
Benchmark 7

Abstract

All authors of persistent systems claim that their systems are super fast. This

chapter compares the performance of ten major persistent systems on a bench-

mark which involves up to one million books and a many-to-many relation

between books and their authors. The books can be with or without abstracts.

The results are most interesting and intriguing.

Keywords

Performance • Testing • Persistence • Benchmark • Persistent system • Persistent

data structures • DOL • Memory blasting • PPF • Boost • PSE Pro • SQLite • Java

serialization • C# serialization • QSP • Post++

7.1 History of this Benchmark

We, the authors, met for the first time at the Department of Biochemistry, South

Bohemia University, Nové Hrady, Czech Republic, when discussing the architec-

ture of software1 for processing the output of liquid mass spectrometers.2 In this

project, 2 GB of data must by restructured, stored and analyzed by complex

algorithms on standard PC hardware within 3 minutes. The calculation involves

removal of random noise and conversion of the raw data into a spectrum of peaks.

The work is supported by E.U. and is still in progress at the time of writing.3

Each of us comes from an opposite corner of the programming profession. Petr is a

young application programmer who is always on lookout for new, better ways of

WARNING: Comparing times shown in this chapter without considering features of each system

as discussed in the previous chapters may lead to a wrong conclusion about what is the “best”

persistent system—if there is such a thing.

1 Urban et al. (2009, 2012).
2 http://en.wikipedia.org/wiki/Liquid_chromatography-mass_spectrometry
3 E.U. grant CENAQUA CZ1.05/2.1.00/01.0024.

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_7, # Springer-Verlag Berlin Heidelberg 2014

223

http://en.wikipedia.org/wiki/Liquid_chromatography-mass_spectrometry

programming and Jiri spent the past 24 years designing tools for a new, more efficient

software design, with emphasis on automatic persistence and advanced class libraries.

Later on, when we began to work on this book, we discussed how to compare the

performance of the various persistent systems, and we decided that Jiri should not

be involved in their evaluation; it would be difficult for him to remain unbiased. All

the code, testing, and most of the text in this chapter, was produced by Petr.

Our first benchmark was based on the mass spectrometer project, which used

numerous bi-directional associations (one-to-many and many-to-many) that are not

supported by any standard library. Except for DOL and PPF, running this bench-

mark with the existing persistent system required extensive custom modifications—

essentially replacing all the bi-directional associations by several containers or

pointers. We planned to test about ten typical persistent system, and doing every-

thing ten times was not only beyond our capacity—the testing would depend very

much on how we would modify each system.

We eventually decided to strip the benchmark to the bare bones as described in

Sect. 7.2 and Fig. 7.1, using class names that would be more familiar to the average

reader. We believe that the ManyToMany association should be in the benchmark

in order to reflect the complexity of real-life projects, and that blocks of unstruc-

tured text (here book abstracts) often occur in practical problems.

We also added a step in which one quarter of the objects is removed.We believe that

removal of objects is critical inmany applications, and should be part of any benchmark.

The steps which we observed are the same as in our original benchmark. We test

the time to build the data organization, traverse and sort them, search, remove data,

store them to disk, and then—in a separate run, retrieve them from the disk. We also

observe the size of the disk file and check the integrity of the data.

When displaying the results graphically, we ran into the problem of numbers

falling into a wide range where linear graphs show clearly which programs are the

worst rather than which are the best. In such cases, we use logarithmic scale. When

analyzing the results, always watch for what type of scale is used! It may appear

that one system is twice as fast as another, but when you interpret the scale correctly

you see it is ten times faster.

Fig. 7.1 ER diagram of the

benchmark. Except for small

aesthetic differences, also the

UML class diagram

224 7 Benchmark

7.2 Persistent Systems Tested

In alphabetic order:

• Boost C++ library with STL containers or Boost data structures

• C# serialization, as implemented in .NET

• DOL (Data Object Library) library of persistent data structures (Code Farms)

• Java serialization, as implemented in java.io

• Java serialization combined with InCode data structures

• ObjectStore # PSE Pro for C++ combined with InCode data structures

• POST++ (Persistent Object Storage for C++) with STL containers

• PPF (Persistent Pointer Factory) with InCode data structures (Code Farms)

• QSP (Quasi Single Page) persistence for Objective-C4 combined with InCode

• SQLite database for both persistence and data relations (no data structures used)

In graphs and tables, we abbreviate the names of some technologies, for example

P++ stands for POST++, J for Java, B for BOOST or PSE for “PSE Pro”

Since persistent objects are an alternative to using a database, we included

SQLite in our testing. It is a relational database which requires one either to

match the benchmark data structures to the database format or to forget about

object-oriented programming and remain in the realm of relational thinking—

essentially to replace all the data structures by the database.5

The InCode library includes bi-directional associations, and we used it in

environments where the persistent system does not support such associations.

Using the same library helps to reduce dependency of the results on the implemen-

tation of the data structures.

