Archaeorhi-

zomycetes in tropical and subtropical ecosystems. The significant association

between geographic and phylogenetic distance is notable in the global phylogeny

of Archaeorhizomycetes where all Alaska sequences are found within the upper 2/3

of the tree among sequences derived mainly from boreal and coniferous ecosystems

[Fig. 3 in Rosling et al. (2011)]. We thus expect new lineages, at the level of genus

and families, to emerge in the phylogeny of Archaeorhizomycetes as sampling of

the Southern Hemisphere proceeds.

Fig. 14.1 Map of the world illustrating location and ecosystem where Archaeorhizomycetes has

been detected using environmental sequencing. Size of dots corresponds to the number of

sampling occasions (i.e., different sites or different studies from the same site) in which sequences

of Archaeorhizomycetes have been detected. Data are compiled using sequences of the ITS, LSU,

and SSU rRNA region available in GenBank with associated publications as well as additional

sequences from three studies from the North American Boreal Forest and Arctic (Taylor unpub-

lished data)
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Intensified studies of fungi in tropical ecosystems have generally resulted in the

recognition of many previously unknown species (Hawksworth 2012). This pattern

may become apparent for Archaeorhizomycetes as well, as more sequences are

made publicly available from studies in tropical ecosystems. In a comparison of

ectomycorrhizal-dominated boreal and tropical forests, McGuire and co-workers

studied soil fungal communities by sequencing the ITS and LSU rRNA. The study

is still unpublished, but sequences from the study are available in GenBank. While

13 % of the sequences from Delta Junction in Alaska belonged to Archaeorhi-

zomycetes, none of the sequences from their tropical forest sites belonged to this

class. This result, as well as the existing global patterns (Fig. 14.1), suggests that

fungi in the Archaeorhizomycetes may be more abundant in boreal compared to

tropical forest ecosystems.

14.1.2 Abundance in Soil Fungal Communities

Archaeorhizomycetes are also a major component of soil fungal communities from

several studies. They were first detected as the novel fungal lineage Cluster 1 in

alpine tundra soils (Schadt et al. 2003) at an average abundance of 15.2 % [19 out of

125 clones, see Supplementary material in Porter et al. (2008)]. In this study

temporal dynamics of soil fungal communities were studied by sampling soils

from below snow cover in winter and into the summer. Schadt and co-workers

found that soil fungal community composition was stable from winter to spring but

shifted significantly into summer, largely because of the dominance of Archaeor-

hizomycetes which made up 62 % of the clones sequenced from summer samples

(Schadt et al. 2003). A cluster of Archaeorhizomycetes was identified accounting

for 7 % of the winter samples, while none were identified in spring samples. Later

Porter et al. (2008) examined four ecosystems: two different forests from within the

Niwot Ridge Long-Term Ecological Research Site in Colorado (a tree line forest

dominated by Picea engelmannii and Pseudotsuga menziesii and a montane forest

with Pinus contorta, Abies lasiocarpa, and Picea engelmannii), one Costa Rican

tropical forest on highly weathered P limited soil, and a temperate coniferous forest

dominated by Tsuga canadensis in eastern Canada. They identified Archaeorhi-

zomycetes, then Soil Clone Group 1, in 6.9–27 % of LSU clones derived from total

soil DNA extracts from these ecosystems. Nevertheless, the highest abundance of

Archaeorhizomycetes, 73–95 % of clones derived from soil DNA extracts, was

detected by Castro et al. (2010) in a study of climate change effects on soil

microbial communities associated with a reconstructed old-field plant community.

The highest abundance was recorded in the wet treatment, which received 25 mm

rain per week, and the lowest in the dry treatment, which received 2 mm per week.

Apart from its exceptionally high abundance of Archaeorhizomycetes clones, the

study by Castro et al. (2010) stands out in that sampling occurred late in the season

(October 2006) which is close to the end of the growing season for Oak Ridge,

TN. In addition to previously documented seasonal dynamics associated with plant

336 A. Rosling et al.



growth (Schadt et al. 2003), temporal dynamics of aboveground senescence,

decreased carbon allocation to roots, and associated mycorrhizal fungi as well as

root decomposition may be major drivers of relative abundance of Archaeorhi-

zomycetes in soil fungal communities.

Assuming that abundance in soil DNA clone libraries reflects actual species

abundance in terms of biomass or activity in soil, these studies demonstrate that

members of Archaeorhizomycetes are major components of many soil fungal

communities. While the internal transcribed spacer region (ITS) is the designated

gene to describe fungal communities (Schoch et al. 2012), it has to be noted that

Archaeorhizomycetes abundance estimates from studies targeting the ITS region

are obscured by two specific mismatches in the binding site of the widely used

reverse primer ITS4 (White et al. 1990). This can lead to great underestimation of

Archaeorhizomycetes in soils. The three studies discussed above (Schadt

et al. 2003; Porter et al. 2008; Castro et al. 2010) targeted the LSU region for

amplification and sequencing of fungi from environmental samples by using

reverse primers in the LSU region, such as nLSU1221R (Schadt et al. 2003) and

TW13 (White et al. 1990), which do not appear to be biased against Archaeorhi-

zomycetes. Therefore, the detected abundance of Archaeorhizomycetes in these

studies might reflect their true abundance better than in studies using ITS4.

14.2 Archaeorhizomycetes in Alaska

The Alaskan boreal forest ecosystem is the best-documented ecosystem with

respect to soil fungal communities (Taylor et al. 2010). After removing all

singletons, 1,578 OTUs were identified in a dataset of over 52,000 sequenced

clones. Among the 30 most common OTUs, only five were non-mycorrhizal and

two of these can now be identified as Archaeorhizomycetes (labeled Candida tepae
because no closer relatives were described at the time) (Taylor et al. 2010). Both

these OTUs were found predominantly in the black spruce (Picea mariana) habitat.
In an earlier study by Taylor et al. (2007), a putative Archaeorhizomycetes

sp. (labeled OTU 76) was detected as the most abundant OTU, comprising approx-

imately 25 % of the clones from a pooled DNA extract from humic black spruce

soil. Two other OTUs (73 and 78) later identified as belonging to Archaeorhi-

zomycetes were also identified in the study (Taylor et al. 2007). In Alaska,

sequences belonging to Archaeorhizomycetes have been identified in ten studies

targeting the ITS and LSU region (Table 14.1) as well as in two studies targeting the

SSU region (Allison et al. 2008; Allison and Treseder 2008).
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14.2.1 Sequence and Statistical Analysis

One sequence representing each Archaeorhizomycetes OTU found in the ten

studies (Table 14.1) was added to an alignment spanning the ITS and LSU rRNA

followed by manual editing in Geneious Pro 5.5.5 (Biomatters Ltd.). Reference

sequences of Archaeorhizomyces finlayi and Archaeorhizomycetes sp. FG15P2b

were included in the alignment and AFTOL reference sequences for Schizosac-
charomyces pombe, Protomyces inouyei, Taphrina wiesneri, Taphrina deformans,
and Saitoella complicate were included as an out-group in the analysis. A maxi-

mum likelihood tree was derived from the alignment using RAxML-HPC2 on

XSEDE, Cipres (Miller et al. 2010). Bootstrap support values were calculated

from 1,000 iterations. Branches were collapsed to represent OTUs clustered in

CAP3 at a 97 % similarity across the ITS. Most OTUs represented distinct and well-

supported clades in the tree (Fig. 14.2). The exceptions include five cases where

additional sequences were clustered within the OTU; these are indicated by + after

the OTU number in the tree and one case when two OTUs could not be separated in

the tree labeled OTU 7 and 8. Sequences from Allison et al. (2010a, b) comprised

the LSU region only and were assigned to OTUs based on clustering within the tree.

OTU5+, OTU11+, OTU12+, and OTU18+ all include one or two additional

sequences with close to 97 % similarity across the ITS region to the other sequences

in the OTU. In these cases sequence dissimilarity is mostly due to ambiguous base

calls, i.e., N.

Table 14.1 Ten studies identify ITS and LSU sequences belonging to the Archaeorhizomycetes

in Alaska

Study Site Rel. ab. (%) # A-OTU Tot# seq (OTUs)

Allison et al. (2010a) Delta Junction 1 2 433 (113)

Allison et al. (2010b) Delta Junction 2 6 327 (110)

Bent et al. (2011) Bonanza Creek LTER 1a 2 152 (71)

Deslippe et al. (2012) Toolik Lake 1 5 2,293 (777)

McGuire et al. (unpub.) Delta Junction 13 7 156 (UK)

Taylor et al. (2007) Bonanza Creek LTER 12 6 588 (148)

Taylor et al. (2008) Fairbanks 8 6 456 (117)

TK 12 sitesb 11 31 28,903 (2,537)

UP 9 sites 29 24 23,103 (3,093)

NAATc 7 sitesb 1 5 7,834 (1,834)

Sites from Interior and northern Alaska are represented. Relative abundance (Rel. ab.) is given as

% sequences belonging to Archaeorhizomycetes out of all sequences from the study. Number of

OTUs (#OTUs) calculated as described above. The total number of sequences available from each

study is given under #sequences with total
aBent et al. (2011) studied roots of spruce and birch. All the other sequences are obtained by

cloning from total soil DNA extracts
bArchaeorhizomycetes sequences were detected at seven sites in the TKN study and in three sites

in the UP study. See Fig. 14.2 for approximate locations of these sites
cIn the NAAT study, sequence of Archaeorhizomycetes was detected at three sites along the North

American Arctic Transect. Two of these are in Alaska (Fig. 14.2), and the third is on Prince Patrick

