
 123

LN
BI

P
15

0

4th International Conference, ICSOB 2013
Potsdam, Germany, June 2013
Proceedings

Software Business
From Physical Products
to Software Services and Solutions

Georg Herzwurm
Tiziana Margaria (Eds.)

Lecture Notes
in Business Information Processing 150

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Georg Herzwurm
Tiziana Margaria (Eds.)

Software Business
From Physical Products
to Software Services and Solutions

4th International Conference, ICSOB 2013
Potsdam, Germany, June 11-14, 2013
Proceedings

13

Volume Editors

Georg Herzwurm
University of Stuttgart
Stuttgart, Germany
E-mail: herzwurm@wi.uni-stuttgart.de

Tiziana Margaria
University of Potsdam
Potsdam, Germany
E-mail: margaria@cs.uni-potsdam.de

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-39335-8 e-ISBN 978-3-642-39336-5
DOI 10.1007/978-3-642-39336-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013941480

ACM Computing Classification (1998): K.1, K.6, D.2

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Message from the General Chair

Over the last five decades, software has become an integral part of society,
allowing for productivity gains as well as providing means for serving customers
and citizens in ways that would have been unimaginable to our grandparents,
our parents, and even ourselves only a few years ago. Although it is easy to
think of software as “just technology,” in industry after industry it is becoming
abundantly clear that software is the key area of innovation. For instance, for
companies in the telecom industry, software R&D accounts for 80% of the R&D
budget, whereas in the automotive industry, 70% of all innovations are driven
by software.

Although many conferences focus on the technology aspects of software, few
focus on the relationship between business and software and as well as the busi-
ness of software. This is the purview of ICSOB. Over the last four instances of
the conference, we have studied a wide variety of topics in this scope, but often
concerned with the transformation of many businesses and industries toward
selling software-enabled services and products where the software is the main
value-providing element. The implications of this transformation are profound,
including changes to the business model and strategy, system architecture, ways
of working, tools and processes, as well as the way the company is organized.

For a conference to be successfully organized, however, it takes the proverbial
village. As General Chair for ICSOB 2013, I am indebted to a great team. The
Program Chairs, Tiziana Margaria and Georg Herzwurm, did a fabulous job
in developing a very compelling program, helped by their Program Committee.
Slinger Jansen acted as Workshop Chair and did a great job both soliciting highly
interesting workshops and helping the workshops exploit the synergies between
them. The Industry Chairs Asuman Sünbül and Barry D. Floyd worked as a
great team and pulled together a very interesting and innovative industry day
with strong appeal for the industry, ranging from start-ups to embedded systems
companies. Local organizations were dealt with by Tiziana Margaria and her
team and the website was managed by Eetu Luoma. Finances were managed by
Petros Stratis through his Easyconference team. Finally, the Steering Committee,
chaired by Sjaak Brinkkemper, provided the stability and organizational memory
that also this conference had the pleasure of benefiting from.

We gratefully thank our sponsors: the European Patent Office (EPO) and
the International Software Product Management Association (ISPMA), as well
as the University of Potsdam, the gracious host for the conference.

I hope the proceedings of the conference offer readers valuable new insights
that hopefully contribute to their research or software business.

June 2013 Jan Bosch

Message from the Program Chairs

Advancements in the software industry have had a substantial impact not only
on productivity and on gross domestic product growth globally, but also on our
daily work and life. Moreover there is a noticeable spillover within other in-
dustries (e.g., manufacturing) enabling new business models: Companies bundle
their physical products and software services into solutions (e.g., using subscrip-
tion models) and start to sell independent software products in addition to phys-
ical products. Software business refers to commercial activities in and around
the software industry, aimed at generating income from the delivery of software
products and software services. Although the software business shares common
features with other international knowledge-intensive businesses, it carries many
inherent features making it a challenging domain for research. In particular,
software companies have to depend on one another to deliver a unique value
proposition to their customers. Moreover, recent developments such as the emerg-
ing app economy offers a variety of opportunities for entrepreneurs or start-up
companies.

To acknowledge the importance of these topics we have chosen the main
theme “From Physical Products to Software Services and Solutions” for the 4th
International Conference on Software Business (ICSOB 2013) held in Potsdam
(Germany) on the premises of the Universität Potsdam, Campus Griebnitzsee,
during June 11–14, 2013. ICSOB is a series of annual conferences born in 2010.
The previous conferences were held in Boston (USA), Brussels (Belgium), and
Jyväskilä (Finland).

For the main conference we received 44 research paper submissions from
all over the world. Each paper went through a review process by at least three
reviewers. The ProgramCommittee deliberated with all the reviews and accepted
15 submissions to be presented as full papers at the conference (thus giving it an
acceptance rate of 34%). In addition, eight papers were accepted as short research
papers, seven of which are included in this book. The accepted papers follow
diverse methodologies, and represent the diversity in research in our community.
We have organized the papers according to the following categories:

• Cloud Computing
• Entrepreneurship and Start-Up Companies
• IT Markets and Software Industry
• IT Within Organizations
• Software Business Models and Business Process Modeling
• Software Platforms and Software Ecosystems
• Software Product Management

We are particularly indebted to the keynote speakers, Gregor Engels from Uni-
versity of Paderborn, who spoke about “On-the-Fly Computing - the Service-
Oriented Software Market of the Future”, and Almer Podbicanin from SAP, who

VIII Message from the Program Chairs

spoke about “From Customer-Specific Solutions to Products and Standardized
Services”.

In addition to the research paper presentations, we opened the conference on
June 11 with:

• IWSECO, the 5th International Workshop on Software Ecosystems, orga-
nized by Carina Alves, Geir Hanssen, and Jan Bosch

• IW-LCSP, the workshop on From Start-Ups to SaaS Conglomerate: Life Cy-
cles of Software Products, organized by Krzysztof Wnuk, Sami Hyrynsalmi,
Maya Daneva, and Tuomas Mäkilä

We hosted an Industry Day on June 14 and a Doctoral Symposium on June 12,
while the Industrial Exhibition spanned June 12 and 13.

As chairs of the Program Committee, we would like to thank the Program
Committee members for their time and dedication in providing feedback to the
authors. Their input helped shape this conference and maintain a high quality
of research. As has been the case in previous conferences, the Steering Commit-
tee was an invaluable source of organizational memory and provided valuable
guidance at critical junctures.

We also appreciate all the contributions given by the student volunteers,
coordinated in Potsdam by our local Organizing Chair Henning Bordihn, and
are indebted to Anna-Lena Lamprecht and Tobias Tauterat, who were essential
in getting the proceedings ready in time: only thanks to all these individual and
collective efforts could we ensure the success of this conference.

June 2013 Georg Herzwurm
Tiziana Margaria

Organization

Committees

General Chair

Jan Bosch Chalmers University of Technology, Sweden

Program Chairs

Georg Herzwurm University of Stuttgart, Germany
Tiziana Margaria University of Potsdam, Germany

Industry Chairs

Barry D. Floyd University of Potsdam, Germany
Asuman Sünbül SAP AG, USA

Workshop Chair

Slinger Jansen Utrecht University, The Netherlands

Doctoral Symposium Chairs

Anna-Lena Lamprecht University of Potsdam, Germany
Tobias Tauterat University of Stuttgart, Germany

Finance Chair

Petros Stratis EasyConferences Ltd, Cyprus

Local Organizing Chair

Henning Bordihn University of Potsdam, Germany

Web Chair

Eetu Luoma University of Jyväskylä, Finland

Steering Committee

Sjaak Brinkkemper Utrecht University, The Netherlands
Michael Cusumano Massachusetts Institute of Technology, USA
Bala Iyer Babson College, USA
Slinger Jansen Utrecht University, The Netherlands
Pasi Tyrväinen University of Jyväskylä, Finland
Björn Regnell Lund University, The Netherlands
Inge van de Weerd Utrecht University, The Netherlands

X Organization

Program Committee

Sjaak Brinkkemper Utrecht University, The Netherlands
Peter Buxmann Darmstadt University of Technology, Germany
Michael Cusumano Massachusetts Institute of Technology, USA
Barry D. Floyd University of Potsdam, Germany
Samuel Fricker Blekinge Institute of Technology, Sweden
Georg Herzwurm University of Stuttgart, Germany
Thomas Hess LMU Munich, Germany
Bala Iyer Babson College, USA
Slinger Jansen Utrecht University, The Netherlands
Thomas Kude University of Mannheim, Germany
Patricia Lago VU University Amsterdam, The Netherlands
Ulrike Lechner Universität der Bundeswehr München,

Germany
Olaf Mackert SAG AG, Germany
Tiziana Margaria University of Potsdam, Germany
Waldemar Meinzer Volkswagen AG, Germany
Wolfram Pietsch FH Aachen, Germany
Karl Michael Popp SAP AG, Germany
Björn Regnell Lund University, Sweden
Dirk Riehle Friedrich-Alexander-University, Germany
Ina Schieferdecker Freie Universität Berlin, Germany
Katarina

Stanoevska-Slabeva University of St.Gallen, Switzerland
Pasi Tyrväinen University of Jyväskylä, Finland
Yoshimichi Watanabe University of Yamanashi, Japan

Table of Contents

Software Business Models and Business Process
Modeling

The Impact of Software Business Model Characteristics on Firm
Performance . 1

Markus Schief, Anton Pussep, and Peter Buxmann

Second-Order Servification . 13
Johannes Neubauer and Bernhard Steffen

Sustainable Business Models for Services Using Semantic Web
Components: Insights from the Field . 26

Mary Tate and Elfi Furtmueller

IT Markets and Software Industry

Measuring Sales Cannibalization in Information Technology Markets:
Conceptual Foundations and Research Issues . 31

Francesco Novelli

Determinants and Dynamics of Technology-Related Acquisitions: The
Case of Software-Based Industries . 43

Marcus Wagner

IT within Organizations

Engineering Open Innovation – Towards a Framework for Fostering
Open Innovation . 48

Krzysztof Wnuk and Per Runeson

Improving Businesses Success by Managing Interactions among Agile
Teams in Large Organizations . 60

Antonio Martini, Lars Pareto, and Jan Bosch

Current Trends in Employee Recruitment Using the Internet 73
Elfi Furtmueller

Software Product Management

Post-deployment Data Collection in Software-Intensive Embedded
Products . 79

Helena Holmström Olsson and Jan Bosch

XII Table of Contents

A Model of Commercial Open Source Software Product Features 90
Florian Weikert and Dirk Riehle

A Framework for Strategic Positioning of IT-Products 102
Wolfram Pietsch

Cloud Computing

Cloud Services Pricing Models . 117
Gabriella Laatikainen, Arto Ojala, and Oleksiy Mazhelis

The Impact of Software-as-a-Service on Software Ecosystems 130
Sebastian Walter Schütz, Thomas Kude, and Karl Michael Popp

Towards a Conceptual Framework for Assessing the Benefits of Cloud
Computing . 141

Nattakarn Phaphoom, Xiaofeng Wang, and Pekka Abrahamsson

Entrepreneurship and Startup Companies

The Importance of the Business Idea for New Venture Creation in the
Software Industry . 153

Natalie Kaltenecker, Christian Hoerndlein, and Thomas Hess

Exploring How Feature Usage Relates to Customer Perceived Value:
A Case Study in a Startup Company . 166

Sarunas Marciuska, Cigdem Gencel, and Pekka Abrahamsson

Business Incubation Practices and Software Start-up Success in
Turkey . 178

Gozem Guceri-Ucar and Stefan Koch

Software Platforms and Software Ecosystems

Ecosystem Health of Cloud PaaS Providers . 183
Garm Lucassen, Kevin van Rooij, and Slinger Jansen

Defining App Stores: The Role of Curated Marketplaces in Software
Ecosystems . 195

Slinger Jansen and Ewoud Bloemendal

Towards Platform-Based Enterprise Systems – Conceptualization and
Research Directions . 207

Carl Simon Heckmann and Alexander Maedche

Software Ecosystem Roles Classification . 212
Eko Handoyo, Slinger Jansen, and Sjaak Brinkkemper

Table of Contents XIII

Formal Description for SaaS Undo . 217
Hernán Merlino, Oscar Dieste, Patricia Pesado, and
Ramón Garćıa-Mart́ınez

Doctoral Symposium

Virtual Character Based Interactive Interfaces for Deaf and Functionally
Illiterate Users . 223

Nadeem Ahmad

Simplicity in Application Development for Business Model Design 225
Steve Boßelmann

Software Ecosystem Modeling . 227
Eko Handoyo

Impact of Enterprise System Modularity on Process Performance 229
Carl Simon Heckmann

Managing Speed in Companies Developing Large-Scale Embedded
Systems . 231

Antonio Martini

Global Manufacturing Networks as Software-Intensive Service Providers
Motivation, Relevance, Research Objective . 233

Tobias Tauterat

Author Index . 235

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 1–12, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The Impact of Software Business Model Characteristics
on Firm Performance

Markus Schief, Anton Pussep, and Peter Buxmann

SAP Research, Dietmar-Hopp Allee 16, 69190 Walldorf, Germany
markus.schief@sap.com

Technische Universität Darmstadt, Chair of Information Systems, Hochschulstraße 1,
62849 Darmstadt, Germany

{Pussep,buxmann}@is.tu-darmstadt.de

Abstract. Business models have become a topic of increasing academic interest
and have emerged as a unit of analysis for performance studies. The software
industry has been the source of major business model innovations and is hence
of particular interest to researchers and practitioners. In this paper we collect
business model data for 120 public U.S. software firms. While some data can be
retrieved from Thomson Reuters database, most variables specific to the
software firms are obtained from a tedious expert classification of 10-K and
20-F annual reports. The results show that the business model variables under
study significantly impact financial performance, but are hardly reflected in
market performance. Thus, they determine firm success, but do not necessarily
affect investor decisions. Our cross-disciplinary research is rooted in the fields
of strategic management and software business. We contribute by providing
insights into business model characteristics and the determinants of software
firm performance.

Keywords: business model, performance, firm, software industry.

1 Introduction

The question what drives firm performance has received considerable research
attention and remains of continuous interest in strategic management [1] and other
disciplines such as information systems [2]. In the beginnings of the field, researchers
examined the impact of economic and industry factors on performance [3]. Today, it
is generally agreed that this traditional focus on industry factors ignores the fact that
firms can make discretionary choices [4]. Short et al. [1] conducted a simultaneous
analysis of the industry, group, and firm level and found that, when examined
together, the impact of the firm level is the strongest.

In order to identify the determinants of firm performance, often a broad set of firm
characteristics is analyzed. However, previous studies have used very different sets of
these characteristics. Capon et al. [5] provided an overview and found that while some
characteristics have been studied extensively others have been neglected. Recently,
business models have emerged as a unit of analysis and became a topic of increasing

2 M. Schief, A. Pussep, and P. Buxmann

academic interest [6]. There is increasing consensus that business models can also
impact firm performance [7]. Their characteristics thus represent additional potential
determinants of firm performance.

While business models provide a promising area for firm performance research, the
constituents of the business model concept itself are still a question of academic
debate. Business model performance studies often use an industry-specific setting [7]
offering the opportunity to provide specific business model concepts and
operationalizations. Strategic management research also acknowledges that an
industry-specific setting is required for meaningful conclusions [8]. One reason is that
industry-specific variables are more meaningful in delineating firms. Another reason
is that researchers require deep knowledge of the particular industry under study to
derive conclusions.

The software sector is of particular interest to researchers and practitioners.
Software products and markets are characterized by a number of specifics (e.g., ease
of replication and network effects), these specifics provide a unique setting for
research [9]. For practitioners, the determinants of firm performance are of particular
interest as the dynamics of the software industry open up great opportunities for firm
growth and profitability. The software sector hence provides an interesting setting for
an analysis of the relationship between business models and firm performance.

According to the literature review by Lambert and Davidson [7] most empirical
studies focus on business models of Internet firms (e.g. [2] [10]). To date, only few
empirical studies have analyzed the performance of software firms. Three studies
investigate the business model impact on software firms’ performance in particular.
Engelhardt differentiates [11] four business model classes (general software and
services, business software, specialized software, and internet software) and reports
(based on a German firm sample) significant performance differences in terms of
sales growth and productivity growth. Valtakoski and Rönkkö [12] examine the
impact of eight business model classes (software product, deployment project,
development service, ASP and SaaS, content and ads, software consulting, hardware,
and non-software firms). For the Finnish software industry they report significant
performance differences in terms of revenue growth, profitability, and productivity.
Rajala and Westerlund [13] analyze the impact of two business model characteristics
(customer proximity and product uniformity) on financial and market performance.
Again, they report significant performance effects for Finnish software firms.

While business models have been found to impact software firm performance,
additional studies are needed that further specify the business model concept (beyond
fixed number of business model classes or low number of characteristics) and broaden
the geographical coverage (beyond Germany and Finland). Our research builds upon
this previous work and links the fields of software business and strategic management
by asking the following research question:

Which software business model characteristics determine software firm performance?

As firm performance is a multi-dimensional concept, it is widely accepted that
multiple measures must be taken into account. In general, two sets of characteristics,
financial (accounting-based) and market (capital market-based) performance

 The Impact of Software Business Model Characteristics on Firm Performance 3

measures can be differentiated [1], [10]. While financial measures represent values of
realized performance documented in accounting books, market measures indicate the
perceived performance by investors. Market measures are sometimes also viewed as
long-term measures [10]. We thus derive and test the following hypotheses:

H1: Financial performance varies systematically with differences in software
business model characteristics.

H2: Market performance varies systematically with differences in software
business model characteristics.

In order to test the hypotheses and answer our research question, we analyze five
software industry-specific business model characteristics with detailed business
model data of 120 software firms from annual reports. We estimate the impact of
business model characteristics through regression models with different performance
measures and control for generic strategic variables. Our hope is that this paper will
contribute to the theoretical development of the business model concept and to the
identification of determinants on firm performance in the software industry. Decision-
makers will find the results useful as a source for strategy considerations.

The remainder of this paper is organized as follows. Next section describes the
selection of the sample firms, the applied method as well as the operationalization of
business model characteristics and performance measures. Then, the results with
regard to our previously defined hypotheses are presented. We proceed with the
discussion of our findings and answer our research question. Finally, we conclude the
paper and provide avenues for further research.

2 Method

2.1 Sample

The sample firms are drawn from the Bureau van Dijk Orbis database. All financial
data is retrieved from the Thomson Financial Worldscope database.

We select active, publicly listed firms by their primary Standard Industry
Classification (SIC) code, within the range 7371-7374. According to code
descriptions, the codes identify software firms and have been applied in other
software industry performance studies [14]. The sample is further limited to firms
with no single shareholder having a direct stake over 50 percent. These firms are less
exposed to external control, such that the firm’s performance can be better attributed
to its strategic choices. As we rely on expert classification of 10-K and 20-F annual
reports (these are required by the Securities and Exchange Commission, SEC) as a
data source for software business model variables, the sample is restricted to firms
listed at a U.S. stock exchange. Finally, we are forced to limit the number of firms, as
the expert classification of reports is very time consuming. For that, we select the 120
firms with the highest revenues. In 2010, the firms in our sample yielded annual
revenues between $US165 million (Sourcefire) to $US107bn (IBM).

4 M. Schief, A. Pussep, and P. Buxmann

2.2 Software Business Model Variables

In our study we derive software industry-specific business model variables from the
concept proposed by [15]. They define a comprehensive business model framework
for software firms based on a broad set of economic properties attributed to the
software industry. We are forced to restrict the number of variables as not all business
model characteristics qualify for an analysis based on secondary data. Finally, we
define five variables. Thereof, four variables can be retrieved via expert classification
of annual reports and one variable from a financial database. The detailed
operationalization of each variable is described in Figure 1.

Variable Options

Decision
basis

Decision
rule

Decision
by

Source
SEC
Items

Key
Words

Comment

Product >=50%

Service >50%

Infrastructure >=50%

Application >50%

B2C >=50%

B2B >50%

Focus One or few

Broad Many

industry,
industries

Number of adressed industries, While focused
companies only address one or a few industries,
diversified firms address various industries.

Product
vs.

Services

Segment
revenues

Expert

Product
Focus

Segment
revenues

Expert
Annual
Reports

Item 1,
6, 7,

notes
n/a

Percentage of a firm’s revenue streams stemming from
products (software licenses or physically tangible
products such as hardware) versus services
(maintenance, support, consulting, training, software
as a service, and other services).

Annual
Reports

Item 1,
6, 7,

notes
n/a

Focus of a firm’s products and services in terms of a
software stack layer. We differentiate between
infrastructure and application software. For that we
refer to the taxonomy by Forward and Lethbridge
(2008); The following domains belong to
Infrastructure: A.des 1-4; B; and C. Others are
classified as Applications.

Target
Industries

Number of
adressed
industries

Expert
Annual
Reports

Item 1

customer,
consumer

Main customer group of the delivered
products/services. While B2C customers use the
products/services for their private purposes, business
customers (B2B) use it for pursuing their business.

Target
Customer

Segment
revenues

Expert
Annual
Reports

Item 1,
7, notes

n/a
Deferred short- and longterm revenues divided by
total sales.

Metric n/a
Payment

Flow
Structure

n/a n/a
Thomson
Reuters

n/a

Fig. 1. Assignment rules for software business model variables

The derived variables are specific to the software industry and may not qualify for
other industries without adjustments. These variables require intimate knowledge of
the software industry and are special in at least one of the following characteristics:
(1) The variable deals with an aspect that may not be relevant to other industries (e.g.
target industries). (2) The definition and terminology of options are highly industry-
specific (e.g. product focus on application or infrastructure software). (3) The
assignment rules need to be specifically formulated for the industry (e.g. for product
vs. service; all potential software and associated products/services need to be
considered and documented in the assignment rule). (4) Expert knowledge is required
to conduct the classification as the nature of software needs to be explored (e.g.
analyze from which target customers a product can be used and examine the
distribution of associated revenues).

With respect to the first four variables, we build on the common technique in
strategic management research of using expert panelists [17]. Three experts
independently code 10-K or 20-F annual reports of the selected 120 firms. Our

 The Impact of Software Business Model Characteristics on Firm Performance 5

strategy is that each annual report is independently classified by two experts.
Consequently, each coder does 320 classifications (4 variables times 80 firms). Then,
we consolidate all ratings. Inter-rater reliability is analyzed by conducting a pair-wise
comparison of responses for all firms. In sum, there are 480 opportunities for
disagreement in recording the variables configurations. Disagreement occurs 109
times, so the rate of overall initial coding agreement is 77.29 percent. Beyond
examining overall agreement, we analyze the agreement between each pair of experts
by calculating Cohen’s Kappa [18]. Initial coding agreement between expert one and
two is 60.18 percent, 49.04 percent for expert one and three, and 58.77 percent for
expert two and three. Coding agreement is finally reached through discussion of the
non-consistent 109 cases until mutual agreement is reached. All initial differences are
resolved through discussions, so the final agreement is 100 percent. However, the
final sample only consists of 454 ratings. For 26 items, no classification is possible.

One further business model variable, payment flow structure, is drawn from the
Thomson Reuters Worldscope database. We define payment flow structure as a firm’s
deferred revenues divided by sales. This ratio reflects the degree of revenues that
cannot be immediately booked as revenues in the profit and loss statement but needs
to be deferred to the balance sheet. The proportion of revenue that is deferred may
mainly depend on two aspects in the software industry [19]. First, in a multiple-
element software arrangement, firms may only book sales if vendor specific objective
evidence (VSOE) of fair value for each bundle element exists. Secondly, in case of
recurring subscription models, payments may not be recorded as sales before the
ongoing delivery has occurred. Then, parts of the payment need to be deferred.

2.3 Control Variables

To incorporate results of previous firm performance studies, we include control
variables in our study setting. Previous literature has used an unmanageable amount
of variables [5]. In general, variables can be organized in two strategic dimensions,
impacting firm performance: business scope and resource commitment [1]. Business
scope is determined by the markets in which a firm operates [8]. In turn, resource
commitment is determined by unique resources and capabilities of a firm [20].

While our applied business model characteristics cover the business scope of a
firm, our control variables cover the resource commitment of a firm. In contrast to the
business model variables, the control variables have been derived from previous
studies and are generic in the sense that they are not specific to the software industry,
but can be found across all industries. We acknowledge that the selection of control
variables is not exhaustive because there are simply too many potential control
variables. For instance, we do not include R&D expenditures because this balance
sheet position is defined very differently across software firms. Our selection is
limited to three variables:

• Size is measured as the natural log of sales [1]. Size is considered as an
indicator for network effects and opportunities for economies of scale [21]. It
is probably the most widely included variable in firm performance studies.

6 M. Schief, A. Pussep, and P. Buxmann

• Capital intensity is calculated as capital expenditures divided by sales [1]. A
firm may commit capital expenditures in order to build up property and
equipment [1]. Capital intensity is likely to correlate with innovation [21].

• Vertical integration is measured as the difference between sales and cost of
goods sold, divided by sales [22]. A firm may decide to focus on few
activities or provide a one-stop shop to its customers by covering the entire
value chain. A high degree of vertical integration indicates high control over
customers and suppliers [21].

2.4 Performance Variables

We use multiple measures to capture firm performance which are commonly used in
this field of research [1, 10]. We capture financial performance with operating profit
margin (OPM) and return on assets (ROA). Market performance is captured with
Tobin’s q (calculated as the sum of market value and debt, divided by total assets).
All data is obtained from the Thomson Reuters database for the year-ends of 2009,
2010, and 2011. We average the performance data for these three years in order to
smooth out short-term trends [8]. Using the three-year average further accounts for a
certain time lag between strategic decisions and performance effects.

2.5 Statistical Analysis Applied

The data in the present study is analyzed and hypotheses examined through OLS
regression analysis, which is the dominant method to investigate the determinants of
financial performance [5]. To improve the validity of our model, we perform a
logarithmic transformation of one variable (size) and test for multicollinearity
problems among independent variables. We find that variables correlate reasonably
low (maximal value being 0.53 and all other values below 0.3) and hence qualify for
further analyses. Finally, we run the OLS multiple regression procedure as method for
the estimation of proportions explained by each independent variable in the variation
of the dependent ones. To calculate parameter and fit estimates, we use R software.

3 Results

3.1 Descriptive Results

Our sample firms have an average age of 25 years. 76 percent of the firms generate a
major share of their revenues with services rather than products. Further, 61 percent
of them focus on application and 39 percent on infrastructure software. 94 percent of
the firms mainly sell to business customers. In addition, 65 percent predominantly
serve a broad set of industries instead of focusing on few target segments. Finally, the
average ratio of deferred revenues to sales is 21 percent, indicating that the majority
of revenues can be recorded at the point of payment instead of deferring them.

 The Impact of Software Business Model Characteristics on Firm Performance 7

3.2 Regression Analyses

The results of our multiple regression analyses are presented in Table 1. We calculate
one model for each of the three performance variables. With respect to our
hypotheses, we derive the following conclusions. We find support for H1 (significant
impact of software business model characteristics on financial performance) in Model
1 and 2. Overall, this set of variables explains 40 percent of the variance in OPM and
15 percent in ROA. For business model variables, we find evidence that those firms
offering infrastructure software, addressing B2B customers, selling to few specific
industries and recognizing revenues upfront yield significant positive results. With
respect to the control variables, capital intensity has a negative impact, while size and
vertical integration have a positive impact on financial performance.

Table 1. Multiple regression analyses results

Market Performance

Constant -4.55 -24.99 2.19 *
Control Variables
C1: Capital Intensity -0.52 * -0.81 ** -0.03
C2: Size 0.44 2.98 *** -0.31 **
C3: Vertical Integration 10.16 * 23.95 *** 3.64 ***
Business Model Variables
BM1: Product vs. Service 2.89 2.34 0.87 *
BM2: Product Focus -2.37 -5.32 * -0.49
BM3: Target Customer 7.83 * 14.24 ** 0.43
BM4: Target Industries -3.42 * -5.98 * -0.54
BM5: Payment Flow Structure -8.66 * -10.14 † -1.21

R² 0.23 0.46 0.29
Adj. R² 0.15 0.40 0.22
df 83 83 78
F 3.03 ** 8.70 *** 3.95 ***

*** p < 0.001; ** p < 0.01; * p < 0.05; † p < 0.1

Financial Performance

Model 1 Model 2 Model 3

Tobin's QROA OPM

The second dimension deals with market performance. With respect to H2
(significant impact of business model characteristics on market performance), we find
hardly any support in Model 3. Only one business model variable (product vs.
service) is significant. In contrast, market performance varies systematically with
differences in our control variables. Overall, the variables explain 22 percent of the
variance in Tobin’s q. We find evidence that small firms offering services and
following a high vertical integration strategy yield significant positive results.

8 M. Schief, A. Pussep, and P. Buxmann

4 Discussion

4.1 Insights from Financial Performance

Overall, the model quality and significance levels for OPM are higher than for ROA.
It seems that the standardization through asset division decreases statistical power. A
rationale for this result may be the nature of a digital goods industry, which is less
asset-centric. While variances in asset bases are hence less distinctive, the usage of
ROA does not reveal additional insights compared to OPM.

Looking at the control variables, vertical integration shows a very significant
impact. The role of vertical integration as a factor explaining differences in
profitability has been widely tested in other studies [5]. It hence seems to be lucrative
to cover as many software value chain activities as possible and to offer a holistic
one-stop shop solution portfolio. This may also be one rationale for the high rate of
mergers and acquisitions in the software industry [23]. Besides, bigger firms yield
higher operating profit margins. This finding is in line with the expected networked
effects in the software industry [9]. Further, we find capital intensity as a negative
performance driver. The role of capital intensity as a factor explaining differences in
profitability has been widely tested as well [5]. Those firms being capital intensive in
a digital goods industry underperform their peers. In sum, all control variables impact
financial performance significantly.

With respect to the software business model variables, our results reveal that
infrastructure companies achieve better performance than application software
providers. A reason for that might be that application software usually is more
customer-specific than infrastructure software. The latter may hence attract a broader
customer base and achieve higher economies of scale. This goes in line with a
statement by Gao and Iyer [14] claiming that the main underlying factor for success is
the ability to establish platforms with high levels of integration and high associated
switching costs for users. A further significant variable is target customer. Firms
mainly selling to end-users, instead of businesses, achieve significant worse OPM and
ROA. A rationale for this finding might be that consumers have a lower willingness to
pay as they are not as dependent on software as businesses. Moreover, consumers
might be more willing to use free of charge open source offerings or illegal copies
(e.g. games). Another interesting result is the impact of the payment flow structure.
Firms with a high rate of deferred revenues (e.g. referring to recurring payments)
perform worse than their peers being able to charge initial upfront license fees. From
an annual statement perspective, firms with initial license revenues can record them as
realized revenues in the profit and loss statement (instead of putting deferred revenues
to the balance sheet) and hence increase their OPM and ROA. Finally, the focus on
few dedicated target industries yields positive results. Industry-specific offerings
seem to offer more value for customers and result in higher software vendor margins.

All in all, we can conclude that the business model variables under study are highly
relevant for software firms’ financial performance. While OPM varies systematically
with differences in four of five business model variables, ROA varies in three. These
variables can thus be considered to impact software firms’ financial performance.

 The Impact of Software Business Model Characteristics on Firm Performance 9

4.2 Insights from Market Performance

Looking at the control variables, size and vertical integration are the dominant drivers
of market performance measured as Tobin’s q that represents a derivate of a firm’s
price-to-book ratio. Notably, capital markets seem to appreciate smaller software
companies. This finding may refer to the fact that the software industry is a highly
dynamic sector with high innovation and short product lifecycle rates [9]. So,
investors appreciate firms challenging the incumbent players in the software sector.
Besides, vertical integration achieves significant positive results. Highly integrated
companies might hence be seen by investors as well-prepared to compete in the
industry by positioning themselves as one-stop-shops offering end-to-end solutions.

With respect to the business model variables, we find a positive impact of
companies predominantly focusing on software services instead of software products.
Since service revenues in our study comprise maintenance as well as software-as-a-
service (SaaS) revenues, investors may appreciate firms, which are less dependent on
cyclical product sales or firms which move towards a SaaS operating model.

Apart from this variable, the business model variables under study do not show any
further significant impact on market performance. Thus, while the examined business
model characteristics seem to impact financial performance, they are hardly reflected
in market performance. In spite of their impact on financial performance, business
model characteristics may hence not necessarily anticipated to the same extent by
market investors. We believe that the availability of information may explain this
finding. As business model variables are more difficult to gather in a standardized
format for many enterprises, the markets are less aware of them. Investors
predominantly refer to public news and data that is available in financial databases.

4.3 Implications for Researchers

This paper contributes to the long tradition of performance research [24] and provides
linkages between strategic management and software business. These fields are
interlinked through the usage of domain-specific variables in the context of strategy
and firm performance. It appears to us that software business research can benefit
from the findings that are known in strategy research, while strategy research could
benefit from a deeper understanding of characteristics that are highly domain-specific
in nature.

Our results suggest that software industry-specific business model variables need
to be taken into account. Interestingly, the degree and statistical power of the impact
depends on the performance measures under study. Whereas the impact on OPM is
strong, the impact on ROA and Tobin’s q is less significant. In a digital goods
industry context, the standardization through division of total assets or a firm’s book
value, respectively, seems to decrease the quality of the models. Moreover, capital
markets do not necessarily reflect the impact of business model characteristics.

The performance determinants can be compared to other single-industry studies.
The comparison might be difficult when comparing industries based on different
(since domain-specific) variables. However, further studies of digital goods industries

10 M. Schief, A. Pussep, and P. Buxmann

should follow, just as banks have turned out to be of continuous interest in the field of
strategy. The banking sector has been widely analyzed as detailed data is available.
The validity of a generalization to other sectors remains questionable. Our results
show that for some business model characteristics detailed data can be gathered from
software firms’ annual reports. This data supports analysis of the industry in the
context of performance drivers.

4.4 Implications for Practitioners

This research makes contributions that are relevant to decision-makers in software
firms as well as to investors interested in software firms. Our study offers at least two
useful insights for software firm managers being understandably curious about which
strategic configuration is most profitable. First of all, this study emphasizes the
importance to take business model variables into consideration, particularly with
respect to the financial performance of software firms. So, a firm’s strategic
positioning in an industry has a significant impact on operating margins and on return
on assets. It is important for managers to reflect the own firm characteristics and to
compare them with competitors and partners. Secondly, financial markets hardly
seem to anticipate business model characteristics. Consequently, managers need to
foster the communication of strategic advantages. We hope that managers can use this
data to understand at a deeper level the structural choices they have and how to
manage them effectively. Nonetheless, our study can only provide a foundation for
the normative question of how individual firms can exploit or modify their strategies
to improve their performance.

We further think that determinants of market performance yield important results
to investors in software firms. Our results suggest that investors should anticipate
business model characteristics beyond generic performance drivers. While the latter
can be retrieved from financial databases, structured and standardized business model
classifications may not be as easily accessible for the software industry. Usually,
business model characteristics are retrieved from news sources in a low standardized
format. Our firm classification can provide a valuable structured software industry
overview that may lead to novel insights about investment opportunities.

5 Conclusion

The purpose of this study is to explore the impact of business model characteristics on
software firms’ performance. This paper interlinks the fields of software business and
strategic management and contributes two main findings. Firstly, we provide insights
on determinants of firm performance in the software industry. Secondly, we
demonstrate that business model variables provide additional explanation of variance
in financial performance. This set comprises variables on the structure of what firms
actually do by including domain-specific characteristics.

We find support for significant effects of business model variables on financial
performance. While this holds true for OPM and ROA, the impact on OPM is

 The Impact of Software Business Model Characteristics on Firm Performance 11

stronger than on ROA. Standardization through the amount of assets seems to be
inappropriate for a digital goods industry such as the software sector. In contrast to
the impact on financial performance, our results do not support the hypothesis that
business model characteristics are reflected by market performance. Business model
information is not as easily available as data on other common performance drivers.
Nevertheless, reflecting the impact on financial performance, ultimately, business
model characteristics should also impact a firm’s market performance.

Decision-makers in software firms will find our results useful for competitor
analysis. The performance analysis allows them for tweaking their strategies to the
high-performance characteristics. Moreover, investors are provided with insights for
investment analysis. A structured industry overview in line with performance analyses
can provide valuable insights for investment decisions.

There are several limitations to this study. As we rely on SEC reports, only public
firms listed in the U.S. are included in our sample. Consequently, results may be
impacted by the U.S. software market and conclusions with regard to other
geographic areas may not be possible. Our sample is further limited to the 120 largest
firms due to the complexity of data collection, which may result in a sample bias. The
results are further limited by the accuracy of variables for the same reason. Four
business models variables are reduced to binary scales in order to deal with the
complexity and information scarcity. Further, the number of business model variables
that can be retrieved from annual reports is limited. Likewise, large firms may have
more than one business model and our classification only captures the dominant one.
Our further research will focus on extending the sample, adding primary data sources,
and analyzing data longitudinally.

Acknowledgments. This work was supported by the Software-Cluster and partially
funded within the Leading-Edge Cluster competition by the German Federal Ministry
of Education and Research (BMBF) under grant “01IC10S05”.

References

1. Short, J.C., Ketchen, D.J., Palmer, T.B., Hult, D.T.M.: Firm, Strategic Group, and Industry
Influences on Performance. Strategic Management Journal 28, 147–167 (2007)

2. Grover, V., Saeed, K.A.: Strategic orientation and performance of internet-based
businesses. Information Systems Journal 14, 23–42 (2004)

3. Porter, M.E.:: Competitive strategy: Techniques for analyzing industry and competitors.
Free Press, New York (1980)

4. Nelson, R.R.: Why Do Firms Differ, and How Does It Matter? Strategic Management
Journal 12, 61–74 (1991)

5. Capon, N., Farley, J.U., Hoenig, S.: Determinants of Financial Performance: A Meta-
Analysis. Management Science 36, 1143–1159 (1990)

6. Burkhart, T., Werth, D., Krumeich, J., Loos, P.: Analyzing the Business Model Concept —
A Comprehensive Classification. In: 32nd International Conference on Information
Systems, pp. 1–19 (2011)

7. Lambert, S.C., Davidson, R.A.: Applications of the Business Model in Studies of
Enterprise Success, Innovation and Classification. European Management Journal (2012)

12 M. Schief, A. Pussep, and P. Buxmann

8. Mehra, A.: Resource and Market Based Determinants of Performance in the US Banking
Industry. Strategic Management Journal 17, 307–322 (1996)

9. Buxmann, P., Diefenbach, H., Hess, T.: The Software Industry: Economic Principles,
Strategies, Perspectives. Springer, Heidelberg (2012)

10. Zott, C., Amit, R.: The Fit Between Productmarket Strategy and Business Model:
Implications for Firm Performance. Strategic Management Journal 26, 1–26 (2008)

11. Engelhardt, L.: Entrepreneurial Models and the Software Sector. Competition and
Change 8, 391–410 (2004)

12. Valtakoski, A., Rönkkö, M.: Diversity of Business Models in Software Industry. In:
Tyrväinen, P., Jansen, S., Cusumano, M.A. (eds.) ICSOB 2010. LNBIP, vol. 51, pp. 1–12.
Springer, Heidelberg (2010)

13. Rajala, R., Westerlund, M.: The Effects of Service Orientation, Technology Orientation
and Open Innovation on the Performance of Software-intensive Service Businesses. In:
45th Hawaii International Conference on System Sciences, pp. 1532–1541. IEEE (2012)

14. Gao, L., Iyer, B.: Analyzing Complementarities Using Software Stacks for Software
Industry Acquisitions. Journal of Management Information Systems 23, 119–147 (2006)

15. Schief, M., Buxmann, P.: Business Models in the Software Industry. In: Proceedings of the
45th Hawaii International Conference on System Sciences, pp. 3328–3337. IEEE, Maui
(2012)

16. Forward, A., Lethbridge, T.C., Edward, K.: A Taxonomy of Software Types to Facilitate
Search and Evidence-Based Software Engineering. In: Proceedings of the 2008
Conference of the Center for Advanced Studies on Collaborative Research, pp. 1–13.
ACM (2008)

17. MacCormack, A., Verganti, R., Iansiti, M.: Developing products on “Internet time”.
Management Science 47, 133–150 (2001)

18. Cohen, J.: A Coefficient of Agreement for Nominal Scales. Educational and Psychological
Measurement 20, 37–46 (1960)

19. Dechow, P., Skinner, D.: Earnings management: Reconciling the views of accounting
academics, practitioners, and regulators. Social Science Research Network (2000)

20. Barney, J.: Firm Resources and Sustained Competitive Advantage. Journal of
Management 17, 99–120 (1991)

21. Houthoofd, N.: Strategic Groups as Subsets of Strategic Scope Groups in the Belgian
Brewing Industry. Strategic Management Journal 18, 653–666 (1997)

22. Hutzschenreuter, T., Gröne, F.: Changing Vertical Integration Strategies under Pressure
from Foreign Competition: The Case of US and German Multinationals. Journal of
Management Studies 46, 269–307 (2009)

23. Mergerstats free reports,
http://www.mergerstat.com/newsite/free_report.asp

24. Schmalensee, R.: Do Markets Differ Much? The American Economic Review 75, 341–351
(1985)

Second-Order Servification

Johannes Neubauer and Bernhard Steffen

Chair of Programming Systems, Technische Universität Dortmund, Germany
{johannes.neubauer,steffen}@cs.tu-dortmund.de

Abstract. In this paper we present second-order servification, a busi-
ness process modeling paradigm for variability. Key to this paradigm is to
consider services and even whole subprocesses as ‘resources’ of a (second-
order) business process, which can be created, selected, andmoved around
just like data. This does not only allow us to easily define new variants of
a business process simply via second-order parameterization, but also to
exchange its constituent services (and even sub-processes) dynamically at
runtime. In fact, the concrete implementation of a second-order activity
in a process model may be unknown when the process starts, and built-up
and exchanged while the process is running. We will illustrate the ease of
the new paradigm along a flight booking scenario, where our correspond-
ing second-order process model allows us to dynamically instantiate the
payment process even with process implementations that were not avail-
able when the overall process started.

Keywords: service orientation, servification, business process modeling,
executable models, variability.

1 Introduction

In its beginning (business) process modeling (BPM), typically done with Event-
Driven Process Chains [1] and supported by tools like ARIS [2], was merely a
matter of business/requirement analysis and documentation. The often enor-
mous documents, which, were helpful for clarificaton in early project phases,
were not (directly) linked to any development artifacts during the realization of
processes. So, they left what is commonly known as the semantic gap in software
engineering. The service oriented development paradigm brought the promise of
change: (business) process models should be refined until a realization in terms
of intuitive services is possible [3], and indeed, the new version of the Busi-
ness Process Modeling and Notation (BPMN 2) claims executability. One of the
main remaining issues is the actual integration of arbitrary functionality into a
service oriented environment (in particular business processes), called servifica-
tion, whose state of the art is systematically discussed in [4]. This study reveals
that only the so-called domain-specific business activities1 support reusability
and a sufficient abstraction from technological detail in a way that allows for

1 We use the the notion “activity” for executable “nodes” or “vertices” as defined in
the specification of BPMN.

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 13–25, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 J. Neubauer and B. Steffen

agile, user-centric process development [5]. This sets them apart from script-,
and technical activities. The former embed code directly into a process model,
violating the concepts of reusability and separation of concerns, whereas the lat-
ter are strongly involved in technologies like WS-* 2 [6,7,8] or representational
state transfer (REST) [9]. Hence, script activities and technical activities pose
an entry hurdle for non-programmers, who have e.g. to talk about a “web service
endpoint implementing the service BookAFlight” instead simply of the business
activity “book a flight”.

In this paper we present second-order servification, a business process model-
ing paradigm for variability. This paradigm does not only allow the integration
of arbitrary functionalities into our process modeling environment, but also to
delay the decision about their concrete implementation until runtime. Key to
this paradigm is to consider services and even whole subprocesses as ‘resources’
of a (second-order) business process, which can be created, selected, and moved
around just like data. This does not only allow us

– to easily define new variants of a business process simply via second-order pa-
rameterization, i.e. via interface-conform exchange of functionality at design
time, but also

– to exchange the processes constituent services (and even sub-processes) dy-
namically at runtime.

In fact, the concrete implementation of a second-order activity in a process
model may be unknown when the process starts, and built-up and exchanged
while the process is running without touching the processes code or model. Being
based on formal interface specifications, our approach additionally guarantees
the executability of all variants or runtime instantiations fully automatically,
and, in particular, without any effort from the business process modelers’ side.
The required interface conformance is only based on an according servification
process for each of the constituent services, which, in general, needs technical
expertise. However, for semantically annotated service libraries, the required
servification process has the potential to become largely automated.

The paper will end with an illustration of the ease of the new paradigm along
a flight booking scenario, where our corresponding second-order process model
allows us to dynamically instantiate the payment process even with process
implementations that were not available when the overall process started.

After sketching the state of the art of BPM solutions in Sec. 2, we will present
our second-order servification approach in Sec. 3, before Sec. 4 discusses a simple
flight booking service scenario in a first-order setting. This service will then be
used in Sec. 5 for illustrating the power of second-order servification by showing
how situation-specific payment methods are put in place by exchanging process
instances at runtime. Finally, Sec. 6 summarizes our conclusions and provides
direction to future work.

2 The notion WS-* describes a family of specifications related to web services.

Second-Order Servification 15

2 BPM: State of the Art

First attempts to standardize BPM like the business process execution lan-
guage [10] (BPEL) – in combination with business process modeling notation3

(BPMN) [11,12,13] adding a graphical representation [14,15,16,17] – are lan-
guage independent, but bind to a technology like WS-*. As a consequence,
any functionality that should be accessible through the environment has to be
wrapped into a service of the corresponding technology [18]. To tackle this is-
sue the Object Management Group (OMG) published the technology agnostic
standard BPMN 2 [19] in the beginning of 2011. This specification comes with
notable improvements as it combines notation, meta-model, and execution se-
mantics, but it is at the same time completely language independent. This is fine
for models meant for documentation. Unfortunately, language independency in-
troduces a semantic gap for executable process models, because they have to be
interpreted in – or code generated to – some programming language. But being
language independent, information like data-types and input/output parameter-
ization have often to be defined twice for the modeling level and for the technical
implementation.

If the adapter layer is generated automatically, this will result in a one to
one association, which does not help to abstract from technical details. In the
worst case, critical information is omitted, which leads either to round-trip prob-
lems or to more information that has to be contributed by the modeler and
therefore stored and managed manually. This gets worse the bigger the problem
domain is and the more information is omitted. For example most BPM solu-
tions omit information on the (domain-specific) data types or in better cases
(e.g. AristaFlow [20]) match some general types like strings and numbers, which
leads to a situation where application experts have to deal with compatibility
questions between services without any or limited help of the corresponding
development environment.

The language and technology independent approach was to achieve substi-
tutionality of implementations of the BPMN 2 standard. As stated in [4], the
realizations cover a subset of the standard only and provide proprietary exten-
sions. This ranges from “everything is a task” in jBPM 5 [21] to loosely coupled
scripting and technical activities in Activiti [22] losing critical information of the
underlying service. Even solutions not bound to the standard BPMN 2 from the
scientific context (e.g. AristaFlow) separate the modeling-level from the under-
lying programming language, resulting in redundant and error-prone definitions.
Hence, substitutivity is not achieved although the abovementioned price for the
attempt has to be paid. Please note that service-oriented approaches claim to
support reusability, but service orchestrations (or business process models) them-
selves are static entities [23].

3 Although BPMN and BPMN 2 have the same acronym they should not be confused.
The first edition provided a notation only, whereas the second edition is thought as
a kind of replacement for both BPEL and BPMN.

16 J. Neubauer and B. Steffen

3 Second-Order Business Activities

In this paper we extend our approach for creating business process models in a
graphical notation in terms of so-called service logic graphs (SLG) [24] to easily
define new variants of a business process simply via second-order parameteriza-
tion, i.e. via interface-conform exchange of functionality both at design time and
at runtime. We

– store (retrieve) service as well as complete process instances in (from) type-
safe data objects (context),

– bind them to executable nodes in an easy to build and comprehend graphical
representation of the process model, and

– execute them as the control-flow reaches the corresponding node.

Java API

SLG

Services:
Java, CMD, RMI, WSDL,
REST, CORBA, JNI, ...

...

Dynamic SIB
Technical

Appli-
cation{

Services

BPMN 2

?
Java
*

Fig. 1. Dynamic pattern for servification using Java as the base language

Our approach is an evolution of the extreme model driven development (XMDD)
approach [25,26] and its incarnation, the graphical process model design frame-
work jABC [27], which already supports domain-specific business activities [28],
called service independent building blocks (SIBs). The enhanced version of SLGs
discussed here (jABC 4), bases on the language Java and uses data-types as well
as methods of Java objects, integrated on-the-fly into executable graph nodes
denoted by dynamic SIBs as shown in Fig 1.

Java is platform independent, and provides a lot of adapters to other lan-
guages, like e.g. WSDL and REST stubs, which may be generated from the
corresponding service descriptions [29], as well as to arbitrary code as far as it
is accessible through a standard Java API. Nearly every technology or method
can be wrapped into such a Java method as in the Java Runtime Environment
(JRE) there are also interpreters available for a lot of scripting languages, like
e.g., Groovy, Jython, and JRuby, and the Java Native Interface (JNI) allows for
accessing platform dependent functions, e.g. via C or C++ code. In fact, even
command-line tools are accessible via standard Java libraries.

Second-Order Servification 17

That Java is a good choice for an implementation of such a framework is
also reflected by the fact that prominent BPM frameworks, like JBPM 4 and
5, Activiti, AristaFlow, and jABC, all base on Java. However, please note that
Java is only used at the ‘tool/system-level’, e.g. to support consistent typing and
other object-oriented features like subtype and parametric polymorphism. The
implementation language for the individual processes may indeed be a different
language. Moreover all the presented concepts are quite general and could have
been implemented in and for other languages like C++ or C#.

We allow for modeling SLGs with business activities in the graphical de-
velopment environment jABC basing on Java method calls (dynamic SIBs) and
domain-specific data structures defined in Java. This leads to a hierarchical graph
structure [30], where coarse-grained SLGs classified as ‘Application’ (level) are
successively refined by more technical SLGs indicated by ‘Technical’, which in
turn are based on dynamic SIBs (cf. Fig. 1). The available type information is
used to check whether the usage of services and subgraphs is sane. This allows
us to narrow the semantic gap and to move the technological break behind a
Java API, where only technical experts are involved, and therefore supports the
principle “simple for the many, difficult for the few” [31].

Using language features like subtype polymorphism from object-oriented pro-
gramming is a natural and convenient approach to introduce variability in con-
ventional programming. Similarly, in our second-order process models services
and process models are described on the level of their input/output parameteri-
zation, which allows us to delay the choice of their concrete implementation until
runtime. This enables (runtime) variability on every hierarchy level and not only
on the service level (where it is directly supported by Java) without introducing
new complication.

Key to this approach is to enhance the usual control-flow-based modeling with
explicit data-flow information expressed via type-safe second-order contexts.
This increases the comprehensibility of the models and is technically achieved
by:

– supporting a type-safe second-order context of data objects storing service
as well as process instances,

– equally treating Java methods and subgraphs as executable business activi-
ties,

– allowing for dynamic service and process exchange without touching the SLG
via providing different service and process instances in the context at runtime
in terms of its inner state and its functionality (subtype polymorphism).

The following two sections will stepwisely illustrate our second-order approach
to servification. Section 4 models a fictional flight booking web application
‘BookAFlight’ in a first-order fashion. This modeling is then flexibilized for (run-
time) variability by using second-order parameterization in Section 5.

18 J. Neubauer and B. Steffen

4 A First-Order Solution for a Flight Booking System

This section introduces our example scenario, the process ‘BookAFlight’, and
illustrates its first-order parameter transfer mechanism approach by looking at
the activitiy ‘one click booking’. The main feature of this illustration is that the
user simply initially provides all the required information like his credentials, the
payment information, the selected flight etc.. The subsequent booking process,
including its payment, is done fully automatically in response to a single click
on the button ‘one click booking’.

user (User)
price (double)

user (User)
outputs

u

price (double)
outputs

user (User)

price (double)

inputs

(a)

u

p

(c)

(b)
(d)

Fig. 2. The main business process ‘OneClickBooking’, overlayed with the steps neces-
sary for adding the input parameters to a concrete payment service

Fig. 2 shows the jABC4 window and its three main areas, instantiated with the
‘OneClickBooking’ process model:

1. browser area: a tabbed pane containing a project browser, a graph browser,
and one or more service browsers. These components offer resource trees
which enable to browse e.g. for SLGs and services (Java methods).

2. inspector area: a tabbed pane containing several inspectors. An inspector
gives context information to the currently selected components like nodes
in a graph or the graph itself. Some inspectors support editing the informa-
tion, too. Currently the graph inspector is opened, which shows information
related to the selected SLG.

3. graph canvas : the modeling area, displaying the graph structure of the cur-
rent SLG and offering functionality for its modification.

We assume, that we have already modeled an SLG for the feature ‘one click
booking’ shown in Fig. 2 using a dedicated payment service. The process then
starts with the node labeled ‘start’ and ends either with the output node ‘success’

Second-Order Servification 19

or ‘cancel’. Every inner node is a business activity representing a service or a
sub-process execution. The icons give a hint about the nature of an activity.
E.g., all nodes with an stylized user icon constitute user interaction.

The parameter transfer between the different activities can be defined simply
via drag and drop as illustrated in Fig. 2 for ‘OneClickBooking’. In the depicted
scenario, the required parameter transfer for ‘do payment’ is indicated by the
four grey arrows:

– Arrow (a): output parameters of a start node are simply the input parameters
of the whole SLG. Accordingly, the context variable ‘user’ functions as a
formal input parameter of OneClickBooking.

– Arrow (b) indicates that the value of the context variable ‘user’, which is
used to transfer the according parameter value into OneClickBooking at the
node ‘start’, is required as input for the activity ‘do payment’.

– Arrow (c) denotes that the output parameter ‘price’ of the activity ‘select a
flight’ has to be written to the context variable ‘price’.

– Arrow (d) depicts that the value of the context variable ‘price’, which is
written by the activity ‘select a flight’ is required as input for the activity
‘do payment’.

A major feature of jABC4 is the type-safety not only for simple Java types like
double, but also for domain-specific types like User. This enables us to ensure
the compatibility of services on the modeling level via the built-in check facility.
Compatibility issues like missing or mismatching type information are shown in a
dedicated inspector. (Missing) types may be set in the GUI via a dialog for class
choosing, which searches in a set of types tailored to the needs of the current
domain. After all types have been set, the situation is as shown in Fig. 2. The
types are denoted in parentheses behind the labels of context variables, input,
and output parameters. Hence, we can be sure that the services are compatible.

5 Generalization to Second-Order Modeling

In this section we show how it is possible to transform our first-order ‘one click
booking’ process to second order. More concretely, we transform ‘one click book-
ing’, which currently uses one dedicated payment service (cf. activity ‘do pay-
ment’ in Fig. 2), into a context-sensitive second-order process that receives its
payment service as a parameter. This requires to exchange the concrete payment
activity ‘do payment’ in the model of ‘OneClickBooking’ by a second-order ac-
tivity that obtains its concrete payment method/process at runtime via the
context.

Technically, ‘do payment’ references now ‘PayFlight’ which is an interface
graph (cf. Sec. 5.1). In contrast to the usual executable service graphs (like e.g.,
the whole BookAFlight graph of the previous section), it only defines the ab-
stract input/output parameterization of a payment method precisely enough to
establish the required links when retrieving an actual payment method/process
at runtime from the context.

20 J. Neubauer and B. Steffen

In general, second-order activities can be dynamically instantiated by any
type-correct instance activities, be they atomic or whole SLGs. In particular,
appropriate instance activities may well be transferred as an actual parameter to
‘OneClickBooking’, or (manually) selected during the process execution, perhaps
in the course of an automated service discovery process [32].

The whole transformation for enabling the desired variability, which results
in the process depicted in Fig. 3, is described in the following subsections.

5.1 Interface Graphs

The interface graph ‘PayFlight’ consists of an entry point denoted by the node
‘start’ and two exit points, namely ‘success’ and ‘cancel’, and like ’do payment’
it has two input parameters defined, namely the price and a user.

The latter is used to retrieve the payment information4. We use a domain-
specific type User with all necessary information, which may be generated from
a UML class diagram. The type can be set in the class chooser.

5.2 Going Second-Order

The transformation for enabling the desired variability as such requires the fol-
lowing three steps, which are illustrated in Fig. 3:

user (User)

price (double)

paymentService (PayFlight)

user (User)

paymentService

 (PayFlight)

outputs

p

(b)

user (User)

price (double)

instance (PayFlight)

inputs

g

(c)

(a)

Fig. 3. The main business process ‘OneClickBooking’ overlayed with the steps nec-
essary for the preparation of automatically integrating external payment services at
runtime

4 E.g., for a payment with credit card, this is the complete credit card information,
consisting of full name, credit card number, expiry date, and card verification num-
ber.

Second-Order Servification 21

(a) Exchange the ‘do payment’ activity by an equally named activity repre-
senting the interface graph ‘PayFlight’ in ‘OneClickBooking’. This way the
implementation will retrieve its payment method/process from the (execu-
tion) context at runtime.

(b) Define an input parameter ‘paymentService’ at the ‘start’ activity, imple-
menting the interface (graph) ‘PayFlight’, and wire it to the context variable
‘paymentService’ accordingly.

(c) Connect the context variable ‘paymentService’ as a parameter to the input
parameter ‘instance’ of the activity ‘do payment’.

At runtime the concrete payment service will be supplied as input parameter
‘paymentService’, stored to the identically named context variable, and used as
graph instance for execution of the replaced activity ‘do payment’.

Please note that here the type of ‘paymentService’ does not only represent
a domain-specific data type like User, but constitutes an executable process
instance that is guaranteed to implement and respect the interface ‘PayFlight’.

5.3 Implementing ‘PayFlight’

Up to this point, an application expert has designed a coarse-grained process
model for the feature ‘one click booking’, which takes a process instance real-
izing a payment method as an argument. What we still lack is the automatic
integration of such payment service instances. A corresponding (technical) in-
tegration service (graph) has to implement the interface graph ‘PayFlight’ and
therefore has the same input/output parameterization as defined in Sec. 5.1.
Such a technical SLG can be constructed by a domain modeler in three steps
(cf. Fig. 4):

(a) (b)

(c)

Fig. 4. An example SLG for integrating an
external payment service

Q

Fig. 5. Example SLG showing how
different payment methods may be
instantiated and used in the SLG
‘OneClickBooking’

22 J. Neubauer and B. Steffen

(a) Add a business activity for retrieving the payment information for the cur-
rently logged in user.

(b) Add a business activity that converts the ‘BookAFlight’-specific payment
information into data-types of the corresponding payment service.

(c) Wrap the external payment service into a Java method so that it can be
used in a dynamic SIB. We will not go into the details of these steps which
are typically automated.

In order to prepare a payment service as a second-order parameter for ‘OneClick-
Booking’, the context variables have to be connected to the corresponding input
and output parameters along the lines (cf. Sec. 4). This can be done independently
for each of the candidate payment services, and may also be automated in case ap-
propriate domain information is available (perhaps in form of an ontology).

5.4 Second-Order in Action

In Sec. 5.2 we have shown how to raise ‘OneClickBooking’ to second-order using
an interface graph for integrating different payment services. Let us now show
how this can be exploited to exchange these services without touching the process
model ‘OneClickBooking’ at all. Rather, the choice of the service solely depends
on the situation/context of ‘OneClickBooking’, which feeds PayFlight with the
correct service via the execution context. Fig. 5 depicts a simple corresponding
context process that instantiates a fictional payment service to be transferred to
‘OneClickBooking’ as a parameter: The small overlay icons in the top right of the
instantiating activities denote that they instantiate the graph instead of execut-
ing it. In this setting, changing the payment service simply means changing the

Fig. 6. The main business process ‘OneClickBooking’, overlayed with the steps neces-
sary for integrating external payment services

Second-Order Servification 23

edge labeled with ‘success’ starting in the business activity ‘retrieve current user’
to another payment services, while leaving ‘OneClickBooking’ fully unchanged.

Fig. 6 depicts the SLG for ‘OneClickBooking’ at runtime. The thick control-
flow edges denote the history of the actual flow of the current execution, which
arrived at the activity ‘do payment’. Fig. 6 (bottom right) shows the current
status of the context. It reveals that during the execution the payment service
‘MUSICreditCard’ has been passed as input parameter to ‘OneClickBooking’
and will be used for transferring $1500.00 for the selected flight.

The process depicted in Fig. 5 is particularly simple. In practice there will be
a steadily growing library of payment services and some profile-driven selection
mechanism for steering the choice of payment service. In fact, our second-order
approach allows that this service library is growing while ‘OneClickBooking’ is
running.

6 Conclusion and Future Work

We have presented second-order servification, a business process modeling
paradigm for variability, which is based on considering services and even whole
subprocesses as ‘resources’ of a (second-order) business process, which can be
created, selected, and moved around just like data. Its impact, the ease of defin-
ing new variants of a business process simply via second-order parameterization,
or to exchange its constituent services (and even subprocesses) dynamically at
runtime, has been discussed along a simple flight booking scenario. This is par-
ticularly useful for long-running processes, as the concrete implementation of a
second-order activity in a process model may well be unknown when the process
starts, and built-up and exchanged without touching the processes code or model
while the process is running. We have successfully used this new approach for
modeling the quality assurance process for Springer’s Online Conference Service
OCS [33].

Being based on formal interface specifications, our approach guarantees the
executability of all variants or runtime instantiations fully automatically, and, in
particular, without any effort from the business process modelers’ side. The re-
quired interface conformance is only based on an according servification process
for each of the constituent services, which, in general, needs technical exper-
tise. To overcome this bottleneck, we are investigating how far this servification
process can be automated for semantically annotated service libraries along the
lines indicated by a related project on semantic technologies [34,31].

References

1. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling using Event-Driven Pro-
cess Chains, pp. 119–145. John Wiley & Sons, Inc. (2005)

2. Scheer, A.W., Schneider, K.: Aris — architecture of integrated information sys-
tems. In: Bernus, P., Mertins, K., Schmidt, G. (eds.) Handbook on Architectures
of Information Systems, pp. 605–623. Springer, Heidelberg (2006), doi:10.1007/3-
540-26661-5 25

24 J. Neubauer and B. Steffen

3. Margaria, T., Steffen, B.: Service engineering: Linking business and it. IEEE Com-
puter 39(10), 45–55 (2006)

4. Doedt, M., Steffen, B.: An Evaluation of Service Integration Approaches of Business
Process Management Systems. In: 2012 35th IEEE Software Engineering Work-
shop, SEW (2012)

5. Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg
(2009)

6. W3C: Web Services Description Language (WSDL) Version 2.0 (2007),
http://www.w3.org/TR/2007/REC-wsdl20-20070626/

7. Bajaj, S., Box, D., Chappell, D., Curbera, F., Daniels, G., Hallam-Baker, P.,
Hondo, M., Kaler, C., Langworthy, D., Nadalin, A., et al.: Web services policy
1.2-framework (WS-policy). W3C Member Submission 25 (2006)

8. Karusseit, M., Margaria, T., Willebrandt, H.: Policy expression and checking in
xacml, ws-policies, and the jABC. In: TAV-WEB 2008, Proc. Worksh., pp. 20–26.
ACM, Seattle (2008)

9. Fielding, R.T.: Architectural styles and the design of network-based software ar-
chitectures. PhD thesis, AAI9980887 (2000)

10. Pasley, J.: How bpel and soa are changing web services development. IEEE Internet
Computing 9(3), 60–67 (2005)

11. White, S.: Introduction to bpmn. IBM Cooperation, 2008–2029 (2004)

12. White, S., Miers, D.: BPMN modeling and reference guide. Future Strategies Inc.
(2008)

13. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell,
N.: On the suitability of bpmn for business process modelling. In: Dustdar, S., Fi-
adeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176. Springer,
Heidelberg (2006)

14. White, S.: Using bpmn to model a bpel process. BPTrends 3(3), 1–18 (2005)

15. Recker, J., Mendling, J.: On the translation between bpmn and bpel: Conceptual
mismatch between process modeling languages. In: The 18th CAiSE. Proceedings
of Workshops and Doctoral Consortium, pp. 521–532. Namur University Press
(2006)

16. Ouyang, C., Van Der Aalst, W., Dumas, M., Ter Hofstede, A.: Translating bpmn
to bpel (2006)

17. Ouvans, C., Dumas, M., Ter Hofstede, A., Van Der Aalst, W.: From bpmn process
models to bpel web services. In: International Conference on Web Services, ICWS
2006, pp. 285–292. IEEE (2006)

18. Zur Muehlen, M., Recker, J., Indulska, M.: Sometimes less is more: Are process
modeling languages overly complex? In: Eleventh International IEEE EDOC Con-
ference Workshop, EDOC 2007, pp. 197–204. IEEE (2007)

19. Allweyer, T.: BPMN 2.0-Business Process Model and Notation. Bod (2009)

20. Dadam, P., et al.: From ADEPT to AristaFlow BPM Suite: A Research Vision
Has Become Reality. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009.
LNBIP, vol. 43, pp. 529–531. Springer, Heidelberg (2010)

21. RedHat Software - JBoss: jBPM Website (2012), http://www.jboss.org/jbpm

22. Activiti Team: Activiti BPM Platform (2012), http://www.activiti.org/

23. Margaria, T., Steffen, B., Reitenspieß, M.: Service-oriented design: the roots. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826,
pp. 450–464. Springer, Heidelberg (2005)

http://www.w3.org/TR/2007/REC-wsdl20-20070626/
http://www.jboss.org/jbpm
http://www.activiti.org/

Second-Order Servification 25

24. Steffen, B., Margaria, T.: METAFrame in Practice: Design of Intelligent Network
Services. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS,
vol. 1710, pp. 390–415. Springer, Heidelberg (1999)

25. Margaria, T., Steffen, B.: Service-orientation: Conquering complexity with xmdd.
In: Hinchey, M., Koyle, L. (eds.) Conquering Complexity. Springer (2012)

26. Margaria, T., Steffen, B.: Business process modeling in the jABC: The one-thing
approach. In: Handbook of Research on Business Process Modeling, pp. 1–26. IGI
Global (2009)

27. Margaria, T., Steffen, B.: Lightweight coarse-grained coordination: a scalable
system-level approach. STTT 5(2-3), 107–123 (2004)

28. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

29. Merten, M., Isberner, M., Howar, F., Steffen, B., Margaria, T.: Automated learning
setups in automata learning. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part
I. LNCS, vol. 7609, pp. 591–607. Springer, Heidelberg (2012)

30. Steffen, B., Margaria, T., Braun, V., Kalt, N.: Hierarchical Service Definition.
Annual Review of Communications of the ACM 51, 847–856 (1997)

31. Margaria, T., Steffen, B.: Second-order semantic web. In: 29th Annual IEEE/NASA
Software Engineering Workshop, pp. 219–227 (April 2005)

32. Kubczak, C., Margaria, T., Steffen, B., Winkler, C., Hungar, H.: An approach
to discovery with miaamics and jABC. In: Petrie, C., Margaria, T., Lausen, H.,
Zaremba, M. (eds.) Semantic Web Services Challenge. Semantic Web And Beyond,
vol. 8, pp. 217–234. Springer, US (2009)

33. Neubauer, J., Steffen, B., Bauer, O., Windmüller, S., Merten, M., Margaria, T.,
Howar, F.: Automated continuous quality assurance. In: FormSERA. IEEE (2012)

34. Jörges, S., Lamprecht, A.L., Margaria, T., Schaefer, I., Steffen, B.: A Constraint-
based Variability Modeling Framework. STTT (2012)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 26–30, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Sustainable Business Models for Services Using Semantic
Web Components: Insights from the Field

Mary Tate1 and Elfi Furtmueller2

1 Victoria University of Wellington, New Zealand
2 Austrian Science Fund

mary.tate@vuw.ac.nz

Abstract. Semantic web technologies for Human Resource Information
Systems (HRIS) are yet to fulfil their full potential. In this paper we reflect on
an e-recruiting service development project using semantic web technologies.
We use a modified Action Design Research (ADR) lens to organize insights
from an innovative, entrepreneurial service offering. The results show that
achieving sustainable business models for e-recruiting services based on
semantic web components is non-trivial. It requires a rich and continuous
interplay between theoretical knowledge (semantic web, service management,
and subject-area knowledge); technical knowledge and expertise in building
semantic web components; and the community of applicants and recruiters, who
use and extend the sematic web components into new service offerings. We
further find that the complex, interactive, adaptive, multi-disciplinary and
iterative nature of HRIS projects creates challenges in communicating between
the stakeholders, and in extracting and presenting theoretical contributions.

Keywords: HRIS, Action Design Research, Semantic Web, Services.