We find the tables and graphs presented below most interesting. However, when

comparing individual technologies, it would be a grave mistake to look just at the

speed of the processing or the size of the output files. The performance is important,

but sometimes the flexibility to support evolving software or the ability to transfer

data between different operating systems may outweigh the performance. For the

features of individual products see Tables 7.1 and 7.2.

The value of measuring performance is twofold:

1. It tells us how the different approaches to persistence, rather than the individual

products compare to each other: serialization vs. workingwithmemory pages,XML

serialization vs. binary serialization or primary data storage in memory vs. on disk.

2. If you choose any particular product because of the features it offers, the

performance results tell you what penalty you are going to pay for those features.

Notes

– We also wondered whether there should be a column for integrity checking, but

then we decided not to include it. Integrity checking is usually performed by the

4 The prototype described in Sects. 2.5 and 6.5.
5 This is what we did when testing with SQLite.

7.2 Persistent Systems Tested 225

Table 7.1 Persistent systems and the features they offer—look for more explanation in the text

Change

or add

to class/

alloc

(a)

Persistence

needs code

generator

(b)

Reuse of

free

objects

(c)

Schema

evolution/

portable data

(d)

Pointers

soft/hard

(e)

Loads only

data actually

needed

(f)

Trans-

actions

(g)

DOL

(3 modes)

+class Y free list Y/Y hard

OS

PPF

+InCode

+class free list soft Y

Java

+InCode

+class OS hard

POST++ +class memory

manager

limited/N hard Y Y

Java

serialization

+class OS Y/Y hard

C#

serialization

+class OS Y/Y hard

PSE Pro +alloc Y memory

manager

Y/N hard Y ACID

Boost +class OS Y/Y hard

SQLite DB OS Y/Y soft Y ACID

Objective-C

QSP

+class memory

manager

hard

Table 7.2 Persistent systems and class libraries

Data structure libraries

DOL (3 modes) Integrated with an extensive library of intrusive and bi-directional associations

Other libraries: would have to be re-coded

PPF Has no special library, works with InCode (only some classes so far)

Other libraries: replace pointers by the PPF smart pointer

Java serialization Designed to work with Java Collections

Other libraries: may be used without conversion

POST++ Integrated with JudyLibrary, STL with serious limitations

Other libraries: pointers must be registered by a special statement

C# serialization Designed to work with Java Collections

Other libraries: may be used without conversion

PSE Pro Has its own collection classes and a version of STL

Other libraries: all allocation calls must be converted

Boost Integrated with the extensive Boost libraries and STL

Other libraries: user must code serialization methods

SQLite Does not have data structures, only a limited choice of relations

Other libraries: cannot be used

Objective-C QSP Has no special library, works with InCode (only some classes so far)

Other libraries: register pointers as in POST

226 7 Benchmark

data structure library, not by the persistence. Libraries that come with DOL and

InCode do provide integrity checking.

– We did not test Objective-C with Archiving because it would take too much

work to prepare the benchmark in that style.

Columns in Table 7.1

Column (a) When making a program persistent, most systems require the applica-

tion to add something to its classes (to make classes persistent). That

does not apply to SQLite which is a database. PSE Pro does not require

any additions to the classes; instead, all allocation calls within the

application code must be modified.

Column (b) Usually when code generator is used it implies a simpler user interface.

InCode library always uses a code generator, but that is for data

structures, not for the persistence.

Column (c) Serializations usually leave the management of free objects to the

operating system. All the systems based on memory paging manage

free objects, but we suspect that sophistication and performance differs

significantly from one system to another. The benchmark only checks

whether the removal of some objects will reduce the disk file which is

an indication that some memory management is in place.

Column (d) This column combines two related features: support for schema evo-

lution6 and the ability to transfer data between different environments,

e.g. between Windows and Unix. In DOL, it is the ASCII mode that

supports schema evolution. In Java serialization and C# serialization

the XML format supports it.

Column (e) Hard pointers are traversed at the same speed as if you don’t use

persistent objects. Soft pointers perform some arithmetic on each

dereference. Note, however, that the benchmark results for PPF later

in this chapter are surprisingly good in spite of using soft pointers.

Column (f) When processing certain types of data, for example in reservation systems,

we need the ability to work with only a small subset of the data. In other

situations such as VLSI CAD systems, all the data is needed in memory.

Column (g) As defined in Chap. 1, the scope of this book does not include multi-

user systems. However, in some application, support of transactions is

a bonus. ACID stands for Atomicity, Consistency, Isolation,
Durability.

7.3 Description of the Benchmark

The benchmark includes classes Library, Book, Author and BooksToAuthors; see

Fig. 7.1.