Island in the Canadian High Arctic (Fig. 14.1)
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Fig. 14.2 Phylogeny of Archaeorhizomycetes in Alaska illustrated in a maximum likelihood tree

derived from an ITS-LSU alignment. Reference sequences of A. finlayi and Archaeorhizomycetes

sp. FG15P2b were included in the alignment and AFTOL reference sequences for Schizosac-
charomyces pombe, Protomyces inouyei, Taphrina wiesneri, Taphrina deformans, and Saitoella
complicate were included as an out-group in the analysis. Boot strap support values above 50 are

shown in the figure. Putative species containing sequences from the Arctic NAAT study are

indicated with asterisk. Five well-supported clades containing more than two putative species

(I–V) are identified in the tree. Lineage-specific associations at the clade level with ecosystems are

indicated with asterisk at the highest node, orange for mixed upland, and green for black spruce,
and clades associated with soil horizons are indicated with a filled box at the highest node, brown
for organic soil, and gray for mineral soil. Within clades significant lineages are shaded, and

putative species with significant associations to soil horizon are marked with a colored box
following the branch name. Indicator species are marked in the tree, for upland (I-Up), black
spruce (I-BS), mineral soil (I-M), and organic soil (I-O)
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Archaeorhizomycetes relative abundances, both as fraction of total sequences

and as fraction of total OTUs, were derived from the Alaskan studies (Table 14.1)

and analyzed by regression against latitude. Three studies were excluded from this

analysis because they used the reverse primer ITS4 that has two mismatches for

Archaeorhizomycetes, which may have resulted in an underestimation of abun-

dance in these studies (Bent et al. 2011; Deslippe et al. 2012) and the unpublished

study by McGuire and co-workers since we did not have data on total numbers of

identified OTUs for this study.

To investigate species-environment relationships for Archaeorhizomycetes in

Alaska, we carried out a variety of statistical analyses in PC-ORD 5 (McCune and

Mefford 2006) with a combined species X site matrix from the TKN, UP, and NAAT

datasets, utilizing abundance-based Bray-Curtis distances after applying a “general

relativization” as recommended by McCune et al. (2002) when sample sizes differ

among sites. In our first analysis, we tested whether communities differ according to

major categorical habitat variables using multiple response permutation procedures

(MRPP). We performed ordination of the sites using nonmetric multidimensional

scaling (NMS). After 50 randomizations, a 3-dimensional solution was selected by

PC-ORD using automatic mode. The best solution had a final stress of 18.86459 and

a final instability of 0.00002 after 500 iterations. The relatively high stress indicates

that the relationships among the sites were fairly weak, in agreement with the

relatively small effect sizes (A) in the MRPP analysis (Table 14.2). Lastly, we

carried out indicator species analyses to ascertain whether particular Archaeorhi-

zomycetes taxa have a statistically significant preference for particular site

categories. We analyzed only habitat, soil pH, and soil horizon, since those factors

had the strongest correlations in the MRPP analyses. Furthermore, the phylogenetic

distance of the Archaeorhizomycetes communities associated with (1) soil horizons

O and E and (2) with habitats blacks spruce and mixed upland was analyzed

separately using UniFrac (Lozupone et al. 2006). Samples from tundra, i.e., the

NAAT study, were excluded from the UniFrac analysis because they represented

only 20 sequences. Environments were clustered by jackknife analysis with

100 permutations, and lineage-specific analyses were performed to identify lineages

with significant affiliation for certain environments. The analyses were performed

using sequence abundance data excluding lineages with less than ten descendants

and using presence–absences counts excluding lineages with less than four

descendants. Using presence–absence data provides a more conservative measure-

ment than abundance data that can be strongly driven by the more abundant species.

14.2.2 Diversity and Distribution of Archaeorhizomycetes in
Alaska

Earlier global estimates of Archaeorhizomycetes diversity encompassed ten puta-

tive species from Alaska (Rosling et al. 2011). In contrast, the current expanded

phylogenetic analysis provides an estimate of 53 putative species of
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Archaeorhizomycetes in Alaska. Eighteen of these putative species were detected

in more than one study. Forty-six of these putative species were identified among

3,666 Archaeorhizomycetes sequences from the TKN, NAAT, and UP studies.

Putative species identified as OTUs, i.e., in more than one study, as well as those

represented by more than ten sequences, are named in the tree (Fig. 14.2). A rank

abundance curve of the 25 most common Archaeorhizomycetes OTUs detected

among the three studies (TKN, UP, and NAAT) demonstrates a classical pattern

with a few very common species and numerous rare species (Fig. 14.3). The OTU

TKN-615 is among species of average abundance (Fig. 14.3) and was identified as

the type species A. finlayi (Fig. 14.2). This expands the known distribution of

A. finlayi beyond its previous identification from Finland, Sweden, and New

Hampshire (Rosling et al. 2011). Five well-supported major clades with more

than two putative species (I–V) are identified in the tree (Fig. 14.2). The reference

sequence of Archaeorhizomycetes sp. FG15P2b did not cluster with any Alaska

sequence, supporting earlier indications that this species might be geographically

limited to Europe (Rosling et al. 2011).

Across the ten field studies, relative abundance of the Archaeorhizomycetes

ranged from 1 % to 29 % of the total fungal community identified by environmental

sequencing (Table 14.1). Putative species in the Archaeorhizomycetes were

detected from 18 sites in Interior and northern Alaska (Fig. 14.4). In Interior Alaska

9–25 OTUs per site were identified in the TKN study and 7–16 OTUs in the UP

study. For the other published studies conducted in Interior Alaska, two to seven

OTUs were identified per site (Table 14.1, Fig. 14.4). In the two studies conducted

in northern Alaska, two and five OTUs were identified per site. Sampling at Prince

Patrick Island in the Canadian Arctic yielded one OTU. Abundance and diversity of

Archaeorhizomycetes was found to decrease from boreal to arctic ecosystems as

demonstrated by a significant (P < 0.002) exponential decrease in relative number

of OTUs and in relative abundance with increasing latitude. It is interesting to note

that the single OTU from the Canadian Archipelago was identified as OTU4, which

is the third most common putative species in Alaska (Fig. 14.3). This putative

species also included sequences from the TKN study, a sequence representing the

most common OTU (76) detected in Taylor et al. (2007) as well as sequences from

Deslippe et al. (2012) and Taylor et al. (2008). Among all the putative

Table 14.2 Multiple response permutation procedure results

Factor

Chance corrected within-group

agreement, A
Probability of a smaller or

equal delta, p

Habitat 0.09521448 0.00000000

Mineral soil pH 0.03604479 0.00000002

Soil horizon 0.03910208 0.00000041

Site moisture 0.03111664 0.00001152

Successional stage 0.02859186 0.00001808

Biome 0.01363238 0.00306595
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Archaeorhizomycetes species identified here, only one common generalist (OTU4)

is detected in among the arctic samples analyzed.

14.2.3 Habitat Specificity

Using MRPP, we found that the composition of the Archaeorhizomycetes commu-

nity was correlated with several habitat-related environmental variables

(Table 14.2). The strongest correlation was with our variable “habitat,” by which

we distinguished black spruce boreal forest, upland boreal forest, and tundra. We

also found highly significant correlations with pH of the mineral soil at these sites

(acidic, nonacidic), as well as site moisture (wet, mesic, dry), successional stage

(early, middle, late), and biome (boreal forest vs. arctic). These patterns are in

accordance with previous observations from these sites where total fungal

Fig. 14.3 Rank abundance of putative Archaeorhizomycetes species in Alaska, measured as

number of sequences assigned to each OTU from the three studies NAAT, UP, and TKN.

Sequence origin with respect to soil horizon is illustrated in dark gray for organic soil, light
grey for mineral soil, and black for combined samples. Below each OTU results from the indicator

species analysis are listed for habitats [black spruce (BS) or mixed upland (Up)], soil pH [acid

(A) or nonacid (nA)], and soil horizon [organic (O) or mineral (M)]. TKN-207 is identified as an

indicator species for acidic soil but does not appear in the figure because it is only represented by

ten sequences among all studies
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communities were also found to be different among these habitats as well as

between the two soil horizons (Taylor et al. 2010). However, it should be noted

that these categories are confounded in the dataset. For example, most of the acidic

sites are also black spruce forest, and the only early successional sites were in

upland boreal forest. Thus, it is most parsimonious to consider habitat (forest type)

as the overriding factor, with a set of intercorrelated environmental factors that are

associated with habitat. However, because horizon was analyzed independently in

both black spruce and upland datasets, the significant correlation with this factor

can be interpreted more directly: the composition of the Archaeorhizomycetes

community differed between the organic and mineral horizons. In concordance

with the MRPP analyses, NMS demonstrated that the environmental factor that best

coincided with fungal community variation across the sites was habitat (Fig. 14.5).

The indicator species analyses (Table 14.3, Figs. 14.2, and 14.3) suggest that

12 taxa are specialists. For example, TKN204 in OTU13 is an indicator of acidic

Fig. 14.4 Schematic overview of study sites for ten studies that have identified sequences

belonging to the Archaeorhizomycetes in Alaska. Size of dots illustrates the number of putative

Archaeorhizomycetes species, i.e., OTUs defined at 97 % sequence similarity across the ITS

region. Numbers of species per study are also given as values in parenthesis after the study name in

the legend
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soil in black spruce forests and prefers the organic horizon. In contrast, UP247 is an

indicator of nonacidic soils and upland forests, but did not reveal a horizon

preference. As with the MRPP analyses, it should be noted that many of these

environmental factors covary across sites, meaning that it is impossible to infer

which factor drives the observed correlation. For example, it may be that UP247 has

a preference for particular tree species and that the apparent preference for non-

acidic soils is simply due to the fact that most of the nonacidic sites are also upland

forest, where these tree species occur.