1 Introduction

This study reports on aspects of the design and development of a service-oriented,
adaptive and extensible e-recruiting portal using sematic web components, which has
achieved a large market share in Europe. The components have been syndicated and
extended for specialised market niches (for example medical or IT recruiting). In a
previous study, Tate and Furtmueller [1] argued that the Action Design Research
(ADR) method [2] required modifications for a service-oriented, multi-organizational
context. We use this modified ADR lens to show that continuous exchange between
researchers, practitioners and communities is essential to realise the potential of the
semantic web to develop sustainable business models based on web services. In the
rest of this paper we first offer a brief overview of the ADR lens. We then briefly
describe the project showing the interplay of theory, practice and community at each
stage, followed by a conclusion.

2 Modified Action Design Research

Action Design Research (ADR) was proposed by Sein et al. [2] as an extension of Design
Science [3]. In ADR building the artefact, intervening in the organization, and evaluating

 Sustainable Business Models for Services Using Semantic Web Components 27

the artefact are seen as concurrent processes. While ADR is valuable as a lens for
reporting a service development process, some modifications are needed for development
of a multi-organization service-oriented ecosystem [1]. The modified ADR method
consists of four stages supported by seven principles. The stages include: 1) problem
formulation, which identifies a research opportunity based on existing and emerging
theories and technologies; 2) building, intervention and evaluation (BIE), which
involves building the artefact, offering it in the community and concurrently evaluating
and shaping the artefact based on learning derived from the community context; 3)
reflection and learning, which involves the ongoing co-creation, adaption and
reassembly of the components; and 4) formalization of learning, which allows the
situated learning from an ADR project to be developed into a general solution for a class
of field problems. The ADR method also includes guiding principles and “critical
elements”. These include: defining the problem as an instance of a class of problems;
viewing field problems as knowledge-creation opportunities; ensuring that the artifacts
are informed by theory; authentic and concurrent evaluation, which emphasizes that
evaluation is continuous and not a separate stage that follows building; guided
emergence, which aims to capture interplay between structured intervention and organic
evolution; and the abstraction and articulation of learning.

3 The Interaction of Theory, Practice and Community

An overview of the inputs and outputs of each ADR stage follows as Appendix 1. The
problem formulation stage started by applying theoretical insights to re-
conceptualizing e-recruiting, based on the service dominant logic of business (SDL)
[4], and academic research in e-HRM e.g. [5], [6] which in turn was informed by
engagement with communities of recruiters and job-seekers. The SDL
reconceptualises the nature of business exchange. Principles include that the customer
is always a co-creator of value, and that the enterprise cannot by itself deliver value,
but only offer value-propositions to customers [4]. A “service” has the following
characteristics: 1) it identifies or develops core competences of an economic entity
that offer competitive advantages; 2) it has the ability to attract potential customers
that could benefit from these competences; 3) it facilitates relationships that involve
the customers in developing and co-creating customized offerings; and 4) it includes
market feedback mechanisms to support continuous improvement. Considering e-
HRM systems using an SDL lens, a number of issues and opportunities were
identified. Currently there is little motivation for applicants to keep user profiles up to
date, which leads to many out-of-date resumes. There is no standardised vocabulary
for job titles or skills and many current e-recruiting systems are relatively ineffective
at filtering resumes and identifying suitable applicants [6]. As a result, matching is
frequently done manually. Instead, recruiting can be seen as a co-creation process
involving dialogue between the applicant and the organization, and using the
knowledge of both parties to create an offering (the job). E-recruiting services that
foster an ongoing co-creation between current and potential candidates and
organizations, including: corresponding with applicants about their desired job and
their fit to current vacancies; enhancing the playfulness of the interaction;
implementing skill competitions; providing the ability for applicants to rank
themselves compared to other applicants on the site and regular prompting of

28 M. Tate and E. Furtmueller

applicants to update their details have been shown to be more effective [6].
Opportunities also exist in unique market niches; and in developing longer-term
relationships between applicants and job portals, so that applicants return to e-
recruiting portals for ongoing career development.

The next challenge was for semantic web software entrepreneurs Epiqo 1
to develop a sustainable business model. Research and practice suggested that
semantic web technologies would be suitable for the type of service that was
envisaged. “Semantic technologies… have untapped potential for dynamic
customization/composition of services” [7]. While many recruiting functions are
common across organizations, the vocabulary, skills and qualifications associated
with specific niches varies. However, there have been issues with scaling semantic
web services ‘the central deficiency of the Semantic Web is their static model of
knowledge (ontologies), which implies static and predefined meaning of web-
content”[8]. Therefore, a solution that drew on the resources of the community to
maintain the ontology was required. A collaboration between researchers and
practitioners in service management, e-HRM and semantic web resulted in a
conceptual design for a number of components.1) An ontology for HR sourcing and
digital resume design. 2) A workflow process for ontology extension supported by a
web crawler. New terms were to be placed in a grey-list for classification. Following
initial classification of grey-list entries, the community (i.e. applicants, recruiters,
developers) would be “crowd-sourced” to confirm the categorization of unknown
terms.2 This allows the ontology to be learning, adaptive, extensible, and quality
assured by its user community. 3) Adaptive and context sensitive interfaces. 4) An
adaptive and automated matching process based on the ontology.

The BIE stage primarily involved building the components; ensuring that the
components were adapting to the environment; that learning and extension processes
worked; and that the service offerings were adaptive to specific niches.

The reflection and learning stage exemplifies the guided emergence principles of
the ADR method. Unlike a project in an intra-organizational context, these services
are continuously interacting with, and being shaped by, their communities.

Finally, we found that formalising learning from projects of this nature is
challenging, as the complex interplay of theory and practice from multiple disciplines
means that specific insights for individual disciplines are difficult to extract and
contextualise.

4 Conclusion

New business models such as the SDL are converging with semantic web
technologies. However, developing sustainable businesses requires rich insights from
multiple academic disciplines, practitioners and stakeholder communities in the
business domain. In particular, the inflexible nature of ontologies must be addressed
in order to provide compelling service value-propositions that can be adapted,
reassembled and extended. This project shows that theoretical knowledge, technical
competence, business competence, and the domain expertise of stakeholders alone are

1 http://epiqo.com/en
2 Variations on this approach are sometimes referred to as the “Pragmatic Web”.

 Sustainable Business Models for Services Using Semantic Web Components 29

not sufficient for developing successful semantic web-based products and services.
All of these must work in close and continuous co-operation.

Appendix

Table 1. The interaction of theory, practice and community

Inputs Modified ADR
phase/principles

Outputs

Theory
1. Service

management,
service dominant
logic of business

2. E-HRM issues and
challenges

3. Semantic web
issues and
challenges

Practice
1. Semantic web

entrepreneurs
2. Semantic web

developers
3. HR professionals
4. E-HRM portal

providers
Community
1. Job applicants
2. Developers
3. Organizations
4. Niche professional

communities

Problem formulation,
1. Identifies and

conceptualizes a
research opportunity
based on existing and
emerging theories and
technologies

2. Defining the problem
as an instance of a
class of problems

3. Viewing field
problems as
knowledge-creation
opportunities;

4. Ensuring that the
artefacts are informed
by theory.

1. Generic e-recruiting limitations
identified from research in theory
and practice: poor matching of jobs
to applicants out of date resumes;
reliance on manual processes.

2. Opportunities identified:
improved matching, based on and
extensible and learning ontology;
improved adaptive and context
sensitive online interaction
between applicants and recruiting
sites; establishment of a long term
relationship between applicant
and site; added value features for
career management

3. Challenges addressed: maintenance
and extension of ontology “crowd-
sourced” using pragmatic web
principles; workflow process for
ontology extension.

4. Sustainable business models
developed: reassemble/extend
components into new and unique
niche offerings.

Practice
1. Semantic web

entrepreneurs
2. Semantic web

developers
3. HR professionals
4. E-HRM portal

providers
Community
1. Job applicants
2. Developers
3. Organizations
4. Niche professional

communities (e.g.
chemical engineers)

Building, intervention
and evaluation (BIE)
1. Building the artefact,

intervening in the
community and
concurrently
evaluating and
shaping the artefact
based on learning
derived from the
community context

2. Authentic and
concurrent evaluation
emphasizes that
evaluation is
continuous and not a
separate stage that
follows building.

1. Semantic web components
2. Identifying the learning and

shaping required and automating
it.

3. Business process and components
for ontology maintenance and
extension and automated job-
applicant matching

4. Entrepreneurial service offerings
to the community: Components
and business models adopted,
adapted, reassembled and
extended (e.g. niche-portal
franchises).

30 M. Tate and E. Furtmueller

Table 1. (Continued.)

Practice and
community
1. Use, uptake and

market-share of
semantic web
components, e.g.
intelligent matching
and intelligent and
learning ontology

2. Automated and
real-world
conversations
inform extension

Reflection and learning
1. Ongoing co-creation,

adoption, adaption
and reassembly of the
components;

2. Guided emergence:
the interplay between
structured
intervention and
organic evolution.

1. Continuous learning and
extension of ontology

2. Extension and recombination of
semantic web components into
unique business propositions

3. Increased market share

Researchers,
practitioners and
community
1. Experience

Formalization of learning
1. Situated learning from

the project is further
developed into a
general solution for a
class of field
problems.

1. Experience with the project
informs researchers, practitioners
and the community. However, the
complex, inter-related, and
iterative nature of the inputs
makes the learning difficult to
report truthfully.

References

1. Tate, M., Furtmueller, E.: Service Development as Action Design Research: Reporting on a
Servitized E-Recruiting Portal. In: Proceedings of SIGSVC Workshop. Association for
Information Systems, Sprouts Working Papers on Information Systems, vol. 12 (2012)

2. Sein, M., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R.: Action Design Research. MIS
Quarterly 35, 37–50 (2011)

3. Hevner, A., March, S., Park, J.: Design Science in Information Systems Research. MIS
Quarterly 28, 75–105 (2004)

4. Vargo, S.L., Lusch, R.F.: Evolving to a New Dominant Logic for Marketing. Journal of
Marketing 68, 11–17 (2004)

5. Tate, M., Furtmueller, E., Wilderom, C.: Localizing versus standardizing electronic human
resource management: Complexities and tensions between HRM and IT departments.
European Journal of International Management (in press)

6. Furtmueller, E., Wilderom, C., Tate, M.: Managing Recruitment and Selection in the Digital
Age: E-Hrm and Resumes. Human Systems Management 30, 243–259 (2011)

7. Janev, V., Vranes, S.: Applicability Assessment of Semantic Web Technologies.
Information Processing and Management 47, 507–517 (2011)

8. Pohjola, P.: The Pragmatic Web: Some Key Issues. In: I-SEMANTICS ACM International
Conference Proceedings Series (2010)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 31–42, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Measuring Sales Cannibalization in Information
Technology Markets: Conceptual Foundations

and Research Issues

Francesco Novelli

SAP Research Darmstadt, Bleichstrasse 8, 64283, Darmstadt, Germany
francesco.novelli@sap.com

Abstract. Sales cannibalization – i.e., intra-organizational sales diversion –
bears a prominent role in the competitive upheavals within Information
Technology markets. However, detection and measurement thereof have only
raised lukewarm interest among Information Systems scholars so far. To their
defense, relevant methodological contributions are scattered across several
disciplines, base themselves on equivocal definitions of cannibalization, present
an overwhelming range of model specifications, and overlap with research on
product and technology substitution. Therefore, we provide an interdisciplinary
review of the literature on cannibalization, formulate a novel, clear-cut
definition of the phenomenon, and clarify its relationship with substitution. Our
other contributions are an exhaustive list of the modeling requirements
necessary to describe the phenomenon, a compendium of cannibalization
measurement models, and a summary of the findings with regard to Information
Technology artifacts. This work should provide an adequate foundation and
identify promising topics of study for further research endeavors in this domain.

Keywords: cannibalization, substitution, empirical models, literature review.

1 Introduction

We judge this very moment propitious for Information Systems Research (ISR) on
sales cannibalization – the phenomenon of intra-organizational sales diversion – given
its crucial role in Information Technology (IT) markets. An exemplar occurrence is
the recent launch of the Apple iPad and the subsequent “gold rush” into the tablet
market by manufacturers of personal computers and smartphones alike. Since tablets
appeal to potential buyers of their other established product lines, those manufacturers
offer the flank to sales cannibalization [1].

The cannibalistic threat may also move upstream and downstream along the value
chain, affecting platform product vendors and complementors. Sales cannibalization
affecting PC manufacturers, for example, is a key factor for their chip suppliers [2]. In
addition, the adoption of tablets and other content-consuming devices is germane to
the more or less cannibalistic way publishers make content which they already offer
through traditional publishing channels available for consumption through such
devices.

32 F. Novelli

Cannibalization patterns and their magnitude are often sources of controversy.
Uncertainty as to whether and to which degree a firm’s product portfolio is affected
by cannibalization may lead to an unclear perception of its expected performance by
both internal and external stakeholders. Conversely, a reliable quantification of this
phenomenon would improve understanding and transparency with regard to a
strategic facet of competition in Information Technology (IT) markets.

With these topical issues in mind, sales cannibalization represents a fruitful area of
investigation in ISR, with an evident managerial relevance for businesses operating in
today’s IT markets. However, progress in the understanding of this phenomenon is
hampered by the scattered state of contributions from multiple disciplines (alongside
ISR, mostly Marketing Science and Management Science). Therefore, our goals are to
synthesize the interdisciplinary literature on this topic and uncover gaps that could
reveal novel research streams. For researchers, this work may be a foundation for
further investigations, responding to the call of Webster and Watson for review
articles that would strengthen ISR as a field of study and accelerate its accumulation
of knowledge [3]. This is particularly relevant, we believe, for no other literature
review on cannibalization exists. For practitioners, we will provide a compendium of
the available measurement methodologies and a synopsis of relevant findings.

The structure of the paper is as follows: we start by revisiting the generic definition
of sales cannibalization and its relationship with the concept of substitution (section
 2). We then review the available empirical approaches for measuring cannibalization
(section 3). In the following section (4) we summarize the specificities of the
phenomenon in the context of ISR and the findings of previous measurement studies.
Finally, promising future directions for ISR in this area are sketched out (section 5),
before we present our concluding remarks (section 6).

2 Sales Cannibalization: An Overview and Basic Concepts

An accurate, comprehensive definition of sales cannibalization is a strict requirement
for an accurate and comprehensive literature review. Moreover, the absence of a
generally accepted definition is a shortcoming acknowledged by marketing
researchers themselves [4]. Table 1 lists the most frequently cited cannibalization
definitions from the marketing literature. Three common constituent parts are evident:
the economic entities whose generated sales benefit or suffer from the occurring of
the phenomenon – from now on respectively “cannibal” and “victim” –, the common
organizational realm their revenues accrue to, and the specific relationship which
connects their sales-generating processes.

The cannibal and victim entities are products or services, or sets of products or
services whose sales are aggregated along some dimension (e.g., the channel through
which they are distributed). One possible caveat lies in the a priori identification of a
distinguishing trait between the two entities. Ref. [5] associates cannibal and victim
with a new and an old product, and there is indeed a rich body of research along these
lines [4, 6–8]. However, other scholars either distinguish cannibal and victim along a
different dimension [9, 10] or detect the phenomenon’s patterns and direction
endogenously in the analysis (without any a priori identification) [11, 12].

 Measuring Sales Cannibalization in Information Technology Markets 33

Table 1. Most frequently cited definitions of sales cannibalization

Source Definition
[5] The process by which a new product gains a portion of its sales by diverting them

from an existing product.
[13] ’Redistributed’ revenue, in that existing buyers are substituting one item for another

in the company’s product portfolio.
[14] Competition within a firm’s own product line.
[11] The extent to which one product’s customers are at the expense of other products

offered by the same firm.

The second cardinal element in the definition of cannibalization is the

organizational realm within which the phenomenon can be properly called
cannibalization as opposed to competitive draw. The former’s perimeter is identified
by the boundaries of the organization benefiting from the cumulative sales of cannibal
and victim. As a matter of fact, all of the authors mentioned in Table 1 defined
cannibalization explicitly as an intra-firm phenomenon.1 The firm of reference can be
the manufacturer/provider or any intermediary (e.g., a retailer, as in [15]).

The most critical definition element is the relationship between the sales-
generating processes of the cannibal and victim entities, i.e., what to “gain”, “divert”,
“redistribute”, or “substitute” sales precisely mean. Cannibalistic patterns are properly
detected by comparing the actual purchase decision with the hypothetical one which
would have been taken in absence of the cannibal item. In other words, those among
the cannibal’s customers who would have bought the victim, had the cannibal not
been in their available choice set, are qualified as cannibalized. This aspect is
instrumental in assessing the validity of the measurement approaches proposed in the
literature for, given the difficulty of eliciting or recording customers’ intentions, most
models can only estimate these cannibalistic buying patterns from historical purchase
data.

In conclusion, we propose to define cannibalization as the intra-organizational
phenomenon of sales diversion by means of which sales of a product or service (the
cannibal) are generated by diverting potential sales that a substitute product or service
(the victim) would have obtained in absence of the former, ceteris paribus, within a
common organizational realm collecting the revenues of both.

The question could be posed as to whether cannibalization represents merely an
emphatic synonym for product substitution and, therefore, we will briefly dwell on
the relationship between the two concepts. Just like cannibalization, substitution is a
multidisciplinary topic that has been drawing attention from several fields of
investigation. In his seminal work on strategic management Porter defines substitutes
as “products that can perform the same function” [18, p. 23], distinguishing between
closer substitutes by competitors within the same industry and more distant ones by
latent competitors outside of the industry boundaries. The industry itself is defined by
an arbitrarily chosen level of substitutability to distinguish the two competitive realms

1 Although Heskett does not constrain cannibalization this way in his definition, he only

mentions examples where that is the case [5, pp. 115-118 and 150-152], so it might have been
merely an oversight not to state it explicitly.

34 F. Novelli

of “direct rivalry” and “threat of substitution” [id., p. 32]. Based on our definition,
even though the cannibal and victim entities must exhibit some degree of
substitutability to engender the interdependent buying patterns described above, their
revenues must accrue to the same organizational realm.

In microeconomics two goods are called substitutes if a price change of one of
them has an effect of equal sign on the demand for the other. Formally, the cross-price
elasticity (or cross-elasticity) of demand for the latter with respect to the price of the
former must be positive [19, p. 52]. The antitrust literature provides a trait d’union
between the microeconomic and the strategic perspectives: renowned antitrust cases
namely relied on the cross-elasticity of demand, as a proxy for product
substitutability, to delineate the relevant market boundary [18]. Given, as already
mentioned, that cannibal and victim are substitute products, cross-price elasticities
have a central role in some of the empirical approaches we will mention below.

Substitutability, investigated in the context of consumer choice theory, represents a
“negative similarity effect” [19], whereby a new item will take relatively more share
away from items similar to it than to dissimilar ones, that is, disproportionately
compared to predictions based on the principle of independence of irrelevant
alternatives (IIA). Experimental and analytical approaches have been developed to
derive brands’ differential substitutability from physical or perceived attributes and to
predict market share movements accordingly. Some cannibalization measurement
approaches are indeed rooted in choice theory, either benchmarking actual market
shares changes against IIA predictions [4] or incorporating choice models [20].

When market penetration encompasses multiple technology generations with
dependencies among their diffusion processes, technological substitution represents a
phenomenon of interest in diffusion research (see [21] for a recent overview). In this
domain, substitution is the mechanism by which adopters and potential adopters of
preceding generations of a base technology opt for a successive generation [22]. Of
course, substitution may be a driver of intergenerational cannibalization whenever the
same firm simultaneously offers products relying on distinct technology generations.
In such a scenario, multigenerational diffusion models have been employed to
measure cannibalization [23, 24].

Notwithstanding the interdependences between the concepts of substitution and
cannibalization we have outlined so far, an important distinction must be stressed. We
defined “cannibalistic” as the buying patterns whereby the customers who would have
bought the victim, had the cannibal not been in the available choice set, would have
purchased the cannibal (columns a, c and d in Table 2). However, the process of
substitution encompasses both these customers and those who bought the victim and
then switched or upgraded to the cannibal (columns a, b and e in Table 2). Therefore,
while cannibalization only considers the victim’s potential customers, substitution
considers both potential and former customers. The magnitude of the two phenomena
may greatly differ depending on the number of consumers whose buying pattern
adheres to each profile.

In conclusion, the occurrence of cannibalization implies a positive degree of
substitutability between cannibal and victim, and cannibalization can be regarded as
one component of an intra-organizational substitution process. From a methodological
point of view, research on cannibalization measurement was greatly enhanced by the
research streams on substitution we have briefly recalled here.

 Measuring Sales Cannibalization in Information Technology Markets 35

Table 2. A comparison of patterns of cannibalization and substitution

 (a) (b) (c) (d) (e)

Actual purchase
decision

Prior purchase
decision

Hypothetical purchase
decision with a choice
set without cannibal

Qualified as
cannibalization

Qualified as
substitution

I

Cannibal

Victim
Victim

II Competitor
III Leave the market
IV Competitor

Victim

V
Non-consumer in
the category

3 Detection and Measurement of Sales Cannibalization

Detection and measurement of sales cannibalization are the primary goals of
empirical studies which propose methodologies to reveal and quantify the
phenomenon. From a descriptive point of view, the nature of the cannibalization
phenomenon is fully determined if we are able to specify it in terms of patterns,
magnitude and variation over time. This translates into a series of modeling
requirements that we have collected from the literature and listed in Table 3.
However, given space constraints, only a few requirements will be discussed here.

The analysis of cannibalization patterns should take into consideration the
possibility of asymmetries [12] and the involvement of items both within and between
product categories [8]. When the study does not target a predefined pair of entities
(e.g., the new and old product pair), the model should be able to account for
multivariate cannibalization within a given set of products, that is, support the
discovery of which item is diverting customers from which other item. With regard to
the temporal dimension, cannibalization may change over time due to customers’
heterogeneity in adoption timing and other disturbances [8]. It may also produce
cross-period effects [25] and alter the long-term performance of the victim [26].

The array of measurement models in the literature can be subdivided into descriptive
models, where a response model is not explicitly formalized, and econometric models,
which mathematically formalize the sales response of one or more product items,
feeding it with time-series data in order to estimate cannibalization. The former are less
demanding in terms of data requirements and analytical complexity, but alert us of a
possible cannibalization issue rather than providing actual measurements. Among the
studies which propose such models, one finds an ecology-inspired purchasers’ cluster
analysis to estimate cannibalization potential among brand’s variants [11]. Relevant
customers’ characteristics are used to define a multi-dimensional space in which each
variant has a niche, i.e., a perimeter containing its customers within a certain distance
from its average buyer. A measure of overlap between the variants’ niches then serves
as a proxy for cannibalization potential.

Lomax and her co-authors proposed three techniques to detect cannibalization
engendered by a new product launch: gains loss analysis, duplication of purchase
analysis, and share movements analysis [4]. The first technique consists in taking the
ratio of the victim’s market share loss to the cannibal’s market share gain (see also
[27]). The higher the ratio compared to competitors’ brands, the more plausible a
cannibalistic explanation of the cannibal’s gains in the market. Duplication of

36 F. Novelli

purchase analysis compares empirically-measured levels of cross-purchasing with the
predictions made according to the independence of irrelevant alternatives (IIA)
assumption. Similarly, share movements analysis benchmarks the actual change
between pre- and post-launch shares of purchase against the IIA-predicted ones.
Deviations from the expected values signal potential cannibalization in both cases.

Table 3. Modeling requirements identified in the literature (in chronological order)

Modelling requirement Description Source

I
Asymmetry of
cannibalization
patterns

Sales of one product mix item may affect sales of a
second item differently than the other way around.

[28]

II

Variation of
cannibalization
patterns over
time

Diversion of sales among two items in the product mix
may change over time (in magnitude and/or direction).

[28]

III
Multivariate
cannibalization

A cannibal may divert sales from multiple victims.
Conversely, a victim may lose sales to multiple cannibals.

[6, 11, 12]

IV
Stochastic
effects

The cannibalization patterns may be subject to temporary
nondeterministic disturbances.

[6]

V
Long term
effects

The addition of the cannibal may change the underlying
(base) sales-generating processes.

[26]

VI
Cross-period
effects

Cannibalistic shifts in sales may encompass stockpiling or
anticipation and therefore produce lead or lagged effects.

[15] (lagged
effects only)

VII
Cross-sectional
heterogeneity

Sales response may differ depending on the considered
aggregate data cross-section (e.g., store).

[7]

VIII
Customers
heterogeneity

Potential customers may react differently to the presence of
the cannibal, in terms of the type of response or its timing.

[29]

IX
Inter-category
effects

Cannibalistic sales diversion may take place also among
items which belong to different product categories.

[8]

Econometric models provide a mathematical formalization of the sales-generating

process for one or more of the entities. These models differ in the way they tackle the
cannibalization measuring problem. A first group of models specify a sales response
function for the victim entity alone and devote some explanatory variables to
formalize the impact of the cannibal, detecting any reduction in the victim sales and
attempting to explain it in terms of the cannibal’s introduction, presence, and/or
attributes. This approach is employed by scholars assessing the cannibalization effect
of a companion website for a printed publication. In ref. [26], for instance, a
structural-break unit-root test is employed to verify whether the web companion
negatively affected the circulation and advertising revenues of national newspapers.
In that study, the only required information about the cannibal is the website’s launch
date. In ref. [30] a cannibal’s attribute is integrated into the model, namely the degree
of overlap with the printed content. When analyzing the cannibalization of retail-
stores revenues by the online channel in [15], not only is the existence of the cannibal
considered but the cannibal-generated monetary sales as well. All of the
cannibalization studies relying on Amazon rankings as proxies for sales volume [10,
31–34] also formalize the victim’s response function alone.

Some scholars take a specular approach, decomposing the cannibal’s demand to
ascertain whether diversion of sales from other items in the firm’s portfolio lies
among the cannibal’s sources of demand. In ref. [6] a dummy variable regression is

 Measuring Sales Cannibalization in Information Technology Markets 37

employed and a process equation accounts for the time-varying nature of the
cannibalization effect. In ref. [8] a vector error-correction model allows linear unit-
sales decomposition as a method to study a radical innovation diverting customers
from other product categories. Multigenerational diffusion models that only support
forward substitution also fall into this category [23, 24].

Another body of research approaches the entities symmetrically from the modeling
point of view. That is the case for multigenerational diffusion models which
contemplate both forward and backward substitution [28], and for the response
models conceived as systems of log-linear equations [12, 35, 36]. The latter set of
models does not allow the quantification of cannibalization in absolute terms but
rather through cross-elasticities, which may eventually be turned into sales diversion
ratios [36].

Finally, some researchers have quantified the cannibalization effect by first
calibrating a discrete choice model and then simulating a hypothetical scenario where
the cannibal item is removed from the choice set. The appropriately computed delta in
sales of the victim constitutes cannibalization [20, 37]. Conjoint analysis can also be
used in an analogous fashion [38].

4 Sales Cannibalization in Information Systems Research

In this section we will review the findings of prior measurement studies specific to
cannibalization occurrences in IT-related markets. Sales cannibalization represents a
ubiquitous phenomenon in markets related to information goods and information
systems. Indeed, a tally of alleged casualties may be compiled: traditional media
(records, books, newspapers, television broadcasts, etc.) cannibalized by their digital
counterparts, packaged software cannibalized by software-as-a-service, enterprise
servers cannibalized by cloud computing, and traditional advertising cannibalized by
online ads – just to name a few recent occurrences in the press.

With regard to information goods, the Internet has played a central role in
determining cannibalistic situations for content providers. Successive generations of
online platforms have namely allowed content providers and content consumers to
transact in an ever increasing range of formats and channels (without generating too
much enthusiasm on the supply side, to couch it euphemistically). Table 4 details the
array of possible buying situations resulting from such a platform evolution, based on
the nature of the purchased entity (physical good, logical good, service) and on the
type of underlying platform (retail or e-commerce).

The Internet has begot a first cannibalistic situation by providing an alternative
channel to sell information goods in physical form that were already being distributed
through retail stores [15]. Following the widespread adoption of portable media
players and under the pressure of piracy, a new generation of online stores has then
arisen, where the same information goods can be purchased as individually
downloadable encoded files [32, 39]. The most recent development is the shift
towards a service paradigm, where users can access digital content on-demand
through dedicated service providers, such as Amazon, NetFix, or Spotify [34].

38 F. Novelli

Table 4. Information goods’ buying situations

 Brick & Mortar platform Internet-based platform
Information good with
physical manifestation

On paper; on disc On paper; on disc

Information good with
purely logical manifestation

Prepaid gift card Download of an encoded file

Service Exhibition; performance;
broadcast

Hosted data services; on-
demand services

Most IT vendors are also vulnerable to cannibalization. If we classify the

technological components of information systems into the four product families of
hardware, software, databases, and telecommunications [40], we can readily see
cannibalistic situations in all of them. For instance, chip manufacturers currently see
cannibalization both among microprocessors for enterprise servers and those designed
for data centers, and among low-consumption microprocessors for mobile devices and
the more powerful ones for personal computers; database vendors witness the same
phenomenon arising between in-memory and traditional database offerings; network
operators among traditional phone services and VoIP. With regard to software, higher
than average cannibalization rates and the ability to successfully introduce a new
product during the growth phase of the previous one have been found to be
distinguishing features of successful software vendors [41].

Several empirical studies have estimated cannibalization rates in IT-related
markets, whereby the great majority have focused on information goods and only few
articles have dealt with other types of IT products and services. Existing measurement
studies on cannibalization of information goods are enumerated in Table 5. Most
scholars address the cannibalizing impact of digital, electronically distributed media
on sales of their physical counterparts (printed publication or CD/DVD). The
exceptions are ref. [15], an assessment of the cannibalization problem for a retailer
selling physical copies both online and through its stores, and references [31] and
[10], investigating how the introduction of online secondary markets affected sales of
brand-new copies.

The findings of these studies are detailed by market segment in Table 6. The
results with regard to the press market are partly inconclusive, as detected
cannibalization rates (in terms of reduced circulation of the printed edition) ranged
from insignificant [26] to noteworthy [42]. In ref [29] the effects of customers’
heterogeneity are revealed, showing that cannibalization rates differed from one age
group to the other. This result was confirmed in the market for academic publications,
where some customers see the printed version and the PDF one as substitutes, others
as complements [39]. Content markets segmentation was also revealed in [32]:
legitimate digital and physical copies of NBC television series were not seen as
substitutes by most customers.

Outside of the markets for digital content, few scholars have attempted to measure
sales cannibalization. In ref. [23] a multigenerational diffusion model is used to
estimate cannibalization rates (as the percentage of technology adopters buying the
latest available generation) for successive generations of IBM mainframe computers.
The estimated rate ranges from 90% for the second generation to 34.5% for the fourth
one. In another multigenerational diffusion study, this time in the market for game

 Measuring Sales Cannibalization in Information Technology Markets 39

consoles, [24] estimated that less than 10% of the customers of the Sony Playstation-2
were cannibalized from potential Playstation-1 adopters. In ref. [9] field auctions are
employed to experimentally assess the cannibalization potential of remanufactured
products, auctioning a network security device by CISCO in brand-new and
remanufactured form. Based on the analysis of bidding behaviors and bid results, the
hypothesis of cannibalization was rejected.

Table 5. Measurement studies on cannibalization in markets for information goods

Source Product category Product forms (Cannibal / Victim) Horizon
[26] Newspapers Online edition / printed edition 1990-2001
[15] Music records Online sales / retail sales 1998-1999
[42] Newspapers Online edition / printed edition 1976-2001
[31] Books Used copy / new copy 2002-2004
[20] Newspapers Online edition / printed edition 2000-2003
[29] Magazines Online edition / printed edition 1996-2004
[30] Magazines Online edition / printed edition 1996-2001
[10] Music records; movies Used copy / new copy 2004
[43] Movies Free television broadcast / DVD 2005-2006
[39] Academic publications Digital purchase / Printed book 2002-2004
[32] TV programs Digital purchase / DVD 2007-2008
[34] Movies Digital rental or purchase / DVD 2008

Table 6. Comparative review of findings on information goods cannibalization

Source Cannibalizationa Empirical Approach
Market segment: press (newspapers and magazines)
[26] No significant cannibalization Structural-break
[42] –3.1% (short-term)

–26.4% (long-term)
Discrete choice modelling (aggregate logit)

[20] –1.47% Discrete choice modelling
[29] –4.2% Discrete choice modelling (nested logit)
[30] –3-4% Fixed-effects
Market segment: academic press
[39] –2.44% (short-term)

+10% (long-term)
Structural-break

Market segment: entertainment (music and video)
[15] 2.80% b Simultaneous dynamic equations
[32] No significant cannibalization Difference-in-difference
[34] –41.6% Fixed-effects
Market segment: secondary markets
[31] 16% c (books) Discrete choice modelling (aggregate logit)
[10] 24% c (CDs), 86% c (DVDs) Discrete choice modelling (aggregate logit)

a) Percentage change in victim’s unit sales due to cannibalization, unless otherwise noted. b) Percentage of cannibal’s
monetary sales diverted from the victim. c) Percentage of cannibal’s unit sales diverted from the victim.

5 Research Issues

Our review of the literature uncovered a gap between the rampant role of sales
cannibalization in IT markets and the related empirical work in ISR. Thus, we will
briefly sketch some research themes that, in our view, would help to bridge that gap.

Since the Marketing Science field has supplied the majority of cannibalization
measurement methodologies, but applied them mainly to consumer packaged goods,

40 F. Novelli

one immediate need for ISR scholars would be to conduct replication studies which
test the proposed model specifications on IT goods and services.

With regard to specific ISR subdomains, we found that existing studies
predominantly focus on information goods. Cannibalization in other IT areas has
barely been touched, although some IT segments are experiencing dematerialization
and servitization trends analogous to those illustrated for information goods. Special-
purpose devices are being substituted for functionally-equivalent software
applications on general-purpose computers, often offered by the same vendor.
Manufacturers of personal navigation devices, for instance, have started developing
navigation software for GPS-enabled smartphones [44]. Software sales and
distribution channels are increasingly digitalized as well, even in enterprise software
markets [45]. Hardware and software resources are increasingly delivered as services,
labeled as cloud computing, software-as-a-service, on-demand, etc. This servitization
trend poses additional challenges due to the different revenue models that victim and
cannibal may employ (e.g., perpetual licensing vs. subscription). In such a scenario,
cannibalization quantified in terms of monetary sales may be more meaningful than in
terms of unit sales as common in the marketing literature. Table 7 recapitulates these
trends and some illustrative cannibalistic situations they beget for IT vendors.

Table 7. Trends engendering sales cannibalization in IT-related markets

 Information goods IT products and services
Dematerialization Physical manifestation

vs. purely logical
manifestation.

Special purpose devices vs. software
applications on general purpose devices;
Online vs. traditional channels for software
sales & distribution.

Servitization Discrete purchases vs.
on-demand services.

Enterprise servers vs. cloud computing;
On-premises applications vs. software-as-a-
service.

6 Summary and Conclusions

We reviewed the interdisciplinary literature on sales cannibalization from the ISR
perspective to provide the foundations for further research in an area we deem of
topical interest for scholars and practitioners alike. A revised and precise definition of
the phenomenon was given, clarifying its befuddling relationship to the concept of
substitution. Moreover, we presented an exhaustive collection of the requirements a
modeling endeavor should meet to describe the phenomenon adequately, followed by
a compendium of the measurement methodologies proposed in the literature. Findings
on the cannibalization rates experienced by information goods and IT purveyors were
reviewed as well. Finally, we suggested some pertinent directions for future research.

Acknowledgements. This work was partially financed by the European Commission
under grant agreement 285248 (project FI-WARE).

 Measuring Sales Cannibalization in Information Technology Markets 41

References

1. Bustillo, M.: Retailers Turn to Gadgets, http://online.wsj.com/article/
SB10001424052748703376504575491533125103528.html

2. Merritt, R.: Otellini says Intel to take tablet market, http://www.eetasia.com/
ART_8800623147_1034362_NT_4c6b27ab.HTM

3. Webster, J., Watson, R.T.: Analyzing the Past to Prepare for the Future: Writing a
Literature Review. MIS Quarterly 26, xiii–xxiii (2002)

4. Lomax, W., Hammond, K., East, R., Clemente, M.: The measurement of cannibalization.
Journal of Product and Brand Management 6, 27–39 (1997)

5. Heskett, J.L.: Marketing. Macmillan, New York (1976)
6. Reddy, S.K., Holak, S.L., Bhat, S.: To extend or not to extend: Success determinants of

line extensions. Journal of Marketing Research XXXI, 243–262 (1994)
7. Van Heerde, H.J., Mela, C.F., Manchanda, P.: The Dynamic Effect of Innovation on

Market Structure. Journal of Marketing Research XLI, 166–183 (2004)
8. Van Heerde, H.J., Srinivasan, S., Dekimpe, M.G.: Estimating Cannibalization Rates for

Pioneering Innovations. Marketing Science 29, 1024–1039 (2010)
9. Guide, V.D.R.J., Li, J.: The Potential for Cannibalization of New Products Sales by

Remanufactured Products. Decision Sciences 41, 547–572 (2010)
10. Smith, M., Telang, R.: Internet exchanges for used digital goods (2008)
11. Mason, C., Milne, G.: An approach for identifying cannibalization within product line

extensions and multi-brand strategies. Journal of Business Research 31, 163–170 (1994)
12. Carpenter, G.S., Hanssens, D.M.: Market expansion, cannibalization, and international

airline pricing strategy. International Journal of Forecasting 10, 313–326 (1994)
13. Kerin, R., Harvey, M., Rothe, J.: Cannibalism and new product development. Business

Horizons 21, 25–31 (1978)
14. Moorthy, K.S.: Market segmentation, self-selection, and product line design. Marketing

Science 3, 288–307 (1984)
15. Biyalogorsky, E., Naik, P.: Clicks and mortar: the effect of on-line activities on off-line

sales. Marketing Letters 14, 21–32 (2003)
16. Porter, M.E.: Competitive strategy: Techniques for analyzing industries and competitors:

With a new introduction. Free Press (1980)
17. Bain, J.S.: Price theory. Holt (1952)
18. Werden, G.J.: The History of Antitrust Market Delineation. Marquette Law Review 76,

123–215 (1992)
19. Huber, J., Puto, C.: Market boundaries and product choice: Illustrating attraction and

substitution effects. The Journal of Consumer Research 10, 31–44 (1983)
20. Gentzkow, M.: Valuing new goods in a model with complementarities: Online newspapers

(2006)
21. Peres, R., Muller, E., Mahajan, V.: Innovation diffusion and new product growth models:

A critical review and research directions. International Journal of Research in
Marketing 27, 91–106 (2010)

22. Norton, J.A., Bass, F.M.: A diffusion theory model of adoption and substitution for successive
generations of high-technology products. Management Science 33, 1069–1086 (1987)

23. Mahajan, V., Muller, E.: Timing, diffusion, and substitution of successive generations of
technological innovations: The IBM mainframe case. Technological Forecasting and
Social Change 51, 109–132 (1996)

24. Shen, W., Altinkemer, K.: A multigeneration diffusion model for IT-intensive game
consoles. Journal of the Association for Information Systems 9, 20 (2008)

42 F. Novelli

25. Van Heerde, H.J., Gupta, S.: The Origin of Demand: A System to Classify the Sources of
Own-Demand Effects of Marketing Instruments (2005)

26. Deleersnyder, B., Geyskens, I., Gielens, K., Dekimpe, M.G.: How cannibalistic is the
Internet channel? A study of the newspaper industry in the United Kingdom and the
Netherlands. International Journal of Research in Marketing 19, 337–348 (2002)

27. Lomax, W., McWilliam, G.: Consumer response to line extensions: Trial and
cannibalisation effects. Journal of Marketing Management 17, 391–406 (2001)

28. Mahajan, V., Sharma, S., Buzzell, R.D.: Assessing the impact of competitive entry on
market expansion and incumbent sales. The Journal of Marketing 57, 39–52 (1993)

29. Kaiser, U.: Magazines and their companion websites: competing outlet channels? Review
of Marketing Science 4, 1–24 (2006)

30. Simon, D., Kadiyali, V.: The effect of a magazine’s free digital content on its print
circulation: Cannibalization or complementarity? Information Economics and Policy 19,
344–361 (2007)

31. Ghose, A., Smith, M.D., Telang, R.: Internet Exchanges for Used Books: An Empirical
Analysis of Product Cannibalization and Welfare Impact. Information Systems
Research 17, 3–19 (2006)

32. Danaher, B., Dhanasobhon, S., Smith, M.D., Telang, R.: Converting Pirates Without
Cannibalizing Purchasers: The Impact of Digital Distribution on Physical Sales and
Internet Piracy. Marketing Science 29, 1138–1151 (2010)

33. Smith, M.D., Telang, R.: Piracy or promotion? The impact of broadband Internet
penetration on DVD sales. Information Economics and Policy 22, 289–298 (2010)

34. Hashim, M.J., Tang, Z.: Delivery of Movies via the Internet: Uncovering Strategies for the
Release of Digital Formats (2010)

35. Meredith, L., Maki, D.: Product cannibalization and the role of prices. Applied
Economics 33, 1785–1793 (2001)

36. Yuan, Y., Capps, O.J., Nayga, R.M.J.: Assessing the Demand for a Functional Food
Product: Is There Cannibalization in the Orange Juice Category? Agricultural and
Resource Economics Review 38, 153–165 (2009)

37. Albuquerque, P., Bronnenberg, B.J.: Estimating Demand Heterogeneity Using Aggregated
Data: An Application to the Frozen Pizza Category. Marketing Science 28, 356–372
(2009)

38. Page, A.L., Rosenbaum, H.F.: Redesigning Product Lines with Conjoint Analysis: How
Sunbeam Does It. Journal of Product Innovation Management 4, 120–137 (1987)

39. Kannan, P.K., Pope, B.K., Jain, S.: Pricing Digital Content Product Lines: A Model and
Application for the National Academies Press. Marketing Science 28, 620–636 (2009)

40. Stair, R.M., Reynolds, G., Reynolds, G.W.: Fundamentals of Information Systems.
Cengage Learning (2008)

41. Hoch, D.J., Roeding, C.R., Purkert, G.: Secrets of software success: Management insights
from 100 software firms around the world. Harvard Business Press, Boston (2000)

42. Filistrucchi, L.: The impact of Internet on the market for daily newspapers in Italy (2005)
43. Smith, M.D., Telang, R.: Competing with free: The impact of movie broadcasts on DVD

sales and Internet piracy. MIS Quarterly 33, 321–338 (2009)
44. Novelli, F.: Platform Substitution and Cannibalization: The Case of Portable Navigation

Devices. In: Cusumano, M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP,
vol. 114, pp. 141–153. Springer, Heidelberg (2012)

45. Novelli, F., Wenzel, S.: Adoption of an online sales channel and appification in the
enterprise application software market: A qualitative study. In: Proceedings of the 21st
European Conference on Information Systems, Utrecht (2013)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 43–47, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Determinants and Dynamics of Technology-Related
Acquisitions: The Case of Software-Based Industries

Marcus Wagner

Chair for Entrepreneurship and Management, Julius Maximilians University
Stephanstr. 1, 97070 Wuerzburg, Germany
marcus.wagner@uni-wuerzburg.de

Abstract. In high technology industries the option to use acquisitions as a
means for technology sourcing is important. This paper investigates the
determinants and dynamics of this for the context of software-based high
technology industries specifically as concerns the association of acquirer
characteristics with acquisition behavior and finds a substitutive relationship
between acquisitions and own research activities and between acquirer and
target patenting. Consistent with this firms with low patenting intensity acquire
targets with many prior patents, which indicates that aiming to increase the
overall efficiency of an incumbent’s R&D process by acquiring were she has
the biggest weaknesses is most successful. For a subset of acquisitions and
acquirers, these findings are related in more detail to target characteristics.

1 Introduction and Research Questions

Innovation in large firms may be hindered by organizational inertia or lacking
knowledge [1]. It seems that the acquisition of technology-rich targets can address
this. The feasibility of this approach seems to depend however on the nature of the
industry considered. One important characteristic of software-based industries is their
low capital intensity, which means that startups do not require large investments in
fixed assets to enter. As a result of this, the total asset value of the average entrant in
software-based industries is relatively low and therefore a complete acquisition of a
technology-rich target is more easily feasible and hence more likely (compared to just
a minority shareholding in such a target). This paper analyses the acquisition
dynamics that derive from this based on econometric and descriptive analyses.

The research questions underlying the analysis derive from a literature review and
focus on the factors motivating larger incumbents to acquire smaller firms and
startups in software-based industries. The relevance of acquisitions for substituting
research and development (R&D) weaknesses can be linked to theoretical arguments
concerning obstacles to innovation in larger firms, empirical research providing
examples why firms may not be able or willing to carry out specific types of
innovation [2]. Obstacles to innovation can emerge in the sense that larger firms are
not able to carry out specific innovations, as is also shown in theoretical models [3].
One response of firms to not being able to carry out an innovation at acceptable cost
can be the acquisition of technology-rich targets in order to make up for missing

44 M. Wagner

capabilities. The paper extends the knowledge about this by clarifying which factors
determine the acquisition of younger, technology-rich target firms and how the
pattern of acquisitions evolves (i.e., what acquisition dynamics exist and how they can
be explained). Based on these considerations, two sets of research questions emerge:

1. Is acquisition in software-based industries motivated by substitutiveness or
complementarity with own R&D? Does the association differ depending on the
dependent variable (number of acquisitions versus technological value of targets)?

2. Do acquisitions relate mainly to specific technology segments and when are
targets acquired? Can timing and segment specificity be related to the substitutive
versus complementary nature of acquisitions?

2 Methodology

The empirical analysis focusses on a specific software-based, namely Electronic
Design Automation (EDA), a sub-segment of the global semiconductor industry that
has very beneficial characteristics for addressing the above research questions since it
is characterized by continued acquisition and innovation. Given the exploratory nature
of this study and the above research questions the analysis initially employs statistical
and econometric analysis to address the more aggregate quantitative aspects of the
above research questions based on primary data collected from established sources
such as the SDC Platinum and Worldscope Disclosure databases and the U.S. Patent
and Trademark Office. This data covers the acquisitions by the 14 largest firms in the
EDA industry during the period of 1981 until 2005 and firm characteristics. To enable
an analysis of the remaining aspects of above research questions, the aggregate
quantitative analysis is supplemented on the second stage by a more qualitative
analysis of a subset of firms for which was augmented with secondary data from trade
journals, industry publications, company websites and a content analysis of Securities
and Exchange Commission filings.

3 Results

In order to address the first set of research questions posed, regression models
were estimated for extent (total number of acquisitions, see Table 1) and degree
of technological knowledge acquisition (as measured by the total number of patents
granted to the acquired firms in the acquisition year and the five years prior to it,
see Table 2). Since both dependent variables are count data and the data is of
panel nature a negative binomial random-effects (RE) model is used based on the
Hausman test.

Overall, the results show that patenting intensity has consistently a significant negative
association with both dependent variables. This supports the notion that acquisitions
compensate weak innovation output indicated by lower levels of acquirer patenting
intensity. Notably, the coefficient of the patenting intensity in Table 2 is considerably
greater as in Table 1. Furthermore, the argument, that acquisition of innovation is a
substitute for own R&D efforts is supported as concerns the number of acquisitions.

 Determinants and Dynamics of Technology-Related Acquisitions 45

Table 1. Negative binomial model, dependent variable: total number of acquisitions

 Variables RE estimates

 Financial leverage (total assets to total equity) -0.4462 (0.3216)
 Current ratio (current assets to current liabilities) -0.0772 (0.1194)
 Sales growth (% over previous year) 0.0022 (0.0034)
 Sales (natural logarithm of net sales in mn €) 0.4045 (0.1296)***

 R&D intensity (R&D expenditure to net sales in %) -0.0463 (0.0218)**
 Missing R&D intensity data (dummy; 1 = missing) -29.4861 (1218611.5)
 Patenting intensity (Patents granted to net sales in %) -0.0233 (0.0127)*
 Missing patenting intensity data (dummy; 1 = missing) -0.2490 (0.5038)
 Company headquartered in Europe (dummy; 1 = yes) -0.1852 (0.5309)
 Company headquartered in Asia (dummy; 1 = yes) -1.0021 (0.6245)
 Constant 14.7703 (637.8766)
 Log-likelihood -114.63298
 No. of observations (firms) 105 (14)
 Wald Chi² 42.86***
 Hausman specification test Chi² <0.01

Notes: Significance levels: * p < 0.1; ** p < 0.05; *** p < 0.01; Country base category: U.S.; Likelihood-
ratio test vs. pooled: Chi² = 0.22, p-value >= Chi² = 0.318

Table 2. Negative binomial model, dependent variable: patents granted to targets

 Variables Random effects estimates

 Financial leverage (total assets to total equity) 0.2068 (0.4146)
 Current ratio (current assets to current liabilities) -0.3507 (0.3348)
 Sales growth (% over previous year) -0.0083 (0.0102)
 Sales (natural logarithm of net sales in mn €) 1.0966 (0.2969)***

 R&D intensity (R&D expenditure to net sales in %) 0.0097 (0.0142)
 Missing R&D intensity data (dummy; 1 = missing) -24.3519 (203473.2)
 Patenting intensity (Patents granted to net sales in %) -0.0663 (0.0261)**
 Missing Patenting intensity data (dummy; 1 =missing) -0.5224 (1.0713)
 Company headquartered in Europe (dummy; 1 = yes) 2.2475 (0.9131)**
 Company headquartered in Asia (dummy; 1 = yes) 0.7629 (1.3680)
 Constant -8.3025 (2.4877)***
 Log-likelihood -122.23788

 105 (14) No. of observations (firms)
 Wald Chi² 22.56**
 Hausman specification test Chi² <0.01

Notes: Significance levels: * p < 0.1; ** p < 0.05; *** p < 0.01; Country base category: U.S. ;
Likelihood-ratio test vs. pooled: Chi² = 0.00, p-value >= Chi² = 1.000

In order to address the second set of the above research questions which refer to the
type of target and other qualitative aspects the following Table 3 summarises for the
three largest firms in the industry if acquired targets are in similar fields of
technology. Based on detailed descriptions and target and acquirer Standard Industry

46 M. Wagner

Classification (SIC) codes, the technology segment most relevant for each individual
acquisition was identified. The percentage figures in Table 3 give the share in the total
of the acquisitions of the acquiring firm denoted in the top that was related to
technology segments were also the other firms made acquisitions (i.e. homogeneity).
The right column of Table 3 provides the number of acquisitions, per year, that took
place in the same technology segment out of total acquisitions of three largest firms.

Table 3. Homogeneity of acquisitions of the top 3 EDA firms based on technology segments

Year Cadence Mentor Synopsys % acquisitions in same
segments out of total

1989 0% 0% 0% 0%
1990 100% 100% 0% 67%
1991 0% 0% 0% 0%
1992 0% 0% 0% 0%
1993 0% 0% 0% 0%
1994 100% 100% 0% 67%
1995 0% 0% 0% 0%
1996 100% 63% 100% 70%
1997 67% 0% 67% 67%
1998 14% 100% 33% 36%
1999 0% 0% 0% 0%
2000 0% 0% 0% 0%
2001 0% 0% 0% 0%
2002 33% 25% 33% 30%
2003 66% 20% 0% 27%
2004 40% 50% 0% 27%
2005 0% 0% 0% 0%

As can be seen, the overlap in technology segments is very limited. Only in 8 of the

17 years analysed, an overlap was found at all. Even on these occasions, the overlap
never constituted more than 70% of all acquisitions made by the three largest EDA
firm in that year and in 4 of these 8 years was below 40%. This indicates that acquiring
technology that is novel to the industry as a whole is not dominating the observed
acquisitions, even though it may be a partial explanation in some years (especially
1990, 1994, 1996 and 1997). This suggests that several reasons matter simultaneously,
which also the total number of acquisitions per segment indicates. In all segments
except one at least two firms did acquisitions and in one third of the segments all three
large firms acquired. Furthermore, the number of acquisitions per segment differs only
up to 60% between firms which was however only the case in one segment (in four
segments the difference was 0%, in three it ranged between 28% and 50%, and in one
only one firm acquired). All of the three largest firms acquired from 1989 to 2005 in
three segments (in which, respectively, 11%, 50% and 14% of all acquisitions during
this period took place) and only in one segment, only one of the three largest firms
acquired and the other two never did an acquisition (representing 2% of all acquisitions
of the largest three EDA firms from 1989 to 2005). There is lesser evidence of
temporal clustering of acquisitions in specific technologies. In some segments

 Determinants and Dynamics of Technology-Related Acquisitions 47

acquisitions concentrate on shorter time periods (in all segments acquisitions take place
in at least two years, in two in six years, in one each in 10 and 15 years, respectively).
In four out of nine segments, the time between the first and last acquisition is more
than half of the 17 years studied. In four years (1989, 1990, 2000, 2005), all acquisition
targets were from only one segment, to which also the majority of targets across all
years belonged. In all other years, acquisitions took place in at least two (1991, 1992,
1994, 1995, 2001), three (1993, 1997), four (2002-2004), five (1999), six (1996) and
seven (1998) segments. As concerns timing of acquisitions, based on 80 acquisitions
(i.e. those of the largest three firms during 1989 to 2005 for which age data was
available), a skewed distribution of target age at the time of acquisition is found: the
mean age of targets at the time of acquisition is 7.62, the median is 5 years (standard
deviation: 5.42 years).

4 Conclusions and Discussion

This paper contributes to a better understanding of the acquisition dynamics in
software-based industries with a focus on the relevance of acquirer R&D and
homogeneity and timing of acquisitions. As concerns the latter two, the analysis of
data for the largest three firms in the EDA industry revealed no high homogeneity of
acquisitions: each large incumbent acquires not selectively, but over a broader range
of segments. This is consistent with the substitutiveness of acquisitions with regard to
own R&D efforts and outputs found in the aggregate quantitative analysis and
suggested by qualitative mechanisms that were developed in prior work [1]. Since the
efforts and outputs are generic, acquisitions should also be generic, i.e. across
segments, which the analysis of the enriched data for the largest three firms confirms.
Compared to this, the issue of timing is less clearly resolved in that both, acquisitions
early on or later when a target is proven in the market seem feasible and are also
identified in the data analysed. This is also consistent with the aggregate quantiative
analysis, in that generic R&D efforts and outputs, allow differing timing and temporal
dispersion. From a practitioner view, the results of the analysis suggest that acquirers
should use acquisitions to compensate their main weaknesses. More specifically,
results suggest that firms differentiate between input and output aspects of R&D
performance. Firms with low patenting intensity acquire targets with many prior
patents, which is consistent with the significantly stronger negative coefficient of
patenting intensity and an insignificant coefficient for R&D intensity when prior
target patenting is the dependent variable and managers can use this as guidance.

References

1. Henderson, R., Clark, K.B.: Architectural Innovation: The Reconfiguration of Existing
Product Technologies and the Failure of Established Firms. Admin. Sci. Q. 35, 9–30 (1990)

2. Hauschildt, J.: Opposition to innovations – destructive or constructive? In: Brockhoff, K.,
Chakrabarti, A., Hauschildt, J. (eds.) The Dynamics of Innovation, pp. 217–240. Springer,
Berlin (1999)

3. Henkel, J., Rønde, T., Wagner, M.: And the Winner is – Acquired. Entrepreneurship as a
Contest with Acquisition as the Prize. Discussion Paper No. DP8147, Center for Economic
Policy Research (CEPR), London (2012)

Engineering Open Innovation – Towards a

Framework for Fostering Open Innovation

Krzysztof Wnuk and Per Runeson

Department of Computer Science, Lund University, Sweden
{Krzysztof.Wnuk,Per.Runeson}@cs.lth.se

http://serg.cs.lth.se

Abstract. Open innovation is an emerging innovation paradigm that
can greatly accelerate technical knowledge innovation in software com-
panies. The increasing importance and density of software in today’s
products and services puts extensive pressure on excelling the discovery,
description and execution of innovation. Despite that, software engineer-
ing literature lacks methods, tools and frameworks for full exploitation
of technological advantages that open innovation can bring. This paper
proposes a software engineering framework, designed to foster open inno-
vation by designing and tailoring appropriate software engineering meth-
ods and tools. Furthermore, this paper discusses the methodological and
process dimensions and outlines challenge areas that should be reviewed
when transitioning to software engineering driven open innovation.

Keywords: open innovation, software engineering framework, literature
study, methodological and process study.

1 Introduction

The development of software products is mainly driven by innovation [1]; i.e. the
novel utilization of technical knowledge to develop new products and services.
For example, Volvo, the truck company, estimates that 90% of new innovations
are in the field of electronics, and 80% thereof is software1. Similarly, most of the
innovation and resulting market success at Siemens originates from software [2].

A majority of the innovation within software intensive products is imple-
mented in software and increasingly dependent on a new paradigm called Open
Innovation(oi), which typically, but not necessarily is implemented using Open
Source Software (oss). In recent years, the influence of oi has become significant
in the development and evolution of software products and services, e.g. in the
Android ecosystem. Oi implies that no single firm or other actor is sufficient for
developing new products and services; instead several loosely connected organi-
zational actors interplay. The Oi context is characterized by: (1) collaborative
efforts over single company/person work, (2) loose connections over contractual

1 http://www.swedsoft.se/Swedsoft_SRA_2010.pdf

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 48–59, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://serg.cs.lth.se
http://www.swedsoft.se/Swedsoft_SRA_2010.pdf

Engineering Open Innovation 49

agreements, (3) demonstrated results over predictions and (4) bottom-up specifi-
cation approaches. These differences in characteristics make software engineering
practices significantly challenging.

Software, with its flexibility in multiple aspects, is an excellent enabler for
innovation. On the other hand, this flexibility must be managed, not to lose
control over the software. Hence, software engineering (se) in an oi context is a
major research challenge since engineering practices for in-house, contract-based
development may not be feasible. Therefore, we set out to define a framework
to support software engineering for open innovation.

This paper presents result from an exploratory literature study that consti-
tutes the first step of our efforts towards building a framework that aims to
synthesize a scientifically founded software engineering framework for open in-
novation. We review existing literature and map existing research as a basis for
new research [3]. Our goal is to develop new or adapt existing practices into a
framework that meet challenges in the multi-organizational, heterogeneous open
innovation context.

This paper is structured as follows: Section 2 outlines definitions and back-
ground, Section 3 presents the literature review results. Section 4 outlines the
engineering open innovation framework while Section 5 outlines future research
directions and concludes the paper.

2 Background and Definitions

Open innovation was introduced by Chesbrough [4] as “a paradigm that assumes
that firms can and should use external ideas as well as internal ideas, and internal
and external paths to market, as the firms look to advance their technology” [4].
A more recent definition of open innovation by Lichtenthaler [5] focuses on “sys-
tematically relying on a firm’s dynamic capabilities of internally and externally
carrying out the major technology exploitation and acquisition tasks along the
innovation process”. This increased external stream of knowledge may result
in more disruptive innovations (i.e. taking large steps towards something new)
coexisting with sustaining innovations (i.e. continuously improving solutions to
create more value [6,7]). This, in turn, increases the pressure for software en-
gineering methods that can cope with increased interoperability, flexibility and
significantly enhanced engineering characteristics.

The Oecd defines four main types of innovation in the Oslo manual [8], prod-
uct, process, marketing and organizational. The inherent characteristics of soft-
ware enable novel approaches to all four types of innovation. Product innovation
(the software itself) may bring new value to customers at negligible production
and distribution costs. Process innovation involves new means of developing
software, e.g. OSS communities. Marketing innovations include new business
models, e.g. offering services at the price of being exposed to ads or sharing in-
formation. Organizational innovation includes new ways to work across different
actors, where open innovation is an example. All four types are interconnected
and therefore have to be researched in context.

50 K. Wnuk and P. Runeson

Android
hardware +

software
platform

Android
smartphone

Map
service
provider

Restaurant
finder app

User
Android
software
platform

Google ST-Ericsson Sony OpenMaps Startup X

Fig. 1. The Android eco-system as an example of a (partly) open innovation value
chain

An example of a (partly) open innovation value chain is illustrated through
the Android eco-system in Figure 1. Google provides the (semi-)open Android
software platform to device suppliers, which in turn adapt the platform to their
and their customers’ specific needs. The Android platform contains million lines
of code adapted for hundreds of products, various hardware products, wireless
network standards and database systems. Service providers may offer map ser-
vices tailored to the Android phones (e.g. OpenMaps), which other app providers
may utilize to derive specialized map services, e.g. a restaurant finder by a local
startup company. This innovation chain is driven by several actors in collabo-
ration and dependencies on one another, with different individual goals, time
scales, size of organization, techniques etc. As one actor in the chain evolves its
parts, others must follow, but no single actor is in full control.

OSS is a mechanism that may embody the principles of open innovation. Oss
is not a new phenomenon on its own, however the novelty in recent years is the
widespread adoption in industry, where closed innovation used to be the domi-
nating paradigm, which requires new approaches to software development [9]. A
recent literature survey about oss identified a research gap in the area of oss
and open innovation [10]. Software ecosystems could also be one of the types of
open innovation where a network of collaborators constituting an ecosystem is
open [11]. Finally, there is a need for processes supporting large-scale develop-
ment with open innovation; companies typically apply the same processes as used
in closed innovation [9], while there certainly are opportunities for more tailored
processes to improve the efficiency and effectiveness of the development [12].

3 Literature Review

We conducted a literature review using a hybrid approach by combining database
search (Compendex and Inspect), and snowball sampling. We selected a map-
ping study approach because our main goal was to explore the area rather than
synthesize the current state of the art [3]. We used the following search queries
(searched in titles, abstracts or subjects):

– open innovation AND requirements engineering
– open innovation AND software design
– open innovation AND software development
– open innovation AND software testing
– open innovation AND software
– software engineering AND innovation
– methodology OR method AND open innovation AND software

Engineering Open Innovation 51

Table 1. Classification of papers; research type according to Wieringa et al. [14]

Research type Techniques Tech & Proc Processes Methods

Validation [15] [16]
Evaluation1 [17] [18] [19]
Solution [20] [21] [22] [23] [24] [25] [26] [27]

[28] [29] [30] [31] [11]
Conceptual2 [32] [33]
Opinion [34] [35] [36] [37] [38] [39]
Experience [40] [41] [42] [43] [44] [45]
1 The original classification [14] only covers engineering research, while we here classify
also observational empirical studies as ‘Evaluation’, as they evaluate current practice.
2 Called ‘Philosophical’ originally.

– open innovation AND software as a service OR saas
– open innovation AND software AND eco system
– innovation AND software AND eco system

The above queries returned 1480 records that we checked by reading titles and, if
in scope, also abstracts. 32 papers were selected for full reading. We categorized
these papers into two dimensions; the first dimension categorized the articles
according to the topic of techniques, processes and research methods while the
second dimension of research type was created based on systematic mapping
guidelines [13,14]. The classification is summarized in Table 1.

3.1 Software Engineering Techniques for Open Innovation

Five papers discussed or suggested a specific software engineering method or
technique for an open innovation context. El-Sharjawy and Schmid proposed
and experimentally evaluated an approach for deriving creative triggers from a
knowledge map of requirements [15], in a paper of validation type. We iden-
tified two opinion papers: Petrenko and Petrenko discussed the challenges of
using formal methods to analyze requirements and work with legacy code that
can foster what they called Innovation Economy [34] while Grube and Schmid
suggested which creativity techniques are appropriate for requirements engineer-
ing [35]. A conceptual paper by Kauppinen et al. argued that practitioners do
not see requirements engineering as a creative process and suggested focusing on
“unarticulated needs” to unlock more innovation from requirements engineer-
ing processes and techniques [32]. A solution using social networks to document
ideas and thus foster open innovation was proposed by Singer et al. [20].

The remaining 9 papers in the Techniques category were also touching upon
the Processes category (see Section 3.2). We found two opinion papers: one fo-
cusing on how to avoid innovation lock-in from a pre-planned variability model
of a software product line [36] and one focusing on sharing the source code and
opening bug-tracking tools with the clients [37]. Next, an experience paper by
Copeland suggested new ways of communicating the information about test-
ing [40]. Theodore et al. studied how outsourcing can inject tangible forms of

52 K. Wnuk and P. Runeson

innovation [41] presenting an example of innovative testing methods (unfortu-
nately without detail about the methods) that originated from such a collabo-
ration and improved time-to-test by 90% and reduced cost by 70%.

Five papers, that we categorized in both the Techniques and Processes
categories, focused on software development. One experience paper focused on in-
vestigating how software startups can use opportunistic and pragmatic reuse to
develop innovative products [42]. One evaluation paper focused on how agile de-
velopment processes can become more open by utilizing outside-in and inside-out
process [17] models. Two solution papers proposed giving developersmore author-
ity on when and how to use innovative software development techniques [21] and
utilizing prototyping, agile methods, developers using products they develop and
sharing knowledge to foster innovation [22]. Finally, one validation paper experi-
mentally concluded that leaving the developers free to define their own develop-
ment processes is beneficial from the innovation diffusion perspective [16].

3.2 Software Engineering Processes That Foster Open Innovation

We categorized 14 articles as only concerning the software engineering processes
category. Ten papers presented various solutions, among which three supported
innovation selection processes by an audition-inspired process for screening, refin-
ing and selecting the most promising innovations [23], a knowledge management
scheme that supports transition of software innovations (also legacy systems)
to enterprise systems [24] and a method based on neuro-fuzzy decision trees for
innovation projects selection [25]. The prototyping approach to open innovation
was explored in two publications: Eklund and Bosch suggested turning the entire
R&D process into an innovation experiment system with direct customer involve-
ment in design decisions [26] while Bullinger et al. proposed an open prototyping
solution [27]. Misra et al. advocated using a GQM-based method to derive a mea-
surement framework for software innovation process [28] while Felfernig et al.
proposed utilizing artificial intelligence for open innovation in e-government con-
texts [29]. Jansen [11] focused on measuring the degree of openness of a software
organization. Two publications proposed solutions to explore open innovation
communities by visualizing people-innovation-networks [30] or modeling service
systems in terms of communities of co-innovation [31].

Among experience papers in this category, Hanssen [43] reported lessons
learned from opening up a software product line, observing that it improved the
ability to catch tacit requirements (related to unarticulated needs mentioned by
Kauppinen et al. [32]. Yilmaz discovered, based on a simulation, that decen-
tralized coordination schemes as well as moderate degrees of assertiveness result
in a higher incidence of innovation for open source software communities [44].
Carrero [45] discussed how service delivery platforms enable service providers to
achieve open innovation.

In a conceptual paper, Lyytinen and Damsgaard observed that the six conjec-
tures of diffusion of innovation need to be revisited for complex and networked
IT systems and additional issues should be considered [33]. In an evaluation pa-
per, Lane et al. concluded that finding a good balance between art and science,

Engineering Open Innovation 53

Technical
dimension

Methodology
dimension

Empirical data

Evaluation

Engineering
methods
& tools

Research
methods
Theory

Fig. 2. Overview of framework dimensions and their relations

allowing failures as a part of learning process, and trying different approaches
are important success factors for software innovative process [18]. To summarize,
although ten papers presented solutions [11,23,24,25,26,27,28,29,30,31] only one
evaluation paper was identified [18].

3.3 Software Engineering Research Methodologies

An opinion paper by Bayer and Melone discussed challenges in applying diffusion
theory for software engineering technological innovations, outlining seven limita-
tions [38]. Prechelt and Oezbek outlined a research method solution for studying
open source software process innovation, suggesting that grounded theory is fea-
sible for deriving mini-theories about process innovation, but not focusing strictly
on open innovation [39]. In an evaluation paper, Rossi et al. proposed a quan-
titative instrument (based on stochastic models) for measuring the assimilation
gaps in IT innovation [19]. No solution paper was identified in this category.

4 Engineering the OI–SE Framework

The literature review in Section 3 brings supporting evidence for our research ef-
forts. We identified only three evaluation papers, see Table 1, none strictly focus-
ing on open innovation and mostly reporting exploratory evaluations [17,18,19].
Both identified validation papers focused on internally derived innovations [15,16].
Among 12 identified solution papers, only four are devised for open innovation
[29,30,31,11].

We address the open innovation issues from a product and process innovation
point of view, in the intersection with marketing and organizational innovation
perspectives [8]. Based on the literature review, we propose a framework having
two main dimensions, one technical and one methodological. The dimensions are
mutually dependent, as the technical dimension is the empirical basis for the
methodological part, and the methodological part is needed for the technical
part. Figure 2 gives an overview of the project and its dimensions, which is
inspired by Hevner’s design science model [46] and Wieringa et al [47].

4.1 Technical Dimension

The technical dimension has two interrelated parts, see Figure 2: 1) software
engineering techniques, such as requirements engineering, software design, soft-
ware development and software testing techniques, and 2) software engineering

54 K. Wnuk and P. Runeson

processes as an integrating part of the above mentioned techniques. We be-
lieve (providing empirical evidence for our hypotheses is one of the goals of the
framework) that using appropriate techniques and analyzing the outcomes of
these techniques can foster open innovation.

Requirements: requirements engineering research has evolved from
concentrating on the specification problem in the 1990’s to pursuing wide and
open-ended investigations of the conception and strategic evolution of software
in relation to decision-making on enterprise, product/service and project lev-
els. The integrated strategic and tactical decision-making needed in large-scale
engineering projects is a key challenge for software engineering for open innova-
tion [48]. However, papers identified during the literature review focus mainly
on supporting the discovery of innovation [15,20,32,34].