6 Sometimes also called schema migration.

7.3 Description of the Benchmark 227

http://dx.doi.org/10.1007/978-3-642-39323-5_1
http://en.wikipedia.org/wiki/Atomicity_(database_systems)#Atomicity%20(database%20systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)#Consistency%20(database%20systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)#Isolation%20(database%20systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)#Durability%20(database%20systems)

Class Book has three non-structural members7:

– name is randomly generated title of the book in format “XX book N”, where XX

are two random ASCII characters and N is a random number.

– vote is the number of votes by the readers, random integer.

– abstract is a text of random length, max. 512 characters.

Class Author has one non-structural member:

– name is randomly generated similar name of the author, in format “XX author N”.

Class BooksToAuthors represents the link in the ManyToMany relation, and it

has only structural members.

There are 5-times fewer Authors than Books. A Book can have up to three Authors,

an Author can have any number of Books. The Books in the Library are sorted by vote.

In real application, Books would likely be stored in a dictionary indexed by the Book’s

name. Considering the tests we performed, this was not necessary.

As we expected, participants questioned the usefulness of the benchmark and

whether it reflects the characteristics of real life projects. The fact that the perfor-

mance of several products were significantly improved (more than an order of

magnitude) as the result of this competition—see Sect. 7.9, we believe, is the

ultimate proof of its value.

7.4 Monitored Data

We monitored time needed for individual tasks performed in the benchmark. For

each number of books, we repeated the run five-times and recorded minimum,

maximum and average values. As can be seen from the graphs, the difference

between the runs was insignificant (Sects. 7.4, 7.5, 7.7 and Figs. 7.3 and 7.9).

We tested three sizes of problem:

N ¼ 50,000, 250,000 and 1,000,000 books

all three with/without book abstracts.

We did not perform any monitoring or processing involving abstracts. We only

wanted to see their influence on the size of the disk file, and possibly on the times of

individual tasks due to increased system paging.

Each tests consisted of two runs:

– The first run executed tasks 1–4.

– The second run executed tasks 5–10.

We tested separately the performance for the data with/without abstracts.

Checksums were used to make sure that the data was stored and retrieved

without corruption and in full size.

Hardware used for the testing:

– CPU—AMD Phenom II, X4 965 3.4 GHz (4 cores), 64 bit;

– RAM—KINGSTON DDR3 2000 MHz CL9, 6 GB (3 � 2 GB);

7Numbers or text, anything but references (or pointers).

228 7 Benchmark

– HDD—MAXTOR DiamondMax 23, SATA II NCQ 7200 rpm 32 MB,

1000 GB;

– OS—Windows 7 Home Premium, 64 bit.

The programs were compiled for �86 architecture (32 bit). The C++ and C#

programs were compiled with VS2010, the Java programs with JDK 1.7.0_02.

Objective-C programs were compiled with GNUstep under Windows 7. Additional

details will be discussed later.

During testing the benchmark was always the only program running, with all the

RAM and CPU at its disposal. Each output file had a unique name combining the

technology with the number of books and the repetition index; for example
library_ppf_50000_1.dat.

7.5 Specifics of Individual Technologies

The performance of a persistent system depends on the implementation of the data

structures. We had two choices:

1. To enforce identical data structures for all the persistent systems we tested. [That

could produce misleading results for the systems where special data structures

are a part of the solution.]

2. To measure each persistent system with the data structures it normally uses.

[This is a more realistic overall evaluation.]

We favour approach 2, and for those persistent systems that do not have any

specific library of data structures we used the InCode library which, in our opinion,

provides the best performance for this type of the problem.

The main issue was the implementation of the ManyToMany association. DOL

and InCode libraries already have a generic ManyToMany class. In environments to

which InCode has not yet been ported, we implemented ManyToMany as two

containers, and tested various combinations as shown in Listing 7.1. Only the

best implementation for each technology is shown in the final results.

Table 7.3 Monitored tasks

No. Task Description

1 Create Time to create the library of N books

2 Sort Time to sort books by votea

3 Save Time to save the data to disk

4 FileSize 1 Size of the disk file

5 Open Time to read the data from disk, swizzle pointers

6 TopVoted Time needed to find five books with the top votes

7 Traverse Time to search all books for a substring in their name

8 Delete Time to remove every fourth book

9 Save 2 Time to save the reduced data

10 FileSize 2 Size of the disk file after the data reductionb

aCollections in the InCode library are mostly based on intrusive linked lists. Sorting a linked list is

a massive and random pointer exercise
bSome persistent systems do not reduce the data space

7.5 Specifics of Individual Technologies 229

Note the difference between implementations A and B. Under A there are no

references between classes Book and Author in either direction. Under B, such

references are used. As we began to test, we quickly found that the B-style is

unusable with Java and with C# exporting to XML. We were getting stack overflow

caused by the recursive implementation of Java serialization. This was discussed in

Sects. 1.5.2, 1.5.3 and 1.5.4 including examples demonstrating the problem.