Jackknife analysis in UniFrac demonstrates that the environment soil horizons

O vs. E as well as ecosystems black spruce vs. mixed upland harbor phylogen-

etically distinct communities of Archaeorhizomycetes (100 % node support for

both presence–absence and sequence abundance data). Lineage specificity

towards ecosystems, which were based on presences–absences, is highlighted

in green for black spruce and orange for mixed upland (Fig. 14.2). Highlighted

clusters are not only significantly associated (P < 0.01) but exclusively

associated with their ecosystem. Taking sequence abundance into account, sig-

nificant lineages are identified at higher order as illustrated by colored asterisks

at the highest significant node (Fig. 14.2). Based on the latter, Clade III and IV

are significantly associated with the black spruce ecosystem, while Clade V and

a clade with the two putative species OTU 9 and TKN-612 are significantly

associated with the mixed upland ecosystem. Ecosystem specificity among

lineages is a strong driver for the observed differences in Archaeorhizomycetes

Fig. 14.5 NMS ordination of Archaeorhizomycetes communities from three studies in Alaska

(TKN, UP, and NAAT). Triangles indicate black spruce forest sites, circles indicate upland boreal
forest sites, and squares indicate tundra sites. Brown symbols specify organic horizon, and gray
symbols designate mineral horizons. Notice the strong grouping of black spruce vs. upland boreal

forest sites
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community composition that we observe in the Alaska dataset. This pattern is

most likely driven by host specificity as previously demonstrated for several

putative species in the class (Rosling et al. 2011). OTU13 is significantly

associated with the black spruce ecosystem (Fig. 14.2), and this putative species

shared reference sequences with the previously listed OTU3 specifically

associated with spruce root (Rosling et al. 2011). The same is true for OTU2

that was previously listed as the spruce-specific OTU13 (Rosling et al. 2011).

The tundra habitat is only represented by four putative species, OTU2, 4, 15, and

18+, which are all associated with the black spruce habitat.

For the environmental variable soil horizon, lineage-specific analysis, based

on presence–absence, identified Clade V as significantly associated with mineral

soil (P ¼ 0.0094) and Clade I as significantly associated with organic soil

(P ¼ 0.0064). However, the association with soil horizon is not exclusive to

the same extent as the association with ecosystems discussed above. Taxa and

lineages with significant associations with organic horizons are also identified in

mineral soils, while at least eight putative species appear to be restricted to

mineral horizons (Fig. 14.3). Thus, sequence abundance data, as opposed

Table 14.3 Results of indicator species analysis for the three categories: habitat, soil pH, and soil

horizon

Taxon

Observed

indicator

value (IV) Mean

Standard

deviation p Factor Preference

OTU 13

TKN204

72.9 23.9 7.45 0.0002 Habitat Black

spruce

UP247 55.2 15.2 6.85 0.0008 Habitat Upland

OTU 11 TKN198 47.9 18.4 7.36 0.0064 Habitat Black

spruce

OTU 7 and 8 TKN206-

UP242-UP244

37.7 20.9 7.67 0.0378 Habitat Upland

OTU 15 TKN202 31.2 14.6 7.17 0.0396 Habitat Black

spruce

UP669 20.7 8.7 5.21 0.0402 Habitat Upland

UP670 24.1 9.7 5.78 0.0446 Habitat Upland

TKN203 41.6 16.5 4.67 0.0002 Soil pH Acidic

OTU13 TKN204 52.9 26.6 4.53 0.0006 Soil pH Acidic

OTU15 TKN202 33.7 13.7 3.89 0.0008 Soil pH Acidic

UP247 28.6 14.4 4.09 0.007 Soil pH Nonacidic

OTU 11 TKN198 31.8 18.9 4.17 0.0116 Soil pH Acidic

TKN207 11.1 4.5 1.94 0.029 Soil pH Acidic

TKN197 11.1 4.4 1.99 0.0332 Soil pH Acidic

TKN205-UP979 37.5 16.2 7.37 0.0188 Soil horizon Mineral

TKN204 44.5 23.8 7.39 0.022 Soil horizon Organic

TKN198 37.6 18.3 7.34 0.0278 Soil horizon Organic

TKN206-2 38.9 20.8 7.81 0.0352 Soil horizon Mineral

TKN200-U 32.4 16.7 7.18 0.0442 Soil horizon Mineral
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to presence–absence, provide a more informative image of lineage significance

towards soil horizon. Significant lineages are highlighted in gray for mineral soil

and brown for organic soil (Fig. 14.2). Putative species with significant

associated with a soil horizon that is found within a clade without significant

associated to the same horizon are indicated by a colored box following the taxa

name (Fig. 14.2). Three identified indicator species for mineral soil (I-M),

OTU6, OTU8, and OTU16, were all found in lineages with a significant associ-

ation with mineral soil (Fig. 14.2). The same is true for OTU 11+ and OTU13

which were identified as indicator species for organic soil (I-O) and found in

lineages with significant association with organic soil.

Clade IV was significantly associated with the black spruce ecosystem when

considering sequence abundance data but not when using the presence counts.

The two sequences in this clade were derived from the mixed upland ecosystem,

dominated by white spruce (Picea glauca), indicating a strong association with

spruce for this clade. Clade IV is split into two well-supported clades with

contrasting soil horizon preferences. OTU13 is the most abundant taxon in the

current dataset. It is an indicator species for organic soil in the black spruce

ecosystem, and the lineage is significantly associated with organic soil

(Fig. 14.2). Yet OTU13 is still frequently detected in mineral soil (Fig. 14.3).

The sister clade which encompasses A. finlayi, on the other hand, is significantly

associated with mineral soil, and 94 % of all sequences in this clade were

derived from mineral soil. This observation is supported by the initial isolation

of the A. finlayi-type culture from a coniferous root collected in mineral soil at

the interface between illuvial and eluvial soil horizons in a podzol soil profile

(Rosling et al. 2003).

Clade I was significantly associated with organic soil. Within this clade,

contrasting soil horizon specificity was detected among sister species, i.e.,

TKN-197 and TKN-196 associated with organic soil vs. TKN-759 associated

with mineral soil (Fig. 14.2). Similar to patterns of vertical partitioning observed

for sister species of Rhizopogon (Beiler et al. 2012), patterns of differential

distribution between soil horizon may well be the result of ongoing substrate

competition among closely related species.

Overall, the relative abundance of Archaeorhizomycetes was higher in mineral

soils, close to 9 % of all clones, compared to roughly 6 % in organic soil across the

three studies from Alaska discussed here. Higher relative abundance in mineral soil

may reflect lower abundance of other taxa rather than an absolute increase in

Archaeorhizomycetes in mineral soil. However, lineage specificity towards mineral

soil was common within clades II, IV, and V, suggesting that a large proportion of

the diverse class is well adapted to conditions in mineral soil. This observation is

supported by previous findings from Lindahl et al. (2007) where fine separation of

horizons from a boreal forest floor followed by fungal community characterization

using T-RFLP identified six putative Archaeorhizomycetes (then Ascomycete

group G) occuring in all soil layers except for the layer of new litter. Putative

Archaeorhizomycetes species had different but overlapping patterns of occurrence

with most taxa being identified in the upper humus layer. Two putative species,
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C2y_8.2 (JN032481) and A2z_5.11 (JN032482) became increasingly common in

mineral soil horizons. The latter formed part of OTU9 (Rosling et al. 2011), which

represents the putative species OTU18+ in the current analysis.

14.3 Life Strategies in Archaeorhizomycetes

A shift in community composition towards dominance by Archaeorhizomycetes in

summer samples was interpreted as an indication that the class depends on carbon

derived from root exudation (Schadt et al. 2003). Furthermore, the two cultured

representatives of Archaeorhizomycetes, A. finlayi and Archaeorhizomycetes

sp. FG15P2b, were both isolated from surface-sterilized root tips, further

suggesting that species in the class are intimately associated with roots. There

are, however, indications that the class is not dependent on living roots for their

carbon supply. Five and 14 days after severing of roots in a pine forest, the relative

abundance of Archaeorhizomycetes (then Clone Group 1) remained close to that in

the control samples with an average abundance of 14 % of total fluorescence as

quantified by T-RFLP (Lindahl et al. 2010). That study analyzed abundance in soil

DNA extracts, and targeting the active community might give a different represen-

tation of Archaeorhizomycetes. Furthermore, the study by Castro et al. (2010)

stands out with its exceptionally high relative abundance of Archaeorhizomycetes

clones (up to 95 %) of the soil fungal community at the end of the growing

season. Possible temporal dynamics of Archaeorhizomycetes associated with

aboveground senescence decreased carbon allocation to roots, and associated

mycorrhizal fungi as well as root decomposition may be well worth studying in

the future.

Species in Archaeorhizomycetes have the ability to grow inside roots as well as

on pure carbon sources of varying complexity (Rosling et al. 2011). Sequences of

Archaeorhizomycetes have also been detected in decaying wood. Rajala

et al. (2011) studied the active fungal community of decaying spruce logs using a

combination of DGGE and sequencing from environmental rDNA and rRNA

extracts. A sequence representing Archaeorhizomycetes was obtained from

strongly decayed spruce logs. These observations in combination with the shear

abundance of Archaeorhizomycetes in many soils suggest that these fungi play an

important role in the cycling of carbon derived from living or dead roots in soil.

