
Languages, Their Features and Limitations 5

Abstract

The implementation of persistence and class libraries depends on features

provided by the programming language. Even though C, C++, C#, Objective-

C and Java are quite similar in many aspects, they are significantly different in

what they allow us to do about persistence and class libraries.

Keywords

Laguages • Persistence • Limitation • C • C++ • C# • Objective-C • Java

Figure 5.1 sums up the features required for the basic styles of persistent objects:

A: When saving object-by-object, we can use normal allocation, but when

saving entire blocks of memory, we have to replace the allocator.

B: Regardless of how we save the objects, we need to know the locations of all

pointers.

C: When saving object-by-object, we need to know the type (the class) of the

target object. Without this information, the algorithm could not collect all objects

by following the pointers.

D: Members other than pointers are needed only when saving in the

ASCII mode.

The first four chapters explored various approaches to implementing

persistent objects and bi-directional associations, including tricks that make

the persistence more efficient and make it easy to use. This chapter looks

at individual languages and their features that may help to develop such

systems.

J. Soukup and P. Macháček, Serialization and Persistent Objects,
DOI 10.1007/978-3-642-39323-5_5, # Springer-Verlag Berlin Heidelberg 2014

175

E: When collecting all objects by traversing the pointer links, we need virtual

functions that detect the true type of each object. When saving blocks of memory,

inheritance is transparent (irrelevant).

F: The library of intrusive associations requires coordinated insertions into

participating classes, regardless of how the data is stored to disk.

5.1 Plain Old C Language

The first version of DOL was released in 1989, and it worked only in C. It

included a library of intrusive associations such as described in Chap. 3 Today,

DOL supports persistent C++ objects, but most of its internal design is still the

original C code. Code Farms does not support the C version any more; if you

wanted to use it, you would have to back several years to some earlier version. The

new InCode library uses the same data structures with only improved parameteriza-

tion and avoiding macros. The main difference from C++ is that we work with

structures, not classes, and the generic functions which control the data structures

are macros parametrized by the association ID, not class methods.

Figure 5.2 shows the information (chequered boxes) that cannot be obtained

automatically, and must somehow be entered by the user. In C we do not have to

worry about inheritance and virtual functions, there is no problem with writing our

own allocator and we can insert members with macros. If we plan to implement

persistence based on a block of memory, all we need are the pointer locations. Binary

serialization also needs the type of target objects, and for ASCII serialization we need

information about all the members, not just for the pointers. DOL provides all three

types of persistence, and you can switch between them within one program run.

pointer
loca�on

target
class

other
members

virtual
funct.

insert
members

type of
pesistence

ASCII
serializa�on

binary images
serializa�on

block
of memory

D E
F

special
allocator

A

B
C

Fig. 5.1 Features required for the basic three types of persistency

This section describes the internal design of Data Object Library (DOL). This

library is a proof that we can implement a full fledged persistence in plain C, but

we have to be smart about it and use a code generator with a lot of macros.

176 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_2

OVERALL CONCEPT

DOL comes with an extensive library of generic intrusive data structures, and its

persistence assumes the strategy which we still recommend and which was described

in Chap. 3, namely that application classes have no pointer members; if there are any

pointers that are a part of a data structure, they are transparently inserted by the library.

The generic library classes are implemented with macros, and, besides the types

of participating classes, they are also parameterized by the data structure ID.

For example, if you declare1

ZZ_ORG_SINGLE_AGGREGATE(books,Library,Book);

and then use it like this

struct Library *lib;

struct Book *bk;
. . .

ZZ_ADD(books,lib,bk);\

Note that the parameters are not only Library and Book, but also books.

the parameters are not only Faculty and Student, but also students.

The code generator called zzprep creates short segments of code that pull it all

together. This preprocessor creates additional code. It does not modify the applica-

tion code, so you use a debugger as usual.

When you program with DOL, you do not have to identify pointers because there

are none in the application classes, at least not explicitly. Pointers are controlled by the

library, and they were identified and described when the class was added to the library.

pointer
loca�ons

target
class

other
members

virtual
funct.

insert
members

type of
pesistence

ASCII
serializa�on

binary images
serializa�on

block
of memory

D
N/A F

allocate

A

B
C

Fig. 5.2 In C, we do not need virtual functions, but pointer locations and target class are more

difficult to obtain. Checkered information must be provided by the user; it cannot be obtained

automatically. However, areas B and C are needed only when you are constructing the library.

When you program with DOL, only D must be supplied by the user. Information from checkered

boxes cannot be obtained automatically

1 This corresponds to the syntax we have been using in this book: Association SingleAggregate

<Library,Book> books; Note that DOL includes the directory “test” with many programs that test

all the features of this library. Tests that use ZZ_ORG_¼ are the C tests; C++ tests use

ZZ_HYPER_¼ instead. For example, test0a.c is a C test.

5.1 Plain Old C Language 177

http://dx.doi.org/10.1007/978-3-642-39323-5_3

Most users may never create new library classes. Because that is done only once,

such registration of data structure and its pointers does not have to be particularly

efficient or elegant. DOL The library keeps a master2 file, where all the data

structures (associations) and their pointers must be manually registered.