Listing 7.1 Tested implementations of ManyToMany. Names of containers are

generic. For example HashMap<> used here is Dictionary<> in C#, HashMap in

Java and std::map<> in C++

(A1) class Library {
HashMap<Book, Vector<Author>> booksToAuthors;
HashMap<Author, Vector<Book>> authorsToBooks;

}
(A2) class Library {

HashMap<Book, LinkedList<Author>> booksToAuthors;
HashMap<Author, LinkedList<Book>> authorsToBooks;

}
(A3) class Library {

HashMap<Book, HashSet<Author>> booksToAuthors;
HashMap<Author, HashSet<Book>> authorsToBooks;

}
(B1) class Book {

Vector<Author> authors;
}
class Author {

Vector<Book> books;
}

(B2) class Book {
LinkedList<Author> authors;

}
class Author {
LinkedList<Book> books;
}

(B3) class Book {
HashSet<Author> authors;

}
class Author {

HashSet<Book> books;
}

230 7 Benchmark

7.6 Benchmark Rules

1. When coding the benchmark, we asked each author or person responsible for the

product (participant) to review our design.

2. Participants could submit their own implementations in source so that we could

check it and run it on our testing hardware.

3. When several implementations using the same product8 were available, the best

results would be used in the final tables and graphs.

4. When a participant improved his/her system beyond the official version, the

improved results would be accepted only if the participant revealed technical

details of the improvement.

5. Participants would be continuously informed about the results of others, and

about the improvements others decided to share.

6. The competition ran for several months, and there was no time limit. In order to

prevent incorrect or inefficient use of the tested systems we encouraged their

authors or their support groups to cooperate with us on coding the benchmark.

7.7 Testing Details

7.7.1 Java Serialization

In Java, the best performing implementation used pattern A3. The tables also show

the results for the combination of Java serialization with the Java version of InCode

library.

The serialization used objects ObjectInputStream and ObjectOutputStream from

package java.io.

Many containers in the InCode library are intrusive and create long chains of

references. As discussed in Sect. 1.4.2, Java serialization cannot handle this type of

data and crashes with stack overflow. As a workaround we expanded InCode

containers with a method that explicitly writes to disk all its objects, which is

essentially the method whereby Java handles its own containers.

When running on Java virtual machine (JRE) we used parameter Xmx1000m,

which allows Java to use 1 GB of RAM.

7.7.2 C# Serialization

The implementation of ManyToMany used pattern A3.

Tests show that C# binary serialization is very slow, especially the

de-serialization where the time increases rapidly with the number of books. We

have already mentioned in Sect. 1.4.3 that its prime use is in .NET Remoting. It is

8 For example, using different class libraries or different data structures.

7.7 Testing Details 231

unsuitable for the type of data we have in the benchmark. The results are not

included in the book but they are on the website.

Besides the binary serialization, we also tested the XML serialization which, to

our surprise, proved to be much faster. We used two styles of formatting the disk

data:

– Binary format, invoked by object BinaryFormatter in namespace System.

Runtime.Serialization.Formatters.

– XML format, invoked by object DataContractSerializer in namespace
System.Runtime.Serialization.

Serialization based on DataContractSerializer is not fully automatic. The user

must add attribute DataContract() to every class, and attribute DataMember()to

every member to be serialized. In order to minimize the disk space we exported all

members with one-character names. For example, class Library was exported as

XML element L.9

7.7.3 DOL (C++)

DOL has its own library of persistent data structures which includes ManyToMany.

For the relation between Library and Book we used DoubleCollect, which is a

doubly-linked intrusive linked list which protects data integrity.

The benchmark tested all three persistent modes supported by DOL:

– Binary serialization, each object storing its binary image—fast and space

efficient.

– ASCII serialization member by member, in a portable format which also

supports class changes. The disk file is larger than for the binary serialization.

– Memory blasting10 which allocates objects from memory pages, which are then

stored without looking at individual objects, and is super fast.

7.7.4 PPF (C++)

Originally PPF did not have its own library, but now there is a version of InCode

which works with PPF. Note that the prime data storage in PPF is not memory but

disk; the data is paged to memory on demand. Pointers are swizzled any time they

are dereferenced. This naturally leads to a longer traversal time, but very short time

for open and save. Each class has its own file, so there are as many output files as

there are classes in the application.

9 This is done by using attribute DataContract(Name¼“L”).
10 See Sect. 2.2.2; for more details (Soukup 1994, p. 379); how to use it

http://www.codefarms.com/docs/dol/index.htm, Sect. 13.2, Memory management.

232 7 Benchmark

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec22_2
http://www.codefarms.com/docs/dol/index.htm

7.7.5 POST++ (C++)

POST++ library allocates data from one large block of memory, and it does not

come with data structures required for this benchmark. It can store STL containers

but under a rather restricting condition: when opening the disk file, the block must

be stored at the same base address where it was before saving to disk. In other

words, values of all pointers must remain the same. No swizzling required.