Neither mycorrhizal nor pathogenic interactions have yet been documented for the

type species A. finlayi. Whether Archaeorhizomycetes are directly associated with

roots along a trophic continuum from symbiotic–endophytic–saphrotrophic–

pathogenic interactions or are secondarily associated through interactions with

other root-associated fungi remains unknown. Taking into account that Archaeor-

hizomycetes is an ancient class of fungi, there is good reason to acknowledge that

different life strategies may be represented among species in the class and that no

single ecological role may be assigned to the class.
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Tedersoo L, Pärtel K, Jairus T, Gates G, Poldmaa K, TammH (2009) Ascomycetes associated with

ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales.
Environ Microbiol 11:3166–3178

Urban A, Puschenreiter M, Strauss J, Gorfer M (2008) Diversity and structure of ectomycorrhizal

and co-associated fungal communities in a serpentine soil. Mycorrhiza 18:339–354

White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal

ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ

(eds) PCR protocols: a guide to methods and applications. Academic, San Diego, CA,

pp 315–322

14 Archaeorhizomycetes: Patterns of Distribution and Abundance in Soil 349



Chapter 15

Methods in Fungal Genetics

Kevin McCluskey and Aric Wiest

15.1 Introduction

15.1.1 Evolution of Modern Gene Manipulations

Whether in saving starter for sourdough bread or making koji mold for Sake

fermentation, humans have been manipulating fungi for their own purposes for

millennia. The Tyrolean iceman, Ötzi, had fungi among his personal items although

whether for medicinal or practical use is still debated (Rollo et al. 1995). With the

development of modern germ theory and the exposition of Koch’s postulates,

practical microbiology included saving and characterizing pure cultures of

microorganisms. Even before Fleming discovered his Penicillium strain (Bennett

and Chung 2001) that led to modern pharmaceutics, culinary strains were selected

for high spore production, lack of toxic metabolites, flavor profiles, purity, and

stability (Machida et al. 2008). It can be argued that once strain improvement for

higher antibiotic production began, modern biotechnological manipulation was on a

natural continuum, and while the specific techniques have changed, the general

aims remain the same. These aims include high productivity, lack of contaminating

side products, purity, and stability.

15.1.2 Research Versus Commercial Applications

As biological sciences went from being purely descriptive, and experimental

biology became practical, fungi were brought into the laboratory for characteriza-

tion and as model systems for larger biological inquiry. Among the foundational
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discoveries made using model fungal organisms are the one gene-one enzyme

hypothesis (Beadle and Tatum 1941), the existence of suppressor mutations

(Tatum and Perkins 1950), multifunctional gene clusters, and regulatory mutations

(Horowitz et al. 1961). In recent years, fungi continue to be valuable models for

population genetics, genome organization, epigenetic gene modification, circadian

rhythms, and host-pathogen interactions.

Commercial use of characterized and improved fungal material touches on many

aspects of agriculture, medicine, food and fiber processing, and increasingly in the

day-to-day activities of a modern lifestyle (Bohlin et al. 2010). Whether it be

biocontrol of insect pests or invasive non-crop plants, the manipulation of field

populations of toxin-producing or pathogenic organisms, the production of indus-

trial chemicals, bio-processing, or the production of enzymes or pharmaceuticals,

genetically characterized and manipulated strains represent the foundation and

reference against which all progress is measured (OECD 2001).

Many of the research uses of fungi are removed from practical applications,

although both approaches increasingly rely on the use of genetically manipulated

strains. It is important in this context to emphasize that genetically manipulated

strains may be generated by meiotic genetics, mitotic recombination, and by

DNA-based genetic transformation using genetic constructs produced in vitro.

15.1.3 GMO Organisms and Regulatory Status

Materials collected in the environment, whether from intact wilderness, from

agricultural, or even urban settings, are considered to be genetically wild type,

and strains that have been derived from them by classical mutagenesis or by

Mendelian or even mitotic recombination are evaluated and regulated according

to the same criteria. Materials that have been generated by genetic manipulation

using engineered or synthetic molecules are subject to regulation as hazardous

biological materials. Moreover, shipment of GMO materials is governed by the

same guidelines as dangerous goods. At the time of the writing of this review, this

circumstance is in a state of flu15. The Cartagena Protocol on Biosafety to the

Convention on Biological Diversity (http://bch.cbd.int/protocol/) is an international

treaty negotiation with purview over the safe handling, transport, and use of GMO

organisms, which they describe as “living modified organisms.” This protocol

further describes its purpose as the protection of biodiversity from the potential

risks of living modified organisms. It entered into force in September 2003, having

been ratified by 50 countries. Regardless of the purpose, this protocol will have

implications for the use of modified organisms in research, agriculture, and in the

areas of pharmaceutical and industrial research and production.
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15.1.4 Scope

The present chapter will describe the development of tools for manipulation of

filamentous fungi with emphasis on tools for research application. It will describe

the evolution of modern molecular genetic tools and include circumspection on

their characteristics. Emphasis will be placed on the use of materials in the

collection of the Fungal Genetics Stock Center, and description of these materials

will be elaborated, to the extent that it provides insight into directions of research

over many years.

15.2 Classical Genetic Manipulation

Once fungi had been domesticated and put to practical uses, and simultaneous with

the rediscovery and validation of Mendel’s work on pea genetics by de Vries and

others in the late nineteenth century (Hurst 2009), fungi were subject to

investigations of their genetics both to explore the nature of genes and as a practical

means of strain improvement. While some organisms were studied just to identify

principles of genetics (Shear and Dodge 1927; Blakeslee 1904), others were studied

primarily because of their practical application or impact (Takamine 1914; deBary

1853).

15.2.1 Mendelian Genetics

The development of model systems for filamentous fungi was based on the ability

to conduct Mendelian genetics. The demonstration of segregation of mating type

was made in a number of fungal systems including Neurospora (Lindegren 1932),

Schizophyllum, Ustilago, Sordaria, and yeast (Kronstad and Staben 1997). Simi-

larly, mating type was characterized in a number of water molds, some of which are

no longer considered fungi. These included Allomyces (Emerson andWilson 1949),

Achlya (Raper 1939), and Phytophthora (Judelson et al. 1995). In parallel, mating

and other characteristics were described for slime molds, and these had significant

parallels to fungal systems (Bonner 1944). Classical genetics has been foundational

for the understanding of fungal biology and for many years was the best way to

characterize interesting traits. This also included extensive study of the mechanisms

of genetics, the nature of intra- and intergenic recombination, as well as population

and quantitative genetics. In the most well-characterized systems, such as Neuros-
pora, Aspergillus, yeast, and numerous plant-pathogenic fungi, genetic maps were

constructed demonstrating the number of linkage groups and the relationship of

markers on these linkage groups. This was corroborated by cytogenetic analysis of

stained chromosomes, (McClintock 1945) although for many fungi, the number
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of chromosomes is underestimated because most of the chromosomes are too small

for classical microscopic analysis as demonstrated by electrophoretic karyotype

analysis (Mills and McCluskey 1990). For example, Neurospora has seven linkage

groups and also seven microscopically visible chromosomes, while Ustilago has as
many as 20 electrophoretically resolvable chromosomes (Kinscherf and Leong

1988) but only 4 that are visible in cytological preparations (Lindegren 1948).

Moreover, while many years of mutagenesis and characterization have yielded as

many as 1,200 markers on the Neurospora genetic map (Galagan et al. 2003),

whole-genome sequence has identified closer to 10,000 genes in this fungus. The

systematic gene deletion program for N. crassa (Colot et al. 2006) has produced

gene deletion mutants for over 8,000 unique ORFs, and of these, 1,500 are only

available as heterodikaryons, suggesting that these ORFs are essential. This

suggests that the saturation mutagenesis of many years was successful in mutating

most ORFs for which a phenotype could be recovered. Moreover, these KO strains

effectively carry an antibiotic resistance marker at every locus, and this can be used

for fine structure mapping (Hammond et al. 2012).

15.2.2 Non-Mendelian Genetics

Because the demonstration of Mendelian genetics requires appropriate mating pairs

or specific conditions to produce a teleomorph, some fungi were considered to be

asexual, although mating-type alleles and even sexual reproduction have been

identified for some species (Arie et al. 1997; O’Gorman et al. 2008). For these,

the ability to carry out mitotic recombination was a valuable tool for pseudo-genetic

manipulation. For example, the first markers mapped in Aspergillus nidulans were
characterized by mitotic mapping (Pontecorvo 1956). Other approaches to

non-Mendelian genetics included protoplast fusion between noncompatible strains

and species. This leads to the production of potentially aneuploid strains, and the

reduction of this aneuploidy can generate stable strains with traits not available

through natural processes (Peberdy 1979). In a similar vein, interspecies crosses can

be carried out for some organisms. The spore-killer element from Neurospora
intermedia was introgressed into N. crassa (Turner and Perkins 1979) to allow

better characterization. This element is carried on a 1.9 Mb region on the left arm of

contig 3 presumably including the entire meiotic drive element along with other

sequences (McCluskey et al. 2011).

Similarly, the characterization of strains carrying aneuploid or rearranged

chromosomes has been useful both with regard to the insight it provides into fungal

chromosome biology and also as a tool for characterization of gene location and

epigenetics (Perkins 1997). Supernumerary chromosomes, sometimes referred to as

B chromosomes (Hurst and Werren 2001) or, more recently, lineage-specific

chromosomes (Ma et al. 2010), have been characterized in a number of fungi

(Covert 1998). These chromosomes do not follow typical Mendelian genetics and

are historically considered to be segregation distorters (Jones et al. 2008). The
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distribution of these elements is not uniform, and while some fungi, such as

Neurospora, do not tolerate foreign DNA (Windhofer et al. 2000), others, such as

Nectria haematococca (Coleman et al. 2009) or Fusarium oxysporum
(Ma et al. 2010), have a significant portion of their genomes on these dispensable

chromosomes (Croll and McDonald 2012).