Listing 5.1 shows a section of this file, and what we have to do to register new

data structure SINGLE_AGGREGATE, which works with pointers from 4 to 6:

they are ZZp (from child to parent), ZZt (tail of the children ring) and ZZs (from

child to its next sibling). In the C version of DOL, associations or data structures are

called “organizations”.

The last section3 of the Listing 5.1 records methods of each association and the

file where their source is stored.

Listing 5.1 Adding SINGLE_AGGREGATE to the master file where associations

DOUBLE_LINK and DOUBLE_RING are already recorded

ZZorganization {

0 DOUBLE_LINK 0 1

1 DOUBLE_RING 2 3

2 SINGLE_AGGREGATE 4 6

}

/* ind usedOn pointTo type ptrName, type=a means a pointer */

ZZpointer {

0 0 2 a ZZf /* forward link */

1 0 1 a ZZr /* reverse link */

2 1 2 a ZZf /* forward ring */

3 1 1 a ZZb /* reverse ring */

4 2 1 a ZZp /* parent aggregate */

5 1 2 a ZZt /* tail aggregate */

6 2 2 a ZZs /* sibling aggregate */

}

/* function organization fileName */

ZZfunction {
add 0 adddlink

del 0 deldlink

fwd 0 fwddlink

rev 0 revdlink

addTail 1 addtdrin

next 1 nextdrin

prev 1 prevdrin

. . .

addTail 2 addtsagg

next 2 nextsagg

parent 2 parsagg

. . .
}

2 In DOL, it is file macro/zzmaster.
3 This section shows the concept, not the exact format.

178 5 Languages, Their Features and Limitations

For example, when the code generator reads these definition of these associations

ZZ_ORG_SINGLE_AGGREGATE(books,Library,Book);

ZZ_ORG_SINGLE_AGGREGATE(published,Author,Book);

it retrieves the names of all the structures and it gives them an index: 0 ¼ Library,

1 ¼ Book and 2 ¼ Author. It also combines this information with the master file,
makes a list of pointers that have to be inserted into these structures and creates file

zzincl.h with ZZ_EXT_.. macros that insert the required pointers:

#define ZZ_EXT_Library \

Book *_books_ZZt

#define ZZ_EXT_Book \

Library *_books_ZZp; \

Book *_books_ZZs; \

Author *_published_ZZp;\

Book *_published_ZZs

#define ZZ_EXT_Author \

Book *_published_ZZt

Note that this arrangement always positions all the pointers at the beginning

of the object. When swizzling them or writing them to disk, we do not need a

bitmap to identify their locations—we only need to know how many pointers

we have at the beginning of the object.

5.1 Plain Old C Language 179

The following code is an example of using DOL in a C application:

#include “zzincl.h” /* generated by the code generator */

struct Library {

ZZ_EXT_Library;

. . . other members as usual

};

struct Author {

ZZ_EXT_Author;

. . . other members as usual

};

struct Book {

ZZ_EXT_Book;

. . . other members as usual

};

ZZ_ORG_SINGLE_AGGREGATE(books,Library,Book);

ZZ_ORG_SINGLE_AGGREGATE(published,Author,Book);

int main(){

Library *lib; Author *auth; Book *bk1,*bk2;
ZZ_PLAIN_ALLOC(Library,1,lib);

ZZ_PLAIN_ALLOC(Book,1,bk1);

ZZ_PLAIN_ALLOC(Book,1,bk2);

ZZ_PLAIN_ALLOC(Author,1,auth);

ZZ_ADD(books,lib,bk1);

ZZ_ADD(books,lib,bk2);

ZZ_ADD(published,auth,bk1);

. . .

}

#include “zzfunc.c” /* generated by the code generator */

where ZZ_PLAIN_ALLOC (T, 1, p) is the C equivalent of p=new T() in C++,

ZZ_PLAIN_ALLOC(T, n, p) is the C equivalent of p=new T[n] in C++,

ZZ_ADD(org, p1, p2) is the C equivalent of org.add (p1, p2) in C++.

The code generator prepared the definitions of macros ZZ_PLAIN_ALLOC and

ZZ_ADD so that they are readily available through the include file, zzincl.h. The

internal implementation is rather complex, but the following code samples show the

general idea how it all works. In order to understand the concatenations (##), look

above for the example of ZZ_EXT_.. statements:

180 5 Languages, Their Features and Limitations

/* macro from the library */

#define ZZ_PLAIN_ALLOC(TYPE,N,PTR) \

PTR=(TYPE*)calloc(sizeof(TYPE),N);

/* line generated specifically for this project */

#define ZZ_ADD_books ZZ_ADD_SINGLE_AGGREGATE

/* prepared by the code generator, ## concatenates */

#define ZZ_ADD(ID,PAR,CHI) \

ZZ_ADD##ID(ID,PAR,CHI,_##ID##_ZZp,_##ID##_ZZt, _##ID$$_ZZs)

/* macro from the library, parent and child */

#define ZZ_ADD_SINGLE_TRIANGLE(id,par,chi, \

parent,tail,sibling) \

if((chi)->parent!=NULL || (chi)->sibling!=NULL){\

. . . error exit or do nothing

}\

else {\

if((par)->tail==NULL){\

(par)->tail=(chi);\

(chi)->parent=(par);\

(chi)->sibling=(chi);\

}\

else {\

(chi)->sibling=((par)->tail)->sibling;\

((par)->tail)->sibling=(chi);\

(chi)->parent=(par);\

}\

}\

}

We do not need to know any details about other members (see box E in Fig. 5.2)

if we want to run an ASCII serialization. We only need to know how to write and

read back these members from the disk.