We build on previous research and focus on release-planning [48,49], stake-
holder analysis, trade-off between effort (cost) and value and the degree of in-
novation in candidate features needed in evolving systems, to take significant
future market shares in open innovation software development [48,50].

Design: efficient software architectures for open innovation should enable
open and seamless integration of externally acquired modules. Among idenfitied
papers, Böckle [36] postulated that software product lines are generally hindering
innovation and that variability locks in innovation as it focuses on reusing the
same code and thus minimizing creative adaptations. Moreover, software product
lines are designed with a premise that the same code will be used for a long time,
which directly hinders disruptive innovation. Similarly, a software design with
high coupling may be hindering open innovation as new modules and sub-systems
could not be easily integrated. Thus, there seems to be a need for evolution from
traditional SPLs toward software ecosystems [36] which introduced necessary
flexibility in an organizational matter.

Development: is pair programming going to result in more innovation that
other programming techniques? This is just an example question that should
be investigated in the framework. Green suggested [21] that giving developers
more authority on when to use the development technique innovations helps
to actually use them rather than drop them. Sharing the source code and bug-
tracking system [37] or open prototyping [28] also seem to be fostering innovation.
However, identified studies focus on development processes rather than tech-
niques [16,17,21,28,22,37,26]. Among identified studies, Jansen [11] presented a
model for establishing the degree of openness of a software organization. Fur-
ther empirical investigations are needed to yield concrete examples of which
development techniques foster open innovation.

Testing: Software testing in open innovation has a dual role: 1) to verify func-
tions and characteristics of open components and services, supplied by others,
and 2) to verify functions and characteristics of services delivered to stakehold-
ers higher up in the value chain; ultimately end users. Since specifications and
contracts are sparse in the open innovation context, they have to be defined
otherwise.

Engineering Open Innovation 55

Test driven development is a method which has proven feasible in a dynamic
practice [51]. Its combination of specification and test [52] can be tailored for
use in open innovation. Software engineering in open innovation tends to be
very iterative, and thus regression testing is a key issue. We build on previous
findings [53,54] and adapt test selection and prioritization approaches to open
innovation, as well as using it to detect changes in the environment [55].

Efficient Processes: The move towards agile processes have substantially
changed software engineering practices during the last decade. The efficiency
of some practices have been empirically demonstrated [56], and the positive
attitudes of engineers “being in control” are witnessed [21,22,55]. Still, the ef-
ficiency of agile (or other) practices in open innovation is not targeted; our
review identified only one evaluation paper [17] and one validation paper [16] in
this area. Further, most studies either focus on the small or the large context,
e.g. [23,24,26,43], but in OI we have small contexts within the larger context.

We plan to investigate the issue of stakeholders and stakeholder representatives
in an open innovation context [55]. Further, mechanisms for synchronizing differ-
ent actors in the open innovation value chain are planned to be researched [48],
based on observations of different actors in open source projects [57]. We also
plan to explore how open source practices can support openness across groups
and other organizational borders within closed organizations. Findings should be
embodied in practice models for small actors in a large context, enabling growth,
as previously done on testing practices for small companies [58].

4.2 Methodological Dimension

Studying software engineering for open innovation must be an empirical endeavor
since we are addressing complex phenomena in the real world. The question is
which type of empirical study is to be conducted.

Prechelt and Oezbek conducted four studies on oss process innovation, and
concluded that using mailing list archives was the most efficient research method,
compared to direct participation and polling developers for data [39]. The easy
access to electronically searchable information is probably one of the key rea-
sons for the popularity on conducting research in oss archives, independently of
whether purpose of the research is open or proprietary software [59].

The scope of the open innovation framework is wider than oss projects only.
This, combined with general advice on using research method triangulation, lead
us to propose combining archival studies with participant-observer studies [60],
to enable insights into the dynamics of the open innovation.

Building synthesized knowledge from the empirical observation needs repli-
cation of studies [61], synthesis of findings from several empirical studies [62],
as well as work in theory building [63]. However, these needs are general for
software engineering, and not specific to the open innovation aspects.

56 K. Wnuk and P. Runeson

5 Conclusions

Our review of the related literature remains incomplete (the results presented in
Section 3 are preliminary). However, we can identify three research areas where
both researchers and practitioners can benefit: (1) providing practical guidelines
for selecting the most appropriate requirements engineering, software design,
software development and software testing techniques for open innovation, (2)
researching software engineering processes that support open innovation and (3)
finding new research methodologies for conducting software engineering research
in open innovation contexts.

In the intersection between different types of innovation (product, process,
marketing and organizational [8]), there is a significant potential for software
innovations. Especially the intersection between software engineering and open
innovation lacks empirical research, as shown in our literature review, which we
hope and aim that our research framework will foster.

Future work should focus on investigating if the presented framework could sup-
port the intrinsic creativity and unpredictability of innovation. Furthermore, we
plan to explore and possible identify activities that can not be clearly categorized
into the four traditional software development process steps. As we only searched
Compendex and Inspect, more databases should be searched and the literature re-
view should be replicated in a systematic way. Finally, we plan to investigate the
possible relationships between the business models and open innovation.

Acknowledgements. The authors would like to thank David Callele for excel-
lent reviews of this paper. This work is founded by the SYNERGIES project,
Swedish National Science Foundation, grant 621-2012-5354.

References

1. Quinn, J.B., Baruch, J.J., Zien, K.A.: Software-based innovation. Sloan Manage-
ment Review 37(4), 11–24 (1996)

2. Achatz, R.: Product line engineering at siemens – challenges and success factors:
A report on industrial experiences in product line engineering. In: 2011 15th In-
ternational Software Product Line Conference (SPLC), pp. 10–11 (August 2011)

3. Kitchenham, B.A., Budgen, D., Brereton, O.P.: Using mapping studies as the basis
for further research - A participant-observer case study. Information & Software
Technology 53(6), 638–651 (2011)

4. Chesbrough, H.: Open Innovation: The new imperative for creating and profiting
from technology. Harvard Business School Press, Boston (2003)

5. Lichtenthaler, U.: Open innovation in practice: An analysis of strategic approaches
to technology transactions. IEEE Trans. on Eng. Mgmt 55(1), 148–157 (2008)

6. Khurum, M., Gorschek, T., Wilson, M.: The software value map — an exhaus-
tive collection of value aspects for the development of software intensive products.
Journal of Software: Evolution and Process, n/a–n/a (2012)

7. Khurum, M., Aslam, K., Gorschek, T.: A method for early requirements triage
and selection utilizing product strategies. In: Proc. of the 4th Asia-Pacific Software
Engineering Conf. APSEC 2007, pp. 97–104. IEEE Computer Society (2007)

Engineering Open Innovation 57

8. Oslo Manual – Guidelines for collecting and interpreting innovation data. 3rd edn.
OECD and Eurostat (2005)

9. Höst, M., Oručević-Alagić, A., Runeson, P.: Usage of open source in commer-
cial software product development - findings from a focus group meeting. In:
Caivano, D., Oivo, M., Baldassarre, M.T., Visaggio, G. (eds.) PROFES 2011.
LNCS, vol. 6759, pp. 143–155. Springer, Heidelberg (2011)

10. Höst, M., Orucevic-Alagic, A.: A systematic review of research on open source
software in commercial software product development. Information and Software
Technology 53(6), 616–624 (2011)

11. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: Opening
up a software producing organization with the open software enterprise model.
Journal of Systems and Software 85(7), 1495–1510 (2012)

12. Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source soft-
ware development: Apache and mozilla. ACM Trans. Softw. Eng. Methodol. 11(3),
309–346 (2002)

13. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic mapping studies in
software engineering. In: Proc. 12th Int. Conf. Evaluation and Assessment in Soft.
Eng. EASE 2008, pp. 68–77. British Computer Society, UK (2008)

14. Wieringa, R., Maiden, N., Mead, N., Rolland, C.: Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion. Requirement
Engineering 11, 102–107 (2006)

15. El-Sharkawy, S., Schmid, K.: A heuristic approach for supporting product inno-
vation in requirements engineering: a controlled experiment. In: Berry, D. (ed.)
REFSQ 2011. LNCS, vol. 6606, pp. 78–93. Springer, Heidelberg (2011)

16. Tortorella, M., Visaggio, G.: Empirical investigation of innovation diffusion in a
software process. International Journal of Software Engineering and Knowledge
Engineering 9(5), 595–621 (1999)

17. Conboy, K., Morgan, L.: Beyond the customer: Opening the agile systems devel-
opment process. Inf. and Soft. Techn. 53(5), 535–542 (2011)

18. Lane, J.A., Boehm, B., Bolas, M., Madni, A., Turner, R.: Critical success factors
for rapid, innovative solutions. In: Münch, J., Yang, Y., Schäfer, W. (eds.) ICSP
2010. LNCS, vol. 6195, pp. 52–61. Springer, Heidelberg (2010)

19. Rossi, B., Russo, B., Succi, G.: Path dependent stochastic models to detect planned
and actual technology use: A case study of openoffice. Inf. and Soft. Techn. 53(11),
1209–1226 (2011)

20. Singer, L., Seyff, N., Fricker, S.A.: Online social networks as a catalyst for software
and it innovation. In: Proc. of the 4th Int. Workshop on Social Soft. Eng. SSE
2011, pp. 1–5. ACM, New York (2011)

21. Green, G., Hevner, A.: The successful diffusion of innovations: guidance for software
development organizations. IEEE Soft. 17(6), 96–103 (2000)

22. Moe, N.B., Barney, S., Aurum, A., Khurum, M., Wohlin, C., Barney, H.T.,
Gorschek, T., Winata, M.: Fostering and sustaining innovation in a fast growing
agile company. In: Dieste, O., Jedlitschka, A., Juristo, N. (eds.) PROFES 2012.
LNCS, vol. 7343, pp. 160–174. Springer, Heidelberg (2012)

23. Gorschek, T., Fricker, S., Palm, K.: A lightweight innovation process for software-
intensive product development. IEEE Soft. 27(1), 37–45 (2010)

24. Corbin, R.D., Dunbar, C.B., Zhu, Q.: A three-tier knowledge management scheme
for software engineering support and innovation. Journal of Systems and Soft-
ware 80(9), 1494–1505 (2007)

58 K. Wnuk and P. Runeson

25. Hongxia, J., Jianna, Z., Xiaoxuan, C.: The application of neuro-fuzzy decision
tree in optimal selection of technological innovation projects. In: Eighth ACIS
International SNPD Conference, vol. 3, pp. 438–443 (August 2007)

26. Eklund, U., Bosch, J.: Architecture for large-scale innovation experiment systems.
In: Working IEEE Conf. on Soft. Architecture, pp. 244–248 (2012)

27. Bullinger, A.C., Hoffmann, H., Leimeister, J.M.: The next step - open prototyping,
Helsinki, Finland (2011)

28. Misra, S.C., Kumar, V., Kumar, U.: Goal-driven measurement framework for soft-
ware innovation processes. In: Arabnia, H.R., Reza, H. (eds.) Proc. of the Int. Conf.
on Soft. Eng. Research and Practice, pp. 710–716. CSREA Press (2005)

29. Felfernig, A., Russ, C., Wundara, M.: Toolkits supporting open innovation in e-
government. In: Proc. of the Sixth Int. Conf. on Enterprise Information Systems,
Porto, Portugal, pp. 296–302 (2004)

30. Friess, M., Groh, G., Reinhardt, M.: Supporting open innovation communities by
an interactive network visualization. In: Proceedings of the IADIS International
Conferences, New York, NY, USA, pp. 23–28 (2010)

31. Janner, T., Schroth, C., Schmid, B.: Modelling service systems for collaborative
innovation in the enterprise software industry - the st. gallen media reference model
applied. In: IEEE Int. Conf. on Services Computing, vol. 2, pp. 145–152 (2008)

32. Kauppinen, M., Savolainen, J., Mannisto, T.: Requirements engineering as a driver
for innovations. In: 15th IEEE Int. Req. Eng. Conference, pp. 15–20 (2007)

33. Lyytinen, K., Damsgaard, J.: What’s wrong with the diffusion of innovation theory.
In: Fourth Working Conf. on Diffusing Software Products and Process Innovations,
pp. 173–190. Kluwer, B.V, The Netherlands (2001)

34. Petrenko, A.K., Petrenko, O.L.: Formal methods and innovation economy: Facing
new challenges. In: Proc. of the 6th IEEE Int. Conf. on Software Engineering and
Formal Methods, SEFM 2008, pp. 367–371. IEEE CS, Washington, DC (2008)

35. Grube, P., Schmid, K.: Selecting creativity techniques for innovative requirements
engineering. In: 3rd Int. Workshop on Multimedia and Enjoyable Requirements
Engineering, pp. 32–36 (September 2008)

36. Böckle, G.: Innovation management for product line engineering organizations. In:
Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 124–134. Springer,
Heidelberg (2005)

37. Riepula, M.: Sharing source code with clients: A hybrid business and development
model. IEEE Software 28(4), 36–41 (2011)

38. Bayer, J., Melone, N.: A critique of diffusion theory as a managerial framework for
understanding adoption of software engineering innovations. Journal of Systems
and Software 9(2), 161–166 (1989)

39. Prechelt, L., Oezbek, C.: The search for a research method for studying oss process
innovation. Empirical Softw. Engg. 16(4), 514–537 (2011)

40. Copeland, P.: Google’s innovation factory: Testing, culture, and infrastructure. In:
Third Int. Conf. on Soft. Testing, Verification and Validation, pp. 11–14 (April 2010)

41. Forbath, T., Brooks, P., Dass, A.: Beyond cost reduction: Using collaboration to
increase innovation in global software development projects. In: IEEE Int. Conf.
on Global Soft. Eng (ICGSE), pp. 205–209 (August 2008)

42. Jansen, S., Brinkkemper, S., Hunink, I., Demir, C.: Pragmatic and opportunistic
reuse in innovative start-up companies. IEEE Soft. 25(6), 42–49 (2008)

43. Hanssen, G.K.: Opening up software product line engineering. In: Proceedings of
the 2010 ICSE Workshop on Product Line Approaches in Software Engineering,
PLEASE 2010, pp. 1–7. ACM, New York (2010)

44. Yilmaz, L.: An agent simulation study on conflict, community climate and innova-
tion in open source communities. IJOSSP 1(4), 1–25 (2009)

Engineering Open Innovation 59

45. Carrero, M.: Innovation for the web 2.0 era. Computer 42(11), 96–98 (2009)
46. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS Quarterly 28(1), 75–105 (2004)
47. Wieringa, R., Daneva, M., Condori-Fernández, N.: The structure of design theories,

and an analysis of their use in software engineering experiments. In: Proc. 5th Int.
Symp. on Empirical Software Engineering and Measurement, pp. 295–304. IEEE
(2011)

48. Wnuk, K., Pfahl, D., Callele, D., Karlsson, E.A.: How can open source software
development help requirements management gain the potential of open innovation:
an exploratory study. In: Proc. of the ESEM 2012 Symposium, pp. 271–280. ACM,
New York (2012)

49. Carlshamre, P., Sandahl, K., Lindvall, M., Regnell, B., Natt och Dag, J.: An indus-
trial survey of requirements interdependencies in software product release planning.
In: 5th IEEE Int. Symposium on Req. Eng., Toronto, Canada, pp. 84–93 (2001)

50. Wnuk, K., Callele, D., Regnell, B.: Guiding requirements scoping using roi: Towards
agility, openness and waste reduction. In: 18th IEEE International Requirements
Engineering Conference, Sydney, Australia, pp. 409–410 (2010)

51. Williams, L., Maximilien, E., Vouk, M.: Test-driven development as a defect-
reduction practice. In: 14th Int. Symp. on Soft. Reliability Eng., pp. 34–45 (2003)

52. Regnell, B., Runeson, P.: Combining scenario-based requirements with static ver-
ification and dynamic testing. In: 4th Int. Working Conference Requirements En-
gineering: Foundation for Software Quality, pp. 195–206 (1998)

53. Engström, E., Runeson, P.: A qualitative survey of regression testing practices. In:
Ali Babar, M., Vierimaa, M., Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp.
3–16. Springer, Heidelberg (2010)

54. Engström, E., Runeson, P., Skoglund, M.: A systematic review on regression test
selection techniques. Information and Software Technology 52(1), 14–30 (2010)

55. Karlström, D., Runeson, P.: Integrating agile software development into stage-gate
managed product development. Emp. Soft. Eng. 11(2), 203–225 (2006)

56. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information and Software Technology 50(9-10), 833–859 (2008)

57. Oručević-Alagić, A., Höst, M.: A case study on the transformation from proprietary
to open source software. In: Ågerfalk, P., Boldyreff, C., González-Barahona, J.M.,
Madey, G.R., Noll, J. (eds.) OSS 2010. IFIP AICT, vol. 319, pp. 367–372. Springer,
Heidelberg (2010)

58. Karlström, D., Runeson, P., Nordén, S.: A minimal test practice framework for
emerging software organizations. Soft. Testing, Verification and Reliability 15(3),
145–166 (2005)

59. Robinson, B., Francis, P.: Improving industrial adoption of software engineering
research: a comparison of open and closed source software. In: Proceedings of the
ESEM Conference. ACM, Bolzano (2010)

60. Runeson, P., Höst, M., Rainer, A.W., Regnell, B.: Case Study Research in Software
Engineering. Guidelines and Examples. Wiley (2012)

61. Schmidt, S.: Shall we really do it again? the powerful concept of replication is
neglected in the social sciences. Review of General Psych. 13(2), 90–100 (2009)

62. Cruzes, D.S., Dyb̊a, T., Runeson, P., Höst, M.: Case studies synthesis: Brief experi-
ence and challenges for the future. In: Proceedings of the 2011 ESEM Symposium,
Banff, Canada (2011)

63. Sjøberg, D.I.K., Dyb̊a, T., Anda, B., Hannay, J.E.: Building theories in software
engineering. In: Guide to Advanced Empirical Soft. Eng. Springer (2008)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 60–72, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Improving Businesses Success by Managing Interactions
among Agile Teams in Large Organizations

Antonio Martini, Lars Pareto, and Jan Bosch

Software Engineering Division
Chalmers University of Technology, University of Gothenburg

Göteborg, Sweden
{antonio.martini,pareto,jan.bosch}@chalmers.se

Abstract. To achieve successful business, large software companies employ
Agile Software Development to be fast and responsive in addressing customer
needs. However, a large number of small, independent and fast teams suffer
from excessive inter-team interactions, which may lead to paralysis. In this
paper we provide a framework to understand how such interactions affect
business goals dependent on speed. We detect factors causing observable
interaction effects that generate speed waste. By combining data and literature,
we provide recommendations to manage such factors, complementing current
Agile practices so that they can be adapted in large software organizations.

Keywords: Agile software development, inter-team interaction, speed, large
scale software engineering, software business.

1 Introduction

Large software industries strive to make their development processes fast and more
responsive with respect to customer needs, minimizing the time between the
identification of a customer need and the delivery of a solution. An open issue is how
to scale Agile Software Development (ASD) from successful small software projects
[1] to large software companies. One successful approach is to split the products in
components and features and to parallelize the development using small, fast teams
[3]. However, such approach brings the drawback that a team requires interaction
with many other teams [19]. The support for such interactions with a high number of
teams or with the surrounding organization in Agile methods is weak and not well
explored [13]. Some studies highlighted how interaction issues often cause
inefficiencies [2],[6],[24],[22], and hinder the speed benefits gained by the
parallelization of the development [24]. Also, delays in interaction due to
synchronization may turn fast individual teams into slow and frustrated teams
constantly forced to wait for others, hindering the fast release of features [3].

There may be several reasons why the teams lose time to interact and to carry out
tasks related to such interaction. This speed waste decreases their interaction speed
and therefore their overall speed.

The purpose of this study is to identify the drawbacks of ASD employed in large-
scale software companies related to interaction speed and their impact on business
goals depending on speed.

 Improving Businesses Success by Managing Interactions 61

The research questions addressed in this paper are the following: in the context of
large scale ASD,

RQ1 What is inter-team interaction speed?
RQ2 How does inter-team interaction speed affect software business?
RQ3 What factors influence negatively inter-team interaction speed?
RQ4 How can a practitioner detect and manage such factors to increase inter-team
interaction speed?

The paper investigates these questions through a multiple-case case-study with three
software companies employing large scale ASD. We conducted exploratory group
interviews, followed by qualitative data analysis, and member checking sessions.

Our contributions are:

• We define a notion of interaction speed as an externally visible property of
organizational boundaries.

• We describe the impact of interaction speed on business goals dependent on speed.
• We identify factors associated with ASD that cause effects with negative influence

on inter-team interaction speed.
• We provide recommendations based on the interviews and the exiting literature.

The paper is organized as follows. In section 2 we outline existing literature on this
subject, section 3 describes our theoretical framework that defines our notion of
interaction speed. Section 4 describes our research design, section 5 our results
(factors, effects and the mitigation practices). Then we discuss the applicability of our
results to reach business goals (Section 6) and the limitations of the study (section 7).
The paper ends with our conclusions, in Section 8.

2 Literature Review

When surveying the literature, we have found a constant dilemma between, on the one
hand, the need to create fast and independent Agile teams [3] and, on the other hand,
the need to increase inter-team communications [12]. We found important to
understand what interactions are affecting speed and what the causes are. Researchers
in Global Software Development have studied interaction problems with the focus on
geographically distributed teams [13,12,18,19]. Recommendations found in [12]
(Optimally Splitting Work across Sites, Increasing Communication, Finding Experts,
Awareness) have shown to be important also in large organizations that are
considered co-located. This suggests that in large software organizations, even if
co-located, the size of the project creates some of the effects as the geographically
distributed teams. Therefore, our research may be of value for GSD and vice-versa. In
[7] the authors studies how knowledge management affects the coordination of teams.
A critical characteristic of ASD in interactions is the informal communication: it has
been considered of value for managing volatile requirements, which makes the
development flexible but creates challenges for inter-team communication and
coordination [17]. In [18] informal communication is suggested as working well for
XP with a strong bridgehead between the teams.

62 A. Martini, L. Pareto

A socio-technical frame
been studied in [4]. Howev
the ongoing interactions am
artifacts are not available an
Thus we found important to

Most of the abovementi
perspectives. In [24] the f
practices in communication
provides a set of factors-eff
factors that we haven’t foun
an opposite perspective on
claimed to influence group

3 Theoretical Fram

Our theoretical framework
continuously updated durin

We define speed (borro
delivered value (DV) divid
perception of a need and de
is divisible into the time to
time to commitment (tC), a
We recognize the special c
customer and the value deli

A company that seeks to
must manage three end-to-e
lead to new product offers (
are replicated in new produ
request to an existing produ

End-to-end speeds, in tu
organizational units), resolv

Interaction speed relates
teams at the customers and
between a product manage
involves several sub-interac

, and J. Bosch

work for evaluating technical and work dependencies
ver, such framework heavily relies on artifacts represent
mong the employees, which requires reliable artifacts. S
nd are not representative in an informal ASD environm
o understand the interactions in such an environment.
ioned works study only parts of the problem from seve
focus is similar to ours, but the studied impact of Ag
n is not related to speed and business goals. Our framew
fects affecting speed, and recommendations to handle s
nd in literature. The research in social psychology prese
n speed and interactions, in which time boundaries
performance and interaction process [15].

mework

is based on an initial a priori framework, which has b
g the study and the analysis of the data [5].

owing the concept from kinematics) as the amount of
ed by the value delivery time (VDT): the time between
elivery of value by some external party. (See fig. 1). V
o identify the party (tN), time until call for action (tA),
nd the time to delivery of value by the external party (
ase of end-to-end speed, where the need is perceived b
ivered by a supplier.

Fig. 1. The definition of speed

o optimize its return of investment of R&D (ROI of R&
end speeds (Fig. 2). The speed with which customer ne
(1st Deployment speed), the speed with which new featu
ucts (Replication speed), and the speed with which cha
uct are realized (Evolution speed).
urn, depend on interaction speed: how fast teams (or ot
ve each others’ needs. (Fig 3).
s to both inter-organizational interaction (e.g., betw
the client side) and intra organizational interactions (e

ement team and a team in a design unit). Each interact
ctions that address sub-needs, and also third party teams

has
ting
uch

ment.

eral
gile

work
uch
ents
are

been

the
the

VDT
the

(tD).
by a

&D)
eeds
ures
ange

ther

ween
e.g.,
tion
s.

 I

Fig. 2. Three kinds of e

Fig. 3. Inter

Fig. 4. Factors creat

Interaction speed depen
individual factors that may
we must 1) understand wha

In this paper we focus on
fixed DV to be delivered, i
waste if it is either causing
decreasing speed (Fig 4).
wastes.

Improving Businesses Success by Managing Interactions

nd-to-end speed and their dependency on interaction speed

ractions, sub-interactions, and interaction speed

ting or influencing interactions generating Speed Waste

nds on a number of organizational, architectural,
or may not be managed (Fig. 2). To optimize ROI of R

at these factors are, and 2) find strategies to manage them
n the impact of interactions on VDT (we assume to hav
i.e. a set of features). We say that a factor generates sp
g or delaying interaction, which in turn increments V
The total speed waste (W) is the sum of all such sp

63

and
&D

m.
ve a
peed
VDT
peed

64 A. Martini, L. Pareto, and J. Bosch

4 Research Design

We planned a multiple-case case study with engineers and managers in product
developing organizations. Our unit of analysis is the cross functional agile team and
the phenomena of interest the interaction speed from the perspective of such teams.

Case Selection: To bring out the complexities of interaction, organizations were to
be product-developing companies, with significant maintenance activities, and at least
100 developers. The companies studied were to have several years of experience of
ASD. The cases chosen were three large companies with extensive in-house
embedded software development. All were situated in the same geographical area
(Sweden), but they were active on different international markets. For confidentiality
reasons, we will call the companies A, B and C.

Case Description: Company A was a manufacturer of telecommunication systems
product lines. The customers receive a platform and pay to unlock new features. The
organization was split in cross-functional teams, most of which with feature
development roles. Some of the teams had special supporting roles (technology,
knowledge, architecture, ect.). Most of the teams used their preferred variant of ASD
(often Scrum). Features were developed on top of a reference architecture, and the
main process consisted of a pre-study followed by few (ca. 3) sprint iterations before
the feature was deployed.

Company B was a manufacturer of utility vehicles; the team developed a
communication subsystem for one of their product lines. In this environment, the
teams were partially implementing ASD (Scrum). Some competences were separated,
e.g. System Engineers sat separately. Special customers requesting special features
drove the business, and speed was important for the business goals of this company.

Company C was involved in the automotive industry. Some of the development
was done by suppliers, some by in-house teams following Scrum. The surrounding
organization was following a stage-gate releasing model. The team we studied
developed in-house software, served some projects with different releasing deadlines.

Data collection: data collection was structured in three phases: initial workshops
with participants from A, B and C; focus group meetings; validation sessions for
reviewing the results.

In the first phase, we conducted semi-structured group interviews with team
members (developers and architects), line managers and process specialists.
Interviews included participants with mixed roles and revolved around Figures 1-3.

In the second phase we ran 3 focus groups, one for each company. We studied the
phenomenon from the team perspective. We included senior developers, team leaders,
architects and testers. In this phase we focused on extracting the main factors that
were causing or influencing interaction speed. We ran the focus groups separately for
each company. We discussed the problem by using models 1-3, then we asked the
participants for situations in which the team was suffering from interaction and finally
we injected the information from the previous sessions.

In the third phase, after the data analysis, we ran an interview session for each
company for validation purposes. Some of the same participants were involved in this
process, to adjust researcher’s representation of the data. Finally, a short validation
workshop with 2 employees from all the companies was conducted.

 Improving Businesses Success by Managing Interactions 65

Data Analysis: After each session we analyzed the recorded interviews to develop
models and first results to be discussed in the following sessions. The analysis of the
data was carried out between the phase 2 and 3 and also afterwards, to refine the
results. We inductively further developed the initial theoretical frameworks and we
populated them with factors, effects and improvement practices emerging from the
data. We defined each factor, classified it as either generating or influencing
interaction, classified by polarity, and illustrated the importance of managing the
factor to increase interaction and end-to-end speed. We have also extracted some
suggestions for improvement practices, although such hypothesis need further
research.

Synthesis: On the basis of this analysis and suggestions by the informants in
interview data, we formulated mitigation strategies for the factors found. Such factors
and the mitigation strategies were reported back to informants, and the feedback
recorded, analyzed and incorporated in our results.

5 Findings

In the following we show the factors and the effects distilled from the analysis.
We have identified 10 Root Factors, all manageable. Each factor produces one or
more interaction effects that are observable in the company. Such effects (and the
factors as well) have a negative influence on interaction speed. We have recognized
8 effects:

Table 1. Effects and their explanation

E1. Long waiting
time to comm.

A team has to wait before communicating with other ones. This increases
tN, tA or tC (Fig. 1).

E2. Long waiting
time for value

As the previous one, but the team is waiting for the realization time tD
needed from the other team to deliver the value.

E3. Intense
communication

Each instance of inter-team communications requires a long time. Again,
this may influence tN, tA or tC.

E4. Corrupted
communication

The information received by the team is insufficient to deliver the
requested value. This, in turn, may cause intense communication or high
interaction frequency (see E5).

E5. High
interaction
frequency

The number of interactions between two teams is too high (i.e. it clearly
hinders the focus on the current development). An instance of this effect
occurs when a member in the team is continuously consulted for his or her
knowledge by many other teams. This phenomenon has also been called
“backpacking” in the interviews.

E6. High task
frequency

A single interaction may require many tasks to be carried out in order to
deliver the value.

E7. Heavy
interaction tasks

The time tD is long because of the large amount of time required for
carrying out the task to deliver the value.

E8. Corrupted
value

A (sub-) value has to be delivered to complete the interaction. However,
the received value doesn’t satisfy the need that started the interaction.

66 A. Martini, L. Pareto, and J. Bosch

The length and frequency mentioned for characterizing the effects are not defined
in detail because of the exploratory nature of the study: we have used “long” and
“high” to emphasize what seems to be “too much” from the interviews. The same
holds for “high frequency”. We couldn’t establish a specific threshold for the
frequency: however, a higher number clearly corresponds to the increment of VDT.

In the following we list 10 Root Factors. For each, we give a definition and we
explain what interaction effects they cause in terms of speed. We also explain how
they are connected to ASD and what recommendations we suggest, based of the data
and the literature.

Table 2. Root Factors

F1.
Knowledge
unavailability

If a team doesn’t have all the knowledge to develop a feature independently,
they will try to interact with an expert outside the team, creating interactions. The
may have to wait for the expert to be available. The team may alternatively decide
to make assumptions on the answers that lead to redo most of the work. The
expertise may encompass different kinds of knowledge, such as domain, product
architecture and technical knowledge [7]. This factor is connected to ASD and the
trend of defining small and self-sufficient teams: the more independent they are, the
more isolated, the less effective inter-team communications might be [16].
Recommendation R1: make available part-time experts serving different teams
and covering critical knowledge (the most requested one). The idea is to decrease
the workload in the actual team that is not related to the critical expertise from the
expert and make him an inner consultant serving the other teams. Grouping
interactions in a defined time-box would avoid high frequency of interactions. This
involves a process of identifying the critical knowledge, allocating time to the
expert broadcasting the information of such availability to the teams.

F2.
Expert’s
reputation

If an employee has a high reputation of having a specific knowledge, the person
will be contacted often. Reputation is not only based on the real knowledge of an
employee, but rather on his or her social reputation. ASD principles value social
interactions over formal knowledge, amplifying the effects of this factor on
interaction speed (as also hypothesized in [12]). Thus, some experts might be more
consulted than others because of their social status: this might unbalance the
interactions among the teams.

F3.
Unclear
requirements

The team receives requirement specifications for the features. They may have
two interaction problems: the long waiting time before the team is able to receive
the specification, or the continuous interaction for clarification of the requirements
afterwards. The two problems are connected, according to the interviewees: the
time spent on the feature preparation determines the quality of the specification,
which influences the elaboration time by the team. Recommendation R2: the time
spent on creating requirements and architecture artifacts might be decreased in
order to start the development as soon as possible: to counter balance this approach,
part-time roles of architects and product owners should be established in order to
provide constant support to the team during development, avoiding the continuous
interaction for clarification.

F4.
Unexpected
 Feature
Dependencies

Two features may be designed to interact with each other through APIs or
through a component. In some cases, dependencies pop up unexpectedly, e.g. due to
indirect (software) interactions or because of socio-techincal reasons (as studied in
[4]). The team needs to negotiate APIs or to frequently merge changes on a shared
component. The dependencies problem is not covered by any known Agile practice.
Recommendation R3: In this case, as in other kinds of team (see F3), a brigdehead
between the two teams would help coordination. Face-to-face communication is
infact beneficial as highlighted in [11]

 Improving Businesses Success by Managing Interactions 67

Table 2. (Continued.)

F5.
No co-location

Large organizations are forced to spread teams in space. According to our
interviews, even the distance of one floor makes them distributed, with consequent
delays and lack communication and commitment. Recommendation R4: The
interviews suggest that the teams that have to interact more intensely should be
located closer. It can be considered as another level of co-location with respect to
intra-team co-location. Even if something like “inter-team co-location” is not
mentioned by ASD per se, it can be considered an extended version of the intra-
team co-location suggested by the Agile principles. There are also attempt in
literature to mitigate this factor in GSD, e.g. [23],[8]

F6.
Lack of
common time

Teams may need to synchronize in meetings, which requires common available
time. If a team decides to not allocate time for interaction or the allocated time-slots
don’t match, there is a lack of communication or long waiting times. Causes may be
the different locations, different time zones (or with different slots of working
hours), calendar interferences or low prioritized interaction. This has also been
highlighted in [12].

Recommendation R5: some agile practices, such as SCRUM, include support
for meetings between SCRUM masters. However, other kinds of programmed
available time could be considered, e.g. as mentioned in [14]. R6: Also shared
calendars would help provide better alignment [12].

F7.
Mismatch of
team’s styles
of
communicatio
n

Different teams may have different “styles” of communication, which may
cause delays: e.g. one team mainly uses e-mails and doesn’t want to meet in person,
whilst the other doesn’t reply often to e-mails and is used to communicate through
face-to-face meetings. The effect is a lack of communication. Another issue may be
the different uses of knowledge containers such as boundary objects (e.g. wikis).
The Agile culture of letting teams have their customized processes somehow
encourages this mismatch. Recommendation: inter-team interfaces between team
that need interactions should be improved, for example, with bridgeheads,
employees having a strong influence in more than one team ([18] and R3). This
could also affect the study and the composition of the teams: each team would
require the presence of someone socially connected to another team that requires a
lot of interactions. Also R2 may be applied, if architecture or product management
teams are involved. Some other practices can be found in communication literature,
e.g. [11], [23].

F8.
Slow resource
indexing

When a member of a team needs to interact, he or she needs to find the correct
person or team to interact with. The time spent on such activity (tN, Fig. 1) may be
long and therefore delaying. The informality suggested in ASD seems to work as an
amplifier for this factor. The choice of consulting people over formal documents
creates “Backpacking” (see E5).

F9.
Low
prioritized
interaction

Once an interaction is needed, the involved parts (single employees or whole
teams) have to prioritize the interaction as an on-going task. If the interaction is
considered as “low priority”, the team will delay tasks and communication,
hindering the other team(s) involved. Recommendation R7: Tools for creating
awareness would help in the understanding the overall situation of the involved
teams [12]. Again, the presence of people also connected to other teams would
enhance commitment (R3, R2).

F10.
Inter-personal
conflicts

Two employees in different teams (or even the whole teams) may consider each
other “enemies” (for personal or political reasons). Interactions between these
employees may be strongly hindered by delays and corrupted information. Again, a
work environment strongly built on social interactions may amplify this factor.
Some recommendations for this factor have been suggested on different levels in
[10]. However, some social aspects in software development and related (agreed)
guidelines need further research [10],[21]. The authors in [20] also suggest that
these conflicts may be rooted in unclear requirements (F7).

68 A. Martini, L. Pareto

Finally, we can see, in ta

Table 3. Factors causing o

6 Discussion

In this section we explain w
the factors can be disco
practitioners (managers or t

As explained in [22] an
Return of Investment: 1st d
Interaction speed affects all

• 1st Deployment Speed: w
is affected by the intera
features. This kind of
competitors. Fast deploy

• Replication Speed: when
are needed between the
had developed the form
for the 1st deployment sp
based on the existing sof

• Evolution Speed: when a
will affect other features
a change request can be

Managers want to reach
schedules may be due to sp
they need the team(s) to ob
or more root factors (F1-F

, and J. Bosch

able 3 below, which factor is responsible for which effec

observable effects with negative influence on interaction speed

why our results are relevant for the software business, h
overed and how recommendations can be applied
teams).

nd in Fig. 2, there are three end-to-end speeds influenc
deployment speed, replication speed and evolutions spe
l of them, as explained in the following paragraphs.

when a set of features is released for the first time, the sp
action speed among the teams that have to integrate

speed helps hitting the market fast to anticipate
yment speed also shortens the loop in market testing.
n a feature is embedded in a previous release, interacti
team responsible for the new features and the teams t

mer ones. Replication increases ROI when the effort m
peed is spread on the release of new products and servi
ftware.
a feature needs to be changed after its release, such chan
s, requiring interactions again. The speed in reacting up
critical for gaining the trust of the customers.

the abovementioned business goals. Delays over
peed wasted in interactions. Managers may recognize it
bserve the effects E1-E8. Since each effect is related to
F10), managers can immediately investigate the status

ct.

d

how
by

cing
eed.

peed
the
the

ions
that

made
ices

nges
pon

the
but
one
s of

 I

such factors in the teams to
connections between factor
manager, who saves time a
team and the manager
recommendations (R1-R7).

Fig. 5

The results reveal that t
root factors hindering inter-
that do not (or limitedly) a
these factors when implem
the data, the comparison
literature, we have summa
which need to be refined by
We have linked the recomm
an effect is visible, the pra
the given recommendations

Agile practices (in small
site In large companies, th
architecture and it has to ne
the team has more than on
teams. Following the “cust
available and provide fast f
in the organization of part-t
social/formal bridgeheads a
be identified and made av
multiple teams. As mention
align with them: shared cal
teams synchronizing. Anoth
practice” are proposed as p
teams and to spread knowl
political dynamics may be
to mitigate conflicts [10],[1
to be carefully developed
models [25]) in order to inc

Improving Businesses Success by Managing Interactions

o find which one is the cause for the effect. In Table 2,
rs and effects reduce the solution space for the investigat
and resources. In case the factors are recognized, both
(depending on the factor) may decide to apply
 This process is outlined in Fig. 5.

5. How the practitioner can use our results

the employment of ASD in large organization brings n
-team interaction speed and amplifies some of known o
appear in small projects. Practitioners should be aware

menting ASD in large organizations. From the synthesis
of the factors with Agile principles and solutions fr
arized a set of recommendations in form of guidelin
y further research, aimed at managing the factors (R1-R
mendations with the factors (Table 2): this way, whene
actitioner could check the corresponding factors and ap
s (or an adaptation to the company’s current situation).
l contexts) stress the importance of having the customer
e team has to follow requirements defined by a refere

egotiate various kinds of requirements with other teams,
e customer: product management, architects and the ot
tomer on site” principle, all these stakeholders should
feedback to the team. This can be achieved by the creat
time architects, product managers (as in [17]) (R2-R3)
among interacting teams. Critical expert knowledge sho
ailable to the teams in form of part-time experts serv
ned in [12], a team needs to be aware of the other team
endars (R6) and other tools for awareness (R7) would h
her solution is mentioned in [14], where “communities

programmed events to bring together people from differ
ledge (R5). In ASD also the effect of social networks
amplified, so interacting teams have to be placed close

13] (R4). Also, the social capital [9] of the organization
d and maintained (for example by defining compete
crease interaction speed.

69

the
ting
the
the

new
ones
e of
s of
rom
nes,
R7).
ever
pply

r on
ence

i.e.
ther

d be
tion
and

ould
ving

ms to
help
s of
rent
and
e or
has

ence

70 A. Martini, L. Pareto, and J. Bosch

7 Threats to Validity and Limitations

In this section we list and explain the limitations for this study. The factors F1-F10
and their recommendations R1-R7 have been analyzed in terms of interaction speed.
Other impacts have not been taken in consideration. The information is based on
employees’ statements and may be biased. The causality of the factors is a hypothesis,
and it’s not supported by quantitative data yet. The practices are hypotheses
synthesized from interview and have been validated in the last session of interviews,
but not with precise empirical measurements. One possible threat to validity is the
evaluation apprehension: the employees were interviewed usually in groups, which
helped balancing statements. To handle the mono-operation bias we collected data
from three companies and in some cases from more the one site. As for background
influence, we interviewed various roles, from managers to programmers. We limited
the threats to conclusion validity (such as influence posed on the subjects) by
injecting the preliminary results only after the respondents gave their statements. The
threat to external validity (generalizability) has been limited (but not completely
solved) by studying three cases with common attributes: size, development domain
(i.e. embedded systems) and introducing ASD. We highlighted the differences in the
section about their contexts.

8 Conclusions

The effective implementation of ASD in large companies developing embedded
software may be the way for the successful achievement of business goals depending
on speed. However, Agile teams need to avoid unnecessary interaction and, when
unavoidable, to interact efficiently among them and with the rest of the organization.
We have described interaction speed (RQ1) through the definition of a set of models
to frame it with respect to large organizations employing ASD. The reduction of
interaction speed negatively influences three business goals: 1st deployment speed,
replication speed and evolution speed (RQ2). To increase interaction speed and
therefore reach such goals, we provided the practitioners with effects (E1-E8, Table
1) observable in the organization, and the factors causing them (F1-F10, Table
2)(RQ3). Finally we have proposed a set of recommendations (R1-R7) to manage
such factors in order to complement the practices suggested by ASD (RQ4).

Future research includes further strategies for managing the factors and a
quantitative study of the effects. The long-term objective may include a measurement
system for connecting a quantifiable amount of speed waste with the effects and with
specific indicators for the factors.

Acknowledgement. This research has been carried out in Software Centre, by
Chalmers and University of Gothenburg, and Industry Partners.

 Improving Businesses Success by Managing Interactions 71

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional (2000)

2. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of software
product lines, global development and ecosystems. Journal of Systems and Software 83
(2010)

3. Bosch, J., Bosch-Sijtsema, P.M.: Introducing agile customer-centered development in a
legacy software product line. Software: Practice and Experience 41 (2011)

4. Cataldo, M., Herbsleb, J.D., Carley, K.M.: Socio-technical congruence: a framework for
assessing the impact of technical and work dependencies on software development
productivity. In: International Symposium on Empirical Software Engineering and
Measurement, ESEM 2008. ACM (2008)

5. Dubois, A., Gadde, L.-E.: Systematic combining: an abductive approach to case research.
Journal of Business Research 55, 553–560 (2002)

6. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic
review. Information and Software Technology 50, 833–859 (2008)

7. Espinosa, J.A., Slaughter, S.A., Kraut, R.E., Herbsleb, J.D.: Team knowledge and
coordination in geographically distributed software development. Journal of Management
Information Systems 24 (2007)

8. Giuffrida, R., Dittrich, Y.: Empirical studies on the use of social software in global
software development – A systematic mapping study. Information and Software
Technology

9. Greve, A., Benassi, M., Sti, A.D.: Exploring the contributions of human and social capital
to productivity. International Review of Sociology 20, 35–58 (2010)

10. Gobeli, D.H., Koenig, H.F., Bechinger, I.: Managing conflict in software development
teams: a multilevel analysis. Journal of Product Innovation Management 15, 423–435
(1998)

11. Gotel, O., Kulkarni, V., Say, M., Scharff, C., Sunetnanta, T.: Quality indicators on global
software development projects: does “getting to know you” really matter? Journal of
Software: Evolution and Process 24, 169–184 (2012)

12. Herbsleb, J.D., Mockus, A.: An empirical study of speed and communication in globally
distributed software development. IEEE Transactions on Software Engineering 29 (2003)

13. Hossain, E., Babar, M.A., Paik, H.: Using Scrum in Global Software Development: A
Systematic Literature Review. In: Fourth IEEE International Conference on Global
Software Engineering, ICGSE 2009 (2009)

14. Kahkonen, T.: Agile methods for large organizations - building communities of practice.
Presented at the Agile Development Conference (2004)

15. Karau, S.J., Kelly, J.R.: The effects of time scarcity and time abundance on group
performance quality and interaction process. Journal of Experimental Social
Psychology 28 (1992)

16. Karlstrom, D., Runeson, P.: Combining agile methods with stage-gate project
management. IEEE Software 22, 43–49 (2005)

17. Korkala, M., Abrahamsson, P.: Communication in Distributed Agile Development: A Case
Study. In: 33rd EUROMICRO Conference on Software Engineering and Advanced
Applications (2007b)

18. Layman, L., Williams, L., Damian, D., Bures, H.: Essential communication practices for
Extreme Programming in a global software development team. Information and Software
Technology (2006)

72 A. Martini, L. Pareto, and J. Bosch

19. Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., May, J.,
Kahkonen, T.: Agile software development in large organizations. Computer 37 (2004)

20. Liu, J.Y.-C., Chen, H.-G., Chen, C.C., Sheu, T.S.: Relationships among interpersonal
conflict, requirements uncertainty, and software project performance. International Journal
of Project Management 29, 547–556 (2011)

21. Loureiro-Koechlin, C.: A theoretical framework for a structuration model of social issues
in software development in information systems. Systems Research and Behavioral
Science 25, 99–109 (2008)

22. Martini, A., Pareto, L., Bosch, J.: Enablers and inhibitors for speed with reuse. In:
Proceedings of the 16th International Software Product Line Conference - SPLC 2012.
ACM (2012)

23. Pawar, K.S., Sharifi, S.: Virtual collocation of design teams: coordinating for speed.
International Journal of Agile Management Systems 2, 104–113 (2000)

24. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of agile
practices on communication in software development. Empirical Software Engineering 13
(2008)

25. Saldaña-Ramos, J., Sanz-Esteban, A., García, J., Amescua, A.: Skills and abilities for
working in a global software development team: A competence model. Journal of
Software: Evolution and Process (2013)

26. Strode, D.E., Huff, S.L., Hope, B., Link, S.: Coordination in co-located agile software
development projects. Journal of Systems and Software 85, 1222–1238 (2012)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 73–78, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Current Trends in Employee Recruitment
Using the Internet

“You need to have a collaborative hiring process”
Steve Jobs

Elfi Furtmueller

Austrian Science Fund, Vienna, Austria
elfi.furtmueller@epiqo.com

Abstract. Reviewing the literature on innovative online services in context with
recruiting, seven main services for applicants emerged: general job board
services, advanced job search services, social and business network services,
mobile services, advanced content and Web 2.0 services, notification services,
and lead user services. The identified services from the literature analyses were
compared with the state of the art implemented services on 100 international
job boards. While English and German-language job boards follow the same
trends in terms of services offered to applicants, the former are more innovative
and have higher implementation rates of innovative services than the latter.
Social and business network integration is increasingly popular but most job
boards do not make use of dynamic content for company profiles, real-job-
previews or employee testimonials. Notification services, particularly job alerts,
have seen successful implementation.

Keywords: Trends, Service Innovation, Employee Recruitment, Applicant,
Relationship Management, Internet, Job boards.

1 Introduction

Recruitment via the Internet has become standard [1, 2], and increasing numbers of
applicants turn to online services for career advice and information. The focus of
online recruitment has shifted from improving “look and feel” and features to attract
more applicants during the 2000s towards innovating services [2]. Online career
services must motivate the participation of applicants, which requires a high quantity
of relevant jobs and integrated search services. Another emerging concern is the
mixed success of e-Recruitment implementation [3]. Given these developments, a
greater understanding of effective services for users is needed [4, 5]. Services for
applicants have been growing due to advancements in technology, yet the literature on
innovative means for recruitment is somewhat limited and dispersed among different
scholarly communities, with very little attention paid to online job boards.
Accordingly, the purpose of this paper is to review and integrate knowledge about
service innovations in e-Recruitment.

74 E. Furtmueller

The research consists of two parts: a synthesis of the relevant literature and an
empirical study. In order to obtain an overview of the service innovation literature in
online recruitment, an extensive literature search was conducted in the databases Web
of Science and Scopus using the following keywords: “service innovation” OR
“product innovation” OR “innovation” AND “recruit*”, “online recruit*”, “e-
recruit*”, “web-based recruit*”, “internet recruit*, “digital recruit*, “job board” “job
portal”, “online career services”. The resulting selection was evaluated for relevance,
and the final sample was read with a focus on synthesizing the existing knowledge
[6]. For the empirical part of the study, 100 online job boards were examined with a
focus on identifying and categorizing service innovations provided to applicants.
These job boards were selected based on their degree of popularity (i.e. Google search
rank), comparability (i.e. no specialised or niche job boards) and other websites’
recommendations. Fifty percent use English as the primary language and 50 percent
use German. The focus of the analyses was on large and leading job boards covering
career services in entire markets or countries. Each of the selected job boards was
visited online and the services offered to applicants were then identified and content-
analyzed. The following section presents the results of the literature and empirical
studies.

2 Results

After reviewing and synthesizing the selected literature, seven main services for
applicants emerged. These services were then compared with the state of the art
implemented services on the 100 job boards surveyed. Four central services are
widely implemented across the analyzed job boards: 1) ability to perform an
immediate basic job search without registering; 2) ability to create a user account to
access more personalized features; 3) ability to upload or create one or more resumes;
and 4) the ability to apply directly to a job offer (see Table 1). Overall, 96 % of all
studied job boards offer a basic job search without registration, and none require a
paid subscription for job seekers.

Table 1. General Job Board Services

Description of service Total English German

Free job search without login 96 % 92 % 100 %

Ability to register a user account 85 % 86 % 84 %

Upload / create a resume 63 % 72 % 54 %

Apply online through job board 82 % 96 % 68 %

While the job search feature is a key service for applicants across all examined job

boards [7], advanced search features such as real-time auto-completion of search
queries while typing and location-based services are gaining popularity. Using
geographic information, job boards can suggest targeted job ads in the region of the
job seeker. Considering recent Web 2.0 trends, social and business network services

 Current Trends in Employee Recruitment Using the Internet 75

are increasingly implemented on job boards, particularly the English language ones
(see Table 2). The salient features include: 1) the presence of a job board in social and
business networks; 2) social bookmarking; 3) signing up to a job board using existing
accounts; 4) the availability of a YouTube channel to post video content; and 5)
integrated social network features on job boards. Presence in social networks was
particularly well implemented, with 70 % of the job boards on Facebook and 65 % on
Twitter, ahead of career networks LinkedIn and Xing (46 %). Social bookmarking
tools were less common, with the usage of frontrunner Facebook at 46 %. The option
to use social network accounts to import personal data (and save time filling in
resume data) was only available on a limited number of job boards (16 %). Only 4 %
of all examined job boards offer own social networking functionality such as user
profile creation or applicant forums. In this context, job boards should implement
privacy controls and offer dual profiles (private and professional) with the job seeker
being in full control over who gets to see the content [8].

Table 2. Social and Business Network Services

Presence in social networks Total English German

Facebook 70 % 76 % 64 %

Twitter 65 % 72 % 58 %

Google+ 39 % 46 % 32 %

LinkedIn / Xing 46 % 50 % 42 %

Social bookmarking

Facebook 46 % 58 % 34 %

Twitter 39 % 52 % 26 %

Google+ 29 % 44 % 14 %

LinkedIn / Xing 28 % 40 % 16 %

Login using a social network account 16 % 24 % 8 %

YouTube 32 % 34 % 30%

Built-in social networking services

Creation of user profile 4 % 8 % 0 %

Applicant forum 4 % 4 % 4 %

Public / private profile differentiation 2 % 4 % 0 %

Privacy control settings 4 % 8 % 0 %

About one quarter (23 %) of the job boards offer a mobile-optimized version. For

mobile app availability, the (current) two main providers of mobile operating systems
were compared. A native Apple iOS application was found in Apple’s “AppStore” for
24 % of the job boards, while a native application from the “Google Play Store”,
could only be found for 16 %. Advanced content and Web 2.0 services use video,
flash, HTML5 and other dynamic content to present content such as company
profiles, job previews, or professional help [9]. Company profiles usually include
information about the company's size, location, products and services, hiring needs,
and contact information. Space on job boards for company profiles is increasingly
purchased to support services marketing and employer branding activities [10, 11].

76 E. Furtmueller

Three different types of notification services were identified among the job boards:
email newsletters, email job alerts and RSS feeds (see Table 3). Job alerts stand out in
implementation popularity. Using this service, the job seeker can set up one or
multiple search queries and automatically receive the search results at regular
intervals via email, removing the need for subsequent manual searches. 82 % of the
selected job boards offered email job alerts, with German-language sites leading (86
%) over the English-language job boards (78 %). Only 37 % of all studied job boards
offered RSS feeds, less than half of those offering email job alerts. This is possibly
due to lower awareness of and comfort with RSS on the part of job seekers.

Table 3. Notification Services

 Total English German

Newsletter 27 % 26 % 28 %

Email Job Alerts 82 % 78 % 86 %

RSS feeds 37 % 38 % 36 %

Lead user service innovations can be used to improve the communication between

applicants and recruiters, such as direct-messaging services or implementing talent
pools [8, 12]. Here, recruiters may deliver targeted information such as newsletters,
information to company events, or access to job postings to selected applicants. The
restricted access to these company talent pools may make job seekers feel privileged
to be included and encouraged to return to the job boards on a regular basis [13]. Only
2 % of the English job boards studied offer direct messaging tools between job
seekers and recruiters, and 4 % offer some sort of talent pool. Other innovative lead
user services include calculations of job seekers’ market value, job and person fit
matching, applicant blogs, employer ranking or location-based job visualization
services. Employer ranking and employee testimonials are relatively easy to
implement. However, in that a large part of their revenue comes from
recruiters/employers, job boards may eventually refrain from implementing employer
ranking services in order to avoid risks to company image or the posting of overly
negative content, which may lose them paying customers. Hence, continuous
monitoring of user content would be important to generate service innovations [14].

3 Conclusion

This paper synthesized the literature on online services offered to job seekers. Seven
main services were detected and compared with the implemented services on 100
international job boards. While English- and German-language job boards follow the
same trends in terms of services offered to applicants, the former have higher
implementation rates of innovative services. Services to keep users active on job
boards after they have found a new job are virtually absent [15]. When looking at
successful career networks such as LinkedIn or Xing, the vast majority of subscribers
have an up-to-date profile which implies a continuous use of these networks. This

 Current Trends in Employee Recruitment Using the Internet 77

shows that sustained use of a job board is encouraged by the integration of social
networking characteristics. For a job board to be successful in the long term,
continued and steady service innovation has to be a central part of its strategy for
attracting job seekers [8, 13]. The future is likely to belong to those providers who
rethink the elusive nature of loyalty in hyperspace, and who best understand their
users’ shared social identity. Once they grasp this they should strive to provide
semantic technologies that genuinely enhance users’ online experiences in terms of
social exchange, self-esteem, privacy, sense of control and playfulness [16]. Given the
surge in demand and accelerating competitiveness among job boards to attract and
maintain applicant profiles, a sharper understanding of the factors leading to applicant
commitment to specific online career services is needed.

Acknowledgements. The author gratefully acknowledges support by the Austrian
Science Fund (FWF), project number: J3346. Special thanks to www.epiqo.com for
the helpful guidance.

References

1. Ployhart, R.E.: Staffing in the 21st century: New challenges and strategic opportunities.
Journal of Management 32, 868–897 (2006)

2. Furtmueller, E.: Using technology in global talent recruitment: Why HR/OB scholars need
IS knowledge? Dissertation, University of Twente (2012)

3. Bondarouk, T.V., Ruël, H.J.M.: Electronic Human Resource Management: challenges in
the digital era. International Journal of Human Resource Management 20(3), 505–514
(2009)

4. Tate, M., Furtmueller, E.: 201 Service Development as Action Design Research: Reporting
on a servitized e-recruiting portal. In: Proceedings of SIGSVC Workshop. Sprouts:
Working Papers on Information Systems, 12(35) (2012)

5. Furtmueller, E., Wilderom, C., Tate, M.: Managing recruitment and selection in the digital
age: e-HRM and resumes. Human Systems Management 30(4), 1–17 (2011)

6. Wolfswinkel, J., Furtmueller, E., Wilderom, C.: Using grounded theory as a method for
rigorously reviewing literature. European Journal of Information Systems 22, 45–55
(2013)

7. Cappelli, P.: Making the most of online recruiting. Harvard Business Review 79(3),
139–146 (2001)

8. Furtmueller, E., Wilderom, C., van Dick, R.: Utilizing the Lead User Method for
promoting Innovation in e-Recruiting. In: Bondarouk, T.V., Ruël, H.J.M., Oiry, E.,
Guiderdoni-Jourdan, K. (eds.) Handbook of Research on E-Transformation and Human
Resources Management Technologies, pp. 251–273. Information Science Reference, New
York (2009)

9. CedarCrestone. HR Systems Survey: HR Technologies, Deployment Approaches, Value,
and Metrics. 14th Annual Edition (2011-2012), http://www.cedarcrestone.com

10. Bartram, D.: Internet Recruitment and Selection: Kissing Frogs to find Princes.
International Journal of Selection and Assessment 8(4), 261–274 (2000)

11. Koong, K.S., Liu, L.C., Williams, D.L.: An identification of Internet Job Board attributes.
Human Systems Management 21(2), 129–135 (2002)

78 E. Furtmueller

12. Furtmueller, E., Wilderom, C., Mueller, R.: Online Resumes: Optimizing Design to
Service Recruiters. In: ECIS 2010, Proceedings of the European Conference on
Information Systems. Paper 53 (2010)

13. Furtmueller, E., Wilderom, C., van Dick, R.: Sustainable e-recruiting portals: How to
motivate applicants to stay connected throughout their careers? International Journal of
Technology and Human Interaction 6(3), 1–20 (2010)

14. Tate, M., Furtmueller, E., Wilderom, C.: Localizing versus standardizing electronic human
resource management: Complexities and tensions between HRM and IT departments.
European Journal of International Management (in press)

15. Feldman, D.C., Klaas, B.S.: Internet job hunting: A field study of applicant experiences
with online recruiting. Human Resource Management 41(2), 175–192 (2002)

16. Tate, M., Furtmueller, E.: Sustainable business models for services using semantic web
components: Insights from the field. In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013.
LNBIP, vol. 150, pp. 26–30. Springer, Heidelberg (2013)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 79–89, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Post-deployment Data Collection in Software-Intensive
Embedded Products

Helena Holmström Olsson1 and Jan Bosch2

1 Department of Computer Science, Malmö University, Malmö, Sweden
helena.holmstrom.olsson@mah.se

2 Department of Computer Science and Engineering, Chalmers University of Technology,
Gothenburg, Sweden

jan.bosch@chalmers.se

Abstract. To stay competitive, software development companies need to
constantly evolve their software development practices. Companies that
succeed in shortening customer feedback loops, minimizing the time between
customer proof points and learn from customer usage data will be able to
accelerate innovation and improve the accuracy of their development
investments. While contemporary research reports on a number of well-
established techniques for actively involving customers before and during
development, there is less evidence on how to successfully use post-deployment
customer data as input to the development process. As a result, companies
invest significantly in development efforts without having an accurate way of
continuously validating whether the functionality they develop is of direct value
to customers once the product is taken into use. In this paper, we explore
techniques for involving customers and for collecting customer data in pre-
development, during development and in the post-deployment phase of
software development. We do so by studying three software development
companies involved in large-scale development of embedded software. We
present an inventory of the techniques they use for collecting customer
feedback and we outline the key opportunities for more effective development
and evolution based on post-deployment data collection.

Keywords: Agile development, customer involvement, customer feedback,
post-deployment data collection.

1 Introduction

Market uncertainties, competitive pressures, and the constant need for shortened
development cycles call for software development practices that are flexible,
responsive and adaptive to customers [1, 2]. To respond to this, many software
development companies have, since a decade or more, adopted agile practices.
In advocating customer involvement and the importance of test-driven development
practices [3], agile practices have attracted not only small software development
companies, but also companies involved in large-scale development of embedded
products.

80 H. Holmström Olsson and J. Bosch

However, while many companies have succeeded in applying agile practices and,
as a result, leveraged the benefits of customer involvement and continuous validation
of functionality before and during development, there are few examples of companies
that have succeeded in establishing techniques for continuously collecting customer
data and validating software functionality also after commercial deployment of the
product. The one exception is the Web 2.0 and the software-as-a-service (SaaS)
domain where companies like Microsoft [4], Intuit [5] and others, continuously
collect customer and product usage data for continuous improvement of the existing
product, and as a basis for new product development. Outside of this domain, there is
little evidence that software companies have established techniques for collecting and
capitalizing on data that is generated after commercial deployment of the product. As
a result, companies invest significantly in development efforts without having an
accurate way of continuously validating whether the functionality they develop is of
direct value to their customers.

In this paper, we present a multiple case study on three companies developing
software-intensive embedded systems. While in different domains, all companies
aim at continuous collection and analysis of post-deployment data in order to advance
their understanding of their customers and how their products are used. The
contribution of the paper is twofold. First, it presents an inventory of techniques used
for customer involvement and customer feedback collection before, during and after
product development. Second, it presents the key opportunities for more effective
product development and evolution by collecting customer data in the post-
deployment phase of software development.

2 Background

2.1 Agile Software Development

During the last decade agile development methods have dramatically changed the way
software development is performed. Agile methods are characterized by short
development cycles, close customer collaboration, rapid feedback loops, and
continuous evaluation of functionality through test-driven development practices
[3, 6]. In comparison to plan-driven development methods, agile methods operate on
the principle of “just enough method” and seek to avoid cumbersome and time-
consuming processes that add little value to the customer. Although agile methods
differ in details and techniques, overall principles such as ‘flexibility’, ‘working code’
and ‘customer involvement’ lie at the heart of all of them. With practices such as
daily stand-up meetings, joint planning sessions and project retrospectives, agile
methods offer a range of techniques for facilitating collaboration and customer
involvement. Lately, test-driven development has become a core agile practice for
facilitating continuous validation of functionality. While the agile principles were
initially developed for smaller software development organizations, evidence show
that large software-intensive organizations operating in complex global development
environments are in the process of deploying agile methods as part of their de-facto
approach to software development.

 Post-deployment Data Collection in Software-Intensive Embedded Products 81

However, while agile practices are conducive to close customer collaboration and
continuous validation of functionality in the early phases of development [7, 8], there
is less evidence on companies that have succeeded in establishing techniques for
continuously collecting customer data and validating software functionality also after
commercial deployment of the product.

2.2 Customer Involvement

To involve customers in the development process is not a new phenomenon and it is
well elaborated upon in user-centered development approaches such as participatory
design [10], cooperative design [11], joint-application design [12] and other similar
approaches. In these approaches, customers are actively involved in the initial
exploration and problem definition phase, as well as during development to help
evaluate proposed solutions and different design alternatives. For pre-development
involvement, techniques such as use cases, scenarios, prototyping, stakeholder
interviews, joint requirements sessions, joint application design sessions etc. are
common. Likewise, techniques such as alpha- and beta testing, observation, expert
reviews, prototyping, measuring and different types of use cases and scenarios are
efficiently used during development in order to continuously validate that the
functionality that is developed is of value to the customers. As can be seen in research
on agile methods [3, 13, 14, 15], as well as prominent research on requirements
engineering [16, 17], techniques such as user surveys, user scenarios, customer
archetypes and similar representations are used to capture generic customer needs for
mass-market products [17]. Likewise, large-scale agile development often uses
product management as a proxy for communicating customer feedback to the
development organization before and during development of the product [19].

With regard to post-deployment techniques for customer involvement, the concept
of ‘lead users’ is often used to reflect close collaboration with innovative customers in
order to use their feedback for improvement and innovation strategies [20]. As
recognized in this research, close collaboration with pro-active customers can result in
new functionality as well as new product ideas. Similarly, the ‘software ecosystem’
approach is referred to as a way for companies to build a community of developers
and involve customers to contribute to the improvement activities that take place after
product deployment [21]. More recently, the concept of ‘Innovation Experiment
Systems (IES), and technologies such as Web 2.0, social network systems and
Software-as-a-Service (SaaS), or ‘on-demand’ software, have provided companies
with new opportunities to observe and measure system use [4, 5], as well as to run
frequent experiments with customers to identify what functionality they value. As
reported in relation to these technologies, techniques such as A/B testing (or ‘split
testing’), customer surveys run by using software tools, analysis of bug reports and
product performance data are the most common techniques for continuous collection
of post-deployment customer and product data.

In Table 1, we summarize different techniques for involving customers and
collecting customer feedback as reported in previous research. As can be seen in the
table, there are primarily techniques for this in the early phases of development.

82 H. Holmström Olsson and J. Bosch

However, techniques for collecting customer feedback after commercial deployment
are scarce. While illustrative examples can be found in the Web 2.0 and Software-as-
a-Service (SaaS) domain, where sophisticated mechanisms for post-deployment data
collection exist, these are not easily applicable for companies involved in large-scale,
often embedded, software development.

Table 1. Techniques for customer involvement and customer feedback collection as reported in
previous research

Development phase: Development activity: Customer involvement
/feedback collection
technique(s):

Pre-development Exploration and problem
definition
Requirements engineering

Use cases
Use scenarios
Prototyping
Stakeholder interviews
Joint requirements
development sessions
Joint application design
sessions
Customer
representatives/archetypes

During development Evaluation and validation Alpha and beta testing
Use cases
Use scenarios
Measuring
Prototyping
Expert reviews
Stand-up meetings

Post-deployment Evolution and maintenance
Improvement and innovation

Lead users
A/B testing (split testing)
Customer surveys
Bug report analysis
Performance data analysis

3 Research Site and Method

3.1 Research Site

This paper presents on-going research based on a multiple case study conducted at
three software development companies. While the companies differ in domain and
size, they are all in the process of establishing mechanisms for collecting customer
usage data in the post-deployment phase.

Company A is a provider of telecommunication systems and equipment,
communications networks and multimedia solutions for mobile and fixed network

 Post-deployment Data Collection in Software-Intensive Embedded Products 83

operators. They offer end-to-end solutions for mobile communication and they
develop telecommunication infrastructure components for a global market. The
company is currently shifting their development practices towards agile development
and the notion of cross-functional teams, Scrum practices and continuous testing is
well established. For the purpose of this study, we met with key stakeholders at two
different company sites:

- Site 1: The first site is involved in the development and maintenance of nodes within
the 3G networks. At this site we met with a group of four people involving the head
of system and architecture, two system managers and a deputy manager.
- Site 2: The second site is involved in the development, supply and support of media
gateways for mobile networks. At this site, we met with a group of six people
involving two department managers, a support manager, a senior specialist, a product
manager and an integration leader.

Company B is a manufacturer and supplier of transport solutions for commercial
use. The development organization involves coordination of a large number of teams
and is largely dependent on supplier organizations. While the majority of the
organization is plan-driven in character, there are parts in which agile practices are
well established and in which Scrum and XP practices are common practice. For the
purpose of this study we met with two attribute leaders, two developers, and one
software expert focusing on change management and process improvement.

Company C is world leading in network video and offers products such as
network cameras, video encoders, video management software and camera
applications for professional IP video surveillance. At the moment, the company is
transforming their development practices to reduce lead-time, shorten feedback cycles
and increase customer feedback in the development process. For the purpose of this
study we met with a group of seven people involving the company CTO, two team
leaders, a test manager and two software architects.

3.2 Research Method

Our paper reports on a multiple case study [22] involving three companies involved in
large-scale development of embedded software products. The main data collection
method used was semi-structured group interviews with open-ended questions [23],
with groups of four to seven people. In total, four group interviews were conducted
with key people from the different companies. All group interviews were conducted
in English and lasted for about two hours. During the interviews, we were two
researchers sharing the responsibility of asking questions and facilitating the group
discussion to make sure that everyone got a chance to give his/her opinion on the
topic. Notes were taken during all interviews and after each interview these notes
were shared among the researchers to allow for a discussion regarding the interview
session, the answers that had been given and the overall impression of the discussion.
As a complement, e-mail correspondence with company representatives was used to
clarify any misunderstandings in the transcription of the data.

84 H. Holmström Olsson and J. Bosch

In terms of data analysis, a qualitative grounded theory approach was adopted [24].
A problem that has been identified in relation to qualitative research is that different
individuals may interpret the same data in different ways [25]. This problem was
addressed in two ways. First, the grounded theory method prescribes coding processes
that provide a traceable, documented justification of the process by which conclusions
are reached. Second, we used a ‘venting’ method, i.e. a process whereby
interpretations are discussed with professional colleagues [26]. By sharing notes, and
by discussing the results of each group interview, we could develop an accurate
understanding of the different contexts.

4 Findings

In this section, we present our interview findings. These are summarized in Table 2 in
which we present an inventory of techniques used for customer involvement and
collection of customer feedback before, during and after product development. Also,
we present the key opportunities for more effective product development and
evolution by collecting customer data in the post-deployment phase of software
development. The key opportunities were identified during our study and expressed as
important by our interviewees when reflecting on ways in which post-deployment
data collection can help improve their development practices.