Now characterized in many organisms, epigenetic phenomena were

characterized in filamentous fungi beginning with the demonstration of the muta-

genic phenomenon induced by duplicated genes and known as RIP (Cambareri

et al. 1989). Similarly, vegetative silencing in fungi was demonstrated by silencing

of genes for carotenoid biosynthesis (Cogoni et al. 1996). Epigenetic phenomena

are now known to be present in myriad fungi (Selker 1997).

15.2.3 Mutagenesis

Early research with fungi leading to such hallmark discoveries as the one gene–one

enzyme hypothesis and intragenic recombination was carried out with filamentous

fungi. Among these were the demonstration of spore color mutants in the homo-

thallic species Sordaria (Sang and Whitehouse 1983), light sensing in Phycomyces
(Delbruck and Meissner 1968), and auxotrophy and morphological anomalies in

Neurospora (Beadle and Tatum 1941). For many fungi, mating type was the most

reliable character subject to Mendelian analysis in fungi, and this one area was

disturbingly not amenable to mutational analysis.

In Neurospora, and other fungi, filtration enrichment was developed as a tech-

nique to increase the likelihood of identifying appropriate mutant strains

(Woodward et al. 1954). In this ingenious approach, heavily mutagenized spores

are allowed to germinate in liquid culture and then subject to multiple cycles of

filtration over loosely woven cotton cloth or other coarse matrix. Conidia that

germinated either in minimal medium, or in special cases under selective pressure

such as elevated temperature, were trapped in the filter, and conidia with a

nutritional or other requirement passed through the filter. Subsequent culture of

these defective conidia in complete medium or at reduced selection pressure

identified mutants with a frequency that is much higher than simple mutagenesis.

Because of the frequency of inducing secondary mutations, it has always been

best practiced to backcross mutants to a well-known wild type. Estimates on the

number of crosses suggest that as many as ten backcrosses may be necessary to

purify a unique mutation (Leslie 1981), although in practice this large number of

backcrosses was associated with a 20-map unit recombination block around

mating type.

Whole-genome analysis of classical mutant strains of N. crassa has shown the

impact of backcrossing into the reference genome (Table 15.1). Where the number

of backcrosses was known for classical mutant strains, the lowest divergence from

the reference genotype was seen in strains that had been backcrossed multiple times

into the reference genotype. This analysis rests on the fact that most SNPs were not
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unique and the result of the particular mutagenesis. Rather, they were found in

multiple strains and seem to be associated with the multiple lineages used in the

Neurospora research community. Many of the same polymorphisms seen in these

classical mutant strains were also found in an independent analysis of a separate

classical mutant strain (Pomraning et al. 2011).

Interestingly, nonsense mutations were common in classic mutant strains. The

distribution of nonsense mutations was correlated with the lineage of the strain and

inversely related to the number of backcrosses. The strains with the fewest numbers

of nonsense mutations had all been backcrossed three times, while the strains with

the most polymorphisms had not been backcrossed into the reference genome

lineage (Table 15.1), emphasizing the importance of multiple generations of

backcrossing in strain construction.

Table 15.1 Impact of backcrossing on frequency of polymorphisms detected in whole genome

sequence from classical mutant strains of N. crassa

Strain Marker Mutagen Backcrosses

Total

SNPs

%

max

SNPs

#

nonsense

mutations Reference

106 com UV 3 23,579 12.5 18 Perkins and Ishitani

(1959)

305 amyc – 3 90,195 47.9 67 Atwood and Mukai

(1954)

309 ti X-rays 3 13,274 7.0 11 Perkins (1959)

322 ty-1 Spontaneous – 142,489 75.7 95 Horowitz et al. (1961)

821 ts Spontaneous – 188,346 100.0 122 Nakamura and

Egashira (1961)

1211 dot Spontaneous 3 20,493 10.9 19 Perkins et al. (1962)

1303 fi Spontaneous – 59,356 31.5 35 Perkins et al. (1962)

1363 smco-1 Mustard – 146,641 77.9 137 Garnjobst and Tatum

(1967)

2261 do UV 3 44,839 23.8 37 Perkins et al. (1962)

3114 Sk-2 Introgression 1 41,085 21.8 31 Turner and Perkins

(1979)

3246 fs-n Spontaneous – 21,533 11.4 14 Mylyk and Threlkeld

(1974)

3562 mb-1 UV – 106,533 56.6 78 Weijer and Vigfusson

(1972)

3564 mb-2 UV – 47,981 25.5 36 Weijer and Vigfusson

(1972)

3566 mb-3 UV – 37,516 19.9 27 Weijer and Vigfusson

(1972)

3831 ff-1 Spontaneous – 22,961 12.2 15 Tan and Ho (1970)

3921 tng Spontaneous 2 80,311 42.6 84 Springer and

Yanofsky (1989),

Howe and Benson

(1974)

7022 fld Spontaneous – 78,991 41.9 45 Perkins et al. (1962)

7035 per-1 UV 3 18,487 9.8 13 Howe and Benson

(1974)
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For many years, strain improvement included mutagenesis. Penicillin-producing

strains were a key example of the impact of strain improvement (Sermonti 1959).

Useful yields of antibiotic increased by several orders of magnitude during classical

strain improvement. Subsequently, whole-genome analysis of A. niger strains

subject to classical strain improvement showed the impact of strain improvement

on the genome (Andersen et al. 2011). This study revealed many differences

between the improved and reference genome strains including a high level of

nucleotide polymorphisms, significant genome rearrangements, deletions, and

even sequence unrelated to the reference genome. Transcriptome analysis also

indicated that significant changes in regulation of gene expression had occurred.

Numerous recent efforts have characterized classical mutant strains and among

them are the studies of nine Neurospora strains carrying classical mutations in

genes responsible for pigment biosynthesis. These strains were characterized by

direct sequence analysis of the albino-2 gene (Diaz-Sanchez et al. 2011). One of the
strains produced an aberrant pigment while others were albino. The red pigment-

producing strain had multiple non-synonymous mutations as well as other synony-

mous ones. Several of the mutants produced truncated or shortened polypeptides

and these mutants were variously completely albino or leaky. Only some

polymorphisms at al-2 were shared among multiple strains suggesting that these

mutant strains were not all generated in the identical genetic background, similarly

to that which was seen among the classical mutant strains subject to whole-genome

analysis. Similarly, well-mapped mutations at the ad-8 locus in Neurospora were

used to establish that intragenic recombination was responsible for some instances

of allele complementation (Ishikawa 1962). A subset of these mutations were

characterized by targeted sequence analysis (Wiest et al. 2012a), and unlike the

mutants at al-2, the ad-8 mutants did not contain multiple changes, nor did they

show any influence of founder effects.

15.3 Transformation

Originally demonstrated in Streptococcus in response to fundamental questions of

the nature of the material of inheritance (Alloway 1932), the ability to transfer traits

by introducing foreign DNA, either natural or from synthetic origins, among strains

is foundational to every modern research system. While the techniques for

accomplishing this transformation vary, all rely on the ability to introduce foreign

DNA into a strain and have that strain express that DNA as though it were part of

the natural genome. For some organisms, this is relatively straightforward, and the

introduced DNA can become part of the nuclear genome. For other organisms, gene

silencing and even mutation can limit the ability to mobilize and express foreign

genes at high levels. Also, and in a manner similar to the requirement for

backcrossing strains arising from explicit mutagenesis, transformants often need

to be purified. This is especially important for organisms where the transforming

cells are multinucleate, and nuclei that are not transformed can persist in hyphae
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that are shared with a nucleus expressing the selectable marker gene. Moreover,

transformation itself is mutagenic, and this has been shown both for insertion-

associated mutations (Perkins et al. 1993) and also for second-site mutations (Keller

et al. 1990).

15.3.1 Protoplast/Polyethylene Glycol

Protoplast fusion, whether in the presence of synthetic DNA or between cells

carrying unique traits, has been used for strain manipulation and improvement for

many years (Turgeon et al. 2010). The best results are available when high-quality

protoplasts are available (Daboussi et al. 1989). The distinction between

spheroplasts and regenerable protoplasts lies in the fact that protoplasts contain

all the requirements to form a new colony while spheroplasts are merely osmoti-

cally sensitive liquid-filled micelles (Peberdy 1987).

The production of protoplasts requires enzyme cocktails to remove the cell wall

polysaccharides and to make the cell permeable to DNA in the presence of

polyethylene glycol (PEG) or similar polymer (Peberdy 1987). While generic

enzyme cocktails may work for some species, other species require custom

enzymes or other pretreatment. Neurospora, Saccharomyces, Ustilago maydis,
and A. nidulans are generally amenable to protoplasting with generic enzyme

cocktails, although even these amenable species are vulnerable to inconsistencies

in enzyme specificity (de Bekker et al. 2009). Some organisms, such as U. hordei,
A. fumigatus, or Schizophyllum, require specific enzyme cocktails. While this is

sometimes accomplished by the addition of specific purified enzymes, the best

protoplasting cocktails are generated by growing the enzyme-producing fungus,

typically Trichoderma or Aspergillus niger, on purified cell walls from the target

organism (Peberdy 1987). For example, to produce cell wall-degrading enzymes to

make protoplasts from S. commune, one would first grow a large batch of

S. commune mycelia and then use the purified cell walls of the S. commune strain
as substrate to culture the Trichoderma or A. niger strain from which the cell wall-

degrading enzymes are to be extracted.