For that DOL has an elegant solution. For each class the user has to supply a

ZZ_FORMAT statement. For example:

class Book {

ZZ_EXT_Book

int ISBN;

float cost;

};

ZZ_FORMAT(Book,"%d %6.2f,ISBN,cost");

This statement contains enough information for the code generator to create the

write and read functions that will always match, yet it has the flexibility to handle

any interpretation of numbers and text.

5.1 Plain Old C Language 181

5.2 C++ Language

Over the past 2 decades, most of the work on persistency was done in C++, and

the history details of all these projects are interesting. Under the name of Organized

C (orgc), DOL has been commercially distributed since 1989. Pointer swizzling at

the page fault was first proposed byWilson (1990). Singhal et al. (1992) reported on

a university project called Texas, to which we could not find any references after

2000. Soukup (1994)4 introduced memory blasting. Free5 software (Knizhnik,

POST++, 1999) is available for download. The Boost persistence was designed

during 2002–2004 without its author being aware of the Code Farms libraries

(DOL, PPF, InCode). Figure 5.4 shows the time progress of these projects.6

File mapping has been used in the ObjectStore line of products since the

inception of the company as described in Lamb et al. (1991). Recently, Zikari

(2010) confirmed the company still uses the same methodology. When using

ObjectStore (c) PSE Pro for C++, the user must replace all calls to new() throughout

the application.7 The user does not have to identify pointer members, and neither

published papers nor the documentation explain how PSE does it. Our guess is that

the PSE code generator performs a partial syntax analysis of the application

classes—essentially what you get through reflection in languages like Objective-

C or Java. To verify this hypothesis is difficult because the PSE code generator

produces a binary file, not a source you could examine visually.

Figure 5.3 shows the information (chequered boxes) that cannot be obtained

automatically in C++ and must somehow be entered by the user.

Data Object Library (DOL) supports three styles of persistence (binary serial-
ization, ASCII serialization and memory blasting). The serialization is automatic

and supports schema migration. DOL combines persistence with an extensive

library of data structures (associations) which include bi-directional associations

not supported by STL—see Fig. 5.5. It provides a more extensive protection against

pointer errors than Java, and all classes have iterators which allow to delete objects

while iterating the containers. The total space for its executables (code generator

and compiled library) is under 400 kB.

C++ is excellent for implementing persistent data except for one thing: It does

not support reflection. Since Chaps. 2 and 3 were built on C++ examples, we do

not have to discuss the capabilities of the language itself, but we can look at the

different approached used in the available C++ products.

4 pp. 386–392.
5 POST++ comes in source from which all comments have been removed, and it is rather difficult

and time consuming to figure out its inner workings.
6 Code Farms were incorporated in 1988 and ObjectStore in 1989.
7 Compare this to PPF which re-defines operator new() and makes this transparent.

182 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_2
http://dx.doi.org/10.1007/978-3-642-39323-5_3

DOL assumes that application classes do not store any raw pointers and partici-

pate only in data structures (associations) from DOL. DOL includes some unusual

classes, for example classPagerwhich stores nonstructural information such as text,

pictures or tables of numbers in a separate file, and pages it to memory as needed.

Class Property is useful in two situations. (1)When youmay need, sometimes in the

future, to add members to applications classes without adjusting the schema.

(2) When some members are only sparsely used. For more details, see Sect. 4.2.

Persistent Pointer Factory (PPF) uses a completely different style of persis-

tence, see Sect. 2.4.2. It is based on persistent pointers which page disk to memory

on demand. Because these pointers store the disk address and not the memory

address, they are persistent and do not require swizzling when moving the data to or

from the disk. This library being written is proof that C++ persistence can be

implemented in pure C++ without any code generation or using system specific

pointer
loca�ons

target
class

other
members

virtual
funct.

insert
members

type of
pesistence

ASCII
serializa�on

binary images
serializa�on

block
of memory

D
E F

allocate

A

B
C

Fig. 5.3 In C++, virtual functions that we may need when inheritance is involved can be inserted

with a macro. Otherwise the situation is similar to C, where the main problems are boxes B, C

and D. Information from checkered boxes cannot be obtained automatically

year DOL ObjSt. Texas PPF POST Boost
1989 S
1990 S M
1991 S M M
1993 SB M M
1997 SB M M P
1998 SB M M P M
2000 SB M P M
2004 SB M P M X

Fig. 5.4 History of persistent systems, commercial projects in bold.Legend: S ¼ automatic

serialization, both binary and ASCII, M ¼ memory mapping, B ¼ memory blasting, P ¼ persis-

tent pointers, X ¼ binary, ASCII and XML serialization. Information from checkered boxes

cannot be obtained automatically

5.2 C++ Language 183

http://dx.doi.org/10.1007/978-3-642-39323-5_4#Sec2
http://dx.doi.org/10.1007/978-3-642-39323-5_2#Sec27

functions such as file mapping. It has been offered on the web for over a decade, but

in spite of being elegant and compact,8 it did not become popular, probably because

it originally did not include any data structures, and programmers looking for

persistence chose DOL with its extensive library.

