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Abstract. We investigate the performance of our audio-visual speech recogni-
tion system in both English and Greek under the influence of audio noise. We 
present the architecture of our recently built system that utilizes information 
from three streams including 3-D distance measurements. The feature extraction 
approach used is based on the discrete cosine transform and linear discriminant 
analysis. Data fusion is employed using state-synchronous hidden Markov  
models. Our experiments were conducted on our recently collected database un-
der a multi-speaker configuration and resulted in higher performance and robust-
ness in comparison to an audio-only recognizer. 
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1 Introduction 

Speech is the most natural form of communication for humans, and therefore automat-
ic speech recognition (ASR) is one of the most intuitive forms of human-computer 
interaction (HCI). To improve ASR accuracy and robustness to noise, incorporation of 
visual information in conjunction with audio has been shown to be beneficial [1, 2]. 
However, in most research studies, such information is obtained from traditional planar 
video, thus not utilizing 3D visual speech articulation information. To alleviate this 
shortcoming, only a handful of efforts have appeared employing multiple or stereo 
cameras to capture the speaker's face [3-5], with an increase though in hardware cost 
and software complexity. We have recently proposed an alternative to such approach, 
by aiming to capture 3D visual speech information from the depth sensor of the novel 
Kinect device that operates based on the structured light method [6]. That work how-
ever considered audio-visual speech recognition (AVASR) in English only [7]. 
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In this paper, we extend our previous work to consider AVASR in Greek, deviating 
from the traditional AVASR literature paradigm that considers one language only. 
Our system has been tested using two different languages, English and Greek, in a tri-
stream multimodal fusion approach to ASR, where audio, planar video and distance 
information are combined for a small-vocabulary recognition task in order to keep 
data collection at a manageable level. Our experiments demonstrate consistent bene-
fits when using the additional modalities to the performance and robustness for the 
ASR task across the two languages considered. 

The design and experimentation using our system is presented in the next sections 
as follows: Initially, the system architecture is presented in Section 2 with details 
about the visual feature extraction and fusion. The experimental setup and results are 
discussed in Section 3 and our conclusions are presented in Section 4. 

2 Description of the System Architecture 

The input streams used by our system are audio, planar video and the distance infor-
mation stream captured by the Kinect. The audio stream was captured using a Zoom 
H4 external voice recorder exhibiting good directionality and frequency response at 
16-bit, 44.1kHz, PCM format. The planar video (24-bit color, VGA resolution) and 
the distance information (11-bit, VGA resolution) were both captured using the Ki-
nect. The system architecture is shown in figure 1, and the various modules of the 
system are described in more detail in the following paragraphs. 

2.1 Visual Front-End 

The visual front-end is responsible for detecting and tracking the mouth region of 
interest (ROI) from each video frame. A nested setup using 2 Viola-Jones detectors 
[8] is used to detect the face and mouth of the speaker respectively. The nested  
implementation minimizes the number of false mouth detections by only searching for 
a mouth if the face of the speaker has already been detected. In addition, the coordi-
nates of the mouth bounding box are smoothed by a median filter in order to minimize 
abrupt movements due to false detections. The detected mouth ROI coordinates from 
the video stream are also used for extracting the mouth region from the distance  
information stream. Finally, the size of both ROIs is normalized to 64x64 pixels.  

2.2 Feature Extraction and Selection 

The next step is to extract meaningful features from all 3 streams. For the audio 
stream, the well known Mel frequency cepstral coefficients (MFCCs) are extracted 
using the “Hidden Markov Model Toolkit” (HTK) [9], reaching a dimensionality of 
39 (including first and second derivatives). For the video and distance streams, the 
coefficients of the 2-D discrete cosine transform (DCT) are extracted and interpolated 
to 100 Hz to match the rate of the audio features. Following is the feature selection 
step, which is comprised of 2 parts. Initially, the 45 highest energy coefficients of the 
upper left corner of each DCT image are selected as those with the highest informa-
tion content. Subsequently, linear discriminant analysis (LDA) is applied to the fea-
tures and those corresponding to the highest eigenvalues are selected as the most  