We did not find this approach very practical. For data using 100 MB of memory

or more, the mapping to the same address often did not work, and we had to restart

the program several times.

The author11 of POST++ recommends use of an address which is not occupied

by other DLLs. It sounds simple, but starting from Windows Vista, operating

systems randomize locations of DLLs. This also would not work when transferring

data between two different computers that use different DLLs.

ManyToMany was implemented using pattern B3.

7.7.6 SQLite (C++)

Code of this benchmark is quite different from all the other technologies. Instead of

data structures such as List or Array, it uses the relational database, with the schema

from Fig. 7.2. SQLite supports many features including transactions.12

SQLite was set to work as fast as possible by using:

PRAGMA journal_mode ¼ MEMORY13

PRAGMA synchronous ¼ OFF14

7.7.7 PSE Pro for C++ from ObjectStore (c)

Our benchmark would not be complete without this well established commercial

product from the company which on their website claims “performance beyond

reach”, “world’s highest performance” and “fast, instant access”. PSE Pro is a

single-process, small footprint object database management solution based on

memory paging. PSE stands for Personal Storage Edition, and it is a light comple-

ment of the main ObjectStore product, which is a full-fledged OODBS, ObjectStore

Enterprise.

11 Konstantin Knizhnik, Russia.
12 http://www.sqlite.org/features.html
13 http://www.sqlite.org/pragma.html#pragma_journal_mode
14 http://www.sqlite.org/pragma.html#pragma_synchronous

7.7 Testing Details 233

http://www.sqlite.org/features.html
http://www.sqlite.org/pragma.html#pragma_journal_mode
http://www.sqlite.org/pragma.html#pragma_synchronous

As with the other products, we aimed for the best results PSE Pro can produce,

and we coded the benchmark jointly with the PSE Pro support group, which

guaranteed that PSE Pro was used properly. The PSE Pro license does not allow

users to publish results of any benchmarks, but we received a special permit from

the company to include PSE Pro in this chapter. Do not confuse PSE Pro with the

main product of ObjectStore company, the ObjectStore Enterprise (TM).

7.7.8 BOOST (C++)

We tested both the binary serialization and the text serialization. The text serializa-
tion is somewhat similar to DOL ASCII mode, but requires more manual input. The

binary serialization isn’t similar to binary DOL though. BOOST binary stores

member by member using binary format, while DOL binary stores binary images

of entire objects without breaking them into members.

As one could expect, binary BOOST was faster than text BOOST. Under

“BOOST”, graphs and tables in this book show the results of binary serialization.

The book website shows results for both serialization styles.

Fig. 7.2 Benchmark schema

when using SQLite

234 7 Benchmark

We used BOOST persistence version 1.52.2, and ManyToMany was implemented

using pattern A3.

7.7.9 QSP (Objective-C)

Objective-C and its NS library provide a built-in serialization called Archiving,
which requires so much manual input that it does not fit our definition of automatic

persistence—see Sect. 1.4.4.

In Sect. 2.5 we explained new, not previously published persistence based on

memory pages, called Quasi-Single-Page persistence, and in Chap. 6 we explained

how this new approach can be used for truly automatic persistence in Objective-C.

The QSP benchmark used a prototype15 of this persistence combined with

InCode data structures.

7.8 Results

From the book website www.codefarms.com/book, you can download complete

results of the benchmark, with more details than it was possible to show in this

chapter. You can view these results either with MS Excel 322 (files with type xls)

or with OpenOffice, LibreOffice 325 (files with type ods). You can also download

the benchmark implementation with various products and languages, including

batch files which compile and run them.

Most of the results that follow are for one million books without abstracts. We do

not show results for C# binary serialization because it was so slow that the results

were completely out of the range for the other technologies.

Some tables show total times for several tasks, for example for 2(sort) + 6

(topVoted) + 7(traverse). The total is more meaningful when individual

technologies use different data structures.

Observation: PPF, and POST++ page disk to memory on demand. PPF is using

soft pointers, POST++ uses hard pointers. One would expect that, in traversal, PPF

would be slower. Why is it significantly faster in Table 7.4? The only explanation

we can think of is that the softness of the PPF smart pointer is only a few arithmetic

operations, which may be less overhead than the paging and transaction manage-

ment performed in P++.

15 The source is available on the website, but be aware that, except for this benchmark, it has not

been used on any serious project yet.

7.8 Results 235

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec28_2
http://dx.doi.org/10.1007/978-3-642-39323-5_6

We also tested the benchmark on Mac16 and on iPhone17. The results are for

general interest only; we cannot compare with Tables 7.3 and 7.4 because of the

differences in the hardware:

MacBookPro10.2 with Intel Core i5, 2.5 GHz.

APPLE SSD SM128E with 121.33 GB

Observation: In Tables 7.3 and 7.4, as expected, traversal time for technologies

based on memory paging is longer. The result is that for intensive algorithms the

overall time will become more favourable for technologies that, between open and
save, keep the data in the same memory location.