While writing this book, we paired PPF with InCode library,9 which is a modern

library of bi-directional associations, but does not have persistence. The result is the

PPFIC library. For the performance comparison with other libraries, see Chap. 7

(Benchmarks).

The main difference between PPF and POST or PSE is that PPF works with soft

pointers which require a short arithmetic calculation on each pointers access, while

PSE and POST use hard pointers which are swizzled when the page is loaded to

memory.

Boost is an open source library of data structures which also includes serializa-

tion. The serialization requires too much user input to qualify, in our terms, to be

considered an automatic persistence, yet it was recently proposed as a C++ stan-

dard. Because of that, and because of its massive use worldwide, we treat it as one

of the serializations that are part of the language, such as Java serialization or C#

serialization. For more on Boost, see Sect. 1.5.5.

ring (singly and double linked; sort, merge, and split functions)
collection (singly and double linked; sort, merge, and split functions)
aggregate (singly and double linked; OneToMany association)
trees (singly and double linked)
name (variagle length string)
single and double link (pointer link, or OneToOne association)
LIFO and FIFO queues
reference (similar to Java reference)
array (array of object or array of pointers, also binary heap)
hash table (use default or your own hashing)
graphs (directed, not directed, singly or doubly linked)
ManyToMany (including two iterators)
type (essentially a form of reflection)
pager (persistent storage of large non-structural information, texts)
property (run-time expansion of objects by any number of named members)

Fig. 5.5 Persistent data structures supported by DOL

8Based on C++ templates, total source 2700 lines including comments, executable 164 kB.
9 See Sect. 3.1.3.

184 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_7
http://dx.doi.org/10.1007/978-3-642-39323-5_3#Sec4_3

Just for your curiosity, let’s look at how much the syntax of working with DOL

improved when moving from C (Sect. 5.1) to C++ here:

#include “zzincl.h” /* generated by the code generator */

class Library {

ZZ_EXT_Library;

. . . other members as usual

};

class Author {
ZZ_EXT_Author;
. . . other members as usual

};
class Book {

ZZ_EXT_Book;
. . . other members as usual

};

ZZ_HYPER_SINGLE_AGGREGATE(books,Library,Book);
ZZ_HYPER_SINGLE_AGGREGATE(published,Author,Book);

int main(){
Library *lib; Author *auth; Book *bk1,*bk2;
lib=new Library;
bk1=new Book;
bk2=new Book;
auth=new Author;

books.add(lib,bk1);
books.add(lib,bk2);
published.add(auth,bk1);
. . .

}
#include “zzfunc.c” /* generated by the code generator */

In file zzincl.h, code generator prepared ZZ_EXT_... statements the same way as it

did in C, but it added the friend statements which allow the relevant interface

classes to reach inside class Book. It also replaces operator new() depending on

whether the persistence uses memory blasting or serialization. MB_ALLOC(Block)

is a macro which not only allocates the object from special pages, but it also updates

the corresponding bitmap with the location of pointers embedded in each Book.

#define ZZ_EXT_Book \

friend class ZZHbooks;\

friend class ZZHpublished;\

Book * _published_ZZs;\

Book * _book_ZZs;\

Author * _published_ZZp;\

Library * _books_ZZp;\

public:\

void * operator new(size_t size){\

if(memoryBlasting) return MB_ALLOC(Book);\

else return calloc(size,1); /* serialization */\

}\
. . .

5.2 C++ Language 185

Internally, the interface class is renamed, using the association name. For example

ZZ_HYPER_SINGLE_AGGREGATE(books,Library,Book) becomes ZZHbooks

ZZ_HYPER_SINGLE_AGGREGATE(published,Author,Book) becomes ZZHpublished

Internally, individual methods can either call the original C macro (STYLE 1), or

be fully coded in C++ (STYLE 2):

// STYLE 1: new interface hiding the macro design

#define ZZ_HYPER_SINGLE_AGGREGATE(id,pType,cType) \

class ZZH##id { \

public: \

void add(pType *p,cType *c){ ZZ_ADD(id,p,c); } \

... all the other methods \

} id;

// STYLE 2: true C++ code

#define ZZ_HYPER_SINGLE_AGGREGATE(id,pType,cType) \

class ZZH##id { \

typedef tail _##id##_ZZt; \

typedef sibling _##id##_ZZs; \

typedef parent _##id##_ZZp;\

public: \

void add(pType *par,cType *chi){\

if(chi->parent!=NULL || ch)->sibling!=NULL){\

... error exit or do nothing

}\

else {\

if(par->tail==NULL){\

par->tail=chi;\

chi->parent=pa);\

chi->sibling=chi;\

}\

else {\

chi->sibling=(pa)->tail)->sibling;\

(par->tail)->sibling=ch);\

chi->parent=par;\

}\

}\

}\

... other the other methods \

} id;

Note that the syntax in which application uses this interface can be set up in two

ways. When it is as we just described, the application calls are

books.add(lib,bk);

published.add(auth,bk);

which is the style used in DOL.