Another approach is to use a strain that either constitutively or conditionally fails

to produce a cell wall. In N. crassa, a strain known as slime contains three genetic

lesions that combine to produce a wall-less strain (Selitrennikoff 1979). Regardless

of how the protoplasts are produced, all transformation techniques rely on the use of

PEG. The role played by the PEG in transformation was analyzed and compared to

other molecules, and it was considered that the PEG functioned in concentrating the

DNA and that it does not directly cause protoplast fusion (Kuwano et al. 2008).
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15.3.2 Electroporation

This technique takes advantage of the ability of a pulse of electrical energy to create

pores in biological membranes which allows DNA to enter a cell (Dower

et al. 1988). While the exact mechanism by which electroporation facilitates

DNA uptake and entry into the nucleus is unknown, alternate theories include the

passage of DNA through pores (Levine and Vernier 2010), the formation and

uptake of vesicles (Kawai et al. 2010), or even the electrophoretic acceleration of

DNA in an electric field.

While the characteristics of the electrical discharge are subject to discussion

(Weaver 1995) and the ideal system for electroporation should have a square

discharge wave, practical issues mean that a logarithmic discharge is more readily

achieved and produces adequate transformation efficiencies (Chen et al. 2006).

15.3.3 Chemical

Typically involving lithium acetate and modeled after bacterial transformation

(Chung et al. 1989), some species can be readily transformed by preparation of

competent cells using salt treatment. This has been shown not only for yeast-like

fungi including Saccharomyces but also in Microbotryum violaceum
(as U. violacea) (Bej and Perlin 1989). The role of lithium, the preference for

different lithium salts, and the ability of different cations to replace lithium have

been exhaustively studied (Kawai et al. 2010).

15.3.4 Biolistic

In some cases, DNA can be directly introduced to cells using microscopic pellets

coated with the DNA one wishes to introduce. Because of the complexity of this

protocol and because of the relatively low yield, it is preferential to use another

approach where available. In some cases, biolistic transformation is the only option,

and in these cases, it can be extremely useful (Olmedo-Monfil et al. 2004).

15.3.5 Agrobacterium

Many species of fungi, even filamentous fungi, can be transformed by conjugation

of special plasmids. This is accomplished by co-culturing the target organism with

A. tumefaciens cells carrying a plasmid mobilized by the presence of so-called

T-DNA regions (Betts et al. 2007). The DNA that is transferred into the fungal cell
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integrates randomly into the genome and generates a tagged integrant where the

presence of the T-DNA marks the insertion (de Groot et al. 1998). Strains

transformed with this method require careful evaluation to assure the presence of

a unique insertion. Moreover, the stability of the inserted DNA has not been

evaluated in all target species. This may be especially relevant for species where

meiotic gene silencing or mutation depends on the presence of repeated DNA. The

ability to transfer DNA via Agrobacterium was exploited in the generation of

tagged-integrant mutants of Magnaporthe grisea, and 48,000 such strains were

generated and phenotyped (Tucker and Orbach 2007; Soderlund et al. 2006).

15.4 Selectable Markers

Transformation by foreign DNA is relatively inefficient (Fincham 1989) with

1–100 transformants per microgram of transforming DNA and per 107 recipient

cells being not uncommon. Because of this, it is not practical to screen for cells that

have foreign DNA, and rather selectable markers, which allow only the cells

carrying and expressing foreign DNA to grow, are employed. These markers vary

in their characteristics, but all allow the growth of only cells expressing the marker

gene. In addition to a robust selectable marker, appropriate fungal promoters and

terminators are required for stable transformation. For many markers, the Aspergil-
lus nidulans TrpC promoter and terminator were used (Yelton et al. 1984).

15.4.1 Auxotrophic Complementation

The first demonstration of transformation by complementation of auxotrophy was

made by culturing cells of a Neurospora strain that required inositol with DNA from

an inositol prototrophic strain (Mishra and Tatum 1973). Practical use of auxotro-

phic markers, however, awaited the demonstration of transformation of protoplasts

of a leucine-requiring Saccharomyces strain with the DNA from a leucine proto-

troph (Hinnen et al. 1978) and soon thereafter with the LEU2 gene on an autono-

mously replicating shuttle plasmid (Beggs 1978). Among the most commonly used

selectable markers are complementation of nutrient requirements, such as histidine

(Case et al. 1979) and pyrimidines (Ballance et al. 1983). Other auxotrophies have

been employed, such as tryptophan (Yelton et al. 1984), adenine (Kurtz et al. 1986),

quinic acid (Case 1982), and nitrate reductase (Campbell et al. 1989).
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15.4.2 Drug Resistance

Because complementation of auxotrophic strains has specific problems, the use of

dominant markers such as drug resistance is highly desirable. For fungi this is

complicated by the relatively few drugs available as drug/selectable marker

systems. The most commonly used drug for selection in filamentous fungi is

hygromycin, and many vectors are derived from the pAN7-1 plasmid first used to

confer hygromycin resistance in Aspergillus (Punt et al. 1987). Other markers

include bialaphos resistance (Avalos et al. 1989) and then less commonly used

markers like sulfonylurea (Sweigard et al. 1997), phleomycin (Mattern et al. 1988),

and nourseothricin (Kück and Hoff 2006).

15.4.3 Recyclable Markers

By careful expression of splicing sequences and the genes for their recognition,

some markers can be evicted once transformation has been accomplished. These

commonly use the cre-lox system and require induction of the genes for splicing.

The end product is a transformed strain that no longer carries the selectable marker.

These strains can then be transformed with the same marker increasing the value of

such systems (Krappmann et al. 2005). In a similar vein, the FLP/FRT technique

has also been adapted from Saccharomyces cerevisiae to recycle markers in

P. chrysogenum, and other filamentous fungi, by codon optimization of the

recombinase gene (KOPKE et al. 2010).

While not in the same category as markers that integrate into the genome and

require subsequent excision, autonomously replicating plasmids are important for

manipulation of some species. The AMA series of plasmids (Osherov et al. 2000)

offer the benefit of autonomous replication for Aspergillus and have been widely

used both as a genome library and as individual vectors for other uses. While there

was some suggestion that autonomous replication could be observed in Neurospora
(Grant et al. 1984), this has never been used to develop vectors for gene

manipulation.

15.4.4 Novel Methods

Complementation of temperature-sensitive (TS) mutations was used as a means to

identify the gene carrying the TS lesion. It was not until identification of the

ribosomal S9 protein that this was proposed as a deliberate selectable marker.

Subsequently this has been used to disrupt the albino-1 gene in Neurospora in a

strain carrying the TS allele. Complementation by the Magnaporthe ribosomal S9
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gene allowed targeting without interference by homology with the native Neuros-
pora locus (Wiest et al. 2012c).

Plasmids are naturally found in mitochondria of several fungi (Griffiths 1995),

and while these suggest that it should offer a route for manipulation of fungal

physiology, this has not proven to be useful in practice.

15.5 Plasmids/Strains

For fungi where dominant selectable markers are available, they are widely used,

and a series of vectors based on the same genes are often available for use across

multiple target species. With the demonstration that targeting was enhanced in

strains deficient in nonhomologous end joining, many such strains were developed

to allow modern gene targeting. Among these strains are representatives from most

of the commonly used model species (Table 15.2).

15.5.1 Neurospora

Most strains of Neurospora are sensitive to hygromycin and so are readily

transformed with the most commonly available vectors. Additional strains are

used for special purpose transformation including auxotrophic strains,

temperature-sensitive strains, and strains defective in nonhomologous end joining

(Table 15.2). Among the auxotrophic complementation systems, the most widely

used was the his-3 complementation which allowed targeting to the his-3 locus in

Neurospora. This robust system generated significant numbers of homologous

integrants, but because of the variability at his-3 among laboratory strains (Yeadon

et al. 1998), most researchers use strains carrying the 1-234-723 allele of his-3
(Margolin et al. 1997).

15.5.2 Aspergillus

Some species of Aspergillus are naturally resistant to hygromycin, and so comple-

mentation of auxotrophies is the most common method for selecting for

transformants. The most commonly used marker is pyrG (Oakley et al. 1987a),

and several vectors exist for selecting transformants in the most commonly studied

species of Aspergillus (Table 15.3). Similarly, complementation of mutations at the

riboB locus (Oakley et al. 1987b) has been used for selecting transformants in

A. nidulans and A. fumigatus (Nayak et al. 2006). One of the commonly used

transformation systems for Aspergillus uses the amdS gene on the plasmid p3SR2

(Tilburn et al. 1983) to confer the ability to grow on acetamide as the sole nitrogen
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Table 15.2 Strains engineered for targeted gene disruption

FGSC # Species Characteristics Reference

8071 N. crassa am target strain TEC39 Cambareri and Kinsey (1994)

8072 N. crassa am target strain TEC41 Cambareri and Kinsey (1994)

9538 N. crassa mus-51 delta::Bar; his-3 Ishibashi et al. (2006)

9539 N. crassa mus-52 delta::Bar; his-3 Ishibashi et al. (2006)

9567 N. crassa mus-52::Hyg^r Ishibashi et al. (2006)

9568 N. crassa mus-52::Hyg^r Ishibashi et al. (2006)

9595 N. crassa mus-51::Hyg^r Ishibashi et al. (2006)

9717 N. crassa delta mus-51::bar+; his-3 Ishibashi et al. (2006)

9719 N. crassa delta mus-52::bar+ Ishibashi et al. (2006)

9720 N. crassa delta mus-52::bar+; his-3 Ishibashi et al. (2006)

9718 N. crassa delta mus-51::bar+ Ishibashi et al. (2006)

20277 N. crassa NCU08290.2 (mus-51) Colot et al. (2006)

20278 N. crassa NCU08290.2 (mus-51) Colot et al. (2006)

10216 N. crassa un-16, mus-52 McCluskey et al. (2007)

10217 N. crassa un-16, mus-52 McCluskey et al. (2007)

10218 N. crassa un-16, mus-51 McCluskey et al. (2007)

10219 N. crassa un-16, mus-51 McCluskey et al. (2007)

A1421 A. flavus CA14 deltaKu70 delta PyrG Chang et al. (2009)