4.1 Pre-development Techniques

Our interviews reveal a range of techniques that are used for involving customers in
pre-development activities. In company A, customer contact is channeled through
customer units that facilitate communication and coordination between development
sites and customers. Twice a year, customer unit workshops are arranged in order for
developers and customers to meet. At these workshops a number of different activities
are arranged with, e.g., product seminars are held, user groups and test groups meet
and lead customers host seminars where specific technology and functionality is
discussed. The purpose of these workshops is knowledge sharing and our
interviewees report on them as very useful. In addition, customer surveys are used on
a regular basis to capture customer experience and satisfaction. At both sites, agile
methods are used as the de facto approach to software development and during recent
years the product owner role has become the norm for representing the customer in
the early phases of development. Together with product management, the product
owner works as a ‘customer proxy’ making sure that customer feedback is reflected in
the prioritization of features.

In company B, customer surveys and questionnaires are the most common
techniques for involving customers before development starts. Also, the opportunity
to meet with customers face-to face is used when possible. In company C,
development is based on traditional requirements engineering techniques influenced
by customer surveys, product seminars etc. The products are sold to a mass-market
and the functionality is prioritized based on generic customer needs.

 Post-deployment Data Collection in Software-Intensive Embedded Products 85

4.2 During Development Techniques

In all companies, the development phase is characterized by regular customer
involvement. In company A (site 1), the development organization is organized so
that a number of dedicated teams can work closely with selected customers in order to
meet their specific needs. In this way, fast response and customized solutions can be
achieved although the customer base is large and dispersed. These customer-specific
teams started out as an experiment but have quickly become part of the regular
development organization representing an opportunity to increase responsiveness to
individual customer needs. In all companies, phone- and videoconferences are
common techniques to interact with customers during development. Also, all
companies report on site visits as important for increasing the understanding of the
customer during development. In company B, the development phase is characterized
by constant prototyping, proof of concept and test lab activities. The opportunity to let
customers try the vehicles, i.e. test drive, is used when possible. During such test
drives important data can be collected and there is the opportunity for customers to
communicate directly with the product developers. Safety critical systems as well as
functionality related to user experience are constantly tested with customers to
validate what functionality they need. In company C, customers are involved on a
regular basis by using phone and video conferencing techniques. However, in our
interviews at company C we learnt that even though customer representatives are
common, developers rarely meet or interact with the customers, or end-users, of their
products, and the overall impression was that direct customer feedback was often
difficult to achieve.

4.3 Post-deployment Techniques

Based on our interview findings, we see that post-deployment customer
involvement in terms of collection of customer usage data is scarce. In company A,
both sites report on system operation and performance as types of product data
being continuously collected. Also, bug report data is collected in order to learn
about system behavior and use. Based on this data, statistical analysis and trend
analysis is done and there is the opportunity to learn about current system operation
and future dimensioning needs. However, while performance data, such as upgrade
success and downtime reports, is collected, company A report on difficulties to
use the data. As it seems, customer data is used for trouble-shooting and for
maintaining the current version of the product, but very seldom for improving
functionality or as a base for developing new functionality. Managers at both sites
describe a situation in which data is collected but not used, and they find it difficult
to analyze the data to, for instance, learn about what features that are used and what
features that are “waste”.

In company B, diagnostic data is collected when the vehicle attends service at an
authorized garage. Based on this data, data mining techniques are used to learn about
product use. However, while this data is useful for the next iteration of development,
i.e. for the next version of the product family, it is collected with very long intervals
and is not used for improving the current version of the product or as input to existing
functionality. Also, to integrate and to visualize the data is regarded difficult.

86 H. Holmström Olsson and J. Bosch

In company C, there are no established techniques for post-deployment data
collection. While large amounts of data are generated in the systems, these are not
used to systematically improve current versions of the systems.

In Table 2, we summarize the techniques that are used for involving customers and
collect customer feedback in the different phases of development. As can be seen, the
companies have a number of techniques for involving customers in the pre-
development and development phase. However, and as recognized in previous
research, techniques for post-deployment customer data collection are few.

Table 2. Techniques that the case companies use for customer involvement and customer
feedback collection before, during and after product development

Company: Pre-development: During
Development:

Post-deployment:

A (site 1) Customer unit
workshops
Product seminars
Surveys
Customer
representatives

Phone conferences
Video conferences
Customer-specific
teams
Stand-up meetings
Customer site visits

Product data
collection, e.g. system
operation/performance
data
Bug report data
collection

A (site 2) Customer unit
workshops
User groups
Test groups
Product seminars
Lead customer
meetings

Phone conferences
Video conferences
Customer site visits
Stand-up meetings

Product data
collection, e.g. system
operation/performance
data
Bug report data
collection

B Questionnaires
Interviews
Face-to-face customer
meetings

Proof of concept
Prototyping
User test labs
Test driving

Diagnostic data
collection, e.g. trouble
codes, failure reports
etc.

C Surveys
Product seminars

Phone conferences
Video conferences
Customer site visits

Product data
collection, e.g. frames
per second etc.

4.4 Key Opportunities

While still in the process of establishing techniques for post-deployment data
collection, all companies view this activity as critical for continuous validation of
their development efforts. In our study, we learnt that there are a number of key
opportunities associated with post-deployment data collection. The key opportunities
were identified by our interviewees and expressed as important when reflecting on
ways in which post-deployment data collection can help improve their development
practices. As such, these key opportunities represent the main drivers for more

 Post-deployment Data Collection in Software-Intensive Embedded Products 87

effective product development and evolution by collecting customer data in the post-
deployment phase of software development. The key opportunities are:

 To increase accuracy of development efforts by continuous validation of what
functionality customers value.

 To improve requirements prioritization based on customer data.
 To design products that allow for post-deployment data analysis.
 To help customers optimize their use of the product.
 To increase the ability to anticipate future customer needs.
 To increase delivery frequency of functionality.

5 Discussion

The notion of customer involvement, and how to efficiently collect customer
feedback, has been a topic of intensive research for decades. However, while there is
extensive research on customer involvement techniques for pre-development and
development activities [18, 27, 27, 29], research on post-deployment data collection is
scarce. Recently, companies such as Microsoft [4], Intuit [5] and others, have adopted
techniques to collect customer data after product deployment for continuous
improvement of the existing product, as well as for new, innovative product
development. While this is a promising area for research, there are few examples that
go beyond the Web 2.0 and SaaS domain.

In our study, we explore three companies in the process of establishing techniques
for post-deployment data collection. Already, these companies have techniques for
exploration and problem definition activities, for capturing customer requirements,
and for evaluating and validating proposed solutions and different design alternatives.
For example, customer-specific teams are used to increase responsiveness, customer
units are used for facilitating customer-developer interaction, and roles such as the
product owner are applied to enhance customer impact on feature prioritization [30].
For post-deployment activities such as evolution and maintenance, the companies
report on different types of operational data that is being collected. However, even
though the companies have data collection mechanisms in place, they find it difficult
to integrate, communicate and visualize the data so that it becomes accessible for
people in their organization. As a result, post-deployment data is only partially used
and the companies agree that there is an untapped potential in customer and product
data that is collected after product deployment.

While the companies involved in our study show on post-deployment collection of
data, none of them use this data as the basis for improvement of the current product or
for innovation of new functionality. This shortcoming is recognized in previous
research in which concepts such as ‘online experiments’ [4], ‘test-and-learn’ mind-set
[9], and development as ‘innovation experiment systems’ [5] is used to denote
techniques that use post-deployment customer data to increase the effectiveness of
product development efforts. Inspired by these concepts, our interviewees see a
number of opportunities associated with post-deployment data collection. These are
related to the ability to increase the accuracy of development efforts, to optimize use
of the product, and to increase frequent delivery of customer value.

88 H. Holmström Olsson and J. Bosch

6 Conclusions

In this paper, we highlight limitations in existent research in terms of post-deployment
data collection, and the untapped resource that post-deployment customer and product
data remains. Based on a multiple case study at three software development
companies, we present an inventory of customer involvement and feedback
techniques for pre-development, development and post-deployment activities. Our
case study findings confirm previous research in that existing examples of post-
deployment data collection techniques are few, and that the data that is collected is
mainly used for troubleshooting activities but very seldom for improvement and
innovation of products. Furthermore, we identify key opportunities for more effective
development and evolution by collecting post-deployment customer data.

Acknowledgements. This study was funded by Malmö University as part of a
research collaboration between Malmö University and the Software Center at
Chalmers University of Technology and University of Gothenburg, Sweden. We
would like to thank the companies involved in the study and the time and engagement
allocated by all interviewees.

References

1. Desouza, K., Awazu, Y., Jha, S., Dombrowski, C., Papagari, S., Baloh, P., Kim, J.Y.:
Customer-Driven Innovation, Research Technology Management, pp. 35–44 (May-June
2008)

2. Fogelström, N.D., Gorschek, T., Svahnberg, M., Olsson, P.: The Impact of Agile
Principles on Market-Driven Software Product Development. Journal of Software
Maintenance and Evolution: Research and Practice 22, 53–80 (2010)

3. Highsmith, J., Cockburn, A.: Agile Software Development: The business of innovation,
Software Management, pp. 120–122 (September 2001)

4. Kohavi, R., Longbotham, R., Sommerfield, D., Henne, R.M.: Controlled experiments on
the web: survey and practice guide. Data Mining and Knowledge Discovery 18(1), 140–
181 (2009)

5. Bosch, J.: Building Products as Innovations Experiment Systems. In: Cusumano, M.A.,
Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39. Springer,
Heidelberg (2012)

6. Hansen, S., Berente, N., Lyytinen, K.: Emerging principles for requirements processes in
organizational contexts. Networking and Information Systems 13, 9–35 (2008)

7. Mishra, D., Mishra, A.: Complex software project development: Agile methods adoption.
Journal of Software Maintenance and Evolution: Research and Practice 23, 549–564
(2011)

8. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to Heaven”: A multiple-case
study exploring barriers in the transition from agile development towards continuous
deployment of software. In: Proceedings of the 38th Euromicro Conference on Software
Engineering and Advanced Applications, Cesme, Izmir, Turkey, September 5-7 (2012)

9. Davenport, T.H.: How to design smart business experiments. Harvard Business Review
(February 2009)

 Post-deployment Data Collection in Software-Intensive Embedded Products 89

10. Schuler, D., Namioka, A.: Participatory design: Principles and practices. Erlbaum,
Hillsdale (1993)

11. Grønbæk, K., Kyng, M., Mogensen, P.: CSCW challenges: cooperative design in
engineering projects. Communications of the ACM 36(6), 67–77 (1993)

12. Wood, J., Silver, D.: Joint application development. John Wiley & Sons, New York (1995)
13. Abrahamsson, P., Conboy, K., Wang, X.: ‘Lots done, more to do’: the current state of agile

systems development research. European Journal of Information Systems 18(4), 281–284
(2009)

14. Beck, K.: Embracing Change with Extreme Programming. Computer 32(10), 70–77 (1999)
15. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Addison-Wesley

(2004)
16. Nuseibeh, B., Easterbrook, S.: Requirements engineering: A roadmap. In: Proceedings of

the 22nd International Conference on Software Engineering (ICSE), Limerick, Ireland,
June 4-11 (2000)

17. Bennett, K.H., Rajlish, V.T.: Software maintenance and evolution. In: Proceedings of the
22nd International Conference on Software Engineering (ICSE), Limerick, Ireland, June 4-
11 (2000)

18. Sommerville, I.: Software engineering, 9th edn. Addison-Wesley, Boston (2010)
19. Larman, C., Vodde, B.: Scaling lean & agile development: Thinking and organizational

tools for large-scale scrum. Addison-Wesley (2008)
20. Von Hippel, E.: Democratizing Innovation: The evolving phenomenon of user innovation.

Journal für Betriebswirschaft 55, 63–78 (2005)
21. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Business Review 82, 68–78 (2004)
22. Walsham, G.: Interpretive case studies in IS research: Nature and method. European

Journal of Information Systems 4, 74–81 (1995)
23. Runesson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empirical Software Engineering 14 (2009)
24. Corbin, J., Strauss, A.: Basics of Qualitative Research: Grounded Theory Procedures and

Techniques. Sage, California (1990)
25. Kaplan, B., Duchon, D.: Combining qualitative and quantitative methods in IS research: A

case study. MIS Quarterly 12(4), 571–587 (1988)
26. Goetz, J., LeCompte, D.: Ethnography and Qualitative Design in Educational Research.

Academic Press, Orlando (1984)
27. Beyer, H., Holtzblatt, K.: Contextual design: Defining customer-centered systems. Morgan

Kaufmann, San Francisco (1998)
28. Preece, J., Rogers, Y., Sharp, H.: Interaction design: Beyond human computer interaction.

John Wiley & Sons, New York (2002)
29. Pressman, R.S.: Software engineering: A practitioner’s approach. McGraw-Hill, New York

(2010)
30. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice-Hall (2002)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 90–101, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Model of Commercial Open Source
Software Product Features

Florian Weikert and Dirk Riehle

Friedrich-Alexander-Universität Erlangen-Nürnberg
florian@weikert.it, dirk@riehle.org

Abstract. Commercial open source software has become an important part of
the packaged software product industry. This paper provides a model of
individual product features, rather than full-fledged business models, and their
perceived value to customers. The model is the result of a three-iteration study,
including interview analysis, literature review and the implementation of an
empirical survey. Companies can use the feature model to determine their
products and business model..

1 Introduction

Open source software (OSS) – software whose source code is publicly available and
which allows modification and redistribution at no costs – represents a new approach
in a world where software used to be kept proprietary. Nowadays, OSS is a major
player in important areas such as web browsing (Firefox, Chromium), databases
(MySQL), operating systems (Linux) and mobile (Android). Especially the success of
Android, which runs on 75% of all smartphones shipped in the third quarter of 2012
[1] indicates that the trend of open source has not yet come to an end.

The $1 billion acquisition of open source company MySQL AB by Sun Micro-
systems (now part of Oracle Corporation) in 2008 is just one example which shows
the commercial potential of this trend [2]. Today, major tech companies such as
Google1, Facebook2 and Apple3 use and contribute to open source projects, thus
further highlighting the economic significance of OSS.

However, there are still companies that follow the traditional closed-source
approach by keeping their software proprietary. Their refusal to reveal the source
code of their products to the public might be due to the potential risks of “going open
source”, e.g. the loss of intellectual property or the increased attack surface for
possible lawsuits [3]. Additionally, they might not see the commercial potential of
OSS which would compensate them for taking these additional risks. These com-
panies are likely to ask themselves: “How can you make money if you give the

1 http://code.google.com/intl/de/opensource/projects.html
2 http://developers.facebook.com/opensource/
3 http://www.opensource.apple.com/

 A Model of Commercial Open Source Software Product Features 91

software away for free?“[4]. Or, even more worse: “why should a firm further
develop a product if competitors can freely appropriate these contributions?” [5].

As outlined in Section 7, prior research addressed this question on the level of
business models. However, companies might still be confused which concrete product
features can differentiate a free open source product from an commercial offering:
“Which features are our customers willing to spend money on?”. We address this
question in the present paper by generating a model of commercially viable product
features of OSS. The model itself is the result of a three-step process including
interview analysis, literature review and the implementation of an empirical survey.
The contributions of this paper are:

• A hierarchical model of commercially viable product features of OSS

products with detailed explanations on how these features can be used and
what their characteristics are;

• A survey-based examination of individual product features based on their
frequency and perceived importance.

The paper is structured in the following way: Section 2 sets the scope of this paper
and provides definitions which are being used throughout the entire paper. Section 3
outlines the research process while Section 4 displays the final model of product
features. Section 5 contains findings from the survey concerning the ranking of
individual product features. An evaluation of both the model and the quality of the
results can be found in Section 6. Related work is reviewed in Section 7. Finally,
Section 8 concludes this paper.

2 Scope and Definitions

Open source software is defined as software covered by an open source license – a
license which is approved by the Open Source Initiative (OSI) and which complies
with the “Open Source Definition”4. Consequently, source code must be publicly
available and both free redistribution and derivative works have to be allowed.

Open source companies are companies generating revenue based on at least one
open source software product. Compared to closed-source companies, this puts them
in a special situation since their commercial offerings have to compete with an open
source product which is available for free. Consequently, these companies have to
provide substantial additional value in order to motivate users to pay for their
commercial offerings.

This paper considers three different types of open source companies, namely
software producers (vendors), service providers and distributors. Software producers
create and sell OSS products, thus capitalizing on their own intellectual property. In
contrast, service providers typically offer services such as training or consulting for
third party OSS products which are not their intellectual property. Distributors
integrate a set of third party OSS products into a configured, ready-to-use product.

4 http://opensource.org/osd

92 F. Weikert and D. Riehle

It is important to note that this categorization is based on the dominant aspect of a
company’s business model. For example, software producers may also offer services
for their own products without being considered a service provider. Hybrid business
models are beyond the scope of this paper. Additionally, companies offering OSS
products in order to sell complementary hardware or to generate revenue through
advertisement are also not part of our research.

3 Research Process

The model presented in Section 4 is the result of a three-step iterative process with
each iteration resulting in a different stage of the model. While the first two iterations
were limited to qualitative research, we employed a quantitative approach in the final
iteration in order to evaluate and enhance the model.

3.1 First Iteration: Initial Model

The initial model is based on a set of seven confidential interviews between Dirk
Riehle, Anthony I. Wasserman and five employees of open source companies who
have been working in the software industry for over 18 years each. They represented a
total of three open source companies which have been existing for at least six years at
the time of the interview. Furthermore, all three companies are based in the United
States and can be categorized as software producers.

We used an open coding approach in order to extract relevant terms from the
interview transcriptions. Related codes were grouped together in order to form
categories such as training or support. We used codes within a group in order to find
possible dimensions, e.g. response time for the category support [6].

3.2 Second Iteration: Revised Model

We revised the initial model in three consecutive steps. In each step, we analyzed
literature and the product portfolios of open source companies in order to add new
features to the model [7]. Literature review also helped us to describe individual
features in more detail than we did in the initial model. Additionally, we introduced
new categories in order to replace the flat structure with a multi-level hierarchy.

3.3 Third Iteration: Quantitative Evaluation and Enhancements

The last iteration aimed at evaluating and enhancing the revised model. We accom-
plished this by creating an online survey aimed at employees of open source
companies. The questions of the survey can be grouped into four categories:

• First of all, participants were asked to categorize their company based on the

definitions from Section 2. This allowed us to analyze answers based on
specific business models.

 A Model of Commercial Open Source Software Product Features 93

• The second category contained product-feature-matrices where participants
had to mark which of the product features was offered in which of their
products. Based on these matrices, we were able to deduce how frequently
certain features were offered, how features were bundled together and which
features were not relevant in practice.

• In the third category we asked participants to rank product features based on
their subjective importance. There was one ranking for each feature category
such as “support” or “training”. We used these rankings in order to compare
the subjective importance of each feature with its frequency.

• Finally, we asked for missing features in order to enhance our model.

We used statistical methods to analyze the results of the survey. However, since only
15 valid responses were received, the implications derived from this survey can only
be regarded as starting points for future research rather than definitive results.

4 Model of Product Features

The top level of the revised model consists of three major feature categories: legal
features, features related to intellectual property and service features. Each of these
categories is discussed in detail in this section. Additionally, we will look at every
single feature and explain how it is defined, why customers are willing to spend
money on it and how its dimensions look like.

4.1 Legal Features

Legal features can be divided into two sub categories: commercial license and
permissions. Commercial licenses are important when looking at the so-called “dual
licensing” approach. If a company owns the intellectual property rights of a software
product, then it can offer its products under multiple licenses. For example, a
company can provide its product for free under the GNU GPL license in order to
satisfy the condition of being an open source company. Additionally, it can sell the
very same product covered by proprietary license, allowing customers to side-step the
requirements enforced by an open source license. We identified five major features
which might be a reason for such behavior:

Non copyleft Usage Rights. A special type of open source licenses – called reciprocal
or copyleft licenses – contains a special requirement: If an OSS product A is covered
by a reciprocal license and someone integrates it into his own software B and
distributes the resulting product, B has to be licensed under the very same reciprocal
license (“viral effect”). Consequently, this implies that B has to be made open source,
as well. If someone is not willing to take this step, they might be interested in
spending money on a commercial license including non copyleft usage rights.

Warranty. Open source software usually comes without any warranty. Business users,
however, might be interested in having a warranty clause in order to mitigate potential

94 F. Weikert and D. Riehle

damages. Consequently, warranty can be offered to customers as part of a commercial
license. This feature has several dimensions: first of all, it is important to define what
exactly is the subject of warranty. Furthermore, warranty period, actions in case of
remedy, type of covered damages and limitations such as customer negligence have to
be considered as well. These dimensions allow companies to tailor their warranty
clause as needed or even to offer several warranty clauses with gradual pricing.

Fig. 1. Hierarchy of product features. From left to right: main categories, sub-categories (both
with dark background) and features (light background).

Indemnification. If a customer of an open source company distributes OSS as part of
his own products, he can be held responsible for damages caused by the OSS product.
An indemnification clause would allow him to transfer this responsibility, thus
moving the risk to the original creator of the open source software. Similar to
warranty, indemnification means that customers can mitigate potential damages.
Consequently, they might be willing to spend money on this feature.

Maintenance. Commercial users typically want access to fast and defined problem
solutions for the employed software. Open source users may have to wait for a long
time until a bug gets resolved, so commercial users might be willing to pay for a
maintenance contract that provides the bug fixes faster and in a way that matches their
deployment..

 A Model of Commercial Open Source Software Product Features 95

Managed Release Cycles. In contrast to traditional closed-source software, new
versions of OSS are released very frequently – sometimes even several new versions
per month [3]. While such rapid releases are important in order to ship bug fixes as
soon as possible, they also force customers to deal with updates frequently. This is not
only time consuming – even more so, it might disrupt customers when significant
changes occur often. Especially companies might be interested in receiving fewer,
but more stable updates, as one of the interview partners indicated: “Once we’re
running a production system, you really don’t want to have to upgrade and modify it
too many times there”. Consequently, customers might be charged for such a
guarantee.

The second sub category, permissions, contains the following two features:

Rebranding. Some software vendors like Openbravo require that their trademarks
must not be removed from their open source products [8]. Consequently, even
derivative work must display these trademarks. Due to customer perception, however,
other companies might like to distribute such derivative work exclusively under their
own trademark. This means that they are likely to spend money if they can rebrand
the parts of the software belonging to an open source company.

Perpetual License. All interview partners mentioned that their companies use
subscription-based payment models instead of charging upfront license fees. As a
result, customers can use their OSS products only as long as they pay. However, if
they redistribute the OSS product as part of their own product, their customers
suddenly depend on the contract between these first-level customers and the open
source firm: if those cancelled their subscription, their customers would no longer be
allowed to use the derivative software, too. Consequently, they would have to renew
the subscription until the last of their customers stops using the derivative software.
An open source company can address this problem by selling these customers the
permission to grant perpetual licenses to their customers.

It is important to note that several of the above features are completely irrelevant to
end-users. In fact, features such as non copyleft usage rights and rebranding target
resellers and OEMs exclusively since they do not provide any value to end-users.
Consequently, this distinction has to be considered when defining the legal features of
a particular commercial open source offering.

4.2 Features Related to Intellectual Property

This category contains features which are either software or documents to which
usage rights are being sold. The top level of this category consists of a sub category
and two features.

Documentation. Documents such as reference manuals and user guides are necessary
in order to operate and maintain complex software products. Consequently, open
source companies can sell (advanced) documentation to the users of their software
products.

96 F. Weikert and D. Riehle

Software Distribution. This term describes a configured, ready-to-use software
product which is the combination of several different OSS products. One prime
example is the Linux operating system where several distributions exist, e.g. Ubuntu.
It is important to notice that the resulting configuration is the intellectual property of
the distributor while the individual components may be owned by third parties [9].

In addition to these two features, the top level also contains the sub category
software improvements. Typically, open source companies can offer a commercial
software product which is based on their OSS product while being somewhat
superior. This superiority can be achieved in the following ways:

On the one hand, commercial products can have functional differences by
providing functionality which is not implemented in the OSS product. Consequently,
the commercial product can carry out additional tasks. Functional differences can be
realized in the form of the following two features:

Advanced Core Product. This approach implies that the source code of the open
source version is a subset of the commercial version’s codebase. Consequently, the
functional differences are implemented in the parts of the source code which are kept
proprietary.

Utilities and Plugins. Functional differences are realized in the form of proprietary
utility applications or plugins which can be used in conjunction with the open source
product.

On the other hand, non-functional differences are another possibility to differ-
entiate commercial products from their open source counterparts. This sub category
contains the following features:

Improved Behavior. This means that the commercial product offers the same set of
functions as the open source version does. However, these functions are executed in a
superior way. Such qualitative differences can be realized by improving scalability,
performance, security, safety, availability, reliability and user experience.

Certification. Commercial versions of an OSS product can be certified for the use
with other software or hardware. Furthermore, certification against processes is also
possible, i.e. products can be employed in a specific process or their development
process meets a certified standard. Customers may be willing to spend money on
certification since it guarantees that the product can be operated in the desired way.
Moreover, certification may even be a legal requirement in some jurisdictions or
where software is employed in highly critical environments.

4.3 Service Features

This category contains the features support and training, as well as the sub categories
client-specific services and general services:

Support. Similar to maintenance, support is another commercial-only feature ensuring
the smooth operation of the software. Although non-paying users can usually receive
help through public forums and mailing lists, these options are neither reliable nor do
they guarantee a certain response time. Consequently, business users are likely to

 A Model of Commercial Open Source Software Product Features 97

spend money on a support contract. Several dimensions of support can be used to
design this contract accordingly. First of all, support type and channel have to be
defined. One possible option is called “managed support” which implies that custom-
ers can interact with employees over phone, email, online chat or official forums. On
the contrary, “unguided support” means that customers get access to a set of resources
such as knowledge bases and FAQs in order to solve their problems by themselves.
Next, customers expect statements regarding the quality of support. Two metrics are
of importance: response time and availability. Additionally, open source companies
might offer a dedicated support representative to take care of their best customers.

Finally, quantitative characteristics have to be defined. For example, open source
companies may limit the number of support incidents if they provide subscription-
based support. Additionally, access to the support team can be restricted to a certain
number of employees at the customers’ companies.

As a result, these different dimensions allow open source companies to create
multiple support offerings, each of them addressing the needs of a different customer
segment. Consequently, they can sell managed support with 24/7 availability, low
response time and unlimited incidents to business users while offering 12/5 support
with longer response time and a limited number of incidents to private users.

Training. If the OSS product is sufficiently complex, users might be interested in
getting trained on how to use it efficiently. Consequently, open source companies can
sell training as a commercial feature. It can be provided online or in real-world class
rooms. Online training can either be self-study – by providing documents and online
resources - or instructor-led. Additionally, professional certification training can be
offered as well. This enables employees to prove that they gained specific knowledge.

The sub category client-specific services contains service features which can be
requested “on-demand” and whose execution details are particularly tailored to the
specific needs of an individual customer.

Custom Implementation. Some customers might have very specific requirements
which are not met by the standard software. Consequently, companies can offer to
change the implementation of the software or to write additional software components
upon the client’s request. Since the result of such bespoke services will be superior
compared to a general purpose software, customers might be willing to pay for it.

Custom Certification. Due to the great number of available software and hardware,
companies are likely to certify their software only against a limited selection of
products. If customers want the OSS product to be certified against a very specific
product, the open source company might create an slightly changed product which has
the requested certification.

The last sub category, general services, can be divided into two parts:

Consulting. Similar to traditional closed-source software, open source companies can
offer consulting on the use of their products. Additionally, consulting on the specific
risks and possibilities of open source software can be provided as well [3].

Software Operation. This term combines services whose sole purpose is to enable the
operation of software. For example, companies can perform the installation and

98 F. Weikert and D. Riehle

configuration process of their software at the client’s office. Furthermore, they can
migrate data from legacy systems of the customer to the new software. If an open
source company follows a software-as-a-service approach, it can also offer hosting of
the software in their own data centers. Consequently, hosting includes installation and
migration.

5 Ranking of Features

One of the major goals of the survey was to rank the product features based on their
frequency and their importance. Frequency was measured by looking at the number of
products containing an individual feature. Additionally, we asked the participants to
explicitly rank the features based on their subjective perception of importance. This
enabled us to compare both frequency and importance for each feature category
separately. As already mentioned in Section 3, the following findings are not repre-
sentative due to the limited number of only 15 valid answers.

When looking at the category of legal features, we can see that maintenance is both
the most frequent and the most important feature, followed by updates. Warranty is
the third most frequent feature, although its importance is rather low (sixth place out
of eight features). Indemnification and non-copyleft usage rights can be found in the
lower third of both rankings.

Digital documentation and additional functionality are the most frequent features
related to intellectual property. Furthermore, both features are also the most important
ones. The last two spots in both rankings are occupied by certification for the use in
processes and certification of development process. Both features do not appear in
any of the recorded products, thus resulting in a frequency of zero.

Although unguided support is offered for every product, it is perceived as being the
least important feature – managed support wins the ranking for the most important
support-related feature. In terms of training, on-site training is the most frequent and
most important feature.

The two remaining categories – client-specific services and general services –
show that their most important features are also the most frequent ones. Custom
implementation wins in the first category while installation and configuration
followed by integration and consulting lead the latter.

6 Discussion and Limitations

Our study initially planned to combine exploratory work with confirmatory work.
The survey was supposed to validate the models derived from interviews and
literature review. The low response rate of the survey (15 valid responses) does not
allow us to claim representativeness of the found model and its validation. Thus, the
work presented in this paper provides a model of commercial open source features
based on qualitative research only. A validation of its correctness is pending and has
been left for future work.

 A Model of Commercial Open Source Software Product Features 99

How representative then is the presented work? In a still small segment of the
commercial open source firms we chose leading companies as best-suited exemplars
of their kind, e.g. SugarCRM or Red Hat. In total, we looked at eight commercial
open source firms. As is the nature of theory-generating work, these selected
exemplars provided deep insight and allowed us to build the model, but we cannot
claim to have achieved representativeness, which also isn’t the goal of such work.

One of the surprising results of this work is that commercial OSS offerings aren’t
that much different from traditional closed-source offerings. Most of what commer-
cial open source firms sell has also been sold by traditional firms – except for non-
copyleft usage rights. However, open source companies may have a different
perspective on some of these features: “[...] closed-source companies are likely to see
warranty as a nuisance since it implies additional expenses. On the contrary, open
source companies regard such features as a possible way to generate revenue.“ [7].

Ultimately, the observation about the similarities between the features sold by open
source and closed source firms also suggests that our model was able to capture most,
possibly all, of the commercially relevant features of open source software products.

7 Related Work

Several papers have addressed the economic relevance of open source software.
However, most of them focus on business models as a whole, therefore mentioning
concrete product features only as a sideline. This section provides a short description
of these features and compares them to our model..

Van Aardt describes thirteen open source business models [4]. By doing so, he also
provides possible product features which can be used to generate revenue. First of all,
he explains a feature called “packaging” which is similar to software distribution in
our model. He also addresses commercial licenses by looking at the opportunity of
dual licensing. Additionally, he describes a feature called “commercial, proprietary
software” which is equivalent to software improvements. On the service side, he
mentions support, training and integration services. Furthermore, he points out that
complementary hardware components can be sold.

Some of these services and deliverables are also discussed by Hecker [10].
Additionally, he also mentions features which can be found in our model, including
printed documentation, re-branding, custom development and consulting. He also
discusses complementary online services, which are beyond the scope of our paper.

By classifying 80 open source companies based on their business model, Daffara
outlines several product features which are characteristic for specific business models
[11]. For example, he identifies a “twin licensing” business model where companies
offer non copyleft usage rights as part of their commercial offering. Companies
following a “split OSS/commercial products” approach create additional value by
offering “proprietary plugins” as part of their commercial products. He also mentions
service providers providing features such as training and consulting. Furthermore, he
refers to a special type of open source companies labeled “platform providers”. In this

100 F. Weikert and D. Riehle

context, the term “platform” describes the integration of different open source
products. Consequently, it is equal to the feature of “software distribution” in our
model.

Fitzgerald identifies two major open source business strategies named “value-
added service-enabling” and “loss-leader/market-creating” [12]. These strategies
include possible product features such as services (support, consulting), intellectual
property (software improvements, software distribution) and legal features (commer-
cial license with indemnification and warranty).

As mentioned in Section 2, this paper focuses on three particular open source
business models – software producers, service providers and distributors. This
categorization is based on a paper by Krishnamurthy in which he also discusses
possible product features [13]. For example, he mentions software updates, software
distribution and services such as support, training and consulting.

Riehle identifies four major revenue sources for open source companies and
provides an overview of their particular product features [14] [15]. The so-called
“core product” refers to a dual-licensing approach, i.e. the open source product is sold
with a commercial license. On the contrary, companies following a “whole product”
approach sell an advanced version of their open source product which has additional
functionality. Furthermore, companies can provide “operational comfort” by charging
for supplementary services such as support. Finally, companies can sell “consulting
services” such as training and documentation.

Especially dual-licensing and additional commercial licenses are a popular object
of investigation. Details and legal implications are discussed by many authors, such as
Comino and Manenti [16], Holck and Zicari [17], Lerner and Tirole [18] and
Välimäki [19] [20].

8 Conclusions

This paper presents a model of commercially viable products features in open source
software, resulting from both qualitative and quantitative research steps. This model
provides a hierarchical overview of possible product features and discusses their
definition, economic relevance and dimensions in detail. Finally, feedback from an
empirical survey is used to enhance the model. Additionally, further details on the
relation between individual product features are presented to form the foundation for
future work on this topic.

Acknowledgments. We would like to thank the interview partners who kindly
shared their knowledge with us, thus enabling us to write this paper. We would
also like to acknowledge the contribution of Tony Wasserman, who co-interviewed
the commercial interview partners with Dirk Riehle. Finally, we would like to
thank the participants of our empirical study for their valuable feedback on the
model.

 A Model of Commercial Open Source Software Product Features 101

References

[1] IDC, Press Release (November 1, 2012), http://www.idc.com/
getdoc.jsp?containerId=prUS23771812#.UOqFc3eSHwx (accessed January
4, 2013)

[2] MySQL AB, Sun Microsystems Announces Completion of MySQL Acquisition (February
26, 2008), http://www.mysql.com/news-and-events/sun/ (accessed January
4, 2013)

[3] Helmreich, M., Riehle, D.: Geschäftsrisiken und Governance von Open-Source in
Softwareprodukten. In: Praxis der Wirtschaftsinformatik (HMD 283), vol. 49, pp. 17–25.
Jahrgang (February 2012)

[4] van Aardt, A.: Business Models on Open Source Software. In: 19th Annual Conference
of the National Advisory Committee on Computing Qualifications (NACCQ 2006),
Wellington, New Zealand (2006)

[5] Kumar, V., Gordon, B.R., Srinivasan, K.: Competitive Strategy for Open Source
Software. Marketing Science, 1066–1078 (November 2011)

[6] Weikert, F.: How To Earn Money With Open Source Software. Friedrich-Alexander
University of Erlangen–Nuremberg, Erlangen (2011)

[7] Weikert, F.: Product Features in Commercial Open Source Software. Friedrich-
Alexander University of Erlangen-Nuremberg, Erlangen (2011)

[8] Openbravo S.L.U., Trademark Use Guidelines, Openbravo S.L.U. (December 10, 2008),
http://www.openbravo.com/legal/trademark-guidelines/(accessed
January 4, 2013)

[9] Riehle, D.: Controlling and Steering Open Source Projects, pp. 91–94. IEEE Computer
Society (July 2011)

[10] Hecker, F.: Setting Up Shop: The Business of Open-Source Software. IEEE Software,
45–51 (January 1999)

[11] Daffara, C.: Business Models in FLOSS-based Companies. In: s Workshop presentation
at the 3rd Conference on Open Source Systems (OSS 2007), Limerick, Ireland (2007)

[12] Fitzgerald, B.: The Transformation of Open Source Software. MIS Quarterly, 587–598
(2006)

[13] Krishnamurthy, S.: An Analysis of Open Source Business Models. Perspectives on Free
and Open Source Software, 279–296 (2005)

[14] Riehle, D.: The Commercial Open Source Business Model. In: Nelson, M.L., Shaw, M.J.,
Strader, T.J. (eds.) AMCIS 2009. LNBIP, vol. 36, pp. 18–30. Springer, Heidelberg (2009)

[15] Riehle, D.: The Single-Vendor Commercial Open Source Business Model. Information
Systems and EBusiness Management (2012)

[16] Comino, S., Manenti, F.M.: Dual Licensing in Open Source Software Markets.
University of Trient, Trient (2007)

[17] Holck, J., Zicari, R.V.: A Framework Analysis of Business Models for Open Source
Software Products with Dual Licensing. In: Copenhagen Business School Department of
Informatics, Frederiksberg, Denmark (2007)

[18] Lerner, J., Tirole, J.: The Scope of Open Source Licensing. Journal of Law Economics
and Organization, 20–56 (2005)

[19] Välimäki, M.: Dual Licensing in Open Source Software Industry. Systemes
d’Information et Management (2003)

[20] Välimäki, M.: The Rise of Open Source Licensing A Challenge to the Use of Intellectual
Property in the So ware Industry. Turre Publishing, Helsinki (2005)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 102–116, 2013.
© Springer-Verlag Berlin Heidelberg 2013

A Framework for Strategic Positioning of IT-Products

Wolfram Pietsch

Aachen University of Applied Sciences
Eupener Str. 70, D 52060 Aachen, Germany

pietsch@fh-aachen.de

Abstract. IT Products are viewed and managed differently depending on the
perspectives and the stage within the life cycle. A model is presented that
integrates different perspectives and stages serving as an aid for the analysis of
business models and focused positioning of IT-products. Four generic business
models are analysed with regard to the product management function in general
and the positioning field for IT-products specifically: off-the-shelf (license),
license plus service, project, and system service (incl. cloud computing).

Keywords: Strategic Business Planning, IT Products, Business Models,
Product Management.

1 Positioning of IT Products

In order to manage products properly, business issues and technical issues must be
dealt with in an integrative manner – product management has been devised as a
marketing discipline for this purpose and there is a large body of knowledge (see e.g.
[1;2;3]); nevertheless, the major focus is on tangible mass consumer goods. IT-
products are not tangible and they consist of different components: besides software,
and hardware, also support, training, installation and other services such as consulting
and last not least programming. In order manage IT-products properly, the nature of
the product must be understood from a business perspective and a technical
perspective as well.

Misinterpretations and misunderstandings regarding to IT-products and its
management happen quite often in science and practice. For example, an IT Product
in may be reduced by some people within an enterprise to the production of a standard
DVD for all customers, or it may be viewed by others as a generic set of IT services
that must be custom tailored in order to maximise the value for the user. In order to
manage IT-products properly, business issues and technical issues must be dealt with
simultaneously.

The integration of business and technical issues has been discussed intensively for
individual IT Systems culminating in Carr’s provocative thesis of the “End of
Corporate Computing” [4] which supports the importance of comprehensive IT
products and its management. There are several works on software product
management from a business view (e.g.[5;6]) and others from a engineering

 A Framework for Strategic Positioning of IT-Products 103

perspective (e.g.[7]). But there is no approach that opens the scope beyond software
to IT-product management while integrating business and technical issues. This paper
proposes a tool supporting the discourse about the scope of IT products in practice
and academia integrating different perspectives such as business and technical. A
sound taxonomy is helpful for this discourse, but does not provide decision support.
Contingency theory proposes that management approaches may be chosen according
to different internal and external factors [6]. Following this approach, the model may
lead into a contingency model or IT product management. However, before choosing
the ‘right’ management approach, the situation must be yield a proper segmentation of
situations in which IT products must be managed while considering business and
technical criteria as well.

The definition of the scope of products with regard to a specific target market is
called product positioning within the marketing literature (see e.g. [1;2]) and is crucial
for product management in general and for IT products in specific. The IT Product
positioning tool described below provides orientation for the management of IT
Products, like a compass does for route navigation: it is called the IT product
positioning compass.

The Development department of an enterprise may consider any approved
development result, which is delivered to a customer, as the IT product. Marketing
may differentiate between software licenses, hardware-component, and additional
services such as deployment, maintenance and customising. Both perspectives are
plausible and legitimate but they should be integrated for effective and efficient
processes – to achieve this is the intension of the IT product positioning compass.

The Integration of perspectives is crucial for IT product management. Hence the
major critical success factor for successful product management in practice is the
persuasiveness of the product manager (see e.g. [2]). Therefore, the IT product
positioning compass has been devised to strengthen the consensus dimension of
requirements engineering [9]: it should support and improve persuasive skills.

2 ‘Directions’ for the Management of IT-Products

What are the primary “directions” for such an IT-product positioning compass? From
a business perspective, the positioning of products is a marketing issue. The four P’s
of marketing (price, place, graduation, and product) may be interpreted as general
‘directions’ within marketing worldwide. However, they do not cover IT-related
product management aspects and they require some interpretation. The same applies
to well-established life cycle models in marketing - they focus on the market
perspective solely. The concept of the software life cycle is interpreted differently in
the IT industry, nevertheless software life cycle models are well established and may
provide ‘Directions’ for IT Products starting from requirements definition to
introduction. Hence, the concept of the life cycle is suitable to determine the primary
dimension of the compass.

104 W. Pietsch

There is a multitude of different software lifecycle models suitable for different
purposes and tailored for different applications. For example, the development of a
navigation system must be approached differently than the introduction of a CRM
system. There are comprehensive models that may be tailored to different situations,
e. g. the German standard ‘V-Modell XT’ [10]. Such models are very complex and
may not be reduced to a single dimension for orientation. Agile models such as
DSDM [11] or SCRUM-based approaches [12] are generic and describe an iterative
process but not the advancement or operative steps but not general directions.
However, software life cycle or agile models are prescriptive and not descriptive: it
tells how a software process SHOULD be conducted, but not how it IS conducted
typically – leading to the following issues in detail:

1. Life cycle models focus on the development: IT operation and support are
important business fields and must be addressed properly.

2. All Stages of the life cycle must be processed step by step: IT Products may span
the whole life cycle or only some specific stages.

3. Life cycle models start IT development from scratch: IT-products mostly start with
existing soft and hardware components and must be integrated within an existing
Infrastructure.

4. The development of different IT-systems may be performed independently: IT
Products consist of systems with different life cycles that are heavily intertwined;
e.g. the change of an operating system release requires changes in different
components and products.

5. Outcomes will be employed in a predefined context: reuse of components is
characteristic for IT Products.

Most of the limitations of the life cycle are caused by its procedural interpretation
within the systems engineering paradigm. In order to achieve a descriptive model, the
stages may not be interpreted as steps but as components, then an IT-Product could
cover any stage in an individual sequence: IT Products may cover either development
or support, or a sequence of both. This interpretation of the life cycle corresponds to
the interpretation of the general product life cycle in marketing.

The stages of a general IT Product life cycle build the primary dimensions of our
IT Product positioning compass in order to integrate technical and business
perspectives. The stages of the product life cycle are the building blocks for any
product. Any IT-Product incorporates development activities within the early stage of
the life cycle. In order to be utilised, the IT-Systems must put into operation – two
different stages and product types. A Supplier of IT-Products may provide and
operate the IT-System or just the software ready for application. Finally there are IT
Services and Support that may be part of an IT-Product or may be treated as
independent products. The following figure 1 depicts the resulting IT Product
positioning compass.

Fig. 1. D

The four primary direc
Product life cycle that may
(Creation), Training, IT-O
Products may deliver com
segment. In either case the
approached and in which se
case; hence, there is no s
compass.

The compass is a positio
does not replace the produc
product the space of the IT
times as depicted in figure 2

Product evolution is nev
and dead ends. The IT Prod
analysis and serves as a de
services may be or may no
maintenance or is an upgr
products, which are often
within the IT Product positi

A Framework for Strategic Positioning of IT-Products

Directions for the positioning of IT-Products

tions point out different stages and tasks during the
y be incorporated in an IT-Product, such as Programm

Operation, Consulting, and Maintenance. Supplier of
mprehensive IT-products or may specialise in a spec
e route must be planned properly: which directions will
equence? These and other tasks must be carried out in
specific segment for them in the IT Product position

oning tool; it is not geared for the planning of the proces
ct development plan or process. During the evolution o
T Product positioning compass will be elaborated seve
2.

ver a continuous process; there are several entries, branc
duct positioning compass provides a simple framework
ecision aid: which services are provided currently, wh

ot be provided? Does the regular license include perfect
rade license required? Decisions about the positioning
buried in different project or release plans, are arran

ioning compass into a single picture.

105

e IT
ming

IT-
cific
l be
any

ning

s, it
of a
eral

ches
k for
hich
tive

g of
nged

106 W. Pietsch

3 Product Levels

The IT Product positioni
different roles, i.e. busines
meaningful positioning. Fo
maintenance of the produc
salesmen are referring to s
may address a utility for t
product-related communica
considering technical and
models that may be emplo
business perspective (e.g
perspective (e.g. the OSI R
balances business and tec
replaced by a different mod

− Data: Some IT-products
provided by a specialise
level for Data below the

− Technical Platform: Th
IT-products. If the produ
product; for most Softwa

− Elementary Services: T
to the user are called ele
that may not be useful w

Fig. 2. IT Product Evolution

ing compass should improve communication betw
s and technical. One dimension is yet not sufficient fo
r instance, if database engineers talks with salesmen ab
ct, they may refer to complete different issues. Wher
services that are offered to customers, database engine
the reorganisation of data structures. In order to impr
ation, it is necessary to clarify the level of the prod
business aspects as well. There are several architectu

oyed for this purpose; most of them focus either on
. Zachmann’s Framework [13]) or on the techn
Reference Model [14]). We propose a simple Model t
chnology. However, the model may be augmented

del if available and appropriate.

s like off-board navigation systems require raw data tha
ed supplier such as NAVTECH. Hence, there is prod
technical platform.

he technical Platform is one level for the management
uct is an embedded system, the IT-Platform is part of
are-Products it is not.
The building blocks of the product that may not be visi
ementary services. Elementary services are basic functi

without other functions, e. g. a backup-function or SMTP

ween
or a
bout
reas
eers
rove
duct
ural
the

nical
that

d or

at is
duct

t of
the

ible
ions
P.

− Business Services: Com
and calibration of sever
Business Services may b
and an expert version
technical perspective m
provide a benefit that is c

− Business Processes: A
support or drive specific
the specific process(es),

− Value Creation: Due to
may provide benefits, w
rationale for decisions a
objective criteria such
relationships.

The IT Product positioning
life cycle with the levels po
in figure 3. The resulting fr
of IT Products: generatio
utilisation of data … These
This infrastructure is a m
compass. Therefore, is dep
integrates the IT Product a
concentric circles within the

Fi

A Framework for Strategic Positioning of IT-Products

mplex system functions like E-Mail require the combinat
ral basic services (SMTP, POP3, E-Mail-Client). Sev
be composed by the same elementary services, e.g. sim
of the same virus scanner function. On this level,

meets the business perspective; business services m
comprehendible within the application context.

An IT system consists of several Business Services t
c business processes. At this level, the overall benefit
task, roles and deliverables is concerned.
o limited resources and attention, not every IT System t
will be developed, provided, utilised and supported. T
about IT-systems is addressed at this level ranging fr

h as cost to subjective influences such as perso

compass combines the directions derived from the prod
ointed out above into a polar coordinate system as depic
ramework structures the area of action for the managem
on of data, setup of the technical platform, functio
e tasks require a technical and organizational infrastructu

medium but not the target of the IT Product position
picted as a secondary dimension. Since the infastruct
at different levels, it may be located at the edges' of
e IT Product positioning compass.

ig. 3. IT Product positioning compass

107

tion
eral

mple
the

must

that
for

that
The
rom
onal

duct
cted

ment
ons,
ure.
ning
ture
the

108 W. Pietsch

4 Positioning of IT

4.1 Scope and Objectiv

In order to employ the IT
strategies and purposeful p
identified and arranged wi
fictitious example of a med
ranging from Consultation,
Maintenance.

The depicted fictitious
spectrum. There are unclea
whether all areas will be at
rather like a fuzzy set of se
positioning of the IT-produ
Furthermore, it manifests s
with intensified operative m

F

Product management
perspectives, tasks and hie
depends on the specific con
for the software business ra
success factors [15] to an
However, there are no emp

T Products

ve

Product positioning compass for the analysis of prod
positioning of IT-products, the areas of actions must
ithin the compass space. The following diagram give
dium-size software house with a comprehensive portfo
, Programming, Introduction, Operations, Help Desk up

software house is offering almost the complete prod
ar boundaries between product areas and it is questionab
t the same professional level. This product portfolio lo
ervices; product positioning is at most unclear. An uncl
ucts makes external and internal Communication diffic
strategic deficits. In practice such deficits often coinci

management and very limited product management.

Fig. 4. Fuzzy IT Product Positioning

coordinates and integrates different product-rela
erarchical levels in an enterprise [2]; its implementat
ntext. There are several works on specific business mod
anging from an investigation of business culture and crit
analysis of value chains within the segment of ERP [1
pirical findings available yet on IT Products besides c

duct
t be
es a
olio
p to

duct
ble,

ooks
lear
cult.
ides

ated
tion
dels
tical
16].
case

 A Framework for Strategic Positioning of IT-Products 109

studies regarding the context of IT Product management. There several conceptual
works ranging from a task analysis for software product management [17] to the
definition of generic business models for IT-products [18]. The latter appears to be
most suitable for structuring the context of IT-Product Management within the two
dimensions discussed above. Four generic business models have been identified for
IT-Products: I. Off-the-shelf (License), II. License plus service, III. Project and IV.
System services. The IT Product positioning compass will be employed to these four
models in order to demonstrate its application for the positioning of IT Products and
to enquire into the situative differences for IT Product management.

4.2 Generic Business Models

Type I: ‘Off-the-Shelf’ (License)

The business model for off-the-shelf products targets at high-volume business. Only
specific IT-Products are suitable for this business model, e. g. consumer products like
entertainment devices, computer games, or specific utility programs, which spread
through the web. Some products are bound to a specific hardware but the software is
determining its uniqueness. The buyer acquires the right, to use the system on one ore
more devices – the ‘License’.

High-volume IT-products require a critical mass of customer as starting point for
the marketing. In order to sustain in different market fields, the IT-product must have
a certain level of technical maturity and it must not require extensive instructions for
usage – it should be marketed ‘Off-the-shelf’. In order to achieve high market volume
for Off-the-shelf products, the common requirements of the target market are focused,
not the specific requirements of single users. Off-the-shelf products are defined by its
functions independent from the specific application context. Nevertheless, the
potential of the functions to address individual requirements is motivated in terms of
general benefits like in the following case: The provision of a dedicated technical
interface to PDA' s may enable time-independent work, which is important for field
services among others.

The better the functions of the Off-the-shelf product do match the needs and
expectations of the target market, the better an IT-Product is positioned. For a small
market positioning appears to be easier, but the volume may not be sufficient. The
ideal situation is a large homogeneous market and it is one major goal of
communication to prepare the market in such a way. For this purpose and many other
reasons, Off-the-shelf IT-products should be clearly market-focused and delimited. In
general, the transition from development to marketing is critical for product success.
Detailed system specifications must be condensed to product definitions that are easy
to comprehend, communicable and persistent. There are two specific core
competencies: ‘Off-the-Shelf’-marketing and ‘Off-the-Shelf”-development. It seems
to be difficult to integrate both competencies within one organisational unit for high-
volume IT-Products. In practice, they are often separated as independent units or even
between different enterprises. Marketing and Development of Off-the-shelf IT-
products are complementary though self-dependent business models. Development

110 W. Pietsch

ensures technical maturity a
in figure 5 within the IT Pro

Off-the-shelf product req
development and marketin
important characteristic of t
component of the licens
Development is responsibl
market potential.

Efficiency of institution
development and eventua
determine the success in the

Type II: ‘IT License Plus

Only a few IT-product w
services such as training c
mandatory for the emplo
augmentation auf the off-t
portfolio.

But if an IT-License req
employed, the service is a
business model. This appli

and marketing the marketability. Both models are depic
oduct positioning compass.
quire a long term release planning, in order to synchron

ng activities and to give the user planning reliability -
the service quality. Furthermore, maintenance is not onl
se but an important mean for product vitalisati
le for execution, marketing must analyse the long te

Fig. 5. Positioning ‘Off-the-shelf’

nalisation and effectiveness of cooperation of marketi
ally product management as an integrative functi
e off-the-shelf business.

Service’

will be marketed just off-the-shelf, there are additio
courses, smaller adjustments etc. If these Services are
yment of the product, they may be considered as
the-shelf business model in order to enrich the prod

quires a service in order to be comprehended, deployed
mandatory part of the IT-Product resulting in a differ

ies i.e. for non self-explanatory products, or products t

cted

nise
- an
ly a
ion.
erm

ing,
ion,

onal
not
an

duct

d or
rent
that

Fig. 6

must be adapted to the loca
shelf, first a feasibility stud
be adapted, or there may b
illustrates the positioning
positioning compass.

The business model ‘Li
(‘Off-the-shelf’) and an in
Products may not be m
parameterisations, individu
License plus Service’. Ther
the ‘Off-the-shelf’-part. Th
individual needs: e.g. reg
adaptation specific local int
Licenses and services.

The extent of modificati
this business model. If the
months is a pragmatic rule
difficult to keep the IT syste

License plus service targ
based on economies of sc
maturity of the core system
larger market segment. Thi
limited a few specialists

A Framework for Strategic Positioning of IT-Products

6. Positioning for ‘License plus Service’

al infrastructure. The product may not be applied Off-t
dy or proof of concept could be performed, interfaces co
be intensive training and coaching. The following fig

range of this business model within the IT Prod

icense plus service’ is a combination of a mass prod
ndividual services (‘Project’). Whereas Off-the-shelf

modified for an individual customer besides plan
ual Modifications may be part of the business model
re is a standardised core system that may be considered
his core is modified, extended, connected according

garding the presentation / interaction, reporting or a
terfaces. Typically there are different types of contracts

ons and the volume of the required services are critical
ey exceed a certain amount – not more than three per
e of thumb – a project organisation is necessary and i
em and services simple and manageable.
gets at lower volumes than Off-the-shelf; nevertheless, i
cales: There are substantial costs to ensure the techn
m must. Hence not the single customer is focused, bu
is applies to the IT services as well. Services must not
, but should be organised as standardised proces

111

the-
ould
gure
duct

duct
f IT
nned

‘IT
d as
g to
also
 for

l for
rson
it is

it is
nical
ut a
t be
ses.

112 W. Pietsch

Furthermore, the extent o
complexity. Similar to off
definition, providing the s
functions.

Because of these limit
customers and is very su
between marketing and de
functions must be coupled
of the core product and ind
in an integrative manner by

Type III: ‘IT Projects’

The business model Licen
or migrations of IT-Syst
formalised and executed a
the beginning, what is the
market potential. Hence,
standards and must be tailo
is the product.

of modifications must be limited in order to red
f-the-shelf products there must be a consolidated prod
scope of the core system and the limits of the poten

tations License plus Service targets primarily at n
uccessful in niche markets. Whereas a clear distinct
velopment is suitable for the Off-the-shelf-business, b
more closely for License plus Service: The general sc

dividual modifications and must be analysed and mana
y a dedicated product management position.

nse plus Service does not allow substantial modificati
tems. Any larger set of individual services must
s an IT-Project. But if there is no IT-system available
product? Products require a certain level of maturity

, the execution of products must meet professio
ored to a certain scenario – a specific and proven proc

Fig. 7. Positioning of ‘IT-Projects’

duce
duct
ntial

new
tion
both
ope

aged

ions
be

e at
and

onal
cess

 A Framework for Strategic Positioning of IT-Products 113

There is a large body of knowledge regarding the maturity of software
development processes [19]. However, product management is interpreted moreover
as an administrative function and the marketing function is not addressed at all. In
order to establish a viable business model for IT projects, not only the definition and
execution of project is crucial, but also its marketing. The maturity and the match of
the functions must be ensured for Off-the-shelf products. Likewise, the maturity and
the match of the process must be ensured for IT Projects that are marketed as
products. The execution of projects is one part of the business model, its foundation
the other – both are complementary like those in the Off-the-shelf business model.
Figure 7 depicts the positioning of IT-Projects within the IT Product positioning
compass.

The scope of IT-Project foundation and execution may vary substantially; indicated
by three different segments and one dotted large segment within the figure. IT Project
foundation comprises the definition and assessment of processes, the acquisition and
qualification of proposals and the administration of resources. Methodically, IT
project foundation employs Programme or Portfolio Management techniques and
works like a strong IT Project Office: Proposals and projects will be analysed,
evaluated, prioritised, initiated, staffed and controlled. Depending upon the target
market, personal processes or complex, firmly structured processes will appropriate.

For the marketing of IT-Projects, corporate marketing is highly concerned, since
there is no standard system functionality. Firm image, public relation and reference
customers are the major levers for project acquisition. Hence Key Account
Management and Business Development must be organised properly and coupled
closely with, or even performed by project foundation.

Type IV: IT System Services (incl. ‘Cloud Computing’)

In all business models discussed below, the customer is responsible for the operation
of the IT System. Within the business model IT System services operation,
administration, comprehensive support and maintenance may be part of the IT
Product. In the past, just some niche players have been employing this model
successfully. The business model emerged from Application Service Provision (ASP),
‘on-demand services’ or among others to the general field of Cloud Computing
comprised by ‘Infrastructure-as-a-Service’ (IaS), ‘Software-as-a-Service’ (SaS) and
‘Plattform-as-a-Service’ (PaS). Cloud Computing is specific IT Service which
employs the Web for the delivery. Since there are other channels for delivery, the
more general term IT System Services characterises the business model in general.
Figure 8 depicts the positioning range for IT system services. IaS refers to Basic
Services. SaaS ans PaS refer to Business Servicess but PaS opens the development
part of the circle and has a broader scope.

IT System services may be considered as an extension of the business model Off-
the-shelf to the comprehensive IT-System scope of IT-Projects. IT-projects focus on
development and introduction, support and maintenance are taken over by the user.
Like Off-the-shelf products, IT System services may be utilised by the user
immediately and the Development of the IT System must be geared to suit the needs

114 W. Pietsch

Fi

of many users. Therefore, t
in two parts analogous to O
and operation (see figure
technical, platform and bas
infrastructure is constitutive

This business model is c
respect to marketing: Off
functionality, Licence plus
Projects thru personal inte
experienced and/or measu
measures for the achieved
only indirect measures and
process maturity. Substanti
not addressed.

In order to analyse the
technical criteria and mar
consistent business strategy

5 Evaluation

Since product managemen
factor for successful produ
product manager (see e.g. [

g. 8. Positioning ‘IT System services’

the business model for IT System services must be split
Off-the shelf into design and implementation and allocat

8). Whereas Off-the-shelf omits the provision of d
sic services (see blank core within figure 5), the techn
e for IT System services.
comprehensive in terms of technology and challenging w
f-the-shelf products may be comprehended in terms
s services are disseminated thru value-added services
eraction. But the provision of an IT System may not
ured easily. Availability and Performance are comm
quality level (Service Level Agreements), but they
do not address the development process and technical

ial tasks such as data protection, network management

e potential and to position IT System service produ
rket needs must be balanced within the context o

y [20].

nt is an integrative task; hence the major critical succ
uct management in practice is the persuasiveness of
[2]). The IT product positioning compass has been devi

t up
tion

data,
nical

with
s of
and
t be
mon

are
and
are

ucts,
of a

cess
the

ised

 A Framework for Strategic Positioning of IT-Products 115

as an aid for this purpose: it should support and improve persuasive skills. Hence its
practical value for IT product managers may indicate validity of the tool if it is
analysed properly - this has been the guideline for the invention and design of the IT
product positioning compass.

IT product management trainings are carried out by the author and his academic
fellows and business partners and associates for an open audience regularly. The
authors learned from these training courses that current methods like the product life
cycle, portfolio analysis or road mapping are useful for planning purposes, but do not
provide orientation with respect to business and technical issues. The authors have
been devising an initial version of the compass and it has been employed in a
classroom cases, criticised and improved for the next training. The compass has been
developed thus in an evolutionary manner until it has reached a state of maturity that
has been perceived by the participants as similar to other tools like portfolio analysis.
A survey is planned to investigate the dissemination of the in day to day IT product
management work.

6 Conclusion

The elaboration of the IT Product positioning compass to four generic business
models has been revealing substantial different prerequisites, challenges and pitfalls
for the Management of IT-Products. License plus service is a compromise – neither a
custom-maid suit nor ready to start. Combinations of the generic business models may
be viable, but are not efficient and effective. Different skills, organisation, marketing
etc are required for mass products and individual projects. Each business model
represents a consistent pattern of strategies and actions. Nevertheless, there could be a
coexistence of different models within one enterprise. If Processes and products are
clearly separated, the same people could perform task for different product types.
However an arbitrary combination may lead to a position ‘stuck in the middle’ in the
sense of porter’s generic strategies [21]. Such a position may be accepted as a
transition stage or require long-term experience and professionnalism.

The IT Product compass has been devised for IT Product management at first [22].
Nevertheless, is also suitable for the service management design and IT value
management. Several cases are in progress and will be published soon.

References

[1] Albers, S., Herrmann, A. (eds.): Handbuch Produktmanagement: Strategieentwicklung -
Produktplanung - Organisation – Kontrolle. Wiesbaden, Gabler (2007)

[2] Becker, J.: Marketing-Konzeption. Grundlagen des zielstrategischen und operativen
Marketing-Managements. Vahlen, München (2001)

[3] Lehmann, D.R., Winer, R.S.: Product Management. McGraw Hill (2004)
[4] Carr, N.G.: The End of Corporate Computing. Sloan Management Review 46(3), 67–73

(2005)

116 W. Pietsch

[5] Conde, D., Condon, D.: Software Product Management: Managing Software
Development from Idea to Product to Marketing to Sales. Aspatore (2002)

[6] Dver, A.S.: Software Product Management Essentials. Meghan Kiffer (2003)
[7] Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering.

Foundations, Principles, and Techniques. Springer (2005)
[8] Kieser, A., Kubicek, H.: Organisation, 3rd edn., Berlin (1992)
[9] Pohl, K.: The Three Dimensions of Requirements Engineering. In: Rolland, C., Cauvet,

C., Bodart, F. (eds.) CAiSE 1993. LNCS, vol. 685, pp. 275–292. Springer, Heidelberg
(1993)

[10] Rausch, A., Höhn, R., Höppner, S.: Das V-Modell XT. Springer, Berlin (2005)
[11] Coleman, G., Verbruggen, R.: A quality software process for rapid application

development. Software Quality Journal 7, 107–1222 (1998)
[12] Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice Hall (2002)
[13] Zachmann, J.A.: A Framework for Information Systems Architecture. IBM Systems

Journal 26(3), 276–292 (1987)
[14] Zimmermann, H.: OSI Reference Model—The ISO Model of Architecture for Open

Systems Interconnection. IEEE Transactions on Communications 28(4), 425–432 (1980)
[15] Cusomano, M.A.: Microsoft Secrets: How the World’s Most Powerful Software

Company Creates Technology, Shapes Markets and Manages People. Free Press (1998)
[16] Wolf, C., Geiger, K., Benlian, A., Hess, T., Buxmann, P.: Spezialisierung als

Ausprägungsform einer Industrialisierung der Software-Branche – Eine Analyse am
Beispiel der ERP-Software von SAP. In: To be published within the Proceedings of the
GI-Fachtagung Software-Management 2008, Industrialisierung des Software
Managements, Stuttgart, November 12-14 (2008)

[17] van de Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal, J.M., Bijlsma, A.: On
the Creation of a Reference Framework for Software Product Management: Validation
and Tool Support. In: Proc. of the International Workshop on Software Product
Management, St. Paul / Minnesota, pp. 3–12 (2006)

[18] Pietsch, W.: Geschäftsmodelle als Grundlage für das Software-Produktmanagement.
Proc. of the Multikonferenz Wirtschaftsinformatik 2006, Passau, Berlin (2), 211–222
(2006)

[19] Chrissis, B., Konrad, M., Shrum, S.: CMMI. Guidelines for Process Integration and
Product Improvement. Addison-Wesley, Boston (2006)

[20] Pietsch, W.: Customer-Oriented Specification and Evaluation of IT Service Level
Agreements. In: Richardson, I., Abrahamsson, P., Messnarz, R. (eds.) EuroSPI 2005.
LNCS, vol. 3792, pp. 83–94. Springer, Heidelberg (2005)

[21] Porter, M.E.: Competitive Advantage, New York (1985)
[22] Herzwurm, G., Pietsch, W.: Management von Software-Produkten. dpunkt, Wiesbaden

(2009)

Cloud Services Pricing Models

Gabriella Laatikainen, Arto Ojala, and Oleksiy Mazhelis

Department of Computer Science and Information Systems
University of Jyväskylä
Jyväskylä, Finland

{gabriella.laatikainen,arto.k.ojala,mazhelis}@jyu.fi

Abstract. A major condition for commercial success is a well-defined
pricing strategy, however, cloud service providers face many challenges
around pricing. Clearness and transparency in pricing is beneficial for
all the actors in the ecosystem, where the currently existing abundance
of different pricing models makes decision making difficult for service
providers, partners, customers and competitors. In this paper, the SBIFT
pricing model is evaluated and updated to cloud context. As a result, a 7-
dimensional cloud pricing framework is proposed that helps clarifying the
possible pricing models in order to let companies differentiate themselves
from competitors by price. The framework can be used also as a tool for
price model development and communication about cloud pricing. The
taxonomy is based on a broad literature review and empirical research
on currently used pricing models of 54 cloud providers.

Keywords: pricing, revenue logic, cloud, SaaS, PaaS, IaaS.

1 Introduction

One of the key conditions for commercial success of cloud services is the clearness
and transparency of pricing for both customers and providers [1,2]. Properly ap-
plied, a well-defined pricing strategy can change customers’ behavior and it can
determine the offering’s position on the competitive market [3]. Pricing models
influence not only the demand, but have an effect also on the way how users
use the product or service, and have a long-term influence on customer relation-
ships [4]. Pricing can also differentiate an offering from the competitors [5,6] and
this way increase the company’s revenues and position in the market. Therefore
pricing is a powerful strategic tool in manager’s hands.

However, because of the rapid technology development and increasing compe-
tition in the global markets, price modeling for software products became very
complex. A number of studies have also suggested that traditional pricing mod-
els are not applicable as such for pricing of software products (e.g. [7]) and the
way of pricing software products is also changing [8]. Hence, there is a constantly
changing labyrinth around software pricing with many different pricing solutions
[8]. For this reason, cloud solution providers may face many challenges around
pricing [9] and pricing of IT services is often a neglected topic for many IT
managers [10].

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 117–129, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

118 G. Laatikainen, A. Ojala, and O. Mazhelis

For the above-mentioned reasons, there is a need for a clear and systematic
pricing framework, developed especially for cloud industry, that helps decision
makers find the proper pricing model and evaluate its alternatives, advantages
and disadvantages. Hence, the aim of this study is to examine empirically the
applicability of an existing pricing model in the context of cloud solutions and, if
needed, propose possible modifications to the model. We seek to contribute to the
literature of cloud computing by revealing the most popular pricing models used
by 54 cloud solution providers. In addition, we propose a model that managers
operating in cloud business can use as a tool to evaluate the proper pricing model
for their solutions.

2 Related Work

2.1 The SBIFT Pricing Model

A comprehensive taxonomy of pricing models has been proposed by Iveroth et
al. [11], that defines pricing models as systems of price-related characteristics
of the agreement between buyer and seller. Price models are described along 5
dimensions, that are listed without priority (see figure 1). According to the au-
thors, price models can be described through the specification of the ”positions”
on each dimension. The taxonomy is called SBIFT model, that stands for the
acronyms of the dimensions.

Fig. 1. The SBIFT model [11]

Cloud Services Pricing Models 119

We chose to evaluate this model in cloud context, since it provides the most
state-of-the-art and the most integrative work in the current pricing literature.
The flexibility of this taxonomy makes it possible to create novel pricing models
as a combination of different pricing elements. The model contains pricing ele-
ments also from the cloud- and software literature, hence it may be applied to
the cloud services easily. The dimensions of the model are presented as follows.

The Scope dimension refers to the granularity of the offer. At the left side
of the slider, a Package of products/services are priced; while the other extreme
category is named Attribute, referring to the case when each unit of the offer is
priced individually and buyers can decide upon buying them or not.

The Base dimension refers to the information base that dominates the pricing
decisions. Cost-based pricing is the most widely used pricing method [12], where
the seller determines the price floor based on the cost of developing, producing,
distributing and selling the goods. Another pricing formation strategy is setting
the price level according to Competitor’s price of comparable products or services
[13]. Using Value-based (demand-based) pricing strategies providers define their
prices based on the customers’ perceived value [10,14,15].