If we set up the interface class like this

#define ZZ_HYPER_SINGLE_AGGREGATE(id,pType,cType) \

class id { \

... \

};

186 5 Languages, Their Features and Limitations

the application calls would be

books::add(lib,bk);

published::add(auth,bk);

5.3 Java Language

From the viewpoint of data structures and persistence, Java is significantly simpler

than C++, and very much like C#:

• It does not have pointers, only references.

• A member can be a reference, but not an object (instance of some class).

• Multiple inheritance is not allowed.

• It has reflection which solves the problem with finding reference members.

• There is no equivalent of C macros.

Internally, references store object addresses, but their values are not available to the

application programmer, and operator new() cannot be overloaded. From Fig. 5.6 we

can conclude that implementing serialization should be easy, but persistence based on

the block of memory would be difficult or impossible to design.

It’s not surprising that Java has built-in serialization which saves the data in a

special byte-encoded format; see Sect. 1.5.2 What is surprising is that the

ObjectStore company now has PSE Pro for Java.

Blog (Weinreb 2007) describes how the original PSE Pro for Java was

implemented, but the past tense is being used—perhaps meaning that the existing

implementation is different: The PSE Pro for Java had its own storage engine
which is used just for object-level faulting with a specialized lightweight, small
footprint, storage engine. However, it did not support concurrent access between
separate Java processes. The idea of injecting JVM instructions into Java class files

is also mentioned.10

Besides Java built-in serialization—see Sect. 1.5.2, there are several systems

that store Java objects in a database which is not the type of persistence we cover in

this book. An example of such a system is Hibernate.

UMPLE (2012) is a model-programming technology which resembles the

InCode library in that it represents associations as first class objects, includes a

library of data structures (associations) and alternates between controlling them

with a textual schema which is in the code or controlling them with the UML class

diagram—see Sect. 3.5. It runs with Java, PHP and Ruby, but it does not support

persistence.

10 JVM—Java Virtual Machine; this is an equivalent of inserting machine code instructions into an

object file.

5.3 Java Language 187

http://dx.doi.org/10.1007/978-3-642-39323-5_3#Sec18

5.4 C# Language

From the viewpoint of data structures and persistence, C# is significantly simpler

than C++, and very much like Java—see Fig. 5.6:

• It does not have pointers, only references.

• A member can be a reference but not an object (instance of some class).11

• Multiple inheritance is not allowed.

• It has reflection which solves the problem with finding reference members.

• There is no equivalent of C macros.

Internally, references store object addresses, but their values are not available to

the application programmer, and operator new() cannot be overloaded. From

Fig. 5.6 we can conclude that implementing serialization should be easy except

for the insertion of pointers required for intrusive data structures. However, persis-

tence based on the block of memory would be difficult if not impossible to design.

C# has a built-in serialization which supports both binary and XML formats.

The advantage of the XML format is that it can read the stored data even if the

pointer
loca�ons

target
class

other
members

virtual
funct.

insert
members

type of
pesistence

ASCII
serializa�on

binary images
serializa�on

block
of memory

D
E F

A

F

allocate

B C

Fig. 5.6 C# and Java are similar. Their reflections allow one to identify references, their target

types and other members, but you cannot overload operator new() or get the address stored inside

the reference. Inserting members is difficult, there are no macros and instances cannot be inserted

as members. Information from checkered boxes cannot be obtained automatically

11 This is easiest to explain on a C++ example:

class A {...};

class B {

A *ap; // corresponds to reference in Java

A aa; // is not allowed in Java

};

Note that ap leads to an object allocated separately, but aa is allocated as a part of any B object.

188 5 Languages, Their Features and Limitations

structure of the serialized objects are changed, for example if we add or remove

members from some classes. The disadvantage of the XML format is a larger size of

the data file. For more details see Sect. 1.5.3.

The C# library of associations (Osterby 2000) is not persistent, but it is interest-
ing because it inserts the references that form the association without using a code

generator or Aspects. It uses runtime type instantiation, which is not available in Java.

This was a university research project which is not active anymore. The C# version of

Java Hibernate is called NHibernate. Commercial product DevXPress also provides

persistency which is using a database.

5.5 Objective-C Language

Of all the languages discussed in this book, Objective-C is the most suitable for

building persistence.12 It has all the advantages of C and C++ including access to

addresses of objects and pointers, but it also has reflection which can identify

pointers and their locations without any user input.

There are no chequered boxes in Fig. 5.7 because all the steps are easy. You cannot

replace operator new() but you can code your own method alloc. The reflection gives
you all the members, and tells you what the types are. You do not need information

about the pointer target type, because each object, in this case the target object, can

tell you its type. All methods in Objective-C are virtual, so there is no special problem

with virtual methods. You cannot insert an object instance as a member, but a member

can be a struct—which is all we need when we built intrusive data structures.

We know only one implementation of persistent objects for Objective-C, the

built-in serialization called Archiving, which generates XML, ASCII or binary

output as we explained in Sect. 1.5.4. To support archiving, a class has to imple-

ment the NSCoding protocol which has methods to encode (to archive) and decode

(to unarchive) instances of that class which, as we said at the beginning of this book,

is something we want to eliminate. Also quoting13 the Apple documentation:

Cocoa archives can hold Objective-C objects, scalars, arrays, structures and strings. They
do not hold types whose implementation varies across platforms, such as union, void*,
function pointers, and long chains of pointers.