Konstantin Knizhnik ran the benchmark with POST++ under Linux, using a

computer with an SSD which is faster than normal HDD. His result for “Top voted

Table 7.4 Overall results for one million books without abstract

Technology/

test

Create

(s)

Open

(s)

Sort+

TopVoted+

traverse (s)

Save

(s)

Delete

(s)

FileSize

1 (MB)

FileSize

2 (MB)

Total

mean time

(s)

DOL (bin) 1.34 18.7 2.17 4.72 0.32 112.71 84.99 31.11

DOL (mb) 2.31 1.20 2.17 0.48 0.20 78.51 78.51 6.85

DOL

(ASCII)

1.32 25.09 2.19 11.40 0.33 196.85 152.94 49.29

PPFa 3.07 1.30 2.73 0.53 0.54 88.07 88.07 8.67

P++(set) 3.26 3.67 0.65 3.37 0.58 320.26 320.26 14.89

J (set) 14.49 50.12 1.34 33.67 3.79 81.47 63.63 127.63

J (InCode) 11.24 29.51 3.48 22.01 0.32 43.84 34.41 82.05

C# XML

(set)

11.92 30.73 5.80 15.19 0.58 644.15 496.23 76.13

SQLite 6.88 0.03 45.69 <0.01 159.48 131.72 131.72 212.08

PSE Pro 2.99 1.51 1.52 1.46 1.39 106.48 106.48 10.65

Boost (bin)b 5.63 6.45 0.39 8.86 0.79 84.46 65.48 28.35

ObjC (QSP) 2.66 2.08 1.99 6.98 1.10 133.72 103.39 21.16

Follow footnotes for the stories of products that were significantly improved during the benchmark

competition—this table already shows the improved results
aThe overall time for PPF was reduced 12.5 times by taking advantage of the cache on the modern

hard drives. The information was shared with other participants. For full story and technical

details, see Sect. 7.9.1
bThe overall time for Boost was reduced 7.5 times by correcting a performance bug in Boost

serialization. For full story and technical details, see Sect. 7.9.2

16 For the full source see directory bk/chap7/benchApple.
17 For more information, see Sect. 6.3.

236 7 Benchmark

books” and 1 M books with abstracts was 5.6 sec compared to 27 sec in Table 7.5.

This can be a rough indication of how much the performance can be improved by

using different hardware and operating system (Figs. 7.3, 7.4, 7.5, 7.6, 7.7, 7.8 and

7.9; Tables 7.6 and 7.7).

Table 7.5 Overall results for one million books with abstracts

Technology/

test no

Create

(s)

Open

(s)

Sort+

TopVoted+

traverse (s)

Save

(s)

Delete

(s)

FileSize

1 (MB)

FileSize

2 (MB)

Total

mean time

(s)

DOL (bin) 2.17 29.83 2.21 6.38 0.39 380.44 285.78 46.00

DOL (mb) 2.71 3.74 2.49 2.72 0.23 343.01 343.01 14.38

DOL

(ASCII)

2.14 38.50 2.21 16.29 0.39 489.48 368.22 72.73

PPF 5.88 4.12 2.86 1.90 0.63 359.29 359.29 16.22

P++(set) 4.40 7.59 6.10 6.90 1.08 679.18 679.18 32.98

J (set) 17.62 59.17 1.47 42.95 6.09 212.04 161.53 157.66

J (InCode) 17.74 35.66 3.62 29.89 0.25 301.59 227.76 105.57

C# XML

(set)

13.39 32.57 5.99 15.48 0.60 762.83 585.25 80.30

SQLite 23.64 0.02 50.08 <0.01 182.85 452.42 452.42 256.59

PSE Pro 4.96 4.22 1.52 6.87 2.18 371.40 371.40 28.72

Boost (bin) 6.52 8.15 0.41 9.35 0.82 337.41 255.20 31.97

ObjC (QSP) 3.08 4.71 2.14 10.91 1.14 396.97 300.83 30.75

Fig. 7.3 Average total times, without abstracts. When there is no dark top, there was no file

reduction

7.8 Results 237

Fig. 7.4 Average total times, with abstracts

Fig. 7.5 Minimum and maximum total times, one million books, without abstracts

Fig. 7.6 Minimum and maximum times to create data, one million books without abstracts

238 7 Benchmark

Fig. 7.7 Minimum and maximum times for combined save+open, one million books, without

abstracts. Serializations move all the data between the memory and disk on open or save. In

technologies based on memory paging, data moving blends with traversing the data

Fig. 7.8 Minimum and maximum of the total (sort+topVoted+traversal), for one million books

without abstracts

Fig. 7.9 Size of the disk file before and after one quarter of the data has been removed, for one

million books, without abstracts. When there is no dark top, there was no file reduction

7.8 Results 239

Table 7.6 Times on MacBookPro and iPhone 5 are very close (times in sec, file sizes in MB)