The Influence dimension reflects the ability of buyers and sellers to influence
the price. If the price is decided by the provider alone, this is usually commu-
nicated through a Pricelist. If the price is set based on a Negotiation between
the customer and the provider, then the starting point is also a pricelist but the
buyer can influence the final price. The next option is Result-based pricing, where
the price is determined based on some observable result of the product/service
[11]. In an Auction the price is set based on the customers’ willingness to pay
and the sellers’ influence on the price is limited. Exogenous pricing is used if
circumstances beyond the sellers’ and buyers’ influence determine the price.

The Formula dimension refers to the connection between price and volume.
With a Fixed price regardless of volume (flat-pricing, eat-all-what-you-can), cus-
tomers pay a fixed price, that is independent from the used volume [16]. The
Fixed fee plus per unit rate formula has two components: a fixed, predetermined,
volume-independent part and a volume-dependent part. In case of Assured pur-
chase volume plus per unit rate, a fixed amount of volume is priced with a fix
price, and an overage price is charged for the extra consumption with the per
unit rate. Using the Per unit rate with a ceiling formula, the per unit price has to
be paid only until a certain consumption-level, and above that the usage is free
of charge [11]. In case of Per unit price, units (or units per time) are associated
with fixed price values and the customer pays this per unit price regardless of
the quality or the economies of scale that the seller might encounter.

The Temporal rights dimension refers to the length of the time period when
the user can use the offering. In case of Perpetual offering, the customer can use
and own the goods as long as he wants [17,18,19]. When Leasing, customers buy
the right to use the service/product for a fixed period and to buy it after the
period on a predefined price. Through Renting the right is bought to use the
product or service for a ”rental” period, during which the customer does not get
any updates or changes to the original product/service. On the other hand, in

120 G. Laatikainen, A. Ojala, and O. Mazhelis

case of Subscription, buyers have the right to use the service/product for a period
but they also get upgrades, enhancements, new functionalities or new content
from the provider during this time. If the buyers pay every time they use the
service or product, the seller applies Pay per use (pay-as-you-go) mechanism.

2.2 Software Pricing

In software business there are three general revenue models, all including several
pricing options. In the first revenue model, software licensing refers to the tra-
ditional way to buy the software. In software licensing, customers buy a license
that gives right to use the software in a certain amount of computers or pro-
cessors [17,18]. In many cases, the length or amount of usage is not limited. In
the second revenue model, software renting gives right to use the software for a
certain time period that is defined in the rent agreement [5]. In the third revenue
model, pay-per-use enables software providers to charge customers based on the
actual usage of the software [17].

Pricing in these above introduced revenue models may base on different as-
pects. Lehmann and Buxmann [7] introduced the following pricing parameters:

(i) Price formation: The seller determines the price base (cost-based, value-
based or competition oriented) and the degree of interaction between the
seller and buyer (unilateral or interactive).

(ii) Structure of payment flow: Payments may be done as single payments,
through recurring payments or through a combination of these.

(iii) Assessment base: The number of pricing components, the usage-dependent
and usage-independent assessment bases have to be defined.

(iv) Price discrimination: Sellers offer the same good to different buyers at
different prices. Price discrimination may be first-degree (prices depend
on each user’s willingness-to-pay), second-degree (customers may choose
one of the offered product-price combinations based on required quantity,
software version or time), third-degree (market segmentation by the seller
based on personal or regional conditions) or multidimensional (combination
of these).

(v) Price bundling: Several items (services, products, rights, etc.) are bound to-
gether into an offering with a predetermined price. The offering may be pure
bundling (the products are offered exclusively in a bundle), mixed bundling
(goods may be bought as a package or separately), unbundling (products
may be bought only separately) or customized bundling (customers choose
the content of the bundle). In price bundling, software products, mainte-
nance and support services may be packaged together. The degree of in-
tegration of the bundle items can be complementary, independent or they
can substitute each other. The price level of the bundle can be additive
(the price of the bundle is the sum of the prices of the items), superaddi-
tive (the price is greater than the sum of individual prices) or subadditive
(lower price than the sum of individual prices).

Cloud Services Pricing Models 121

(vi) Dynamic pricing strategies: The seller sets the price dynamically over time.
For software products, penetration (setting low prices in the beginning and
possibly increasing it later), follow-the-free (the product is free, revenues
come from complementary services or extra functionalities) and skimming
(high starting prices that may be gradually reduced) pricing strategies are
the most important.

Summarizing, the items of SBIFT model [11] and the software pricing parame-
ters [7] overlap each other: some dimensions and parameters refer to the same
aspect (Scope-Price bundling, Base-Price determination), some dimensions of-
fer more alternatives than the respective pricing parameter (Influence-Degree
of interaction, Formula-Assessment base), one of the dimensions takes a differ-
ent point-of-view than the respective parameter (Temporal rights-Structure of
payment flow) and some parameters are missing from the SBIFT model (Price
discrimination, Dynamic pricing strategies).

3 Methodology and Data

In order to evaluate the applicability of the SBIFT model empirically in cloud
context and to get an insight into currently used cloud solution pricing models,
we studied pricing models of cloud offerings from 54 companies. Our analysis
was carried out in September and October 2012 in the following steps: selecting
cloud companies for the data sample; search for IaaS-, PaaS- and SaaS-offerings
and their pricing information from their webpage; exclusion of those that provide
a different type of service or do not provide enough pricing information; evalu-
ation of SBIFT model iteratively. As a result, after searching for pricing data
of offerings from more than 160 cloud providers, we could build up 73 pricing
models from 54 firms by using the SBIFT model (see Table 1 for more details).

Table 1. Analyzed pricing models

IaaS PaaS SaaS Total

Number of companies 7 14 33 54

Number of offerings 19 16 33 68

Number of pricing models 20 19 34 73

Data Sample Selection. To ease the search of the cloud offerings, we identified
our sample with the help of an internet portal Cloud Computing Showplace1,
that enlists more than 2050 cloud companies. In this online directory, cloud
provider companies can register and categorize themselves into IaaS, PaaS and
SaaS providers. SaaS providers can also categorize themselves by industry sector
and application category.

1 http://cloudshowplace.com

http://cloudshowplace.com

122 G. Laatikainen, A. Ojala, and O. Mazhelis

We utilized this portal since it contains the most comprehensive collection
of cloud providers compared to other portals (e.g. cloudservicemarket.info or
www.saasdir.com) and the number of registered companies are growing continu-
ously, fact that suggests that the directory is an up-to-date, maintained and used
portal. To increase the reliability of our sample, we added additional validation
steps into the process e.g. by excluding the non-cloud offerings.

We identified our data sample by choosing all registered IaaS andPaaSproviders
and one SaaS company with relevant pricing data from each industry sector. Since
the number of registered SaaS companies is too large and growing constantly, we
selected SaaS companies from each industry sector randomly until we had detailed
pricing data of at least one SaaS offering from each industry sector in order to in-
crease the industry coverage of the sample data.

Review of the Offerings and Disclosure of Pricing Information. In or-
der to increase the reliability of our data sample method, we reviewed the offer-
ings and excluded the non-IaaS, non-PaaS and non-SaaS services, respectively.
Concerning the disclosure of pricing information, our experience is in line with
Lehmann et al. [20], who conducted an empirical study on the pricing models of
SaaS providers registered on this portal. They found, that especially small and
medium size firms provide pricing information on their website. Since not every
aspect of the pricing model could be found in most cases, we agreed on excluding
data from our sample where the companies did not provide enough information
to understand the pricing logic as a whole.

Analysis of the SBIFT Model. During our analysis, we matched each pricing
model with a SBIFT pricing model pattern that can be defined as a combination
of the positions of the pricing model characteristics along the SBIFT dimensions.
While defining the positions, we selected the item that described the pricing
characteristic in the most accurate way. The evaluation was done in an iterative
process with the following evaluation criteria: (i) Each of the characteristics of
the pricing model can be matched to a position of a dimension in the SBIFT
model. (ii) One pricing pattern in the SBIFT model describes pricing models,
that share the same characteristics. If the evaluation criteria was not met, we
modified the SBIFT model to address the problems occurred and started a new
iteration until the SBIFT model pattern could be defined for each sample data
and the evaluation criteria was met.

4 Research Findings

4.1 SBIFT Model in Cloud Context

Based on our study, we propose some modifications to the SBIFT model that is
specific to the cloud services industry (see Figure 2). The framework consists of 7
dimensions depicted in continuous scale, that describe the details of the offering.
Next the proposed modifications are described compared to the SBIFT model.

Scope Dimension. Our study revealed that identifying the level of bundling in
the Scope dimension is challenging without some kind of categorization between

Cloud Services Pricing Models 123

Fig. 2. Cloud Solution Pricing Framework

the cases Attribute and Package. Based on the literature, we identify the cate-
gories Package as Pure bundling and Attribute as Unbundling. The combination
of these is referred in the literature to as Customized bundling, where customers
can choose the components of the bundle while the seller determines the price
and scope of the bundle [21]. In IT industry, we see examples of customized
bundling when even the price and the scope of the bundle is negotiable. To ease
the process of determining the scope level, we propose the categories [Bundling
where the amount of some items can be chosen from predefined options] and
[Bundling where the amount of some items can be chosen freely].

Tiered Pricing. We propose to add a new item to the Formula dimension for
offerings with a fixed price and a limitation on the volume or the functionality,
where the user has to switch to a less-limited offering with a different price
if (s)he requests more volume or functionality. Named as Tiered-pricing, the
formula attempts to package services and products by matching price levels to
user’s willingness-to-pay [14]. This formula is popular among IT offerings that
apply vertical versioning.

Subscription-Based Pricing Models. In the Temporal rights dimension of
SBIFT model the authors distinguish between Leasing, Renting and Subscrip-
tion. However, these three concepts are faded in cloud literature (see e.g. [17,5]),
therefore we propose to use the term Subscription meaning Renting and Leasing
as well and leaving Renting and Leasing out of the framework as separate items.

Usage-Based Pricing Models. In cloud literature, the term Pay per use pric-
ing is used when the customer is charged on the actual usage, that has to be

124 G. Laatikainen, A. Ojala, and O. Mazhelis

monitored and measured [22]. The customer does not have to make any commit-
ment to use the service or product for a predefined period: there is no obligatory
monthly fee, the user pays for the used volume. In digital content pricing litera-
ture, units represent a pricing metric that can be either linked to the actual usage
or volume of the service/product (usage-dependent metric) or represent only the
usage potential (usage-independent metric) [7,20]. Hence, the term usage-based
pricing known from cloud industry refers to a SBIFT price model, where the For-
mula dimension is Per unit price with a usage-based metric and the Temporal
rights is Pay per use.

Performance-Based Pricing. Being a broadly used pricing strategy in in-
tegrated solution pricing, we propose to add the category Performance-based
pricing to the Base dimension, that takes into consideration both the suppliers’
costs and the customers’ perceived value. In this case, the seller guarantees a
certain performance level for a negotiated price and pays a penalty if this is not
achieved [15,23].

Proposed Dimension: Degree of Discrimination. Based on literature re-
view and the wide use of this pricing aspect of our data sample, we propose
to add the dimension Degree of discrimination to the SBIFT model. Price dis-
crimination is used when the same product/service is offered for different buyers
for different price. This strategy is extremely important for providers of digi-
tal goods, since the low marginal costs allow them to sell the offering also for
customers with low willingness to pay [7]. The categories of the dimension are
proposed as follows.

The left most item is No discrimination, meaning that the product/service
is offered for the same price for everybody. In case of First degree discrimina-
tion the vendor offers the same product/service with different prices for differ-
ent customers. Second degree price discrimination is used when providers sell
different units of output for different prices [24]. In this case, customers use self-
selection to choose from the offers [25]. Second degree price differentiations can
be quantity-, time- and quality-based [7]. In case of Quantity-based price discrim-
ination the price depends on the amount of the bought goods [24]. When prices
differ in different points of times, time-based price discrimination is used. In case
of Quality-based price discrimination different product/service variants are of-
fered with different price [26]. When applying Third degree price discrimination,
the vendor identifies different customer groups based on their willingness-to-pay
[26]. Third degree price discrimination can be Personal (e.g. student discounts)
or Regional (e.g. different prices for developing countries) [7]. Multi-dimensional
price discrimination occurs when price differentiation is made based on more
than one dimension [7].

Proposed Dimension: Dynamic Pricing Strategy. Because of its important
role in cloud pricing suggested by the literature [7], we propose Dynamic Pricing
Strategy to the SBIFT model. Prices set in a dynamic environment can influence
the demand behavior of price sensitive customers [27]. Dynamic pricing is the
strategy where prices are not fixed for a relatively long period, but the seller

Cloud Services Pricing Models 125

dynamically changes the prices over time, based on factors such as time of sale,
demand information and supply availability. Next the categories of the dimension
are proposed.

The first option is the Long-term real price strategy, when prices are kept
the same for longer periods and they are adjusted only if necessary, not as a
part of a predetermined strategy. The next option is the Penetration strategy,
when vendors use low prices for faster market-entry and then increase prices over
time [28,12]. In case of Skimming the vendor sets high prices in the early stages
of market development and then gradually reduces the prices to attract also
more price sensitive market segments [12]. Hybrid pricing strategies [14] combine
elements of penetration and skimming strategies and may contain for example:
Complementary pricing [14], Premium pricing [14], Free [8], Freemium/Follow-
the-free [8,7] or Random or periodic discounting [14].

4.2 Pricing Models in Cloud Industry

Our analysis shows, that indeed, currently used pricing models are very complex,
difficult to understand and compare (in line with [8,29]). Solutions appear as a
result of co-operation and competition between the actors of the ecosystem, and
the interconnectivity between the actors is visible also in the pricing models
(in line with [30]). In Figure 3, currently used pricing model characteristics
of different service sectors are marked, where the values inside the rectangles
describe the rounded usage proportions of the respective pricing aspect. In the
picture the most popular pricing patterns and the most rarely used categories
are also shown. Results related to the dimensions Base and Dynamic pricing
strategies are missing from the figure, since there was not enough data regarding
these two aspects. It can be seen from the figure, that firms use similar pricing
models for IaaS, Paas and SaaS offerings.

Most Popular Pricing Model Patterns
Based on our analysis, we can conclude that cloud providers indeed differenti-
ate by price since there is a big diversity in applied pricing models. The most
popular pricing model is [Pure bundling, Pricelist, Tiered pricing, Subscription
and Second degree discrimination] for all IaaS, PaaS and SaaS offerings, being
applied in more than 20% of the cases. Price bundling is an effective pricing
strategy if variable costs are near zero, or at least relatively low compared to the
customers’ willingness to pay. On the other hand, using different price bundling
and unbundling solutions result in a nontransparent market because of the diffi-
culties in price comparisons, and that effects negatively both the providers and
the customers [29]. Pricelists are broadly used in cloud industry, especially when
there is a large customer base with similar needs. In case of IaaS offerings, an-
other popular pricing model is revealed since IaaS offerings are priced in 20%
of the cases with the pricing model [Pure bundling, Pricelist, Assured purchase
volume plus per unit price, Subscription and No discrimination]. As a difference
to the price model above, customers get the same product for the same price

126 G. Laatikainen, A. Ojala, and O. Mazhelis

Fig. 3. Currently used pricing models in the cloud industry

without any discrimination, and they have the option to buy additional resources
with a predefined unit price.

Our study revealed also, that Free trial version is offered to the users in 10%,
90%, and 56% of IaaS, PaaS and SaaS offerings, respectively. Besides this hybrid
strategy, we met examples of Tiered marginal discounting, which assures that
usage increase is not so painful while usage decrease still brings economic benefits
for the customer.

Rarely Used Categories
Despite of the big diversity in cloud pricing, there are still rarely used categories
that may provide differentiation for firms. Based on our findings, one of the
rarely used categories is Result-based pricing. However, this category may be
often used among business partners, where the actors of the value chain split
the generated revenue. Examples of rarely used Pay-what-you-want pricing are
the popular games downloadable from Humble Bundle website2 [31]. Auction
pricing is also rarely used, however, a good example from IaaS industry could
be Amazon’s pricing model regarding the EC2 Spot Instances. On the other
hand, Shapiro and Varian [32] state that auctions is usually not a viable option
for digital goods where the incremental cost of production is zero. Examples
of Exogenous pricing are found -however rarely- in SaaS pricing: solutions are
priced partly based on the pricing model of IaaS provider - in this case, neither
the SaaS provider nor the customer have an influence on this price component.

2 http://www.humblebundle.com/

http://www.humblebundle.com/

Cloud Services Pricing Models 127

No examples have been found by the authors for the use of Per unit rate with
a ceiling in cloud industry. Our study reveals, that Third degree discrimination
is not used alone, but it is preferred to be applied together with Second degree
discrimination. In addition, First degree discrimination is rarely used in cloud
context, probably because providers have difficulties in acquiring knowledge on
each user’s willingness-to-pay [7].

5 Conclusions and Further Research

Pricing is a strategic tool in manager’s hands, where finding a good price model
brings success for the companies. On the other hand, it is a challenging task with
long-term consequences, where decision makers have to take into consideration
many factors, such as the offering itself, the target market segment with spe-
cific customer needs, the competitors’ similar offerings, the costs, etc. With the
sudden growth of different cloud solutions, also pricing has become increasingly
complex resulting in a ”constantly changing labyrinth” of pricing [8]. In this
research, we attempted to find a systematic way to describe the pricing models
in order to help decision makers plan, develop and speak about pricing alterna-
tives. The proposed 7-dimensional model is an extended and customized version
of the SBIFT model developed for cloud industry, that takes into consideration
both the general knowledge about pricing and the specific cloud characteristics.

In this paper, an empirical study has been carried out in order to identify the
currently used pricing models of the cloud solutions. We found, that the pricing
models of IaaS, PaaS and SaaS offerings have similar patterns, that leads us
not to distinguish between different service categories but rather concentrate
on pricing of cloud solutions. In line with Kihal et al. [29] and Cusumano [8],
we found out also, that the big diversity in the pricing models makes price
comparison difficult.

Our study has some limitations that provide avenues for further research.
Besides our analysis of pricing information available online, data has to be gath-
ered and studied from other sources as well, e.g. through cases studies or quan-
titative research. In further research, dependencies between the dimensions and
categories have to be studied also. Because of the the dynamic nature of cloud
value networks [33], the interaction between different actors of an ecosystem has
an impact also on pricing. Offerings are interconnected and pricing models have
to be established in a complex service system with multiple stake-holders [30].
Further work is needed to analyze how the pricing models of different actors
enable or limit each other’s pricing models [11].

References

1. Weinhardt, C., Anandasivam, A., Blau, B., Borissov, N., Meinl, T., Michalk, W.,
Stößer, J.: Cloud computing–a classification, business models, and research direc-
tions. Business & Information Systems Engineering 1(5), 391–399 (2009)

128 G. Laatikainen, A. Ojala, and O. Mazhelis

2. Anandasivam, A., Premm, M.: Bid price control and dynamic pricing in clouds. In:
Proceedings of the European Conference on Information Systems, pp. 1–14 (2009)

3. Piercy, N.F., Cravens, D.W., Lane, N.: Thinking strategically about pricing deci-
sions. Journal of Business Strategy 31(5), 38–48 (2010)

4. Gourville, J., Soman, D.: Pricing and the psychology of consumption. Harvard
Business Review 80(9), 90–105 (2002)

5. Ojala, A.: Software renting in the era of cloud computing. In: 2012 IEEE 5th In-
ternational Conference on Cloud Computing (CLOUD), pp. 662–669. IEEE (2012)

6. Porter, M.: Competitive strategy: Techniques for analyzing industry and competi-
tors (1980)

7. Lehmann, S., Buxmann, P.: Pricing strategies of software vendors. Business &
Information Systems Engineering 1(6), 452–462 (2009)

8. Cusumano, M.A.: The changing labyrinth of software pricing. Commun.
ACM 50(7), 19–22 (2007)

9. Schramm, T., Wright, J., Seng, D., Jones, D.: Six questions every supply chain
executive should ask about cloud computing. Accenture Institute for High Perfor-
mance (2010)

10. Hinterhuber, A.: Towards value-based pricing: An integrative framework for deci-
sion making. Industrial Marketing Management 33(8), 765–778 (2004)

11. Iveroth, E., Westelius, A., Petri, C.J., Olve, N.G., Coster, M., Nilsson, F.: How to
differentiate by price: Proposal for a five-dimensional model. European Manage-
ment Journal (2012)

12. Shipley, D., Jobber, D.: Integrative pricing via the pricing wheel. Industrial Mar-
keting Management 30(3), 301–314 (2001)

13. Danziger, S., Israeli, A., Bekerman, M.: The relative role of strategic assets in
determining customer perceptions of hotel room price. International Journal of
Hospitality Management 25(1), 129–145 (2006)

14. Harmon, R., Demirkan, H., Hefley, B., Auseklis, N.: Pricing strategies for informa-
tion technology services: A value-based approach. In: 42nd Hawaii International
Conference on System Sciences, HICSS 2009, ID: 1, pp. 1–10 (2009)

15. Bonnemeier, S., Burianek, F., Reichwald, R.: Revenue models for integrated cus-
tomer solutions: Concept and organizational implementation. Journal of Revenue
& Pricing Management 9(3), 228–238 (2010)

16. Sundararajan, A.: Nonlinear pricing of information goods. Management Sci-
ence 50(12), 1660–1673 (2004)

17. Ojala, A.: Revenue models in saas. IT Professional (2012)

18. Ferrante, D.: Software licensing models: What’s out there? IT Professional 8(6),
24–29 (2006)

19. Choudhary, V.: Comparison of software quality under perpetual licensing and soft-
ware as a service. J. Manage. Inf. Syst. 24(2), 141–165 (2007)

20. Lehmann, S., Draisbach, T., Buxmann, P., Dörsam, P.: Pricing of software as a
service–an empirical study in view of the economics of information theory. In:
Cusumano, M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114,
pp. 1–14. Springer, Heidelberg (2012)

21. Hitt, L., Chen, P.: Bundling with customer self-selection: A simple approach to
bundling low-marginal-cost goods. Management Science, 1481–1493 (2005)

22. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commu-
nications of the ACM 53(4), 50–58 (2010)

Cloud Services Pricing Models 129

23. Becker, M., Borrisov, N., Deora, V., Rana, O.F., Neumann, D.: Using k-pricing
for penalty calculation in grid market. In: Proceedings of the 41st Annual Hawaii
International Conference on System Sciences, ID: 1, p. 97 (2008)

24. Varian, H.: Differential pricing and efficiency. First Monday 1(2-5) (1996)
25. Spiegel, Y.: Second degree price discrimination. Tel Aviv University (1997)
26. Varian, H.: Versioning information goods. University of California, Berkeley (1997)
27. Anandasivam, A., Buschek, S., Buyya, R.: A heuristic approach for capacity control

in clouds. In: IEEE Conference on Commerce and Enterprise Computing, CEC
2009, pp. 90–97. IEEE (2009)

28. Dean, J.: Pricing pioneering products. The Journal of Industrial Economics, 165–
179 (1969)

29. El Kihal, S., Schlereth, C., Skiera, B.: Price comparision for infrastructure-as-a-
service

30. Ng, I.C.L.: The future of pricing and revenue models. Journal of Revenue & Pricing
Management 9(3), 276–281 (2010)

31. Jurisic, M., Kermek, D.: Taxonomy of digital economy business models. In: MIPRO
2011 Proceedings of the 34th International Convention, pp. 1414–1419. IEEE
(2011)

32. Shapiro, C., Varian, H.: Information rules: a strategic guide to the network econ-
omy. Harvard Business Press (1998)

33. Ojala, A., Tyrväinen, P.: Value networks in cloud computing. Journal of Business
Strategy 32(6), 40–49 (2011)

The Impact of Software-as-a-Service

on Software Ecosystems

Sebastian Walter Schütz1, Thomas Kude1, and Karl Michael Popp2

1 University of Mannheim
sebastian.w.schuetz@gmail.com,

kude@uni-mannheim.de
2 SAP AG

Walldorf, Germany
karl.michael.popp@sap.com

Abstract. The trend towards cloud-based applications changes the way
customers run their businesses, but also the way software is sold and de-
livered. This affects software ecosystems and the way software vendors
interact and manage their partners. In order to explore on the impacts,
we conducted a single-case study by examining a globally leading soft-
ware vendor of both, traditional on-premises software as well as cloud
solutions. The study reveals new insights on how the SaaS revolution
impacts partner management within software ecosystems from a vendor
perspective, for instance that successful cloud partners may not neces-
sarily come from a cloud background.

Keywords: Software-as-a-Service, Cloud, Software Ecosystem, Partner
Management, Software Vendor.

1 Introduction

The emergence of Software-as-a-Service (SaaS) has brought a wind of innova-
tion to the software industry, shifting the ownership, delivery and management
of software from the customer to the vendor [12]. Transforming the traditional
business models to SaaS brings a specific set of benefits to the business, espe-
cially addressing the pain points of customers: software updates, infrastructure
maintenance, and capacity planning [30,24]. These activities are now entirely
performed by the vendor, relieving customers from many responsibilities. At
the same time, the total cost of ownership decreases [10]. However, along with
these changes, new challenges arise - especially for the vendor’s value proposi-
tions, revenue models, and sales channels [26]. While SaaS has initially addressed
small and medium sized businesses, large accounts are becoming more and more
relevant targets - creating a large potential customer base for which a vendor
may not have the resources to face by itself. As a result, vendors try to engage
in external partnerships, so called software ecosystems, which have become an
important go-to-market strategy for SaaS vendors. Traditionally, these external
firms act as resellers, complementing software developers or system integrators

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 130–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

The Impact of SaaS on Software Ecosystems 131

and therefore bring in additional resources, knowledge and customer access [1].
While these ecosystems are already existing for the traditional on-premises busi-
ness, the emergence of SaaS may cause them to change [13] - making it necessary
for software vendors to cautiously manage their ecosystem and thus their old and
new partners [14].

Recent research in the intersecting field of SaaS-based software ecosystems
has focused on the ecosystem’s characteristics and implications for software ven-
dors. However, impacts on existing on-premises software ecosystems, which are
in a process of transition towards the new technology, have not been studied
yet. Therefore, this single-case study, conducted within a traditional, globally
leading software vendor, is intended to answer the question of how and why the
emergence of SaaS affects such traditional software ecosystems as well as what
possible implications the shift to SaaS may have for transitioning on-premises
software vendor.

In a first step, the relevant literature will be briefly reviewed - in particular,
a definition for the terms SaaS and software ecosystem will be given and the
current research state presented. Furthermore, the intersecting research will be
discussed and the research gap highlighted. Subsequently, the case will be intro-
duced and the results will be presented referring to three a priori defined areas
of impact. Finally, the findings are discussed and limitations and possible future
work will be highlighted.

2 Literature Review

This chapter will discuss previous research on SaaS, ecosystems and on the
intersection between the two areas. In doing so, the identified research gap will
be highlighted.

2.1 Software-as-a-Service

Wilhite [29] recently defined SaaS as a part of the services offered within a
Cloud Computing environment, referring to the hardware and software of large
data centers. Accordingly, Cloud Computing comprises the services being sold
from these data centers: either software (SaaS) or utilities (Platform-as-a-Service
and Infrastructure-as-a-Service). Present research already covers several techni-
cal and business aspects of SaaS, such as customization [27], software architec-
ture [25] as well as integration and software development aspects [16]. But also
benefits [24], value proposition, adoption issues and risks [30] as well as a fu-
ture market prognosis [19] have been subject of research already. Even though
all of these studies examined the SaaS technology from different perspectives,
Stuckenberg and Fielt [26] were among the first to find evidence that software
ecosystems might be affected as well. Similarly, Kim and Korea [19] already pre-
dicted the emergence of cloud computing ecosystems and thus highlighted the
connection to ecosystem research.

132 S.W. Schütz, T. Kude, and K.M. Popp

2.2 Software Ecosystems

The term software ecosystems is defined by Jansen as ”a set of actors functioning
as a unit and interacting with a shared market for software and services, together
with the relationships among them. These relationships are frequently under-
pinned by a common technological platform or market and operate through the
exchange of information, resources and artefacts” [18, p. 34]. Within such ecosys-
tems, the roles of participants can be divided into keystones (platform providers)
and niche players (firms who participate in the ecosystem) [15]. Building on this,
Kittlaus [20] specified the role of niche players even further by introducing the
types of niche players as shown in Table 1.

Table 1. Partner roles niche players can assume (based on [20])

Partner Type Abbrev. Definition

Value Added Reseller VAR Extends the direct sales channel
Independent Software Vendor ISV Sells complementary products
Original Equipment Manufacturer OEM Embeds the keystones products
System Integrator SI Offers implementation

The previously mentioned research targeted software ecosystems in general.
While research on how SaaS as one specific platform affects the surrounding
ecosystem - especially on ecosystems underlying a transformation towards this
new concept - is still limited, some recent studies have started to address ques-
tions at the intersection of SaaS and software ecosystems. The current state of
research will be presented in the following.

2.3 SaaS in Software Ecosystems

From a conceptual perspective, Cusumano [7] examined whether the SaaS model
has the capabilities to serve as a technology platform around which a software
ecosystem can emerge. Along four levers for generating networks effects and
building ecosystems in general, Cusumano attests SaaS as well as the more
general Cloud model the potential to be come a new ecosystem platform. How-
ever, Cusumano [8] particularly highlights the increased possibility of conflicting
interests when software vendors opening up their platforms for complementors.
Similarly, Stuckenberg and Fielt [26] found evidence that internal conflict within
ecosystems may increase as a result of the reduced customization possibilities of
SaaS solutions and thus reduced differentiation between competitors.

Looking at SaaS in software ecosystems from an empirical perspective, Hilkert
et al. [14] examined where exactly SaaS drives changes within the software in-
dustry. The goal was to identify areas of change regarding characteristics specific
to the IT industry, using a transaction cost based approach to analyze two major

The Impact of SaaS on Software Ecosystems 133

software vendors: salesfore.com as a pure SaaS vendor, and CAS genesisWorld as
a pure on-premises vendor. As a result of this explanatory study, their findings
comprise four major areas. First, it was predicted that SaaS will lower the total
costs of an entire solution as well as raise the variety of complementary offerings
for the customers. Second, for intermediaries, the change may shift their role to
more trust and relationship building activities. Third, for complementors, the
competition may raise for established ISVs as entry barriers fall. And at last,
software vendors will face new challenges regarding the shift from managing
single partner relationships towards a market-organized ecosystem.

As noticed in Section 2.1, research on SaaS has mainly focused on business
and technical aspects of both the customer as well as of the vendor side. Within
in software ecosystem research, the impact of a technology platform such as SaaS
remains mostly unexplored. As a notable exception, Cusumano [7] sheds light on
this area from a conceptual view. Adding to these findings, this study is among
the first to empirically study ecosystems in a software service environment. As
opposed to Hilkert et al. [14] who focused on pure SaaS and pure on-premises
vendors, traditional on-premises software vendor that enter the SaaS market and
thus transition its ecosystem is not explored yet. The goal of this study is to fill
this gap.

Summarizing the existing literature, the effects of SaaS on software ecosystems
relate to three major areas. Hilkert et al. [14] suggest that firstly, SaaS will change
the roles of partners or the partner profiles and secondly also the relationship
between platform vendors and partners. Third, changes may be observed on
an ecosystem level and relate to the competition among organizational actors
[8,7,26]. Hence, implications of the shift towards SaaS can be examined on an
organizational, inter-organizational, and ecosystem level. These areas derived
from the review of existing literature will be used to guide our data collection
and analysis.

3 Case Study

This section will present the case study’s empirical results. In particular, we
first elaborate on the chosen research design and the data collection. Then,
detailed information on the data sources are given and reasons why they have
been chosen are discussed, followed by an introduction of the method of analysis.
The gathered evidence will then be categorized along the sub-dimensions partner
profiles, relationships, and ecosystem. Then, the results will be discussed.

3.1 Research Design

According to the open research question, an exploratory single-case study was
conducted with the goal to improve our understanding of the implications of
SaaS on well-established software ecosystems. Thus, the subject is a globally
leading business software vendor for traditional on-premises solutions, which
recently entered the SaaS market and maintains an extensive software ecosystem.

134 S.W. Schütz, T. Kude, and K.M. Popp

As a rationale for the single-case research strategy, the revelatory opportunity
resulting from a unique access to the case site was leveraged [31,11].

The data collection consisted of three semi-structured interviews which have
been conducted with key personal of the case organization. Within a semi-
structured interview, the interviewer sets up a predefined structure prior to the
interview and then follows this structure while still being flexible enough to ad-
just to new topics and discussions. It is thus suitable for conducting interviews
with a limited number of people, for which the mentioned flexibility as well as the
appreciation of context to understand the individuals perception may result in
the generation of rich data, as it is done within this study. The detailed sequence
of the interview formed during the interview process [6,9]. As suggested by [31],
the three areas introduced in Section 2.3 guided and structured the process of
data collection and the analysis of the empirical evidence. These areas are gener-
ally considered abstract enough to capture our empirical insights. Accordingly,
the following three topics are covered during the interviews:

1. Partner profiles: How does SaaS partners differ from on-premise partner?
What characteristics and assets do partners need to possess in order to suc-
ceed in a SaaS-based ecosystem? What entry barriers do they encounter?

2. Relationship: How does SaaS affect the relationship to partners, especially
the fact that systems are not longer accessible on-site?

3. Ecosystem level: Does the standardization of products encourage competi-
tion? If yes, how can possible conflicts be avoided or resolved?

3.2 Data Sources

For this exploratory study, the data sources comprised three individuals within
the case subject’s organization. As a result of their roles within the case organi-
zation, they possess unique knowledge and experience about their field as well
as the organization.

Individual A: The first interview was conducted with a global cloud chan-
nel development manager, who is responsible for partner profiling, recruitment
and channel cloud business models. The individual draws on five years of cloud
channel experience in total starting from 2007 (which is the same year the orga-
nization’s first cloud solution was offered), whereof three years in a local role at
the company’s headquarters and two years in the current global role. As a result,
the individual is able to provide valuable insights with regards to development,
challenges and particular necessary changes to make the organization’s cloud
channel run successfully.

Individual B: The second interview partner has been responsible since four
years for the partner management within the cloud channel, especially in Central
Europe. The individual B has been part of the organization since twelve years and
was working - prior to his partner management role - in the strategy department,
where s/he was involved in the planning of the offered cloud service, especially
design of sales cycles, partner models and the go-to-market approach. Thus, the
individual can contribute with insights from a strategy perspective, in particular

The Impact of SaaS on Software Ecosystems 135

on how partners approach the cloud topic and how the globally leading software
vendors manages its partnerships.

Individual C: The third individual’s role is responsible for partner recruit-
ment in EMEA (Europe, Middle East and Africa). The individual joined the
organization almost ten years ago and has been working in a channel role since
five years. According to his role, the individual contributes through insights into
the ecosystem building strategies and activities and is particularly able to share
insights on cloud partner profiles and types.

3.3 Data Analysis

The goal of this study is to provide a better understanding of the implications
of the shift towards SaaS for well-established platform ecosystems. More specifi-
cally, after having deduced three potential areas of impact from extant literature
- partnership profiles, relationships, and ecosystem - the goal of our empirical
study was to fill these areas with life in the context of a large and globally acting
enterprise software vendor. In order to do so, we carefully analyzed the collected
qualitative data and assigned text fragments to the three identified areas [31].
Even though we were open for new areas of impact to emerge, all our findings
could be subsumed under the three a priori identified categories. In an iterative
process of sensemaking, we reexamined the coded text fragments and structured
them according to several distinct patterns that are presented subsequently (see
also Table 2).

3.4 Empirical Results

In this section the empirical results will be presented. Similar to the data col-
lection, the results will be presented along the three areas of impact identified
in Section 2.3: the first subsection will discuss the evidence gathered about a
possible impact of SaaS on partner profiles. Then, in the second subsection, the
relationship between platform vendor and partner will be elaborated, followed
lastly by the impact on ecosystem level.

Partner Profiles. During the interviews it was found that in contrast to tra-
ditional on-premises software ecosystems, hybrid ecosystems will shift from a
partner landscape dominated by Value Added Reseller towards a landscape that
will mostly consist of Independent Software Vendors, Original Equipment Man-
ufacturers as well as Business Process Outsources. This is caused by the nature
of the platform strategy, which focuses on implementing only around 80% of the
product’s functionality and specifically creating business opportunities (niches)
for its partners. As agreed by Cusumano [8], this is an important lever for the
ecosystem’s success and allows ISVs to build solutions to fill these niches. The
VAR partner type, which is strong regarding marketing and sales, will no longer
be able to simply resell. In consequence, this means for hybrid ecosystems that
the share of value creating partners will raise compared to reselling partner types.

136 S.W. Schütz, T. Kude, and K.M. Popp

”Basically you use [ISVs] for both: to extend the solution, but also as a
strategic factor with regards to specialization and to fill segments we do
not want to address ourselves. (Individual A)”

Additionally, one more partner was suggested to play an increasingly important
role in future SaaS ecosystems: the business process outsourcer (BPO) [22]. With
IT being outsourced, hosted, owned, and delivered by a third party, it is only
standing to reason that these service providers also take over the responsibility of
processes, e.g. payroll. Regarding the requirements for a partner to be successful,
it is suggested that the most important assets are market access and expertise
in the specific domain - other than cloud. This is necessary since customers do
not buy cloud solutions, but a solution addressing a certain area - e.g. sales.

”We used to have partners who came from a Google Cloud background
and it happened that those struggled with their approach since they didn’t
have any idea about ERP. (Individual A)”

Another requirement for partners can be derived from the positive adoption
factor articulated by Xin & Levina [30], arguing that customer’s high costs of
capital positively affects the decision towards a SaaS adoption. Due to the SaaS
business model, a partner’s cash flow is split into monthly fees over a period of
time, resulting in the situation in which the initial customer acquisition costs
cannot be amortized immediately and thus requires strong financial liquidity on
the partner side. However, it is further argued that an investment is always nec-
essary to enter a new field of business - no matter whether on-premises or cloud.
To highlight the difference in necessary investment between a cloud business and
on-premises business, the number of sales employees recommended for starting
a partnership can be compared. While for traditional business partnerships (e.g.
VAR) a hybrid sales person is suggested to suffice, for SaaS at least three full-
time sales employees are recommended, due to shorter sales-cycles and smaller
deal sizes. Further, since cloud is a new business, a hybrid person would rather
try to sell the well-known product instead of putting effort into positioning the
cloud solution.

Relationship. During the interviews it is stated that the current, project-based
business of System Integrators may no longer meet market demands. According
to the interviewee’s perception, the software market demands packaged solutions
delivered as a service in such a way that customers do not longer carry risks
of implementation projects by themselves - but rather engage in a long-term
relationship with the software supplier. This is in line with Hilkert et al. who
found a shift towards deeper relationships and an increasing importance of trust
as an essential factor leading to successful partnerships [14].

”Nowadays, a SI’s business is to enter the customer, implement a project
and then exit. This is the way a [SI] partner runs business today but also
a serious problem. (Individual B)”

The Impact of SaaS on Software Ecosystems 137

Ecosystem. Previous research suggested a more intensive competition within
software ecosystems resulting from the shift towards SaaS [26,8]. However, our
empirical data suggests that the relatively young SaaS business currently of-
fers plenty of opportunities and unoccupied niches. Hence, competition is not
expected to be fierce from a short term perspective. Yet, in the long run, com-
petition is expected to increase, causing the differentiation to take place rather
on a service level and company branding than on product features.

”... I’m confident that quality will win. Which means that partners who
enter the market today - and earlier - will gain experience, develop add-
ons and build industry-specific customizations [...] and thus will again be
able to differentiate towards certain customers and therefore won’t feel
competition too much. (Individual A)”

Accordingly, it is suggested that partners who enter the market early and build
up specialized, high-quality domain knowledge will win over the competition
similar to the traditional business. By contrast, partners that fail to differentiate
and chose a generalist strategy may struggle.

Within SaaS ecosystems, responsibilities for the software as well as the de-
livery mostly shift towards the platform vendor (e.g. hosting and maintenance
is done in the vendor’s data center). While this may increase the power imbal-
ance between platform vendors and partners and may therefore be perceived as
a potential threat, our data suggests that, again due to the rather new SaaS
business, competing with partners in a certain niche may not be in the interest
of platform vendors.

”If a partner creates a niche solution, we are receiving 30% for no effort.
If we do it ourselves, we are receiving 70% for 100% effort. This is a
simple business calculation.” (Individual B)

Table 2. Possible impacts of SaaS on software ecosystems

Area Findings

Partner Profiles
- Shift from VAR partners towards ISVs, OEMs, BPOs
- Financial liquidity, marketing & domain expertise is required

Relationship - SI’s business model may no longer meet market demands

Ecosystem
- Short term: no high partner vs. partner competition
- Early adopters may take the lead similar to the on-promises business
- Short term: more advantageous position of keystone may not be a threat

4 Discussion and Conclusion

This study contributes to recent research by exploring the impact of the emer-
gence of SaaS on existing on-premises software vendors. Whereas previous re-
search explored possible impacts on newly formed SaaS-only vendors and their
ecosystems [14], the scenario of traditional ecosystems which transition into SaaS
ecosystems has not been covered yet. This may be of particular interest, given

138 S.W. Schütz, T. Kude, and K.M. Popp

that the majority of participants in a SaaS-based ecosystem can be assumed to
come from an on-premises background. This study is among the first to empiri-
cally analyze impacts of SaaS on these software ecosystems that originate in an
on-premises environment.

Our empirical anlysis provides several insights. Firstly, for the partner profiles,
the major partner type for SaaS ecosystems may be expected to shift towards
ISVs, OEMs and the new BPO partner type. Furthermore, these partners op-
erating within a SaaS ecosystem may face changed market requirements, espe-
cially regarding financial liquidity, marketing and domain expertise. In contrast
to the intuitive expectation that partners with a Cloud or SaaS background may
succeed in SaaS ecosystems, our findings suggest that traditional on-premises
partners with a strong niche focus may posses a substantial advantage. As a
consequence, transitional ecosystems may likely be dominated by traditional on-
premises partners. For the area relationships, it can be noted that the business
models of SIs may undergo a change away from project-based implementation
business, also caused by the reduced customization capabilities as described by
Stuckenberg and Fielt [26]. For instance, following Hilkert et al. [14], SIs may
consult existing customers with security problems related to SaaS. As for the
area ecosystem, it was found that in contrast to the predictions of existing stud-
ies on pure SaaS ecosystems, a more dynamic point of view should be taken: as
the market of SaaS is still very young, the level of competition may not increase
for transitional ecosystems in the short-term. However, in the long run, firms
may compete on a service level, as products are heavily standardized and hence
leaving little room for product differentiation at the partner side.

Our findings have several implications for the transitional software vendors.
First, it is important to drive niche creation within the ecosystem in order to
forward market demands to partners and create business opportunities. Further-
more, this will also reduce competition and make the overall ecosystem more
attractive. Secondly, a platform vendor who extends its ecosystem towards SaaS
technology may rather focus on enabling existing on-premises partners as op-
posed to recruiting new SaaS-only partners. This is because existing domain
experts who specialize on certain niches (similar to their on-premises expertise)
are suggested to succeed. In regards to new partners, the strategy should embrace
ISVs, OEMs and BPOs - the latter being usually not in the focus of traditional
ecosystems. Third, by modelling the go-to-market strategy, platform vendors are
advised to create differentiation possibilities on a service level, as this will define
competition between partners which target the same niches.

This study focused on the impact on partner management in general. By con-
trast, technical details in relation to partner management have not been in the
main focus of this study. Thus, future work could include research on impacts
of SaaS on integration aspects between complementors such as between two
businesses or different SaaS hosts. Furthermore, the empirical evidence gathered
within this study only comprises one organization. Accordingly, deeper insights
may be gained by replicating this study within multiple cases in the future. Like-
wise, during the interviews, the impact of legal aspects between service offering

The Impact of SaaS on Software Ecosystems 139

and product offering in relation to partnerships have not been covered. There-
fore, further interviews with legal experts may add valuable insights to this as
well.

References

1. Bosch, J.: From Software Product Lines to Software Ecosystems. In: International
Software Product Line Conference, pp. 1–10 (2009)

2. Campbell, P.R.J., Ain, A., Ahmed, F.: A Three-Dimensional View of Software
Ecosystems. In: ECSA, pp. 81–84 (2010)

3. Ceccagnoli, M., Forman, C.: When Do ISVs Join a Platform Ecosystem? Evidence
from the Enterprise Software Industry (2009)

4. Ceccagnoli, M., Forman, C.: Cocreation of Value in A Platform Ecosystem: The
Case of Enterprise Software. MIS Quartely 36(1), 263–290 (2012)

5. Choudhary, V.: Software as a Service: Implications for Investment in Software
Development The Paul Merage School of Business. In: Hawaii International Con-
ference in System Sciences, pp. 1–10 (2007)

6. Cohen, D., Crabtree, B.: Semi-structured interviews. Qualitative Research Guide-
lines Project (2006)

7. Cusumano, M.: Will saas and cloud computing become a new industry platform?
In: Software-as-a-Service, pp. 3–13 (2010)

8. Cusumano, M.: Cloud computing and SaaS as new computing platforms. Commu-
nications of the ACM 53(4), 27 (2010)

9. Drever, E.: Using Semi-Structured Interviews in Small-Scale Research. A Teacher’s
Guide. Scottish Council for Research in Education, Edinburgh (2003)

10. Dubey, A., Wagle, D.: Delivering software as a service. The McKinsey Quartely
(2007)

11. Eisenhardt, M.: Building Theories from Case Study Research. Academy of Man-
agement Review 14(4), 532–550 (1989)

12. Gartner: Software As A Service (2012), http://www.gartner.com/it-glossary/
software-as-a-service-saas/

13. Knight, C., Munro, M., Gold, N., Mohan, A.: Understanding service-oriented soft-
ware. IEEE Software, 71–77 (2004)

14. Hilkert, D., Wolf, C.M., Benlian, A., Hess, T.: The “As-a-service”-paradigm and
its implications for the software industry – insights from a comparative case study
in CRM software ecosystems. In: Tyrväinen, P., Jansen, S., Cusumano, M.A. (eds.)
ICSOB 2010. LNBIP, vol. 51, pp. 125–137. Springer, Heidelberg (2010)

15. Iansiti, M., Levien, R.: Strategy as Ecology. Havard Business Review (2004)
16. Integrating legacy Software into a Service oriented Architecture. In: Proceedings

of the Conference on Software Maintenance and Reengineering, no. 3-14. IEEE
Computer Society (2006)

17. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business Network Management as a
Survival Strategy: A Tale of Two Software Ecosystems. In: International Workshop
on Software Ecosystems, no. 2, pp. 34–48 (2009)

18. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: 2009 31st International Conference on Software
Engineering - Companion Volume, pp. 187–190 (2009)

19. Kim, W., Korea, S.: Cloud Computing: Today and Tomorrow. Journal of Object
Technology 8(1), 65–72 (2009)

http://www.gartner.com/it-glossary/software-as-a-service-saas/
http://www.gartner.com/it-glossary/software-as-a-service-saas/

140 S.W. Schütz, T. Kude, and K.M. Popp

20. Kittlaus, H., Clough, P.: Software Product Management and Pricing: Key Success
Factors for Software Organizations. Springer (2009)

21. Kude, T., Dibbern, J., Heinzl, A.: Why Do Complementors Participate? An Analy-
sis of Partnership Networks in the Enterprise Software Industry. IEEE Transactions
on Engineering Management 59(2), 250–265 (2012)

22. Lacity, M., Solomon, S., Yan, A., Willcocks, L.: Business process outsourcing
studies: a critical review and research directions. Journal of information technol-
ogy 26(4), 221–258 (2011)

23. Mohr, J., Spekman, R.: Charactersitics of partnership success: Partnership at-
tributes, communication behavior, and conflict resolution techniques. Strategic
Management Journal 15, 135–152 (1994)

24. Nordström, H.: Evaluating the Software as a Service Business Model: From CPU
Time-Sharing to Online Innovation Sharing. In: IADIS International Conference
e-Society, no. 2000, pp. 177–186 (2005)

25. Papazoglou, M.P.: Service -Oriented Computing: Concepts, Characteristics and
Directions. In: International Conference on Web Information Systems Engineering
(2003)

26. Stuckenberg, S., Fielt, E.: The Impact of Software-as-a-Service on Business Models
of Leading Software Vendors: Experiences From Three Exploratory Case Studies.
Association for Information Systems (2011)

27. Sun, W., Zhang, X., Guo, C.J., Sun, P., Su, H.: Software as a Service: Configura-
tion and Customization Perspectives. In: 2008 IEEE Congress on Services Part II
(services-2 2008), pp. 18–25 (2008)

28. Tuten, T.L., Urban, D.J.: An Expanded Model of Partnership Formation and Suc-
cess. Industrial Marketing Management 164, 149–164 (2001)

29. Wilhite, S.E.: A View of Cloud Computing. HDA now / Hawaii Dental Association,
12 (2012)

30. Xin, M., Levina, N.: Software-as-a-Service Model: Elaborating Client-side Adoption
Factors. In: The 29th International Conference on Information Systems, pp. 1–12
(2008)

31. Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. SAGE Publications
(2003)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 141–152, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Towards a Conceptual Framework for Assessing
the Benefits of Cloud Computing

Nattakarn Phaphoom, Xiaofeng Wang, and Pekka Abrahamsson

Faculty of Computer Science
Free University of Bolzano

Piazza Domenicani 3 Bolzano 39100 Italy
phaphoom@inf.unibz.it,

{xiaofeng.wang,pekka.abrahamsson}@unibz.it

Abstract. The understanding of cloud computing’s benefits is fraught with
misconception. Prospect adopters often underestimate, overestimate, or do not
thoroughly consider the benefits from all relevant perspectives. This is mainly
due to a lack of appropriate benefit identification and assessment mechanisms
for this specific technology. In addition, the benefits reported in the literatures
have been scattered and unorganized. This paper is designed to identify the
perspectives necessary to capture the benefits of cloud computing. A conceptual
framework of cloud computing benefits is proposed, based on various benefit
taxonomies presented in the Information System literature. The conceptual
framework accounts for the different business areas and organizational levels
where each of the benefits manifests.

Keywords: Cloud computing, benefits, benefit framework, benefit assessment,
balanced scorecard.

1 Introduction

Cloud computing has brought the benefits of utility computing into a global scale. It is
perceived as a shift in computing paradigms, representing a fundamental change in
the way IT services are developed, offered, acquired, maintained and paid for [12,34].
In this paradigm, cloud service providers manage a pool of computing resources,
generally by means of virtualization, and offer services in terms of infrastructure
(IaaS), platform (PaaS) and software (SaaS) [13]. Consumers can acquire such
computing services on-demand over the Internet through self-service interfaces. The
quality of services is maintained according to service level agreement. Service usage
is automatically metered, allowing consumers to pay only for the services that they
use.

Cloud computing has promised tremendous benefits to enterprise IT in terms of
cost efficiency [23,25,34,37,38], operational excellence [25,34-36,38,41,42] and
innovation [30,34,36,39,42]. For this reason, organizations have started to utilize
cloud-based services or seriously consider adopting these paradigms. According to
Gartner [14], private cloud is among the highest interests for enterprises in 2012. As a

142 N. Phaphoom, X. Wang, and P. Abrahamsson

consequence, it is foreseen that virtualization will reach mainstream adoption within
two years, followed by the mainstream adoption of IaaS and PaaS within two to five
years.

So far the drivers of cloud adoption have been predominantly from a cost
perspective [34]. The main advantages include the ability of turning substantial
upfront IT investments into operational expenses [25,34,41], the ability to lower IT
management, operational and maintenance cost [23,25,37,42] and reduced
datacenter’s cost variability to prepare for unpredictable and changing demands
[23,38]. Public cloud is of particular interest for start-ups and small and medium
enterprises due to their limited investment capability and relaxed conditions for
security and data privacy [15,36]. Instead, private cloud becomes an option for
corporate customers with specific concerns [17,34].

It is observed that the adoption drivers have shifted from cost to other benefit
areas. A recent survey performed by Dimensional Research [16] identifies satisfaction
of compliance requirements, better value and competitive advantage as the top
motivators for moving to the cloud.

However, several issues remain unclear, which include what benefits are to be
expected in which business areas, how the benefits manifest at different
organizational levels and how they contribute to the achievement of intangible
strategic-level benefits. The identification and assessment of cloud computing’s
benefits in an adopting organization could not be precise without considering multi-
dimensional nature of them.

To capture a comprehensive view of cloud computing’s benefits, there is a need to
identify the dimensions of benefits that cloud computing can provide to organizations.
The objective of our study is to build a conceptual framework to capture the benefits
of cloud computing, drawing upon various frameworks and benefit taxonomies
proposed in the Information System (IS) literature. The research question that guides
our study has been formulated as what are the perspectives that organizations should
consider at different organizational levels for assessing the benefits of cloud
computing adoption?

The reminder of the paper is organized as follows. In the next section, the existing
work on cloud computing benefit and value analysis is summarized, followed by a
review of benefit taxonomies proposed in the IS literature. The study design is
explained in Section 3, after which the resulting conceptual framework for cloud
benefit assessment is presented. The paper is concluded with the framework usage
and the outline of the future work.

2 Related Work

2.1 Analysis of Cloud Computing Benefits

Among a large number of papers discussing the benefits of cloud computing, only a
few present the benefits in an organized manner. Khajeh-Hosseini et al. propose a
benefit assessment framework for public IaaS clouds based on 19 benefits identified
from the literature [25]. In this work benefit is defined as “an advantage to the

 Towards a Conceptual Framework for Assessing the Benefits of Cloud Computing 143

enterprise over its status quo provided by using public IaaS clouds” and are classified
as technical, financial or organizational. Mladenow et al. demonstrate the economic
benefits of cloud computing for start-ups and SMEs through a view of value creation
[36]. They propose a model that connects the effects of cloud services with four value
creation drivers, namely efficiency, complementarities, networked collaboration and
novelty. Phaphoom et al. perform a thematic analysis of a cloud computing forum to
examine the perceived benefits of cloud computing for IT and software development
[18]. The themes of benefits emerged from the discussion threads conclude into five
areas, including availability, scalability, security, computing platform and cost & IT
department. Deed and Cragg analyze the business impacts of SaaS in organizations
using a generic framework for assessing IS/IT investment [19]. Four types of benefits
are identified including strategic, managerial, operational and functional and support.

Existing work on cloud computing benefits appears to have several limitations.
First of all, the presentation of benefits is scattered, unorganized or incomplete,
making it difficult to grasp a holistic understanding. Secondly, the benefits are mostly
discussed from the technical perspective, which does not sufficiently reflect the
impacts on organizations. Finally, in the cases that strategic-level benefits are
claimed, often there are no clear chains of evidences of how the benefits can be
achieved.

2.2 Perspectives for Benefit Assessment

Benefit management literatures offer a range of appraisal techniques designed to help
organizations to realize benefits from an IT investment [1,2,3]. One of the common
techniques is to quantify the amount and timing of benefits of IT implementation in
financial terms such as return on investment, internal rate of return and net present
value [3]. Certain types of benefits require time to manifest and cannot be precisely
quantified in mathematical terms. In comparison with financial evaluation, benefit
assessment is relatively more complex and difficult to perform [3, 4].

Frameworks have been developed to facilitate benefit assessment. The classic
framework developed by Anthony classifies benefits as operational, managerial and
strategic, based on the levels of management involved [5]. Many IS benefits have
been organized around this framework [6]. Shang et al. combine the Anthony’s
framework with an IT infrastructure and organizational perspective [6]. Schultheis &
Summer [7], Farbey et al. [8] and Irani & Love [4] use an adapted version of the
Anthony’s framework and classify IS benefits as operational, tactical and strategic.
The Balanced Scorecard approach developed by Kaplan & Norton has been used in
assessing IS benefits from four perspectives including financial, customer, business
process and innovation [9]. Piotrowicz & Irani combine several benefit taxonomies.
In their work, the Balance Scorecard is used to identify the benefit areas and the
adapted Anthony’s framework is used to identify the benefit importance [10]. They
further identify benefit characteristics as intangible, tangible financial and tangible
non-financial. The combinations allow for a more holistic view of benefits in terms of
their levels and impact areas.

144 N. Phaphoom, X. Wang, and P. Abrahamsson

In this work, the Balance Scorecard and Anthony’s framework are applied to
better understand the multi-dimensional nature of cloud benefits. The Balanced
Scorecard is designed to provide top managers with a fast and comprehensive view of
the business [9]. As thus, it identifies four areas of concerns in organizational
contexts. The customer perspective focuses on an area of customers’ concerns that
generally fall into time, quality, service and cost. The process perspective focuses on
internal operations that enable organizations to satisfy customers’ needs. The
innovation and learning perspective reflects the factors that are important for
competitive success, allowing organizations to penetrate new markets and to increase
their revenues. The financial perspective focuses on profitability, growth and
shareholder values.

The Anthony’s framework is applied to identify an organizational level that the
benefits occur [5]. An operational level is concerned with ensuring that day-to-day
activities are effectively and efficiently carried out. The activities are generally
repeated periodically. IT is applied to streamline the process and to facilitate or
replace basic, repetitive operations. Managerial activities are concerned with
planning, controlling and monitoring the usage of organizational resources in order to
support business strategic decisions. Strategic activities involve setting long-term
goals and identifying the paths and means of achieving defined objectives. Benefits at
this level are related to an achievement of organizational objectives.

3 Research Design

The main objective of our study is to identify the perspectives, in the format of a
conceptual framework, necessary to capture the benefits of cloud computing in
organizations. The research process involves the three steps as illustrated in Fig 1.

Fig. 1. The process for building the benefit framework

Step 1: Select Relevant Benefit Perspectives from IS Literature. An IS benefit
taxonomy is designed to guide benefit identification and assessment in an
organization. Based on the existing taxonomies presented in the IS literature, we first
identified the perspectives that serve our goal. An initial benefit framework is two-
dimensional, combining the Balanced Scorecard perspectives (customer, business
process, innovation and financial) with the Anthony’s organizational levels
(operational, managerial and strategic). In this way, the framework captures both the
areas of an organization’s interests and the degree of impact each of the benefits
introduces. In addition, both frameworks have been widely applied for benefit
assessment in organizations, showing relevance and usefulness in this context.

�

 Towards a Conceptual Framework for Assessing the Benefits of Cloud Computing 145

Step 2: Improve the Framework Based on a Literature Survey. In this step we
performed a literature survey to investigate whether the proposed perspectives can
sufficiently capture cloud computing’s benefits in organizations. Benefits stated in the
cloud computing literature were used as input to improve the framework.

We searched for the studies discussing the benefits of cloud computing in the IEEE
Xplore by applying the following search string on the abstracts: “cloud computing”
AND (benefit OR value OR opportunity OR advantage) AND (company OR
organization). The search returned 200 matching articles. After abstract reading, 18
studies were identified as relevant. Another five studies were included through a
backward reference search. 148 benefits as reported in the literature were identified
through a content analysis on the resulting 23 papers and categorized according to the
initial framework.

The categorization allows for the discovery of new perspectives. We followed
three sub-steps. Firstly, all the benefits were classified under one of the Balanced
Scorecard perspectives, or as ‘unclassified’ if the content did not match any
predefined perspectives. Secondly, the unclassified benefits were analyzed to explore
new themes that emerged. New perspectives were added accordingly. Finally, the
benefits belonging to each perspective were classified as operational, managerial or
strategic.

The three sub-steps led to adding IT infrastructure & services as a new perspective
along with the Balanced Scorecard. IT infrastructure benefits have been mentioned in
a large number of studies [6]. IT infrastructure & services benefits are related to
sharable and reusable IT resources [6, 20] and a set of related functionalities made
available through IT system [11] to support one or more business areas.

Step 3: Produce a Refined List of Benefits for Each Benefit Category. Three sub-
steps were performed to ensure proper classification and consistent granularity of the
benefit items. First of all, the benefits were organized and refined. It included merging
relevant trivial benefits into a concrete benefit item or splitting a broad benefit into a
set of concrete ones. In addition to preserving granularity, this process enabled us to
observe the themes that emerged for each category. Secondly, the benefit
classification was verified according to the perspectives’ definition. Certain benefits
were reassigned to a different organizational level. Finally, a parsimony principle was
applied to ensure that a minimum set of benefits were presented for each category.
The resulting framework is presented in the next section.

4 A Conceptual Framework for Cloud Benefit Assessment

An execution of methodology presented in Section 3 results in the cloud computing
benefit framework. The two-dimensional framework presented in Table 1 combines
extended Balance Scorecard perspectives (vertical) with three impact levels of
benefits (horizontal). The themes of benefits that emerged during the analysis are
highlighted with bold italic characters. The detailed insights for each of the benefits
are presented in this section.

146 N. Phaphoom, X. Wang, and P. Abrahamsson

T
ab

le
 1

.
A

 b
en

ef
it

 f
ra

m
ew

or
k

fo
r

cl
ou

d
co

m
pu

tin
g

IT

 i
n

fr
a

&
 s

er
vi

ce

B
u

si
n

es
s

p
ro

ce
ss

F

in
a

n
ci

al

In
n

ov
a

ti
on

C

u
st

om
er

s
S

tr
at

eg
ic

 M

an
ag

er
ia

l

O

p
er

at
io

n
al

-
S

up
po

rt
 f

or
 g

re
en

 o
rg

.
 -

S
ta

y
al

ig
n

w
it

h
te

ch
no

lo
gi

ca
l

ad
va

nc
em

en
t

-
S

im
p

li
fi

ed
 r

es
ou

rc
e

m
an

ag
em

en
t

IT

 p
ro

ce
ss

es
 &

 p
er

so
n

n
el

-

R
em

ov
al

 o
f

re
so

ur
ce

 l
im

it
at

io
n

pr
ob

le
m

-

R
em

ov
ed

 /
 r

ed
uc

ed
 m

an
ua

l
m

ai
nt

en
an

ce
 w

or
k,

 l
ea

di
ng

 t
o

be
tt

er
 w

or
k

sa
ti

sf
ac

ti
o

n

-
S

im
pl

if
ie

d
IT

 m
ai

nt
en

an
ce

S

ys
te

m
 q

u
al

it
y

-
S

up
po

rt
 f

or
 s

ec
ur

it
y

-

S
up

po
rt

 f
or

 r
es

il
ie

nc
y

-

S
up

po
rt

 f
or

 s
ca

la
bi

li
ty

H

ar
dw

ar
e

&
 v

ir
tu

al
iz

at
io

n

-
In

cr
ea

se
d

co
m

pu
ti

n
g

-

R
ed

uc
ed

 h
ar

dw
ar

e

-
H

ig
he

r
ut

il
iz

at
io

n
-

In
cr

ea
se

d
fl

ex
ib

il
it

y
in

 I
T

re

so
ur

ce
 u

sa
ge

-

E
nh

an
ce

d
st

an
da

rd
iz

at
io

n
of

 I
T

re

so
ur

ce
s

-
R

ed
uc

ed
 e

ne
rg

y
co

ns
um

pt
io

n
-

R
ed

uc
ed

 c
ar

bo
n

em
is

si
on

-I
nc

re
as

ed
 b

us
in

es
s

ag
il

it
y

 -
A

b
il

it
y

to
 r

un
 b

us
in

es
s

w
it

ho
ut

te

ch
ni

ca
l e

m
p

lo
ym

en
t

-
Im

pr
ov

ed
 d

ec
is

io
n-

m
ak

in
g

-
S

up
po

rt
 f

or
 s

ta
nd

ar
d

iz
at

io
n

an
d

S
tr

ea
m

li
ne

 m
ul

ti
p

le
 b

us
in

es
s

pr
oc

es
se

s
-

B
et

te
r

co
ns

um
er

 r
el

at
io

ns
hi

p
-

Im
pr

ov
ed

 s
ta

ff
 p

ro
du

ct
iv

it
y,

 l
ea

di
ng

to

 b
et

te
r

ti
m

e-
to

-m
ar

ke
t

 P
ro

ce
ss

 e
xe

cu
ti

on

-
F

as
te

r
pr

ov
is

io
n

o
f

IT
 r

es
ou

rc
es

 t
o

su
pp

or
t

bu
si

ne
ss

 u
ni

ts

-
F

as
te

r
bu

si
ne

ss
 p

ro
ce

ss
 e

xe
cu

ti
on

In

fo
rm

at
io

n

-
E

as
e

of
 a

cc
es

s
to

 i
nf

or
m

at
io

n
-

R
ed

uc
ed

 i
nf

or
m

at
io

n
la

te
nc

y

C
om

m
u

n
ic

at
io

n

-
S

up
po

rt
 f

or
 i

nt
er

na
l

co
ll

ab
or

at
io

n
-

S
up

po
rt

 f
or

 d
at

a
sh

ar
in

g
an

d
ex

ch
an

gi
ng

 w
it

h
ex

te
rn

al
 o

rg
.

-
S

up
po

rt
 f

or
 c

on
su

m
er

 e
ng

ag
em

en
t

S
u

pp
or

t
fo

r
so

ft
w

ar
e

de
ve

lo
pm

en
t

-
S

u
pp

or
t

fo
r

re
us

ab
il

it
y

o
f

pl
at

fo
rm

co

m
po

ne
nt

s
-

S
up

po
rt

 c
ol

la
bo

ra
ti

on
 t

h
ro

ug
h

in
te

gr
at

ed
 d

ev
el

o
pm

en
t

en
vi

ro
nm

en
t

-
Im

p
ro

ve
d

ap
pl

ic
at

io
n

de
ve

lo
pm

en
t

an
d

bu
il

d
pr

oc
es

se
s

-
In

cr
ea

se
d

in
ve

st
m

en
t

fl
ex

ib
il

it
y

-
A

bi
li

ty
 t

o
tr

an
sf

or
m

 c
ap

it
al

ex

pe
ns

e
to

 o
pe

ra
ti

on
al

 e
xp

en
se

-

R
em

ov
al

 o
f

up
fr

o
nt

 i
nv

es
tm

en
t

 -
R

em
ov

al
 o

f
a

lo
ng

-t
er

m

pu
rc

ha
se

 c
o

m
m

it
m

en
t

-
R

ed
uc

ed
 c

os
t

of
 I

T
 m

an
ag

em
en

t
-

R
em

ov
ed

/r
ed

uc
ed

 r
ea

l e
st

at
e

co
st

 -

R
ed

uc
ed

 I
T

 r
es

ou
rc

e
m

ai
nt

en
an

ce
 c

os
t

-
R

ed
uc

ed
 b

us
in

es
s

op
er

at
io

na
l

co
st

-

E
ne

rg
y

co
st

 s
av

in
g

-
In

cr
ea

se
d

co
m

pe
ti

ti
ve

ad

va
nt

ag
eo

us

-
E

nh
an

ce
d

va
ri

ab
il

it
y

&

ca
pa

bi
li

ty
 o

f
pr

od
uc

ts

-
Im

pr
ov

ed
 o

rg
.

im
ag

e
 -

E
xt

en
de

d
po

ol
 o

f
po

te
nt

ia
l

hu
m

an
 r

es
ou

rc
es

-

E
xt

en
de

d
IT

 r
es

ou
rc

es
 f

or

in
no

va
ti

ve
 c

re
at

io
n

-
E

xt
en

de
d

co
ll

ab
or

at
iv

e
ne

tw
or

k
 -

A
bi

li
ty

 t
o

fo
cu

s
on

 v
al

ue
-

or
ie

nt
ed

 w
or

k

-
S

up
po

rt
 f

or
 c

ol
le

ct
iv

e
m

in
d

-
sh

ar
e

an
d

de
ve

lo
pm

en
t

ef
fo

rt
s

-
S

up
po

rt
 f

or
 t

ec
hn

ol
og

y
in

te
gr

at
io

n
-

E
xp

an
de

d
pr

od
uc

t
ch

an
ne

ls

-
E

nh
an

ce
d

an
al

yt
ic

al
 c

ap
ab

il
it

y

-
Im

pr
ov

ed
 c

us
to

m
er

su

pp
o

rt
s

-
Im

pr
ov

ed
 q

ua
li

ty
 o

f
pr

o
vi

de
d

IT
 s

er
vi

ce
s

 Towards a Conceptual Framework for Assessing the Benefits of Cloud Computing 147

4.1 IT Infrastructure and Services

An Operational Level. Benefits from cloud computing appear to be associated with
three areas including hardware, system quality and maintenance, IT processes and
personnel. In terms of hardware, most of the identified benefits arise from
virtualization. It provides a way to consolidate distributed hardware resources,
allowing for standardized and centralized management [21]. Workloads from
underutilized resources can be more flexibly allocated and de-allocated to serve
different departments [32], leading to significant reduction in the number of servers
that an organization has to maintain [39]. Public cloud takes a role as a source for on-
demand resources [38,42]. Better hardware utilization, energy saving [23,25,42] and
reduction of carbon emission [27,35] can be expected from a virtualized datacentre.

In terms of system quality, cloud facilitates security, resilience and scalability
management processes. Supports for security arise from economies of scale and
concentration of hardware resources. Security measures such as physical
parameterizations are cheaper (per resource unit) when implemented at a larger scale
[28,40]. It is also easier to ensure that security processes are executed in a consistent
manner. Consumers of public cloud gain additional advantages from provider’s
investment and expertise on security. Several features such as multi-location
deployment and redundancy enhance availability of systems running on cloud
infrastructure [26]. Business continuity planning further benefits from geographically
dispersed datacenters [26,39]. In terms of scalability, on-demand acquisition and
release of resources in the cloud service model help fil the gap between demand and
supply [33,34,36]. This property is useful when demand is unknown in advanced or is
highly fluctuated [23].