If it cannot handle long chains of pointers it cannot handle intrusive data structures.

12 It is also a young language only about 10 years old which has little in common with Objective-C

from the 1990s.
13 http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/Archiving/Articles/

archives.html

5.5 Objective-C Language 189

http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/Archiving/Articles/archives.html
http://developer.apple.com/library/mac/#documentation/cocoa/conceptual/Archiving/Articles/archives.html

The following chapter (Chap. 6) will take us through the implementation of fully

automatic persistence for Objective-C, with code examples in Objective-C only.

Objective-C syntax is quite different from the C++ or Java, and not all readers will be

familiar with it. The remaining part of this chapter will introduce Objective-C

syntax, just enough that you should be able to read the code samples in Chap. 6. It

will also show some algorithms that are conceptually different from C++.

You can compile Objective-C programs with gcc under Windows or Linux, or

with iOS on any Apple hardware, e.g. Mac. Look at Listing 5.2 for the comparison

of the C++ and Objective-C syntax.

Normally all application classes are derived, directly or indirectly, from class

NSObject. For example, in Listing 5.2, class Publication might have been derived

from it:

@interface Publication : NSObject

Reserved keyword id, usually written as (id) means “pointer to any Objective-C

object”, not just “pointer to any object derived from NSObject”. The advantage of

deriving object from NSObject is that NSObject implements support methods

required by runtime. In Listing 5.2, method init returns (id).

pointer
loca�on

target
class

other
members

virtual
funct.

insert
members

type of
pesistence

ASCII
serializa�on

binary images
serializa�on

block
of memory

D E
F

special
allocator

A

B
C

Fig. 5.7 Of all the languages discussed in this book, Objective-C is the most suitable for building

persistence—in addition to all the useful features of C++, it also supports reflection. Its weak point

is the NextStep (NS) library. Note that all the information can be obtained automatically (there

are no checkered boxes)

190 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_6
http://dx.doi.org/10.1007/978-3-642-39323-5_6

Listing 5.2 Comparing syntax of C++ and Objective-C

Objec�ve-C file: Book.h
@class Author;
@interface Book : Publication
{
@private
int pages;

@public
char *title;
Book *next;

}
- (id) init;
- (int) getPages;
- (void) setBook: (int) pg

title: (char*) tit;
+ (int) getID; //size of object
@end

Objec�ve_C file: Book.m
@implementation Book
static int ID=13; // class ID
-(id) init {
self=[super init];
pages=0; title=NULL;
return self;

}
-(int) getPages {
return pages;

}
-(void) setBook: (int) pg

title: (char*) tit {
pages=pg;
title=tit;

}
+ (int) getID {return ID;}
@end

Objec�ve-C file: main.m
int main(){
Book *bk1,*bk; int sz;
char *t="C++Manual";
bk1=[[Book alloc] init];
[bk1 setBook: 120 title: t];
sz=[Book getID];
// ...more books form a chain
for(bk=bk1; bk!=nil;

bk=bk->next){
printf("%s\n",bk->title);

}
return 0;

}

C++ file: Book.h
class Author;
class Book : public Publication {
int pages;

public:
char *title;
Book *next;
static int ID; // class ID
Book();
int getPages();
void setBook(int pg,char *tit);
static int getID();

};

C++ file: Book.cpp
int Book::ID=13;
Book::Book(){pages=0;title=NULL;}
int Book::getPages(){
return pages;

}
void Book::setBook(

int pg,char *tit){
pages=pg;
title=tit;

}
int Book::getID(){return ID; }

C++ file: main.cpp
int main(){
Book *bk1,*bk; int sz;
char *t="C++ Manual";
bk1=new Book(;
bk1->setBook(120,t);

sz=Book:getID();
// ...more books form a chain
for(bk=bk1; bk!=NULL;

bk=bk->next){
printf("%s\n",bk->title);

}
return 0;

}

The main difference from C++ is that classes are not abstract, untouchable

entities: they are objects. You can examine them during the program run or pass

them as function or method parameters. Keyword Class (without *) means “pointer

5.5 Objective-C Language 191

to a class”. This concept opens magical possibilities about which you could not

dream in C++, for example:

Book *bk=[[Book alloc] init];

(id) v=bk;

Class cls=[v class];

const char* className = class_getName(cls);

NSLog(@"yourObject is a: %s", className);

An instance of a class cannot be used as a member of another class. This is

similar to Java; however, unlike Java, Objective-C allows members which are

instances of a structure. Compare the rules with this C++ code:

class A {. . .};

typedef struct myStruct {

void *mask;

int maskSize;

} myStruct;

class B {

A a; // not allowed in Objective-C

myStruct ms; // works in Objective-C

A *ap; // works in Objective-C

};

For any Objective-C object, its hidden pointer (first 4 or 8 bytes) points to the

class object. Keyword self, when used in an object method, has the same meaning as

this in C++. For example, see the return of method init in Fig. 5.1. However, inside a
class method14 it represents theclass.