 Robust Multi-Modal

informative ones. Finally, 
feature vector in order to ca
nality is 21 for each of the v

 

Fig

2.3 Data Fusion and M

Hidden Markov models (H
ing speech. In our experim
order to effectively fuse the

Pr[ ]AVD
t

s

o | c =
∈

This type of model realizes
sion (class conditional) pr
every stream, raised to a s
bound to the reliability of
stream. AVD

to denotes the tri

the three streams, c denotes
The HMMs used in our 

l Speech Recognition in Two Languages Utilizing Video 

the first and second derivatives are appended to the fi
apture the dynamics of speech. The final feature dimen
video and distance streams.  

 

g. 1. Overview of the system modules 

Modeling 

HMMs) are the most commonly used classifiers for mod
ments we utilized state-synchronous multi-stream HMM
e data from all 3 streams. 

{ } 1

[ , ]
Ksc

λ(s) sct
sck d t sck scks

k=A,V,D

ω N (o ;m s )
∈

∏  

s a decision-fusion approach, by computing the state em
robability as a product of the observation likelihoods
specific exponent λ, as shown in eq. 1. This exponen
f the stream itself and defines the contribution of e
i-modal observation vector },,{ D

t
V
t

A
t

AVD
t oooo = , s is one

s the HMM state and t is the time (frame) of the utteran
work have a 3-state left-to-right topology, model

45 

final 
sio-

del-
s in 

(1)

mis-
s of 
nt is 
each 
e of 

nce. 
ling  



46 G. Galatas, G. Potamianos, and F. Makedon 

tri-phones with 16 Gaussian mixtures per stream and state. HTK patched with HTS 
[10] were used for training and testing using the aforementioned models. 

3 Experimental Results and Discussion 

To support this work, we have captured our own database, the bilingual audio-visual 
corpus with depth information or BAVCD [11], that includes audio, planar video, and 
distance measurements using a voice recorder, the Kinect, and an HD camera. The 
corpus contains data from 15 speakers for the English part and 6 speakers for the 
Greek part, uttering connected digit strings. 

 

 
Fig. 2. Word accuracy results for English (top) and Greek (bottom) under various SNR levels 
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Our system was extensively tested in a multi-speaker setup under a variety of bab-
ble noise levels from the Noisex-92 database [12] in order to simulate a realistic smart 
home environment. Furthermore, training was conducted on clean speech, simulating 
the mismatch between the training and testing conditions. The results for each lan-
guage are shown in figure 2. The best performance was achieved in the lack of noise 
when all 3 streams were utilized by the system. Under these conditions, the word 
accuracy for the Greek part was 99.02% and for the English part 96.32%. The  
performance for lip-reading without using audio was consistent for both parts and 
exhibited a 9.2% relative improvement using LDA. The overall system performance, 
degraded as the audio noise levels grew higher, but always remained higher than the 
performance of the individual streams, leading to a significant improvement under 
very noisy conditions e.g. 45.63% instead of 11.55% word accuracy for our system in 
comparison to an audio-only recognizer for a signal to noise ratio (SNR) of -10dB in 
Greek. The system exhibited better performance for the Greek language due to the 
smaller number of Greek speakers in the database in conjunction with the multi-
speaker setup of the experiments.  

4 Conclusions 

In conclusion, we developed a novel speech recognition system that in addition to 
audio utilizes planar video and distance measurements captured by the Kinect and we 
tested its performance in both English and Greek. We have shown that our system 
exhibits high recognition rates in clean audio conditions but is also robust in noisy 
conditions, achieving significantly higher performance than an audio-only ASR sys-
tem. Finally, our system's performance is consistent in both languages, constituting a 
reliable solution for speech recognition. 
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