Cloud provides a way to increase efficiency of maintenance and recovery
processes. Virtualization management tools are featured with workload migration
between hardware platforms, which is helpful during system upgrades [24]. To
support environment preparation, virtual machine (VM) images and software modules
used can be pre-hardened and patched with latest updates and security settings [40].
This process removes the manual work of environment setup, as the baseline images
can be cloned and then be ready to use. Forensic images of VMs are also accessible
without taking the system offline for digital investigation of failures or security
breaches [40].

Changes in IT infrastructure and automation brought by virtualization improve the
way IT personnel work. Manual activities such as system setup and upgrade, and
failure recovery can be performed in a more automated manner. The removal of such
manual work helps improve status quo of IT personnel, open a room for creative tasks
and increase their work satisfaction [25, 42]. Public cloud becomes a viable option for
an organization with limited IT personnel and resources [42].

A Managerial Level. Managerial benefits appear to reflect changes at the operational
level. The most prevalent benefit is simplified resource management [23,24,26], due
to the reduced risk of over-provisioning and under-provisioning of resources. This
means a more relaxed constraint on early estimation of resource requirements [24].
Organizations using public cloud are ensured to align with technological
advancements due to high competition in a cloud computing market [25].

148 N. Phaphoom, X. Wang, and P. Abrahamsson

A Strategic Level. Supports for green organizations are considered as a strategic
benefit. This is due to the fact that the concept of ‘green’ presents a long-term
initiative and captures many critical benefit areas, including efficiency of resource
usage, reduction of waste, increase of utilization and energy saving.

4.2 Business Process

An Operational Level. Four themes have emerged in this category, including process
execution, information, communication, and support for software development. The
last theme is classified as process-related, rather than IT services-related, due to the
nature of business process nowadays that is highly software intensive.

Cloud facilitates an execution of business process by speeding up computation of
batch analytics [23] and transactions processing [36]. It also provides a mechanism to
fasten resource provision process, allowing almost immediate access to hardware. The
more efficient use of resources and time can also be expected [35].

In terms of information, cloud provides employees with flexibility and ease of
access to business information from anywhere by using any standard device [28,38].
Information latency is reduced or eliminated, leading to better planning and increased
efficiency of business processes [41].

In many cases, clouds are adopted to improve collaboration and communication
between stakeholders [35,38,42]. Cloud platforms help ensuring quick and consistent
information delivery. Web technology and centralization governed by cloud platforms
facilitate collaboration among employees. Exchanging data with externals can be
done more effectively. Web advancement also supports customer engagement.

To support in-house software development, cloud platforms provide developers
with integrated development and deployment environments [38], allowing them to
easily share their work and gain access to applications built by others. Deployment
can be done rapidly on shared infrastructure. Virtualization supports reusability of
platform components and it scales as users increase. [43]. When public PaaS is used,
organizations can bypass problems related to software purchase, maintenance and
integration. Developers can concentrate on software development, rather than
environment setup. This leads to improved productivity [43].

A Managerial Level. Cloud supports managerial activities in terms of enhanced
decision-making, increased standardization, and better customer relationship through
extended features of cloud CRM software. A decision making process can benefit
from centralized information and big data analytic tools to get insights from data
within and beyond organizational boundary [29,42]. Cloud platforms can be used to
uniform and streamline business processes among stakeholders across the value
chains [29,42]. Productivity is expected to improve due to positive operational
changes, leading to faster time-to-market in many business processes [34, 39]. In our
view, productivity is classified as managerial rather than operational, as it requires
longer time to manifest. Benefits from IT outsourcing are eligible for public cloud
[25], including an opportunity to focus on core competencies [42] and to run business
without technical employments [31].

 Towards a Conceptual Framework for Assessing the Benefits of Cloud Computing 149

A Strategic Level. Increased business agility is considered as a strategic advantage
from cloud adoption [42]. Business agility is defined as the ability of organizations to
flexibly and rapidly in response to changes in business environments [22]. Its
supporting factors include minimum upfront investment [29], the use of IT as a
competitive tool [34] and flexibility in production processes [36]

4.3 Finance

An Operational Level. In this category, benefits appear to be a consequence of
efficient business operations [25,42], new approach to IT maintenances [37, 30,42],
economies of scale [23, 25, 29, 37] and reduced energy consumption [26, 30]. The
reduction on business operational cost is caused by the reduced cost per transaction
[36], the ability to scale, and the standard systems and uniform processes [42].

A Managerial Level. As managerial activities involve planning, benefits of cloud
manifest through a removal of long-term commitment and reduced IT cost variability.
The usage-based pricing model provides an ability to pay for computing resources on
a short-term basis, which in turn creates flexibility in financial planning [23, 31]. It
also reduces cost variability of datacenters as it becomes unnecessary to prepare IT
resources for unpredictable demand in advance [23, 38]. Lower real estate cost can be
expected due to reduction in physical space requirement [25].

A Strategic Level. Financial benefits at the strategic level appear to be eligible for
public clouds. This includes removal of upfront IT investment [23,30,42], an ability to
transform capital expense to operational expense [25,28,32,34,38,41] and increased
flexibility in investment distribution [33,34]. Such benefits play an essential role
especially in a start-up context [33,34,42].

4.4 Innovation and Growth

An Operational Level. The innovation perspective contributes to sustainable success
by supporting relevant factors for value creation, competitive advantage and
continuous improvement. At the operational level cloud supports this objective by
providing a mechanism for expanding product channels [25], technology integration
and collaborations [25,33,41], enhanced analytical capability [34,42] and removal of
non-value oriented work [25,31,38]. With cloud, new and trial services could be
released to users easily, providing a cheap and convenient way for providers to gauge
users’ interests. Cloud platforms make it easier to combine enabling technologies to
serve market requirements and to leverage development efforts of community.
Outsourcing of manual work and higher automation of IT systems increase work
satisfaction and accelerate creativity.

A Managerial Level. We consider the enhancements of resources to support
innovation and value creation processes as a benefit of cloud at this level. This
includes an extended pool of potential and motivated human resources [38], extended
collaborative network [31,36] and extended IT resources [33,36, 39].

150 N. Phaphoom, X. Wang, and P. Abrahamsson

A Strategic Level. Benefits in this category appear as a consequence of innovation
and value creation processes. Cloud adoption contributes to improved organizational
image [39], enhanced variability and capability of new products [28,30,34,36,42,43]
and increased competitive advantage [39,36,43]. Green organization and
technological advancement improves the image of an organization in the eyes of the
stakeholders. Enhancement of products and services based on cloud technology has
been reported in many business areas including robotic [28], aircraft [30] and CRM
[42]. Competitive advantage seems to be more relevant to start-ups as cloud removes
the limitations on resources, expertise and investment.

4.5 Customers

In line with the work of Piotrowicz & Irani [10], the benefits toward customer
satisfaction are considered as strategic. The literature mentions two main benefits.
Better supports can be provided as cloud provides new channels to interact and
engage with consumers [42]. Service quality is improved as unlimited IT resources
can be acquired when demand increases [39].

5 Conclusions and Future Work

In this paper we built a benefit framework for cloud computing drawing upon the IS
and cloud computing literature. The research contribution of this work is two folds.
Firstly, the proposed conceptual framework captures the perspectives that should be
considered when identifying the benefits of cloud computing in organizations.
Secondly, the identified benefit items relevant to each perspective provide detailed
guidelines for investigating and accessing cloud benefits in an organization in a more
systematic manner. Our work has also practical implications for organizations. In an
initial adoption phase, the framework serves as a source for evidences to make a more
informed adoption decision. In a post-adoption phase, it can be applied to guide the
benefit assessment. Future work should extend the framework by 1) using empirical
evidences to verify the occurrences and the contexts of the benefits, 2) considering
separately the benefits for different cloud services, and 3) defining benefit measures.
A web based prototype for automating the use of the framework is accessible at
https://www.inf.unibz.it/s4fs/index.php/projects/cloud-computing-benefit-framework.

References

1. Love, P.E.D., Irani, Z., Edwards, D.J.: Industry-centric benchmarking of information
technology benefits, costs and risks for small-to-medium sized enterprises in construction.
Automation in Construction 13, 507–524 (2004)

2. Farbey, B., Land, F., Targett, D.: The moving staircase: problems of appraisal and
evaluation in a turbulent environment. Information Technology and People 12(3), 238–252
(1999)

3. Love, P.E.D., Irani, Z., Standing, C., Lin, C., Burn, J.M.: The enigma of evaluation:
benefits, costs and risks of IT in Australian small-medium-sized enterprises. Information &
Management 42(7), 947–964 (2005)

 Towards a Conceptual Framework for Assessing the Benefits of Cloud Computing 151

4. Irani, Z., Love, P.E.D.: The propagation of technology management taxonomies for
evaluating information systems. Journal of Management Information Systems 17(3),
161–177 (2001)

5. Anthony, R.N.: Planning and Control Systems: A Framework for Analysis. Harvard
University Press (1965)

6. Shang, S., Seddon, P.B.: Assessing and managing the benefits of enterprise systems: the
business manager’s perspective. Information Systems Journal 12, 271–299 (2002)

7. Schultheis, R., Sumner, M.: Management Information Systems: the Manager’s View.
Irwin, Boston (1989)

8. Farbey, B., Targett, D., Land, F.: Evaluating business information systems: reflections on
an empirical study. Information Systems Journal 5, 235–252 (1995)

9. Kaplan, R.S., Norton, D.P.: The balanced scorecard–measures that drive performance.
Harvard Business Review, 71–79 (January-February 1992)

10. Piotrowicz, W., Irani, Z.: Analysing B2B electronic procurement benefits: information systems
perspective. Journal of Enterprise Information Management 23(4), 559–579 (2010)

11. Mingay, S., Furlonger, J., Magee, F., Andren, E.: The Five Pillars of Organizational
Effectiveness. Gartner: R-06-6660 (1998)

12. Voas, J., Zhang, J.: Cloud Computing: New Wine or Just a New Bottle? IT
Professional 11(2), 15–17 (2009)

13. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. Department of
Commerce. National Institute of Standards and Technology, U.S (2011)

14. Smith, D.M.: Hype Cycle for Cloud Computing. Gartner, Inc. (2012)
15. Truong, D.: How cloud computing enhances competitive advantages: a research model for

small businesses. The Business Review 15(1), 59–65 (2010)
16. Dimensional research: Drivers of cloud adoption: A survey of CIOs and business

executives. Sponsored by Host Analytics Inc . (2012)
17. Maluf, D.A., Shetye, S.D., Chilukuri, S., Sturken, I.: Lost in Cloud. In: IEEE Aerospace

Conference, pp. 1–6 (2012)
18. Phaphoom, N., Oza, N., Wang, X., Abrahamsson, P.: Does cloud computing deliver the

promised benefits for IT industry? In: Proceedings of the WICSA/ECSA 2012 Companion
Volume, pp. 45–52. ACM (2012)

19. Deed, C., Cragg, P.: Business Impacts of Cloud Computing. Cloud Computing Service and
Deployment Models: Layers and Management, pp. 274–288. IGI Global (2013)

20. Duncan, N.B.: Capturing flexibility for information technology infrastructure: a study of
resource characteristics and their measure. Journal of Management Information
Systems 12, 37–57 (1995)

21. Phaphoom, N., Wang, X., Abrahamsson, P.: Foundations and technological landscape of
cloud computing. International Scholarly Network in Software Engineering (2012)

22. Sambamurthy, V., Bharadwaj, A., Grover, V.: Shaping agility through digital options:
Reconceptualizing the role of information technology in contemporary firms. MIS
Quarterly 27(2), 237–263 (2003)

23. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

24. Barcomb, K.E., Humphries, J.W., Mills, R.F.: A case for DoD application of public cloud
computing services. In: Military Communications Conference, pp. 1888–1893 (2011)

25. Khajeh-Hosseini, A., Sommerville, I., Bogaerts, J., Teregowda, P.: Decision Support Tools
for Cloud Migration in the Enterprise. In: IEEE International Conference on Cloud
Computing, pp. 541–548 (2011)

152 N. Phaphoom, X. Wang, and P. Abrahamsson

26. Li, C., Deng, Z.: Value of Cloud Computing by the View of Information Resources. In:
International Conference on Network Computing and Information Security, vol. 1,
pp. 108–112. IEEE Computer Society, USA (2011)

27. Liang, D.-H., Liang, D.-S., Chang, C.-P.: Cloud Computing and Green Management. In:
International Conference on Intelligent System Design and Engineering Application,
pp. 639–642 (2012)

28. Abidi, F.: Cloud computing and its effects on healthcare, robotics, and piracy. In: World
Congress on Sustainable Technologies, pp. 135–140 (2011)

29. Heier, H., Borgman, H.P., Bahli, B.: Cloudrise: Opportunities and Challenges for IT
Governance at the Dawn of Cloud Computing. In: Hawaii International Conference on
System Science, pp. 4982–4991 (2012)

30. Jasti, A., Mohapatra, S., Potluri, B., Pendse, R.: Cloud computing in Aircraft Data
Network. In: Integrated Communications, Navigation and Surveilance Conference,
pp. E7:1-8 (2011)

31. Juliandri, A., Musida, M.: Supriyadi: Positioning cloud computing in machine to machine
business models. In: International Conference on Cloud Computing and Social
Networking, pp. 1–4 (2012)

32. Kaisler, S., Money, W.H., Cohen, S.J.: A Decision Framework for Cloud Computing. In:
Hawaii International Conference on System Science, pp. 1553–1562 (2012)

33. Xin, L., Song, C.: Cloud-based innovation of Internet long tail. In: International
Conference on Product Innovation Management, pp. 603–607 (2011)

34. Marston, S., Zhi, L., Bandyopadhyay, S., Ghalsasi, A.: Cloud Computing - The Business
Perspective. In: Hawaii International Conference on System Sciences, pp. 1–11 (2011)

35. McDonald, D., MacDonald, A., Breslin, C.: Review of the environmental and
organisational implications of cloud computing in higher and further education. University
of Strathclyde (2010)

36. Mladenow, A., Fuchs, E., Dohmen, P., Strauss, C.: Value Creation Using Clouds: Analysis
of Value Drivers for Start-Ups and Small and Medium Sized Enterprises in the Textile
Industry. In: International Conference on Advanced Information Networking and
Applications Workshops, pp. 1215–1220 (2012)

37. Rafique, K., Tareen, A.W., Saeed, M., Jingzhu, W., Qureshi, S.S.: Cloud computing
economics opportunities and challenges. In: IEEE International Conference on Broadband
Network and Multimedia Technology, pp. 401–406 (2011)

38. Rayport, J.F., Heyward, A.: Envisioning the Cloud: The Next Computing Paradigm.
Marketspace LLC (2009)

39. Wu, Z., Gan, A.: Qualitative and Quantitative Analysis the Value of Cloud Computing. In:
International Conference on Information Management, Innovation Management and
Industrial Engineering, vol. 2, pp. 518–521 (2011)

40. ENISA: Cloud Computing: Benefits, Risks and Recommendations for Information
Security. European Network and Information Security Agency (2009)

41. Goodburn, M.A.: The cloud transforms business. Financial Executive 22, 1–6 (2010)
42. Harris, J.G., Alter, A.E.: Cloudrise: rewards and risks at the dawn of cloud computing.

Accenture Institute for High Performance, Chicago (2010)
43. Zhang, K.-J., Ma, B., Dong, P.-J., Tang, B.-Y., Cai, H.: Research on Producer Service

Innovation in Home-Textile Industrial Cluster Based on Cloud Computing Platform. In:
International Conference on Service Operations and Logistics and Informatics, pp. 155–160.
IEEE Press (2010)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 153–165, 2013.
© Springer-Verlag Berlin Heidelberg 2013

The Importance of the Business Idea
for New Venture Creation in the Software Industry

Natalie Kaltenecker , Christian Hoerndlein, and Thomas Hess

Ludwig-Maximilians-Universität München, Institute for Information Systems
and New Media, Ludwigstraße 28, 80539 Munich, Germany
{kaltenecker,hoerndlein,thess}@bwl.lmu.de

Abstract. Entrepreneurial activity, especially the creation of new companies in
the growing information and communication technology sector, is of high
importance to foster an economy’s growth. However, despite calls for research
to investigate why young people decide to start their own business, there is a
lack of research to identify the role of the Business Idea in this context. In this
paper, we conceptualize the construct “Business Idea” and test its influence on
the intention to start a company in the software industry by drawing on the
Theory of Planned Behavior. Empirical evidence from a survey among
information technology students (N=402) shows that the Business Idea is a
major driver for the intention to found a company. The study thus contributes to
a better understanding of the factors driving the intention to start a new
company in general and the Business Idea’s importance in particular.

Keywords: Business Idea, Entrepreneurship, Software Industry.

1 Introduction

Entrepreneurial activity is an important element for generating economic growth [1].
According to Zoltan and Audretsch [2], entrepreneurship contributes to the creation of
new products and services. Young technology-focused companies create the jobs of
tomorrow. Therefore, more people should dare to be entrepreneurs. But what are the
factors that determine a person’s decision to create a new venture?

Especially the information and communication technology (ICT) industry is seen
as a key to economic growth [3]. ICT forms the technological foundation of the
information and knowledge society. It permeates all aspects of our lives and has
become the main driver of innovation. Furthermore, the ICT industry is seen as a key
enabling factor for other industries and is recognized as bringing productivity
improvements and sustainable competitive advantage to a nation’s companies [4].
Within the field of ICT, software has evolved as one of the most important aspects
because of its ubiquity and its flexibility [5].

Given the importance of the topics entrepreneurship and ICT, it is surprising that
research usually focuses either on one topic or the other. On the one hand, there seems
to be a lack concerning entrepreneurship research which focuses on the ICT industry.

154 N. Kaltenecker, C. Hoerndlein, and T. Hess

Studies foremost investigate whether total entrepreneurial activity influences
countries’ growth of the gross domestic product [1, 6] and do not explore the factors
that contribute to the foundation of new ICT ventures. On the other hand, research
specific to the ICT industry usually neglects entrepreneurial activity. Rather,
researchers assume an ICT company to exist already, and focus on the challenges of
an already-operating company, such as technology design [7] or pricing [8].

As part of a related research project we conducted qualitative interviews with about
30 founders of software companies. Instead of seed capital, technical knowledge, or
the services offered in new-venture incubators, one major theme that emerged as
central for starting a new company was the Business Idea. Creativity and the
entrepreneurial idea seem to play a central role when it comes to the intention to
found a company in the software sector. However, the Business Idea plays only a
minor role in extant research, and there is a lack of studies that examine its impact.
This research gaps serves as a starting point for our research in this paper.

In existing studies, the Business Idea is either not dealt with at all [9] or is
presumed to be a given factor [10]. Besides, despite calls from politics for more
entrepreneurial activity in the software industry [e.g. 11], existing research focuses on
potential founders with a business background [12]. Instead, we want to focus on
technically-oriented information technology students who are a likely source of
venture creation. From these aspects, we derive our main research question:

What factors can be identified that influence the intention to found a company
among information technology students, and what is the specific role of the Business
Idea?

Through the introduction of the concept of the Business Idea, this paper fosters an
interdisciplinary perspective between ICT and entrepreneurship. In our conception,
the Business Idea bridges the realms of the rather technically oriented ICT research
and the more socially focused research in entrepreneurship. In our study, we apply
Shane and Venkataraman’s [13] considerations that an objective entrepreneurial
opportunity exists, which has to be discovered subjectively. We perceive of a
technically-oriented opportunity in the software industry which has to be discovered
by an entrepreneur to be turned into a Business Idea. Thus, our study has the potential
to open up new streams of scientific inquiry by connecting so far only loosely
connected research fields.

The remainder of this study is structured as follows: First, we will develop a
theoretical framework and derive our propositions. Subsequently, we will test this
framework through an empirical study among information technology students. We
will conclude this paper by pointing out the practical implications and considering the
potential limitations of this study.

2 Theoretical Development

Entrepreneurship has been under investigation in various strands of literature. In the
following section, we summarize the relevant literature and develop a research model
based on this analysis. Following these steps, we derive our six hypotheses.

The Importance of the Business Idea for New Venture Creation in the Software Industry 155

2.1 Definition

Given the abundance of scientific fields that deal with entrepreneurship research, it is
difficult to derive an all-embracing definition of “entrepreneurship”. Within our
study, entrepreneurship refers on the one hand to the creation of a new company in
the software industry and not the separation from or consolidation of already existing
companies [14]. Furthermore, our study’s focus is on the so-called “opportunity
entrepreneurship” [15, p. 11], which means that the target group (information
technology students) develops entrepreneurial intentions to realize chances and to
fulfill their own ideas concerning a software product or a software service. In the
literature this motivation to establish a company is often termed “pull” motivation
[15]. In contrast to the “push” motivation, in which entrepreneurship occurs due to
misery respectively imminent unemployment, the “pull” motivation is growth-
oriented and provides more new jobs [16].

From this point of view, our conception of an entrepreneur is based on the
behavioral-oriented definition [15]. It states that “entrepreneurship is concerned with
the discovery and exploitation of profitable opportunities” [15, p. 10]. Our focus in
this study will be on the software industry, more specifically on the development of a
software product or a software-based service; not included are companies offering
exclusively training courses and consulting services for information systems.

2.2 Related Work

In this section, we introduce several theoretical concepts, which give a short overview
of the state of the art in entrepreneurship research.

Intention-based models have evolved to be the most widely-used type of models to
explain entrepreneurial behavior. In this type of models, the intention moderates the
influence of specific factors on actual behavior. One of these intention-based models
is Ajzen’s [17] Theory of Planned Behavior. Despite other alternative intention-based
models in the field of entrepreneurship research, such as the “Shapero-Krueger Model
of Entrepreneurial Intent” [18], Ajzen’s theory [17] has become widely accepted in
entrepreneurship research.

The Theory of Planned Behavior has been empirically tested in the general field of
entrepreneurship, but until now there has been a lack of research on the role of the
Business Idea in particular. Embedding this substantially new explanation factor and
its impact on the intention to found a company will be the main contribution of this
paper.

Possibly the most important and most prominent article concerning current
entrepreneurship research has been written by Shane and Venkataraman [13, 19, 20].
With their entrepreneurship framework they explain a set of empirical phenomena and
predict a set of outcomes not explained or predicted by conceptual frameworks
already used in other fields. The authors subdivide the entrepreneurial opportunity in
three different aspects: the existence, the discovery and the exploitation of

156 N. Kaltenecker, C. Hoerndlein, and T. Hess

entrepreneurial opportunities. While the discovery of an entrepreneurial opportunity is
a subjectively controlled process, the opportunity itself is an objective phenomenon
which existence is however not known to everybody.

In existing studies, the Business Idea has not been operationalized. In particular,
these studies do not ask potential founders if they have a Business Idea which
possibly explains their intention to create their own business. Rather, these studies
analyze if (potential) founders think that they can realize their own ideas after having
founded their own company. The focus is therefore not on having a Business Idea that
leads to the intention to establish an own firm but it is more connected to the freedom
of working on one’s own ideas in an own company [21, 14].

According to Klofsten [22], however, “[o]ne of the requirements for starting a firm
is an idea that can be developed into a business opportunity” [22, p. 195]. Having an
idea is therefore a prerequisite concerning the establishment of a firm. The difference
between his and our study is the operationalization: In his work, he interviewed five
founders, who in hindsight judged the factors that influenced their decision to create
their own company. One of the main factors that emerged was the Business Idea. We,
in contrast, analyze the Business Idea’s influence on the intention to found a company
from an ex-ante perspective.

In summary, there is a difference between existing studies and our understanding
of a Business Idea as well as the way we plan to operationalize it. Thus, our paper
attempts to close the illustrated research gaps.

2.3 Research Model and Hypotheses Development

We will use Ajzen’s [17] Theory of Planned Behavior as theoretical framework for
our study and expand it with the newly developed construct “Business Idea”. Within
the scope of this model we act on the assumption that Intention represents the best
predictor for actual behavior [23].

Figure 1 shows our developed research model. We point out that the Theory of
Planned Behavior is fully1 established within the model. Attitude, Subjective Norm
and Perceived Behavioral Control have a direct positive effect on the Intention to
found a company. Based on our literature analysis, we propose that the Business
Idea’s positive influence on Intention is mediated through Attitude and Perceived
Behavioral Control. Besides, bearing the qualitative interviews of our related research
project in mind, we suppose that the Business Idea also has a direct positive effect on
Intention2.

1 Without the bidirectional influence among Attitude, Subjective Norm and Perceived

Behavioral Control.
2 Solid lines indicate the Theory of Planned Behavior (H1, H2, H3); dotted lines indicate the

new propositions integrated into the Theory of Planned Behavior (H4, H5, H6).

The Importance of the Business Idea for New Venture Creation in the Software Industry 157

Fig. 1. Research Model

We will now further elaborate on our research hypotheses.
Intention is seen as a direct determinant of human behavior. Ajzen [17] describes

Intentions as follows: “Intentions are assumed to capture the motivational factors that
influence a behavior” [17, p. 181]. The Theory of Planned Behavior postulates three
conceptually independent determinants of a person’s Intention: Attitude, Subjective
Norm, and Perceived Behavioral Control.

First, Attitude towards a certain behavior refers to the degree to which a person has
a favorable or unfavorable evaluation or appraisal of the respective behavior. The
second predictor is a social factor termed Subjective Norm. It refers to the perceived
social pressure to perform or not to perform the behavior. The third antecedent of
one’s Intention is the degree of Perceived Behavioral Control, which refers to the
perceived ease or difficulty of performing the behavior. It is assumed to reflect past
experience as well as anticipated impediments and obstacles. As a general rule, the
more favorable the Attitude, the stronger the Subjective Norm, and the greater the
Perceived Behavioral Control with respect to a certain behavior, the stronger an
individual’s Intention to perform this behavior [17].

Building upon existing research, we formulate the following three hypotheses to
apply the Theory of Planned Behavior in our specific context of entrepreneurial
Intentions:

H1: There is a positive relationship between Attitude and the Intention to start a new
business.
H2: There is a positive relationship between Subjective Norm and the Intention to
start a new business.
H3: There is a positive relationship between Perceived Behavioral Control and the
Intention to start a new business.

Following Ajzen‘s Theory of Planned Behavior, Attitude, Subjective Norm and
Perceived Behavioral Control are the only determinants of one’s Intention [17].

158 N. Kaltenecker, C. Hoerndlein, and T. Hess

Therefore, any additional variable’s impact, such as the Business Ideas’ influence, on
Intention could only be mediated through these three constructs. Based on the analysis
of the literature which deals with the concept and definition of an idea in general, we
assume a potential mediator effect through the construct Attitude [24, 21] as well as
through the construct Perceived Behavioral Control [25, 26, 24, 22, 14]. This view is
supported by the analysis of our qualitative interviews, which reveals that most people
have trust in their own ideas and also value the risk of their own ideas failing lower.
Therefore the Business Idea has a positive effect on someone’s Attitude. In terms of
the Perceived Behavioral Control, the Business Idea can be regarded as a key factor in
feeling able to actually create an enterprise. However, we could not derive an
influence of the Business Idea on the Subjective Norm from our literature analysis.

Therefore, we formulate the following hypotheses:
H4: The positive relationship between the Business Idea and the Intention to start a
new business is mediated through the Attitude.
H5: The positive relationship between the Business Idea and the Intention to start up a
new business is mediated through the construct of Perceived Behavioral Control.

The sixth hypothesis results from the analysis of the qualitative interviews with
founders of software companies. The Business Idea played a crucial role regarding the
founding of their companies. Their Business Idea served as a vision and driver
concerning the Intention to start a new business, independent from any indirect
influence on Attitude or Perceived Behavioral Control. In line with Klofsten [22], the
presence of a Business Idea had been a necessary condition to develop the Intention to
found a company.

Therefore, we derive the following hypothesis:
H6: There is a positive relationship between the Business Idea and the Intention to
start a new business.

3 Scale Development Procedure and Main Survey

Recognizing the lack of previous scale development efforts concerning
entrepreneurial ideas, we conceptualize a construct called “Business Idea” and test its
influence on the Intention to start a company in the software industry by drawing on
the Theory of Planned Behavior. We followed a three-step process to develop, refine,
and validate the measurement model and test our hypotheses. These three steps were
(1) the conceptualization and development of indicators, (2) the refinement of
indicators, and (3) the main survey to validate the measurement instrument and our
research model.

3.1 Step 1: Conceptualization and Development of Indicators

With regard to the content specification of the constructs, i.e. the concrete choice of
indicators, this step consists of several components [27, 28, 29].

The Importance of the Business Idea for New Venture Creation in the Software Industry 159

Regarding the generation of the reflective items, we have to differentiate between
the already available and validated constructs in the literature, namely Attitude,
Subjective Norm, Perceived Behavioral Control and Intention, and on the other hand
our newly developed construct “Business Idea”. Concerning the former ones, we have
adopted reflective constructs from the literature [30].

In terms of the newly developed construct “Business Idea”, we created seven
reflective items based on prior literature and founders’ statements in the qualitative
interviews. Since we could not revert to an already verified construct in literature, the
unidimensionality and reliability of these items were tested with a pre-test (see step
2). Table 1 shows the seven items for the construct “Business Ideas”.

Table 1. Items for the Construct “Business Idea”

Item 1 I have an idea to start a company in the software industry.
Item 2 I have discovered a market niche in the software industry.
Item 3 I have an innovative idea for the software industry.

Item 4 I have an idea for a software product or a software service.
Item 5 I have an entrepreneurial idea for the software industry.
Item 6 I have a business idea for the software industry.
Item 7 I have had an inspiration for a software product or a software service.

3.2 Step 2: Refinement of Indicators

A first pre-test (N=21) was undertaken in December 2011 to test the developed
questionnaire in preparation of the main survey and to ensure that all the items were
understood as intended. The pre-test generated positive feedback concerning length
and comprehensibility. Except for small adjustments (e.g. reducing the Likert scale
from seven to five points), we maintained the basic structure of the survey.
Additionally, principal component analysis showed that all seven reflective items to
measure the construct “Business Idea” load on one single factor.

3.3 Step 3: Main Survey

We distributed the 2-page questionnaire to information technology students from
three public universities3 during the winter term 2011/2012. We asked students from
nine different courses on a bachelor and master level to participate in the survey. Data
was collected during January and February 2012. The decision in favor of a paper-
based and not an online survey was made based on a higher expected response rate
[31, 32]. A total of 598 questionnaires were distributed and 402 completed responses
were received, yielding a response rate of 67.2%. This rate reflects the respondents’
high interest towards the research subject. The sample (N=402) consists of 295
(73.4%) male and 107 (26.6%) female students within the disciplines of Information
Systems (44.3%), Media Informatics (27.9%) and Computer Science (20.4%). A

3 For the purpose of this blind review, we have not indicated the names of the three universities.

160 N. Kaltenecker, C. Hoerndlein, and T. Hess

further 7.4% of the respondents had chosen Computer Science as a minor. 24.4% of
the respondents pursued a master’s and 75.6% a bachelor’s degree. Along with the
five constructs that we have specified above, the questionnaire included control
variables on the students’ background and demographics [33].

Concerning the following statistical analysis, we first assessed the reflective
measurement model and subsequently the path model. For the analysis of the path
coefficients, we used Partial Least Square (PLS) path modeling.

3.4 Analysis of the Measurement Model

The measurement model was assessed in terms of the following local quality criteria:
composite reliability, average variance extracted (AVE) and discriminant validity
[34]. Concerning the scores for the composite reliability, the values lie between 0.90
and 0.96 and thus exceed the recommended threshold value of 0.7 [35]. Looking at
the values for Cronbach’s Alpha, they are also comfortable above the suggested
threshold value of 0.7 [35].

Table 2 shows the inter-construct correlations, with the AVE values on the
matrix’s diagonal. All square roots of the AVE values exceed inter-construct
correlations, thus providing strong evidence of discriminant validity [34].

Table 2. Inter-construct Correlations and AVE

 Attitude Business Idea Intention
Subjective

Norm

Perceived
Behavioral

Control
Attitude 0.75 - - - -
Business Idea 0.33 0.79 - - -
Intention 0.55 0.61 0.90 - -
Subjective Norm 0.46 0.21 0.32 0.83 -

Perceived
Behavioral Control

0.22 0.31 0.37 0.20 0.77

Because of the strong correlation between the constructs Business Idea and

Intention, we also checked whether the respective items are actually tapping into two
different constructs. Our analysis shows that the maximum of inter-construct item
correlations is smaller than the minimum of the intra-construct item correlations of
the two constructs. We therefore conclude that the items that we developed to
measure Business Idea are sufficiently distinct from the items to measure Intention.

During the course of our study, we received feedback whether having a Business
Idea should not better be measured using a binary variable. We analyzed the
distribution of the Business Idea’s values in the survey; it follows approximately an
equal distribution. Therefore, we can conclude that people have certain degrees of a
Business Idea instead of having a Business Idea or not.

The Importance of the Business Idea for New Venture Creation in the Software Industry 161

3.5 Analysis of the Path Model

Consistent with established recommendations on the analysis of structural equation
models (SEMs), values for the explained variance (R²), effect sizes (f²) and the t-
values of the bootstrapping procedure [36, 37] were calculated. The values were
generated by or based on the output generated by the SmartPLS 2.0 [38] software4.
According to Hair et al. [39], PLS-SEM analysis is highly recommended for
explorative analysis, as is the case in our study.

The explained variance in the model is 52.7% for the Intention to start a new
company in the software industry, which can be interpreted as the model showing
medium to substantial explanatory power [40]. Furthermore, the Business Idea
explains 11.2% of the Attitude’s variance and 9.4% of the Perceived Behavioral
Control’s variance.

Bootstrap values are a way for measuring the statistical significance of an
estimated coefficient path coefficient in PLS, which has no distributional assumptions
[39]. Based on the calculated t-values we can determine the significance of a specific
parameter [41]. Table 3 shows the path coefficients along with their respective
significance level.

Table 3. Path Coefficients and Significance

Paths Path coefficients

AttitudeIntention (H1) 0.348***
Subjective NormIntention (H2) 0.046***

Perceived Behavioral Control Intention (H3) 0.145***
Business IdeaAttitude (H4) 0.334***

Business IdeaPerceived Behavioral Control (H5) 0.307***
Business IdeaIntention (H6) 0.440***

(*** p<0.001)

Except for the influence of the Subjective Norm on the Intention, all path
coefficients were found to be significant at a 0.1%-level. A Sobel Test revealed that
Attitude and Perceived Behavioral Control both partially mediate the Business Idea’s
influence on Intention [42]. The analysis therefore confirms the hypotheses H1, H3,
H4, H5 and H6, but we have to reject H2.

The calculations concerning the effect sizes regarding Intention’s variance show a
minor influence of the Perceived Behavioral Control (f²=0.032) and a medium effect
size of the Attitude (f²=0.184). With an f² value of 0.340, the Business Idea has the
strongest influence on the Intention, which is characterized in literature as a medium
to strong influence [40].

If we exclude the Business Idea from the model, which results in the Theory of
Planned Behavior’s base model, 36.6% of the Intention’s variance can be explained.
This indicates that in the case of entrepreneurship, the Theory of Planned Behavior
might benefit from including the Business Idea as a construct, which contributes to a
considerable increase in the explained variance (36.6% vs. 52.7%).

4 PLS Algorithm: Case Wise Replacement, Path Weighting Scheme, Mean 0, Var 1;

Bootstrapping Algorithm: Case Wise Replacement, Individual Changes (N=383).

162 N. Kaltenecker, C. Hoerndlein, and T. Hess

4 Discussion, Limitations, and Further Research

Our study confirms the importance of the entrepreneurial Business Idea’s impact on
the intention to start a new company: By including this construct into the Theory of
Planned Behavior, we are able to explain an additional 16.1 percentage points of the
behavioral intention’s variance compared to the Theory of Planned Behavior’s
baseline model. The results show that the construct of the Business Idea captures
aspects that are not included in the original Theory of Planned Behavior’s model and
whose effects on Intention are not mediated by Attitude or Perceived Behavior
Control. In the field of entrepreneurial research, the Theory of Planned Behavior
model should therefore be extended.

The study’s findings have important policy implications: The Business Idea has the
biggest impact on IT students’ intention to found a company. Therefore, efforts to
increase the entrepreneurial activity in the software industry should focus on creative
thinking and opportunity detection. This might seem counterintuitive at first: The
software industry is probably associated more with rather “hard” factors such as
technological knowledge or computing equipment and to a lesser extent with “soft”
factors. Of course, these factors are also important and should not be neglected, but it
is the factor of having a Business Idea that has the biggest impact on starting a new
venture.

These results resonate with a shift of how IT is perceived in academic research.
Instead of regarding IT and its use and adoption as a purely technological artifact,
research has started paying more attention to the notion that “[t]echnologies are
simultaneously social and physical artifacts” [43, p. 149]. Our results show that also
entrepreneurship should be seen as being embedded within a social system, in which
creativity and other social factors have a crucial impact on the intention to found a
company. Therefore, to foster entrepreneurial activity, especially in the ICT sector, it
needs more than venture capital and technical know-how, but rather a creative
environment in which entrepreneurial ideas can prosper.

We suggest that further research in ICT should focus on how new technologies can
be exploited and turned into Business Ideas, which are the basis for new ICT
companies. This might include revising information technology curricula to
encourage students to exploit the technical knowledge that they are taught. By
framing current topics such as Cloud Computing not only as a new technology but
also as an opportunity for new venture creation, universities might actively contribute
to a country’s entrepreneurial activity. Having interdisciplinary teams work together
on IT projects during their courses could also stimulate creativity and unconventional
thinking. Besides, IT students could be required to attend lectures from non-IT fields.
By applying knowledge and methods from other disciplines to their own field of
study, IT students might develop Business Ideas that they would not have come up
without thinking “outside the box”.

There are some potential limitations that apply to our study: First of all, we
restricted our survey to information technology students. Although this group is an
important source of new-venture creation in the software industry, we excluded other
groups such as students from other disciplines. Besides, our study’s conclusions are

The Importance of the Business Idea for New Venture Creation in the Software Industry 163

based on the questionnaires that we distributed in three public universities. Further
studies should include a wider range of academic institutions and also include
institutions from different countries.

Second, by conducting a cross-sectional study, we could only collect data
regarding the intention to found a new company. However, one could argue that in
processes with a lot of decision points and impact factors, such as founding a
company, the intention might only weakly predict actual behavior.

Third, our study focuses on the “opportunity recognition” and “opportunity
discovery”. The “opportunity creation” is outside the scope of our study [44].

In summary, our study can serve as a starting point for deepening the
understanding why people decide to found a company. Our findings stress the
importance of the Business Idea, a construct that had been neglected in extant
research. We encourage other researchers to replicate our study in other settings to
verify the relationships that we found to be significant.

References

1. van Stel, A., Carree, M., Thurik, A.R.: The effect of entrepreneurial activity on national
economic growth. Max Planck Institute for Research into Economic Systems, Jena, pp. 1–22
(2005)

2. Zoltan, J., Audretsch, D.: Handbook of Entrepreneurship Research: An Interdisciplinary
Survey and Introduction. Springer, New York (2010)

3. van Oort, F.G., Stam, E.: Agglomeration Economies and Entrepreneurship in the ICT
Industry. Research in Management 16, 1–24 (2006)

4. Underwood, J., Khosrowshahi, F.: ICT Expenditure and Trends in the UK Construction
Industry and Facing the Challenges of the Global Economic Crisis. Journal of Information
Technology in Construction 17, 25–42 (2011)

5. Tessler, S., Barr, A., Hanna, N.: National Software Industry Development: Considerations
for Gevernment Planners. The Electronic Journal of Information Systems in Developing
Countries 13(10), 1–17 (2003)

6. Audretsch, D., Keilbach, M.: Entrepreneurship Capital and Economic Performance.
Regional Studies 38, 949–959 (2004)

7. Erl, T.: Service-Oriented Design - Part IV: Business Process Design. In: Erl, T. (ed.)
Service-Oriented Architecture: Concepts, Technology, and Design, pp. 565–611. Pearson
Education, Inc., New York (2005)

8. Ayyagari, M., Demirgüc-Kunt, A., Maksimovic, V.: Firm Innovation in Emerging
Markets: The Role of Finance, Governance, and Competition. Journal of Financial and
Quantitative Analysis 46(6), 1545–1580 (2011)

9. Franke, N., Lüthje, C.: Studentische Unternehmensgründungen – dank oder trotz Förderung?
Schmalenbachs Zeitschrift für Betriebswirtschaftliche Forschung 54(3), 96–112 (2002)

10. Halberstadt, J., Ossietzky, C., Welpe, I.: Motive, Eigenschaften und Emotionen von
Unternehmensgründern. In: Kraus, S., Fink, M. (eds.) Entrepreneurship - Theorie und
Fallstudien zu Gründungs-, Wachstums- und KMU-Management, pp. 52–67. WUV
Facultas, Wien (2008)

11. Federal Ministry of Economics and Industry: Rückblick: Gründerwoche Deutschland
2011. Federal Ministry of Economics and Industry, Berlin (2012)

164 N. Kaltenecker, C. Hoerndlein, and T. Hess

12. Weber, S., Starke, S.: Lernpotenzial und Effekte eines Business Planning-Kurses.
Unterrichtswissenschaft 38, 292–317 (2010)

13. Shane, S., Venkataraman, S.: The Promise of Entrepreneurship as a Field of Research. The
Academy of Management Review 25(1), 217–226 (2000)

14. Tegtmeier, S.: Die Existenzgründungsabsicht - Eine theoretische und empirische Analyse
auf Basis der Theory of Planned Behavior. Tectum Verlag Marburg, Lüneburg (2008)

15. Stephan, U.: Culture of Entrepreneurship (C-ENT)/Kultur der Selbständigkeit:
Konzeptualisierung und erste Validierung eines Fragebogens zur Erfassung einer
unternehmertumsförderlichen Kultur. Psychologie, Philipps-Universität Marburg, Marburg
(2008)

16. Llisterri, J.J., Kantis, H., Angelelli, P., Tejerina, L.: Is Youth Entrepreneurship a Necessity
or an Opportunity? A First Exploration of Household and New Enterprise Surveys in Latin
America (2006)

17. Ajzen, I.: The Theory of Planned Behavior. Organizational Behavior and Human Decision
Processes 50, 179–211 (1991)

18. Krueger, N.: Entrepreneurial Intentions are Dead: Long Live Entrepreneurial Intentions.
In: Carsrud, A., Brännback, M. (eds.) Understanding the Entrepreneurial Mind, pp. 51–75.
Springer, New York (2009)

19. Shane, S.: Reflections on the 2010 AMR Decade Award: Delivering on the Promise of
Entrepreneurship as a Field of Research. Academy of Management Review 37(1), 10–20
(2012)

20. Venkataraman, S., Sarasvathy, S., Dew, N., Forster, W.: Reflections on the 2010 AMR
Decade Award: Whither the Promise? Moving forward with Entrepreneurship as a science
of the Artificial. Academy of Management Review 37(1), 21–33 (2012)

21. Jacob, K.: Unternehmer aus Hochschulen? Eine Studie zu Existenzgründungsabsichten
von Studierenden. Verlag Dr. Kovac, Hamburg (2007)

22. Klofsten, M.: New Venture Ideas: An Analysis of their Origin and Early Development.
Technology Analysis & Strategic Management 17(1), 105–119 (2005)

23. Bamberg, S.: Helfen Implementationsintentionen, die Lücke zwischen Absicht und
Verhalten zu überwinden? Ergebnisse zweier interventionsorientierter Feldexperimente.
Zeitschrift für Sozialpsychologie 33(3), 143–155 (2002)

24. Funke, J.: Psychologie der Kreativität. In: Holm-Hadulla, R.M. (ed.) Kreativität, pp. 283–
300. Springer, Heidelberg (2000)

25. Bird, B.: Implementing Entrepreneurial Ideas: The Case for Intention. Academy of
Management Review 13(3), 442–453 (1988)

26. Eagly, A.H., Chaiken, S.: The psychology of attitudes. Harcourt Brace Jovanovich College
Publishers, Fort Worth (1993)

27. Churchill, G.: A Paradigm for Developing Better Measures of Marketing Constructs.
Journal of Marketing Research 16(1), 64–73 (1979)

28. DeVellis, R.F.: Scale Development - Theory and Applications. Sage, Thousand Oaks
(2003)

29. Hinkin, T.R.: A Brief Tutorial on the Development of Measures for Use in Survey
Questionnaires. Organizational Research Methods 1(1), 104–121 (1998)

30. Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User Acceptance of Information
Technology: Toward a Unified View. Management Information Systems Quarterly 27(3),
425–478 (2003)

31. Friedrichs, J.: Methoden empirischer Sozialforschung. Opladen (1980)
32. Schnell, R., Hill, P.B., Esser, E.: Methoden der empirischen Sozialforschung. Oldenburg,

München (2005)

The Importance of the Business Idea for New Venture Creation in the Software Industry 165

33. Fishbein, M., Ajzen, I.: Predicting and changing behavior: The reasoned action approach.
Psychology Press, New York (2010)

34. Fornell, C., Larcker, D.F.: Evaluating Structural Equation Models with Unobservable
Variables and Measurement Error. Journal of Marketing Research 18(1), 39–50 (1981)

35. Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., Tatham, R.L.: Multivariate Data
Analysis. Pearson Prentice Hall, New Jersey (2006)

36. Bliemel, F., Eggert, A., Fassott, G., Henseler, J.: Handbuch PLS Pfadmodellierung -
Methode Anwendung Praxisbeispiele. Schäffer-Poeschel, Stuttgart (2005)

37. Gefen, D., Rigdon, E., Straub, D.: An Update and Extension to SEM Guidelines for
Administrative and Social Science Research. Journal of Management Information
Systems 35(2), iii–xiv (2011)

38. Ringle, C.M., Wende, S., Sinkovics, R.R.: SmartPLS 2.0 (2005),
http://smartpls.de

39. Hair, J.F., Ringle, C.M., Sarstedt, M.: PLS-SEM. Indeed a Silver Bullet. Journal of
Marketing Theory and Practice 19(2), 139–151 (2011)

40. Vinzi, V.E., Trinchera, L., Amato, S.: PLS Path Modeling: From Foundations to Recent
Developments and Open Issues for Model Assessment and Improvement. In: Vinzi, V.E.
(ed.) Handbook of Partial Least Squares, pp. 47–82. Springer, Heidelberg (2010)

41. Tenenhaus, E., Vinzi, V.E., Chatelinc, Y.M., Laurob, C.: PLS path modeling.
Computational Statistics & Data Analysis 48, 159–205 (2004)

42. Urban, D., Mayerl, J.: Mediator-Effekte in der Regressionsanalyse direkte, indirekte und
totale Effekte. University of Stuttgart (2007)

43. Orlikowski, W.J., Barley, S.R.: Technology and Institutions: What can Research on
Information Technology and Research on Organizations Learn from each other? MIS
Quarterly 25(2), 145–165 (2001)

44. Sarasvathy, S.D., Dew, N., Velamuri, R., Venkataraman, S.: Three Views of
Entrepreneurial Opportunity. In: Acs, Z.J., Audretsch, D.B. (eds.) Handbook of
Entrepreneurship Research, 2nd edn. International Handbook Series on Entrepreneurship,
vol. 5, pp. 77–96. Springer, Heidelberg (2010)

Exploring How Feature Usage Relates

to Customer Perceived Value: A Case Study
in a Startup Company

Sarunas Marciuska, Cigdem Gencel, and Pekka Abrahamsson

Free University of Bolzano-Bozen,
Marciuska@inf.unibz.it, {Cigdem.Gencel,Pekka.Abrahamsson}@unibz.it

Abstract. Most of the business value of a software product comes from
only a small proportion of its features. Product managers face the chal-
lenge of identifying the high value features in an application and weeding
out the ones of low value from the next releases. What creates this chal-
lenge is the fact that customer perceived value is an attribute, dimensions
of which are not well-known yet. Currently, software companies try to
assess the value of features through interviewing a number of key stake-
holders. However, the literature suggests that, this kind of evaluation
could be misleading due to stakeholders having different understanding
of what value refers to. In this paper, through an exploratory case study,
we investigate how usage of features relate to their perceived value and
shed light into the factors affecting this relationship. The results show
that feature usage metric has a significant potential to estimate value of
features.

Keywords: Value based software engineering, Customer perceived value,
Feature usage.

1 Introduction

Value based software engineering [1,2] has gained considerable attention in the
last years. Software companies have been trying to define mechanisms for inte-
grating value-based decision making in their product development and evolution
life cycle in order to sustain growth and maintain competitive advantage [1,3].

Value-based decision making helps in developing high quality products on
time and within budget by taking right strategic decisions considering the bene-
fit, value and risk factors throughout the life cycle [4]. However, there are a num-
ber of challenges the practitioners are facing [1,2,5,6] –How to measure and/or
estimate software value that has many dimensions? and –Which of these dimen-
sions (i.e. customer perceived value, product value, competitive advantage value,
innovation value) are important to consider in decision making? [7,8,9,10].

In this paper, our focus is on customer perceived value. It is stated that
eighty percent of business value comes from only twenty percent of software
components [11]. Here, the problem is two-fold: 1) estimating the features that
would increase customer perceived value during the requirements analysis phase

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 166–177, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Feature Value and Usage Correlation 167

and prioritising them for the next release, and 2) monitoring the perceived value
of features of a product that is already in use, and identifying and weeding out
the ones that are of low value during the next release of the product.

The first challenge has been studied considerably for market-driven develop-
ment under the requirements prioritisation area. Several methods have been used
in industry such as Analytical Hierarchy Process [12], 100-point method [13],
Planning game [14] etc. In this paper, however, we deal with the second chal-
lenge of identifying features of a product in use, which are not so valuable from
the customers’ point of view.

Recent studies suggest that high customer perceived value is the key for
creating long-term industrial relationships, which also can impact the product
value [15]. There are a number of techniques developed to measure customer
perceived value [16,17,18]. Most of them are based on making interviews with
key customers to get their subjective opinion and generalise the results for a pop-
ulation. However, this approach has some major challenges. First, it is difficult
for customers to estimate customer perceived value because of its multidimen-
sional nature. Second, it may be hard and/or costly to obtain the input of key
customers throughout the life cycle of a product. In addition, as the number of
customers to be interviewed is limited, they may not be representative for all
types of customers.

In this paper, we investigate whether there is another way of estimating the
perceived value of features in a software product using an indirect and objective
measure. According to Woodruff [19] customer perceived value is closely related
to the usage. Here, our aim is to shed light into how feature usage is related with
customer perceived value, and whether this measure can be used to estimate low
value features that could be removed from the system in the next releases.

The paper is organized as follows: Section 2 discusses the related work. Sec-
tion 3 provides details of the case study. Section 4 analyses the results of the
case study. Section 5 presents the validity threats. Finally, Section 6 concludes
the work.

2 Related Work

2.1 Customer Perceived Value

Software business value is a multidimensional concept. In [9], three dimensions
are differentiated: product value, a customer’s perceived value and relationship
value. Product value is related to the product price and it changes depending
on the competitive products. A customer’s perceived value is the benefit that
customer gains from the product. It can be influenced by customer expectations,
previous experiences, cultural background etc. Relationship value is generated
from the social relationships between the company and the customer.

Ulaga and Chacour [15] argue that high customer value is a key to creating
long-term industrial relationships, which also impact the product value. Authors
present an approach to measure and maximize customer perceived value in three
steps: (1) analyze how a company understands customer perceived value; (2)

168 S. Marciuska, C. Gencel, and P. Abrahamsson

interview the representatives of key customers; (3) suggest a strategy for what
to include in a product.

Similarly, in value-based requirements engineering area companies aim to
maximize the customer perceived value through selection of the most important
requirements for the success-critical stakeholders [20,21,22]. There are two main
problems in measuring customers’ perceived value: (1) stakeholders may have a
different understanding of what value refers to [23]; (2) customer perceived value
is a multidimensional concept [15] that makes it difficult to measure.

Ronkko et al. [10] discuss customer perceived value and utility relation in
software engineering. They argue that system utility depends on the skills of
the users, and therefore customer perceived value is influenced by who uses the
system. However, the authors do not provide deeper insights on the nature of
the relationship.

Currently, several techniques help to assess customer perceived value [16,17,18].
For example, release planning approaches [16] address this problem by prioritizing
requirements through stakeholder surveys. Later themost valuable feature sets are
selected and implemented in early releases. The house of quality [18] techniques
prioritize customer requirements by mapping them to the design constraints. All
of these techniques collect the information through customer surveys. However, it
is difficult for participants to precisely estimate customer perceived value because
of its multidimensional nature. Thewrong evaluation is later on carried on through
the whole product development lifecycle. Therefore, there is a need to have objec-
tive measures that would guide the assessment process.

2.2 Usage

Existing literature suggests that there are different aspects of system usage [24]:
total time, frequency, number of features used etc. Most techniques developed to
measure usage focus on the overall system usage, but not of a single feature. Only
the recent studies [25] raised the need to explore the system usage in system-
centred fashion (i.e. measuring system at the feature level). Sun et al. [26] reports
a study about system usage at feature level. However, the data was collected
through questionnaires, and therefore represent the subjective opinions of users.

There are two common approaches to monitor how users use the features of
a system: (1) extend the software with code that is responsible for monitoring,
or (2) design an application that intercepts all events triggered by the observed
system when it is used. The main issue using the former method is that the added
piece of software increases the complexity of the overall software. In addition,
depending on the country where the software is used, the hidden data collection
about users activities might violate the privacy laws.

Existing tools that use the second approach (such as aforementioned OpenSpan
Desktop Analytics [27] and Google Analytics [28]) overcome afore mentioned
limitations, because they do not modify the software that is being monitored.
However, such tools are able to show only which applications are running on an
operating system or web browser. They do not provide any details related to the
feature usage.

Feature Value and Usage Correlation 169

Another set of tools such as Microsoft Spy++[29], or the method presented
by Atterer et al.[30] provide detailed information on how users use a system
by monitoring activities of users, such as mouse clicks and key strokes. However
these tools collect too much noise, because they were not created with the aim to
identify the usage of the features. For example, such tools catch the events raised
by random mouse clicks which do not change the behaviour of the system. Then
it becomes difficult to automatically filter out the noise and determine which
unique features were executed.

Due to these limitations, we developed a tool that identifies features and
provides their usage information when conducting the case study presented in
the following section.

3 Case Study

We conducted a case study to explore the relationship between perceived value
of features and their usage by customers. Our research question was as follows:

– RQ1 – How does customer perceived value for features relate to their usage?

We selected nextrailer.net web based movie recommender system as the case
application developed by a startup company. This startup company, being at
an earlier phase in development, agreed to apply our approach for better un-
derstanding the customer perceived value for the features of their product. The
system contains movie trailers database where users can find their favourite
movies by using filters. The system contained 30 features at the time of the case
study and had 20 daily users (150 users in total). For the case study we chose
20 features of the nextrailer.net application.

We invited all the system users of the case application to participate in our
case study by sending emails. At the end, 19 users accepted to participate in
this case study.

3.1 Case Study Design

We used two operational measures to answer RQ1: 1) customer perceived value,
and 2) feature usage.

In this study, we first required to define what a feature is before designing
any measurement instrument, as our investigation would be at feature level.
We adopted the following definition by Eisenbarth et al. [31]: ”A feature is an
observable unit of behaviour of a system triggered by the user”.

As for the customer perceived value, we used Woodruff’s definition [19]:
”Customer value is a customer’s perceived preference for and evaluation of those
product attributes, attribute performances, and consequences arising from use
that facilitate (or block) achieving the customer’s goals and purposes in use
situations”.

We used 100 point method (also known as 100 dollar method) [13] for mea-
suring the customer perceived value. This method is used in requirements pri-
oritization area to identify the most important requirements for the customers.

170 S. Marciuska, C. Gencel, and P. Abrahamsson

Specifically, the customers have to distribute 100 points among all features ac-
cording to their value. As we were interested in measuring the relative customer
perceived value of features, this method fits our needs.

To measure usage of features, we designed a JavaScript library that intercepts
all on click events raised by DOM elements that have title attribute. We asked
the developers to add this library to the system and to make sure that elements
that represent features of the nextrailer.net contain unique title attributes.

We automatically collected the data about the usage of the nextrailer.net
for two months. Finally, the following information was sent to our server: the
username of a user that triggers the onClick event while using a feature, the
timestamp, and the title attribute of the element that represents a feature. For
the further analysis we aggregated and extracted data using SQL queries.

4 Analysis and Results

After collecting the data, we analysed the usage of features and perceived value
recorded for those features. To explore the relation between customer perceived
value and usage of features we considered four scenarios and categorised the
features as shown in Fig. 1: (I) a feature is rarely used and not too valuable;
(II) a feature is rarely used, but valuable; (III) a feature is frequently used and
valuable; (IV) a feature is frequently used, but not too valuable.

Fig. 1. Feature categorization according to usage/customer perceived value

In order to decide whether a feature is rarely/frequently used and valuable/not
too valuable we needed to define threshold values. To do that, for each partic-
ipant, we computed average usage and average perceived value, and then cal-
culated relative values with respect to average. After this, we categorised the
features into one of the four groups. If a feature rating is less than the average
rating, then the feature is labelled as ’not too valuable’, otherwise as ’valuable’. If
a feature is used less than the average usage then the feature is labelled as ’rarely

Feature Value and Usage Correlation 171

used’, otherwise as ’frequently used’. In this case, the center point in Fig 1 is the
crossing point between relative usage and relative customer perceived value for
each separate participant.

Fig 2 shows an example of relative feature usage/perceived value diagram for
one of the participants.

Fig. 2. An example feature usage/perceived value diagram for a participant

In Table 1, Columns I to IV show the features of the case application and
their categories (Scenario I, II, III, IV) with respect to the number of users.
For example, 7 of the 19 users found to rarely use F1, and they also stated this
feature is of low value, whereas 2 of the users found to use the feature frequently
and they also think that this feature is of high value.

Scenario I and Scenario III indicate a some correlation between feature usage
and perceived value. In total, 65.5% cases indicate a correlation between feature
usage and customer perceived value (49% of cases fall in Scenario I and 16.5%
of cases fall in Scenario III).

However, for our purposes in this study, it was important to understand Sce-
nario II (when a feature is rarely used, but perceived as valuable), and Scenario
IV (a feature is frequently used, but perceived as not too valuable) as one of
our aims is to explore when/why usage does not correlate to perceived value. To
do that, we interviewed the participants. The results showed that the main five
reasons were the following:

172 S. Marciuska, C. Gencel, and P. Abrahamsson

Table 1. The categories of features with respect to number of users

Feature Short description I II III IV

F1 Watch trailer 7 6 2 4
F2 Store movie 3 8 7 1
F3 Mark seen movies 2 10 5 2
F4 Navigate to the next trailer 6 4 8 1
F5 Navigate to the previous trailer 13 6 0 0
F6 Select trailer using thumbnail list 2 3 10 4
F7 Add movie to the seen list 2 0 8 9
F8 Add movie to the watch list 3 1 11 4
F9 Report a broken trailer 15 4 0 0
F10 Rate a movie 5 0 2 12
F11 Quick filters 11 6 2 0
F12 Filters 5 11 3 0
F13 Play movie from the seen and watch lists 15 4 0 0
F14 Delete movie from the seen and watch lists 15 4 0 0
F15 See IMDB information about a movie 16 2 1 0
F16 Register Nextrailer.net 17 2 0 0
F17 Login Nextrailer.net 16 3 0 0
F18 Login Social Network 14 5 0 0
F19 Login Google 15 4 0 0
F20 Search trailer by title 4 11 4 0

R1 Participants reported that some features were very valuable even though they
did not need to use them frequently. For example, one stated that ’report a
broken trailer’ was a high value feature, because the quality of videos could
be increased in this way, but there were not a lot of low quality videos in
the nextrailer.net website. This reason was reported 66 times in total and
for the majority of the features falling in Scenario II. This finding suggests
that it would be interesting to explore in the future the relation between
discretionary usage [32] and customer perceived value. Discretionary usage
considers that some features intended to be used less than others and is
defined as follows: X = A/B, where X is discretionary usage, A is number
of times that specific software functions/applications/systems are used, B is
number of times they are intended to be used. The biggest challenge is to
estimate B, because the results of this case study shows that different users
use features differently.

R2 Participants reported that they made a mistake in distributing the scores
among features by giving too high or too low scores. For example, a few
participants reported that it was obvious that some features have to be
there and they were necessary for minimal site operation, and therefore they
rated the value of those features as low. In addition, some participants stated
that they mistakenly gave too high scores to some features. This reason was
reported for the features falling in Scenario II and Scenario IV. In total, 14
mistakes identified after the interview. This indicates that it is difficult to

Feature Value and Usage Correlation 173

reliably evaluate customer perceived value just asking the opinions of users.
Therefore, there is a need to find reliable objective measures for measuring
or estimating customer perceived value.

R3 Participants reported that some of the features were not valuable for them,
but they were part of a process and therefore there was no other way to
bypass them. One example given was that when users use the feature ’Mark
a see movie’, the pop up appears and they had to rate that movie. This in
turn increased the usage of ’Rate a movie’ feature. This reason was reported
16 times for most features falling in Scenario IV, and it was stated 12 times
for ’Rate a movie’ feature. This explains most of the cases in Scenario IV.
Only 2 participants reported that they like to express their opinion and use
the rating system. Usually, such features are known to the company before
hand as these dependencies exist due to the architecture of the system. This
should be taken into account when making decisions to remove features based
on usage information.

R4 Participants reported that the feature was of low value and they believe that
usage would decrease in time; that is such features would move to Scenario
I from Scenario IV. For example, the feature ’Mark seen movies’ was not
perceived as very valuable by some users and in the future their profiles
would be filled with this information, and therefore the amount of usage is
expected to decrease. This reason was reported 9 times for the features falling
in Scenario IV. This suggest that, to discover increasing/decreasing patterns
of usage, there should be a long period of time monitoring; especially for
the systems that users do not use daily. For example, it is not intended that
users use movie recommender system every day.

R5 Participants specified that some features were valuable for them because of
other reasons than intended by the feature. For example, they stated that
’social network login’ did not require to create a new user and remember
its credentials, thus some users consider it as an advantage. This reason was
reported for 13 times for the features falling in Scenario II. In contrary, some
of the participants value nextrailer.net registration and login since they are
afraid to give permissions to their personal data that is on social networks.
Such cases appear relatively small number of times. Nevertheless, it just
confirms that customer perceived value is a multidimensional concept, which
needs careful investigation.

The results also showed that in some cases features that are perceived as valuable
by the company, tend to have a small customer perceived value, and therefore
they might appear in Scenario I or IV whereas they are perceived as valuable by
the company. For example, the features F10, F16, F17, F18, and F19 (marked in
bold font) were perceived as valuable by the company that developed the case
application, because these features are used to collect user personal information:
registration details, login, movie ratings. This is an important result of this study
as a company would be aware of such features in advance, and can take decisions
considering this in addition to customer perceived value/usage.

174 S. Marciuska, C. Gencel, and P. Abrahamsson

Table 2. The number of users and their reasons for Scenario II and IV per feature

Scenario II Scenario IV

Feature R1 R2 R5 R2 R3 R4

F1 6 0 0 3 1 0
F2 8 0 0 0 1 0
F3 10 0 0 1 0 1
F4 1 3 0 0 0 1
F5 3 3 0 0 0 0
F6 0 3 0 2 2 0
F7 0 0 0 2 0 7
F8 1 0 0 3 0 1
F9 4 0 0 0 0 0
F10 0 0 0 0 12 0
F11 3 3 0 0 0 0
F12 11 0 0 0 0 0
F13 4 0 0 0 0 0
F14 4 0 0 0 0 0
F15 2 0 0 0 0 0
F16 0 0 2 0 0 0
F17 0 1 2 0 0 0
F18 0 0 5 0 0 0
F19 0 0 4 0 0 0
F20 11 0 0 0 0 0

In Table 2, we present the number of participants reported the respective
reasons (listed above) for why/when usage and perceived value for the same
feature did not correlate (that is Scenario II and IV). For example, all 6 users,
who mentioned that F1 is a high value feature while they rarely use it (Scenario
II), stated R1 as the main reason.

The results show that for the features falling in Scenario IV (high usage/low
value), R3 is the dominating reason. This indicates the dependency between
features in the architecture. For Scenario II (low usage/high value), the domi-
nating reason is R1. This states that it should be important to consider whether
a feature is intended to be used frequently or not when making a value-based
decision.

5 Threats to Validity

We discuss the validity threats of this study according to categorization sug-
gested by Runeson and Host [33]: construct validity, internal validity, external
validity and reliability.

Construct Validity. Construct validity refers to what extent the operational
measures represent what is investigated according to the research questions.

Feature Value and Usage Correlation 175

We use two operational measures: customer perceived value and feature usage.
One validity threat could be that automatic measurement of the feature usage
is incorrect. To mitigate this threat we asked developers to insert unique title
attributes on the DOM elements that represent features. Then we tested if this
information is really collected by using all the features.

Another threat was misunderstanding of users what perceived value means
while they are distributing 100 points to features. To mitigate this threat, we
provided the definition of ’customer perceived value’ by Woodruff [19] and had
a discussion about it so that every participant has similar understanding about
it. In addition, we made our analysis per user and tried to capture the relative
perceived value and how it relates to its usage. We believe that our conclusions
should not be significantly affected by this threat.

Internal Validity. Internal validity concerns the causality relations. One validity
threat could be overlooking some factors, which could have affected the outcome
and that we did not control. Another validity threat could be that participants
were not familiar with the system and used it for a small amount of time. To avoid
this threat we selected only the existing participants of the system and measure
the feature usage for 2 months. The other validity threat could be participants
rating features to satisfy the final objective of this study. To mitigate this threat,
the participants were not informed about the main objectives of the research
study at the beginning.

External Validity. External validity refers to what extent it is possible to gener-
alize the findings to different or similar contexts. One validity threat could have
been the small number of participants in this study. Moreover, as we conducted
only one case study using a web application, we do not know how much the re-
sults are generalizable to other type of applications. However, here our intention
was not to seek for generalizable results, but rather understand the factors that
could affect the relationship between usage and perceived value and generate
hypothesis for future work.

Reliability. Reliability reflects to what extent the data and the analysis depend
on the specific researchers. One threat could be misinterpretation of the answers
that we collected during the interview to identify reasons for when/why usage
and perceived value do not correlate. To mitigate this threat, we validated with
each participant how we interpreted their answers.

6 Conclusions and Future Work

In this paper, we explored the relation between usage of features and their per-
ceived value by the users. The results of this study confirmed that it is very
difficult to reliably measure customer perceived value through questionnaires
asking the opinion of users, as they might have some implicit assumptions about
what value means. Measuring usage of the features helps in understanding these

176 S. Marciuska, C. Gencel, and P. Abrahamsson

assumptions as well as identifying mistakes made by the customers when evalu-
ating value of features.

Overall, we conclude that usage of features considering the aforementioned
factors is a promising approach to indirectly estimate the customer value of
features. However, it is important to incorporate into usage measure definition
whether a feature is intended to be used frequently or not. For example, this
can be done through using discretionary usage [32] as a metric. We also iden-
tified that it is important to monitor a system for a longer period of time to
observe increasing/decreasing patterns of usage as some features might be from
the beginning intended to be used frequently, whereas others rare.

As future work, we plan to test these hypothesis and conduct more exploratory
case studies for different types of applications to investigate whether there are
more reasons why/when feature usage does not correlate to its value perceived
by customers.