Unlike in C++, Objective-C programmers often use C-style, free floating

functions. The following example demonstrates this style of design where self
represents the class. This is a situation where we want to add the same simple

method

createMask to every application class and let all these methods call one C-style

function which actually does the job. The example is shown for application class

Book:

14Method that would be static in C++ and in Objective-C starts with ‘+’.

192 5 Languages, Their Features and Limitations

Listing 5.3 C-style function implementing multiple methods, with self

representing a class, not an object

(id) createMaskGeneral(Class cls);

@interface Book : NSObject

// . . .

+ (void) createMask; // one line added to every application class15

+ (void) checkMask;

@end

// C-style function which actually creates the mask

void *createMaskGeneral(Class cls){

(id) obj=[[cls alloc] init];

// . . . more code

return obj;

}

@implementation Book

static Book *mask=nil;

+ (void) createMask {

mask=createMaskGeneral(self); // <<<<<<<<

}

+ (void) checkMask {

if(mask==nil) printf("error: Mask remains unset\n");

else {

Class cls=[mask class];

printf("mask is an instance of class=%s\n",

class_getName([cls class]));

}

}

@end

int main(){

[Book createMask];

[Book checkMask];

return 0;

}

The penalty for the dynamic typing and all the magic we can do with the classes

is that programs coded in Objective-C are more error prone and more difficult to

debug. We will discuss that at the end of this chapter.

An important part of Objective-C is the NextStep (NS) library, which provides

NSObject that all the application classes should inherit, basic arrays and

collections, and also the Objective-C version of the String class NSString, which

can store either C-style text or Unicode:

char *s¼“abcd”; // C-style string

NSString *ns¼ @“abcd”; // Objective-C type string

char *c¼[ns cString]; // conversion from NSString to C-string

printf(“%s %s\n”, s, [ns cString]);

15 This method can be added at runtime through a utility which uses reflection.

5.5 Objective-C Language 193

Objective-C also has reference counting which is similar to Java. Each object

keeps the count of pointers that lead to it. If the count drops to 0, it means nobody

refers to it, and it can be discarded or reused. Compared to Java where this counting

is completely transparent and is an integral part of a complex memory management

scheme, Objective-C permits custom allocation and a manual control of this count.

If you wonder where objects keep this count, it is part of the memory used by the

allocator, outside of the object, just before the address where the object starts—see

Fig. 6.2.

For more on the garbage collection in Java which was introduced to simplify

programming, and now “its tuning is a long exercise which requires lot of profiling
and patience to get it right”; see Javin (2011).

The Automatic Reference Counting (ARC) was introduced to Objective-C in

2001. It does static code analysis, and automatically inserts retains and releases for

objects created by the code.

Note that Objective-C ARC does not provide a cycle collector; users must

explicitly manage the lifetime of their objects, breaking cycles manually or

with weak or unsafe references.

ARC may be explicitly enabled with the compiler flag -fobjc-arc, or disabled

with the compiler flag -fno-objc-arc.

The key issue when designing persistence for Objective-C is how to use intro-

spection (reflection) to detect pointers, and then convert this information into the

pointer mask. Listing 5.4 shows the trick.

The mask is one of the pieces of information about the class that we keep in

structure persist_params. CreateMask creates one instance of the class and calls

assignIvarValue with 1. This 1 is the value we want to use to mark the pointers in

the mask. Call to class_copyIvarList returns an array with one entry for each

variable16 of the class. With it, we get encoded Type, and its first character tells

us whether it is or isn’t a pointer. If it is a pointer we set its value to 1, if not then

under default we set it to 0.

This loop does not affect the value of the hidden pointer which is already there. It

is not considered to be a variable.

16 variable is Objective-C lingo for C++ member

194 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_6#Fig2_6

Listing 5.4 Automatic generation of the pointer mask through reflection

// Copyright (c) 2013 Raj Lokanath. All rights reserved.

// Modified by Jiri Soukup, 2013

@implementation Util

+ (void) createMask: (Class) klass params: (persist_params*) data {

data->mask = [[klass alloc] init];

[self assignIvarValue:1 inObject:data->mask];

}

+ (void)assignIvarValue:(int) value inObject:(id)object {

unsigned int ivarCount = 0; int ivarIndex;

Class cls = [object class];

Ivar *alliVars = class_copyIvarList(cls,&ivarCount);

for (ivarIndex = 0; ivarIndex < ivarCount; ivarIndex++) {

Ivar ivar = alliVars[ivarIndex];

const char *encodedType = ivar_getTypeEncoding(ivar);

// NSLog(@"%s type %s",ivar_getName(ivar),encodedType);

switch (encodedType[0]) {

case ’@’:// reference of object

case ’*’:// pointer to native type

case ’^’://pointer to type

object_setIvar(object, ivar, (void*)value);

break;

default:

object_setIvar(object, ivar, 0);

break;

}

}

free(alliVars);

}

@end

Note that the code in Listing 5.4 does not detect pointers which are inside struct

instances. In the following sample, pointers name and itemwill not show in the mask

for class Produce. This is something that is feasible to do; it just needs more code.

On the other hand, since ARC does not allow object references (pointers)

inside struct, it is questionable whether the persistence should support it.