QSP with SSD

1M books

Create+ Sort+

TopVoted Open Traverse Save Delete

FileSize

1

FileSize

2

Total

mean

time

MacBookPro

(no abstracts)

2.75 0.43 0.18 3.14 0.25 248 191 9.07

MacBookPro

(with abstracts)

3.32 0.63 0.20 4.57 0.26 526 400 12.4

iPhone

5 (no abstracts)

2.75 0.43 0.19 3.14 0.25 248 191 9.34

Table 7.7 Average total times for different number of books (times in sec)

Technology/books count

No abstract With abstract

50 k 250 k 1 M 50 k 250 k 1 M

DOL (bin) 1.36 7.00 31.11 1.83 9.57 46.00

DOL (mb) 0.26 1.38 6.85 0.46 3.37 14.38

DOL (ASCII) 2.06 11.59 49.29 3.02 18.06 72.73

PPF 0.44 1.86 8.67 0.78 3.77 16.21

P++(set) 0.76 3.59 14.89 1.47 6.72 32.98

J (set) 5.61 29.70 127.63 6.74 34.73 157.66

J (InCode) 4.18 19.40 82.05 4.51 23.23 105.57

C# XML(set) 3.23 17.24 76.13 3.25 18.40 80.30

SQLite 3.84 25.33 212.08 10.20 40.41 256.59

PSE Pro 1.37 3.14 10.65 2.06 6.73 28.72

Boost (bin) 1.47 6.97 28.35 1.65 10.64 31.97

ObjC (QSP) 0.86 4.77 19.74 1.30 8.62 30.75

240 7 Benchmark

7.9 Improvements

7.9.1 Warmup of the Hard Drive Cache (PPF)

This improvement is specific for problems where all the data must be in virtual

memory for fast traversal such as, for example, in VLSI CAD systems. Our

benchmark also falls into this category.

The IO cache on today’s hard disks is 64 MB and it keeps increasing. With RAM

well in the GB range, the internal buffers used by the disk drivers may be even

larger.

If a persistent system is based on memory paging, and all the data can fit into this

combined fast storage, any re-read of the data is lightning fast.18 But does the order

in which the pages warm up (or move to the cache) matter?

This question led Soukup to the following experiment. When running the PPF

benchmark,19 he did the opposite to running the CacheKiller: he traversed the entire

disk data in a serial manner, without doing anything with it.

That did not take long, left the disk image in the cache, and made PPF amazingly

fast. The total time including the initial warm-up was 12.5� shorter comparing to

the run after the CacheKiller, where PPF would slowly warm up by randomly

accessing the pages.

Useful Trick No. 5.

Before the run which loads the data from disk to memory, read the entire disk

file into a temporary buffer. This can be a short buffer which you keep

overwriting until the end-of-file. This moves the entire disk file into the

cache, and the subsequent load will be just as fast as if you ran it right after

saving the data.

18 This idea is based more on experimental evidence than on the exact knowledge of the HD

construction or of the internal design of the disk drive.
19 This idea is applicable only to persistent systems based on memory paging, because all the other

systems read the disk sequentially anyway.

Benchmark rule No.4 was:

When a participant improves his/her system beyond the publically avai-
lable version, the improved results will be accepted only if the participant
reveals the technical details of the improvement.

This chapter provides full stories and the technical details that may improve the

performance of your persistence system by the order of magnitude.

7.9 Improvements 241

This performance improvement is easy to explain. For mechanical hard drives,

the repositioning of the head is the main source of the delay, and traversing the disk

sequentially minimizes this delay. The performance improvement may not be as

significant for solid state drives (SSD).

Soukup added this warm-up to PPF as one of the options, and we invited all the

other participants to use the idea if they thought it would improve the performance

of their system. Similar additions improved the performance of POST++ and PSE

Pro by about the same rate.

The advantage of Useful Trick No. 5 is that it we can apply it to any persistent

system without having any information about its internal implementation, size of

pages, etc. PSE Pro support group proposed the following improvement, for

situations where we have the information about the paging of the particular system.

Useful Trick No. 6.

Before the run which loads the data from disk to memory, access one pointer

for each page, in the order in which the pages are stored on disk. This reads

the disk sequentially in the cache and, at the same time, it loads all the pages

directly into their memory locations.

This loads the pages to the cache sequentially just as the warmup does it, but it

also loads all the pages to memory. Useful Trick No. 5 throws away what it reads,

and only later do these pages move from the cache to memory. Table 7.8 shows the

effect of using warmup or preloading for PPF.

7.9.2 Problem with Collecting Objects (Boost)

For testing Boost serialization20 we chose the Boost implementation of the STL

library. The first results (see Table 7.9) were a disaster with the worst total time of

all tested systems, 30-times slower than DOL mb.