A1181 A. niger Δ kusA pyrG- Meyer et al. (2007)

A1279 A. niger KusA::amdS; pyrG Carvalho et al. (2010)

A1180 A. niger Delta kusA Meyer et al. (2007)

A1515 A. niger pyrG-, KusA::AfpyrG Chiang et al. (2011)

A1182 A. niger Delta kusA::AmdS Meyer et al. (2007)

A1179 A. niger Delta kusA pyrG- Meyer et al. (2007)

A1421 A. flavus CA14 deltaKu70 delta PyrG Chang et al. (2009)

A1280 A. fumigatus akuA::loxP Hartmann et al. (2010)

A1160 A. fumigatus DeltaKU80 pyrG- Krappmann et al. (2006),

Krappmann (2006)

A1159 A. fumigatus akuA::loxP Krappmann et al. (2006),

Krappmann (2006)

A1158 A. fumigatus akuA::loxP-hygro^R/tk Krappmann et al. (2006),

Krappmann (2006)

A1157 A. fumigatus akuA::ptrA Krappmann et al. (2006),

Krappmann (2006)

A1151 A. fumigatus pyrG^AF::Delta KU80 Krappmann et al. (2006),

Krappmann (2006)

10386 M. grisea P1.2-deltaKU80 Villalba et al. (2008)

10385 M. grisea Guy11-deltaKU80 Villalba et al. (2008)

A1190 A. parasiticus ordA, Ku70 Chang (2008)

A1243 A. parasiticus Delta ku70 Ehrlich et al. (2008)

A1244 A. parasiticus Delta ku70 Delta pyrG Chang et al. (2009)
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source. This plasmid is one of the most highly distributed (Table 15.4) and has been

used for the transformation of a variety of fungi including A. niger (Kelly and

Hynes 1985), Cochliobolus (Turgeon et al. 1985), Penicillium (Beri and Turner

1987), and Trichoderma (Rahman et al. 2009, p. 6942.

15.5.3 Other Fungi

While not all of the tools developed for use in Neurospora or Aspergillus are

directly applicable to use in other research systems, many of the vectors used in

these systems can be engineered to function in unrelated systems (Meyer 2008).

Similarly, many of the approaches used in Neurospora and Aspergillus are

employed to generate specific characteristics, such as chlorate resistance which is

useful for forcing anastomosis (Bowden and Leslie 1992) or for transformation

directly (Daboussi et al. 1989).

Finally, interspecific transfer of genes is especially useful when one is doing

gene targeting. For example, the Aspergillus nidulans riboB gene is useful for

targeting in A. fumigatus (Nayak et al. 2006), and the Magnaporthe ribosomal S9

gene can be used to transform un-16 TS-lethal mutant strains of Neurospora
without interfering with targeting [e.g., to the al-1 locus (Wiest et al. 2012c)].

Table 15.3 Selectable markers and plasmids for transforming filamentous fungi

Selection Marker Plasmids Reference

Dominant selection

Benomyl BmlR/ben pBT6, pBenA3 Orbach et al. (1986), Jung et al. (1992)

Hygromycin Hph/

HygR

pES20, etc. Staben et al. (1989)

Bialaphos bar pBARKS1, etc. Pall and Brunelli (1993)

Phleomycin phleo pBC-phleo Silar (1995)

Sulfonylurea sur pCB1528, etc. Sweigard et al. (1997)

Nourseothricin nat1 pD-Nat1 Kuck and Hoff (2006)

Recessive selection

Histidine his-3 pNH60,

pRAUW122,

pJHAM002

Legerton and Yanofsky (1985), Aramayo

and Metzenberg (1996), Lee et al. (2003)

Acetamide amd-S p2SR2 Wernars et al. (1985)

Purine pyrG ppyrG, pPL6,

Anep2, etc.

Oakley et al. (1987a), Storms et al. (2005)

Pyridoxine pyroA pTN1, pFB6 Nayak et al. (2006)

Inositol inl pINL, pOKE01,

pRATT19

Akins and Lambowitz (1985)

Riboflavin riboB pLO1, pPL1 Oakley et al. (1987b)

TS lethal un-16 pUN16-6 McCluskey et al. (2007)
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Table 15.4 Most commonly requested plasmids from the FGSC collection from January 2000 to

September 2012

Plasmid name Number of distributions Reference

pSilent-1 114 Nakayashiki et al. (2005)

pBC-phleo 86 Silar (1995)

pCSN44 78 Staben et al. (1989)

pBARGPE1 71 Pall and Brunelli (1993)

pMF272 67 Freitag et al. (2004)

pRS426 63 Christianson et al. (1992)

gGFP 56 Maor et al. (1998)

pCB1003 56 Caroll et al. (1994)

pCB1004 52 Caroll et al. (1994)

pPK2 48 Covert et al. (2001)

pCSN43 46 Staben et al. (1989)

pBARMTE1 42 Pall and Brunelli (1993)

p3SR2 42 Wernars et al. (1985)

pBC-hygro 41 Silar (1995)

pMYX10 37 Campbell et al. (1994)

pMYX2 35 Campbell et al. (1994)

pMT-mRFP1 35 Toews et al. (2004)

pBARKS1 34 Pall and Brunelli (1993)

ppyrG 34 Oakley et al. (1987a)

pMT-BFP 34 Toews et al. (2004)

pMF280 32 Freitag et al. (2004)

pFNO3 32 Yang et al. (2004)

pAO81 30 Yang et al. (2004)

pRG3-AMA1-NotI 29 Liu et al. (2004)

pMF334 29 Freitag and Selker (2005)

pXDRFP4 28 Yang et al. (2004)

pMF309 28 Freitag et al. (2004)

cosmid An26 28 Taylor and Borgmann (1996)

pMT-sGFP 27 Toews et al. (2004)

pSD1 26 Nguyen et al. (2008)

pD-Nat1 25 Kuck and Hoff (2006)

pCB1532 24 Sweigard et al. (1997)

pMOcosX 24 Orbach (1994)

pMF332 24 Freitag and Selker (2005)

pME2891 22 Krappmann et al. (2005)

pMF331 22 Freitag and Selker (2005)

p500 22 Vogt et al. (2005)

pMG2254 22 Gerami-Nejad et al. (2009)

pCCG::N-GFP 21 Honda and Selker (2009)

pA-HYG OSCAR 21 Paz et al. (2011)

pBARGEM7-2 21 Pall and Brunelli (1993)

pCCG::C-Gly::HAT::FLAG 21 Honda and Selker (2009)

pBT6 21 Orbach et al. (1986)

pYFP 20 Bardiya et al. (2008)

pOSCAR 20 Paz et al. (2011)
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15.6 Fluorescent Proteins

15.6.1 Neurospora

GFP constructs were available for other organisms (Niedenthal et al. 1996;

Zeilinger 1999, p. 68) before Freitag developed a codon-optimized version of

GFP for Neurospora (Freitag et al. 2004). After this marker was introduced into

the research community, numerous related fluorescent-tagged proteins were devel-

oped for use in Neurospora (Table 15.5). These include a split yellow fluorescent

protein marker useful for the study of protein interactions (Hammond et al. 2011),

as well as many fluorescent proteins targeted for specific organelles (Bowman

et al. 2009). In addition to the fluorescent proteins described above, several vectors

are available which will allow visualization of protein levels or location. The lux
gene, derived from the firefly luciferase gene, has been engineered for use in

Neurospora (Morgan et al. 2003) and ultimately employed as a signal of the levels

of expression of the product of the frq locus (Gooch et al. 2008).

15.6.2 Aspergillus

With myriad fluorescent-tagged proteins available on convenient plasmids

(Table 15.5), the growth in distribution of these plasmids reflects their value to

the community (Table 15.4). The series developed in the laboratory of R. Fischer

(Toews et al. 2004) includes green, red, and blue fluorescent proteins; these are all

available from the FGSC and have been widely used in developing tools within the

genus Aspergillus (Lubertozzi and Keasling 2009), as well as for cell biology

studies in Aspergillus (Arratia-Quijada et al. 2012) and in unrelated fungi (Helber

and Requena 2008). This reiterates the situation with selectable markers and tags;

many of the tools developed for Aspergillus find direct utility in other systems

underscoring the value of tool development in model systems.