5.5 Objective-C Language 195

typedef struct bunch {

int cost;

char *name;

(id)item;

} Bunch;

@interface Produce

{

float weight;

Bunch myBunch;

}

@end

The other thing missing in Listing 5.4 is that it records only pointers at the level

of the given class—and no pointers of its superior classes. If we need all the

pointers, we have to go through the entire inheritance hierarchy—see the recursive

implementation in Listings 5.5 and 5.6.

Listing 5.5 shows the C++ implementation, in which each application has

method createMask which creates the mask but only at the level of this class. The

code is taking advantage of the default constructor automatically invoking all

superior default constructors. The Util class holds flag allocControl which is

essentially a nicer form of a global variable. If this flag is 0, default constructors

perform normal allocation. When it is 1, createMask is invoked.
Listing 5.6 shows the Objective-C implementation,17 in which not only the mask

generation but also the recursion is extracted to a common C-style function (you

could use the word “generic”) createMaskGeneric(). The main concept is the use of

the superior class18 from which this class inherits.

Note the different order in which the inheritance levels are traversed. The order

makes no difference when constructing a mask.

Listing 5.5 output Listing 5.6 output

Before creating the mask Create mask for C

Create mask for A Create mask for B

Create mask for B Create mask for A

Create mask for C

Create mask for D

17 In Objective-C, method init is used as a constructor, but init does not automatically traverse the

inheritance hierarchy. Even if we wanted to use the C++ approach, we cannot use it. It would

not work.
18 Keyword or class method super.

196 5 Languages, Their Features and Limitations

Listing 5.5 Recursive mask generation, C++ style

class Util {

public:

static int allocControl;

};

int Util::allocControl=0; // 0=normal allocation, 1=mask generation

class A {

static void createMask(){ printf("create mask for A\n");}

public:

A(){if(Util::allocControl) createMask(); /* …other code… */}

};

class B : public A {

static void createMask(){ printf("create mask for B\n");}

public:

B(){if(Util::allocControl) createMask(); /* …other code… */}

};

class C {

static void createMask(){ printf("create mask for C\n");}

public:

C(){if(Util::allocControl) createMask(); /* …other code… */}

};

class D : public B, public C {

static void createMask(){ printf("create mask for D\n");}

public:

D(){if(Util::allocControl) createMask(); /* …other code… */}

};

int main() {

D *d=new D;

printf("before creating the mask\n");

Util::allocControl=1;

d=new D;

return 0;

}

5.5 Objective-C Language 197

Listing 5.6 Recursive mask generation, Objective-C style

void createMaskGeneric(Class cls){

printf("create mask for %s\n", class_getName(cls)); // see 19

Class superClass = class_getSuperclass(cls);

if([superClass isEqual: [NSObject class]]) return;

createMaskGeneric(superClass);

}

@interface A : NSObject

+ (void) createMask;

@end

@implementation A

+ (void) createMask{ createMaskGeneric(self); }

@end

@interface B : A

+ (void) createMask;

@end

@implementation B

+ (void) createMask{ createMaskGeneric(self); }20

@end

@interface C : B

+ (void) createMask;

@end

@implementation C

+ (void) createMask{ createMaskGeneric(self); }

@end

int main() {

[C createMask];

return 0;

}

5.6 Errors and Debugging

In a more sophisticated language, the errors will also be more sophisticated, and

some of them will show up at the run time instead of the compile time. That means

more difficult debugging, and safety issues with software which simply must not

fail (space shuttle, computer driven surgery, control of nuclear reactor).

A typical example iswhat happened to uswhenwe began to test QSPpersistence on

the benchmark example from Chap. 7. The program crashed in the middle of the run

withmemory fault on a line which looked quite normal and was coded by all the rules.

Only after several days (!) we realized that we did not include<objc/runtime.h> at the

19 If this line is placed at the end of the function, the order in which the sub-masks are created

would be the same as in the C++ version.
20 Instead of doing this, Objective-C allows one to inject this method at runtime through reflection,

without any need to modify the application class.

198 5 Languages, Their Features and Limitations

http://dx.doi.org/10.1007/978-3-642-39323-5_7

top of one source file.21 Compiler in C++ or Java would catch the problem, and we

could corrected it within seconds, but Objective-C did not complain about it because

there, with its relaxed rules, there was some (remote) possibility of using the particular

function even without objc/runtime.h.

Another thing to watch for is that Objective-C classes cannot have an equivalent

of C++ static class member—a value associated with the class, not with any object.

Variable data->mask which we use all through this Chap. 5, is a member of static

struct persist_params with the scope of the given *.m file. Program using such

variables must strictly maintain a separate *.m file for each class.

The Apple variety of Objective-C22 supports associated object, which is another

alternative to this type of object, but it must be created dynamically, unlike the

static member in C++.

21When a method is not declared or imported, Objective-C assumes a return type id, and that was

likely the cause of the crash in this case.
22 The Windows/gcc variety of Objective-C does not support it yet.

5.6 Errors and Debugging 199

http://dx.doi.org/10.1007/978-3-642-39323-5_5

	5: Languages, Their Features and Limitations
	5.1 Plain Old C Language
	5.2 C++ Language
	5.3 Java Language
	5.4 C# Language
	5.5 Objective-C Language
	5.6 Errors and Debugging