Table 7.8 Initial warm-up or preloading pages serially significantly improves the overall time

Technology

Create

(s)

Open

(s)

Sort+ TopVoted

+ Traverse (s)

Save

(s)

Delete

(s)

FileSize

1 (MB)

FileSize

2 (MB)

Total

mean time

(s)

PPF orig 7.27 0.01 4.79 1.05 296.4 351.90 351.90 310.30

PPF warm 5.91 3.67 9.46 0.80 3.85 358.18 359.18 24.18

PPF

preload

5.88 4.12 3.66 1.90 0.63 359.29 359.29 16.22

Times for one million books with abstracts

20We used Ver.1.53.

242 7 Benchmark

The author of Boost serialization, Robert Ramey, analyzed the problem and

found the problem in the algorithm which collects all objects before saving to disk.

In the case where STL containers were given pointers, it performed excessive

searches.

Situations like that can happen easily, for example, when invoking:
class Book { . . . };
std::set<Book*> books;

and we wondered why, with the world-wide use of Boost, nobody has

complained about it.

Our discussion about the internal workings of the algorithm convinced us that

even after this fix, the algorithm is still quite inefficient. It moves around objects

instead of pointers, thus changing the object address; yet this address is used as a

key in the std::set.

If this part of the Boost serialization is re-implemented with the algorithms from

Sect. 2.1.6 (Useful Trick No. 4), it would be at least ten-times faster.

It took several weeks of hard negotiations and testing to find the best data

structures for the benchmark. We clearly had different views of what would be a

“modern and efficient” implementation. The benchmark requires two OneToMany

associations and one ManyToMany associations that should be implemented to

allow fast removal of objects, and also, in one case (books), sorting. STL does not

provide such classes.21

Ramey’s design (row No. 2 in Table 7.9) involved:

std::set<Book> books;

std::string title;

std::string abstract;

std::set<Author> authors;

std::string name;

std::multiset<BookToAuthor, order_dereferenced_pair<

std::set<Book>::iterator, std::set<Author>::iterator> authorToBooks;

std::multiset<AuthorToBook, order_dereferenced_pair<

std::set<Author>::iterator, std::set<Book>::iterator> bookToAuthors;

Table 7.9 Original poor results obtained with BOOST Ver.1.5.3, and improved results by Ramey

and Machacek (times in sec, file sizes in MB)

1M books

without

abstracts Create Open

Sort+

TopVoted+

Traverse Save Delete

FileSize

1

FileSize

2

Total

mean

time

(1) Original

Machacek

4.28 193.86 0.96 10.34 0.51 84.42 79.99 218.46

(2) New

Ramey

9.21 13.7 14.0 8.24 1.30 70.4 53.9 51.3

(3) New

Machacek

5.62 7.06 0.40 8.75 0.81 84.4 65.5 28.9

21 InCode library has them but we did not want to go through the conversion of InCode to Boost.

Also, we believe that persistent systems should be tested with their native libraries.

7.9 Improvements 243

http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec15_2

Machacek’s design (row No. 3 in Table 7.9) involved:

std::set<Book*> books;
std::string title;
std::string abstract;
std::set<Author*> authors;
std::string name;
std::map<Book*, std::set<Author*>> booksToAuthors;
std::map<Author*, std::set<Book*>> authorsToBook;

Note that both designs use std::set, which is internally implemented as a binary

tree. It is not as fast to remove an object from such a tree as it is from an intrusive

linked list,22 but it is reasonably fast. However, the set of books cannot be sorted by

the vote, because the vote count is not unique. Both versions use a temporary array

of Book* pointers, and sort this array with qsort.
Since our benchmark rules called for the best results to be published, Table 7.4

shows the results of Machacek’s implementation. The improved version of Boost,

Ver.1.5.4, will be released in June 2013.

Observation.

If you recently noticed a significant performance improvement of Boost

serialization (version 1.5.4 or higher), Code Farms PPF library (version 3.5

or higher), or ObjectSTORE (c) PSE Pro, possibly running over ten-times

faster on certain types of data, it is likely the result of the intense but friendly

competition associated with this benchmark.

22 Such as available from InCode or DOL.

244 7 Benchmark

	7: Benchmark
	7.1 History of this Benchmark
	7.2 Persistent Systems Tested
	7.3 Description of the Benchmark
	7.4 Monitored Data
	7.5 Specifics of Individual Technologies
	7.6 Benchmark Rules
	7.7 Testing Details
	7.7.1 Java Serialization
	7.7.2 C# Serialization
	7.7.3 DOL (C++)
	7.7.4 PPF (C++)
	7.7.5 POST++ (C++)
	7.7.6 SQLite (C++)
	7.7.7 PSE Pro for C++ from ObjectStore (c)
	7.7.8 BOOST (C++)
	7.7.9 QSP (Objective-C)

	7.8 Results
	7.9 Improvements
	7.9.1 Warmup of the Hard Drive Cache (PPF)
	7.9.2 Problem with Collecting Objects (Boost)