15.6.3 Other Fungi

The most commonly used fluorescent protein used in a variety of systems is

encoded by the gGFP vector developed by A. Sharon (Maor et al. 1998). This

vector includes a hygromycin resistance cassette driven by the A. nidulans glycer-
aldehyde 3-phosphate dehydrogenase promoter and the terminator from the

A. nidulans trpC gene. The GFP gene is also driven by the gpd promoter and uses

the GFP gene and terminator from the plasmid pHSP70-SG (Spellig et al. 1996)

which was originally generated for use in U. maydis. The gGFP plasmid was

optimized for use in Cochliobolus, but has been requested for use in a broad variety
of fungal systems including Colletotrichum (Horowitz 2002), Verticillium (Eynck

et al. 2007), and others (Lorang et al. 2001).
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Table 15.5 Plasmids carrying visualization tags

Name Tag Organism Reference

pFNO3 GFP Aspergillus Yang et al. (2004)

pHL86 GA5-chRFP, riboB Aspergillus Liu et al. (2009)

pHL85 chRFP, pyroA Aspergillus Liu et al. (2009)

pHL84 GA5-GFP, pyroA Aspergillus Liu et al. (2009)

pHL83 GA5-GFP, loxP, pyrG Aspergillus Liu et al. (2009)

pHL82 GA5-GFP, riboB Aspergillus Liu et al. (2009)

pXDRFP4 RFP Aspergillus Yang et al. (2004)

pSK800 mRFP1 Aspergillus Toews et al. (2004)

pSK494 GFP2-5 Aspergillus Szewczyk and Krappmann

(2010)

pSK495 yfp Aspergillus Szewczyk and Krappmann

(2010)

pSK496 mCherry Aspergillus Szewczyk and Krappmann

(2010)

pJH19 DsRedT4 Aspergillus Toews et al. (2004)

pRF281 GFP Aspergillus Toews et al. (2004)

pDV2 sGFP Aspergillus Toews et al. (2004)

pRS54 GFP Aspergillus Suelmann and Fischer

(2000)

pSK700 DsRedT4 Aspergillus Toews et al. (2004)

pMT-sGFP sGFP Aspergillus Toews et al. (2004)

pMT-BFP BFP Aspergillus Toews et al. (2004)

pMT-mRFP1 mRFP1 Aspergillus Toews et al. (2004)

pPND1 mRFP1 Aspergillus Rischitor et al. (2004)

pRF280 GFP Aspergillus Toews et al. (2004)

pOT-eGFP eGFP Botrytis Patel et al. (2008)

pOT-LUC Luc Botrytis Patel et al. (2008)

pMG2082 GFP-URA3-GFP Candida Gerami-Nejad et al. (2009)

pMG1958 Ppck1-GFP Candida Gerami-Nejad et al. (2004)

pMG1892 pgal-GFP Candida Gerami-Nejad et al. (2004)

pMG1886 pmet3-GFP Candida Gerami-Nejad et al. (2004)

pMG1726 CFP-URA3 Candida Gerami-Nejad et al. (2001)

pMG1648 YFP-URA3 Candida Gerami-Nejad et al. (2001)

pMG1602 GFP-URA3 Candida Gerami-Nejad et al. (2001)

pMG1801 CFP-His1 Candida Gerami-Nejad et al. (2001)

pMG2169 RFP-URA3 Candida Gerami-Nejad et al. (2009)

pMG1646 GFP-His1 Candida Gerami-Nejad et al. (2001)

pMG2254 M-cherry-TADH-URA3 Candida Gerami-Nejad et al. (2009)

pMG1656 YFP-His1 Candida Gerami-Nejad et al. (2001)

pCAMDsRED DsRed-Express Leptosphaeria Eckert et al. (2005)

gGFP GFP Many Maor et al. (1998)

pVG101 ccg2p-o-luc-I Neurospora Gooch et al. (2008)

pHAN1 sgfp, HA Neurospora Kawabata and Inoue (2007)

pMF334 RFP Neurospora Freitag and Selker (2005)

pMF332 RFP Neurospora Freitag and Selker (2005)

pMF331 RFP Neurospora Freitag and Selker (2005)

(continued)
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Table 15.5 (continued)

Name Tag Organism Reference

pAL3-Lifeact TagRFP Neurospora Berepiki et al. (2010)

pAL4-Lifeact nat1 TagRFP Neurospora Lichius and Read (2010)

pAL5-Lifeact TagRFP-T Neurospora Lichius and Read (2010)

pAL6-Lifeact TagRFP Neurospora Lichius and Read (2010)

pAL12-Lifeact TagRFP Neurospora Lichius and Read (2010)

pYFPN YFP Neurospora Bardiya et al. (2008)

pTH1124.1 YFPC- Neurospora Hammond et al. (2011)

pTH1123.1 YFPN- Neurospora Hammond et al. (2011)

pTH1117.12 GFP- Neurospora Hammond et al. (2011)

pTH1112.8 -YFPN Neurospora Hammond et al. (2011)

pTH1111.1 -RFP Neurospora Hammond et al. (2011)

pTH1108.2 -YFPC Neurospora Hammond et al. (2011)

pMF309 Bml-GFP Neurospora Freitag et al. (2004)

pMF280 hH1-GFP Neurospora Freitag et al. (2004)

pMF272 GFP Neurospora Freitag et al. (2004)

pLUC6 delta BS lux Neurospora Morgan et al. (2003)

pAL10-Lifeact TagRFP Neurospora Lichius and Read (2010)

pRFP-vps-52 RFP Neurospora Bowman et al. (2009)

pRFP-cax RFP Neurospora Bowman et al. (2009)

pRFP-nca-1 RFP Neurospora Bowman et al. (2009)

pnca-2-GFP GFP Neurospora Bowman et al. (2009)

pRFP-nca-2 RFP Neurospora Bowman et al. (2009)

pnca-3-GFP GFP Neurospora Bowman et al. (2009)

pgrp-GFP GFP Neurospora Bowman et al. (2009)

pTH1067.9 GFP Neurospora Hammond et al. (2011)

pRFP-grp RFP Neurospora Bowman et al. (2009)

pdpm-GFP GFP Neurospora Bowman et al. (2009)

pVG110 frqp-o-luc-I Neurospora Gooch et al. (2008)

pvps-52-GFP GFP Neurospora Bowman et al. (2009)

pYFP YFP Neurospora Bardiya et al. (2008)

pRFP-vam-3 RFP Neurospora Bowman et al. (2009)

pRFP-vma-1 RFP Neurospora Bowman et al. (2009)

parg-4-GFP GFP Neurospora Bowman et al. (2009)

pAL1 sGFP Neurospora Berepiki et al. (2010)

pAL2-Lifeact tdTomato Neurospora Lichius and Read (2010)

pGFP::hph::loxP GFP Neurospora Honda and Selker (2009)

pCCG::N-GFP GFP Neurospora Honda and Selker (2009)

pCCG::C-Gly::GFP GFP Neurospora Honda and Selker (2009)

pYFPC YFP Neurospora Bardiya et al. (2008)

pnca-1-GFP GFP Neurospora Bowman et al. (2009)

pRFP-dpm RFP Neurospora Bowman et al. (2009)

368 K. McCluskey and A. Wiest



15.7 Tags

15.7.1 Visualization

Several proteins have been used as target for antibodies when linked to a polypep-

tide under study. Among them, the GFP protein was localized by immunological

reaction using a rabbit anti-GFP antibody (Gordon et al. 2000).

15.7.2 Purification

Numerous protein tags have been developed to facilitate protein purification, and

many of these are available in public collections. For example, the FLAG (Honda

and Selker 2009), S-TAG (Yang et al. 2004), and HA (Toews et al. 2004) tags are

present among many of the most often distributed plasmids from the FGSC

collection (Table 15.4). The application of these tags allows rapid protein purifica-

tion and is having an impact on fungal proteomics (Liu et al. 2009) and on

understanding of the fungal protein interactome (Wang et al. 2011). If the distribu-

tion of these plasmids (Table 15.4) is a predictor of the impact that they may have,

we can expect additional examples of their application to understanding the role of

specific proteins in numerous important questions of fungal development, ultra-

structure, and environmental interactions.

15.8 Conclusion

15.8.1 Impact

Since 2000, the FGSC has distributed over 3,545 individual plasmid samples.

Among these, the most popular plasmids are those for transformation and manipu-

lation of model filamentous fungi (Table 15.4). Similarly, strains for targeted

transformation have had a huge impact, and the combined availability of these

strains and the plasmids for targeted transformation have allowed the development

of a number of systematic and targeted gene deletion programs. This is arguably the

biggest advancement in research in filamentous fungi for many decades, and it

allows evaluation of the 80–90 % of genes that are not discoverable in traditional

mutagenesis programs. In N. crassa, a set of mutant strains was generated where

nearly every gene has been deleted in a strain engineered to be defective in

nonhomologous end joining (Colot et al. 2006). This set was arrayed at the FGSC

and has been distributed as arrayed strains to laboratories in the USA, Europe, Asia,

and South America (Wiest et al. 2012b). Similar sets have been prepared, although
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not in a systematic manner, for Candida albicans, Cryptococcus neoformans, and,
of course, for yeast. There is significant interest in generating similar resources for

plant-pathogenic fungi, and a set of 48,000 tagged-integrant strains ofMagnaporthe
grisea were developed and deposited at the FGSC (Betts et al. 2007). Regrettably,

the requirement is that every lab that wants to work with these strains receives a

permit from the USDA Biotechnology Regulatory Service, which has limited the

impact of these materials. Similar permits would be required for genetically

engineered strains of any plant pathogen, and until this is resolved, it is unlikely

that a systematic gene deletion resource will be made available for these important

organisms.

15.8.2 Future Prospects

Most of the molecular tools used for manipulation of filamentous fungi are avail-

able from the Fungal Genetics Stock Center. In 2012, the FGSC entered into

negotiations with Addgene (http://www.addgene.com), a nonprofit plasmid reposi-

tory, to deposit many of the most highly requested plasmids. This is both good

practice for an active collection (second-site backup is part of the best practice

guidelines for microbial germplasm repositories) and increases the impact of each

plasmid, by increasing their visibility to potentially new customers.

Additionally, the development of novel organism systems for applications such

as biomass deconstruction, pharmaceutical production, biocontrol, or the produc-

tion of food and fiber will mean that new tools for manipulation and engineering of

these fungi will be developed. The sharing of these materials via active well-curated

collections assures that these materials will have the greatest impact (Furman and

Stern 2011) and that they will be available long after their primary use has been

accomplished.
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