References

1. Boehm, B.: Value-based software engineering. In: Software Engineering Notes
(2003)

2. Mohamed, S.I., Wahba, A.M.: Value estimation for software product management.
In: Industrial Engineering and Engineering Management (2008)

3. Vahaniitty, J.: Key decisions in strategic new product development for small soft-
ware product businesses. In: Euromicro Conference (2003)

4. Berry, M., Aurum, A.: Measurement and decision making. In: Value-Based Software
Engineering (2006)

5. Egyed, A., Biffl, S., Heindl, M., Grünbacher, P.: A value-based approach for un-
derstanding cost-benefit trade-offs during automated software traceability. In: Pro-
ceedings of the 3rd International Workshop on Traceability in Emerging Forms of
Software Engineering (2005)

6. Boehm, B.: Value-based software engineering: reinventing. In: ACM SIGSOFT
Software Engineering Notes (2003)

7. Bauer, H.H., Hammerschmidt, M., Braehler, M.: The customer lifetime value con-
cept and its contribution to corporate valuation. In: Yearbook of Marketing and
Consumer Research (2003)

8. Park, Y., Park, G.: A new method for technology valuation in monetary value:
procedure and application. In: Technovation (2004)

9. Barney, S., Aurum, A., Wohlin, C.: A product management challenge: Creating
software product value through requirements selection. Journal of Systems Archi-
tecture (2008)

10. Rönkkö, M., Frühwirth, C., Biffl, S.: Integrating value and utility concepts into a
value decomposition model for value-based software engineering. In: Bomarius, F.,
Oivo, M., Jaring, P., Abrahamsson, P. (eds.) PROFES 2009. LNBIP, vol. 32, pp.
362–374. Springer, Heidelberg (2009)

11. Bullock, J.: Calculating the value of testing: How to present testing as a business
process investment. Software Testing and Quality Engineering (2000)

12. Saaty, T.L., Vargas, L.G.: Models, methods, concepts and applications of the an-
alytic hierarchy process. Springer (2001)

Feature Value and Usage Correlation 177

13. Ahmad, A., Shahzad, A., Padmanabhuni, V.K., Mansoor, A., Joseph, S., Arshad,
Z.: Requirements prioritization with respect to Geographically Distributed Stake-
holders. In: Computer Science and Automation Engineering (2011)

14. Karlsson, L., Berander, P., Regnell, B., Wohlin, C.: Requirements prioritisation: an
experiment on exhaustive pair-wise comparisons versus planning game partitioning.
In: Empirical Assessment in Software Engineering (2004)

15. Ulaga, W., Chacour, S.: Measuring customer-perceived value in business markets: a
prerequisite for marketing strategy development and implementation. In: Industrial
Marketing Management (2001)

16. Greer, D., Ruhe, G.: Software release planning: An evolutionary and iterative ap-
proach. In: Information and Software Technology (2004)

17. Aurum, A., Wohlin, C.: Aligning requirements with business objectives: A frame-
work for requirements engineering decisions. In: Proceedings of Requirements En-
gineering Decision Support Workshop (2005)

18. Park, T., Kim, K.J.: Determination of an optimal set of design requirements using
house of quality. Journal of Operations Management (1998)

19. Woodruff, R.B.: Customer value: the next source for competitive advantage. Jour-
nal of the Academy of Marketing Science (1997)

20. Aurum, A., Wohlin, C.: A value-based approach in requirements engineering: Ex-
plaining some of the fundamental concepts. In: Sawyer, P., Heymans, P. (eds.)
REFSQ 2007. LNCS, vol. 4542, pp. 109–115. Springer, Heidelberg (2007)

21. Wohlin, C., Aurum, A.: What is important when deciding to include a software
requirement in a project or release? In: International Symposium on Empirical
Software Engineering (2005)

22. Wohlin, C., Aurum, A.: Criteria for selecting software requirements to create prod-
uct value: An industrial empirical study. In: Value-Based Software Engineering
(2006)

23. Kortge, G.D., Okonkwo, P.A.: Perceived value approach to pricing. In: Industrial
Marketing Management (1993)

24. Doll, W.J., Torkzadeh, G.: Developing a multidimensional measure of system-use
in an organizational context. Information and Management (1998)

25. Burton-Jones, A., Gallivan, M.J.: Toward a deeper understanding of system usage
in organizations: A multilevel perspective. Mis Quarterly (2007)

26. Sun, H.: Understanding User Revisions When Using Information System Features:
Adaptive System Use and Triggers. MIS Quarterly-Management Information Sys-
tems (2012)

27. OpenSpan Desktop Analytics, http://www.openspan.com/products/
desktop analytics (last visited on November 27, 2012)

28. Google Analytics, http://www.google.com/analytics (last visited on November
27, 2012)

29. Microsoft Spy++, http://msdn.microsoft.com/en-us/library/
aa232254v=vs.60.aspx (last visited on November 27, 2012)

30. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the users every move: user activity
tracking for website usability evaluation and implicit interaction. In: Proceedings
of the International Conference on World WideWeb (2006)

31. Eisenbarth, T., Koschke, R., Simon, D.: Locating Features in Source Code. IEEE
Computer (2003)

32. ISO/IEC TR 9126-4, Software engineering – Product quality – Part 4: Quality in
use metrics (2004)

33. Runeson, P., Host, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering (2009)

http://www.openspan.com/products/desktop_analytics
http://www.openspan.com/products/desktop_analytics
http://www.google.com/analytics
http://msdn.microsoft.com/en-us/library/aa232254v=vs.60.aspx
http://msdn.microsoft.com/en-us/library/aa232254v=vs.60.aspx

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 178–182, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Business Incubation Practices and Software
Start-up Success in Turkey

Gozem Guceri-Ucar and Stefan Koch

Department of Management, Bogazici University, 34342 Bebek, Istanbul, Turkey
gozem.guceri@gmail.com
stefan.koch@boun.edu.tr

Abstract. This study presents preliminary findings of a longitudinal qualitative
study concerning business incubators in Turkey, and their effectiveness in
enhancing the success and sustainability of new software ventures. A field
study was conducted to gain an in-depth understanding of incubation
experiences and software start-up success. Results were combined with
literature review findings to derive conclusions relating to software start-up
success and the value-adding contribution of business incubators in Turkey.

Keywords: Entrepreneurship, Business incubator, Start-up success, Software
business.

1 Introduction

The start-up period is when a business is most vulnerable [1], and many start-ups seek
funding as well as other resources during this time. Business incubators support firms
during this critical and risky timeframe, helping them survive and grow by providing
resources and facilities as well as guidance and consultancy.

This article presents first findings of a longitudinal qualitative study concerning
business incubators in Turkey, and their effectiveness in enhancing the success and
sustainability of new software ventures. Our aim is to explore the concept of business
incubation both in literature and in practice, and identify emergent constructs that may
relate to tenant success.

The initiation of the business incubation idea dates back to the 1950s, and today
the number of business incubators throughout the world is estimated to be between
4000 and 5000. In Turkey, this number is approximated around 40-50 [2], but it is
rapidly increasing.

Voisey et al. [3] define business incubation as both a place and a process –
simultaneously. It is a combination of business development processes, facilities and
people, uniquely combined to support and grow new ventures by supporting them
through the early stages of their foundation. Hackett and Dilts define an incubator as
“...a shared office-space facility that seeks to provide its incubatees with a strategic,
value-adding intervention system of monitoring and business assistance” [4, p. 57].

 Business Incubation Practices and Software Start-up Success in Turkey 179

While all business incubators share the common goal of nurturing newborn
companies, it is possible to further classify them according to: (i) main purpose of the
incubator, and (ii) funding scheme (sponsor) of the incubator [5].

Hackett and Dilts [4] observe that while much attention has been devoted to the
description of incubator facilities within past studies, less attention has been focused
on the tenants; what they are trying to achieve, what innovations they seek to develop
and diffuse. They also identify that there is a lack of studies concerned with the
incubation outcomes that have been achieved. We aim to fill these gaps by focusing
on the tenants, their experiences throughout the incubation process, and their lives
after graduation.

In order to determine whether a set of constructs relate to both start-up and
incubator success, one has to first set a solid definition of success and underlying
critical success factors (CSFs).

The definition of success depends heavily on the incubator’s purpose of
establishment. Knowing this purpose also enables us to identify CSFs to monitor
progress with respect to goals and objectives. Several CSFs have been mentioned in
literature, including flexibility to adjust to circumstances [6], strength and
organization of tenants’ planning activities [7,8,9], monitoring and continuous
feedback of incubator management [8,9], organizational learning [10], the
participation of financers in tenant capitalization [11], and proper assessment of
incubator-tenant fit [12]. Hackett and Dilts [4] summarize incubator variables
associated with incubatee success as follows: (i) incubatee selection processes, (ii)
internal incubator network formation, (iii) incubator-industry network and incubator-
support services network density, (iv) incubator manager-tenant relationships, (v)
incubator effectiveness, (vi) level of incubator development, (vii) procedural
standardization and policy formalization.

2 Exploring Business Incubation and Software Start-up
Success: A Field Study

Our participants included owners and managers of 12 start-ups, each positioned in one
of the 5 business incubators listed in Table 1. 9 of the 12 incubator tenants were
developing software as their core business for different industries including software
as a service in telecommunications (4), sports analytics (1), health services (1), and
information technologies (3). Among the remaining companies, 2 were developing
electronic equipment and 1 was a textile and accessories e-commerce business. Table
1 summarizes information regarding the incubators in which our participants’
companies are currently located. We also interviewed 3 software companies that had
chosen not to start their business in an incubator.

Our study consisted of semi-structured interviews that lasted 45-60 minutes. 9
incubator tenants were still in incubation at the time of their interviews, while 3 had
graduated, and 1 of these was no longer in operation. The oldest among the 15

180 G. Guceri-Ucar and S. Koch

Table 1. Incubators included in the field study

CPI: Corporate Private Incubator – BIC: Business Innovation Center – UBI: University Business Incubator

* Abbreviation for Istanbul Technical University
** Approximate number as of July 2012

companies was founded in 2008, while the youngest 2 were founded in August and
September 2012. Interviews were also held with managers of 3 of the incubators
involved, and some follow-up information was requested from both incubator
management and incubatees on how they plan, monitor and document their progress.

The definition of incubator success depends on the purpose of the business
incubator, while tenant success is defined by the purpose and objectives of each
company. When asked their primary objectives and definition of tenant success, the
managers of 3 incubators responded as shown in Table 2 below:

Table 2. Incubators’ primary objectives and definitions of tenant success

The items used by interview participants in defining pre-graduation success, and

the CSFs associated with each item have been tabulated below in Table 3:

Table 3. Success definitions and related critical success factors of interviewed firms

Incubator Type Incubator location Age
of
tenants

of tenants
interviewed

Management
interview

Turk Telekom CPI
Company R&D center in
ITU technology park < 1 year 2 2 Yes

AveaLabs CPI Company R&D headquarters 2 years 5 2 Yes
KOSGEB
Bogazici
TEKMER BIC

Technology park on Bogazici
University campus

>10 years 23 5 No

BU Hayat Et UBI Bogazici University campus < 1 year 4 1 Yes
ITU ARI
Cekirdek UBI

Technology park on ITU*
campus

>10 years 29** 2 No

Incubator Primary Objective Secondary Objective Definition of tenant success
Turk Telekom Contribute to the economy

by supporting young firms
Strengthen university
partnerships, support
corporate image

Tenant survival until graduation

AveaLabs Create potential suppliers
for Avea and its group
companies

Technology transfer,
spin-offs

Creation of marketable and value-
generating products by graduation

BU Hayat Et Contribute to the economy
by supporting young firms

Innovation and
technology transfer

Tenant survival until graduation,
creation of marketable products by
graduation

Success Categories

Product /service
development Cash flow Clients &

Networking
Strategic
Partnerships

Human
capital

International-
ization

 Funding Sales

C
ri

ti
ca

l S
uc

ce
ss

F

ac
to

rs

Product
development

Additional
government
funding

Sales
opportunities
for demo
versions

Gaining
access to
clients

Synergy with
other start-ups
in the same
facility

Employee
growth

Oversees
subsidiary
initiative

Product
commercialization

Sponsors
and venture
capital

Sales of
secondary
products or
services

Creating a
client
network

Development
of a supplier
network

Employee
competence
level

International
clients

Alignment of
business plan and
development plan

Bank loans Sales of
commercial
product

Client
feedback

Partner
feedback

Employee
competence
development
/ training

Representation
in international
industry events

 Business Incubation Practices and Software Start-up Success in Turkey 181

The success categories listed in Table 3 were determined by consolidating success
definitions provided in literature and the success indicators identified by the start-ups
within their business plans, which were prepared and submitted during the incubator’s
tenant application process. We also asked the same questions to the companies which
had not benefited from incubation. Their goals for the initial 2 years of their company
were similar to those tabulated above, and did not include any additional items. There
was also no difference between the pre-graduation goals and CSFs of companies
specializing in software and other areas.

The categories in Table 4 were derived from literature and cross-checked with the
classifications used by incubator managers during our interviews.

Table 4. Factors that contribute to tenant success

3 Conclusions and Future Research

The following propositions were derived regarding how business incubator practices
may contribute to tenant success:

(a) Location of the incubator will contribute to tenant success if it is in close
proximity to an institution conducting innovative research in a similar area, if it
provides locational advantage in terms of access to target customers, or if it
provides ease of access to qualified employees.

(b) An open office structure will contribute to tenant success by enabling
networking among tenants and creating opportunities for strategic partnerships.

(c) Quality of the work environment provided by the incubator will enhance
tenants’ efficiency in product development, and contribute to human capital by
increasing employee motivation.

(d) Quality and scope of services offered by the incubator will contribute to
tenants’ cash flow management and networking activities, development and
refinement of their business plan, and the development of their human capital.

(e) The criteria for tenant selection and assessment of incubator-tenant fit will
affect multiple dimensions of tenant success, such as product development,
networking with potential clients and partners, and funding.

(f) Mentorship provided by incubator management will contribute to tenants’
planning, networking, and cash flow management.

(g) The age of the incubator and the experience level of incubator management
will affect multiple dimensions of tenant success, such as networking with
potential clients and partners, cash flow, and human capital.

Facilities Services Management
Location (proximity to university, technopark,
target market, access to qualified workforce)

Open/closed office

Work environment (workspaces, meeting
rooms, etc)

182 G. Guceri-Ucar and S. Koch

We will continue with a follow-up study aiming to triangulate our findings. The
categories and items within Tables 3 and 4 will be tested through surveys and factor
analyses of the results. A complete list of variables and hypothesized relationships
will be constructed, following the reliability and validity checks on the identified
categories and variables. Surveys will be sent to tenants and graduates of technology
incubators in Turkey at different points in time, in order to test the hypotheses through
multivariate analysis methods.

References

1. Aernoudt, R.: Incubators: Tool for Entrepreneurship? Small Bus. Econ. 23, 127–135
(2004)

2. Bayhan, D., Ozdemir, A.H.: Technology Based Entrepreneurship and Incubation in
Turkey. In: Models for National Technology and Innovation Capacity Development in
Turkey, pp. 251–310. Technology Development Foundation of Turkey (TTGV), Ankara
(2009)

3. Voisey, P., Gornall, L., Jones, P., Thomas, B.: The measurement of success in a business
incubation project. Small Bus. Enterprise Dev. 13, 454–468 (2006)

4. Hackett, S.M., Dilts, D.M.: A Systematic Review of Business Incubation Research.
Technol. Transfer 29, 55–82 (2004)

5. Akcomak, S.: Incubators as tool for entrepreneurship promotion in developing countries.
In: Naude, W., Szirmai, E., Goedhuys, M. (eds.) Entrepreneurship, Innovation and
Economic Development, pp. 228–264. Oxford University Press, Oxford (2011)

6. Scherer, A., McDonald, D.W.: A model for the development of small high-technology
businesses based on case studies from an incubator. Prod. Innovat. Manag. 5, 282–295
(1988)

7. Rothaermel, F.T., Thursby, M.: Incubator firm failure or graduation? The role of university
linkages. Res. Policy 34, 1076–1090 (2005)

8. Stuart, R., Abetti, P.A.: Start-up ventures: towards the prediction of initial success. Bus.
Venturing 2, 215–230 (1987)

9. Fry, F.L.: The role of incubators in small business planning. Am. J. Small Bus. 12, 51–61
(1987)

10. Allen, D.N., McCluskey, R.: Structure, Policy Services and Performance in Business
Incubator Industry. Entrep. Theory Pract. 15, 61–77 (1990)

11. Campbell, C., Allen, D.N.: The Small Business Incubator Industry: Micro-level Economic
Development. Econ. Dev. Q. 1, 178–191 (1987)

12. Rice, M.P.: Co-Production of Business Assistance in Business Incubators: An Exploratory
Study. Bus. Venturing 17, 163–187 (2002)

Ecosystem Health of Cloud PaaS Providers

Garm Lucassen, Kevin van Rooij, and Slinger Jansen

Department of Information and Computing Sciences, Utrecht University,
Princetonplein 5, 3584 CC Utrecht The Netherlands

{g.g.lucassen,k.a.vanrooij}@students.uu.nl, slinger.jansen@uu.nl

Abstract. Customers of Platform as a Service providers are unable to
evaluate the risk of their provider going bankrupt. Lacking this informa-
tion, businesses are effectively putting their critical business services in
jeopardy. In this paper, we present a method to evaluate the ecosystem
health of eight different PaaS providers. The results of our research en-
able businesses and individuals to make an informed decision on what
PaaS providers to do business with. Additionally, the PaaS providers
themselves are given insight into the current state of their ecosystem
compared to competitors.

Keywords: Software Ecosystems, Cloud PaaS, Ecosystem Health,
Open Source, Repository Mining, Platform as a Service.

1 Introduction

Since 2009, academic and business interest in the Platform as a Service (PaaS)
industry has grown exponentially. Yearly Google Scholar hits for the keyword
”Platform as a Service” has grown from 83 in 2008 to 3320 in 2012.1 Gartner
expects enterprise public cloud services spending to reach $207 billion by 2016 [1].
Due to this surge in attention, the United States National Institute of Standards
and Technology added a definition of PaaS in 2011:

”The capability provided to the consumer is to deploy onto the cloud
infrastructure consumer-created or acquired applications created using
programming languages, libraries, services, and tools supported by the
provider. The consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems, or storage,
but has control over the deployed applications and possibly configuration
settings for the application-hosting environment.” [2]

Concretely put, PaaS providers host virtual systems that run application stacks
facilitating easy deployment of a web-enabled program in a specific programming
language, significantly reducing development time and effort for the customer.
Key advantages include: dramatically lowering the cost of entry, almost imme-
diate access to hardware resources, lowering IT barriers to innovation, flexibly

1 http://scholar.google.com/scholar?q="platform+as+a+service"

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 183–194, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://scholar.google.com/scholar?q="platform+as+a+service"

184 G. Lucassen, K. van Rooij, and S. Jansen

scalable services to meet client demand and enabling new classes of applications
and services [3]. Despite this explosive growth in both academic and business rel-
evance, no publicly accessible information is available on the ecosystems health
of public cloud PaaS providers. Ecosystem health is defined as ”long-term fi-
nancial well-being of the business ecosystem and the long-term strength of the
network” [4]. Access to knowledge regarding ecosystem health is crucial for busi-
nesses researching the possibility to move their software to the cloud for two
reasons [5]. To begin, businesses attempt to seek partners with a robust business
ecosystem [6]. Second, the availability of their critical business applications re-
lies on the robustness of their PaaS Provider. Unexpected bankruptcy of a PaaS
provider can lead to loss of data or catastrophic downtime. Indications of these
kinds of developments are preferably known beforehand.

Because PaaS providers are primarily software businesses, this paper leverages
knowledge on the academic field of software ecosystems to study their ecosystem
health. Several authors have defined the term software ecosystem [7,8], but this
research applies the following definition by Jansen et al., as it builds upon earlier
definitions and further abstracts the concept [9]: ”a set of actors functioning as a
unit and interacting with a shared market for software and services, together with
the relationships among them. These relationships are frequently underpinned by
a common technological platform or market and operate through the exchange of
information, resources and artifacts.” A high profile example of a strong software
ecosystem is iOS. Apple benefits from the popular App Store, due to which the
iOS ecosystem remains the market leader in terms of app availability, app sales
and profit margins [10].

In the context of PaaS ecosystem health, the contributors to the long-term
strength of the ecosystem are the direct users of the PaaS technology: developers.
If a group of developers is actively contributing to the development of PaaS or
its extensions, the PaaS itself is more likely to succeed in the long run. This
paper uses data of the open source code hosting service GitHub to analyze
the ecosystem health of eight different PaaS providers. First, metadata of all
software projects or repositories that contribute to the ecosystems of each PaaS
providers is collected. Next, specific data fields are aggragated into ecosystem
health results based on open source ecosystem health measures introduced by
Crowston et al. [11]. Finally, statistical analysis extracts relevant insights on the
current growth expectations of a PaaS and expected health of their ecosystem.

With the results of our research, businesses will be able tomake amore informed
decision in choosing a cloud hosting PaaS provider. Moreover, the PaaS providers
are presented with a method to gain insight into the state of their ecosystem. This
can help them achieve their goals, make better use of available resources, reduce
risks, increase revenues [12] and/or compare their business to competitors.

The next section details the research approach. Subsequently, section 3 expli-
cates the data collection methods, while section 4 introduces all indicators which
we use to extract insights from the collected data. Section 5 and 6 present and
analyze the results themselves. These findings are discussed in section 7. The
paper finishes with a conclusion and future research possibilities in section 8.

Ecosystem Health of Cloud PaaS Providers 185

2 Research Approach

The PaaS providers included in this research are: Azure, Cloud Foundry, dot-
Cloud, Engine Yard, Google App Engine, Heroku, Nodejitsu and OpenShift.
This list was created based on two criteria: (1) The PaaS should support easy
deployment with one or more development frameworks such as PHP, .Net or
Ruby. (2) The solution has to be mature and actively used. PaaS providers that
adhere to this criterion have public customers and their share of PaaS modules
on the Open Source code hosting service is larger than 1% of all repositories.
Four PaaS that meet the first, but not the second criterion are omitted from this
research: AppHarbor, AppFog, Amazon Elastic Beanstalk and Nodester.

Relevant comparative measures are necessary to evaluate the health of a PaaS
ecosystem. In 2006, a multitude of indicators were collected by Crowston et al. to
measure the health of open source ecosystems [11]. We consider four indicators
from this research based on three earlier publications [13,14,15] to be appropriate
in the context of PaaS ecosystem health:

1. Number of active developers
2. Spin offs
3. Interest in the project
4. Download count

Due to the focus on open source development of large projects, the other indica-
tors collected by Crowston et al. are unsuitable in the context of PaaS or require
unobtainable data. For example, the perceived ease of use is not applicable to
projects that require integration with another piece of software and code quality
can not be measured for ten-thousands of projects accross more than a hundred
programming languages. Instead, the selected indicators measure interest in the
PaaS Providers of their users, the developers. If developers create applications
for a PaaS, its ecosystem will flourish. On the other hand, if developers are not
interested in developing for that platform, this indicates that the ecosystem is
unhealthy. This paper is based on the assumption that developer interest has a
direct correlation to the customer size of the PaaS provider and subsequently
the long term health of the ecosystem that belongs to it.

Data was collected from GitHub with a Ruby program developed by the au-
thors of this research paper. Once collected, the data was prepared for analysis
by validating completeness, correcting errors and redundancy, transforming to a
uniform format and storing it in a database. Statistical analysis was subsequently
conducted with the R programming language for statistical computing2. Alter-
native open source code hosting services to GitHub with a publicly accessible
API such as Bitbucket, Tigris and Launchpad were excluded. These alternatives
host orders of magnitude less repositories than GitHub and their data is less
clean. A manual search for the largest PaaS, Heroku, returned 30,748 results
on GitHub, compared to at most 247 repositories at the alternatives. More-
over, their databases contain many redundant records and significantly less rich
metadata.
2 http://www.r-project.org/

http://www.r-project.org/

186 G. Lucassen, K. van Rooij, and S. Jansen

3 Data Gathering

Multiple methods to extract data from GitHub are available, including the of-
ficial API or screen scraping. For this research, a small Ruby application lever-
aging the octokit gem3 was written that conducts repository searches through
keywords of PaaS provider names. Because developers use a multitude of dif-
ferent names to refer to the same PaaS, multiple searches with variations of
each name were conducted. For instance, while Heroku only requires ’Heroku’,
Google App Engine has repositories with names as: ’GAE’, ’GoogleAppEngine’,
’Google App Engine’ or just ’App Engine’. Additionally, GitHub hides private
repositories from search results, restricting data collection to public repositories.
The data collection code can be found on GitHub4. All data was collected on
January 4, 2013.

3.1 Key Data Elements

The Ruby application collects the following data elements for every repository:

1. Created at date
2. Description
3. Number of followers
4. Fork boolean
5. Number of forks
6. Programming Language

7. Name of repository
8. Owner
9. Private boolean
10. Push date (latest update)
11. Size
12. Type

Unfortunately, users are unable to retrieve the number of downloads of a repos-
itory with the API due to technical limitations5. On top of that, GitHub does
not display any download count data on the website, ruling out the possibility
of screen scraping. As a result, it is impossible to assess PaaS ecosystem health
with the download count indicator of Crowston et al [11].

3.2 Data Preparation

Some repositories contain two or more different keywords referring to a single
PaaS in their description or name fields. As a result, multiple returned results
of the same repository for different keywords create redundant records in our
data set. On the other hand, 574 repositories support multiple PaaS platforms,
necessitating some redundant records. For example, if a repository supports both
Heroku and Google App Engine a second entry of the record is appropriate.
Instead of leveraging the unique GitHub id assigned to every repository, a unique
primary key was composed by combining the PaaS platform keyword, username
of the repository owner and the repository name itself. GitHub enforces a strict

3 http://rubygems.org/gems/octokit
4 http://github.org/gglucass/seco
5 http://stackoverflow.com/questions/6198194/

how-to-see-count-of-project-downloads-on-github

http://rubygems.org/gems/octokit
http://github.org/gglucass/seco
http://stackoverflow.com/questions/6198194/how-to-see-count-of-project-downloads-on-github
http://stackoverflow.com/questions/6198194/how-to-see-count-of-project-downloads-on-github

Ecosystem Health of Cloud PaaS Providers 187

unique naming protocol which ensures that no false duplication positives are
raised. Next, we removed all repositories with a size of 0 from the data set. We
consider these repositories as false positives because they are empty and thus do
not indicate a concretized developer interest.

Finally, a 1% sample of all repositories was used to determine the amount of
remaining false positives in the data-set. In this sample, a repository is consid-
ered a false positive when the project itself is not directly related to that specific
PaaS. Examples are repositories that mention the PaaS, but in a different con-
text, e.g. ’this repository provides an alternative to PaaS X’. The sample was
gathered by performing a SQL query on the data-set which randomly selected
1% of all repositories. All repositories from this sample were subsequently man-
ually verified. Although a random sample has its limitations, the sample gives
an overall indication for the total data-set. We believe that this sample is rep-
resentative for the total data-set and therefore should be taken in consideration
when reviewing our results.

The sample resulted in 29 (5.8%) false positives, of which the majority are
from Google App Engine (13) and Heroku (9). CloudFoundry, dotCloud and
Nodejitsu had no false positives. However, due to their smaller sample size a
smaller number of false positives is expected. These results do not indicate that
repositories of these PaaS providers are free of false positives. Based on the
low percentage of false positives found in the sample, we are confident that
the collected data-set provides an accurate representation of the contemporary
ecosystems of the selected PaaS providers.

4 Indicators

This section explicates three indicators and what types of sub-indicators each is
comprised of. Each sub-indicator is accompanied by a short explanation of how
it is calculated.

4.1 Active Developers

Because the development of a project first and foremost relies on voluntary
contributions of developers, Crowston et al. state that one indicator of success
is the absolute number of developers involved in an open source project [11]. By
looking at the number of active developers in the past year as well as per week,
a more balanced representation is generated.

Active Developers in the Past Year. The total number of active developers
developing on top of a PaaS provides a direct measure of developer interest
in the past year. Crowston et al. propose to measure this by collecting the
number of developers who are formally associated with a project. To adhere to
this requirement, we calculate this measure as the sum of all unique owners of
repositories updated in the past year.

188 G. Lucassen, K. van Rooij, and S. Jansen

Active Developers of Unique Repositories in the Past Year. Not all
repositories are created equal. Many are copies of original projects or slight
derivates. This sub-indicator only takes into account non-fork repositories, i.e.
unique projects that were started from scratch instead of based on another
project. Likewise, this sub-indicator is calculated as the sum of all unique owners
of unique repositories updated in the past year.

Active Developers Per Segment of Time. The week to week variety in
number of actively contributing developers measures group activity in time be-
tween releases or cycle time [11]. For each week in the past year, the sum of
all unique owners of repositories is calculated. These numbers are subsequently
divided by the total number of developers in the past year and in turn presented
in a line-graph. With this graph, the relative weekly activity of developers for
the PaaS is visualized.

4.2 Spin Offs

Crowston et al. mention spin offs as an element of recognition, which in turn
is a measure for project success [11]. A spin off is a derivative of a previous
projects or a new project entirely. In the context of this research, the two simplest
measures of spin offs are the number of forks (derivative of previous project) and
projects (repositories). However, on GitHub a fork is also considered a repository.
To not let this skew the results, a separate sub-indicator representing the number
of repositories which are not forks is included.

TotalRepositories. Repositories are a direct indicator of the number of spin offs
for a PaaS.The total number of repositorieswhich contain the PaaS keyword is the
most basic method to measure the contribution of spin offs to project success.

Unique Repositories. Popular repositories on GitHub have many forks, which
are often direct copies of the original repository. Multi-platform repositories that
are exceptionally popular increase the total number of repositories for all PaaS
providers, although one or more of these might not be that popular at all. To
discount this phenomenon, this sub-indicator is calculated as the total number
of original repositories.

Forks. In theory, total repositories includes forks, but in practice this data is
incomplete because of two factors. First, GitHub provides private repositories
to premium members; effectively shielding us from accessing that data. Second,
some repositories are forked but deleted sometime later. Luckily, for each repos-
itory GitHub counts the number of forks made regardless of these restrictions.
For each PaaS the sum of all forks is taken to include potentially lost data.

4.3 Interest

General interest in a project is different from the first two indicators, which
are focused on the quantity of developers and spin-offs. Instead, this indicator

Ecosystem Health of Cloud PaaS Providers 189

focuses on level of activity. Crowston et al. recommend to examine development
logs for evidence of software being written and released. In absence of this data,
we measure interest as the combination of passive interest, interest longevity,
number of unique programming languages and multi-platform projects.

Total Number of Followers. Followers are GitHub members who have starred
a repository, a mechanism that is used to be kept up-to-date with changes.
A follower does not actively contribute to development. Thus a follower is an
indicator of passive interest in the project. Calculated as the sum of all follower
counts for each repository of a PaaS.

Number of Unique Programming Languages. The diversity of program-
ming languages that are used to develop for a PaaS indicate how broad of an
interest there is in leveraging the strength of that PaaS. The metric is the total
number of unique languages used for each PaaS.

Number of Multi-platform Repositories the PaaS is a Part of. Some
popular repositories support more than one PaaS. Counting all repository name
+ owner combinations which also occur for other PaaS providers measures the
interest of high profile development projects.

Number of Repositories Updated at Least Once. Many repositories and
forks of repositories are created but never updated. Counting the number of
repositories that are updated at least once after creation provides an indication
of the interest longevity of developers in the PaaS.

Created at Date Smaller Than Push Date / Created at Date > = Than
Push Date. Many repositories are forked or created and subsequently never
updated, effectively rendering these projects as dead. Calculating the proportion
of these repositories in relation to repositories that are updated, indicates the
longevity of developer interest in developing on top of a PaaS. This ratio is cal-
culated by dividing the number of repositories that were updated after creation
by the number of repositories that have the same updated as created date.

5 Results

The data collection program yielded a dataset of 55,927 repositories, 35% (19,859)
of these are unique repositories, i.e. repositories that are not forked from another
repository on GitHub. In total, 50,057 forks were made, of which 85% are forked
fromaunique repository. In the last year 24,987developers have contributed to any
of these repositories.The averagePaaSprovider has 6991 repositories, 2482 unique
repositories and4945developers.Onaverage, a repositoryhas 0.895forks and4.579
followers. Table 1 summarizes these findings. Only taking in account unique repos-
itories, these numbers more than double to 2.16 forks and 10.8 followers. Compare
this to the numbers of strictly forked repositories,which on average has 0.1983forks

190 G. Lucassen, K. van Rooij, and S. Jansen

Table 1. Descriptive statistics

Number of ... Minimum Median Mean Maximum

Repositories per PaaS 924 2785 6991 29,980
Unique repositories per PaaS 318 720.5 2482 10,400
Developers per PaaS 618 1948 4945 20,320
Forks of repositories 0 0 0.895 1212
Followers per repository 0 1 4.579 7567

and 1.154 followers. The difference in popularity is close to a factor of ten for both
values, indicating that a spin-off of a project rarely is an interesting new project
itself. Instead, most forks are likely duplicates of the original project, which devel-
opers further develop to contribute to the expansion of that project.

5.1 Indicator Results

The raw results of the indicators presented in section 2 are presented in Table 2
and Figure 1. Aside from the updated vs. non-updated repository, all metrics con-
firm the expectation that Heroku and dotCloud are the most and least popular
PaaS providers, respectively. Furthermore, the total number of forks exceeded
the number of repositories minus the number of unique repositories for every
single PaaS. This validates our expectation that data is lost due to private and
deleted repositories, as well as the necessity of inclusion of this sub-indicator.
The next section further analyzes these results.

Table 2. Indicator results

a b c d e f g h i j

Azure 2298 681 3607 1251 4187 19,455 29 1327 27 0.65
CloudFoundry 1244 316 2857 684 2762 11,820 18 1410 54 0.55
dotCloud 496 193 924 418 839 6175 12 328 44 0.69
Engine Yard 1124 193 2713 320 2141 10,805 13 1079 44 0.56
Google App Engine 4660 2243 12,319 5709 7538 39,967 32 4594 87 0.70
Heroku 15,384 5633 29,982 10,402 29,137 148,766 38 10619 228 0.62
Nodejitsu 957 214 1446 318 1596 12,766 7 601 38 0.5
OpenShift 1327 498 2079 757 1857 6361 18 742 51 0.72

Legenda

a Active developers in the past year f Followers
b Active developers of unique repos g Unique programming languages
c Number of repositories h Repositories updated at least once
d Number of unique repositories i Multi-platform repositories
e Number of forks j Updated vs. Non-updated ratio

Ecosystem Health of Cloud PaaS Providers 191

●

● ● ●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

1 4 7 10 14 18 22 26 30 34 38 42 46 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Week

A
zu

re
 d

ev
el

op
er

s
re

la
tiv

e
to

 to
ta

l l
as

t y
ea

r

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 4 7 10 14 18 22 26 30 34 38 42 46 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Week

C
lo

ud
 F

ou
nd

ry
 d

ev
el

op
er

s
re

la
tiv

e
to

 to
ta

l l
as

t y
ea

r

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

1 4 7 10 14 18 22 26 30 34 38 42 46 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Week

do
tC

lo
ud

 d
ev

el
op

er
s

re
la

tiv
e

to
 to

ta
l l

as
t y

ea
r

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

● ●

●

●

●

●

●

● ● ●

1 4 7 10 14 18 22 26 30 34 38 42 46 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Week

E
ng

in
e

Ya
rd

 d
ev

el
op

er
s

re
la

tiv
e

to
 to

ta
l l

as
t y

ea
r

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

● ●
●

●
● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

1 4 7 10 14 18 22 26 30 34 38 42 46 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Week

G
oo

gl
e

A
pp

 E
ng

in
e

de
ve

lo
pe

rs
 r

el
at

iv
e

to
 to

ta
l l

as
t y

ea
r

●
● ●

●
●

● ●
●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●
●

●
●

●
●

●

● ● ●
●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

1 4 7 10 14 18 22 26 30 34 38 42 46 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Week

H
er

ok
u

de
ve

lo
pe

rs
 r

el
at

iv
e

to
 to

ta
l l

as
t y

ea
r

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ● ●
●

●

●

● ●

●

●

● ●

●

●

●

●

1 4 7 10 14 18 22 26 30 34 38 42 46 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Week

N
od

ej
its

u
de

ve
lo

pe
rs

 r
el

at
iv

e
to

 to
ta

l l
as

t y
ea

r

●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

1 4 7 10 14 18 22 26 30 34 38 42 46 50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Week

O
pe

nS
hi

ft
de

ve
lo

pe
rs

 r
el

at
iv

e
to

 to
ta

l l
as

t y
ea

r

Fig. 1. Graphs displaying relative number of active developers per week

192 G. Lucassen, K. van Rooij, and S. Jansen

6 Analysis

In this section, the results are further analyzed by looking at the distribution of
all indicator metrics and of actively contributing developers in the past year.
Table 2 demonstrates Heroku its dominance in the PaaS industry, with the
best results for 9 out of 10 sub-indicators. Google App Engine and Azure are
in similar comfortable positions, with second place for all sub-indicators and
third place for 8 out of 10 sub-indicators, respectively. Although it should be
noted that Heroku accounts for more than half of all results for 7 out of 10
sub-indicators. Furthermore, development for Azure includes the least amount
of unique programming languages. dotCloud and Nodejitsu are at the bottom
of the results, together they have collected the bottom scores for all but one
indicator. Moreover, the scores of Heroku are more than 20 times as high for
each indicator. The results of the remaining three PaaS providers; CloudFoundry,
Engine yard and OpenShift, contain some intriguing patterns relative to one
another. CloudFoundry strictly has first and close second positions. Engine Yard
is a close second for half of the indicators and the overwhelming third for the
other half. OpenShift has a mix of all three places. However, its low scores for
f (number of followers) and h (repositories updated at least once) are higher
than both CloudFoundry and Engine yard relative to the number of repositories
these metrics are derived from. This is further confirmed by OpenShift having
the highest score for indicator j, updated vs. non-updated ratio.

Based on metric a, Figure 1 was created. For each PaaS, it displays the relative
number of active developers in a weekly period compared to the total number of
active developers in the past year. The general trend of the industry is positive.
Developers of most PaaS providers have created or updated more repositories
in recent weeks than in weeks at the start of the year. OpenShift in particular
has a steep graph upwards throughout the year, with just one third (34.29%)
of developers in the first half of 2012. However, Google App Engine and Engine
Yard display a negative pattern. More than a quarter (26.37%) of Google App
Engine developers have not updated their repository since the first quarter of
2012. Engine Yard is in a similar position, with the majority of their developers
(52.04%) in the first six months of 2012.

7 Discussion of PaaS Ecosystem Health

The analysis of all indicators introduced Heroku as the dominant, leading PaaS.
The scores of the runner-up PaaS, Google App Engine, further confirms this
dominance. Only two sub-indicators exceed half the scores of Heroku.

The passive interest shown by the number of followers is four times greater
for Heroku than the passive interest of Google App Engine and an order of mag-
nitude greater than all the others. This indicates that interest in Heroku is not
limited to active developers, but includes a large number of passive GitHub users
that are interested in the progress of these projects. Based on these observations,
we expect Heroku to maintain its dominance in the coming years.

Ecosystem Health of Cloud PaaS Providers 193

However, absolute size is not an indicator of a great ecosystem per se. Open-
Shift its good performance on indicators a, i and j illustrates this. OpenShift has
results close to Azure for many indicators, even though Azure boasts a larger
customer-base and a three times as large community. Moreover, the active devel-
opers for OpenShift in the past shows the most promising slope of all providers,
indicating a good position to grow in the PaaS industry in the future. An expla-
nation for this growth in success is that Openshift is a subsidiary of Red Hat,
which has a large existing customer base and a devoted community.

The general positive distribution of active developers per week implies positive
future growth expectations for the PaaS industry as a whole. However, the shift
in the graphs of Google App Engine and Engine Yard indicates that developers
may already be abandoning these PaaS providers, resulting in a future with a
compounding loss of developers and ultimately end of business.

Do these results commend or discourage doing business with certain PaaS
providers? Assumptions need to keep the origin of the data in mind. Data col-
lected from GitHub might not be representative for commercial private cloud
providers, e.g. Azure, as those developers are more inclined to use proprietary so-
lutions or private repositories to collaborate. Furthermore, should PaaS providers
with negative indicators be neglected? Although e.g. Engine Yard scored low,
they reported revenues of 28$ million in 2011. This shows an obvious mar-
ket interest and a potential for healthy future growth. However, business as-
pects as revenues or customer size are not publicly available or verifiable for
the majority of PaaS providers. As a consequence, we are unable to evalu-
ate the long-term financial well-being of the business ecosystem and are re-
stricted to the long-term strength aspect of the ecosystem health definition on
page 184.

8 Conclusion and Future Work

This exploratory research provides businesses with a method to evaluate PaaS
providers. The current ecosystem health is skewed to two major players, with
Heroku far ahead. If OpenShift can maintain its growing trend, this will change in
the future. The PaaS industry is still young, new businesses will enter the market
and others will exit. Additionally, PaaS providers can evaluate the current state
of their ecosystem and adjust their corporate strategy accordingly.

Future research could validate our method by confirming whether weak PaaS
providers went out of business or by applying this model to other players. To
assist academics and businesses in this process, we provide the data extraction
methods and analysis code on GitHub. Furthermore, retrospective studies with
a broad scope can document the developments within the PaaS industry as a
whole.

194 G. Lucassen, K. van Rooij, and S. Jansen

References

1. Gartner Says Worldwide IT Spending On Pace to Surpass 3.6 Trillion in (2012),
http://www.gartner.com/it/page.jsp?id=2074815

2. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (draft). NIST
Special Publication 800-145 (2011)

3. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud Computing,
The Business Perspective. Decision Support Systems 51, 176–189 (2001)

4. Hartigh, E., Tol, M., Visscher, W.: The Health Measurement of a Business Ecosys-
tem. In: Proceedings of the European Network on Chaos and Complexity Research
and Management Practice Meeting (2006)

5. van de Zande, T., Jansen, S.: Business Continuity Solutions for SaaS Customers.
In: Regnell, B., van de Weerd, I., De Troyer, O. (eds.) ICSOB 2011. LNBIP, vol. 80,
pp. 17–31. Springer, Heidelberg (2011)

6. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Business Review 82(3), 68–81
(2004)

7. Kittlaus, H.B., Clough, P.N.: Software Product Management and Pricing: Key
Success Factors for Software Organizations. Springer, New York (2009)

8. Bosch, J.: From Software Product Lines to Software Ecosystems. In: Proceedings
of the 13th International Software Product Line Conference, pp. 111–119. ACM,
New York (2009)

9. Jansen, S., Finkelstein, A., Brinkkemper, S.: A Sense of Community: A Research
Agenda for Software Ecosystems. In: 31st International Conference on Software
Engineering, New and Emerging Research Track, pp. 187–190. IEEE Press, New
York (2009)

10. Spriensma, G.J.: 2012 Year in Review, http://www.distimo.com/publications/
archive/Distimo%20Publication%20-%20Full%20Year%202012.pdf

11. Crowston, K., Howison, J., Annabi, H.: Information systems success in free and
open source software development: Theory and measures. Software Process: Im-
provement and Practice 11(2), 123–148 (2006)

12. Baars, A., Jansen, S.: A Framework for Software Ecosystem Governance. In:
Cusumano, M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114,
pp. 168–180. Springer, Heidelberg (2012)

13. Stewart, K.J., Gosain, S.: The impact of ideology on effectiveness in open source
software development teams. MIS Quarterly 30(2), 291–314 (2006)

14. Krishnamurthy, S.: Cave or community? An empirical examination of 100 mature
open source projects. First Monday 7(6) (2002), http://firstmonday.org/
htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1477/1392

15. Crowston, K., Annabi, H., Howison, J., Masango, C.: Effective work practices for
software engineering: free/libre open source software development. In: Proceedings
of the 2004 ACM Workshop on Interdisciplinary Software Engineering Research,
pp. 18–26. ACM Press, New York (2004)

http://www.gartner.com/it/page.jsp?id=2074815
http://www.distimo.com/publications/archive/Distimo%20Publication%20-%20Full%20Year%202012.pdf
http://www.distimo.com/publications/archive/Distimo%20Publication%20-%20Full%20Year%202012.pdf
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1477/1392
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/1477/1392

Defining App Stores: The Role of Curated

Marketplaces in Software Ecosystems

Slinger Jansen and Ewoud Bloemendal

Utrecht University
slinger@slingerjansen.nl,webloem@gmail.com

Abstract. The app store is a novel concept in the software business,
that has changed the way in which customers perceive software and its
day-to-day use. The concept, however, is poorly understood, which can
be observed by lack of a comprehensive definition and relatively little
literature on the topic. This paper provides a definition of app stores,
provides a conceptual model of the concept, and supplies typical features
and policies that are observed in app stores, using six case studies. The
increased understanding that the research provides, aims to help prac-
titioners make their app store more successful and provides researchers
with a frame for defining and analyzing app stores.

Keywords: App stores, software ecosystems, comparative multiple case
study.

1 Introduction

The product software business is a fast changing business. One of the most pow-
erful changes that the software business currently is experiencing is the introduc-
tion of app stores, which are marketplaces for applications that are available for
instant download. App stores are influencing the industry in the following major
ways. First, people are becoming more aware of the software business: with so
much software available in everyone’s pocket, increasing numbers of people are
exposed to the app business. Furthermore, due to the low prices of apps in the
app store, business models are radically changing to constantly add value to the
product such as content, as to generate equal amounts of revenue from complex
software systems as was possible in the “old days” of license and maintenance
models. Thirdly, app stores appear to be the method of choice to build up a
healthy software ecosystem [10,8,6]. It is surprising that this topic has not re-
ceived more attention over the past years. In this paper we aim to fill that gap,
by providing an exhaustive overview of the features and policies that determine
the structure of an app store. Furthermore, we provide the following definition
of app stores.

App store: An online curated marketplace that allows developers to
sell and distribute their products to actors within one or more multi-
sided software platform ecosystems.

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 195–206, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

196 S. Jansen and E. Bloemendal

Jansen, Finkelstein, and Brinkkemper define a software ecosystem as a set of
businesses functioning as a unit and interacting with a shared market for software
and services, together with the relationships among them. These relationships
are frequently underpinned by a common technological platform or market and
operate through the exchange of information, resources and artifacts [9]. An
app store can be seen as a catalyst in such a software ecosystem. The services it
offers are part of the common platform of the ecosystem and it can have a pivotal
role in creating the common market. App stores allow developers to monetize
their software and bring consumers new functionality. A successful app store
is beneficial to the success of a software ecosystem which consequently can be
beneficial to the company that owns it, or according to a Deutsche Bank analyst,
Apple’s app store is the “the competitive moat which competing handset vendors
cannot replicate” [3].

The literature on app stores is limited, possibly due to the relative short
existence of the phenomenon. The most well-known app stores come from the
domain of mobile phone platforms, thus it is no surprise that these app stores
have received the most attention in literature. The success of Apple’s app store
has led to a fair amount of literature [2,10] specifically about the iOS ecosystem.
A broader perspective is given by Holzer and Ondrus [5] when they take a
developer view on the significant structural changes in the mobile application
market. They introduce eight propositions on how the mobile software market
changes for developers. Their first proposition is that portal centralization (their
way of describing the introduction of an app store) makes access to customers
easier. They also propose that portal centralization lowers distribution costs but
also limits the freedom of developers. With regard to mobile ecosystems based on
open technologies, they propose that open technology will lower the development
costs of applications and offer more job opportunities for developers. When app
stores choose to support a larger number of devices the authors propose that
this higher device variety increases freedom for developers but also increases
customization cost. Finally Holzer and Ondrus [5] propose that a fully integrated
platform facilitates the flow through the distribution process.

At the moment no literature on app stores has been found that combines a
broad software ecosystem scope with the perspective of an (aspiring) app store
owner and therefore this study will try to fit in this gap. The objective for this
study is help app store owners gain more insight in the app stores by creating an
app store definition and performing a multiple case study on app store features
and policies.

In order to provide more insight into app stores and their features and policies,
this paper uses the following structure. In Section 2 an app store definition is
introduced together with a conceptual model of an app store. In Section 3 the
case study method is explained, the cases are introduced, and we provide a brief
discussion on validity of the research. In Section 4 the models resulting from
the case studies are listed with a table of feature and policy descriptions. The
study concludes with the key findings, limitations and opportunities for further
research. The highlights of the research are the app store definition, the policies

Defining App Stores 197

and features, and the finding that most app store coordinators are aiming to
cover all features and policies instead of consciously deciding to leave out features
and policies.

2 Conceptual Model: Defining App Stores

We introduce the following definition of an app store: An online curated market-
place that allows developers to sell and distribute their products to actors within
one or more multi-sided software platform ecosystems.

The first element of the definition is online curated marketplace. A market-
place is a common word describing a location where goods and services are
exchanged. The adjective curated introduces the concept of a curating party
that organizes and selects the collection of apps in an app store, a task generally
performed by the owner. The word of this element was added to distinguish the
app store from a brick and mortar stores. Software ecosystems are part of the
definition to emphasize the relation between an app store and its ecosystem. It
the following part two groups of users are identified: software developers and
users of a software platform. The existence of these two groups are typical for
an app store and thus part of the definition. Using this definition, a list of re-
quirements is made to limit the scope of what is considered an app store in this
research. To be considered an app store a system should: (1) be available using
the internet, (2) be curated by an organization, typically but not necessarily the
platform owner, (3) allow for the selling and buying of software products, (4)
take care of the financial transactions involved in selling the software products,
(5) have two distinct user groups: developers and users, (6) be serving one or
more software ecosystem, and (7) implement a platform that takes care of the
distribution of the software products. Please note that an app store can apply to
one ecosystem, such as Google Play serving the Android ecosystem, or multiple
ecosystems, such as the BinPress app store, where code can be purchased for
multiple platforms and ecosystems.

App stores would not exist if it were not for platforms: a set of solutions to
problems that is made available to the members of the ecosystem through a
set of access point or interfaces [7]. Furthermore, Hagiu and Wright speak of
a multi-sided platform as being an organization that creates value primarily by
enabling direct interactions between two (or more) distinct types of affiliated cus-
tomers [4]. Three platform types are distinguished by Baldwin and Woodard [1]:
platforms in a firm as product lines, platforms across multiple firms as multi-
product systems, and platforms in the form of multi-sided markets. They argue
that a platform has a platform architecture and corresponding design rules that
governs the relations between components of the platform and allow them to
interoperate. According to the authors this architecture shows a fundamental
unity for each type of platform. They describe this unity in platform architec-
tures as “modularizations of complex systems in which certain components (the
platform itself) remain stable, while others (the complements) are encouraged
to vary in cross section or over time.”. According to Baldwin and Woodard, the

198 S. Jansen and E. Bloemendal

most stable element of a platform are the interfaces between the platform and
its complements, even more stable than the core of the platform itself.

In order to create a better understanding of how the app store acts within
its software ecosystem a conceptual model of app store mechanics is proposed
in Figure 1. In the ovals the different actors within the ecosystem are modeled.
The first one on the bottom is the owner, which is not necessarily the owner
of the ecosystem but rather the owner of the app store. The other two ellipses
both represent a set of actors rather than one actor. The first set of actors are
the end users. The second set of actors are the developers. The triangular shape
represents the app store, with each edge facing one of the actors in the ecosystem.
The app store functions as a marketplace bringing users and developers together.
Developers can publish their apps using the app store, end users can search for
apps and buy them from the developers using the app store. The app store is
created and governed by the owner who generally takes a share of the generated
revenues as compensation for this work. These relations are represented by the
arrows from and to the app store triangle.

Within the triangle three concepts are depicted: two bottom squares features
and policies and at the top the characteristics square. Features represent indi-
vidual parts of the software systems that the actors can interact with. Policies
represent the rules, regulations and governing processes that limit the functional
reach of the features. Features and policies together form the part of an app store
that the owner can directly influence. The characteristics square represents a set
of app store characteristics that cannot be directly influenced by the app store
owner. An example of a such characteristic would be the total number of apps
available in an app store. Other examples of these characteristics are the number
of developers, the number of end users, the quality of the apps or the usability
of the app store software. The arrows going from the features and policies to the
characteristics represent the assumption that app store owners try to influence
the characteristics by implementing a certain set of features and policies.

3 Research Approach: Identifying Features and Policies

In order to identify features and policies in existing app stores, case studies
were performed using a multiple case study method based on the case study
methods of Yin [11]. At first, a case study protocol was created to ensure a
consistent research execution amongst the cases. Secondly, a long-list of existing
app stores was created based on a set of web search queries, resulting in a list
of 81 app stores. The following criteria were used to create a convenient sample
for the research. The first criterion checked whether the researcher had access
to the app store and could get a complete overview of the features and policies.
The second set of criteria aims to improve the generalization of the sample by
selecting app stores from multiple vendors and only allowing app stores with a
minimum of 1000 transactions and existing longer than 6 months. This resulted
in the following six app stores that were selected for the case study: Google
Play, SlideMe, Apple Appstore, Binpress, Amazon app store for Android and
Intel AppUp.

Defining App Stores 199

App store

Characteristics

Features Policies

End users Developers

Owner

Fig. 1. Conceptual Model of an App Store

Table 1. Growth of the Data Set in Different Phases of the Research

Research Step # Features # Policies # Apps Paid (%)

Initial model (from literature) 14 8

After Case 1: Google Play 28 10 450,000 28%

After Case 2: SlideMe 35 17 20,000 26%

After Case 3: Apple Appstore 40 21 650,000 66%

After Case 4: Binpress 57 20 30,000 65%

After Case 5: Amazon appstore 64 24 369 100%

After Case 6: Intel AppUp 67 24 3,000 64%

The goal of the six case studies was to create an overview of the features and
policies of existing app stores that accurately describes the features and policies
of an app store. For each of the six selected app stores data was gathered on its
features and policies. Data for the case studies was gathered by gaining access
to the app store and making screenshots to of features. Documentation was used
and collected from three different sources: by using the support documentation
provided by the app store owner, by directly searching tech blogs and news
websites, and lastly by blogs referred to by general web searches.

For each case a case study database was created in which all documents were
stored. The data in the database was then analyzed and the observed features
and policies were filled in and if needed features or policies were added, removed
or renamed. Whenever possible data from multiple convergent sources was used
to determine the existence of a feature or policy. As Yin suggested the case
studies were done in a sequential order where each case study used the results

200 S. Jansen and E. Bloemendal

of the previous case study as a starting point. This way each case study resulted
in a more refined and more extended version of the model. In order to create
a starting point for the first case study a preliminary model was created using
blog posts comparing app stores. In Table 1 the growth of the model through
this process is shown. After the completion of the model all previous cases were
revisited in order to complete the dataset.

3.1 Validity

First of all construct validity of the research was improved by, whenever avail-
able, using multiple sources of evidence in a convergent manner. In practice this
meant that the existence of a feature or policy was underpinned by both di-
rect observations (screenshots) and documentation provided by the app store
owner or a third party. Also a chain of evidence was established for each feature
and policy in each case study. Using references to the document database each
observation can be followed back to its underpinning evidence.

The external validity of the app store classification model was improved
by the use of replication logic. The created model is based on six consecutive
case studies and was able to describe all observed features and policies. Also the
statistics in Table 1 show that the model did not need many changes between the
fifth and the sixth case suggesting that the model is approaching completeness.
Of course performing more case studies until the model would not be refined
anymore would always improve the external validity of the classification model.

The reliability of the case study results was improved by creating a case
study protocol. This case study protocol ensured that the used field procedures
stayed the same between the different cases. The reliability was further improved
by creating a document database for each case study. When data was gathered
it was consistently added to the document database before any further analysis.
The document database allows the analysis of the research to be repeated based
on the same data. This proved valuable when the cases had to be revisited with
the completed model. In many cases no additional data had to be gathered even
though the model had significantly grown.

3.2 Case Descriptions

The first case study was done on Google Play, launched in 2008 and now the
biggest app store in the Android ecosystem. It serves the Android ecosystem, an
open source operating system for mobile devices and tablet computers. From its
inception in 2008 it allows developers to sell applications and games to end users.
After its merger with Google Music it was re-branded from Android Market to
Google Play and it became a digital multimedia content service that also sells
books, music and movies.

The second case is SlideMe app store, which launched in April 2008 and
introduces itself as the third app store in the Android ecosystem, after Google
Play and the Amazon Appstore. SlideMe provides an alternative app store for
devices that for some reasons cannot install Google Play and is used by over 120

Defining App Stores 201

OEM devices as their alternative app store. SlideMe does not charge transaction
fees to developers other than the payment processing fees because SlideMe earns
its money by providing white-label curated app stores for OEM devices, i.e.,
manufacturers can use the SlideMe software and rebrand it as their own for a
service fee.

The third case is the Apple app store, launched in July 2008. The Apple
app store is the most successful app store in the market of mobile devices and is
probably the best known too. The app store hosts applications for mobile devices
made by Apple running the iOS platform, namely the different versions of the
iPhone and iPad tablet. From the start the Apple Appstore was integrated with
their already popular iTunes music download service. Under app developers the
Apple appstore is notorious for its strict approval process that apps have to go
through before publishing. It was also the first app store featuring in app billing
and content subscriptions.

The fourth researched app store is Binpress, founded in 2011 as a marketplace
for source code. Binpress hosts source code for a variety of twelve programming
languages with 16 frameworks and 18 platforms. Because Binpress is a market-
place that sells and buys from developers to developers it offers features tailored
to developer needs, such as issue tracking and component support forums.

The fifth app store used as case is the Amazon app store for Android which
opened in March 2011. It is the second most important app store in the Android
software ecosystem and was founded by online retail giant Amazon. The app
stores website piggy backs on the existing web retail infrastructure of Amazon
and its massive user and credit card details database. The most eye catching
features that distinguish the Amazon app store for Android from Google Play
are the availability of the Deal of the Day promotion and the possibility to test
drive apps before buying.

The last case study is the app store introduced in January 2010 by semi-
conductor manufacturer Intel called Intel AppUp. The initial focus of the Intel
AppUp store was on applications for the at that time popular netbook devices
using the Intel Atom processor platform. Nowadays the Intel AppUp store hosts
apps for platforms Adobe Air, Microsoft Silverlight, the Linux-based MeeGo
operating system for mobile devices and native Windows XP and Windows 7
applications.

4 Case Results

After all features and policies were identified and the data for each of the case
studies was available a set of common features shared by all app stores could be
created. This corresponds with the fact that all app stores were selected using
the same definition and set of criteria. The fifteen core features are shown in
Table 2. Each core feature can be mapped to a part of the app store definition:
‘app categories’, ‘app listing’, ‘app lists’, ‘featured apps’, ‘ratings’, ‘reviews’ and
the ‘search’ feature can be mapped to the ‘online curated marketplace’ part, ‘de-
veloper app management’, ‘developer transaction list’, ‘distribution integration’,

202 S. Jansen and E. Bloemendal

Table 2. Core app store features

Core feature Descriptions

app categories Apps are listed in categories and subcategories

app listing Apps are listed with full description, images, etc.

app lists apps are listed, e.g. top selling lists or latest additions

dev app management Devs can manage their apps in a developer console

dev transaction list Devs can manage their transactions

distribution integration Distribution and installation happens through platform

featured apps Apps can be featured to receive more attention

free revenue model Apps can be offered for free

paid revenue model Apps can be sold

pay out methods Number of pay out methods

payment methods Number of payment methods

platform comp. filter Apps have information on their platform compatibility

ratings Apps can be rated by the user

reviews Users can read and write reviews of an app

search Users can search for apps using search keywords

‘free revenue model’, ‘paid revenue model’, ‘pay out methods’ and ‘payment
methods’ map back to ‘allows software developers to sell and distribute their
products to users’ and ‘platform compatibility filter’ maps back to the ‘software
platform’ part. In Table 2 the descriptions for each of the core features are listed.

To give the elements of the model a meaningful categorization, the app store
characteristic that is mainly influenced by each feature or policy was determined.
This resulted in a categorization based on the following nine app store charac-
teristics: app store usability to the user, app findability, app quality, developer
quality, app store usability to the developer, app visibility, monetization poten-
tial, user interaction, openness. These characteristics could further be divided
into user focused characteristics and developer focused characteristics. The ac-
companying feature and policy descriptions can be found in Tables 3 and 4. The
models and the descriptions give a complete overview of the observed features
and policies in the six case studies.

5 Analysis of the Results

In Figure 2 a sample of the table is found that lists the features and policies of
the app stores under study. The main finding from these data, is that most of the
app stores are on their way to include most, if not all features and policies in their
app stores. Furthermore, due to the sheer size of the effort of implementing an
app store we expect to see third parties offering white-label app store platforms1,
thereby reducing effort for platform owners in orchestrating the ecosystem.

Some other observations can be made, however, about the data. To begin with,
the core features are supported by all app stores, which is one of the reasons why

1 Such as the start-up www.appgalleries.com

www.appgalleries.com

Defining App Stores 203

Table 3. User and developer centric app store features

User focused: app findability
recommendations Apps are recommended based on user profile
store curation tags Developers can tag and categorize their apps

User focused: app quality
app security integration An app platform security system is provided
app security reporting Harmful apps and security threats can be reported
app test driving Apps can be test driven before purchase
content rating filter Apps are rated with a content rating
device compatibility Apps can be filtered on device compatibility
remote app remove Harmful apps can be removed by owner from device
user review curation Users can curate each other’s reviews

User focused: app store usability
automated refunds Users can apply for refunds
developer refunds Developer can initiate refunds
device integration Devices have the app store installed by default
multi language app store is internationalized
multichannel dist. Users can use multiple channels to acquire apps
multi-currency Multiple currencies are supported
update integration Automated updates are possible for the app
user app list A list of apps downloaded or purchased by a user is available
user subscription list A list of all content subscriptions of user is available
user transaction list A list of all transactions made by a user is available

Developer focused: feedback potential
app suggestions Users can leave suggestions for new apps
app support forums Each app has its own support forum
beta testing mgmt Developers can invite beta testers for their apps
feature suggestion Users can suggest features to apps
issue tracking Users can report issues and track their progress
user profile Users have extended user profiles

Developer focused: monetization potential
affiliate program Users can make money directing “traffic” to apps
affiliate stores Apps are offered through other channels
component offering Developers can also offer separate components
discounts Apps can be temporarily offered at a discount
in-app advertising Monetization can also be done through advertising
in-app billing Users can purchase extra features and content in-app
licensing integration License checking for illegally installed or acquired apps
social media sharing Apps can be shared through social media
subscriptions Developers can offer content subscriptions to users
volume pricing Developers can offer volume pricing

Developer focused: app store usability
data API Developers can get data from the app store using an API
deployment integration Developers can automate the deployment to the app store
dev contract mgmt Developers can manage contracts with the app store owner
dev multi-user login Multiple users can be added to a developer account
dev sales statistics Developers have access to sales statistics
geographic targeting Apps can be targeted to geographic regions
tax support The app store applies legally required taxation

Developer focused: visibility
cross selling Associated apps are shown to the developer
developer app list A list of apps made by each developer is available
developer profile Developers have profile pages with details

204 S. Jansen and E. Bloemendal

Table 4. User and developer centric app store policies

User focused: app quality

approval before publish Apps are checked by the store owner for compliance manually

automated monitoring The app store uses an automated system to check for apps
that do not comply

code quality curation The quality of the code of apps is checked

functional quality cura-
tion

The functional quality of apps is curated by the owne

interface quality cura-
tion

The owner checks apps for compliance with interface guide-
lines

review after purchase Reviews for an app can only be posted by users that have
downloaded or purchased the app

review poster verified Users that are verified by the app store owner can post re-
views

User focused: developer quality

developer verification Developers have to prove their identity to the app store
owner before receiving payments

recurring fee A recurring fee is required to be a developer at an app store

Developer focused: monetization potential

pay-out delay The delay between the payout and the last day of the sched-
uled date range

pay-out schedule The schedule payment schedule of the revenue share of the
sales to the developer

pay-out threshold The minimum amount required to be eligible for a payout

price control The party that can control the price of an app

revenue share The percentage revenue share that goes to the developer

third party app stores Apps are allowed to reference other app stores

third party in-app ad-
vertising

Apps are allowed to use third party in-app advertising

app store refunds The app store owner has a clear refund policy and provides
refunds on request of a user

third party in-app
billing

Apps are allowed to use a third party system for in app
purchases

Developer focused: openness

competing functionality
curation

Apps that have features that compete with the app store
owner are not approved

custom licensing Developers can provide their own custom EULA, not limited
by the app store owner

guided licensing The app store owner provides and enforces guidelines for
EULAs

open source licensing Developers can use open source licenses to publish their apps

Developer focused: visibility

geographical availability The number of countries an app store is available in

Defining App Stores 205

Fig. 2. Sample of the feature and policy evaluation for each app store case

they made the short list. The data differs greatly, however, for all other features
and policies. The largest outlier is Binpress (the source code app store), since it
supports many different features and policies than the other app stores.

At the time of writing only one app store (Amazon) out of six enables end-
users to test drive an app before purchasing. Secondly, besides Binpress, all app
stores include a content rating filter, since Binpress is the only source code app
store, in comparison to the others. Only Google Play at this point supports
automated developer and end-user refunds, suggesting that the Google Play
billing system may be the most advanced, which we do not find surprising when
considering Google’s e-payment strategy and product portfolio.

In regards to feedbackmanagement, very little features are supported. Only one
app store supports app suggestions, and only one other supports beta testing man-
agement. Yet another app store supports issue tracking and feature suggestions,
which shows that developers could be supportedmuchmore extensively by the app
store owners than they are now. In regards to monetization there is a varied set
of app stores supporting the monetization features, and no generalizations can be
made about those features at this time. It is interesting, however, to see that only
one app store enables component (i.e., supporting app development) sharing.

When looking at the specific app stores it can be observed that Google Play
and Amazon’s app store are the most complete in supporting developers and
end-users. SlideMe supplies the least features and could be considered the most
immature. Surprising is that both in terms of developer features and end-user
features the Apple app store is not the most mature, even though it is the
‘benchmark’ app store that significantly increased popularity of app stores.

6 Conclusions and Further Research

The objective for this study was to help app store owners gain more insight in
the app stores by creating an app store definition and performing a multiple
case study on app store features and policies. To achieve this objective, first, the
definition of an app store was given. Section 4 shows that the common features
observed in the case studies could be mapped to the different parts of this def-
inition. Secondly, in section 2, the conceptual model features and policies were
defined: features represent individual parts of the app stores software systems
that the actors can interact with. Policies represent the rules, regulations and

206 S. Jansen and E. Bloemendal

governing processes that limit the functional reach of the features. The descrip-
tion tables of these features and policies can be used to identify a feature or
policy in an app store.

The app store definition combined with the feature and policy models provide
app store owners or organizations considering becoming an app store owner with
insight into the concept. One possible problem with the external validity might be
the number of features and policies that were not applicable to the source code app
store Binpress. In order to improve the external validity of the model for source
code app stores it would be useful to addmore case studies on source code market-
places, or even classify app stores along their content, features, and policies. These
explorations into domain specific app stores are seen as future work.

The possible relation between the strategy of app store owners and the app
store characteristics is a topic for further research. Possibly, one could formulate
sets of policies and features based on typical strategies followed by platform
owners. However, for such an exploration, more insight into platform owner
strategy and success is required. One challenge in such analysis is that a platform
strategy, of which an app store is a small part, may be much more influential to
the success of the platform than the app store.

References

1. Baldwin, C., Woodard, J.: The architecture of platforms: A unified view. In: Gawer,
A. (ed.) Platforms, Markets and Innovation. Edward Elgar Pub. (2010)

2. Eaton, B., Elaluf-Calderwood, S., Sørensen, C., Yoo, Y.: Dynamic structures of
control and generativity in digital ecosystem service innovation: the cases of the
apple and google mobile app stores. LSE, London Report 44(183), 1–25 (2011)

3. Elmer-DeWitt, P.: 6 ways iphone and android users differ. Fortune. February 25
(2010)

4. Hagiu, A., Wright, J.: Do you really want to be an ebay? Harvard Business Review
(2013)

5. Holzer, A., Ondrus, J.: Mobile application market: A developers perspective.
Telematics and Informatics 28(1), 22–31 (2011)

6. Hyrynsalmi, S., Mäkilä, T., Järvi, A., Suominen, A., Seppänen, M., Knuutila,
T.: App store, marketplace, play! an analysis of multi-homing in mobile software
ecosystems. In: Proceedings of the International Workshop on Software Ecosys-
tems, p. 59 (2012)

7. Iansiti, M., Levien, R.: Strategy as ecology. Harvard Bus. Rev. 82(3) (2004)
8. Idu, A., van de Zande, T., Jansen, S.: Multi-homing in the apple ecosystem: why
and how developers target multiple apple app stores. In: Proceedings of the Inter-
national Conference on Management of Emergent Digital EcoSystems, pp. 122–128.
ACM (2011)

9. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: 31st International Conference on Software
Engineering-Companion Volume, ICSE-Companion 2009, pp. 187–190. IEEE (2009)

10. West, J., Mace, M.: Browsing as the killer app: Explaining the rapid success of
apple’s iphone. Telecommunications Policy 34(5), 270–286 (2010)

11. Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. Applied Social
Research Methods Series, vol. 5. Sage Publications, Inc. (December 2002)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 207–211, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Towards Platform-Based Enterprise
Systems – Conceptualization and Research Directions

Carl Simon Heckmann1 and Alexander Maedche1,2

1 Institute for Enterprise Systems, University of Mannheim,
2 Chair of Information Systems IV, Business School, University of Mannheim,

68131 Mannheim, Germany
{heckmann,maedche}@es.uni-mannheim.de

Abstract. Historically different approaches such as tailor-based functional
systems, Enterprise Resource Planning or SOA-based systems have been
implemented to provide IT-based support for business processes. They all share
the tension between standardization and differentiation. Similar trade-offs have
been discussed in product development literature proposing modularization and
platform-based approaches as a potential solution. Applying these concepts to
the context of enterprise systems (ES), this work provides a first
conceptualization of platform-based ES (PBES) and suggests possible
directions for future research.

Keywords: Enterprise System, Platform, Modularization, Product Development.

1 Introduction

The debate whether and to what degree IT can be the source of competitive advantage
is still ongoing [1, 2]. Some parts of corporate IT can be viewed as a commodity [1],
while other parts, in particular these supporting differentiating business processes,
should be viewed as an enabler for achieving competitive advantage [3]. Enterprise
Systems (ES) represent a specific category of information systems. They build on pre-
packaged industry best practices embedded in standardized product software and
target large‐scale integration of data and business processes across all company's
functional areas and beyond company borderlines. . Specifically the ERP concept
came with the promise of tight integration [6] and standardized best practices for a
wide range of processes [7]. However, this standardization leads to high costs and
effort for customization required for differentiation [8]. Service-oriented architecture
(SOA) were introduced to allow ES to be adapted more flexibly, and to better meet
companies business requirements, allowing to differentiate from competitors.
However in practice several shortcomings of the SOA paradigm have been identified,
e.g. increased system complexity [3]. Thus, companies need to decide on the degree
of standardization and differentiation within their ES approach. This continuum
reaches from highly standardized systems to differentiating best-of-breed approaches.
The latter one allows less expensive differentiating, however overall efficiency is
reduced due to the lack of standardization.

208 C.S. Heckmann and A. Maedche

In other engineering disciplines similar trade-offs have been addressed using
modularization and platform-driven product development [9]. Adapting these
concepts to the context of ES provides new insights and is consistent with previous
works, which have characterized ES as modular systems [10, 11]. Furthermore,
consumer-oriented IT platforms, such as iOS, already show the appropriateness of
platform concepts to the IS domain [12]. The concept of platform-driven product
development of ES is largely unexplored so far leading to the following research
question: What are the characteristics of a platform-based enterprise system (PBES)?

By addressing this research question we intend to contribute to the understanding
of platform-concepts in the ES context by providing a first conceptualization of PBES
and to highlight possible further research directions.

2 State-of-the-Art

This body of work draws on the extensive literature streams in the area of ES as well
as modularization theory and platform-driven product development. This section
provides an overview to foster a comprehensive understanding of challenges in ES
and how these can be addressed by applying the platform paradigm.

2.1 Enterprise Systems

ES emerged as response to high costs and limited integration of custom-developed
systems. They are characterized as large-scale organizational systems built around
packaged software embedding best-practices and a high degree of configurability and
customizability [7, 8]. The various benefits include operational improvements through
process automation and best-practices as well as enhanced decision-making [7, 8].
However, best practices may not fit the actual practices of a particular company
requiring expensive customization of the system. Thus a “best-of-breed” strategy is
followed in many companies to minimize customization by selecting systems which
better fit their business requirements [8, 13].

There is some dispute whether IT can be the source of competitive advantage [1,
2]. Recent studies indicate that there are parts of IT which are enabler for
differentiation potentially leading to competitive advantage [3]. In today’s highly
uncertain and dynamic environment ES need to be adapted flexibly to better meet
changing requirements while achieving efficiency through standardization [2].
Integration and modularity are mentioned as requirements for flexibility, however it is
not stated how this can be achieved [3].

Previous and current generations of ES failed in solving the tension between
standardization and differentiation. As comparable trade-offs have been discussed
extensively in product development literature concepts such as platform-driven
product development and modularization are transferred to the context of ES to
provide insights on how to overcome the challenge of creating integrated, yet flexible
ES.

 Towards Platform-Based Enterprise Systems 209

2.2 Platform-Based Product Development

In product development, modularization provides means to manage complexity by
breaking up a system into discrete chunks that communicate through standardized
interfaces [12, 14, 15]. This leads to increased reusability and flexibility through a
larger variety of configurations, resulting in reduced product and switching cost [15].
Modularization also allows for rapid and steep performance gains through
recombination [14], decreased innovation costs and improved innovation outcomes
[14].

Products in engineering disciplines are complex systems, which are defined as "one
made up of a large number of parts that interact in a non simple way“[16]. Complex
systems are composed of interacting modules that are always to some degree
interdependent and inhibit high synergistic specifity, posing a strong force against
modularization [15]. The set of modules that is used or reused across implementations
comprises the platform [17]. In the IT context a platform is defined as “the extensible
codebase of a software based system that provides core functionality shared by the
modules that interoperate with it and the interfaces through which they interoperate
(e.g., Apple’s iOS)” [12].

This state-of-the-art section presented the challenge to balance standardization and
differentiation in previous and current generations of ES. Similar trade-offs have been
addressed in other engineering disciplines by the use of platform-based product
development concepts. As platform concepts such as iOS have already been
successfully transferred to the IT domain in consumer settings, we will explore how
such concepts can be applied to ES.

3 Conceptualization and Research Directions

Current ES do not solve the tension between standardization and differentiation.
Product development in other engineering disciplines such as the automotive industry
already addressed this tension [9]. However there are differences between ES and
traditional physical products. Compared to physical products ES are of dynamic
nature as they are adapted to changing business requirements and evolve throughout
their life cycle [7]. ES are complex systems involving many different elements
addressing a wide area of business requirements in a company. Such complex systems
are characterized as near-decomposable systems [16]. These elements show the
characteristic of high synergistic specifity posing a force against modularization [15].
Changing one of these modules leads to changes in a number of other modules. We
propose that these modules, inhibiting high synergistic specificity, should be
standardized as change is too costly. Following the previously introduced platform
definition [17], we characterize the set of modules, which cannot be separated from
each other, as the core platform of the ES.

On the basis of the definition of ES provided by Davenport [6] and the presented
related work we propose the following definition: “A platform-based enterprise
system (PBES) consists of

210 C.S. Heckmann and A. Maedche

− a standardized core containing modules fulfilling high standardization
requirements and

− a flexible sphere containing complementary modules
to enable the company to realize standardization benefits for their stable core systems
while still allowing to differentiate. ”

This first understanding of PBES allows identifying potential directions for further
research. Following the product development literature [9] a rationale for allocating
modules to the standardized core platform flexible sphere is required. Consequently
the following research question needs to be answered:

What are the determinants for the allocation of modules either to the core platform

or the sphere of complementary modules?

This automatically leads to another interesting consideration with regards to modules.
What is the ideal size of a module [18]? Too coarse-grained modules prevent clear
allocation [14], while too fine-grained modules result in high coordination effort,
leading to the following research question:

What is the effect of the application system modularity on process performance and

how is this effect influenced by different integration requirements of modules?

Knowing which modules are part of the platform and which modules are part of the
complementary set of modules as well as their granularity leads to the next question
which is of rather technological nature. Current developments such as PaaS can
provide valuable insights in how PBES can be implemented [12].

What are the requirements of a platform to allow complementary modules to be

added in a flexibly way to the core platform?

4 Conclusion

Different generations of ES tried to solve the tension between integration and
flexibility but have failed so far. As similar trade-offs have been identified in product
development literature this body of work transferred the platform approach to product
development to an ES context. This paper provides two contributions. One the one
hand we highlight an important area in ES design, namely how integration and
flexibility can be addressed in parallel by applying the platform approach to product
development to the ES context. On the other hand this research contributes a first
conceptualization of PBES as a starting point for future research.

 Towards Platform-Based Enterprise Systems 211

References

1. Carr, N.G.: IT Doesn’t Matter. Harvard Business Review 81(5), 41–49 (2003)
2. Ward, J.M.: Information systems strategy: Quo vadis? 20th Anniversary Special

Issue 21(2), 165–171 (2012), doi:10.1016/j.jsis.2012.05.002
3. Gebauer, J., Lee, F.: Enterprise System Flexibility and Implementation Strategies:

Aligning Theory with Evidence from a Case Study. Information Systems
Management 25(1), 71–82 (2008), doi:10.1080/10580530701777198

4. Maedche, A., Mueller, B.: Enterprise Systems-A Research Agenda. SSRN 2033145 (2012)
5. Orlikowski, W.J.: The sociomateriality of organisational life: considering technology in

management research. Cambridge Journal of Economics 34(1), 125–141 (2010),
doi:10.1093/cje/bep058

6. Davenport, T.: Putting the enterprise into the enterprise system. Harvard Business
Review 76(4) (1998)

7. Lynne Markus, M.: Cronelis Tanis The Enterprise System Experience - From Adoption to
Success. In: Framing the Domains of IT Management Projecting the Future Through the
Past, pp. 173–207.

8. Shang, S., Seddon, P.B.: Assessing and managing the benefits of enterprise systems: the
business manager’s perspective. Information Systems Journal 12(4), 271–299 (2002),
doi:10.1046/j.1365-2575.2002.00132.x

9. Halman, J.I., Hofer, A.P., van Vuuren, W.: Platform-Driven Development of Product
Families: Linking Theory with Practice. Journal of Product Innovation Management 20(2),
149–162 (2003)

10. Davenport, T.H., Harris, J.G., Cantrell, S.: Enterprise systems and ongoing process change.
Business Process Management Journal 10(1), 16–26 (2004),
doi:10.1108/14637150410518301

11. Fan, M., Stallaert, J., Whinston, A.B.: The adoption and design methodologies of
component-based enterprise systems. European Journal of Information Systems 9(1), 25–35
(2000)

12. Tiwana, A., Konsynski, B., Bush, A.A.: Research Commentary–Platform Evolution:
Coevolution of Platform Architecture, Governance, and Environmental Dynamics.
Information Systems Research 21(4), 675–687 (2010), doi:10.1287/isre.1100.0323

13. Davenport, T.H.: The Future of Enterprise System-Enabled Organizations. Information
Systems Frontiers 2(2), 163–180 (2000)

14. Ethiraj, S.K., Levinthal, D.: Modularity and Innovation in Complex Systems. Management
Science 50(2), 159–173 (2004), doi:10.1287/mnsc.1030.0145

15. Schilling, M.A.: Toward a General Modular Systems Theory and its Application to
Interfirm Product Modularity. Academy of Management Review 25(2), 312–334 (2000),
doi:10.5465/AMR.2000.3312918

16. Simon, H.A.: The Architecture of Complexity. Proceedings of the American Philosophical
Society 106(6), 467–482 (1962), doi:10.2307/985254

17. Boudreau, K.: Open Platform Strategies and Innovation: Granting Access vs. Devolving
Control. Management Science 56(10), 1849–1872 (2010)

18. Baldwin, C.Y.: Where Do Transactions Come From? Modularity, Transactions, and the
Boundaries of Firms. Industrial and Corporate Change 17(1), 155–195 (2008)

Software Ecosystem Roles Classification

Eko Handoyo1,2, Slinger Jansen1, and Sjaak Brinkkemper1

1 Universiteit Utrecht, Utrecht 3584 CC The Netherlands
{eko.handoyo,slinger.jansen,s.brinkkemper}@uu.nl
2 Universitas Diponegoro, Semarang 50275 Indonesia

Abstract. When studying software ecosystems, i.e., software-related or-
ganizations that collaboratively provide a market, it is difficult to iden-
tify the typical roles in that software ecosystem (SECO), and whether
certain organizations belong to the ecosystem or not. The main aim of
this research is to perform an independent literature review in order
to create a classification of the typical roles named software ecosystem
role classification (SERC). This research answered the research question,
“How should a classification be formulated in order to provide the base
for the software ecosystem roles?” The main result is a list of 5 ma-
jor roles and 12 minor roles based on 9 papers that already discussed
role identification in SECOs previously. The classification of these roles
includes a description of the fundamental activities for each role. The
classification enables those that model ecosystems and business models
of software-related organizations to identify players quickly and their
roles in ecosystems. Thereby furthering understanding of the underlying
business models and value chains.

Keywords: software ecosystems, software industry, role classification,
literature review.

1 Introduction

A software ecosystem (SECO) is defined as “a set of organizations functioning as
a unit and interacting with a shared market for software and services, together
with the relationship among them” [8]. SECO vision presents possible actors
with the capability to observe moments and threats. SECO vision also approves
actors to take on a role that influences the success of a SECO. In order to
get a brief analysis of a SECO, several characteristics are already determined,
i.e., composition of a SECO, entry barriers and stability. The composition of
a SECO describes how it functions and how effectively it reacts to changes,
i.e., what categories of actors occur, how broad they are, in what frequencies do
they appear and what role do they take on [7]. The representatives of vendors are
number, size and role. However, within such ecosystems, it is hard to differentiate
these roles [4]. Presently, there exists a plethora of works describing the roles of
actors in SECOs [15,14,10,13,3,11,6,12,1]. These works, however, do not claim
to be comprehensive.

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 212–216, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Software Ecosystem Roles Classification 213

This paper develops a classification of SECO Roles. Such a classification helps
SECO designers to identify typical roles in the SECOs. This led to the following
research question, How should a classification be formulated in order to provide
the base for the software ecosystem roles?

2 Role Classification

This study starts the role classification by reviewing two literature studies (i) a
systematic mapping study on software ecosystems (SECOs), proposed by Bar-
bosa and Alves [2], based on 44 papers (ii) a systematic literature review on
SECOs, proposed by Manikas and Hansen [9], based on 90 papers.

Moreover, the second step of this study enhances the above-mentioned findings
by doing an independent literature review. The literature review was directed
at the topic of player roles in software ecosystems. The scope of the literature
review was not limited exclusively to the literature published on software ecosys-
tems, because of the robust analogy between the software industries and other
business domains. To capture appropriate papers, books and articles, the fol-
lowing keywords were used: software ecosystem, software ecosystems, software
ecosystem roles, software ecosystem players, software ecosystem actors, software
vendor, software supply industry, software producing organization. The selection
of these papers was rooted on the following various inclusion criteria (i) should
discuss the business software ecosystem primarily (ii) should be written in En-
glish (iii) has been published and should be peer-reviewed (iv) has been already
cited by other works (v) should be accessible (vi) should describe the role iden-
tification comprehensively. Regarding of the inclusion criteria, this study selects
nine papers in established publications during the year 2000-2013.

2.1 Selected Papers

To facilitate discussions in the following sections, this section provide a short
profile for each of the selected papers in the following paragraphs.

Digital Capital (DC). According to the book of digital capital, Tapscott et
al. [15] differentiate between the following five classes of network participants:
customers, context providers, content providers, commerce service providers and
infrastructure providers.

Value Chain and Production Network (VN). In the paper of value chains
and production networks, Sturgeon [14] mentions five types of network actors:
integrated firms, retailers, lead firms, turn-key suppliers and component suppli-
ers.

Software Value Chain (SC). In the book of software ecosystem, Messer-
schmitt and Szyperski [10] declare the decomposition of natural business func-
tions consist of nine sources of values: industry consultants, application software
suppliers, infrastructure software suppliers, system integrators, infrastructure

214 E. Handoyo, S. Jansen, and S. Brinkkemper

service providers, application service providers, information content suppliers,
business consultants and end-users organization.

Business Webs (BW). According to the book of Steiner [13], he differentiates
between two roles: shapers and adapters.

Web Service Ecosystems (WE). In the paper of Barros and Dumas [3], they
describe the concept of web service ecosystems consist of five actors: customers,
providers, mediators, specialist intermediaries and brokers.

Network Centric Innovation (NI). In the book of Nambisan and Sawh-
ney [11], they propose three players: architects, adapters and agents.

Software Supply Network (SN). According to the paper of Jansen et al. [6],
they recommend twelve lists of software supply network roles: value-added re-
sellers, resellers, software publishers, software designers, requirements engineers,
software developers, product deployers, application service providers, independent
software vendors, components-off-the-self vendors and original design manufac-
turers.

Service Ecosystem (SE). Based on the paper of Riedl et al. [12], they state
four network roles: customers, platform providers, service providers and brokers.

SaaS Ecosystem (Sa). A study of Abdat et al. [1] address the scope of a
software ecosystem for five different key players: SaaS vendors, SaaS providers,
end users, resellers and integrators.

2.2 Classification Development

This section describes the development of a new role classification, based on the
nine selected papers that already exist in the previous sub-section. The develop-
ment of a new role classification base on the following steps (i) list all the roles
that already exist in the selected papers (ii) classify them into several general
categories base on the activities, characteristics and the specific deliverables (iii)
select the roles into the different-roles: unique elements (iv) develop a descriptive
name for each category (v) classify the roles into major (bold) and minor roles.
These steps propose a new role classification base on the two following principles
(i) the roles should integrate and synthesize the earlier works in this domain (ii)
the roles should be simple enough so that it can be easily understood, commu-
nicated and remembered. This section applies some symbols of Hong et al. [5],
in order to classify the roles within the selected papers clearly: (i) the ”=” sym-
bol to indicate that the activities are the same (ii) the ”<” or ”>” symbols to
indicate whether an activity in the major role comprises more or less than the
activity in the concerning role, respectively (iii) the ”><” symbol to indicate
that the activity in the major role partly overlaps the activity of the concerning
role (iv) in case a field in the selected papers is left blank it means that the activ-
ity is not present in the concerning role. Finally, this led to a software ecosystem
roles classification (SERC), outlined in Table 1.

Software Ecosystem Roles Classification 215

Table 1. Software Ecosystems Roles Classification

Selected papers

Role Activity DC VN SC BW WE NI SN SE Sa

Software vendors Evolve software < > < <
-Commercial-off-the-self vendors Build & sell =
-Original-design manufacturers Design, develop & sell =
-Platform\SaaS providers Provide environment > < < < = =
-SaaS vendors Provide software as a service =
Service providers Contribute service = = < < < =
-Product distributors Deploy, implement & resell =
-Software developers Develop & supply =
-Software designers Supply design =
-Application service providers Supply computer service > = =
-Requirement engineer Supply requirement document =
-Integrators Customize user = > =
-Content suppliers Supply content =
Infrastructure providers Provide infrastructure = =
Resellers Buy & resell = > = <
-Value-added resellers Add & resell =
Customers\End users Request service\product = >< = = ><

3 Conclusion

This paper develops a classification of software ecosystem (SECO) roles. In or-
der to build it, this study conducted an independent literature review, a body
of 9 papers discussing upon the identification of SECO roles. This research de-
termined a list of 5 major roles and 12 minor roles. Furthermore, this study
completed a description of the fundamental activities for each role. Due to the
fast growing of SECOs domain in the software industry, SECO roles are essential
concepts to uncover the actor’s strategies to play within its SECO.

4 Further Research

First, the new role classification is currently not validated. The classification can
be taken a step further by confirming with industry experts.

Second, the inclusion criteria that applied in the paper selection might be ex-
tended further, i.e., included the open source software ecosystems to be discussed
entirely. According to Barbosa and Alves [2], they stated that such ecosystem
is the most areas that published in the SECO domain. Therefore, it would be a
significant point to examine such ecosystems.

Acknowledgments. This research project has been supported and financed by
the Indonesian PhD scholarship grant number: 3374.1/E4.4/2011.

216 E. Handoyo, S. Jansen, and S. Brinkkemper

References

1. Abdat, N., Spruit, M., Bos, M.: Software as a service and the pricing strategy for
vendors. AEBR Book Series, pp. 154–192 (2010)

2. Barbosa, O., Alves, C.: A systematic mapping study on software ecosystems. In:
Proc of IWSECO (2011)

3. Barros, A.P., Dumas, M.: The rise of web service ecosystems. IT Professional 8(5),
31–37 (2006)

4. Burkard, C., Draisbach, T., Widjaja, T., Buxmann, P.: Software ecosystems:
Vendor-sided characteristics of online marketplaces. In: Informatik (2011)

5. Hong, S., van den Goor, G., Brinkkemper, S.: A formal approach to the comparison
of object-oriented analysis and design methodologies. In: Proc. of the 26th Hawaii
Int’l Conf. on System Sciences, vol. 4, pp. 689–698. IEEE (1993)

6. Jansen, S., Brinkkemper, S., Finkelstein, A.: Component assembly mechanisms
and relationship intimacy in a software supply network. In: 15th Int’l EurOMA
Conference (2008)

7. Jansen, S., Brinkkemper, S., Finkelstein, A.: Business network management as a
survival strategy: A tale of two software ecosystems. In: 1st IWSECO, vol. 505,
pp. 34–48 (2009)

8. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: 31st Int’l Conf. on Software Engineering-
Companion, pp. 187–190. IEEE (2009)

9. Manikas, K., Hansen, K.M.: Software ecosystems-a systematic literature review.
Journal of Systems and Software (2012)

10. Messerschmitt, D.G., Szyperski, C.: Software ecosystem: understanding an indis-
pensable technology and industry. MIT Press Books (2003)

11. Nambisan, S., Sawhney, M.S.: The global brain: your roadmap for innovating faster
and smarter in a networked world. Wharton School Pub. (2008)

12. Riedl, C., Böhmann, T., Leimeister, J.M., Krcmar, H.: A framework for analysing
service ecosystem capabilities to innovate. In: Proc. of 17th ECIS (2009)

13. Steiner, F.: Formation and early growth of business webs: modular product systems
in network markets, vol. 8166. Physica-Verlag HD (2004)

14. Sturgeon, T.J.: How do we define value chains and production networks? IDS
bulletin 32(3), 9–18 (2009)

15. Tapscott, D., Lowy, A., Ticoll, D.: Digital capital: Harnessing the power of business
webs. Harvard Business Press (2000)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 217–222, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Formal Description for SaaS Undo

Hernán Merlino, Oscar Dieste, Patricia Pesado, and Ramón García-Martínez

PhD Program on Computer Sc. School of Computer Sc. National University of La Plata
Information Systems Research Group. Productive & Technologic Development Dept.

National University of Lanús
Instituto de Investigaciones en Informática LIDI. Facultad de Informática. UNLP - CIC
Empirical Software Eng. Group. School of Computer Sc. Madrid Polytechnic University

hmerlino@gmail.com, odieste@fi.upm.es,
ppesado@lidi.info.unlp.edu.ar, rgarcia@.unla.edu.ar

Abstract. This paper proposes a highly automated mechanism to build an undo
facility into a new or existing system easily encapsulated into a service. The use
of services strategy simplifies greatly the design of the undo process and
encapsulates most of the functionalities required. We present a formal
description when to use this service under alignments of software as a service.

Keywords: Undo, Services as a Service, and Usability component.

1 Introduction

Usability patterns were conceived with the aim of making usable software
development simpler and more predictable [1]; in general usability requirements are
included at an advanced stage of system development [2], when there is little time left
and the key design decisions have already been taken.

The goal of this paper is to provide a formal description to detect availability to
include software as a service (SaaS) [3] for undo usability patterns [4]. This provides
the functionality necessary to undo actions taken by system users. This team decided
to start with Undo pattern, because it is a common usability features in the literature
[5].

Several authors have proposed alternatives to undo pattern, these alternatives focus
on particular applications, notably document editors [6-7] although the underlying
concepts are easily exportable to other domains. However, these proposals are defined
at high level, without an implementation (or design) reusable in different types of
systems. These proposals, therefore, do not solve the problem of introduction of
usability features in software.

Undo has two alternatives of implementation in a system: (a) state operations. This
option is present in systems where Undo functionality is a core for application, e.g.
word editors, Applications without these functionality are not an option; (b) stateless
operation. In these applications Undo functionality is only a plus for application, e.g.
applications with forms to include and update data in a data base.

218 H. Merlino et al.

Our proposal detects a second subset of cases (stateless operations) in a highly
efficient manner. If formal description is aligned to application or section of
application, the architect can use SaaS for Undo [3]. The importance of having an
automated solution for those is that they are the most frequents operations that occur
in information systems.

The use of services for building applications is a very efficient way to reduce
complexity and development time, creating an Undo service is a valid alternative to
be taken into account by software engineering. We have implemented the framework
to use Software as a Service (SaaS). Beyond scope of this article, the research team is
working on the realization of a SOA model [8].

This article is structured as follows. Section 2 describes the state of the art
regarding the implementation of undo. Section 3 presents the undo infrastructure,
whereas, finally, Section 4 briefly discusses and presents the main contributions of
our work.

2 Background

Undo is a very widespread feature, and is prominent across the whole range of
graphical or textual editors, like, for example, word processors, spreadsheets, graphic
editors, etc. Not unnaturally a lot of the undo-related work to date has focused on one
or other of the above applications. For example, [6] Baker and Storisteanu [9] have
patented two methods for implementing undo in document editors within single-user
environments.

There are specific solutions for group text editors that support undo functionality,
such as in Sun [10] and Chen and Sun [11] and Yang [12]. The most likely reason for
the boom of work on undo in the context of document editors is its relative simplicity.

The problems of undo in multi-user environments have also attracted significant
attention. Abrams and Oppenheim [13] have proposed mechanisms for using undo in
distributed environments, and Abowd and Dix [4] proposed a formal framework for
this field. In distributed environments, the solution has to deal with the complexity of
updates to shared data (basically, a history file of changes) [14].

Several papers have provided insight on the internal aspects of undo, such as
Mancini [15], who attempted to describe the undo process features.

Another important aspect which has been worked out is the method of
representation of the actions performed by the users in Washizaki and Fukazawa [16],
where a dynamic structure of commands is presented that represents the history of
commands implemented.

Patents, like the method for building an undo and redo process into a system, have
been registered [17]. Interestingly, this paper presents the opposite of an undo
process, namely redo, which does again what the undo previously reverted. Other
authors address the complexities of undo/redo as well. Thus, for example, Nakajima
and Wash [18] define a mechanism for managing a multi-level undo/redo system.

The biggest problem with the above works is that, again, they are hard to adopt in
software development processes outside the document editor domain. The only

 Formal Description for SaaS Undo 219

noteworthy exception to this is a design-level mechanism called Memento [19]. Uses
of Services in the enterprise build architecture models that are directly dependent
upon the business strategy [20]. Service oriented architecture has the following
characteristics [21]: (a) services are self-contained and modular (b) services support
interoperability, (c) services are loosely coupled, (d) services are location-transparent,
(e) services are composite modules, comprised of components.

The solutions presented are optimized for particular cases and are difficult to apply
to other domains; on the other hand, it is necessary to include a lot of code associated
with Undo in the host application.

3 Theoretical Justification

This will be done in two steps; first we will describe how to undo operations that do
not depend on its state, the procedure to undo these operations consists in reinjection
input data at time t-1, second we prove that reinjection input always produces correct
results.

3.1 Initial Description

The most commonly used option for developing an undo process is to save the states
of objects that are liable to undergo an undo process before they are put through any
operation; this is the command that changes the value of any of their attributes. This
method has an evident advantage; the system can revert without having to enact a
special-purpose process; it is only necessary to remove and replace the current in-
memory objects with objects previously saved.

This approach is a simple mechanism for implementing the undo process, although
it has some weaknesses. On one hand, saving all the objects generates quite a heavy
system workload. On the other hand, developers need to create explicit commands for
all operations systems. Finally, the system interfaces (mainly the user interface) have
to be synchronized with the application objects to enact an undo process. This is by
no means easy to do in monolithic systems, but, in modern distributed computer
systems, where applications are composed of multiple components all running in
parallel (for example, J2EE technology-based EJB), the complications increase
exponentially.

There is a second option for implementing an undo process. This is to store the
operations performed by the system instead of the changes made to the objects by
these operations. In this case, the undo would execute the inverse operations in
reverse order. However, this strategy is seldom used for two reasons. On one hand,
except for a few exceptions like the above word processing or spreadsheet software,
applications are seldom designed as a set of operations. On the other hand, some
operations do not have a well-defined inverse (imagine calculating the square of a
table cell; the inverse square could be both a positive and a negative number).

The approach that we propose is based on this last strategy, albeit with a more
simplified complexity. The key is that, in any software system whatsoever, the only

220 H. Merlino et al.

commands processed that are relevant to the undo process are the ones that update the
model data (for example, a data entry in a field of a form that updates an object
attribute, the entry of a backspace character that deletes a letter of a document object,
etc.). In most cases, such updates are idempotent, that is, the effects of the entry do
not depend on the state history. This applies to the form in the above example (but
not, for example, to the word processor). When the updates are idempotent, neither
states of the objects in the model or executed operations has to be stored, and the list
of system inputs is only required.

3.2 Formal Description

The following definitions and propositions are used to prove (in an algebraic way)
that UNDO process (UNDO transformation) may be built under certain process
(transformation) domain constrains.

Definition 1. Let Ε = {εj
i / εj is a data structure} be the set of all data structures.

Definition 2. Let εj
i be the instance i of data structure εj belonging to Ε.

Definition 3. Let εj
C = { εj

i / εj
i is an instance i of the structure εj} be the set of all

the possible instances of data structure εj.

Definition 4. Let οτ
εj be a transformation which verifies οτ

εj : εj
C → εj

C and
οτ

εj
 (εj

i) = εj
i+1.

Definition 5. Let εj
Cr be a constraint of εj

C defined as εj
Cr ={ εj

i / εj
i is an instance i

of the data structure εj which verifies οτ
εj (εj

i-1) = εj
i}

Proposition 1. If οτ
εj : εj

C → εj
Cr then οτ

εj is bijective.
Proof: οτ

εj is injective by definition 4, οτ
εj is surjective by definition 5,

and then οτ
εj is bijective for being injective and surjective. QED.

Proposition 2. If οτ
εj : εj

C → εj
Cr then has inverse.

Proof: Let οτ
εj be bijective by proposition 1, then by usual algebraic

properties οτ
εj has inverse. QED.

Definition 6. Let οτ be the set of all transformations οτ
εj.

Definition 7. Let Φ be the operation of composition defined as usual composition of
algebraic transformations.

Definition 8. Let Σ be the service defined by structure < ΕΣ , οτ
Σ , Φ > where ΕΣ C Ε

and οτ
Σ C οτ.

Definition 9. Let Χ = οτ
εj1 Φ οτ

εj2 Φ ... Φ οτ
εjn be a composition of transformations

which verifies οτ
εji : εj

C → εj
Cr for all i:1...n. By algebraic construction

Χ : εj
C → εj

Cr.

Proposition 3. The composition of transformations X has inverse and is bijective.
Proof: Let be Χ = οτ

εj1 Φ οτ
εj2 Φ ... Φ οτ

εjn. For all i:1...n verifies οτ
εji

has inverse by proposition 2. Let [οτ
εji]-1 be the inverse transformation

of οτ
εji, by usual algebraic properties [οτ

εji]-1 is bijective. Then it is

 Formal Description for SaaS Undo 221

possible to compose a transformation X-1 = [οτ
εjn]-1 Φ [οτ

εjn-1]-1 Φ ...
Φ [οτ

εj1]-1. The transformation X-1 is bijective by being composition of
bijective transformations. Then transformation X-1 : εj

Cr →εj
C exists

and is the inverse of X. QED.

Definition 10. Let UNDO be the X-1 transformation of X.

3.3 Use Method

If the evaluated system is aligned with the formal description detailed above, architect
could use SaaS described in [4]; in another way, probably the architect needs to use
any of specific domain’s implementations of Undo detailed in section 2
(Background).

4 Conclusions

In this paper we have proposed a formal description to detect a sub set of Undo
functionality and an alternative to implement this usability functionality in a system.
The most salient feature of this framework is the type of information it stores to be
able to undo the user operations: input data instead of in-memory object states or
commands executed by the system. This lessens the impact of building the framework
into the target application a great deal.

Building an Undo Service has some significant advantages with respect to Undo
models presented. First of all the simplicity of inclusion in a host application under
construction or existing, can be seen in the proof of concept. Second, the
independence of service in relation to the host application allows the same
architectural model to provide answers to different applications in different domains.
Construction of a service allows Undo to be a complex application, with the
possibility of including analysis for process improvement, as described in the next
paragraph it is possible to detect patterns of invocation of Undo in different
applications.

Further work is going to bring: (a) creation of a pre-compiler, (b) automatic
detection of fields to store (c) extension of the framework to other platforms.

Acknowledgements. The research reported in this paper has been partially funded by
grants UNLa-SCyT-33A167 and UNLa-SCyT-33B112 of the National University of
Lanus (Argentine) and by grants TIN2008-00555 and HD2008-00046 of the Spanish
Ministry of Science and Innovation (Spain).

References

1. Ferre, X., Juristo, N., Moreno, A.: Framework for Integrating Usability Practices into the
Software Process. Madrid Polit. University (2004)

2. Ferre, X., Juristo, N., Moreno, A., Sanchez, I.: A Software Architectural View of Usability
Patterns. In: 2nd Workshop on Software and Usability Cross-Pollination (INTERACT
2003), Zurich, Switzerland (2003)

222 H. Merlino et al.

3. Merlino, H., Dieste, O., Pesado, P., García-Martínez, R.: Service Oriented Architecture for
Undo Functionality. In: Proceedings 6th International Conference on Research and
Practical Issues of Enterprise Information Systems (2012)

4. Merlino, H., Dieste, O., Pesado, H., García-Martínez, R.: Software as a Service: Undo. In:
Proceedings 24th International Conference on Software Engineering and Knowledge
Engineering (SEKE 2012), pp. 328–332 (2012) ISBN 978-1-891706-31-8

5. Abowd, G., Dix, A.: Giving UNDO attention. University of York (1991)
6. Qin, X., Sun, C.: Efficient Recovery algorithm in Real-Time and Fault-Tolerant

Collaborative Editing Systems. School of computing and Information Technology Griffith
University Australia (2001)

7. Bates, C., Ryan, M.: Method and system for UNDOing edits with selected portion of
electronic documents. PN: 6.108.668 US (2000)

8. Merlino, H., Pesado, P., Dieste, O., García-Martínez, R.: Inclusion Process of
UNDO/REDO Service in Host Applications. In: Software Engineering, Methods,
Modeling and Teaching, Edited by Pontificia Universidad Católica de Peru. JIISIC 2012,
Lima, Peru, vol. II (2011)

9. Baker, B., Storisteanu, A.: Text edits system with enhanced UNDO user interface. PN:
6.185.591 US (2001)

10. Sun, C.: Undo any operation at time in group editors. School of Computing and
Information Technology, Griffith University Australia (2000)

11. Chen, D., Sun, C.: Undoing Any Operation in Collaborative Graphics Editing Systems.
School of Computing and Information Technology, Griffith University Australia (2001)

12. Yang, J., Gu, N., Wu, X.: A Documento mark Based Method Supporting Group Undo.
Department of Computing and Information Technology, Fudan University (2004)

13. Abrams, S., Oppenheim, D.: Method and apparatus for combining UNDO and redo
contexts in a distributed access environment. PN: 6.192.378 US (2001)

14. Berlage, T., Genau, A.: From Undo to Multi-User Applications. German National
Research Center for Computer Science (1993)

15. Mancini, R., Dix, A., Levialdi, S.: Reflections on UNDO. University of Rome (1996)
16. Washizaki, H., Fukazawa, Y.: Dynamic Hierarchical Undo Facility in a Fine-Grained

Component Environment. Department of Information and Computer Science. Waswda
University, Japan (2002)

17. Keane, P., Mitchell, K.: Method of and system for providing application programs with an
UNDO/redo function. PN:5.481.710 US (1996)

18. Nakajima, S., Wash, B.: Multiple levels UNDO/redo mechanism. PN: 5.659.747 US
(1997)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison- Wesley (1994)

20. Binildas, C.A., Malhar, B., Vincenzo, C.: Service Oriented Architecture with Java. Packt
Publishing, Birmingham – Mumbai (2008)

21. Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, L., Newling,
T.: Patterns: Service-Oriented Architecture and Web Services. IBM, Redbooks (2004)

Virtual Character Based Interactive Interfaces

for Deaf and Functionally Illiterate Users

Nadeem Ahmad

Department of Control and Computer Engineering
Politecnico di Torino, Italy
nadeem.ahmad@polito.it

http://www.testgroup.polito.it

Abstract. Availability of technology does not ensure accessibility. The
heavy use of text on everything from menus to document content means
that those who are deaf or functionally illiterate are not able to access
functions and services implemented on most computer software. The
research is motivated by objective to provide applications with easy to
use interfaces for communities of deaf and illiterate users, which enables
them to work without any human assistance.

Keywords: ICT4D, Interfaces, Functionally Illiterate, Deaf, Assistive
Technologies.

1 Virtual Character Based Interfaces

Illiteracy estimates show that in 2008, 796 million adults worldwide (15 years
and older) were not being able to read and write and two-thirds of them (64%)
were women [1]. On the other hand there are 60 thousand deaf users only in
Italy (Feb 2010), 3 Million in France (May 2010) and 1 Million in Germany
(April 2010) [2]. Interfaces between technology and society need to be different,
as level of understanding of users is very different. We are considering two type
of users, deaf and functionally illiterate, although they perceive in different ways
but designing interfaces for functionally illiterate persons may in some respects
resemble designing for people who are cognitively challenged, since some of their
cognitive abilities may be less developed than those of literate people. There is no
such thing as a one size fits-for-all for this type of project. Sensitivity to context
and diversity are key factors to concentrate. The idea to use Virtual Character
is not new for us; but mostly Virtual characters were used as role player in
virtual environment, rarely interfaces are designed in which virtual avatars spoke
local regional language and guided the end user that how to perform his task.
Mr. Clippy introduced in Office 97 was impolite but the major reason behind
its failure was the ability to take preemptive control of user’s cursor which is
not in our case. Avatars are natural candidates for the development of sign
language and it is established fact that virtual character based interfaces are
useful for functionally illiterate users in rapid learning [3]. We developed a Virtual
Character based Italian Sign Language Dictionary to support Deaf learning of

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 223–224, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.testgroup.polito.it

224 N. Ahmad

both Sign Language and written language. It provides full set of lexemes and
videos data set and an online interface with MultiWordNet synsets [4]. The
dictionary allows users to acquire information about lemmas, synonyms and
synsets in the Sign Language. The application is platform independent and can
be used on any operating system [5,6]. Figure 1 shows abstract level details to add
virtual character in applications exploiting user interfaces. The raw animation
files and rendering engine to produce virtual character based motion frames are
part of Virtual Character Space and will act like a shell. Virtual characters
are source to enhance deaf learning by translating written contents into sign
language and external human assistance is being substituted by these life like
characters for functionally illiterate users.

Fig. 1. Inclusion of Virtual Characters in real applications

References

1. UIS Fact Sheet: Adult and youth literacy: Global trends in gender parity. UIS Fact
Sheet 3, UNESCO Institute for Statistics, Montreal, Canada (September 2010)

2. Galaudet University Library: Deaf Statistics: Deaf populations overseas (June 2010)
3. Toyama, K., Sagar, A., Medhi, I.: Computer interface for illiterate and near-illiterate
users. US Patent 7,603,621 (October 13, 2009)

4. Ahmad, N., Barberis, D., Garazzino, N., Prinetto, P., Shoaib, U., Tiotto, G.: A
virtual character based italian sign language dictionary. In: Proceedings of the 13th
International Conference on Computers Helping People with Special Needs, Linz,
Austria (July 2012)

5. Shoaib, U., Ahmad, N., Prinetto, P., Tiotto, G.: A platform-independent user-
friendly dictionary from italian to lis. In: Chair, N.C.C., Choukri, K., Declerck,
T., Doğan, M.U., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. (eds.) Proceed-
ings of the Eight International Conference on Language Resources and Evaluation
(LREC 2012), European Language Resources Association (ELRA), Istanbul (May
2012)

6. Barberis, D., Garazzino, N., Prinetto, P., Tiotto, G., Savino, A., Shoaib, U., Ahmad,
N.: Language resources for computer assisted translation from italian to italian sign
language of deaf people. In: Proceedings of Accessibility Reaching Everywhere AEGIS
Workshop and International Conference, Brussels, Belgium (November 2011)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 225–226, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Simplicity in Application Development
for Business Model Design

Steve Boßelmann

Department of Computer Science
University of Potsdam
August-Bebel-Str. 89

14482 Potsdam, Germany
bossel@cs.uni-potsdam.de

Abstract. Discussing business models of companies and organizations has
increased in recent years, particularly from an economics perspective. And so
has the interest in creating graphical representations that emphasize essential
factors. However, feasible implementations of modeling tools are rare, as they
tend to be domain specific but at the same time tailored towards the
requirements of a heterogeneous group of stakeholders. As ideally the latter
should be encouraged to express their needs in a simple but meaningful way,
the author researches the application of the eXtreme Model Driven Design
(XMDD) approach to model critical parts of an application in order to keep it as
simple as possible for participants to contribute to the development process.

Keywords: business model design, model-driven software development,
simplicity.

1 Summary

Tools like the Business Model Canvas (BMC) based on the work by Osterwalder [1]
receive a lot of attention in the area of business economics. However, the term ‘tool’
is ambiguous and in this case should be considered from a business economics
perspective, i.e. a best practice approach on gathering the most important components
of a business model by asking the right questions. However, from the computer
science perspective there are virtually no sophisticated tools that support business
model design by means of applying some kind of formal semantics, neither in general
nor for specific areas of application.

Creating such a tool is challenging for numerous reasons. On the one hand there is
neither common sense about a suitable ontology nor about component types that
business models should actually comprise. Hence particular model characteristics
depend on the application area as well as the actual business domain. On the other
hand, the development process depends on inter-disciplinary collaboration and
communication. It requires immediate contribution of a heterogeneous set of
stakeholders involving business managers as well as economics researchers, most of
them lacking broad knowledge of formal models and software engineering skills.

226 S. Boßelmann

Putting it all together, a decent amount of simplicity throughout the development
lifecycle is key for success. Recently, the notion of simplicity as a driving paradigm
in information system development has been explicitly identified as an important
research topic, yet poorly understood [2]. The author leverages the jABC Framework
[3] and the advantageous characteristics of its architecture following the XMDD
approach [4] to model critical parts of an application in a graphical and domain-
specific process notation in order to keep it as simple as possible for participants to
contribute to the development process. He researches practicability, benefits and
drawbacks of this approach based on an exemplary case study in the healthcare
domain by means of the development of a tool for creating innovative business
models of diagnostic companies [5].

References

1. Osterwalder, A.: The Business Model Ontology - A Proposition in a Design Science
Approach. Dissertation (2004)

2. Margaria, T., Steffen, B.: Simplicity as a Driver for Agile Innovation. Computer 43(6),
90–92 (2010)

3. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven Development
with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 92–108.
Springer, Heidelberg (2007)

4. Margaria, T., Steffen, B.: Service-Orientation: Conquering Complexity with XMDD. In:
Hinchey, M., Coyle, L. (eds.) Conquering Complexity. Springer (2012)

5. Project, Service Opportunities in Personalized Medicine, http://dpm.ceip.de

Software Ecosystem Modeling

Eko Handoyo1,2

1 Universiteit Utrecht, Utrecht 3584 CC, The Netherlands
eko.handoyo@uu.nl

2 Universitas Diponegoro, Semarang 50275 Indonesia

Abstract. Increasingly, software producing organizations and their
partners are organizing around extendable platforms, forming software
ecosystems, a topic that is receiving increasing attention at the moment.
Unfortunately, inadequate modeling guidelines exist currently for creat-
ing theoretical and visual models of software ecosystems, hampering ad-
vancements in this area. Even though, many different tools are available,
these do not provide pointers and guidelines for performing correct and
insightful modeling of software ecosystems. The aim of this PhD project
is to create a modeling framework, consisting of tools, guidelines, and
foundations for modeling software ecosystems. With such a framework,
software ecosystem researchers, policy makers, and strategic managers of
software producing organizations will gain insight into their ecosystems
quicker and with higher fidelity.

Keywords: Software ecosystems, modeling, open source, role classifica-
tions, business modeling.

One of the challenges identified in the research agenda of Jansen et al. [4] is
the modeling of software ecosystems (SECOs). Although a plethora of modeling
tools and methods can be found, none of them provide a uniform way to model
SECOs in an insightful, comparative, efficient, and visually appealing manner.
The aim of this PhD thesis is to formalize models of SECOs and their modeling
processes and enable SECO researchers to provide insightful models. In the work
on software business modeling of Lucassen et al. [5], we compare three visual
business modeling techniques with a visual approach and identified the strong
and weak points of each modeling technique, based on applying the techniques
to three start-ups and interviews with industry experts. One of the findings of
this research and the research agenda of Jansen et al. is that SECO modeling
still resides in an early stage. The research project consists of the following steps:

1. Identify weaknesses in current modeling methods - By performing a
structured literature survey and reusing literature surveys in the domain, we
are able to identify limitations of current modeling methods. The preliminary
conclusions of this are already presented in the study of Lucassen et al. [5]

2. Establish roles in SECOs - As there seems to exist a multitude of roles
in typical SECOs, from service providers to open source contributors, and
from keystone organizations like Microsoft to app builders like Rovio games,
a formal role classification needs to be established that enables one to identify

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 227–228, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

228 E. Handoyo

all roles in a SECO. The fundamental results of this are formerly published
in the paper of Handoyo et al. [3].

3. Perform evaluation of modeling tools - As the literature illustrates
typical modeling methods, we also do a tool evaluation, in which tools are
compared on their ability to model large-sized ecosystems in an insightful
way. Also, descriptions are identified to provide a framework with typical
characteristics that can be collected about a SECO.

4. Formalize modeling for commercial SECOs - The descriptions, roles,
and models are combined into a formal modeling method that enables any
SECO modeler to quickly create insightful, useful, and effective models of
SECOs in a commercial context.

5. Generalize modeling method to open source SECOs - If possible
the method is expanded to include open source ecosystems as well, as these
introduce the concepts of one-man entities, foundations, donations, etc.

Finally, the importance of this project is to establish the SECOs formal char-
acteristics. The purpose is to serve as a foundation in order to further analyze
the complete SECO and answer the main Research Question (RQ): How can a
modeling framework be created that establishes a method for SECO model build-
ing that is effective, uniform, efficient, and useful? The scientific contribution
of this work will be a formal method for modeling a software ecosystem and
potentially also contributes to the domain of business ecosystem modeling. The
societal contribution will be a method that can be used to quickly develop a
SECO model for any ecosystem that is insightful, effective, efficient, and useful
in a commercial or open source context. Finally, the method provides strategists
with concrete tools to gain insight into SECOs and possibly alter their SECOs
based on the models.

Acknowledgments. This research project has been supported and financed by
the Indonesian PhD scholarship grant number: 3374.1/E4.4/2011.

References

1. Barbosa, O., Alves, C.: A systematic mapping study on software ecosystems. In:
Proc of IWSECO (2011)

2. Boucharas, V., Jansen, S., Brinkkemper, S.: Formalizing software ecosystem model-
ing. In: Proc. of the 1st int’l Workshop on Open Component Ecosystems, pp. 41–50.
ACM (2009)

3. Handoyo, E., Jansen, S., Brinkkemper, S.: Software ecosystem roles classification.
In: Proc. of the Int’l Conf. on Software Business (2013)

4. Jansen, S., Finkelstein, A., Brinkkemper, S.: A sense of community: A research
agenda for software ecosystems. In: 31st Int’l Conference on Software Engineering-
Companion Volume, ICSE-Companion 2009., pp. 187–190. IEEE (2009)

5. Lucassen, G., Brinkkemper, S., Jansen, S., Handoyo,E.: Comparison of visual business
modeling techniques for software companies. In: Cusumano, M.A., Iyer, B., Venkatra-
man, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 79–93. Springer, Heidelberg (2012)

6. Manikas, K., Hansen, K.M.: Software ecosystems-a systematic literature review.
Journal of Systems and Software (2012)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 229–230, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Impact of Enterprise System Modularity
on Process Performance

Carl Simon Heckmann

Institute for Enterprise Systems, University of Mannheim,
68131 Mannheim, Germany

heckmann@es.uni-mannheim.de

Abstract. Modularization and platform-based product development has been
adopted in a variety of engineering disciplines. In the information system
context modularity has been proposed as a means for increasing flexibility-to-
change and process performance but no evidence has been provided and limited
further analysis of this link could be observed. This Ph.D. project provides an
empirical analysis of the relationship between the degree of modularity of an
enterprise system and the performance of the supported business processes.

Keywords: Enterprise System, Platform, Modularization, Product
Development, Flexibility-to-change, Business Process Performance.

1 Research Abstract

Modularity as a concept received widespread attention in a variety of disciplines,
reaching from product [1] to organizational design [2], and various industries such as
automotive, aircraft or consumer electronics [3]. Following modular systems theory a
modular architecture is associated with a huge range of benefits such as increased
flexibility, reduced product- and switching costs [4] and improved innovation
outcomes [5]. In the information system (IS) context modularity can increase
flexibility to change a system and business process efficiency [6, 7]. However, no
guidelines about the optimal degrees of modularity are provided.

So far modularity has received little analysis in the context of enterprise systems
(ES). ES can be conceptualized as socio-technical systems [8, 9], consisting of a core
platform and a flexible sphere on both the organizational and technological level. This
study focusses on the application system only, typically building on packaged
software such as enterprise resource planning (ERP). However there is limited
guidance on the degree of modularity suited for clearly allocating modules to either
the core platform or the flexible sphere. The impact of IT on the enterprise level can
only be measured through intermediate contributions on the process level [10].
Consequently the effect of modularity of the application system on process
performance will be analyzed in this study. Therefore this Ph.D. project is intended to
answer the following research question:

What is the effect of application system modularity on process performance and how
is this effect influenced by different integration requirements of modules?

230 C.S. Heckmann

To answer this question a hybrid research approach will be applied. First hypotheses
will be formulated on the basis of state-of-the-art literature and evaluated through
case studies to build a model, which provides the base for a confirmatory quantitative
study. The challenge how to achieve process efficiency while keeping the system
flexible to change is relevant in all highly dynamic industries. As one instance of such
an industry the German energy sector will provide the context for this study. This
research focusses on the energy-supplier switching process as a single process to stay
in a feasible scope. This process is selected as it is standardized [11] and a high-
volume process, making it highly relevant for companies in this industry.

The contribution is to explain the link between the degree of modularity of an ES
and process performance and to empirically confirm the proposed link between
modularization and increased flexibility-to-change of the ES [7]. Thus this research
contributes to modular systems theory by applying it in the context of ES [4].
Practitioners can benefit from guidelines which degrees of modularity of ES are
optimal in different settings.

References

1. Jose, A., Tollenaere, M.: Modular and platform methods for product family design:
literature analysis. Journal of Intelligent Manufacturing 16(3), 373–390 (2005),
doi:10.1007/s10845-005-7030-7

2. Langlois, R.N.: Modularity in technology and organization. Journal of Economic Behavior
& Organization 49(1), 19–37 (2002), doi:10.1016/S0167-2681(02)00056-2

3. Sanchez, R., Mahoney, J.T.: Modularity, Flexibility, and Knowledge Management in
Product and Organization Design. Strategic Management Journal 17, 63–76 (1996),
doi:10.2307/2486991

4. Schilling, M.A.: Toward a General Modular Systems Theory and its Application to
Interfirm Product Modularity. Academy of Management Review 25(2), 312–334 (2000),
doi:10.5465/AMR.2000.3312918

5. Ethiraj, S.K., Levinthal, D.: Modularity and Innovation in Complex Systems. Management
Science 50(2), 159–173 (2004), doi:10.1287/mnsc.1030.0145

6. Gebauer, J., Schober, F.: Information System Flexibility and the Cost Efficiency of
Business Processes. Journal of the Association for Information Systems 7(3), 122–146
(2006)

7. Gebauer, J., Lee, F.: Enterprise System Flexibility and Implementation Strategies:
Aligning Theory with Evidence from a Case Study. Information Systems
Management 25(1), 71–82 (2008), doi:10.1080/10580530701777198

8. Orlikowski, W.J.: The sociomateriality of organisational life: considering technology in
management research. Cambridge Journal of Economics 34(1), 125–141 (2010),
doi:10.1093/cje

9. Maedche, A., Mueller, B.: Enterprise Systems-A Research Agenda. SSRN 2033145 (2012)
10. Ray, G., Muhanna, W.A., Barney, J.B.: Information Technology and the Performance of

the Customer Service Process: A Resource-Based Analysis. MIS Quarterly 29(4), 625–652
(2005), doi:10.2307/25148703

11. Bundesnetzagentur, Anlage zum Beschluss BK6-06-009 - Darstellung der
Geschäftsprozesse zur Anbahnung und Abwicklung der Netznutzung bei der Belieferung
von Kunden mit Elektrizität. GPKE (2011)

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 231–232, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Managing Speed in Companies Developing
Large-Scale Embedded Systems

Antonio Martini

Software Engineering Division
Chalmers University of Technology

Göteborg, Sweden
antonio.martini@chalmers.se

Abstract. An open issue is how to reach quickness and responsiveness in
addressing customer needs within large-scale embedded system product
development, where the processes are bound to the physical product
development. Speed is a key quality that needs particular attention. We are
developing a framework to understand what kinds of speed are important, what
factors are determining them, what are the visible effects and what is possible to
improve in order to reach speed related business goals.

Keywords: Agile software development, development speed, large scale
software engineering, embedded systems, software business.

1 Contribution

Many industries in pure software development have recently adopted Agile Software
Development in order to deliver customer values as fast as possible [1], [3]. An open
issue is how to reach such quickness and responsiveness within large-scale embedded
system product development, where the processes are bound to the physical product
development [2]. A key quality of such process is the speed with which the software
is rolled out. A company that seeks to optimize its return of investment of R&D (ROI
of R&D) must manage three kinds of speed [4]:

• The speed with which customer needs lead to new product offers (1st
Deployment speed),

• The speed with which new features are replicated in new products (Replication speed), and
• The speed with which change requests to an existing product are realized (Evolution speed).
In [5] we showed how these three kinds of speed depend on Interaction speed: how
fast teams (or other organizational units), resolve each others’ needs.

Different kinds of speed depend on a number of organizational, architectural, and
individual factors that may or may not be managed (Fig. 1). The aim of my PhD
thesis is to find such factors, to recognize the effects and to propose solutions
(practices) to manage the factors, which in the end would help reaching speed-related
business goals (and therefore optimizing Return of Investment of R&D).

232 A. Martini

Our approach is to equi
instruments for continuous

Speed wastes threaten th
visible effects, observable b
caused by one or more facto
teams to find which one is
time and resources. When t
(depending on the factor) ma

We have conducted mu
embedded software: so far,
highlighted different factors
factors influencing 1st deplo
An important set of factors i
practical guidelines that need

References

1. Bosch, J., Bosch-Sijtsema
legacy software product lin

2. Karlstrom, D., Runeson, P
IEEE Software 22, 43–49 (

3. Lindvall, M., Muthig, D.,
Kahkonen, T.: Agile softwa

4. Martini, A., Pareto, L., Bosc
of the 16th International Sof

5. Martini, A., Pareto, L., Bo
among Agile Teams in
International Conference in

Fig. 1.

ip managers and teams with both theoretical and pract
process improvement (Fig. 2).

Fig. 2.

he achievement of business goals, and can be recognized
by managers together with the team(s). Effects, in turn
ors. Managers can investigate the status of such factors in
the cause for the effect, reducing the solution space, sav
the factors are recognized, both the team and the mana
ay decide to apply recommendations.
ultiple-case case studies in 3 large companies develop
, the 17 interviews and the survey of 35 respondents h
s related to the mentioned kinds of speed: we have explo
yment speed, replication speed [4] and interaction speed
s related to communication in ASD. We have proposed so
d further research and validation.

a, P.M.: Introducing agile customer-centered development i
ne. Software: Practice and Experience 41 (2011)
.: Combining agile methods with stage-gate project managem
(2005)
 Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., May
are development in large organizations. Computer 37 (2004)
ch, J.: Enablers and inhibitors for speed with reuse. In: Proceed
ftware Product Line Conference - SPLC 2012. ACM (2012)

osch, J.: Improving Businesses Success by Managing Interacti
Large Organizations. Accepted for Publication in the

n Software Business (2013)

tical

d by
are

n the
ving
ager

ping
have
ored
[5].

ome

in a

ment.

y, J.,

dings

ions
4th

G. Herzwurm and T. Margaria (Eds.): ICSOB 2013, LNBIP 150, pp. 233–234, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Global Manufacturing Networks as
Software-Intensive Service Providers

Motivation, Relevance, Research Objective

Tobias Tauterat

Graduate School of Advanced Manufacturing Engineering (GSaME)
Universität Stuttgart, Chair of Information Systems II (Business Software),

Keplerstraße 17, 70174 Stuttgart, Germany
Tobias.Tauterat@gsame.uni-stuttgart.de

Abstract. Developing the factory of the future is an objective of the Graduate
School of Excellence advanced Manufacturing Engineering (GSaME) in
Stuttgart. To achieve this goal several research areas concerning the factory of
the future exist. For example, strategies and factories development, information
and communication for manufacturing, material and process engineering, or
management of global manufacturing networks. One specific research project
within the area “management of global manufacturing networks” is “global
manufacturing networks as software-intensive service providers”, which started
in December 2012. This research project deals with the questions, how the
factory of the future is able to satisfy its increasing need of information and
communication technology (ICT) in the future, and how to compose different
ICT-services, which should be integrated in the existing global manufacturing
network in a second step. The contribution in hand considers the motivation,
relevance, and research objective of this research project.

Keywords: Global manufacturing networks, information and communication
technology, manufacturing, service provider, software-intensive service provider.

1 Motivation

Against the background of global megatrends such as globalization, individualism,
knowledge in global ICT, or urbanization, the manufacturing industry is facing new
challenges in the future. To meet these challenges in order to develop the factory of
the future several generic concepts already exist. For example, there is a need to react
flexible on economic turbulences. So changes from linear and streamlined supply
chains to global manufacturing networks can be observed. [1]

ICT has a twofold role in developing the factory of the future. On the one hand
ICT can be considered as an enabler to design the factory of the future, such as
building and supporting manufacturing ecosystems and their processes. On the other
hand, using ICT has an influence on the design of the product itself. In addition to the
still significant and undoubted manufacturing of physical goods, the net product
potentialities will be fully exhausted in the course of industrial tertiarization by the

234 T. Tauterat

integration of products and services to so called hybrid bundle of services in the
future. The traditional factory using on-premise ICT will be extended by using and
providing use-based ICT-services and architectures with high usability ("plug and
produce") in the future. Manufacturing factories providing scalable hardware,
software and service products will act as so called software-intensive service
providers. [2]

2 Relevance

The relevance of this research project can be seen in two main facts:

1. The future vision of factories as software-intensive service providers is widely
unexplored.

2. The integration of these software-intensive factories of the future within existing
global manufacturing networks is widely unexplored as well.

If we take a detailed look at these two main facts, the role of ICT and its creation of
value for global manufacturing networks are mostly unknown and derived business
models are missing. Moreover there is a lack of knowledge about design rules for the
systematic integration of software-intensive service providers into (existing) global
manufacturing networks. This research project can help to close this gap by
developing solutions for the vision of a global and adaptable manufacturing network
as software-intensive and value-adding service provider.

3 Research Objective

Main objective of this research project is to answer the question, which contribution
ICT can provide with regard to different design areas within a manufacturing factory
as well as within a global manufacturing network in context of process, product and
service design. Doing so, software-based business models and business model
components, such as value proposition, value dissemination and value capture, have
to be analyzed and designed. In addition it is necessary to explore how a possible
software ecosystem has to be conceptualized for this new kind of factory. For
example it has to be considered whether and how this software ecosystem can be
integrated in the existing manufacturing network. During the design and the
development of the software ecosystem it is necessary to consider the area of tension
between standardization and customization of hybrid bundle of services, such as e-
services and business software.

References

1. Westkämper, E.: Next Generation Manufacturing - Manufacturing 2030. In: Manufuture
2011 Conference, Wroclaw (2011)

2. Herzwurm, G., Pietsch, W., Schockert, S., Tauterat, T.: QFD for Cloud Computing. In:
Proceedings of the 18th International Symposium on Quality Function Deployment, Tokyo
(2012)

Author Index

Abrahamsson, Pekka 141, 166
Ahmad, Nadeem 223

Bloemendal, Ewoud 195
Bosch, Jan 60, 79
Boßelmann, Steve 225
Brinkkemper, Sjaak 212
Buxmann, Peter 1

Dieste, Oscar 217

Furtmueller, Elfi 26, 73

Garćıa-Mart́ınez, Ramón 217
Gencel, Cigdem 166
Guceri-Ucar, Gozem 178

Handoyo, Eko 212, 227
Heckmann, Carl Simon 207, 229
Hess, Thomas 153
Hoerndlein, Christian 153
Holmström Olsson, Helena 79

Jansen, Slinger 183, 195, 212

Kaltenecker, Natalie 153
Koch, Stefan 178
Kude, Thomas 130

Laatikainen, Gabriella 117
Lucassen, Garm 183

Maedche, Alexander 207
Marciuska, Sarunas 166

Martini, Antonio 60, 231
Mazhelis, Oleksiy 117
Merlino, Hernán 217

Neubauer, Johannes 13
Novelli, Francesco 31

Ojala, Arto 117

Pareto, Lars 60
Pesado, Patricia 217
Phaphoom, Nattakarn 141
Pietsch, Wolfram 102
Popp, Karl Michael 130
Pussep, Anton 1

Riehle, Dirk 90
Runeson, Per 48

Schief, Markus 1
Schütz, Sebastian Walter 130
Steffen, Bernhard 13

Tate, Mary 26
Tauterat, Tobias 233

van Rooij, Kevin 183

Wagner, Marcus 43
Wang, Xiaofeng 141
Weikert, Florian 90
Wnuk, Krzysztof 48

	Preface
	Organization
	Table of Contents
	Software Business Models and Business ProcessModeling
	The Impact of Software Business Model Characteristicson Firm Performance
	1 Introduction
	2 Method
	2.1 Sample
	2.2 Software Business Model Variables
	2.3 Control Variables
	2.4 Performance Variables
	2.5 Statistical Analysis Applied

	3 Results
	3.1 Descriptive Results
	3.2 Regression Analyses

	4 Discussion
	4.1 Insights from Financial Performance
	4.2 Insights from Market Performance
	4.3 Implications for Researchers
	4.4 Implications for Practitioners

	5 Conclusion
	References

	Second-Order Servification
	1 Introduction
	2 BPM: State of the Art
	3 Second-Order Business Activities
	4 A First-Order Solution for a Flight Booking System
	5 Generalization to Second-Order Modeling
	5.1 Interface Graphs
	5.2 Going Second-Order
	5.3 Implementing ‘PayFlight’
	5.4 Second-Order in Action

	6 Conclusion and Future Work
	References

	Sustainable Business Models for Services Using SemanticWeb Components: Insights from the Field
	1 Introduction
	2 Modified Action Design Research
	3 The Interaction of Theory, Practice and Community
	4 Conclusion
	References

	IT Markets and Software Industry
	Measuring Sales Cannibalization in Information Technology Markets: Conceptual Foundationsand Research Issues
	1 Introduction
	2 Sales Cannibalization: An Overview and Basic Concepts
	3 Detection and Measurement of Sales Cannibalization
	4 Sales Cannibalization in Information Systems Research
	5 Research Issues
	6 Summary and Conclusions
	References

	Determinants and Dynamics of Technology-RelatedAcquisitions: The Case of Software-Based Industries
	1 Introduction and Research Questions
	2 Methodology
	3 Results
	4 Conclusions and Discussion
	References

	IT within Organizations
	Engineering Open Innovation – Towards aFramework for Fostering Open Innovation
	1 Introduction
	2 Background and Definitions
	3 Literature Review
	3.1 Software Engineering Techniques for Open Innovation
	3.2 Software Engineering Processes That Foster Open Innovation
	3.3 Software Engineering Research Methodologies

	4 Engineering the OI–SE Framework
	4.1 Technical Dimension
	4.2 Methodological Dimension

	5 Conclusions
	References

	Improving Businesses Success by Managing Interactionsamong Agile Teams in Large Organizations
	1 Introduction
	2 Literature Review
	3 Theoretical Fram mework
	4 Research Design
	5 Findings
	6 Discussion
	7 Threats to Validity and Limitations
	8 Conclusions
	References

	Current Trends in Employee RecruitmentUsing the Internet
	1 Introduction
	2 Results
	3 Conclusion
	References

	Software Product Management
	Post-deployment Data Collection in Software-IntensiveEmbedded Products
	1 Introduction
	2 Background
	2.1 Agile Software Development
	2.2 Customer Involvement

	3 Research Site and Method
	3.1 Research Site
	3.2 Research Method

	4 Findings
	4.1 Pre-development Techniques
	4.2 During Development Techniques
	4.3 Post-deployment Techniques
	4.4 Key Opportunities

	5 Discussion
	6 Conclusions
	References

	A Model of Commercial Open SourceSoftware Product Features
	1 Introduction
	2 Scope and Definitions
	3 Research Process
	3.1 First Iteration: Initial Model
	3.2 Second Iteration: Revised Model
	3.3 Third Iteration: Quantitative Evaluation and Enhancements

	4 Model of Product Features
	4.1 Legal Features
	4.2 Features Related to Intellectual Property
	4.3 Service Features

	5 Ranking of Features
	6 Discussion and Limitations
	7 Related Work
	8 Conclusions
	References

	A Framework for Strategic Positioning of IT-Products
	1 Positioning of IT Products
	2 ‘Directions’ for the Management of IT-Products
	3 Product Levels
	4 Positioning of IT T Products
	4.1 Scope and Objectiv ve
	4.2 Generic Business Models

	5 Evaluation
	6 Conclusion
	References

	Cloud Computing
	Cloud Services Pricing Models
	1 Introduction
	2 Related Work
	2.1 The SBIFT Pricing Model
	2.2 Software Pricing

	3 Methodology and Data
	4 Research Findings
	4.1 SBIFT Model in Cloud Context
	4.2 Pricing Models in Cloud Industry

	5 Conclusions and Further Research
	References

	The Impact of Software-as-a-Serviceon Software Ecosystems
	1 Introduction
	2 Literature Review
	2.1 Software-as-a-Service
	2.2 Software Ecosystems
	2.3 SaaS in Software Ecosystems

	3 Case Study
	3.1 Research Design
	3.2 Data Sources
	3.3 Data Analysis
	3.4 Empirical Results

	4 Discussion and Conclusion
	References

	Towards a Conceptual Framework for Assessingthe Benefits of Cloud Computing
	1 Introduction
	2 Related Work
	2.1 Analysis of Cloud Computing Benefits
	2.2 Perspectives for Benefit Assessment

	3 Research Design
	4 A Conceptual Framework for Cloud Benefit Assessment
	4.1 IT Infrastructure and Services
	4.2 Business Process
	4.3 Finance
	4.4 Innovation and Growth
	4.5 Customers

	5 Conclusions and Future Work
	References

	Entrepreneurship and Startup Companies
	The Importance of the Business Ideafor New Venture Creation in the Software Industry
	1 Introduction
	2 Theoretical Development
	2.1 Definition
	2.2 Related Work
	2.3 Research Model and Hypotheses Development

	3 Scale Development Procedure and Main Survey
	3.1 Step 1: Conceptualization and Development of Indicators
	3.2 Step 2: Refinement of Indicators
	3.3 Step 3: Main Survey
	3.4 Analysis of the Measurement Model
	3.5 Analysis of the Path Model

	4 Discussion, Limitations, and Further Research
	References

	Exploring How Feature Usage Relates to Customer Perceived Value: A Case Studyin a Startup Company
	1 Introduction
	2 Related Work
	2.1 Customer Perceived Value
	2.2 Usage

	3 Case Study
	3.1 Case Study Design

	4 Analysis and Results
	5 Threats to Validity
	6 Conclusions and Future Work
	References

	Business Incubation Practices and SoftwareStart-up Success in Turkey
	1 Introduction
	2 Exploring Business Incubation and Software Start-up Success: A Field Study
	3 Conclusions and Future Research
	References

	Software Platforms and Software Ecosystems
	Ecosystem Health of Cloud PaaS Providers
	1 Introduction
	2 Research Approach
	3 Data Gathering
	3.1 Key Data Elements
	3.2 Data Preparation

	4 Indicators
	4.1 Active Developers
	4.2 Spin Offs
	4.3 Interest

	5 Results
	5.1 Indicator Results

	6 Analysis
	7 Discussion of PaaS Ecosystem Health
	8 Conclusion and Future Work
	References

	Defining App Stores: The Role of CuratedMarketplaces in Software Ecosystems
	1 Introduction
	2 Conceptual Model: Defining App Stores
	3 Research Approach: Identifying Features and Policies
	3.1 Validity
	3.2 Case Descriptions

	4 CaseResults
	5 Analysis of the Results
	6 Conclusions and Further Research
	References

	Towards Platform-Based EnterpriseSystems – Conceptualization and Research Directions
	1 Introduction
	2 State-of-the-Art
	2.1 Enterprise Systems
	2.2 Platform-Based Product Development

	3 Conceptualization and Research Directions
	4 Conclusion
	References

	Software Ecosystem Roles Classification
	1 Introduction
	2 Role Classification
	2.1 Selected Papers
	2.2 Classification Development

	3 Conclusion
	4 FurtherResearch
	References

	Formal Description for SaaS Undo
	1 Introduction
	2 Background
	3 Theoretical Justification
	3.1 Initial Description
	3.2 Formal Description
	3.3 Use Method

	4 Conclusions
	References

	Doctoral Symposium
	Virtual Character Based Interactive Interfacesfor Deaf and Functionally Illiterate Users
	1 Virtual Character Based Interfaces
	References

	Simplicity in Application Developmentfor Business Model Design
	1 Summary
	References

	Software Ecosystem Modeling
	References

	Impact of Enterprise System Modularityon Process Performance
	1 Research Abstract
	References

	Managing Speed in Companies DevelopingLarge-Scale Embedded Systems
	1 Contribution
	References

	Global Manufacturing Networks as Software-Intensive Service ProvidersMotivation, Relevance, Research Objective
	1 Motivation
	2 Relevance
	3 Research Objective
	References

	Author Index

